
Jian Pei   Vincent S. Tseng
Longbing Cao   Hiroshi Motoda
Guandong Xu (Eds.)

 123

LN
AI

 7
81

8

17th Pacific-Asia Conference, PAKDD 2013
Gold Coast, Australia, April 2013
Proceedings, Part I

Advances in
Knowledge Discovery
and Data Mining



Lecture Notes in Artificial Intelligence 7818

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



Jian Pei Vincent S. Tseng Longbing Cao
Hiroshi Motoda Guandong Xu (Eds.)

Advances in
Knowledge Discovery
and Data Mining

17th Pacific-Asia Conference, PAKDD 2013
Gold Coast, Australia, April 14-17, 2013
Proceedings, Part I

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Jian Pei
Simon Fraser University, Burnaby, BC, Canada
E-mail: jpei@cs.sfu.ca

Vincent S. Tseng
National Cheng Kung University, Tainan, Taiwan
E-mail: tsengsm@mail.ncku.edu.tw

Longbing Cao
Guandong Xu
University of Technology Sydney, NSW, Australia
E-mail: {longbing.cao, guandong.xu}@uts.edu.au

Hiroshi Motoda
Osaka University, Japan
E-mail: motoda@ar.sanken.osaka-u.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37452-4 e-ISBN 978-3-642-37453-1
DOI 10.1007/978-3-642-37453-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013934551

CR Subject Classification (1998): H.2.8, I.2, H.3, H.4, J.1, I.5

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

As the Program Committee Co-chairs, we welcome you to the proceedings of
the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2013), held at Gold Coast, Australia, during April 14-17, 2013.

The PAKDD conference series, since its inception in 1997, has been a leading
international conference in the areas of data mining and knowledge discovery
(KDD). It provides an inviting and inspiring forum for researchers and practi-
tioners, from both academia and industry, to share new ideas, original research
results, and practical experience. The 17th edition continued the great tradition,
and had three world-class keynote speeches, a wonderful technical program, a
handful of high-quality tutorials and workshops, as well as an interesting invited
talk from industry.

The PAKDD 2013 conference received 363 submissions to the technical pro-
gram, involving more than 1,000 authors in total. In the rigorous double-blind
review process, each submission was reviewed by one senior Program Commit-
tee member and at least three Program Committee members. Many submissions
were extensively and thoroughly discussed by the reviewers. Based on the de-
tailed and critical discussion and reviews, the senior Program Committee mem-
bers made recommendations. Overall, 98 papers from 341 authors were accepted
in the technical program, yielding a 27% acceptance rate. Of these, 39 (10.7%)
had long presentations (30 minutes) and 59 (16.3%) had short presentations (15
minutes). The technical program consisted of 22 sessions, covering the general
fields of data mining and KDD extensively, including pattern mining, classifi-
cation, graph mining, applications, machine learning, feature selection and di-
mensionality reduction, multiple information sources mining, social networks,
clustering, text mining, text classification, imbalanced data, privacy-preserving
data mining, recommendation, multimedia data mining, stream data mining,
data preprocessing and representation.

We were lucky to have three world-class keynote speakers this year. Usama
Fayyad, a renowned pioneer in big data entrepreneurship, addressed us on the
big picture of big data. Huan Liu, a world-wide leader in social media mining,
discussed this exciting new frontier of data mining. Qiang Yang, a famous expert
on artificial intelligence and machine learning, talked on how machine learning
can address the big data challenge. We were also pleased to have Alexandros
Batsakis as an invited speaker from industry. He shared with us the latest de-
velopments on big data analytics infrastructure and enterprise applications.

The conference also included six workshops, covering a few exciting and fast-
growing hot topics. We also had five very timely and educational tutorials, cov-
ering the hot topics of social networks, transfer learning, stream mining, outlier
detection, and feature discovery.



VI Preface

In addition to the intellectually inspiring keynote speeches, technical pro-
gram, workshops and tutorials, we had several dynamic social events to facili-
tate communication and informal interaction, including a welcome reception, a
banquet, and an excursion.

Putting together a conference like PAKDD is never easy. It becomes pos-
sible only with tremendous contributions from the organizing team and many
volunteers. We thank Jiuyong Li, Kay Chen Tan, and Bo Liu for organizing the
workshop program. We also thank Tu Bao Ho and Mengjie Zhang for organizing
the tutorial program. We are grateful to Chengqi Zhang for his leadership in
the award selection. We owe a big thank-you to the 39 senior Program Commit-
tee members, 151 Program Committee members, and the external reviewers for
their great contributions and collaboration. We thank Guandong Xu for assem-
bling the proceedings. We also thank the General Chairs, Hiroshi Motoda and
Longbing Cao, and the local organization team for their great support. Without
the dedicated hard work of so many people, PAKDD 2013 would simply have
been mission impossible.

February 2013 Jian Pei
Vincent S. Tseng
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Efficient Mining of Combined Subspace and Subgraph Clusters in
Graphs with Feature Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Stephan Günnemann, Brigitte Boden, Ines Färber, and Thomas Seidl

Exploiting Temporal Information in a Two-Stage Classification
Framework for Content-Based Depression Detection . . . . . . . . . . . . . . . . . . 276

Yu-Chun Shen, Tsung-Ting Kuo, I-Ning Yeh, Tzu-Ting Chen, and
Shou-De Lin

EEG-Based Person Verification Using Multi-Sphere SVDD and UBM . . . 289
Phuoc Nguyen, Dat Tran, Trung Le, Xu Huang, and Wanli Ma



Table of Contents – Part I XVII

Measuring Reproducibility of High-Throughput Deep-Sequencing
Experiments Based on Self-adaptive Mixture Copula . . . . . . . . . . . . . . . . . 301

Qian Zhang, Junping Zhang, and Chenghai Xue

Mining Representative Movement Patterns through Compression . . . . . . . 314
Phan Nhat Hai, Dino Ienco, Pascal Poncelet, and
Maguelonne Teisseire

NARGES: Prediction Model for Informed Routing in a Communications
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Hooman Homayounfard, Paul J. Kennedy, and Robin Braun

Mining Usage Traces of Mobile Apps for Dynamic Preference
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Zhung-Xun Liao, Wen-Chih Peng, and Philip S. Yu

Leveraging Hybrid Citation Context for Impact Summarization . . . . . . . . 354
Po Hu, Yujing Guo, Dong-Hong Ji, and Jiacong He

Optimal Allocation of High Dimensional Assets through Canonical
Vines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Wei Wei, Jinyan Li, Longbing Cao, Jingguang Sun,
Chunming Liu, and Mu Li

Inducing Context Gazetteers from Encyclopedic Databases for Named
Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Han-Cheol Cho, Naoaki Okazaki, and Kentaro Inui

An Optimization Method for Proportionally Diversifying Search
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Lin Wu, Yang Wang, John Shepherd, and Xiang Zhao
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Abstract. In Subgroup Discovery, one is interested in finding subgroups
that behave differently from the ‘average’ behavior of the entire popu-
lation. In many cases, such an approach works well because the general
population is rather homogeneous, and the subgroup encompasses clear
outliers. In more complex situations however, the investigated popula-
tion is a mixture of various subpopulations, and reporting all of these
as interesting subgroups is undesirable, as the variation in behavior is
explainable. In these situations, one would be interested in finding sub-
groups that are unusual with respect to their neighborhood. In this pa-
per, we present a novel method for discovering such local subgroups. Our
work is motivated by an application in health care fraud detection. In
this domain, one is dealing with various types of medical practitioners,
who sometimes specialize in specific patient groups (elderly, disabled,
etc.), such that unusual claiming behavior in itself is not cause for sus-
picion. However, unusual claims with respect to a reference group of
similar patients do warrant further investigation into the suspect asso-
ciated medical practitioner. We demonstrate experimentally how local
subgroups can be used to capture interesting fraud patterns.

1 Introduction

In this paper, we present a method for discovering local patterns in data. Our
method, called Local Subgroup Discovery (LSD), is inspired by Subgroup Dis-
covery (SD) techniques [4,8], which to some degree have a local focus, but the
notion of locality plays a more important role here than in standard SD. When
a dataset contains natural variations that are explainable, traditional SD meth-
ods will focus on these. By contrast, when relatively rare events such as fraud
or terrorism are concerned, we aim to find local deviations within these natural
fluctuations. Hence, the LSD method intends to provide interesting and action-
able phenomena in the data, within the natural variations in the data that are
not interesting to report. As we are interested in local deviations, we will use a
neighborhood concept, in terms of a basic distance measure over the data.

In order to define the notion of locality, we work with a reference group that
represents a subpopulation or neighborhood, in the context of which we want to
evaluate subgroups. A local subgroup is a subgroup within this reference group.
Such local subgroups will be judged in terms of their unusual distribution of the
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Fig. 1. Two local subgroups that are hard to find with traditional subgroup techniques.
The smaller of the two concentric circles indicates the subgroup, the larger of the two
circles indicates the reference group.

target attribute, compared with that of the reference group (rather than com-
paring with the entire population). Both the reference group and the subgroup
will be defined in terms of distances from a common subgroup center. Standard
quality measures from the SD literature are used to quantify how interesting a
subgroup is with respect to its reference group. Figure 1 shows an example of
two local subgroups within an artificial dataset. In SD, we are interested in find-
ing groups that contain relatively many positive examples. The local subgroup
consists of points within the smallest circle, the corresponding reference group
are points within the larger circle. Both the reference group and the subgroup
are defined in terms of distances from their subgroup center. Both subgroups
contain relatively many red crosses, compared to their local neighborhood.

In this paper we are interested in finding the most interesting subgroups within
reference groups in a dataset. The main contributions of this paper are: defining
the Local Subgroup Discovery task, presenting a new algorithm that searches
for local subgroups efficiently, and showing the usefulness of the local subgroup
concept in a real-life fraud detection application.

1.1 Motivation: Health Insurance Fraud Detection

The motivation for LSD comes from the field of fraud detection in health insur-
ance data, where we are interested in identifying suspicious claim behavior of
medical practitioners. The problem is essentially an unsupervised one, since we
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are not presented with any examples of known fraud cases. The goal is to identify
groups of claims that warrant further inspection by fraud investigators. We do
this by comparing the claim distribution of one medical practitioner (typically,
a high-cost claimer) with that of the remaining practitioners. The health insur-
ance data we consider in our experiments contains information about patients
and practitioners. A single record in this dataset summarizes the care (treatment,
medication, costs, etc.) an individual has received over a selected period of time.
Although the data is described in terms of patients, we are actually more con-
cerned with an analysis of this data on the level of medical practitioners. After
all, consistent ‘inefficient’ claim behavior (in the extreme case: fraud) committed
by specific practitioners has a far more substantial commercial impact than such
behavior committed by specific patients.

We will explain the setting with the help of Figure 1. Suppose that each point
represents a patient. The dataset clearly consists of three clusters, which we can
interpret as groups of patients with the same type of disease. Within these clus-
ters the differences between patients are caused by treatment costs, variations in
medication types, and so on. The approach we take in this paper is to single out
an individual medical practitioner, and define a temporary binary column that
identifies the patients of this practitioner. This column will then serve as the
target in a Subgroup Discovery run, in order to find patterns in the claim be-
havior that distinguish this practitioner from the others. In Figure 1, patients of
the marked practitioner are represented by red crosses. Patients of other prac-
titioners appear as blue plusses. The two subgroups (smaller circles) indicate
a difference in claim behavior within a reference group of patients having the
same disease type (larger circles); the proportion of red plusses in the subgroup
is much higher than the proportion of plusses in the reference group. If substan-
tial local subgroups can be found for an individual practitioner, this is a strong
indication of inefficient or fraudulent practice. By repeating this process, each
time focusing on a different practitioner, we can produce a list of all suspicious
practitioners, along with the necessary details about the unusual behavior.

2 Related Work

Describing distributional differences between the target and non-target set is
usually referred to as Subgroup Discovery [8], but also as Contrast Set Mining
[1], and Emerging Pattern Mining [2]. These methods find subgroups that are
interesting compared to the whole dataset, whereas the method we propose finds
locally interesting subgroups. Also, in Subgroup Discovery the subgroups are
usually described by conditions on the non-target attributes, whereas in our
application we use a distance measure to define subgroups. This is similar to
epidemiology where a spatial scan statistic [6] is often used to identify regions
where a certain type of disease (the target attribute) is more frequently present
than in the rest of the country. Here a likelihood ratio statistic is often used to
identify interesting regions. In our approach we also look for interesting regions
in our data. Unlike with the spatial scan, our approach allows for any quality
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measure (instead of the likelihood ratio statistic) and finds reference groups
together with subgroups. Calculating the quality measure on a subset of the data
has been done before [7]. The subset of the data is obtained by using a distance
measure. Luong et al. fix a nearest neighbor parameter k, calculate a quality
measure on a part of the data based on this k, and then describe interesting
regions in the dataset for which this quality measure is high. The difference with
our approach is that we are interested in searching for interesting subgroups,
while automatically finding relevant values of k.

To the best of our knowledge, this is the first approach to unsupervised fraud
detection by using Subgroup Discovery to compare between entities (in this
article these entities are medical practitioners, but they could be shops, cashiers,
etc.). Other approaches to fraud detection are supervised methods (where fraud
is labeled beforehand), and outlier detection methods. Since we do not have a
labeled fraud set, and we are interested in differences on the aggregated level of
claims of medical practitioners rather than finding single outliers, these methods
are beyond the scope of the paper.

3 Preliminaries

Throughout this paper we assume a dataset D with N elements (examples) that
are (h + 1)-dimensional vectors of the form x = {a1, .., ah, t}. Hence, we can
view our dataset as an N × (h + 1) matrix, where each data point is stored as
a row xi ∈ D. We call ai = {ai1, .., aih} the attributes of xi, and ti its target. We
assume that each target is binary, and each vector of attributes comes from an
undefined space A on which we have a distance measure δ : A× A → R.

A subgroup can be any subset of the dataset S ⊆ D. A quality measure
q : 2D → R is a function assigning a numeric value to any subgroup. Quality
measures describe how interesting subgroups are, and usually take into account
the size of a subgroup (larger is better) as well as its difference in target distri-
bution (higher proportion of the target is better).

To deal with locality we propose a distance-based approach to find subgroups
and reference groups, based on prototypes. A prototype can be any point in
attribute space x ∈ A. The distance-based subgroup Sσ based on x for parameter
σ ∈ N, consists of the σ nearest (according to δ) neighbors of x in D. The
reference group Rρ based on the same x for parameter ρ ∈ N s.t. ρ ≥ σ, consists
of the ρ nearest neighbors of x in D. The idea is that Rρ forms a region in input
space where the target distribution is different from that distribution over the
whole dataset, and we strive to find subgroups Sσ ⊆ Rρ in which the target
distribution is different from the distribution within Rρ.

We write S(x, σ, ρ) for the subgroup Sσ in a reference group Rρ, which we
call a reference-based subgroup. The prototype can be seen as the center of this
subgroup, and as the center of the reference group encompassing the subgroup.
A quality measure calculated for a reference-based subgroup considers only ex-
amples inside the reference group: the quality of the subgroup is calculated on a
contingency table of the data, as if the reference group were the entire dataset.
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ranking(x) = { +, +, −, +, −, +, +, +, −, −, −, +, −, −, . . . }
↑ ↑
σ ρ

Fig. 2. Ranking of the target vector for a prototype x. The target vector is sorted
according to the distances to x. All examples from the leftmost observation (the closest
point to x) to σ are in the subgroup. All examples from the leftmost observation to ρ
are in the reference group.

Given a prototype x, a distance measure δ, and the target vector t, we can
obtain a ranking of the target variable (see Figure 2). This ranking is a sorted
list of targets, where the leftmost point is closest to x and the rightmost point
is the point furthest from x. To find the optimal reference and subgroup for
a given x, we have to set σ and ρ in such a way that the quality measure
is maximized. For example, let us calculate the Weighted Relative Accuracy
(WRAcc) quality measure for the subgroup and reference group in Figure 2, for
the parameters σ = 8 and ρ = 14. The WRAcc of a subgroup S with respect
to target t is defined as P (St) − P (S)P (t), where P (St) is the probability of
the target and subgroup occurring together, P (S) is the probability of a record
being in the subgroup, and P (t) is the probability of the target being true. These
probabilities are all calculated given that a point belongs to the reference group.
In this example the WRAcc is thus given by: 6/14 −8 /14 ·7 /14 =1 /7 ≈ 0.143. If
we would set ρ to 11 instead of 14 this would lead to a somewhat higher quality:
6/11 −8 /11 ·6 /11 =18 /121 ≈ 0.148.

4 Finding Local Subgroups

In this section we explain how the optimal subgroups and their reference groups
are found. First we explain how we search for the most interesting subgroups
with the highest quality. We also explore our approach to two problems encoun-
tered when searching for local subgroups. The first problem is how to compare
qualities found on different reference groups, with different reference group sizes
and different numbers of positives. The second problem is concerned with the
potential redundancy in the collection of reported subgroups.

4.1 Searching for the Optimal Values

In LSD, subgroups are described by optimal combinations of the prototype x and
the parameters σ and ρ. Assume we are considering a candidate prototype x. We
then loop over possible values of ρ, and for each value, try all possible values for
σ and calculate the quality. Per value of ρ, the highest quality obtained in this
way is called the optimal quality, and the value σ(x, ρ) at which this maximum
is obtained is called the optimal value for σ, given x and ρ.
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If we were to search for optimal values of the quality measures in this way,
we would find that for the ranking in Figure 2, the optimal value for WRAcc
would be obtained at ρ = 3, and σ = 2, with a WRAcc value of 2/9 ≈ 0.222.
Unfortunately, this subgroup is not that interesting because it is quite small.
Nor is it very significant; in any dataset and for any prototype, we can typically
construct such a tiny subgroup and a reference group that perfectly separates
positive from negative examples. This behavior of favoring very small reference
groups in which we can perfectly separate positive from negative cases does
not only occur for the WRAcc measure; any quality measure will suffer from
this problem. Hence, guiding the search solely by high quality will not lead to
interesting results. The size of the reference group should also be big enough to
ensure that a subgroup with a high quality is really interesting. Hence, we need
to deal with the significance of the found quality.

4.2 Significance and Interestingness

To compute the significance of a candidate x, ρ, and associated σ(x, ρ), we use
a swap randomization technique, creating a baseline distribution of false discov-
eries (DFD). This method [3] was originally designed for SD where subgroups
are defined by attribute-value descriptions. We modify the method for use with
distance-based subgroups, as follows. First, the target variable in the reference
group is permuted, while keeping the rest of the dataset intact. Within Figure 2
this corresponds to permuting all plusses and minusses up to ρ. Since we leave
the attribute space intact, all distances between examples remain the same. Next
we search for the optimal quality in this permuted reference group. The optimal
quality found can be considered a false discovery, because it is a discovery made
on data in which the attribute space is left intact, but its connections with the
targets are randomized. We can repeat this procedure to obtain more false dis-
coveries. Together, these qualities constitute a sample of the DFD. The DFD for
a quality measure thus differs for each combination of reference group size, and
the number of times the target is positive in the reference group. Using this DFD
we can assign p-values to subgroups having a certain quality. As [3] describes, a
normal distribution can be used to estimate p-values, corresponding to the null
hypothesis that a subgroup with the given quality is a false discovery.

The p-value obtained gives us a fair measure to compare qualities found for
different reference groups. A low p-value indicates a low probability of finding
the quality by chance. Within our approach, we compare subgroups found on
different reference groups by comparing their p-value. In Section 5 we show how
to search for subgroups with the lowest p-values efficiently.

4.3 Choosing Prototypes and Removing Redundancy

In the previous section, we explained how to find optimal values for σ and ρ, for
a given prototype x. Since we will find optimal values for each prototype, which
can be each point in the dataset, this will lead to discovering many (redundant)
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subgroups. In this section, we describe how to find optimal (non-redundant) val-
ues for x, with the goal of presenting a concise list of subgroups to the user.
To achieve this, we use a top-k approach: only the k most interesting subgroups
are mined. Additionally we will use two techniques to remove redundancy from
this top-k list. The first technique, based on the quality neighborhood of exam-
ples, will prevent redundant subgroups to enter the top-k. The second technique
postprocesses the top-k to select a small group (generally 3 to 6 subgroups) as
the least redundant subgroups from the top-k list.

Consider Only Local Maxima. Points that are close to each other in the
dataset will generally have the same neighbors. When these examples are con-
sidered as prototypes, they will have similar optimal qualities, since their optimal
subgroups and reference groups will strongly overlap. Given a subgroup size σ
and a reference size ρ, we can compute the quality of the subgroup S(x, σ, ρ)
for each prototype x. In this way we can determine a quality landscape for our
data. Within this quality landscape, we then look for local optima. To this end,
we define the quality neighborhood qneighborhood(x, σ, ρ), of a point x. We do
this by considering the set Xx ⊆ D of the σ nearest neighbors of x. For each
neighbor we determine the quality of its reference-based subgroup. These values
form the quality neighborhood: qneighborhood(x, σ, ρ) = {q (S(x′, σ, ρ))|x′ ∈ Xx},
where q() is the quality measure on the subgroup. A prototype x is a local max-
imum if its quality is maximal among its quality neighborhood: q (S(x, σ, ρ) ≥
max qneighborhood(x, σ, ρ). Prototypes that are no local maximum are considered
not interesting, and their subgroups will therefore not be reported.

Post-processing the Top-k. There still may be some largely overlapping sub-
groups and reference groups of prototypes in each others neighborhood that have
only a slightly different value for σ and ρ. Hence we employ redundancy removal
techniques such as joint entropy and the exclusive coverage heuristic [5]. We
select the combination of subgroups with the highest value for the heuristic.

5 Reduction of DFD Estimations

Distance-based methods can be computationally intensive. We use different prun-
ing strategies to reduce the number of times the DFD has to be computed.

From all possible reference group sizes ρ for a prototype, we would like to
report the optimal quality with the lowest p-value. To obtain p-values, we have
to estimate the DFD. The estimation of all DFDs is computationally intensive
(it requires O(sρ) calculations, where s is the sample size). In total there are n
possible values of ρ so (if the DFD is not stored) it has to be recomputed n times
for each prototype, where n is the number of examples. Computing the DFD is
unnecessary for a subgroup that will not enter the top-k anyway. We present a
user-set parameter and two pruning techniques to reduce the number of DFD
calculations, and show the pseudocode.
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Algorithm 1. Lowest p-Value for Prototype(db, x, qoptimal , σoptimal )

input : database db, prototype x, qoptimal , σoptimal

output : pvalbest, qbest, σbest, ρbest
1 qthreshold = −∞;
2 pvalbest =∞;
3 foreach ρ in decreasing order do
4 if isLocalMaximum(x, σoptimal , qoptimal(ρ)) ∧ (qoptimal(ρ) ≥ qthreshold ) then
5 compute DFDx,ρ;
6 p-value ← DFDx,ρ(qoptimal(ρ));
7 if p-value ≤ pvalbest then
8 pvalbest ←p-value ;
9 ρbest ← ρ;

10 qbest ← qoptimal (ρ);
11 σbest ← σoptimal(ρ);
12 qthreshold ← qoptimal (ρ);

13 else
14 qthreshold ← Φ−1

DFD (1− pvalbest );

Maximum Value for ρ. To decrease computation time, and ensure locality of
the patterns at the same time, the user can set a maximum value for the
reference group size.

Consider Only Local Maxima. We can check whether a point is a local max-
imum before the DFD is estimated. If the point is not a local maximum, the
DFD does not have to be estimated since there is a largely similar neighbor-
ing subgroup with a better quality.

Pruning the ρ-Search Space Based on Sample Size. To search efficiently
we prune away parts of the search space where we know that the p-value
can not be lower than the one already found. If for two different reference
group sizes the same quality is obtained, the quality calculated on the largest
reference group will be the most significant finding, and thus have the lowest
p-value.

We explain how this pruning strategy works step by step, by using the pseu-
docode in algorithm 1. For each prototype we keep in memory a threshold on
the quality, denoted by qthreshold. We also keep in memory the optimal p-value
that is found so far for this prototype, pvalbest. We are interested in finding
the lowest p-value for this prototype. We start by calculating the p-value for a
prototype for the maximal value for ρ in the first iteration.

Next, we observe the qualities found for the same prototype, for smaller values
of ρ, in decreasing order. If the optimal quality found for such a smaller reference
group, qoptimal (ρ), is lower than the threshold, we skip the estimation of the DFD
and the calculation of the p-value, because we know the p-value will be lower. For
smaller values of ρ that have a higher optimal quality, we compute the DFD.
We also obtain the cumulative distribution function of the DFD, ΦDFD, and
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the inverse cumulative distribution function, Φ−1
DFD. From the DFD we obtain

the p-value of the quality found. If the newly obtained p-value is lower than
pvalbest, this subgroup is the best subgroup found so far. For this prototype x,
the corresponding values for σoptimal and ρoptimal as well as its quality qoptimal ,
and the p-value are stored. The quality threshold is updated and is set to the
quality corresponding to the new optimum. If the newly obtained p-value is
higher than the one previously found on a bigger sample, these variables are
not updated. The quality threshold is updated by inserting 1− pvalbest into the
inverse cumulative distribution function of the DFD.

Pruning the ρ Search Space Using a Top-k Approach. A subgroup only
enters the top-k if its p-value is lower than the current maximum p-value in
the top-k. The key idea (again) is to update the threshold each time the DFD
is estimated. The only difference with pruning-per-prototype is that we can
update the quality threshold by inserting the current maximum p-value of the
top-k list into Φ−1

DFD instead of inserting the minimum p-value found so far for
this prototype, to obtain the new threshold.

6 Experiments and Results

Artificial Data. We start by testing our method on the artificially generated
data that already featured in the introduction (Figure 1). This two-dimensional
data consists of 252 examples, with a roughly equal spread between positive and
negative examples. 20 subgroups were obtained by considering each individual
example in the data as a prototype, using Euclidean distance and WRAcc as
quality measure. From these 20 subgroups, we select 3 non-redundant subgroups
by using the exclusive coverage measure [5]. We compare the results with those
of a ‘traditional’ SD algorithm which features in the generic SD tool Cortana1.
The traditional SD algorithm describes subgroups in terms of attribute-value
descriptions.

The first subgroup discovered by LSD is also found by Cortana. In Figure 1
this corresponds to the big cluster at the top. The second subgroup, found in the
lower left cluster in Figure 1, is not found using traditional SD methods, because
there are many subgroups from the big cluster with the same size that also have
a high proportion of positive examples. The third subgroup is situated in the
lower right corner. This subgroup is not detected with Cortana. This is because
the density of the target variable in the subgroup is the same as the density of
the target in the entire dataset, so the density of the target differs only locally.

In order to gauge the efficiency of our method and the different pruning op-
tions, we generated datasets of various sizes, while keeping the original distribu-
tion intact (all artificial datasets will be made available online). Figure 3 shows
the influence of the different pruning strategies on the computation time. In gen-
eral, a combination of pruning and local maxima offers the best performance,
over an order of magnitude faster than either method alone. For comparison,

1 datamining.liacs.nl/cortana.html

datamining.liacs.nl/cortana.html
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Fig. 3. The increase in computation time for different numbers of prototypes for the
artificial dataset, using different pruning strategies. Because of the very long run time,
the brute force approach is only performed up to 200 prototypes. The results are
averaged over 10 runs, the bars around each point indicate the mean plus and minus
the standard error of the mean.

the brute force approach at n = 200 takes 4,548 seconds, over two orders of
magnitude slower (157.9 times) than the fastest result.

We also observed the effect the local maxima pruning strategy has on the
Subgroup Discovery results. If the local maxima strategy is not used, this will
lead to the presentation of many redundant subgroups from the big cluster in
the top. Each point in this cluster is then presented as an interesting prototype.

Fraud Detection. Our health care application concerns fraud amongst den-
tists. Each patient is represented by a binary vector of treatments received during
a year. The dataset contains 980,350 patients and 542 treatment codes. We use
Hamming distance, and quality measure WRAcc. Note that because of the dis-
crete nature of the data, there are many duplicate examples (many patients with
identical treatments). Additionally, the distance of a point to different neighbors
may be identical, which limits the number of values of σ and ρ that need to
be tested. We restrict ρ to a maximum of 10% of the data. We select a dentist
with a markedly high claiming profile, and define the target accordingly. 5,567
patients (0.57% of the population) visit this dentist.

Table 1 shows the local subgroups found by our proposed method, LSD. These
results were obtained after mining the top 50 subgroups first, and then selecting
for diversity using the exclusive coverage heuristic. The interpretation for sub-
group S1 is that for patients receiving a regular consult (C11, C12) and dental
cleaning (M50), the dentist often charges extra costs for a plaque score (M31)
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Table 1. Prototypes and their support in the subgroup, and their support in the refer-
ence group excluding the subgroup. The codes indicate treatments that were charged
for a patient, the supports indicate the fraction of patients receiving those treatments
respectively. The columns # t and # ¬t are the counts within those groups of positive
and negative examples.

Subgroup Prototype and Supports # t # ¬t WRAcc p-value

S1 prototype {C11,C12,C22,M31,M50,X21}
S1 {1.00,0.97,0.17,0.49,0.93,0.60} 54 78
R1 \ S1 {1.00,0.94,0.03,0.12,0.95,0.13} 667 10,734 0.0042 < 0.0001

S2 prototype {C11,M31}
S2 {1.00,1.00} 30 2,189
R2 \ S2 {1.00,0.11} 94 35,566 0.0006 < 0.0001

S3 prototype {C13,X10,X21}
S3 {0.38,0.71,0.18} 85 12,177
R3 \ S3 {0.03,0.11,0.01} 55 30,417 0.0010 < 0.0001

and an orthopantomogram x-ray picture (X21). Also an anamnese (investigating
the patients history, C22) is charged much more often for this group of patients.
In subgroup S2, patients receiving a regular consult and a plaque score are oc-
curring relatively more frequently than patients having only a regular consult
without the plaque score (which are in the reference group outside the subgroup).
In subgroup S3, codes X10 and X21 are x-ray pictures, and C13 means an in-
cidental consult. Note that treatment C11 is not in the prototype, but still has
a support of 77% in the subgroup and a support of 98% in the reference group
outside the subgroup. We can conclude that this dentist charges relatively many
x-ray pictures of type X10 with a regular or incidental consult. The qualities for
the subgroups S1, S2 and S3 are 32, 15 and 14 standard deviations from the
mean of the DFD, respectively, which results in p-values near zero.

As a baseline, we compare the results using traditional SD in Cortana, using
WRAcc, a search depth of 3 and beam search with beam width 100. We obtain
the top 50 subgroups first, and then select for diversity using the exclusive cov-
erage heuristic [5]. There are two subgroups that cover the other subgroups in
the top 50: X21 = 1, and C11 =1 ∧ V21 = 1. Code X21 represents an orthopan-
tomogram (x-ray photo), code C11 represents a consult, and code V21 is used
for polishing a sealing. The subgroup sizes are 100,643 and 369,748, with 2,438
and 3,228 positive examples, respectively, which leads to a WRAcc of 0.0020,
and 0.0014 respectively. The main difference between LSD and traditional SD is
that the local approach presents locally deviating patient groups and provides
information about the patient group’s neighborhood. The resulting subgroups
are easier to evaluate by domain experts, and detailed enough to be investi-
gated further by fraud investigators. The traditional SD approach returns global
patterns that are not interesting or specific enough to trigger an action.

With our LSD algorithm, we were able to mine interesting subgroups in 5.5
hours in this dataset containing almost a million examples and over 500 at-
tributes. The Cortana traditional SD algorithm took 24 minutes. Both were run
on the same machine with 32 GB of main memory, and 8 cores. Although the
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runtime of the LSD approach depends on the dataset, and the parameter for the
maximum value of ρ, this shows that the LSD approach is scalable to fairly big
datasets.

We applied our method to compare pharmacies as well as different type of
dentists, also using other distance measures like standardized Euclidean distance
(in this case, the emphasis is on costs per treatment rather than combinations of
treatments only). The results were presented to the fraud investigation depart-
ment of an insurance company, and were considered very interesting for further
inspection. The absence of ‘cheap’ patients in the reference group as well as the
presence of relatively many similar, but more expensive, patients in the subgroup
is very useful for indicating inefficient claim behavior.

7 Conclusion and Further Research

In this paper, we present a new approach to find local subgroups in a database.
These local subgroups are very relevant within a fraud detection application
because systematically committed fraud leads to local distribution changes. In-
spired by the fraud detection application, there are numerous directions to inves-
tigate further. One promising direction will be cost-based Subgroup Discovery
to find even more interesting subgroups. Instead of the distance-based approach,
we can also investigate a more traditional, descriptive approach to find local
subgroups.
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Abstract. Many existing algorithms mine frequent patterns from tra-
ditional databases of precise data. However, there are situations in which
data are uncertain. In recent years, researchers have paid attention to
frequent pattern mining from uncertain data. When handling uncertain
data, UF-growth and UFP-growth are examples of well-known mining
algorithms, which use the UF-tree and the UFP-tree respectively. How-
ever, these trees can be large, and thus degrade the mining performance.
In this paper, we propose (i) a more compact tree structure to capture
uncertain data and (ii) an algorithm for mining all frequent patterns from
the tree. Experimental results show that (i) our tree is usually more com-
pact than the UF-tree or UFP-tree, (ii) our tree can be as compact as the
FP-tree, and (iii) our mining algorithm finds frequent patterns efficiently.

1 Introduction

Since the introduction of frequent pattern mining [1], there have been numerous
studies on mining and visualizing frequent patterns (i.e., frequent itemsets) from
precise data such as databases (DBs) of market basket transactions [8,11,12].
Users definitely know whether an item is present in, or is absent from, a transac-
tion in these DBs of precise data. However, there are situations in which users are
uncertain about the presence or absence of some items or events [3,4,5,10,14,16].
For example, a physician may highly suspect (but cannot guarantee) that a pa-
tient suffers from flu. The uncertainty of such suspicion can be expressed in terms
of existential probability. For instance, a patient may have a 90% likelihood of
having the flu, and a 20% likelihood of having a cold regardless of having the flu
or not. With this notion, each item in a transaction tj in DBs containing precise
data can be viewed as an item with a 100% likelihood of being present in tj .

To deal with uncertain data, the U-Apriori algorithm [6] was proposed in
PAKDD 2007. As an Apriori-based algorithm, U-Apriori requires multiple scans
of uncertain DBs. To reduce the number of DB scans (down to two), the tree-
based UF-growth algorithm [13] was proposed in PAKDD 2008. In order to com-
pute the expected support of each pattern exactly, paths in the corresponding
UF-tree are shared only if tree nodes on the paths have the same item and
same existential probability. Hence, the UF-tree may not be too compact. In
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an attempt to make the tree compact, the UFP-growth algorithm [2] groups
similar nodes (with the same item x and similar existential probability values)
into a cluster. However, depending on the clustering parameter, the correspond-
ing UFP-tree may be as large as the UF-tree (i.e., no reduction in tree size).
Moreover, UFP-growth returns not only the frequent patterns but also some in-
frequent patterns (i.e., false positives). As alternatives to trees, hyper-structures
were used by the UH-Mine algorithm [2], which was reported [15] to outperform
UFP-growth.

Recently, we studied fast tree-based mining of frequent patterns from uncer-
tain data [14]. In the current paper, we study the following questions: Can we
further reduce the tree size (e.g., smaller than the UFP-tree)? Can the resulting
tree be as compact as the FP-tree? How to mine frequent patterns from such
a compact tree? Would such a mining algorithm be faster than UH-Mine? Our
key contributions of this paper are as follows:

1. a prefix-capped uncertain frequent pattern tree (PUF-tree), which can be
as compact as the original FP-tree; and

2. a mining algorithm (namely, PUF-growth), which is guaranteed to find
all and only those frequent patterns (i.e., no false negatives and no false
positives) from uncertain data.

The remainder of this paper is organized as follows. The next section presents
background and related works. We then propose our PUF-tree structure and
PUF-growth algorithm in Sections 3 and 4, respectively. Experimental results
are shown in Section 5, and conclusions are given in Section 6.

2 Background and Related Works

In this section, we first give some background information about frequent pattern
mining of uncertain data (e.g., existential probability, expected support), and we
then discuss some related works.

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , xk} be a
k-itemset (i.e., a pattern consisting of k items), where X ⊆ Item and 1 ≤ k ≤ m.
Then, a transactional DB = {t1, t2, . . . , tn} is the set of n transactions, where
each transaction tj ⊆ Item. The projected DB of X is the set of all transactions
containing X .

Unlike precise DBs, each item xi in a transaction tj = {x1, x2, . . . , xh} in an
uncertain DB is associated with an existential probability value P (xi, tj),
which represents the likelihood of the presence of xi in tj [9]. Note that 0 <
P (xi, tj) ≤ 1. The existential probability P (X, tj) of a pattern X in tj
is then the product of the corresponding existential probability values of items
within X when these items are independent [9]: P (X, tj) =

∏
x∈X P (x, tj). The

expected support expSup(X) of X in the DB is the sum of P (X, tj) over all
n transactions in the DB: expSup(X) =

∑n
j=1 P (X, tj). A patternX is frequent

in an uncertain DB if expSup(X) ≥ a user-specified minimum support threshold
minsup. Given a DB and minsup, the research problem of frequent pattern
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Table 1. A transactional DB (minsup=0.5)

TID Transactions Sorted transactions
(with infrequent items removed)

t1 {a:0.2, b:0.2, c:0.7, f :0.8} {a:0.2, c:0.7, f :0.8}
t2 {a:0.5, c:0.9, e:0.5} {a:0.5, c:0.9, e:0.5}
t3 {a:0.3, d:0.5, e:0.4, f :0.5} {a:0.3, e:0.4, f :0.5, d:0.5}
t4 {a:0.9, b:0.2, d:0.1, e:0.5} {a:0.9, e:0.5, d:0.1}

Fig. 1. The UF-tree for the DB shown in Table 1 when minsup=0.5

mining from uncertain data is to discover from the DB a complete set of
frequent patterns having expected support ≥ minsup.

Recall from Section 1 that the tree-based UF-growth algorithm [13] uses
UF-trees to mine frequent patterns from uncertain DBs in two DB scans. Each
node in a UF-tree captures (i) an item x, (ii) its existential probability, and
(iii) its occurrence count. Tree paths are shared if the nodes on these paths
share the same 〈item, existential probability〉-value. In general, when dealing
with uncertain data, it is not uncommon that the existential probability values
of the same item vary from one transaction to another. As such, the resulting
UF-tree may not be as compact as the FP-tree. See Fig. 1, which shows a UF-
tree for the DB presented in Table 1 when minsup=0.5. The UF-tree contains
four nodes for item a with different probability values as children of the root.
Efficiency of the corresponding UF-growth algorithm, which finds all and only
those frequent patterns, partially relies on the compactness of the UF-tree.

In an attempt to make the tree more compact, the UFP-growth algo-
rithm [2] was proposed. Like UF-growth, the UFP-growth algorithm also scans
the DB twice and builds aUFP-tree. As nodes for item x having similar existen-
tial probability values are clustered into a mega-node, the resulting mega-node
in the UFP-tree captures (i) an item x, (ii) the maximum existential probability
value (among all nodes within the cluster), and (iii) its occurrence count (i.e., the
number of nodes within the cluster). Tree paths are shared if the nodes on these
paths share the same item but similar existential probability values. In other
words, the path sharing condition is less restrictive than that of the UF-tree. By
extracting appropriate tree paths and constructing UFP-trees for subsequent
projected DBs, UFP-growth finds all frequent patterns and some false positives
at the end of the second DB scan. The third DB scan is then required to remove
those false positive.
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TheUH-Mine algorithm [2] stores all frequent items in each DB transaction
in a hyper-structure called UH-struct. As UH-Mine does not take advantage
of prefix-sharing, the size of the resulting UH-struct is always as large as that
of the DB for the frequent items. However, UH-Mine was reported [2,15] to be
faster than UFP-growth.

3 Our PUF-Tree Structure

To reduce the size of the UF-tree and UFP-tree, we propose the prefix-capped
uncertain frequent pattern tree (PUF-tree) structure, in which important
information about uncertain data is captured so that frequent patterns can be
mined from the tree. The PUF-tree is constructed by considering an upper bound
of existential probability value for each item when generating a k-itemset (where
k > 1). We call the upper bound of an item xr in a transaction tj the (prefixed)
item cap of xr in tj, as defined below.

Definition 1. The (prefixed) item cap ICap(xr, tj) of an item xr in a trans-
action tj = {x1, . . . , xr, . . . , xh}, where 1 ≤ r ≤ h, is defined as the product of
P (xr, tj) and the highest existential probability value M of items from x1 to
xr−1 in tj (i.e., in the proper prefix of xr in tj):

ICap(xr, tj) =

{
P (xr , tj)×M if h > 1
P (x1, tj) if h = 1

, where M = max1≤q≤r−1 P (xq , tj). ��

Example 1. Consider an uncertain DB with four transactions as presented in the
second column in Table 1. The item cap of c in t1 can be computed as ICap(c, t1) =
0.7 × max{P (a, t1), P (b, t1)} = 0.7 × max{0.2, 0.2} = 0.7 × 0.2 = 0.14. Similarly, the
item cap of f in t1 is ICap(f, t1) = 0.8 × max{P (a, t1), P (b, t1), P (c, t1)} = 0.8 ×
max{0.2, 0.2, 0.7} = 0.8× 0.7 = 0.56. �	

Note that ICap(xr , tj) provides us with an important property of covering the
existential probabilities of all possible patterns containing xr and its prefix in
tj , as stated in the following theorem.

Theorem 1. Let X be a k-itemset in transaction tj (where k > 1). The exis-
tential probability of any of its non-empty proper subset Y that shares the same
suffix xr as X (i.e., Y ⊂ X ⊆ tj) is always less than or equal to ICap(xr, tj).

Proof. Let (i) tj = {x1, . . . , xr, . . . , xh}, (ii) X = {xs, . . . , xr} be a k-itemset in
tj , and (iii) Y = {xt, . . . , xr} be a k′-itemset (where k′ < k) and a proper subset
of X (i.e., Y ⊂ X ⊆ tj). Then, recall from Section 2 that the existential proba-
bility P (Y, tj) of Y in tj is defined as follows: P (Y, tj) =

∏
x∈Y P (x, tj), which is

equivalent to P (xr, tj)×
∏

(x∈Y )∧(x �=xr)
P (x, tj). Note that 0 < P (x, tj) ≤ 1. So,∏

(x∈Y )∧(x �=xr)
P (x, tj) ≤ max1≤q≤r−1 P (xq, tj). Hence, P (Y, tj) = P (xr, tj) ×∏

(x∈Y )∧(x �=xr)
P (x, tj) ≤ P (xr, tj)×max1≤q≤r−1 P (xq, tj) = ICap(xr , tj). ��

Since the expected support of X is the sum of all existential probabilities of X
over all the transactions containing X , the cap of expected support of X can
then be defined as follows.
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Definition 2. The cap of expected support expSupCap(X) of a patternX
= {x1, . . . , xk} (where k > 1) is defined as the sum (over all n transactions in a
DB) of all item caps of xk in all the transactions that contain X : expSupCap(X)
=
∑n

j=1{ICap(xk, tj) |X ⊆ tj}. ��

Based on Definition 2, expSupCap(X) for any k-itemset X={x1, . . . , xk} can be
considered as an upper bound to the expected support of X , i.e., expSup(X) ≤
expSupCap(X). So, if expSupCap(X) < minsup, then X cannot be frequent.
Conversely, if X is a frequent pattern, then expSupCap(X) must be ≥ minsup.
Hence, we obtain a safe condition with respect to expSupCap(X) and minsup.
This condition, which helps us to obtain an upper bound of the expected support
for each pattern, could be safely applied for mining all frequent patterns.

As the expected support satisfies the downward closure property [1], all non-
empty subsets of a frequent pattern are also frequent. Conversely, if a pattern is
infrequent, then none of its supersets can be frequent. In other words, for Y ⊂ X ,
(i) expSup(X) ≥ minsup implies expSup(Y ) ≥ minsup and (ii) expSup(Y ) <
minsup implies expSup(X) < minsup.

Example 2. Consider two patterns X & Y . Then, P (Y, tj) ≥ P (X, tj) for any transac-
tion tj such that Y ⊂ X ⊆ tj . Moreover, Y must be present in any transaction when-
ever X is present, but not vice versa. So, the number of transactions containing Y is at
least the number of transactions containing X. Hence, expSup(Y )=

∑n
j=1 P (Y, tj) ≥∑n

j=1 P (X, tj)=expSup(X) for all n transactions in a DB. If X is frequent (i.e., its ex-
pected support ≥ minsup), then Y is also frequent because expSup(Y ) ≥ expSup(X) ≥
minsup. Conversely if Y is infrequent (i.e., its expected support < minsup), then X
cannot be frequent because expSup(X) ≤ expSup(Y ) < minsup. �	

In contrast, the cap of expected support generally does not satisfy the downward
closure property because expSupCap(Y ) can be less than expSupCap(X) for some
proper subset Y of X . See Example 3.

Example 3. Let t3={a:0.3, e:0.4, f :0.5, d:0.5} be the only transaction in the DB con-
taining X={a, e, f, d} and its subset Y={e, f}. Then, expSupCap(Y ) = P (f, t3) ×
max{P (a, t3), P (e, t3)}=0.5×0.4=0.20 and expSupCap(X) = P (d, t3) × max{P (a, t3),
P (e, t3), P (f, t3)} = 0.5 × 0.5 = 0.25. This shows that expSupCap(Y ) can be <
expSupCap(X). �	

However, for some specific cases (e.g., when X & Y share the same suffix
item xr), the cap of expected support satisfies the downward closure property,
as proved in Lemma 1. We call such property the partial downward clo-
sure property : For any non-empty subset Y of X such that both X & Y
ends with xr, (i) expSup

Cap(X) ≥ minsup implies expSupCap(Y ) ≥ minsup and
(ii) expSupCap(Y ) < minsup implies expSupCap(X) < minsup.

Lemma 1. The cap of expected support of a pattern X satisfies the partial
downward closure property.

Proof. Let (i) X & Y be two itemsets such that Y ⊂ X , and (ii) X & Y share
the same suffix item xr. Then, Y must be present in any transaction when-
ever X is present, but not vice versa. The number of transactions containing
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Fig. 2. Our PUF-tree for the DB in Table 1 when minsup=0.5

Y is higher than or equal to the number of transactions containing X . For any
transaction tj in which X & Y are present, they share the same suffix item xr
and thus share the same ICap(xr, tj). So, expSup

Cap(Y ) =
∑n

j=1 I
Cap(xr , tj)|

Y ⊆ tj} ≥
∑n

j=1 I
Cap(xr , tj)|X ⊆ tj} = expSupCap(X). As a result, if

expSupCap(X) ≥ minsup, then expSupCap(Y ) ≥ expSupCap(X) ≥ minsup.
Conversely, if expSupCap(Y ) < minsup, then expSupCap(X) ≤ expSupCap(Y )
< minsup. In other words, the cap of expected support of a pattern satisfies the
partial downward closure property. ��

To address the limitation of path sharing of UF-tree, we avoid keeping multiple
nodes for the same item having different existential probability values. The basic
idea is that, instead of storing the exact existential probability value for a node
in the transaction, we store in the PUF-tree node the maximum existential prob-
ability value of the prefix from that node up to the root (i.e., the item cap of the
item). For any node in a PUF-tree, we maintain (i) an item and (ii) its prefixed
item cap (i.e., the sum of all item caps for transactions that pass through or end
at the node).

How to construct a PUF-tree? With the first scan of the DB, we find distinct
frequent items in DB and construct a header table called I-list to store only
frequent items in some consistent order (e.g., canonical order) to facilitate tree
construction. Then, the actual PUF-tree is constructed with the second DB
scan in a fashion similar to that of the FP-tree [7]. A key difference is that,
when inserting a transaction item, we first compute its item cap and then insert
it into the PUF-tree according to the I-list order. If that node already exists
in the path, we update its item cap by adding the computed item cap to the
existing item cap. Otherwise, we create a new node with this item cap value.
For better understanding of the PUF-tree construction, see Example 4.

Example 4. Consider the DB in Table 1, and let the user-specified support threshold
minsup be set to 0.5. Let the I-list follow the descending order of expected supports of
items. After the first DB scan, the contents of the I-list after computing the expected
supports of all items and after removing infrequent items (e.g., item b) are 〈a:1.9, c:1.6,
d:0.6, e:1.4, f :1.3〉. After sorting, the I-list becomes 〈a:1.9, c:1.6, e:1.4, f :1.3, d:0.6〉, as
shown in Fig. 1.

With the second DB scan, we insert only the frequent items of each transaction
(with their respective item cap values) in the I-list order. For instance, when inserting
transaction t1={a:0.2, c:0.7, f :0.8}, items a, c and f (with their respective item cap
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values 0.2, 0.7×0.2=0.14 and 0.8×0.7=0.56) are inserted in the PUF-tree as shown in
Fig. 2(a). Fig. 2(b) shows the status of the PUF-tree after inserting t2={a:0.5, c:0.9,
e:0.5} with item cap values 0.5, 0.9×0.5=0.45 and 0.5×0.9=0.45 for items a, c and e.
As t2 shares a common prefix 〈a, c〉 with an existing path in the PUF-tree, (i) the
item cap values of those items in the common prefix (i.e., a and c) are added to the
corresponding nodes and (ii) the remainder of the transaction (i.e., a new branch for
item e) is inserted as a child of the last node of the prefix (i.e., as a child of c). After
capturing all transactions in the DB in Table 1, we obtain the PUF-tree shown in
Fig. 2(c). Similar to the FP-tree, our PUF-tree maintains horizontal node traversal
pointers, which are not shown in the figures for simplicity. �	

Note that we are not confined to sorting and storing items in descending order of
expected support. We could use other orderings such as descending order of item
caps or of occurrence counts. An interesting observation is that, if we were to
store items in descending order of occurrence counts, then the number of nodes
in the resulting PUF-tree would be the same as that of the FP-tree.

Note that the sum of all item cap values (i.e., total item cap) for all nodes
of an item in a PUF-tree (which is computed when inserting each transaction) is
maintained in the I-list. In other words, an item xr in the I-list of the PUF-tree
maintains expSupCap(X) for X = {x1, x2, . . . , xr}.

Lemma 2. For a k-itemset X = {xs, . . . , xr} (where k > 1) in a DB, if
expSupCap(X) < minsup, then any k′′-itemset Z = {xt, . . . , xr} (where k′′ > k)
in the DB that contains X (i.e., Z ⊃ X) cannot be frequent.

Proof. Let X & Z be two itemsets such that (i) X ⊂ Z and (ii) they share
the same suffix item xr. Following Lemma 1, if expSupCap(X) < minsup, then
expSupCap(Z) ≤ expSupCap(X) < minsup. As expSupCap(Z) serves as an
upper bound to expSup(Z), we get expSup(Z) ≤ expSupCap(Z). Hence, if
expSupCap(X) < minsup, then Z cannot be frequent because expSup(Z) ≤
expSupCap(Z) < minsup. ��

The above lemma allows us to prune the constructed PUF-tree further by re-
moving any item having a total item cap (in the I-list) less than minsup. (The
horizontal node traversal pointers allow us to visit such nodes in the PUF-tree in
an efficient manner.) Hence, we can remove item d from the PUF-tree in Fig. 2(c)
because expSupCap(d) < minsup. This results in a more compact PUF-tree, as
shown in Fig. 2(d). This tree-pruning technique can save the mining time as it
skips those items.

Let F (tj) be the set of frequent items in transaction tj . Based on the afore-
mentioned tree construction mechanism, the item cap in a node x in a PUF-tree
maintains the sum of item caps (i.e., total item cap) of an item x for all trans-
actions that pass through or end at x. Because common prefixes are shared,
the PUF-tree becomes more compact and avoids having siblings containing the
same item but having different existential probability values. However, as the
item caps of different items in a transaction can be different, the item cap of a
node in a PUF-tree does not necessarily need to be greater than or equal to that
of all of its child nodes.
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It is interesting to note that, although item caps of a parent and child(ren)
are not related, a PUF-tree can be a highly compact tree structure. The number
of tree nodes in a PUF-tree (i) can be the same to that of an FP-tree [7] (when
the PUF-tree is constructed using the frequency-descending order of items) and
(ii) is bounded above by

∑
tj∈ DB |F (tj)|. In addition, the complete set of mining

results can be generated because a PUF-tree contains F (tj) for all transactions
and it stores the total item cap for a node. Mining based on this item cap value
ensures that no frequent k-itemset (k > 1) will be missed.

Furthermore, recall that the expected support of X = {x1, . . . , xk} is com-
puted by summing the products of the existential probability value of xk with
those of all items in the proper prefix of X over all n transactions in the DB, i.e.,
expSup(X) =

∑n
j=1(P (xk, tj) × (

∏k−1
i=1 P (xi, tj))). Hence, the item cap for X

computed based on the existential probability value of xk and the highest exis-
tential probability value in its prefix provides a tighter upper bound (than that
based on highest existential probability value in transactions containing X) be-
cause the former involves only the existential probability values of items that
are in X whereas the latter may involve existential probability values of items
that are not even in X .

4 Our PUF-Growth Algorithm for Mining Frequent
Patterns from PUF-Trees

Here, we propose a pattern-growthmining algorithm calledPUF-growth, which
mines frequent patterns from our PUF-tree structure. Recall that the construc-
tion of a PUF-tree is similar to that of the construction of an FP-tree, except
that item caps (instead of occurrence frequencies) are stored. Thus, the basic
operation in PUF-growth for mining frequent patterns is to construct a pro-
jected DB for each potential frequent pattern and recursively mine its potential
frequent extensions.

Once an item x is found to be potentially frequent, the existential probability
of x must contribute to the expected support computation for every pattern X
constructed from {x}-projected DB (denoted as DBx). Hence, the cap of ex-
pected support of x is guaranteed to be the upper bound of the expected support
of the pattern. This implies that the complete set of patterns with suffix x can
be mined based on the partial downward closure property stated in Lemma 1.
Note that expSupCap(X) is the upper bound of expSup(X), and it satisfies the
partial downward closure property. So, we can directly proceed to generate all
potential frequent patterns from the PUF-tree based on the following corollary.

Corollary 1. Let (i) X be a k-itemset (where k > 1) with expSupCap(X) ≥
minsup in the DB and (ii) Y be an itemset in the X-projected DB (denoted
as DBX). Then, expSupCap(Y ∪ X) in the DB ≥ minsup if and only if
expSupCap(Y ) in all the transactions in DBX ≥ minsup.

Proof. Let (i) X be a k-itemset (where k > 1) with expSupCap(X) ≥ minsup
in the DB and (ii) Y be an itemset in the X-projected DB (i.e., Y ∈ DBX).
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Fig. 3. Our PUF-growth mines frequent patterns from the PUF-tree in Fig. 2(d)

Then, due to the mining process (especially, the construction of projected DBs)
in the PUF-growth algorithm, itemset (Y ∪X) in the DB shares the same suffix
(i.e., X) as itemset Y in DBX . Moreover, due to the definition of projected
DBs, the transactions that contain (Y ∪ X) in the DB are identical to those
transactions that contain Y in DBX . Hence, expSupCap(Y ∪ X) in the DB
equals to expSupCap(Y ) in DBX . Consequently, if expSupCap(Y ∪X) ≥ minsup
in the DB, then expSupCap(Y ) ≥ minsup in DBX , and vice versa. ��

Based on Lemma 1 and Corollary 1, we apply the PUF-growth algorithm to
our PUF-tree for generating only those k-itemsets (where k > 1) with caps of
expected support ≥ minsup. Similar to UFP-growth, this mining process may
also lead to some false positives in the resulting set of frequent patterns at the
end of the second DB scan, and all these false positives will be filtered out with
the third DB scan. Hence, our PUF-growth is guaranteed to return the exact set
of frequent patterns (i.e., all and only those frequent patterns with neither false
positives nor false negatives).

Example 5. The PUF-growth algorithm starts mining from the bottom of the I-list
(i.e., item f with expSupCap(f) = 0.76). The {f}-projected DB, as shown in Fig. 3(a),
is constructed by accumulating tree paths 〈a:0.56, c:0.56〉 and 〈a:0.20, e:0.20〉. Note
that the total item cap of f is the sum of item caps in each respective path. When
projecting these paths, PUF-growth also calculates the cap of the expected support
of each item in the projected DB (as shown in the I-list in the figure). Based on
Lemma 2, PUF-growth then removes infrequent item e from the {f}-projected DB—
because expSupCap(e) = 0.20 < minsup—and results in the {f}-conditional tree as
shown in Fig. 3(b).

This {f}-conditional tree is then used to generate (i) all 2-itemsets containing item f
and (ii) their further extensions by recursively constructing projected DBs from them.
Consequently, pattern {f, c}:0.56 is generated first, and the {f, c}-projected DB is then
constructed as shown in Fig. 3(c). Pattern {f, c, a}:0.56 is generated from the {f, c}-
conditional tree. Pattern {f, a}:0.76 is then generated, which terminates the mining
process for {f} because no further extension of the projected DB can be generated.
Patterns containing items such as e, c and a can then be mined in a similar fashion. The
complete set of patterns generated by PUF-growth includes {f, c}:0.56, {f, c, a}:0.56,
{f, a}:0.76, {e, a}:1.02 and {c, a}:0.59. �	

As shown in Example 5, PUF-growth finds a complete set of patterns from a
PUF-tree without any false negatives.
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5 Experimental Results

We compared the performances of our PUF-growth algorithm with existing al-
gorithms (e.g., UF-growth [13], UFP-growth [2] and UH-Mine [2]) on both real
and synthetic datasets. The synthetic datasets, which are generally sparse, are
generated within a domain of 1000 items by the data generator developed at IBM
Almaden Research Center [1]. We also considered several real datasets such as
mushroom, retail and connect4. We assigned a (randomly generated) existential
probability value from the range (0,1] to each item in every transaction in the
dataset. The name of each dataset indicates some characteristics of the dataset.
For example, the dataset u100k10L 10 100 contains 100K transactions with av-
erage transaction length of 10, and each item in a transaction is associated with
an existential probability value that lies within a range of [10%, 100%]. Due to
space constraints, we present here the results on some of the above datasets.

All programs were written in C and run with UNIX on a quad-core processor
with 1.3GHz. Unless otherwise specified, runtime includes CPU and I/Os for I-
list construction, tree construction, mining, and false-positive removal (of PUF-
growth). The results shown in this section are based on the average of multiple
runs for each case. In all experiments, minsup was expressed in terms of the
percentage of DB size, and the PUF-trees were constructed using the descending
order of expected support of items.

5.1 Compactness of PUF-Trees

The UF-tree, UFP-tree and PUF-tree all arranged items in the same order (e.g.,
descending order of expected support). Hence, depending on the clustering pa-
rameter, the number of nodes of a UFP-tree (in its best case) could be similar
to that of a PUF-tree. Note that the size of UFP-tree was larger than that of
PUF-tree because the UFP-tree stored extra cluster information in nodes. The
size of UF-tree was larger than that of the other three because the UF-tree may
contain multiple nodes for the same item (under the same parent). So, in the first
experiment, we compared the compactness of our PUF-trees with the UF-tree1.

The node counts between PUF-trees and UF-trees, as presented in Table 2,
show that PUF-trees were more compact than UF-trees for both sparse and dense

datasets and for high and low minsup thresholds. The ratio
#nodes in PUF-tree
#nodes in UF-tree

represents the gain of PUF-trees over UF-trees (e.g., for mushroom 50 60, the
PUF-tree contained 8108 nodes, which was only 6.68% of the 121205 nodes in
the UF-tree). The gain of PUF-trees was much promising in dense datasets
(e.g., mushroom 50 60) than sparse datasets (e.g., u100k10L 10 100) because the
PUF-tree is more likely to share paths for common prefixes in dense datasets.
In contrast, the UF-tree contains a distinct tree path for each distinct 〈item,
existential probability〉 pair, and thus not as compact as the PUF-tree.

1 Because UH-Mine stores all transactions in the UH-struct, it is usually less compact
than the PUF-tree. So, we avoid showing the comparison with UH-Mine.
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Table 2. Compactness of PUF-trees

Dataset minsup
#PUF-tree nodes

#UF-tree nodes [13]
minsup

#PUF-tree nodes
#UF-tree nodes [13]

retail 50 60 0.2 159,504
672,670

≈ 23.71% 2 208
17,708

≈ 1.17%

mushroom 50 60 0.1 8,108
121,205

≈ 6.68% 7 2,982
101,985

≈ 2.92%

u100k10L 50 60 0.05 90,069
807,442

≈ 11.15% 0.1 90,007
798,073

≈ 11.28%

u100k10L 10 100 0.05 90,069
881,010

≈ 10.22% 0.1 90,013
872,062

≈ 10.32%

Fig. 4. Experimental results

5.2 Runtime

Recall that UH-Mine was shown to outperform the UFP-growth [2,15]. So,
we also compared our PUF-growth with UH-Mine. Figs. 4(a)–(c) show that
PUF-growth took shorter runtime than UH-Mine for datasets u100k10L 50 60,
u100k10L 10 100 and mushroom 50 60. The primary reason is that, even though
the UH-Mine finds the exact set of frequent patterns when mining an exten-
sion of X , it may suffer from the high computation cost of calculating the ex-
pected support of X on-the-fly for all transactions containing X . Such computa-
tion may become more costly when mining a large number of patterns (e.g., in
mushroom 50 60) and long patterns (e.g., in u100k10L 50 60, u100k10L 10 100,
retail 50 60).

5.3 Number of False Positives

In practice, although both UFP-tree and PUF-trees are compact, their
corresponding algorithms generate some false positives. Hence, their overall
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Table 3. Comparison on false positives (in terms of % of total #patterns)

Dataset minsup UFP-growth [2] PUF-growth

u10k5L 80 90 0.1 61.20% 22.55%
u100k10L 50 60 0.07 89.32% 25.99%

performances depend on the number of false positives generated. In this ex-
periment, we measured the number of false positives generated by UFP-growth
and PUF-growth. Due to space constraints, we present results (in percentage)
using one minsup value for each of the two datasets (i.e., u10k5L 80 90 and
u100k10L 50 60) in Table 3. In general, PUF-growth was observed to remark-
ably reduce the number of false positives when compared with UFP-growth. The
primary reason of this improvement is that upper bounds of expected support
of patterns in clusters are not as tight as the upper bounds provided by PUF-
growth. In a UFP-tree, if a parent has several children, then each child will use
higher cluster values in the parent to generate the total expected support. If
the total number of existential probability values of that child is still lower than
that of the parent’s highest cluster value, then the expected support of the path
with this parent and child will be high. This results in more false positives in
long run.

5.4 Scalability

To test the scalability of PUF-growth, we applied the algorithm to mine frequent
patterns from datasets with increasing size. The experimental result presented
in Fig. 4(d) indicates that our PUF-growth algorithm (i) is scalable with respect
to the number of transactions and (ii) can mine large volumes of uncertain data
within a reasonable amount of time.

The above experimental results show that our PUF-growth algorithm effec-
tively mines frequent patterns from uncertain data irrespective of distribution
of existential probability values (whether most of them have low or high values,
whether they are distributed into a narrow or wide range of values).

6 Conclusions

In this paper, we proposed the PUF-tree structure for capturing important
information of uncertain data. In addition, we presented the PUF-growth al-
gorithm for mining frequent patterns. The algorithm uses the PUF-tree to
obtain upper bounds to the expected support of frequent patterns (i.e., item
caps, which are computed based on the highest existential probability of an item
in the prefix); it guarantees to find all frequent patterns (with no false nega-
tives). Experimental results show the effectiveness of our PUF-growth algorithm
in mining frequent patterns from our PUF-tree structure.
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and University of Manitoba.
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Abstract. Frequent pattern mining is an important data mining task
with a broad range of applications. Initially focused on the discovery
of frequent itemsets, studies were extended to mine structural forms like
sequences, trees or graphs. In this paper, we introduce a new data mining
method that consists in mining new kind of patterns in a collection of
attributed trees (atrees). Attributed trees are trees in which vertices are
associated with itemsets. Mining this type of patterns (called asubtrees),
which combines tree mining and itemset mining, requires the exploration
of a huge search space. We present several new algorithms for attributed
trees mining and show that their implementations can efficiently list
frequent patterns in a database of several thousand of attributed trees.

Keywords: tree mining, frequent pattern mining, attributed tree.

1 Introduction

Frequent pattern mining is an important problem in data mining research. Ini-
tially focused on the discovery of frequent itemsets [1], studies were extended to
mine structural forms like sequences [2], trees [7] or graphs [22]. While itemset
mining seeks frequent combinations of items in a set of transactions, structural
mining seeks frequent substructures. Most existing studies focus only on one kind
of problem (itemset mining or structural mining). However, in order to represent
richer information, it seems natural to consider itemsets that are organized in
complex structures. In this paper, we introduce the problem of mining attributed
trees that are tree structures in which each vertex is associated with an itemset.

In web log analysis, for example, it is common to represent user browsing in
tree-like data where each page is identified with an unique id. However, one can
more pertinently characterize browsed pages with lists of keywords associated
with their content. This approach allows to capture the browsing habits of users
even when the web site is reshuffled. Other applications can be imagined in vari-
ous area such as retweet trees mining, spatio-temporal data mining, phylogenetic
tree mining and XML document mining.

The key contributions of our work are the following: 1) We present the problem
of mining ordered and unordered substructures in a collection of attributed trees.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 26–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2) We define canonical forms for attributed trees. 3) We propose a method for
attributed trees enumeration that is based on two operations: itemset extension
and tree extension. 4) We present an efficient algorithm IMIT for extracting
frequent substructures in a set of attributed trees. 5) We perform extensive
experiments on several synthetic datasets and a real weblogs dataset.

The rest of this paper is organised as follows. Section 2 presents basic concepts
and defines the problem. Section 3 proposes a brief overview of related works,
particularly few studies that mix itemset mining and structure mining. Section 4
describes the method including the search space exploration, the frequency com-
putation and the candidates pruning method. Section 5 reports several applica-
tions of the algorithms to mine both synthetic and real datasets. Finally, section
6 concludes the paper and presents possible extensions of the current work.

2 Basic Concepts and Problem Statement

In this section, we give basic definitions and concepts and then introduce the
problem of attributed tree mining.

2.1 Preliminaries

Let I = {i1, i2, .., in} be a set of items. An itemset is a set P ⊆ I. The size of an
itemset is the number of items. The set D of itemsets presents in a database is
denoted by {P1,P2, ...,Pm} where ∀P ∈ D,P ⊆ I. D is a transaction database.

A tree S = (V,E) is a directed, acyclic and connected graph where V is a set
of vertices (nodes) and E = {(u, v)|u, v ∈ V } is a set of edges. A distinguished
node r ∈ V is considered as the root, and for any other node x ∈ V , there is a
unique path from r to x. If there is a path from a vertex u to v in S = (V,E),
then u is an ancestor of v (v is a descendant of u). If (u, v) ∈ E (i.e. u is
an immediate ancestor of v), then u is the parent of v (v is a child of u). An
ordered tree has a left-to-right ordering among the siblings. In this paper, unless
otherwise specified, all trees we consider are unordered.

An attributed tree, or (atree) is a triple T = (V,E, λ) where (V,E) is
the underlying tree and λ : V → D is a function which associates an itemset
λ(u) ∈ I to each vertex u ∈ V . The size of an attributed tree is the number of
items associated with its vertices.

In this paper, we use a string representation for an atree based on that defined
for labeled trees by Zaki [24]. This representation is only intended to provide a
readable form for atrees. The string representation for an atree T is generated
by adding a representation of the nodes found in T in a depth-first preorder
traversal of T and adding a special symbol $ when a backtracking from a child
to its direct parent occurs. In the paper, for simplicity, we omit the trailing $s.
A string representation of a node is generated by listing all the items present
in the associated itemset in a lexicographical order. For example, the string
representation of atree T 2 from Fig. 1 is ”a c $ cde ab $ a”.

Attributed trees can be understood as itemsets organized in a tree structure.
As such, attributed tree inclusion can be defined with respect to itemsets
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inclusion or structural inclusion. For itemset inclusion, we say that atree T1

is contained in another atree T2 if both atrees have the same structure and
for each vertex of T1, the associated itemset is contained in the itemset of the
coresponding vertex in T2. More formally, T1 = (V1, E1, λ1) is contained in
T2 = (V2, E2, λ2), and is denoted by T1 �I T2, if V1 = V2 and E1 = E2

and ∀x ∈ V1, λ1(x) ⊆ λ2(x). Structural inclusion is represented by the classical
concept of subtree [5,7,12,17,19,23,24].

From the previous definition, we generalize the notion of asubtree in the fol-
lowing way. T1 = (V1, E1, λ1) is a asubtree of a atree T2 = (V2, E2, λ2) and
is denoted T1 � T2 if T1 is an isomorphic asubtree of T2, i.e. there exists a
mapping ϕ : V1 → V2 such that T1 �= T2 and (u, v) ∈ E1 if (ϕ(u), ϕ(v)) ∈ E2

and ∀x ∈ V1, λ1(x) ⊆ λ2(ϕ(x)). If T1 is an asubtree of T2, we say that T2 is an
asupertree of T1. T1 is called an induced asubtree of T2 iff T1 is an isomorphic
asubtree of T2 and ϕ preserves the parent-child relationships. T1 is called an em-
bedded asubtree of T2 iff T1 is an isomorphic asubtree of T2 and ϕ preserves
the ancestor-descendant relationships. T1 = (V1, E1, λ1) is called a gap-i asub-
tree of T2 = (V2, E2, λ2) iff T1 is an isomorphic asubtree of T2 and ϕ preserves
the ancestor-descendant relationships with the following constraint: ∀u∀v ∈ E1

such that u is an ancestor of v and d(ϕ(u), ϕ(v)) = 1, d(u, v) ≤ i where d(x, y)
represents the number of edges between x and y in the atree.

Fig. 1 shows an example of an atree database composed of three different
atrees with two (incomplete) sets of common asubtrees using a maximum gap
of 0 and 1.

Input database

a

ab cde

︸ ︷︷ ︸
T1

a

c cde

ab a︸ ︷︷ ︸
T2

a

cde

abc c︸ ︷︷ ︸
T3

︸ ︷︷ ︸
T1

Common asubtrees

a

cde

a

e

︸ ︷︷ ︸
gap-0 asubtrees

a

c

a

ab c

a

a

︸ ︷︷ ︸
gap-1 asubtrees

Fig. 1. Example of an atrees database with some common asubtrees

All tree mining algorithms dealing with unordered trees have to face the iso-
morphism problem. To avoid the redundant generation of equivalent solutions,
one tree is chosen as the canonical form and other alternative forms are discarded
[3,8,17,23,25]. In previous works, canonical forms are based on a lexicographical
ordering on node’s labels. In our work, we define an ordering based on node’s
associated itemsets. Given two itemsets P and Q (P �= Q), we say that P < Q
iff 1) ∀i ∈ [1,min(|P|, |Q|)] : Pi ≤ Qi and 2) if ∀i ∈ [1,min(|P|, |Q|)] : Pi = Qi,
then |P| > |Q|. From the definition above, an ordering, ≺, among atrees can be
defined. From this, a canonical form of isomorphic atrees is easily deter-
mined using the method presented by Chi et al. [7].
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The problem with frequent atrees mining is that the number of frequent pat-
terns is often large. In real applications, generating all solutions can be very
expensive or even impossible. Moreover, lots of these frequent atrees contain
redundant information. In Fig. 1, for example, atree ”a e” is present in all trans-
actions but the pattern is already encoded in atree ”a cde” because ”a e” is
contained in atree ”a cde”. This is the same for atree ”a a” which is an asubtree
of ”a ab $ c”.

Since the proposal of Manilla et al. [13] huge efforts have been made to design
condensed representations that are able to summarize solutions in smaller sets.
Set of closed patterns is an example of such a condensed representation [18]. We
say that an atree T is a closed atree if none of its proper asupertrees has the
same support as T . In this paper, we introduce another condensed representation
which is defined with respect to the contained in relationship only. We say that
an atree T is a c-closed atree (content closed) if it is not contained (as defined
above) in another atree with the same support as T .

2.2 Problem Statement

Given a database B of atrees and an atree T , the per-tree frequency of T is
defined as the number of atrees in B for which T is an asubtree. An atree is
frequent if its per-tree support is greater than or equal to a minimum threshold
value. The problem consists in enumerating all frequent patterns in a given forest
of atrees.

3 Related Works

Most of the earlier frequent tree mining algorithms are derived from the well-
known Apriori strategy [1]: a succession of candidates generation phase followed
by a support counting phase in which infrequent candidates are filtered out.
Two strategies are possible for candidate generation: extension and join. With
extension, a new candidate tree is generated by adding a node to a frequent tree
[3,17]. With join, a new candidate is created by combining two frequent trees
[12,25]. Combination of the two principles has also been studied [8].

Extension principle is a simple method suitable to mine implied trees because
the number of nodes that can be used to extend a given subtree is often lower
than the number of frequent subtrees.

Other tree mining algorithms are derived from FP-growth approach [11].
These algorithms, which adopt the divide-and-conquer pattern-growth princi-
ple avoid the costly process of candidate generation. However, pattern-growth
approach cannot be extended simply to tackle the frequent tree pattern mining
problem. Existing implementations are limited in the type of trees they can han-
dle: induced unordered trees with no duplicate labels in each node’s childs [23],
ordered trees [21] or embedded ordered trees [26] are some kind of trees that
were successfully mined with pattern-growth approach.

Finding condensed representations of frequent patterns is a natural extension
of pattern mining. For itemset mining, the notion of closure is formally defined
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[18]. Several works explored this topic in the context of tree mining and proposed
mining methods as well as various implementations [9,19,20]. To the best of our
knowledge, no method has been proposed for the general case of attributed trees.

Recently we saw growing interest in mining itemsets organized in structures.
Miyoshi et al. [14] consider labeled graphs with quantitative attributes associated
with vertices. This kind of structure allows to solve the problem by combining
a ”classical” subgraph mining algorithm for the labeled graph, and an existing
itemset mining algorithm for quantitative itemsets in each vertex. Mining at-
tributed subgraphs independently of labels of vertices is impossible with this
approach. Several studies [10,15,16] deal with attributed graphs but are looking
for frequent subgraphs sharing common sets of attributes. Our work differs from
these studies in the sense that itemsets associated with the vertices of a given
frequent substructures are not necessarily identical.

4 Mining Frequent Atrees

We are mainly interested in identifying induced ordered and unordered asub-
trees. Depending on applications, some patterns including gaps in the ancestor-
descendant relationship can also be considered. However, in order to collect only
interesting patterns, the gap used should remain small. Otherwise, the relation-
ship between a node and its descendants is not really tangible. Although we
focus on induced asubtrees, we designed a general method that is able to mine
asubtrees with any gap value, including embedded asubtrees. However, because
of the primary objective, our method works better for induced asubtree mining
and performances decrease as gap parameter increases.

4.1 Atrees Enumeration

Using the operator ≺, it is possible to construct a candidate tree Q representing
the complete search space [4] in the following way. The root node of the tree is at
the top level and labeled with ∅. Recursively, for each leaf node n ∈ Q, children
n′ are added such that n ≺ n′. Children of a node n ∈ Q, are generated either
by tree extension or by itemset extension.

Tree Extension. For tree extension, we use a variation of the well-known
rightmost path extension method [3,17]. Let T be an atree of size k. T can be
extended to generate new atrees in two different ways. In the first way, a new
child N is added to the rightmost node of T (right node extension). In the second
way, a new sibling N is added to a node in the rightmost path of T (right path
extension) [6].

In the classical approach, N represents every valid node from the input
database. In our approach, new nodes N are created from every valid node Q
from the input database. In fact, each node Q, associated with an itemset of size
k, generates a set of k nodes N = {N1, .., Nk} used for tree extension. Each Ni is
associated with an itemset of size 1; the only item being the ith item of λ(Q).
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For example, in Fig. 1, the nodes that can be used for right node extension of
pattern ”a cde” are ”ab”, ”a” (from atree T 2), ”abc” and ”c” (from atree T 3).
From node ”abc”, three extensions are generated (”a”, ”b” and ”c”) while node
”ab” generates ”a” and ”b”. Nodes ”a” and ”c” generate extensions ”a” and
”c” respectively. Three different candidates are then obtained by adding each of
these extension to the candidate pattern: ”a cde a”, ”a cde b” and ”a cde c”

For ordered trees, this method of candidate generation has been shown to be
complete as well as non-redundant [3]. However, for unordered trees, it might
generate redundant patterns in the form of isomorphic trees. Duplicate can-
didates are detected and discarded before the candidate extension process by
performing a canonical check.

Itemset Extension. For itemset extension, we use a variation of the method
presented by Ayres et al. [4]. With this variation, a new item I is added to the
itemset associated with the rightmost node of the candidate atree T . Items used
for itemset extension are derived from the itemset associated with this node in
the input database. The constraint is that the new item must be greater than
any item associated with the rightmost node of T .

4.2 Frequency Computation

We organize our data in a structure storing all information needed for the mining
process. Our structure is an extension of the vertical representation of trees
introduced by Zaki [24,25]. Briefly, each candidate asubtree is associated with its
pattern and several data allowing to pinpoint all its occurrences in the database.
The first candidates, composed of a unique node associated with one item, are
generated by scanning the input database. Using only this unique structure,
it is easy to compute the number of occurrences of each pattern. In addition,
this same structure is sufficient to generate all possible extensions of a given
pattern. When a pattern of size k is processed, all occurrences are extended
with tree extension and itemset extension methods described before to generate
new (k + 1)-candidates that are themselves stored in the structure.

4.3 Search Space Exploration

Several techniques can be used to prune the search tree.

Candidate Pruning. The same rules specified by Agrawal and Srikant twenty
years ago [1], can be applied to the case of atrees: i) any sub-pattern of a frequent
pattern is frequent, and ii) any super-pattern of a non frequent pattern is non
frequent. As the frequency count is an anti-monotonic function (extending a
pattern cannot lead to a new pattern with a greater frequency), is it possible
to stop the exploration of a branch when the frequency of a candidate is less
than the minimum support. For example, in Fig. 1, during the mining of atrees,
when we examine pattern ”a c a” and found that its frequency is lower than the
minimum support, we do not generate candidates obtained by extending ”a c a”
(e.g. ”a c ab”, ”a c a $ b”, ”a c a $ $ c”).
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In addition, in the case of unordered tree mining, extension of a candidate is
stopped if it is not in canonical form.

C-closed Atrees Enumeration. By enumerating only atrees that are not
contained in another atree with the same support, the search space can be
considerably reduced. Enumerating c-closed atrees involves the storage of every
frequent pattern found with their associated per-tree frequency and their total
number of occurrences in the database (the occurrence-match frequency).

Let T be a candidate atree currently processed, T be the set of all previously
identified frequent atrees and X be the set of candidates generated by extension
of T . We distinguish two subsets of X . XI is the set of atrees generated by
itemset extension of T and XT is composed of tree extensions of T . We define
two functions: ft which gives the per-tree frequency of an atree and fo which
returns its occurence-match frequency.

We say that T is a c-closed atree if � ∃T ′ ∈ T UXI such that T �I T ′ and
ft(T

′) = ft(T ). However, finding an itemset extension of T with the same per-
tree frequency as T does not allows to stop the exploration of other candidates
in X . The following additional conditions must also be satisfied: ∃T ′ ∈ T UXI :
T �I T

′ and fo(T
′) = fo(T ).

In Fig. 1, for example, the first candidate to be examined is ”a” with a per-tree
frequency of 3. By itemset extension, we build XI = {”ab”, ”ac”}. Candidate
”ab” has a per-tree frequency of 3, therefore, candidate ”a” is not c-closed as
”a” �I ”ab”. However, pattern ”a” appears 7 times in the database while the
total occurrence of candidate ”ab” is 3. The 4 times where ”a” occurs in an
itemset which does not contain ”b” may lead to the generation of other patterns
that are c-closed. This is the case in Fig. 1 where a right node extension of
pattern ”a” generates candidate ”a e” with a per-tree frequency of 3.

Closed Atrees Enumeration. We say that T is a a closed atree if � ∃T ′ ∈ T UX
such that T � T ′ and ft(T

′) = ft(T ). The extension of T can be stopped if
∃T ′ ∈ T UX : T � T ′ and fo(T

′) = fo(T ). In addition, one has also to remove
non closed trees from T , i.e. all atrees that are asubtrees of T with a same
per-tree frequency. The check for closure requires to perform several subtree
isomorphism checks that are costly operations.

4.4 Mining Algorithms

Fig. 2 shows the high level structure of the IMIT algorithm. First, a set with all
asubtree of size 1 is built by scanning the input database. Then, a loop allows
to process every candidate in the set. The function GetF irst return the smallest
candidate in the set according to the ≺ operator. The processing involves a
canonical test and a frequency test. A frequent candidate which is in canonical
form is added to the list of solutions and all of its extensions are added to the
list of candidates. The processing of a candidate finishes by removing it from the
candidates’ list.
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IMIT (D,minSup)

1: C ← {all asubtrees of size 1 in D}
2: while C �= ∅ do
3: T ← getF irst(C)
4: if isCanonical(T ) and ft(T ) ≥ minSup then
5: T ← T ∪ {T}
6: C ← C ∪ X
7: end if
8: C ← C \ {T}
9: end while
10: printSolutions(T )

Fig. 2. IMIT Algorithm

This algorithm is sufficient to enumerate all solutions but it has a huge
search space. To limit the redundancies in the set of solutions, we developed
IMIT CLOSED, an algorithm extracting closed asubtrees (Fig. 3). As illus-
trated in section 5, the algorithm is costly and is not usable to mine large input
databases.

We designed IMIT CONTENT CLOSED, a third algorithm extracting c-
closed asubtrees. This new algorithm (not shown in this paper) can be easily
deduced from the IMIT CLOSED algorithm (Fig. 3) by replacing � by �I , re-
placing X by XI in line 5 and removing line 11 to 13. The use of �I instead
of � allows to only perform itemsets inclusion tests that are less costly than
subtree isomorphism checks. Lines 11 to 13 remove from the set of solutions
those that are asubtree of the current candidate. This test is not needed for the

IMIT CLOSED(D, minSup)

1: C ← {all asubtrees of size 1 in D}
2: while C �= ∅ do
3: T ← getF irst(C)
4: if isCanonical(T ) and ft(T ) ≥ minSup then
5: if � ∃T ′ ∈ T ∪ X : T � T ′ and ft(T

′) = ft(T ) then
6: T ← T ∪ {T}
7: end if
8: if � ∃T ′ ∈ T : T � T ′ and fo(T

′) = fo(T ) then
9: C ← C ∪ X
10: end if
11: for all T ′ ∈ T such that T ′ � T and fo(T

′) = fo(T
′) do

12: T ← T \ {T ′}
13: end for
14: end if
15: C ← C \ {T}
16: end while
17: printSolutions(T )

Fig. 3. IMIT CLOSED Algorithm
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extraction of c-closed patterns. Experiments show that this third algorithm is
the best compromise between non redundancy of solutions and execution time.

5 Experimental Results

All algorithms are implemented in C++ using STL. Experiments were performed
on a computer running Ubuntu 12.04 LTS and based on a Intel c©CoreTMi5-2400
@ 3.10GHz with 8 Gb main memory. All timings are based on total execution
time, including all preprocessing and results output.

5.1 Synthetic Datasets

We modified the synthetic data generation program proposed by Zaki [24] in
order to be able to generate atrees with different size of itemsets. We added
two new parameters controlling the minimum and maximum itemset’s size. This
allows to generate atree with fixed itemset’s size or with a size randomly chosen
in a range.

We used the default parameters as in [24] except for the number of subtrees
T that is set to 10,000. We build five datasets by varying the size of itemsets. In
T10K, all vertices are associated with itemsets of size 1. This allows us to com-
pare our implementation with SLEUTH [25]. In T10K-3 and T10K-5, vertices
are associated with itemsets of size 3 and 5 respectively. In T10K-1/10, vertices
are associated with itemsets of size randomly selected between 1 and 10, while
in T10K-1/20, itemsets’ size vary from 1 to 20.

5.2 Web Logs Datasets

We built a dataset on logs given by our university following the method described
by Zaki [24]. However, instead of labeling nodes with URLs of the browsed
pages, we associated them with itemsets representing keywords of their content.
The dataset is composed of 126,396 attributed trees with itemsets of size 10
(10 keywords by page).

5.3 Performance Evaluation

Fig. 4 shows the execution time for mining c-closed sets of induced unordered
patterns using IMIT CONTENT CLOSED on our five synthetic datasets. For
comparison, we added in the figure the execution time of SLEUTH, a refer-
ence implementation of equivalence class extension paradigm [25], on the T10K
dataset. IMIT CONTENT CLOSED is about two times slower than SLEUTH
for all support values except the smallest ones where SLEUTH is penalized by
the cost of joining millions of frequent patterns.

Although IMIT CONTENT CLOSED is slower than SLEUTH, these results
are satisfactory because our algorithm is designed to mine attributed trees.
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Fig. 4. Execution time of IMIT CONTENT CLOSED for mining c-closed sets of in-
duced unordered patterns on 5 synthetic datasets

Fig. 5. Induced unordered mining with 3 versions of IMIT on T10K-3 dataset

As such, it is normal to perform worst on mining labeled trees than dedicated im-
plementations. The memory footprint of our algorithm is twice as SLEUTH’s one.

The figure also shows that mining attributed trees is extremely more comput-
ing intensive than mining labeled trees; and the difference is largely underesti-
mated because only c-closed patterns were mined. Mining all patterns generates
a huge number of solutions and takes a long time. To give an idea, mining the
T10K-3 dataset with a minimum support of 1% outputs 12 millions patterns in
15 hours (Fig. 5). Mining c-closed atrees allows to reduce both the number of
patterns and the execution time. Thus, at 1% minimum support, 200 c-closed
patterns are found in 4 seconds.

As shown in the same figure, the search for closed patterns allows to reduce
further the number of patterns. At 1% minimum support, for example, the num-
ber of patterns drops to 103. However, because of the costly subtree isomorphism
checks, in return, performances collapse when patterns become numerous. The
result is that the difference in computation time increases as the minimum sup-
port decreases.

Fig. 6 show the execution time and number of c-closed patterns in the weblogs
dataset. This dataset is much larger than synthetic datasets used before and its
mining cannot be performed with a minimum support of less than 10% in a
reasonable amount of time. Mining the weblog dataset with a minimum support
of 6% lasts 6 hours and returns 360 patterns.
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Fig. 6. Performances of IMIT CONTENT CLOSED for mining c-closed sets of induced
unordered patterns on weblogs datasets

6 Conclusion and Perspectives

In this paper, we introduce the problem of mining attributed trees. We investi-
gate methods enumerating all frequent patterns or only closed ones, but these
methods proved inefficient because of, in the first case, the huge number of pat-
terns returned, and in the second case, the cost of subtree isomorphism checks.
Finally, we propose a condensed representation of frequent atrees that is de-
fined with respect to itemset inclusion. This representation allows to drastically
reduce both the number of patterns and the execution time. We evaluate the ef-
ficiency of the proposed algorithm, IMIT CONTENT CLOSED, and show that
it successfully extract frequent patterns in large datasets. One future work is
to extend the proposed algorithm to effectively mine frequent closed patterns.
Another future work consists in developing similar methods for mining more
complex structures such as attributed graphs.
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Abstract. In modern life, interactions between human beings frequently
occur in meetings, where topics are discussed. Semantic knowledge of
meetings can be revealed by discovering interaction patterns from these
meetings. An existing method mines interaction patterns from meetings
using tree structures. However, such a tree-based method may not cap-
ture all kinds of triggering relations between interactions, and it may
not distinguish a participant of a certain rank from another participant
of a different rank in a meeting. Hence, the tree-based method may not
be able to find all interaction patterns such as those about correlated
interaction. In this paper, we propose to mine interaction patterns from
meetings using an alternative data structure—namely, a directed acyclic
graph (DAG). Specifically, a DAG captures both temporal and triggering
relations between interactions in meetings. Moreover, to distinguish one
participant of a certain rank from another, we assign weights to nodes
in the DAG. As such, a meeting can be modeled as a weighted DAG,
from which weighted frequent interaction patterns can be discovered. Ex-
perimental results showed the effectiveness of our proposed DAG-based
method for mining interaction patterns from meetings.

Keywords: Data mining, Frequent patterns, Human interaction,
Modeling meetings, Directed Acyclic Graphs.

1 Introduction and Related Works

Meetings and human interactions are integral parts of workplace dynamics for
communicating between members participating in a meeting. During a meeting,
several kinds of human interactions may occur. Examples include (i) proposing
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an idea, (ii) positively or negatively reacting to a proposal, (iii) acceptance of
a proposal. To gather significant information regarding the success rate of the
decision made in a meeting, one can mine patterns from human interactions
occurred in the meeting.

Data mining is useful in discovering implicit, previously unknown, and po-
tentially valuable information or knowledge from large datasets. For instance,
frequent pattern mining [1,4,7] is helpful in finding frequently occurring patterns,
such as interaction patterns from meetings. The discovered interaction patterns
help to (i) estimate the effectiveness of decisions made in meetings, (ii) designate
whether a meeting discussion is fruitful, (iii) compare two meeting discussions
using interaction flow as a key feature [12] and (iv) index meetings for further
ease of access in database.

To acquire the semantic information from a meeting, researchers extracted
the meeting contents and represented them in a machine readable format. For
instance, Waibel et al. [9] presented a meeting browser that describes the dy-
namics of human interactions. McCowan et al. [5] recognized group actions in
meetings by modeling the joint behavior of participants and expressed group
actions as a two-layer process by a hidden Markov model framework. Otsuka et
al. [6] used gaze, head gestures, and utterances to determine who responds to
whom in multiparty face-to-face conversations. Yu et al. [11] proposed a mul-
timodal approach for interaction recognition; they [12] also used a tree-based
mining method to discover frequent patterns from human interactions occurred
in meetings. Such a method focuses mostly on capturing direct parent-child re-
lations. However, there are other triggering relations in meetings as illustrated
in Example 1.

Example 1. Let us consider a scenario about a meeting of four persons (e.g.,
professor A, assistant professor B, and two lecturers C & D) with different
weights/ranks. At the beginning of the meeting, B proposes an idea which trig-
gers three interactions: (i) C expresses his negative opinion towards the proposed
idea, (ii) C asks D for opinion on the idea, and (iii) A expresses some positive
opinion towards the idea. Now, the interaction of C’s request for D’s opinion
triggers a single interaction performed by D. Although the response of D is
triggered by C’s request of opinion, such a response is generally influenced by
A’s positive opinion. To elaborate, D may initially feel negatively regarding B’s
proposed idea. But, after listening to A’s positive comments, B may change his
mind and lean towards a neutral or even positive opinion. ��
Example 1 reveals that (i) an interaction can be triggered or influenced by multi-
ple interactions and (ii) the extent of influence can be significantly dependent on
the weight/rank of the person triggering that interaction. However, the afore-
mentioned tree-based method [12] does not capture these triggering relations.
Moreover, as this method does not associate the actions with the rank of the
person causing the actions, it does not distinguish the same kinds of actions
performed by two persons having different weights/ranks.

Observing that (i) directed acyclic graphs (DAGs) and trees are both spe-
cializations of graphs and (ii) trees may not capture all triggering relations or
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person’s weight/rank, we explore the use of DAGs (as alternatives to trees) for
modeling meetings. As interactions occur in meetings flow in only one direc-
tion with respect to time (i.e., no cycle), DAGs would be a logical choice for
modeling meetings. A key contribution of this paper is our DAG-based model-
ing of interactions occurred in meetings. In particular, DAGs capture two kinds
of relations: (i) temporal relations and (ii) triggering relations (cf. trees capture
temporal relations but not all triggering relations). By doing so, each interaction
is represented by a node in a DAG, and the label of the node indicates the class
of interaction. Moreover, every node is associated with a weight, indicating the
rank of the person who initiates the interaction.

Another key contribution of this paper is our DAG-based mining of weighted
frequent interaction patterns from meetings. Note that, Chen et al. [3] mined
DAG patterns from DAG databases. Termier et al. [8] presented DigDag as the
first algorithm to mine closed frequent embedded sub-DAGs. Werth et al. [10]
designed and implemented a DAG miner for mining DAGs from DAG databases.
However, these related works do not consider weights of nodes in DAGs, let alone
mining weighted frequent interaction patterns. Furthermore, there exist related
works [2] that mine weighted frequent patterns from transactional databases (cf.
DAGs). Inspired by these works, we integrate DAG-based mining and interac-
tion pattern mining [10] with weighted frequent pattern mining [2] to form our
WDAGmeet algorithm for Weighted DAG-based meeting mining.

The rest of this paper is organized as follows. Section 2 introduces our DAG-
based representation of interaction flow in meetings. Section 3 presents our
weighted DAG-based frequent interaction pattern mining. Evaluation results are
shown in Section 4, and conclusions are given in Section 5.

2 DAG-Based Representation of Interaction Flow

In this section, we introduce a DAG-based representation of interaction flow in
decision-making meetings. Human interactions occurred in these meetings can
be mainly categorized into the following nine classes:

1. PRO: A participant proposes an idea.
2. ASK: A participant asks for opinion regarding a proposal.
3. POS: A participant expresses positive attitude towards a proposal.
4. NEG: A participant expresses negative attitude towards a proposal.
5. ACK: A participant agrees on some other’s comment, decision, or attitude.
6. COM: A participant comments on another action (PRO, ACK, POS, etc.).
7. REQ: A participant requests information regarding an issue.
8. ACC: A participant accepts the proposed idea.
9. REJ: A participant rejects the proposed idea.

When building a DAG tomodel the interaction flow occurred inmeetings, we label
each node in the DAG with one of the above nine classes of human interactions.

To further specify the rank of the person who initiated the interaction, we
assign a weight with value ranging from 1 to n inclusive (e.g., n=3, 4 or 5). Al-
though the same response can be made from different persons of different ranks,
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Fig. 1. A DAG-based representation of interaction flow showing triggering relations

a response from a person having a heavier weight usually strongly influences
the decision making process than that from a person of a lighter weight. Each
node in the weighted DAG in Fig. 1 denotes an instance of human interaction
occurred in a meeting. The label and weight of the nodes indicate the class of
the interaction and the corresponding impact factor, respectively.

So far, we have categorized interactions into nine classes (e.g., PRO, ASK)
based on the activities in a meeting. From the perspective of spontaneity, these
interactions can also be categorized into two types of interactions: (i) triggering
interaction and (ii) triggered interaction. For example, the PRO node in Fig. 1 re-
flects a triggering interaction, which represents an assistant professor proposes an
idea spontaneously. The remaining nodes (POS, ASK & NEG) reflect three trig-
gered interactions, which occur in response to the triggering interaction. Directed
edges between nodes indicate triggering relations between the nodes, and the
arrows point from the triggering interaction to the triggered one. Consequently,
we generate a DAG-based interaction flow diagram for modeling meetings.

Besides those triggering relations, our proposed DAG-based representation of
interaction flow also captures temporal relations. To elaborate, a DAG repre-
sents the temporal relations by topological level. Nodes of a certain topological
level appear temporally before nodes of the next/lower level. Within the same
topological level, the node on the left appears temporally before the node on the
right. See Example 2.

Example 2. Fig. 2 shows a sample session of a meeting, in which an assistant
professor A proposes an idea. Triggered by A’s proposed idea, one of his col-
leagues B first expresses her negative opinion and then asks others’ opinions.

Fig. 2. A DAG-based representation of interaction flow showing both triggering rela-
tions and temporal relations in a meeting



42 A. Fariha et al.

On the other hand, a professor C (with heavier weight) expresses his positive
opinion on A’s idea. An associate professor D first comments on B’s negative
opinions. Based on both his comments and B’s negative opinion, D then ex-
presses his negative opinion in response to B’s asking of opinion. Finally, based
on two negative opinion from assistant professor B and associate professor D
as well as the positive opinion from professor C, professor E accepts A’s idea,
biased to the interaction performed by person of higher rank. Note that, Fig. 2
captures not only single triggering relations but also interactions triggered by
multiple triggering interactions. ��

3 DAG-Based Frequent Pattern Mining from Interaction
Flow DAGs

Once the DAG-based interaction flow diagram is generated, we can mine frequent
interaction patterns (sub-DAG patterns) from the diagram. Before describing the
key steps in this interaction pattern mining process, let us consider the following
definitions.

Definition 1 (DAG-Based Interaction Flow). One single meeting may con-
sist of several sessions. Interaction flow within each session can be represented
by a DAG D = (V,E), where V = {v1, v2, ..., vn} is a set of n vertices and
E = {e1, e2, ..., em} is a set of m directed edges. All DAGs are connected acyclic
graphs and no two DAGs, representing sessions of the same meeting, are con-
nected to each other. Each node vi is assigned a class label L(vi), where L(vi) ∈
{PRO, ASK, POS, NEG, ACK, COM, REQ, ACC, REJ}. Each node is asso-
ciated with a weight W (vi) that carries information regarding the (absolute or
relative) rank of a participant who initiates an interaction in a meeting. Each
edge is a directed connection between two vertices, i.e., E = {(vi, vj)|1 ≤ i, j ≤
n; vi, vj ∈ V }. Here, vi denotes the source/origin of the directed edge and vj
denotes the destination of that edge. An edge from vi to vj implies that vi (com-
pletely or partially) triggers vj . The levels of interactions can be determined
according to their topological orders. Interactions of higher levels occur earlier
than those of lower levels. Within the same level, interactions on the left occur
earlier than those on the right. ��

Definition 2 (Sub-DAG and Super-DAG). Consider two DAGsD = (V,E)
and D′ = (V ′, E′) such that (i) D′ is a connected DAG; (ii) V ′ ⊆ V ; (iii) E′ ⊆ E;
(iv) for each v′i ∈ V ′, L(v′i) = L(vi) and W (v′i) = W (vi) for a vi ∈ V ; (v) for
each e = (v′i, v

′
j) ∈ E′, these v′i & v′j ∈ V ′ are mapped to the corresponding vi

& vj ∈ V . Then, D′ is a sub-DAG of D. Equivalently, D is a super-DAG
of D′. ��

Definition 3 (Support). Given (i) a sub-DAG D′ and (ii) a database DB, the
support of D′ is defined by the following equation:

sup(D′) =
#superDAGs of D′× avg weight of nodes in D′

#DAGs in DB× max weight of nodes in DB
. (1)
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This definition of support allows us to discover sub-DAGs containing nodes that
are not too frequent but are associated with heavy weights. See Example 3.

Example 3. Consider a sample DAG D, consisting of 10 directed edges (i.e.,
10 triggering relations) on 20 nodes (i.e., 20 interactions): Professor A proposes
three ideas (PRO), and each of them are rejected (REJ) by Professor B. Lec-
turer C makes 7 comments (COM), and each of them triggers Lecturer F ’s
comments (COM). In other words, D = (V,E), where (i) V = {v1, ..., v20},
(ii) L(v1) = L(v3) = L(v5) = PRO, (iii) L(v2) = L(v4) = L(v6) = REJ,
(iv) L(v7) = ... = L(v20) = COM, (v) E = {(v1, v2), (v3, v4), ..., (v19, v20)},
(vi) W (v1) = ... = W (v6) = 5, and (vii) W (v7) = ... = W (v20) = 1. Here, the
frequency of the pattern “A proposes an idea, which is rejected by B” is 3; the
frequency of another pattern “C makes a comment, which is commented by F”
is 7. Between them, the first pattern is more interesting than the second one
because interactions between persons of higher rank (i.e., heavier weights) are
usually more important and useful in analyzing decision-making meetings even
when the frequency of these interactions is not too high. ��

Definition 4 (Frequent Pattern or Fragment). Sub-DAGs, having support
greater than the user-specific minimum support thresholdminsup are considered
frequent sub-DAG pattern (or fragment). ��

Definition 5 (Mining Frequent Interaction Patterns from Meeting
DB). Given (i) a meeting database DB capturing human interactions in meet-
ings, (ii) a user-specific minimum support threshold minsup, the problem of
mining frequent interaction patterns is to discover from DB every frequent in-
teraction pattern, i.e., every sub-DAG D′ having sup(D′) ≥ minsup. ��

Our proposed weighted DAG-based meeting mining algorithm (WDAGmeet)
discovers frequent interaction patterns in the form of frequent sub-DAGs from
weighted DAG database DB as follows. The algorithm first generates a set of all
frequent nodes in DB. It then expands these nodes (i.e., singleton sub-DAGs)
using the following four expansion rules:

1. New Root: A new root (with no incoming edge) is inserted.
2. New Level: A new topological level is introduced with the insertion of a

new node into that level and the insertion of an edge from a node in the
previous topological level.

3. New Node: A new node (with a label lexicographically greater than the
last node in current topological level) is inserted into the current topological
level.

4. New Edge: A new edge from a previously inserted node to the most recently
inserted node is added.

See Example 4 for illustration of these rules. Note that, these rules are designed
in such a way that no duplicate DAG is generated. In the process of expansion
of already found frequent sub-DAGs, duplicate sub-DAGs may be generated.
Although these duplicates do not affect the mining result, they certainly increase
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Algorithm 1. WDAGmeet

Input : (1) Meeting DB of DAG, (2) minsup threshold
Output: A set F of frequent DAG interaction patterns

1 begin
2 F ← all the frequent nodes in all the DAGs in DB
3 tmpF ← F
4 while tmpF �= ∅ do
5 tmp← ∅
6 for f ∈ tmpF do
7 tmp← tmp ∪ expandWithRoots(DB,f,minsup)
8 tmp← tmp ∪ expandWithNewLevel(DB,f,minsup)
9 tmp← tmp ∪ expandWithNewNode(DB,f,minsup)

10 tmp← tmp ∪ expandWithNewEdge(DB,f,minsup)

11 end for
12 tmp← pruneNonCannonical(tmp,minsup)
13 tmp← filterNotWantedFragments(tmp,minsup)
14 tmp← filterNotFrequentFragments(tmp,minsup)
15 F ← F ∪ findConnectedDAGs(tmp)
16 tmpF ← tmp

17 end while

18 end

the runtime of the algorithm. To avoid generating duplicates, all newly expanded
sub-DAGs are checked for duplicate canonical form [10] because the canonical
form is unique for all duplicate isomorphic DAGs.

Example 4. Consider Fig. 3, which shows some examples of applications of the
four expansion rules: WDAGmeet algorithm (a) inserts a new root PRO, (b) in-
serts another new root REQ, and (c) introduces a new level with the insertion
of POS and of a triggering relation from PRO to POS. Afterwards, WDAGmeet
(d) inserts into the current level a new node NEG triggered by REQ, (e) adds
a new edge from PRO to the most recently inserted NEG. Similarly, WDAG-
meet (f) introduces another new level (with the insertion of NEG, to which a
triggering relation from another NEG is inserted) and (g) adds a new edge from
PRO. ��

Note that, some of the expanded DAGs are connected, but some are not. WDAG-
meet algorithm only inserts frequent connected DAGs to the mining result.

Fig. 3. Applications of expansion rules
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Fig. 4. First few steps of WDAGmeet algorithm

The algorithm repeats the above expansion process until no new expansion is
impossible. The pseudocode is given in Algorithm 1, and Fig. 4 illustrates the
first few steps of the algorithm.

One important observation on the WDAGmeet algorithm is that, when the
patterns are expanded, it adds not only frequent nodes but all possible nodes.
The reason is that, the expansion rules do not satisfy the anti-monotone prop-
erty: A pattern f may not be frequent because of low average-weight of the nodes
contained in it, but connecting some nodes (of heavier weight or high support)
can make f frequent.

4 Evaluation Results

First, we evaluated the functionality of our proposed WDAGmeet algorithm by
comparing it with the existing tree-based mining method [12]. The tree-based
method misses some important frequent patterns because it does not capture
all triggering relations. As illustrated in Fig. 5, only one triggering relation is
captured in the tree database for each triggered interaction. For instance, the
tree captures the interaction ASK triggered by PRO but misses the one triggered
by POS. Similarly, the tree captures the interaction NEG triggered by PRO
but misses the one triggered by ASK. As such, the tree-based method does
not generate the pattern POS-ASK-NEG as these three nodes are not directly
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connected in the tree. In fact, fragments containing siblings or ancestor’s siblings
of a node cannot be connected in the absence of their common ancestor in a
tree. Hence, if the common ancestor is not frequent, the tree mining method
fails to mine such fragments as a frequent pattern. In contrast, being internally
connected with partial triggering relations, WDAGmeet discovers this kind of
frequent interaction patterns, such as POS-ASK-NEG in the above example.
This kind of frequent patterns reveals highly correlated interactions.

Fig. 5. DAG-based vs. tree-based representations of meetings

Next, we evaluated empirically the performance and effectiveness of WDAG-
meet algorithm, which was implemented in C++. In our experiments, we used
datasets based on sample meetings. We generated 10 synthetic datasets to simu-
late real meeting scenarios. Each dataset contains a description of (i) the meeting
captured in a DAG, (ii) labeled interactions with their corresponding weights,
and (iii) triggering relations (i.e. directed edges of the DAG). We used five dis-
tinct weights for ranking each nine interaction with one of the nine class labels.
Experiments were run using an Intel Core i5 2.50 GHz machine with 2.94 GB of
RAM and 32 bit OS (Windows 7).

Table 1 shows the number of discovered frequent patterns and the elapsed
time to discover these frequent patterns when using different minimum support
minsup threshold values performed on 10 different datasets having different sizes.
Table 1 shows that, as the number of frequent patterns increased, the required
time to discover these frequent patterns also increased.

Fig. 6 plots the number of frequent patterns and elapsed time vs. DB size in
the right and left, respectively. One can observe that, on average, the number
of discovered frequent patterns (or fragments) was loosely related to the size of
DAGs. Dense DAGs usually generated more frequent patterns than sparse ones.
When patterns were generated, it was more likely to locate those patterns in
a dense DAG than a sparse one because the dense DAG contains most of the
probable edges. In contrast, the probability of finding a frequent pattern was
low in a sparse DAG. The increment of DB size can partially represent the
sparseness of the DAG capturing interactions in meetings.

Then, we compared the performance of WDAGmeet algorithm with that
of the existing tree-based mining method [12] empirically. Table 2 shows our
experimental results, which can be explained as follows. During the mining
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Table 1. #frequent patterns & elapsed time with various minsup for different DB

Size of DB (bytes) minsup (%) #frequent patterns Elapsed time (seconds)

40 415 440.589
6917 50 139 92.475

60 26 17.672
70 16 9.385

30 481 401.539
5804 40 184 119.821

50 25 8.917
60 3 0.856

50 135 86.668
5465 55 87 61.318

60 73 53.787
65 59 47.327

Fig. 6. Elapsed time and number of frequent patterns vs. DB size

process, any frequent pattern must be connected because neither WDAGmeet
nor the tree-based method can search DB for a pattern or fragment that is not
connected. As discussed earlier, the tree-based mining method missed some fre-
quent patterns. In contrast, WDAGmeet algorithm did not miss these patterns.
Moreover, WDAGmeet algorithm used weighted nodes for representing the im-
portance/rank of persons triggering each interaction. This criterion decreased
the number of frequent patterns discovered by WDAGmeet. Moreover, WDAG-
meet distinguished multiple interactions initiated by different persons having
different weights. In contrast, the tree-based method did not distinguish mul-
tiple interactions. Hence, as WDAGmeet captures all triggering and temporal
relations, it generated fewer frequent patterns and did not miss any frequent
patterns. In contrast, the tree-based method generated more frequent patterns
but also missed some frequent patterns.

To summarize,WDAGmeet algorithm discovered frequent interaction patterns
from weighted DAGs capturing human interactions in meetings in reasonable
amounts of time. Whenminsup increased, the number of discovered frequent pat-
terns decreased and the elapsed time also decreased. When compared with the
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Table 2. #frequent patterns & elapsed time for tree-based vs. our DAG-based mining

Size of DB minsup #frequent patterns in #frequent patterns
(bytes) (%) tree-based method [12] in WDAGmeet

40 635 415
6917 45 298 262

50 153 139

30 509 481
5804 35 482 442

40 201 184

50 146 135
5465 55 95 87

60 79 73

existing tree-based method (which captures few triggering and all temporal
relations), WDAGmeet algorithm captures all triggering relations as well as all
temporal relations. Moreover, WDAGmeet algorithm does not miss any frequent
interaction patterns. As an ongoing work, we plan to conduct more extensive ex-
periments and compare the precision, recall and F-measure of our proposed
WDAGmeet algorithm with those of the existing tree-based method.

5 Conclusions

In this paper, we modeled human interactions in meetings using a weighted di-
rected acyclic graph (DAG). The weight indicates the rank or importance of
the person who initiates one of the nine classes of interactions. Such a DAG-
based representation of interaction flow captures both (i) temporal relations and
(ii) triggering relations (which connect the triggering interaction to the triggered
interaction) in meetings. Moreover, we also proposed DAG-based frequent pat-
tern mining from interaction flow DAGs. Specifically, our proposed WDAGmeet
algorithm mines weighted DAG-based meeting for frequent interaction patterns.
The key idea is to model each session (especially decision-making sessions) of a
meeting using DAGs. Moreover, DAGs also include patterns or fragments that
are connected without any common ancestor, previously missed by the exist-
ing tree-based method. The integration of weight assignment to each interaction
makes the meeting mining process more robust and worthwhile.

Evaluation results show that WDAGmeet algorithm was more effective in
discovering frequent interaction patterns from weighted DAGs than the existing
tree-based method. The mined frequent sub-DAGs can be served as foundations
to further association rule mining. As ongoing work, we plan to integrate other
types of human interactions. Moreover, the resulting mining algorithm can be
customized to handle other classes of meetings such as medical interviews and
business discussions. The property of assigning weights to the interactions and
preserving all kinds of partially triggering relations add functionality of WDAG-
meet in mining patterns from human interactions in meetings.
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Abstract. In this paper, we propose a new algorithm, called ClaSP
for mining frequent closed sequential patterns in temporal transaction
data. Our algorithm uses several efficient search space pruning methods
together with a vertical database layout. Experiments on both synthetic
and real datasets show that ClaSP outperforms currently well known
state of the art methods, such as CloSpan.

1 Introduction

Sequence Data Mining (SDM) is a well-extended field of research in Temporal
Data Mining that consist of looking for a set of patterns frequently enough
occurring across time among a large number of objects in a given input database.
The threshold to decide if a pattern is meaningful is called minimum support.
SDM has been widely studied [6,9,3,5,2], with broad applications, such as the
discovery of motifs in DNA sequences, analysis of customer purchase sequences,
web click streams, and so forth.

The task of discovering the set of all frequent sequences in large databases
is challenging as the search space is extremely large. Different strategies have
been proposed so far, among which SPADE, exploiting a vertical database for-
mat [9], FreeSpan and PrefixSpan, based on projected pattern growth [3,5] are
the most popular ones. These strategies show good performances in databases
containing short frequent sequences or when the support threshold is not very
low. Unfortunately, when long sequences are mined, or when a very low support
threshold is used, the performance of such algorithms decreases dramatically
and the number of frequent patterns increases sharply, resulting in too many
meaningless and redundant patterns. Even worse, sometimes it is impossible to
complete the algorithm execution due to a memory overflow.

One of the most interesting proposals to solve both problems are so called
closed sequences [8], based on the same notion for regular frequent closed item-
sets, as introduced by Pasquier et al. [4]. A frequent sequence is said to be closed,
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if there no exists a supersequence with the same support in the database. The
final collection of closed sequences provides a much more simplified output, still
keeping all the information about the frequency of each of the sequences. Some
algorithms have been developed to find the complete set of closed sequences,
where most of them are based on the Pattern Growh strategy [8,7].

In this paper, we propose a new algorithm, called ClaSP (Closed Sequential
Patterns algorithm) which exploits several efficient search space pruning meth-
ods. Depending on the properties of the database, we argue about the desirability
of using the vertical database format as compared to pattern growth techniques.
We also show the suitability of the vertical database format in obtaining the
frequent closed sequence set, and how, under some database configurations, a
standard vertical database format algorithm can already be faster than Pattern
Growth algorithms for closed sequences, by only adding a simple post-processing
step. Experiments on both synthetic and real datasets show that ClaSP gener-
ates the same complete closed sequences as CloSpan [8] but has much better
performance figures.

The remaining of the paper is organized as follows. Section 2 introduces the
preliminary concepts of frequent closed sequential pattern mining and the nota-
tion used in the paper. In Section 3, we present the most relevant related works.
In Section 4, the pruning methods and ClaSP algorithm are presented. The per-
formance study is presented in section 5 and, finally, we state our conclusions in
section 6.

2 Problem Setting

Let I be a set of items. A set X = {e1, e2, . . . , ek} ⊆ I is called an itemset or k-
itemsets if it contains k items. For simplicity, from now on we denote an itemset
I as a concatenation of items between brackets. So, I1 = (ab) and I2 = (bc) are
both two 2-itemsets. Also, without loss of generality, we assume the items in
every itemset are represented in a lexicographic order.

A sequence s is a tuple s = 〈I1I2 . . . In〉 with Ii ∈ I, and ∀i : 1 ≤ i ≤ n. We
denote the size of a sequence |s| as the number of itemsets in that sequence. We
denote the length of a sequence (l =

∑n
i=1 |Ii|) as the number of items in it, and

every sequence with k items is called a k-sequence. For instance, the sequence
α = 〈(ab)(bc)〉 is a 4-sequence with a size of 2 itemsets.

We say α = 〈Ia1Ia2 . . . Ian〉 is a subsequence of another sequence β = 〈Ib1Ib2
. . . Ibm〉 (or β is a supersequence of α), denoted as α � β, if there exist integers
1 ≤ j1 < j2 < . . . < jn ≤ m such that Ia1 ⊆ Ibj1 , Ia2 ⊆ Ibj2 , . . . , Ian ⊆ Ibjn . For
instance, 〈(b)(c)〉 is a subsequence of 〈(ab)(bc)〉, since (b) ⊆ (ab) and (c) ⊆ (bc)
and the order in the itemsets is preserved. Furthermore, the sequence 〈(b)(c)〉 is
not a subsequence of 〈(abc)〉.

In the rest of the work, we use the terms pattern and sequence interchangeably.
An input sequence is is a tuple is = 〈id, s〉 with id ∈ N and s is a sequence.

We call id the identifier of the input sequence. We say that an input sequence
is contains another sequence α, if α � s.



52 A. Gomariz et al.

Table 1. A Sample Sequence Database

Sequence Id. Sequence

1 〈(a)(ab)(bc)〉
2 〈(a)(abc)〉
3 〈(d)(a)(ab)(bc)〉
4 〈(d)(ad)〉

A sequence database D is collection of input sequences D = 〈s1s2 . . . sn〉,
incrementally ordered by the identifier of the contained sequences. In table 1 we
show a sample input database D with four input sequences.

Definition 1. The support (or frequency) of a sequence, denoted as σ(α,D), is
the total number of input sequences in the input database D that contain α. A
pattern or sequence is called frequent if it occurs at least a given user specified
threshold min sup, called the minimum support. FS is the whole collection of
frequent sequences. The problem of frequent sequence mining is now to find FS
in a given input database, for a given minimum support threshold.

Given a sequence α = 〈I1I2 . . . In〉 and an item ei, we define the s-extension α′

as the super-sequence of α, extending it with a new itemset containing a single
item ei, α

′ = 〈I1I2 . . . InIn+1〉, In+1 = (ei). We define the i-extension of α if the
last itemset I ′n of α′ = 〈I1I2 . . . I ′n〉 satisfies (I ′n = In ∪ ei). That is, the item
ei is added to In. For instance, given the sequence α = 〈(a)(b)〉 and an item
c ∈ I, the sequence β = 〈(a)(b)(c)〉 is an s-extension and γ = 〈(a)(bc)〉 is an
i-extension.

Given two sequences β and γ such that both are s-extensions (or i-extensions)
of a common prefix α, with items ei and ej respectively, we say β precedes γ,
β < γ, if ei <lex ej in a lexicographic order. If, on the contrary, one of them is
an s-extension and the other one is i-extension, the s-extension always precedes
the i-extension.

Definition 2. If a frequent sequence α does not have another supersequence
with the same support, we say that α is a closed sequence. Otherwise, if a
frequent sequence β has a super-sequence γ with exactly the same support, we
say that β is a non-closed sequence and γ absorbs β. The whole set of frequent
closed sequences is denoted by FCS. More formally, α ∈ FCS if ∀β ∈ FS, α �
β, σ(α,D) �= σ(β,D). The problem of closed sequence mining is now to find FCS
in a given input database, for a given minimum support threshold.

Clearly, the collection of frequent closed sequences is smaller than the collection
of all frequent sequences.

Example 1. In our sample database, shown in table 1, for a support min sup =
2, we find |FCS| = 5 frequent closed sequences, FCS = {〈(a)〉, 〈(d)(a)〉, 〈(a)(ab)〉,
〈(a)(bc)〉, 〈(a)(ab)(bc)〉}, while the corresponding FS has 27 frequent sequences.
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3 Related works

Looking for frequent sequences in sequence databases was first proposed by
Agrawal and Srikant [1,6]. Their algorithms (apriori-based) consist of execut-
ing a continuous loop of a candidate generation phase followed by a support
checking phase. Two main drawbacks appear in those algorithms: 1) they need
to do several scans of the database to check the support of the candidates; and
2) a breath-first search is needed for the candidate generation, leading to high
memory consumption.

Later, two other strategies were proposed: 1) depth-first search based on a
vertical database format [9] and 2) projected pattern growth [3,5]. The vertical
database format strategy was created by Zaki in the Spade algorithm [9] which is
capable of obtaining the frequent sequences without making several scans of the
input database. His algorithm allows the decomposing of the original search tree
in independent problems that can be solved in parallel in a depth-first search
(DFS), thus enabling the processing of big databases.

The Pattern growth strategy was introduced by Han et al. [3] and it consists
in algorithms that obtain the whole frequent sequence set by mean of techniques
based on the so called projected pattern growth. The most representative algo-
rithm in this strategy is PrefixSpan [5]. PrefixSpan defines a projected database
as the set of suffixes with respect to a given prefix sequence. After projecting
by a sequence, new frequent items are identified. This process is applied in a
recursive manner by means of DFS, identifying the new frequent sequences as
the concatenation of the prefix sequence with the frequent items that are found.

Prefixspan shows good performance and scales well in memory, especially with
sparse databases or when databases mainly consist of small itemsets. However,
when we deal with large dense databases that have large itemsets, the perfor-
mance of Prefixpan is worse than that of Spade. In order to show this issue, we
have conducted several tests. In a sequential database, several important prop-
erties have an influence on the algorithms execution, some of which are shown
in Table 2.

Table 2. Parameters for IBM Quest Data Generator

Abbr. Meaning

D Number of sequences (in 000s)

C Average itemset in a sequence

T Average items in a itemset

N Number of different items (in 000s)

S Average itemsets in maximal sequences

I Average items in maximal sequences

We define the database density as the quotient δ = T
N . We have used the

well-known data generator provided by IBM to run Spade and PrefixSpan un-
der different configurations. In Figures 1 and 2 we can observe the behaviour of
both Spade and Prefixspan when we vary the density and the number of itemsets.
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In figure 1 we show the running time of the algorithms with a different number
of items (100, 500 and 2500 items) with a constant T = 20 value. Since for a
database, the density grows either if the numerator increases or the denominator
decreases, the figures have been obtained just varying the denominator. Besides,
figure 2 depicts the behaviour of the algorithms when the number of itemsets is
changed between values of C ∈ {10, 40, 80} while we keep the density constant
(δ = 20

2500 ). The higher δ the more dense the database. We can see that PrefixS-
pan shows good results when both density and the number of itemsets are low,
but when a database is denser and parameter C grows, we notice how Spade
outperforms Prefixspan.

Fig. 1. Behaviour of Spade and PrefixSpan when density changes (in the number of
items)

Fig. 2. Behaviour of Spade and PrefixSpan when the number of itemsets changes

For mining closed sequences, there exist two approaches: 1) run any algorithm
for mining all frequent sequences and execute a post-processing step to filter out
the set of closed sequences, or 2) obtain the set of closed sequences by gradually
discarding the non-closed ones. Some algorithms have been developed to find the
complete set of closed sequences. The most important algorithms developed so
far, are CloSpan [8] and Bide [7], both derived from Prefixspan. While CloSpan
uses a prefix tree to store the sequences and uses two methods to prune non-
frequent sequences, Bide executes some checking steps in the original database
that allows it to avoid maintaining the sequence tree in memory. However, to
the best of our knowledge, there exist no algorithms for closed sequence mining
based on the vertical database format as is presented here.
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4 ClaSP: Algorithm and Implementation

In this section, we formulate and explain every step of our ClaSP algorithm.
ClaSP has two main phases: The first one generates a subset of FS (and superset
of FCS) called Frequent Closed Candidates (FCC), that is kept in main memory;
and the second step executes a post-pruning phase to eliminate from FCC all
non-closed sequences to finally obtain exactly FCS.

Algorithm 1. ClaSP

1: F1 = {frequent 1-sequences}
2: FCC = ∅, FCS = ∅
3: for all i ∈ F1 do
4: Fie = {frequent 1-sequences greater than i}
5: FCCi=DFS-PRUNING(i,F1,Fie)
6: FCC = FCC ∪ FCCi

7: end for
8: FCS = N-ClosedStep(FCC)
Ensure: The final closed frequent pattern set FCS

Algorithm 1, ClaSP, shows the pseudocode corresponding to the two main
steps. It first finds every frequent 1-sequence, and after that, for all of frequent
1-sequences, the method DFS-Pruning is called recursively to explore the cor-
responding subtree (by doing a depth-first search). FCC is obtained when this
process is done for all of the frequent 1-sequences and, finally, the algorithm ends
removing the non-closed sequences that appear in FCC.

Algorithm 2, DFS-Pruning, executes recursively both the candidate genera-
tion (by means of i-extensions and s-extensions) and the support checking, re-
turning a part of FCC relative to the pattern p taken as parameter. The method
takes as parameters two sets with the candidate items to do s-extensions and i-
extensions respectively (Sn and In sets). The algorithm first checks if the current
pattern p can be discarded, by using the method checkAvoidable (this algorithm
is explained later in algorithm 5). Lines 4-9 perform all the s-extensions for the
pattern p and keep in Stemp the items which make frequent extensions. In line
10, the method ExpSiblings (algorithm 4) is called, and there, DFS-Pruning is
executed for each new frequent s-extensions. Lines 11-16 and 17 perform the
same steps, with i-extensions. Finally, in line 19, the complete frequent patterns
set (with a prefix p) is returned.

To store the patterns in memory, we use a lexicographic sequence tree. The
elements in the tree are sorted by a lexicographic order according to extension
comparisons (see section 2). In figure 3 we show the associated sequence tree for
FS in our example and we denote an s-extension with a line, and an i-extension
with a dotted line. This tree is traversed by algorithms 1, 2 and 4, using a
depth-first traversal.

There are two main different changes added in ClaSP with respect to SPADE:
(1) the step to check if the subtree of a pattern can be skipped (line 3 of algorithm
2), and (2) the step where the remaining non-closed patterns are eliminated (line
6 of algorithm 1).
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Algorithm 2. DFS-Pruning(p, Sn, In)

Require: Current frequent pattern p =
(s1, s2, . . . , sn), set of items for s-extension
Sn, set of items for i-extension In

1: Stemp = ∅, Itemp = ∅
2: Fi = ∅, Ps = ∅, Pi = ∅
3: if (not checkAvoidable( p, I(Dp) )) then
4: for all i ∈ Sn do
5: if (p′ = (s1, s2, . . . , sn, {i}) is fre-

quent) then
6: Stemp = Stemp ∪ {i}
7: Ps = Ps ∪ {p′}
8: end if
9: end for
10: Fi = Fi ∪ Ps ∪

ExpSiblings(Ps,Stemp,Stemp)
11: for all i ∈ In do
12: if (p′ = (s1, s2, . . . , sn ∪ {i}) is fre-

quent) then
13: Itemp = Itemp ∪ {i}
14: Pi = Pi ∪ {p′}
15: end if
16: end for
17: Fi = Fi ∪ Pi ∪

ExpSiblings(Ps,Stemp,Itemp)
18: end if
19: return Fi

Ensure: Frequent pattern set Fi of this node
and its siblings

Algorithm 3. N-ClosedStep(FCC)
Require: A frequent closed candidates set

FCC
1: FCS = ∅
2: A hash table H is created
3: for all p ∈ FCC do
4: Add a new entry 〈T (Dp), p〉 in H
5: end for
6: for all entry e ∈ H do
7: for all pi ∈ e do
8: for all pj ∈ e, j > i do
9: if (pi.support() = pj .support())

then
10: if (pi � pj) then
11: Remove pi from e
12: else
13: if (pj � pi) then
14: Remove pj from e
15: end if
16: end if
17: end if
18: end for
19: end for
20: FCe= all patterns p ∈ e
21: FCS = FCS ∪ FCe

22: end for
23: return FCS
Ensure: The final closed frequent pattern set

FCS

Algorithm 4. ExpSiblings(P, Ss, Si)

Require: The pattern set P which contains all
the patterns whose children are going to be
explore, the set of valid items Ss which gen-
erate the P set by means of s-extensions,
the set of valid items Si which generate the
P set by means of i-extensions

1: Fs = ∅
2: for all p ∈ P do
3: I = Elements in Si greater than the last

item ei in p
4: Fs = Fs ∪ DFS-Pruning(p,Ss,I)
5: end for
6: return Fs

Ensure: Frequent pattern set Fs for all of the
patterns’ siblings

Algorithm 5. CheckAvoidable(p, k)

Require: a frequent pattern p, its hash-key k,
hash table H

1: Mk = Entries in the hash table with key k

2: if (Mk = ∅) then
3: Insert a new entry 〈k,p〉 in H
4: else
5: for all pair m ∈ Mk do
6: p′ = m.value()
7: if (p.support()=p′.support()) then
8: //Backward sub-pattern
9: if (p � p′) then
10: p has the same descendants as

p′, so p points to p′ descendants

11: return true
12: else
13: //Backward super-pattern
14: if (p′ � p) then
15: p has the same descendants

as p′, so p points to p′ de-
scendants

16: Remove the current entry
〈k, p′〉 from H

17: end if
18: end if
19: end if
20: end for
21: //Backward super-pattern executed?
22: if (Pruning method 2 has been accom-

plished) then
23: Add a new entry 〈k, p〉 in H
24: return true
25: end if
26: end if
27: //k does not exist in the hash table or it

does exist but the present patterns are not
related with p

28: Add a new entry 〈k, p〉 in H
29: return false
Ensure: It answers if the generation of p can

be avoided
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To prune the space search, ClaSP used the method CheckAvoidable that is
inspired on the pruning methods used in CloSpan. This method tries to find
those patterns p = 〈α ej〉 and p′ = 〈α ei ej〉, such that, all of the appearances of
p are in those of p′, i.e., if every time we find a sequence α followed by an item ej ,
there exists an item ei between them, then we can safely avoid the exploration
of the subtree associated to the pattern p. In order to find this kind of patterns,
we define two numbers: 1) l(s, p), is the size of all the suffixes with respect to p
in sequence s, and 2) I(Dp) =

∑n
i=1 l(si, p), the total number of remaining items

with respect to p for the database D, i.e. the addition of all of l(s, p) for every
sequence in the database. Using I(D) and the subsequence checking operation,
in algorithm 5, ClaSP checks the equivalence between the I(D) values for two
patterns: Given two sequences, s and s′, such that s � s′, if I(Ds) = I(Ds′ ), we
can deduce that the support for all of their descendants is just the same.

Fig. 3. Whole lexicographic sequence
tree for our thorough example

Fig. 4. Whole lexicographic sequence
tree after processing ClaSP algorithm

In algorithm 5, the pruning phase is implemented by two methods: 1) Back-
ward sub-pattern checking and 2) Backward super-pattern checking. The first
one (lines 8-10) occurs when we find a pattern which is a subsequence of a pat-
tern previously found with the same I(D) value. In that case, we can avoid
exploring this new branch in the tree for this new pattern. The second method
(lines 12-16 and 20-24) is the opposite situation and it occurs when we find a
pattern that is a super-sequence of another pattern previously found with the
same I(D) value. In this case we can transplant the descendants of the previous
pattern to the node of this new pattern.

In figure 4 we show the ClaSP search tree w.r.t. our example without all
pruned nodes. In our implementation, to store the relevant branches, we define
a hash function with I(D) value as key and the pattern (i.e. the node in the tree
for that pattern) as value (〈I(Dp), p〉). We use a global hash table and, when
we find a sequence p, if the backward sub-pattern condition is accomplished, we
do not put the pair 〈I(Dp), p〉, whereas, if the backward super-pattern condition
is true, we replace all the previous pairs 〈I(Dp′ ), p′〉 (s.t. p′ � p) with the new
one 〈I(Dp), p〉. If instead we do not find any pattern with the same I(D) value
of the pattern p, or those patterns with the same value are not related with p
by means of the subsequence operation, we put the pair 〈I(Dp), p〉 to the global
hash table (line 28). Note that when one of the two pruning conditions is true,
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we also need to check if the support for s and s′ is the same since two I(Dp) and
I(Dp′) values can be equal but they do not necessarily have the same support.

We also need to consider all of the I(D)s for every appearance in a sequence.
For instance, in our example shown in table 1, regarding the three first sequences,
if we consider just the first I(Ds) for the first appearance, if we have the pattern
〈(a)(b)〉 in our example, we deduce that I(D〈(a)(ab)〉) = I(D〈(a)(b)〉) (both with
value I(D) = 5), so we can avoid generating the descendants of 〈(a)(b)〉 because
the are the same as in 〈(a)(ab)〉. However, we can check that 〈(a)(bc)〉 is frequent
(with support 3), whereas 〈(a)(abc)〉 is not (support 1). This forces us to count
in I(Ds), all the number of items after every appearance.

Finally, regarding the non-closed pattern elimination (algorithm 3), the pro-
cess consists of using a hash function with the support of a pattern as key and
the pattern itself as value. If two patterns have the same support we check if
one contains the other, and if this condition is satisfied, we remove the shorter
pattern. Since the support value as key provoke a high number of collisions in the
hash table (implemented with closed addressing), we use a T (Dp) =

∑n
i=1 id(si)

value, defined as the sum of all sequence ids where a pattern p appears. How-
ever, as the equivalence of T (Dp) does not imply the equivalence of support, after
checking that two patterns have the same T (Dp) value, those patterns have to
have the same support to remove one of them.

5 Performance Study

We exhaustively experimented on both synthetic and real world datasets. To
generate the synthetic data, we have used the IBM data generator mentioned
above (see section 3). In all our experiments we compare the performance of
three algorithms: CloSpan, ClaSP and Spade. For the last algorithm we add the
same non-closed candidate elimination phase which is used in ClaSP to obtain
FCS.

All experiments are done on a 4-cores of 2.4GHZ Intel Xeon, running Linux
Ubuntu 10.04 Server edition. All the three algorithms are implemented in Java
6 SE with a Java Virtual Machine of 16GB of main memory.

Figure 5 shows the number of patterns and performance for the dataset
D5C10T5N5S6I4 (-rept 1 -seq.npats 2000 -lit.npats 5000). Figure 5(a) shows the
number of frequent patterns, the patterns processed by ClaSP, and the number
of closed patterns. We can see how there is approximately an order of difference
between these numbers, i.e. for every 100 frequent patterns we process around
10 patterns by ClaSP, and approximately only 1 of these 10 patterns is closed.
Figure 5(b) shows the running time. ClaSP clearly outperforms both Spade and
Clospan. For very low support (below 0.013), we have problems with the execu-
tion of Spade due to the space in memory taken for the algorithm.

Figure 6 shows a dataset with larger parameters of C, T and a lower N. This
database is denser than the database above and in figure 6(a) we can observe
that the difference between frequent patterns and processed patterns is not so
big. Therefore, the pruning method checkAvoidable is not so effective and ClaSP
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Fig. 5. Varying Support for Dataset D5C10T5N5S6I4(-seq.npats 2000 -lit.npats 5000)

and CloSpan are closer to the normal behavior of Spade and PrefixSpan, as is
shown in figure 6(b). The results show that both ClaSP and Spade are much
faster than Clospan.

Fig. 6. Varying Support for Dataset D0.5C20T10N2.5S6I4(-seq.npats 2000 -lit.npats
5000)

Finally we test our algorithm with the gazelle dataset. This dataset comes
from click-stream data from gazelle.com, which no longer exists. The dataset
was once used in KDDCup-2000 competition and, basically, it includes a set of
page views (each page contains a specific product information) in a legwear and
legcare website. Each session contains page views done by a customer over a short
period. Product pages viewed in one session are considered as an itemset, and
different sessions for one user is considered as a sequence. The database contains
1423 different products and assortments which are viewed by 29369 different
users. There are 29369 sequences, 35722 sessions (itemsets), and 87546 page
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views (items). The average number of sessions in a sequence is around 1. The
average number of pageviews in a session is 2. The largest session contains 342
views, the longest sequence has 140 sessions, and the largest sequence contains
651 page views. Figure 7 shows the runtime with several support (from 0.03%
to 0.015%). We compare the runtime behavior for both ClaSP and CloSpan and
we can see how ClaSP outperforms CloSpan.

Fig. 7. Varying Support for Dataset Gazelle click stream

All the experiments show that ClaSP outperforms CloSpan, even if databases
are sparse. This is because of, in very sparse databases, a high number of patterns
are found only with extremely low support. Therefore, the lower the support is,
the more patterns are found and the more items are chosen to create patterns.
In this point, CloSpan, as PrefixSpan, is penalized since the algorithm has to
projects several times the same item in the same sequence, having a worse time
with respect to ClaSP. Besides, in those algorithms where Spade is better than
Prefixspan, ClaSP is also faster than CloSpan.

6 Conclusions

In this paper, we study the principles for mining closed frequent sequential pat-
terns and we compare the two main existing strategies to find frequent patterns.
We show the benefits of using the vertical database format strategy against
pattern growth algorithms, especially when facing dense datasets. Then, we in-
troduced a new algorithm called ClaSP to mine frequent closed sequences. This
algorithm is inspired on the Spade algorithm using a vertical database format
strategy and uses a heuristic to prune non-closed sequences inspired by the
CloSpan algorithm. To the best of our knowledge, this is the first work based
on the vertical database strategy to solve the closed sequential pattern mining
problem. In all our tests ClaSP outperforms CloSpan, and even, under certain
datasets configuration, Spade also outperforms CloSpan when the non-closed
elimination phase is executed after it.
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Abstract. Contrast pattern mining has been studied intensively for its
strong discriminative capability. However, the state-of-the-art methods
rarely consider the class imbalanced problem, which has been proved
to be a big challenge in mining large scale data. This paper introduces
a novel pattern, i.e. converging pattern, which refers to the itemsets
whose supports contrast sharply from the minority class to the majority
one. A novel algorithm, ConvergMiner, which adopts T*-tree and branch
bound pruning strategies to mine converging patterns efficiently, is pro-
posed. Substantial experiments in online banking fraud detection show
that the ConvergMiner greatly outperforms the existing cost-sensitive
classification methods in terms of predicative accuracy. In particular,
the efficiency improves with the increase of data imbalance.

Keywords: Contrast Pattern, Class Imbalance, Fraud Detection.

1 Introduction

Contrast patterns [11] are the itemsets showing the discrimination between two
classes in a data set, and they are very useful to detect anomalies. It has been
widely studied in terms of emerging pattern [3], jumping emerging pattern [5],
and contrast capturing method [11]. In addition, classifiers built by the con-
trast patterns, such as CAEP [4], are shown to outperform most of the existing
methods (e.g. C4.5 [12], CMAR [8]) on accuracy. However, the existing contrast
pattern mining methods do not consider the issue of class imbalance (i.e. the
data distribution is extremely imbalanced among different classes). Such char-
acteristics is commonly observed in the real-life applications.

Table 1 gives an example of four fraudulent patterns that appear in online
banking with their False Positive Rates (FPR). There are 1,000,000 genuine
transactions (Genuine for short) and 1,000 fraud transactions (Fraud for short)
in the transaction set that involves 112 attributes. In order to catch frauds
effectively, two criteria are proposed: FPR ≤ 0.8 and the support in Genuine is
no larger than 0.0001. We can see that only p4 is qualified. In contrast, patterns
p1, p2 and p3 have rather high FPR and larger supports in the Genuine, so
they can not be applied at an acceptable cost of the investigation fee spent on
post-inspection.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 62–73, 2013.
� Springer-Verlag Berlin Heidelberg 2013
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Table 1. Patterns for Fraud Detection

Rules FPR = |Genuine|/|Genuine + Fraud| Frequency
Genuine (size=1M) Fraud (size=1K)

p1 → Fraud 0.96 5000 200
p2 → Fraud 0.997 6000 20
p3 → Fraud 0.968 3000 100
p4 → Fraud 0.769 100 30

The fraudsters invariably try to disguise their behaviors maliciously and by-
pass the detection system, some typical features are then identified: (i) The
itemsets that frequently occur in the Fraud are also usually frequent in the Gen-
uine (such as p1, p2, p3). (ii) The itemsets with a strong discriminative power
generally are rarely seen (support ≤ 0.0001) in Genuine (e.g. p4). Therefore,
there are three main challenges in mining contrast patterns to detect the Fraud.
(1) A strict constraint on FPR demands an extremely small support in the
Genuine (as shown in Table 1). Given a small support threshold, a huge number
of itemsets will be generated, especially when plenty of attributes are involved.
(2) Mining contrast patterns among the large scale data is computationally ex-
pensive. (3) Selecting the optimal pattern set for classification is also with a
high computational complexity. It is common to see that the serious overlapping
among patterns, on which the classifiers are built, negatively impact the overall
performance in catching the Fraud.

However, the existing Emerging pattern miner MDB-LLborder [3] dose not con-
sider the imbalance issue. By applying Max-Miner [1] to mine long patterns with a
small support threshold in the Genuine, MDB-LLborder consumes a overwhelming
memory and computational time due to challenges (1) and (2). Though jumping
emerging patterns [5] can be quickly captured, they are rarely observed in the
fraud detection scenario according to the feature (i). CAEP [4] suffers from the
serious pattern overlapping confronting with challenge (3).

In this paper, we propose a novel approach to mine contrast patterns in the
large scale imbalanced data by exploring the converging patterns, which effec-
tively handle the above challenges. The main contributions are as follows.

– Define the converging patterns, a novel type of contrast patterns that signif-
icantly differentiate itemsets in the class imbalanced data; and propose an
effective algorithm, called ConvergMiner, to mine the converging patterns.

– Introduce a series of branch bound pruning strategies to reduce the com-
putational complexity; present a set of operators and theorems for border
substraction to cut the computational time and memory cost; and design
a new index structure T*-tree to support the fast checking of candidate
patterns.

– Perform extensive experiments to evaluate the effectiveness of our approach
and strategies against the state-of-art methods in terms of accuracy, conver-
gence sensitivity and scalability.

The rest of the paper is organized as follows: Section 2 reviews the related
work. Section 3 defines the problems and terminologies. Section 4 presents the
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approach of pattern border operation. Section 5 introduces two refining strate-
gies, T*tree and border splitting. Section 6 proposes the algorithm of converging
pattern mining. Section 7 proposes the pattern selection and scoring methods
for prediction. Section 8 shows the evaluation. We conclude in Section 9.

2 Related Work

Several approaches have been proposed to mine the contrast patterns [11]. Emerg-
ing Patterns (EPs), firstly introduced in [3], uses growth rate to measure the
support contrast of an itemset. Disjunctive emerging pattern [11] is a variant
of EPs to discover the contrast patterns in a high dimensional data set. The
work in [5] extends the concept of EPs, and introduces the Jumping Emerging
Patterns (JEPs) whose supports increase abruptly from zero in one data set to
non-zero in another one. According to [5,4], classifiers built by the EPs or JEPs
outperform most methods (e.g. C4.5 [12], CMAR [8]) on accuracy.

All the above methods are proposed for the class balanced data. However,
more researchers pay attention to the class imbalanced problems [13,10], which
widely exit in the real world and greatly challenge the classic data mining al-
gorithms. Tremendous research efforts have been made on the class-imbalanced
data, for instance, Cost-Sensitive Neural Network [10], Ad-Cost [13], Cost-SVM
[9], etc. None of them addresses the mining of contrast patterns in the class
imbalanced data set, while we focus on solving this problem.

3 Problem Statement

Let I = {i1, i2, ..., im} be a set of items, an itemset X is a subset of I. A
transaction T is an itemset X whose number of elements is fixed according to
the number of attributes in the data set. A data set D is a set of T . Suppose
there are two classes denoted as Ct (the target class, e.g. Fraud) and Cb (the
background class, e.g. Genuine), and two data sets Dt and Db in D correspond
to the respective classes Ct and Cb. Transactions in Db are labeled as Cb, and

Fig. 1. An example of converging patterns
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those in Dt are marked as Ct. Sb(X) and St(X) denote the supports of itemset
X in Db and Dt, respectively.

Definition 1. Converging Patterns (CPs for short) are composed of the
itemsets X that satisfy the following condition: CPs = {X |Sb(X) ≤ k(St(X))δ,
St(X) ≥ θ}, and the Contrast Rate of CPs is defined as F (X) = (St(X))δ/
Sb(X), where k > 0 is the contrast coefficient, δ > 0 is the converging exponent,
and θ > 0 is the threshold of the minimal support in Dt.

As the above definition indicates, CPs are controlled by k and δ. The larger the δ,
the higher the contrast rate of the generated converging patterns. For example,
in Fig. 1, itemsets are projected onto the support plane where the vertical axis
stands for Sb(X) and the horizontal axis denotes St(X). According to Definition
1, the itemsets in the shadow region IABFJ compose CPs, denoted as {IABFJ}.
It is also derived by:

CPs = {IABFJ} = {IBFDH} − {IGCDH} − {IAJCG}, (1)

where I� represents all the itemsets in region �.
The itemsets in IBFDH can be obtained by the Max-Miner [1] in Dt, i.e.

{IBFDH} = {X |St(X) ≥ θ}. For the second term in Equation (1), we have
{IGCDH} = {IBFDH} ∩ {IICDE}. The mining of itemsets in IICDE is similar
to that in IBFDH . Let β=max(k, π), where π is a proper support threshold
for Max-Miner to output long patterns successfully in Db. Unlike the algorithm
in [3], which applies a strict growth rate β to mine EPs and does not work
in imbalanced data as mentioned in Section 1. Then the itemsets in IICDE

are obtained as {IICDE} = {X |Sb(X) ≥ β}. Thus, {IGCDH} = {X |St(X) ≥
θ}∩ {X |Sb(X) ≥ β}. Therefore, the main task of finding the itemsets in IBFCG

becomes the effective filtering of all the itemsets in IAJCG, i.e., the last term in
Equation (1).

Fig. 2. Framework of building the anomaly detector powered by CPs, where oval boxes
display the supporting techniques for each stage

Accordingly, the mining of CPs is fulfilled by two phases (as shown in
Fig. 2): candidates generation and pattern verification (in phase 1), and predica-
tive classifier building (in phase 2). Section 4 introduces the method to generate
the candidate itemsets, section 5 provides the strategies to eliminate the redun-
dancy, section 7 presents the techniques to select the optimal pattern set and
calculate the prediction score.
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4 Candidates Generation

As specified in Section 3, CPs is identified by Equation (1). In order to perform
the substraction of itemsets quickly, we propose the Pattern Border to collect the
itemsets and provide several theorems to support the retrieve of the candidate
CPs by algebraic operations rather than traversing all elements in borders.

4.1 Pattern Border

Definition 2. Given two itemsets L and R (L ⊆ R), the ordered interval [L,R]
forms a Pattern Border, composed of a set of patterns. The collection of item-
sets in [L,R] is defined as: [L,R] = {Y |∃X ⊆ R,L ⊆ Y ⊆ X}.

Example 1. Border [a, abcd] contains 8 patterns: a, ab, ac, ad, abc, abd, acd, abcd.

Pattern border is an important concept in CPs mining. A proper adjustment on
the pattern border greatly avoids the full iteration of every candidate itemset in
IAJCG, and dramatically speeds up the search of CPs. Since the smallest itemset
in [L, R] is L and R is the largest one, an itemset X ∈ [L, R] then satisfies the
following conditions:

max
L⊆X⊆R

(St(X)) ≤ St(L), min
L⊆X⊆R

(St(X)) ≤ St(R) (2)

Definition 3. The Upper Bound Fu([L,R]) and Lower Bound F l([L,R])
of the contrast rate F (X), where X ∈ [L,R], are defined as follows:

F l([L,R]) ≤ F (X) ≤ F u([L,R]), L ⊆ X ⊆ R (3)

F l([L,R]) = (St(R))δ
Sb(L)

, Fu([L,R]) = (St(L))δ
Sb(R)

. (4)

In Section 5.2, Fu(X) and F l(X) are applied to prune the searching space.

4.2 Subtraction of Pattern Borders

As shown in Example 1, pattern border is a simple and efficient way to collect
patterns. Border substraction is frequently performed to generate the candidate
itemsets in IBFCG, according to Equation (1). The most straightforward method
is to enumerate each element in the border and eliminate the redundant elements.
But, it is rather costly in both computational time and memory when the border
is large. Thus, we implement the substraction of two borders only based on two
operators × and −, rather than exploring the borders directly.

Let itemset X ⊆ I, IX = {X ′|X ′ ⊆ X}, and I+X = {X ′|X ′ ⊆ X,X ′ �= ∅},
several definitions and theorems are proposed to support the border subtraction
on the two sets of itemsets: S1 and S2.
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Definition 4. The Operator × for S1 and S2 is defined as:

S1 × S2 = {X1 ∪X2|X1 ∈ S1, X2 ∈ S2} (5)

The Operator − for S1 and S2 is defined as:

S1 − S2 = {X ′|X ′ ∈ S1, X
′ �∈ S2} (6)

In Particular, IX1 × IX2 = {X ′
1 ∪ X ′

2|X ′
1 ∈ IX1 , X

′
2 ∈ IX2} = {X ′

1 ∪ X ′
2|X ′

1 ⊆
X1, X

′
2 ⊆ X2} = IX1∪X2 , and IX1 − IX2 = {X ′|X ′ ⊆ X1, X

′ �⊆ X2}. The
operator × is used for splitting a big border, e.g. [∅, {a, b, c, d}] = I{a,b} × I{c,d}.
The operator − is adopted during the subtraction of two collections of itemsets,
e.g. [∅, {a, b, c, d}]−[∅, {a, b}] = I{a,b}×I+{c,d}. It will be frequently executed when

generating the candidate itemsets in IBFCG. We then easily get the following
properties and theorems for the operators:

Distributive law : (IX1 ∪ IX2)− IX3 = (IX1 − IX3 ) ∪ (IX2 − IX3) (7)

Commutative law : IX1 × IX2 = IX2 × IX1 (8)

Associative law : (IX1 × IX2 )× IX3 = IX1 × (IX2 × IX3 ) (9)

Allocation law : IX1 × (IX2 ∪ IX3) = (IX1 × IX2) ∪ (IX1 × IX3) (10)

Theorem 1. IX1∪X2 = (I+X1
× I+X2

) ∪ I+X1
∪ I+X2

∪ I∅

Proof. IX1 × IX2 = (I+X1
∪ ∅)× (I+X2

∪ ∅) = (I+X1
× I+X2

) ∪ I+X1
∪ I+X2

∪ I∅

Theorem 1 decomposes IX1∪X2 into smaller parts easily to be processed.

Theorem 2. If X1 ∩X3 = ∅, then (I+X1
× IX2)− IX3 = I+X1

× IX2

Proof. For ∀X ∈ (I+X1
× IX2 ), we have X ∩X1 �= ∅. Then (I+X1

× IX2) ∩ IX3 = ∅
as X1 ∩X3 = ∅
Below, we illustrate the use of these two operators for the border substrac-
tion.The above techniques are applied to Algorithm 1 (line 4-7) in Section 6.

Example 2. The border subtraction [∅, abcdefgh]− [∅, ab] − [∅, bc] is obtained
by the following calculation: (Iabcdefgh − Iab) − Ibc= (Iab × I+cdefgh) − Ibc =

Iab×((Ic×I+defgh)∪I+c )−Ibc = (Iabc×I+defgh)∪(I+a ×I+c ×Ib). By iterating I+X2
, we

get IX1 × I+X2
= IX1 ×

∑|X2|
i=1,xi∈X2

(I+xi
×
∏|X2|

j>i Ixj ). The set I+defgh further splits

into sub-borders: I+defgh = (I+d ×Iefgh)∪(I+e ×Ifgh)∪(I+f ×Igh)∪(I+g ×Ih)∪I+h .
Therefore, we get [∅, abcdefgh]− [∅, ab]− [∅, bc] = [d, abcdefgh] ∪ [e, abcefgh]∪
[f, abcfgh] ∪ [g, abcgh]∪ [h, abch] ∪ [ac, abc].

5 Pattern Verification

The qualification of itemsets in IAJCG is verified in a Branch-and-Boundmanner.
Given a border [L,R], Fu(X) and F l(X) are estimated by Equation (4), and
are used to check the qualification of [L,R]. Instead of scanning the database
repeatedly, we propose the T*-tree to calculate Sb(L), St(L), Sb(R) and St(R),
which are used to compute Fu(X) and F l(X) by scanning database only once.
Then, the strategies are presented to split [L,R] for checking the sub borders.
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5.1 T*-tree Index

Transaction Tree (T*-tree) extends the classic spatial index, i.e. R-tree [2], to
obtain new properties which significantly accelerate the calculation of support.
In a R-tree, an object is represented by its Minimal Bounding Box (MBB) [2],
which is the minimum bounding rectangle surrounding the object. R-tree is built
on all the MBBs recursively. In order to efficiently get the support of an itemset,
we introduce a novel index T*-tree, in which all the transactions are treated
as spatial objects wrapped by their MBBs. The query on T*-tree is to check
how many transactions match a given pattern. Accordingly, the patterns to be
queried are also mapped to MBBs.

ROOT

a1 a2

b1b2 b3 b1 b2

R2,{#Dt=20,#Db=10} R3,{#Dt=20,#Db=80}

R4,{#Dt=10,#Db=8} R5,{#Dt=10,#Db=2}

R1,{#Dt=40,#Db=90}

#Dt=2
#Db=2

#Dt=3
#Db=2

#Dt=2
#Db=2

#Dt=3
#Db=1

#Dt=3
#Db=0

#Dt=2
#Db=0

#Dt=3
#Db=2

#Dt=2
#Db=1

b3

Space division

R tree forest

Fig. 3. An example of T*-tree, where Ri stands for MBB of an internal node

The main challenge of using T*-tree in a high dimensional data set is that
the overlapping among nodes increases when more objects are inserted. Serious
overlapping affects the query efficiency severely. Therefore, based on the data
distribution, the data space is partitioned into multiple subspaces to reduce the
overlapping of nodes as much as possible. The space partition follows a two-
tier tree structure, as showed in Fig. 3. In this way, the computational time is
dramatically cut by taking the following advantages:

1) A T*-tree consists of two layers: trunk and branch. All the attributes are
sorted in a descending order on the gain ratio [6]. Top 10% (an empirical
value, for instance) attributes are chosen as the trunk nodes, and the rest
are the branch nodes. The top one attribute is the first level of trunk and so
forth. With the growth of trunk levels, the data space is divided into smaller
subspaces. After that, the branches are built in a similar process as R-tree.

2) Each node stores two values (i.e. Dt and Db, called local supports), which
record the number of transactions in Dt and Db, respectively.

3) The leaf nodes store the transaction chains that record the numbers of trans-
actions covered by the same MBBs in Dt and Db respectively. Multiple
transactions can be stored in one transaction chain, especially when the
transaction volume is huge in Db.
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5.2 Splitting Strategies

Given [L,R], if F l([L,R]) ≤ 1/k ≤ Fu([L,R]) (k is the contrast coefficient in
Definition 1), then [L,R] needs to be split into smaller borders for further val-
idation. The splitting strategies below are used to speed up the search process,
output CPs and remove unqualified borders quickly.

Strategy 1. If Fu([L,R]) < 1/k, then F (X) ≤ F u([L,R]) < 1/k. As a result,
no itemset in [L,R] is qualified to be chosen. So [L,R] is safely removed.

Strategy 2. If F l([L,R]) ≥ 1/k, then F (X) ≥ F l([L,R]) ≥ 1/k. Consequently, all
the itemsets in [L,R] must be selected. There are two directions to split [L,R]:
for each single item i ∈ {R}−{L}, we extend L to the sub-border [L∪{i},R], de-
noted as L+; or narrow down R to form the sub-border [L,R/{i}], denoted asR−.

Strategy 3. If Fu([L,R]) − 1/k ≤ 1/k − F l([L,R]), it is quicker to locate the
sub-borders that can be removed immediately with Strategy 1 by narrowing
their upper bound. The splitting must follow the direction in which Fu of sub-
borders decreases as fast as possible. If max

i∈{R}−{L}
{Fu([L,R])−Fu([L∪ {i},R])} ≥

max
i∈{R}−{L}

{Fu([L,R]) − F u([L,R/{i}])}, the direction is L+; otherwise, R−.

Strategy 4. If Fu([L,R]) − 1/k ≥ 1/k − F l([L,R]), it is more efficient to qualify
the sub-borders which can be delivered directly with Strategy 2 by increasing
their lower bound. The splitting must follow the direction in which the F l of sub-
borders increases as quickly as possible. If max

i∈{R}−{L}
{F l([L∪{i},R])−F l([L,R])} ≥

max
i∈{R}−{L}

{F l([L,R/{i}]) − F l([L,R])}, the direction is L+; otherwise, R−.

6 Algorithm of Converging Pattern Mining

Here, a novel algorithm ConvergMiner is proposed to mine CPs efficiently. Algo-
rithm 1 presents the main process of mining CPs, and function CheckContrast
is the key function to validate the qualification of candidate itemsets. There are
four steps in the main process: Step 1. Build the T*-tree on Dt and Db (Line 1).
Step 2. Employ the Max-Miner to extract the pattern borders located at IICDE

and IBFDH (Line 2-3). Step 3. Perform the border substraction to obtain the
pattern borders locate at IBFCG (Line 4-7). Step 4. Search CPs in IBFCG by
a Divide-and-Conquer procedure (Line 8-9).

7 Scoring for Classification

There are two critical issues to be solved during the construction of an accurate
CPs-based classifier: pattern selection and risk scoring. We adopt an effective
measure, Maximal Coverage Gain (MCG) [7], to select the globally optimal

pattern set. Once the optimal pattern set P̂ has been obtained, a base score for



70 J. Li et al.

Algorithm 1. ConvergMiner
Data: Dt, Db, k, δ, θ, β, len
Result: Converging patterns

1 H ← ∅, Build T∗-tree on Dt and Db

2 S
′
= {[∅, X]|St(X) ≥ θ} /* Get itemsets from IBFDH */

3 S
′′

= {[∅, X]|Sb(X) ≥ β} /* Get itemsets from IICDE */

4 for each E in S
′
do

5 for each U in S
′′

do
6 E ← E − U /* Obtain candidates by Opertaor − introduced in Section 4.2 */

7 H ← H ∪ E

8 for each [L,R] in H do
9 CheckContrast([L,R], T∗tree, k, δ) /* Search CPs in [L,R] */

10 Function CheckContrast([L,R], T∗tree, k, δ)
11 Query T*-tree to collect St(L), St(R), Sb(L), Sb(R)

12 if Sb(L)=0 or F l([L,R]) ≥ 1
k then // Based on strategy 2

13 Output [L,R] as CPs group

14 else if Sb(R) > 0 and Fu([L,R]) < 1
k then // Based on strategy 1

15 Remove [L,R]

16 else if Direction([L,R],k,δ)=R− then // Based on strategies 3 and 4
17 for each i ∈ {{R} − {L}} do
18 CheckContrast([L,R/{i}],k,δ )

19 else // Based on strategies 3 and 4
20 for each i ∈ {{R} − {L}} do
21 if L∪{i} �H then
22 CheckContrast([L∪{i},R],k,δ )

23

each rule r : p → Ct in P̂ is calculated by Equation (11). The base score of pi
represents its impact in classifiers.

Base(pi) = St(pi) ∗ F (pi)/(1 + F (pi)) (11)

In the prediction phase, the score of u is calculated as follows:

S(u) =
∑

pi∈P̂ ,u≺pi

Base(pi)/
∑
pi∈P

Base(pi) (12)

Intuitively, given two transactions u1 and u2, if S(u1) > S(u2), then the proba-
bility of u1 ∈ Ct is larger than that of u2 ∈ Ct. Consequently, transaction u with
a larger S(u) is more likely to be classified into Ct.

8 Experiment and Evaluation

Two real-life data sets are used: DS1, the online banking transaction data from
a major Australian bank. It contains 1,000,000 Genuine (Db) and 1,000 Fraud
(Dt), and the number of attributes involved is 112; DS2, the social welfare
payment claim data from Australia. It has 120,000 Genuine (Db) and 2,120
Fraud (Dt) with 85 attributes. Below, ConvergMiner is compared with the state-
of-the-art classification algorithms on these two class imbalanced data sets in
terms of accuracy (i.e. Ada-Cost [13], Cost-NN [10], Cost-SVM [9] and CAEP
[4]), efficiency (i.e. MDB-LLborder), and effectiveness of pruning strategies.
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8.1 Accuracy

We compare the performance of the classifier powered by CPs with Ada-Cost
[13], Cost-NN [10], Cost-SVM [9] and CAEP [4], from the perspective of False
Positive Rate (FPR) and Detection Rate (DR, or True Positive Rate), which
are defined as:

FPR =
False Alerts Number

Genuine Instances Number
, DR =

Frauds Caught

Total Frauds Number
(13)

In fact, the smaller the FPR and the larger the DR, the better the classifier.
Fig. 4 shows that when 60% Fraud are caught, the FPRs of CPs, CAEP, Cost-
NN, Ada-Cost and Cost-SVM are 6�, 9�, 12�, 18� and 30�, respectively.
However, with the increase of FPR, all the classifiers achieve a higher DR. When
FPR = 11�, CPs catches 82% Fraud, but CAEP only catches 72%, Cost-NN
catches 55%, Ada-cost catches 40%, and Cost-SVM catches 38%. The accuracy
test on the data set 2 reveals the similar performance for the above methods
(as shown in Fig. 5). Overall, we observe that at the same level of FPR, CPs
achieves much higher DR than other methods; with the same DR, CPs obtains
much lower FPR. In Fig. 4, when FPR = 5%, CPs outperforms CAEP by 65%,
Cost-NN by 80%, Ada-Cost by 90%, and Cost-SVM by 250%. In Fig. 5, for
DR = 60%, CPs outperforms CAEP by FPR = 15�, which is only 60% of that
of CAEP (FPR = 24�). So, CPs outperforms benchmark methods in accuracy.
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8.2 Efficiency

We compare the computation time consumed by ConvergMiner and MDB-
LLborder to evaluate their efficiency on DS1. For both algorithms, we choose
the same level of converging exponent δ=1. The contrast rate in ConvergMiner
and MDB-LLborder are 1/k and the growth rate, respectively. As shown in Fig.
6, with the increase of 1/k, ConvergMiner gains more benefit from the splitting
strategies, by which a huge number of sub-borders are eliminated more easily.
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As a result, the number of borders to be split for the further checking decreases
dramatically. In addition, MDB-LLborder takes more time to process a huge
number of the sub-border iterations due to the extremely low support in Db.
For instance, when the contrast rate is 1000, ConvergMiner takes only around
5% of the computation time consumed by MDB-LLborder. When 1/k is larger
than 1000, MDB-LLborder does not succeed in identifying the itemsets with the
support less than 0.0005, but ConvergMiner still works stably. The reason is
that ConvergMiner assigns a looser value rather than a fixed value to β (in Db),
and leaves the redundancy to the next step: bound checking and further valida-
tion. In summary, the results show that ConvergMiner significantly outperforms
MDB-LLborder on the imbalanced data set in terms of the efficiency.
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8.3 Effectiveness of the Pruning Strategies

Two benchmark algorithms, i.e. Split- and tTree-, are designed to evaluate the ef-
fectiveness of our pruning strategies on DS1. Split- is a variant of ConvergMiner
when the splitting strategies are replaced by a random one at line 17 in Func-
tion CheckContrast. tTree- is a variant of ConvergMiner by removing the local
supports in T*-tree. Other components remain the same as ConvergMiner. Fig 7
displays the computational time of the three algorithms and the corresponding
improvements gained from our pruning strategies under different contrast rates.
ConvergMiner obtains the improvement of 50% (upon tTree-) and 90% (upon
Split-), when the contrast rate is 100 due to the T*-tree and splitting strate-
gies . With the increase of contrast rate, the improvement rate grows rapidly
and reaches 2700% (upon tTree-) and 1700% (upon Split-) when the contrast
rate is 5000. Thus, the proposed splitting strategies and T*-tree are effective in
enhancing the computational efficiency.

9 Conclusion

In this paper, we introduce a novel type of patterns, i.e. converging patterns
(CPs), on the extremely imbalanced data; and propose an efficient algorithm
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ConvergMiner equipped with effective splitting strategies and a fast tree index
to mine CPs. The experiments show that our algorithm greatly outperforms
the state-of-the-art techniques on two real-life large scale imbalanced data sets
in terms of accuracy and efficiency. In addition, ConvergMiner exhibits a strong
capacity on the scalability and gains more advantages with a larger contrast rate.
In future, we are going to mine CPs on the sequential data for online banking.
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Abstract. In this paper, we focus on the problem of evolutionary theme
patterns (ETP) analysis in cross-lingual scenarios. Previously, cross-
lingual topic models in batch mode have been explored. By directly ap-
plying such techniques in ETP analysis, however, two limitations would
arise. (1) It is time-consuming to re-train all the latent themes for each
time interval in the time sequence. (2) The latent themes between two
adjacent time intervals might lose continuity. This motivates us to utilize
online algorithms to solve these limitations. The research of online topic
models is not novel, but previous work cannot be directly employed,
because they mainly target at monolingual texts. Consequently, we pro-
pose an online cross-lingual topic model. By experimental verification in
a real world dataset, we demonstrate that our algorithm performs well
in the ETP analysis task. It can efficiently reduce the updating time
complexity; and it is effective in solving the continuity limitation.

Keywords: Temporal Text Mining, Evolutionary Topic Patterns,
Incremental/Online PLSI, Cross-lingual PLSI.

1 Introduction

Tracking the temporal evolutionary theme patterns (ETP) of documents is an
important research issue nowadays. The original documents on the Web, such
as news articles, research papers, etc., are generated in an unstructured stream,
which would bring information overload problem to users. With the help of
ETP analysis, it is more user-friendly to automatically group the documents in
a temporal hierarchical structure. Figure 1(left) shows the ETP analysis result
from the news articles (from NetEase, VOC, etc.) of the event Euro 2012. Before
game starts, themes are mainly about the basic information of different teams,
such as the stars, the strategies, etc.; after the game starts, the themes are
evolved to the performances and reviews; before the final, the themes of the two
participants in the final, Spain and Italy, merge into one theme, whose content
includes the predictions from the fans, the comparison analysis, etc.; finally
after the final, the theme is involved into the celebrations, the dominations, the
reviews, and etc. We can see from this example that such a temporal hierarchical
structure is very informative in tracking the development of an event. In addition,
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Time Window for T3

Time Window for T4

Fig. 1. An example of ETP analysis

it would be very helpful for information retrieval tasks from the semantic level.
As a result, the ETP analysis has attracted more and more attention in both
academia and industry [10–12].

In this paper, we focus on the issue of ETP analysis in the cross-lingual
scenarios, which is different from previous ETP analysis [12] in monolingual
texts. In this case, a topic is presented by documents of multiple languages
rather than a monolingual one. Cross-lingual data would make the information
more complete and the ETP analysis more accurate. For example, in Euro 2012
news, the discussion attitudes between a participant (e.g., Spain), and a third
party member (e.g., China) might be quite different. The former would have
bias to Spain; but the latter might be more neutral. Both of them should be
considered in the ETP analysis.

Cross-lingual latent theme modeling is the key technique in cross-lingual ETP
analysis. Competitive approaches include the cross-lingual probabilistic latent
semantic indexing (PLSI) [15] model and the cross-lingual latent Dirichlet al-
location (LDA) [9] model. The limitation of these competitive methods is that
both of them are in batch mode. This would make the ETP analysis face the
following two limitations.

Time-consuming Limitation. In the process of ETP analysis, the themes of
documents in a new time interval should be integrated into the previous themes.
In the batch mode, all the latent themes should be re-trained among the new
documents and the old documents. In practice, the re-train process needs the
enumeration of all the words in all the documents. Since the initial points are
randomly chosen, it would also take many iterations of the enumeration before
the model converges. Therefore, it is time-consuming to re-train the whole model
for each time interval in the ETP analysis.

Continuity Limitation. If the re-train process is conducted for each time inter-
val, the latent themes between adjacent time intervals might lose the continuity.
The “continuity” has two meanings. 1) It is difficult to match the latent theme
ids between the current time interval and the previous time interval. Because
such ids are randomly assigned in the initial step of the algorithm. Thus the
evolution process of themes might be not clear. 2) The latent themes between
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adjacent time intervals might have different category angles and might not match
each other. For example, in Fig. 1 (left), the latent themes are divided by teams.
However, the latent themes could also be divided by the activities from fans, the
activities from the match, etc. In fact, these themes do exist in the data. But it
is not proper to have one category in one time interval, and have another in the
next. An ideal ETP tracking should keep the continuity in all the time intervals.

These two limitations motivate us to investigate online algorithms for ETP
analysis. Intuitively, when new documents arrive, the online algorithms only
make local update to the model instead of global one, thus the time complexity
would be much less than re-training the whole model. In addition, while the
online algorithm retains the main body of the previous model, the continuity
would be kept. Thus both the above limitations could be solved.

Online algorithms for topic models are not novel research tasks either. Both
online PLSI [4] and online LDA [6] have been explored. But these models are
mainly for monolingual scenarios. Thus they cannot be directly employed. There-
fore, in this paper, we combine the ideas of previous work and propose an online
cross-lingual topic model for cross-lingual ETP analysis. Comparing between
the PLSI model and the LDA model, the LDA model utilizes the regularization
technique to smooth the data fitting, which indeed performs well in previous
tasks, but it also increases the training cost and the model complexity. As a
preliminary study, in this paper, we first choose to combine the cross-lingual
PLSI [15] and the online PLSI [4] for simplicity. We leave the combination of the
cross-lingual LDA[9] and the online LDA [6] as our future work.

The main contributions of this paper lie in that we combine the ideas of pre-
vious cross-lingual PLSI and online PLSI together and propose an online cross-
lingual topic model. In addition we utilize it in ETP analysis and demonstrate
its efficiency for reducing the time complexity and its effectiveness for keeping
the continuity property.

In the following of this paper, to make it consistent with previous work and
easy for comparisons, many previous definitions and variables in [4, 12, 15] are
retained if being not necessarily changed, and our contribution is to combine
these ideas in the cross-lingual ETP analysis task.

2 Problem Definition

2.1 Preliminary Definitions

Definition 1 (Cross-lingual Corpus). Following [15], the cross-lingual cor-
pus is a dataset with multiple languages. We utilize C = {C1, C2, ..., Cs} to de-
note the set of data collections with s languages. Each Ci denotes the data collec-
tion of a single language, whose vocabulary is denoted by Wi = {wi

1, w
i
2, ...w

i
Ni

}.
Ni is the total word number in the ith language. Each data collection Ci contains
a set of documents, Ci = {di1, di2, ..., diMi

}. Each document is presented by a bag

of words, and a function c(wi
k, d

i
j) is utilized to denote the occurrence count of

word wi
k in document dij.
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Definition 2 (Cross-lingual Theme). Following [15], a cross-lingual theme
θ is presented as a multinomial distribution of words, denoted by p(w|θ), w ∈
W1

⋃
W2

⋃
...
⋃
Ws. For each θ, we have

∑s
i=1

∑
w∈Wi p(w|θ) = 1. Under this

definition, a cross-lingual theme would gather the words of all the languages with
related semantic meanings together. This is a super set of monolingual theme.
A monolingual theme could be extracted from the cross-lingual theme by normal-

ization as pi(w
i|θ) = p(wi|θ)∑

w∈Wi
p(w|θ) .

Definition 3 (Time Interval and Time Window). As shown in Fig. 1
(right), the time line is divided into discrete time intervals. Each time inter-
val is a fixed number of days, e.g., a week of seven days. For each time interval,
the themes are automatically learned from the documents in both the current in-
terval and the recent intervals to retain the overlap between new documents and
old documents [12]. By doing this, the evolution analysis would be more smooth
and robust. Thus a time window is defined for each time interval. It contains the
current interval and a fixed number l − 1 of the recent intervals. The themes in
a time interval is learned from the documents in its corresponding time window.
Take l = 3 as an example, in Fig. 1 (right), the themes in interval T3 is trained
from the documents in the time window of T1,T2 and T3; and the themes in T4

is trained from the documents in a time window of T2,T3 and T4.

Definition 4 (Cross-lingual Evolutionary Transition). Following [12], we
utilize θTi to denote a theme with a time stamp in the cross-lingual data. Suppose

a theme θ
Ti−1
a and a theme θTi

b , if the similarity between them is larger than a
threshold, it is defined that there is a cross-lingual evolutionary transition from

θ
Ti−1
a to θTi

b .

Definition 5 (Cross-lingual Theme Evolutionary Graph). Following [12],
the cross-lingual theme evolutionary graph G = (N,E) is defined as a weighted
graph as shown in Fig. 1 (right). In the graph, each node v ∈ N denotes a
theme with a time stamp; and each edge e ∈ E denotes whether the two nodes in
adjacent time intervals have an evolutionary transition. The weight of an edge
(denoted by the thickness of the edge), stands for the similarity value between the
current theme and the evolved theme. The larger the similarity is, the thicker the
edge would be.

2.2 The Task of Cross-Lingual ETP Analysis

Following the idea in [12], we define the task of cross-lingual ETP analysis as
to draw a cross-lingual theme evolutionary graph from the unstructured data
stream. The result of ETP analysis would give a clear temporal hierarchical
overview of the themes and their evolutions for different events, which would
serve for both users and other intelligent services.
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Fig. 2. Illustration for online cross-lingual PLSI

3 General Framework

The general framework for cross-lingual ETP analysis is a two-step process.
The first step is to extract the themes in each time interval from their time
windows; and the second step is to construct the evolutionary transitions among
the themes in adjacent time intervals.

The second step is more intuitive by calculating the KL-divergence D(θ2||θ1)
between two themes [12]. In the cross-lingual case, it is defined as

D(θ2||θ1) =
∑

wi∈W1
⋃

W2
⋃

...
⋃

Ws

p(wi|θ2) log
p(wi|θ2)
p(wi|θ1)

. (1)

The main difference compared with [12] is that the cross-lingual theme contains
words from different languages.

The first step is the key point that would be discussed in this paper. A naive way
is to re-train all the documents in the time window in a batch mode. For example,
the cross-lingual PLSI [15] model could be directly utilized here for theme extrac-
tion. However, as discussed in previous sections, it is time-consuming to re-train all
the latent themes for each time interval; and the latent themes between two adja-
cent time intervals might lose continuity. Therefore, in this paper, we combine the
idea in [15] and [4] to propose an online cross-lingual PLSI model for cross-lingual
ETP analysis, which would be illustrated in detail in the following section.

4 Online Cross-Lingual PLSI

4.1 Cross-Lingual PLSI in Batch Mode

The cross-lingual PLSI [15] model is described by two kinds of parameters, p(θ|d)
and p(w|θ). θ denotes the theme; d denotes the document; and w denotes the
word.

The learning process of p(θ|d) and p(w|θ) is to optimize the linear combination
of 1) the log-likelihood of the data and 2) the constraint function of cross-lingual
connection, denoted as
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F = (1− λ)L(C) + λR(C), (2)

where

L(C) =

s∑
i=1

∑
d∈Ci

∑
w

c(w, d)log

k∑
j=1

p(θj |d)p(w|θj), (3)

R(C) = −1

2

∑
<wu,wv>∈E

k∑
j=1

(
p(wu|θj)
Deg(wu)

− p(wv|θj)
Deg(wv)

)2. (4)

L(C) is the log-likelihood of the data in multiple languages. In constructing the
constraint function R(C), a multi-partite undirected graph G =< W,E > is
built from each bilingual dictionaries as shown in Fig. 2 (left). Each node in W
denotes a word. If two words from different languages, e.g., wu and wv, could
interpret each other, there would be an edge between them. Dev(wu) denotes
the degree of the word wu. From the definition, by optimizing the function R(C),
words from multiple languages that have similar meanings, would have similar
probabilities within a theme.

The optimization is based on the EM algorithm as follows.

1. E-Step

P (θ|w, d) = P (w|θ)P (θ|d)∑
θ′ P (w|θ′)P (θ′|d) (5)

2. M-Step

P (w|θ) =
∑s

i=1

∑
d∈Ci

c(w, d)P (θ|w, d)∑s
i=1

∑
d∈Ci

∑
w′∈d c(w

′, d)P (θ|w′, d)
(6)

p(θ|d) =
∑

w∈d c(w, d)P (θ|w, d)∑
w∈d c(w, d)

(7)

p(t+1)(wu|θj) = (1− α)p(t)(wu|θj) + α
∑

<wu,wv>∈E

1

Deg(wv)
p(t)(wv|θj) (8)

4.2 Proposed Cross-Lingual PLSI in Online Mode

Following the idea in [4], the process of the online cross-lingual PLSI is shown in
Fig. 2 (right), including 1) discarding old documents and old terms; 2) folding in
new documents and new terms and 3) updating the PLSI parameters. Compared
with the online monolingual PLSI in [4], in this paper, step 2 and 3 are extended
in order to fit the cross-lingual data. Therefore, in this section, we would focus
these two steps. The first step could be referred in [4].
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1. Fold in new documents and terms. The target of folding in new documents
and terms is to estimate P (θ|dnew) and P (θ|wnew). The difference of our
work from previous work [4] is that the process should be extended for
incorporating the cross-lingual word relations. Because words in different
languages that have similar meanings should have more probability to be as-
signed to the same theme. In the batch learning mode, this problem has been
solved by a global update in Eq. 8; in the online learning mode, this would
be solved by a local update. Consequently, we add an local update step as
an extension of previous updating process. The whole process is conducted
as follows by EM algorithms. By fixing the parameter of P (w|θ), P (θ|dnew)
could be estimated by iteration calculation of

P (θ|w, dnew) =
P (w|θ)P (θ|dnew)∑

θ′∈Θ P (w|θ′)P (θ′|dnew)
, . (9)

P (θ|dnew) =
∑

w∈dnew
c(w, dnew)P (θ|w, dnew)∑

θ∈Θ

∑
w∈dnew

c(w, dnew)P (θ′|w, dnew)
. (10)

After P (θ|dnew) is estimated, P (dnew |θ) could be estimated by

P (dnew |θ) =
∑

w∈dnew
c(w, dnew)P (θ|w, dnew)∑

d∈Dnew

∑
w∈d c(w, d)P (θ|w, d) , (11)

where Dnew is all the documents in the new time window, including doc-
uments in the remaining intervals and the new interval. By fixing the pa-
rameter of P (dnew|θ), P (θ|wnew) could be estimated by iteration calculation
of

P (θ|wnew,dnew) =
P (dnew |θ)P (θ|wnew)∑

θ′∈Θ P (dnew |θ′)P (θ′|wnew)
, (12)

P (θ|wnew) =

∑
d∈Dnew

c(wnew , d)P (θ|wnew , d)∑
d′∈Dnew

c(wnew , d′)
. (13)

P ′(θ|wnew) = (1 − α)P (θ|wnew) + α
∑

<wnew,wv>∈E

1

Deg(wnew)
P (θ|wv).(14)

In the last equation, the cross-lingual smoothing is incorporated following
the idea of [15]. Consequently, the similar words in different languages would
have similar latent theme distributions.

2. Update the PLSI parameters. In the folding in process, p(wold|θ) has not been
changed and p(wnew |θ) has not been incorporated. Thus a normalization is
utilized following [4] as

P (w|θ) =
∑

d∈Dnew
c(w, d)P (θ|w, d)∑

d′∈Dnew

∑
w′∈d′ c(w′, d′)P (θ|w′, d′)

. (15)
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If calculation complexity is limited in a small range, the updating has been
finished. But if more calculation is allowed, Eq. 5, Eq. 6, Eq. 7 and Eq. 8
could be executed iteratively to optimize the parameters further.

5 Experiments

The experiments are targeted at justifying the following issues for the proposed
online cross-lingual PLSI model.

1. What is its overall performance in the ETP analysis?
2. Whether it is efficient in reducing the time complexity?
3. Whether it is effective in solving the continuity limitation?

To issue 1, we show an intuitive example of the ETP analysis result; and we also
compare it with a version of monolingual topic model by translating multiple
languages into a single language, in order to show the advantages of cross-lingual.
To issue 2, we compare the speed of convergence of the proposed model with the
original cross-lingual model in batch mode. To issue 3, we give both qualitative
and quantitative justification compared with the original cross-lingual model in
batch mode.

5.1 Dataset

Our dataset is a set of news articles, which is collected between June 1st 2012 to
June 23th 2012. The articles are either in English or in Chinese. Totally, 269,144
Chinese articles and 64,897 English articles are collected. A pre-processing is
conducted before the experiments, including splitting words, removing the stop
words and stemming. We choose mandarintools1 to build the bilingual word
graph as shown in Fig. 2 (left).

The dataset is divided into three time intervals evenly, denoted as T1, T2 and
T3. The time window length is l = 2. Thus the time window for T2 include T1

and T2; and the time window for T3 is T2 and T3. When documents of T3 arrive,
the topic model should discard the old words and documents in T1 and fold in
the new words and documents in T3. In the proposed online PLSI, this process
is natural. In the original PLSI in batch mode, the model should be re-trained
using the documents in T2 and T3.

5.2 Overall Performance

To evaluate the overall performance, we utilize the proposed model to extract
the themes in T2 and T3. Then the cross-lingual evolutionary transitions are
generated by calculating the KL-divergence using Eq. 1. A cross-lingual theme
evolutionary graph is drawn like Fig. 1 (right). Due to the space limitation, we
do not demonstrate the whole graph, but we show part of it instead for analysis.

1 mandarintools.com

mandarintools.com
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Table 1. Overall performance example
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Fig. 3. Comparison with monolingual topic model

We choose the event of Euro 2012 as an example. Table. 1 shows the ETP
analysis result. Column 1 shows the theme extraction result for T2; Column
2 shows the theme extraction result for T3 from cross-lingual PLSI in batch
mode, which would be utilized to show the improvement of continuity later; and
Column 3 shows the theme extraction result for T3 from the proposed model.
Theme 3.1 is evolved from theme 2.1; and theme 3.2 is evolved from theme 2.2.

It can be observed that in theme 2.1, stories are related to the England
team, such as the stars, the opponent team, etc. The stories are about warm-up
matches, openings, etc. After being evolved to theme 3.1, stories are also related
to England team. But as time goes by, the content of the stories has been changed
to whether the England team can advance, the behavior of its star Rooney, etc.
Theme 2.2 and theme 3.2 have similar theme evolution, but they are related to
the Italy team. We can also see that the English media is more open in sensitive
topics such as “sex” than the Chinese media, which shows the complementarity
of information among the cross-lingual data. This example demonstrates that
proposed model is effective in cross-lingual ETP tasks.

To show the advantage of cross-lingual topic model, we compare it with the
monolingual PLSI by translating the Chinese documents into English documents.
The experimental setup for translation can be referred to [15]. For evaluation,



Online Cross-Lingual PLSI for Evolutionary Theme Patterns Analysis 83

0 1 2 3 4 5 6 7 8 9
−2.8

−2.76

−2.72

−2.68

−2.64

−2.6

−2.56

−2.52

−2.48

x 10
7

Iteration

Lo
g−

lik
el

ih
oo

d

 

 

PLSI−Batch
PLSI−Online

(a) log-likelihood

0 1 2 3 4 5 6 7 8 9
2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Iteration

P
er

pl
ex

ity

 

 

PLSI−Batch
PLSI−Online

(b) perplexity

Fig. 4. Comparison with cross-lingual PLSI in batch mode (1)
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Fig. 5. Comparison with cross-lingual PLSI in batch mode (2)

we utilize the “cross-collection” log-likelihood defined in [15]. Fig. 3 shows the
experimental result for different parameters. α is the parameter used in Eq. 8
and Eq. 14. It could be observed that the cross-lingual topic model constantly
outperform the monolingual topic model in each iteration. This is because the
cross-lingual topic model could well smooth the connection between different
languages. The result is consistent with the result in [15].

5.3 Justification for Reducing the Time Complexity

In order to justify the performance of reducing the time complexity, we compare
our proposed model with the original cross-lingual PLSI [15] in batch mode. Fol-
lowing the evaluation metrics in [1, 4], we utilize the log-likelihood and perplexity
to evaluate the performance of the model in each iteration. For perplexity, the
smaller the value, the better the performance. The definition of the metrics could
be found in [1, 4]. For the proposed online model, the parameters are updated
from the parameters of the previous model; for the original model in batch mode,
the parameters are randomly allocated at first and are re-trained thoroughly.

Fig. 4 and Fig. 5(a) shows the experimental results. It could be observed that
the proposed online model converges much faster than the model in batch mode,
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in both log-likelihood and perplexity metrics. From Fig. 5(a), the convergence
time of the proposed model is around 20% of the original model’s, which is
consistent with the result in [4] (15% to 20% of the batch mode in monolingual
case). This demonstrates that the proposed model is efficient for reducing the
time complexity in folding in the new documents and words.

5.4 Justification for Solving the Continuity Limitation

In qualitative analysis, we show an example of the ETP analysis from the original
PLSI [15] in batch mode in Table. 1. We can see the difference between this model
and our proposed model. The themes in T2 are divided by different teams. One
for England and one for Italy. After the evolution in T3, the themes extracted
by our proposed model are also divided by different teams. However, the themes
extracted by the original PLSI in batch mode are divided by other dimensions.
theme 3.1′ is about the activities of fans; and theme 3.2′ is about the activities of
the game. This example demonstrates directly that the proposed model performs
better in keeping the continuity.

In quantitative analysis, following the idea in [4], we utilize the average KL
divergence rate of the two closest latent variables in two adjacent time windows
to quantify the continuity performance. The detailed definition of this metric
could be found in [4]. Fig. 5(b) shows the performance of our proposed model
and the original model in batch mode. It could be observed that the performance
of the proposed model outperforms the original model constantly. The average
distance of our proposed model is 56% of the original model’s.

From above justifications, it can be concluded that the proposed model is
effective in solving the continuity limitation.

6 Related Work

The primary work related to ETP analysis in history is the topic detection and
tracking (TDT) task [14]. The main difference of the TDT tasks from the ETP
analysis is that TDT is in the document level, while ETP is in the word level.
Recent work of ETP analysis include [5, 8, 10–12]. The main difference from our
work is that our model can model cross-lingual themes. Topic model is the key
technique in this paper. Two representatives of topic model include PLSI [7] and
LDA [2]. Many variances of topic models are presented over these years, including
the online learning [1, 4, 6, 8]; the cross-lingual modeling [3, 9, 13, 15], and etc.

7 Conclusion and Future Work

In this paper, we propose an online cross-lingual PLSI model and utilize this
model in the ETP analysis tasks. Experimental verification from a real world
dataset demonstrates that the proposed model performs well. It is efficient to
reduce the training time in folding in new documents; and the proposed model is
effective in keeping the continuity property of themes in different time intervals.
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In the future, we will try to combine previous online LDA and cross-lingual
LDA model in ETP analysis. We believe through the regularization techniques
in LDA, the performance would obtain another improvement.
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Abstract. Given a large number of taxi trajectories, we would like to
find interesting and unexpected patterns from the data. How can we
summarize the major trends, and how can we spot anomalies? The anal-
ysis of trajectories has been an issue of considerable interest with many
applications such as tracking trails of migrating animals and predicting
the path of hurricanes. Several recent works propose methods on clus-
tering and indexing trajectories data. However, these approaches are not
especially well suited to pattern discovery with respect to the dynamics
of social and economic behavior. To further analyze a huge collection of
taxi trajectories, we develop a novel method, called F-Trail, which al-
lows us to find meaningful patterns and anomalies. Our approach has the
following advantages: (a) it is fast, and scales linearly on the input size,
(b) it is effective, leading to novel discoveries, and surprising outliers.
We demonstrate the effectiveness of our approach, by performing exper-
iments on real taxi trajectories. In fact, F-Trail does produce concise,
informative and interesting patterns.

1 Introduction

What patterns can we derive, using trajectory data from a whole fleet of taxis?
What is the normal pattern of activity, and which (if any) outliers exist? We
seek to discover such patterns, so that we can spot anomalies, and help the
taxi operating company understand general trends, with the ultimate goals of
maximizing fuel efficiency, profits, and passenger satisfaction. Trajectory anal-
ysis has attracted a lot of interest, including trajectories of (migrating) ani-
mals [21,8,7,10], of hurricane paths [4,2], as well as from an indexing point of
view [6,16]. The latter studied indexing, but not pattern discovery; among the
former, the emphasis was on clustering and distance functions on trajectories.

Motivation and Challenges. Uncovering rules governing collective taxi be-
havior is a challenging task because of the myriad factors that influence an
individual’s decision to take a particular action. In this work, we study 10,000
trajectories generated by anonymous taxi drivers, with the aim of measuring
social and economic activity. Intuitively, the task of this paper is as follows:

Given a set of GPS coordinates for every taxi, every few minutes, and its
status (i.e., ‘full’ or ‘empty’), find the general trends of the fleet of taxis, and
spot outliers.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 86–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(a) Full taxis (b) Empty taxis

Fig. 1. Different behavior of empty taxis, at night: PDF of fractal dimension (FD) of
all trips, for each segment of a day (0-3am, 3-6am etc). (a) Full taxis (b) empty ones.
Notice that trajectories of full taxis are linear-like (fractal dimension FD≈1), for any
time slot; empty taxis have a wandering behavior (FD < 1) during the day, but linear
behavior during the night.

Here, we present a novel method, F-Trail, for finding meaningful patterns
and anomalies in a huge number of trajectories. Our approach can scalably and
automatically identify typical patterns of taxi behavior, and actually “see” such
patterns from the point of view of topology. More specifically, we propose using
the fractal dimension as a characteristic for trend analysis and extreme detection.

Figure 1 shows a snapshot of our discoveries: Namely, taxi drivers follow linear-
like paths when ‘full’; and convoluted, ‘wandering’ paths when empty during
the day, but clearly different behavior when ‘empty’ at night. More specifically
Figure 1(a) is the probability density function (PDF) of the ‘fractal dimension’
(FD) of all trajectories with a passenger (say, “full taxi trails”). Since FD ≈ 1,
for any time of the day, we conclude that, when ’full’, taxi drivers follow linear,
piece-wise linear, and in general, smooth paths. Conversely, Figure 1(b) shows
that, when ’empty’, they follow short, wandering paths, creating a bursty-like
pattern (see blue dots in Figure 2(b)), with a much lower FD.

The only exception is during the night (solid blue and dotted blue curves in
Figure 1(b)): the drivers abandon their ‘wandering’ behavior, since they don’t
expect to find nearby customers, and instead go almost straight to taxi plazas
or the airport (green dot in Figures 2(a-b)). Notice the linear-like blue paths
(‘empty trails’) in Figure 2(a). We present several more observations, later.

Contributions. In this paper we propose a new approach, namely F-Trail,
which includes fast and effective techniques that can learn the key trends of a
large collection of taxi trails. The contributions of this paper are as follows:

1. Effective: We apply F-Trail to a real trajectory dataset, which allows us to
identify major trends in taxi behavior, and spot outliers.

2. Adaptive: F-Trail describes the common behavior and anomalies of taxi
trajectories from the point of view of an individual taxi.

3. Scalable: The careful design of F-Trail makes it linear on the number of
input size in terms of wall clock time.
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(a) Taxi #1 - night (0am-6am) (b) Taxi #1 - day (12am-6pm)

Fig. 2. Night vs day trajectories of the same taxi: (a) during the night, the blue
(=’empty’) trail is linear-like, probably going to the airport (green dot), or to taxi
plazas; (b) during the daytime, the blue (empty) trail is point-like, due to wandering
behavior, to find nearby passengers. In all cases, the red (=’full’) trails are linear-like.
Note that we anonymize latitude and longitude information due to privacy concerns.

Outline. The rest of the paper is organized as follows: Section 2 discusses
related work. Section 3 introduces our approach and describes how to analyze
individual taxi behavior. We conclude in Section 4.

2 Related Work

The previous work on mining trajectory data can be grouped into the following
categories: (1) design of distance and similarity scores and (2) indexing methods
for spatial-temporal databases. For trajectory similarity functions, Vlachos et
al. [21] use the longest common sub-sequence, while [8,7] use minimal descrip-
tion language. Given a similarity score, [21] study the trajectories of marine
mammals, while [8,7] use it to find clusters and outlier trajectories. Gaffney et
al. [4,2] use generative models to group the trajectories of moving objects such
as hurricanes. Giannotti et al. [5] study the trajectory pattern mining problem.
Very recently, Yuan et al. [24,23,11] study a large number of taxi trajectories in
Beijing, and present new and sophisticated models to find the different functional
regions, and optimal driving route.

Remotely related is the work on indexing and searching moving objects: The
work in [16] builds index on moving both spatial and temporal dimensions with
pre-aggregation to support OLAP operations. In related work [6,3] also propose
various solutions for answering region retrieval queries, predicting the past and
future positions. Similarity search and pattern discovery in time sequences have
also attracted huge interest [13,18,15].

One of the contributions of F-Trail is that it uses fractal concepts to spot
patterns in trajectories. Fractals and self-similarity have been used in numerous
settings, like financial time series analysis [12], modeling ethernet traffic [22],
social network analysis [14,9], and numerous other settings (see, e.g., [19,17]).
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3 F-Trail

Given several thousands of trajectories, we need to find commonalities and ex-
tremes. What do the trips have in common? Can we extract features from such
trajectories, to help us understand the dataset? We propose extracting the fractal
dimension of every such trip. The fractal dimension has several desirable prop-
erties: (a) it is invariant to affine transformations, (b) it is fast to compute, and
(c) it captures the complexity of the trajectory. Next we give brief background
and the intuition behind our proposed solution.

3.1 Preliminaries

(Hausdorff) Fractal Dimension. There exist many fractal dimensions (Haus-
dorff, Minkowski, correlation, information, etc). Among them, we use only the
first one, which is formally defined as follows:

The (Hausdorff) fractal dimension, or simply the fractal dimension for a range
of scales (r1, r2) and for a given, self-similar, point-set in an n-dimensional ad-
dress space, is defined as the exponent of the law [19]:

N(r) = C r−FD (r1 < r < r2) (1)

where (r1, r2) is a suitable range of scales, and N(r) is the number of non-empty
cells, when we impose a grid of side r, on our dataset. Intuitively, if we plot
N(r) vs r in log-log scales, the plot will be linear for the range of scales (r1, r2).
We refer to such plots as Hausdorff plots, and we report the slope and constant
(= intercept), for each taxi trajectory.

Computational Complexity. Linear. More specifically, we have:

Lemma 1. The computation time for the fractal dimension is O(N), that is,
linear on the number of points N .

Proof: Using the so-called box-counting method [19], we only need to go over the
data points a few times. QED

Basic Properties for Trajectory Data. Our dataset consists of 10,000 trajec-
tories taken from anonymized taxi drivers in the large city, where each trajectory
corresponds to the trail of each taxi for an entire day. The dataset has the fol-
lowing attributes: GPS coordinates (i.e., longitude, latitude), a timestamp, and
the passenger status (i.e., ‘full’ or ‘empty’).

Figure 3 shows an example of a taxi trajectory of an entire day. The horizon-
tal and vertical axes show the longitude and latitude of the GPS points respec-
tively, where red and blue lines show the trails of the taxi for each status (full
and empty). Note that we anonymize latitude and longitude information due to
privacy concerns. The red and blue dots indicate the locations of ‘pick-up’ and
‘drop-off’ points. The green dot at (0.3391, 0.1168) is the location of the interna-
tional airport, and (0.15 - 0.25, 0.06) is a downtown area. In this figure, we can see
that most trajectory lines are between the airport and downtown via highways.
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Fig. 3. Plotting conventions for a taxi trajectory: the red/blue lines indicate trails
of the taxi with/without passengers, respectively. The red and blue dots indicate the
locations of pick-up and drop-off points, respectively.

Here we define some terminology. We will refer to each set of trail points with
passengers (shown as red lines in Figure 3), as a ‘full’ trail, and refer to a set of
points without passengers (i.e., empty) as an “empty” trail. That is, the entire
trajectory consists of a combination of ‘full’ and ‘empty’ trails.

3.2 Intuition - Fractal Dimension as a Feature

Our goal is to analyze the trajectories, and specifically to characterize the under-
lying behavior of taxi drivers, and gain insight into how and why the observed
characteristics arise.

The taxi drivers have social and economic priorities and follow their own
strategies for success. We want to extract detailed information on their behavior,
especially regarding their mobility patterns. There exist numerous time-series
analysis methods, including FFT and wavelets, but they depend strongly on the
locations of trajectories, which makes it hard to find the economic strategies
and social behavior. How can we characterize the shape of trajectories, while
ignoring their location?

Approach 1. We propose to use the fractal dimension of each taxi trajectory,
as a feature for finding patterns and groups.

Several real datasets are self-similar, and thus have an intrinsic, or fractal dimen-
sion: the peripheries of clouds and rain patches (D = 1.3), coast-lines (D = 1.1
to 1.58 for Norway), and many more [1]. Are our taxi trajectories self-similar?
The answer is ’yes’, for the vast majority of them. The ones that don’t, are either
too short, or deserve further examination, being the exceptions. Next we give
the intuition and necessary definitions.

Figure 4 shows some trajectories as well as the tools to measure their fractal
dimension: the odd columns (i.e., Figure (a,c,e)) are synthetic, and the even ones
(i.e., Figure (b,d)) are real trajectories. Intuitively, a set of points (like our taxis’
(x,y) coordinates per unit time) is a fractal if it exhibits self-similarity over all
scales. The way to interpret the value of the fractal dimension is as follows:



F-Trail: Finding Patterns in Taxi Trajectories 91

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Cantor dust

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

Longitude

La
tit

ud
e

−10 −5 0
0

5

10

slope=
−0.63204

log(r) − grid size

lo
g(

N
(r

))

−6 −4 −2
0

2

4

6

slope=
−0.89091

log(r) − grid size
lo

g(
N

(r
))

(a) Cantor dust (FD = 0.6) (b) taxi-empty (FD = 0.9)

0 500 1000
0

200

400

600

800

1000
Diagonal

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

Longitude

La
tit

ud
e

0 5 10 15
0

5

10

15
Hilbert curve

0 2 4 6
0

2

4

6

8

slope=
−0.96105

log(r) − grid size

lo
g(

N
(r

))

−6 −4 −2
0

2

4

6

slope=
−1.3161

log(r) − grid size

lo
g(

N
(r

))

0 2 4 6
0

5

10

log(r) − grid size

lo
g(

N
(r

))

(c) line (FD = 1) (d) taxi-full (FD = 1.3) (e) Hilbert curve (FD = 2.0)

Fig. 4. Intuition behind trajectories and their fractal dimension(s). Top row: trajecto-
ries (sets of (x,y) points). Bottom row: the ’Hausdorff’ plots, in log-log scales - the slope
is the fractal dimension. Columns have trajectories of increasing fractal dimension (≈
complexity), from FD = 0.6 up to 2.

– FD = 1: This happens when the trajectory has iso-spaced points, along a
line or a smooth curve, (see synthetic dataset Figure 4(c)).

– FD > 1: This happens when the taxi does twists and turns, like the real
trajectory of Figure 4(d).

– FD < 1, This happens when the taxi does many stops, like the real trajectory
of Figure 4(b).
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– FD = 0, if the taxi is completely static, in which case the trajectory reduces
to a (multi)point.

The two extremes in Figure 4(a,e) correspond to the so-called ’Cantor dust’, and
the ’Hilbert curve’. The former is derived from a line segment, by recursively
deleting the middle third, and has fractal dimension log(2)/ log(3) ≈ 0.63. The
latter is a space filling curve, with fractal dimension = 2, covering the whole 2-d
space, in the limit.

Thus far we have introduced the fractal dimension for individual trajectory
analysis in order to understand the taxi behavior. However, the behavior of
each taxi could vary in a month, a week, or even in a single day since the
dynamic strategy typically beats the static strategy. Actually, each empty taxi
exhibits distinct behavior in different time ranges according to the distribution
of passengers (see Figure 1).

Approach 2. We propose to apply a short-window approach to the fractal di-
mension, which is more flexible for trajectory analysis.

Instead of handling the entire trajectory, we locally analyze the fractal dimen-
sion of each snapshots to obtain a better understanding of time-varying social
behavior.

3.3 F-Trail Analysis

We now introduce our approach and describe how to analyze individual taxi
behavior.

Fractal Trajectories - Are There Clusters? For a few trajectories, a human
could eye-ball them, and derive the above patterns. But, how can we accomplish
this automatically for thousands of trajectories? Our first idea is to compute the
fractal dimensions for individual trajectory analysis. We begin by investigating
the sociability of taxi movement by measuring the fractal dimensions of trajec-
tories of two statuses (i.e., ‘full’ and ‘empty’ trails). We compute the fractal
dimension of each trail, which help us to understand how the taxi drivers find
the passengers and how they pick them up.

Do taxi drivers take their passengers over direct paths? Are their trajectories
different, when they are empty, looking for passengers? It turns out that F-

Trail can answer both questions, and the answers are ‘yes’, with a few twists.
Let’s see the details.

Figure 5 shows the fractal dimension (FD) versus the intercept of full and
empty trails. For most ’full’ trails, the fractal dimension is between 1.1 − 1.3,
while for ’empty’ trails, it is between 0.8−1.1. Here, FD = 0 is the burstiest (i.e.,
static taxi), FD = 1 corresponds to a taxi moving uniformly on a line or smooth
curve, and FD = 2 (maximum) would be for a taxi that is uniformly distributed
over the whole address space. This figure shows remarkable differences in the
behaviors of each status. Thus, we have:
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Fig. 6. Extremes of full and empty trails: (a) full trail of taxi # 7575 (red line) has
high FD, but the intercept (≈ total length) is the lowest: a lot of short, straight-like
rides. (b) Empty trail of taxi # 9710, having the highest FD: it’s blue rides are long,
and mainly straight like, which means no local ’wandering’ for its next passenger.

Observation 1 (Typical behavior). Typical taxi behavior over an entire day
is to have fractal dimensions between FD = 1.1 − 1.3 for full trails and FD =
0.8− 1.1 for empty trails.

Notice that the above observation is invariant to affine transformations. More-
over, it helps us spot a clear distinction between ’full’ and ’empty’ trail sets
(see Figure 5, FD vs. intercept plot). This is because, unlike many full taxis that
head straight for their destinations, empty taxis frequently do many stops and
turns, to find a new passenger, which leads to low fractal dimension.

A further observation that we can derive from the fractal dimensions of tra-
jectories shown in the same figure is that there are several extremes for each
of the full and empty trail sets. For instance, the trajectory #7575 is the one
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Fig. 7. Straight distance vs. trip length of each ride (log-log scales): scatter plots (top)
and density plots (bottom). Full taxis pick the shortest path (intercept≈0); empty taxis
drive about 40% more length than necessary (intercept=0.16, 100.16 ≈ 1.4).

extreme, due to its low intercept, which implies that the particular trajectory
covers a very small area. In fact, the taxi driver adopted a different strategy and
focused only on a highly-populated area (see Figure 6(a)). The trajectory #9710
is an extreme example of the empty status and shows a high fractal dimension.
Actually the trajectory includes many line-like trips (long blue segments), for
his/her long ‘passenger search’ (see Figure 6(b)), in contrast to the majority of
taxi drivers, who wander locally, looking for their next passenger.

Thus we have almost answered the first question: taxis seem take their pas-
sengers to smooth, line-like curves. The next natural question is: are these the
shortest paths? We address this question next.

Trip Length vs. Crow’s Flight - Any Waste? So far we have examined
the dynamics of the taxi behaviors at an individual level, and proposed a simple
model capturing the fractal dimensions. To check whether ’full’ taxis actually
use the shortest path, we do another scatter-plot: For every trip, we plot the
”crow’s flight” length (= Euclidean distance between pick-up point and drop-off
point) and the reported length (= sum of lengths between successive location
snapshots). Figure 7 shows these scatter plots, where every dot is a trip. Of
course, nothing is below the diagonal, and there is heavy over-plotting. The
bottom row contains the density plots.

Notice that the ’full’ trips are almost on the diagonal (slope=1, intercept≈0),
which means that the taxi drivers are efficient, in the shortest path sense.
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Observation 2 (Taxi driver efficiency). Most taxi drivers take their passen-
gers via the shortest path (or very close to it).

By contrast, when ’empty’, the slope is still 1, but the intercept is higher (0.16,
in log-log scales), which means that the drivers ’wander’, with many turns and
returns, until they find a new passenger. Mathematically: l = 100.16 ∗ s1 or

l ≈ 1.4 ∗ s (2)

where l is the reported length of the trip, and s is the straight (”crow’s flight”)
length.

Observation 3 (40 percent wandering). Drivers on ’empty’ status have
more convoluted trajectories than on ’full’ status, driving about 40% longer than
necessary.

This observation agrees with the intuition: Drop-offs are typically in residential
areas, with many, narrow roads, and the taxi drivers have to turn and loop,
until they find another passenger. Thus, the trajectory is more convoluted. In
contrast, ’full’ taxis typically go on highways, which are straight or with a few
smooth turns and thus the trajectories are simpler and more efficient.

Fractal Dimension - Any Changes with the Hour of the Day? So far
we have seen that most empty taxis are likely to pick up new passengers geo-
graphically close to the last drop-off point, and thus we would expect that this
strategy to minimize their effort (e.g., maximize fuel efficiency, profits). However,
as described in the introduction, this is not always the case. We thus introduce a
short-window approach to the fractal dimension (FD), which enable us to char-
acterize the taxi behavior for each time interval (i.e., snapshot). Specifically,
instead of analyzing all the (x,y) snapshots of, say, taxi i, we study separately
the snapshots at 0-3am, 3-6am, etc.

As we have seen in Figure 1, the behavior of ’full’ taxis is the same for all
hours of the day, but the ’empty’ ones vary in a very interesting way:

Observation 4 (’empty’ at night: differ). There is a clearly distinct pattern
of empty taxis at night time: instead of convoluted, ’wandering’ paths, drivers
choose line-like paths.

In retrospect, the observation above makes sense: During the night (0-6am), the
drop-off place is probably at a residential area, and there is slim chance to find
another passenger nearby. Thus, taxi drivers choose to drive straight to places
with higher chances of demand (airport, down-town, etc).

Power Law in the Trip-Length Distribution? Whenever there is self-
similarity and fractals, we often have power laws and scale-free distributions.
Does this hold for the trip-lengths, in our case? Surprisingly, it turns out that
the double Pareto lognormal (DPLN) distribution yields good fits to our data.
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Fig. 8. PDF of trip length (length vs count, in log-log scales): knees at characteristic
scales of ≈20 km, which is roughly the radius of the city

The DPLN distribution generalizes the power-law and lognormal distribu-
tions, and is expressed by the following equation,

f(x|α, β, ν, τ ) = αβ

α+ β
[expαν+α2τ2/2 x−α−1Φ(

log x− ν − ατ 2

τ
) +

xβ−1 exp−βν+β2τ2/2 Φc(
log x− ν + βτ 2

τ
)] (3)

where Φ and Φc are the cdf and complementary cdf of N(0, 1), and for further
details (e.g., parameters α, β, ν, τ), see [20].

Figure 8 shows the DPLN fitting results of trip-length vs count distribution.
The figure shows the PDF for the (a) full (red circles) and (b) empty (blue
circles) rides, in log-log scales. There is a power-law behavior up to the ’knee’
(at about 20 km), and then a sharp (power-law) drop after that. Notice that the
knee is at roughly the radius of the city of study. Consequently, we have:

Observation 5 (Trip length: DPLN behavior). The trip length distribution
is skewed, for both ’full’ and ’empty’ rides, with a power-law that has a ’knee’ at
≈ 20 km. This is exactly the so-called “doubly Pareto lognormal” (DPLN).

From Figure 8 (a), we observe two types of customers: the ’below-city-radius’
ones, that take short trips, or airport-to-downtown; and the (much more rare)
’above-city-radius’ ones, that maybe hire a taxi for sightseeing, or for several
days. Such results (i.e., trip-length DPLN fitting) could be used to analyze the
tradeoff between the cost of finding passengers (Figure 8 (b)) and the fares
received from them (Figure 8 (a)) to design pricing structure, which would max-
imize the total revenue.

4 Conclusions

We investigated patterns of human mobility on a large collection of taxi tra-
jectories, and proposed a new method, F-Trail, to find meaningful patterns
and anomalies. Our approach is (a) linear on the input size, and (b) able to
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spot meaningful general trends, as well as outliers. In more detail, our main
discoveries are as follows:

– Typical for taxi trajectories is to have fractal dimension between 1.1 to 1.3
for full trails and 0.8 to 1.1 for empty trails, which means that most taxis
take their passengers to smooth, line-like curves, while empty taxis have
many stops or bursty-like patterns.

– Most surprisingly, we found that most taxi drivers change their strategies in
different time ranges according to passenger demand, i.e., there was a very
interesting deviation of FD for empty taxi during the night.
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Abstract. Nowadays, due to the great advent of sensor technology, the data of 
all appliances in a house can be collected easily. However, with a huge amount 
of appliance usage log data, it is not an easy task for residents to visualize how 
the appliances are u sed. Mining algorithms is necessary to discover appliance 
usage patterns that capture representative usage behavior of appliances. If some 
of our representative patterns of appliance electricity usages are available, we 
may be able to adapt our usage behaviors to conserve the energy easily. In this 
paper, we introduce (i) two types of usage patterns which capture the represent-
ative usage behaviors of appliances in a smart home environment and (ii) the 
corresponding algorithms for discovering usage patterns efficiently. Finally, we 
apply our algorithms on a real-world dataset to show the practicability of usage 
pattern mining. 

Keywords: appliance usage pattern, interval-based sequential pattern, smart 
environment. 

1 Introduction 

Recently, concerns over global climate changes have motivated significant efforts in 
reducing the emissions of CO2 and other GHGs (greenhouse gases). Many researchers 
focus on the reduction of electricity usage in the residential sector because it is a sig-
nificant contributor of greenhouse gas emissions. Nevertheless, electricity conserva-
tion is an arduous task for the residential users due to the lack of detailed electricity 
usage. If an electricity bill is high, we usually can tell that it is expensive rather than 
"why" it is expensive. We argue that if representative patterns of appliance electricity 
usages are available, residents can adapt their appliance usage behaviors to conserve 
the energy effectively. 

Due to the great advent of sensor technology, the electricity usage data of all ap-
pliances in a house can be collected eas ily. In particular, power meters are deployed 
to collect appliance usage log data. With the appliance usage log data, one could vi-
sualize how the appliances are used. With a huge amount of appliance usage log data 
collected, it is necessary to propose mining algorithms to discover appliance usage 
patterns that capture representative usage behavior of appliances. Appliance usage 
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patterns are able to help users understand how they use their appliances and further-
more, appliance usage patterns could be used to detect abnormal usages of appliances 
or utilize to design an intelligent control for appliances. 

However, extracting meaningful usage information is a complex issue. Our appliance 
usage behaviors usually vary at different time and season, e.g., many behaviors of the 
same appliances in summer and in winter are tot ally different. For example, the air-
conditioner may be used everyday in summers, but hardly turned on in other seasons. 
Many appliances may also have unique usage patterns, e.g., some appliances are sea-
sonal-type and some ones belong to daily-type. For example, while the air-conditioner 
(a seasonal appliance) usually is turned on frequently only in the summer, the light 
usually is turned on and off frequently everyday and thus belongs to daily-type. Ob-
viously, how to mine representative usage patterns which can describe diversified ap-
pliance usage effectively and efficiently is a challenging problem. 

Previous researches of usage patterns mainly focused on energy disaggregation  
[2, 3, 4, 8, 9, 12] and appliance recognition [1, 5, 6, 7, 10, 11]. To the best of our 
knowledge, very few studies facilitate the energy saving with the discovery and utili-
zation of appliance usage patterns. The contributions of this paper are: (1) from ana-
lyzing appliance usage data, two types of usage patterns, daily behavior-based usage 
pattern (DBUP) and clustered-based statistical usage pattern (CSUP), are proposed to 
represent and describe the complex behaviors of appliance usage effectively; (2) two 
mining algorithms are developed to discover appliance usage patterns efficiently by 
employing some effective pruning strategies to reduce the search space; (3) the pro-
posed methods have been applied to a real dataset to validate its p racticability and 
show the support for residents to adapt their appliance usage behaviors for conserve 
the energy. 

The rest of the paper is organized as follows. Section 2 and Section 3 provide the 
related work and preliminary, respectively. Section 4 i ntroduces the two types of  
appliance usage patterns. Section 5 pres ents the result of experimental evaluation. 
Finally, Section 6 concludes the paper. 

2 Related Work 

In this section, we discuss some previous works utilized usage patterns for energy 
disaggregation and appliance recognition. Farinaccio et al . [3] used some patterns, 
such as number of O N-OFF switches, to disaggregate the whole-house electricity 
consumption into a number of major end-uses. Suzuki et al. [12] used a new NIALM 
technique based on integer programming to disaggregate residential power use. Lin et 
al. [9] used a d ynamic Bayesian network and filter to disaggregate the data online. 
Kim et a l. [8] in vestigated the eff ectiveness of several unsupervised disaggregation 
methods on low frequency power measurements collected in real homes. They also 
proposed a usage pattern which consists of on-duration distribution and dependency 
between appliances. Goncalves et al. [4] explored an unsupervised approach to deter-
mine the number of appliances in the household, including their power consumption 
and state, at  any given moment. Chen et al.  [2] disaggregated utility consumption 
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from smart meters into specific usage that associated with human activities. They 
proposed a n ovel statistical framework for disaggregation on coarse granular smart 
meter readings by modeling fixture characteristic, household behavior, and activity 
correlations. 

Prudenzi [11] utilized an artificial neural network based procedure for identifying 
the electrical signatures of residential appliances. Ito et al. [5] extracted features from 
the current (e.g., amplitude, form, timing) to develop appliance signatures. For ap-
pliance recognition, Kato et al. [6] u sed Principal Component Analysis to ex tract 
features from electric signals and classified them by Support Vector Machine. Aritoni 
et al. [1] p roposed a software prototype which can be used to understand the household ap-
pliances behavior. Some of these works and the characteristics of workable solutions 
were discussed by Matthews et al. [10]. 

3 Preliminaries  

Definition 1 (usage-point and usage-point log). Let S = {ON, OFF} be the set of 
states. Without loss of generality, we define a s et of uniformly spaced time points 
based on the natural number N. We say the pair ( si, ti) ∈ S × N is an usage-point, 
where si ∈ S , ti ∈ N. The usage-point log of an appliance is UP =  D1, D2, …, Dn, 
where Di is the daily usage-point sequence of the appliance, 1≤ i≤ n. Di is a sequence 
of usage-point, i.e., Di= (si1, ti1), (si2, ti2), …, (sim, tim). 
 
Definition 2 (ON-switch and OFF-switch). Given a dail y usage-point sequence  
Di = (si1, ti1), (si2, ti2), …, (sim, tim) of an appliance, the ON-switch is the usage point 
(sij, tij), where 1≤ j ≤ m, sij = ON and si(j-1) = OFF; the OFF-switch is the usage point 
(sik, tik), where 1≤ k ≤ m, sik = OFF and si(k-1) = ON. 
 
Definition 3 (usage-interval and usage-interval log). Given a daily usage-point 
sequence Di = (si1, ti1), (si2, ti2), …, (sim, tim) of an appliance, let tip and tiq be the time 
of jth ON-switch (ON, tip) and jth OFF-switch (OFF, tiq) in Di, respectively1. The jth 
usage-interval of Di is thus the duration time between the jth ON-switch and jth OFF-
switch, represented as a triplet (j, tij, dij) ∈ N × N × N, where tij = tip and dij = tiq− tip. 
The usage-interval log of an applian ce is UI = I1, I2, …, In, where Ii is th e daily 
usage-interval sequence of the appliance, 1≤ i ≤ n. Ii is a sequence of usage-interval, 
i.e., Ii= (1, ti1, di1), (2, ti2, di2), …, (ℓ, tiℓ, diℓ). 
 
We use Fig. 1 as an example to explain Definition 2 and Definition 3. Given a daily 
usage-point sequence of light as shown in Fig. 1, obviously, the first ON-switch and 
OFF-switch are ( ON, 6:00) and  ( OFF, 8:00), res pectively; the second ON-switch 
and OFF-switch are (ON, 14:00) and  (OFF, 20:00), respectively. Hence, the usage 
interval sequence of 14 April, 2013 is (1, 6:00, 2 hrs), (2, 14:00, 6 hrs). 
                                                           
1 Without loss of generality, in Definition 3, we assume that an appliance is turned ON before 

it is turned OFF in a daily usage log. 
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Fig. 1. An example of daily usage-point sequence 

4 Mining Appliance Usage Patterns 

In this section, we will define two types of appliance usage patterns, daily behavior-
based usage pattern (DBUP) and clustered-based statistical usage pattern (CSUP). 
For each type of appliance usage patterns, we will first define its representation and 
then propose our algorithms to mine appliance usage patterns. 

4.1 Algorithm of Mining Daily Behavior-Based Usage Pattern  

DBUP mainly focuses on extracting representative behaviors of daily appliance 
usage. The approach is shown in Fig. 2. For ex tracting DBUP from an usage point 
log, first, we treat a dail y usage-point sequence as a daily behavior of an appliance. 
Then, similar daily usage behaviors are clustered in the same group. A hierarchical 
cluster method is proposed to group similar behaviors together. Finally, we evaluate 
the centroid behaviors of those clusters and output them as the daily behavior-based 
usage patterns. 
 

 
Fig. 2. Mining daily behavior-based usage patterns 

An efficient method, DBUP-Miner, is developed for mining daily behavior-based 
usage patterns. The pseudo code i s shown in Algorithm 1. DBUP-Miner first calls 

ON
 

OFF
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sub-procedure Hierarchical_Clustering to en umerate the clusters of all dail y usage-
point sequences (line 1, algorithm 1). Hier archical_Clustering is designed to cluster 
the similar daily usage behavior. At first, each daily usage-point sequence is consi-
dered as a cluster (line 4, algorithm 1). To cluster usage-point sequences (i.e., 0 and 1 
time series sequences), we need to measure the similarity among all input time series 
sequences. In the clustering process, each piece of time series data can be viewed as a 
point located in an abstract space, and the distances between these points are usually 
figured out by a si milarity function. A time series similarity qualifies the distance 
between the sequences of time series data as points in the clustering space. One im-
portant point for similarity function is that the time-shifting constrain needs to be 
considered, i.e., the range of local time shift should be limited. In this paper, we adopt 
EDR as the similarity function that can deal with local t ime shifting under a ti me 
shifting constrain, and can deal with noises without being compromised with too 
much amplitude shifting. 
 

Algorithm 1: DBUP-Miner (UP)

Input: An usage-point log UP=  D1, D2,… , Dn , where Di is the daily usage-
point sequence (si1, ti1), (si2, ti2), …, (sim, tim)

Output: A set of usage-point sequences {S1, S2,…}

01:  CUp← Hierarchical_Clustering (UP);
02:  {S1, S2,…}← evaluate the centroid of each cluster in CUp ;
03:  output {S1, S2,…};

Procedure Hierarchical_Clustering (UP)
04:  Let each usage-point sequence in UP be a cluster;
05:  for each cluster Cj ∈ UP do
06:       for each cluster Ck ∈ UP − Cj do
07: if (distance (Cj, Ck) ≤ σ) and (distance (Cj, Ck) is minimum in UP) then
08: merge Cj and Ck to a new cluster Cr;
09:                 update distance between Cr and other clusters;
10:                 UP← UP − {Cj, Ck} ; UP← UP∪Cr ;
11:  output UP ;

Algorithm 1: DBUP-Miner (UP)

Input: An usage-point log UP=  D1, D2,… , Dn , where Di is the daily usage-
point sequence (si1, ti1), (si2, ti2), …, (sim, tim)

Output: A set of usage-point sequences {S1, S2,…}

01:  CUp← Hierarchical_Clustering (UP);
02:  {S1, S2,…}← evaluate the centroid of each cluster in CUp ;
03:  output {S1, S2,…};

Procedure Hierarchical_Clustering (UP)
04:  Let each usage-point sequence in UP be a cluster;
05:  for each cluster Cj ∈ UP do
06:       for each cluster Ck ∈ UP − Cj do
07: if (distance (Cj, Ck) ≤ σ) and (distance (Cj, Ck) is minimum in UP) then
08: merge Cj and Ck to a new cluster Cr;
09:                 update distance between Cr and other clusters;
10:                 UP← UP − {Cj, Ck} ; UP← UP∪Cr ;
11:  output UP ;  

 
For each two clusters, if their distance is smaller than or equal to the threshold σ 

and is minimum, DBUP-Miner merges two clusters to a new cluster and updates the 
similarity between new cluster and other clusters (Lines 5-9, algorithm 1). The setting 
of threshold σ is u sually heuristic. We will discuss in detail in experimental results 
and show the effect upon the mining results. Finally, after clustering, we evaluate the 
centroid of the each cluster and output these representative daily usage behaviors 
(lines 2-3, algorithm 1). We compute mean of each cluster as the representative cen-
troid. With DBUP-Miner, we can obtain the daily behavior-based usage patterns  
efficiently. 
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4.2 Algorithm of Mining Cluster-Based Statistical Usage Pattern  

For an appliance, the starting time and the duration of the jth ON-OFF switch in each 
day are also informative. We propose to employ CSUP, to extract the representative 
usage-interval from the daily log. CSUP clusters each starting time and duration of 
the jth usage-interval on an appliance in a given usage-interval log. Notice that, dif-
ferent to DBUP, the input data for extracting CSUP is a  set o f usage-interval se-
quences instead of usage-point sequence, since we want to discover some general 
behavior to express the starting time and duration of each jth usage-interval. CSUP 
adopts a h ierarchical method to cluster similar usage-intervals in the same group. 
Finally, we evaluate the centroid usage-intervals of the clusters and output them as a 
clustered-based statistical usage pattern. The approach of mining CSUP is as shown  
in Fig. 3.  
 

 
Fig. 3. Mining clustered-based statistical usage pattern 

Algorithm 2 illustrates the main framework which includes the necessary 
processing steps of CSUP-Miner. Given usage-interval log, minimum support μ, 
CSUP Miner first accumulates the occurrences of the jth usage-interval in each usage-
interval sequence and store it into a matrix number[j] (j=1,2,…) (lines 1-3, algorithm 
2). Then, we check whether the count in number[j] is larger than or equal to minimum 
count μ×n. If number[j] is s maller than μ×n, the jth usage-interval will be pruned, 
since it is nonrepresentative to describe a usage behavior (line 4, algorithm 2). For the 
frequent jth usage-interval, CSUP-Miner calls the sub-procedure Hierarchic-
al_Clustering to cluster the similar usage-intervals and stores the result of the cluster-
ing into CGj (lines 5-6, algorithm 2). 

The clustering method is similar to the one used in DBUP-Miner. The hierarchical 
clustering method utilizes two attributes, starting time and duration, for clustering all 
jth usage-intervals. At first, each usage-interval (i.e., ( j, tij, dij)) is a  cluster (line 9, 
algorithm 2) and we group two closest usage-intervals which have the closest distance 
and the distance is smaller than or equal to threshold σ (lines 12-13, algorithm 2). The 
effect of threshold σ will be discussed in experimental results. Then, we update  
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the similarity between new cluster and other clusters (line 14, algorithm 2) and recur-
sively run above steps until the distances among all clusters are not smaller than or 
equal to σ (lines 10-15, algorithm 2). 

To find the representative usage-interval to describe the jth time for turning on the 
appliance, we select the maximum cluster from CGj and evaluate the centroid (mean 
starting time and mean duration) of all usage-intervals in this cluster to represent the 
jth usage-interval (line 7, algorithm 2). Finally, we output all r epresentative usage-
intervals as the clustered-based statistical usage patterns (line 8, algorithm 2). 
 

Algorithm 2:  CSUP-Miner (UI , μ)

Input: An usage-interval log UI=  I1, I2,… , In , where Ii is the daily usage-interval sequence 
(1, ti1, di1),  (2, ti2, di2), …, (ℓ, tiℓ, diℓ) ; minimum support μ

Output: A representative usage-interval sequence {(1, τ1, δ 1), (2, τ2, δ 2),…}

01:  for each Ii ∈ UI do
02:       for j = 1 to ℓ do
03:            number [j]← number [j] +1;     // accumulate the occurrences of usage-intervals;
04:  for each j that number [j] ≥ (μ *n) do     // remove the infrequent usage-interval;
05:       Gj← {(j, t1j, d1j), (j, t2j, d2j), …, (j, tnj, dnj)};
06:       CGj ← Hierarchical_Clustering (Gj);
07:  (j, τj , δj)← evaluate the centroid of maximum cluster in CGj;
08: output all (j, τj , δj);

Procedure Hierarchical_Clustering (G)
09:  Let each usage-nterval in G be a cluster;
10:  for each cluster Cp ∈ G do
11:       for each cluster Cq ∈ G − Cp do
12: if (distance (Cp, Cq) ≤ σ) and (distance (Cp, Cq) is minimum in G) then
13: merge Cp and Cq to a new cluster Cr;
14:                 update distance between Cr and other clusters;
15:                 G← G − {Cp, Cq} ; G← G ∪Cr ;
16:  output G;

Algorithm 2:  CSUP-Miner (UI , μ)

Input: An usage-interval log UI=  I1, I2,… , In , where Ii is the daily usage-interval sequence 
(1, ti1, di1),  (2, ti2, di2), …, (ℓ, tiℓ, diℓ) ; minimum support μ

Output: A representative usage-interval sequence {(1, τ1, δ 1), (2, τ2, δ 2),…}

01:  for each Ii ∈ UI do
02:       for j = 1 to ℓ do
03:            number [j]← number [j] +1;     // accumulate the occurrences of usage-intervals;
04:  for each j that number [j] ≥ (μ *n) do     // remove the infrequent usage-interval;
05:       Gj← {(j, t1j, d1j), (j, t2j, d2j), …, (j, tnj, dnj)};
06:       CGj ← Hierarchical_Clustering (Gj);
07:  (j, τj , δj)← evaluate the centroid of maximum cluster in CGj;
08: output all (j, τj , δj);

Procedure Hierarchical_Clustering (G)
09:  Let each usage-nterval in G be a cluster;
10:  for each cluster Cp ∈ G do
11:       for each cluster Cq ∈ G − Cp do
12: if (distance (Cp, Cq) ≤ σ) and (distance (Cp, Cq) is minimum in G) then
13: merge Cp and Cq to a new cluster Cr;
14:                 update distance between Cr and other clusters;
15:                 G← G − {Cp, Cq} ; G← G ∪Cr ;
16:  output G;

 

5 Experimental Results 

All algorithms were implemented in C++ language and tested on a Pen tium D 3.0 
GHz with 2 G B of main memory running Windows XP system. This performance 
study has been conducted on real world dataset. The real dataset is co llected in a 
smart home environment, which consists six appliances (microwave, dish-washer, 
wash-dryer, light, oven and air-conditioner) for 45 days. We transfer the power con-
sumption to the state of ON or OFF for each applian ce. Hence, a day has about 
22,550 usage points. To show the practicability of proposed two types of usage pat-
terns, we perform two kinds of experiments. First, we extract DBUP and CSUP from 
a real dataset. From discovered patterns, the characteristic of each appliance is elabo-
rated. Then, the relationship between threshold setting and the pattern length are  
discussed in detail. We also indicate the influence of the minimum threshold.  
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(f) air-conditioner

(c) wash-dryer(b) light(a) microwave

(d) dish-washer (e) oven (f) air-conditioner

(c) wash-dryer(b) light(a) microwave

(d) dish-washer (e) oven
 

 

Fig. 4. Daily behavior-based usage pattern mined from collected real dataset 

5.1 DBUP and CSUP from Real Dataset  

Fig. 4 shows the discovered daily behavior-based usage pattern of six appliances with 
similarity threshold σ = 800. T he setting of threshold σ is set empirically which will 
be discussed in details in next section. The x axis is daily time (from 00:00:00 to 
23:59:59) and the y axis is the states of ON and OFF. The curves with different colors 
represent different daily behaviors. DBUP reveals the usage information of an ap-
pliance, such as how many times the appliance is turned on, the starting time of usage, 
and duration of usage. For example, Fig. 4(a) shows the DBUP of a microwave which 
exhibits eight representative behaviors (different colors of curve). The third behavior 
(black curve) describes three times for turning on the microwave. The first turn-on 
time is about 08:45 and the duration is about 50 seconds; the second turn-on time is 
about 19:00 and the duration is also about 2 minutes; the last turn-on time is about 
19:30 and the duration is about 45 seconds. 
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We also can observe that different appliance has different usage characteristic, i.e., 
different distribution of using time and duration of turn-on time. For example, in Fig. 
4(a), the microwave, in general, is used evenly in a day and has short usage duration; 
however, oven usually is turned on at a fixed time and has longer usage duration as 
shown in Fig. 4(b). Hence, with DBUP, residents can know their representative beha-
viors of daily appliance usage. 

Table 1. Clustered-based statistical usage pattern mined from collected real dataset 

 
 

Table 1 l ists the discovered clustered-based statistical usage pattern of s ix ap-
pliances (with minimum support μ = 10%). The setting of threshold μ will be  
discussed in next section. For an appliance, CSUP can provide residents three infor-
mation, how many times the appliance is turned on, mean of starting time, and mean 
of the usage duration. We use the microwave in Table 1 for discussion. There are six 
usage-intervals for the microwave. The mean starting time and mean duration of first 
usage interval are 02:57:37 and 1.2 minutes, respectively. In other words, it expresses 
that residents usually use the microwave six times in a day and turn on the microwave 
at about 02:57 and use it about 1.2 minutes in average at first usage. 

Different appliances have different usage frequencies and turn-on times. For ex -
ample, as shown in Table 1, the microwave usually is turned on/off six times a day, 
but the dish washer usually is used only once a day. The usage durations of two ap-
pliances are also different, e.g., oven usually is used for a long time due to the nature 
of its usage.  From the discovered CSUP, residents can know, in general, how many 
times they use an appliance in one day, and each usage exists for how long. In sum-
mary, DBUP and CSUP provide residents their representative patterns of appliance 
usage. With this useful information, resident may make appropriate adaption for  
electricity conservation more easily. 
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Fig. 5. The number of generated DBUP patterns with varying similarity threshold 
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Fig. 6. The distribution of generated DBUP patterns with varying minimum support 

5.2 The Influence of Minimum Thresholds on Mining Results 

In the following experiments, we examine the effects of the threshold setting. Appro-
priate similarity threshold σ and minimum support μ are very critical f or mining 
DBUP and CSUP. Fig. 5 and Fig. 6 show the number of generated daily behavior-
based usage patterns and the distribution with varying similarity threshold σ. The 
setting of σ will affect the number of generated DBUP directly. As mentioned in  
Section 4.1, DBUP Miner uses EDR as the similarity function for hierarchical cluster-
ing. EDR computes the total edit distances between two input usage-point sequences 
(i.e., 0 and 1 t ime series sequences); and the similarity threshold decide how closed 
the sequences are grouped into the same cluster. Obviously, the smaller the similarity 
threshold, the larger the number of DBUP patterns. As shown in Fig 5, when similari-
ty threshold is 400, 62 DBUPs are extracted from the collected real dataset. As can be 
seen from Fig. 6, we can obtain an amount of usage patterns for all appliances with  
σ = 400. When the similarity threshold is greater than 1,600, most of the generated 
usage patterns are with length one or two.  

Finally, we discuss the relation between the length of generated CSUP and the 
minimum support μ. In Fig. 7, we show the length of usage-interval sequence (CSUP) 
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on our real dataset with varying minimum support thresholds which is from 10% to 
90%. Obviously, when the minimum support value increases, the length of generated 
patterns decreases. As shown in the figure, we can generate longer CSUP, especially 
for microwave and light, if the minimum support μ is larger than 30%. However, 
when the minimum support reaches to 50%, some appliances do not have any CSUP 
patterns (dish-washer, air-conditioner, wash-dryer and oven). Consequently, from the 
experiments, we can observe that the threshold setting is very critical for the process 
of mining DBUP and CSUP. 
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Fig. 7. Experiments of influence on minimum support setting 

6 Conclusion 

Recently, considerable concern has arisen over the electricity conservation due to the 
issue of greenhouse gas emissions. If representative behaviors of appliance usages are 
available, residents may adapt th eir appliance usage behaviors to con serve energy 
effectively. However, how to extract representative usage patterns which can describe 
diversified appliance usage effectively and efficiently is a challenging issue. In this 
paper, from analyzing appliance usage data, two types of usage patterns, daily beha-
vior-based usage pattern (DBUP) and clustered-based statistical usage pattern 
(CSUP), are proposed to represent and describe the complex behaviors of appliance 
usage. The mining algorithms also have been developed to discover DBUP and CSUP 
efficiently. Finally, the proposed methods have been applied to real dataset to validate 
the practicability and showed the support for residents to adapt their appliance usage 
behaviors for electricity conservation. 
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Abstract. Stress is a major problem facing our world today and it is important 
to develop an objective understanding of how average individuals respond to 
stress in a typical activity like reading. The aim for this paper is to de termine 
whether stress patterns can be recognized using individual-independent compu-
tational models from sensor based stress response signals induced by reading 
text with stressful content. The response signals were obtained by sensors that 
sourced various physiological and p hysical signals, from which hundreds of 
features were derived. The paper proposes feature selection methods to deal 
with redundant and irrelevant features and improve the performance of classifi-
cations obtained from models based on artificial neural networks (ANNs) and 
support vector machines (SVMs). A genetic algorithm (GA) and a novel me-
thod based on pseudo-independence of features are proposed as feature selec-
tion methods for the classifiers. Classification performances for the proposed 
classifiers are compared. The performance of the individual-independent clas-
sifiers improved when the feature selection methods were used. The GA-SVM 
hybrid produced the best results with a stress recognition rate of 98%.  

Keywords: stress classification, artificial neural networks, genetic algorithms, 
support vector machines, physiological signals, physical signals, reading.  

1 Introduction 

Stress is part of everyday life and it has been widely accepted that stress which leads 
to less favorable states (such as anxiety, fear or ang er) is a g rowing concern for 
people and society. The term, stress, was coined by Hans Selye. He defined it as “the 
non-specific response of the body to any demand for change” [1]. Stress is the body’s 
reaction or response to the imbalance caused between demands and resources availa-
ble to a person. Stress is seen as a natural alarm, resistance and exhaustion [2] system 
for the body to prepare for a fight or flight response to protect the body from threats 
and changes. When experienced for longer periods of time without being managed, 
stress has been widely recognized as a major growing concern. It has the potential to 
cause chronic illnesses (e.g. cardiovascular diseases, diabetes and some forms of can-
cer) and increase economic costs in societies, especially in developed countries [3, 4]. 
Benefits of stress research range from improving day-to-day activities, through  
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increasing work productivity to benefitting the wider society - motivating interest, 
making it a beneficial area of res earch and posing technical challenges in Computer 
Science. Various computational methods have been used to ob jectively define and 
classify stress to differentiate conditions causing stress from other conditions. The 
methods developed have used simplistic models formed from techniques like Baye-
sian networks [5], decision trees [6] and support vector machines [7]. These models 
have been built from a relatively smaller set of stress features than the sets used in the 
models in this paper. 

The human body’s response signals obtained from non-invasive methods that re-
flect reactions of individuals and their bodies to stressful situations have been used to 
interpret stress levels. These measures have provided a basis for defining stress objec-
tively. Stress response signals used in this paper fall into two categories – physiologi-
cal and physical signals. Physiological signals include the galvanic skin response 
(GSR), electrocardiogram (ECG) and blood pressure (BP). Unlike these signals, we 
define physical signals as signals where changes by the human body can be seen by 
humans without the need for equipment and tools that need to be attached to individu-
als to detect general fluctuations. However, sophisticated equipment and sensors us-
ing vision technologies are still needed to obtain physical signals at sa mpling rates 
sufficient for data analysis and modeling like the ones used in this paper. Physical 
signals include eye gaze and pupil dilation signals. GSR, ECG, BP, eye gaze and 
pupil dilation signals have been used to detect stress in literature [5, 8, 9] but this 
combination has not been reported in literature so far. We use this combination of 
sensor signals in this paper and refer to them as primary signals for stress. 

Hundreds of stress features can be derived from primary signals for stress to classi-
fy stress classes. However, this set of features may include redundant and irrelevant 
features which may outweigh the more effective features showing stress patterns. This 
could cause a stress classification model to produ ce lower quality classifications. 
Since this paper is dealing with sensor data, some features may suffer from corruption 
as well. In order to achieve a good classification model that is robust to such potential 
features that may reduce the performance of classifications, appropriate feature selec-
tion methods must be dev eloped and adopted by classifiers. A feature selection  
method that selects features in order to redu ce redundancy using correlation based 
analysis could be used [10]. In addition, a genetic algorithm (GA) could also be used 
to select su bsets of features for optimizing stress classifications. A GA is a g lobal 
search algorithm and has been commonly used to solve optimization problems [11]. 
The search algorithm is based on the concept of natural evolution. It evolves a popula-
tion of candidate solutions using crossover, mutation and selection methods in search 
for a population of a better quality. GAs have been successfully used to select features 
derived from physiological signals [12, 13]. 

This paper describes the method for collecting and developing computational mod-
els for recognizing stress patterns in response signals observed from individuals while 
reading stressed and non-stressed labeled text validated by participants. It details an 
experiment conducted to collect s ensor and participant-reported data w here experi-
ment participants read text with stressful and non-stressful content during which mul-
tiple response signals were recorded. Several approaches for stress recognition in 
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reading are developed, compared and discussed including methods for selecting fea-
tures from hundreds of features derived from the response signals. The paper  
concludes with a summary of the findings and suggests directions for future work. 

2 Data Collection from Reading Experiment 

Thirty-five undergraduate students were recruited as experiment participants. The 
participant cohort was made up of 25 males and 10 females over the age of 18 years 
old. Each participant had to understand the requirements of the experiment from a 
written set of experiment instructions with the guidance of the experiment instructor 
before they provided their consent to take part in the experiment. Afterwards, physio-
logical stress sensors were attached to the participant and physical stress sensors were 
calibrated. The instructor notified the participant to start reading, which triggered a 
sequence of text paragraphs. After finishing the reading, participants had to do an 
assessment based on the reading. An outline of the process of the experiment for an 
experiment participant is shown in Fig. 1. 

Each participant had physiological and physical measurements taken over the 12 
minutes reading time period. During the reading period, a participant read stressed 
and non-stressed types of text validated by participants. Stressed text had stressful 
content in the direction towards distress, fear and tension. Each participant read three 
stressed and three non-stressed text. Each text had approximately 360 words and was 
displayed on a computer monitor for participants to read. F or consistency, each text 
was displayed on a 1050 x  1680 pixel Dell monitor, displayed for 60 s econds and 
positioned at the same location of the computer screen for each participant. Each line 
of the paragraph had 70 characters including spaces. 

Results from the experiment survey validated the text classes. This is a co mmon 
method used in literature to validate stress classes for tasks [14]. Participants found 
the paragraphs that were labeled stressed stressful and text labeled non-stressed as not 
stressful with a statistical significance of p < 0.001 according to the Wilcoxon test. 

The physiological and physical sensor signals (which we refer to as primary stress 
signals) captured during the experiment were GSR, ECG, BP, eye gaze and pupil 
diameter signals. Biopac ECG100C, Biopac GSR100C and Finapres Finger Cuff sys-
tems were used to take ECG, GSR and blood pressure recordings at a sampling rate of 
1000 Hz. Eye gaze and pupil dilation signals were obtained using Seeing Machines 
FaceLAB system with a pair of infrared cameras at 60 Hz.  There were other signals 
that were derived from the primary stress signals to form other stress response signals. 
These signals included the heart rate variability signal, which was calculated from 
consecutive ECG peaks and another popular signal used for stress detection [15, 16]. 

Features were derived from the primary stress signals. Statistics (e.g. mean and 
standard deviation) were calculated for the signal measurements for each 5 second 
interval during the stressed and non-stressed reading. Measures such as the number of 
peaks for periodic s ignals, the distance an eye covered, the number of forward and 
backward tracking fixations, and the proportion of the time the eye fixated on  
 



114 N. Sharma and T. Gedeon 

different regions of the computer screen over 5 second intervals were also obtained. 
The statistic and measure values formed the stress feature set. There were 215  
features altogether. 
 

 
Fig. 1. Process followed by participants during the reading experiment 

 
Fig. 2. Equipment setup for the reading experiment 

3 Feature Selection 

Features used for developing models for classification had an effect on the perfor-
mance of classifiers. Selecting effective features by reducing redundant and irrelevant 
features have been known to improve the quality of pattern recognition [17] because it 
generalizes the patterns in the data better and helps develop a generalized model that 
captures necessary data patterns. In turn, this improves the quality for classifications. 
In this paper, a feature selection method based on correlation of features and a genetic 
algorithm (GA) approach were developed and used as feature selection methods for 
stress classification. 

Study 
Experiment 

Requirements
Provide 
Consent

Attach 
Sensors Read Text Do Survey
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The features derived from the stress primary signals may have had redundant data 
so a feature selection approach based on correlation coefficients for features was de-
veloped. Correlation analysis using correlation coefficients has been reported to detect 
some redundancies in data [10]. It also took into account the time-varying nature of 
features and enabled comparison of features on this basis. 

A correlation coefficient is a measure for the strength of the linear relationship be-
tween features. Consider two features, X and Y, with xt and yt values at time-step t in 
X and Y respectively, X and Y the means and σX and σY are the standard deviations 
for X and Y, then the correlation coefficient rXY is defined by 

 ∑ ( )( )( )  (1) 

The values for rXY fulfill the following equation: 

 | | 1 (2) 

If the value for rXY = 0, then features X and Y are independent otherwise the features 
are correlated. However, stress features may have noise originating from data collec-
tion and the human body so as a result. In addition, the definition for independence of 
features for stress classification may be too strict. This motivated the use of different 
degrees for feature independence. In order t o distinguish from independence defined 
by the strict criteria, we coin the term pseudo-independence to mean independence at 
a certain degree. Suppose the degree of independence is set at rXY ≤ 0.1 and rXY is 
found to be 0.05, then features X and Y are pseudo-independent. On the other hand if 
rXY is found to be 0.25, then features X and Y are not pseudo-independent. 

The pseudo-independent based feature selection method, pseudo-independent fea-
ture selection algorithm (PISA), was used to select stress features that a classifier was 
provided to detect s tress patterns. Given a set of features, each feature was compared 
with each of the other features to deter mine whether they were not pseudo-
independent features. Features and their not pseudo-independent features were found 
and used to g enerate a s et of pseudo-independent features for classification. The 
process by which a set of pseudo-independent features were obtained was by PISA. 
PISA is defined in Fig. 3.  

Given a set of features and a set of features that are not pseudo-independent to each 
feature, PISA firstly finds features that are pseudo-independent to every other feature. 
Then it s elects one feature from a clus ter of not pseudo-independent features. The 
feature selected from a cluster is based on its not pseudo-independent features – the 
number of features and whether the features have been already selected. Features with 
a higher number of not pseudo-independent features have a greater chance of being 
selected. This characteristic of PISA minimizes the impact of highly correlated noisy 
features on classification. 
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To illustrate PISA, consider an example input set comprising features and the fea-
tures that are not pseudo-independent to the features presented in Fig. 4. Firstly, PISA 
determines features that do not have any not pseudo-independent features. A set {f4} 
is the result at this point. Now, the rest of the pseudo-independent features need to be 
appended to the set. There are multiple possibilities and they are {f1, f3, f4} and {f2, 
f4}. After applying the algorithm the result will be {f2, f4}, which is the smaller fea-
ture set of the multiple feature sets with pseudo-independent features. This approach 
reduces the risk of selecting features that were derived from corrupted sensor data and 
negatively affect the performance for stress classification. Suppose the feature set {f1, 
f2, f3} were derived from corrupted sensor data and if {f1, f3, f4} was selected as a 
set of features for classification, then intuitively the possibility of a clas sification 
model to capture better stress patterns would be lower than if {f2, f4} was chosen 
instead. 

Algorithm: Pseudo-Independent Feature Selection Algorithm (PISA). Find fea-
tures that are pseudo-independent to other features given a set of features and their 
pseudo-independent features 
 
Inputs: 

• A set of features, feature_set 
• Collection of features that are correlated to some degree to the other features in 

feature_set with a mapping to the features that they are not pseudo-independent 
with in feature_set, corr_feat_mapping 

Output: 

• Collection of pseudo-independent features 

Method: 
1. notcorr_feat_collection  get features that are in feature_set and not in 

corr_feat_mapping 
2. for each feature feat selected in descending order of the number of features 

that they are correlated with in corr_feat_mapping { 
3. corr_feats   get the features correlated with feat from 

corr_feat_mapping 
4. if none of the features in corr_feats  are in notcorr_feat_collection { 
5. then add feat in notcorr_feat_collection }} 

Fig. 3. An algorithm to g enerate a set of pseudo-independent features (PISA) for stress  
classification 
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Inputs: 
feature_set: {f1, f2, f3, f4} 
corr_feat_mapping: 

Feature  Feature(s) not pseudo-independent to associated feature 

f1  {f2} 
f2  {f1, f3} 
f3  {f2} 

 
Output: {f2, f4} 
 

Fig. 4. An example to illus trate the inputs and corresponding output for the PI algorithm  
presented in Fig. 3 using a simple set of features 

Another feature selection method used for stress classification in reading was 
based on a GA. A GA is a global search algorithm that was used to select features to 
improve the quality of stress classifications. The GA search evolved a population of 
subsets of features using crossover, mutation and selection methods in search for a 
population of subset of features that produced a better quality stress classification. A 
subset of features is referred to as an individual or chromosome. The quality for each 
chromosome in the population was defined by the quality of classifications produced 
when a classifier was provided with the features in the chromosome. 

The initial population for the GAs was set up to have all the features. The number 
of features in the chromosomes varied but the chromosome length was fixed. The 
length of a chromosome was equal to the number of features in the feature space. A 
chromosome was a binary string where the index for a bit represented a feature and 
the bit value indicated whether the feature was used in the classification. 

The parameters for the GAs implemented were set as provided in Table 1. 

Table 1. Parameter settings for GAs used for feature selection 

4 Computational Stress Classifiers 

Classification models developed for stress pattern recognition from primary stress 
signals were based on an artificial neural network (ANN) and a support vector ma-
chine (SVM). The models were extended to incorporate feature selection phases  

GA Parameter Value/Setting 
population size 100 
number of generations 2000 
crossover rate 0.8 
mutation rate 0.01 
crossover type MATLAB’s Scattered Crossover 
mutation type  MATLAB’s Uniform Mutation 
selection type MATLAB’s Stochastic Uniform Selection 
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either using the PISA or G A approaches. Each classification model was defined to 
capture individual-independent stress patterns. The accuracy and F-Score were  
calculated for each approach to determine the quality of the classification. 

The stress reading data set was divided up into 3 subsets – training, validation and 
test sets – where 50% of the data samples were used for training a classification mod-
el and the rest of the data set was divided up equally for validating and testing the 
model. MATLAB was used to implement and test the models. 

4.1 Artificial Neural Network Based Stress Classifiers 

ANNs, inspired by biological neural networks, have capabilities for learning patterns 
to recognize characteristics in input tuples by classes. An ANN is made up of inter-
connected processors, known as artificial neurons, which are connected by weighted 
links that pass signals between neurons. In this paper, f eed-forward ANNs trained 
using backpropagation were used. Three topologies were used to classify stress in 
reading. Each of the ANNs was provided stress features as inputs based on a selection 
method. Therefore, the ANNs differed only on the number of inputs. The ANN based 
stress classification models were: 

• ANN: an artificial neural network classification model that was provided with all 
the features in the stress feature set as input to recognize stress patterns 

• PISA+ANN: ANN with inputs as features produced by PISA 
• GA+ANN: ANN with inputs as features produced by a GA 

The MATLAB adapt fun ction was used for training the ANNs on an in cremental 
basis. Each network was trained for 1000 epoch s using the Levenberg-Marquardt 
algorithm. The network had 7 hidden neurons and one neuron in the output layer. 
Future work could investigate optimizing the topology of the ANN for stress classifi-
cation on the reading data set. 

4.2 Support Vector Machine Based Stress Classifiers 

SVMs have been widely used in literature for classification problems including classi-
fications based on physiological data [18]. Provided a set of training samples, a SVM 
transforms the data samples using a nonlinear mapping to a higher dimension with the 
aim to determine a hyperplane that partitions data by class or labels. A hyperplane is 
chosen based on support vectors, which are training data samples that define maxi-
mum margins from the support vectors to the hyperplane to form the best decision 
boundary. This contributes to the resistance to data overfitting and helps to generalize 
classifications well. 

Despite the useful characteristics, SVMs are still not robust to feature sets with re-
dundant and irrelevant features. As a consequence, hybrids of SVM with PISA or GA 
were used to deal with ineffective features to i nvestigate whether the hybrids with 
feature selection methods improved the quality of the classification. 
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The SVM based stress classification models developed were: 

• SVM: a support vector machine classification model that was provided with all the 
features in the stress feature set as input similar to the ANN 

• PISA+SVM: SVM with inputs as features produced by PISA 
• GA+SVM: SVM with inputs as features produced by a GA 

5 Results and Discussion 

The six ANN and SVM based techniques were implemented and tested on the reading 
data set f or stress recognition. Classification results were obtained using 10-fold 
cross-validation. The results are presented in Table 2. Classifiers with feature selec-
tion methods performed better than classifiers that used all stress features to model 
stress patterns. The hybrid classifiers had stress recognition rates and F-score values 
that were at least 8% and 12% better respectively. Classifiers with a GA as the feature 
selection method produced the highest stress recognition rates with GA+SVM as the 
best performing technique.  

Performance measures for the classification techniques show that it was beneficial 
to use the feature selection methods to model stress patterns in reading. The stress 
features would have had redundant features and PISA would have reduced it. PISA 
compared every feature to every other feature in a pair-wise fashion and took a greedy 
approach in selecting features. Unlike PISA, the GA took a global view of the fea-
tures and would have managed to reduce more redundant, irrelevant and corrupted 
features. 

In terms of execution time, the GA based approaches, GA+ANN and GA+SVM, 
took longer times than the other techniques to produce solutions. It took PISA less 
than one second to select the features for the classification models whereas the execu-
tion times for the GA based approaches were in the order of  hours. Classification 
without a feature selection method or with PISA took relatively a similar amount of 
time. Empirical execution times for the different approaches are shown in Table 3. 

The execution times for GA based approaches were recorded af ter the search 
reached convergence except for GA+ANN, which took a lot longer to e xecute. 
GA+ANN took at lea st 3 days and it took the other techniques not more than a few 
hours to produce a solution. Therefore, it was not practical to let the GA+ANN search 
execute for longer. Table 2 and Table 3 have a * with the values to show results at the 
point when the GA+ANN search was terminated.  

Table 2. Performance measures for stress recognition using the different approaches based on 
10-fold cross-validation 

Classification 
Performance 
Measure 

ANN PISA+ANN GA+ANN SVM PISA+SVM GA+SVM 

Accuracy 0.68 0.76 0.82* 0.67 0.80 0.98 
F-score 0.67 0.79 0.82* 0.67 0.79 0.98 
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Table 3. Relative execution times for the different classification techniques 

 ANN PISA+ANN GA+ANN SVM PISA+SVM GA+SVM 
Execution time 
(minutes) 5.1 5.1 4582* 0.5 0.5 275 

 

 

(a) 

 

(b) 

Fig. 5. Performances for stress recognition using different degrees of pseudo-independence and 
PISA as the feature selection method for the classification (a) ANN based classification (b) 
SVM based classification 
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Due to the relative long execution times for the GA based approaches to search for 
a better stress classification result, other feature selection approaches can be investi-
gated in the future. With shorter execution times and classification performance re-
sults for classifiers using PISA, PISA has the potential to increase the performance for 
classifications. In future, PISA based classifiers could be extended to have a more 
complex definition for pseudo-independence. 

ANN and SVM classification results using PISA over a range of degrees of pseu-
do-independence were also obtained to determine the effect of the different degrees of 
pseudo-independence on the classification results. The results are displayed in graphs 
shown in Fig. 5. The graphs show the stress recognition rates and F-score along with 
the number of features for the diff erent degrees of pseudo-independence. For both , 
ANN and SVM, the plot for the classification results show a positive overall rate of 
change and then it becomes negative after 0.5 degree of pseudo-independence. The 
best classification results are produced when the degree of pseudo-independence is 
0.5. At this degree, every feature is pseudo-independent at the degree of 0.5 to every 
other feature in the set of features used as input to develop th e ANN and SVM  
classification models.  

6 Conclusion and Future Work 

Classification models were developed to recognize individual-independent stress 
patterns in physiological and physical data for reading. The use of a feature selection 
method that dealt with redundant features improved the quality of the classification. 
However, classification models based on a genetic algorithm provided better recogni-
tion rates for stress than a correlation based feature selection method. On the other 
hand, genetic algorithm based approaches required much longer execution times but 
the correlation based feature selection method hardly had any impact on the execution 
time. In future, the correlation based feature selection method could be extended to 
have a wider definition for feature independence. Further, a hybrid of the two feature 
selection methods presented in this work could be developed to reduce the execution 
time for the genetic algorithm based search. Moreover in this work, features were 
selected from an individual-independent viewpoint. Future work could investigate 
feature selection based on relationships of features for each individual and analyze 
their effect of the approach on classifications. 
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Abstract. Efficient management of chronic diseases is critical in mod-
ern health care. We consider diabetes mellitus, and our ongoing goal is
to examine how machine learning can deliver information for clinical
efficiency. The challenge is to aggregate highly heterogeneous sources
including demographics, diagnoses, pathologies and treatments, and ex-
tract similar groups so that care plans can be designed. To this end, we
extend our recent model, the mixed-variate restricted Boltzmann ma-
chine (MV.RBM), as it seamlessly integrates multiple data types for each
patient aggregated over time and outputs a homogeneous representation
called “latent profile” that can be used for patient clustering, visualisa-
tion, disease correlation analysis and prediction. We demonstrate that
the method outperforms all baselines on these tasks - the primary char-
acteristics of patients in the same groups are able to be identified and
the good result can be achieved for the diagnosis codes prediction.

1 Introduction

Chronic diseases are rampant. Health care costs are increasingly related to such
diseases. Diabetes mellitus is one such chronic disease from which 346 million
people worldwide suffer, as estimated by The World Health Organization (WHO)
[1]. Only about 5 − 10% of them have Type I diabetes mellitus, whilst Type
II comprises the rest. The people who suffer Type I are not able to produce
insulin. In contrast, Type II diabetes means that there is an inability to absorb
insulin. In 2004, 3.4 million people died from complications of high blood sugar.
The incidence of diabetes mellitus is increasing, and being diagnosed in younger
people. This leads to serious complications - deterioration in blood vessels, eyes,
kidneys and nerves. It is a chronic, lifelong disease.

Escalating health costs are associated with such chronic diseases. To provide
high quality healthcare, care plans are issued to patients to manage them within
the community, taking steps in advance so that these people are not hospitalised.
Thus, it is imperative to identify groups of patients with similar characteristics
so that they can be covered by a coherent care plan. Additionally, if the hospital
can predict the disease codes arising from escalating complication of chronic
disease, it can adjust financial and manpower resources. Thus useful prediction
of codes for chronic disease can lead to service efficiency.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 123–135, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Clustering is a natural selection for this task. However, medical data is com-
plex – it is mixed-type containing Boolean data (e.g., male/female), continuous
quantities (e.g., age), single categories (e.g., regions), and repeated categories
(e.g., disease codes). Traditional clustering methods cannot naturally integrate
such data and we choose to extend the our recent model, the mixed-variate re-
stricted Boltzmann machine (MV.RBM) [2]. The mixed-variate RBM uncovers
latent profile factors, enabling subsequent clustering. Using a cohort of 6, 931
chronic diabetes patients with data from 2007 to 2011, we collect 3, 178 diagno-
sis codes (treated as repeated categories) and combine it with region-of-birth (as
categories) and age (as Gaussian variables) to form our dataset. We show clus-
tering results obtained from running affinity propagation (AP) [3], containing 10
clusters and qualitatively evaluate the disease codes of groups. We demonstrate
that the mixed-variate RBM followed by AP outperforms all baseline methods –
Bayesian mixture model and affinity propagation on the original diagnosis codes,
and k-means and AP on latent profiles, discovered by just the plain RBM [4].

Predicting disease codes for future years enables hospitals to prepare finance,
equipment and logistics for individual requirements of patients. Thus prediction
of disease codes forms the next part of our study. Using the mixed-variate RBM
and the dataset described above, we demonstrate that our method outperforms
other methods, establishing the versatility of the latent profile discovery with
mixed-variate RBM.

In short, our main contributions are: (i) Novel extension and application of a
powerful data mining tool, mixed-variate RBM, to a complex hospital chronic
disease dataset, for clustering and understanding of disease codes within sub-
groups; (ii) Disease code prediction, using the model; and (iii) Demonstration of
the method and showing that it outperforms baseline models, in both clustering
and prediction on this complex data.

The significance of our work is to build a framework that is able to support
healthcare centres and clinicians delivering outcomes that can integrate with
their operations to enhance clinical efficiencies. Using such systems, the man-
agement and supervision on diabetes patients in particular as well as other kinds
of diseases patients in general would have the potential to improve.

The rest of paper is organized as follows. The next section presents our pa-
tient profile modelling framework. Next, we describe our implementation on the
diabetes cohort and demonstrate efficiencies of our methods. Section 4 discusses
related work and modelling choices as well as the other potentials of the proposed
framework, followed by conclusions in Section 5.

2 Latent Patient Profiling

A patient profile in modern hospitals typically consists of multiple records includ-
ing demographics, admissions, diagnoses, surgeries, pathologies and medication.
Each record contains several fields, each of which is type-specific. For example,
age can be considered as a continuous quantity but a diagnosis code is a dis-
crete element. At the first approximation, each patient can be represented by
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using a long vector of mixed types1. However, joint modelling of mixed types is
known to be highly challenging even for a small set of variables [5,6]. Complete
patient profiling, on the other hand, requires handling of thousands of variables.
Of equal importance is that the profiling should readily support a variety of
clinical analysis tasks such as patient clustering, visualisation and disease pre-
diction. In what follows, we develop a representational and computational scheme
to capture such heterogeneity in an efficient way. In particular, we extend the
our recently introduced machinery known as mixed-variate restricted Boltzmann
machine (MV.RBM) [2] for the task.

2.1 Mixed-Variate Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a bipartite undirected graphical
model with two layers, where the input layer consists of visible units and the
other layer the binary hidden units [7]. See, for example, Fig. 1 for an illustration.
A mixed-variate RBM is a RBM with inhomogeneous input units, each of which
has the own type. More formally, let v denote the joint set of visible variables:
v = (v1, v2, ..., vN ), h the joint set of binary hidden units: h = (h1, h2, ..., hK),
where hk ∈ {0, 1} for all k. Each visible unit encodes type-specific information,
and the hidden units capture the latent factors not presented in the observations.
Thus the MV.RBM can be seen as a way to transform inhomogeneous observa-
tional record into a homogeneous representation of the patient profile. Another
way to view this as a mixture model where there are 2K mixture components.
This capacity is arguably important to capture all factors of variation in the
patient cohort.

The MV.RBM defines a Boltzmann distribution over all variables: P (v,h;ψ)=
e−E(v,h)/Z (ψ), where E (v,h) is model energy, Z (ψ) is the normalising constant
and ψ is model parameter. In particular, the energy is defined as

E (v,h) = −
(∑

i

Fi(vi) +
∑
i

aivi +
∑
k

bkhk +
∑
ik

hkWikvi

)
(1)

where a = (a1, a2, .., aN) , b = (b1, b2, ..., bK) are biases of visible and hidden
units, and W = [Wik] represents the weights connecting hidden and visible
units, and Fi(vi) are type-specific function. The bipartite structure allows con-
ditional independence among intra-layer variables which lead to the following
factorisations:

P (v | h) =
N∏
i=1

P (vi | h) (2) P (h | v) =
K∏

k=1

P (hk | v) (3)

The conditional separation of types in Eq. (2) is critical: This allows inde-
pendent specification of type-specific data generative models and at the same

1 Since each field may be repeated over time (e.g., diagnosis codes), we need an aggre-
gation scheme to summarize the field. Here we use the simple counting for diagnosis
codes.
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time achieves higher-order dependencies through the “pooling” layer h. For
example, let fi(h) = ai +

∑
k Wikhk, the binary units would be specified as:

P (vi | h) = 1/
(
1 + e−fi(h)

)
(i.e., Fi(vi) = 0); the Gaussian units: P (vi | h) =

N
(
σ2
i fi(h);σi

)
(i.e., Fi(vi) = −v2i /2σ2

i ), and the categorical units: P (vi | h) =
efi(h)/

∑
j e

fj(h).
The model is typically estimated by maximising the data log-likelihood L =

logP (v;ψ) = log
∑

h P (v,h;ψ). The parameters are updated in a gradient
ascent fashion as follows:

ψ ← ψ + ν

(
Ev,h

[
∂E (v,h)

∂ψ

]
− Eh|v

[
∂E (v,h)

∂ψ

])
(4)

for some learning rate ν > 0. Here Ev,h denotes the expectation with respect to
the full model distribution P (v,h;ψ), Eh|v the conditional distribution given
the known v. Whilst the conditional expectation can be compute efficiently, the
full expectation is generally intractable. Thus we must resort to approximate
methods, and in this paper, we choose a truncated MCMC-based method known
as contrastive divergence (CD) [8] as it proves to be fast and accurate. A MCMC

chain is obtained by alternating between v̂ ∼ P
(
v | ĥ

)
and ĥ ∼ P (h | v̂).

2.2 MV.RBM for Patient Profiling

The goal of patient profiling is to construct an effective personal representation
from multiple hospital records. Here we focus mainly on patient demographics
(e.g., age, gender and region-of-birth) and their existing health conditions (e.g.,
existing diagnoses). For simplicity, we consider a binary gender (male/female).
Further, age can be considered as a continuous quantity and thus a Gaussian unit
can be used2; and region-of-birth and diagnosis as categorical variables. However,
since the same diagnosis can be repeated during the course of readmissions, it is
better to include them all. In particular, we adopt the idea from the “replicated
softmax” [4] where repeated diagnoses share the same parameters. In the end,
we build one MV.RBM per patient due to the difference in the diagnosis sets.
Further, to balance the contribution of the hidden units against the variation in
input length, it is important to make a change to the energy model in Eq. (1) as
follows: Db ← b where D is the total number of input variables for each patient.
We note that these parameter sharing and balancing are not readily present in
the current MV.RBM of Truyen et al [2].

Once the model has been estimated, the latent profiles are generated by com-
puting the posterior vector ĥ =

(
P
(
h11 | v

)
, P

(
h12 | v

)
, ..., P

(
h1K | v

))
, where

P
(
h1k | v

)
is a shorthand for P (hk = 1 | v) – the probability that the k-th latent

factor is activated given the demographic and clinical input v:

2 Although the distribution of ages for a particular disease is generally not Gaussian,
our model is a mixture of exponentially many components (2K , see Sec. 2.1 for
detail), and thus can capture any distribution with high accuracy.
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Fig. 1. Patient profiling using mixed-variate RBMs. The top layer represents stochastic
binary units. The bottom layer encodes multiple type-specific inputs: A for age (contin-
uous), G for gender (binary), R for region-of-birth, Ck for diagnosis codes. The circles
within squares denote the replicated diagnosis codes (categorical) where the integers
{nk} denotes the number of replications.

P
(
h1k | v

)
=

1

1 + exp {−Dbk −
∑

iWikvi}
.

As we will then demonstrate in Section 3, the latent profile can be used as input
for a variety of analysis tasks such as patient clustering and visualisation.

Interestingly, the model also enables a certain degree of disease prediction, i.e.,
we want to guess which diagnoses will be positive for the patient in the future3.
Although this may appear to be an impossible task, it is plausible statistically
because some diseases are highly correlated or even causative, and there are
certain pathways that a disease may progress. More specifically, subset of diag-
noses at time t+ 1 can be predicted by searching for the mode of the following
conditional distribution:

P
(
v(t+1) | v(1:t)

)
=
∑
h

P
(
v(t+1),h | v(1:t)

)
.

Unfortunately the search is intractable as we need to traverse through the space
of all possible disease combinations, which has the size of 2M where M is the set
of diagnosis codes. To simplify the task and to reuse of the readily discovered
latent profile ĥ(1:t), we assume that (i) the model distribution is not changed due
to the “unseen” future, (ii) the latent profile at this point captures everything we
can say about the state of the patient, and (iii) future diseases are conditionally

3 Although this appears to resemble the traditional collaborative filtering, it is more
complicated since diseases may be recurrent, and the strict temporal orders must be
observed to make the model clinically plausible.
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independent given the current latent profile. This leads to the following mean-
field approximation4:

P
(
v
(t+1)
j | v(1:t)

)
≈

exp
{
aj +

∑
k WjkP

(
h1k | v(1:t)

)}∑
i exp

{
ai +

∑
kWikP

(
h1k | v(1:t)

)} . (5)

3 Implementation and Results

In this section we present the analysis of patient profiles using the data obtained
from Barwon Health, Victoria, Australia5, during the period of 2007 − 2011
using the extended MV.RBM described in Section 2. In particular, we evaluate
the capacity of the MV.RBM for patient clustering and for predicting future
diseases. For the former task, the MV.RBM is can be seen as a way to transform
complex input data into a homogeneous vector from which post-processing steps
(e.g., clustering and visualisation) can take place. For the prediction task, the
MV.RBM acts as a classifier that map inputs into outputs.

Ourmain interest is in the diabetes cohort of 7, 746 patients. There are two types
of diabetes: Type I is typically present in younger patients who are not able to
produce insulin; and Type II is more popular in the older group who, on the other
hand, cannot adsorb insulin. One of the most important indicators of diabetes is
the high blood sugar level compared to the general population. Diabetes are typ-
ically associated with multiple diseases and complications: The cohort contains
5, 083 distinct diagnosis codes, many of which are related to other conditions and
diseases such as obesity, tobacco use and heart problems. For robustness, we re-
move those rare diagnosis codes with less than 4 occurrences in the data. This
results in a dataset of 6, 931 patients who originally came from 102 regions and
were diagnosed with totally 3, 178 unique codes. The inclusion of age and gender
into the model is obvious: they are not only related to and contributing to the dia-
betes types, they are also largely associatedwith other complications. Information
about the regions-of-origin is also important for diabetes because it is strongly re-
lated to the social conditions and lifestyles, which are of critical importance to the
proactive control of the blood sugar level, which is by far the most cost-effective
method to mitigate diabetes-related consequences.

3.1 Implementation

Continuous variables are first normalised across the cohort so that the Gaussian
inputs have zero-means and unit variances. We employ 1-step contrastive diver-
gence (CD) [8] for learning. Learning rates vary from type to type and they are
chosen so that reconstruction errors at each data sweep are gradually reduced.

4 This result is obtained by first disconnecting the future diagnosis-codes
from the latent units and then find the suboptimal factorised distribution

Q
(
v(t+1),h | v(1:t)

)
=

∏
j Qj

(
v
(t+1)
j | v(1:t)

)∏
k P

(
hk | v(1:t)

)
that minimises the

Kullback-Leibner divergence from the original distribution P
(
v(t+1),h | v(1:t)

)
.

5 Ethics approval 12/83.
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Parameters are updated after each mini-batch of 100 patients, and learning is
terminated after 100 data sweeps. The number of hidden units is determined
empirically to be 200 since large size does not necessarily improve the cluster-
ing/prediction performance.

For patient clustering, once the model has been learned, the hidden posteriors
that are computed using Eq. (3) can be used as the new representation of the
data. To enable fast bitwise implementation (e.g., see [9]), we then convert the

continuous posteriors into binary activation as follows: ĥk = 1 if P (h1k | v) ≥ ρ1
and P̂k = 0 otherwise for all k = 1, 2.., K and some threshold ρ1 ∈ (0, 1). We then
apply well-known clustering methods including affinity propagation (AP) [3], k-
means and Bayesian mixture models (BMM). The AP is of particular interest
for our exploratory analysis because it is capable of automatically determining
the number of clusters. It requires the similarity measure between two patients,
and in our binary profiles, a natural measure is the Jaccard coefficient:

J (p, q) =
| S {p} ∩ S {q} |
| S {p} ∪ S {q} | (6)

where S{p} is the set of activated hidden units for patient p. Another hyper-
parameter is the so-called ‘preference’ which we empirically set to the average
of all pairwise similarities multiplied by −20. This setting gives a reasonable
clustering.

The other two clustering methods require a prior number of clusters, and
here we use the output from the AP. For the k-means, we use the the Hamming
distance between activation vectors of the two patients6. The BMM is a Bayesian
model with multinomial emission probability.

The task of disease prediction is translated into predicting diagnoses in the
future for each patient. We split data into 2 subsets: The earlier subset, which
contains those diagnoses in the period of 2007 − 2010, is used to train the
MV.RBM; and the later subset is used to evaluate the prediction performance.
In the MV.RBM, we order the future diseases according to the probability that
the disease occurs as in Eq. (5).

3.2 Patient Clustering

First we wish to validate that the latent profiles discovered by the MV.RBM are
informative enough so that clinically meaningful clusters can be formed. Fig. 2
shows the 10 clusters returned by the AP and the similarity between every pa-
tient pair (depicted in colour, where the similarity increases with from blue to
red). It is interesting that, out of 10 groups, we are able to discover a group whose
conditions are mostly related to Type I diabetes (Figs. 3a and 3b), and another
group associated with Type II diabetes (Figs. 4a and 4b). The grouping properties
can be examined visually using a visualisation tool known as t-SNE [10] to project
the latent profiles onto 2D. Fig. 5a depicts the distribution of patients, where the
colours are based on the group indices assigned earlier by the AP.

6 The centroid of each cluster is chosen according to the median elementwise.
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Fig. 2. Similarity matrix and diagnosis codes histograms. The matrix represents re-
semblances of pairwise patients while histograms show quantity of diagnoses. Group 3
and Group 8 look highly overlapping at the diagnosis level (top-left figure), but in fact,
their clinical conditions are significantly different when we subtract the two histograms
(lower-right figure). (Best viewed in colors).

(a) Tag cloud of diagnosis descriptions.
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Fig. 3. Type I diabetes mellitus: Primary diagnoses and age distribution. Two figures
confirms the existing knowledge that Type I diabetes mellitus often occurs in the
younger population.

(a) Tag cloud of diagnosis descriptions.
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Fig. 4. Type II Diabetes mellitus: Primary diagnoses and age distribution. We can see
that the age distribution is distinct from the Type I group.
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For quantitative evaluation, we calculate the Rand-index [11] to assess the
quality of resulting clusters, given that we do not have cluster labels. The Rand-
index is the pairwise accuracy between any two patients. To judge whether two
patients share the same cluster, we consult the diagnosis code hierarchy of the
ICD-10 [12]. We use hierarchical assessment since a diagnosis code may have
multiple levels. E11.12, for example, has two levels: E11 and E11.12. The lower
level code specifies disease more clearly whilst the higher is more abstract. There-
fore we have two ways for pairwise judgement: the Jaccard coefficient (Section
3.1) and code ‘cluster’ which is the grouping of codes that belong to the same
disease class, as specified by the latest WHO standard ICD-10. At the lowest
level, two patients are considered similar if the two corresponding code sets are
sufficiently overlapping, i.e., their Jaccard coefficient is greater than a thresh-
old ρ2 ∈ (0, 1). At higher level, on the other hand, we consider two patients to
be clinically similar if they share higher level diabetes code of the same code
‘cluster’. For instance, two patients with two codes E11.12 and E11.20 are sim-
ilar at the level E117, but they are dissimilar at the lower level. Note that this
hierarchical division is for evaluation only. We use codes at the lowest level as
replicated softmax units in our model (Section 2.2).
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Fig. 5. Visualisation and quantitative assessment of clusters. (a) t-SNE [10] projection
on 2, 000 latent profiles. Groups are labelled by the outputs of the AP. (Best viewed in
colors). (b) Rand-index curves in patient clustering. AP : affinity propagation, BMM :
Bayesian mixture model, RBM : MV.RBM with diagnosis codes only.

Fig. 5b reports the Rank-indices with respect to the assessment at the lowest
level in the ICD-10 hierarchy for clustering methods with and without MV.RBM
pre-processing. At the next ICD-10 level, the MV.RBM/AP achieves a Rand-
index of 0.6040, which is, again, the highest among all methods, e.g., using the
RBM/AP yields the score of 0.5870, and using AP on diagnosis codes yields
0.5529. This clearly demonstrates that (i) MV.RBM latent profiles would lead
to better clustering that those using diagnosis codes directly, and (ii) modelling
mixed-types would be better than using just one input type (e.g., the diagnosis
codes).

7 This code group is for non-insulin-dependent diabetes mellitus.
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3.3 Disease Prediction

The prediction results are summarised in Fig. 6, where the ROC curve of the
MV.RBM is compared against that of the baseline using k-nearest neighbours
(k-NN). The k-NN approach to disease ranking is as follows: For each patient, a
neighbourhood of the 50 most similar patients is collected based on the Jaccard
coefficient over sets of unique diagnoses. The diagnoses are then ranked accord-
ing to their occurrence frequency within the neighbourhood. As can be seen
from the figure, the latent profile approaches outperform the k-NN method. The
MV.RBM with contextual information such as age, gender and region-of-birth
proves to be useful. In particular the the areas under the ROC curve (AUC) of
the MV.RBMs are 0.84 (with contextual information) and 0.82 (without con-
textual information). These are clearly better than the score obtained by k-NN,
which is 0.77.
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Fig. 6. ROC curves in disease prediction. RBM is MV.RBM with diagnosis codes only;
Patient-Patient is the k-nearest neighbours method. Best viewed in colors.

4 Discussion and Related Work

This work is part of our ongoing effort to apply data mining and statistical
techniques to understand the complex health databases in order to improve the
services efficiency within health organisations and across coordinated networks.
This line of research has recently attracted considerable interest in the data
mining community (e.g., see [13,14]). Our focus on diabetes is motivated by the
pressing demands to deliver personalised cares for the large population on an
ongoing basis [15,16]. However, we wish to emphasize that the approach is quite
general and could be applicable to other cohorts.
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In terms of modelling, our work adds a few more flavours to the current
mixed-variate analysis in biomedical domains [5,6,17]. The existing literature of-
fers three approaches: The first is to specify the direct type-specific conditional
relationship between two variables (e.g., see [5]), the second is to assume that
each observable is generated from a latent variable (latent variables then encode
the dependencies) (e.g., see [6]), and the third is to construct joint cumulative
distributions using copula [18,17]. The drawback of the first approach is that it
requires far more domain knowledge and statistical expertise to design a cor-
rect model even for a small number of variables. The second approach lifts the
direct dependencies to the latent variables level. All approaches are, however,
not very scalable to realistic setting of the hospital records. Our treatment using
MV.RBM [2], along with the line of work using RBMs for representing com-
plex data [19,20,21], offers the fourth alternative: Direct pairwise dependencies
are substituted by indirect long-range dependencies. Not only this simplifies the
model design, the inference is much more scalable: each MCMC sweep through
all variables takes only linear time. Our most recent work in [21], while enjoying
the similar computational efficiency, offers a better interpretation through the
use of latent variables to capture the generative mechanism of data types.

Latent profiling could be important for other applications such as patient
retrieval, i.e., we want to retrieve patients with clinically similar conditions to
the patient under study. In this setting, using raw diagnosis codes may miss
those whose codes are different from the present patient even if they share the
same clinical conditions. The use of MV.RBM, on the other hand, would project
these patients onto similar latent profiles. It is also of interest to ask whether it
is justifiable for the choice of parameter sharing for repeated diagnoses. To get
answer, we experimented with the “counting” treatments in which each code is
considered as a Poisson variable, and our clustering/prediction results indicate
that it is much better to employ the parameter sharing trick. This may due to
the fact that under the Poisson treatment, diagnoses are assumed to “arrive”
independently, while in reality diagnoses are generally correlated.

5 Conclusion

We have presented a latent profiling framework using our recently introduced ar-
chitecture known as mixed-variate restricted Boltzmann machines (MV.RBM).
The goal was to develop a representational and computational scheme that can
handle complex, inhomogeneous data from real hospital settings. The MV.RBM
was adapted to handle recurrent diagnoses by parameter sharing and variable
balancing. We evaluated this scheme on a cohort of complex diseases such as
diabetes, where there are many influential factors, and diagnoses are often re-
peated, correlated and causative. It is demonstrated that the chosen scheme is
highly effective for exploratory tasks such as patient clustering and visualisation
and predictive tasks such as 1-year diagnosis prognosis.
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Abstract. Existing generative classifiers (e.g., BayesNet and AnDE)
make independence assumptions and estimate one-dimensional likeli-
hood. This paper presents a new generative classifier called MassBayes
that estimates multi-dimensional likelihood without making any explicit
assumptions. It aggregates the multi-dimensional likelihoods estimated
from random subsets of the training data using varying size random
feature subsets. Our empirical evaluations show that MassBayes yields
better classification accuracy than the existing generative classifiers in
large data sets. As it works with fixed-size subsets of training data, it has
constant training time complexity and constant space complexity, and it
can easily scale up to very large data sets.

Keywords: Generative classifier, Likelihood estimation, MassBayes.

1 Introduction

The learning task in classification is to learn a model from a labelled training set
that maps each instance to one of the predefined classes. The model learned is
then used to predict a class label for each unseen test instance. Each instance x
is represented by a d-dimensional vector 〈x1, x2, · · · , xd〉 and given a class label
y ∈ {y1, y2, · · · , yc}, where c is the total number of classes. The training set D is
a collection of labelled instances {(x(i), y(i))} (i = 1, 2, · · · , N).

The generative approach of classifier learning models the joint distribution
p(x, y) and predicts the most probable class as:

ŷ = argmax
y

p(x, y) (1)

Using the product rule, the joint probability can be factorised as:

p(x, y) = p(y)× p(x|y) (2)

Generative classifiers learn either the joint distribution p(x, y) or the likelihood
p(x|y). However, estimating p(x, y) or p(x|y) directly from data using existing
data modelling techniques is difficult. Density estimators such as Kernel Density
Estimation [1], k-Nearest Neighbour [1] and Density Estimation Trees [2] are
impractical in large data sets due to their high time and space complexities. The
research has thus focused on learning one-dimensional likelihood to approximate
p(x, y) in different ways.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 136–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Existing generative classifiers allow limited probabilistic dependencies among
attributes and assume some kind of conditional independence. Different gener-
ative classifiers make different assumptions and allow different level of depen-
dencies. They learn a network (or its simplification) of probabilistic relationship
between the attributes and estimate the likelihood at each node given its par-
ents from D (i.e., one-dimensional likelihood estimation). The joint distribution
p(x, y) is estimated as the product of likelihood of each attribute given their
parents in the network:

p̂(x, y) = p(x1|π1)× p(x2|π2)× · · · × p(xd|πd)× p(y|πy) (3)

where πi is parent(xi) and πy is parent(y).
Though these one-dimensional likelihood generative classifiers have been

shown to perform well [3,4,5,6,7], we hypothesize that a multi-dimensional like-
lihood generative classifier will produce even better results.

In this paper, we propose an ensemble approach to estimate multi-dimensional
likelihood without making any explicit assumption about attribute indepen-
dence. The idea is to construct an ensemble of t multi-dimensional likelihood
estimators using random sub-samples Di ⊂ D (i = 1, 2, · · · , t). Each estimator
estimates the multi-dimensional likelihood using a random subset of d attributes
from Di. The average estimation from t estimators provides a good approxima-
tion of p(x|y). We call the resulting generative classifier MassBayes. It has con-
stant space complexity and constant training time complexity because it employs
a fixed-size training subset to build each of the t estimators.

The rest of the paper is structured as follows. Section 2 provides a brief
overview of well-known generative classifiers. The proposed method is described
in Section 3 followed by the implementation details in Section 4. The empirical
evaluation results are presented in Section 5. Finally, we provide conclusions and
directions for future research in Section 6.

2 Existing Generative Classifiers

Naive Bayes (NB) [3] is the simplest generative approach that estimates p(x, y)
by assuming that the attributes are statistically independent given y:

p̂(x, y)NB = p(y)

d∏
i=1

p(xi|y) (4)

Despite the strong independence assumption, it has been shown that NB pro-
duces impressive results in many application domains [3,4]. Its simplicity and
clear probabilistic semantics have motivated researchers to explore different ex-
tensions of NB to improve its performance by relaxing the unrealistic assumption.

BayesNet [5] learns a network of probabilistic relationship among the at-
tributes including the class attribute from the training data. Each node in the
network is independent of its non-descendants given the state of its parents. At
each node, the conditional probabilities with respect to its parents are learned
from D. The joint probability p(x, y) is estimated as:
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p̂(x, y)BayesNet = p(y|πy)
d∏

i=1

p(xi|πi) (5)

Learning an optimal network requires searching over a set of every possible
network, which is exponential in d. It is intractable in high-dimensional problems
[8]. NB is the simplest form of a Bayesian network, where each attribute is
dependent on y only.

In another simplification of BayesNet, AnDE [7] relaxes the independence
assumption by allowing dependency between y and a fixed number of privileged
attributes or super-parents. The other attributes are assumed to be independent
given the n super-parents and y. AnDE with n = 0, A0DE, is NB. AnDE avoids
the expensive searching in learning probabilistic dependencies by constructing an
ensemble of n-dependence estimators. The joint probability p(x, y) is estimated
as:

p̂(x, y)AnDE =
∑
s∈Sn

p(xs, y)
∏

j∈{1,2,···,d}\s
p(xj |xs, y) (6)

where Sn is the collection of all subsets of size n of the set of d attributes
{1, 2, · · · , d}; and xs is a n-dimensional vector of values of x defined by s.

It has been shown that A1DE and A2DE produce better predictive accuracy
than the other state-of-the-art generative classifiers [6,7]. However, it only allows
dependencies on a fixed number of attributes and y. Because of the high time

complexity of O
(
N
(

d
n+1

))
1 and space complexity of O

(
c
(

d
n+1

)
vn+1

)
, where

v is the average number of values for an attribute [7], only A2DE or A3DE is
feasible even for a moderate number of dimensions. Furthermore, selecting an
appropriate value of n for a particular data set requires a search.

AnDE and many other implementations of BayesNet require all the attributes
to be discrete. The continuous-valued attributes must be discretised using a
discretisation method before building a classifier.

3 MassBayes: A New Generative Classifier

Rather than aggregating an ensemble of n-dependence single-dimensional like-
lihood estimators, we propose to aggregate an ensemble of t multi-dimensional
likelihood estimators where each likelihood is estimated using different random
subsets of d attributes from data. The likelihood p(x|y) is estimated as:

p̂(x|y) = 1

t

∑
g∈Gt

p(xg|y) (7)

where Gt is a collection of t subsets of varying sizes of d attributes; and xg is a
|g|-dimensional vector of values of x defined by g; and 1 ≤ |g| ≤ d.

Each p(xg|y) is estimated using a random subset of training instances D ⊂ D,
where |D| = ψ < N .

p̂(xg|y) =
|Dy,xg |
|Dy|

(8)

1
(
d
n

)
is a binomial coefficient of n out of d.
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where |Dy,xg | is the number of instances having attribute values xg belonging to
class y in D and |Dy| is the number of instances belonging to class y in D.

Rather than relying on a specific discretisation method in the preprocess-
ing step, we propose to build a model directly from data, akin to an adaptive
multi-dimensional histogram, to determine xg which adapts to the local data
distribution. The feature space partitioning we employed (to be discussed in
Section 4) produces large regions in sparse area and small regions in the dense
area of the data distribution.

Let T (·) be a function that divides the feature space into non-overlapping
regions and T (x) be the region where x falls. In a multi-dimensional space, each
instance in D can be isolated by splitting only on few dimensions i.e., only a
subset of d attributes (g ⊂ {1, 2, · · · , d}) is used to define T (x). Hence, |Dy,xg | is
the number of instances belonging to class y in the region T (x). Let p(T (x)|y) be
the probability of region T (x) when only class y instances in D are considered.

p(T (x)|y) = p̂(xg|y) =
|Dy,xg |
|Dy|

(9)

The new generative classifier, called MassBayes, estimates the joint distribution
as:

p̂(x, y)MassBayes = p(y)
1

t

∑
g∈Gt

p(xg|y) = p(y)
1

t

t∑
i=1

p(Ti(x)|y) (10)

Fig. 1. Different regions from different Ti(·) (i = 1, 2, · · · , 5) that cover x

The average probability of t different regions Ti(x) (i = 1, 2, · · · , t), con-
structed using Di ⊂ D, provides a good estimate for p(x|y) as it estimates
the multi-dimensional likelihood by considering the distribution in different lo-
cal neighbourhood of x in the data space. An illustrative example is provided in
Figure 1. Note that, the estimator employed in MassBayes is not a true density
estimator as it does not integrate to 1.

MassBayes has the following characteristics in comparison with AnDE:

1. In each estimator, AnDE estimates one-dimensional likelihood given a
fixed number of super-parents and y, whereas MassBayes estimates multi-
dimensional likelihood using varying number of dimensions.

2. In AnDE, the ensemble size is fixed to
(
d
n

)
. But, MassBayes allows the flex-

ibility for users to set the ensemble size.
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3. AnDE requires continuous-valued attributes to be discretised before build-
ing the model. The performance of AnDE is affected by the discretisation
technique used. In contrast, MassBayes builds models directly from data.
It can be viewed as a dynamic multi-dimensional discretisation where the
information loss is minimised by averaging over multiple models.

4. Each model in MassBayes is built with training subset of size ψ < N which
gives rise to the constant training time. In contrast, each model in AnDE is
trained using the entire training set.

5. AnDE is a deterministic algorithm whereas MassBayes is a randomised al-
gorithm.

6. Like AnDE, MassBayes is a generative classifier without search.

4 Implementation

In order to partition the feature space to define the regions Ti(·), we use the
implementation described by Ting and Wells (2010) using a binary tree called
h:d-tree [9]. A parameter h defines the maximum level of sub-division. The
maximum height of a tree is h× d.

Let the data space that covers the instances in D be Δ. The data space
Δ is adjusted to become δ using a random perturbation conducted as follows.
For each dimension j, a split point vj is chosen randomly within the range
maxj(Δ) − minj(Δ). Then, the new range δj along dimension j is defined as
[vj − r, vj + r], where r = max(vj −minj(Δ),maxj(Δ)− vj). The new range on
all dimensions defines the adjusted work space for the tree building process.

A subset D is constructed from D by sampling ψ instances without replace-
ment. The sampling process is restarted with D when all the instances are used.
The random adjustment of the work space and random sub-sampling, as de-
scribed earlier, ensure that no two trees are identical.

The dimension to split is selected from a randomised set of d dimensions in
a round-robin manner at each level of a tree. A tree is constructed by splitting
the work space into two equal-volume half spaces at each level. The process
is then repeated recursively on each non-empty half-space. The tree building
process stops when there is only one instance in a node or the maximum height
is reached.

At the leaf node, the number of instances in the node belonging to each class
is stored. Figure 2 shows a typical example of an implementation of T (·) as an
h:d-tree for h = 2 and d = 2. The dotted lines enclosed the instances in D and
the solid lines enclosed the adjusted work space which has ranges δ1 and δ2 on
x1 and x2 dimensions. R1, R2, R3, R4 and R5 represent different regions in T (·)
depending on the data distribution in D. Region R1 is defined by splitting the
work space in x1 dimension only, g = {1}, whereas the other four regions use
dimensions x1 and x2, i.e., g = {1, 2}.

In the original implementation by Ting and Wells (2010) for mass estimation,
each tree is built to the maximum height of h× d resulting in equal-size regions
regardless of the data distribution [9]. In our implementation, in order to adapt
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Fig. 2. An example of an h:d-tree for h = 2 and d = 2

to the data distribution, the tree building stops early once the instances are
separated. We use the same algorithm as used by Ting and Wells (2010) to
generate h:d-trees to represent Ti(·) in [9] with the required modification.

The procedures to generate t trees from a given data set D are provided in
Algorithms 1 and 2.

The maximum height of each tree is hd, and ψ instances have to be assigned
to either of the two child nodes at each level of a tree. Hence, the total training
time complexity to construct t trees is O(thdψ). There are a maximum of ψ
(as ψ < 2hd in general) leaf nodes in each tree. The total space complexity is
O(t(d + c)ψ).

The time and space complexities of two variants of NB (NB-KDE that es-
timates p(xi|y) through kernel density estimation [4]; and NB-Disc that esti-
mates p(xi|y) through discretisation [10]), AnDE and MassBayes are presented in
Table 1. Both training time complexity and space complexity of MassBayes are

Table 1. Time and space complexities of different generative classifiers

Classifiers Training time Testing time Space
NB-KDE [4] O(Nd) O(cmd) O(cmd)
NB-Disc [6] O(Nd) O(cd) O(cdv)

AnDE [7] O
(
N
(

d
n+1

))
O
(
cd
(
d
n

))
O
(
c
(

d
n+1

)
vn+1

)
MassBayes O(thdψ) O(thd) O (t(d+ c)ψ)

N : total number of training instances, m: average number of training instances in a
class, d: number of dimensions, c: number of classes, v: average number of discrete values
of an attribute, n: number of super-parents, t: number of trees, h: level of divisions,
and ψ: sample size.
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independent of N . Note that the complexities for NB-Disc and AnDE do not
include the additional discretisation needed in the preprocessing.

Algorithm 1. BuildTrees(D, t, ψ, h)

Inputs: D - input data, t - number of trees, ψ - sub-sampling size, h - number of
times an attribute is employed in a path.
Output: F - a set of t h:d-trees

1: H ← h× d {Maximum height of a tree}
2: Initialize F
3: for i = 1 to t do
4: D ← sample(D,ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkSpace(D)
6: A← {Randomised list of d attributes.}
7: F ← F ∪ SingleTree(D,min,max, 0, A)
8: end for
9: return F

Algorithm 2. SingleTree(D,min,max, �, A)

Inputs: D - input data, min & max - arrays of minimum and maximum values for
each attribute that define a work space, A - a randomised list of d attributes, 
 -
current height level.
Output: an h:d-tree

1: Initialize Node(·)
2: while (
 < H and |D| > 1) do
3: q ← nextAttribute(A,
) {Retrieve an attribute from A based on height level.}
4: midq ← (maxq +minq)/2
5: Dl ← filter(D, q < midp)
6: Dr ← filter(D, q ≥ midq)
7: if (|Dl| = 0 ) or (|Dr | = 0) then {Reduce range for single-branch node.}
8: if (|Dl| > 0 ) then maxq ← midq
9: else minq ← midq
10: end if
11: 
← 
+ 1
12: continue at the start of while loop
13: end if
14: {Build two nodes: Left and Right as a result of a split into two half-spaces.}
15: temp← maxq; maxq ← midq
16: Left← SingleTree(Dl,min,max, 
+ 1, A)
17: maxq ← temp; minq ← midq
18: Right← SingleTree(Dr,min,max, 
+ 1, A)
19: terminate while loop
20: end while
21: classCount← updateClassCount(D)
22: return Node(Left,Right, SplitAtt← q, SplitV alue← midq, classCount)
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5 Empirical Evaluation

This section presents the results of the experiments conducted to evaluate the
performance of MassBayes against seven well known contenders: two variants of
NB (NB-KDE and NB-Disc), BayesNet, three variants of AnDE (A1DE, A2DE,
A3DE) and decision tree J48 (i.e., the WEKA [11] version of C4.5 [12]).

MassBayes was implemented in Java using the WEKA platform [11] which also
has implementations of NB, BayesNet, A1DE and J48. For A2DE and A3DE,
we used the WEKA implementations provided by the authors of AnDE.

All the experiments were conducted using a 10-fold cross validation in a Linux
machine with 2.27 GHz processor and 100 GB memory. The average accuracy
(%) and the average runtime (seconds) over a 10-fold cross validation were re-
ported. A two-standard-error significance test was conducted to check whether
the difference in accuracies of two classifiers was significant. A win or loss was
counted if the difference was significant; otherwise, it was a draw.

Ten data sets with N > 10000 were used. All the attributes in the data sets are
numeric. The properties of the data sets are provided in Table 2. The RingCurve,
Wave and OneBig data sets were three synthetic data sets and the rest were
real-world data sets from UCI Machine Learning Repository [13]. RingCurve
and Wave are subsets of the RingCurve-Wave-TriGaussian data set used in [9]
and OneBig is the data set used in [14].

Table 2. Properties of the data sets used

Data sets #N #d #c

CoverType 581012 10 7
MiniBooNE 129596 50 2

OneBig 68000 20 10
Shuttle 58000 8 7
Wave 20000 2 2

Data sets #N #d #c

RingCurve 20000 2 2
Letters 20000 16 26

Magic04 19020 10 2
Mamograph 11183 6 2

Pendigits 10992 16 10

For AnDE, BayesNet and NB-Disc, data sets were discretised by a supervised
discretisation technique based on minimum entropy [15] as suggested by the
authors of AnDE before building the classification models.

Two variants of MassBayes were used: MassBayes with (ψ = 5000) and
MassBayes′ (ψ = N). The other two parameters t and h were set as default
to 100 and 10, respectively.

For BayesNet, the parameter ‘maximum number of parents’ was set to 100
to examine whether a large number of parents produces better results; and the
parameter ‘initialise as Naive Bayes’ was set to ‘false’ to initialise an empty
network structure. The default values were used for the rest of the parameters.
All the other classifiers were executed with the default parameter settings.
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Table 3. Average classification accuracies (%) over a 10-fold cross validation

Data Mass Mass A3 A2 A1 Bayes NB- NB-
sets Bayes′ Bayes DE DE DE Net KDE Disc J48

CoverType 94.00 78.21 88.16 80.81 72.89 87.79 66.72 66.61 92.39
MiniBooNE 92.68 91.11 N/A∗ 91.48 89.58 90.25 86.07 86.29 90.47

OneBig 100.00 100.00 N/A∗ 99.81 99.69 99.99 99.98 99.97 99.84
Shuttle 99.89 99.89 99.94 99.94 99.85 99.93 92.68 94.36 99.97
Letters 96.63 95.63 95.11 94.31 88.81 86.97 74.21 73.94 87.92

RingCurve 100.00 100.00 99.99 99.99 99.99 99.99 99.27 99.48 99.91
Wave 100.00 100.00 78.51 78.51 78.51 78.51 77.91 78.51 99.79

Magic04 85.72 85.53 85.08 84.57 83.00 83.46 76.13 78.27 85.01
Mamograph 98.69 98.71 98.51 98.37 98.42 98.54 97.86 97.62 98.57

Pendigits 99.45 99.28 98.80 98.82 97.84 96.81 88.64 87.9 96.56
∗ Did not complete because of integer overflow error.

Table 4. Win:Loss:Draw counts of MassBayes over the other contenders in terms of
classification accuracy based on the two-standard-error significance test

A3DE A2DE A1DE BayesNet NB-KDE NB-Disc J48

MassBayes′ 4:1:3 7:1:2 7:0:3 7:1:2 10:0:0 10:0:0 7:1:2
MassBayes 3:2:3 6:3:1 7:0:3 6:2:2 10:0:0 10:0:0 6:2:2

Table 5. Average runtime (seconds) over a 10-fold cross validation

Mass Mass A3 A2 A1 Bayes NB- NB-
Data sets Bayes′ Bayes DE DE DE Net KDE Disc J48

CoverType 1075.8 45.7 45.6 13.9 4.9 387.9 96.3 3.2 3690.7
MiniBooNE 431.1 33.7 N/A 231.3 5.9 308.9 831.6 2.1 323.8

OneBig 113.9 10.5 N/A 11.6 3.9 432.5 253.0 0.8 15.1
Shuttle 48.5 8.0 1.8 0.7 0.5 6.8 1.5 0.4 4.2
Letters 18.9 5.5 11.5 2.6 0.8 4.9 2.5 0.4 7.3

RingCurve 4.4 2.3 0.2 0.2 0.2 0.3 2.4 0.2 0.4
Wave 4.9 2.1 0.2 0.2 0.2 0.2 2.5 0.1 0.6

Magic04 10.9 3.9 0.7 0.5 0.2 0.7 8.8 0.2 3.4
Mamograph 4.7 3.1 0.3 0.2 0.2 0.3 0.5 0.2 0.4

Pendigits 7.3 3.6 5.7 0.9 0.4 1.8 1.6 0.2 1.2

Table 3 shows the average classification accuracies of MassBayes′ and Mass-
Bayes in comparison to the other contenders. The results of the two-standard-
error significance test in Table 4 show that both MassBayes′ and MassBayes
produced better classification accuracy than the other contenders in most data
sets.
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Fig. 3. Scale-up test: MassBayes versus existing generative classifiers. The base for
training size ratio is 7000 instances and the bases for runtime ratio and memory ratio
are the training time and memory required to save a classification model for 7000
instances. Axes are on logarithmic scales of base 10.

MassBayes produced slightly poorer results than A2DE, A3DE, BayesNet and
J48 in CoverType. This was because the default sample size was not enough to
yield a good estimate. The accuracy was increased up to 84.62% with ψ = 20000
and 88.66% with ψ = 50000. More samples are required to grow the trees further
to model the distributions well if the class distributions in the feature space
are complex. Figure 4(a) shows the improvement in accuracy of MassBayes in
CoverType when the sample size was increased.

Table 5 presents the average runtime. In terms of runtime, MassBayes was
an order of magnitude faster than A2DE in MiniBooNE; BayesNet in Cover-
Type, MiniBooNE and OneBig; NB-KDE in MiniBooNE and OneBig; and J48
in CoverType and MiniBooNE. It was of the same order of magnitude as A3DE,
A2DE, BayesNet, NB-KDE and J48 in many cases and an order of magnitude
slower than NB-Disc and A1DE. MassBayes′ was an order of magnitude slower
than the other contenders in many data sets. However, it was of the same order
of magnitude as A3DE in Letters; A2DE in MiniBooNE; BayesNet and NB-KDE
in MiniBooNE and OneBig; and J48 in CoverType and MiniBooNE.

Note that the reported runtime results for AnDE, BayesNet and NB-Disc
did not include the discretisation time that must be done as a preprocessing
step, which give the existing generative classifiers (except NB-KDE) an unfair
advantage over MassBayes. The discretisation time can be substantially large in
large data sets. For example, the discretisation took 52 seconds in the largest
data set, CoverType. This discretisation time alone was more than the total
runtime of MassBayes. Thus, MassBayes in effect runs faster than all existing
generative classifiers on equal footing.

In order to examine the scalability of the classifiers in terms of training time
and space requirements with the increase in training size N , we used the 48-
dimensional (42 irrelevant attributes with constant values) RingCurve-Wave-
Tri-Gaussian data set previously employed by Ting and Wells (2010) in [9]. The
training data size was increased from 7000 to 70000, half-a-million, 1 million and
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Fig. 4. Effect of parameters ψ and t on the classification accuracy and runtime of
MassBayes in the CoverType data set. The base for the runtime ratio while varying
ψ and t is the total runtime (training and testing over a 10-fold cross validation) for
ψ = 500 and t = 10, respectively. The horizontal axis of t and the vertical axis of
runtime ratio in (b) are on logarithmic scales of base 10.

10 million by a factor of 1, 10, 75, 150 and 1500, respectively. Figure 3 shows the
increase in classification model building time and memory space required to store
the classification model for different generative classifiers. Note that the discreti-
sation time was not included in the presented results. The discretisation time
increases linearly with the increase in training data size. This additional time for
discretisation will increase the training time of AnDE, BayesNet and NB-Disc.
MassBayes had constant training time and constant space requirements.

In order to examine the sensitivity of the parameters ψ, t and h in classifica-
tion accuracy and runtime of MassBayes, we conducted a set of experiments by
varying one parameter and fixing the other two to the default values. The result
of the experiment varying ψ and t in the largest data set (CoverType) is shown
in Figure 4. The increase in runtime was plotted as a ratio to show the factor of
runtime increased when the parameters were increased.

In general, accuracy increased up to a certain point and remained flat when
each of the three parameters was increased. This indicates that the parameters
of MassBayes are not too sensitive in terms of classification accuracy if they are
set to sufficiently high values. The runtime increased linearly with t and sub-
linearly with ψ. With fixed sample size (ψ = 5000), increase in h after a certain
point did not affect the runtime because the tree building process stopped before
reaching the maximum level h once the instances are separated.

6 Conclusions and Future Work

In this paper, we presented a new generative classifier called MassBayes that
approximates p(x|y) by aggregating multi-dimensional likelihoods estimated us-
ing varying size subsets of features from random subsets of training data. In
contrast, existing generative classifiers make assumptions about attribute inde-
pendence and estimate single-dimensional likelihood only. Our empirical results
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show that MassBayes produced better classification accuracy than the existing
generative classifiers in large data sets.

In terms of runtime, it scales better than the existing generative classifiers in
large data sets as it builds models in an ensemble using fixed-size data subsets.
The constant training time and space complexities make it an ideal classifier for
large data sets and data streams.

Future work includes applying the proposed method in data sets with discrete
and mixed attributes and investigating the effectiveness of MassBayes in the data
stream context. In this paper, we have rigorously assessed MassBayes with the
state-of-the-art Bayesian classifiers. In the near future, we will assess its perfor-
mance against some well-known discriminative classifiers and their ensembles.
The feature space partitioning can be implemented in various ways. It would
be interesting to investigate a more intelligent way of feature space partitioning
rather than dividing at mid-point of a randomly selected dimension.
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Abstract. The rapid growth in data makes ever more urgent the quest
for highly scalable learning algorithms that can maximize the benefit that
can be derived from the information implicit in big data. Where data are
too big to reside in core, efficient learning requires minimal data access.
Single pass learning accesses each data point once only, providing the
most efficient data access possible without resorting to sampling. The
AnDE family of classifiers are effective single pass learners. We investi-
gate two extensions to A2DE, subsumption resolution and MI-weighting.
Neither of these techniques require additional data access. Both reduce
A2DE’s learning bias, improving its effectiveness for big data. Further-
more, we demonstrate that the techniques are complementary. The re-
sulting combined technique delivers computationally efficient low-bias
learning well suited to learning from big data.

Keywords: Averaged n-Dependence Estimators, Subsumption Resolu-
tion, Big Data, Naive Bayes, Bias-Variance Trade-off.

1 Introduction

When data are too big to reside in RAM, machine learning has two options. The
first is learn from a sample, thereby potentially losing information implicit in the
data as a whole. The second is to process the data out-of-core. In the latter case,
data access is very expensive, and single-pass learning becomes very desirable.
The Averaged n-Dependence Estimators (AnDE) family of Bayesian learning
algorithms provide efficient single pass learning with accuracy competitive with
the state-of-the-art in-core learning [1]. In addition, AnDE classifiers

– have time complexity linear with respect to the number of training examples,
– directly handle multiple class problems,
– directly handle missing values, and
– do not require parameter tuning.

These features make them strong contenders for application with big data.
Previous research has shown that as n is increased, the bias of the AnDE

algorithms decreases, at the cost of an increase in variance [1]. Variance tends
to decrease as data quantity increases, so for big data low bias algorithms tend
to have an advantage [2]. Hence, for large data, larger n is desirable. Unfortu-
nately, however, large n has high time and space complexity, especially as the
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dimensionality of the data increases. In practice, A2DE has proven effective for
moderate dimensional data.

A number of techniques have demonstrated a capacity to lower the bias of
A1DE with negligible computational cost. Subsumption Resolution (SR) [3]
achieves this with a form of lazy (classification time) feature elimination. Weight-
ily Averaged One-Dependence Estimators (WAODE) [4] achieves it by weighting
the sub-models. While previous studies have demonstrated the independent ef-
fectiveness of each of these algorithms, their interoperability has not previously
been investigated. In this paper we investigate whether they are compatible and
the extent to which applying both together reduces bias relative to applying
each alone. Further, neither of these techniques has been studied in the context
of AnDE with n greater than 1. We herein investigate their effectiveness when
applied to A2DE, both severally and jointly. We reveal that they are indeed
effective at further reducing A2DE’s bias with minimal additional computation.

The rest of this paper is organized as follows. We discuss related work and
our proposed improvements to A2DE in section 2. We will discuss experimental
results in section 3. We conclude in section 4.

2 Semi-naive Bayes Method - AnDE

We seek to estimate P(y | x), where y is a class label and x is a vector of attribute
values x = 〈x1, . . . xm〉. For notational convenience we define

x{i,j,...q} = 〈xi, xj , . . . , xq〉.

For example, x{2,3,5} = 〈x2, x3, x5〉. We use P̂(·) to denote an estimate of P(·).
AnDE aims to estimate P(y | x) using P(y | x) ∝ P(y,x) and hence normaliz-

ing each P̂(y,x) to derive the respective P̂(y | x). The required joint probability
is estimated using

P̂AnDE(y,x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

s∈(An)

δ(xs)P̂(y, xs)

a∏
i=1

P̂(xi | y, xs)/
∑

s∈(An)

δ(xs) :
∑

s∈(An)

δ(xs) > 0

P̂A(n-1)DE(y,x) : otherwise
(1)

where
(A
n

)
indicates the set of all size-n subsets of {1, . . . a} and δ(xα) is a

function that is 1 if the training data contains an object with the value xα,
otherwise 0.

Note that P(xi | y, xs) = 1 when i ∈ s. Whereas other probability estimates
should be smoothed or regularized, smoothed estimates should not be used in
this case, and in practice these values are not included in the calculation.

Subsumption resolution [3] is an effective technique for rectifying a specific
class of extreme violations of the attribute independence assumption, those
where P(xi | xj) = 1.0. In this case P(y | x) = P(y | x{1...i−1,i+1...m}) and

hence all inaccuracies introduced into P̂(y | x) by this violation of the attribute
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independence assumption can be avoided by dropping xi from (1). For example,
when the attribute values include female and pregnant only the latter should
be used, when they include male and not-pregnant only the former should be
used, and when they include female and not-pregnant both should be used.
This requires, however, that one infer whether P(xi | y, xs) = 1 for each pair
of attribute values. In the current research we infer that P(xi | xj) = 1.0 if
#(xj) = #(xi, xj) > 100, where #(xj) is the count of the number of times
attribute value xj occurs in the data and #(xi, xj) is the count of the number
of times both xi and xj occur together in the data. To prevent both attribute
values being deleted if they cover exactly the same data, we delete the one with
the higher index if #(xi) = #(xj).

P̂AnDESR(y,x) = P̂AnDE(y, x{i∈x:¬∃j∈x#(xi)=#(xi,xj)>100∧[#(xj)>#(xi)∨j<i]})

Subsumption resolution has been shown to be effective at reducing the bias of
A1DE [5,3].

Another approach to reducing bias in AnDE that has been shown to be effec-
tive for A1DE [6,4,7] is to weight the sub-models, modifying (1) to

P̂WAnDE(y,x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
s∈(An)

δ(xs)wsP̂(y, xs)
a∏

i=1

P̂(xi | y, xs)/
∑

s∈(An)

δ(xs) :
∑

s∈(An)

δ(xs) > 0

P̂WA(n-1)DE(y,x) : otherwise

WAODE [4] weights A1DE, where s is a single attribute value. It sets ws to
the mutual information of the attribute with the class. WAODE is effective
at reducing the bias of A1DE with minimal computational overhead. We here
generalize that strategy to MI-weighted AnDE, using ws = MI(S, Y ),

MI(s, Y ) =
∑
y∈Y

∑
xs∈Xs

P(xs, y) log
P(xs, y)

P(xs)P(y)
(2)

where Y is the set of class labels and Xs is the cross product of values for
attributes with indices in s.

While subsumption resolution and weighting have each been shown to reduce
the bias of AnDE in isolation, they have not previously been used in conjunction.
To assess the effect of doing so we also evaluate MI-weighted AnDESR,

P̂WAnDESR(y,x) = P̂WAnDE(y, x{i∈x:¬∃j∈x#(xi)=#(xi,xj)>100∧[#(xj)>#(xi)∨j<i]})

2.1 Computational overheads

AnDE has training time complexity of O(t
(

m
n+1

)
) and classification time com-

plexity of O(km
(
m
n

)
) for classifying a single example, where t is the number of

training examples.
Subsumption resolution requires no additional training time and at classifica-

tion time requires
(
m
2

)
comparisons to identify any subsumed attribute values,
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Table 1. Data sets

Domain CaseAttClass Domain CaseAttClass
Abalone 4177 9 3 Liver Disorders (Bupa) 345 7 2
Adult 48842 15 2 Lung Cancer 32 57 3
Annealing 898 39 6 Lymphography 148 19 4
Audiology 226 70 24 MAGIC Gamma Telescope 19020 11 2
Auto Imports 205 26 7 Mushrooms 8124 23 2
Balance Scale 625 5 3 Nettalk(Phoneme) 5438 8 52
Breast Cancer (Wisconsin) 699 10 2 New-Thyroid 215 6 3
Car Evaluation 1728 8 4 Nursery 12960 9 5
Census-Income (KDD) 299285 40 2 Optical Digits 5620 49 10
Connect-4 Opening 67557 43 3 Page Blocks Classification 5473 11 5
Contact-lenses 24 5 3 Pen Digits 10992 17 10
Contraceptive Method Choice 1473 10 3 Pima Indians Diabetes 768 9 2
Covertype 581012 55 7 Postoperative Patient 90 9 3
Credit Screening 690 16 2 Primary Tumor 339 18 22
Echocardiogram 131 7 2 Promoter Gene Sequences 106 58 2
German 1000 21 2 Segment 2310 20 7
Glass Identification 214 10 3 Sick-euthyroid 3772 30 2
Haberman’s Survival 306 4 2 Sign 12546 9 3
Heart Disease (Cleveland) 303 14 2 Sonar Classification 208 61 2
Hepatitis 155 20 2 Splice-junction Gene Sequences 3190 62 3
Horse Colic 368 22 2 Statlog (Shuttle) 58000 10 7
House Votes 84 435 17 2 Syncon 600 61 6
Hungarian 294 14 2 Teaching Assistant Evaluation 151 6 3
Hypothyroid(Garavan) 3772 30 4 Tic-Tac-Toe Endgame 958 10 2
Ionosphere 351 35 2 Vehicle 846 19 4
Iris Classification 150 5 3 Volcanoes 1520 4 4
King-rook-vs-king-pawn 3196 37 2 Vowel 990 14 11
Labor Negotiations 57 17 2 Waveform-5000 5000 41 3
LED 1000 8 10 Wine Recognition 178 14 3
Dermatology 366 35 6 Zoo 101 17 7
Cylinder 540 40 2 Letter Recognition 20000 17 26
Spambase 4601 58 2 Localization 164860 7 3
Wall-following 5456 25 4 Poker-hand 1025010 11 10
yeast 1484 9 10 Thyroid 9169 30 20
Satellite 6435 37 6 Musk1 476 167 2
Chess 551 40 2

and hence does not increase the classification time complexity so long as n > 0.
In practice subsumption resolution can substantially reduce classification time
by reducing the number combinations of attribute values that must be processed.

MI weighted AnDE requires the calculation of the weights at training time,
O(k

(
m
n

)
). In practice this is dominated by the training time complexity of regular

AnDE and hence does not increase the effective complexity and the additional
training time impost is modest. The classification time impact is negligible.

3 Experimental Results

The experiments are conducted in the Weka work-bench (version 3.5.7) on data
sets described in table 1. Each algorithm is tested on each data set using 20
rounds of 2-fold cross validation. Probability estimates were smoothed using
m-estimation [8] with m = 1.

The bias-variance decomposition provides valuable insights into the compo-
nents of the error of learned classifiers. Bias denotes the systematic component
of error, which describes how closely the learner is able to describe the decision
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surfaces for a domain. Variance describes the component of error that stems from
sampling, which reflects the sensitivity of the learner to variations in the training
sample [9,10]. There are a number of different bias-variance decomposition defi-
nitions. In this research, we use the bias and variance definitions of [9], together
with the repeated cross-validation bias-variance estimation method [10]. When
two algorithms are compared, we count the number of data sets for which one al-
gorithm performs better, equally well or worse than the other on a given measure.
A standard binomial sign test, assuming that wins and losses are equiprobable,
is applied to these records. We assess a difference as significant if the outcome of
a two-tailed binomial sign test is less than 0.05. The base probabilities of each
algorithm are estimated using m-estimation, since in our initial experiments it
leads to more accurate probabilities than Laplace estimation for naive Bayes,
A1DE and A2DE. The data sets are divided into four categories. First, consist-
ing of all 71 data sets. Second, large data sets with number of instances > 10, 000.
Third, medium data sets with number of instances > 1000 and < 10, 000. Fourth,
small data sets with number of instances < 1000. The following techniques are
compared:

– NB, Standard naive Bayes with m-estimates of probabilities.
– A1DE, P̂AnDE(y,x) with n = 1.
– A1DE-S, P̂AnDESR(y,x) with n = 1.
– A1DE-W, P̂WAnDE(y,x) with n = 1.
– A1DE-SW, P̂WAnDESR(y,x) with n = 1.
– A2DE, P̂AnDE(y,x) with n = 2.
– A2DE-S, P̂AnDESR(y,x) with n = 2.
– A2DE-W, P̂WAnDE(y,x) with n = 2.
– A2DE-SW, P̂WAnDESR(y,x) with n = 2.
– RF10, Random Forest with 10 decision trees.

Numeric attributes are discretized using MDL discretization [11] for all compared
techniques except Random Forest. Bias, variance, 0-1 Loss and RMSE results
are reported in the following sections.

3.1 Comparison of Bias and Variance

The WDL bias and variance results are shown in Tables 2 and 3 respectively
with significant (α = 0.05) results shown in bold. We summarize the results as:

– Both weighting and subsumption resolution reduce the bias of both A1DE
and A2DE significantly more often than they increase it.

– Jointly applying both weighting and subsumption resolution to either A1DE
or A2DE reduces bias significantly more often than it increases it relative to
applying either alone.

– Both weighting and subsumption resolution increase the variance of both
A1DE and A2DE more often than they decrease it, although these results
are not always statistically significant.
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Fig. 1. Averaged Bias (left) and Variance (Right) results normalized with respect to
NB. The error-bars are ordered in the same sequence as in the legend.

Table 2. Win/Draw/Loss of Bias Comparison, all data sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 56/3/12

A1DE-S 56/2/13 34/33/4

A1DE-W 56/3/12 51/4/16 41/4/26

A1DE-SW 59/2/10 51/6/14 44/5/22 25/41/5

A2DE 57/2/12 53/3/15 47/5/19 44/3/24 41/4/26

A2DE-S 57/2/12 51/3/17 50/4/17 48/3/20 48/3/20 31/35/5

A2DE-W 57/2/12 54/4/13 52/4/15 52/5/14 49/5/17 48/7/16 36/8/27

A2DE-SW 58/2/11 54/4/13 54/4/13 53/4/14 52/4/15 50/6/15 45/7/19 32/32/7

RF10 57/1/13 54/2/15 53/2/16 51/3/17 51/3/17 49/4/18 49/3/19 49/4/18 49/4/18

– Jointly applying both weighting and subsumption resolution to either A1DE
or A2DE increases variance more often than it decrease it relative to applying
either alone, but these differences are also not always statistically significant.

– Random Forest has lower bias and higher variance significantly more often
than the reverse relative to all AnDE variants.

The average bias and variance results are shown in figure 1. One can see that
RF10 has better bias than any member of the AnDE family but worse variance.

3.2 Comparison of the Accuracy - 0-1 Loss and RMSE

The above results show that subsumption resolution and weighting both reduce
bias at the cost of an increase in variance. These two techniques have synergistic
effect. Used together they further reduce bias at cost of increased variance. If we
accept that as data quantity increases, the bias term will increasingly dominate
error, we should expect these strategies to be most effective at decreasing error
for larger data sets.
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Table 3. Win/Draw/Loss of Variance Comparison, all data sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 23/3/45

A1DE-S 22/2/47 13/33/25

A1DE-W 21/2/48 18/6/47 17/7/47

A1DE-SW 20/2/49 18/6/47 17/7/47 11/43/17

A2DE 22/3/46 28/3/40 25/3/43 38/4/29 37/3/31

A2DE-S 20/2/49 20/2/49 22/5/44 29/3/39 29/2/40 10/35/26

A2DE-W 20/3/48 26/3/42 26/2/43 30/4/37 30/4/37 22/11/38 36/9/26

A2DE-SW 19/3/49 23/2/46 24/2/45 26/5/40 28/4/39 21/7/43 29/9/33 9/33/29

RF10 8/1/62 8/2/61 9/2/60 8/4/59 9/3/59 6/2/63 7/2/62 6/4/61 6/4/61

The WDL 0-1 Loss and RMSE results are shown in Table 4 and 5 respectively.
The significant (α = 0.05) results are shown in bold. We summarize the results
as:

– Subsumption resolution decreases error more often than not relative to both
A1DE and A2DE for both measures of error and for almost all of the different
data collections. The exceptions are A1DE, 0-1 loss, medium data and A2DE,
0-1 loss, small data for which there are draws. However, not all these results
are statistically significant.

– Subsumption resolution with weighting can decrease error for both measures
of error for the first two collections (all and large data sets). As predicted,
the effectiveness reduces as data set sizes reduce and for medium data sets,
subsumption resolution with weighting can have slightly worst performance
relative to weighting in terms of 0-1 loss but better in terms of RMSE.
The results, however, are non-significant. The same pattern can be observed
in smaller data sets with subsumption resolution and weighting not very
effective.

– Subsumption resolution in tandem with weighting can project AnDE to be
competitive to RF10, winning significantly on all data sets in terms of the two
error measures on all and small data sets. On medium data sets, it results in
winning significantly often for A2DE and non-significant often for A1DE over
RF10. On large data sets, both A1DE and A2DE lose to RF10. The results
are, however, not significant. With five wins and seven losses over RF10, we
conjecture, that AnDE with subsumption resolution and weighting, with all
desirable properties of learning from big data, is a strong contender for big
data learning.

To give an indication of the magnitude of the differences in performance, the
average 0-1 Loss results and RMSE results are shown in figures 2 and 3 re-
spectively. It is apparent that A2DE-SW achieves lower average 0-1 loss and
RMSE on all of small, medium and large datasets, although this advantage does
diminish to being very slight for the largest datasets.
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Table 4. Win/Draw/Loss of 0-1 Loss Comparison

All Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 53/4/14

A1DE-S 51/4/16 27/31/13

A1DE-W 50/2/19 35/8/28 29/8/34

A1DE-SW 48/3/20 38/6/27 32/10/29 20/42/9

A2DE 54/3/14 50/4/17 48/4/19 45/8/18 41/10/20

A2DE-S 49/3/19 46/3/22 45/4/22 44/5/22 43/5/23 23/34/14

A2DE-W 48/2/21 46/3/22 45/4/22 47/6/18 46/6/19 36/8/27 35/9/27

A2DE-SW 47/2/22 45/2/24 42/3/26 45/7/19 44/6/21 37/9/25 36/11/24 21/34/16

RF10 40/1/30 28/2/41 26/5/40 24/2/45 24/2/45 22/3/46 20/4/47 17/3/51 17/3/51

Large Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 12/0/0

A1DE-S 12/0/0 7/4/1

A1DE-W 12/0/0 9/2/1 7/1/4

A1DE-SW 12/0/0 10/1/1 8/2/2 5/6/1

A2DE 12/0/0 12/0/0 12/0/0 12/0/0 11/0/1

A2DE-S 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 7/5/0

A2DE-W 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 5/1/6

A2DE-SW 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 8/1/3 6/6/0

RF10 12/0/0 9/0/3 9/0/3 9/0/3 9/0/3 7/1/4 6/1/5 5/1/6 5/1/6

Medium Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 18/1/0

A1DE-S 19/0/0 7/5/7

A1DE-W 19/0/0 13/1/5 10/3/6

A1DE-SW 18/1/0 12/1/6 10/4/5 5/8/6

A2DE 19/0/0 17/0/2 15/1/3 11/1/7 11/1/7

A2DE-S 19/0/0 16/0/3 14/1/4 12/1/6 12/1/6 6/9/4

A2DE-W 19/0/0 17/0/2 16/2/1 15/2/2 14/2/3 13/3/3 13/3/3

A2DE-SW 19/0/0 16/0/3 14/1/4 14/2/3 14/2/3 11/4/4 11/5/3 5/7/7

RF10 15/0/4 10/0/9 8/3/8 6/1/12 6/1/12 6/1/12 5/2/12 4/1/14 4/1/14

Small Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 23/3/14

A1DE-S 20/4/16 13/22/5

A1DE-W 19/2/19 13/5/22 12/4/24

A1DE-SW 18/2/20 16/4/20 14/4/22 10/28/2

A2DE 23/3/14 21/4/15 21/3/16 22/7/11 19/9/12

A2DE-S 18/3/19 18/3/19 19/3/18 20/4/16 19/4/17 10/20/10

A2DE-W 17/2/21 17/3/20 17/2/21 20/4/16 20/4/16 14/4/22 17/5/18

A2DE-SW 16/2/22 17/2/21 16/2/22 19/5/16 18/4/18 17/4/19 17/5/18 10/21/9

RF10 13/1/26 9/2/29 9/2/29 9/1/30 9/1/30 9/1/30 9/1/30 8/1/31 8/1/31
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Table 5. Win/Draw/Loss of RMSE Comparison

All Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 59/2/10

A1DE-S 59/2/10 32/32/7

A1DE-W 58/1/12 39/5/27 29/5/37

A1DE-SW 59/1/11 44/4/23 35/4/32 24/42/5

A2DE 59/2/10 49/3/19 41/4/26 50/1/20 47/1/23

A2DE-S 57/2/12 47/1/23 45/2/24 48/3/20 47/3/21 28/30/13

A2DE-W 53/2/16 44/1/26 44/1/26 46/4/21 45/3/23 41/8/22 28/10/33

A2DE-SW 54/1/16 44/1/26 44/1/26 46/3/22 46/3/22 41/6/24 35/11/25 25/34/12

RF10 42/0/29 32/0/39 30/0/41 28/2/41 28/1/42 23/0/48 22/1/48 19/1/51 16/1/54

Large Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 12/0/0

A1DE-S 12/0/0 7/4/1

A1DE-W 12/0/0 8/2/2 6/1/5

A1DE-SW 12/0/0 9/1/2 6/1/5 5/6/1

A2DE 12/0/0 12/0/0 12/0/0 12/0/0 11/0/1

A2DE-S 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 7/4/1

A2DE-W 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 4/0/8

A2DE-SW 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 10/0/2 8/1/3 7/4/1

RF10 12/0/0 9/0/3 9/0/3 9/0/3 9/0/3 6/0/6 6/0/6 6/0/6 5/0/7

Medium Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 18/1/0

A1DE-S 18/1/0 8/7/4

A1DE-W 18/1/0 15/2/2 13/3/3

A1DE-SW 18/1/0 14/2/3 15/2/2 7/10/2

A2DE 18/1/0 15/1/3 13/2/4 10/1/8 10/1/8

A2DE-S 17/2/0 15/1/3 14/2/3 11/1/7 10/1/8 8/7/4

A2DE-W 17/2/0 15/1/3 16/1/2 14/1/4 13/1/5 14/4/1 12/4/3

A2DE-SW 17/1/1 15/1/3 15/1/3 14/1/4 14/1/4 12/4/3 12/4/3 6/9/4

RF10 14/0/5 10/0/9 10/0/9 6/1/12 7/0/12 7/0/12 7/0/12 3/0/16 3/0/16

Small Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 29/1/10

A1DE-S 29/1/10 17/21/2

A1DE-W 28/0/12 16/1/23 10/1/29

A1DE-SW 29/0/11 21/1/18 14/1/25 12/26/2

A2DE 29/1/10 22/2/16 16/2/22 28/0/12 26/0/14

A2DE-S 28/0/12 20/0/20 19/0/21 25/2/13 25/2/13 13/19/8

A2DE-W 24/0/16 17/0/23 16/0/24 20/3/17 20/2/18 18/3/19 12/6/22

A2DE-SW 25/0/15 17/0/23 17/0/23 20/2/18 20/2/18 19/2/19 15/6/19 12/21/7

RF10 16/0/24 13/0/27 11/0/29 13/1/26 12/1/27 10/0/30 9/1/30 10/1/29 8/1/31
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Fig. 2. Average 0-1 Loss results on 4 different collections of data sets normalized with
respect to NB. The error-bars are ordered in the same sequence as in the legend.
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Fig. 3. Average RMSE results on 4 different collections of data sets normalized with
respect to NB. The error-bars are ordered in the same sequence as in the legend.

3.3 Analysis of Classification and Learning Time

The average results of classification and learning time for all the compared tech-
niques are shown in figure 4. One can see that subsumption resolution can greatly
reduce A2DE’s classification time. While A2DE-S and A2DE-SW require only
slightly less training time on average than RF10, the training time complexity
of AnDE and its variants is linear with respect to data quantity while RF10’s is
super-linear, as shown by the difference between training times for all data and
for large data. The training time advantage would substantially increase if RF10
were applied to data that were too large to maintain in RAM. A2DE and its
variants require substantially more classification time than RF10, even with the
decreases introduced by subsumption resolution. However, it can be seen that
the classification time of RF10 is also super-linear with respect to training set
size, whereas AnDE’s is not. This is due to the size of the trees increasing as the
data quantity increases.
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Fig. 4. Averaged Learning and Classification timing results normalized with respect
to NB. The error-bars are ordered in the same sequence as in the legend.

3.4 Code

The code of the methods proposed in this work can be obtained from the website,
https://sourceforge.net/projects/averagedndepend/.

4 Conclusion

AnDE is a strong contender for learning from big data due to its capacity to learn
in a single pass through the training data, and consequent training time com-
plexity that is linear with respect to the number of training examples. Weighting
using mutual information and subsumption resolution have both previously been
demonstrated to be computationally efficient approaches to further reducing the
bias of A1DE. As low bias is desirable when learning from large data, it is im-
portant to assess the extent to which each of these approaches can reduce the
bias of A1DE’s lower bias sibling, A2DE. Further, it is important to assess the
extent to which these two approaches can augment one another.

The experimental evidence is conclusive. We confirm previous findings that
each technique reduces A1DE’s bias. We demonstrate that each technique is just
as effective at reducing A2DE’s bias as it is at reducing A1DE’s. We find further
that there is strong synergy between the two techniques and that they operate
in tandem to reduce the bias of both A1DE and A2DE more effectively than
does either in isolation. As is inevitable, these gains in bias come at a cost in
increased variance. This bias/variance trade-off can be expected to play out in
different error outcomes for different types of data. In particular, for big data,
where variance can be expected to be low, low bias can be expected to result
in low error [2]. Our experiments demonstrate that this expectation is born out
in practice, with both weighting and subsumption resolution reducing error on
the largest datasets significantly more often than not relative to standard A2DE
and with the two in tandem significantly often further reducing the error relative
to MI-weighting alone, and often, but not significantly so, further reducing the
error of subsumption resolution alone.

https://sourceforge.net/projects/averagedndepend/
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We compared A2DE with MI-weighting and subsumption resolution against
the state-of-the-art in-core learning algorithm Random Forest. Random Forest is
a lower bias algorithm. However, that bias advantage comes with a considerable
variance disadvantage. Even for datasets with 10,000+ training examples Random
Forest achieved lower error slightly less often than higher relative to A2DE-SW.

Using only single-pass learning,A2DEwithMI-weighting and subsumption res-
olution achieves accuracy that is very competitive with the state-of-the-art in in-
core learning, making it a desirable algorithm for learning from very large data.
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Abstract. Fixed-Size Least Squares Support Vector Machines (FS-LS-
SVM) is a powerful tool for solving large scale classification and regres-
sion problems. FS-LSSVM solves an over-determined system of M linear
equations by using Nyström approximations on a set of prototype vectors
(PVs) in the primal. This introduces sparsity in the model along with
ability to scale for large datasets. But there exists no formal method
for selection of the right value of M . In this paper, we investigate the
sparsity-error trade-off by introducing a second level of sparsity after per-
forming one iteration of FS-LSSVM. This helps to overcome the problem
of selecting a right number of initial PVs as the final model is highly
sparse and dependent on only a few appropriately selected prototype
vectors (SV) is a subset of the PVs. The first proposed method performs
an iterative approximation of L0-norm which acts as a regularizer. The
second method belongs to the category of threshold methods, where we
set a window and select the SV set from correctly classified PVs closer
and farther from the decision boundaries in the case of classification. For
regression, we obtain the SV set by selecting the PVs with least mini-
mum squared error (mse). Experiments on real world datasets from the
UCI repository illustrate that highly sparse models are obtained without
significant trade-off in error estimations scalable to large scale datasets.

1 Introduction

LSSVM [3] and SVM [4] are state of the art learning algorithms in classification
and regression. The SVMmodel has inherent sparsity whereas the LSSVM model
lacks sparsity. However, previous works like [1],[5],[6] address the problem of
sparsity for LSSVM. One such approach was introduced in [7] and uses a fixed-
size least squares support vector machines. The major benefit which we obtain
from FS-LSSVM is its applicability to large scale datasets. It provides a solution
to the LSSVM problem in the primal space resulting in a parametric model and
sparse representation. The method uses an explicit expression for the feature
map using the Nyström method [8],[9] as proposed in [16]. In [7], the authors
obtain the initial set of prototype vectors (PVs) i.e. M vectors while maximizing
the quadratic Rènyi entropy criterion leading to a sparse representation in the
primal space. The error of FS-LSSVM model approximates to that of LSSVM for
M � N . But this is not the sparsest solution and selecting an initial value of M

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 161–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is an existent problem. In [11], they try to overcome this problem by iteratively
building up a set of conjugate vectors of increasing cardinality to approximately
solve the over-determined FS-LSSVM linear system. But if few iterations don’t
suffice to result in a good approximation then the cardinality will be M .

The L0-norm counts the number of non-zero elements of a vector. It results
in very sparse models by returning models of low complexity and acts as a
regularizer. However, obtaining this L0-norm is an NP-hard problem. Several
approximations to it are discussed in [12]. In this paper, we modify the iterative
sparsifying procedure introduced in [13] and used for LSSVM the technique as
shown in [14] and reformulate it for the FS-LSSVM. We apply this formulation
on FS-LSSVM because for large scale datasets like Magic Gamma, Adult and
Slice Localization we are overwhelmed with memory O(N2) and computational
time O(N3) constraints when applying the L0-norm scheme directly on LSSVM
[14] or SVM [13]. The second proposed method performs an iteration of FS-
LSSVM and then based on a user-defined window selects a subset of PVs as
SV. For classification, the selected vectors satisfy the property of being correctly
classified and are either closer or farther from the decision boundary since they
well determine the extent of the classes. But for regression, the SV set comprises
those PVs which have the leastmse and are best-fitted by the regressor. Once the
SV set is determined we re-perform FS-LSSVM resulting in highly sparse models
without significant trade-off in accuracy and scalable to large scale datasets.

The contribution of this work involves providing smaller solutions which use
M ′ < M PVs for FS-LSSVM, obtaining highly sparse models with guarantees
of low complexity (L0-norm of w̃) and overcoming the problem of memory and
computational constraints faced by L0-norm based approaches for LSSVM and
SVM on large scale datasets. Sparseness enables exploiting memory and com-
putationally efficiency, e.g. matrix multiplications and inversions. The solutions
that we propose utilize the best of both FS-LSSVM and sparsity inducing mea-
sures on LSSVM and SVM resulting in highly sparse and scalable models. Table
1 provides a conceptual overview of LSSVM, FS-LSSVM and proposes Reduced
FS-LSSVM along with the notations used in the rest of the paper. Figures 1 and
2 illustrate our proposed approaches on the Ripley and Motorcycle dataset.

Table 1. For Reduced FS-LSSVM, we first perform FS-LSSVM in the Primal. Then a
sparsifying procedure is performed in the Dual of FS-LSSVM as highlighted in the box
in the middle resulting in a reduced SV set. Then FS-LSSVM is re-performed in the
Primal as highlighted by the box on the right. We propose two sparsifying procedures
namely L0 reduced FS-LSSVM and Window reduced FS-LSSVM.

LSSVM FS-LSSVM Reduced FS-LSSVM

SV/Train N/N M/N M ′/M

Primal w w̃ w′

φ(·) ∈ RNh Step 1 φ̃(·) ∈ RM Step 2 φ′(·) ∈ RM′

Dual α → α̃ → α′

K ∈ RN×N K̃ ∈ RM×M K′ ∈ RM′×M′
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Fig. 1. Comparison of the best randomization result out of 10 randomizations for the
proposed methods with FS-LSSVM for Ripley Classification data

Fig. 2. Comparison of the best randomization result out of 10 randomizations for the
proposed methods with FS-LSSVM for Motorcycle Regression data
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2 L0 reduced FS-LSSVM

Algorithm 1 gives a brief summary of the FS-LSSVM method. We first propose
an approach using the L0-norm to reduce w̃ and acting as a regularizer in the
objective function. It tries to estimate the optimal subset of PVs leading to sparse
solutions. For our formulation, the objective function is to minimize the error
estimations of these prototype vectors regulated by L0-norm of w̃. We modify the
procedure described in [13], [14] and consider the following generalized primal
problem:

min
α̃,b̃,ẽ

J(α̃, ẽ) =
1

2

∑
j

λj α̃
2
j +

γ

2

∑
i

ẽ2i

s.t.
∑
j

α̃jK̃ij + b̃ = yi − ẽi, i = 1, . . . ,M
(1)

where w̃ ∈ RM and can be written as w̃ =
∑
j

α̃j φ̃(xj). The regularization term

is now not on ‖ w̃ ‖2 but on ‖ α̃ ‖2. The regularization weights are given by the
prefix λj coefficients. This formulation is similar to [14] with the difference that
it is made applicable here to large scale datasets. These α̃j are coefficients of
linear combination of the features which result in w̃ vector. The set of PVs is
represented as SPV . The ẽi are error estimates and are determined only for the
vectors belonging to the set SPV . Thus, the training set comprises of the vectors
belonging to the set SPV .

Introducing the coefficient β for Lagrangian L one obtains: ∂L/∂α̃j = 0 ⇒
α̃j =

∑
j

βiKij/λj , ∂L/∂b̃ = 0 ⇒
∑
i

βi = 0, ∂L/∂ẽi = 0 ⇒ βi = γẽi, ∂L/∂βi = 0

⇒
∑
j

α̃jKij + b̃ = yi − ẽi, ∀i.Combining the conditions ∂L/∂α̃i = 0, ∂L/∂ẽi = 0

and ∂L/∂βi = 0 and after little algebraic manipulation yields
∑
k

βkHik + b̃ = yi,

with H = K̃diag(λ)−1K̃ + IM/γ and K̃ is a kernel matrix. The kernel matrix
K̃ is defined as K̃ij = φ̃(xi)

ᵀφ̃(xj) where xi ∈ SPV , xj ∈ SPV , φ̃(xi) ∈ RM and
H ∈ RM×M .

Algorithm 1. Fixed-Size LSSVM method

Data: Dn = {(xi, yi) : xi ∈ Rd, yi ∈ {+1,−1} for classification & yi ∈ R for
regression, i = 1, . . . , N}.

Determine the kernel bandwidth using the multivariate rule-of-thumb [17].
Given the number of PVs, perform prototype vector selection using quadratic
Rènyi entropy criterion.
Determine the tuning parameters σ and γ performing fast v-fold cross
validation as described in [10].
Given the optimal tuning parameters, get FS-LSSVM parameters w̃ & b̃.
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This, together with ∂L/∂b̃ = 0, results in the linear system[
0 1ᵀk
1k H

] [
b̃
β

]
=

[
0
y

]
(2)

The procedure to obtain sparseness involves iteratively solving the system (2)
for different values of λ and is described in Algorithm 2. Considering the tth

iteration, we can build the matrix Ht = K̃diag(λt)−1K̃ + IM/γ and solve the
system of linear equations to obtain the value of βt and b̃t. From this solution
we get α̃t+1 and most of its element tend to zero, the diag(λt+1)−1 will end up
having many zeros along the diagonal due to the values allocated to λt+1. It was
shown in [13] that as t → ∞, α̃t converges to a stationary point α̃∗ and this
model is guaranteed to be sparse and result in set SV. This iterative sparsifying
procedure converges to a local minimum as the L0-norm problem is NP-hard.
Since this α̃∗ depends on the initial choice of weights, we set them to the FS-
LSSVM solution w̃, so as to avoid ending up in different local minimal solutions.

Algorithm 2. L0 reduced FS-LSSVM method

Data: Solve FS-LSSVM to obtain initial w̃ & b̃
α̃ = w̃(1 : M)
λi ← α̃i, i = 1, . . . ,M
while convergence do

H ← K̃diag(λ)−1K̃ + IM/γ
Solve system (2) to give β and b̃
α̃← diag(λ)−1K̃β
λi ← 1/α̃2

i , i = 1, . . . ,M ′

Result: indices = find(|α̃i| > 0)

The convergence of Algorithm 2 is assumed when the ‖ α̃t − α̃t+1 ‖ /M ′ is
lower than 10−4 or when the number of iterations t exceeds 50. The result of
the approach is the indices of those PVs for which |α̃i| > 10−6. These indices
provide the set of most appropriate prototype vectors (SV). The FS-LSSVM
method (Algorithm 1) is re-perfomed using only this set SV. We are training
only on the set CPV and not on the entire training data because the H matrix
becomes N ×N matrix which cannot in memory for large scale datasets.

The time complexity of the proposed methods is bounded by solving the
linear system of equations (2). An interesting observation is that the H matrix
becomes sparser after each iteration. This is due to the fact that diag(λ)−1 =
diag(α̃2

1, . . . , α̃
2
M ) and most of these α̃i → 0. Thus the H matrix becomes sparser

in each iteration such that after some iterations inverting H matrix is equivalent
to inverting each element of the H matrix. The computation time is dominated
by matrix multiplication to construct the H matrix. The H matrix construction
can be formulated as multiplications of two matrices i.e. P = K̃diag(λ)−1 and
H = PK̃. The P matrix will become sparser as it multiplies the K̃ matrix with
diag(λ)−1. Let M̃ be the number of columns in P matrix with elements �= 0.
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This number i.e. M̃ can be much less than M . Thus, for the L0 reduced FS-
LSSVM the time required for the sparsifying procedure is given by O(M2M̃)
and the average memory requirement is O(M2).

3 Window Reduced FS-LSSVM

In [5], it was proposed to remove the support vectors with smaller |αi| for the
LSSVMmethod. But this approach doesn’t greatly reduce the number of support
vectors. In [6], the authors proposed to remove support vectors with the larger
yif(xi) as they are farther from decision boundary and easiest to classify. But
these support vectors are important as they determine the true extent of a class.

We propose window based SV selection method for both classification and
regression. For classification, we select the vectors which are correctly classified
and closer and farther from the decision boundary. An initial FS-LSSVM method
determines the ỹ for the PVs. To find the reduced set SV, we first remove the
prototype vectors which were misclassified (ỹ �= y) as shown in [2]. Then, we sort
the estimated f(xj), ∀j ∈ CorrectPV where CorrectPV is the set of correctly
classified PVs to obtain a sorted vector S. This sorted vector is divided into
two halves one containing the sorted positive estimations (ỹ) corresponding to
positive class and the other containing sorted negative values (ỹ) correspond-
ing to negative class. The points closer to the decision boundary have smaller
positive and smaller negative estimations (|ỹ|) and the points farther from the
decision boundary have the larger positive and larger negative estimations (|ỹ|)
as depicted in Figure 1. So these vectors corresponding to these estimations are
selected. Selecting correctly classified vectors closer to decision boundary pre-
vents over-fitting and selecting vectors farther from the decision boundary helps
to identify the extent of the classes.

For regression, we select the prototype vectors which have least mse after
one iteration of FS-LSSVM. We estimate the squared errors for the PVs and
out of these prototype vectors select those vectors which have the least mse to
form the set SV. They are the most appropriately estimated vectors as they
have the least error and so are most helpful in estimating a generalization of
the regression function. By selection of prototype vectors which have least mse
we prevent selection of outliers as depicted in Figure 2. Finally, a FS-LSSVM
regression is re-performed on this set SV.

The percentage of vectors selected from the initial set of prototype vectors
is determined by the window. We experimented with various window size i.e.
(30, 40, 50) percent of the initial prototype vectors (PVs). For classification, we
selected half of the window from the positive class and the other half from
the negative class. In case the classes are not balanced and number of PVs
in one class is less than half the window size then all the correctly classified
vectors from those PVs are selected. In this case, we observe that the number of
selected prototype vectors (SV) can be less than window size. The methodology
to perform this Window reduced FS-LSSVM is presented in Algorithm 3.

This method result in better generalization error with smaller variance achiev-
ing sparsity. The trade-off with estimated error is not significant and in several
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cases it leads to better results as will be shown in the experimental results. As
we increase the window size the variation in estimated error decreases and es-
timated error also decreases until the median of the estimated error becomes
nearly constant as is depicted in Figure 3.

Fig. 3. Trends in error & SV with increasing window size for Diabetes dataset compared
with the FS-LSSVM method represented here as ‘O’

Algorithm 3. Window reduced FS-LSSVM

Data: Dn = {(xi, yi) : xi ∈ Rd, yi ∈ {+1,−1} for Classification & yi ∈ R for
Regression, i = 1, . . . , N}.

Perform FS-LSSVM using the initial set of PVs of size M on training data.
if Classification then

CorrectPV = Remove misclassified prototype vectors
S = sort(f(xi)) ∀i ∈ CorrectPV ;
A = S(:) > 0; B = S(:) < 0;
begin = windowsize/4;
endA = size(A)− windowsize/4;
endB = size(B)−windowsize/4;
SV = [A[begin endA];B[begin endB]];

if Regression then
Estimate the squared error for the initially selected PVs
SV = Select the PVs with least mean squared error

Re-perform the FS-LSSVM method using the reduced set SV of size M ′ on
training data

4 Computational Complexity and Experimental Results

4.1 Computational Complexity

The computation time of FS-LSSVM method involves:
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– Solving a linear system of size M + 1 where M is the number of prototype
vectors selected initially (PV).

– Calculating the Nyström approximation and eigenvalue decomposition of the
kernel matrix of size M once.

– Forming the matrix product [φ̃(x1), φ̃(x2), . . . , φ̃(xn)]
ᵀ[φ̃(x1), φ̃(x2), . . . ,

φ̃(xn)].

The computation time is O(NM2) where N is dataset size as shown in [10]. We
already presented the computation time for the iterative sparsifying procedure
for L0 reduced FS-LSSVM. For this approach, the computation time O(M3).
So, it doesn’t have an impact on the overall computational complexity as we
will observe from the experimental results. In our experiments, we selected M =
 k ×

√
N" where k ∈ N, the complexity of L0 reduced FS-LSSVM can be re-

written asO(k2N2). We experimented with various values of k and observed that
after certain values of k, the change in estimated error becomes nearly irrelevant.
In our experiments, we choose the value of k corresponding to the first instance
after which the change in error estimations becomes negligible.

For the window based method, we have to run the FS-LSSVM once and
based on window size obtain the set SV which is always less than PVs i.e.
M ′ ≤ M . The time-complexity for re-performing the FS-LSSVM on the set SV
is O(M ′2N) where N is the size of the dataset. The overall time complexity of
the approach is O(M2N) required for Nyström approximation and the average
memory requirement is O(NM).

4.2 Dataset Description

All the datasets on which the experiments were conducted are from UCI bench-
mark repository [15]. For classification, we experimented with Ripley (RIP),
Breast-Cancer (BC), Diabetes (DIB), Spambase (SPAM), Magic Gamma (MGT)
and Adult (ADU). The corresponding dataset size are 250,682,768,4061,19020,
48842 respectively. The corresponding k values for determining the initial num-
ber of prototype vector are 2,6,4,3,3 and 3 respectively. The datasets Motorcycle,
Boston Housing, Concrete and Slice Localization are used for regression whose
size is 111, 506, 1030, 53500 and their k values are 6,5,6 and 3 respectively.

4.3 Experiments

All the experiments are performed on a PC machine with Intel Core i7 CPU
and 8 GB RAM under Matlab 2008a. We use the RBF-kernel for kernel matrix
construction in all cases. As a pre-processing step, all records containing un-
known values are removed from consideration. Input values have been normal-
ized. We compare the performance of our proposed approaches with the normal
FS-LSSVM classifier/regressor, L0 LSSVM [14], SVM and ν-SVM. The last two
methods are implemented in the LIBSVM software with default parameters. All
methods use a cache size of 8 GB. Shrinking is applied in the SVM case. All
comparisons are made on 10 randomizations of the methods.
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The comparison is performed on an out-of-sample test set consisting of 1/3 of
the data. The first 2/3 of the data is reserved for training and cross-validation.
The tuning parameters σ and γ for the proposed FS-LSSVM methods and SVM
methods are obtained by first determining good initial starting values using the
method of coupled simulated annealing (CSA) in [18]. After that a derivative-free
simplex search is performed. This extra step is a fine tuning procedure resulting
in more optimal tuning parameters and better performance.

Table 2 provides a comparison of the mean estimated error ± its deviation,
mean number of selected prototype vectors SV and a comparison of the mean
computation time ± its deviation for 10 randomizations of the proposed ap-
proaches with FS-LSSVM and SVM methods for various classification and re-
gression data sets. Figure 4 represents the estimated error, run time and varia-
tions in number of selected prototype vectors for Adult (ADU) and Slice Local-
ization (SL) datasets respectively.

4.4 Performance Analysis

The proposed approaches i.e L0 reduced FS-LSSVM and Window reduced FS-
LSSVM method introduce more sparsity in comparison to FS-LSSVM and SVM
methods without significant trade-off for classification. For smaller datasets L0

LSSVM produces extremely few support vectors but for datasets like SPAM,
Boston Housing and Concrete it produces more support vectors. For some
datasets like breast-cancer and diabetes, it can be seen from Table 2 that pro-
posed approaches results in better error estimations than other methods with
much smaller set SV. For datasets like SPAM and MGT, the trade-off in error
is not significant considering the reduction in number of PVs (only 78 prototype
vectors required by L0 reduced FS-LSSVM for classifying nearly 20,000 points).
From Figure 4, we observe the performance for Adult dataset. The window
based methods result in lower error estimate using fewer but more appropriate
SV. Thus the idea of selecting correctly classified points closer and farther from
the decision boundary results in better determining the extent of the classes.
These sparse solutions typically lead to better generalization of the classes. The
mean time complexity for different randomizations is nearly the same.

For regression, as we are trying to estimate a continuous function, if we greatly
reduce the PVs to estimate that function, then the estimated error would be
higher. For datasets like boston housing and concrete, the estimated error by
the proposed methods is more than FS-LSSVM method but the amount of spar-
sity introduced is quite significant. These methods result in reduced but more
generalized regressor functions and the variation in the estimated error of win-
dow based approach is lesser as in comparison to L0-norm based method. This is
because in each randomization, the L0-norm reduces to different number of pro-
totype vectors whereas the reduced number of prototype vectors (SV) for window
based method is fixed and is uninfluenced by variations caused by outliers as the
SV have least mse. This can be observed for the Slice Localization dataset in
Figure 4. For this dataset, L0 reduced FS-LSSVM estimates lower error than
window approach. This is because for this dense dataset, the L0-norm based
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Fig. 4. Comparison of performance of proposed approaches with FS-LSSVM method
for Adult & Slice Localization datasets

FS-LSSVM requires more SV (495) than window based method (208, 278, 347)
which signifies more vectors are required for better error estimation. The pro-
posed models are of magnitude (2 − 10)x sparser than the FS-LSSVM method.

5 Conclusion

In this paper, we proposed two sparse reductions to FS-LSSVM namely L0 re-
duced and Window reduced FS-LSSVM. These methods are highly suitable for
mining large scale datasets overcoming the problems faced by L0 LSSVM [14]
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and FS-LSSVM. We developed the L0 reduced FS-LSSVM based on iteratively
sparsifying L0-norm training on the initial set of PVs. We also introduced a Win-
dow reduced FS-LSSVM trying to better determine the underlying structure of
model by selection of more appropriate prototype vectors (SV). The resulting
approaches are compared with normal FS-LSSVM, L0 LSSVM and two kinds of
SVM (C-SVM and ν-SVM from LIBSVM software) with promising performances
and timing results using smaller and sparser models.
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Discovery of Regional Co-location Patterns
with k-Nearest Neighbor Graph
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Abstract. The spatial co-location pattern mining discovers the subsets of fea-
tures of which the events are frequently located together in a geographic space.
The current research on this topic adopts a distance threshold that has limitations
in spatial data sets with various magnitudes of neighborhood distances, especially
for mining of regional co-location patterns. In this paper, we propose a hierar-
chical co-location mining framework by considering both varieties of neighbor-
hood distances and spatial heterogeneity. By adopting k-nearest neighbor graph
(kNNG) instead of distance threshold, we propose “distance variation coeff cient”
as a new measure to drive the mining process and determine an individual neigh-
borhood relationship graph for each region. The experimental results on a real
world data set verify the effectiveness of our framework.

Keywords: co-location pattern, kNNG, variation coeff cient.

1 Introduction

The spatial co-location pattern mining [1] discovers the subsets of features (co-locations)
of which the events are frequently located together in a geographic space. It has been
applied to many areas like mobile commerce, earth science, biology, public health, and
transportation [2]. Figure 1(a) shows a sample data set containing instances of six spatial
features represented by distinct shapes. The instances of features describe the presence
of their instances at different locations in a 2D or 3D space. A careful review reveals
four co-location patterns as illustrated in Figure 1(c). To discover these patterns, the
current research (see e.g., [2,3]) adopts an approach with two phases, namely (1) con-
verting the spatial data set into a neighborhood relationship graph (NRG for short) using
a distance threshold as illustrated in Figure 1(b) in which the distance threshold is de-
f ned as the maximal distance allowed for two events to be neighbors; and (2) f nding
prevalent co-locations based on their clique instances in the derived graph.

The f rst phase implicitly assumes the normal distances of neighbors being smaller
than the predef ned distance threshold. This requires an approximately uniform distri-
bution of spatial events across the space, as well as the joint distributions of features.
In real life however, the data density often varies across different areas, leading to more
complex joint distributions. For such data sets with various densities, an improper dis-
tance threshold may severely affect the mining results due to two reasons. (1) First, a
small distance threshold may ignore many clique instances of prevalent co-locations in
sparse areas, resulting in these co-locations being under-estimated. (2) Second, a large

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 174–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. An illustrative example of spatial co-location pattern discovery

distance threshold may introduce irrelevant clique instances of candidate co-locations
in density areas, resulting in these co-locations being over-estimated.

Given the above concerns, we propose to f nd the regional co-location patterns as an
extension to the conventional two-phase approaches. Our motivation comes from (1)
the inconsistency of neighborhood distances in a data space; that is, the distance be-
tween any two neighboring events varies across the space since the data densities vary
from region to region in the space. This inconsistency motivates us to investigate a new
measure “distance variation coeff cient” (see Section 3) rather than distance thresh-
old to drive the mining process; and (2) the existence of spatial heterogeneity which
demonstrates that most geographic processes vary by locations [4], and indicates that
the inconsistent co-location sets may be found from different regions [5]. For instance,
back to our example of mobile commerce, the requesting patterns in business regions
are usually different from those in tourist regions.

As a mining strategy, we propose to hierarchically merge spatial events into local
regions in the form of NRGs followed by passing them to the second phase of the con-
ventional approaches. To enable the regional co-location pattern discovery meaningful,
we partially inherit from the conventional approaches the assumption that a reasonable
region is supposed to have relatively consistent neighborhood distances. This means
the distances among the data points and their neighbors inside the region vary within a
small range. Besides, we assume that different regions have inconsistent co-locating in-
formation in terms of spatial heterogeneity. Given these, this paper addresses two prob-
lems: (1) identifying regions with consistent neighborhood distances and co-locating
information; and (2) specifying an individual NRG for each identifie region.

We adopt k-nearest neighbor graphs (kNNG) that capture more natural neighbor-
hoods [6] to describe the consistency of neighborhood distances within a region. Similar
to distance thresholds, predef ning k value for each region may lead to under-estimation
or over-estimation of co-locations. Instead, we introduce a new measure “distance vari-
ation co-eff cient” to control the range of distance varying and automatically determine
k value for each region. With kNNG, the regions’ NRGs are naturally prepared.

We then are able to defin the similarity of co-location information between adjacent
regions by passing these graphs to the second phase of the conventional approaches.
The definitio of similarity is a measure about whether the corresponding regions share
consistent co-location information and are qualif ed to be merged. Analogous to kNNG,
the mutual k-nearest neighbors (MkNN) naturally capture the inter-connectivity of ad-
jacent regions [7,8]. We adopt MkNN to exclude the real region boundaries when hier-
archically merging the regions.
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In summary, our contributions are as follows. (1) We propose a hierarchical mining
framework to discover regional co-locations by considering both varieties of neighbor-
hood distances and spatial heterogeneity. (2) We propose a novel “distance variation
coefficient to drive the mining process and determine an individual NRG for each re-
gion. (3) We evaluate our mining algorithm with experiments on a real world data set
by comparing against the conventional approaches using distance thresholds.

The remaining sections are organized as follows. We f rst review the current research
results on spatial co-location pattern mining in Section 2, followed by giving a formal
description for the research problem and some basic def nitions in Section 3. We then
present our hierarchical mining framework to discover regional co-location patterns in
Section 4, together with the experimental evaluation in Section 5 before concluding our
work in Section 6.

2 Literature Review

Various algorithms have been proposed for spatial co-location pattern mining. They can
be classif ed into four types as reviewed in the following.

One main type of these techniques are the aforementioned two-phase approaches, by
which the NRG is determined by a predef ned distance threshold. This general frame-
work was f rst proposed by Shekhar et al. [9]. Within the framework, different algo-
rithms such as joinless algorithm [2], synchronic sweep algorithm [10], and density-
based algorithm [3], were proposed to improve the performance of mining process,
especially the eff ciency of collecting clique instances. For example, Xiao et al. [3]
proposed to search the dense areas with high priorities so as to speed up the decision
making of the algorithm. The approach was also used in spatio-temporal data sets by
introducing a time factor as the time interval threshold [11].

As a distortion of the f rst type of approaches, the second type diversif es the objec-
tive of spatial co-location pattern mining. For example, it was extended to mine com-
plex spatial co-location patterns (e.g., one-to-many, self-colocating, self-exclusive, and
multi-feature exclusive) [12] and maximal co-location patterns [13]. Huang et al. [14]
also adjusted the interest measure to treat the case with rare events. Yoo et al. [15]
proposed to f nd the N -most prevalent co-location patterns.

The third type replaces the usage of distance threshold in the fir t phase. Huang et
al. [16] proposed to use density ratio of different features to describe the neighborhood
relationship together with a clustering algorithm. A buffer-based model [17] was also
proposed to describe the neighborhood relationship for dealing with extended spatial
objects such as lines and polygons. Sheng et al. [18] used the inf uence functions to
model the spatial features. Among these work, a similar neighborhood related threshold
or function has to be predef ned by users.

These three types of techniques focus on the global co-location patterns. That is,
the f rst and second types adopt a predef ned distance threshold to determine the NRG,
while the third type replaces it with a similar neighborhood related threshold. The fourth
type assumes that the neighborhood distances are consistent. The data sets with various
densities are not sophisticatedly treated in these work.

The fourth type of techniques discovers the regional co-location patterns. Celik et
al. [19] straightforwardly applied the conventional approaches to a set of zones, where
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a zonal space has to be specif ed by users. Eick et al. [5] adopted the prototype-based
clustering [20] to f nd regional co-location patterns. The interestingness of co-locations
was scored in its f tness function. As an input of this approach, every event has a vector
value of all the features, in which each item needs to be a continuous type. However,
this work did not explore the monotonic property of the interesting measure proposed
by Shekhar et al. [9] which introduces the pruning techniques to the mining process.
Moreover, this approach may not be applicable to the discrete type of inputs.

3 Problem Formulation

In this section, we will present the problem statement after some basic definition re-
lated to regional co-location mining.

3.1 Basic Definitions

A spatial data set is an input of the spatial co-location pattern mining algorithm.

Definition 1 (Spatial data set). A spatial data set has a set of non-spatial features
F = {f1, f2, . . . , fn}, and consists of a set of spatial events E = {E1, E2, . . . , En},
whereEi (1 � i � n) is a set of events of feature fi. Every event ej ∈ Ei (1 � j � |Ei|)
has a vector information of 〈feature type fi, event ID j, spatial location (x, y)〉.
Given the neighborhood constraint, a spatial data set or part of it (one of its regions) can
be converted into an NRG as the foundation for co-location discovery. The conventional
approaches adopt the distance threshold to describe this neighborhood constraint which
may lead to limitations as discussed in Section I. To get rid of those limitations, we
adopt the kNNG to def ne the NRG in the following.

Definition 2 (Neighborhood relationship graph (NRG)). The neighborhood relation-
ship graph G is implemented by kNNG, in which each vertex represents a spatial event,
and there is an edge connecting two vertices if they have different features and either of
them is among the kNNs of the other one. The graph’s vertices and edges are denoted
as V (G) and E(G) = kNNG(V (G)), and each edge is assigned with a weight that is
the Euclidean distance between two spatial events connected by an edge.

In our approach, each NRG corresponds to an individual region. In practice, kNNG
can be calculated by f rstly fi ding the kNN of spatial events and then f ltering out the
edges whose end points share the same feature type. In the context of NRG represented
by kNNG, the neighborhood distance is the weight of an edge in the graph.

Given the above neighborhood constraint, the interestingness of prevalent co-
locations within a region is defi ed by an interesting measure known as participation
index which is in turn defi ed from participation ratio. We borrow the defi itions [1,2]
as follows.

Definition 3 (Participation ratio). Given the co-location C (C ⊂ F ), its participa-

tion ratio of fi (fi ∈ C) is defined as Pr(C, fi) =
πfi

(table instance(C))

table instance(fi)
, where π is

the relational projection operation with duplication elimination and table instance is
the collection of clique instances of co-locations or features, in each instance of co-
locations the spatial events are neighbors to each other.
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Definition 4 (Participation index). The participation index of co-location C is Pi(C)
= minfi∈C{Pr(C, fi)}, which measures the prevalence of C.

With a predefine prevalence threshold θ, the second phase of the conventional algo-
rithms such as join [1] or joinless algorithm [2] can wisely discover for each region a
set of co-locations of which the value of participation index is not less than threshold θ
(i.e., Pi(C) � θ). Moreover, due to the monotonic property of participation index, i.e.,
Pi(C ′) � Pi(C) ∀C ′ ⊂ C, pruning techniques such as apriori [21] may be introduced
into the mining process.

As foregoing, we assume that a reasonable region has relatively consistent neigh-
borhood distances, meaning that the edge weights in an NRG have small variation. In
a usual application domain of co-location discovery, geographers and biologists care
about the spatial patterns under specif c spatial frameworks following clumped, ran-
dom or uniform distribution [22]. In clustering applications, classic algorithms (e.g.,
k-means algorithm [20]) often assume that the clumped clusters are compact, imply-
ing that they have consistent neighborhood distances inside. As for the data sets with
random or uniform distribution, the local regions are also reasonable to hold the consis-
tency. Based on the above applications, we defi e the distance variation coeff cient to
investigate the neighborhood distances of regions as follows.

Definition 5 (Distance variation coefficient). The distance variation coefficient of the
NRG G is defined as Ω(G) = σ(E(G))

μ(E(G)) , where μ(·) and σ(·) are statistical operations for
calculating the mean value and standard deviation of the weights of all edges in G.

Our mining framework allows us to hierarchically merge regions followed by f nding
their prevalent co-location sets. During the merging process, the range of distance vary-
ing is controlled by a corresponding distance variation threshold ε. The algorithm does
not stop until the distance variation of every newly merged region is greater than ε, i.e.,
Ω(G) > ε.

As another assumption w.r.t. spatial heterogeneity, we def ne the similarity of regions
in the following. By gradually combining the most similar regions under the distance
variation constraint, our algorithm guarantees the maximum consistency of co-locating
information inside the regions.

Definition 6 (Similarity of NRGs). Given the prevalence threshold θ and two NRGs

G1 and G2, their similarity is defined as R(G1,G2) =
1

L−1

L∑
i=2

J(C1i, C2i), where C1i is

the set of size i co-locations of G1 each of which is prevalent (i.e., Pi(C1i) � θ), C2i the
set of size i co-locations of G2 each of which is prevalent (i.e., Pi(C2i) � θ), J(·) the
Jaccard index defined as J(A,B) = |A∩B|

|A∪B| , and L the maximum size of the prevalent
co-locations of either G1 or G2.

The size of a co-location C is the number of distinct features it contains, namely
|{fi|fi ∈ C}| [1]. We indicate Pi(C1i) � θ if Pi(C) � θ ∀ C ⊂ C1i. The Jac-
card index is a statistic commonly used for comparing the similarity of data sets. We
adopt it to investigate the intersection rate of prevalent co-locations between regions.
The similarity function helps us decide the priority of candidates to be merged. Finally,
we give the following defi ition to identify the regions with rare events as anomalies.
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Definition 7 (Significant NRG). Given a ratio threshold α, an NRG G and its cor-
responding region are significant if |V (G)| � α|E|, where |E| is the total number of
spatial events.

3.2 Problem Statement

With the above defi itions, we give a formal description of regional co-location pattern
discovery in the following.

Given: (1) A spatial data set including a set of features F and a set of their spatial
events E; (2) a prevalence threshold θ; (3) a distance variance threshold ε; and (4) a
ratio threshold α.

Find: Regional co-location patterns, i.e., (1) a set of regions Γ = {G1, G2, . . . , Gm}
in which each element is represented as a kNNG, where V (Gi) ⊂ E, E(Gi) =
kNNG(V (Gi)) (1 � i � m); and (2) a set of prevalent co-locations C for each
region Gi where Pi(C) � θ.

Constraints: Consistent neighborhood distances and consistent co-locating information
within regions, i.e., (1) Ω(Gi) � ε and |V (Gi)| � α|E| (1 � i � m); and (2) minimiz-
ing the similarity between adjacent regions R(Gi,Gj) (1 � i, j � m).

4 Regional Co-location Mining Algorithm

In the next, we present our algorithm for mining regional co-location patterns. The
algorithm is carried out by three steps as follows. (1) In Step 1, a set of initial regions are
formed by assigning each of them an MkNN edge with k = 1 or a single event that does
not participated in those mutual edges. (2) In Step 2, the algorithm iteratively merges
the similar regions under the constraint of distance variation. Step 2 is achieved by two
sub-steps as follows. (2.1) In Step 2.1, in each iteration, k is increased by one and every
newly generated MkNN edge links two of the current regions which compose a merging
candidate; and (2.2) in Step 2.2, we decreasingly sort the merging candidates by their
similarity values and sequentially merge them if the constraint of distance variation
is satisf ed. (3) In Step 3, the signif cant regions represented as kNNGs are returned
together with their prevalent co-locations which are discovered by the second phase of
join algorithm [1] in each region.

We illustrate the process of each iteration in Figure 2, in which Figure 2(a) shows
four significan regions as indicated by circles each of which has a prevalent co-location
in the (k−1)th iteration, and three MkNN edges found indicated by solid lines in the kth
iteration; and Figure 2(b) shows a new region 5 which is the merge result of regions 1
and 3. Algorithm 1 presents the pseudo code of the mining process.

Step 1. Algorithm 1 fi st initializes the value of k as one, and sets the graph set Γ and
the candidate set S empty (lines 1–2). It then f nds a set of MkNN edges with k = 1,
which are disjoint to each other since any event has at most one mutual neighbor. For
these mutual edges, we also require that the end points of them have distinct feature
types (line 3). Naturally, a part of initial regions are formed by assigning a found edge
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{    ,    }Region 1

Region 2

Region 3
Region 4
{    ,    }

{    ,    }
{    ,    }

(a)

{    ,    }Region 5

Region 2
Region 4
{    ,    }{    ,    }

(b)

Fig. 2. An example of the mining process in each iteration

Inputs: A data set including E and F , parameters θ, ε and α.
Outputs: A set of kNNGs Γ , a set of corresponding co-locations C.
Method:
1: k = 1; //k of kNN
2: Γ = ∅; S = ∅; //S is a set of merging candidates
3: Nk = MkNN(E,F, k); //Nk is a set of MkNN edges of E
4: Initialize each edge 
 ∈ Nk as an individual graph G in Γ ;
5: Initialize each e ∈ E\V (Nk) as an individual graph G in Γ ;
6: while |{G| G ∈ Γ and V (G) � α|E|}| is changed
7: k = k + 1; // increase k by one
8: Nk = MkNN(E,F, k); //update the mutual k-nn edges
9: for each 
e1,e2 ∈ Nk\Nk−1 //e1 and e2 are end points of edge 

10: if e1 ∈ V (G1) and e2 ∈ V (G2) //link two regions
11: then S = S ∪R(G1,G2); //append to candidate set without duplication
12: end for
13: sort S decreasingly by similarity value R;
14: for eachR(G1, G2) ∈ S //traverse candidates by sorted order
15: V (G) = V (G1) ∪ V (G2); E(G) = kNNG(V (G)); //test merging
16: if Ω(G) � ε or (V (G1) < α) and (V (G2) < α) //variation not large
17: then Γ = ((Γ\G1)\G2) ∪ G //replace G1, G2 with their merged region
18: end for
19: end while
20: Calculate co-locations C for each G ∈ Γ with prevalence threshold θ;
21: return Γ & C; //output signif cant regions and their co-locations

Algorithm 1. Discovery of regional co-location patterns

to each of them (line 4); whereas the rest part is formed by assigning each region with
a single event that does not participate in any of those edges (line 5).

Step 2.1. It then starts to merge the current regions iteratively. The process does not
terminate until the signif cant region can be merged, which means that the number of
significan regions does not change (line 6). In each iteration, the algorithm increases
k by one and updates the set of MkNN edges (lines 7–8). For each newly generated
edge, a merging candidate is formed if it connects two of the current regions and the
similarity is calculated (lines 9–12).

Step 2.2. Given a set of merging candidates, the algorithm decreasingly sorts them
by their similarity values (line 13), and sequentially investigates each candidate whether
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Fig. 3. An example of regional co-location pattern mining

its two regions have not yet been merged (lines 14–15). Each candidate is investigated
by a test merge and an evaluation of the merged region with the constraint of distance
variation. If the constraint is satisfie or both of two regions of the candidates are still
insignif cant, the algorithm replaces them with the newly merged region (lines 16–19).

Step 3. Based on a set of f nal regions, the algorithm calculates a set of co-location
patterns for each of them if it is significan with small variation, and uses the second
phase of join algorithm to f nd prevalent co-locations (line 20). Otherwise, the region is
discarded since it has rare events which can be regarded as an anomaly. Finally, a set of
signif cant regions and their prevalent co-location sets are returned to users (line 21).

5 Experimental Evaluation

Based on a real world data set, we evaluate the mining results of our approach against
the conventional ones, and study the trends of several statistics in our mining process.

5.1 Description of Real Data Set

Figure 3(a) shows a real world data set (details shown in Table 1) we use for exper-
iments. It is available at the Digital Chart of the World (DCW) Data Server [23] for
research on spatial co-location discovery (see e.g.,[10,18]). Its spatial events have lo-
cation information of latitudes and longitudes. Moreover, they are classifie by distinct
types of landmarks, such as drainage, land cover, and populated place. It is obvious that
the data set includes various densities. In the data set, the geographic coordinates are
transferred to projection coordinates using Universal Transverse Mercartor projection.

5.2 Mining Results

In this set of experiments, we run both our regional mining algorithm and the join
algorithm on the DCW data set with parameters ε = 0.6, θ = 0.6 and α = 0.005.
Figure 3(b) illustrates our mining results (details shown in Table 2) for the data set
shown in Figure 3(a), in which we identify nine regions and some regional co-locations.
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Table 1. The data set of US Minnesota state in DCW

No. Landmark Type abbr. # of events No. Landmark Type abbr. # of events
1 Aeronautical Point Ap 86 5 Hypsography Hy 72
2 Cultural Landmark Cl 103 6 Hypsography Supplemental Hs 687
3 Drainage Dr 6 7 Land Cover Lc 28
4 Drainage Supplemental Ds 1338 8 Populated Place Pp 517

Table 2. Information of found regions in DCW data set

Regions R1 R2 R3 R4 R5 R6 R7 R8 R9

Number of events 15 14 866 430 727 128 94 96 157
Average neighborhood 10.54 8.12 16.74 22.19 24.91 3.63 3.49 2.78 4.22

distance (km)
Distance variation 0.51 0.40 0.58 0.60 0.57 0.60 0.55 0.59 0.60

Number of co-locations 3, 1, 0 1, 0, 0 3, 1, 0 10, 10, 3 7, 3, 0 15, 13, 4 8, 3, 0 10, 5, 1 9, 2, 0
(sizes 2, 3, and 4)

Table 3. Value of participation index of co-locations in DCW data set

Algorithms Pi({Ds,Hs,Pp}) Pi({Ap,Ds,Pp}) Pi({Hs,Cl,Pp}) Pi({Ap,Cl,Pp})
join(30km) 0.65 Null Null Null
join(35km) 0.72 0.70 Null Null
join(40km) 0.77 0.78 0.64 Null

RCMA 0.98(R3),0.96(R4) 0.66(R5),0.71(R6) 0.71(R4) 0.81(R6)0.69(R5),0.90(R6) 0.86(R8),0.75(R9) 0.90(R5)

Fig. 4. Impact of k values to (a) the number of regions, and (b) the number of signif cant regions

In Table 3, we select four co-locations to demonstrate the difference between these
two algorithms. The join algorithm discovers only the co-location {Ds, Hs, Pp} with
a small distance threshold (30km). When the value of distance threshold increases, the
other two co-locations ({Ap, Ds, Pp} and {Hs, Cl, Pp}) are detected. However, these
regional co-locations are over-estimated to be globally prevalent. By contrast, our al-
gorithm can detect them in their corresponding regions. We also f nd the co-location
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Fig. 5. Impact of k values to (a) the average similarity of adjacent regions, and (b) the average
distance variation

{Ap, Cl, Pp} in a single region which is under-estimated by the conventional ap-
proaches. By comparing with the previous research results [18], our mining results
include their discovered co-locations, and can assign them to the corresponding regions.

5.3 Evaluation of Regional Mining Process

In what follows, we study the trends of four statistics in our mining process on the
DCW data set with the information of the number of regions, the number of signif cant
regions, the average similarity of adjacent regions and the average distance variation.

Number of Regions. As can be seen from Figure 4(a), the number of regions decreases
with the increase of k value. This is because the small regions are merged into larger
ones. The decreasing is fast when k is small, while most of the regions are insignifica t
and the merging condition is easy to satisfy. The fast rate of decreasing also indicates
that a relatively small k value can suff ciently describe the neighborhood relationship
of spatial events, as well as the regional structure of space.

Number of Significant Regions. At the initial stage of mining process, there are hardly
any significa t regions as illustrated in Figure 4(b). Then the number of significa t re-
gions increases in a sudden when k = 6. This is because many insignifican regions
are closing to the ratio line and become signif cant. The remaining set of insignif cant
regions naturally become anomalies which are hard to merge due to different neighbor-
hood distance from their adjacent regions. After that, the number of signif cant regions
decreases when the similar regions are sequentially merged.

Average Similarity of Adjacent Regions. To determine whether two regions are adja-
cent, we calculate each region a minimum bounding rectangle (MBR) and extend its
width and height by 10%. Two regions are regarded as adjacent if they have an overlap
between their MBRs. According to Defi ition 6, we calculate the average similarity of
adjacent regions as shown in Figure 5(a). At the beginning of the process the similar-
ity fluctuate , and then decreases rapidly. To explain the f uctuation, we tentatively test
the relationship of k and the distance variation in Figure 6. We continually generate a
set of kNNGs of the DCW data set by increasing k value from one to larger values,
then calculate the value of distance variation for each generated graph. As can be con-
cluded, the distance variation of the graph is large with small k. It decreases as k value
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Fig. 6. Impact of k values to the distance variation of kNNG

increases. This is because small value of k indicates a large gap of the neighborhood
distance between the events in dense and sparse areas. When k becomes larger, the
edges with larger weights are involved and reduce the gap. Thus, at the beginning of
the merging process, the regions which have different neighborhood distance are not
merged even if they have consistent co-locating information. With larger k values, the
distance variation of regions becomes smaller, while the consistency of co-locating in-
formation generally becomes a primary reference for merging. This explains the early
fluctuatio because the impact of distance variation and co-locating information match
each other, and the later on drop of the similarity because the co-locating information
competes as the primary reference.

Average Distance Variation. Figure 5(b) shows the implication between the average
distance variation of regions and k values. With slight f uctuation, the average distance
variation generally becomes large. The trend of curve verif es our explanation that the
impact of distance variation and co-locating information match each other at the initial
stage, and then the latter becomes the primary reference for merging.

6 Conclusion

We have discussed the limitations of conventional approaches to mining spatial co-
locations using distance thresholds, especially for data sets with various magnitudes of
neighborhood distances. To get rid of those limitations, we have proposed a hierarchi-
cal mining framework to discover regional co-locations accounting for both varieties of
neighborhood distances and spatial heterogeneity. By adopting kNNG instead of dis-
tance thresholds, we have proposed a novel “distance variation coeff cient” to drive the
mining process and determine an individual NRG for each region. With rigorous ex-
periments on a real world data set, we have demonstrated that our framework has been
effective for the discovery of regional co-location patterns.
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Abstract. There is an ample body of recent research on indexing for structural
graph queries. However, as verif ed by our experiments with a large number of
random and scale-free graphs, there may be a great variation in the performances
of indexes of graph queries. Unfortunately, the structures of graph indexes are of-
ten complex and ad-hoc, so deriving an accurate performance model is a daunting
task. As a result, database practitioners may encounter diff culties in choosing
the optimal index for their data graphs. In this paper, we address this problem
by proposing a spectral decomposition method for predicting the relative perfor-
mances of graph indexes. Specif cally, given a graph, we compute its spectrum.
We then propose a similarity function to compare the spectrums of graphs. We
adopt a classif cation algorithm to build a model and a voting algorithm for pre-
dicting the optimal index. Our empirical studies on a large number of random and
scale-free graphs, using four structurally distinguishable indexes, demonstrate
that our spectral decomposition method is robust and almost always exhibits an
accuracy of 70% or above.

1 Introduction

Due to the fl xibility of the graph model, it has a wide range of recent applications,
such as biological databases, social networks and XML. To optimize query processing
on graph data, many indexing techniques have recently been proposed. Unfortunately,
graph data are often heterogeneous and the structures of their indexes are often complex
and ad-hoc. As our experiments reveal, the performances of such graph indexes may
vary greatly. This leads to a natural question for database practitioners: Which index is
the most efficient for a given graph?

When compared to their relational counterparts, the structures of many graph indexes
are far more complex. This causes a few unique problems. Firstly, it is sometimes time-
consuming to construct the indexes. For example, our experiments on a commodity
computer show that given a random graph of a modest size (∼3,000 vertices and a den-
sity of 0.02), the construction time for a graph index, namely 2-hop labeling [12],
is already 8.3 seconds. (For background details of the indexes discussed, please refer to
our technical report [13].) While some other graph indexes can be constructed in less
than a second, the most time-eff cient index can only be identif ed after all indexes have
been constructed and benchmarked. Furthermore, performance depends not only on the
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Fig. 1. Overview of our spectral decomposition prediction framework

algorithms but also the details and quality of the implementation, as there is not yet a
well-received (i.e., commercial) implementation in place. Secondly, graph indexes are
sometimes several times larger than the graph itself. Using the example given above,
the index generated by 2-hop labeling is 19 times larger than the graph whereas
that by Interval labeling [1] is almost as large as the graph itself. Hence, it is not
space-efficie t to use and maintain multiple indexes simultaneously on the entire graph.
Overall, it is clearly desirable to be able to predict the optimal index and construct it,
and only it, for eff cient query processing.

As a proof of concept, we focus on reachability queries — “given two vertices, is
one reachable from the other?” — which is a fundamental query of graphs. However,
our proposed technique does not depend on any specif c type of graph query.

In this paper, we apply data mining techniques to predict the relative performances
of different graph indexes. One of the core problems is to extract important features (or
characteristics) from data graphs. While a large variety of features have been studied in
graph theories [9], it is not yet clear which are the most relevant to index performances.
Therefore, we propose to apply a general technique derived from spectral graph theo-
ries [5], namely spectral decomposition, to solve this problem. Spectral methods have
been reported successful in many applications such as VLSI design and computer vi-
sion. To the best of our knowledge, this is the f rst work to empirically demonstrate the
relationships between graph spectrums and index performances. In general, graph spec-
trums are known to be characteristics of graphs and to be related to many important
graph properties. Another advantage is that they are supported by industrial-strength
softwares, not to mention the availability of their advanced optimizations.

The second core problem is to represent the performance of a graph index. Our pre-
liminary experiments show that the runtimes of 1,000 random queries on an index, even
on the same graph, can often exhibit large variances. For example, we ran 1,000 ran-
dom queries on each of 8,000 random graphs and indexed each using 2-hop and Prime
labeling [11]. The mean and standard deviation of 2-hop are 14.1 seconds and 4.2
and those of Prime labeling are 11.6 seconds and 59.7, respectively. Moreover, the
runtimes are often skewed and have a long tail at large values. (In a later section, we
illustrate some of the runtime distributions in Figure 2.) We observe a similar phe-
nomenon in our collection of scale-free graphs. A possible explanation is that a graph
may contain many different sub-structures and the indexes are also complex structures.
This leads to a wide range of runtimes. While average runtimes are often used to quan-
tify index performances, it is desirable to propose a more f exible metric.
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In this paper, we f t the runtimes of queries into a distribution. From our experi-
ments on estimating its parameters, the goodness of f t of the Gamma distribution is
always the best. By comparing the distributions of runtimes, we can obtain a more ro-
bust and f exible way to compare performances. While we may apply the research on
the Gamma distribution for further analysis, in this paper, we apply the inverse cumu-
lative distribution function to estimate the time when y% of queries f nish. Depending
on users’ applications, they may specify a value for y% to express their “tolerance” of
long query runtimes. For instance, some Internet connection providers (e.g. hotels and
cafes) charge their users according to connection time and so long query runtimes can
be undesirable. To cater for their needs, data practitioners may choose the index that is
optimal at 98%, instead of the one that has the optimal average runtime.

Contributions. To our knowledge, this is the f rst investigation of graph spectrums in
relation to index performances. We summarize the contributions of this work below and
present an overview of these in Figure 1.

– Given a graph Gi in a database D, we propose a spectral decomposer to determine
Gi’s Laplacian matrix and a set of eigenvalues ΛGi and eigenvectors UGi . These
eigenvalues and eigenvectors are transformed into a unif ed representation for com-
parison purposes.

– We propose a spectral similarity function between two graphs.
– We propose to f t the runtimes of an index on a given graph into the Gamma dis-

tribution using a distribution f tter. Users may then evaluate this in terms of their
desired optimal index.

– We adopt the k-Means algorithm and k-nearest neighbor with a voting method for
predicting the optimal index IoptG′ of a given graph G′.

– We conduct experiments with a large number of random and scale-free graphs. The
results show that our proposed technique can achieve accuracies that are almost
always above 70% and very often above 80%.

The rest of the paper is organized as follows. Section 2 presents the backgrounds to
graph spectral decomposition. We present our problem statement in Section 3. Section 4
presents the defi ition of the optimal index. A uniform spectral representation of graphs
and a similarity function between graphs are proposed in Section 5. Our prediction
method is detailed in Section 6 and our experimental evaluation is reported in Section 7.
Section 8 discusses related work and Section 9 concludes this paper.

2 Background to Graph Spectral Decomposition

In this section, we provide a background to graph spectrums. Graph spectrums have
been widely used to study many interesting properties of graphs, such as spectral parti-
tioning and expansion [8], the cut problem [7] and graph drawing [14].

Graph spectrum is often define using Laplacian matrix. Laplacian matrix L of a
directed or undirected graph G = (V,E) is define as L = D − A, where D is the
degree matrix of G and A is the adjacency matrix of G. More specificall , Ai,j = 1 if
(vi, vj) ∈ E; and Ai,j = 0 otherwise, where i and i are the ID’s of the vertices vi and
vj . The degree matrix is a diagonal matrix and Di,i is the outdegree of vi
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The Laplacian matrix L of G can be eigendecomposed as L = UΛU−1, where Λ is
a diagonal matrix of eigenvalues of L, and U is a matrix of the corresponding eigen-
vectors. Specificall , let λ1 ≤ λ2 ≤ ... ≤ λn, where n = |V |, denote the eigenvalues;
X1, X2, ..., Xn denote the corresponding eigenvectors, where Λi,i = λi; and the i-th
column of U is Xi. We call U the eigenvector matrix and use Λ to refer to eigenvalues.
We use a subscript in UG and ΛG to denote the U and Λ of graph G if needed.

Eigenvalues Λ are called spectrums in spectral graph theories. Since eigenvectors U
are also known to be closely related to the characteristics of vertices, we include them
in our algorithm. We use the Λ and U of the underlying undirected graphs of the data
graphs, as they capture their structures and their properties are well-studied [5].

3 Problem Formulation

In this section, we formulate the optimal graph index prediction problem based on graph
eigenvalues and eigenvectors.

We assume a graph database D containing a large number of directed graphs
{G1, G2, ..., Gm}. The reachability query on the graphs is formally defi ed as
follows.

Definition 3.1. Given a directed graph G = (V,E), u, v ∈ G, v is reachable from u,
denoted as u� v = true, if and only if there is a path from u to v in G.

As discussed earlier, various types of indexes are available to support the reachabil-
ity query on graphs in D. However, it is desirable to predict the optimal one without
building and benchmarking all the available indexes. This problem can be described as
follows.
Problem Statement. Given a set of indexes I = {I1, I2, ..., In} and a graph database
D, we want to build a predictive model M using the eigenvalues and eigenvectors of
graphs in D, in order to efficiently determine the optimal index IoptG for a graph G �∈ D.

There are two main sub-problems within the problem statement.
(P1) How can we represent the performance of an index on a graph?

As motivated in Section 1, the query runtimes of a particular index on a particular graph
may deviate from the average. Therefore, in Section 4, we investigate the more fl xible
notion of the optimal index in expressing desirable runtimes.
(P2) How do we compare spectrums of graphs?

As mentioned in Section 1, we propose to represent a graphG with eigenvaluesΛG and
eigenvectors UG. A similarity function between the spectral graph representations is
needed. In addition, the number of eigenvalues and the dimension of the eigenvectors
of a graph G is the number of vertices of G, which are not uniform in a graph database.
They are therefore transformed into a uniform representation for comparison purposes.
Finally, while the eigenvaluesΛG are invariants of G, the row vectors of the eigenvector
matrix UG are dependent on the permutations of the vertex IDs of G. There is hence a
row permutation problem when comparing U ’s of graphs.
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4 Performance Metric

We def ne the performance of an index using the query times of 1,000 random queries,
as the query workloads are often not known when an index is chosen. To study per-
formance, we plot the query time distribution, where the x-axis is the query time and
the y-axis the number of queries f nished at time x. For example, Figures 2(a) and
(b) show the query runtime distributions of two indexes on a random data graph. We
demonstrate that average runtime alone may lack the f exibility to describe the desired
notion of performance. For example, Figure 2(a) shows that Grail(1) [18] has the
smallest average time but has a long tail. In comparison, the rutntimes of Interval
exhibit a relatively small variance, although Interval has a relatively large average
time. Therefore, Interval could be a better choice in applications where long query
times are unacceptable or commercially unfavorable.
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(b) Distribution of runtimes of Interval

Fig. 2. Some distributions of the runtimes of 1000 random queries on a random graph

Once the query runtimes are presented as a distribution, we fi this to some well-
studied distributions, such as Normal, Poisson and Gamma distributions. To measure
goodness of f t, we adopt the L2-norm between the estimated and the real distributions.
From our experiments on a large number of random and scale-free graphs, we observe
that the Gamma distribution almost always yields the best f t. A possible reason for
this is that it is often used to model the waiting time and the query runtime may be
considered as the waiting time until queries fi ish. (The detailed experiment on the
fitti g is presented in Section 7.) Moreover, the parameters of the Gamma distribution
can be efficientl estimated. Therefore, we use it to represent the query runtime.

While the optimal index is intuitively the most eff cient on 1,000 random queries,
we def ne it as the one with the smallest estimated runtime w. r. t. the user-def ned
parameter y% (e.g., 98%). Once the parameters of the Gamma distribution have been
estimated, the notion of the optimal index can be tuned and determined mathematically
by adjusting y.

Definition 4.2. Given a set of indexes I = {I1, I2,..., In}, a graph G, and a set of
random queries Q, the optimal index in I of G is the index that finishes y% of queries
of Q in the shortest time.

An application of Defi ition 4.2 is that database practitioners may check the robustness
of an index. For instance, given a graph database, we may use the estimated Gamma
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parameters to construct prediction models for a few y values, e.g., 75%, 85% and 95%,
without rerunning the benchmarking queries. An index can be considered robust if it is
optimal for all those y values, instead of a specifi one.

5 Spectral Similarity of Graphs

This section presents a similarity measure for the eigenvalues and eigenvectors of graphs.
Specif cally, we f rst transform these into a uniform representation and then permute the
rows of the eigenvector matrix to allow a similarity comparison. Finally, we propose a
spectral similarity function for graphs.

5.1 Unifying the Dimensionalities of Graphs

The f rst issue in using Λ and U to represent and compare graphs is that the dimensions
of Λ and U of different graphs are different; that is, they cannot be directly compared.
Therefore, we unify the dimensions of Λ and U as follows.
(i) We use the tail-k non-zero eigenvalues of ΛG and the corresponding eigenvectors of
UG to represent a graph G. According to [15], the eigenvectors of the tail-k non-zero
eigenvalues provide the best approximation of UG. This unif es not only the number of
eigenvalues ΛG but also the column dimension of UG.
(ii) Each row of UG corresponds to a vertex in G. The row dimension of UG of the
graphs can be unif ed by adding rows of zeros, until the dimension of UG matches the
largest graph in the database. Using simple matrix theories, we have that adding zero
rows to a matrix affect neither its eigenvalues nor the directions of its eigenvectors. In
our context, a zero row vector corresponds to an isolated (virtual) vertex of a graph and
does not affect the relative performance of indexes.

We further remark that the computation of the similarity between the eigenvector ma-
trices involves determining the cosine similarity between each pair of the eigenvectors
(to be detailed in Formula 1). The computation complexity is quadratic to the number
of eigenvectors in the matrices. Due to this performance issue, we opt not to introduce
eigenvectors to unify the column dimension of UG. In contrast, the computation time
of the similarity between UG is linear to the size of the row dimension. Thus, our di-
mension unif cation does not lead to a signif cant increase in computation time while
retaining the characteristics of the vertices.

5.2 Permutation of Vertex ID

While the eigenvalues of G are graph invariants [3], the eigenvectors (columns) in UG

are not. Since a row in UG represents the characteristics of a vertex in G and the IDs of
rows are directly related to the IDs of vertices, graphs with similar structures may have
very different eigenvector matrices. This can be illustrated using the simple example
shown in Figure 3. Here, graphs G1 and G2 are isomorphic and so are expected to
have the same Λ’s and U ’s. However,UG1 and UG2 are different, and a direct similarity
computation (to be defi ed in Section 5.3) yields a low similarity score of 0.57. We
reorder the rows in the eigenvector matrices of UG1 and UG2 to obtain U ′

G1
and U ′

G2
,
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Fig. 3. Eigenvalues and eigenvectors of two isomorphic graphs

respectively, as shown in Figure 3. Using U ′
G1

and U ′
G2

for the similarity computation,
we obtain a similarity score of 1.0.

Unfortunately, the number of possible permutations is n!, where n is the number of
rows. Therefore, we propose three practical heuristic functions to reorder the rows. The
aim is to be able to compare vertices with similar spectral characteristics.
(i) V P rad: for each row in UG, we compute its L2-norm. We order the rows by their
L2-norms in descending order. Intuitively, the L2-norm of a row vector denotes its
distance (radius) from the original point in a vector space. Therefore, the row vectors
that are far (or, respectively, close) to the original point are compared.
(ii) V P coor: According to [14], each row of UG can be considered as the coordinates
of a vertex of G in a vector space. The rows can then be ordered in descending lex-
icographic order. It is worth-remarking here that such an ordering of rows is biased
towards the f rst few dimensions, which correspond to smaller eigenvalues and hence
are considered more important than the latter dimensions.
(iii) V P W rad: Since the eigenvalues indicate the importance of a dimension, we
may integrate them with the heuristic function. Specificall , for each row vector, we
compute its weighted L2-norm, where the weight of the i-th entry of a row is 1/λi, and
then order the rows by their weighted L2-norms in descending order.
In summary, the processing presented above can be applied to both the rows and columns
of all graphs to obtain a unif ed representation for similarity computation. In subsequent
discussions, we simply use Λ and U to refer to the matrices whose dimensions have
been unif ed and ordered in this manner.

5.3 Spectral Similarity between Graphs

The central part of the prediction framework is the spectral similarity between graphs.
This has two major components.

Firstly, we determine the most comparable eigenvectors between two graphs G1 and
G2. Specificall , for each eigenvectorXi in UG1 , we pair Xi with an eigenvector Yj of
UG2 whose direction is the most similar to Xi, def ned as follows:

p[i] = argmaxj=1,...,n(cos sim(Xi, Yj)), (1)
whereXi in UG1 , Yj inUG2 and cos sim denotes the cosine similarity between vectors.

Secondly, the spectral similarity between two graphs G1 and G2 is define as the
weighted sum of the cosine similarity between paired eigenvectors, where the weights
are proportional to the difference between the corresponding eigenvalues:
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sim(G1, G2) =

∑
(λi,Xi)∈G1,

(λp[i],Yp[i])∈G2

(cos sim(Xi, Yp[i])× e
−

(λi−λp[i])
2

2σ2 ))

∑
λi∈G1,λp[i]∈G2

e
−

(λi−λp[i])
2

2σ2

, (2)

where σ is a parameter that controls the importance between eigenvalues and eigenvec-
tors. In particular, the larger the value of σ, the greater the inf uence of the eigenvalues
on the sim function. To compare two spectrums, (i) we compute the weight determined

by a Gaussian function on the difference between the eigenvalues, e−
(λi−λp[i])

2

2σ2 . We
assume such a difference of eigenvalues follows a normal distribution; (ii) the cosine
similarity between the corresponding eigenvectors is multiplied by the weight; and (iii)
the denominator normalizes the similarity function.

6 Prediction Algorithm

With the uniform representation of graphs in D and the spectral similarity function, we
are ready to present our prediction algorithm. In this paper, the label of a graph G is
its optimal index among a given set of indexes I = {I1, I2, ..., In}. We use the eigen-
values and eigenvectors of graphs in D and their labels to train a prediction model. To
summarize the graphs in D, we simply adopt classical k-Means clustering, while other
clustering techniques may be applied. As we shall see from experiment, prediction with
eigenvalues Λ alone is not as accurate as that achieved with both Λ and U . However,
some other classical methods, such as neural networks or decision trees, require to cast
U into some numerical values for training, while preserving their semantics. This does
not appear trivial and so these are not adopted.

A trained model is then used to predict the label of a graph G′, where G′ �∈ D.
Specificall , given a graph G′, we determine its k-nearest cluster centers and apply a
voting method to obtain the weighted majority of their labels. Such a label is returned
as the optimal index of G′.

6.1 Clustering Algorithm

In this subsection, we highlight the adoption of k-Means clustering for training a predic-
tion model. The overall algorithm (Procedure kMeans) for the construction is summa-
rized in Figure 4. The label (i.e., the optimal index) of each graphG ∈ D is determined
by the defi ition presented in Section 4. Then, similar graphs in D are clustered by
Procedure kMeans. The label of a cluster center represents the label of that cluster.

While Procedure kMeans follows the general framework of classical k-Means al-
gorithm, we highlight this particular adoption, i.e., Lines 06-09. Most importantly, the
major modificatio is to the recalculation of the new cluster centers in Lines 08-09.
Classical k-Means algorithms often use averaging of a distance function between data
objects in a cluster to obtain a new center. However, the averages of the eigenvectors
or eigenvalues do not correspond to any clear semantics. Therefore, in Line 08, we de-
termine the sum of the spectral similarity between each graph and all other graphs in a
cluster. The new cluster center is the graph with the highest similarity sum (Line 09).
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ProcedurekMeans
Input: labels, Λ’s and U ’s of graphs in D, cluster number k,

and termination parameter δ
Ouput: the k clusters C and their centers

01 randomly choose k centers for k clusters C
02 for each G in D
03 imax = argmaxi=1,...,k(sim(G, C[i].ctr)) //C[i] is ith cluster
04 assign G to the cluster C[imax]
05 while the clusters C have changed
06 for each C[i], where C[i] ∈ C, δ% of graphs in C[i] changed
07 // recalculate the center of C[i]
08 for each G ∈ C[i] G.sim =

∑
G′∈C[i](cos sim(G, G′)

09 C[i].ctr = argmaxG∈C[i](G.sim) // C[i].ctr is center of C[i]
10 for each G in D
11 imax = argmaxi=1,...,k(sim(G, C[i].ctr))
12 assign G to C[imax]

Fig. 4. Procedure kMeans

Optimization. The clustering algorithm recalculates cluster centers in each iteration.
However, in later iterations of Procedure kMeans, the changes in clusters are often
small. In other words, the algorithm may then recompute the spectral similarity of the
same graphs many times. To optimize this, we store the spectral similarities between
graphs when they are f rst computed and then retrieved in later iterations.

6.2 Prediction Algorithm

To predict the optimal index of a graph G′ �∈ D, one may be tempted to use the label of
the cluster center that is the most similar to G′. However, as discussed above, the cluster
centers are data graphs themselves and sometimes may not be optimal. Accordingly, the
prediction using one cluster center may be overly sensitive to the quality of the clusters.
To enhance the robustness of the prediction, we adopt a simple k-NN algorithm, where
k is a user-define parameter. Specificall , given a graph G′, we decompose it into Λ′

G

and U ′
G. We determine the k clusters C[i1], C[i2],..., C[ik] from C, whose centers are

the most similar to G′. Suppose the label of C[i]’s center is L. The vote of C[i] to L is
defi ed as the spectral similarity between C[i]’s center and G′. The optimal index of G′

is the label with the largest sum of votes.

7 Experimental Evaluation

In this section, we report on an experiment conducted to verify the accuracy and eff -
ciency of the spectral decomposition approach to predict the optimal graph index.

7.1 Experimental Setup

Implementation: We ran our implementation on a commodity PC with a Quad-core
2.4GHz CPU with 4G memory running Windows 7. We implemented our proposed
technique using MATLAB R2011a. We used the functions provided by MATLAB as far
as possible, such as those determining the eigenvalues and eigenvectors, and statistical
distribution f ttings.
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Graph Collections: We used both random and scale-free graphs for our experiments, as
they are popular classes used in graph analysis. Moreover, we controlled for their sizes
and densities. The generators used were provided by Zhu et al. [19]. We generated 1,024
graphs of each type. For random graphs, the average number of vertices and fanout
were 3.4k and 6.8, respectively. For scale-free graphs, we set α = 0.27 and β = 10 and
obtained 1,024 graphs with an average number of vertices of 3k and average fanout 7.2.
We use R and S to denote experiments with random and scale-free graphs, respectively.
Reachability Query Time Collections: We ran the implementations of Interval [19],
Grail [18], 2-hop [2] and Prime labeling [11] on our graph collections. We ran
1,000 random reachability queries on each graph. The runtimes of these 1,000 queries
on each index were then stored and fitte into Gamma distributions. The runtimes were
obtained from warm runs. The estimated α and β of Gamma distributions were stored
for determining the optimal index. The label of a graph is determined by the y value.

We observe that there were cases where the prediction problem was trivial, e.g., one
index was almost always more efficie t than the others. These cases were omitted as
our prediction model was very accurate. In other words, neither of the indexes chosen
in our experiments dominated another.

Table 1. Meanings & default values of parameters Table 2. Fitting error (L2-norm)

parameter meaning default

k knn k in k-NN 7

k kmeans k in KMeans 64

kmeans whether KMeans is used in prediction yes

|T | no. of samples used for testing 28

|D| no. of samples used for both training and testing 256

k tail tail k eigenvalues and their corresponding eigen-
vectors used in graphs’ similarity

32

σ parameter in sim to balance the importance of
eignvalues and eigenvectors

0.1

fittin error Poisson Normal Gamma

R (Interval) 0.16 0.09 0.06

R (2-hop) 0.17 0.16 0.14

R (Grail(1)) 0.50 0.43 0.27

R (Prime) 0.43 0.49 0.26
S (Interval) 0.18 0.07 0.04

S (2-hop) 0.25 0.23 0.20
S (Grail(1)) 0.52 0.42 0.29

S (Prime) 0.77 0.70 0.51

Default Parameter Settings: We conducted a set of experiments to show the effect of
each parameter in our technique. Unless specifie otherwise, we used the default set-
tings shown in Table 1. We used the V P rad utility function for the vertex permutation
in the sim computation by default. For ease of exposition, we predict the optimal index
from two graph indexes. That is, the prediction label of the experiments was binary.
Performance Metric: Unless otherwise specified we ran each experiment 100 times
and report here the average accuracies.

7.2 Experiments on Distribution Fittings

To verify that the distributions of the reachability query times on each index can be
fitte to some well-known distributions, we tested their fitti g functions. We generated
the runtime distributions of all of our random and scale-free graphs and all of our index
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Table 3. Effects of |D| on R

average accuracy (ours / [6])

|D| 2-hop vs

Grail(1)

Interval vs

Prime

64 84.18% / 85.06% 79.18% / 75.86%

128 87.57% / 87.35% 83.14% / 85.31%

256 87.11% / 88.18% 82.68% / 85.25%

512 85.18% / 92.03% 82.54% / 89.36%

Table 4. Effects of k in kMeans on R and S

average accuracy (R) average accuracy (S)

k kmeans 2-hop vs

Grail(1)

Interval vs

Prime

2-hop vs

Grail(3)

2-hop vs

Grail(5)

8 71.21% 70.43% 63.64% 65.11%

16 79.61% 77.29% 76.75% 79.68%

32 85.25% 80.50% 79.79% 81.18%

64 89.46% 83.75% 78.71% 80.00%

128 90.54% 84.21% 76.00% 76.89%

Table 5. Effects of k in knn on R and S

average accuracy (R) average accuracy (S)

k knn 2-hop vs

Grail(1)

Interval vs

Prime

2-hop vs

Grail(3)

2-hop vs

Grail(5)

1 83.57% 79.61% 67.86% 67.46%

3 86.79% 81.43% 73.68% 74.86%

5 88.82% 82.61% 77.36% 77.50%

7 89.79% 83.00% 79.86% 80.57%

9 89.29% 82.82% 81.07% 80.75%

Table 6. Effects of k in k tail on R and S

average accuracy (R) average accuracy (S) time

k tail 2-hop vs

Grail(1)

Interval vs

Prime

2-hop vs

Grail(3)

2-hop vs

Grail(5)

(s)

8 81.68% 79.54% 69.43% 68.93% 3.65

16 84.00% 81.11% 73.75% 74.57% 10.00

32 88.29% 83.75% 77.79% 80.04% 30.10

64 88.43% 83.43% 80.25% 82.89% 105.88

128 88.82% 84.39% 81.71% 83.04% 413.09

implementations. We used y%=98% in our experiments. In Table 2, we show the L2-
norm between the actual and estimated distribution of Poisson, normal and Gamma
distributions. We note that the Gamma distributions almost always clearly offered more
accurate fitti gs and the fitti g errors were often small. Therefore, in this work, we have
adopted the Gamma distribution.

7.3 Prediction Accuracies

In this experiment, we tuned the parameters of our prediction model and studied their ef-
fects on prediction accuracies. Due to space limitations, we present only the results ob-
tained from some pairs of indexes for each dataset: 2-hop vs Grail(1) and Interval
vs Prime for random graphs, and 2-hop vs Grail(3) and 2-hop vs Grail(5) for
scale-free graphs.

Effects of the Size of Training Dataset. We studied the effect of the dataset size on
prediction accuracy for random graphs, as shown in Table 3. kMeans was set to no in
this experiment. From Table 3, we observe that our prediction accuracies were almost
always above 80% on training sets of different sizes. We also note that the prediction
accuracy fir t increased and then slightly declined as the training dataset grew larger.
This was possibly because our model was overfitte by large training sets. Moreover
compared our method with a previous work [6]. While our method is either comparable
or slightly less accurate, it is less ad-hoc than [6]. As discussed, spectrums have known
to be useful in many real applications. However, in [6], the features were chosen simply
because they are verifie useful by experiments.
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Effects of k kmeans. We studied the effects of k kmeans on prediction accuracy as
shown in Table 4. It can be seen that accuracy increased with the growth in k kmeans
for random graphs. This is because the clusters become more ref ned with larger
k kmeans. Thus, we had a higher probability of selecting similar cluster centers for
prediction. However, accuracy may reduce slightly if each cluster is too fine as shown
in the results for scale-free graphs.
Effects of k knn. Table 5 presents the effects of k knn on prediction accuracy. It can
be seen that accuracy increases with the growth of k knn. This is because that a large
k results in more votings, which reduces the effects of outliers. Our accuracy was over
80% on both random and scale-free graphs when k ≥ 7. The prediction accuracy was
stable when k ≥ 9.

Table 7. Effects of vertex permutation and σ on R

Vertex σ (2-hop vs Grail(1)) σ (Interval vs Prime)

Permutation 0.01 0.1 1 10 100 0.01 0.1 1 10 100

V P rad 89.43% 89.71% 82.25% 83.25% 71.21% 82.93% 83.21% 78.64% 74.14% 73.64%

V P coor 91.00% 90.21% 69.25% 69.11% 68.93% 82.71% 85.96% 73.00% 73.00% 72.43%

V P W rad 89.39% 90.68% 70.61% 72.21% 71.14% 82.71% 84.89% 72.86% 74.36% 75.25%

V P none 87.36% 80.86% 82.25% 69.50% 70.00% 81.89% 82.82% 78.61% 72.86% 72.14%

Effects of the Number of Tail-k Eigens. We used different number of eignvalues and
eigenvectors in prediction and studied the effect on accuracy, as shown in Table 6. It
can be seen that accuracy increases with more eignvalues and eignvectors, while the
prediction time increased roughly linearly. We exclude the time taken to determine the
spectrum of a graph as this mainly depends on the algorithm used. From our data,
the MATLAB function ran from 2.6s to 173s with an average of 39s. However, this is
often still more efficien than choosing the optimal index by constructing all candidate
indexes and running a large number of benchmark queries.
Effects of Vertex Permutation and σ. In this experiment, we studied the effects of
vertex permutation and σ on prediction accuracy. Table. 7 presents the results. It may
be observed that while V P coor, V P W rad and V P none could all sometimes be
accurate, they were sensitive to the choice of σ, in the similarity function. In compar-
ison, V P rad is both robust and accurate. Moreover, when σ increased, the relative
importance of eigenvectors reduced, and accuracy decreased.

8 Related Work

To the best of our knowledge, there have been only few preliminary studies that use
graph features to predict the relative query performances of graph indexes. Deng et
al. [6]. extract features from data graphs and use neural networks for prediction. How-
ever, there have been many features in graph theories and it is unclear which of these
are the principal ones. In contrast, we use the tail-k eigenvalues and eigenvectors for
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prediction. Moreover, the optimal index of [6] is def ned by the best average runtimes.
In comparison, we also allow users to fi e-tune their notion of the optimal index. An-
other work by Zhu et al. [19] applies multiple graph indexes to partitioned subgraphs
of a data graph. An analytical cost model is proposed and illustrated with 2-hop and
Interval. Our approach has been applied to various indexes. Spectral methods have
been applied to produce k partitions of graphs e.g., [10]. Our aim is not to produce
exactly k partitions but to predict to the optimal index.

Finally, there is a large body of work on determining graph features, e.g., [16], for
query processing, e.g., [17,4]. Due to space limitations, we cannot include a detailed
survey on this area. However, in these studies, features are graphs (structures). It re-
mains unclear how to exploit them to build a predictive model.

9 Conclusions

In this paper, we propose a spectral decomposition method for predicting the optimal
graph index of a given graph. Specif cally, we propose a uniform representation of a
graph, a spectral similarity function and a prediction algorithm. We obtain the imple-
mentation of four structurally different graph indexes. One observation is that the run-
time distributions of the indexes f t accurately into a Gamma distribution. This allows
us to ref ne the notion of the optimal index, using the inverse cumulative distribution
function. We report on detailed experiments on the parameters in our techniques on
both random graphs and scale-free graphs. We note that our technique is robust and
can achieve approximately 70% accuracy or higher. In future work, we will investigate
methods for other subgraph queries.

Acknowledgment. This work is partly supported by FRG2/10-11/106, GRF
HKBU210510 and GRF 211512.
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Super-Linearities, and the Almond-DG Model
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Abstract. If Alice has double the friends of Bob, will she also have dou-
ble the phone-calls (or wall-postings, or tweets)? Our first contribution is
the discovery that the relative frequencies obey a power-law (sub-linear,
or super-linear), for a wide variety of diverse settings: tasks in a phone-
call network, like count of friends, count of phone-calls, total count of
minutes; tasks in a twitter-like network, like count of tweets, count of
followees etc. The second contribution is that we further provide a full,
digitized 2-d distribution, which we call the Almond-DG model, thanks
to the shape of its iso-surfaces. The Almond-DG model matches all our
empirical observations: super-linear relationships among variables, and
(provably) log-logistic marginals. We illustrate our observations on two
large, real network datasets, spanning ∼ 2.2M and ∼ 3.1M individu-
als with 5 features each. We show how to use our observations to spot
clusters and outliers, like, e.g., telemarketers in our phone-call network.

1 Introduction

If ‘Alice’ has 50 contacts and did 100 phonecalls to them, what should we expect
for ‘Bob’, who has twice the contacts? One would expect a linear relationship
(double the contacts, double the phonecalls). However, we show that in numerous
settings, the relationship is a power law, being sub- or super-linear.

Useful as it may be for point estimates, the power-law relationship cannot give
us any estimate for the variance. How would we model such joint distributions,
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(a) Super-linear Rel. Frequency (b) log-logistic marginals

Fig. 1. Illustration of super-linearity and goodness of our proposed Almond-DG. (a)
Power-law relationship between count of tweets and count of retweets for each user
in Tencent-Weibo (log-log scales). (b) Marginal PDF of the retweets, in log-log scales:
real (in green triangles); generated by Almond-DG (in blue circles).

like, say, the number of contacts vs. number of phone-calls? What can we say
about their marginals? They are definitely not Gaussian. Do they follow a Pareto
(power-law) distribution in their marginals? What about the joint distribution?

The questions we want to answer here are:

1. Q1: Patterns: if ’Alice’ executes task x (say, phone call) for nx times, how
many times ny does she do task y (say, send an sms)?

2. Q2: Distribution estimate: What is the appropriate 2-d distribution to
fit real, 2-d points (like, say <# tweets, # retweets> in the twitter setting)?
Multivariate Gaussian fails miserably, due to heavy tails in real data.

3. Q3: Practical use: Can we answer “what-if” scenarios, and find anomalies?

Our contributions are exactly the answers to the above questions:

– A1: Patterns:We observe power law relationships between tasks competing
for a person’s resources (e.g., time).

– A2: Distribution Estimate: We propose the Almond-DG distribution,
which uses the lesser-known tool of copulas, and has all the properties we
observed in real data: the super-linear relationship, and also, log-logistic
marginals (which are prevalent in many real-world datasets).

– A3: Practical use: Our Almond-DG fits several, diverse real datasets.
We show how to spot outliers, and how to answer what-if questions.

We report results from two large, real, diverse network datasets. The first spans
∼ 3.1M users and is on a phone-call dataset; for each customer, we study the
count of distinct contacts, phonecalls, text messages, and the total minutes. The
second is from Tencent-Weibo network, a Chinese version of TwitterTM, with
count of tweets, re-tweets, followees etc. per user. Figure 1 illustrates our main
ideas and discoveries: Figure 1(a) depicts the power-law relationship between
count of tweets and count of retweets. Both axes are logarithmic; each red square
is the conditional average of tweets, for the given count of retweets. The last few
points are noisy, because of extreme-value effects (there are very few people
with so many re-tweets, and they dominate the average). Figure 1(b) shows the
marginal PDF of the retweets, again in log-log scales. The green triangles are the
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real distribution, while the blue circles correspond to synthetic data, generated
by our proposed Almond-DG. Notice that (i) the real distribution has a power-
law tail, but it tilts in the beginning (top concavity) and (ii) our synthetic data
fit well. Table 1 gives the major symbols we use and their definitions.

Table 1. Symbols and definitions

Symbol Definition

FX(·), cumulative distribution function (CDF) for:
FD(·) (a) random variable X or (b) distribution D (e.g., FLL = CDF of log-logistic)

ax, ay location parameter of log-logistic random variables X & Y

bx, by scale parameter of log-logistic random variables X & Y

C(·, ·) copula: 2 variable dependence function [0, 1]× [0, 1]→ [0, 1]

θ parameter in Gumbel’s copula that captures
correlations between the random variables X & Y

SuRF Super-Linear Relative Frequency Observation

Almond our 2-d continuous log-logistic distribution using Gumbel’s copula

Almond-DG our proposed distribution: the discretized and truncated version of Almond

2 Patterns and Observations

What happens to the number of tweets of a user if her re-tweets triple (Fig-
ure 1(a))? To answer such ’what-if’ scenarios, we study two big, real networks,
from which we extract 5 features for each user; each feature corresponds to the
occurrences of a task:

• Tencent Weibo (W) [10]: one of the largest micro-blogging websites in China.
For each of the ∼ 2.2 million users we extracted five quantities: the number
of her tweets, retweets, comments, mentions and followees.

• Phonecall dataset (P): phone-call records from a mobile provider in a big
Asian city. For each of the ∼ 3.1 million customers we obtained the number
of her calls, messages, “voice” and “sms” friends, as well as the total minutes
of her phone-calls.

In Fig. 2 we present the scatter plots of pairs of tasks. For each dataset we
have n = 5 features. We are giving the plots for n − 1 pairs, instead of

(
n
2

)
,

due to space limitations. Each user/customer is a blue point on the plane and is
characterized by the number of times she did tasks ’A’ and ’B’. All plots “suffer”
from heavy over-plotting (not visible), especially for small values of occurrences.
So, linear regression fails and we resort to the following solution: we group the
points in logarithmic buckets and compute the mean (red points) of Y given X .
The line E[Y |X = x] is obtained by linear regression on the red points (ignoring
the few last points, where the observations are extremely sparse, possibly due to
the “horizon effect”). As we observe, in all cases the conditional expectation is
a linear function of x. We call this sub- or super-linear relationship between the
frequency of occurrence of the tasks SuRF (Super-linear Relative Frequency).
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Observation 1. Deviations from the power-law pattern, as shown in Fig. 2(P2)
are due to outliers, e.g. telemarketers.

The customers within the red ellipse all have about 100 contacts, and 100 phone-
calls, that is about one phone-call per contact. The rest of the population has
many more phone-calls than contacts; thus, this difference in behavior leads to
the suspicion that the former are telemarketers.

(W1) tweets VS retweets (W2) tweets VS comments (W3) tweets VS mentions

(W4) followees VS retweets (P1) minutes VS calls

(P2) voice friends VS calls (P3) voice VS sms friends (P4) sms friends VS sms

Fig. 2. SuRF patterns in real datasets (log-log scale, “W”: Weibo, and “P”: Phonecall
network): power-law relationship between competing tasks. In plot (P2), the ’anoma-
lous’ customers in the red ellipse deviate from the power-law pattern, having called
each of their contacts only once; they are probably telemarketers.

3 Almond-DG Distribution

In order to model the observed patterns of the previous section, we need a
probabilistic model; this model must satisfy the properties found in real 2-d
distributions, including the important property found in the previous section,
namely, the conditional average seems to follow a power law (Figure 1(a)). The
rest of the paper focuses on two questions:

– Q2.1: Can we find additional properties of such 2-d (and more ambitiously,
higher-d) distributions?

– Q2.2: Can we build a probabilistic model (i.e., find a 2-d PDF) that will
fit most real clouds of points? It is clear that the multivariate Gaussian is
heavily violated, even visually from Figure 1(b), and, as we show later, from
the marginals of the x and y axis.
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In summary, the answers are as follows:

– A2.1: Yes, the marginals of almost any attribute in our real datasets has
a skewed distribution, and can be modeled well by a (truncated, digitized)
log-logistic distribution.

– A2.2: Subject to log-logistic marginals, and power-law conditional averages,
a possible candidate 2-d distribution is our proposed ‘Almond’ distribution
(digitized and truncated).

We want a 2-d distribution whose iso-surfaces will resemble the ones in Figure
3. Since they have ’almond’-shape (see Fig. 3(c)), we name our proposed dis-
tribution as the ‘Almond’ distribution, and, after digitization and truncation,
Almond-DG.

The final answer is given by the discretized form of Eq. (1) in p. 207, which
we repeat here for convenience:

FALM (x, y; ax, bx, ay, by, θ) = e
−
(
[ln (1+(x/ax)

−bx)]
θ
+[ln (1+(y/ay)

−by )]
θ
)1/θ

,

where θ captures the correlation between the random variables (attributes) X
and Y , while ax (ay) and bx (by) determine respectively the location (≈ aver-
age/mode) and the spread (≈ variance).

As we discuss next, this distribution has all the desired properties (the super-
linear relationship, and provably, log-logistic marginals). The approach we follow
for Almond-DG has two steps: (a) modeling the marginal (univariate) distribu-
tions of the tasks, and (b) combining them with the use of the so-called copula.
Before we see the train of thought, we first give a property of the marginals (in
response to question Q2, above), and then some definitions.

For Q1, given the overwhelming number of real-world (univariate) datasets
that exhibit skewed distributions, one would expect that the marginals follow
power-law or log-normal distributions. We found that this is almost true: an
even better fit is provided by the so-called log-logistic distribution, which also
accounts for the top concavity (see Fig. 1(b) p. 202, Fig. 4(a,b) p. 209, Fig. 5
p. 212). We proceed with some definitions.

3.1 Definitions

Log-logistic distribution. All the marginals we report match the so-called
log-logistic distribution. Thus, we remind its definition next.

Definition 1 (CDF of log-logistic). The log-logistic CDF is given by

FLL(x; a, b) = (1 + (x/a)−b)−1, x ≥ 0

where a > 0 is the scale parameter and b > 0 is the shape parameter.

By definition, a (continuous) random variable X follows the log-logistic distribu-
tion, LL(a, b), iff its logarithm lnX follows the logistic distribution L(ln a, 1/b).
Intuitively, the CDF of the logistic distribution is the sigmoid function – exactly
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the one used for logistic regression, artificial neural networks, modeling prod-
uct market penetration (Bass model), spread of epidemics (SI model), etc. A
second property is that the odds-ratio of the log-logistic distribution, follows a
power-law, and thus it is a straight line in log-log scales (see Fig. 5 in p. 212).

Moreover, the log-logistic distribution is related to the standard Pareto distri-
bution: If X ∼ FLL(x; 1, 1), then the shifted random variable Z = X +1 follows
the standard Pareto distribution.

Copulas for Modeling Dependence.
Our proposed 2-d log-logistic distribution (Almond-DG) is based on copulas.
So, before we present the details of our distribution, we briefly give the main
notions behind this powerful technique, which has been successfully used in
survival models, financial risk management, and decision analysis.

In a nutshell, copulas are used for understanding and modeling dependence
structures between random variables (e.g., X = # of phonecalls, Y = # of sms).
More specifically, the copula function links the univariate margins (FX , FY ) with
their full multivariate distribution. By construction, the latter (a) has the same
marginals as X and Y , and (b) exhibits the correlation between them. Copu-
las have been proved very popular in statistical applications as they allow one
to easily model and estimate the distribution of random vectors by estimating
the marginals and copula separately. The major difference between the many
parametric copula families cited in the literature, is their capability of assuming
different dependence structures.

More formally, copulas are defined as follows:

Definition 2 (Copula). Let X, Y be two random variables with marginal
CDFs FX and FY respectively. A copula C(u, v) is a two-variable dependence
function C : [0, 1]× [0, 1] → [0, 1] that produces a joint CDF which captures the
correlation between the FX and FY variables, i.e., F (x, y) = C(FX(x), FY (y)).

The existence of such copula is guaranteed by Sklar’s Theorem [17]. Note that
if X , Y are independent variables, their joint CDF takes the form F (x, y) =
C(FX(x), FY (y)) = FX(x)FY (y). Hence the copula C(u, v) = u v captures their
independence.

The copulas are a powerful tool that can capture any type of dependence:
positive, negative, none (independence). One of the prevailing families of copulas
is the so-called Archimedean family; among its members we choose the so-called
Gumbel’s copula. It has been used successfully in several settings, for example,
to model the dependence between indemnity payment (loss) and an allocated
loss adjustment expense (e.g., lawyer’s fees) in order to calculate reinsurance
premiums [19]. Equally successfully, Gumbel’s copula has been used to model
the rainfall frequency as a joint distribution of rain characteristics (e.g., volume,
peak, duration) [9]. Formally, it is defined as follows:

Definition 3 (Gumbel’s Copula). Gumbel’s copula is given by C(u, v) =

e−[φ(u)
θ+φ(v)θ]

1/θ

, where θ ≥ 1, and φ(t) = (− ln t)θ.
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3.2 Proposed Almond-DG Distribution

As we briefly mentioned in the previous section, the log-logistic distribution fits
well the skewness of many real-world datasets. The reasons we pick the (digitized,
truncated) log-logistic for the marginals, are the following:

– real data (#-mentions, #-phonecalls) have a linear log-odd plot (Fig. 5),
– the log-logistic is related to the Pareto distribution, and
– it captures the top concavity observed in numerous real-world 1-d datasets.

So, how can we model the distribution of pairs of tasks (e.g., number of likes and
number of comments) competing for an individual’s resources (e.g., time) now
that we know that the distribution of each task is log-logistic or power-law-like?
It turns out we have a lot of choices, since several 2d-logistic (not log-logistic)
distributions with logistic marginals have been proposed in the literature. How-
ever, the majority of them (Malik and Abraham [12], Fang and Xu [7], etc)
are not suitable in our case, since they are not flexible enough to capture the
dependence between the variables that the real datasets exhibit.

Now we have all the ingredients (log-logistic marginals, a first step on how
to combine them), and we only need to make sure that X and Y are positively
correlated.

Notice that, in this section, we start from continuous distributions (like the
log-logistic), and we use their digitized version (floor()), followed by truncation:
whenever the result is “0” (say, zero phonecalls), we ignore it, since it won’t
register in our real datasets.

Consider two random variables X and Y (like ’number of phonecalls’, and
’count of contacts’ in our phonecall network). How can we model their joint
PDF? Copulas provide a way to do that, when we know the marginals FX and
FY . Sklar’s theorem [17] states that we can always find a 2-d function C(u, v)
that can model the joint CDF. We use Gumbel’s copula with parameter θ, and
log-logistic marginals with different parameters each. So, our proposed ’Almond’
distribution has 5 parameters and is defined below:

Definition 4 (’Almond’ Distribution). The CDF of Almond, our proposed
continuous 2-d log-logistic distribution, is given for x, y ≥ 0 by (1), where θ is a
parameter that captures the dependence between X and Y .

FALM (x, y; ax, bx, ay, by, θ) = e
−
(
[ln (1+(x/ax)

−bx)]θ+[ln (1+(y/ay)
−by )]θ

)1/θ

(1)

For illustration purposes, in Fig. 3, we give some examples of contour plots of
our Almond Distribution. The following observation is useful for estimating the
parameter θ from the real data.

Observation 2. For a pair of random variables (X,Y ) that follows the Al-

mond distribution, θ can be estimated by θ = (1 − τ)−1, where τ is Kendall’s
tau rank correlation coefficient between X and Y . In practice, for efficiency, we
use Spearman’s coefficient ρ instead of τ .



208 D. Koutra et al.

(a) θ = 1 (b) θ = 1.67 (c) θ = 3.33 (d) θ = 1 (e) θ = 1.26 (f) θ = 3.33

Fig. 3. Contour plots of the Almond distribution with parameters ax = ay = 1,
bx = by = 1 for (a)-(c); and ax = 6.5, ay = 2.1, bx = 1.6, by = 1.27 – as in the
“comments VS mentions” dataset – for (d)-(e)

Lemma 1. The marginals of the Almond distribution are log-logistic distribu-
tions.

Proof. By taking the limit of y to infinity, we obtain the marginal of X :

lim
y→∞

F (x, y) = FX(x; ax, bx) =
1

1 + (x/ax)
−bx

Hence, X ∼ LL(ax, bx). Similarly, we can show that Y ∼ LL(ay, by). ��

Observation 3 (Special case). If θ = 1, then C(u, v) = uv, and X, Y are
independent log-logistic random variables. The CDF of Almond becomes then

F (x, y; ax, bx, ay, by) =
(
1 + (x/ax)

−bx + (y/ay)
−by + (x/ax)

−bx (y/ay)
−by

)−1

.

The definition of our proposed digitized, truncated distribution follows:

Definition 5 (Almond-DG Distribution). If (X,Y ) follows the Almond

distribution, then the discrete bivariate random variable (floor(X), f loor(Y ))
given that X ≥ 1 and Y ≥ 1 follows the Almond-DG distribution.

Essentially, Almond-DG is derived from Almond by discretizing its values and
rejecting the pairs with either X = 0 or Y = 0.

4 Goodness of Fit

In this section, we show the goodness of fit of our Almond-DG distribution
in a qualitative manner. The interested reader may refer to the Appendix for
information about the parameter fitting and generation of data following the
Almond-DG distribution.

Note: Evaluating the goodness of fit for skewed distributions is a rather chal-
lenging task and the majority of methods seem to fail in real data. In [8], Johnson
et al. explore several methods for evaluating the goodness of fit for univariate
Pareto distributions with no clear winner. The difficulty in the evaluation in-
creases even more in the case of bivariate distributions, which we are addressing
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(a) Marginal PDF of comments (c) Contour plot of (e) Conditional means in
(real: green / synthetic:blue) synthetic data synthetic data

(b) Marginal PDF of mentions (d) Contour plot of (f) Conditional means in
(real: green / synthetic:blue) real data real data

(a) Marginal PDF of tweets (c) Contour plot of (e) Conditional means in
(real: green / synthetic:blue) synthetic data synthetic data

(b) Marginal PDF of retweets (d) Contour plot of (f) Conditional means in
(real: green / synthetic:blue) real data real data

Fig. 4. Goodness of fit of Almond-DG to the “mentions VS comments” (above) and
“tweets VS retweets” datasets. (i) the log-logistic distribution fits well the marginals
of the mentions and comments in the real Tencent Weibo network (plots a,b); (ii) the
contour plots of the real (plots d) and synthetic 2-d datasets (plots c) have the same
shape; (iii) both datasets obey the same power-law pattern, as shown in plots e,f.

in this paper. As we see in Fig. 4 , our proposed Almond-DG distribution fares
pretty well. In the first column we see the marginal distributions of X (e.g.,
comments) and Y (e.g., mentions), i.e. ln (frequency). The green points repre-
sent the real data, while the blue points correspond to the distribution of the
generated data with the estimated parameters (see Appendix).

Observation 4. The real marginal distributions are captured well by our
Almond-DG distribution, even when they are power-law-like.

The second column of the figures holds the contour plots of the synthetic (c),
and the real data points (d), while the last column shows the conditional means
in synthetic (e) and real data (f).
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Observation 5. The contours of our truncated and digitized Almond-DG dis-
tribution with estimated parameters resemble the real contour lines.

Observation 6. The SuRF pattern is preserved in the synthetic data; the real
and synthetic data have similar power-law slopes.

All in all, Almond-DG captures well the patterns found in the real-world data.

5 Related Work

Power Laws: Power laws have been discovered in numerous cases [3], often
in conjunction with fractals and self-similarities [15]. Some of the most famous
power laws are the Zipf distribution [20] and the Pareto distribution [14]. They
have negative slopes, though. Power laws with positive slopes have also been
discovered (length of coastlines, number of quad-tree blocks versus granularity
[6]), and more recently in graphs ([11], [18], [13]). Akoglu et. al. [1] proposed
the Triple Power Law (3PL), a bivariate distribution, to model reciprocity in
phone-call networks. However, the model is bound to power-law distributions,
which is not always the case in real networks.

Logistic and Log-Logistic Distributions: They have been studied exten-
sively, in the continuous, univariate setting. The multivariate setting has been
studied for the logistic distribution [12]. The discretized version of the univari-
ate case has been shown to be a good fit for the duration of phonecalls by real
users [4]. Earlier work [2] tried to fit discretized lognormals, or the so-called
doubly-Pareto Lognormal [16].

However, none of the above articles provided a solution to our setting, namely,
a 2-d distribution, with an explanation for the super-linearity we observe, and
validation on several, diverse datasets.

6 Conclusions

The contributions are the answers to the questions we posed in the introduction:
Q1: what can we say about the relative frequency of two tasks that compete for
an individual’s resources (e.g., phone calls vs. number of sms)? Q2: how can
we model the corresponding 2-d clouds of points? Q3: how can we put our
observations and developments to practical use.

Specifically, our contributions are:

1. A1 [Patterns]: Discovery of power law (SuRF) in several, real, diverse
network datasets, on most of their n-choose-2 pairs of attributes/tasks.

2. A2 [Distribution Estimate]: A new distribution, the Almond distribu-
tion, that describes well the skewed multivariate distributions and explains
super-linearity, marginals and conditionals in real, diverse network datasets,
on most of their n-choose-2 pairs of attributes/tasks.

3. A3 [Practical Use]: Illustration that Almond can be used for anomaly
detection (Fig. 2(P2)), clustering and what-if scenarios.
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Appendix: Fitting and Data Generation

Most of the estimation methods (e.g., MLE, MOM, etc.) fail when we have
skewed, truncated, and digitized distributions with outliers. Fitting becomes
even more difficult when fitting 2-d skewed distributions.

Fitting

Fig. 5. “Log-odd plot” method
for fitting

We propose a fast method for fitting log-
logistic (or power-law-like) data to the univari-
ate log-logistic distribution. It is well known
that if a random variable X follows the lo-
gistic distribution L(μ, σ), then − ln {odd} =

− ln
{

P (X≤x)
P (X>x)

}
= − ln

{
FX (x)

1−FX (x)

}
= x−μ

σ .

As depicted in Fig. 5, to fit the data via the
“log-odd plot”: (a) estimate the slope and inter-
cept by applying linear regression on the “log-
odd” plot, (b) solve slope= 1

σ and intercept=− μ
σ for μ and σ, and (c) compute

the log-logistic parameters: ax = exp(μ) and bx = 1
σ .

Generation of Synthetic Data

Step 1: Select θ = 1
1−τ , where τ is the Kendall tau rank correlation coefficient.

Note: Since the computation of τ is prohibitive for the large datasets, be-
ing quadratic in the number of points, we use Spearman’s ρ, which is a good
substitute of τ , and robust to outliers in the data.

Step 2. Estimate the parameters using one of the traditional methods of param-
eter estimation (e.g., MLE, MOM) ; otherwise, use the “log-odd plot” method
described above. In our experiments, we mainly used the MLE of the parameters.

Step 3: Generate two independent random variables s and u following the
Uniform distribution U(0, 1) and solve the equationK(t) = u for t, whereK(t) =

t− φ(t)
φ′(t) = t− 1

θ t ln t (see Def. 3).

Step 4: Compute x1 = ts
1/θ

and y1 = t(1−s)1/θ .
Note: Originally, x1 = φ−1(sφ(t)) and y1 = φ−1((1 − s)φ(t)).

By starting from a general algorithm for copula-based data generation [5] and
using the formulas related to Gumbel’s copula, we obtain the formulas given
in steps 3-5. Essentially, up to this point we have two uniform U(0, 1) random
variables correlated according to Gumbel’s copula.

Step 5: Compute x0 = ln ax − 1
bx

ln
(

1
x1

− 1
)
and y0 = ln ay − 1

by
ln
(

1
y1

− 1
)
,

which follow the logistic distribution L(ln ax, 1
bx
) and L(ln ay, 1

by
) respectively.

Note: we use the fact that if U ∼ U , then X = μ− σ ln ( 1
U − 1) ∼ L(μ, σ).

Step 6: Find the “coupled”, “digitized” log-logistic variables x = floor{ex0}
and y = floor{ey0}, and truncate them by keeping only the (x, y) pairs with
x > 0 and y > 0 .

Similar digitization process is traditionally practiced when one wants to shift
from continuous to discrete power law distributions [3].
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Abstract. This paper attempts to addresses the task of node classifica-
tion in social networks. As we know, node classification in social networks
is an important challenge for understanding the underlying graph with
the linkage structure and node features. Compared with the traditional
classification problem, we should not only use the node features, but also
consider about the relationship between nodes. Besides, it is difficult to
cost much time and energy to label every node in the large social net-
works. In this work, we use a factor graph model with partially-labeled
data to solve these problems. Our experiments on two data sets (DBLP
co-author network, Weibo) with multiple small tasks have demonstrated
that our model works much better than the traditional classification
algorithms.

1 Introduction

With the success of many large-scale online social networks these years, such
as Facebook, Tweeter, Weibo, social network has become a bridge between the
virtual web world and our daily life. Weibo, one of the largest and most influ-
ential social networks in China, has more than 300 million active users in 2012.
Consequently, Network ideas have been applied successfully in many areas such
as Internet (pages) [3][8], coauthors[19], mobiles and mails[5]. Considerable re-
search has been conducted on social network analysis, such as social influence
analysis[6][18], community structure learning[18][1][14], and of course node clas-
sification in social network[4][15][7][10].

As is usual in machine learning, we first have to identify some features of nodes
that can be used to guide the classification. The obvious features are properties
of the node itself. For online social network like Weibo, information that may
be known for all (or most) nodes, such as age, location, and some other profile
information is usually considered first. For coauthor network, people may take
authors profile, publish year as features. More than that, some latent features
such as topic model become more and more popular in network analysis, these
latent features reflect user character quite well. But in a network structure, the
presence of an explicit link structure makes the node classification problem dif-
ferent from traditional machine learning classification tasks, where objects being
classified are considered independent. In contrast to the traditional classification,
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we should first think about the network topology, the neighbors label information
may be very important and decisive. The social sciences identify two important
phenomena that can apply in social networks:
– homophily, when a link between individuals (such as friendship or other
social connection) is correlated with those individuals being similar in nature.
For example, friends usually have the similar age, education background.

– co-citation, regularity is a related concept, which holds when similar indi-
viduals tend to refer or connect to the same things. For example, when two
people send microblogs with similar topics, it will be probably they have
similar taste in some areas.

Macskassy and Provost used a simpler classification method based on taking a
weighted average of the class probabilities in the neighborhood (wvRN)[11]. This
classifier is based on a direct application of homophily and uses the immediate
neighborhood of a node for classification. Another classifier, which is similar with
wvRN, is called the Class-Distribution Relational Neighbor (CDRN)[12], it also
considered on the distribution of the neighbors only. There were many works
about using random walk on node classification, but most of them concerned
about the labels of neighbors. Pennacchiotti and Popescu[15] used a machine
learning algorithm with hundreds of features in twitter data, but they simply
take network topology as some features in a traditional classifier.

In this work we address the task of node classification in social networks, our
main contributions are the following:
– We employ a factor graph model to classify nodes in networks, using topic
model as node features instead of profiles and consider multiple relationships
in network.

– We conduct experiments on two data sets (DBLP coauthor and Weibo) and
multiple tasks. Experimental results show that our model can be applied to
the different scenarios and perform quite well than traditional classifiers.

– We provide an in-depth analysis of experiments on the partially-labeled data
sets, results show that our model can do a good job with different ratio of
labeled data.

The rest of this paper is organized as follows. Section 2 formally formulates the
problem. Section 3 explains the factor graph model we used. And then in section
4 we discuss the experiments and evaluation. Finally, in Section 5 we draw final
conclusions and outline future work.

2 Problem Definition

In this section, we first give several necessary definitions and then present the
problem formulation.

Definition 1. Social network: A social network can be represented as G =
(V,E), where V is a set of |V | = N users. E ⊂ V × V is a set of |E| = M
relationships between N users.
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As we know, Social relationships might be directed in some networks (e.g., A
follow B in Weibo) or undirected in others (A and B are coauthors in DBLP). In
this work, we make the relationship as factor and ignore whether it is directed
or undirected, the number of relationship types is what we only concern about.
In some situations, the network can be defined in more than one way, such as
in DBLP coauthor network: take each author as a node, coauthor may be a
relationship; we can also take each paper as a node, two papers have common
author may be a relationship. Which one should we choose is depend on the
specific task, in this work, we choose the latter.

In real networks, it is difficult to cost much time and energy to label every
node, the labeled data is always less than expected, so naturally, we define the
input of our problem, a partially labeled network.

Definition 2.Partially labeled network: A partially labeled network is an aug-
mented social network represented as G = (VL, VU , E, YL,W ), where VL is a set
of labeled nodes while VU is a set of unlabeled nodes with VL

⋃
VU = V ; YL is a set

of labels corresponding to the node classes in VL;W is an weight matrix associated
with users in V where each row corresponds to a user, each column an attribute,
and an element wij denotes the value of the j

th attribute of user vi.

In our work, we choose a topic model called PLSA (Probabilistic Latent Semantic
Analysis)[9] to analysis the text about each node as attribute. The PLSA model
assumes that there are k topics in the corpora, where k is a fixed parameter, and
every document in the corpora corresponds to one distribution of topics. This is
a hierarchical model. We can describe its generative process as:
– Select a document d with probability P (d);
– Pick a latent topic z with probability P (z|d);
– Generate a word w with probability P (w|z).

For example, we use PLSA to analysis the microblogs of every user in Weibo,
and wij represents the probability of user vi belongs to j

th topic.
Based on the above concepts, we can now define the problem of node classifi-

cation in social network. Given a partially labeled network, the goal is to detect
the classes (labels) of all unknown nodes in the network. Formally,

Target 1. Node classification in social network: Given a partially labeled
network G = (VL, VU , E, YL,W ), the objective is to learn a predictive function

f : G = (VL, VU , E, YL,W ) → Y

The above formulation make our work very different from existing work on node
classification. Macskassy, C. Perlich and Desrosiers[4][11][12] had done some con-
structive work about relational learning algorithm, but they only concern about
the relationships in network. Pennacchiotti[15] tried many features about each
node, even treated relationship as some features, but he ignored the network
topology.
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3 A Factor Graph Model

Actually in social network analysis, there are some works about utilizing graph
model.For example,Tang[17] useda factor graphmodel to infer social ties;Yang[18]
proposed a factor graphmodel too, their works focused on representative-userfind-
ing and community-structure discovery. In this section, we explain the factor graph
model we use to classify nodes in social network.

3.1 Basic Domain Criterions

For inferring label of nodes in social network, we have three basic criterions from
our specified domain knowledge.

First, users from different classes may have different topics while in same
class may have similar topics. For example, if two users come from the same
company, they may have similar microblogs in Weibo which talk about their
works or about their company. Second, the relationships may have a correlation
in classification. For example, in DBLP network, if two papers have at least one
common author, they probably belong to the same research area (e.g., artificial
intelligence, database and so on).

And last, different relationship types may lead to different kinds of effects.
For example in Weibo, user A follows user B but B doesnt follow A back, this
is a relationship type; user A follows user C and user B also follows C, this is
another relationship type between A and B, obviously, these two relationship
types are quite different, and of course it will influence the classification model.

3.2 A Factor Graph Model with Partially-Labeled Data

Based on the above observations, we then describe the proposed factor graph
model in details.

As we can see in figure 1, it is a small network with 4 nodes v1, v2, v3, v4
and some relationships between these nodes. Corresponding to the factor graph
model, we have 4 hidden vectors y1, y2, y3, y4 and the nodes attribute factor. To
deal with multiple relationship types, we should have multiple relation factors.
Actually, we use at most 2 relation factors in our experiments, but in theory, we
can use as many relation factors as possible. The definitions of the factors are
as follows:
– Attribute factor: f(yi, wi) represents the posterior probability of the rela-
tionship yi given the attribute vector wi;

– Relation factor 1: g(yi, yj) denotes a relationship of node yi and yj;
– Relation factor 2: h(yi, yj) denotes another relationship of node yi and
yj.

Given a partially-labeled network G = (VL, VU , E, YL,W ), based on the defini-
tion of factor graph model, we can have the joint distribution over Y as

p(Y |G) =
∏
i

f(yi, wi)g(yi, N1(yi))h(yi, N2(yi)) (1)
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Fig. 1. A Factor Graph Model

where N1(yi) and N2(yi) are sets of neighbors of yi. The three factors can be
instantiated in different ways. In this work, we use exponential-linear functions.
Particularly, we define the attribute factor as

f(yi, wi) =
1

Zλ
exp{λTΦ(yi, wi)} (2)

where λ is a weighting vector that will be learned in the model and Φ is a vector
of feature functions. Similarly, we denote the relation factor as

g(yi, N1(yi)) =
1

Zα
exp{

∑
yi∈N1(yi)

αT g(yi, yj)} (3)

h(yi, N2(yi)) =
1

Zβ
exp{

∑
yi∈N2(yi)

βTh(yi, yj)} (4)

where α and β is similar with λ, g and h can be defined as a vector of indicator
functions.

3.3 Model Learning and Parameter Inference

Learning this model is to estimate a series of parameters θ = (λ, α, β) and max-
imize the log-likelihood of observation information (labeled nodes). For simple
presentation, we concatenate all factor functions for yi as

s(yi) = (Φ(yi, wi)
T ,
∑
yj

g(yi, yj)
T ,
∑
yj

h(yi, yj)
T )T (5)
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The joint probability can be written simply as

p(Y |G) =
1

Z

∏
i

exp{θT s(yi)}

=
1

Z
exp{

∑
i

θT s(yi)}

=
1

Z
exp{θTS}

(6)

where Z = ZλZαZβ is a normalization factor, and S is the combination of factor
functions of all nodes.

Since the input data of this model is partially-labeled, to calculate the nor-
malization factor Z, we need to sum up the likelihood of possible states for all
labeled and unlabeled nodes. Naturally, we think of using the labeled data to
infer the label of unknown nodes. Then, we have the objective function as

O(θ) = log
∑
Y |Y L

1

Z
exp{θTS}

= log
∑
Y |Y L

exp{θTS} − logZ

= log
∑
Y |Y L

exp{θTS} − log
∑
Y

exp{θTS}

(7)

Where Y |Y L denotes inferring label of Y from Y L. To solve this problem, we
use a gradient decent method to calculate the partial derivative of θ

∂O(θ)

∂θ
=

∂(log
∑

Y |Y L exp{θTS} − log
∑

Y exp{θTS})
∂θ

=

∑
Y |Y L exp{θTS · S∑
Y |Y L exp{θTS

−
∑

Y exp{θTS · S∑
Y exp{θTS

= Eθ(Y |Y L,G)S − Eθ(Y,G)S

(8)

Since the social network can be arbitrary graphical structure, our factor graph
model may have many circles, so it is intractable to calculate the expectation in
a directed and exact way. To alleviate the cost of computation, some kinds of
approximate algorithms have been proposed such as LBP (Loopy Belief Propa-
gation)[13] and MCMC (Markov Chain Monte Carlo)[16]. In this work, we utilize
LBP to calculate the marginal probabilities.

LBP is simply to apply the sum-product algorithm even though there is no
guarantee that it will yield good results[2]. It is possible because the message
passing rules for the sum-product algorithm are purely local. However, because
the graph now has cycles, information can flow many times around the graph.
For some models, the algorithm will converge, whereas for others it will not.

After completing the calculation of the marginal probabilities, the gradient
can be obtained by summing over all nodes, and then we update each parameter
with a learning rate η and the gradient.
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3.4 Infer Unknown-Label Nodes and Classify

Finally, we can infer the category of unknown-label node. Based on the learned
parameters θ, we can predict the label of each node by finding a label configu-
ration which maximizes the joint probability as

Ỹ = argmaxY |Y Lp(Y |G) (9)

In the same way, we use LBP to calculate the marginal probability of each node
p(yi|Y L, G), then we can put one node into the class which has the maximum
marginal probability. In other words, the marginal probability is taken as the
prediction confidence.

4 Experiment Results

The model we use to classify nodes is general and can be used in many different
situations. In this section, we present our experiment results on two different
data sets with multiple tasks to evaluate the effectiveness of our model.

4.1 Data Sets

DBLP Coauthor Network. This benchmark data set contains more than
50000 papers published at 22 computer science conferences from 2008 to 2010.
These conferences can be mainly divided into five research areas:
– AI: artificial intelligence, including IJCAI, AAAI, ICML, UAI and NIPS;
– DB: database, including EDBT, ICDT, ICDE, PODS, SIGMOD and VLDB;
– DP: distributed and parallel computing, including ICCP, IPDPS and PACT;
– GV: graphics, vision and HCI, including ICCV, CVPR and SIGGRAPH;
– NC: networks, communications and performance, including MOBICOM, IN-
FOCOM, SIGMETRICS and SIGCOMM.

In this data set, the objective is to classify papers into the correct research area.
We extract some subsets randomly for three tasks:
– 6000 papers with 3000 papers published in GV (positive set) and 3000 in
others (negative set), 25319 edges totally;

– 6000 papers with 3000 papers published in NC (positive set) and 3000 in
others (negative set), 18085 edges totally;

– 10000 papers with 5000 papers published in AI (positive set) and 5000 in
others (negative set), 48083 edges totally.

Weibo Network. As our previous introduction, Weibo is a very large online
social network with 300 million users. We extract some small experiment data
from Weibo by crawler. In Weibo data, we have two binary classification tasks
as:
– Company Affiliation: 600 users with 305 belong to a specific company
(positive set) and 295 are not (negative set), 2393 relationships of following
others, 2509 relationships of following common users. The positive users
explicitly mention their company in tags, descriptions or screen names;
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– Domain Affiliation: 3231 users with 1580 positive users whose study do-
main is about internet information technique and other 1651 users are neg-
ative with some different domains, 12194 relationships of following others,
2740 of following common users. The users we collect are explicitly mention
their domain in tags.

Table 1. statistics of the data sets

Data set Task Users Positive set Negative set
Relationship
(type1+type2)

DBLP
GV 6000 3000 3000 25319
NC 6000 3000 3000 18085
AI 10000 5000 5000 48083

Weibo
company 600 305 295 2393+2509
domain 3231 1580 1651 12194+2740

4.2 Experiment Description and Evaluation

In the DBLP data set, we make each paper as a node, if two papers have at
least one common author, we treat this relationship as an edge. In DBLP data,
we simply use one relationship type. In Weibo data set, we treat each user as
a node, if a user follows another user, we put an edge between them. More in
Weibo data, we consider about the relationship of following common users (e.g.
two users follow at least 5 common users) and make it as another edge factor.

In both two data sets, we use PLSA to get the topic model of each node as
the node features. Actually, we set the number of topics as 20.

To compare our approach with the traditional methods, we carried out the
representative algorithms such as wvRN, CDRN, LibSVM on the same data sets:
– wvRN: a simply neighbor-voted classifier, consider about the relationship
only.

– CDRN: similar with wvRN, it uses the probability distribution of neighbors
to classify nodes, consider about the relationship only.

– libSVM: a traditional classification algorithm, using node features to clas-
sify nodes. We use Weka 3.6 to implement libSVM.

To quantitatively evaluate the model we use, we consider three aspects:
– Results Analysis (Basic Experiment): we try to prove the effectiveness
of our method with some basic experiments.

– The Influence of Labeled Data Size: since our method is semi-
supervised, we use the different labeled data size to test the robustness and
generality of our method.

– Discussion on Multiple Relationship Types Setting: we consider
about multiple relationship types in our experiments and discover the ex-
tendibility of our method.

For the classification performance, we evaluate the approaches in terms of accu-
racy, precision, recall, and F1-score.
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4.3 Accuracy Performance

Basic Experiment. Table 2 lists the accuracy performance of classifying nodes
in DBLP data with three tasks by the different methods. All these three tasks,
the labeled data is 10% of each subset.

Table 2. performance of node classification with different methods on three tasks in
DBLP data

Positive set Method Accuracy Precision Recall F1-score

GV

wvRN 0.580 0.949 0.469 0.627
CDRN 0.584 0.935 0.479 0.633
libSVM 0.860 0.818 0.925 0.868

Our model 0.943 0.921 0.962 0.944

NC

wvRN 0.522 0.984 0.365 0.532
CDRN 0.523 0.984 0.365 0.532
libSVM 0.754 0.679 0.963 0.796

Our model 0.913 0.891 0.942 0.916

AI

wvRN 0.448 0.961 0.272 0.424
CDRN 0.451 0.961 0.273 0.426
libSVM 0.834 0.814 0.868 0.840

Our model 0.897 0.889 0.907 0.898

As we can see from the results, our method consistently outperforms other
comparative methods on all the three tasks in DBLP data. In terms of F1-score,
our model is 5% − 12% better than libSVM, 30% − 40% better than wvRN
and CDRN. We notice that wvRN and CDRN, which are focus on the labels of
neighbors, get very high precision scores, even better than our model, but their
recall scores are really poor, and their F1-score are much worse than libSVM and
our model, so wvRN and CDRN dont classify the nodes well. Actually, these two
methods classify most of the nodes into negative set.

Different Size of Labeled Data. We have known that in DBLP data, our
model perform much better than others and either wvRN or CDRN has a poor
result. One of the reasons maybe the labeled data is only 10%. Based on the above
assumption, we have some experiments on company affiliation using Weibo data,
the classification objective is estimate whether a user is from a specific company
or not. We test the size of labeled data from 10% to 90%, and the results are
shown in figure 2.

From the results shown in figure 2, we can find some interesting points. When
labeled data are 10%, our model is 11.9% better than libSVM, about 30% better
than wvRN and CDRN in F1-score; on accuracy score, our model is also 10%
better than others. When labeled data are 50%, on F1-score, our model is still
11.8% better than libSVM, and about 35% better than wvRN and CDRN; on
accuracy score, our model is more than 20% than others. When labeled data
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Fig. 2. Performance of node classification with different labeled size and different
method on company affiliation using Weibo data

are 90%, our model is 11.7% better than libSVM and more than 25% better
than wvRN and CDRN on F1-score; on accuracy score, our model is more than
15% better than others. More notably, either F1 or accuracy, the score of our
method increases smoothly and almost monotonously when the size of labeled
data increases, while other methods shake obviously. It denotes that our model
is much stronger and more effective no matter how many data are labeled.

Multiple Relationship Types. We now evaluate the performance of multiple
relationship types. Table 3 shows the result of our experiment on both company
affiliation and domain affiliation in Weibo data, where our model(S) denotes
using just single relationship type, Our model(M) denotes using multiple rela-
tionship types, the size of labeled data is set 10%.

As we can see, our method is much better than other methods, although in
domain affiliation, libSVM has 1% better than our model in terms of accuracy

Table 3. performance of node classification with multiple relationship types on two
tasks in WEIBO data

Task method Accuracy Precision Recall F1-score

company
affiliation

wvRN 0.278 0.908 0.270 0.416
CDRN 0.211 0.931 0.185 0.308
libSVM 0.557 0.560 0.593 0.576

Our model(S) 0.623 0.590 0.842 0.695
Our model(M) 0.624 0.586 0.887 0.705

domain
affiliation

wvRN 0.189 0.776 0.150 0.251
CDRN 0.468 0.600 0.590 0.593
libSVM 0.618 0.815 0.283 0.420

Our model(S) 0.590 0.547 0.951 0.694
Our model(M) 0.604 0.556 0.947 0.701
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score, the F1-score of our model is much higher than others (at least 10%).
Considering the multiple relation types, the accuracy scores are improved by
0.1% and 1.4% in two tasks while the F1-scores are improved by 1% and 0.7%.
It suggests that multiple edge features do add value to our classification model.

5 Conclusion and Future Work

In this paper, we study the problem of node classification in social network,
which is an interesting but challenging research domain. We use a factor graph
model with semi-supervised learning to infer the category of unlabeled data. In
our model, each node in social network is modeled as variable node and various
relationships are modeled as factor nodes. In this way, this model can take the
advantages of both node features and graph information. Experiments on the
different data sets validate the effectiveness of the model we use. It outperforms
both model of pure node features (libSVM) and model of pure relationships
(wvRN, CDRN).

Node classification in social network is a potential research direction in social
network analysis. As future work, since many networks have multiple categories,
extending our method to multi-class classification will be quite useful. Consider-
ing it is intractable to simply modify the objective function, we should use some
indirect approach such as one-against-one to solve the multi-class classification,
for example, if there are k categories, we need k(k + 1)/2 classifiers and vote
for each unlabeled node. In addition, the online social network becomes larger
and larger, it is interesting to study some fast but effective method for huge
networks.
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Abstract. As many data mining applications involve networked data
with dynamically increasing volumes, graph stream classification has re-
cently extracted significant research interest. The aim of graph stream
classification is to learn a discriminative model from a stream of graphs
represented by sets of edges on a complex network. In this paper, we
propose a fast graph stream classification method using DIscriminative
Clique Hashing (DICH). The main idea is to employ a fast algorithm to
decompose a compressed graph into a number of cliques to sequentially
extract clique-patterns over the graph stream as features. Two random
hashing schemes are employed to compress the original edge set of the
graph stream and map the unlimitedly increasing clique-patterns onto a
fixed-size feature space, respectively. The hashed cliques are used to up-
date an “in-memory” fixed-size pattern-class table, which will be finally
used to construct a rule-based classifier. DICH essentially speeds up the
discriminative clique-pattern mining process and solves the unlimited
clique-pattern expanding problem in graph stream mining. Experimen-
tal results on two real-world graph stream data sets demonstrate that
DICH can clearly outperform the compared state-of-the-art method in
both classification accuracy and training efficiency.

Keywords: Graph classification, graph streams, cliques, hashing.

1 Introduction

The emergence of complex networks has led to a surge of research in graph
data mining [1]. Graph classification is an important graph data mining task
that aims to learn a discriminative model from training examples to predict
class labels of test examples, where both training and test examples are graphs.
Many real-world applications involve graph-represented data, such as chemical
compounds, XML documents, and program flows. The essential challenge for
graph classification is to extract features from graphs and represent graph data
in instance-feature format to support model training. A variety of studies on
substructure extraction (e.g., walks [2], paths [3], and subtrees [4,5]) for describ-
ing graphs have been proposed in the past decade. However, most of them only
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consider the learning problem of graph classification in batch mode (all data are
available for training), which limits their applicability to large-scale and stream
scenarios.

Due to the streaming nature of many real-world complex networks, such as
social networks and sensor networks, graph stream classification has recently
attracted increasing research interest [6,7,8,9]. Graph stream classification is de-
fined on a complex network which comprises a massive universe of nodes, where
the stream of graphs are represented as sets of edges on the underlying network.
For example, co-authorships of research works continuously form graphs on a
coauthor network (e.g., DBLP), dynamic communities of interest continuously
form graphs on a social network (e.g., Facebook), and traffic flows continuously
form graphs on a transportation network. Graph stream classification on a com-
plex network with massive nodes is challenging, because

– Subgraph Feature Generation: Graph stream is defined on a massive
universe of nodes, enumerating subgraph-patterns from such a large node
set as features is time consuming and memory intensive. We need fast and
inexpensive feature generation method for graph stream classification.

– Increasing Stream Volumes: The volumes of graph data are continuously
growing, so graph streams can usually be accessed only once. Graph stream
classification must be able to tackle dynamically increasing graph volumes
and generate discriminative model with high speed.

– Changing Feature Distributions: The marginal distributions of
subgraph-patterns (features) may continuously change over the graph stream
(i.e., the concept-drift problem [10]), a dynamic updating scheme is required
to update the discriminative model.

Few studies have investigated the graph stream classification problem. To the
best of our knowledge, only two works [9,11] may be applied to the considered
problem. Both of them employ hashing techniques to sketch the graph stream for
saving computational cost and controlling the size of the subgraph-pattern set.
In [11], the authors proposed a hash kernel to project arbitrary graphs onto a
compatible feature space for similarity computing, but it can only be applied to
node-attributed graphs. Recently, Aggarwal [9] proposed a 2-D hashing scheme
to construct an “in-memory” summary for sequentially presented graphs and
used a simple heuristic to select a set of most discriminative frequent patterns
to build a rule-based classifier. Although [9] has exhibited promising perfor-
mance on graph stream classification, there are two inherent limitations: (1)
The selected subgraph-patterns are composed with disconnected edges, which
may have less discriminative capability than connected subgraph-patterns due
to a lack of semantic meaning. (2) The computational cost is high because an
additional frequent pattern mining procedure is required to perform on the sum-
mary table which comprises massive transactions.

In this paper, we propose a fast graph stream classification method using
DIscriminative Clique Hashing (DICH) to address the aforementioned chal-
lenges. The main idea is to decompose a compressed graph into a number of
cliques (fully connected subgraphs) to sequentially extract clique-patterns over
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the graph stream as features. Two random hashing schemes are employed to
compress the original edge set of the graph stream and map the unlimitedly in-
creasing clique-patterns onto a fixed-size feature space, respectively. The hashed
cliques are then used to update an “in-memory” fixed-size pattern-class table,
which will be finally used to generate a rule-based classifier. Since DICH adopts
connected subgraphs as features and needs no additional frequent pattern mining
procedure, it can achieve very fast training speed for graph stream classification.
The experimental results on two real-world graph stream data sets clearly show
that DICH outperforms the compared state-of-the-art [9] in both classification
accuracy and training efficiency.

The remainder of this paper is organized as follows: Section 2 introduces the
related work. The proposed framework for graph stream classification will be
described in Section 3 and the detailed method of DICH will be presented in
Section 4. We empirically evaluate our method to show its effectiveness and
efficiency in Section 5 and conclude the paper in Section 6.

2 Related Work

The considered problem is closely related to graph classification. Most existing
works focus on designing effective yet efficient kernels for measuring graph sim-
ilarity. A large number of graph kernels have been proposed in the last decade,
most of which are based on the similar idea of extracting substructures from
graphs to compare their co-occurrences. Typical substructures for describing
graphs include walks [2,12], paths [3], subtrees [4,5,13], and subgraphs (usually
based on a frequent subgraph mining technique, e.g., [14]). In this paper, we
extract cliques as features for describing a graph.

Our problem is also related to data stream mining. Mining high-speed data
streams was first studied in [15] and the idea of using ensemble learning for data
stream classification was proposed soon after [16]. A classical ensemble learning
framework for addressing the concept-drift problem in data stream mining was
proposed in [10]. In our graph stream classification problem, we employ a rule-
based classification approach rather than the ensemble learning framework for
faster processing speed and easier model updating.

The most relevant work to this paper is [9], which also considers graph stream
classification on a complex network. It employs a 2-D hashing scheme to con-
struct an “in-memory” summary for the sequentially presented graphs. The first
random-hash scheme is used to reduce the size of the edge set. The second min-
hash scheme is used to dynamically update a number of hash-codes (i.e., corre-
sponding to random sorting samples), which is able to summarize the frequent
patterns of co-occurrence edges in the graph stream observed thus far. Finally,
a simple heuristic is used to select a set of most discriminative frequent patterns
to build a rule-based classifier. In this paper, we propose a clique-based hashing
scheme for solving the same problem with a better performance in both classi-
fication accuracy and training efficiency as well as avoiding the the limitations
of [9] discussed in Section 1.
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3 Framework

We first introduce the problem setting for graph stream classification. Suppose
there is a complex network which comprises a massive universe of nodes. The
edges connecting these nodes are denoted by the edge set E . The stream of
graphs {G1, G2, . . . , Gi, . . .} are presented continuously as subsets of E , where
the subscript i denotes the receiving order in the graph stream. In particular,
the edge set of Gi are denoted by {E1, . . . , Ee} ⊂ E , where e denotes the number
of edges in Gi. Each graph Gi has a class label Li ∈ {1, . . . ,M}. We assume
Gi is received in the form 〈i, E1, . . . , Ee, Li〉. In this paper, we assume that each
edge has a default weight 1 for simplicity. The underlying graph stream can
only be accessed once and our goal is to learn a discriminative model from
{G1, G2, . . . , Gi, . . .} at a high efficiency to accurately predict the class label of
a test graph Gtest in the future graph stream.

We next give an overview of DICH for graph stream classification. The cor-
responding framework, illustrated in Figure 1, comprises three modules. The
graphs in the stream are received and processed one by one. The first module
is for clique detection from each graph in the stream. The incoming edges of Gi

are first randomly hashed to a compressed edge set and then we adopt a fast
algorithm to decompose the compressed graph into a number of cliques (fully
connected subgraphs) as the features of Gi. Since the number of clique-patterns
will unlimitedly increase as new graphs are fed in, the underlying feature space
will keep expanding accordingly. Thus, in the second module, a clique hash-
ing scheme is performed to map the unlimitedly emerged clique-patterns onto
a fixed-size clique-pattern set. In the last module, an “in-memory” fixed-size
pattern-class table is updated using the clique-pattern and class label informa-
tion of Gi; and a rule-based classifier is constructed based on the pattern-class
table by identifying frequent and discriminative clique-patterns associated to
each class. To test a graph Gtest in the future graph stream, Gtest is processed
in the first two modules and the obtained hashed clique-patterns are input to
the rule-based classifier for class label prediction. The detailed approaches to the
three modules are described in the following section.

4 Graph Stream Classification

4.1 Graph Clique Detection

As shown in Figure 1, instead of relying on expensive frequent subgraph mining
to discover graph features, we propose to use frequent and discriminative clique-
patterns for clique-based classifier construction. So our first step is to detect all
the cliques from each graph in the graph stream. Since the edge set of the graph
stream on the complex network can be extremely large, it is necessary to sketch
the graph stream as a preprocessing step. In particular, we use a random hash
function to map the original edge set E onto a significantly compressed edge set Ē
of size N . That is to say, the edges in the compressed graph of Gi will be indexed
by {1, . . . , N}. If multiple edges in Gi are hashed onto the same index, the weight
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Fig. 1. The framework of DICH for graph stream classification

Algorithm 1. Clique Detection

Clique-Detect(): Detect the clique set Ci from graph Gi.
begin

Ḡi := Edge-Hash(Gi, N);
Ci := ∅;
for t := max(Ḡi) to min(Ḡi) step 1 do

Ḡ
(t)
i := 1(Ḡi ≥ t);

C
(t)
i := Bron-Kerbosch(Ḡ

(t)
i );

Ci := Ci

⋃
C

(t)
i ;

od
end

of the compressed edge is set to the number of the edges that get the same index.
After hashing all the edges in Gi, we obtain a compressed graph Ḡi for clique
detection. We define this edge hashing scheme using Ḡi := Edge-Hash(Gi, N).
The leftmost two columns in Figure 2 illustrates this procedure.

Next we will employ a fast algorithm to detect cliques in each compressed
graph. We adapt the graphlet basis estimation algorithm used in [17] to this end.
The first step for clique detection is to threshold the compressed graph Ḡi at a
number of weight levels in descending order, say t = {max(Ḡi), . . . ,min(Ḡi)},
where max(Ḡi) and min(Ḡi) denote the largest and the smallest edge weights

in Ḡi, respectively. We define this operation using Ḡ
(t)
i := 1(Ḡi ≥ t), where 1(·)

denotes the indicator function and the resulting graph is denoted by Ḡ
(t)
i . We

use the Bron-Kerbosch algorithm [18] to identify all the cliques from Ḡ
(t)
i at each

threshold. The union set of the cliques found in {Ḡ(t)
i }max(Ḡi)

t=min(Ḡi)
is represented

as the clique set for Gi. This procedure is detailed in Algorithm 1.
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An example of clique detection is illustrated in Figure 2. After edge hashing,
we obtain the compressed graph of Gi (2nd column). Then, four weight thresh-

olds {4, 3, 2, 1} are set to generate three graphs {Ḡ(1)
i , Ḡ

(2)
i , Ḡ

(4)
i } (3rd column).

Note that Ḡ
(3)
i is an empty graph which is not shown. The Bron-Kerbosch algo-

rithm is applied to the three graphs and detect a set of cliques from each graph
(4th column). Finally, the cliques detected at all weight thresholds are merged
to form the clique set Ci for Gi as its feature representation (5th column).

4.2 Graph Clique Hashing

The cliques extracted from each graph are used to represent its features. To
learn a classifier from the graph stream, it is required to make the features of
all graphs be in the same feature space. In other words, we should count the
occurrences of the same set of clique-patterns in all graphs in the stream. Since
the number of clique-patterns will increase as new graphs are continuously fed
in, the induced feature space will keep expanding accordingly. To address this
problem, we adopt a feature hashing scheme used in [11] to randomly map the
unlimitedly emerged clique-patterns onto a fixed-size set. In particular, we use an
“in-memory” P ×M pattern-class table Δ, which can be dynamically updated,
to count clique-pattern and class label information from the graph stream. In
Δ, P rows correspond to the indices of hashed clique-patterns while M columns
correspond to all the classes of the graphs.

Given Gi in the graph stream, we first use Algorithm 1 to collect the clique
set Ci. Then, for each clique in Ci, say Ci,j , we apply a random hash function
�(·) to the string of ordered edges in Ci,j to generate an index Hi,j ∈ {1, . . . , P}.
If a clique with class label Li is hashed to an index Hi,j , we add 1 to the entry
Δ[Hi,j , Li], which means clique-pattern Ci,j has a contribution to class Li. This
fixed-size pattern-class table is continuously updated as new cliques are detected
over the graph stream. This procedure is detailed in Algorithm 2.
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Algorithm 2. Clique Hashing

Clique-Hash(): Hash the cliques in Gi and update the pattern-class table.
begin

for j := 1 to size(Ci) step 1 do
Hi,j := �(Ci,j);
Δ[Hi,j , Li] := Δ[Hi,j , Li] + 1;

od
end

4.3 Clique-Based Classifier

Given the “in-memory” pattern-class table Δ, we can construct a rule-based
classifier by identifying frequent yet discriminative clique-patterns from Δ. To
identify frequent clique-patterns, we first sum up the counts in each row of Δ
and divide them by the number of graphs received thus far. The result for each
row indicates the occurrence frequency of a set of cliques with the same hash
value in the graph stream. Then we sort them in a descending order and set
a threshold parameter α to select the clique-patterns whose frequencies ≥ α.
These selected cliques are frequent clique-patterns which are also the candidates
for the subsequent discriminative clique-pattern selection.

Next we can determine whether a frequent clique-pattern is also a discrimi-
native one by comparing its occurrence ratios on the M classes (corresponding
to the M columns in Δ). For a candidate clique-pattern, the ratio in column j
represents the probability that the clique-pattern belongs to class j. A higher
probability on a certain class indicates a better discriminative capability. Sim-
ilarly, we can set a threshold parameter θ to select the clique-patterns whose
maximum ratios ≥ θ. Figure 3 gives a toy example for selecting the frequent and
discriminative clique-patterns from a pattern-class table Δ.

Finally, based on the selected clique-patterns, we can classify a test graph
using majority voting based on the detected cliques in the test graph. In par-
ticular, given a test graph Gtest, we detect its cliques Ctest using Algorithm 1

and hash its cliques {Htest,j}size(Ctest)
j=1 to index its clique-patterns. Each clique

corresponding to a discriminative clique-pattern will contributes a class label
Ltest,j := Find-Rule(Δ,Htest,j). The class label of the test graph Ltest is de-

termined by the majority of class labels {Ltest,j}size(Ctest)
j=1 . This procedure is

detailed in Algorithm 3.

5 Experimental Results

In this section, we will test the proposed DICH method for graph stream classifi-
cation on two real-world data sets. In particular, we will evaluate the effectiveness
and efficiency of DICH by comparing it with the 2-D hash compressed stream
classifier [9], which is the only state-of-the-art method applicable to graph stream
classification. We use the following data sets in our experiments.
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 m1 m2 m3 p1 1 0 0 p2 0 0 0 p3 0 2 1 p4 3 0 1 p5 0 3 3 p6 1 1 1 p7 2 4 0 p8 1 1 2 p9 2 1 1 p10 3 0 2                                     

Pattern-class Table  

  sum row 
 freq p4 0.4 p5 0.6 p7 0.6 p8 0.4 p9 0.4 p10 0.5 

 m1 m2 m3 p4 0.75 0.00 0.25 p5 0.00 0.50 0.50 p7 0.33 0.67 0.00 p8 0.25 0.25 0.50 p9 0.50 0.25 0.25 p10 0.60 0.00 0.40 

 row sum freq p1 1 0.1 p2 0 0.0 p3 3 0.3 p4 4 0.4 p5 6 0.6 p6 3 0.3 p7 6 0.6 p8 4 0.4 p9 4 0.4 p10 5 0.5 

 max ratio Label p4 0.75 m1 p7 0.67 m2 p10 0.60  m1  
Frequent Cliques Discriminative 

Cliques 
(a) (b) (c) (d) (e) 

Fig. 3. A toy example of frequent and discriminative clique-pattern mining. (a) A
pattern-class table with 10 clique-patterns {p1, . . . , p10} and 3 classes {m1,m2,m3}.
(b) The sums of individual clique-patterns in rows and the corresponding occurrence
frequencies (i.e., the sums divided by the number of graphs, say 10 here). (c) The
selected frequent clique-patterns whose frequencies are larger than the frequent pattern
threshold α = 0.4. (d) The occurrence ratios of the selected clique-patterns on the
M classes. (e) The selected discriminative clique-patterns whose maximum ratios are
larger than the discriminative pattern threshold θ = 0.6.

Algorithm 3. Graph Classification

Graph-Classify(): Predict the class label of a test graph Gtest in the stream.
begin

Ctest = Clique-Detect(Gtest);
for j := 1 to size(Ctest) step 1 do

Htest,j := �(Ctest,j);
Ltest,j := Find-Rule(Δ,Htest,j);

od

Ltest := Majority-Vote({Ltest,j}size(Ctest)
j=1 );

end

– DBLP Data Set1: In this data set, authors are nodes and co-authorship
forms edges, and a graph is constituted by the co-authors of a paper. There
are three classes in the data set: 1) Database related conferences, 2) Data
mining related conferences, and 3) All remaining conferences. Our goal is
to classify a test paper into one of three classes. The final data set contains
over 5× 105 authors, 9.75× 105 edges, and 3.55× 105 different graphs as the
training data. We divide the data set into five splits and choose four splits
as the training data and the remaining split as the test data.

– IBM Sensor Data Set2: This data set records the information from local
traffic constituted by each graph on a sensor network. The IP-addresses
are nodes and local traffic flows are edges. Each graph is associated with
a particular intrusion type and there are over 300 different intrusion types
(classes) in the data set. Our goal is to classify a traffic flow pattern into one

1 http://www.charuaggarwal.net/dblpcl/
2 http://www.charuaggarwal.net/sens1/gstream.txt

http://www.charuaggarwal.net/dblpcl/
http://www.charuaggarwal.net/sens1/gstream.txt
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Fig. 4. Effectiveness evaluation w.r.t. α on the DBLP data set (left) and the IBM
sensor data set (right), N = 5000 and θ = 0.4

of intrusion types. Because the number of classes is extremely large (> 300),
we expect the overall accuracy to be relatively low. The data set contains
more than 1.57× 106 edges. We choose 90% of the data as the training data
and the remaining 10% as the test data.

5.1 Effectiveness Evaluation

In this experiment, we evaluate the effectiveness of DICH by comparing it with
the 2-D hash compressed stream classifier proposed in [9]. We will investigate
the classification performance and sensitivity of the two methods by varying 1)
the frequent pattern threshold α, 2) the discriminative pattern threshold θ, and
3) the size of the compressed edge set N .

First, we adjust the frequent pattern threshold3 α for performance evaluation
and fix the other two parameters by setting N = 5000 and θ = 0.4. Figure 4
plots the classification accuracy curves (y-axis) w.r.t. α (x-axis) on the two data
sets. We can see that the classification performance of DICH is much higher than
the 2-D hash compressed stream classifier on both data sets and in all values
of α. The performance of both classifiers trends to decline as α becomes larger
since more graph features will be eliminated and such information loss will affect
classification performance. By comparing the curve slopes of two classifiers, the
2-D hash compressed stream classifier is more sensitive to α. In the case of
α = 0.3, the classification accuracy of the 2-D hash compressed stream classifier
is much lower. From this experiment, we can validate the effectiveness of DICH,
which can clearly outperform the 2-D hash compressed stream classifier and is
more insensitive to the frequent pattern threshold.

Second, we adjust the discriminative pattern threshold θ for performance eval-
uation and fix the other two parameters by setting N = 5000 and α = 0.05.
Figure 5 plots the classification accuracy curves (y-axis) w.r.t. θ (x-axis) on the
two data sets. On the DBLP data set, DICH was significantly superior to the
2-D hash compressed classifier in classification accuracy. The classification per-
formance of both methods was insensitive to θ, which may be due to the fact

3 In [9], the frequent pattern threshold α is used to screen out subgraph patterns.
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Fig. 5. Effectiveness evaluation w.r.t. θ on the DBLP data set (left) and the IBM
sensor data set (right), N = 5000 and α = 0.05

2000 4000 6000 8000 10000 12000 14000 16000
65

70

75

80

85

90

Size of the Compressed Edge Set (n)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y(

%
)

 

 

2−D hash compressed stream classifier

DICH classifier

2000 4000 6000 8000 10000 12000 14000 16000
20

25

30

35

40

45

50

55

Size of the Compressed Edge Set (n)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y(

%
)

 

 

2−D hash compressed stream classifier

DICH classifier

Fig. 6. Effectiveness evaluation w.r.t. the edges compression size N on the DBLP data
set (left) and the IBM sensor data set (right), α = 0.06 and θ = 0.3

that the two classes (Database related conferences and Data mining related con-
ferences) in DBLP data are extremely rare, the identified frequent patterns have
already had relatively high discriminative capability. On the IBM sensor data
set, although DICH is somewhat more sensitive to θ than the 2-D hash com-
pressed classifier, it has much higher classification accuracy in all cases. This
experiment further demonstrates that DICH has higher effectiveness than the
2-D hash compressed classifier in terms of the discriminative pattern threshold.

Third, we adjust the size of the compressed edge set N for performance eval-
uation and fix the other two parameters by setting α = 0.06 and θ = 0.3.
Intuitively, the classification performance of both classifiers will increase at the
expense of more space. Figure 6 plots the classification accuracy curves (y-axis)
w.r.t. N (x-axis) on the two data sets. We can see that the 2-D hash compressed
classifier is very sensitive to N , especially on the DBLP data set; while DICH is
more steady on the DBLP data set but no clear performance improvement can
be observed as N becomes larger. On the IBM sensor data set, the performance
of both classifiers is improved as N becomes larger. Again, DICH outperforms
the 2-D hash compressed classifier in all cases.
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Fig. 7. Efficiency evaluation (1) w.r.t. α, N = 5000 and θ = 0.4 (left); (2) w.r.t. θ,
N = 5000 and α = 0.05 (middle); and (3) w.r.t. N , α = 0.06, θ = 0.3 (right), on the
DBLP data set

5.2 Efficiency Evaluation

In this experiment, we evaluate the efficiency of the two compared methods on
the DBLP data set by adjusting the frequent pattern threshold α, the discrim-
inative pattern threshold θ, and the size of the compressed edge set N . The
settings of these parameters are the same as those in the above effectiveness
evaluation. All the experiments are conducted on a Linux Cluster which com-
prises 24 nodes with 3.33GHz Intel Xeon CPU (64bit). Both DICH and the 2-D
hash compressed stream classifier are implemented using R studio.

Figure 7 plots the training time curves of the two compared methods w.r.t.
α, θ, and N on the DBLP data set. We can see that the training time of DICH
is significantly less than the compressed hash-based classifier in all cases. The
computational cost of the 2-D hash compressed classifier is much higher be-
cause it requires an additional frequent pattern mining procedure to perform
on the edge co-occurrence table which comprises massive transactions. In con-
trast, DICH employs a fast clique detection algorithm, which can directly find
cliques (connected subgraphs) from the graph stream as features for classifier
construction, such that no additional frequent pattern mining procedure is re-
quired to find connected subgraph patterns. This experiment shows that DICH
clearly outperforms the 2-D hash compressed classifier in not only classification
accuracy but also training efficiency.

6 Conclusion

In this paper, we propose a fast graph stream classification method using DIs-
criminative Clique Hashing (DICH). The main idea is to employ a fast algorithm
to decompose a compressed graph into a number of cliques to sequentially ex-
tract clique-patterns over the graph stream as features. Two random hashing
schemes are employed to speed up the discriminative clique-pattern mining pro-
cess and address the unlimitedly clique-pattern expanding problem. The hashed
cliques are used to update an “in-memory” fixed-size pattern-class table, which
is finally used to construct a rule-based classifier. We test DICH on two real-
world graph stream data sets. Because DICH directly extracts cliques (connected
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subgraphs) from the graph stream as features for classifier training, rather than
mining unconnected co-occurrence edge sets as that in the compared state-of-
the-art method [9], DICH can significantly outperform [9] in both classification
accuracy and learning efficiency.

Acknowledgements. This work was supported in part by Australian Re-
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cil (ARC) Future Fellowship FT100100971, and a UTS Early Career Researcher
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Abstract. Traditionally, pattern discovery in graphs has been mostly
limited to searching for frequent subgraphs, reoccurring patterns within
which nodes with certain labels are frequently interconnected in exactly
the same way. We relax this requirement by claiming that a set of labels is
interesting if they often occur in each other’s vicinity, but not necessarily
always interconnected by exactly the same structures. Searching for such
itemsets can be done both in datasets consisting of one large graph, and
in datasets consisting of many graphs. We present novel methods dealing
with both possible settings. Our algorithms benefit from avoiding com-
putationally costly isomorphism checks typical for subgraph mining, as
well as from a greatly reduced search space, as we consider only itemsets,
and not all possible edges and paths that can connect them.

1 Introduction

Traditionally, searching for patterns in graphs has been almost exclusively lim-
ited to searching for frequent subgraphs. A frequent subgraph is a structure
within a graph where nodes with certain labels are frequently interconnected in
exactly the same way. We propose to relax this requirement. We claim that a
pattern, a set of node labels, is interesting if these labels often occur in the graph
near each other, not necessarily with exactly the same edges between them.

Consider the graph given in Fig. 1. It can be very easily observed that pattern
abcd clearly stands out. However, traditional approaches, even with a frequency
threshold as low as 2, will not find a single subgraph of size larger than 2,
since nodes labelled a, b, c and d are always interconnected differently. This
demonstrates the need for a new approach.

On top of being more flexible, and thus capable of finding previously unde-
tected patterns, our method also greatly reduces the search space by looking for
itemsets alone, rather than considering all possible combinations of edges and
paths connecting them. However, if the dataset does contain a frequent sub-
graph, our method will find the equivalent itemset consisting of the same labels,
but without the edges connecting them.

We consider two different problem settings, as the dataset can consist either
of a (very large) single graph, or of a set of (smaller) graphs. In the single graph
setting, the goal is to find itemsets that reoccur within the graph. We propose two
methods to achieve this goal. The first is based on the traditional approaches to

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 237–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. A graph containing a pattern not discovered by subgraph mining

mining frequent itemsets in transaction databases. Our main contribution here
consists of a way to transform a graph into a transaction database, after which
any existing itemset mining algorithm can be used to find the frequent itemsets.
In our second approach, we look for cohesive itemsets, whereby we insist that
for an itemset to be considered interesting, it should not only appear often, but
its items should also never appear far from each other. In the multiple graph
setting, the goal is to find itemsets that occur in many of the input graphs. Here,
the dataset cannot be transformed into a typical transaction database. However,
the cohesive itemset approach proves perfectly adaptable to this setting.

An interesting property of the cohesive itemset approach is that the proposed
interestingness measure is not anti-monotonic, which, at first glance, might rep-
resent an obstacle when generating large candidate itemsets. However, in both
the single and the multiple graph setting we managed to come up with an effi-
cient pruning method, which enables us to mine cohesive itemsets in a reasonable
amount of time.

Even though the problem setting of subgraph mining is very different to that
of mining itemsets in graphs, and therefore mostly incomparable, we do note
that our algorithm results in a massive reduction in output.

The paper is organised as follows. In Section 2, we present the main related
work. In Section 3 we propose two methods of identifying interesting itemsets
in the single graph setting. In Section 4, we extend these approaches to be able
to handle datasets consisting of multiple graphs. In Section 5, we give a sketch
of our algorithms, before presenting the results of our experiments in Section 6.
We end the paper with our conclusions in Section 7.

2 Related Work

The problem of discovering subgraphs that occur frequently in a dataset con-
sisting of either one or multiple graphs has been very popular in data mining
research. A good survey of the early graph based data mining methods is given
by Washio and Motoda [18]. The first studies to find subgraph patterns were
conducted by Cook and Holder [3] for a single graph, and by Motoda and In-
durkhya [21] for multiple graphs, both using a greedy scheme to find some of the
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most prevalent subgraphs. Although this greedy search may miss some significant
subgraphs, it avoids the high complexity of the graph isomorphism problem.

Inokuchi et al. [9] and Kuramochi and Karypis [13] proposed the Agm and
Fsg algorithms, respectively, for mining all frequent subgraphs, using a level-wise
approach, similar to that of Apriori [1]. They suffer from two additional draw-
backs, however: costly subgraph isomorphism testing and an enormous number
of candidates that are generated along the way (due to the fact that both edges
and nodes must be added to the pattern). Yan and Han [19] proposed gspan,
which performs a depth-first search, based on a pattern growth principle similar
to the one used in Fp-growth [7] for mining itemsets. Nijssen et al. proposed
a more efficient frequent subgraph mining tool, called Gaston, which finds the
frequent substructures in a number of phases of increasing complexity [15]. More
specifically, it first searches for frequent paths, then frequent free trees and finally
cyclic graphs. Further attempts at mining frequent subgraphs, both in one or
many input graphs, have been made by Bringmann and Nijssen [2], Kuramochi
and Karypis [14], Huan et al. [8], Yan et al.[20] and Inokuchi et al. [10].

Up to now, however, most of the research in graph mining has gone into
finding frequent subgraphs. We focus on mining interesting itemsets in graphs,
thus relaxing the underlying structure of the pattern. By doing so, we avoid the
costly isomorphism testing, and by using a depth-first search algorithm, we avoid
the pitfalls of Apriori-like algorithms. A similar approach has been proposed
by Khan et al. [12], where nodes propagate their labels to other nodes in the
neighbourhood, according to given probabilities. Labels are thus aggregated,
and can be mined as itemsets in the resulting graph. Khan et al. also propose to
solve the problem of query-based search in a graph using a similar method [11].
Silva et al. [16, 17] and Guan et al. [6] introduce methods to identify correlation
between node labels and graph structure, whereby the subgraph constraint has
been loosened, but some structural information is still present in the output.

3 Single Graph Setting

Formally, we define a graph G as the set of nodes V (G) and the set of edges
E(G), where each node v ∈ V (G) has a label l(v). We assume that the graph is
connected, and that each node carries at most one label. In this setting, a pattern
is an itemset X , a set of node labels that frequently occur in graph G in each
other’s neighbourhood. In Sections 3.1 and 3.2 we propose two ways of defining
and finding interesting patterns in a graph. Note that we can also handle input
graphs that contain nodes with multiple labels, by transforming each such node
into a clique of nodes, each carrying one label.

3.1 Frequent Itemsets Approach

One way of defining an interesting itemset is by simply looking at its frequency.
An interesting itemset is one that occurs often in the dataset. Our challenge
therefore consists of taking a graph and converting it into a transaction database.
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In essence, we are looking for items that often appear near each other in the
graph, so we propose to create a transaction database in which each transaction
would correspond to the neighbourhood of a single node in the graph. For a node
v, we define the corresponding transaction as t(v) = {l(w)|w ∈ G, d(v, w) ≤ n},
where d(v, w) is the distance from v to w and n is the neighbourhood size, a user-
defined parameter, indicating how far w can be from v and still be considered a
part of v’s neighbourhood. Typically, n should be relatively small if meaningful
results are to be obtained. In a well-connected graph, with a large n, all nodes
will be in each other’s neighbourhoods.

We define a transaction database of graph G as T (G) = {t(v)|v ∈ G}. The
frequency of an itemset X in graph G, frG(X), is defined as the number of
transactions in T (G) that contain X . An itemset is considered frequent if its
frequency is greater than or equal to a user-defined frequency threshold min freq.
Once we have converted our original dataset in this way, we can apply any one
of a number of existing frequent itemset algorithms to obtain the desired results.

Let us return to our example in Fig. 1. Given a neighbourhood size of 1, the
resulting transaction database is given in Table 1. We see that itemset abcd will
now be discovered as interesting. In fact, only its subsets of size 1 or 2 will score
higher.

Table 1. A transaction database obtained from the graph in Fig. 1 with a neighbour-
hood size of 1

vid items vid items vid items

1 efghi 8 abcdg 15 bc
2 afe 9 ab 16 cd
3 abcdf 10 bc 17 edi
4 ab 11 bd 18 abcdi
5 ac 12 ech 19 ad
6 ad 13 abcdh 20 bd
7 beg 14 ac 21 cd

3.2 Cohesive Itemset Approach

Another possible approach is to look for cohesive, rather than simply frequent,
itemsets. This idea was inspired by the approach Cule et al. applied in order to
find interesting itemsets in event sequences [5]. The idea is not to find items that
only occur near each other often, but items that imply the occurrence of each
other nearby with a high enough probability.

Consider, for example, the graph given in Fig. 2. We see that patterns de
and bc are both frequent, though de will score higher than bc, both in subgraph
mining and in frequent itemset mining as defined in Section 3.1. However, it can
be argued that the value of itemset de should diminish due to the fact that a d
appears in the graph without an e nearby, while each b has a c right next to it,
and vice versa. Here, we present an approach that takes this into account.
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Fig. 2. A graph illustrating the intuition behind cohesive patterns

To start with, we introduce some notations and definitions. In a graph G,
the set of nodes is denoted V (G). The number of nodes in G is denoted |V (G)|.
For an itemset X , we denote the set of nodes labelled by an item in X as
N(X) = {v ∈ G|l(v) ∈ X}. The number of such nodes is denoted |N(X)|.
Finally, we define the probability of randomly encountering a node in G labelled

by an item in X as the coverage of X in G, or P (X) = |N(X)|
|G| .

For each occurrence of an item of X , we must now look for the nearest oc-
currence of all other items in X . For a node v, we define the sum of all these
smallest distances as W (v,X) =

∑
x∈X minw∈N({x})d(v, w). We then compute

the average of such sums for all occurrences of items making up itemset X ,

W (X) =
∑

v∈N(X) W (v,X)

|N(X)| . This allows us to define the cohesion of an itemset X

in G as C(X) = |X|−1

W (X)
. The cohesion is a measure of how near to each other

the items in X are in G on average. If they are always right next to each other,
the sum of these distances for each occurrence of an item in X will be equal to
|X | − 1, as will the average of such sums, and the cohesion of X will therefore
be equal to 1.

Finally, the interestingness of an itemset X is defined as the product of its
coverage and its cohesion, I(X) = P (X)C(X). An itemset is considered interest-
ing if its interestingness is greater than or equal to a user-defined interestingness
threshold, min int. Unlike with frequent itemsets, where we could tell nothing
about the cohesion of the itemsets, we are now able to say that having en-
countered an item from an interesting itemset, there is a high probability of
encountering the rest of the itemset nearby.

Let us now return to the example given in Fig. 2. If we apply these measures
to itemsets bc and de, we first note that P (bc) = 5/13 and P (de) = 7/13. In order
to compute the cohesion of the two itemsets, we first have to computeW (bc) and
W (de), which are respectively 1 and 10

7 (note that all relevant minimal windows
are of size 1, except W (v5, de) = 4). Therefore, C(bc) = 1 and C(de) = 7

10 , and
I(bc) = 0.385 and I(de) = 0.377. We see that the value of itemset de has indeed
diminished due to a d occurring far from any e.

Finally, note that while our method allows us to find more flexible patterns
than subgraph mining, we do not miss out on any pattern subgraph mining can
discover. If a graph contains many occurrences of a subgraph consisting of nodes
labelled a, b and c, then we will find abc as an interesting itemset.
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4 Multiple Graph Setting

In many applications, the dataset does not consist of a single graph, but of a
collection of graphs. Formally, as before, we define a graph G as a set of nodes
V (G) and a set of edges E(G), where each node v ∈ G has a label l(v). We also
define G as a set of graphs {G1, ..., Gn}, and assume that each graph in G is
connected. A pattern is now an itemset X , a set of node labels that frequently
occur in the set of graphs G in each other’s neighbourhood. In other words,
for a pattern to be interesting, it needs to appear in a cohesive form in many
graphs. Unlike the single graph setting, the multiple graph setting does not allow
us to transform the dataset into a transaction database. However, the cohesive
itemset approach, presented in Section 3.2, can be generalised to the multiple
graph setting in a relatively straightforward manner.

We first revisit the notations introduced in Section 3.2. Given a set of graphs
G, the number of graphs in G is denoted |G|. We denote the set of all graphs that
contain itemset X as Nm(X) = {G ∈ G|∀x ∈ X ∃v ∈ V (G) with l(v) = x}. The
number of such graphs is denoted as |Nm(X)|. Finally, we define the probability
of encountering a graph in G containing the whole of itemset X as the coverage

of X in G, or Pm(X) = |Nm(X)|
|G| .

Given a graph Gj in Nm(X), we must now look for the most cohesive occur-
rence of X . To find such an occurrence, we will look for a node in the graph,
labelled by an item in X , from which the sum of the distances to all other items
in X is the smallest. Given a graph Gj containing an itemset X , we define this
lowest sum as W (X, j) = minv∈N(X,Gj)W (v,X), where N(X,Gj) is the set of
nodes in Gj labelled by an item in X , while W (v,X) is defined as in Section 3.2.

We now compute the average of such smallest sums for all graphs in G con-

taining the whole of itemset X , Wm(X) =
∑

j∈Nm(X) W (X,j)

|Nm(X)| . We can then define

the cohesion of an itemset X in G as Cm(X) = |X|−1

Wm(X)
. Once again, a fully

cohesive itemset will have cohesion equal to 1.
Finally, the interestingness of an itemset X in G is defined as the product of

its coverage and its cohesion, Im(X) = Pm(X)Cm(X).

5 Algorithms

Mining frequent itemsets in graphs can be done by transforming a graph into
a transaction database, and then using an existing itemset miner to generate
the output. However, the cohesive itemset approach is less straightforward, and
we now present our algorithms, Grit and Mug, for solving this problem in the
single graph setting and the multiple graph setting, respectively.

5.1 Single Graph Setting

The fact that our interestingness measure is not anti-monotonic clearly rep-
resents a problem. We will sometimes need to search deeper even when we
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encounter an uninteresting itemset, as one of its supersets could still prove in-
teresting. Traversing the complete search space is unfeasible, so we will need a
different pruning technique to speed up our algorithm. We adapt the approach
introduced by Cule et al. for mining itemsets in sequences [5] to our setting.

We approach the problem using depth-first search, and the pseudocode of the
main Grit algorithm is provided in Algorithm 1. The first call to the algorithm
is made with X empty and Y containing all possible items. At the heart of the
algorithm is the UBI pruning function, used to decide when to prune a complete
branch of the search tree, and when to proceed deeper. Essentially, we can prune
a complete branch if we are certain that no itemset generated within this branch
can be interesting. To be able to ascertain this, we compute an upper bound for
the interestingness of all these itemsets, and prune the branch if this upper bound
is smaller than the interestingness threshold. We begin by noting that, for each
Z, such that X ⊆ Z ⊆ X ∪Y , it holds that |N(Z)| ≤ |N(X ∪Y )|, |Z| ≤ |X ∪Y |
and

∑
v∈N(X)W (v,X) ≤

∑
v∈N(Z)W (v, Z). Expanding the definition of the

interestingness, we get that I(Z) = |N(Z)|×|N(Z)|×(|Z|−1)∑
v∈N(Z) W (v,Z)×|G| . It therefore follows

that I(Z) ≤ |N(X∪Y )|×|N(X∪Y )|×(|X∪Y |−1)∑
v∈N(X) W (v,X)×|G| . We have thus found an upper bound

for the interestingness of all itemsets Z, that can be generated in a branch of the
search tree starting off with itemset X , and reaching as deep as itemset X ∪ Y .

However, while this upper bound is theoretically sound, it is also computa-
tionally very expensive. Note that we would need to compute

∑
v∈N(X)W (v,X)

at each node in our search tree. This would require traversing the whole graph
searching for the minimal distances between all items in X for all relevant nodes.
This, too, would be infeasible. Luckily, if we express these sums differently, we
can avoid these computationally expensive database scans. Adapting the ap-
proach introduced by Cule and Goethals [4] to the graph setting, we first note
that the sum of the minimal distances between items making up an itemset
X and the remaining items in X can also be expressed as a sum of sepa-
rate sums of such distances for each item individually,

∑
v∈N(X)W (v,X) =∑

x∈X

∑
v∈N({x})W (v,X). We then note that each such sum for an occurrence

of an item x ∈ X is equal to the sum of individual minimal distances between the
same occurrence of x and any other item y ∈ X . For the sum of such distances,

Algorithm 1. GRIT(〈X,Y 〉) finds interesting itemsets

if UBI (〈X,Y 〉) ≥ min int then
if Y = ∅ then

output X
else

Choose a in Y
GRIT(〈X ∪ {a}, Y \ {a}〉)
GRIT(〈X,Y \ {a}〉)

end if
end if
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it holds that
∑

v∈N({x})W (v,X) =
∑

v∈N({x})
∑

y∈X\{x}W (v, xy). Naturally, it

also holds that
∑

v∈N({x})W (v,X) =
∑

y∈X\{x}(
∑

v∈N({x})W (v, xy)). To sim-

plify our notation, from now on we will denote
∑

v∈N({x})W (v, xy) by s(x, y).

Finally, we see that
∑

v∈N(X)W (v,X) =
∑

x∈X

∑
y∈X\{x}(s(x, y)), giving us

a much more elegant way to compute the sum of distances between an occur-
rence of an item in X and the rest of X for all nodes labelled by an item in
X . Finally, we are ready to define our upper-bound-based pruning function:

UBI (〈X,Y 〉) = |N(X∪Y )|2×(|X∪Y |−1)∑
x∈X

∑
y∈X\{x}(s(x,y))×|G| .

This pruning function is easily evaluated, as all it requires is that we store
s(x, y), the sum of minimal distances between x and y over all occurrences of x,
for each pair of items (x, y), so we can look them up when necessary. This can
be done as soon as the dataset has been read, and all entries can be computed
efficiently. Note that if Y is empty, then UBI (〈X,Y 〉) = I(X), so if we reach a
leaf node in the search tree, we can immediately output the itemset.

5.2 Multiple Graph Setting

As in the single graph setting, the interestingness measure based on cohesive
itemsets in multiple graphs is also not anti-monotonic. Here, however, the cov-
erage alone is anti-monotonic. Given itemsets X and Y , such that X ⊂ Y , it is
clear that any graph that contains Y will also contain X . Keeping in mind that
the interestingness of an itemset is never greater than its coverage, this allows us
to prune even more candidates from our search space. For any itemset Z, such
that X ⊆ Z, it holds that I(Z) ≤ P (Z) ≤ P (X). Therefore, if we encounter
an itemset X , such that its coverage is lower than the interestingness threshold
min int, we can safely discard all its supersets from the search space.

On top of this pruning criterion, we can develop a pruning function MUBI
in much the same way as we did in the single graph setting above. Once again,
it would be infeasible to compute all necessary sums of minimal windows at
each node in our search tree. However, this time we cannot express this sum
using similar sums for pairs of items as we did in Section 5.1. The reason for
this is the fact that we now define W (X, j) as the minimal occurrence of X
in graph Gj , while in Section 3.2 we defined W (v,X) as a sum of individual
minimal distances between items. Given a graph Gj and an itemset X , knowing
the individual minimal distances between the items of X in Gj would bring us
no closer to knowing the size of the minimal occurrence of X in Gj . We have
therefore decided to perform all our experiments without MUBI — pruning
less, but faster. As a result, our Mug algorithm for mining interesting itemsets
in multiple graphs is exactly the same as the one given in Algorithm 1, with line
if P (X) ≥ min int then replacing line 1.

6 Experiments

For our single graph setting experiments, we generated a number of synthetic
datasets. To start with, we generated a graph with 10 000 nodes, randomly
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allocating labels ranging from 1 to 20. We made sure that labels 0 and 1 were
more probable than all the others, followed by labels 2 and 3, while the remain-
ing labels were all equally probable. We build the graph by, at each step, adding
either a new node and connecting it to a random existing node, or adding a new
edge between two existing nodes. In our first set of experiments, we set the prob-
ability of adding a new node to 60%, and the probability of adding a new edge
to 40%, resulting in a relatively sparse graph, with around 1.7 edges per node
on average. The characteristics of the input graph and the results of the experi-
ments for both the frequent itemset approach and the cohesive itemset approach
are presented in the top quarter of Table 2. For the frequent itemset approach,
the reported runtime is the sum of the time needed to transform the dataset into
a transaction database added to the time needed to run an implementation1 of
the classical Fp-growth algorithm on the transformed dataset.

Table 2. Experimental results on four different single graph datasets. The runtime is
measured in milliseconds.

Input Graph Frequent Itemset Approach Cohesive Itemset Approach
nodes edges items min freq runtime itemsets found min int runtime itemsets found
10 000 16 853 20 2 000 873 4 0.37 2 545 1

1 000 905 25 0.35 2 796 35
100 966 737 0.33 3 236 704
10 1 202 15 644 0.30 4 480 8 193
1 2 513 250 181 0.20 36 314 430 961

10 000 16 853 30 2 000 853 4 0.37 823 263 1
500 892 71 0.35 892 480 31
50 960 1 793 0.33 1 013 627 1 672
5 1 225 37 349 0.31 1 253 782 28 147

10 000 68 190 20 4 000 1 238 11 0.55 3 327 35
1 000 1 720 4 449 0.50 4 084 2 228
250 6 279 462 933 0.35 23 178 245 668
50 10 953 1 048 575 0.20 61 519 950 411

100 000 166 446 20 20 000 2 994 4 0.37 21 425 1
5 000 3 192 63 0.35 21 856 17
500 3 575 1 980 0.30 24 502 8 092
50 4 137 31 424 0.25 31 559 89 617

To examine how our methods react to different types of input, we created
three more graphs, each time changing one of the settings. In the second set of
experiments, we introduced some noise into the dataset, by randomly choosing
100 nodes in the original graph and changing their labels to a random item
ranging from 21 to 30. For the third set of experiments, we created a denser
graph, by setting the probability of adding a new node to 15%, and the proba-
bility of adding a new edge to 85%. In the fourth set of experiments, we used a
larger graph, creating 100 000 nodes, keeping the other settings as in the original
dataset. The characteristics of these three input graphs and the results of our
experiments can be seen in the bottom three quarters of Table 2.

In all four sets of experiments, we note that frequent itemset mining works
very fast once the transformation of the dataset has been done, while the co-
hesive itemset approach suffers from having to compute s(x, y) for each pair of

1 Taken from http://adrem.ua.ac.be/~goethals/software

http://adrem.ua.ac.be/~goethals/software
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items x and y, regardless of the threshold. Grit struggles with noisy data, as
expensive computations need to be done even for very rare items and itemsets,
while transforming the graph into a transaction database takes a lot more time
when dealing with both a denser or a larger input graph. Finally, all experiments
on the four datasets produced expected results in terms of the discovered item-
sets — items 0 and 1 were ranked top amongst items, while itemset {0, 1} was
the highest ranked pair of items. Both methods discovered the same itemsets
of size 3 and 4 (itemsets made up of items 0, 1, 2 and 3), while results differed
for itemsets of size 5 or more. However, due to the anti-monotonicity of the
traditional frequency measure, Fp-growth ranked singletons higher than their
supersets, while Grit considered itemset {0, 1, 2, 3}, for example, more inter-
esting than each individual item alone. We conclude that both approaches have
their respective merits, with the frequent itemset approach being faster, and the
cohesive itemset approach more intuitive. Grit will first find large, informative
itemsets, while Fp-growth first finds singletons, and the really interesting large
itemsets can be buried beneath a pile of smaller itemsets.

In the multiple graph setting, we experimented on a dataset consisting of 340
chemical compounds, made up of 66 different atom types. However, we discov-
ered five unconnected graphs in the dataset and removed them, as the cohesive
itemset approach can only be applied to connected graphs, leaving us with 335
input graphs. We compare our algorithm for finding cohesive itemsets in multi-
ple graphs with the Gaston tool developed by Nijssen and Kok [15]. Both the
dataset and the implementation are available online2. We present the results of
our experiments in Tables 3 and 4.

Table 3. Results of the Mug algo-
rithm on the Chemical 340 dataset

min int runtime itemsets
0.50 17 5
0.20 173 17
0.10 772 53
0.05 2 196 172
0.01 21 869 1 122

Table 4. Results of the Gaston algo-
rithm

min freq runtime itemsets
200 10 11
100 16 68
50 26 427
10 376 19 237
5 9 318 447 879

By comparing our Mug algorithm to a frequent subgraph miner, we are in
fact comparing apples and oranges. While Mug uses an interestingness measure,
Gaston uses a frequency threshold. Mug searches for itemsets, Gaston dis-
covers subgraphs. Mug discards structure and focuses on items in each other’s
neighbourhoods, while Gaston focuses on structure. Clearly, Mug results in a
massive reduction in output, as, for a typical interesting itemset discovered by
Mug, Gaston will find a number of combinations of edges (and their subsets)
that are frequent. Furthermore, the actual patterns discovered by the two algo-
rithms differ greatly. To name but one example, the most interesting itemset of

2 http://www.liacs.nl/~snijssen/gaston/download.html

http://www.liacs.nl/~snijssen/gaston/download.html
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size 4 that we discovered was {0, 1, 4, 5}, while the most frequent subgraph of
size 4 was 0 – 0 – 0 – 0. On the other hand, if we compare only patterns of size
2, Gaston finds graph 1 – 9 as the most frequent, while we also found {1, 9}
as highest ranked itemset of size 2. However, it is also important to note that
itemset {0, 1, 4, 5} ranked as one of the best itemsets overall in our output, while,
due to the nature of frequent subgraph mining, graph 0 – 0 – 0 – 0 was ranked
below all its subgraphs. As with Grit, Mug has the advantage of ranking the
larger interesting itemsets above all other, while Gaston will always rank a
large pattern below a number of smaller patterns.

7 Conclusion

In this paper we presented a number of new methods to identify interesting
itemsets in one or many input graphs. For one graph, such itemsets consist
of items that often occur close to each other. Unlike previous approaches that
typically look for structures connecting these items, we only look at the distances
between the items themselves. This enables us to avoid the typical pitfalls of
subgraph mining — costly isomorphism checks and a huge number of candidates.
On top of the classical frequent itemset approach that we adapted to mining
itemsets in a large graph, we propose a second method, mining cohesive itemsets,
consisting of items that appear close to each other frequently enough. This second
approach proved perfectly adaptable to the multiple graph setting, too.
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Abstract. Complex graph data now arises in various fields like social
networks, protein-protein interaction networks, ecosystems, etc. To re-
veal the underlying patterns in graphs, an important task is to partition
them into several meaningful clusters. The question is: how can we find
the natural partitions of a complex graph which truly reflect the intrinsic
patterns? In this paper, we propose RSGC, a novel approach to graph
clustering. The key philosophy of RSGC is to consider graph cluster-
ing as a dynamic process towards synchronization. For each vertex, it
is viewed as an oscillator and interacts with other vertices according
to the graph connection information. During the process towards syn-
chronization, vertices with similar connectivity patterns tend to natu-
rally synchronize together to form a cluster. Inherited from the powerful
concept of synchronization, RSGC shows several desirable properties:
(a) it provides a novel perspective for graph clustering based on pro-
posed interaction model; (b) RSGC allows discovering natural clusters
in graph without any data distribution assumption; (c) RSGC is also ro-
bust against noise vertices. We systematically evaluate RSGC algorithm
on synthetic and real data to demonstrate its superiority.

Keywords: Graph Clustering, Synchronization, Kuramoto Model.

1 Introduction

As a data format, graphs are characterized as a set of interconnected units.
These units, often called nodes or vertices, are linked to each other by edges
expressing their relationships. In recent years, the study of graph clustering has
attracted a huge attentions and many techniques have been developed based on
different partitioning criteria, e.g. betweenness, modularity and clique. Although
established approaches have already achieved some success, finding the real and
intrinsic clusters in graphs is still a big challenge [7]. Moreover, previous studies of
graph clustering mainly focused on unweighted graphs. A fresh and increasingly
challenging care is to study weighted graphs where each link is associated with
a large heterogeneity in the capacity and intensity.

In view of these challenges, in this paper we consider graph clustering from
a different perspective: synchronization. Synchronization is a prevalent phe-
nomenon in nature that a group of events spontaneously come into co-occurrence
with a common rhythm through mutual interactions. A paradigmatic example
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of synchronization phenomena is the synchronous flashing of fireflies observed in
some South Asian forests. Briefly, synchronization means adjustment of states
of oscillators due to weak interaction so that their states can coincide. To bet-
ter illustrate the concept of synchronization, let us take social networks as an
example. People in a social network with similar characteristics, e.g. common in-
terest, friends, or similar calling behaviors from phone companies tend to group
together. In such network, for a certain problem, in the beginning, each person
may has his/her own opinion. As time evolves, people tend to be affected by
their friends and change opinion gradually. In principle, the closer relationship
they are, the higher influence between each other. Through the discussion, fi-
nally people with similar characteristics tend to achieve the same opinion. The
dynamic process of opinion formation in the social network can be reviewed
as a common synchronization phenomenon. From this example, what makes us
interested is that the process of opinion formation in the social networks (a dy-
namic process towards synchronization) is very similar to a dynamic clustering
process. More importantly, the interactions among vertices during the process of
synchronization are completely governed by the intrinsic structural of the graph.

Therefore, inspired by natural synchronization phenomena and established
models, for graph clustering, a new intuitive idea is to consider it as a dynamic
process towards synchronization. We consider each vertex as an oscillator and it
interacts with other vertices relying on its intrinsic connection information. The
graph clustering is thus transformed into investigating the dynamics of vertices
during the process towards synchronization. A graph cluster is finally defined as
the vertices which can finally group together after synchronization.

The remainder of this paper is organized as follows: in the following section, we
briefly survey related work. Section 3 presents our algorithm in detail. Section 4
contains an extensive experimental evaluation and we finally conclude the paper
in Section 5.

2 Related Work

During the past several decades, many approaches have been proposed for graph
clustering. Due to space limitation, we only provide a very brief survey on graph
clustering related to our work.

Spectral Clustering: These approaches refer to a class of well-known tech-
niques which rely on the Eigenvector decomposition of a similarity matrix to
partition objects into disjoint clusters. The algorithm proposed by [14] allows
detecting arbitrarily shaped clusters by considering the clustering problem from a
graph-theoretic perspective. A cluster is obtained by removing the weakest edges
between highly connected subgraphs, which is formally defined by the normalized
cut or similar objective functions. To overcome the difficulty of parametrization,
Zelnik-Manor and Perona [18] proposed a new method to estimate the number
of clusters by investigating the structure of the Eigenvectors.

Multi-Level Clustering. Metis is a set of serial of multi-level partitioning
techniques proposed by Karypis and Kumar [11]. For graph partitioning, an
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initial clustering is performed on the coarsest graph, and then, a sequence of
successively finer graphs is constructed level by level. At each level, an iterative
refinement algorithm such as Kernighan-Lin (KL) or Fiduccia-Mattheyses (FM)
is used to further improve the bisection. In all, these methods are fast and give
high-quality partitions in most cases. However, like spectral clustering, a suitable
number of k clusters has to be set for the algorithm. In addition, these multilevel
algorithms restrict to detect clusters of nearly equal size.

Markov Clustering. The Markov Cluster algorithm (MCL) is a popular al-
gorithm used in life sciences for fast clustering of weighted graphs. MCL [6]
simulates a flow on the graph by calculating successive powers of the associ-
ated adjacency matrix. At each iteration, an inflation step is applied to enhance
the contrast between regions of strong or weak flow in the graph. The process
converges towards a partition of the graph, with a set of high-flow regions (the
clusters) separated by boundaries with no flow. The value of the inflation pa-
rameter strongly influences the number of clusters.

MDL-Based Clustering. The key idea of these methods is to detect clus-
ters by using a model of probability density functions (PDFs) to describe the
data structure and link the clustering problem to data compression. One of fun-
damental techniques in this line is Cross-Association [5] approach, which finds
groups in unweighted graphs by loss-less compression with Minimum Descrip-
tion Length (MDL). Similar to Cross-Association, the algorithm called PaCCo
[13], is proposed for weighted graph, which combines the MDL principle with a
bisecting k-Means strategy. The MDL principle provides a good way to qualify
the clustering results and thus avoids the parameter setting.

Synchronization. Arenas et al. [1] apply the Kuramoto model for network anal-
ysis, and study the relationship between topological scales and dynamic time
scales in complex networks. From bioinformatics, Kim et.al. [4] propose a strat-
egy to find groups of genes by analyzing the cell cycle specific gene expression
with a modified Kuramoto model. Recently, Shao et.al proposed an extension of
the Kuraomto model for clustering and outlier detection [15], [2], [16] on vector
data based on the concept of synchronization and MDL principle.

3 Synchronization-Based Graph Clustering

In this section, we introduce RSGC algorithm, which consider graph clustering
as a dynamic process. In the following, we start with the vertex feature represen-
tation and then introduce an interaction model for graph clustering. In Section
3.3 we discuss the algorithm RSGC in detail.

3.1 Vertex Feature Representation

Given an undirected graphG, the only information we can gain is its connectivity
patterns. In this study, we first compute the proposed Transitive distance of any
two vertices and then transform them into a feature vector space. Each vertex
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Fig. 1. Illustration of computing the dissimilarity among vertices

is finally mapped as a feature vector to represent its initial phase. Before that,
let us first introduce some necessary definitions.

Definition 1 (Jaccard distance). Given any two vertices u and v in Graph
G, the Jaccard distance Jd(u, v) of two vertices u and v is defined as:

Jd(u, v) = 1− ρ(u, v) (1)

where ρ(u, v) is the Jaccard coefficient [10] between vertices u and v,

ρ(u, v) =
|Γ (u) ∩ Γ (v)|
|Γ (u) ∪ Γ (v)| (2)

Here Γ (·) is neighbors of one vertex. Relying on Eq. (1), the Jaccard distance of
the pairs of non-neighbor vertices is always 1, which is insufficient to represent the
similarity of any two vertices effectively. Therefore, we further define Transitive
distance as follows.

Definition 2 (Transitive distance). Given two vertices u and v have no
common neighbors, {S1, · · · , SN} are all shortest paths between vertices u and
v and Sk = {u,wk

1 , · · · , wk
|Sk−2|, v}, k ∈ (1, · · · , N). The Transitive distance be-

tween vertices u and v is defined as the minimal Jaccard distance of these paths.

Td(u, v) =

⎧⎪⎨
⎪⎩

min
k∈(1,···,N)

(
Jd(u,wk

|Sk−2|) + Jd(wk
|Sk−2|, v)

)
Jd(u, v) = 1 AND
Jd(u, wk

|Sk−2|) �= 1

Jd(u, v) else

(3)

Figure 1 gives an example to illustrate the Transitive distance computation from
vertex 1 to all other vertices. Based on Transitive distance, the distance matrix
for all vertices can be computed. Finally, we map it into points in a feature
vector space and each vertex is represented as a feature vector. Here, we apply
the well-known method, called FastMap [8], to transform the distance matrix
in a metric space into a feature vector space. In this study, we simply map each
vertex into a 2-dimensional feature space. In principle, the higher dimensional
feature space is selected, the less connection information among vertices is lost.
However, the difficulty of clustering in high dimensional space is also increased.
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3.2 Interaction Model

Currently, one of the most successful approaches to explore the synchronization
phenomena is Kuramoto Model [12]. It describes the dynamics of a large set of
phase oscillators by coupling the sine of their phase differences. Formally, the
Kuramoto model (KM) consists of N phase oscillators where the phase of the
i-th unit, denoted by θi, evolves in time according to the following dynamics:

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), (i = 1, . . . , N), (4)

where ωi stands for its natural frequency and K describes the coupling strength
between units. sin(·) is the coupling function.

The KM describes the global synchronization behavior of all coupled phase
oscillators. However, in real-world graphs or networks, the connectivity among
vertices are often not full but partial, which indicates that only a local ensemble
of vertices are connected. Therefore, it is necessary to extensively reformulate
Eq.(4). The natural and intuitive way is to model the interactions in graph with
its intrinsic connection patterns.

Definition 3 (Interaction Model). Let u be a vertex in the graph G.
Γ (u) are the neighbors of vertex u and ui is the i − th feature of vertex u. The
interaction range Ru of vertex u is the maximal distance to these neighbors,
according to Eq.(4), the dynamics of i− th phase ui of vertex u is governed by:

dui
dt

= ωi +
K∑

v∈Γ (u)W (u, v)

∑
v∈Γ (u)

W (u, v) · Φ(u, v) · sin(vi − ui). (5)

where W (v, u) is the edge weight between vertices u and v. The Φ(u, v) is used
to check whether the vertex v should interact with the vertex u, which is defined
as:

Φ(u, v) =

{
0 dist(v, u) > Ru

1 else

Then, let dt = Δt, the Equation (5) can be further written as:

ui(t+1) = ui(t)+Δt·ωi+
Δt ·K∑

v∈Γ (u) W (v, u)

∑
v∈Γ (u)

W (v, u)·Φ(u(t), v(t))·sin(vi(t)−ui(t))

(6)

Here, without knowing external knowledge, all vertices (oscillators) are assumed
having the same frequency w. The term Δt · ωi is thus the same for each vertex
and ignored. Δt ·K = C is a constant and fixed as 1. Finally the dynamics of
i− th phase ui of the vertex u over time is provided by:

ui(t+1) = ui(t)+
1∑

v∈Γ (u)W (v, u)

∑
v∈Γ (u)

W (v, u)·Φ(u(t), v(t))·sin(vi(t)−ui(t))

(7)
The vertex u at time step t = 0: u(0) represents the initial phase of the vertex
(original feature vector). The ui(t+1) describes the renewal phase value of i-th
phase of vertex u at the t = (0, . . . , T ) time evolution.
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Fig. 3. The detail states of vertices during the process towards synchronization

In order to investigate local dynamic effects so that the clusters of synchro-
nized vertices can be discovered, we define a graph order parameter rg, measuring
the coherence of the local oscillator population in graphs.
Definition 4 (Graph Order Parameter) The graph order parameter rg
characterizing the degree of local synchronization in graphs is provided by:

rg =
1

N

N∑
i=1

(
1∑

v∈Γ (u)W (v, u)

∑
v∈Γ (u)

W (v, u) · Φ(u, v) · ||v − u||
)

(8)

The more vertices are synchronized together, the value of rg will become much
smaller. The dynamics of all vertices will terminate when the rg converges, which
indicates that the vertices in clusters synchronize together (in phase).

3.3 The RSGC Algorithm

Generally, the process of the graph clustering based on synchronization involves
three steps: (1) Vertices Feature Representation; (2) Dynamics on Graph and (3)
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Clusters Discovering. For illustration, we introduce a simple weighted graph in
Figure 2(a). Figure 2 (b) plots the edge weights distribution of the graph. With
Transitive distance and FastMap, each vertex is projected into a feature space,
which is indicated in Figure 2(c). After that, the dynamics of all vertices can be
simulated according to Eq.(7). Figure 3(f) displays the dynamic movement of
all vertices during the process towards synchronization. Figure 3 (a)-(c) further
depict the detailed states of vertices at time step t = 0 to t = 8. The process of
synchronization will be terminated when the graph order parameter rg converges,
which indicates in Figure 3(e). The result of graph partitioning is shown in
Figure 3(f). Finally, the pseudocode of RSGC algorithm is further described in
Algorithm 1.

Algorithm 1. RSGC algorithm

Input: Graph G(V,E,W )

Compute matrix A with Jaccobi Coefficient ;
Obtain dissimilarity matrix D with transitive distance & A;
Transform D into features vectors F using FastMap;

for (Each u ∈ F ) do
u(0) = Fu(0)

end for
while (loopFlag = True) do

for (Each u ∈ F ) do
Obtain new phase u(t+ 1) using Eq.(7);

end for
Compute graph order parameter rg;
F (t+ 1) =

∑N
1

⋃
u(t+ 1);

if rg converges then
loopFlag = False;
C = synCluster(F (t+ 1));

end if
end while

return C;

4 Experiments

To extensively study the performance of RSGC, we conduct experiments on
several synthetic and real-world data sets. We compare RSGC to representatives
of various graph clustering paradigms: Metis, MCL and two parameter-free
weighted graph clustering approaches: information-theoretic clustering PaCCo
[13] and the spectral clustering approach [18] (named Spectral in the following).
All experiments have been performed on a workstation with 2.0 GHz CPU and
8.0 GB RAM.
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(a) Different Sizes (b) Various Densities (c) Outliers Handling

Fig. 4. Performance of RSGC

4.1 Evaluation Criteria

To provide an objective comparison of effectiveness, we evaluate the graph clus-
tering algorithms in two ways. If class label information is available, three
information-theoretical measures: normalized mutual information (NMI), ad-
justed mutual information (AMI) and adjusted variation information (AVI) [17]
are directly applied for clustering comparison. For the comparison of different
algorithms on the real data sets without class-label information, we evaluate
them based on a measure called modularity [9], which is applied to quantifies the
quality of a division of a network into modules or communities.

4.2 Proof of Concept

Intrinsic Cluster Structure Discovery. We first evaluate the performance
of RSGC to discover natural graph partitioning in difficult settings, starting
with subgraphs of arbitrary size. The data set displayed in Figure 4(a) consists
of 4 clusters with different sizes, ranging from 20 to 80. The intra-connection is
approximately 40% and the distribution of edge weights is Gaussian. RSGC suc-
cessfully detects all clusters without any edge weights distribution assumptions.
Moreover, we generate four clusters with different densities. For each cluster, it
includes 20 vertices and the probabilities of intra-connection of each cluster vary
from 20% to 80%, see Figure 4(b).

Outliers Handling. Inherit from the concept of synchronization, RSGC algo-
rithm allows detecting outliers, where these vertices in graphs are difficult to
synchronize with other vertices and have different dynamics. As displayed in
Figure 4(c), the outliers are found by exploring these vertices which are out of
synchronization.

4.3 Synthetic Data

For comparison, we further create a graph consisting of four clusters with dif-
ferent settings to evaluate their effectiveness. The number of vertices per cluster
varied from 25 to 100. Meanwhile, the probabilities of intra-connection of each
cluster ranging from 20% to 80% and the inter-connection among clusters is
randomly interlinked with 10% . The weights of all connections are generated
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Table 1. Performance of graph clustering algorithms on the simple synthetic data set

Algorithms RSGC Metis MCL PaCCo Spectral

NMI 1 0.686 0.922 0.924 0.963

AMI 1 0.680 0.920 0.922 0.962

AVI 1 0.684 0.936 0.953 0.975

with Gaussian distribution. In addition, 6 nodes are randomly inserted into the
graph with very few connections. The quality of clustering results based on dif-
ferent clustering approaches is illustrated in Table 1. RSGC successfully find all
4 clusters and irregular nodes automatically. The experiment shows that RSGC
outperforms Metis and is also comparable to algorithms of MCL, Spectral and
PaCCo.

4.4 Real World Data

In this section, we evaluate the performance of RSGC on several real-world
data sets. Due to space limitation and difficult parametrization, we limit the
comparison to the parameter-free graph clustering algorithms RSGC, Spectral
and PaCCo. We obtain five author-collaboration networks from different com-
munities: Network Theory (Netsci), PhD Student Network in Computer Science
(CS-PhD), Computational Geometry (Geom), Arxiv General Relativity (CA-
GrQc), Erdos Research (Erdos) 1 2 ; three Protein-Protein Interaction networks
from three species, which are S. cerevisiae (Scere), Escherichia coli (Ecoli) and
C.elegans (Celeg) and a Autonomous Systems network of routers comprising the
Internet (As) 3.

Table 2 shows the clustering results in terms of modularity score. It is obvious
that RSGC perform well on all these data sets, which obtain the best modularity
scores for all experiments except the Spectral algorithm on As data set. For the
algorithm of PaCCo, it can not yield good partition results for most data sets,
especially for the unweighted graphs. The reason behind it is that PaCCo tends
to fail if the weight distribution does not correspond to the cluster model. Like
PaCCo, Spectral also obtain relatively few clusters except for the CS-PhD and
As data sets.

Case Study: To further evaluate the performance of RSGC, we illustrate it on
a case study on a protein-protein interaction (PPI) network. Here, we use the
latest version of PPI network of C.elegans (Celeg), which contains 2880 proteins
and 4812 known interactions. We analyze this interaction network with RSGC
and also compare its performance to PaCCo and Spectral. RSGC discovers 32
clusters, while PaCCo and Spectral produce only 2 clusters, respectively. In the
context of biology, we can evaluate the biological significance of obtained clus-
ters with the help of the Gene Ontology database, which provides the ontology

1 http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm
2 http://www-personal.umich.edu/~mejn/netdata,

http://snap.stanford.edu/data/
3 http://dip.doe-mbi.ucla.edu/dip/Main.cgi,http://snap.stanford.edu/data/

http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm
http://www-personal.umich.edu/~mejn/netdata,
http://snap.stanford.edu/data/
http://dip.doe-mbi.ucla.edu/dip/Main.cgi, http://snap.stanford.edu/data/
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Table 2. Performance of graph clustering algorithms on real world data sets

Data Set
PaCCo Spectral RSGC

#cluster Modularity #cluster Modularity #cluster Modularity

NetSci 11 0.542 4 0.696 19 0.779

CS-Phd 2 0.077 40 0.531 36 0.715

Geom 54 0.327 6 0.067 44 0.465

CA-GrQc 2 0.352 4 0.144 46 0.627

As 2 0.151 19 0.439 39 0.382

Erdos 2 0.049 2 0.001 24 0.422

Scere 2 0.085 3 0.053 32 0.196

Ecoli 2 0.052 2 0.002 25 0.224

Celeg 2 0.019 2 0.005 32 0.309

Table 3. Biological significant clusters detected by different clustering algorithms

Molecular Function Annotations P-value

RSGC
structural constituent of ribosome 1.2e-17
acetylcholine receptor activity 3.1e-6
protein binding 0.002

PaCCo structural constituent of ribosome 2.3e-9

Spectral structural constituent of ribosome 1.3e-19

Biological Processing Annotations P-value

RSGC

embryo development 2.1e-24
reproduction 2.9e-11
growth 0.004
multicellular organismal reproductive pro. 0.006
protein localization 0.007
morphogenesis of an epithelium 0.007
germ cell development 0.009
translation 0.011
inductive cell migration 0.045

PaCCo
reproduction 3.7e-20
embryo development ending in birth 6.8e-18

Spectral reproduction 3.1e-37

of defined terms representing gene product properties on three vocabularies of
annotations: Molecular Function, Biological Process and Cellular Component.
Researchers can apply P-value to demonstrate the biological significance, which
is defined as the probability to observe by chance at least x elements at the
intersection between the query set and the reference set [3].

Under the evaluation with Molecular Function annotations, RSGC finds three
clusters which are enriched for three molecular functions. In contrast, PaCCo
and Spectral only obtain one biological significance cluster for molecular func-
tions. In addition, for all three approaches, they find a significant cluster enriched
for the function structural constituent of ribosome, where the P-values are 1.2e-
17, 2.3e-9 and 1.3e-19 for RSGC, PaCCo and Spectral respectively. In addition,
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Fig. 5. The runtime of the different graph clustering algorithms

RSGC finds another two clusters enriched for protein binding (P-value = 2.5e-
03), acetylcholine receptor activity (P-value = 3.1e-06). Therefore, RSGC can
detect more clusters which make sense biologically. Similarly, we also evaluate
the clusters using biological processing annotations. Here, RSGC successfully
obtains 9 significant clusters which are enriched for biological processing while
PaCCo and Spectral have two and one significant clusters respectively. All of
RSGC, PaCCo and Spectral methods discover one significant cluster which is
enriched for the term reproduction with the P-values of 2.8e-11, 3.7e-20, 3.1e-37
respectively. Moreover,RSGC also reveals another 8 significant clusters enriched
for different biological process, such as embryo development, multicellular organ-
ismal reproductive process , morphogenesis of an epithelium, etc. Please refer to
Table 3 for details.

4.5 Runtime

For runtime comparisons, we generated several synthetic data sets, where the
number of clusters k varied ranges from 10 to 50 and each cluster contained
100 vertices. Approximately 30 % of the intra cluster edges were connected and
5% inter cluster edges were linked. To obtain more accurate runtime results,
for each method, each data set was processed for 10 times and then found the
mean of the 10 rounds. Fig. 5 clearly shows that RSGC is faster than Spectral
and PaCCo. However, RSGC is slightly slower than the parameter dependent
approach MCL and Metis.

5 Conclusions

In this paper, we introduce RSGC, a natural graph clustering algorithm based
on synchronization. The key idea is to consider the graph clustering as a dynamic
process towards synchronization. The extensive experiments demonstrate that
RSGC algorithm has several desirable properties: RSGC provides a natural way
for graph clustering, where the proposed interaction model well fits the real-world
networks, such as the interaction weights and range. Relaying on the proposed
interaction model, RSGC allows discovering graph clusters with arbitrary size
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and density without any data distribution assumption. RSGC is robust against
noise vertices or outliers.

Acknowledgments. Junming Shao is supported by the Alexander von
Humboldt-Foundation.
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Abstract. Large graphs are ubiquitous in today’s applications. Besides
the mere graph structure, data sources usually provide information about
single objects by feature vectors. To realize the full potential for knowl-
edge extraction, recent approaches consider both information types
simultaneously. Thus, for the task of clustering, combined clustering
models determine object groups within one network that are densely
connected and show similar characteristics. However, due to the inherent
complexity of such a combination, the existing methods are not efficiently
executable and are hardly applicable to large graphs.

In this work, we develop a method for an efficient clustering of com-
bined data sources, while at the same time finding high-quality results.
We prove the complexity of our model and identify the critical parts in-
hibiting an efficient execution. Based on this analysis, we develop the al-
gorithm EDCAR that approximates the optimal clustering solution using
the established GRASP (Greedy Randomized Adaptive Search) princi-
ple. In thorough experiments we show that EDCAR outperforms all com-
peting approaches in terms of runtime and simultaneously achieves high
clustering qualities. For repeatability and further research we publish all
datasets, executables and parameter settings on our website1.

1 Introduction

In recent years, real world networks have become bigger and also more numerous.
Their growing availability motivated researchers and practitioners to analyze
and use them for several purposes. One aim is the cluster analysis of graph
data, which can be done in various ways [1] including the task of mining densely
connected subgraphs hidden in one large graph. This task is useful for, e.g., social
network analysis. Besides partitioning approaches [10, 9] some methods assume
that the given graph naturally divides into (possibly overlapping) subgraphs of
certain patterns, e.g. cliques or γ-quasi-cliques [20, 8].

Restricting the considerations to the nodes’ relations only, however, does not
realize the full potential for knowledge extraction. Usually for all objects a va-
riety of additional information is available in form of attribute data (cf. Fig. 1).

1 http://dme.rwth-aachen.de/EDCAR

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 261–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Exemplary graph with feature vectors and a combined subspace and dense
subgraph cluster (located in subspace {temperature, humidity})

This information allows for finding homogeneous node sets. In order to gain
more informative patterns it is preferable to consider relationships together with
shared characteristics. As shown, e.g., in [6, 18], clustering methods using both
information sources can outperform methods using just a single one. Recently
introduced techniques aim at combining traditional clustering (using attributes)
and dense subgraph mining (using relationships). They group objects based on
a high connectivity as well as on a high similarity concerning their attribute
values. This responds to the requirements of many applications: To reduce en-
ergy consumption in sensor networks, the long distance reports of connected
sensors with similar measurements can be accumulated and transfered by just
one representative. In systems biology, functional modules can be determined,
which are groups of highly interacting genes with similar expression levels. In
social networks, closely related friends with similar interests are useful for target
marketing.

While the domain’s data usually represents a multitude of different recorded
characteristics, not all of them need to be relevant for each cluster. In, e.g., social
networks it is very unlikely that people are similar within all of their characteris-
tics. In Fig. 1 the sensors 3, 4, 6, 7 are highly connected and they show similarity
in two of their three measurements. In such scenarios, applying full-space cluster-
ing leads to questionable clustering results since irrelevant dimensions strongly
obfuscate the clusters. Subspace clustering methods solve this problem by find-
ing clusters in their locally relevant subspace projections of the attribute data
[7]. Consequentially, recent approaches [12, 2–4] combine the paradigms of dense
subgraph mining and subspace clustering.

These methods enable us to detect more meaningful clusters in the data, like,
e.g., the sensor group 3, 4, 6, 7 in Fig. 1. However, combining the paradigms of
dense subgraph mining and subspace clustering poses several efficiency chal-
lenges. First, analyzing subspace projections is inherently hard since the num-
ber of subspaces grows exponentially in the number of attributes. Second, as
shown in [2], to obtain high quality clusterings, an unbiased synthesis of both
paradigms has to be conducted. Thus, the clustering process has to realize a
complex optimization to fairly trade off the cluster properties ’size’, ’density’,
and ’dimensionality’. Last, often an overlap between clusters is reasonable since
objects can belong to multiple clusters when regarding different attribute sub-
sets. Musicians of an orchestra, e.g., may share similar musical interests but
probably will practice sports with different persons. However, if the clustering



Efficient Mining of Combined Subspace and Subgraph Clusters 263

model allows clusters to overlap, it is indispensable to avoid redundancy in-
duced by highly overlapping clusters. As known from usual subspace clustering,
redundancy elimination is highly complex [11, 13].

As we have seen so far, for a proper combination of subspace clustering and
dense subgraph mining, a model has to handle numerous aspects. Although
mostly not accommodating all requirements, previous approaches already have
high runtime and space consumptions. Thus, an execution on large datasets (if
possible at all) is not efficient. In our work we deal with all the aforementioned
aspects, but lay special focus on the efficiency challenges.

We start by taking the idea of GAMer [2] to the next level. While GAMer

restricts the underlying clustering model to just greedily select good clusters for
the result, which does not necessarily result in the most interesting clustering, we
aim for a globally optimizing clustering model. Since even the previous models
are rarely efficiently computable, it is not surprising that such a model, aiming at
a global optimization, has a high complexity. We therefore analyze our model’s
complexity to identify the most critical parts, which inhibit an efficient execu-
tion. We substitute these critical parts through highly efficient heuristics that,
however, influence the clustering quality only marginally. Thorough experiments
demonstrate that our algorithm not only is far superior to all other approaches
in terms of runtime but also shows better quality in nearly all experiments. Our
main contributions are: (a) We develop a novel clustering model for a result
having globally maximal quality, allowing clusters to overlap in general, and
avoiding redundancy (b) We propose the efficient algorithm EDCAR exploiting
the GRASP principle and approximating the optimal result.

2 Related Work

Recently, clustering methods have been introduced analyzing graph data in com-
bination with attribute data. [6] transforms the network into a distance and com-
bines it with the original feature distance. Afterwards any distance-based clus-
tering method can be applied. The clusters are difficult to interpret since they
do not have to obey a certain graph structure. In [19] the attribute information
is transformed into a graph and densely connected subgraphs are mined by com-
bining this novel graph with the original one. The work of [18] uses a combined
objective function extending the modularity idea. All three approaches [6, 19, 18]
perform full-space clustering on the attributes. [21] enriches the graph by fur-
ther nodes corresponding to (categorical) attribute values and connects them to
nodes showing this value. The clustered objects are only pairwise similar and no
specific relevant dimensions can be defined. Furthermore, the previous methods
determine disjoint clusters.

Only a few approaches deal with subspace clustering and dense subgraph min-
ing. CoPaM’s [12] combination of both paradigms, however, is not sound since it
solely maximizes the number of nodes; the density of subgraphs and the subspace
dimensionality are incidental. Furthermore, CoPaM does not eliminate redun-
dancy, which fast leads to an overwhelming result size. The GAMer approach [2]
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simultaneously considers the density, the size, and the dimensionality of clusters
by trading off these characteristics. Furthermore, GAMer uses a redundancy
model to confine the result to a manageable size. A disadvantage, however, is
the simple determination of the final clustering: GAMer does not globally ex-
amine the result but simply successively adds (in a greedy manner) clusters to
the result. Thereby, the resulting clustering does not necessarily correspond to
the most interesting one. In [3, 4] a cluster definition has been introduced for
finding arbitrarily shaped subspace clusters in graphs with feature vectors. The
work uses the same redundancy model as proposed in [2].

The major drawback of all methods is their high runtime and large space
requirement, which prevents an application on larger datasets.

3 Maximum Quality Clustering

EDCAR (Efficient Determination of Clusters regarding Attributes and Rela-
tionships) realizes a novel clustering model. The model is based on the cluster
definition introduced and already verified for its effectiveness in GAMer [2].
The input of our model is a vertex-labeled graph G = (V,E, l) with vertices V ,
edges E ⊆ V × V and a labeling function l : V → Rd where Dim = {1, . . . , d}
is the set of dimensions. We assume an undirected graph without self-loops. We
use l(O) = {l(o) | o ∈ O} to denote the set of vectors that is associated to the
set of vertices O ⊆ V .

3.1 Clustering Model

Our method combines objectives from subspace clustering and dense subgraph
mining. Thus, the desired clusters are sets of objects O ⊆ V that are meaningful
subspace clusters in the attribute space and also form dense subgraphs within
the input graph. For identifying subspace clusters, we adapt the cell-based model
of DOC [15]. According to this definition the values of all objects in a subspace
cluster vary at most by a threshold w in the relevant dimensions. For identifying
dense subgraphs, we use the definition of quasi-cliques [8]. The density of a

quasi-clique is determined by γ(O) = minv∈O degO(v)
|O|−1 , where degO(v) = |{o ∈

O | (v, o) ∈ E}| is the vertex degree restricted to the set O.

Definition 1. (Twofold cluster [2]) A twofold cluster C = (O,S) is a set of
vertices O ⊆ V and a set of dimensions S ⊆ Dim with the following properties

– (l(O), S) is a subspace cluster with dimensionality |S|≥smin

– O is a quasi-clique with density γ(O) ≥ γmin

– the induced subgraph of O is connected and |O|≥nmin

The resulting clusters are meaningful in the attribute space as well as in the
graph. For example in Fig. 2 (choosing w = 0.5, nmin = 3, γmin = 0.4 and
smin = 2) the vertex set C1 = {v1, v2, v4, v5, v6, v7} is a valid twofold cluster with
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Fig. 2. Exemplary twofold clusters

the relevant dimensions 2 and 3 (marked in orange). The set C2 = {v2, v3, v7} is
a twofold cluster with the relevant dimensions 1 and 4 (marked in blue).

Based on the above definition, the number of node sets fulfilling this definition
is potentially very large and probably many clusters will overlap (e.g. C1 and
C2 in Fig. 2). Furthermore, some subsets of the clusters are twofold clusters as
well, e.g. {v1, v4, v5, v6}. Though it makes sense to allow overlapping clusters in
general since one node can belong to several meaningful groups, clusters that
are too similar to each other often contain nearly the same information.

Since these redundant clusters are not beneficial but obstructing, they should
be excluded from the result. To identify a redundant cluster C w.r.t. another
cluster C′, several properties have to apply. First, the structural information
of the corresponding clusters has to be similar, i.e. they have to share a large
portion of their vertices and their dimensions. Second, the cluster C should be
less interesting than the cluster C′; otherwise one would prefer C. Formally, the
redundancy of C w.r.t. C′ is based on the following relation:

Definition 2. (Redundancy relation) Given the redundancy parameters robj ∈
[0, 1] and rdim ∈ [0, 1], the binary redundancy relation ≺red is defined by:

For all twofold clusters C = (O,S), C ′ = (O′, S′):

C ≺red C
′ ⇔ Q(C) < Q(C ′) ∧ |O∩O′|

|O| ≥ robj ∧ |S∩S′|
|S| ≥ rdim

Using the parameters robj and rdim the user can determine to which extent two
clusters may overlap without being defined as redundant. For example, with
robj = rdim = 0.5 the cluster C2 would not be redundant w.r.t. C1. Although
many of C2’s nodes are covered by C1, the relevant dimensions of the two clusters
do not overlap. With the values robj = 0.5 and rdim = 0, C2 would be redundant
w.r.t. C1.

Cluster selection based on global optimization. Our goal in selecting the
final clustering is a solution, that (a) does not contain clusters that are redun-
dant to each other, i.e. it has to be redundancy-free, and (b) is most interesting.
While the GAMer method greedily selects clusters according to their quality, we
perform a more sophisticated selection. Instead of deciding locally which cluster
to select next for the result, we perform a global optimization to get the most
interesting clustering. We, thus, do not prefer the selection of single interesting
clusters, since that carries the risk of selecting only uninteresting clusters after-
wards, but we select the overall most interesting clustering. Correspondingly, we
require of our Result that the sum of its clusters’ qualities is maximal compared
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Fig. 3. Global optimization in EDCAR vs. greedy selection in GAMer

to all other possible clusterings. Formally, the maximum quality clustering is
defined as follows:

Definition 3. (Maximum quality clustering) Given the set of all twofold clus-
ters Clusters, the maximum quality clustering Result ⊆ Clusters fulfills

– (redundancy-freeness) ¬∃Ci, Cj ∈ Result : Ci ≺red Cj

– (maximum quality sum) ¬∃Res′ ⊆ Clusters : Res′ fulfills the redundancy-
free property and

∑
Ci∈Res′ Q(Ci) >

∑
Ci∈Result Q(Ci)

Fig. 3 shows an example for the final clusterings of GAMer and EDCAR: Nine
clusters, their quality values, and the redundancy relation are illustrated. The
quality sums of the overall clusterings are depicted on the right. GAMer se-
lects the cluster C2 since it is not redundant w.r.t. any other cluster. A greedy
selection according to the quality values is performed. In EDCAR, cluster C2

is not selected for the final clustering. While C2 has a high quality itself, its
admittance would prohibit the clusters C3, C4, and C6. However, by including
these clusters and excluding C2, our final clustering has a higher quality (39.7
vs. 29.6). As the example illustrates, EDCAR optimizes the interestingness of
the overall clustering, which can yield better results but is computationally more
challenging.

3.2 Complexity Analysis

The complexity of our clustering model is given by the following two theorems
(proofs on the web). First, the overall complexity of our model, i.e. of generating
the twofold clusters and selecting the maximum quality clustering, is #P-hard.

Theorem 1. Given a vertex-labeled graph G = (V,E, l), determining the maxi-
mum quality clustering according to Def. 3 is #P-hard w.r.t. |V |.

Second, even if the set of twofold clusters Clusters is given, selecting the maxi-
mum quality clustering Result⊆Clusters (cf. Def. 3) is NP-complete w.r.t. the
input size.

Theorem 2. Given a set of twofold clusters Clusters, selecting the maximum
quality clustering according to Def. 3 is NP-complete w.r.t. |Clusters|.

Conclusions. From Theorem 1 we can infer that the input size |Clusters|
can be exponential in |V |. Overall we can identify two parts that, especially
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in combination, prevent an efficient determination of the optimal solution: the
tremendous amount of clusters used as candidates for the optimal clustering and
the complexity of the selection process for a final subset of these clusters.

4 The Efficient EDCAR Algorithm

As shown, efficiently determining a maximum quality clustering is not possible.
Thus, we develop the heuristic algorithm EDCAR to ensure an efficient execu-
tion. We have to tackle two major challenges: First, we have to reduce the number
of result candidates (Section 4.1). We cannot use the whole set Clusters of ex-
ponentially many candidates as the input for the selection procedure. Second,
we have to resolve the NP-hardness of the selection process itself (Section 4.2).

4.1 Reduce the Number of Result Candidates

This first phase generates the cluster candidates among which the subsequent
process chooses the final clustering. The goal is to efficiently determine a set of
twofold clusters that is of manageable size and of high quality.

To analyze sets of vertices whether they are twofold clusters, we enumerate
them using the set enumeration tree [17]. An exemplary tree for a graph with
four vertices is shown in Fig. 4. Each node of the tree represents a set of vertices
O ⊆ V . Each node O is associated with a candidate set candO. A child node
O′ extends its parent node O through one of the vertices in candO. Thus, the
subtree of a node O represents all potential clusters X with O ⊂ X ⊆ O∪candO .
By pruning a vertex v from the candidate set of a node O, the search space can
be reduced. If we were able to remove e.g. the vertex v3 from the set cand{v1},
the highlighted subsets in Fig. 4 would disqualify themselves as clusters without
further analysis. EDCAR employs all pruning methods of [2].

We want to avoid analyzing each node along each (non-pruned) path in the
set enumeration tree since this could lead to an exponential number of twofold
clusters which are used as candidates for the final clustering. To reduce the
number of candidates we implement two different strategies. In the first step,
we avoid analyzing all paths of the tree by systematically determining single
paths along which interesting clusters can be expected. By selecting a polynomial
number of paths we will also only get a polynomial number of candidates. This

Fig. 4. Set enumeration tree
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Algorithm 1
1: Cands ← {}
2: for( 1 . . .maxClus )
3: α ← rand([0 . . . 1]) // trade off greedy& randomized
4: O ← {} // root of set enumeration tree
5: while( true ) // generate path P
6: determine candO and prune (cf. [2])
7: if( candO = ∅ ) break;
8: determine RCLO as in Equation 1
9: v ← rand(RCLO)

10: O ← O ∪ {v} // extend path P by v

11: select cluster C+ along path P with highest quality
12: Cands ← Cands ∪ {C+}
13: return Cands

. generateCandidates()

path selection is illustrated in Fig. 5 by the solid lines. Even though this method
reduces the number of clusters considerably, this set is still unnecessarily large
and will be reduced in a second step. Since along each selected path the object
sets successively grow by one vertex (cf. Fig. 4), the clusters along this path are
most likely redundant to each other. Using all these clusters as the input for the
selection step is needless since most clusters will be discarded anyway. Based on
the definition of our redundancy relation we know that clusters with high quality
are preferred. Thus, instead of using all clusters, we select along each path just
the cluster with the highest quality (cf. dots in Fig. 5). Overall, we realize by
our two strategies that only few candidates are used as the input for the cluster
selection step. In the remaining of this section, we present more details on our
path selection technique.

GRASP for efficient path selection. To systematically (and efficiently)
achieve a selection of interesting paths, we adapt the GRASP principle (Greedy
Randomized Adaptive Search Procedure) [14, 16], Naively, one could randomly
determine a path. This, however, does not assure to generate high quality clus-
ters. Alternatively, one could decide at node O which successor v ∈ candO (po-
tentially) leads to a good cluster and one descends in the subtree with the high-
est potential. We use a function g(v|O) to estimate the potential of each node
v ∈ candO w.r.t. the current set O. The definition of g(v|O) will be derived in
the next subsection. This approach corresponds to a greedy construction of the
path. The huge advantage of this greedy method is that the graph structure and
the cluster definition can be incorporated into the estimation function g to rate
the potential of the path. Thus, it corresponds to an informed search and high
quality clusters can be expected. Disadvantageously is the risk of reaching only
local maxima and generating always very similar paths. These problems do not
hold for the randomized approach, which is able to generate a diversity of paths
in an uninformed fashion.

To exploit the advantages of both methods (informed and randomized search),
we use the GRASP principle, which acts as a metaheuristic to combine them.
Several studies show that this principle often leads to optimal or nearly optimal
solutions [14]. According to the GRASP principle, we first construct a restricted
candidate list (RCL) corresponding to a set of potentially meaningful vertices
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for expanding the path. Afterwards, we randomly select one vertex v ∈ RCLO

to descend into a subtree. Formally,

RCLO = {v ∈ candO | g(v|O) ≥ gm + α · (gM − gm)} (1)

with gm= min
v∈candO

{g(v|O)} and gM= max
v∈candO

{g(v|O)}.
By choosing α=1 we can simulate the greedy approach whereas α=0 corre-

sponds to a completely randomized selection. The determination of a single path
is shown in Algorithm 1, line 5 to 10: In line 6 we determine the candidate set
candO for the current vertex set O, which is then reduced using the pruning
techniques from [2]. Next we determine the RCL as described above and add a
randomly selected node to O. This procedure is repeated until candO=∅, i.e. no
more nodes can be added to the path.

As depicted in Fig. 5 we want to descend in several paths. This is done by
line 2 and we use a randomly determined α to trade off the two GRASP principles
for each novel path, leading to more stable results [16]. Overall, we efficiently
generate different paths containing high quality clusters based on the estimated
potential.

Potential of Paths. At last, we have to determine the potential of a sub-
tree. Since our goal is to maximize the sum of qualities, we want to use the
quality as our estimation function g(v|O). If efficiency was not required, one
could use g′(v|O) = γ(O ∪ {v})a · |O ∪ {v}|b · |S(O ∪ {v})|c where S(X) de-
notes the subspace of the corresponding vertex set. However, efficiency is cru-
cial in our case. While the size and the subspace can be efficiently determined,
the exact density γ(O ∪ {v}) is computationally expensive. Keep in mind that
g(v|O) has to be evaluated for each v ∈ candO. Therefore, we approximate
the density γ(O ∪ {v}) of the potential cluster O ∪ {v} by the lower bound

γ(O, v) := min{mino∈O degO(o),degO(v)}
|O| ≤ γ(O ∪ {v}). The density approximation

γ(O, v) can be efficiently computed for different vertices v because it is mostly
independent of v. We only have to compute the term degO(v). Our overall esti-
mation function is g(v|O)=γ(O, v)a · (|O|+ 1)b · |S(O ∪ {v})|c

4.2 GRASP for Efficient Clustering Selection

So far, we reduced the number of candidates used as the input for the cluster
selection step. Now we approximate the maximum quality clustering (Def. 3))
itself since its determination is NP-hard. We again use the GRASP principle.
Therefore, we relax Def. 3 by only demanding the resulting clustering Res
to be redundancy-free and maximal: (¬∃C,C′ ∈ Res : C ≺red C′) ∧ (∀C ∈
Cands\Res : ∃C′ ∈ Res : C ≺red C′ ∨ C′ ≺red C). Starting with an empty
result Res, we now successively add further clusters C ∈ Cands based on the
GRASP principle. Since our goal is to find clusterings with a high quality sum,
we instantiate the estimation function h(C|Res), which assesses the potential of
adding C to Res, by the quality of clusters: h(C|Res) = Q(C). This value is
already given at this time. Thus, no additional computation has to be done. The
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Algorithm 2 selectClustering(...)
1: input: set of clusters Cands
2: Res ← {} // (preliminary) result
3: α ← rand([0 . . . 1])
4: while( Cands �= ∅ )
5: gm = minC∈Cands h(C|Res), gM = max ...
6: RCL={s ∈ Cands | h(C|Res)≥gm+α(gM−gm)}
7: C ← rand(RCL)
8: Res ← Res ∪ {C}
9: Cands ← {C ∈ Cands | ¬∃C′∈Res : C ≺red

C′ ∨ C′ ≺red C}
10: // improve clustering by local search
11: for( NewRes ∈ Neighborhood(Res) )
12: if( Q(NewRes) > Q(Res) ) // higher quality sum
13: Res ← NewRes
14: goto line 10 // efficient first-improving strategy
15: return Res

Algorithm 3 EDCAR algorithm
1: Res ← {} // preliminary result
2: do
3: Cands ← generateCandidates()
4: Tmp ← Res ∪ Cands
5: Res ← selectClustering(Tmp)
6: while( Cands �= ∅ )
7: return Res

.

.

pseudo code for selecting the subset is given in Algorithm 2. Since our model
requires redundancy-freeness, we are able to remove in line 9 all clusters that
induce such a redundancy. These clusters can no longer be added to Res.

To further increase the overall quality, we conduct in line 10-14 a local search
on the set of valid clusterings. The idea is to replace a cluster C ∈ Res by
a set of not yet selected clusters NewC to get the potentially better clustering
Res\{C}∪NewC. The set NewC is built by collecting clusters from Cands\Res,
in decreasing order w.r.t. their quality values, as long as the redundancy-freeness
property of the overall result Res\{C} ∪ NewC is not violated. Thus, an effi-
cient greedy approach can be used to generate NewC . Formally, for each clus-
ter X ∈ Cands\Res not selected for NewC it holds: X /∈ NewC ⇔ ∃C′ ∈
NewC : (X ≺red C

′) ∨ ∃C′ ∈ Res\{C} : (X ≺red C
′ ∨ C ′ ≺red X). The overall

neighborhood of a clustering Res is the whole set of such generated alternatives
Neighborhood(Res)={Res\{C} ∪ NewC | ∀C ∈ Res}. If no better clustering
in the neighborhood exists, we have reached a local maximum and the cluster
selection in this iteration is finished.

4.3 Overall Processing Scheme

The two phases of our method, generating a small number of candidates and
selecting the resulting clustering based on these candidates, lead to an overall
efficient execution. Since we select just the one cluster with the highest qual-
ity along each path, however, lower quality clusters do not get the chance to
be selected for the result. Nevertheless, also clusters with lower qualities can
contribute to the overall result, as C9 in Fig. 3. To give these low-quality but
valuable clusters the chance to be considered as result candidates, we repeat
both phases recurrently (cf. Algorithm 3).

In the first iteration no information is given (Res=∅) and we select the clusters
with highest quality along each path. In subsequent iterations Res is used to
avoid considering redundant candidates. We thus block redundant parts of a path
and select the most interesting cluster among the remaining non-redundant ones
as additional candidate. Overall, we generate in each iteration only candidates
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Fig. 6. Scalability and Quality w.r.t. different data or ground truth characteristics

fulfilling ∀C∈Cands : ¬∃C ′∈Res : C ≺red C
′. It is very likely that some of these

clusters can be added to the final clustering. Thus, we perform the clustering
selection phase on the enriched set Cands ∪ Res to get the novel preliminary
result Res∗ ⊆ Cands ∪ Res. Overall, our processing interweaves the generation
and the selection of clusters by cyclically invoking both phases. The method
automatically terminates if no further non-redundant candidates can be found.

5 Experiments

We compare EDCAR with GAMer [2] and CoPaM [12]; both consider subspaces
and dense subgraphs. As a further competitor we use the extension Cocain◦ of
Cocain [20] as described in [2]. Efficiency is measured by the approaches’ runtime.
All experiments were conducted on Opteron 2.3GHz CPUs using Java6 64 bit.
Methods that did not finish within two days were aborted. Clustering quality is
calculated via the F1 value [5]. We use several public real world datasets and
synthetic data, by default with 80 clusters, each with 15 nodes, a density of 0.6
and 5-10 relevant dimensions out of 20 dimensions. 6% of the clusters’ nodes
overlap. We provide all datasets with descriptions, executables, and parameter
settings on our website.

Database size. First, we vary the number of vertices in the graph by increasing
the number of clusters and keeping the number of objects per cluster fixed. As
depicted in Fig. 6(a) (top), EDCAR is several orders of magnitude faster than
all competing approaches (note the logarithmic scale on both axes). EDCAR is
the only method applicable on large data sets. Especially CoPaM is no longer
executable for these settings since its limited redundancy model leads to an im-
practicably large amount of clusters. GAMer scales worse than EDCAR, too. It
has to analyze the complete set of all twofold clusters, leading to a high runtime.
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Although EDCAR uses an even more complex clustering model, the runtime
is lower since we systematically generate and select only the most interesting
clusters.

Besides EDCAR’s high efficiency, we observe in Fig. 6(a) (bottom) its high
effectiveness. Despite the used approximations, the quality of EDCAR is similar
or even higher than that of GAMer. The remaining approaches CoPaM and
Cocain◦ achieve only low qualities, as also shown in [2]. This experiment has
shown that EDCAR is also applicable on large datasets. Though, for the follow-
ing experiments we chose medium-sized datasets to enable a comparison with
the other algorithms.

Cluster size. In this experiment, we keep the number of clusters fixed but
increase the number of vertices per cluster. This setting is more challenging
since larger clusters correspond to longer paths in the set enumeration tree. In
Fig. 6(b) (top) we observe only a slow increase in runtime for EDCAR. Since the
number of hidden clusters is fix, the number of required iterations in EDCAR is
almost constant (about 15). All competing approaches show heavily increasing
runtimes and are not applicable at an early stage. Fig. 6(b) (bottom) shows
nearly perfect quality for EDCAR. The qualities of the other methods decrease to
different extents. The advantage of our novel clustering model becomes apparent.

Graph density. In Fig. 6(c) we increase the graph’s density by adding edges
between the clustered nodes. Again, EDCAR is orders of magnitudes faster con-
firming the usefulness of our solution.
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Fig. 7. Data dimensionality

Data dimensionality. In Fig. 7 we increase the data’s dimensionality. Though
the runtimes of the competing methods do not increase significantly, they are
not applicable for larger datasets due to the extreme memory usage. CoPaM is
not applicable at all. The other methods have to manage a tremendous amount
of clusters whereas our algorithm generates incrementally a small set of clusters.
Overall, all experiments indicate that EDCAR achieves far better runtimes than
all competitors. EDCAR is the only method applicable to large datasets. At the
same time the results of our approximation achieve high effectiveness.
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Real world data. We use gene data2 and their interactions (3548 nodes; 8334
edges; 115d), an extract of the Arxiv database3 (27769; 352284; 300d), patent
information4 (492007;528333; 5d), and a co-author graph extracted out of the
DBLP database5 (133097; 631384; 2695d). Since for real world data no hidden
clusters are given, we analyze in Fig. 8 different properties of the clustering
results (runtime, avg. number of vertices, density, dimensionality of the detected
clusters). For all datasets EDCAR is orders of magnitude faster than the other
methods. GAMer is only applicable on three of the datasets. CoPaM can only
be executed on the gene data and achieves extremely high runtimes. Cocain◦

finished on none of the datasets within 2 days. The clusters identified by EDCAR
and GAMer have nearly similar properties. Thus, our approximations do not
impair the clustering quality.
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- IEEE ICME
- ACM Multimedia
- TREC

Fig. 9. Exemplary cluster for DBLP

An exemplary cluster from EDCAR’s clustering result on the DBLP co-author
graph is shown in Fig. 9. Here, each node represents an author, each edge cor-
responds to a co-authorship, and the 2695 attributes of a node indicate the
conferences which an author has attended. Fig. 9 illustrates a cluster consisting
of 12 authors who jointly published papers at the conferences IEEE ICME, ACM
Multimedia, and TREC (i.e., the cluster is located in a 3d subspace). Please note
that the cluster does not form a clique (its quasi-clique density is 0.64), thus not
all authors collaborated together. EDCAR is the only method that can handle
this data set; all competing methods fail due to their high runtime and space
complexity.

6 Conclusion

We introduced the method EDCAR for efficiently detecting clusters showing
high density in graphs as well as feature similarity in subspace projections. Our
model combines subspace clustering with dense subgraph mining and performs

2 http://thebiogrid.org,http://genomebiology.com/2005/6/3/R22
3 http://www.cs.cornell.edu/projects/kddcup/datasets.html
4 http://www.nber.org/patents/
5 http://dblp.uni-trier.de

http://thebiogrid.org, http://genomebiology.com/2005/6/3/R22
http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://www.nber.org/patents/
http://dblp.uni-trier.de


274 S. Günnemann et al.

an overall optimization of the result to get the most interesting, redundancy-free
clustering. Based on the proven complexity of our model, we developed the algo-
rithm EDCAR to efficiently calculate an approximate solution. By interweaving
the process of cluster generation and cluster selection, which both make use of
the GRASP principle, EDCAR determines high quality clusters and ensure low
runtimes. Thorough experiments demonstrate that EDCAR has high effective-
ness and at the same time constantly outperforms all competing approaches in
terms of efficiency.
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7. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A sur-
vey on subspace clustering, pattern-based clustering, and correlation clustering.
TKDD 3(1), 1–58 (2009)

8. Liu, G., Wong, L.: Effective pruning techniques for mining quasi-cliques. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS
(LNAI), vol. 5212, pp. 33–49. Springer, Heidelberg (2008)

9. Long, B., Wu, X., Zhang, Z.M., Yu, P.S.: Unsupervised learning on k-partite
graphs. In: KDD, pp. 317–326 (2006)

10. Long, B., Zhang, Z.M., Yu, P.S.: A probabilistic framework for relational clustering.
In: KDD, pp. 470–479 (2007)

11. Moise, G., Sander, J.: Finding non-redundant, statistically significant regions in
high dimensional data: a novel approach to projected and subspace clustering. In:
KDD, pp. 533–541 (2008)

12. Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs
with feature vectors. In: SDM, pp. 593–604 (2009)
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Abstract. Depression has become a critical illness in hum an society as many 
people suffer from the condition without being aware of it. The goal of this paper 
is to de sign a system to ide ntify potential depression candidates based on the ir 
write-ups. To solve this problem, we propose a two-stage supervised learning 
framework. The first stage determines whether the user possesses apparent nega-
tive emotion. Then the positive cases are passed to the second stage to further eva-
luate whether the condition is c linical depression or just or dinary sadness. Our 
training data are generated automatically from Bulletin Board Systems. The con-
tent and temporal features are designed to improve the classification accuracy. Fi-
nally we develop an online demo system that takes a piece of written text as input, 
and outputs the likelihood of the author currently suffering depression. We con-
duct cross-validation and human study to evaluate the effectiveness of this system.  

Keywords: Depression Detection, Time Information, Text Classification. 

1 Introduction  

Depression has gradually become a co mmon mental illness in th e modern era. Ac-
cording to World Health Organization, 121 million people are affected by depression, 
but less than 25% of those people receive adequate treatment (Saraceno, B. 2002). 

Depression is a type of mental disease without apparent symptoms, especially dur-
ing the early stage (Feightner et al. 1 990). Sometimes the patients do not understand 
their drastic mood swings are caused by depression. With the goal to combat this 
illness, this paper presents an early-detection mechanism that is capable of identifying 
potential depression cases given the written materials of the subjects.  

Depression detection has been studied for a while but most of the existing depres-
sion detection systems are not fully automatic. Existing systems usually require the 
potential subjects to take online evaluation tests. Then a simple rule-based system  
                                                           
* Corresponding author. 
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or a m ore complicated learning-based system can be des igned. Such process has  
significant limitations in real-world usage. First, the potential candidates need to be 
manually identified (usually by another human). Second, even if the potential candi-
dates can be identified, the validity of the test results remain to be questioned as the 
test takers may not take the test seriously.   

To address the above con cerns, we design a supervised-learning system for text-
based depression detection. Our system does not need the potential candidates to under-
go an evaluation, as it scans through their write-ups on public platforms (e.g. on blogs or 
BBS) to make a decision. To design such a system, there are several issues to address: 
Q1. What kind of classifier should be designed? A binary classification tool that 

separates depression from non-depression? A multi-class classifier that distin-
guishes multiple mental diseases including depression? Or something else?  

Q2. Given the answer from Q1, how to obtain the labeled training data? 
Q3. What kinds of features are useful for this task?  
Q4. What kind of evaluation procedure is considered as a sound mechanism to as-

sess the quality of the system? 
In the following sections, we will discuss the above issues to design a text-based de-
pression detection framework. 

2 Methodology 

We investigate how to design a learning-based system that is capable of determining 
whether the author of a piece of writing is suffering or on the verge of suffering de-
pression. Furthermore, we investigate how the temporal information can be exploited 
in such task. 

Our training data is collected from the most popular bulletin board system (BBS) 
in Taiwan, the PTT. Figure 1 is a screenshot of the user interface of PTT. Due to the 
anonymous property of the cyber world, users are more willing to express their true 
feelings on web platforms than they do i n the real world. This makes such public-
sharing platform a g ood source of data for depression detection, and consequently 
enables our study on depression detection through text mining. 

In PTT, there are more than twenty thousand boards focusing on wide range of top-
ics, such as politics, sports, life and game. Over 1 million registered users post tens of 
thousands of new posts every day. The main reason we use data from PTT for depres-
sion analysis is twofold. First, there is an existing depression board, the Prozac board, 
on PTT for depressed persons to express their feelings and thoughts. Second, besides 
this board, there are other boards that allow users to express their feelings that can be 
exploited as the negative training data or as the testing platform. For example, there is 
a Sad board for sad people to share their feelings, and there is a Diary board that al-
lows users to write down what are on their minds. 

2.1 Methodology Overview 

To solve Q1 as described previously, one conventional solution for depression detec-
tion is to treat this task as a binary classification problem. One can collect some posi-
tive and negative samples to train a classifier. However, it is non-trivial to choose the 
source of negative data for learning in this case, as there are many different kinds of 
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The posting time of a post on BBS, blogs, or micro-blogs is usually fine-grained, 
accurate to th e minutes or e ven seconds. To incorporate this information into ou r 
model, we define the temporal feature as a pair con taining the term itself and the  
time of it being posted. We encode the posting time into different spans as shown in 
Table 1. Then we can apply TF-IDF in equation 1 and 2 to generate the value of tem-
poral features. The only difference is that now ni,j stands for the frequency of a " 
timeslot-term" pair. 

Table 1. Predefined temporal categories 

Category # Description Feature (tired) 
12Hour(6-18) 2 6-18, 18-6 18-6 tired 
12Hour(8-20) 2 8-20, 20-8 20-8 tired 
12Hour(10-22) 2 10-22, 22-10 10-22 tired 
6Hour(6-12) 4 6-12, 12-18, 18-24, 24-6 18-24 tired 
6Hour(8-14) 4 8-14, 14-20, 20-2, 2-8 20-2 tired 
6Hour(10-16) 4 10-16, 16-22, 22-4, 4-10 16-22 tired 
24Hour 24 24 hours 20 tired 
12Month 12 12 months March tired 
4Season 4 spring, summer, fall, winter Spring tired 
2Season 2 spring-summer, fall-winter Spring-summer tired 
Season change 2 April+May+September+October, others Others tired 
Workday-Weekend 2 workday, weekend Workday tired 

 
Each of these temporal categories has its own meaning. The first three categories 

divide a day into two sections, “daytime” vs. “night” or “working hours” vs. “non-
working hours”. The next 3 categories further separate a day into four sections. Next, 
we use more fine-grained slots such as “24Hour” and “12Month”. Units such as 
“4Season”, “2Season” and “Season change” are motivated by the observation that 
weather may affect human beings’ emotions, in particular for people suffering depres-
sion. Finally, we define the category “Workday-Weekend” to reflect the observation 
that depressed people sometimes suffer occupational function impairment, which 
leads to different mental conditions or behaviors between workday and weekend. 

There are 12 dif ferent categories in Table 1. Thus, one single term feature can be 
converted to 12 dif ferent temporal features. Assuming there is a message posted on 
Mon Mar 21 20:16:11 with a term tired, the resulting temporal features are listed in 
the right-most column in Table 1. 

3 Experiment 

3.1 How the Training Data Can Be Obtained? 

We conduct experiment on PTT data, and use 5-fold cross validation to obtain the 
accuracy. As in the first stage, we hope to train a classifier that distinguishes messag-
es with negative emotions from those with non-negative emotions. We choose posts 
in Gossiping and Happy boards on PTT to represent messages with non-negative 
emotions and posts from Prozac and Sad boards to represent the ones with negative 
emotions. The Gossiping board is chosen to be the data source not only because it is 
the most popular board on PTT but also due to the variety of posts with different  
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purposes and emotions that we believe are general enough to represent many different 
types of write-ups. 

In the second stage, we train a depression vs. sadness classifier. We use the posts 
from Prozac and Sad boards as the positive and negative examples respectively, while 
the former contains mostly depression posts and the latter contains mostly sad (but not 
necessarily depressed) messages. Prozac board is  a place for people with clinical 
depression or potential candidates to interact with each other, share their experiences 
and express their emotions. The word Prozac is the name of medicine for treating 
depressive disorder. The categories of posts in Prozac board are clearly specified, as 
listed in Table 2. Note that we use only the articles from the cloudy day category, 
which contain posts created by people with depression to express their thoughts and 
feelings. Other categories such as information or sunny day are excluded while gene-
rating the training data to ensure the quality of the training data. Table 3 shows the 
basic statistics of the training data. 

Table 2. Categories of posts in Prozac board 

Self-induction For the new users to introduce themselves 
Medical For the discussion of hospital, doctor, counseling, medicine and symptoms  

Experience For the discussion of experience, treatment situation 
Information For news, information, research and books about depression 

Question For asking questions 
Transcription For transcription of posts from other boards 

Cloudy day For self-introduced users to vent bad emotions 
Sunny day For self-introduced users to share good emotions 

Chat For self-introduced users to use when other categories are not applicable 

Table 3. Basic statistics of training data 

Statistics Gossiping Happy Prozac Sad 
Time period 08/01~10/12 10/01~10/12 08/01~10/12 10/01~10/12 

Posts number 6505 11209 6015 4900 
Users number 1699 2695 1027 1652 

3.2 Stage 1 – Negative vs. Non-negative Classifier 

Most of the posts in PTT are in Traditional Chinese. Therefore we focus on Chinese 
posts in this experiment, though the proposed technique is language universal. We 
first use Yahoo’s segmentation API service to perform word-segmentation on the 
posts because of its stability and efficiency. We then filter out single-character terms 
in Chinese as they are more likely to be s top-words without apparent meaning. Be-
sides, terms used by too few people (< 25) are removed to avoid over-fitting. In the 
end, 5622 unigram terms are chosen. 

Here we collect all pos ts of a user to ex tract the unigram features. Note that the 
subject is persons not posts, because in practice it is more critical to know whether a 
person is a potential depression patient. We exploit linear SVM using Liblinear(Fan et 
al. 2008) for classification. Note that each feature is scaled to [0, 1]. The 5 fold cross 
validation accuracy reaches 96.17%, which means negative-posts and non-negative-
posts can be easily separated based on content. 
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3.3 Stage 2 – Depression vs. Sadness Classifier 

The feature generation process is the same as mentioned in previous section. Similar 
to what we did in stage 1, we first extract 2460 unigrams for learning. The results are 
shown in Table 4. The 5-fold cross validation accuracy is 81.86%, which signifies 
that depression and sadness posts are indeed separable, but doing so is much harder 
than separating negative vs. non-negative write-ups. 

Table 4. Experiment results in stage 2 (term features only) 

CV accuracy(5 fold) 81.86% 
CV AUC(5 fold) 0.8863 

 
To verify the quality of training data an d learning process, we also examine the 

weight of each feature. Table 5 s hows the top 40 depression features, and Table 6 
shows the top 40 sad features. All features have been translated into English. 

Table 5. Top 40 depression features and weights 

Take medicine 2.17 Normal people 1.34 World 1.08 Day after 
tomorrow 0.98 

Doctor 1.96 Horrific 1.27 Prozac 1.06 Crowd 0.98 
Depression 1.79 Boyfriend 1.26 Yesterday 1.05 Dark night 0.98 

School 1.78 Medicine 1.24 Squeeze out 1.02 Subsist 0.98 
Suicide 1.62 Emotion 1.23 Clinic 1.02 Tight Chest 0.97 

Counseling 1.50 Pain 1.20 Destroy 1.02 Agree 0.97 
Sick 1.44 Psychologist 1.18 Patient 1.02 State 0.96 
They 1.44 Afraid 1.17 Thought 1.00 Stable 0.95 

Happy 1.42 Bedtime 1.14 Ward mate 0.99 Appetite 0.95 
Trembling 1.39 What if 1.09 Can’t hold out 0.98 Social 0.94 

Table 6. Top 40 sad features and weights 

Miserable -1.70 Cant’ let go -1.24 Day -1.01 Opportunity -0.92 
Cheer up -1.37 Hesitate -1.15 Can’t see -1.00 Immediately -0.92 
We -1.37 Mood -1.15 Put -1.00 Misunderstand -0.90 
Hope -1.31 Feel -1.12 Memory -0.99 Time -0.90 
Torture -1.30 Quietly -1.10 Really -0.98 A little -0.90 
Sad -1.27 Think -1.08 And -0.97 Relieved -0.90 
Broken-heart -1.27 Actual -1.03 Tear -0.96 Sorry -0.88 
Such -1.26 Future -1.02 Slowly -0.95 Popular feeling -0.87 
Obviously -1.26 Always -1.02 Children -0.94 Try one’s best -0.86 
Exaggerate -1.24 Affair -1.01 Future -0.94 Outcome -0.85 
 
From the top 50 depression features, we can see that some of them are related, such 

as depression, suicide and pain; some are related to somatic symptoms like chest 
tightness and appetite; and some provide more insights into the mental world of 
people with depression such as terms including normal people, squeeze out, social 
and crowd. The term knife might indicate the most common tool they used or i m-
agined to hurt themselves with. Furthermore, dark night, destroy, unable to hold out 
and terror show the darkness and fear inside their minds. On the other hand, the top 
keywords for sad posts are more general. 
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Table 7. Results of using temporal features only Table 8. Results of using both term features 
and temporal features 

Feature # Accuracy AUC 
Term 2460 81.86% 0.8863 
12Hour(6-18) 4920 81.97% 0.8817 
12Hour(8-20) 4920 80.55% 0.8817 
12Hour(10-22) 4920 80.55% 0.8790 
6Hour(6-12) 9833 81.34% 0.8897 
6Hour(8-14) 9812 80.55% 0.8746 
6Hour(10-16) 9812 80.55% 0.8746 
24Hour 49644 76.15% 0.8109 
12Month 28759 78.09% 0.8439 
4Season 9839 80.03% 0.8711 
2Season 4920 80.81% 0.8797 
Season change 4920 80.93% 0.8825 
Workday 4920 80.89% 0.8821 
All 147237 84.47% 0.9167 

 

Feature # Accuracy AUC 
Term 2460 81.86% 0.8863 
12Hour(6-18) 7380 82.34% 0.8931 
12Hour(8-20) 7380 82.34% 0.8940 
12Hour(10-22) 7380 81.71% 0.8892 
6Hour(6-12) 12290 82.79% 0.8987 
6Hour(8-14) 12293 83.58% 0.9089 
6Hour(10-16) 12272 82.79% 0.8970 
24Hour 52104 82.38% 0.8980 
12Month 31219 83.20% 0.9033 
4Season 12299 82.98% 0.8941 
2Season 7380 81.71% 0.8887 
Season change 7380 81.49% 0.8915 
Workday 7380 81.34% 0.8882 
All 149697 84.51% 0.9176 

 
 

(a). The input screen 

 
 

 
(b). System output 

Fig. 4. Screenshots of the demo system 

We then conduct experiments to observe the performance of using only temporal 
features. The results are shown in Table 7. Note  that the accuracies are not signifi-
cantly higher than that without temporal features. We believe it might due to the lack 
of sufficient data to train  such fine-grained feature set, as the experiments also show 
that the more fine-grained a temporal category is (e.g. 24 hours, 12 month), the lower 
the accuracy it produces. However, when both term features and temporal features are 
exploited (see Table 8), the performance does show consistent improvement. In most 
of the temporal categories, we receive higher accuracy than using only term features, 
and the highest accuracy lies in “6Hour(8-14)” category. If we include all 12 temporal 
features, the accuracy can be boosted to 84.51%, which is significantly higher than 
using only term features. 
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The agreement is even higher (21/30) for non-expert evaluators (see Table 10). The 
manual evaluation demonstrates that our system can effectively identify potential 
subjects who are suffering depression but are unaware of it from their writings.   

 
Table 9. Diagnosis of 2 doctors Table 10. Diagnosis of 8 ordinary raters 

30 detected users 
major depression 9 
moderate and minor depression 9 
no depression 12 
non-diagnosable 0 

 

30 detected users 
major depression 7 
moderate and minor depression 14 
no depression 9 
non-diagnosable 0 

5 Related Work 

5.1 Automated Depression Detection 

Neuman and Kedma (2010) propose a system called Pedesis to automatically detect 
users with depression on the web, specifically on blogs. Their main idea is that de-
pression can be h idden in some metaphors, which implies that obvious depressed 
terms are n ot the only indicators. By the help of a s earch engine, they extract sen-
tences in the form of “depression is like *”, and identify some popular metaphors for 
depression such as black hole or dark cloud. These metaphors are then used as key-
words to identify users with depression. This knowledge-driven method is fundamen-
tally different from our learning-based method. 

There are researches applying machine learning methods for depression detection. 
We can classify them into four categories based on the sources used for detection: 
text, speech, facial expression and electroencephalogram (EEG). 

Text. Jarrold et al. (2010) investigate whether language features can be used to di-
agnose depression. They use only binary classification and did not include temporal 
information in the features. Besides, the corpus they use takes lots of time and effort 
to create, while we use PTT which contains a gradually increasing resource whose 
data as well as lab els can be extracted automatically with limit amount of efforts. 
Aamodt et al. (2010) develop a decision support system for depression diagnosis us-
ing case-based reasoning. However, to compare a new case with past cases, the sys-
tem requires the patient to fill out a questionnaire first, thus the usage and coverage is 
limited. 

Speech. Based on the theory that people with depression have slow and monoton-
ous voice, Low et al. (2010) use speech characteristics as features for depression de-
tection and compare performances of different feature combinations. Their experi-
ments show MFCC and short time energy outperform other features. Sanchez et al.  
(2011) successfully exploit prosodic and spectral speech features to decide  whether 
the speaker is depressed.  

Facial expression. Cohn et al. (2009) consider not only verbal features but also fa-
cial actions to perform depression detection. They found both manual FACS coding 
and active appearance modeling (AAM) are correlated with depression. Maddage et 
al. (2009) also have similar idea of using facial features for depression detection. 
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EEG. Hosseinifard et al. (2011) use EEG signal as the features for depression clas-
sification and achieve high accuracy in the experiments. Unfortunately, a depression 
detection system like this can hardly be used as scr eening tool for large amount of 
candidates.  

The related work shows that different sources of information can serve as the clue 
for depression detection. Our work is novel because we have not yet found any work 
that proposes similar two-stage online screening framework with empirical demon-
stration on the effectiveness of the designed temporal features. 

5.2 Temporal Information in Depression 

Early studies have suggested that depression might be a seasonal variation disorder. 
Eastwood and Stiasny (1978) conduct an analysis of hospital admission of neurotic 
and endogenous depression, and reported significant peaks in spring and fall. Morken 
et al. (2002) focus on monthly variation of depression, with gender information also 
considered. They find that depression admission for women reaches highest peak in 
November, and for men, in April. Both studies have confirmed a correlation between 
incidence of depression and time. Kerkhofs et al. (1991) investigate the 24 hour sleep 
patterns of 22 people, with 12 of them having major depressive disorder and 10 being 
normal people. The result shows a difference of sleeping behavior for the two groups. 
Normal people tend to take a nap in the early afternoon, and depressed people have no 
consistent sleeping period. If a person naps in the morning more often, indicating that 
the person lacks sleep at night, the probability of depression might be higher. These 
researches indicate the existence of time clues for detecting depression and non-
depression candidates, which strengthen our proposal to introduce the temporal in-
formation as features. 

6 Conclusion 

The main contributions of this paper are listed below:  

1. We propose two practical real-world usage scenarios for depression detection, 
and design a novel two-stage learning framework based on such scenarios. 

2. We design a strategy to incorporate temporal information into the content feature 
and improve the detection accuracy significantly. 

3. We identified an important resource, namely BBS, which allows us to automati-
cally extract data and labels for training and testing. Furthermore, the data grows 
daily, which means one can obtain more training data to enhance the performance 
of the system. Such resources can potentially be us ed for oth er classification 
tasks because there are thousands of boards in this system, and one can easily ob-
tain labeled data of specific purpose to facilitate training and testing. 

4. We developed an online real-time depression detection engine which does not 
require the users to fill out any questionnaires or reveal their identities. For eval-
uation, we conduct cross-validation on the PTT dataset and find experts and nor-
mal people to judge the usability of the system. The results show that our system 
can indeed discover potential or hidden depression candidates that are otherwise 
hard to find. 
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The framework, data, and features we have proposed can easily be applied to design 
detection engines for other kinds of mental diseases such as delusional disorder, schi-
zophrenia, anxiety disorder, etc. In the future, we plan to integrate other dimension of 
information into our system including the weather and geographical information, 
which we believe are also useful clues for depression detection. 
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Abstract. The use of brain-wave patterns extracted from electroen-
cephalography (EEG) brain signals for person verification has been in-
vestigated recently. The challenge is that the EEG signals are noisy due
to low conductivity of the human skull and the EEG data have unknown
distribution. We propose a multi-sphere support vector data descrip-
tion (MSSVDD) method to reduce noise and to provide a mixture of
hyperspheres that can describe the EEG data distribution. We also pro-
pose a MSSVDD universal background model (UBM) to model impos-
tors in person verification. Experimental results show that our proposed
methods achieved lower verification error rates than other verification
methods.

Keywords: Support vector data description, support vector machine,
person verification, EEG, universal background model.

1 Introduction

The use of brain-wave patterns for person verification has been investigated at
IDIAP in Switzerland [1]. It has been shown that the brain-wave pattern of every
individual is unique and that the electroencephalography (EEG) brain signal can
be used for person identification [2]. Traditional biometrics such as fingerprint,
voice, and retina can be damaged or missing for some people, however EEG
biometric exists in every person. EEG has advantageous such as unobtrusive,
requiring living person recording, spontaneous signal, individual uniqueness due
to different brain configurations [3].

Person verification is different from person identification. Person identification
is to match the user biometric data against all the records in a database, while
person verification is to accept or to reject a user claimed identity providing his
biometric data. EEG-based biometry is an emerging research topic that can open
new research directions and applications. Most EEG-based biometry work was
focusing mainly on person identification, for example [4] and very little work has
been done on person verification [1]. In [5], Manhattan distances on autoregressive
(AR) coefficients with PCA were used to compute thresholds for determining test
patterns were clients or impostors, the person verification task from 5 subjects
were done in 2 stages. In [6], Independent Component Analysis (ICA) was used to
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determine dominating brain regions to extract AR features, then a Naive Bayes
probabilistic model is employed for person authentication of 7 subjects with Half
Total Error Rate (HTER) of 2.2%. In [1], Gaussian mixture models has been ap-
plied for person verification task on EEG signal from 9 subjects. Half total error
rate of 6.6%was achieved for imagination left task. Those results were satisfactory
but the numbers of subjects were very small.

Most features in BCI research have high dimensionality due to the number
of channels. In addition, the training sets are usually small since the training
process is time consuming and demanding [7]. As a result, models based on
density estimation do not have enough data for training. Usually, maximum a
posteriori adaptation is used to overcome this problem as seen in [1]. On the
other hand, models based on kernel aim at determining the boundaries of the
data instead of probability density, hence they do not require a lot of data
for training. In support vector data description (SVDD), a spherically shaped
boundary around a normal data set is used to separate this set from abnormal
data. The volume of this data description is minimized to reduce the chance of
accepting abnormal data. In [8], SVDD was used to model 70 individuals using
energy features and attained 0.9913 area under curve (AUC). However SVDD
does not guarantee that the single spherically shaped boundary can best describe
the EEG data due to complex data distributions and much noise and outliers.
A better description is the use of multiple spheres, however there is currently no
investigation available for EEG-based person verification.

In speaker verification, the task can be stated as a hypothesis testing be-
tween the two hypotheses: the input utterance is from the hypothesis speaker,
client, (H0) or not from the hypothesis speaker, impostors, (H1). The difficulties
are usually in modelling the hypothesis H1 since it should represent all possi-
ble alternatives speakers. There are two approaches to model the alternatives
speakers [9]. The first approach uses a set of other speaker models to cover the
space of the alter native hypothesis, this is called likelihood ratio sets, cohorts
or background speakers. The selection, size and combination of the background
speakers have been the subject of much research [9]. The second approach pools
speech from several speakers and train a single model, this is called the world
model or universal background model (UBM). This approach has become the
predominate and has been focused on selection and composition of the speakers
[9]. The advantage of this approach is that a single background model can be
trained once and shared for all hypothesis testing of individual speakers.

GMMUBM has been the state-of-the-art high performance probabilistic model
for representing speaker model and alternative speaker models because of its
capability to approximate arbitrary densities [10]. Recently, Support Vector Ma-
chine (SVM) has been used for speaker verification. Because SVM draws an op-
timal hyper-plane to separate two classes, its application to speaker verification
is to separate the client from impostors. The score of a vector is its the distance
to the hyperplane and the threshold can be changed by adding some amount to
the decision value causing the hyperplane moves nearer or further the class H0.
In [11] SVM was combined with GMM for speaker verification by stacking the
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means of the adapted mixture components into a GMM super-vectors. Then a
linear kernel is derived based on an approximation to KL divergence between
two GMM models. In [12] and [8] the authors use SVDD for speaker verification
task the distance to the sphere centers are used as scores, the former author con-
vert score to probability and the later author use percentage of rejection data
as threshold.

In this paper, we propose a multi-sphere SVDD (MSSVDD) person verification
in which an optimisation problem and an iterative algorithm are proposed to
determine model parameters for MSSVDD to provide a better data description
to EEG data for a person. An SVM UBM model is proposed to represent the
person and background models as a set of sphere distributions, each sphere can
represent some characteristics of a person with well-trained decision boundaries.
Hence the collection of spheres can hopefully represent the varieties of feature
space.

Experimental results on 4 large data sets show that the proposed multi-sphere
SVDD can perform as the GMM UBM and the SVM UBM out perform GMM
UBM.

2 Multi-Sphere SVDD

2.1 Problem Formulation

Consider a set of m hyperspheres Sj(cj , Rj)with center cj and radius Rj , j =
1, . . . ,m. This hypershere set is a good data description of the normal data set
X = {x1, x2, . . . , xn} if each of the hyperspheres describes a distribution in this
data set and the sum of all radii

∑m
j=1 R

2
j should be minimised.

Let matrix U = [uij ]n×m, i = 1, . . . , n, j = 1, . . . ,m where uij is the hard
membership representing the belonging of data point xi to hypersphere Sj , uij =
0 if xi is not in Sj and uij = 1 if xi is in Sj . The optimisation problem of multi-
sphere SVDD can be formulated as follows

min
R,c,ξ

( m∑
j=1

R2
j + C

n∑
i=1

ξi

)
(1)

subject to

m∑
j=1

uij ||φ(xi)− cj ||2 ≤
m∑
j=1

uijR
2
j + ξi i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n (2)

where R = [Rj ]j=1,...,m is vector of radii, C is a constant, ξ = [ξi]i=1,...,n is
vector of slack variables, φ(.) is the nonlinear function related to the symmetric,
positive definite kernel function K(x1, x2) = φ(x1)

Tφ(x2), and c = [cj ]j=1,...,m

is vector of centres.
Minimising the function in (1) over variables R, c and ξ subject to (2) will

determine radii and centres of hyperspheres and slack variables if the matrix U
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is given. On the other hand, the matrix U will be determined if radii and centres
of hyperspheres are given. Therefore an iterative algorithm will be applied to
find the complete solution. The algorithm consists of two alternative steps: 1)
Calculate radii and centres of hyperspheres and slack variables, and 2) Calculate
membership U .

For classifying a data point x, the following decision function is used

f(x) = sign
(
max

j

{
R2

j − ||φ(x) − cj ||2
})

(3)

The unknown data point x is normal if f(x) = +1 or abnormal if f(x) = −1.

2.2 Calculating Radii, Centres and Slack Variables

The Lagrange function for the optimisation problem in (1) subject to (2) is as
follows

L(R, c, ξ, α, β) =

m∑
j=1

R2
j+C

n∑
i=1

ξi+

n∑
i=1

αi

(
||φ(xi)−cs(i)||2−R2

s(i)−ξi

)
−

n∑
i=1

βiξi

(4)

where s(i) is index of the hypersphere to which data point xi belongs and satisfies
uis(i) = 1 and uij = 0 ∀j �= s(i).

Setting derivatives of L(R, c, ξ, α, β)with respect to primal variables to 0, we
obtain m individual optimisation problems as follows

min
( ∑

i∈s−1(j)

αiK(xi, xi)−
∑

i,i′∈s−1(j)

αiαi′K(xi, xi′)
)

j = 1, . . . ,m (5)

subject to ∑
i∈s−1(j)

αi = 1 and 0 ≤ αi ≤ C j = 1, . . . ,m (6)

After solving all of these individual optimization problems, we can calculate the
updating radii R = [Rj ] and centres c = [cj ], j = 1, . . . ,m using the equations
in SVDD.

2.3 Calculating Membership U

We use radii and centres of hyperspheres to update the membership matrix U .
The following algorithm is proposed:

For i = 1 to n do
If xi is misclassified then

Let j0 = argminj

{
||φ(xi)− cj ||2 −R2

j

}
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Set uij0 = 1 and uij = 0 if j �= j0
End if
Else

Denote J = {j : xi ∈ S(cj , Rj)}
Let j0 = argminj∈J

{
||φ(xi)− cj ||2

}
Set uij0 = 1 and uij = 0 if j �= j0

End Else
End For

2.4 Iterative Learning Process

The proposed iterative learning process for multi-sphere SVDD will run two al-
ternative steps until a convergence is reached as follows

Initialise U by clustering the normal data set in the input space
Repeat the following

Calculate R, c and ξ using U
Update U using R and c

Until a convergence is reached.

3 MSSVDD UBM

The MSSVDD UBM models the background space by using multi-hypersphere
distribution approach. The set of K background people is trained using multi-
sphere SVDDs, each person is represented by n spheres resulting nK spheres
in total. Then this single background model will be shared for all hypothesis
testing of individuals. When testing hypothesis for a person, his/her model will
be removed from the background model.

Below are widely used normalisation methods in person verification [13]:

L0(x) = logP (x|λ0) (7)

L1(x) =
P (x|λ0)
P (x|λ) (8)

L1(x) = logP (x|λ0)− logP (x|λ) (9)

L2(x) = logP (x|λ0)− max
λ�=λ0

logP (x|λ) (10)

The simplest method of scoring is to use the absolute likelihood score or in its
log domain (7). The score (8) and its log domain (9) uses normalisation, the
term logP (X |λ) is called the normalisation term and requires calculation of all
impostors likelihood functions. An approximation of this method is to use only
the closest impostor model for calculating the normalisation term (10)

Let x be a feature vector, S = S(c, R) be a hyper-sphere, we can consider the
probability of x belongs to the sphere S as
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P (x|λS) = e−‖x−c‖

Then the above scores for SVM will become

L0(x) = logP (x|λS) = −‖x− cS‖ (11)

L1(x) =
P (x|λS)
P (x|λ) =

e−‖x−cS‖∑
T �=S e

−‖x−cT ‖ (12)

L1(x) = logP (x|λS)− logP (x|λ) = −‖x− cS‖ − log
∑

T �=S
e−‖x−cT ‖ (13)

L2(x) = logP (x|λS)− max
λ�=λS

logP (x|λ) = −‖x− cS‖+max
T �=S

‖x− cT ‖ (14)

The above scores for SVM have simple interpretations. The score (11) with a
radius threshold RS checks whether x is inside or outside sphere S. The score
(12), (13) and (14) check whether x is nearer to the sphere S than other sphere
T .

In this paper, we define the probability of x belonging to the sphere S as
P (x|λS) = e−‖x−c‖−R to incorporate the sphere size.

4 Gaussian Mixture Model (GMM)

Since the distribution of feature vectors in X is unknown, it is approximately
modelled by a mixture of Gaussian densities, which is a weighted sum of K
component densities, given by the equation

P (X |λ) =
T∏

t=1

P (xt|λ) =
T∏

t=1

K∑
i=1

wiN(xt, μi, Σi) (15)

where λ denotes a prototype consisting of a set of model parameters λ =
{wi, μi, Σi} , wi , i = 1, . . . ,K, are the mixture weights and N(xt, μi, Σi)
,i = 1, . . . ,K, are the d-variate Gaussian component densities with mean vectors
μi and covariance matrices Σi.

5 GMM-UBM

The background model for GMM-UBM is trained in a similar way to MSSVDD-
UBM. The set of K background people is trained using GMMs, each person is
represented by a mixture of nGaussian resulting nK Gaussian in total. Then this
single background model will be shared for all hypothesis testing of individuals.
When testing hypothesis for a person, his/her model will be removed from the
background model. The score (14) will be used for testing.
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6 Hypothesis Testing

The verification task can be stated as a hypothesis testing between the two
hypotheses: the input is from the hypothesis person, (H0) or not from the hy-
pothesis person (H1) [13].

Let λ0 be the claimed person model and λ be a model representing all other
possible people, i.e. impostors. For a given input X and a claimed identity, the
choice is between the hypothesis H0: X is from the claimed person λ0, and the
alternative hypothesis H1: X is from the impostors λ. A claimed person’s score
L(X) is computed to reject or accept the person claim satisfying the following
rules

L(X)

{
> θLaccept
� θLreject

(16)

where θL are the decision thresholds.

7 Experiments

7.1 Datasets

The Australian EEG Database used in this research consists of EEG recordings
of 40 patients. This database consists of EEG records recorded at the John
Hunter Hospital [14], near University of Newcastle, over an 11-year period. The
recordings were made by 23 electrodes placed on the scalp sampled at 167 Hz
for about 20 minutes.

The EEG motor movement/imagery (EEGMMIDB) dataset contain record-
ings of 109 subjects performed different motor/imagery tasks1 [15]. Each subject
performed 14 experimental runs in one or three minutes. The tasks include open-
ing and closing fists or imagine opening and closing fists. The recordings used
64 electrodes 10-10 system.

The Alcoholism datasets come from a study to examine EEG correlates of
genetic predisposition to alcoholism. The datasets contain EEG recordings of
control and alcoholic subjects. Each subject was exposed to either a single stim-
ulus (S1) or two stimuli (S1 and S2) which were pictures of objects chosen from
the 1980 Snodgrass and Vanderwart picture set. When two stimuli were shown,
they were presented in either a matched condition where S1 was identical to
S2 or in a non-matched condition where S1 differed from S2. The 64 electrodes
placed on the scalp sampled at 256 Hz for 1 second. The Alcoholism large dataset
contains training and test data for 10 alcoholic and 10 control subjects. The Al-
coholism full dataset contains 120 trials for 122 subjects. The summary of those
datasets is listed in Table 1

1 Available online at http://www.physionet.org/pn4/eegmmidb/

http://www.physionet.org/pn4/eegmmidb/
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Table 1. Dataset descriptions

Dataset #subjects #tasks #trials
length

(seconds)

Australian EEG 40 free 1 1200
EEGMMIDB 109 4 14 60 or 180

Alcoholism (large) 20 2 120 1
Alcoholism (full) 122 2 120 1

Table 2. Identification rate vs number of Gaussians in GMM cross validation training

#Gaussians 1 2 4 8 16 32 64 128 256

Australian EEG 73.82% 86.11% 90.05% 91.60% 90.98% 91.86% 92.07% 92.12% 91.60%
EEGMMIDB 66.49% 71.92% 71.96% 71.71% 70.97% 70.63% 71.05% 70.01% 70.58%

Alcoholism (large) 86.72% 87.57% 85.73% 82.63% 79.94% 70.62% 75.85% 78.39% 77.54%
Alcoholism (full) 50.13% 50.55% 50.16% 49.17% 47.72% 45.72% 45.89% 45.41% 45.68%

7.2 Preprocessing and Feature Extraction

EEG signals were first divided into 15-millisecond segments. The Alcoholism
large and full datasets are downsampled to 128 Hz. Then the raw EEG signals
were spatially filtered using Surface Laplacian (SL) with spline interpolation
constant of 4. This filter can represent better the cortical activity of local sources
below the electrodes [1]. Then the power spectral density (PSD) in the band 8-
30 Hz was estimated. The Welch’s averaged modified periodogram method was
used for spectral estimation. Hamming window was set to 1 second and 50%
overlap. 12 power components in the frequency band 8-30 Hz were extracted.

Besides PSD features, autoregressive (AR) model parameters were extracted.
In AR model, each sample is considered linearly related with a number of its
previous samples. The AR model has the advantage of low complexity and has
been used for person identification and verification [16] [17] [5]. Burg’s lattice-
based method was used with the AR model order 21, as a previous study [17]
suggested when there were many subjects and epochs.

The electrodes C3, C4, Cz, P3, P4 and Pz were selected to extract PSD
and AR features that result in 6*(12+21)=198 features. Those electrodes are
available in both datasets and were used in previous study [1] based on expert
knowledge.

7.3 Experimental Results

All experiments were conducted using 3-fold cross validation training and the
best parameters found were used to train models on the whole training set and
test on a separate test set. Table 2 shows the identification rate of GMM training.
The best parameter number of Gaussian is 128 for Australian EEG dataset and
4 for EEGMMIDB dataset.
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Fig. 1. DET curve of GMM UBM, 3-sphere SVDD, 3-sphere SVDD UBM on the
Australian EEG dataset
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Fig. 2. DET curve of GMM UBM, 3-sphere SVDD, 3-sphere SVDD UBM on the
EEGMMIDB dataset
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Fig. 3. DET curve of GMM UBM, 3-sphere SVDD, 3-sphere SVDD UBM on the
Alcoholism EEG dataset

For MSSVDD training the RBF kernel function K(x, x′) = e−γ||x−x′||2 was
used. The parameter for MSSVDD training is γ and ν. The parameter γ was
searched in {2k : k = 2l + 1, l = −8,−7, . . . , 2}. The parameter ν is considered
proportional to the rejection percentage of the positive data when training the
smallest hypersphere enclosing the positive data. The best parameters found
for the first two datasets are γ = 0.031 and ν = 0.031 with EER=0.221 and
the latter two datasets are γ = 0.125, ν = 0.125 with EER=0.25 and 0.35
respectively.

Figures 1 and 2 show DET curves of GMM-UBM, MSSVDD, MSSVDD-UBM
on Australian EEG dataset and EEGMMIDB datasets, respectively. Over all, the
MSSVDD outperforms SVDD, and the MSSVDD-UBM outperforms MSSVDD
and GMM-UBM.

8 Conclusion

We have presented a Multi-Sphere Support Vector Data Description approach to
solving person verification problem. Experiments on the Australian EEG, EEG
motor movement/imagery and Alcoholism datasets show a lower verification
error rates comparing with SVDD and Gaussian mixture model-based universal
background model (GMM-UBM).
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Abstract. Measurement of the statistical reproducibility between bi-
ological experiment replicates is vital first step of the entire series of
bioinformatics analysis for mining meaningful biological discovery from
mega-data. To distinguish the real biological relevant signals from ar-
tificial signals, irreproducible discovery rate (IDR) employing Copula,
which can separate dependence structure and marginal distribution from
data, has been put forth. However, IDR employed a Gaussian Copula
which may cause underestimation of risk and limit the robustness of the
method. To address the issue, we propose a Self-adaptive Mixture Cop-
ula (SaMiC) to measure the reproducibility of experiment replicates from
high-throughput deep-sequencing data. Simple and easy to implement,
the proposed SaMiC method can self-adaptively tune its coefficients so
that the measurement of reproducibility is more effective for general dis-
tributions. Experiments in simulated and real data indicate that com-
pared with IDR, the SaMiC method can better estimate reproducibility
between replicate samples.

1 Introduction

During the past years, the biological technology revolution, next-generation
high-throughput deep-sequencing, has produced mountains of data of DNA-Seq,
RNA-Seq and ChIP-Seq. This mega-data allows biologists to observe the signals
from tens of thousands of genes or related genomic elements in a single experi-
ment, a way that was not possible before. One question arises here: how many of
these signals are real biologically relevant? Generally, to avoid experiment noise
or error, two experiment replicates of one biological sample should be produced,
each of which has a collection of individual elements or signals such as a list of
genes or transcripts. Then we need to verify the reproducibility of each individ-
ual signal. Only the individual signals with high reproducibility are considered
as reliable results for further analysis such as differential gene expression iden-
tification or GO analysis. Here reproducibility of a signal’s two observations in

� Corresponding authors.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 301–313, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



302 Q. Zhang, J. Zhang, and C. Xue

two replicates is a measure of the confidence that the two observations are con-
sistent with each other. Hereinafter it is shorted as “reproducibility of signal”.
We propose a posterior probability to characterize the confidence and also de-
fine irreproducibility = 1 - reproducibility. By choosing a specific critical value,
each signal can be determined whether or not to be confident. It is worth noting
that we only have two replicates, two lists of observations of individual signals
but need to detect the reproducibility of each individual signal. Such extremely
small samples also lead to a big and difficult challenging task to traditional data
mining where data are generally of remarkably larger size and density estimation
can be effectively calculated based on these data.

IDR (Irreproducible Discovery Rate) which measures the reproducibility in
high-throughput experiments has been put forth by Li [1]. They proposed to
use copula, which can separate the dependency structure of random variables,
and a measurement based on copula to detect the high reproducible signals. A
remarkable advantage of copula is that it provides an effective way to infer the
dependency structure between biological signals without knowing their respec-
tive marginal distribution, which is difficult to obtain from real biological signals.
Reproducibility measure has been adopted as the standard of ENCODE (The
Encyclopedia of DNA Elements) project and has been carried on each signal of
all samples before these data are submitted to public database. The strategy of
IDR has been generalized to use on other data types such as RNA-Seq.

Although IDR has shown its ability of distinguishing the bona fide signals
from artificial signals, it employed the Gaussian Copula, which assumes that the
dependence structure of random variables follows multivariate Gaussian distri-
bution. This assumption causes that the Gaussian Copula is sensitive to extreme
events and can not capture the asymmetric dependence structure [2]. In fact, de-
spite its simplicity, Gaussian Copula often leads to an underestimation of the
risk of the occurrence of joint extreme events [3, 4].Therefore, it is necessary to
develop a novel and efficient approach to measure the reproducibility of replicate
data without stronger assumption to data distribution.

In this paper, we propose a Self-adaptive Mixture Copula, called SaMiC,
to measure the reproducibility of the high-throughput deep-sequencing experi-
ments. Unlike IDR, SaMiC doesn’t assume the dependence structure of random
variables to follow Gaussian distribution. SaMiC mixes several copulas and auto-
matically determines the mixture coefficients based on the fitness of the data and
the copulas. We prove theoretically that the new mixture copula is still a copula
so that it can be used to measure the reproducibilities. Simple and easy to imple-
ment, SaMiC is effective and suitable for general distributions. Experiments in
both simulated data and real biological data of RNA transcripts expression from
human cells show that compared with IDR, SaMiC attains better performance
in distinguishing bona fide signals from artificial signals.

The remainder of this paper is organized as following. In Section 2, we in-
troduce the development and preliminary of copulas. In Section 3 we detail our
proposed self-adaptive mixture copula and a novel measurement to detect the
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reproducibility of experiments. In Section 4, we perform experiments in simu-
lated data and real data. In Section 5, we conclude the paper.

2 Related Work and Preliminary of Copula

As a tool of extracting the dependence structure from joint distributions of ran-
dom variables, copula was first proposed by Sklar [5]. In his work, copula is
obtained by a two-stage procedure, i.e., estimating the marginal distribution of
each random variable followed by measuring the dependence structure between
different random variables. Deheuvels proposed several empirical functions, i.e.,
the empirical copula of samples, to estimate the copula of population and con-
structed different non-parametric dependence tests from samples [6]. However,
a well-recognized definition of copula hasn’t been given until Nelsen’s work [7].

There are two major categories in studying copulas: parameter estimation
and test of goodness of fit. In the former category, Oakes and Genest proposed a
common strategy to estimate the parameters of bivariate copula [8,9]. Later, Joe
investigated the maximum likelihood estimation of parametric marginal distri-
bution and parametric copula [10]. Furthermore, Chen studied two stage semi-
parametric maximum likelihood estimation [11], and Abegaz derived asymptotic
properties of the marginal and copula parameter estimators [12].

In the aspect of test of goodness of fit, an important goal is to measure how
well a copula describes the dependence structure among random variables since
it is closely related to the correctness of the proposed copula. According to the
copula model, test of goodness of fit can be transformed into test of univariate
distribution. Then Kolmogorov-Smirnov test can be used to test the goodness of
fit of copula. In this manner, Klugman used Q-Q plot to measure the rationality
of copula model [13]. Hu introduced M -statistics, which follows the chi-square
distribution, to measure goodness of fit of copula model [14]. Engle proposed a
test method named “Hit” [15], and Patton expanded the test method “Hit” to
the nonlinear density model for checking the goodness of fit [16]. Theses methods
can evaluate both the copula and the marginal distribution.

Since the function is useful to obtain the dependence structure of multivariate
random variables with few assumptions, it has been applied in financial field.
Embrechts employed copula for financial risk management [17]. Hu proposed to
use mixed-copula to analyze the financial data [14]. However, such a mixture
is not automatic and depends on experts’ experience. Recently, copula was also
employed in bioinformatics field. For example, Kim discussed the application in
genetic data [18], Zhang used copula model to analyze ChIP-Seq data [19], and
Li proposed a new method based on copula model to measure reproducibility
of bioinformatics data [1]. A main reason of using copula in financial and bioin-
formatics fields is that it can obtain the dependence structure without knowing
marginal distribution of random variables in advance. It is worth noting that
the above-mentioned copulas still require more or less assumptions to data dis-
tribution, which may limit its effectiveness and extension. It is also noticeable
that in bioinformatics field, copula is still a new tool of data analysis. For better
understanding, we introduce some preliminaries of copula as follows.
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Theorem 1 (Sklar’s Theorem). [5] Let H be a joint distribution function
with margins F1 and F2. Then there exists a copula C such that

H(x, y) = C(F1(x), F2(y)), ∀x, y ∈ R (1)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely deter-
mined on RanF1 × RanF2. Here RanF refers to the range of F . Conversely, if
C is a copula and F1 and F2 are distribution functions, then the function H is
a joint distribution function with margins F1 and F2.

Sklar’s Theorem shows that a joint distribution function can be divided into
each variable’s marginal distribution function and a copula which present their
statistical consistence. Therefore, it is possible to calculate copulas from joint
distribution function and its marginal distribution functions. From Sklar’s The-
orem we can get the follow properties, which are important to measure the
reproducibility of high-throughput deep-sequencing experiments:

Property 1. Let G(X1, X2, · · · , Xn) be a joint distribution function of n
random variables X1, X2, · · · , Xn, F1(x1), F2(x2), · · · , Fn(xn) are marginal dis-
tribution functions of these random variables and C(u1, u2, · · · , un) is the cor-
responding copula, then for every u = (u1, u2, · · · , un) ∈ [0, 1]n it satisfies that

C(u1, u2, · · · , un) = G(F−1
1 (u1), F

−1
2 (u2), · · · , F−1

n (un)), (2)

where F−1
i (ui) is the right-continuous inverse of Fi, defined as F−1

i (ui) = inf{z :
Fj(z) ≥ ui}.

Property 2. Let G(X1, X2, · · · , Xn) be a joint distribution function of n ran-
dom variables X1, X2, · · · , Xn, C(u1, u2, · · · , un) be a copula, c(u1, u2, · · · , un)
be its density function and F1, F2, · · · , Fn are marginal distribution functions of
the random variables, we can get that

g(X1, X2, · · · , Xn) = c(F1(X1), F2(X2), · · · , Fn(Xn))
n∏

i=1

fi(Xi), (3)

where c(u1, u2, · · · , un) = ∂C(u1,u2,··· ,un)
∂u1∂u2···∂un

, and fi(Xi) and g(X1, X2, · · · , Xn) are
density functions of Fi(Xi) and G(X1, X2, · · · , Xn), respectively.

Currently, there are two main types of commonly-used copulas: Elliptical cop-
ulas and Archimedean copulas. Elliptical copulas are a kind of copulas with
contoured elliptical distributions, such as Gaussian copula and t-copula. Easy to
construct, Elliptical copulas don’t have a closed form of function expression, and
all of them are radially symmetric and hard to extend to high-dimensional situa-
tion. As a result, it is difficult to use Elliptical copulas to describe unpredictable
dependence structures or adapt to complex situations.

Different from Elliptical copulas, Archimedean copulas are an associative class
of copulas which satisfy the following equations:

C(u1, u2, · · · , un) = ϕ−1(ϕ(u1) + ϕ(u2) + · · ·+ ϕ(un)) (4)

where ϕ(·) is usually called the generator of Archimedean copula. Among a lot
of Archimedean copulas, three frequently used Archimedean copulas are Frank
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Copula, Clayton Copula and Gumbel Copula. Specifically, the reproducibility
structures of Frank Copula and the variables drawn from Frank Copula are
symmetric in both tails of their distributions. So any asymmetric consistence
between random variables can’t be captured using Frank Copula. Clayton Copula
is sensitive to the low tail dependence of random variables, and can easily capture
the changes around the low tail. Finally, Gumbel Copula is sensitive to the upper
tail dependence of random variables.

3 The Proposed SaMiC Approach

It is obvious that each copula has its respective pros and cons in different dis-
tributions. To deal with more general distributions, we propose self-adaptive
mixture copula, which is a linear combination of several copulas. For simplifica-
tion, we discuss the proposed copula in two-dimensional situation.

Definition 1 (Mixture Copula). A function is called mixture copula if it
satisfies: CM (u, v) =

∑m
i=1 αiCi(u, v), where 0 ≤ αi ≤ 1,

∑m
i=1 αi = 1. Here

C1(u, v), C2(u, v), · · · , Cm(u, v) are copulas and α1, α2, · · · , αm are linear coeffi-
cients of CM (u, v).

We prove that CM (u, v) is a copula, which will be introduced in a extended
version due to the length limitation. To self-adaptively estimate the linear coef-
ficients of the proposed mixture copulas, we utilize Pearson χ2 statistic pro-
posed by Hu to measure the goodness of fit of each copula [14], i.e., M =∑k

i

∑k
j

(Ai,j−Bi,j)
2

Bi,j
, where Ai,j and Bi,j denote the number of observed and pre-

dicted frequencies in cell (i, j) of a contingency table, respectively. The details
on the contingency table can be referred to as Hu [14]. M follows χ2 distribution
with (k−1)2 degree of freedom. Given a total ofm base copulas, C1, C2, · · · , Cm,
we can attain m results, MC1 ,MC2 , · · · ,MCm . Because MCi follows χ2 distri-
bution, we can get probability βi from MCi. In fact βi is the probability that
there is no significant difference between copula Ci and the data. Because of the
additivity of chi-squared distribution, let αi =

βi∑
m
i=1 βi

be the mixing coefficient

of Ci, then the proposed self-adaptive mixture-copula is

CM (u, v) =
m∑
i=1

αiCi(u, v) =
1∑m

i=1 βi

m∑
i=1

βiCi(u, v) (5)

Since our self-adaptive method chooses coefficients automatically, it can deal
with more general distributions. By contrast, the ordinary mixture copula man-
ually selects the coefficients, heavily depending on human experience and need
lots of tuning for each new group of data [14]. Consequently, it is only applicable
to some specific distributions.

To measure the statistical consistency or reproducibility based on the pro-
posed self-adaptive mixture copula, we here consider the situation with two
rows of observations for simplification. The reason is that when observations



306 Q. Zhang, J. Zhang, and C. Xue

subject to independent identically distribution, it is not difficult to expand to
multivariate situation if we use a pairwise analysis to them.

Formally, let the two rows of observations, (x1,1, x1,2), · · · , (xn,1, xn,2), be two
replicates of n random signals. We assume that the observations consist of a
more reproducible group and a less reproducible one, and π0 and π1 denote
the proportion of the less reproducible group and the more reproducible group,
respectively. Let parameterKi be an indicator to identify whether or not a signal
belong to the more or less reproducible group. Ki = 1 if the i-th signal belong to
the more reproducible group, and Ki = 0 if it is in the less reproducible group.

Obviously, the signals in the more or less reproducible group have different
probability distributions. We assume that the dependence structures of the two
observations of signals in the more and less reproducible groups are induced by
z1 = (z1,1, z1,2) and z0 = (z0,1, z0,2), respectively. According to Sklar’s Theorem,
any multivariate probability distribution can be divided into its marginal proba-
bility distributions and its copula. In other words, it provides a way to infer the
reproducibility among several random variables without knowing their marginal
distributions in advance. Thus, we construct our parametric model as follows:

Let Ki ∼ Bernoulli(π1) and (zi,1, zi,2) be distributed as (zi,1, zi,2) | Ki = k ∼
Sk(u, v), k = 0, 1, and

Sk(zi,1, zi,2) = C(F1(zi,1), F2(zi,2);λk), k = 0, 1 (6)

where F1(zi,1) and F2(zi,2) are the marginal distributions of zi,1 and zi,2, respec-
tively. And λk denotes the relevant parameter of copula. Then considering (6),
the total distribution function is

S(zi,1, zi,2) = P{Zi,1 ≤ zi,1, Zi,2 ≤ zi,2} = π0S0(zi,1, zi,2) + π1S1(zi,1, zi,2)

=
∑
k=0,1

πkC(F1(zi,1), F2(zi,2);λk) (7)

In this equation, our actual observations (xi,1, xi,2) are used to estimate the
cumulative distribution function of (zi,1, zi,2). From (3) we can get the density
functions of S0(zi,1, zi,2) and S1(zi,1, zi,2) as follows:

sk(zi,1, zi,2) = c(F1(zi,1), F2(zi,2);λk)f1(zi,1)f2(zi,2), k = 0, 1, (8)

where f1(zi,1) and f2(zi,2) are the density functions of F1(zi,1) and F2(zi,2),
respectively. From (7) and (3), therefore, the density function of S(zi,1, zi,2) is

s(zi,1, zi,2) =
∑
k=0,1

πkc(F1(zi,1), F2(zi,2);λk)f1(zi,1)f2(zi,2) (9)

Up to now, our model is parametrized by θ = (π0, λ0, λ1) and F1, F2. The
parameters can be attained using maximum likelihood estimation as:

L(θ) =

n∏
i=1

s(xi,1, xi,2) =

n∏
i=1

(f1(xi,1)f2(xi,2)
∑
k=0,1

πkc(F1(xi,1), F2(xi,2);λk)). (10)
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Note that selecting different Archimedean copulas in (6) will lead to different
forms of S(zi,1, zi,2). Since

CM (u, v; θ) = π0C(u, v;λ0) + (1− π0)C(u, v;λ1) (11)

is also a copula, the formula (7) can be rewritten as S(zi,1, zi,2) = CM (F1(zi,1),
F2 (zi,2); θ), where the form of the final copula CM (u, v) is determined by the
selection of Archimedean copulas in (6).

When several Archimedean copulas C(1)(u, v), C(2)(u, v), · · · , C(m)(u, v) are
substituted into (6), the corresponding parameters θ(1), θ(2), · · · , θ(m) can be es-
timated from (10), where θ(i) = (π(i),0, λ(i),0, λ(i),1). After that, we substitute the
obtained copulas CM(1)(u, v; θ(1)), CM(2)(u, v; θ(2)), · · · , CM(m)(u, v; θ(m)) into
the method of generating self-adaptive mixture-copula. Because CM(i)(u, v; θ(i))
is also a mixture-copula, we get the linear coefficients α = (α1, α2, · · · , αm) and
attain the final mixture-copula as:

CR(u, v) =

m∑
i=1

αiCM(i)(u, v; θ(i)) (12)

where αi is the linear coefficient. Since CM(i)(u, v; θ(i)) is also a mixture-copula,
CR(u, v) can be decomposed into

CR(u, v) =
m∑
i=1

αiπ(i),0C(i)(u, v;λ(i),0) +
m∑
i=1

αi(1− π(i),0)C(i)(u, v;λ(i),1)

= CR,0(u, v) + CR,1(u, v)

(13)

where CR,0 =
∑m

i=1 αiπ(i),0C(i)(u, v;λ(i),0) and CR,1 =
∑m

i=1 αi(1−π(i),0)C(i)(u,
v;λ(i),1) are the more and less reproducible groups, respectively.

Once CR(u, v) is determined, it is easy to update the total distribution func-
tion of the data as

SR(zi,1, zi,2) ≡ SR,0(zi,1, zi,2) + SR,1(zi,1, zi,2), (14)

and thus

sR(zi,1, zi,2) =

cR,0(F1(zi,1), F2(zi,2))f1(zi,1)f2(zi,2) + cR,1(F1(zi,1), F2(zi,2))f1(zi,1)f2(zi,2)

(15)

where sR ,cR and sR,k are density functions of SR, CR and sR,k, respectively.
Finally, we can estimate the irreproducibility of each signal based on:

P{Ki = 0 | (xi,1, xi,2)} =
πR,0sR,0(xi,1, xi,2)∑

k=0,1

πR,ksR,k(xi,1, xi,2)
(16)

P{Ki = 0 | (xi,1, xi,2)} describes the probability that a signal’s two observations
(xi,1, xi,2) are irreproducible, i.e., the irreproducibility of (xi,1, xi,2). To estimate
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Algorithm 1. The Proposed SaMic Approach

Input: data (xi,1, xi,2), size n, copulas cj(u, v;λ) and size m
Get F̂1(xi,1) and F̂2(xi,2)
for j = 1 to m do

Initialize π
(0)
0 , λ

(0)
1 , k = 0

repeat
Initialize noChange = false
π
(k+1)
0 = argminπ0

∏n
i=1{π0 + (1− π0) ∗ cj(F̂1(xi,1), F̂2(xi,2), λ

(k)
1 )}

λ
(k+1)
1 = argminλ1

∏n
i=1{π

(k+1)
0 + (1− π

(k+1)
0 ) ∗ cj(F̂1(xi,1), F̂2(xi,2), λ1)}

if |π(k+1)
0 − π

(k)
0 | < ε and |λ(k+1)

1 − λ
(k)
1 | < ε then noChange = true end if

until noChange = true
let Mj be Pearson χ2 statistic of cj

end for
get CR from (5), (11) and (12), and irreproducibility from (14), (15) and (16)

the parameters α, θ(i) and the indicators Ki of each signal, we propose an effec-
tive two-stage one-dimensional optimization method. It’s worth noting that we
use empirical marginal CDFs F̂1(xi,1) and F̂2(xi,2) instead of using raw data di-

rectly, where F̂j(xi,j) =
rankj(xi,j)

n+1 j = 0, 1, since it makes experiments compa-
rable and the rank statistic tends to cope better with real-world systematic biases
and errors. The pseudo-code of our estimation procedure is shown in Alg. 1.

Compared with the IDR proposed by Li [1], a remarkable advantage of our
algorithm is that it is more effective since it only needs to do one-dimensional
optimization search for no more than 2km times, where k is the threshold of it-
erations. So its asymptotic time complexity is O(mn). The actual running time of
our algorithm is also affected by the selected threshold of precision and iterations.

4 Experiments

To evaluate the effectiveness of our proposed SaMiC approach, we compare it
with IDR proposed by Li [1] in two simulated data with remarkably different
marginal distributions and reproducibility structures and one real biological
data. Note that although IDR has four values to be initialized, we found that
they have less influence to the analysis of the final results. We chose Frank Cop-
ula, Clayton Copula and Gumbel Copula that all from Archimedean family as
base copulas since these copulas have high potential of extending from bivariate
Archimedean copulas to multivariate ones.

4.1 Simulated Data

In the first experiment, we generate two rows of 10,000 numbers which follow
normal distributions N(0, 1) and N(2, 12), respectively. Then we consider these
numbers as 10,000 signals’ two observations to detect their (ir)reproducibilities.
For the two rows of numbers generated from different distributions, there’s little
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Fig. 1. Irreproducibilities (dot) of each signal observed by IDR (left) and SaMiC (right)
in experiment 1 (Top) and experiment 2 (Middle). Bottom: Density Estimations of
signals in experiment 1 (Left) and experiment 2 (Right).

chance that these signals’ two observations are confidently consistent. So we
expected the (ir)reproducibilities are low (high). Then we use both IDR and
SaMiC to measure the (ir)reproducibilities of these signals. Note that both IDR
and SaMiC output the irreproducibilities in [0, 1]. The results shown in Fig. 1
indicate that IDR has a lower recognition rate to discover the irreproducible
signals. For example, if we regard those signals whose irreproducibilities are less
than 0.5 are reproducible, then many irreproducible signals will be classified to
be reproducible. In contrary, our SaMiC approach can correctly classify most
irreproducible signals even when the cutoff value is set to be 0.9.

In the second experiment, we wish to test whether our SaMiC can be suit-
able for a more general distribution. Thus, we generated two rows of 10,000
random numbers combined from two different types of distributions. Firstly,
we generated 5,000 random numbers (t1, t2, · · · , t5000) from Chi-square distribu-
tion T ∼ Γ (2, 14), and 10,000 random numbers (a1, a2, · · · , a10000) from beta
distribution A ∼ β(3, 3). Let the first row be (a1, a2, · · · , a10000) and the sec-
ond row be (t1, t2, · · · , t2500, a2501, a2502, · · · , a7500, t2501, t2502, · · · , t5000). From
Fig. 1 it’s obvious that IDR failed to distinguish the irreproducible signals. In
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Fig. 2. HeLa-S3: The log-proportion vs. irreproducibility figure of IDR (left) and
SaMiC (right)

contrast, SaMiC can estimate the (ir)reproducibilities of signals in experiment
2 with high confidence. The reason is that SaMiC makes less assumption to the
dependence structure of observations, and the self-adaptive mixture copula is
helpful to be suitable for general distributions.

We also use both kernel and Gaussian density estimation on these data of
the two above experiments. As demonstrated in Fig. 1, the results from density
estimation can show the differences between two rows of numbers only in an
overall perspective. So it’s hard to decide whether or not to trust some spe-
cific signals that are reproducible by using density estimation. In contrast, our
method attains the (ir)reproducibility of each signal, which can distinguish bona
fide signals from artificial signals.

4.2 Real Data

We also use real biological data to test the performance of SaMiC. The data
can be downloaded from “http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19
&g=wg EncodeCshlLongRnaSeq” (selected categories: Cell Line = HeLa-S3, Lo-
cation = cell, RNA Extract = Long PolyA+ RNA, View: Transcript Gencode
V7). This data was generated by ENCODE project [20] and they are biological
experiments to detect the expression level of HeLa-S3 cell’s long RNA tran-
scripts, which were sequenced by RNA-Seq. The downloaded data file contains
161,999 annotated transcript individuals’ expression values — the normalized
RPKM values. As need, each transcript has two values from different exper-
iment replicates respectively. They are estimated by SaMiC and IDR to test
their performance. Different from some classical data mining problems, it’s dif-
ficult to verify the experiment results on real data because of lacking test data
or labels. So we need to analyze the results in some indirect ways.

Intuitively, the larger (or smaller) the proportion of a signal’s two observa-
tions is, the smaller probability that the signal is reproducible. In fact, SaMiC
scores are different from proportions because proportions only consider local
information while SaMiC scores rely on both the entire distribution and the
dependence structure of the observations. Nevertheless, it still can demonstrate
some differences between IDR and SaMiC by using figure of proportions versus
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Fig. 3. Cumulative distribution curve (left) and comparison on running time (right)

irreproducibilities. As shown in Fig. 2, we draw this figure by putting logarithm of
proportion on x-axis and irreproducibility on y-axis. From Fig. 2 we can see that
SaMiC is more sensitive and has a stronger recognizing ability. Take signals in
(−∞,−2]∪ [2,∞) with irreproducibilities lower than 0.2 for example. The num-
ber of irreproducible signals estimated by IDR is remarkably larger than that
estimated by SaMiC. It shows that SaMiC is more sensitive to (ir)reproducibility
and can identify the irreproducible signals which are ignored by IDR.

For the convenience of subsequent data analysis, such as keeping specific pro-
portion of data or choosing different critical values, we expect the irreproducibil-
ities to be smooth. In order to compare IDR and SaMiC from this viewpoint,
we produce the cumulative distribution curves of the results from both IDR and
SaMiC. From Fig. 3 we observe that the curve of SaMiC is smoother than that
of IDR. Besides, compared with IDR, SaMiC can provide more detailed data
for keeping specific proportion of data. For example, if we want to get the sig-
nals with the lowest 20% irreproducibilities, it’s easy while using SaMiC but
unavailable while using IDR. This is because that there are almost 40% irrepro-
ducibilities that are 0 in the result of IDR, which means IDR fails to discriminate
the signals with 40% lowest irreproducibilities while SaMiC succeeds. So SaMiC
performs better on selecting the most reliable signals with a specific proportion.

Furthermore, we perform more experiments on another three different types
of cells including GM12878, H1-hesc and K562, which are downloaded from the
same website as HeLa-S3. For saving space, the detailed results can be found in
future extended version. Based on these experiments, we give a comparison on
running time. As shown in Fig. 3, SaMiC works faster than IDR on all of the
four data. The computing environment is Intel Core2 2.93GHz with 4G memory.

5 Conclusion

In this paper, we have proposed a Self-adaptive Mixture Copula to measure
the reproducibility of high-throughput deep-sequencing experiments, which is a
difficult and challenging data mining problem since the number of samples is
extremely small. The proposed SaMiC can effectively separate the dependence
structure from joint distribution of signals without priori assumption. Compared
with IDR, SaMiC can discover the irreproducible signals in a more reliable way.
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SaMiC features no parameters that need to be tuned and can calculate the
(ir)reproducibilities in an automatic way. It can self-adaptively choose the most
suitable parameters for given data and is thus robust for different datasets.
Besides, SaMiC works faster than IDR on all data we tested.

SaMiC can be used in all high-throughput deep-sequencing experiments that
produce over one replicate to avoid reducing the confidence of experimental
results. Actually, the reproducibility issue exists for a great number of researches
so that the method of estimating reproducibility has a wide application.

In the future, we will compare SaMiC with other methods such as FDR.
Furthermore, we will do more experiments with labeled data and investigate
more application fields of SaMiC.
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Abstract. Mining trajectories (or moving object patterns) from spatio-temporal
data is an active research f eld. Most of the researches are devoted to extract
trajectories that differ in their structure and characteristic in order to capture dif-
ferent object behaviors. The f rst issue is constituted from the fact that all these
methods extract thousand of patterns resulting in a huge amount of redundant
knowledge that poses limit in their usefulness. The second issue is supplied from
the nature of spatio-temporal database from which different types of patterns
could be extracted. This means that using only a single type of patterns is not
suff cient to supply an insightful picture of the whole database.

Motivating by these issues, we develop a Minimum Description Length
(MDL)-based approach that is able to compress spatio-temporal data combin-
ing different kinds of moving object patterns. The proposed method results in
a rank of the patterns involved in the summarization of the dataset. In order to
validate the quality of our approach, we conduct an empirical study on real data
to compare the proposed algorithms in terms of effectiveness, running time and
compressibility.

Keywords: MDL, moving objects, spatio-temporal data, top-k, compressibility.

1 Introduction

Nowadays, the use of many electronic devices in real world applications has led to an
increasingly large amount of data containing moving object information. One of the
objectives of spatio-temporal data mining [5] [10] [6] is to analyze such datasets for
interesting moving object clusters. A moving object cluster can be def ned as a group
of moving objects that are physically closed to each other for at least some number of
timestamps. In this context, many recent studies have been define such as flock [5],
convoy queries [7], closed swarms [10], group patterns [15], gradual trajectory patterns
[6], traveling companions [13], gathering patterns [16], etc...

Nevertheless, after the extraction, the end user can be overwhelmed by a huge num-
ber of movement patterns although only a few of them are useful. However, relatively
few researchers have addressed the problem of reducing movement pattern redundancy.
In another context, i.e. frequent itemsets, the Krimp algorithm [14], using the minimum
description length (MDL) principle [4], proposes to reduce the amount of itemsets by

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 314–326, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. An example of moving object
database. Shapes are movement patterns,
oi, ci respectively are objects and clusters.

Fig. 2. An example of pattern overlapping,
between closed swarm (dashed line rectan-
gle) and rGpattern≥ (step shape), over-
lapping clusters are c5, c6 and c7

using an eff cient encoding and then provide the end-user only with a set of informative
patterns.

In this paper, we adapt the MDL principle for mining representative movement pat-
terns. However, one of the key challenges in designing an MDL-based algorithm for
moving object data is that the encoding scheme needs to deal with different pattern struc-
tures which can cover different parts of the data. If we only consider different kinds of
patterns individually then it is diff cult to obtain an optimal set of compression patterns.

For instance, see Figure 1, we can notice that there are three different patterns, with
different structures, that cover different parts of the moving object data. If we only keep
patterns having a rectangular shape then we lose the other two patterns and viceversa.

Furthermore, although patterns express different kinds of knowledge, they can over-
lap each other as well. Thus, enforcing non-overlapping patterns may result in los-
ing interesting patterns. For instance, see Figure 2, there are two overlapping patterns.
Krimp algorithm does not allow overlapping patterns then it has to select one and ob-
viously loses the other one. However, they express very different knowledge and thus,
by removing some of them, we cannot fully understand the object movement behavior.
Therefore, the proposed encoding scheme must to appropriately deal with the pattern
overlapping issue.

Motivated by these challenges, we propose an overlapping allowed multi-pattern
structure encoding scheme which is able to compress the data with different kinds of
patterns. Additionally, the encoding scheme also allows overlapping between different
kinds of patterns. To extract compression patterns, a naive greedy approach, named
NAIVECOMPO, is proposed. To speed up the process, we also propose the SMART-
COMPO algorithm which takes into account several useful properties to avoid useless
computation. Experimental results on real-life datasets demonstrate the effectiveness
and eff ciency of the proposed approaches by comparing different sets of patterns.

2 Preliminaries and Problem Statement

2.1 Object Movement Patterns

Object movement patterns are designed to group similar trajectories or objects which
tend to move together during a time interval. In the following, we briefl present the
def nitions of different kinds of movement patterns.
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Fig. 3. An example of closed swarm Fig. 4. An example of rGpattern

Database of clusters. Let us consider a set objects occurring at different times-
tamps. A database of clusters, CDB = {Ct1 , Ct2 , . . . , Ctm}, is a collection of snap-
shots of the moving object clusters at timestamps {t1, t2, . . . , tm}. Given a cluster
c ∈ Ct′(∈ CDB), t(c) and o(c) are respectively used to denote the timestamp that c
is involved in and the set of objects included in c. For brevity sake, we take clustering
as a preprocessing step.

After generating CDB , the moving object database (ODB, TDB) is define such as
each object o ∈ ODB contains a list of clusters (i.e. o = c1c2 . . . cm) and TDB stands
for the associated timestamp. For instance, Figure 1 presents the database ODB and
object o1 can be represented as o1 = c1c4c6c7c8.

From this set different patterns can be extracted. In an informal way, a closed swarm
is a list of clusters cs = c1 . . . cn such that they share at least ε common objects, cs
contains at least mint clusters and cs cannot be enlarged in terms of objects and clus-
ters. Note that there are no pairs of clusters which are in the same timestamps involved
in cs. Then a closed swarm can be formally define as follows:

Definition 1. ClosedSwarm[10]. A list of clusters cs = c1 . . . cn is a closed swarm if:⎧⎪⎪⎨⎪⎪⎩
(1) : |O(cs)| = |

⋂n
i=1 ci| ≥ ε.

(2) : |cs| ≥ mint.
(3) : �i, j ∈ {1, . . . , n}, i �= j, t(ci) = t(cj).
(4) : �cs′ : cs ⊂ cs′, cs′ satisfies the conditions (1), (2) and (3).

(1)

For instance, see Figure 3, cs = c1c3c4 is a closed swarm with mint = 2, ε = 2.
Similarly, in Figure 1, we also have cs = c2c5c7c9 is a closed swarm. A convoy is
a group of objects such that these objects are closed each other during at least mint

consecutive time points. Another pattern is group pattern which essentially is a set of
disjointed convoys which are generated by the same group of objects in different time
intervals. In this paper, we only consider closed swarm instead of convoy and group
pattern since closed swarm is more general [10].

A gradual trajectory pattern [6], denoted rGpattern, is designed to capture the grad-
ual object moving trend. More precisely, a rGpattern is a maximal list of moving object
clusters which satisfy the graduality constraint and integrity condition during at least
mint timestamps. The graduality constraint can be the increase or decrease of the num-
ber of objects and the integrity condition can be that all the objects should remain in the
next cluster. A rGpattern can be def ned as follows:
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Definition 2. rGpattern [6]. Given a list of clusters C∗ = c1 . . . cn. C∗ is a gradual
trajectory pattern if:

C∗ = C≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1) : |C∗| ≥ mint.
∀i ∈ {1, . . . , n− 1},
(2) : o(ci) ⊆ o(ci+1).
(3) : |cn| > |c1|.
(4) : �cm : C∗ ∪ cm is a C≥.

C∗ = C≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1) : |C∗| ≥ mint.
∀i ∈ {1, . . . , n− 1},
(2) : o(ci) ⊇ o(ci+1).
(3) : |cn| < |c1|.
(4) : �cm : C∗ ∪ cm is a C≥.

Essentially, we have two kinds of rGpatterns, rGpattern≥ and rGpattern≤. For in-
stance, see Figure 1, rGpattern≥ = c1c4c6 and rGpattern≤ = c7c8.

2.2 Problem Statement

Eliminating the number of uninteresting patterns is an emerging task in many real world
cases. One of the proposed solutions is the MDL principle [4]. Let us start explaining
this principle in the following def nition:

Definition 3. (Hypothesis). A hypothesis P is a set of patterns P = {p1, p2, . . . , ph}.

Given a scheme S, let LS(P ) be the description length of hypothesis P and
LS(ODB |P ) be the description length of data ODB when encoded with the help of
the hypothesis and an encoding scheme S. Informally, the MDL principle proposes
that the best hypothesis always compresses the data most. Therefore, the principle
suggests that we should look for hypothesis P and the encoding scheme S such that
LS(ODB) = LS(P) + LS(ODB |P) is minimized. For clarity sake, we will omit S
when the encoding scheme is clear from the context. Additionally, the description length
of ODB given P is denoted as LP(ODB) = L(P) + L(ODB |P).

In this paper, the hypothesis is considered as a dictionary of movement patterns P .
Furthermore, as in [9], we assume that any number or character in data has a f xed length
bit representation which requires a unit memory cell. In our context, the description
length of a dictionary P can be calculated as the total lengths of the patterns and the
number of patterns (i.e. L(P) =

∑
p∈P |p|+ |P|). Furthermore, the length of the data

ODB when encoded with the help of dictionary P can be calculated as L(ODB |P) =∑
o∈ODB

|o|.
The problem of f nding compressing patterns can be formulated as follows:

Definition 4. (Compressing Pattern Problem). Given a moving object database ODB ,
a set of pattern candidates F = {p1, p2, . . . , pm}. Discover an optimal dictionary P∗

which contains at most K movement patterns so that:

P∗ = argmin
P

(
L∗
P(ODB)

)
= argmin

P

(
L∗(P) + L∗(ODB |P)

)
,P∗ ⊆ F (2)

A key issue in designing an MDL-based algorithm is: how can we encode data given a
dictionary? The fact is that if we consider closed swarms individually, Krimp algorithm
can be easily adapted to extract compression patterns. However, the issue here is that
we have different patterns (i.e. closed swarms and rGpatterns) and Krimp algorithm has
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not been designed to deal with rGpatterns. It does not supply multi-pattern types in the
dictionary that may lead to losing interesting ones. Furthermore, as mentioned before,
we also have to address the pattern overlapping issue. In this work, we propose a novel
overlapping allowed multi-pattern structures encoding scheme for moving object data.

3 Encoding Scheme

3.1 Movement Pattern Dictionary-Based Encoding

Before discussing our encoding for moving object data, we revisit the encoding scheme
used in the Krimp algorithm [14]. An itemset I is encoded with the help of itemset
patterns by replacing every non-overlapping instance of a pattern occurring in I with
a pointer to the pattern in a code table (dictionary). In this way, an itemset can be
encoded to a more compact representation and decoded back to the original itemset.

Table 1. An illustrative example of database and dictionary in
Figure 1. 0̄, 1̄ and 2̄ respectively are pattern types: closed swarm,
rGpattern≥ and rGpattern≤.

ODB Encoded ODB Dictionary P
o1 = c1c4c6c7c8 o1 = [p1, 0][p3, 1]
o2 = c3c4c6c7c10 o2 = c3[p1, 1][p3, 0]c10 p1 = c1c4c6, 1̄

o3 = c6 o3 = [p1, 2] p2 = c2c5c7c9, 0̄
o4 = c2c5c7c9 o4 = p2 p3 = c7c8, 2̄
o5 = c2c5c7c9 o5 = p2

In this paper we use
a similar dictionary-
based encoding scheme
for moving object
database. Given a
dictionary consisting
of movement patterns
P = {p1, . . . , pm},
an object o ∈ ODB

containing a list of
clusters is encoded by

replacing instances of any pattern pi in o with pointers to the dictionary. An important
difference between itemset data and moving object data is that there are different kinds
of movement patterns which have their own characteristic. The fact is that if a closed
swarm cs occurs in an object o then all the clusters in cs are involved in o. While an
object can involve in only a part of a rGpattern and viceversa.

For instance, see Figure 1, we can consider that o2 joins the rGpattern≥ = c1c4c6
at c4c6. While, the closed swarm cs = c2c5c7c9 occurs in o4 and o5 entirely.

Property 1. (Encoding Properties). Given an object o which contains a list of clusters
and a pattern p = c1 . . . cn. p occurs in o or o contributes to p if:⎧⎨⎩

(1) : p is a rGpattern≥, ∃i ∈ [1, n]
∣∣∀j ≥ i, cj ∈ o.

(2) : p is a rGpattern≤, ∃i ∈ [1, n]
∣∣∀j ≤ i, cj ∈ o.

(3) : p is a closed swarm, ∀j ∈ [1, n], cj ∈ o.
(3)

Proof. Case (1): after construction we have o(ci) ⊆ o(ci+1) ⊆ . . . ⊆ o(cn). Addition-
ally, o ∈ o(ci). Consequently, o ∈ o(ci+1), . . . , o(cn) and therefore ∀j ≥ i, cj ∈ o.
Furthermore, in Case (2): we have o(c1) ⊇ o(c2) ⊇ . . . ⊇ o(ci−1). Additionally,
o ∈ o(ci−1). Consequently, o ∈ o(c1), . . . , o(ci−1) and therefore ∀j ≤ i, cj ∈ o. In
Case (3), we have o ∈ O(cs) =

⋂n
i=1 ci and therefore ∀j ∈ [1, n], cj ∈ o.
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For instance, see Table 1, we can see that for each pattern, we need to store an extra bit
to indicate the pattern type. Regarding to closed swarm, by applying Property 1, in the
object o we only need to replace all the clusters, which are included in closed swarm,
by a pointer to the closed swarm in the dictionary. However, in gradual trajectories (i.e.
rGpattern≥, rGpattern≤), we need to store with the pointer an additional index to
indicate the cluster ci. Essentially, ci plays the role of a starting involving point (resp.
ending involving point) of the object o in a rGpattern≥ (resp. rGpattern≤).

As an example, consider dictionary P in Table 1. Using P , o1 can be encoded as
o1 = [p1, 0][p3, 1] where 0 (in [p1, 0]) indicates the cluster at index 0 in p1, (i.e. c1) and
1 (in [p3, 1]) indicates the cluster at index 1 in p3, i.e. c8. While, o4 can be encoded as
o4 = p2, i.e. p2 is a closed swarm.

3.2 Overlapping Movement Pattern Encoding

Until now, we have already presented the encoding function for different patterns when
encoding an object o given a pattern p. In this section, the encoding scheme will be
completed by addressing the pattern overlapping problem so that overlapped patterns
can exist in the dictionary P .

Fig. 5. An example of the approach

See Figure 5, a selected pattern p ∈ P
and a candidate p′ ∈ F overlap each other
at c1c2c3 on object o. Assume that o is
encoded given p then o = pc4c5. As in
Krimp algorithm, p′ is still remained as ori-
gin and then p′ cannot be used to encode
o despite of p′ occurs in o. This is because
they are mismatched (i.e. o = pc4c5, p

′ =
c1c2c3c4). To solve the problem, we pro-
pose to encode p′ given p so that o and p′

will contain the same pointer to p (i.e. p′ =
pc4). Now, the regular encoding scheme can
be applied to encode o given p′ (i.e. o =
p′c5). We can consider that p and p′ are

overlapping but both of them can be included in the dictionary P . Note: in our con-
text, overlapped clusters are counted only once.

Main idea. Given a dictionary P and a chosen pattern p (i.e. will be added into P),
a set of pattern candidates F . The main idea is that we fir t encode the database ODB

given pattern p. Secondarily, we propose to encode all candidates p′ ∈ F given p in
order to indicate the overlapping clusters between p and p′. After that, there are two
kinds of pattern candidates which are encoded candidates and non-encoded candidates.
Next, the best candidate in F will be put into P and used to encode ODB and F . The
process will be repeat until obtaining top-K patterns in the dictionary P .

Let us consider the correlations between a pattern p ∈ P and a candidate p′ ∈ F
to identify whenever encoding p′ given p is needed. The correlation between p and
p′ is illustrated in Table 2. First of all, we do not allow overlap between two patterns
of the same kind since they represent the same knowledge that may lead to extracting
redundant information.
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Table 2. Correlations between pattern p and pattern
p′ in F . O,Δ and X respectively mean ”overlapping
allowed, regular encoding”, ”overlapping allowed,
no encoding” and ”overlapping not allowed”.

p
cs rGpattern≥ rGpattern≤

p′
cs X O O

rGpattern≥ Δ X O
rGpattern≤ Δ O X

Next, if p is a closed swarm then
p′ do not need to be encoded given
p. This is because there are objects
which contribute to gradual trajecto-
ries p′ but not closed swarm. These
objects cannot be encoded using p
and therefore p′ needs to be re-
mained the same and the regular en-
coding scheme can be applied. Oth-
erwise, p′ will never be chosen later
since there are no objects in ODB

which match p′. For instance, see Figure 2, the objects o1 and o4 do not contribute
to the closed swarm p. Thus, if the gradual trajectory p′ is encoded given p to indi-
cate the overlapping clusters c5c6c7 then that leads to a mismatched statement between
o1, o4 and the gradual trajectory p′.

Until now, we already have two kinds of candidates p′ ∈ F (i.e. non-encoded and
encoded candidates). Next, some candidates will be used to encode the database ODB .
To encode an object o ∈ ODB given a non-encoded candidate p′, the regular encoding
scheme mentioned in Section 3.1 can be applied. However, given an encoded candidate
p′, we need to perform an additional step before so that the encoding scheme can be
applied regularly. This is because the two pointers referring to the same pattern p ∈ P
from o (e.g. [p, k]) and from p′ (e.g. [p, l]) can be different (i.e. k �= l) despite the fact
that p′ is essentially included in o. That leads to a mismatched statement between o and
p′ and thus o cannot be encoded given p′.

For instance, see Figure 2, given a gradual trajectory pattern rGpattern≥ p =
c3c4c5c6c7, a closed swarm p′ = c1c2c5c6c7c9c10, the object o3 = c1c2c4c5c6c7c9c10.
We fir t encodes o3 given p such that o3 = c1c2[p, 1]c9c10. Then, p′ is encoded given
p, i.e. p′ = c1c2[p, 2]c9c10. We can consider that the two pointers referring to p from
o (i.e. [p, 1]) and from p′ (i.e. [p, 2]) are different and thus o3 and p′ are mismatched.
Therefore, o cannot be encoded given p′ despite the fact that p′ essentially occurs in o.

To deal with this issue, we simply recover uncommon clusters between the two point-
ers. For instance, to encode o3 by using p′, we f rst recover uncommon cluster such that
o3 = c1c2c4[p, 2]c9c10. Note that [p, 1] = c4[p, 2]. Since p′ = c1c2[p, 2]c9c10, o3 is
encoded given p′ such that o3 = p′c4.

Definition 5. (Uncommon Clusters for rGpattern≥). Given a rGpattern≥, p =
c1 . . . cn and two pointers refer to p, [p, k] and [p, l] with k ≤ l. uncom(p, k, l) =
ckck+1 . . . cl−1 is called an uncommon list of clusters between [p, k] and [p, l]. Note
that [p, k] = ckck+1 . . . cl−1[p, l].

Similarly, we also have uncom(p, k, l) in the case p is a rGpattern≤. Until now, we
are able to recover uncommon clusters between two pointers which refer to a pattern.
Now, we start proving that given an object o ∈ ODB and a candidate p′ ∈ F , if p′
occurs in o then o can be encoded using p′ even though they contain many pointers to
other patterns. First, let us consider if p is a rGpattern≥ and p′ is a closed swarm.
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Lemma 1. Given a rGpattern≥, p = c1 . . . cn, an object o and a closed swarm p′ ∈
F . In general, if o and p′ refer to p then o = xo[p, k]yo and p′ = xp′ [p, l]yp′ . Note that
xo, yo, xp′ and yp′ are lists of clusters. If o contributes to p′ then:

k ≤ l ∧ o = xo uncom(p, k, l)[p, l] yo (4)

Proof. After construction if k > l then ∃ci ∈ {cl, . . . , ck}(⊆ p) s.t. ci ∈ p′ ∧ ci �∈ o.
Therefore, o does not contribute to p′ (Property 1). That suffers the assumption and thus
we have k ≤ l. Deal to the Defi ition 5, [p, k] = uncom(p, k, l)[p, l]. Consequently, we
have o = xo uncom(p, k, l)[p, l] yo.

By applying Lemma 1, we have o = xo uncom(p, k, l)[p, l] yo and p′ = xp′ [p, l]yp′ .
Then we can apply the regular encoding scheme to encode o given p′. let us as-
sume that each object o ∈ Op′ has a common list of pointers to other patterns as
−−−→
(p′, o) =

{(
[p1, l1], [p1, k1]

)
, . . . ,

(
[pn, ln], [pn, kn]

)}
where ∀i ∈ [1, n], [pi, li] is the

pointer from p′ to pi and [pi, ki] is the pointer from o to pi. If we respectively apply
Lemma 1 on each pointer in

−−−→
(p′, o) then o can be encoded given p′. Similarly, we also

have the other lemmas for other pattern types.
Data description length computation. Until now, we have def ned an encoding

scheme for movement patterns. The description length of the dictionary in Table 1 is
calculated asL(P) = |p1|+1+|p2|+1+|p3|+1+|P| = 3+1+4+1+2+1+2 = 14.
Similarly, description length of o2 is L(o2|P) = 1 + |[p1, 1]|+ |[p3, 0]|+ 1 = 6.

Note: for each pattern, we need to consider an extra memory cell of pattern type.
Additionally, for any given dictionary P and the data ODB , the cost of storing the
timestamp for each cluster is always constant regardless the size of the dictionary.

4 Mining Compression Object Movement Patterns

In this section we will present the two greedy algorithms which have been designed to
extract a set of top-K movement patterns that compress the data best.

4.1 Naive Greedy Approach

The greedy approach takes as input a database ODB , a candidate set F and a parameter
K . The result is the optimal dictionary which encodesODB best. Now, at each iteration
of NaiveCompo, we select candidate p′ which compresses the database best. Next, p′
will be added into the dictionary P and then the database ODB and F will be encoded
given p′. The process is repeated until we obtain K patterns in the dictionary.

To select the best candidate, we generate a duplication of the database Od
DB and

for each candidate p′ ∈ F , we compress Od
DB . The candidate p′ which returns the

smallest data description length will be considered as the best candidate. Note that
p′ = argminp∗∈F

(
Lp∗(ODB)

)
. The NAIVECOMPO is presented in Algorithm 1.
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4.2 Smart Greedy Approach

Algorithm 1. NaiveCompo
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P

1 begin
2 P ←− ∅;
3 while |P| < K do
4 foreach p ∈ F do
5 Od

DB ←− ODB ;

6 L∗(Od
DB |p) ←−

CompressionSize(Od
DB , p);

7 p∗ ←− argminp L∗(Od
DB |p);

8 P ←− p∗; F ←− F \ {p∗};
9 Replace all instances of p∗ in ODB by its pointers;

10 Replace all instances of p∗ in F by its pointers;
11 output P ;
12 CompressionSize(Od

DB , p)
13 begin
14 size ←− 0;
15 foreach o ∈ ODB do
16 if p.involved(o) = true then
17 Replace instance of p in o by its pointers;
18 foreach o ∈ ODB do
19 size ←− size + |o|;
20 size ←− size + |p| + 1;
21 output size;

The disadvantage of naive greedy
algorithm is that we need to
compress the duplicated database
Od

DB for each pattern candidate at
each iteration. However, we can
avoid this computation by consid-
ering some useful properties as
follows.

Given a pattern p′, Op′ and
Op′ respectively are the set of
objects that do not contribute to
p′ and the set of objects involv-
ing in p′. The compression gain
which is the number of mem-
ory cells we earned when adding
p′ into dictionary can be def ned
as gain(p′,P) = LP(ODB) −
LP∪p′(ODB).

The fact is that we can compute
the compression gain by scanning
objects o ∈ Op′ with p′. Each pat-

tern type has its own compression gain computation function. Let us start presenting
the process by proposing the property for a closed swarm p′.

Property 2. Given a dictionary P , a closed swarm p′ ∈ F . gain(p′,P) is computed as:

gain(p′,P) = |Op′ | × |p′| −
( Op′∑

o

−−−→
(p′, o)∑

i

|li − ki|+ |p′|+ |Op′ |+ 2
)

(5)

Proof. After construction we have LP∪p′(ODB) = L(P ∪ p′) + L(ODB|P ∪ p′) =
(L(P)+ |p′|+2)+L(Op′ |P)+L(Op′ |P ∪p′). Note that L(Op′ |P) = L(Op′ |P ∪p′).

Furthermore, ∀o ∈ Op′ : L(o|P ∪ p′) = L(o|P)− |p′|+ 1 +
∑−−−→

(p′, o)
i |li − ki|. Thus,

L(Op′ |P∪p′) =
∑

o∈Op′
L(o|P ∪p′) = L(Op′ |P)−|Op′ |×|p′|+

∑Op′
o

∑−−−→
(p′, o)
i |li−

ki|+|Op′ |. Therefore, we haveLP∪p′(ODB) = L(P)+L(Op′ |P)+L(Op′ |P)−|Op′ |×

|p′|+
(∑Op′

o

∑−−−→
(p′, o)
i |li−ki|+ |p′|+ |Op′ |+2

)
. Note thatL(ODB |P) = L(Op′ |P)+

L(Op′ |P). Consequently, we have gain(p′,P) = |Op′ | × |p′| −
(∑Op′

o

∑−−−→
(p′, o)
i |li −

ki|+ |p′|+ |Op′ |+ 2
)
.

By applying Property 2, we can compute the compression gain when adding a new
closed swarm p′ into the dictionary P . In the Equation 5, the compression gain(p′,P)
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depends on the size of p′, O(p′) and the number of uncommon clusters that can be com-
puted by scanning p′ with objects o ∈ O(p′) without encoding ODB . Due to the space
limitation, we will not describe properties and proofs for the other pattern types (i.e.
rGpattern≥, rGpattern≤) but they can be easily derived in a same way as Property 2.

To select the best candidate at each iteration, we need to chose the candidate which
returns the best compression gain. SMARTCOMPO is presented in the Algorithm 2.

5 Experimental Results

Algorithm 2. SmartCompo
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P

1 begin
2 P ←− ∅;
3 while |P| < K do
4 foreach p ∈ F do
5 L∗(ODB |p) ←− Benefit(ODB , p);
6 p∗ ←− argminp L∗(ODB |p);
7 P ←− p∗; F ←− F \ {p∗};
8 Replace all instances of p∗ in ODB by its pointers;
9 Replace all instances of p∗ in F by its pointers;

10 output P ;
11 Benefit(Od

DB , p)
12 begin
13 b ←− 0;
14 foreach o ∈ ODB do
15 if p.involved(o) = true then
16 b ←− b + benefit(o, p);

17 b ←− b + |p| + 1;
18 output b;

A comprehensive performance
study has been conducted on real-
life datasets. All the algorithms
are implemented in C++, and all
the experiments are carried out on
a 2.8GHz Intel Core i7 system
with 4GB Memory. The system
runs Ubuntu 11.10 and g++ 4.6.1.

As in [10] [6], the two fol-
lowing datasets1 have been used
during experiments: Swainsoni
dataset includes 43 objects evolv-
ing over 764 different timestamps.
The dataset was generated from
July 1995 to June 1998. Buf-
falo dataset concerns 165 buf-
faloes and the tracking time from

year 2000 to year 2006. The original data has 26610 reported locations and 3001 times-
tamps. Similarly to [7] [10], we f rst use linear interpolation to f ll in the missing data.
Furthermore, DBScan [2] (MinPts = 2;Eps = 0.001) is applied to generate clus-
ters at each timestamp. In the comparison, we compare the set of patterns produced by
SmartCompo with the set of closed swarms extracted by ObjectGrowth [10] and the set
of gradual trajectories extracted by ClusterGrowth [6].

Effectiveness. We compare the top-5 highest support closed swarms, the top-5 high-
est covered area gradual trajectory patterns and the top-5 compression patterns from
Swainsoni dataset. Each color represents a Swainsoni trajectory involved in the pattern.

Top-5 closed swarms are very redundant since they only express that Swainsonies
move together from North America to Argentina. Similarly, top-5 rGpatterns are also
redundant. They express the same knowledge that is ”from 1996-10-01 to 1996-10-25,
the more time passes, the more objects are following the trajectory {Oregon〉Nevada〉
Utah〉 Arizona〉Mexico〉 Colombia}”.

Figure 6 illustrates 3 patterns among 5 extracted ones by using SmartCompo. The
rGpattern≥ expresses the same knowledge with the mentioned rGpattern in the top
highest covered area. The closed swarm expresses new information that is ”after ar-
riving South America, the Swainsonies tend to move together to Argentina even some

1 http://www.movebank.org

http://www.movebank.org
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(a) rGpattern ≥ (b) Closed swarm (c) rGpattern≤

Fig. 6. Top-3 typical compression patterns

(a) Swainsoni dataset (b) Buffalo dataset

Fig. 7. Compressibility (higher is better) of different algorithms

of them can leave their group”. Next, the rGpattern≤ shows that ”the Swainsonies
return back together to North America from Argentina (i.e. 25 objects at Argentina)
and they will step by step leave their group after arriving Guatemala (i.e. 20 objects at
Guatemala) since they are only 2 objects at the last stop, i.e. Oregon State”.

Compressibility. We measure the compressibility of the algorithms by using their
top-K patterns as dictionaries for encoding the data. Since NaiveCompo and Smart-
Compo provides the same results, we only show the compression gain of SmartCompo.

Regarding to SmartCompo, the compression gain could be calculated as the sum
of the compression gain returned after each greedy step with all kinds of patterns
in F . For each individual pattern type, compression gain is calculated according to
the greedy encoding scheme used for SmartCompo. They are respectively denoted as
SmartCompo CS (i.e. for closed swarms), SmartCompo rGi (i.e. for rGpattern≥)
and SmartCompo rGd (i.e. for rGpattern≤). Additionally, to illustrate the difference
between MDL-based approaches and standard support-based approaches, we also em-
ploy the set of top-K highest support closed swarms and top-K highest covered area
gradual trajectories patterns.

Figure 7 shows the compression gain of different algorithms. We can consider that
top-K highest support or covered area patterns cannot provide good compression gain
since they are very redundant. Furthermore, if we only consider one pattern type, we
cannot compress the data best since the compression gains of SmartCompo CS, Smart-
Compo rGi and SmartCompo rGd are always lower than SmartCompo. This is because
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the pattern distribution in the data is complex and different patterns can cover different
parts of the data. Thus, considering one kind of patterns results in losing interesting pat-
terns and not good compression gain. By proposing overlapping allowed multi-pattern
structure encoding scheme, we are able to extract more informative patterns.

(a) Swainsoni dataset

(b) Buffalo dataset

Fig. 8. Running time

One of the most interesting phenomena is that
the Swainsonies and Buffaloes have quite differ-
ent movement behavior. See Figure 7a, we can
consider that rGpattern≥ is the most represen-
tative movement behavior of Swainsonies since
they compress the data better than the two other
ones. While closed swarm is not as representative
as the other patterns. This is because it is very easy
for Swainsonies which are birds to leave the group
and congregate again at later timestamps. How-
ever, this movement behavior is not really true for
Buffaloes. See Figure 7b, it clear that the com-
pression gains of closed swarms, rGpattern≥

and rGpattern≤ have changed. The three kinds
of patterns have more similar compression gain
than the ones in Swainsonies. It means that Buf-
faloes are more closed to each other and they
move in a dense group. Thus closed swarm is
more representative compare to itself in Swain-
soni dataset. Furthermore, the number of Buf-

faloes is very diff cult to increase in a group and thus SmartCompo rGi is lower than
the two other ones.

Running Time. In our best knowledge, there are no previous work which address
mining compression movement pattern issue. Thus, we only compare the two proposed
approaches in order to highlight the differences between them. Running time of each
algorithm is measured by repeating the experiment in compression gain experiment.

As expected, SmartCompo is much faster than NaiveCompo (i.e. Figure 8). By ex-
ploiting the properties, we can directly select the best candidate at each iteration. Con-
sequently, the process eff ciency is speed up.

6 Related Work

Mining informative patterns can be classifi d into 3 main lines: MDL-based approaches,
statistical approaches based on hypothesis tests and information theoretic approaches.

The idea of using data compression for data mining was fir t proposed by R. Cilibrasi
et al. [1] for data clustering problem. This idea was also explored by Keogh et al. [8],
who propose to use compressibility as a measure of distance between two sequences.
In the second research line, the significanc of patterns is tested by using a standard
statistical hypothesis assuming that the data follows the null hypothesis. If a pattern
pass the test it is considered signif cant and interesting. For instance, A. Gionis et al. [3]
use swap randomization to generate random transactional data from the original data.
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A similar method is proposed for graph data by R. Milo et al. [11]. Another research
direction looks for interesting sets of patterns that compress the given data most (i.e.
MDL principle). Examples of this direction include the Krimp algorithm [14] and Slim
algorithm [12] for itemset data and the algorithms for sequence data [9].

7 Conclusion

We have explored an MDL-based strategy to compress moving object data in order to:
1) select informative patterns, 2) combine different kinds of movement patterns with
overlapping allowed. We supplied two algorithms NaiveCompo and SmartCompo. The
latter one exploits smart properties to speed up the whole process obtaining the same
results to the naive one. Evaluations on real-life datasets show that the proposed ap-
proaches are able to compress data better than considering just one kind of patterns.
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Abstract. There is a dependency between packet-loss and the delay and
jitter time-series derived from a telecommunication link. Multimedia ap-
plications such as Voice over IP (VoIP) are sensitive to loss and packet
recovery is not a merely efficient solution with the increasing number
of Internet users. Predicting packet-loss from network dynamics of past
transmissions is crucial to inform the next generation of routers in mak-
ing smart decisions. This paper proposes a hybrid data mining model
for routing management in a communications network, called NARGES.
The proposed model is designed and implemented for predicting packet-
loss based on the forecasted delays and jitters. The model consists of
two parts: a historical symbolic time-series approximation module, called
HDAX, and a Multilayer Perceptron (MLP). It is validated with het-
erogeneous quality of service (QoS) datasets, namely delay, jitter and
packet-loss time-series. The results show improved precision and quality
of prediction compared to autoregressive moving average, ARMA.

Keywords: Time Series Data Mining, Communications Network,
Packet-Loss Prediction, Time Series Approximation, Heterogeneous
Data Sources.

1 Introduction

Rapid increases in the number of Internet users and services have prompted re-
searchers within academia and industry to contemplate smart ways of supporting
applications with the required Quality of Service (QoS). Service availability is
a crucial part of QoS and the network infrastructure must be designed so as to
provide high availability to meet QoS. The target of 99.999% availability permits
five minutes of downtime per year [1].

There are certain QoS parameters including packet delay, jitter and loss, which
may be used as decision factors for online routing management. Although consid-
erable efforts have been placed on the Internet to assure QoS within autonomous
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systems, the dominant best-effort communications policy does not provide suf-
ficient guarantee without abrupt change in the protocols [2] for the Internet.
Estimation and forecasting of the end-to-end delay, jitter and packet-loss are
essential tasks in network routing management for detecting anomalies.

A considerable amount of research has been done to forecast time-series with
“numerical” methods. However, while dealing with large online datasets, these
methods are time consuming and may not be efficient for real-time application
such as multimedia streaming. Zadeh [3] suggests a transition from “computing
with numbers” to the manipulation of the “human perceptions.” Consequently,
research projects [4,5] have started focusing on approximation of time-series with
non-numerical methods. In this way, the time cost for trivial forecasting accuracy
in the numerical methods may be avoided.

By prioritising Internet traffic more efficiently, QoS functions can address
performance issues related to emerging Internet applications such as real–time
voice and video streaming. An effective routing mechanism and its management
are crucial to satisfactorily support diverse services in such networks. Routing
tables, as the maps in packet delivery throughout the network, are dynamic and
get updated by network state–based events. Typical network events include node
failure, link failure and congestion. However, a major issue with current routing
mechanisms is that they generate routing tables that do not reflect the real–time
state of the network and ignore factors like local congestion.

Packet-loss in the Internet mainly occurs due to congestion in the links [6].
Real–time multimedia applications are sensitive to packet-loss, and packet re-
transmission is not an acceptable solution with these sorts of application. Pre-
dicting packet-loss with a certainty from network dynamics of past transmissions
is crucial knowledge to inform the next generation of smart routers with bet-
ter decision factors. We propose a data mining model for classification of links
that have a high probability of packet-loss. The model is originally intended to
contribute to making informed decisions within smart edge routers where the
quality of transmissions should be controlled and is primarily determined by the
level of packet-loss.

The current work extends our previous work [7]. The delay and jitter provided
by a historical symbolic delay approximation model, called HDAX, is used within
the proposed data mining model to predict the average number of packets lost
in a link. The experiments with HDAX show better accuracy in forecasting
the delay and jitter time–series as well as a reduction in the time cost of the
forecasting method. To make the forecasting faster, we changed the perception–
based function to a deterministic mapping function to avoid the time-cost of
fuzzification and defuzzification.

We propose an informed decision-making model for routing management in
a communications network, called NARGES as shown in the Fig. 1. The basic
idea of our proposed model is to predict packet-loss in a network node by ap-
proximating the trends and values of the delay according to observed patterns.
As shown in Figure 1, the model estimates the current trend and value assigned
to the node based on the most two recent trends and values. The approximated
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current values of delay and jitter are then fed into a multilayer perceptron for
predicting the packet-loss.

Fig. 1. Schema of NARGES Prediction Model

To evaluate the proposed loss prediction model, we used heterogeneous data.
The data is categorised into ten categories in terms of the end-to-end network
path and the network queuing policy. Accordingly, we ran a series of indepen-
dent experiments with these different categories of datasets. The accuracy of the
results, the speed of the algorithms and the cross-correlation of the forecasts of
HDAX and predictions of the proposed data mining model are compared to the
results from autoregressive moving average (ARMA) model.

The rest of this paper is organised as follows. Section 2 describes related work
in predicting performance traces. In section 3 we describe the forecasting and
predictive module of the proposed model. In section 4 the evaluation procedure
is explained and later in section 5 we present results of our experiments on
applying our model. Section 6 concludes the paper.

2 Related Work

This research addresses the issue of defining a prediction model based on a
symbolic time-series forecasting model. The model uses historical frequencies of
observed patterns in adjacent time-stamped windows within a time–series.

Originally, the research project defined to produce an “informed” [8] data
mining model to be used in a smart network router for online routing manage-
ment. We used a Hybrid model framework as suggested in [9]. In [10] and [11],
they present ideas for the definition of a perception based function.



330 H. Homayounfard, P.J. Kennedy, and R. Braun

Packet delay and jitter show a temporal dependency with the packet-loss in
the Internet [12,13]. Consequently, the research projects have studied the delay,
jitter, packet-loss and other performance traces in the network so as to predict
network anomalies. If packet n is lost, packet n + 1 is likely to be lost. This
can lead the network to a “bursty” packet-loss in a real–time communications
network and may degrade the QoS and the effectiveness of recovery mechanisms.

A quantitative study of delay and loss correlation patterns from off-line anal-
ysis of measurement data from the Internet has been done by [14], although it
did not consider real–time prediction of packet-loss from the jitter data of online
communications [6].

The Rocha-Mier et al. model [9] suggests the measurement and modelling
of sequences of network variables based on data network statistics. They have
created a useful network scenario using OPNETModeller. Although real network
data variables could be derived from the data logs by the use of intelligent agents
or manually by system administrators, there may be violation in accessing data
throughout the Internet. Therefore, they adopted the modeller to study various
levels of the network traffic load as well as types of services and applications.

The motivation of our work is to take a perception–based approach inspired
by [10] embedded in a machine learning framework to predict network variables
similarly to [9]. We validate our work using a combination of historical network
traffic data and simulated data. Specifically our experiments used traces from
network traffic archives generated by Napoli University “Federico II” [15] to test
the impact of various network congestion levels, from “quiet” to a network with
“bursty” packet-loss, on the proposed model. Simulated offline traces generated
by OPNET Modeller, were used to test the impact of different queuing policies
on the proposed model in longer experiments. This is a standard approach in
the networking domain.

3 Proposed Algorithm

The NARGES model, as presented in Figure 1, is a hybrid model that predicts
the packet-loss at time t + 1 based on the approximated values of delay and
jitter at time t. The delay and jitter forecasts at time t, are approximations of
the current values of the time-series forecasted by HDAX model according to
the historical trends and values of the corresponding time-series in the previous
“two” periods, i.e. t − 1 and t − 2 . The following sections describe the two
modules: HDAX and a multilayer perceptron, as the two constitutive parts of
NARGES model.

3.1 Forecasting Module: HDAX

In this section, we briefly describe our approach to forecasting time-series values
from previously observed patterns of delay and jitter. We use a mapping function
for the definition of the patterns for time-series approximation, which is different
from what we presented in our previous work [7].
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The HDAX algorithm is defined based on the model definition suggested by
Tresp [16].

yt = f(yt−1, yt−2, . . . , yt−N ) + εt (1)

where f is either known or approximated sufficiently well by a function ap-
proximator and εt is the zero-mean noise with probability density Pε(ε), which
represents dynamics that are not modelled. Let yt be the value of the discrete
time-series at time t and Yt the trend of two consecutive values at times t−1 and
t. We make the underlying HDAX model of the time series with order N = 3 as

yt = f(yt−1, yt−2, yt−3) + εt (2)

We represent possible future trends of the QoS time series yt of delay and jitter
values at time intervals t− 1 and t− 2 with categorical terms from the

Alphabet = 〈SI, I, P,D, SD,OUT 〉 (3)

where these symbols are defined in Table 1. The basic trends in Table 1 are
defined with linguistic variables based on a deterministic “mapping function.”
Within the mapping function, each of the categorical terms maps an interval on
the domain of real numbers to a linguistic representative.

Table 1. The scale of time-series trends used for mapping numerical values to the
trends. Note that we use yt to denote the time series value at time t and Yt to denote
the difference of the two consecutive values at time t−1 and t. For simplicity, the linear
scale in our experiment also has six linguistic grades (defined in Eq 3) each of which is
a categorical term (assigned to the case number of zero to five respectively).

Case Id Description Yt = yt − yt−1

0 P Plain Yt= 0

1 I Increase 0 < Yt ≤ max
2

2 SI Sharply Increase max
2

< Yt ≤ max

3 D Decrease −max
2
≤ Yt < 0

4 SD Sharply Decrease -max ≤ Yt < −max
2

5 OUT Outlier |Yt| > max

We define “previous-current-next” patterns (also called the i− j−k patterns)
with a combination of three consecutive trends, at times t − 2, t − 1 and t as
shown in Figure 2. Our approach consists of two phases: training and simulation.
The max in Table 1 is the maximum value of a time-series, shown later with the
dashed line in Fig. 2.

HDAX Training. Figure 2 shows a “sliding window” that moves over the
training data and makes patterns consisting of three consecutive trends, i, j
and k, at times t − 2, t − 1 and t (previous, current and next) together with
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Fig. 2. The training phase uses a time series dataset values to recognise i−j−k patterns
and train the look–up table that maps each of these patterns to a respective frequency.
The table is then used for forecasting the k trend at time t+1 in the simulation phase.

their frequency in the look–up table. The look–up table is then used in the
simulation phase to approximate the next trend, at time t, and the associated
delay/jitter value from the current and previously observed trend patterns, where
i, j and k are the respective indices for previous, current and next trends (0 ≤
i, j, k ≤ 5) and F (i, j, k) is their respective frequency. From the look–up table,
the probability of i− j − k patterns is estimated as

P̄ (i, j, k) =
F (i, j, k)

Nk
, Nk =

5∑
k=0

F (i, j, k). (4)

where i, j and k are the indices for the respective patterns at times t− 1, t− 2
and t, and Nk is the number of total observations for all i− j − k patterns.

HDAX Simulation. Based on the most frequently observed patterns in the
last two consecutive trends at time t − 1 and t − 2, the HDAX algorithm uses
the estimated conditional probability to approximate the trend at time t. The
Yt is a trend value at time t in the time-series of trends, defined based on the
last two trends seen at times t − 1 and t − 2. Formally speaking, we estimate
the Pk(i, j) as follows

P̄k(i, j) = P̄ (Yt = k|Yt−1 = i, Yt−2 = j) + Pε(ε) (5)

where i and j are the indices of the observed trends at times t − 1 and t − 2,
respectively. The trend at time t, with the index k, may take six possible values
from the alphabets in Eq. 3. Based on this, the look-up table is used to forecast
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the next trend and value of the time-series based on the trend with highest
frequency in this table:

i = t− 1, j = t− 2 : Ŷt = argmax
k

(P̄k(i, j)) (6)

With the trend k is estimated, the ŷt can be approximated based on time step-
size between yt−1 and yt and the slope of the line at yt−1.

3.2 Predictive Module: Multi-layer Perceptron

The predictive module calculates the average packet-loss. As described above,
the outputs of HDAX are approximations of the values of the network traces
at time t. They are used within a multilayer perceptron (MLP) to get better
precision for real-time packet-loss prediction at time t+ 1.

The MLP is a feed-forward network with back-propagation learning rule and
one hidden layer. As shown in Fig. 1, the MLP has two input layer nodes and
forecasts delay and jitter. It is designed and implemented using the MATLAB
neural network toolbox.

Optimum parameter values for number of hidden layer neurons, learning rate
and momentum was defined empirically by using a training data-set and choosing
the parameter values with the highest test accuracy. The network was tested with
between 1 and 100 neurons in the hidden layer. Based on these experiments, ten
hidden layer neuron were chosen.

4 Experimental Evaluation

The section describes experiments for evaluating the accuracy, speed and qual-
ity of the output of our model and ARMA. We implemented ARMA algorithms
based on [17]. The results of HDAX and NARGES are compared with ARMA
results. In the experiments, the accuracy of algorithms was compared using nor-
malised root mean square error (NRMSE). Performance was compared using
the run time. Prediction quality was evaluated with the normalised correlation
coefficient with MATLAB’s cross-correlation function.

4.1 Datasets

As mentioned above, the data consists of three QoS traces of delay, jitter and
packet-loss. For each experiment three sets of data are considered: the original
data generated by D-ITG or OPNET, the output of HDAX (or NARGES) and
the output of ARMA. Each dataset is divided into training and test datasets
(25% and 75% respectively).

The results were categorised according to datasets used for the experiments
in two ways: (i) according to the end-to-end path and (ii) according to the
queuing policy used. Forty-six datasets were used for computing results. Each
dataset includes time-stamped traces of delay, jitter and loss values. There are
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Table 2. Characteristics of the end-to-end paths for the data obtained from D-
ITG (Dataset Categories: 1-7) and queuing policies for the data obtained from OPNET
Modeler (Dataset Categories: 8-10)

Dataset Access Networks Operating User
Category (e2eP) Systems Device

1 ADSL-to-Ethernet Linux-to-Linux PC-to-Workstation
2 GPRS-to-Ethernet Windows XP-to-Linux Laptop-to-Workstation
3 UMTS-to-Ethernet Windows XP-to-Linux Laptop-to-Workstation
4 Ethernet-to-ADSL Linux-to-Linux Workstation-to-PC
5 Ethernet-to-GPRS Linux-to-Windows XP Workstation-to-Laptop
6 Ethernet-to-UMTS Windows XP-to-Windows XP Workstation-to-Laptop
7 Ethernet-to-WLAN Linux-to-Windows XP Workstation-to-Laptop

Queuing Policy Description QoS Enabled

8 WFQ Weighted Fair Queuing Yes
9 FIFO First in First out No
10 PQ Priority Queuing Yes

36 datasets from D-ITG with an average 3000 values in each of delay, jitter and
packet-loss time-series. There are also 10 datasets generated by OPNET, 9 with
48000 values and one with 1,000,000 values.

The data generated by D-ITG are gathered in two ways: an archive from the
University of Napoli [15] and data probed over a University network test-bed.
Samples were obtained by sending probe packets with a packet rate of 100 packets
per seconds. The measurement unit of the delay and jitter is either milliseconds
or nanoseconds while for packet-loss the value represents the average number of
lost packets in the window of the times. The network test-bed was formed by
two nodes on the University LAN: a laptop with 1.70 GHz processor, IntelPro
2200BG network connection and a node on a HPC Linux Cluster running Red
Hat Enterprise Linux 6 (64bit) with processor rating between 3.06-3.46GHz and a
gigabit inter-node connection. An end-to-end path (e2eP) definition is considered
for the datasets obtained from D-ITG as shown in Table 2.

We used OPNET datasets to study the effect of different packet transmission
policies, longer experiments and network congestion states on the performance
of the implemented data mining model. The selection of service discipline in the
routers (FIFO, WFQ and PQ) can affect VoIP applications and link congestion.
Thus, the performance of the prediction model is evaluated using these datasets.
Simulations ran on a laptop with 1.70 GHz processor with IntelPro 2200BG
network connection and OPNET Modeler 15.0.A.

5 Results

Three methods were used analysis: accuracy, speed and correlation analysis for
the proposed models versus ARMA. Friedman’s test [18] is used to rank algo-
rithms and to test the hypothesis of the similarity of the algorithms based on
Holm’s test. The p−value is used to reject or accept the above “null hypothesis.”
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Fig. 3. Error (NRMSE) of HDAX and NARGES vs ARMA together with speed of
algorithm and cross-correlation coefficients are shown in the column (a) to (c), respec-
tively. The first and second rows are the HDAX results and the last row shows the
whole model (NARGES) results. In the twin bar charts, the left “gray” bars shows
HDAX (in the first two rows) and NARGES (in the last row) while the right bar filled
with wide downward diagonal pattern denotes ARMA outcomes.

5.1 Model Performance

The accuracy and speed of NARGES model and its HDAX subcomponent was
examined by comparing the NRMSE between the model outputs and the original
traces. Figure 3, shows the results of HDAX for delay and jitter traces as well
as the NARGES results over packet-loss traces in a top down order.

The average precision of the forecasted delay and jitter time-series of HDAX
and ARMA as well as the NARGES precision for predicted packet-loss are shown
within column (a) in Figure 3. Column (b) shows a comparison between the speed
of the models with ARMA. In terms of similarity measurement between the orig-
inal datasets and the output by HDAX, NARGES and ARMA, the maximum
similarity of normalised cross-correlations was used for correlation analysis be-
tween the time-series. Column (c) in Figure 3 shows the respective correlation
coefficient between the output of the models and the original data.

The predicted average packet-loss for NARGES was compared to ARMA. As
the Fig. 3 shows, NARGES predicts more precisely than ARMA with OPNET
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Table 3. Holm / Hochberg Table for α = 0.05 and z = (R0 − Ri)/SE. Note that in
testing the algorithms for accuracy (ACC), speed (SPD) and cross-correlation (CCF)
over Delay (D), Jitter (J) and Packet-Loss (L) models printed in bold are statistically
significantly better.

D-ITG Datasets OPNET Datasets
Data/Test algorithm z p algorithm z p

D/ACC HDAX 3.0000 0.0027 HDAX 3.1628 0.0016
D/SPD HDAX 1.9999 0.0455 ARMA 3.1623 0.0016
D/CCF ARMA 5.3333 9.6 × 10−8 HDAX 2.5298 0.0114
J/ACC HDAX 1.0000 0.3173 HDAX 1.4× 10−15 0.9999
J/SPD HDAX 1.3333 0.1824 HDAX 3.1623 0.0016
J/CCF ARMA 0.9999 0.3173 ARMA 3.1623 0.0016

L/ACC NARGES 0.4999 0.6171 NARGES 3.1623 0.0015
L/SPD ARMA 6.0000 2.0 × 10−9 ARMA 3.1623 0.0016
L/CCF NARGES 2.7× 10−15 0.9999 NARGES 3.1623 0.0016

datasets but is slower. This is because NARGES has more modules and processes
more data than ARMA to predict the final packet-loss values. The training time
of the MLP module accounts for the longer time taken to run our model.

5.2 Model Ranking

Friedman test was run and the stored statistic used to calculate the Holm’s test
p−value, which is a decision factor for rejecting or accepting the null hypothesis.
It also calculates the average ranking of the algorithms used in each test.

Friedman’s test is a non-parametric equivalent to the parametric repeated
measures ANOVA test. It computes the ranking of the measured outputs for an
algorithm with other algorithms, assigning the best of them the ranking 1 and
the worst the ranking k. According to the null hypothesis, it is supposed that
the results of the algorithms are equivalent and the rankings are also similar.

A similarity test between the precision, performance (speed) and the corre-
lation of the output of the models with the original test data is performed via
nonparametric Holm tests. The tests were conducted over the results collected
from the runs of HDAX, ARMA and NARGES models with the three traces of
delay, jitter and loss within each datasets. We have done this to rank the algo-
rithms and test the similarity hypothesis between HDAX and NARGES models
and ARMA. The Holm tests are testing the similarity of algorithms accuracy,
speed and correlation coefficient for delay, jitter and packet-loss time-series.

In Table 3, the algorithm shown in each row works significantly better than
ARMA if their corresponding average ranks differ by at least the critical differ-
ence, which are the ones with p− values ≤ 0.05. In Table 3, the algorithm name
showed in each row are taken as the better when the null hypothesis is rejected.

The Holm’s tests shows that HDAX ranking is better than ARMA for the
precision of the results and the speed of the algorithms whereas ARMA ranking
is better than HDAX for cross-correlation between the forecasted and original
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time-series. Moreover, according to the p− values, HDAX forecasts significantly
better and faster than ARMA for delay traces while ARMA has more correlated
outputs in comparison to the original delay data in the 36 runs for the D-ITG
datasets in section 4.1. Two algorithms, HDAX and ARMA, perform the same in
forecasting jitter values because Holm’s tests accept all null hypothesis. For the
whole model outputs accuracy and quality of the predictions, NARGES predicts
the packet-loss the same as ARMA does, although NARGES ranks higher. In
terms of the speed of the models, the p− value of the ARMA speed is less than
the significance level (α = 0.05).

The Holm’s test for OPNET datasets, explained in section 4.1, shows that
HDAX forecasts significantly more accurate than ARMA over the delay datasets
and has a better quality in terms of the cross-correlation between its forecasts
and the original data. HDAX is faster over jitter datasets while ARMA forecasts
faster over delay datasets. Unlike the tests with D-ITG datasets, the NARGES
outputs with OPNET datasets show significantly better precision and quality
of predictions. It means that our model shows better precision and prediction
compared to ARMA in longer experiments. In terms of the speed of the models,
the p− value of the ARMA speed is less than the significance level (α = 0.05).

Currently network routers must send information between routers to inform
about the peer status. The results in this paper demonstrate, in a simulated
setting at least, that a data mining agent can predict the peer status to reduce
or perhaps eliminate the unnecessary network data transmission overhead and
the time required for sending and receiving repeated packets.

6 Conclusions

This paper presented a packet-loss prediction model based on our earlier work [7].
We designed and implemented a hybrid data mining model, NARGES, which
is using the forecasted current values of delay and jitter, to predict the future
packet-loss rate assigned to a network node. We used a non-numerical approach
to predict packet-loss in multimedia streams by observing the delay and jit-
ter time-series. The Model is validated with heterogeneous QoS traces and the
results show that the quality and the precision of the proposed model is signifi-
cantly better than AMRA. However, NARGES was slower than ARMA because
it has to process more inputs. As can be seen from the competing speed of HDAX
module, it is the training time of the MLP module that degrades the speed of
the model. In Table 3, the significant difference between the p − value of the
Holm’s tests for the D–ITG and the longer OPNET datasets implies that our
model can work faster in a real–time network experiment.

References

1. Torell, W.: Network-critical physical infrastructure: Optimizing business value. In:
Twenty-Seventh International Telecommunications Conference, INTELEC 2005,
pp. 119–124 (September 2005)



338 H. Homayounfard, P.J. Kennedy, and R. Braun

2. Floyd, S., Allman, M.: Comments on the usefulness of simple best-effort traffic.
Request for Comments 5290, IETF (July 2008)

3. Zadeh, L.A.: From computing with numbers to computing with words from manip-
ulation of measurements to manipulation of perceptions. Annals of the New York
Academy of Sciences 929(1), 221–252 (2001)

4. Keogh, E., Lin, J., Fu, A.: Hot SAX: Efficiently finding the most unusual time
series subsequence. In: ICDM 2005, Houston, pp. 27–30. IEEE (2005)

5. Batyrshin, I.Z., Sheremetov, L.B.: Perception–based approach to time series data
mining. Applied Soft Computing Journal 8(3), 1211–1221 (2008)

6. Roychoudhuri, L., Al-Shaer, E.: Real–time packet loss prediction based on end–to–
end delay variation. IEEE Trans. Network Service Manager 2(1) (2005)

7. Homayounfard, H., Kennedy, P.J.: HDAX: Historical symbolic modelling of delay
time series in a communications network. In: Kennedy, P.J., Ong, K., Christen, P.
(eds.) AusDM 2009. CRPIT, vol. 101, pp. 129–138. ACS, Melbourne (2009)

8. Debenham, J., Simoff, S., Leaney, J., Mirchandani, V.: Smart communications net-
work management through a synthesis of distributed intelligence and information.
In: Artificial Intelligence in Theory and Practice II, pp. 415–419 (2008)

9. Rocha-Mier, L.E., Sheremetov, L., Batyrshin, I.: Intelligent agents for real time
data mining in telecommunications networks. In: Gorodetsky, V., Zhang, C.,
Skormin, V.A., Cao, L. (eds.) AIS-ADM 2007. LNCS (LNAI), vol. 4476, pp.
138–152. Springer, Heidelberg (2007)

10. Miloucheva, I., Hofmann, U., Gutiérrez, P.A.A.: Spatio-temporal QoS pattern
analysis in large scale internet environment. In: Ventre, G., Canonico, R. (eds.)
MIPS 2003. LNCS, vol. 2899, pp. 282–293. Springer, Heidelberg (2003)

11. Batyrshin, I., Panova, A.: On granular description of dependencies. In: Proc. 9th
Zittau Fuzzy Colloquium, Zittau, Germany, pp. 1–8 (2001)

12. Jiang, W., Schulzrinne, H.: Modeling of packet loss and delay and their effects
on real-time multimedia service quality. ACM Network and Operating Systems
Support for Digital Audio and Video (2000)

13. Markopoulou, A., Tobagi, F., Karam, M.: Loss and delay measurements of internet
backbones. Computer Communications 29(10), 1590–1604 (2006)

14. Moon, S., Kurose, J., Towsley, D.: Packet audio playout delay adjustment:
performance bounds and algorithms. Multimedia Systems 6(1), 17–28 (1998)
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Abstract. Due to a huge amount of mobile applications (abbreviated
as Apps), for Apps providers, the usage preferences of Apps are impor-
tant in recommending Apps, downloading Apps and promoting Apps. We
predict and quantize users’ dynamic preferences by exploring their usage
traces of Apps. To address the dynamic preference prediction problem,
we propose Mode-based Prediction (abbreviated as MBP) and Reference-
based Prediction (abbreviated as RBP) algorithms. Both MBP and RBP
consist of two phases: the trend detection phase and the change esti-
mation phase. In the trend detection phase, both algorithms determine
whether the preference of an App is increasing or decreasing. Then, in the
change estimation phase, the amount of preference change is calculated.
In particular, MBP adopts users’ current usage mode (active or inactive),
and then estimates the amount of change via our proposed utility model.
On the other hand, RBP calculates an expected number of usage as a
reference, and then builds a probabilistic model to estimate the change
of preference by comparing the real usage and the reference. We conduct
comprehensive experiments using two App usage traces and one music
listening log, the Last.fm dataset, to validate our proposed algorithms.
The experimental results show that both MBP and RBP outperform the
usage-based method that is based solely on the number of usages.

Keywords: Dynamic Preference Prediction, Mobile Applications, Apps.

1 Introduction

As mobile devices become more and more popular, a tremendous amount of
mobile applications (abbreviated as Apps) are designed for varied functions and
purposes. Users can download and execute Apps in their mobile devices to sat-
isfy their needs and affinities. For App providers, to understand users’ prefer-
ences is quite important to recommend new Apps, and to decide their marketing
strategies for selling Apps [1–3]. Although users can rate the Apps they have
experienced, only a small percentage of users rate their Apps. For example, the
famous App, Angry Birds, only received 4% ratings from 1.3 million of down-
loads [4]. Besides, users may not be willing to consistently rate the Apps when
they change their preferences. On the other hand, although [5] states an Apps
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Fig. 1. The number of usages of different mobile applications

recommendation problem, it does not show the dynamic preferences of users. By
contrast, through the dynamic preferences, we can not only recommend Apps
but investigate more tasks on Apps.

In this paper, we aim to predict users’ dynamic preferences of each App and
further quantize the preferences to real numbers such that we can compare the
preferences among different users. As users repeatedly invoke these Apps, their
preferences are dynamic over time based on what they have experienced. Here,
we claim that a user’s dynamic preference is related to the usage trace (i.e.,
series of usage counts). For example, Fig. 1 shows three usage traces of Calender,
Browser, and Messenger, for a certain user. As can be seen in Fig. 1, the number
of usages on ”Messenger” apparently drops down after 14 days (two weeks).
Therefore, we can infer that the user decline his/her preference on ”Messenger”
in 14 days by either implicit or explicit reasons.

Nevertheless, usage counts of Apps are not directly related to the preferences
of Apps. For example, in Fig. 1, although the usage count of Messenger is higher
than the other two Apps, the preference of Messenger is not necessarily higher
than the other two Apps. Probably, Messenger is a communication tool, which
is designed to be used frequently. As for Calendar, users will not frequently
check their calendar all the time. In our experimental results, we also show
that the usage-based algorithm cannot predict anything, where its accuracy is
often close to zero. To correctly predict preferences of Apps from the usage
traces, we propose two methods, Mode-based Prediction (abbreviated as MBP)
and Reference-based Prediction (abbreviated as RBP). Both methods utilize
different strategies to avoid the impact of the inherent magnitude bias of the
the usage counts. MBP adopts only the usage mode of Apps: active mode for
using the App while inactive mode for not using the App. RBP refers to the
previous usage counts of each App as a reference history and thus, the usage
count becomes a relative value of the reference history.

Both MBP and RBP consist of two phases: the trend detection phase and the
change estimation phase. The first phase determines whether the preference is
decreasing or increasing. The second phase estimates the absolute value on the
preference change. For MBP, we increase the preferences of those Apps which
are used at current time unit, but decreases the preferences of others. Then,
we propose a utility model: when a user uses more Apps at the same time
unit, each App would receive less preference increment. According to the utility
model, we can calculate the increment and decrement of each App. For RBP, it
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calculates an expected number of usage for each App at current time unit by
solving an optimization problem where the expected number of usage can keep
the trend of preference change staying static. If the actual number of usage is
larger (smaller, respectively) than the expectation, the preference will increase
(decrease, respectively). Then, RBP uses a probabilistic model to estimate the
change of preferences.

The contributions of this study are:

1. We explore usage traces of Apps for dynamically predicting the perferences
of Apps.

2. We analyze the characteristics of Apps, and propose two algorithms, MBP
and RBP, to predict preferences of Apps.

3. In the MBP method, we derive the dynamic preferences according to only
the usage mode and propose a utility model to calculate the change of users’
preferences.

4. In the RBP method, by solving an optimization problem, the expected num-
ber of usage is derived as a reference, and a probabilistic model is constructed
to estimate the users’ preferences.

5. We conduct a comprehensive performance evaluation. The experimental re-
sults show that the predicted dynamic preferences of both MBP and RBP
can better reflect users’ behavior

2 Related Work

To the best of our knowledge, this paper is the first work discussing dynamic
preferences prediction problem. Although there are many research works dis-
cussing the problem of predicting users’ preference, they only focused on a static
environment. In a static circumstance, such as renting movies and purchasing
books, users generally only act on them once and the preference remain static.
Therefore, they can use the existing user preferences to predict the unknown
preferences through the attributes of items [6]. The attributes could be the meta-
data, such as artist, genre, etc., or the ratings the item already had. Although [6]
focused on predicting the ratings of musics, they still treated the music ratings
as static preferences. This is because their focus is on purchasing songs or CDs,
not on the preference to listening to a song from a user collection at a particular
moment. Only the authors in [7–9] recognized the temporal dynamics of users’
preferences. Nevertheless, [7] still need to obtain at least a portion of static rat-
ings as training data. [8, 9] only consider the evolution of users’ behavior, instead
of quantize their preferences. For predicting preferences of Apps, users can use
Apps repeatedly; therefore, their preference changes over time, and even be im-
pacted by new Apps [10]. Consequently, the traditional preference prediction
methods cannot be adopted for the dynamic preference problem, because 1) the
traditional methods all need to obtain at least a portion of static preferences as
training data, and 2) the static preferences are out-of-date when we perform the
prediction in a dynamic environment.
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3 Preliminary

In this section, we first describe the symbols used in this paper. Explicitly, we
use rmin and rmax to represent the minimum and maximum value of users’ pref-

erence. Thus, the preference at time unit t is a real number r
(t)
ij ∈ [rmin, rmax],

which represents the preference of user i on App j. To facilitate the presentation
of this paper, U is the set of users and I is the set of Apps. A dynamic prefer-
ence matrix is used to represent the preferences of Apps at a certain time unit.
Here, we divide time space into time units, and use l, an application dependent
parameter, to represent the length of a time unit. The formal definition is below:

Definition 1. (Dynamic Preference Matrix) A dynamic preference matrix

at time unit t, R(t), is a |U |× |I| matrix, where r
(t)
ij ∈ [rmin, rmax], for each r

(t)
ij .

A usage count matrix constructed from users’ traces is defined in Definition 2

Definition 2. (Usage Count Matrix) A usage count matrix at time unit t,

C(t), is a |U | × |I| matrix, where each element c
(t)
ij represents how many times

user i used App j at time unit t.

We use a change matrix to record the preference change of each user-App pair.
When the value is positive (negative, respectively), the preference is increasing
(decreasing, respectively). Definition 3 shows the detail of change matrix. In this
paper, the change matrix is derived from both usage count matrix and dynamic
preference matrix.

Definition 3. (Change Matrix) A change matrix at time unit t, denoted as

Δ(t), is a |U | × |I| matrix, where the value of each element δ
(t)
ij is in either

[0,rmax − r
(t−1)
ij ] for positive value, or in [r

(t−1)
ij − rmin,0] for negative value.

We claim that the preference of an App would not change dramatically. Even
when users do not use an App for a long time, the preference of it would decay
smoothly over time. Therefore, we derive users’ preferences according to the
previous preferences and current usage behavior as described in Definition 4.

Definition 4. (Dynamic Preferences Prediction Problem) Let R(t−1) be
the dynamic preference matrix at time unit t − 1, and C(t) be the usage count
matrix at time unit t, the dynamic preference prediction problem is 1) calculating
the change matrix, Δ(t), and 2) deriving R(t) according to Eq. 1.

R(t) = R(t−1) +Δ(t) (1)

For example, suppose we have two users and three Apps, and the system pa-

rameters are rmin = 0 and rmax = 5. Let R(t−1) =

[
1 2 3
2 3 4

]
be the dynamic

preference matrix derived at time unit t − 1, and C(t) =

[
100 2 30
2 300 40

]
be the
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usage count matrix. First, we calculate the change matrix according to C(t) and
R(t−1), such that, in this example, the values of the change matrix are related
to the usage counts and will be in the defined range to avoid the values in R(t)

being out of range. Assume that we can obtain Δ(t) =

[
4 −1 1
−2 2 1

]
. Then, the

new dynamic preference could be derived as R(t) =

[
5 1 4
0 5 5

]
.

4 Dynamic Preference Prediction

As described in Definition 4, to obtain the dynamic preference matrix, R(t), we
need to know the change matrix, Δ(t), in advance. Here, we use δtij to represent

the elements in Δ(t). Empirically, we can calculate δtij by Eq. 2 which consists
of two parts: 1) m ∈ {0, 1} which indicates whether δtij is positive (m = 0) or

negative (m = 1), and 2) v
(t)
ij > 0 which is the absolute value of δtij . Through

this equation, we can calculate the change matrix, Δ(t), by finding a proper pair

of m and vtij for each δ
(t)
ij .

δ
(t)
ij = (−1)m × v

(t)
ij (2)

In this paper, we design a two-phase framework: the trend detection phase for the

value of m and the change estimation phase to calculate v
(t)
ij . In order to smooth

the preference change, the value of v
(t)
ij depends on not only the current usage

count, c
(t)
ij but the previous preference, r

(t−1)
ij . In addition, when the preference

is increasing (respectively, decreasing), the value of v
(t)
ij is in the range of [0,

rmax − r
(t−1)
ij ] (respectively, [0,r

(t−1)
ij − rmin]). Thus, we can formulate v

(t)
ij as in

Eq. 3, where u
(t)
ij is a utility parameter determined by user’s preference change.

Explicitly, when u
(t)
ij is larger (i.e. user’s preference change is large), v

(t)
ij would

be larger.
In order to address the challenge related to the number of usages of Apps, we

propose two algorithms based on different points of view. The first one is Mode-
based Prediction (MBP) which takes into account of the binary usage mode of
active and inactive. The second one is called Reference-based Prediction (RBP)
which adopts the previous usage counts as a reference history to examine the
Δ(t) matrix.

v
(t)
ij =

{
(r

(t−1)
ij − rmin)× u

(t)
ij ,m = 1

(rmax − r
(t−1)
ij )× u

(t)
ij ,m = 0

(3)

4.1 Mode-Based Prediction (MBP)

The Mode-based Prediction (MBP) ignores the magnitude of usage counts by
only considering two usage mode: one is active mode for using the App and
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another is inactive mode for not using the App. Then, a utility model is proposed
to measure the usage change of a user, and the Δ(t) matrix could be estimated
through this model.

The trend detection phase. In this phase, we decide the value of m in Eq. 2.

If user i executed App j at time unit t (i.e. c
(t)
ij > 0), we would set m as 0

(increase the preference). By contrast, if c
(t)
ij = 0, we set m to 1 (decrease the

preference). ∑
k∈P

u
(t)
ik −

∑
k∈N

u
(t)
ik = 0 (4)

u
(t)
ij =

{
1
|P | , c

(t)
ij > 0

1
|N | , c

(t)
ij = 0

(5)

v
(t)
ij =

⎧⎨⎩
rmax−r

(t−1)
ij

|P | , c
(t)
ij > 0

r
(t−1)
ij −rmin

|N | , c
(t)
ij = 0

(6)

The change estimation phase. The second phase is to estimate the absolute

value of the preference change. In other words, we need to derive the value of v
(t)
ij

according to utility parameter, u
(t)
ij . Since we only have the information of usage

mode of each App, we propose a utility model to derive the utility parameter
based only on the usage mode. Intuitively, when a user spends more time on some
Apps, (s)he should spend less time on others. Thus, we claim that the overall
usage change among Apps should be equal to 0. Eq. 4 formulates the utility
model, where P (respectively, N) is the set of Apps with active (respectively,
inactive) mode. Suppose that the importance of each App is the same, the utility

parameter is derived by Eq. 5. As a result, we can obtain δ
(t)
ij from u

(t)
ij , as shown

in Eq. 6.

4.2 Reference-Based Prediction (RBP)

Although MBP successfully avoids the magnitude of usage counts by adopting
the usage mode and the utility model, ignoring the magnitude of the usage counts
makes the estimated preferences not be able to reflect users’ actual preferences.
For example, in Fig. 2, the preference of Messenger predicted by MBP becomes
higher and higher over time, since MBP increases the user’s preference once
the user invokes the Apps. However, we believe that the curve representing the
preference of Messenger should be like the Ideal one. To obtain the ideal result,
we propose a Reference-based Prediction (RBP) algorithm which compares the
usage counts within an App instead of with other Apps.

RBP uses the previous usage counts of each App as a reference history, and
derives a reference value from the reference history. In this paper, the size of
reference history is decided by a tunable parameter, h, which means how many
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Preference

rmin

rmax

Days5 10 30

MBP

Ideal

15 20 25

Fig. 2. The preferences derived by MBP comparing with the Ideal preferences

historical data points are included into the reference history. The concept is that
only when the actual usage count of an App is higher than the reference value,
its preference is increasing. Similarly, the preference decreases only when the
number of usage is less than the reference value.

slope =

(h+ 1)
t∑

k=t−h

k × c
(k)
ij −

∑
k

k
∑
k

c
(k)
ij

(h+ 1)
∑
k

k2 − (
∑
k

k)2
= 0 (7)

(h+ 1)

t∑
k=t−h

k × c
(k)
ij −

∑
k

k
∑
k

c
(k)
ij = 0 (8)

The trend detection phase. In this phase, we decide whether the value of δ
(t)
ij

is negative or positive. Here, we use the previous usage counts as the reference
history and derive an expected number of usage as the reference value from the
reference history. We adopt the linear regression to model the trend of reference
history, and thus, the expected number of usage count should make the slope
of the regression line be zero. Since the slope of a regression line represents the
trend of the data points, the expected number of usage count which makes the
regression line stay horizontal means that it makes the preference stay static.
Then, if the actual number of usage is larger (smaller, respectively) than the
expected number of usage, the preference is considered as increasing (decreasing,
respectively). We use Fig. 3(a) to illustrate the concept of obtaining the expected
number of usage by linear regression model. In Fig. 3(a), the three black points
are the reference history (i.e. h = 3) and the reference value is the expected
usage at time unit 10 (marked as a star point) which makes the regression line,
L1, be horizontal. Therefore, the goal of this phase is to find the value of star
point by satisfying Eq. 7 which can be simplified into Eq. 8.
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(b) Shifting the data points in
Fig. 3(a).

Fig. 3. Estimate the expected usage count (marked as a star point)

Since we only consider the slope of the regression line, we can shift the regres-

sion line left such that
h+1∑
k=1

xk = 0, where xk represents the shifted position in

x-axis of the k-th point of reference history and thus, xh+1 is the shifted x-axis
of the star point. As shown in Fig. 3(b), we can shift the regression line to the
positions of x-axis as < −1.5,−0.5, 0.5, 1.5 >. Eq. 9 shows how to calculate the
shifted x-axis positions. Now, we can simplify Eq. 8 into Eq. 10, where the index

of time units of c
(k)
ij is also shifted to (k + t− h− 1) for k = 1, 2, . . . , h+ 1.

xk =
2k − (h+ 2)

2
(9)

(h+ 1)
h+1∑
k=1

xk × c
(k+t−h−1)
ij = 0 (10)

Therefore, we can extract c
(t)
ij from Eq. 10, and it is the expected number of

usage EXP (c
(t)
ij ), which could be derived from Eq. 11. For example, the value

of the star point in Fig. 3(a) is EXP (c
(10)
ij ) = [(3 + 2)(12+ 11+ 5)− 2(1× 12+

2× 11 + 3× 5)]/3 = 42/3 = 14.

EXP (c
(t)
ij ) = −

h∑
k=1

xk × c
(k+t−h−1)
ij

xh+1

= −
2(1)−(h+2)

2 c
(t−h)
ij + . . .+ 2(h)−h−2

2 c
(t−1)
ij

2(h+1)−(h+2)
2

=

(h+ 2)
h∑

k=1

c
(k+t−h−1)
ij − 2

∑
k

k × c
(k+t−h−1)
ij

h
(11)
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The change estimation phase. As we have EXP (c
(t)
ij ) to be the reference

value, we need to formulate the utility parameter, u
(t)
ij , by calculating the dis-

tance between c
(t)
ij and EXP (c

(t)
ij ), denoted as dist(EXP (c

(t)
ij ), c

(t)
ij ). When c

(t)
ij

is far from EXP (c
(t)
ij ), it means that the user is considered more likely to change

his/her preference. Since we need a distance measure between 0 and 1, directly

subtracting EXP (c
(t)
ij ) from c

(t)
ij or the other way around will not work. We de-

vise the following distance measure. Here, dist(EXP (c
(t)
ij ), c

(t)
ij ) is estimated by

evaluating how many possible cases are between EXP (ctij) and c
(t)
ij . Therefore,

when the preference is increasing (m = 0), we use p(EXP (c
(t)
ij ) ≤ x ≤ ctij) rep-

resenting the probability of obtaining a number of usage in-between EXP (c
(t)
ij )

and c
(t)
ij , where x is a random variable. On the other hand, when the preference

is decreasing (m = 1), the distance between EXP (c
(t)
ij ) and c

(t)
ij is formulated as

p(c
(t)
ij ≤ x ≤ EXP (c

(t)
ij )). In this paper, we approximate the probability, p(c

(t)
ij ),

of using an App j by c
(t)
ij times in a given time duration l (a parameter for the

length of each time unit) by assuming a Poisson distribution shown in Eq. 12,

where λ = EXP (c
(t)
ij ). Now, the utility parameter, u

(t)
ij , could be formulated as

in Eq. 13 and the absolute amount of preference change, v
(t)
ij , as in Eq. 14. We

also list algorithm 1 to describe the flow of RBP in detail. In the first itera-

tion, we set r
(t)
ij to an initial preference, rinit, which is a tunable parameter. The

preference will stay the same when the actual number of usage equals to the
expected number of usage.

p(c
(t)
ij ) =

λc
(t)
ij × e−λ

c
(t)
ij !

(12)

u
(t)
ij = dist(λ, c

(t)
ij ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(λ ≤ x ≤ c

(t)
ij ) =

c
(t)
ij∑

k=λ

p(k) , c
(t)
ij > λ

p(c
(t)
ij ≤ x ≤ λ) =

λ∑
k=c

(t)
ij

p(k) , c
(t)
ij < λ

(13)

vtij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(rmax − r

(t−1)
ij )×

c
(t)
ij∑

k=λ

p(k) , c
(t)
ij > λ

(r
(t−1)
ij − rmin)×

λ∑
k=c

(t)
ij

p(k) , c
(t)
ij < λ

(14)

5 Experimental Results

To evaluate the accuracy of the derived dynamic preferences, we examine the
accuracy by testing the performance of using those derived preferences to make
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Algorithm 1. Algorithm of Reference-based Prediction

Input: Input: R(t−1), C(t)

Output: Output: R(t)

foreach c
(t)
ij do1

Let r
(t)
ij ← rinit2

end3

foreach initialled r
(t−1)
ij do4

EXP (c
(t)
ij )←

(h+2)
h∑

k=1
C−2

∑
k

k×c(k)

h5

if c
(t)
ij > EXP (c

(t)
ij ) then6

m← 0 P ← P ∪ Appj7
else8

m← 1 N ← N ∪Appj9
end10

λ← EXP (c
(t)
ij )11

if Appj ∈ P then12

v
(t)
ij ← (rmax − r

(t−1)
ij )×

λ∑
k=c

(t)
ij

λ
c
(t)
ij ×e−λ

c
(t)
ij !

13
else14

v
(t)
ij ← (r

(t−1)
ij − rmin)×

c
(t)
ij∑

k=λ

λ
c
(t)
ij ×e−λ

c
(t)
ij !15

end16

δ
(t)
ij ← (−1)m × v

(t)
ij17

end18

return R(t) ← R(t−1) +Δ(t)
19

recommendation. We adopt the All-But-One evaluation methods [11] which, for
each user, we iteratively skip one App from a user’s preference list, and then make
recommendation for this user. If the skipped App is recommended, we treat it
as a hit. The hit ratio of user u at time unit t is calculated by Eq. 15, where
k is the number of recommended Apps, I(·) is an indicator function defined in
Eq. 16, Appk(u, t) is the top-k Apps with highest preference score for user u at
time unit t, and Rk(u, t) is the list of k recommended Apps for user u at time
unit t. The length of one time unit, l, is 1 day for both App traces, and 7 days
for the Last.fm dataset. Eventually, the overall accuracy is the average hit ratio
of every user at every time unit, which is shown in Eq. 17.

HitRatiok(u, t) =

∑
i∈Appk(u,t)

IRk(u,t)(i)

|Appk(u, t)|
(15)

IRk(u,t)(i)

{
1 , i ∈ Rk(u, t)
0 , i /∈ Rk(u, t)

(16)

Accuracyk = OverallHitRatiok =

∑
u

∑
t HitRatiok(u, t)

|U | × |T | (17)
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5.1 Environment

The range of users’ preferences is set to [0,5]. The adopted recommendation
algorithm is Collaborative Filtering (CF) provided by Apache project, Mahout,
with its similarity function as Pearson correlation function.

Dataset description. We have three real-world datasets: two are App usage
traces and one is music listening log from Last.fm [12]. For the two traces of
App usage, one is a smaller trace which consists of 30 users and 226 Apps, while
the other one has 80 users and 650 Apps. Through the two different scales of
datasets, we can ensure whether our methods are scalable or not. For the music
listening dataset, we have a relatively huge amount of users in the Last.fm 1K-
users dataset. The music listening dataset consists of 1000 users and 48,361
music albums which is a very sparse dataset we have to deal with. The total
time duration for two App traces is half a year and for the music listening log is
one and half years.

rtij − rmin

rmax − rmin
=

ctij −min
k

ctik

max
k

ctik −min
k

ctik
(18)

rtij =
(ctij −min

k
ctik)× (rmax − rmin)

max
k

ctik −min
k

ctik
+ rmin (19)

Compared methods. To compare the accuracy of our proposed algorithms, we
adopt a usage-based method as the baseline. The usage-based method calculates
the users’ preferences only by the usage count. The item with largest number
of usage will be assigned the preference of rmax, while the one with smallest
number of usage will be assigned the preference of rmin. Besides, the preferences
of other items are calculated by an interpolation method shown in Eq. 18.

5.2 Performance Evaluation

In this study, we evaluate the accuracy under various number of recommended
Apps, k, and different length of a time unit, l over two proposed algorithms and
one baseline method. Then, we focus on the proposed Reference-based Prediction
(RBP) algorithm to see the accuracy when changing the parameter h which is
used to control how many historical data are used.

Accuracy changed by k. Since k would affect the hit ratio, we calculate the
hit ratio by different k from 5 to 25. However, although larger k could derive a
better performance on hit ratio, fewer recommended items is more meaningful
for users. Figs. 4(a) and 4(b) show the results of two App traces under different
numbers of recommended items, k. Obviously, the accuracy increases as k grows
up. Specifically, when k = 5, both RBP and MBP can achieve the accuracy of
more than 80%. we note that in Fig. 4(b), the baseline remains close to zero
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(a) App-small dataset. (b) App-large dataset. (c) Last.fm dataset.

Fig. 4. Accuracy evaluation with different k

even for k = 25, while in Fig. 4(a), the baseline achieves relatively low accuracy
compared with RBP for k = 5. This is because the App-large dataset consists
of more Apps and makes the dataset become sparser than App-small. Fig 4(c)
depicts the results of Last.fm dataset. Since the music listening dataset is much
sparser than the App traces, the performance on accuracy is not as good as the
accuracy of the App traces. However, RBP is always the best method, while the
baseline is close to zero. Here, for the two App traces, the length of one time
unit is one day and the size of reference history, h, of RBP is set to 4 time units;
for music listening dataset, the length of time unit is 1 week and the parameter
h of RBP is 6 time units.

Impact of parameter l. Here, we evaluate the accuracy change of various
length of a time unit. As can be seen in Figs. 5(a) and 5(b), both RBP and
MBP slightly decrease their accuracy when the amount of training data increases.
The best length of a time unit is one day which matches the human behavior.
By contrast, the baseline method increases the accuracy when the number of
training data becomes larger. Because the baseline method does not consider
the temporal information, more training data could provide more information to
overcome this drawback. However, when d > 6, the accuracy of baseline method
also declines. On the other hand, as shown in Fig. 5(c), the best length of a
time unit for Last.fm dataset is 7 days (one week) since music listening behavior
is sparse and users may repeat the songs they listened in one week. Here, the
reference history parameter, h, is set to 6 time units.

Impact of parameter h for RBP. Since the amount of reference history is a
critical parameter for RBP algorithm, we evaluate the accuracy of recommenda-
tions under various reference histories. Figs. 6(a) and 6(b) depict the results of
the App-small and App-large traces, and they reach the best accuracy on h = 4
and h = 5 respectively. Furthermore, the results of h ≥ 2 are much better than
the result of h = 1, because when h = 1, the number of reference points is too
few to reflect the trend of users’ usage. In addition, Fig. 6(c) shows the results
of the Last.fm dataset, and the best accuracy falls on h = 6 and l = 7. Because
the Last.fm is a sparse dataset, RBP algorithm needs more reference points and
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(a) App-small dataset. (b) App-large dataset. (c) Last.fm dataset.

Fig. 5. Accuracy evaluation with the length of a time unit varied

(a) App-small dataset. (b) App-large dataset. (c) Last.fm dataset.

Fig. 6. Accuracy evaluation with the size of reference history varied

training data to achieve a better performance. Empirically, the setting of h does
highly depend on different applications. In this paper, we suggest choosing a
proper h larger than 4, since the regression line constructed in the first phase of
RBP is more meaningful to reflect the trend of users’ usage.

6 Conclusion

We proposed a novel dynamic preference prediction problem which is to dy-
namically quantize a user’s preferences on Apps they have used from their usage
traces. Two effective algorithms are designed to solve this problem. One is named
Mode-base Prediction (MBP) which adopts a user’s binary usage mode (active
and inactive) and a proposed utility model to predict the preference value on an
App. The other one is named Reference-base Prediction (RBP) which discovers
a reference value by solving an optimization problem in a linear regression model
and constructs a probabilistic model to check if the current behavior satisfies the
reference model. RBP estimates the users’ preferences by measuring the differ-
ence between actual usage and the derived reference value. In the experiments
section, we evaluate the derived dynamic preferences by applying Collaborative
Filtering. When the derived preferences can provide more accurate recommen-
dation, the preferences are considered closer to users’ actual affinities. As the
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experimental results show, the derived preferences of both MBP and RBP are
effective. In addition, the RBP method can reach the accuracy of more than 80%
for App traces. We suggest that the proposed dynamic preferences are valuable
for many applications, such as providing recommendation of mobile applications,
predicting and analysing users behavior, and make marketing decision.
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Abstract. Impact summarization aims to highlight the influential aspects of a 
cited paper by selecting a few representative citation sentences into t he 
summary. Most existing work considers only the citation sentence information 
while the hybrid citation context associated with each citation sentence has been 
ignored. This paper proposes a context-aware approach. In the approach, 
different kinds of relationships among papers and authors are leveraged to 
jointly infer the impact of hybrid citation context, which is further integrated in 
a sentence language smoothing model to measure citation sentence relationships 
more effectively. The experimental results show that the proposed approach can 
achieve significantly better results than several baselines. 

Keywords: impact summarization, hybrid citation context, bibliographic 
network relationships. 

1 Introduction 

With the rapid evolution of scientific research, the volume of literature keeps on 
expanding fast. However, the explosive growth of the publications makes it r ather 
difficult to identify the influential aspects of papers quickly and effectively. 

The abstract part of  a s cientific paper may help researchers quickly understand  
the main content of the paper, but it o nly presents what the authors think to be the 
important contribution but not necessarily the actual impact of the paper. Actually, the 
impact of a paper should be judged by the consent of research community instead of 
the author himself. Moreover, the impact of a paper may dynamically change due to 
the progress of research. For example, a paper published before may be no longer the 
state of the art, but the research problem it addressed or the method it proposed will 
still attract peer attention. 

Therefore, we argue that only the abstract part representing the author’s point of 
view is not enough, and how other papers cite and describe the target paper needs to 
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be comprehensively investigated to generate an impact summary, which can not only 
help researchers digest the results of research better, but also facilitate other literature 
mining applications such as research trend prediction, and survey generation, etc. 

Actually, given a scientific paper, different citation sentences often focus on different 
aspects of that paper and all the citation sentences will provide a rich information source 
to summarize its impact [1]. Although some research has been done based on citation 
sentences, to the best of our knowledge, simultaneous consideration of the impact from 
hybrid citation context associated with each citation sentence has not been investigated. 
Therefore, we propose a novel approach by incorporating the impact of hybrid citation 
context into the summarization process. In t he proposed approach, three kinds of 
relationships among papers and authors are first leveraged to jointly infer the impact of 
hybrid citation context. Next, the hybrid citation context and its impact are integrated in 
a sentence language smoothing model to measure citation sentence relationships more 
effectively. Lastly, a unified graph ranking algorithm is adopted to evaluate the 
significance of each citation sentence by taking advantage of the relationships between 
citation sentences. 

The remainder of this paper is organized as follows. Section 2 reviews related work. 
The proposed approach is presented in Section 3. We t hen report the experimental 
results in Section 4. Finally, we present our conclusion and future work in Section 5. 

2 Related Work 

Automatic creation of scientific summaries has been studied for many years [2-4], but 
most previous work considers only the local f eatures of the scientific paper, w hile 
other contextual information has been mostly ignored. 

Recently, researchers have begun to make use of contextual information to aid  
news and webpage summarization [5-10]. Likewise, in order to summarize a paper, 
differentiating and utilizing citations from context have received increasing interests. 
Nakov et al. used sentences surrounding citations to create train ing and testing data 
for scientific paper s ummarization [11]. Nan ba and Okumura classified different 
citation sentences into three categories and explored how to use them to aid survey 
generation [12]. Schwartz and Hearst utilized the citation sentences to summarize the 
key concepts and entities in bioscience texts [13]. Teufel et al. adopted rhetorical 
status analysis to rev eal the scientific attribution of a pape r, in which each citation 
sentence is labeled as one of Own, Other, Background, Textual, Aim, Basis, and 
Contrast [14]. Kan et al. used annotated bibliographies to cover certain summarization 
aspects [15]. Elkiss et al. performed a large-scale study on the PubMed repository and 
confirmed the importance of citation sentences in understanding what a p aper 
contributes [16]. They also concluded that the citation sentences contain more focused 
information that generally does not appear in the abstract part of a paper. 

Recently, Mei and Zhai proposed a language model based approach t o impact 
summarization [17]. Qazvinian and Radev presented two different methods for the task 
[18] [19]. One utilized all th e citation sentences of a p aper to construct a si milarity 
graph first, and then applied network analysis technique to cluster graph nodes and 
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produce an impact summary. Another method first extracted a number of key phrases 
from the citation sentences, and then used these phrases to build the impact summary. 
How to produce more readable summaries based on citation sentences have also been 
investigated in [20] 

As far as we know, none of the previous studies has investigated the impact from 
hybrid citation context (i.e., the combination of citation paper context and citation 
author context), and has used the citation context in the same way as we did. In this 
study, we propose a c ontext-aware approach to simultaneously consider the impact 
from hybrid citation context and what is more, we further incorporate the hybrid 
citation context and its impact into a sentence language smoothing model to measure 
the citation sentence relationships beyond sentence level. 

3 Impact Summarization Based on Hybrid Citation Context 

Our approach incorporates hybrid citation context into the impact summarization, 
which consists of three steps: inferring the impact of hybrid citation context, 
estimation of citation sentence language model, and impact summary generation. 

3.1 Inferring the Impact of Hybrid Citation Context 

In the study, the sentence containing an explicit reference to th e target paper and 
describing the work being cited is called a citation sentence. All the other citing papers 
and citing authors associated with the citation sentences are called hybrid citation 
context. The citation sentences occurring in the papers with higher topical relevance will 
contribute more than those in less important papers. The citation sentences written by the 
authors with better authority expertise will contribute more than those written by less 
professional authors. Therefore, to summarize the impact of a particular paper, the impact 
of hybrid citation context (i.e., the topical relevance of citing papers and the authority 
expertise of citing authors) should be inferred first. 

Our approach operates over a bi bliographic network G. G=(V, E)=(VP∪VA, 
EP∪EA∪EPA). G connects three subgraphs GP, GA, and GPA. GP=(VP, EP) is a directed 
graph representing the citation relationships between papers. VP={pi | pi∈VP} denotes 
a collection of |VP| papers and EP is the set of citation links between them. GA=(VA, 
EA) is an undirected graph representing the co-authorship relationships between 
authors. VA={ai | ai∈VA} is the set of authors with size |VA|, and EA is the set of co-
authorship links between them. GPA=(VP∪VA, EPA) is a bipartite graph that ties GP and 
GA and represents authorship associations between papers and authors.  

Let RP(pi) and RA(ai) denote the topical relevance of paper p i and the authority 
expertise of author ai respectively. A query q can be constructed by extracting the title 
and keywords from the target paper, an d then the initial scores ( )0

P iR p can be 
calculated by ( )0 ( , )

P iR p ( | ) ( | )
i i

n t q
p p

t q

p q p tθ θ
∈

= = ∏ . Where ( | )
ipp t θ is the maximum 

likelihood estimation of the term t in the paper pi, and n(t, q) is the number of times 
that term t occurs in query q. Since an author ai can be represented by the set of papers 
authored by ai, the initial score ( )0

A iR a for author ai can be calculated similarly.  
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Inspired by [22] and based on the assumption that similar papers will have similar 
relevance for a given query, we refine the topical relevance of citing papers by 
making use of the paper citation graph GP and the initial topical relevance of papers.  

Firstly, the adjacency matrix WP
P P|V | |V |×∈ℜ  for the graph GP is constructed. If a  

paper pi cites another paper pj (i≠j), then we set the corresponding element 
ijpw  in 

WP as 1, oth erwise set it as  0. Then WP is further normalized as a ran dom walk 

transition matrix SP by
1/ 2 1/ 2 1/ 2 1/ 2

PS
2

T
P P P P P PD W D D W D− − − −+= . Where PD is the diagonal 

matrix with (i,i)-element equal to the sum of the i-th row of WP. 
Next, inspired by [21], a regularization framework is developed by regularizing the 

smoothness of relevance over the graph and the cost function associated with it is  
defined as follows: 

( ) ( ) ( ) ( )
P P

2 2V V
P jP i 0

P i P i
, 1 1

R pR p1 1 R p R p
2 2ij

ii jj

P p
i j iP P

s
d d= =

Ω = − + −   (1)

Where the first tem defines the global consistency of the refined relevance over the 
graph, while the second term defines the constraint to fit the initial relevance. By 
minimizing PΩ , the topical relevance of papers can be refined. 

Similarly, based on the assumption that if two authors co-authored many papers 
related to a given query, then their authority expertise in the queried field will be 
similar, we can refine the authority expertise of citing authors by making use of the 
author co-authorship graph GA and the initial authority expertise of authors. 

Firstly, the adjacency matrix WA
A A|V | |V |×∈ℜ  for the graph GA is co nstructed. If an 

author ai coauthored with another author aj (i≠j), then we set the corresponding 
element

ijaw in WA as the number of papers that they collaborated, otherwise set it as 0. 

Then WA is further normalized by 1/ 2 1/ 2
AS A A AD W D− −= . Where AD  is the diagonal 

matrix with (i,i)-element equal to the sum of the i-th row of WA. 
Next, a regularization framework is developed by regularizing the smoothness of 

expertise over the graph and the cost function associated with it is defined as follows 
[21]. By minimizing AΩ , the authority expertise of authors can be refined. 

( ) ( ) ( ) ( )
A A

2 2V V
A jA i 0

A i A i
, 1 1

R aR a1 1 R a R a
2 2ij

ii jj

A a
i j iA A

s
d d= =

Ω = − + −   (2)

In addition to PΩ and AΩ , another cost function PAΩ is also presented based on the 
graph GPA by considering the authorship relations between papers and authors. 

( ) ( ) ( ) ( )p pA A

2 2
V VV V

A AP i P i

1 1 1 1

R a R aR p R p1 1
2 2ij ji

ii jj jj ii

j j

PA pa ap
i j j iP A A P

s s
d d d d= = = =

Ω = − + −   (3)
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The intuition behind PAΩ  is that the authority expertise of an author is co nsistent 
with that of the relevant papers he published. 

To define the cost function PAΩ , the adjacency matrix WPA
A|Vp| |V |×∈ℜ  for the graph 

GPA is constructed. If a paper p i is written by an author aj, then we set t he 
corresponding element

ijpaw in WPA as 1, otherwise set it as  0. Then WPA is further 

normalized as SPA such as the sum of each row of the matrix equal to one. 
Next, a hybrid cost function Ω  that combines PΩ , AΩ , and PAΩ is developed in a 

unified regularization framework. 

1 1( )
2 2P A PAΩ = Ω + Ω + Ω  (4)

We can minimize the hybrid cost function Ω  using the standard conjugate gradient 
method, and a cl osed-form optimal solution can be deri ved. However, for a l arge-
scale dataset, an iterative–form computation strategy would be more effective. So in 
the study, we calculate the optimal solutions RP

* and RA
* by adopting the equivalent 

iterative computation strategy, which details are omitted due to space limit, and you 
can find it in [21].  

Finally, the converged solutions RP
* and RA

* correspond to the topical relevance of 
citing papers and the authority expertise of citing authors respectively. 

3.2 Estimation of Citation Sentence Language Model 

After inferring the impact of hybrid citation context, the next step is to make use of 
the contextual information to evaluate the relationships between citation sentences. 

From the language model perspective, it can be assumed that a citation  sentence s 
is generated from a sentence language model sθ and Dirichlet prior smoothing [23] is 
often adopted to estimate sθ as follows. 

( , ) ( | )( | )
| |

s
s

s

c w s p w B
p w

s

μθ
μ

+ ∗=
+

 (5)

Where |s| is the length of s, c(w, s) is the count of term w in s, p (w|B) is usually 

estimated by 
'

( , )
( ', )

w W

c w B

c w B
∈

. Here B is the whole background paper set and sμ is the 

sentence smoothing parameter which is set as 1000 as in [17]. 
In this study, we propose a citation sentence language smoothing model inspired 

by [6] to estimate ( | )sp w θ by using hybrid citation context as background, which can 
be defined as follows. 

( ) ( )P A( | ) ( | ) R ( | ) R ( | )
s ss s s i i

i

p w p w s p p w p a p w aθ α β γ= ∗ + ∗ ∗ + ∗ ∗  (6)
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Where α , β , and γ  belong to [0, 1] and α + β + γ =1. sp is the citing paper that 
citation sentence s belongs to and ( )PR sp  denotes the topical relevance of paper sp . 

sia is the i-th citing author of the citing paper sp . ( )AR
sia denotes the authority 

expertise of author
sia . ( | )

sip w a  is estimated by the papers authored by
sia . 

Based on the estimated citation sentence language model, the 
distance ( , )AvgKL i jDis s s  between two citation sentences si and sj can be measured by the 
average KL divergence as follows. 

( || ) ( || )
( , )

2
KL j i KL i j

AvgKL i j

Dis s s Dis s s
Dis s s

+
=  (7) 

( | )
( || ) ( | ) log

( | )
j

j

i

s

KL j i s
w W s

p w
Dis s s p w

p w

θ
θ

θ∈

=   (8) 

( | )
( || ) ( | ) log

( | )
i

i

j

s
KL i j s

w W s

p w
Dis s s p w

p w

θ
θ

θ∈

=   (9) 

Where W is th e set o f terms in our vocabulary and w is a ter m in W. And the 
similarity Sim(si, sj) between two citation sentences si and sj can then be inferred by 
the following formula. 

( )i j ( , )

1Sim s ,  s
1 AvgKL i jDis s se

=
+

 (10)

3.3 Impact Summary Generation 

In this step, all the citation sentences are to be evaluated by the significance and a few 
sentences with highest significant scores will be selected into the impact summary.  

In most of the methods for impact summarization, all citation sentences are treated 
uniformly. However, different citation sentences from different citation contexts 
should be treated  differently, since the citation sentences from a more important 
context should receive higher significant score. Therefore, it is  more reasonable to 
assign unequal weights to different citation sentences in accordance with the impact 
of different citation contexts which they belong to. 

Given a set o f citation sentences S for a tar get paper, let G S=(VS, ES) be an  
undirected graph to reflect the relationships between citation sentences in S. Here VS 
is the set of citation sentences. ES is the set of edges and each edge 

ijse is associated 

with the similarity Sim(si, sj) between sentences si and sj (i≠j), which is calculated by 
formula 10. Two sentences are connected if their similarity is larger than 0 and we let 
Sim(si, si)=0 to avoid self transition. We use the affinity matrix SM  to describe GS. 
Then SM is normalized to SM  by making the sum of each row equal to 1. 
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Based on SM , the significant score iSigScore(s )  for citation sentence si can be 
deduced from those sentences linked with it, which can be formulated in a recursive 
form as follows: 


i j S

 S

1SigScore(s )= SigScore(s ) M
| V |ji

all j i

δδ
≠

−∗ ∗ +  (11)

Where δ is the damping factor usually set to 0.85, as in the PageRank algorithm. For 
implementation, the initial significant scores of all citatio n sentences are set to  1. 
Usually the convergence of the iteration algorithm is achieved when the difference 
between the scores computed at two successive iterations for any citation sentences 
fall below a given threshold (0.0001 in this study).  

After evaluating the significance of each citation sentence, we select a f ew 
representative sentences with highest significant scores to g enerate the impact 
summary. 

Recall that in the proposed approach, we incorporate diverse relationships on GP, 
GA, and GPA into a unified regularization framework to infer the impact of hybrid 
citation context, and then rank citation sentences on GS by leveraging both the impact 
of hybrid citation context and the relationships between citation sentences, which can 
be intuitively represented by Figure 1.  

  

 

 
Fig. 1. The intuitive representation of the proposed approach 

4 Experiments and Evaluation 

4.1 Data Collection 

We evaluate the proposed approach on the dataset1, which contains 25 h ighly cited 
papers from computational linguistics domain. Each paper has a set of manually 

                                                           
1 http://www-personal.umich.edu/~vahed/resources/single.tar.gz 
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selected terms representing the most important impacts of that paper and shared by 
multiple evaluators who has read all the citation sentences of that paper. 

Considering that hybrid citation context may improve the performance of impact 
summarization, we extend the dataset by adding a number of papers with similar topic 
and related authors from the ACL Anthology Network2, which is a large collection of 
more than 18,000 p apers from computational linguistics domain. Table 1 s hows 
general statistics about the extended dataset. 

Table 1. The general statistics about the extended dataset 

Papers 7921 
Authors 1475 

Citation links between papers 38542 
Co-authorship links between authors 14176 

Authorship links between papers and authors 13951 

 
We deem that a good impact summary should cover more important impacts of the 

target paper. If an impact fact occurs in more citation sentences, it should be regarded 
as more important and be assigned higher weight. Under the condition, the citation 
sentence including more impact facts with higher weight will become a g ood 
candidate for impact summary. Accordingly, we construct a ref erence summary for 
each of the 25 h ighly cited papers by making use of the manually selected impact 
terms. We pick citation sentences that cover new and highly weighted impact terms 
into the reference summary until the defined summary length is reached. By this way, 
we expect a good system generated summary to be closer to the reference summary. 

4.2 Evaluation Metrics 

In the study, the ROUGE toolkit [24] i s adopted, which was officially adopted by 
DUC for automatic summarization evaluation. ROUGE metrics measure a summary’s 
content quality by counting overlapping units such as n-gram, word sequences, and 
word pairs between the automatically generated summary and the reference summary. 
The higher the ROUGE scores, the similar the two summaries are. 

A few recall-oriented ROUGE metrics have been employed including ROUGE-1, 
ROUGE-2, and ROUGE-SU4, etc. Among the different ROUGE scores, ROUGE-1 
has been shown to agree with human judgment most [24]. Therefore, we only report 
ROUGE-1 in the following experiments since other metrics gives very similar results. 

4.3 Experimental Results 

We compared our proposed approach with several baselines as follows. All the 
approaches for comparison are required to extract a few representative citation sentences 
into the impact summary for each of the 25 highly cited papers. The main difference 
                                                           
2 http://clair.eecs.umich.edu/aan_site2/index.php 
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between our approach and other baselines is that we leverage the hybrid citation context 
associated with each citation sentence while other baselines do not. 

Random: In this baseline, the sentences are selected randomly from the set of 
citation sentences and added to the impact summary. 

OTS [25]: It in tegrates shallow NLP techniques with statistical word frequency 
analysis to rank and select citation sentences. 

LexRank [26]: It runs on the set of citation sentences by first constructing a 
citation sentence affinity graph, and then extracting a few informative citation 
sentences based on eigenvector centrality. 

C-LexRank [18]: This is another state-of-the-art impact summarizer in which the 
citation sentences are firstly clustered, and then the sentences within each cluster are 
ranked via LexRank algorithm. 

We show the evaluation results of different methods in Tables 2, and the highest 
ROUGE-1 scores are shown in bold type. 

Table 2. The evaluation results of different methods 

Method ROUGE-1 

Our Approach 
C-LexRank 
LexRank 

OTS 
Random 

0.39507 
0.37837 
0.36021 
0.34404 
0.32966 

 
In the experiments, the best result of our approach is achieved when the weight 

adjusting parameters in the formula 6 are set as f ollows: α =0.4, β =0.3, and γ =0.3. 
These parameters give different weights to the citation sentence, the citation paper 
context, and the citation author context respectively. 

Seen from Table 2, ou r proposed approach using the hybrid citation context 
achieves the best performance compared to th at of the baseline approaches (i.e. C -
LexRank, LexRank, OTS, and Random), which demonstrates that both citation paper 
context and citation author context are critical for improving the performance of 
impact summarization. 

C-LexRank and LexRank perform better than those of OTS and Random. This is 
mainly because both C-LexRank and LexRank make use of the inter-relationships 
between citation sentences to rank them globally, while OTS only depends on the 
local features. 

C-LexRank outperforms LexRank in our experiments, which indicates the use of 
appropriate cluster-level information is an improvement over the use of citation 
sentences alone. 

Note that all these baselines generate the impact summary based only on the citation 
sentences or s entence clusters, regardless of the impact from hybrid citation context. 
Our proposed approach shows significantly better performance on ROUGE scores, and 
the result difference between our approach and other baselines is significant at the 95% 
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statistical confidence level. These observations again demonstrate the effectiveness of 
our approach by exploiting hybrid citation context to aid impact summarization. 

In the following, we will explore the effect of different parameters in our approach. 
The key parameters we want to investigated are α , β , and γ . 

Figure 2 t o 4 dem onstrate the influence of these parameters in the proposed 
approach when we tune a parameter from 0 to 1 with the step length 0.1 and vary the 
other two for the best performance to achieve. 
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Fig. 2. ROUGE-1 score of the proposed approach vs. α  
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Fig. 3. ROUGE-1 score of the proposed approach vs. β  
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Fig. 4. ROUGE-1 score of the proposed approach vs. γ  



364 P. Hu et al. 

From Figure 2 to 4, it can  be found that the citation sentence information 
controlled by the parameter α is relatively stable and have little i mpact on the 
performance. Both citation paper context and citation author context can help improve 
the performance, but excessive dependence on any one of them will impair the 
performance to a certain extent. 

5 Conclusion and Future Work 

This paper pr oposes a con text-aware approach to impact summarization. In the 
proposed approach, different kinds of relationships among papers and authors are 
leveraged to jointly infer the impact of hybrid citation context, which is further 
integrated in a sentence language smoothing model to m easure citation sentence 
relationships more effectively. 

In future work, it would be interesting to investigate the performance of the 
proposed approach on larger bibliographic datasets such as DBLP, ArnetMiner, etc. 
Besides, we will explore machine learning based methods to determine the parameters 
of our approach in an adaptive way. 
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Abstract. The widely used mean-variance criteria is actually not the
optimal solution for asset allocation as the joint distribution of asset re-
turns are distributed in asymmetric ways rather than in the assumed
normal distribution. It is a computationally challenging task to model
the asymmetries and skewness of joint distributions of returns in high
dimensional space due to their own complicated structural complexities.
This paper proposes to use a new form of canonical vine to produce
the complex joint distribution of asset returns. Then, we use the utility
function of Constant Relative Risk Aversion to determine the optimal
allocation of the assets. The importance of using the asymmetries infor-
mation is assessed by comparing the performance of a portfolio based
on the mean-variance criteria and that of a portfolio based on the new
canonical vine. The results show that the investors using the forecasts of
these asymmetries can make better portfolio decisions than those who
ignore the asymmetries information.

Keywords: Canonical Vine,Mean Variance Criterion, Financial Return.

1 Introduction

Financial asset returns follow non-normal distributions—asymmetries and skew-
ness very often exist in the distribution of financial asset returns such as in stock
returns [2] and [3]. These asymmetries facts violate the traditional distribution
assumption on financial asset returns, making the traditional mean variance anal-
ysis [10] unreasonable. Some previous studies [12], [13] and [15] had attempted
to compare the expected utility obtained from the mean-variance criterion with
the approximated utility obtained from the benchmark portfolios (those equally
divided portfolios). It was found that the mean variance criterion had poor per-
formance on analyzing the skew and asymmetric portfolios. The mean variance
criterion was good only at the portfolio that consists of riskless assets as risk-
less assets are driven by an normal distribution in line with the mean variance
criterion assumption.

Arrow [4] laid down a theoretical foundation for the importance of using dis-
tributional asymmetries. He suggests that a desirable property of utility func-
tions (including the Constant Relative Risk Aversion utility function) is the

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 366–377, 2013.
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non-increasing absolute risk aversion. It means that under the non-increasing
absolute risk aversion, investors may have a preference for positively skewed
portfolios. Asymmetries in the dependence structure have direct impact on the
skewness of the portfolio return. Therefore, while making the portfolio decision
favorable to risky assets, it is also essential to consider the existence of and the
impact between asymmetries and skewness. In the past, some studies, such as
[12] and [13], had proposed models to construct the dependence structure with
only two financial assets. That is far away from the need of investors. Investors
and trading agents generally purchase tens of risky assets, rather than two assets
in order to reduce aggressive risk. Therefore, it is demanded to develop a model
that can resolve difficulties in the high dimensional asset allocation.

There are three challenges in the high dimensional asset allocation. First, as
discussed above, the correlations between financial assets are asymmetric, rather
than normal. With high dimensional input, the dependence structure becomes
extremely complex, it is is difficult to capture and model all of these correlations
between assets. Second, it is important to obtain the joint probability density
function. However, the high dimensional joint distribution function has a big
number of parameters which are increased exponentially as the data dimensions
increase. Third, each individual asset has its own characteristics, such as volatil-
ity clustering and fat tail. It is a challenging task to combine these characteristics
into the dependence structure.

To fulfill this need, we propose to use a canonical vine based dependence
model for an optimization of the high dimensional asset allocation. The new
model can capture asymmetric and skew correlations in the dependence struc-
ture, and can optimize the dependent structure. To address the high dimensional
issue, we employ the idea of partial correlation to construct the canonical vine
in our dependence model. It can capture the most important correlations in the
dependence structure, and can reduce the complexity of the dependence struc-
ture remarkably to make invertors understand comprehensively. In addition, we
also employ the ARMA-Garch model for the estimate of marginal distribution
to capture volatility clustering and fat tail in financial assets.

The main contribution made by this paper is the partial correlation based
canonical vine. The canonical vine is optimized to be suitable to high dimensional
data input as it can remarkably reduce the number of nodes and parameters and
simplify the canonical vine structure. Suppose there are 50 variables, the normal
canonical vine will generate 1225 nodes. However, in our partial correlation based
canonical vine, the number of nodes is only one tenth of that (around 267 nodes).
In addition, our method can test hypotheses in parallel such as: (1) whether these
asymmetries are predictable out of sample; and (2) whether we can make better
portfolio decisions by using the forecasts of these asymmetries. If the answer
to any of these questions is ’yes’, then the asymmetries are very important for
the high dimensional asset allocation. Finding models to fit in-sample data very
well without considering the asymmetries and skewness does not imply that it
will result in a better out-of -sample portfolio decisions. In the paper, we first
build the model which can capture all important asymmetries and skewness
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in the dependence structure, then we compare it with those models that do
not consider the correlations and/or asymmetric dependence structure between
financial assets.

The rest of the paper is organized as follows. Section 2 presents a short in-
troduction to copula theories which is closely related to canonical vine. Section
3 describes the problem of optimal assets allocation in portfolio, including how
to construct the optimal canonical vine and marginal distribution. Section 4
discusses how to evaluate the performance of our model with equally divided al-
location and mean-variance criterion. In Section 5, we apply the optimal canon-
ical vine to capture the dependence structures of two portfolios, and evaluate
the performance of our model in comparison to the performance by the mean
variance criterion and equally divided allocation method. Section 6 concludes
the paper with a summary.

2 Related Work

Copula is a useful tool to model the non-normal distribution. It can capture
the complicated correlation between variables, including linear or non-linear.
According to Sklar’s theorem [14], a copula function is defined to connect uni-
variate functions to form a multivariate distribution function. The definition of
a copula function is given by:

F (x1, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)) (1)

where, x = [x1, x2, ..., xn] is a random variable vector, F is a joint distribution
and F1, F2, ..., Fn are the marginal distributions of the corresponding variables
respectively. It shows that all multivariate distribution functions, and copula
function can be used in conjunction with univariate distributions to construct
multivariate distribution functions. The differential of Equation (1) is:

f(x1, ..., xn) =
n∏

i=1

fi(xi) · c(F1(x1), F2(x2), ..., Fn(xn)) (2)

where, c is the density copula function and fi(xi) is the density function of
marginal distributions. Equation (2) shows that the joint density function in-
cludes two parts. One is the description of the marginal behavior of individual
factor, which is marginal distributions. The other is the description of their de-
pendence structure, which is copula function. It implies an important property
that copula function can separate dependence structure from marginal distribu-
tion function. We can model the individual variables using whichever marginal
distributions provide the best fit and then model the dependence structure by
using the copula function. The useful property can help understand the complex
dependence structure, and describing the complex dependence structure on a
quantile scale. The deep instruction regarding with copula can be found in [11].

Patton [12] builds an asset allocation with copula. The portfolio is composed
by two assets, evaluating the asset allocation with the investor’s utility function.
Jondeau and Rockinger [7] use the Taylor series to calculate the expected utility.
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An obvious advantage of the method is that it remains operational even if a large
number of assets are involved. Sun et al. [15] proposed a copula arma-garch
model to predict the co-movements of six German equity market indices at high
frequency. It was found that the copula arma-garch model is able to capture
multi-dimensional co-movements among the indices.

3 The Portfolio Optimization Problem and Our New
Method

3.1 CRRA Optimization Function

Suppose that hypothetical investors follow the class of Constant Relative Risk
Aversion (CRRA) utility functions:

U(γ) =

{
(1− γ)−1 · (P0Rport)

1−γ , ifγ �= 1
log(P0Rport), ifγ = 1

(3)

where γ is the risk aversion parameter, P0 is the initial wealth and Rport is the
portfolio return. In this paper, the value of risk aversion parameter is considered
at four different levels, including γ = 2, 5, 7 and 10, as suggested by [5]. We use
CRRA utility function to calculate the expectation return of the hypothetical
investors as its prominence in the finance literature. If the results are obtained
by using the CRRA utility function, then the methods or algorithms are used
as a conservative estimate of the other possible results or gains by using other
more sensitive utility functions.

The next step is to built a portfolio of returns. Our work is focused on the
portfolio return with high dimensional assets, defined as

P0Rport = P0 · (1 +
n∑

i=1

ωiXt) (4)

where Xt = xi,t is the asset return at time t, and ω is the proportion of wealth
for each asset i. Generally, the initial wealth P0 is set to zero as it does not affect
the choice of weights. Suppose the joint distribution is Ft, with the associated
marginal distribution F1,t, ..., Fn,t, and copula Ct. We develop the density fore-
casts of the joint distribution F1,t+1, ..., Fn,t+1 and the copula function Ct+1.
Then, we use the forecast function to calculate the optimal weights ω∗

t+1 for
the portfolio. The optimal weights, ω∗

t+1, are found by maximizing the expected
CRRA utility function:

ω∗
t+1 =argmax

ω∈W
EFt+1 [U(1 +

n∑
i=1

ωi,t+1Xt+1)]

= argmax
ω∈W

∫
x1

∫
x2

...

∫
xn

U(1 +
n∑

i=1

ωixi) · ft+1(x1, x2, ..., xn) · dx1 · · · dxn

=argmax
ω∈W

∫
x1

∫
x2

...

∫
xn

U(1 +

n∑
i=1

ωi,t+1xi,t+1) · f1,t+1(x1) · · · fn,t+1(xn)

· ct+1(F1,t+1(x1), F2,t+1(x2), ..., Fn,t+1(xn)) · dx1 · · · dxn

(5)
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where Wt+1 = {(ω1,t+1, ..., ωn,t+1) ∈ [0, 1]n :
n∑

i=1

ωi ≤ 1} for the short sales con-

strained investors. The investors will estimate the model of conditional distribu-
tion of returns by using maximum likelihood estimation, and then optimize the
portfolio weights via the predicted distribution of return. For the integral func-
tion, we use Monte Carlo replications to estimate the value of integral. For the
optimal portfolio weights, we employ the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm to obtain the optimal weights.

3.2 Partial Correlation Based Canonical Vine: Our New Ideas

The key step in Equation 5 is to form the joint density function ft+1(x1, ..., xn) at
time t+1. Equation (2) shows that the joint density function can be divided into
two parts: the copula function ct+1 and the marginal distributions f1,t+1(x1) · · ·
fn,t+1(xn). In this Section, we discuss how to produce a copula density function.
The construction of marginal distributions is explained in Section 3.3.

One way to build high-dimensional copula density function is to use canon-
ical vine to build dependence structure as proposed by [1]. The basic scheme
for modeling high-dimensional dependence structure with canonical vine is to
decompose multivariate density functions into many conditional pair copulas.
These pair copulas are bivariate copulas in one time. The model based on canon-
ical vine transforms one high dimensional dependence structure into multiple
two-dimensional structures. However, one important issue of canonical vine is
that if the variables are large in number, the canonical vine will become quit
complex. In addition, the nodes of canonical vine will increase exponentially as
the variables increase. Therefore, we propose a new partial correlation based
canonical vine to model high dimensional dependence structure.

The principle for the new canonical vine construction is to capture the most
important correlation in the dependence structure, meanwhile to decrease the
number of nodes, and to reduce the complexity of dependence structure. That is,
the new canonical vine can capture the most important correlation, and ignore
the weak correlations. Following this principle, we develop a new algorithm to
construct and optimize the canonical vine by using partial correlation. First, we
construct the canonical vine by using partial correlation rather than by using
bivariate conditional copula function. Then, we optimize the partial correlation
based canonical vine by setting the absolute small value of partial correlation to
zero to decrease number of nodes and reduce the complexity of canonical vine.
The optimal partial correlation based canonical vine can be mapped into the
canonical vine based on bivariate conditional copula, provided that pair copulas
are from the elliptical copula family [8]. The algorithm to construct the optimal
canonical vine is presented in Algorithm 1.

We take an example to explain how to construct and optimize the canonical
vine. Suppose there are one comprehensive index and 6 stocks which denoted
by M , A, B, C, D, E and F . The canonical vine will consist of 6 trees and
21 nodes in both the canonical vine structure based on partial correlation and
conditional copula. All the trees and nodes are shown in Figure 1. Each node
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Algorithm 1. Canonical Vine Construction and Optimization

Require: observations of n input variables
1: Calculate all values of partial correlation, and then allocate the smallest absolute

value of partial correlation to the node in Tn−1 (Tn−1 is the bottom tree).
2: for k = 1, ..., n− 2 do
3: If Ti > Tk, find an appropriate root variables in Ti which can minimize the

function
∑
|ρc:d|, where Ti indicates the ith tree and Tk is broken level tree;

4: If Ti ≤ Tk , find an appropriate root variables in Ti which can minimize the
function of

∑
log(1− ρ2c;d);

5: end for
6: There will be (n− 2)− 1 canonical vines as k = 1, ..., n− 2. Calculate the function
−log(D) of all of the canonical vines based on partial correlation, and choose the
maximum value of the function as the ’best’ canonical vine. (D is calculated in
Equation 7);

7: For the ’best’ canonical vine, the small absolute values of partial correlation, which
are less than significance value τ , are set to zero;

8: The optimal canonical vine based on conditional copula is corresponding to the
canonical vine based on partial correlation;

9: return The optimal canonical vine dependence structure.

can be allocated to one bivariate copula or one partial correlation. The first step
is to build the partial correlation based canonical vine. The partial correlation
of all variables can be obtained by using the following Equation:

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ21n;3,...,n−1 ·
√

1− ρ22n;3,...,n−1

(6)

For these 7 variables, there are totally 21 partial correlations and 6 trees. Ti is
defined as the ith tree in the paper. The smallest absolute value of these partial
correlations is allocated to the root node in T6 (the sixth tree shown in Figure
1) as the T6 only has one node. Suppose the selected partial correlation in the
T6 is ρE,F ;M,A,B,C,D. The variables in T6 are variables E and F . The sets c6 =
{E,F} and d6 = {M,A,B,E, F} are called conditioned set and conditioning set
respectively. The next step is to chose the root variable in T5. In T5, there are two
nodes which can be allocated as two partial correlations. The root variable of T5

should be from d6. If the selected root variable of T5 is D, then it can generate
two new conditioned sets: c5 = {D,E} and c′5 = {D,F}. The corresponding
conditioning set for c5 and c′5 is d5 = {M,A,B,C}. The partial correlations
allocated to the two nodes are ρD,E;M,A,B,C and ρD,F ;M,A,B,C. If we choose C
as the root variable of T5, the two new conditioned sets are: c5 = {C,E} and c′5 =
{C,F}. The corresponding conditioning set for c5 and c′5 is d5 = {M,A,B,D}.
The partial correlation allocated to the two nodes will be ρC,E;M,A,B,D and
ρC,F ;M,A,B,D. If the selected root variable of T5 is M , A or B , the processes
of generating conditioned and conditioning set are similar to those root variable
as C or D. However, we need to identify which variable is the most appropriate
root variable in T5.
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We proposed a method to identify the appropriate root variable, which is
called tree broken method. In the paper, we define that k is a tree-broken level.
For trees beyond the kth tree (Ti > Tk), the appropriate root variable must min-
imize the value of function

∑
|ρc:d|. For trees within the kth tree (Ti ≤ Tk), the

appropriate root variables must minimize the value of function
∑

log(1− ρ2c;d).
For example, if k = 3 , for T1, T2 and T3 (the first, second and third trees), the
appropriate root variables for these trees must minimize the value of function∑

|ρc:d|. For T4, T5 and T6 (the fourth, fifth and sixth trees), the appropriate
root variables for these trees must minimize the value of function

∑
log(1− ρ2c;d).

The parameter k can be chosen from 1, 2, 3, 4, 5. Therefore, there should totally
have 5 canonical vines. Then, the ’Best’ canonical vine should maximize the
value of function −log(D), where D is the determinant of canonical vine which
is calculated by using:

D =
∏
{i,j}

(1− ρ2i,j;d(i,j)) (7)

where d(i, j) is the conditioning set excluding variable i, j. The corresponding
conditioned set is i, j. The small absolute values of partial correlation in the
’Best’ canonical vine, which is less than the significance value τ , is set to zero.
Finally, the optimal canonical vine structure based on partial correlation is built.
Since the canonical vine based on conditional vine has a similar structure, we
can construct the optimal canonical vine based conditional copula by using the
structure based on partial correlation.

M

B
C D E

F

M,A

M,B

M,C M,D
M,E

M,F

(The First Tree)1T
B,E|M,A
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Fig. 1. Canonical Vine Trees

3.3 Marginal Models Specification

The second step of constructing joint probability density function is to build the
marginal distribution for each asset return. In the paper, we choose the AR(1)-
Garch(1,1) as the marginal distribution. Hansen and Lunde [6] provided evidence
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that it is difficult to find a volatility model which outperforms the Garch(1,1)
model. We estimate the AR(1)-Garch(1,1) with skewed student t innovations.
The reason is that the skewed student t innovations can capture and model the
characteristics of financial asset return, such as volatility clustering and fat tail.

3.4 Parameter Estimation

We use a two-step procedure to estimate the canonical vine copula and marginal
distributions. Taking a log of both sides in Equation 2, we can obtain:

log f(x1, ..., xn) =

n∑
i=1

log fi + log c[F1(x1), ..., Fn(xn)] (8)

The joint log-likelihood is equal to the sum of the marginal log-likelihoods and
the canonical vine copula log-likelihood. Parameters can be estimated sepa-
rately by optimizing the marginal log-likelihood and canonical vine copula log-
likelihood in two steps.

3.5 Evaluation

In the paper, we use the final amount of the portfolio, the utility obtained by
daily returns, to compare the assets allocation with different portfolio decisions.
The final amount is the amount dollars obtained at the end of entire out of sample
period (testing period). To compare the utility, we use opportunity cost, also
called management fee or forecast premium, which is the amount that investor
would pay to switch from the the equally divided portfolio to analyzed allocation.
The benchmark of assets allocation is by equally divided portfolio, which means
the weights of all assets are equal. We compare the performance of canonical vine
with mean-variance criterion. Suppose that rport is the optimal portfolio return
obtained by canonical vine or mean-variance, and r∗port is the return obtained
from the equally divided portfolio. In other word, the opportunity cost is actually
return which is added to the return obtained from equally divided portfolio, to
make sure the investor be indifferent to the returns obtained from the analyzed
model. Then, the opportunity cost Δ can be defined as:

U(1 + rport +Δ) = U(1 + r∗port) (9)

Equation (9) can be resolved via the Taylor approximation with CRRA utility
function in [7].

4 Asymmetry Analysis with Case Study

4.1 Data and Model Specification

We used two financial asset portfolios in the evaluation of the performance of the
newly proposed model. One portfolio composes a comprehensive index S&P 500,
and 50 stocks from 10 industries. The other portfolio consists of a comprehensive
index Stoxx50 Euro, five national leading stock indices, and 44 stocks. All the
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data are downloaded from Yahoo Finance (http://finance.yahoo.com). The data
in the both portfolios span 1200 trading days from 01/10/2004 to 31/07/2009. In
the data pre-processing step, these returns and indices are calculated by taking
the log difference of the prices on every two consecutive trading prices.

As described in Section 3.3, AR(1)-Garch(1,1) is considered as the marginal
distribution to capture the skewness. The Ljung Box Q test was used for checking
the existence of residual autocorrelation for all of the stocks and indices. If the
marginal distribution of any stock or index fails the Q test, we increased the
value of p in the AR(p)-Garch(1,1) model until all pass the Q test. The results
of the Ljung Box Q test are not listed in the paper due to page limit.

For the canonical vine, we choose the ’best’ canonical vine that maximizes the
value of function −log(D). The root variables in T1 are the comprehensive indices
S&P500 and Stoxx50E. This is reasonable as the comprehensive index has much
stronger correlation than other stock prices very often. In the optimization of the
canonical vine, we considered to use different values of τ (significance values), and
compared with the ’unprune’ canonical vine. The comparison between canonical
vines are based on function −log(D), where D is the determinant as mentioned
in Section 3.2. The function is used to calculate the determinant of the partial
correlation based canonical vine, and it can be then used for comparing the
similarity of vine structures [9]. In the paper, all the nodes in the canonical vine
are assigned to bivariate t copulas.

Table 2 shows all of the partial correlations in the ’unprune’ canonical vine. All
of these partial correlations are used with absolute value as our study is focused
on the extent of correlations rather than positive/negative correlations. It can be
seen that Stoxx50E has a value larger than S&P500 at all levels. It indicates that
the stocks in the portfolio of Stoxx50E has much stronger correlations than those
in the portfolio of S&P500. This is understandable as the portfolio of S&P500 is
built by using 500 stocks from 10 industries. The stocks in the portfolio S&P500
is strictly selected from the least correlations the each other. The result shown in
Table 1 implies a similar conclusion. Table 1 shows the determinant and number
of nodes under various values of τ . The value of function −log(D) means the
strength of canonical vine. It is observed that the portfolio of S&P500 has more
number of nodes in ’unprune’ canonical vine than the portfolio of Stoxx50E as
S&P500 has 51 variables, compared with 50 variables in Stoxx50E. However,
the portfolio of Stoxx50E has more nodes than the portfolio of S&P500 in each
corresponding level of τ . It suggests that Stoxx50E has stronger correlations.
Under the case of the optimal canonical vine (τ = 0.1), for the both portfolios,
the optimal canonical vine has less number of nodes and parameters, namely
only one tenth of those of the ’unprune’ canonical vine. It means that the one
tenth nodes can contribute the majority of the dependence structure. Other
nodes contribute a little in the dependence structure.

4.2 Experiment Results and Analysis

The performance of our model was evaluated by measuring the opportunity
cost. A moving window of 1200 observations, approximately 5 years of daily
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returns from 01/10/2004 to 31/07/2009, was used to construct the model. The
test period was from 01/08/2010 to 01/03/2012 with 730 observations of daily
returns. We evaluated the performance of our model with the two portfolios: the
European stock markets Stoxx50E and United Stated stock markets S$P500.
All the portfolio decisions are re-balanced at the end of every month, and no
cost is assumed for the re-balancing. We considered to compare the performance
of our model with the mean variance criterion and the equally divided allocation
to understand whether our model is useful.

Table 3 shows the results related to the opportunity costs and the final
amounts for the two portfolios S$P500 and Stoxx50E. Table 3 provides strong
evidence that our canonical vine based model is the best at all levels γ for both
portfolios. In detail, for the portfolio S&P500, we compare the two canonical
vines with τ = 0.1 and 0.05. There is no obvious difference between these two
canonical vines, indicating that the two canonical vines implement a similar fore-
casting of the samples. However, the number of parameters in the canonical vine
(τ=0.1) is only half of those in the canonical vine (τ = 0.05). The canonical
vine(τ = 0.1) is sufficient to model the dependence structure.

The mean variance criterion has a poor performance as the opportunity cost
is negative at all of the levels γ. It indicates that if investors conduct assets
allocation on a basis of mean variance analysis, the final profit would be less
than those on the basis of equally divided allocation. Therefore, the mean vari-
ance criterion is not useful. Considering the good performances of canonical vine
model, the mean variance criterion, which is caused by the normal distributions,
cannot catch the features of asymmetry and skewness of these stocks and indices.
For the portfolio Stoxx50E, the mean variance criterion is not useful either. The
performance by the mean variance criterion in Stoxx50E is worse than those in
S&P500. The final amount is even less than one, suggesting that investors will
obtain loss if they allocate the assets under the mean variance criterion. The
trouble to the mean variance criterion is that Stoxx50E has stronger asymme-
try and skewness than those in S&P500. However, the two canonical vines in
Stoxx50E perform better than those in S&P500 as the opportunity cost is large
at all level γ.
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Fig. 2. Portfolio values over 35 months for the canonical vine (τ = 0.1), mean variance,
and equally divided allocation, γ = 2. The left one is for S&P500, and the right one is
for Stoxx50E.
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Table 1. Determinants and Numbers of Nodes for Portfolio S&P500 and Stoxx50E

τ unprune 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.20

Stoxx50E
−log(D) 28.36 28.35 28.31 28.24 28.09 27.87 27.66 27.39 27.15 26.92 26.46 22.74
No. nodes 1225 1059 875 758 638 526 456 392 349 317 267 85
S&P500
−log(D) 13.22 13.21 13.16 13.05 12.91 12.70 12.41 12.09 11.81 11.45 11.16 9.44
No. nodes 1275 1044 847 678 560 457 362 285 235 186 153 62

Table 2. Partial Correlations in Canonical Vine for Portfolios S&P500 and Stoxx50E

Min Max Mean 25%Quantile 50%Quantile 75%Quantile

S&P500 0.0002 0.5281 0.0572 0.0144 0.0340 0.0641
Stoxx50E 0.0004 0.8702 0.0787 0.0171 0.0422 0.0929

Table 3. Opportunity Costs and Final Amounts for S&P500 and Stoxx50E

S&P500 Stoxx50E

Relative Risk Aversion (γ) 2 5 7 10 2 5 7 10

Opportunity Cost
Canonical Vine (τ = 0.1) 1.33% 3.21% 5.64% 7.32% 1.91% 4.19% 6.14% 10.01%
Canonical Vine (τ = 0.05) 1.31% 3.18% 5.56% 7.21 1.89% 4.17% 6.12% 9.95%
Mean Variance Criterion -2.36% -3.62% -1.24% -1.19% -2.55% -6.52% -3.20% -1.40%
Final Amount
Canonical Vine (τ = 0.1) 1.39 1.41 1.46 1.50 1.53 1.58 1.62 1.64
Canonical Vine (τ = 0.05) 1.40 1.42 1.47 1.50 1.54 1.60 1.62 1.65
Mean Variance Criterion 1.02 1.00 1.04 1.04 0.93 0.80 0.91 0.99
Equally Divided Allocation 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.06

Figure 2 shows the portfolio values obtained from our canonical vine, the mean
variance criterion and equally divided allocations at the end of each month. The
trend obtained from our canonical vine in Stoxx50E shows stronger increasing
trends and less volatility than those in S&P500. It indicates that the canonical
vine has a better performance in Stoxx50E. For the trend obtained from the
mean variance criterion, there is no obviously different from the trends from the
equally divided allocation in S&P500. However, the trend of mean variance is
worse than those of the equally divided allocation. We can find that the mean
variance criterion performs a bit better in S&P500 than inStoxx50E.

Overall, we can see that: (i) The new canonical vine has a better performance
in high dimensional assets portfolios of strong asymmetry and skewness; (ii) The
mean variance criterion does not have a good performance in high dimensional
assets portfolio that has asymmetry and skewness; and (iii) Compared with the
equally divided allocation, our new canonical vine has a better performance.
However, the performance by the mean variance criterion has no obvious differ-
ence, or even worse if the high dimensional assets portfolio has strong asymmetry
and skewness.
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5 Conclusion

The paper proposed a canonical vine based model to optimize the asset allo-
cations of high dimensional assets. To address the touch computational issues
caused by high dimensional assets, we employed the partial correlation tech-
nique to reduce the complexity of the dependence structure to make invertors
understand the model easily. Our experimental results and analysis have shown
that the canonical vine model has a better performance for portfolios of strong
asymmetry and skewness in comparison to the mean variance criterion, a current
widely used method. As a future work, we will extend partial correlation based
canonical vine to work with more copula families.
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Abstract. Named entity recognition (NER) is a fundamental task for
mining valuable information from unstructured and semi-structured
texts. State-of-the-art NER models mostly employ a supervised machine
learning approach that heavily depends on local contexts. However, re-
sults of recent research have demonstrated that non-local contexts at the
sentence or document level can help advance the improvement of recog-
nition performance. As described in this paper, we propose the use of a
context gazetteer, the list of contexts with which entity names can co-
occur, as new non-local context information. We build a context gazetteer
from an encyclopedic database because manually annotated data are
often too few to extract rich and sophisticated context patterns. In addi-
tion, dependency path is used as sentence level non-local context to cap-
ture more syntactically related contexts to entity mentions than linear
context in traditional NER. In the discussion of experimentation used for
this study, we build a context gazetteer of gene names and apply it for a
biomedical NER task. High confidence context patterns appear in various
forms. Some are similar to a predicate–argument structure whereas some
are in unexpected forms. The experiment results show that the proposed
model using both entity and context gazetteers improves both precision
and recall over a strong baseline model, and therefore the usefulness of
the context gazetteer.

1 Introduction

Named entity recognition (NER) is a task that recognizes the mentions of entities
of interest. Entity types vary depending on the target domains. In the general
domain, for example, the names of people, locations and organizations are most
common entity types [5,25], whereas the names of genes and gene products are
in the biomedical domain [12,22]. In fact, NER has been regarded as a funda-
mental sub-task in many natural language processing (NLP) applications such
as information extraction, question and answering, and machine translation.
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Fig. 1. Example of local and non-local context window. The local context window [-2,2]
is shown under the text, whereas the non-local context window is shown with directed
arrows. “plastid-lipid associated protein” is the name of a gene where the first word
is labeled with the B-gene meaning that this is the beginning of a gene name. The
dependency label amod stands for adjectival modifier, dobj for direct object, partmod
for participial modifier and nsubjpass for the passive nominal subject.

NER has been tackled in various ways from rule-based to statistical ap-
proaches. However, most state-of-the-art NER models formalize it as a sequence
labeling task and employ supervised machine learning approaches such as Condi-
tional Random Fields (CRF) and Support Vector Machines (SVMs). To achieve
high-performance, a supervised machine learning approach requires a set of fea-
tures that are well designed to distinguish mentions of entities from others. Com-
monly used features are local features obtained from a small and linear window
(local context hereinafter). For example, presuming that we shall determine the
label of the underlined word “associated” in Fig. 1, then the neighboring and
current words such as “major”, “plastid-lipid”, “associated”, “protein” and “is”
within the local context [-2,2] are useful as word uni-gram features (the relative
position of each word is shown under the word). These local features contribute
to production of strong baseline models [2,8,20]. However, recent studies [4,13]
have demonstrated that incorporating features from non-local context can help
further improve the recognition performance. In Fig. 1, for instance, direct and
indirect head-words of the word “associated” such as “protein”, “encoding”,
“gene”, and “expressed” can be useful non-local features.

As described in this paper, we propose to use a context gazetteer, which is
a list of contexts that co-occur with entity names, for incorporating new sen-
tence level non-local features into NER model. A context gazetteer consists of
dependency paths of variable lengths to capture more syntactically meaningful
contexts than traditional local contexts. Confidence values are assigned to these
contexts to reflect how they are likely to appear with entity names. We build a
context gazetteer from a huge amount of highly precise and automatically labeled
data using an encyclopedic database because manually annotated data are often
too few to extract rich and sophisticated context patterns. Therefore, a con-
text gazetteer is expected to help recognize unknown entity names that do not
appear in training data, in addition to out-of-vocabulary (OOV) entity names
that are not registered in entity gazetteers. In experiment, we build a context
gazetteer of gene names and apply it for a biomedical named entity recogni-
tion task. It is particularly interesting that top-ranked entries in the created
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context gazetteer have various forms. As expected, there are many predicate–
argument structure style contexts using domain specific verbal (and nominal)
predicates such as “express”, “inhibit” and “promote.” Moreover, abbreviation,
apposition, and conjunction dependencies are frequently included as a part of
high confidence context patterns. These contexts can be interpreted as fragments
of domain knowledge that appear in stereotypical syntactic structures in texts.
The context gazetteer boosted both the precision from 89.06 to 89.32 and the
recall from 82.78 to 83.46. As a consequence, the overall F1-score is improved
from 85.81 to 86.29.

The remainder of this paper is organized as follows. In Sec. 2, we explain work
related to our research. Section 3 describes the proposed method for creating
a context gazetteer. In the next section, we build a context gazetteer of gene
names from the EntrezGene database [16], and apply it to the BioCreative 2 gene
name recognition task [22]. The usefulness of a context gazetteer is demonstrated
experimentally. Representative output results are analyzed. We show what kinds
of context patterns are mined and how they affect a proposed model using the
context gazetteer. Section 5 summarizes the contributions of this work, and
explains the future work for generalizing learned contexts.

2 Related Work

This section presents a summary of three types of related studies of sentence
level non-local features, gazetteer induction and weakly supervised learning.

Sentence level non-local features usually depend on a deep parsing technique.
For example, a previous work [7] used the Stanford dependency parser [17] to
exploit features such as the head and governor of the noun phrases in a biomed-
ical NER task. A more recent work [23] evaluated the effect of seven different
parsers in feature generation for finding base noun phrases including gene names.
However, they extract contexts only from training data, whereas we use a large
amount of automatically annotated data. As a result, our approach is likely to
provide richer and more sophisticated context patterns than their methods.

Gazetteers are invaluable resources for NER tasks, especially for dealing with
unknown words that do not appear in training data. They might have the same
semantic categories to target entity classes [9], or related classes that are often
more fine-grained sub-classes of the target entity classes [20,26]. Word clusters
are also useful resources for NER similar to gazetteers. In a related study [18], the
Brown clustering algorithm [3] were applied to NER successfully. A more recent
work [11] used the dependency relations between verbs and multiword nouns for
clustering multiword expressions. However, to the best of our knowledge, all of
the related work that we have surveyed produce entity gazetteers (clusters).

The most similar concept to the contexts in this research can be found in the
studies related to weakly supervised learning approach. For instance, a boot-
strapping method [21] extracts context patterns from unlabeled data using a
small set of seed words (entity mentions in case of NER) for a target class. In
turn, it extracts new entity mentions using the extracted context patterns, and
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repeats this process. However, the quality of context patterns (and also entity
mentions) degrades as iteration goes on because it inevitably suffers from se-
mantic drift. In contrast, our method induces a large number of highly precise
contexts without a repetitive process by exploiting an encyclopedic database.
This approach have become more realistic lately because of many publicly avail-
able resources such as Wikipedia1 and domain-specific databases.

3 Building a Context Gazetteer

A context gazetteer is a confidence assigned list of dependency paths (hereinafter,
contexts) of variable length that can co-occur with target entity names. Figure
2 portrays an exemplary context of length 3. It is a high confidence context

Fig. 2. Example context of the length 3. X is a slot for an entity word. (pref of stands
for prepositional modifier of, pref in for prepositional modifier in and nn for noun
compound modifier.)

in the context gazetteer of gene names that will be used in the experiment
section. It means that a word X surrounded by the context consisting of the
head word expression, a dependent cells and a grand-dependent cancer with the
corresponding dependency relations prep of, prep in and nn is likely to be an
entity word, which is a part of a target entity name. This context can help
to recognize the headword of an underlined gene name in a sentence, “The
expression of FasL in gastric cancer cells and of Fas in apoptotic TIL was also
detected in vivo.”

A useful context gazetteer should have rich and sophisticated contexts that
are specific to target semantic classes. For the first requirement, we extract
contexts from a large amount of automatically labeled data rather than a few
manually annotated data. To satisfy the second requirement, confidence values
are assigned to the extracted contexts. Figure 3 is the flowchart for the context
gazetteer generation. Each step is explained in detail in the following.

Step 1. An encyclopedic database consists of domain specific entity names and
their descriptions. For each entity name, we label every mention of it in the de-
scription using exact string matching. The primary reason for using an encyclo-
pedic database rather than the list of target entity names and some free texts is to

1 http://www.wikipedia.org/

http://www.wikipedia.org/
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remove the ambiguity of the semantic categories of target entity names appearing
in free texts [29]. For example, presuming that we are going to generate labeled
data with the names of people using some free text (e.g. newspapers) and a list
of the names of people automatically, the process would invariably create very
noisy data because human names are often used as the names of companies (e.g.,
Hewlett-Packard and Ford Motor Company), diseases (e.g. Alzheimer disease),
places (e.g., Washington, D.C and St. Paul, Minnesota), and so on.

Step 2. The labeled texts are then parsed. The dependency paths (contexts)
involving entity words are extracted. Because of the excessive number of possible
contexts, we applied two constraints to context generation. First, the contexts
that have no content words (nouns, verbs and adjectives) except an entity word
are removed because these contexts are often too general to be effective contexts.
Second, we limit the maximum length of contexts depending on the data size.

Step 3. For each context, an entity word is anonymized. Then, contexts can
be normalized to increase the coverage of a context gazetteer. For example,
stems (or lemmas) are useful instead of words. After normalization, we remove
duplicated contexts and keep them unique.

Step 4. Contexts are often ambiguous even if they frequently appear with tar-
get entity names. We solve this problem by assigning confidence to each context.
Presuming that data D is annotated automatically with the mentions of T dif-
ferent entity types2, then, the confidence (conditional probability) of an entity
type t given a context c is defined as in

confidence(t|c) = p(t|c) = C(t, c)

C(c)
=

∑
et∈D C(et, c)

C(c)
, (1)

where et is an entity word of the semantic type t ∈ T in the dataD. The estimated
confidence is pessimistic, meaning that they are usually lower than they should be
because automatically annotated data have high precision but low recall.

Fig. 3. Building a context gazetteer from an encyclopedic database

2 The set T includes non-entity type O too.
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4 Evaluation

In this section, we create a context gazetteer of gene names from the EntrezGene
database [16], and apply it to the BioCreative 2 gene name recognition task [22].
We analyze the effect of the context gazetteer by comparing the NER models
with and without the context gazetteer.

4.1 Data

Context Gazetteer. For gazetteer generation, we use the gene names (includ-
ing synonyms) and the human curated reference information in the EntrezGene.
At the first step in Fig. 3, 358,049 abstracts are extracted from the MEDLINE
database3 using reference information. Each abstract is labeled using the gene
names referenced in the abstract. The labeled gene names are highly precise
because explicit references exist between the gene names and the abstracts.

Second, the labeled texts are parsed using the Stanford POS tagger [27] and
dependency parser [17] included in the CoreNLP tool4. Then, we extracted the
dependency paths (contexts) that involve entity words. Contexts that have no
content words aside from entity words are filtered out. The maximum length is
set to 5 experimentally.

Third, the entity words of the contexts are anonymized. In the biomedical
domain, many entity names include symbols and numbers. For domain-specific
normalization, continuous numbers and symbols of the words in the contexts are
converted into a representative number (0) and symbol (under-bar), respectively.
Lastly, confidence values are assigned to each context using Eq. 1. Contexts
appearing less than 10 times are removed in this process because the estimated
confidence might be unreliable.

Several extracted contexts having high confidence are presented in Table 1. At
the beginning of this study, we expected to obtain contexts similar to predicate-
argument structure (PAS) and domain specific relations. For example, the second
context in this table indicates that X is likely to be a gene if it appears in a
relation with C-jun as in “... interaction between X and C-Jun”. The fourth and
seventh contexts are in the form of PAS using nominal and verbal predicates
respectively. However, we also found unexpected but interesting contexts too.
First, many contexts capture factual knowledge. The first and fifth contexts
are the simplest ones meaning that X is likely to be a gene if it is a globin or
a repressor. The sixth context means X is likely to be a gene if it acts as a
mediator. Second, some contexts represent procedural information. The third
context, for instance, indicates that there is a screening process for analyzing
mutations of a gene. Lastly, the eighth context, seemingly uninformative at first
glance, means that discovering the function of a gene is a common task as in
“The exact function of IP-30 is not yet known, but it may play a role ...”

3 MEDLINE is the U.S. National Library of Medicine’s (NLM) premier bibliographic
database.

4 http://nlp.stanford.edu/software/corenlp.shtml

http://nlp.stanford.edu/software/corenlp.shtml
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Table 1. Examples of high confidence extracted context patterns. Conf. stands for
confidence. (X is a place-holder, nsubj is nominal subject, conj and is conjunction and,
nn is noun compound modifier, amod is adjectival modifier, dobj is direct object, and
nsubjpass is passive nominal subject.)

Conf. Pattern

1.0 nsubj(globin, X)

1.0 prep between(interaction, X), conj and(X, C-Jun)

1.0 prep for(screened, mutations), prep of(mutations, gene), nn(gene, X)

0.91 prep of(secretion, X), amod(X, inhibitory)

0.81 nsubj(repressor, X)

0.78 prep as(X, mediator)

0.65 dobj(express, X)

0.55 nsubjpass(known, function), prep of(function, X)

Entity Gazetteer. We use four entity gazetteers compiled from the Entrez-
Gene, Universal Protein Resource (UniProt) [6], Unified Medical Language Sys-
tem (UMLS) [1] and the Open Biological and Biomedical Ontologies (OBO)5.
For improving the coverage of these gazetteers, continuous numbers and symbols
of the entity names are normalized into a representative number and symbol (0
for numbers and under-bar for symbols), and all alphabet characters are lower-
cased. This process also applies to the input texts.

For the entity gazetteers compiled from the EntrezGene and the UniProt,
we use the single semantic categories: gene and protein. However, the UMLS
and the OBO gazetteers have multiple categories, some of which are related to
gene names such as peptides and amino acids, but many of which are differ-
ent biomedical entity categories. During NER system development, we found
that not only gene-related categories but also other categories are beneficial for
increasing performance.

GENETAG corpus. The BioCreative 2 gene mention recognition task uses the
GENETAG corpus [24] comprising 20,000 sentences, of which 15,000 sentences
were used for training and 5,000 sentences were used for testing.

We processed raw texts to obtain additional syntactic information for use in
feature generation. Raw texts consisting of sentences are split into tokens using
a fine-grained tokenization scheme that uses whitespace and non-alphanumeric
characters as token boundary markers. When a string is tokenized at non-
alphanumeric character, this character also becomes a single character token
(e.g., “p53-activated” to “p53”, “-” and “activated”). Next, the tokenized text is
fed to the GENIA tagger [28] for lemmatization, POS-tagging, and chunking. For
each entity gazetteer, the sequences of tokens that appear in the gazetteer are
tagged using the BIO labels (e.g., “EntityGaz B-EntrezGene”, “EntityGaz B-
UniProt”, etc.). Lastly, for the EntrezGene context gazetteer, the tokens

5 http://www.obofoundry.org/

http://www.obofoundry.org/
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Table 2. Features used for experiments. Ortho. stands for orthographical features, E.
gaz. for entity gazetteer and C. gaz. for context gazetteer.

Class Description

Token {wt−2, .., wt+2} ∧ yt, {wt−2,t−1, .., wt+1,t+2} ∧ yt,
{w̄t−2, .., w̄t+2} ∧ yt {w̄t−2,t−1, .., w̄t+1,t+2} ∧ yt,

Lemma {lt−2, .., lt+2} ∧ yt, {lt−2,t−1, .., lt+1,t+2} ∧ yt,
{l̄t−2, .., l̄t+2} ∧ yt, {l̄t−2,t−1, .., l̄t+1,t+2} ∧ yt

POS {pt−2, .., pt+2} ∧ yt, {pt−2,t−1, .., pt+1,t+2} ∧ yt,

Lemma & {lt−2pt−2, .., lt+2pt+2} ∧ yt,
POS {lt−2,t−1pt−2,t−1, .., lt+1,t+2pt+1,t+2} ∧ yt
Chunk {ct, wt last, w̄t last, thelhs} ∧ yt

Character Character 2,3,4-grams of wt

Ortho. All capitalized, all numbers, contain Greek letters, ...
(Refer to [15] for the detailed explanation)

E. gaz. {get−2, .., get+2} ∧ yt, {get−2,t−1, .., get+1,t+2} ∧ yt,
{get−2lt−2, .., get+2lt+2} ∧ yt, {get−2,t−1lt−2,t−1, .., get+1,t+2lt+1,t+2} ∧ yt,

C. gaz. {gct ∧ yt}

surrounded by the contexts of the gazetteer are tagged with context gazetteer
class label. The confidence of a context is quantized at every 0.1 step. For ex-
ample, if a token is surrounded by two contexts with the confidence 0.31 and
0.56, then we assign two labels to the token, “ContextGaz EntrezGene 3” and
“ContextGaz EntrezGene 6”, where the confidence is rounded up.

4.2 Machine Learning and Features

For machine learning, we use the CRFsuite [19], which implements first-order
linear-chain Conditional Random Fields [14]. The regularization parameter (C)
is optimized using the first 90% of the original training data as training data and
the rest, 10% as the development data. Fifteen C values (0.03125, 0.0625, 0.125,
0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 8, 10, and 16) are tested. The best performing one
is chosen.

A set of features used in the experiment is presented in Table 2, and the
symbols are explained in Table 3.

4.3 Experiment Results

Table 4 shows an experiment result obtained using various combinations of the
four entity gazetteers and the context gazetteer. The numbers in a pair of paren-
theses show improvement from the model 0 (baseline model) using no gazetteers.

When the context gazetteer is used in combination with the entity gazetteer(s),
both precision and recall increase, as shown in models 3 and 5. Considering that
precision and recall are tradeoff measures, the experiment result demonstrates
the usefulness of the context gazetteer. In addition, the context gazetteer im-
proves recall notably. This is an important merit because NER models usually
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Table 3. Symbols used for features (see Table 2)

Symbol Description

wt A t-th word

w̄t A normalized t-th word where successive numbers and symbols are converted
into a single zero and under-bar

lt A t-th lemma

l̄t A normalized t-th lemma

pt A t-th POS-tag

ct The chunk type of wt

wt last The last word of a current chunk

w̄t last The normalized last word of a current chunk

thelhs True if ’the’ exists from the beginning of a current chunk to wt−1

get Entity gazetteer label for the t-th word

gct Context gazetteer label for the t-th word

Table 4. Performance evaluation using entity and context gazetteers. ALL means the
gazetteers compiled from the EntrezGene, UniProt, UMLS, and OBO databases.

Model # Entity Gaz. Context Gaz. Precision Recall F1-score

0 None None 87.99 (+0.00) 81.71 (+0.00) 84.73 (+0.00)

1 None EntrezGene 88.06 (+0.07) 81.42 (-0.29) 84.61 (-0.12)

2 EntrezGene None 88.54 (+0.55) 82.17 (+0.46) 85.24 (+0.51)

3 EntrezGene EntrezGene 88.66 (+0.67) 82.99 (+1.28) 85.73 (+1.00)

4 ALL None 89.06 (+1.07) 82.78 (+1.07) 85.81 (+1.08)

5 ALL EntrezGene 89.32 (+1.33) 83.46 (+1.75) 86.29 (+1.56)

exhibit high precision but low recall [10] because of the asymmetric data where
one class label, O, dominates all other classes.

Surprisingly, when only the context gazetteer is used, the overall performance
drops slightly. We suspect that some relation exists between entity gazetteers
and context gazetteers but further investigation is necessary to reveal it.

4.4 Result Analysis

We manually compared about 20% of the output of models 4 and 5 to see how
the context gazetteer features affect the tagging results.

There are 32 gene names correctly recognized by model 5 but not by model
4. In all of these cases, one or more context gazetteer features are triggered. The
following list shows several examples in which model 5 recognized the under-
barred gene names and model 4 recognized the italicized gene names.

– One major transcript encodes MEQ, a 339-amino-acid bZIP protein which
is homologous to the Jun/Fos family of transcription factors.

– The association of I-92 with p92 , p84 , p75 , p73 , p69 , and p57 was com-
pletely reversible after treatment with the detergent deoxycholate (DOC).
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– The exact function of IP-30 is not yet known, but it may play a role in
gamma-interferon mediated immune reactions.

Two context gazetteer features are triggered for the gene name “MEQ”,
“dobj(encode, X)”, and “appos(X, protein).” The second feature is a strong
evidence of X being a gene name because a word X is in apposition with the
word protein. In the second example, “I-92” has a feature “prep of(association,
X), prep with(X, p0)” meaning that X is likely to be a part of gene name if it is
associated with the gene name “p0” where 0 is a normalized number. Contexts
of these kinds are the fragments of domain specific knowledge and usually have
high confidence (0.5 for this context). In the last example, the gene name “IP-30”
has a context gazetteer feature “prep of(function, X)” and a more specific one
“nsubjpass(known, function), prep of(function, X)” with confidence 0.44 and
0.54. These contexts can be interpreted as domain-specific expressions where
figuring out the function of a gene is a much more important task than others
(54% vs. the rest).

However, 15 gene names are recognized by model 4, but not by model 5.
Context gazetteer features are not triggered for 3 cases. Because we use the words
(not stems or lemmas) in the contexts, the coverage might be not sufficiently
high. For the other 12 cases, context gazetteer features are fired, but these gene
names are not recognized. We are currently investigating the causes of these
cases.

5 Conclusion and Future Work

As described in this paper, we proposed the use of a context gazetteer as a
new non-local feature for NER. We also described how to induce a rich and
sophisticated context gazetteer from automatically annotated data using an en-
cyclopedic database. Compared to the feature aggregation methods [4,13,20],
the proposed method can be easily applied to streaming data such as tweets and
pre-processed data with sentence selection where recognizing document (or dis-
course) boundaries is difficult. The proposed method is applied to a biomedical
NER task. Its usefulness is demonstrated in addition to entity gazetteers.

However, we also uncovered difficulties. First, for this research, we used words
and their dependencies as contexts. However, these contexts sometimes include
uninformative words in the middle of contexts. If it is possible to generalize the
contexts by replacing these unimportant words with POS-tags or wildcards, then
the coverage of the context gazetteer can be enhanced. Second, gene names (or
parts of them) often appear as a part of contexts. Although these contexts often
have very high confidence, they may not be general patterns. They can be more
useful if they were replaced by some general gene name wildcards.
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Abstract. The problem of diversifying search results has attracted much
attention, since diverse results can provide non-redundant information
and cover multiple query-related topics. However, existing approaches
typically assign equal importance to each topic. In this paper, we pro-
pose a novel method for diversification: proportionally diversifying search
results. Specifically, we study the problem of returning a top-k ranked
list where the number of candidates in each topic is proportional to the
popularity degree of that topic with respect to the query. We obtain such
a top-k proportionally diverse list by maximizing our proposed objective
function and we prove that this is an NP-hard problem. We further pro-
pose a greedy heuristic to efficiently obtain a good approximate solution.
To evaluate the effectiveness of our model, we also propose a novel metric
based on the concept of proportionality. Extensive experimental evalua-
tions over our proposed metric as well as standard measures demonstrate
the effectiveness and efficiency of our method.

Keywords: Diversity, Optimization, Proportions.

1 Introduction

Diversification models for search results [14,3,7,23,20,22] have attracted much
attention since they can effectively identify possible aspects of the query and
return documents for each aspect. In many cases, this is more useful than con-
ventional search methods which focus on finding the top-k most relevant docu-
ments, often favouring (near) duplicates in the top positions of the ranked list
at the expense of topic diversity. Although methods for finding a diverse search
result list have been well studied, they primarily address the problem from the
perspective of minimizing redundancy, and promoting lists that contain docu-
ments covering multiple topics. One limitation of these approaches is that they
treat each document equally while overlooking the fact that some topics are
more popular than others; this can result in too much prominence being given
to topics that are unlikely to be interesting to a majority of searchers. Ideally,
the number of documents from each topic should reflect the popularity degree
of that topic. Consider the case of recommending a set of 10 musical documents
in a music recommendation system where two topics are considered (e.g., rock
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c© Springer-Verlag Berlin Heidelberg 2013



An Optimization Method for Proportionally Diversifying Search Results 391

and classical) with 90% popularity voting for the topic rock and 10% for the
topic classical. For most users, it would be more useful to return a list which
included mainly results related to rock with less results for classical (e.g. 9 rock,
1 classical). Existing approaches to diversification would return roughly equal
numbers of results for each topic (i.e. 5 rock, 5 classical), which is less than ideal.

Motivated by this, we aim to better solve the problem of diversification by con-
sidering it from a different viewpoint: proportionally diversifying search results.
Specifically, we study the problem of diversifying the top-k representative search
results by respecting the overall popularity degree for each topic; we acheive
this by determining the number of representative documents on each topic pro-
portional to the topic’s popularity by maximizing a novel objective function.
Since the computation of this objective function is NP-hard, the final propor-
tionally representative results are obtained by using an effective greedy heuristic
to approximately maximize the objective function.

We evaluate both our method and state-of-the-art approaches by conducting
comparison experiments over standard metrics [7,8,6] for diversity based on re-
dundancy penalization, and our proposed metric, which considers proportional
diversification.
Our principal contributions are as follows.

– We present a novel method for diversification: proportionally diversifying
search results. Specifically, a novel objective function is proposed to obtain
the top-k diverse list by considering the popularity degree over each topic.

– We show that finding the optimal diversified top-k results by our objective
function is NP-hard. To address that, an efficient greedy heuristic is proposed
with good approximation ratio.

– A novel metric for diversity is proposed to verify our technique from the
perspective of proportion. To demonstrate the efficiency and effectiveness of
our approach, extensive experiments are conducted on a real-world database,
which are evaluated by standard metrics and our proposed metric.

The rest of the paper is organized as follows: Related work is briefly reviewed in
Section 2. We formulate the problem into a combinatorial optimization problem
and show its potential to find a proportionally diverse ranking list in Section
3. We present the objective function and near-optimal algorithm in Section 4.
Then, in Section 5, we report the experimental studies. Section 6 provides the
conclusion.

2 Related Work

There has been rising interest in incorporating diversity into search results to
meet the diverse requirements of users by both covering a large range of topics
as well as preserving relevance. Standard diversification techniques [3,2,21,17,16]
attempt to form a diverse ranked list by repeatedly selecting documents that
are different to the selected items. One of the typical techniques is “Maximal
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Marginal Relevance” (MMR) proposed by Carbonell et al.[3], where each candi-
date is iteratively selected by the MMR objective function until a given condition
is met. MMR was extensively studied by Rafiei et al.[17], who aimed to find the
best strategy for ordering the results such that many users would find their rel-
evant documents in the top few slots by formulating a weight vector as facets of
the query were discovered.

Other than the work discussed above, there are many recent works studying
result diversification [22,20,1,14,19]. For instance, in [22], the authors proposed
a random-walk-based approach to encourage diversity by assigning absorbing
states to the items that have been selected, which effectively “drags down” the
importance of similar unranked states. In a similar vein, a model based on a
reinforced random-walk is proposed in [14] to automatically balance the rele-
vance and diversity in the top returned answers. Tong et al.[20], propose to
address diversity from an optimization viewpoint which considers relevance and
diversity optimally. Although the experimental results in [20] show improved
performance in terms of diversity, it is still less than ideal in applications where
the awareness of proportional popularity is desirable. The work most relevant
to our own is proposed in [10], where an election-based method is proposed to
address the problem of diversifying searched results proportionally. The method
is divided into two phases. First, it diversifies the topics of all candidates by
an election-based strategy, and then the final ranked list is yielded by selecting
an appropriate number of candidates for each topic. However, this method can
lead to some documents in popular topics being irrelevant to the query due to
the separation of topic selection and candidate selection. It aims at diversifying
the topics of all candidate documents rather than the candidate documents in
essence. In contrast, our technique unifies the above phases, and effectively ob-
tains a diverse top-k ranked list taking into account both the popularity degree
of each topic and the relevance of each document to the query.

In this paper, we propose a novel objective function where the final top-k
proportionally diversifying search results are obtained by achieving the optimal
set of the function. To the best of our knowledge, our work is the first to obtain an
effective solution for proportionally diversifying search results in an optimizing
environment.

3 Problem Formulation

In this section, we formulate a description of the problem of proportionally di-
versifying search result as follows. Let Q = {w1, . . . , wn} (n ≥ 1) be a set of
keywords comprising a query, let T = {t1, . . . , tm} be the set of all m topics in
the result of Q, and let U denote the set of all documents. We denote pi to be
the popularity degree of topic ti ∈ T (1 ≤ i ≤ m) in U .

Definition 1. The ranked list R is a proportional representation of U iff
the number of documents in R within topic ti ∈ T (1 ≤ i ≤ m) is proportional to
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its popularity degree pi. Suppose N(i) is the number of candidates from ti in R,
then we have

N(i)∑m
j=1N(j)

≈ pi∑m
j=1(pj)

(1)

We normally present the top-k elements of R as the result for query Q; the
proportion of documents for each topic in the query result should roughly follow
the the popularity degree for that topic Note that Eq.1 shows that the number
of candidates for each topic in the final ranked list is not required to exactly
match the proportion of the popularity degree for that topic. This is because
the relevance between query and each candidate could degenerate if we strictly
adhere to the precise proportions (this is demonstrated in section 5).

Example 1. Consider a document collection U where we assume that 80% of the
documents in U about the “Apple” computer company and 20% are about the
fruit “apple”. In this case, U is associated with two topics. Let R = [R1, R2]
where R1 denotes the set of documents about “Apple” (the company) and R2 is
the set of documents about “apple” (the fruit). In a top-10 ranked result list for
the query “apple”, we would expect roughly 8 results from R1 and 2 results from
R2.

Challenges. There are two challenges to be solved in our framework. The first
challenge is how to design an objective set function where the optimal or near-
optimal set can best describe the proportionally diverse ranked list, which is
proportionally representative of the document set. The second challenge is de-
veloping an effectiveness measure; that is, given a proportionally ranking list,
how to quantify its goodness. To solve the above two challenges, we propose
a novel objective set function as well as a metric, both of which are shown in
section 4.

4 Proportionally Diversifying Search Results

In this section, we first introduce the preliminaries and then describe our novel
objective set function to obtain the top-k ranked list proportionally to the pop-
ularity degree of each topic.

4.1 Preliminaries

As our diversification algorithm is developed based on the availability of pair-wise
similarities between documents, we adopt the personalized PageRank technique
to compute the values [11]. Suppose there are n documents in the database
and qi is ith query. We represent qi by a n × 1 vector qi such that qi(i) = 1
and qi(j) = 0 (j �= i). The pair-wise similarities from each document dj (for
1 ≤ j ≤ n) to the query di (i.e., qi) can be precalculated by Eq.(2) below and
are denoted by a n× 1 vector ri.

ri = cP′ri + (1 − c)qi (2)
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P is the row-normalized adjacency matrix (i.e.
∑n

j=1 P (i, j) = 1) of the similar-

ities, P′ is the transpose of P, c is a damping factor, and ri(j) is the similarity
of j to i. Note that ri(j) is not necessarily equal to rj(i). For each pre-computed
n× 1 vector ri, we use ‖ri‖ to denote the sum of all elements in ri except ri(i);
that is, ‖ri‖ =

∑n
j=1,j �=i ri(j).

4.2 Objective Function

Given a set R of k documents, we propose to measure the quality of R, regarding
the relevance to a given query qi0 and the proportional diversity based on the
topic popularity, as follows.

g(R) =
∑
i∈R

(1− wi

‖ri‖
∑

j∈R,j �=i

ri(j))ri0(i) (3)

where ri0(i) is a relevance score; the more relevant each individual document
di is to the query, the higher the value of g(R). Nevertheless, the inclusion of
di in R is penalized against the pair-wise similarities (ri(j)) from document di
to other documents dj in R; that is, subtract wi

‖ri‖
∑

j∈R,j �=i ri(j) (0 ≤ wi ≤ 1)

where ri(j) is large when di and dj have the same topic, which will further reduce
the value of g(R). Thus, g(R) is expected to capture simultaneously the high
closeness and the great diversity by maximizing its value while confirming the
proportionality. Thereby, we aim to efficiently retrieve a set R of k documents
such that g(R) is maximized.

The question here is how to proportionally diversify top-k results? We argue
that it is implemented by wi, which indicates the importance of discounting the
pair-wise similarity to include di in R. Herein, wi determines the topic to be
selected; we call this the topic coefficient. In fact, the proportion for the number
of documents in each topic is guaranteed by automatically updating the topic
coefficient wi, which manages the possibility of declining di provided that many
items belonging to the same topic as di have already been included. Specifically,
we define wi as

wi = e
1− zi

ui+1 (4)

where zi denotes how many documents that belong to the same topic as di have
been included in R and ui is the number of documents with the topic ti. We
assume that zi is always less then ui in our setting. It is natural to observe
that the larger wi is, the heavier penalty on document di, and it becomes more
difficult for di to be selected.

We now prove that the problem of maximizing g(R) is NP-hard even when all
wi = 1, which is a special case of this optimization problem. To deal with this,
we then propose a near-optimal algorithm with a performance guarantee (i.e.,
accuracy guarantee and time-complexity) regarding a general g(R).

Theorem 1. The problem of retrieving a set R of k documents to maximize
g(R) is NP-hard with respect to k even if all wi = 1 in Eq. (3).
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Proof. We convert the decision problem of maximum clique to a special case of
the decision problem of the optimization problem in Theorem 1.

Decision Problem of Maximum Clique (MC)

INSTANCE: Given a graph G with n vertices, and an integer k ≤ n
2 .

QUESTION: Is there a complete subgraph of G with size k?
It is well known that the maximum clique problem is NP-hard [13]; thus, its

decision problem, above, is NP-complete regarding k.

Proof of Theorem 1. For each instance (i.e. G and k) in MC, we construct r as
follows. Suppose that the query has label 0 and each vertex vi ∈ G corresponds
to a document i. For each vertex vi ∈ G (1 ≤ i ≤ n), we assign r0(i) =

1
n and

ri(0) = 0 (note r is not always symmetric); clearly, r0(0) should be 1. Then, for
each edge (vi, vj) ∈ G, we assign ri(j) = rj(i) = 0, and for each pair of vertices
vi and vj which are not connected by an edge in G, we assign ri(j) = rj(i) =

1
n2 .

Then, based on a preliminary calculation, it can be immediately verified that
g(R) ≥ 1 with |R| = k if and only if the following two conditions hold:

1. R contains the query with label 0; and
2. R contains a complete subgraph, with (k − 1) vertices, of G. Note that the

(k − 1) vertices correspond to the k − 1 documents.

4.3 Efficient Near-Optimal Algorithm

Theorem 1 shows that retrieving a set of k documents to maximize g(R) is NP-
hard. The function g(R) is submodular and [15] states that a greedy algorithm
to maximize a submodular function has the approximation ratio ( e−1

e ). Our
algorithm (see Algorithm 1) is a greedy algorithm, for which we increase the
value of topic coefficient wj if some documents belonging to the same topic tj
have already been included in R. The set R resists document dj with higher value
of wj while it prefers document dh(1 ≤ h ≤ n) if its topic coefficient is lower.
Furthermore, when the maximum number of a topic is reached (e.g. zi = ui), the
corresponding topic coefficient is set to be a prohibitive value Ω. Setting wi = Ω
in Eq. (3) ensures that we reject any further documents which have topic ti. A
suitable value of Ω was determined via our empirical studies.

According to the Proposition 4.3 in [15], the greedy algorithm of diversifica-
tion has the following accuracy guarantee.

Theorem 2. The greedy algorithm achieves an approximation ratio of ( e−1
e ) for

the submodular function of diversification with proportionality constraint.

Proof. Omitted for brevity. Refer to [15] for details.

4.4 Proposed Metric

Observing that most existing metrics measure diversity by explicitly penalizing
redundancy over each returned document while maintaining relevance, we pro-
pose a novel metric that considers the proportionality on the diversified search
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Algorithm 1. Diversification by Popularity-based Proportionality.

Input: ri (for 1 ≤ i ≤ n); k; query i0.
Output: A list R of k documents.
set initial R as i0;
set both of initial wi and zi (for 1 ≤ i ≤ n) as 0;
set initial ui (for 1 ≤ i ≤ n) as ceil( 1

k
);

for looper=1:k do
choose the document dj such that g(R) is maximized;
if zj ≤ uj then

add dj into R;
zj = zj + 1;

wi = e
1− zi

ui+1 ;

else
wj = Ω;
discard dj ;

Return R

results by extending the metric in [10]. The metric proposed in [10] considers
the following principles: First, each document need not belong to just one aspect
of the query; that is, a document might be related to multiple aspects. Second,
selecting a document that is related to some topics which already have enough
relevant documents should be evaluated better than a non-relevant document. In
other words, non-relevant documents should not be evaluated as highly as over-
selection. However, the metric in [10] ignores the importance of rank positions of
documents. Therefore, another critical property should be added: non-relevant
documents appearing at earlier rank positions should be evaluated worse than
relevant documents in later positions.

Considering the above three principles and least square index (LSq) [12],
which is a standard metric for measuring dis-proportionality, we formulate our
metric as Eq.(5) for penalizing the dis-proportionality for each rank position
L(1 ≤ L ≤ k):

DP@L =
∑
ti

ci‖
ui − vi
vi

‖2 + 1

L
· Y 2 (5)

where ui indicates the number of documents relevant to topic ti, vi is the number
of documents that are actually found for ti, Y denotes the number of non-relevant
documents at positions 1..L. The coefficient ci on topic ti is defined as follows:

ci =

{
1, ui ≥ vi;
0, otherwise.

(6)

We now briefly discuss how our metric satisfies the aforementioned three prin-
ciples. Our metric addresses the first principle associated with metric design by
penalizing a list for under-selecting (vi ≤ ui) on some topics but not for over-
selecting (vi ≥ ui) on it. At the same time, non-relevant aspects are penalized
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(Y ≥ 0) while over-selecting is not, which meets the second principle. Finally,
the third principle of rank positions is implemented by considering the positions
that are occupied by the non-relevant documents in the top-k diverse ranked list.
To make the metric comparable across queries, we normalize the proportionality
measure as follows:

PM@L = 1− DP@L∑
ti
u2i + L

(7)

In the end, the proportionality diversification metric for a ranked list R can be
computed as follows:

PM(R) =
1

R

|R|∑
L=1

PM@L (8)

5 Experimental Evaluations

In this section, we conduct extensive experiments to evaluate the effectiveness
and efficiency of our algorithms. The setting of experiment is introduced in
section 5.1, followed by the study of parameter learning in section 5.2. Then
elaborate evaluations are presented in section 5.3.

5.1 Experimental Setup

Baseline Diversity Models. We implemented the model described above,
along with four other diversity models as baselines. The first diversity model
is MMR [3], which has been widely considered standard in diversity literature.
Another model, xQuAD [18], uses a probabilistic framework which determines
how well each document satisfies each topic and outperforms many others in
the task of diversitfication. The third model, proposed by Dang et al.[10], is
referred to as Election in our experiment, and uses an election-based approach
to address the problem of search result diversification. Finally, we implemented
the approach of Dragon, which captures relevance and diversity in an optimized
way [20].

Query and Topic Collection. There are 50 queries in our query set, which
come from the diversity task of the TREC 2009 Web Track [5]. To obtain the
relevant documents for each query, we adopt the query-likelihood framework to
conduct the relevance search [9]. The evaluation is conducted on the ClueWeb09
Category B retrieval collection 1, which contains 50 million webpages. As our ap-
proach and xQuAD require the availability of query topics and their popularity,
we utilize the sub-topics provided by TREC as aspects for each query. Since the
popularity of each topic is not available in TREC data, we follow the model in
[18] by adopting suggestions provided by a search engine as topic representation.

1 http://boston.lti.cs.cmu.edu/Data/clueweb09

http://boston.lti.cs.cmu.edu/Data/clueweb09
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Evaluation Metrics. We evaluate our approach and baseline models in terms
of the proportionality metric proposed in Section 4. Considering that the propor-
tion metric is specialized towards our model, we also report performance using
several standard metrics including α-NDCG[7], ERR [4] and NRBP [8].

5.2 Parameter Learning

Parameter learning aims to determine “optimal” values for Ω and k. The Ω
measure is specific to our approach, and we evaluate precision and recall using
Ω values ranging from 5 to 25. Fig.1 shows that our model achieves the best
results when Ω has the value of 15. The k measure applies to all algorithms, and
we need to ensure that we do not choose a k value that is biassed towards any
particular approach. Fig.2 shows that all approaches perform best with a value
of k around 40. Thereby, we conduct the diversification search with a ranked list
of 40 documents.
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5.3 Performance Evaluations

Metrics and Proportionality Evaluations. We first compared our proposed
technique to MMR, xQuAD, Dragon and Election using our proportional metric
PM(R) for a list of R. From Fig.3 (a), we can see that our technique outperforms
the other four, which demonstrates the effectiveness of our method at preserving
proportionality. Secondly, we conducted comparisons in terms of three standard
metrics from the diversity literature: α-NDCG, ERR and NRBP. The results are
reported in Fig.3 (b) to (d), from which we can observe the similar result as in
the previous example with proportional metric. Specifically, MMR is the least
effective because of its ignorance of query topics. On the other hand, our method
outperforms greatly over all the other method on almost all metrics. Note that
these measures are computed using top 20 documents retrieved by each model,
which is consistent with the standard TREC evaluations [5].
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Fig. 3. Performance of diversity models in standard measures and our proposed metric

As all algorithms rank the top-k retrieved documents according to different
principles, we examine the performance in both precision and sub-topic recall.
We summarize the results in Table 1, which suggest that documents returned
by MMR are more relevant and Election covers more topics than others. How-
ever, in terms of suggestions, i.e., the representation of popularity on retrieved
documents, our model achieves better performance than the other four.

Scalability. Fig.4 gives our evaluation on the scalability of our algorithm (using
synthetic data). The number of edges are fixed when we evaluate the scalability
with respect to the number of nodes and vice versa. Fig.4 shows that our model
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Table 1. Precision and recall for top-40 results

Precision@40 Recall@40

MMR xQuAD Dragon Election Ours MMR xQuAD Dragon Election Ours

Sub-topics 0.2231 0.1907 0.1775 0.2107 0.1902 0.4673 0.4724 0.4550 0.4820 0.4644

Suggestions 0.1801 0.1891 0.1609 0.1576 0.2133 0.4341 0.4410 0.4122 0.3978 0.4522
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increases linearly with respect to nodes and edges, which demonstrates that it
can be applied to large-sized databases.

6 Conclusion

In this paper, we present a novel technique to address the problem of propor-
tionally diversifying search results. A novel objective function is proposed to
obtain a top-k ranked list by maximizing the value of the function. We prove
that obtaining the optimal maximal value with respect to the proposed objective
function is NP-hard, and resolve this by proposing an efficient greedy heuristic.
We also propose a metric (PM(R)) to measure how effectively a diversifica-
tion algorithm captures proportionality. Our experimental studies, evaluated on
both standard metrics and our proposed metric, validate that our algorithm is
not only able to effectively balance the relevance and diversity of search results,
but is also capable of keeping approximate proportionality of the top-k search
results according to the popularity degree of the various topics.
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Abstract. In this paper we proposed a hierarchical generative model based on 
Naïve Bayes and LDA for unsupervised sentiment analysis at sentence level 
and document level of granularity simultaneously. In particular, our model 
called NB-LDA assumes that each sentence instead of word has a l atent 
sentiment label, and then the sentiment label generates a series of features for 
the sentence independently in the Naïve Bayes manner. The idea of NB 
assumption at sentence level makes it possible that we can use advanced NLP 
technologies such as dependency parsing to im prove the performance for 
unsupervised sentiment analysis. Experiment results show that the proposed 
NB-LDA can obtain signif cantly improved results for sentiment analysis 
comparing to other approaches.  

Keywords: Sentiment Analysis, Latent Dirichlet Allocation, Naïve Bayes, 
Opinion Mining. 

1 Introduction 

In recent years sentiment analysis or opinion mining aiming to uncover the attitude of 
users from the content has drawn much attention in the NLP. But most methods 
usually rely heavily on an annotated corpus for training the sentiment classifier. So 
the sentiment corpora are con sidered as the most valuable resources for sentiment 
analysis. To circumvent laborious annotation efforts, developing an un supervised 
method for sentiment analysis is one of the goals of this paper. 

Previous methods have tackled the problem at different levels of granularity, from 
document level, sentence level, phrase-level, as well as the speaker level in debates. 
Intuitively sentiment analysis at dif ferent level of granularity can benefit from each 
other [11, 15]. Though some studies have been performed to analyze the sentiment of 
document level and sentence level simultaneously, their approaches are usually based 
on structure model and try to exploit the structure information in document, and 
usually are supervised or semi-supervised [11, 16, 17]. So another goal of this paper is 
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to develop a unsupervised model that jointly classifies sentiment at sentence level and 
document level of granularity. 

For fine-grained sentiment analysis such as for sentence, many problems must be 
tackled. Negation is the main problem, especially involving long-distance 
dependencies such as the negation of the proposition or the n egation of the subject 
(e.g., no one thinks that it’s good). In addition, contextual polarity may also be 
influenced by modality, word sense, the syntactic role of a word in the sentence and 
diminishers such as little [ 18]. To solve such problems, it is n ecessary to employ 
advanced NLP technologies such as dependency parsing [25]. So the third goal of this 
paper is to incorporate advanced NLP technologies with statistical model for 
sentiment analysis.  

In this study, we propose an unsupervised model to incorporate the sentiment 
analysis at the document level and sentence level. The model is a novel and unified 
hierarchical generative model combining Naïve Bayes and Latent Dirichlet Allocation 
(LDA), which we refer to as NB-LDA. But unlike LDA, our model does not assume 
documents are “bags of words”. Rather it a ssumes that each sentence has a late nt 
sentiment label, the latent sentiment label is drawn from the distribution of sentiment 
over document, and the words or features in the sentence are generated by the latent 
sentiment label in a Naïve Bayes manner. Thus the Naïve Bayes Assumption in our 
model makes it ea sy to integrate rich features and advanced NLP technique results 
into it to achieve better performance. We show that this model naturally fits the task 
of sentiment analysis, and experimental results show the effectiveness of the proposed 
model. 

The rest of this paper is organized as follows: Section 2 introduces related work. 
The proposed NB-LDA model is described in detail in Section 3. Section 4 shows the 
experiments setup, and experiment results are des cribed in section 5. L astly we 
conclude this paper and discuss the future work. 

2 Related Work 

Previous work on sentiment analysis has covered a wide range of tasks, including 
polarity classif cation [15], opinion extraction [5], and opinion source assignment 
[20]. And these systems have tackled the problem at different levels of granularity. 
Usually for short of fine-grained corpus and lack of information, the fine-grained 
sentiment analysis is much harder than at document level. In order to recognize the 
contextual polarity in phrase-level, Wilson et al. [18] have compiled a lexicon of over 
8000 subjective clues and used a s et of features based on dependency tree of the 
sentence to disambiguates the polarity of the polar expressions. But most of their 
approaches relay on the availability of fine-grained annotations. 

Recently topic modeling has been an area of  active research [3, 7, 14]. Some 
models extended LDA have been proposed for sentiment analysis [10, 12, 19]. These 
approaches jointly learn topic and sentiment to improve predictions at document 
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level. But these approaches have a shortcoming that they take the documents as "bag 
of words" and each word has a laten t sentiment variable. Mukherjee and Liu [14] 
proposed two latent variable models (TME model and ME-TME model) to 
simultaneously model and extract topics (aspects) and various comment expressions 
for online review. But only n-grams (up to 4-grams) were modelled as a commenting 
expression. 

There are, however, obvious advantages for sentiment analysis at both document 
level and sentence level. Pang and Lee [15] perf ormed minimal cuts in a s entence 
graph to s elect subjective sentences to i mprove the performance of document 
sentiment classification. But these methods try to only improve document sentiment 
classification via selecting useful sentences. 

Some structured models have previously been used for sentiment analysis [11, 16, 
17]. McDonald et al. [11] presented a s tructured graphical model for fine-to-coarse 
sentiment analysis, and adopted a sequence classification with a constrained version 
of Viterbi for inference of the model. Täckström and McDonald [16] used latent 
variable structured prediction models for fine-grained sentiment analysis in the 
common situation where only coarse-grained supervision is av ailable. Similarly 
Täckström and McDonald [17] derive two structured conditional models, which 
combine coarse-grained supervision with fine-grained supervision for sentence-level 
sentiment analysis. But these approaches are supervised or semi-supervised.  

Another very relevant model is ASUM [8], as  shown in Fig. 1(a), bu t there are 
some key differences between our model and ASUM. Firstly our model can use rich 
feature to improve sentiment analysis. For example the sequence of the negation and 
polarity words can be considered in our work. But ASUM can't do so. Secondly, our 
model is a unified generative model. Like LDA, Naive Bayes is a generative model, 
and they can be naturally integrated into a u nified model. Notably NB can be 
supervised or un supervised while other classification algorithms such as MaxEnt, 
SVM are dis criminative only for supervised classification and difficult to in tegrate 
into LDA. Thirdly, our model focuses on sentiment classification. However ASUM is 
proposed mainly to discover pairs of senti-aspects.  

To our knowledge, some similar models have been proposed by taking the best of 
Naïve Bayes and LDA models, such as Latent Dirichlet conditional Naïve Bayes (LD-
CNB) [1] and Bayesian Naive Bayes1. But these models are different from ours. LD-
CNB assumes a Dirichlet prior with parameter α from which the mixing weights θ is 
sampled. Further, for an observed feature fj , a co mponent zj is first sampled from θ, 
and xj is sampled from the corresponding component distribution. The LD-CNB 
process of  generating is different from ours. Also there has been some work where 
arbitrary features were included into the LDA model, such as Dir ichlet Multinomial 
Regression [13], MaxEnt-LDA [20] and etc. But the purposes and methods of these 
works are different from ours. 

                                                           
1 http://lingpipe-blog.com/2009/10/02/bayesian-naive-bayes-aka-
dirichlet-multinomial-classifiers/ 
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3 NB-LDA Model 

3.1 Motivation 

Table 1. Distribution of sentence labels (columns) in documents by their labels (rows) in fine-
grained sentiment dataset [16] 

 Pos. Neg. Neut. 
Pos. 0.53 0.08 0.39 
Neg. 0.05 0.62 0.33 
Neut. 0.14 0.35 0.51 

 
For the distribution of sentence level sentiment in each document sentiment 

category, Täckström and McDonald [16] h ave shown that the sentence level 
sentiment is aligned with the document sentiment, as shown in Table 1. That is, in 
positive documents, most of sentences are positive, and in negative documents, most 
of sentences are n egative, and in neutral documents, most of sentences are n eutral 
Obviously this distribution can be exploited in sentiment analysis. As we know, topic 
models like LDA use co-occurrence information to group similar words into a single 
topic. Intuitively sentence level sentiment co-occurrence in documents may be mined 
to achieve better performance like topic model. So we proposed a new model, NB-
LDA, which can employ rich features and exploit the distribution of sentence level 
sentiment in each document sentiment category to improve sentiment analysis. Here 
Naïve Bayes is to identify the sentence sentiment polarity based on a set of features in 
the local context, and LDA is to exploit the sentence level sentiment co-occurrence in 
documents globally. 

In addition, to improve the performance of unsupervised sentiment analysis, our 
approach employs dependency parsing and a v ariety of f eatures to iden tify the 
contextual polarity of the sentence inspired by [18]. 

3.2 NB-LDA Model 

The NB-LDA model belongs to a f amily of generative models for text where a 
document contains a f ixed number of sentences, each sentence expresses a k ind of 
sentiment polarity represented by a laten t variable z, and words in the sentence are 
viewed as features conditionally independent given sentiment label z. As a generative 
classification algorithm, Naive Bayes is used to identify sentiment polarity of the 
sentence via a set o f features. Here we assume that a sen timent polarity (positive, 
negative or neutral) is expressed in a sentence rather than in a word, as done in 
previous studies [16, 17]. A s to a document, we assume that it is "bag of sentences" 
and is generated by a mixture distribution θ of T sentiments, which is sampled from a 
prior Dirichlet distribution Dir(α).  

This generative process can be expressed more formally by defining some of 
variables in the model. Assume we have T sentiment labels, for example positive, 
negative and neutral, which play similar roles as topics. Let D be t he number of 
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documents, F be the number of features, Sd be the number of sentence in document d, 
Sdi be the i-th sentence in document d, and Fdi be the number of features in sentence 
Sdi. We can parameterize the multinomial distribution over sentiment labels for each 
document using a matrix Θ of size D * T, where each row θd stand for the 
probabilities of sentiment labels in document d. Similarly the matrix Φ of size T * F 
denotes the distribution over features associated with each sentiment label, where φt 
stand for the probabilities of generating features from sentiment label t. These matrix 
distributions are assumed to be generated from symmetric Dirichlet priors with hyper 
parameters α and β respectively. 
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(a)                                         (b) 

Fig. 1. (a) Graphical model of ASUM. (b) Graphical model of NB-LDA 

The formal definition of NB-LDA model is the following: 

• For each document d, sample θd~Dir(α) 
• For each label t, sample φt ~Dir(β) 
• For each sentence i in Sd sentences of document d 

─ Choose a sentiment label zdi~ Multi (θd) 
─ For each feature j in Fdi features of sentence sdi 
─ Choose a feature value fdij~Multi(

dizϕ  ). 

In above generation process, the most difference from LDA is that NB-LDA chooses 
a latent variable z for each sentence in document d and then generates the feature 
values of the sentence independently with a Diric hlet prior. The graphical model 
corresponding to this process is shown in Figure 1(b). 

Although previous studies have shown that topic and sentiment are dependent, the 
dependencies are usually limited in the range of one sentence. In NB-LDA, we use 
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the NB and a s et of features produced by NLP technologies such as dependency 
parsing to solve the local dependencies. 

3.3 Inference with NB-LDA 

A variety of algorithms have been used to estimate the parameters of topic models [3, 
6]. In this paper, we will use Gibbs sampling [6], as it p rovides a simple method for 
obtaining parameter estimates under Dirichlet priors and allows combination of 
estimates from several local maxima of the posterior distribution. 

Under this generative process, the joint probability of the z assignments and the 
features f can be factored into the following terms:  
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By applying Gibbs sampling, we construct a Mar kov chain that converges to the 
posterior distribution on z like [6]. The transition between successive states of the 
Markov chain results from repeatedly drawing z from its d istribution conditioned on 
all other variables, summing out θ and φ using standard Dirichlet integrals: 
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Here DT
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C

,

is the number of times that sentences in the document d were assigned to 
sentiment label k, not including the current sentence. FT

kjC ,

 is the total number of 
times that sentences containing feature j were assigned to sentiment label k, not 
including the current sentence.  

For any sample from this Markov chain, being an assignment of every sentence to 
a sentiment label, we can estimate θ and φ using 
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where 
jk ,

ϕ  is the probability of using feature j in sentiment label k, and 
kd ,

θ   is the 
probability of sentiment label k in document d. 
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4 Experiments Setup 

In this section, we introduce the data sets, p rior-polarity subjectivity lexicon and 
feature space. In our experiments, the hyper parameters α and β are fixed at 0.3 an d 
0.01 respectively [6]. 

4.1 Corpus, Prior-Polarity Subjectivity Lexicon and Features 

We used 2 corpora to evaluate our model. The first one is the Movie Review Data2. 
The second is Fine-grained Sentiment Dataset [16]. F or pre-processing, we used 
Stanford's Suite of NLP Tools3. Here s ome tokens were removed according to t he 
stop words list and POS, and "Fine-grained Sentiment Dataset" was adjusted slightly 
in order to adapt to Stanford's Suite of NLP Tools. 

In the experiments, we used a p ublic subjectivity lexicon as prior-polarity 
knowledge [18]. We compared the word tags to clues in the lexicon. If matched, the 
word token was marked with the corresponding "prior polarity". And the sentence 
was marked with the majority polarity voted by all matched words while taking 
negation into account. The prior information of sentence was only utilized during the 
initialization. The initialization starts by checking the "prior polarity" each sentence in 
corpus. If the sentence has a "prior polarity", the corresponding sentiment label is 
assigned to it. Otherwise, a sentiment label is randomly sampled.  

Table 2. Features used in NB-LDA 

Word Features word lemma word prior polarity: positive, negative, both, neutral reliability class: strongsubj or weaksubj 
Polarity Features Negated: binary negated subject: binary modifies polarity: positive, negative, neutral, both, notmod modified by polarity: positive, negative, neutral, both, notmod conj polarity: positive, negative, neutral, both, notmod 
Sentence Features cardinal number in sentence: binary pronoun in sentence: binary modal in sentence (other than will): binary 
Structure Features Sentence position: first, mid, last 

 
Table 2 lists the features in the experiments. Most of the features are used in [18]. 

Here we used word lemma as features instead of word tokens. Besides we added 

                                                           
2 http://www.cs.cornell.edu/People/pabo/movie-review-data/ 
3 http://nlp.stanford.edu/software/corenlp.shtml 
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sentence position as structure features. Note there are some differences between 
Stanford typed dependencies and that used in [18], and we handled them. 

4.2 Baselines 

In this work, we adopted four baselines to evaluate our model. 
lemma-prior: In this baseline, we only use lemma as features, but didn’t use any 

prior knowledge. In the initialization of Gibbs, all the latent variables of sentences are 
randomly chosen.  

lemma+prior:  In this baseline, we only use lemma as features, and use the prior 
knowledge. In the experiments, we only compared the tokens or lemmas morphologi-
cally with the words in subjectivity lexicon, and ignored the POS.  

ASUM+prior: ASUM is so similar to our model. So we compared ASUM model 
as baseline, where we use the same prior-polarity subjectivity lexicon instead of seed 
words used in [8] for prior knowledge.  

NB-ASUM: In the baseline, we assumed that ASUM can generate feature values 
just like our model. Besides the setting of ASUM+prior, we use all features described 
in Table 2. 

5 Experiment Results 

5.1 Results for Movie Review Data 

In Movie Review Data, the reviews are only labeled as positive or negative at 
document level. So in the experiments, T is set to 2 since we only consider 2 
sentiment labels: positive and negative. The document sentiment is classified based 
on  

kd ,

θ , the probability of sentiment label given document. A document d is 
classified as a p ositive sentiment document if its p robability of positive sentiment 
label given document  

posd ,θ , is g reater than its p robability of negative sentiment 
label given document  

negd ,θ , and vice versa. As shown as Table 3, clas sif cation 

accuracies were averaged from 10 runs with 1000 Gibbs sampling iterations. 
As can be observed from Table 3, the performance of "lemma-prior" is mediocre 

when no prior information was incorporated. A signif cant improvement, with 10.7%, 
is observed after incorporating prior information. It is also  noted that NB-LDA with 
all features achieved 3.9% improvement over "lemma+prior", implying that the richer 
features can benefit sentiment analysis. So discovering more effective features is one 
of the future works.  

When compared to the recently proposed unsupervised approach based on a 
spectral clustering algorithm [4], NB-LDA achieved better performance with about 
1% overall improvement. Nevertheless, the approach proposed in [4] requires users to 
specify which dimensions (def ned by the eigenvectors in spectral clustering) are most 
closely related to s entiment by inspecting a set of features derived from the reviews 
for each dimension, and clustering is performed again on the data to de rive the fi al 
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results. In our model studied here, no human judgment is required. Another recently 
proposed non-negative matrix tri-factorization approach in [9] also employed lexical 
prior knowledge for semi-supervised sentiment classif cation. However, when 
incorporating 10% of labeled documents for training, the non-negative matrix tri-
factorization approach performed much worse than NB-LDA, with only around 60% 
accuracy achieved. Even with 35% labeled documents, it still p erforms worse than 
NB-LDA. It is worth noting that no labeled documents were used in the NB-LDA 
results reported here. 

Table 3. Average results from 10 runs in terms of accuracy for Movie Review. Above double 
line: results from our model. Below double line: results from other literatures. 

 Pos. Neg. Total 
lemma -prior 55.0 59.5 57.25 
lemma +prior 72.7 63.2 67.95 
ASUM+prior 72.1 63.3 67.7 
NB-ASUM 74.5 67.4 70.95 
NB-LDA 75.3 68.4 71.85 
Lin et al. [10] 74.1 66.7 70.4 
Dasgupta and Ng [4] 70.9 
Li et al.[9] with 10% doc. Label 60 
Li et al.[9] with 35% doc. Label about 69 

 
Another notable result is that the prior information has different effects on positive 

documents and negative ones. Without prior information, the positive accuracy is less 
than the negative accuracy. While with prior information, the positive accuracies are 
better than the negative ones significantly. Manually analyzing the results reveals that 
there are more words matching the positive clues than negative clues in the corpus, 
which causes the imbalance of distribution of positive prior and negative prior during 
the initialization. Actually we found the similar problem in the experiments for fine-
grained dataset reported in the next subsection, and in the results of [10, 16, 17].  

5.2 Results for Fine-Grained Dataset 

There are three sentiment categories at d ocument level in this dataset, but there are 
five sentiment categories at s entence level: POS, NEG, N EU, MIX, an d NR. Like 
[16], we considered the MIX and NR categories as belonging to the NEU category. 
So in the experiments, T is set to 3. T he sentence sentiment polarity is classified by 
the latent sentiment label z after sampling. 

Table 4 shows the results for ou r model in terms of sentence and document 
accuracy as well as F1-scores for each sentence sentiment category. In Table 4, the 
results above double line come from our experiments, and that below double line are 
results presented in [16] and [17] for the same dataset. 

In terms of sentence accuracy, from these results it is clear that the NB-LDA model 
signif cantly outperform VoteFlip with quite a wide margin. Comparing to SaD and 
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DaS, the results from NB-LDA are als o very competitive. However our results are 
still lower about 7% ~ 1 2% than HCRF and Interpolated in the last three rows in 
terms of both sentence and document accuracy. Actually the results below double line 
are evaluated via 294 reviews, but with 143,580 labeled reviews as supervision. 
Notably NB-LDA does not use any labeled data. 

In our results, "lemma-prior" is m ediocre. But with the prior information, 
"lemma+prior" performs better about 6% for sentence accuracy and about 8% for 
document accuracy than "lemma-prior". The NB-LDA with all features and prior 
information achieved much better perf ormance than "lemma-prior" and 
"lemma+prior". The results suggest that both proper f eatures and prior information 
are important for improving sentiment analysis. In fact, NB-LDA model can easily 
integrate rich f eatures and advanced NLP technique into it to  achieve better 
performance. 

Table 4. Average results from ten runs for fine-grained dataset. Above double line: results from 
our model. Below double line: VoteFlip, SaD, DaS and HCRF results without observed 
document label in [16], and Interpolated best result in [17]. 

 Sentence 
Document Acc 

 Total Acc Pos. F1 Neg. F1 Neut. F1 
lemma-prior 36.0 25.7 38. 6 38.8 40.5 
lemma+prior 41.9 46.4 49.5 31.6 48.6 
ASUM+prior 41.4 45.9 49.0 31.2 47.3 
NB-ASUM 45.7 52.2 48.5 36.9 52.7 
NB-LDA 46.8 53.4 49.6 38.0 54.4 
VoteFlip  41.5 45.7 48.9 28.0 - 
SaD 47.6 52.9 48.4 42.8 - 
DaS 47.5 52.1 54.3 36.0 66.6 
HCRF(soft) 53.9 57.3 58.5 47.8 65.6 
HCRF(hard) 54.4 57.8 58.8 48.5 64.6 
Interpolated 59.1 - - - - 

5.3 NB-LDA vs ASUM 

Similar to our NB-LDA, ASUM is also  a g enerative model for sentiment analysis, 
which is proposed mainly to discover pairs of senti-aspects. In this work, our model 
only focuses on sentiment classification. But ASUM incorporates aspect and 
sentiment together to model sentiments toward different aspects [8]. The differences 
between them have been dis cussed in motivation. Here we compared the 
performances between the two models, and analyzed the differences, although NB-
ASUM should obtain the same results with NB-LDA in theory.  

In fact as shown in Table 3, the “lemma+prior” performs better than ASUM+prior 
slightly. It s eems that only using lemma as feature, ASUM can obtain comparable 
result with our model. While using all features, the total accuracy of NB-LDA is 
higher about 1% than that of NB-ASUM. In fine-grained dataset as shown in Table 4, 
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we can see the similar results, where the “lemma+prior” can achieve better 
performances than ASUM+prior, and NB-LDA is better than NB-ASUM.  

From the experimental results, we can see that NB-LDA is consistently better than 
ASUM. As we know, the generative process of ASUM is more complex than NB-
LDA. In NB-ASUM we need compute the probabilities for each feature value 
conditioned on topic variable and sentiment variable. It means that in NB-ASUM, the 
distributions would be s parser than in NB-LDA. The sparsity might block the 
propagation of sentiment information during iterations, and could not conduct good 
results. 

6 Conclusions and Future Work 

In this paper we proposed a hierarchical generative model based on Naïve Bayes and 
Latent Dirichlet Allocation for unsupervised sentiment analysis at sentence level and 
document level simultaneously, only using a public subjectivity lexicon. The idea of 
NB assumption at s entence level makes it pos sible that we can use advanced NLP 
technologies such as dependency parsing to i mprove the performance of sentiment 
analysis. The experiments show that our model obtained better performance than 
VoteFlip, a ru le-based approach and ASUM. However for n ow our model hardly 
reach the competitive performance to the supervised or semi-supervised approaches.  

Since unsupervised approaches hardly obtain comparable performance to 
supervised ones. A simple extended model could be des igned based on supervised 
LDA [2] and Naïve Bayes. Another extension of our model is to capture sentimental 
structures within the documents simultaneously, inspired by HTMM [7]. The third 
future work is to empirically investigate the effects of more features on more datasets. 
Finally we may split sentences not only by punctuations but also by conjunctions, 
since one sentence may contain multiple sentiment clauses. 
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Abstract. This paper proposes a novel unsupervised learning approach for 
Power Analysis – a form of side channel attack in Cryptanalysis. Different from 
existing works that exploit supervised learning framework to s olve this prob-
lem, our method does not require any labeled pairs, which contains information 
of the form {X,Y}={key, power-trace}, but is still cap able of deciphering the 
secret key accurately. Besides proposing a regression-based, unsupervised ap-
proach for this purpose, we further propose an enhanced model through exploit-
ing the dependency of key bits between different sub-processes during the  
encryption process to obtain accurate results in a more efficient way. Our expe-
riment shows that the proposed method outperforms the state-of-the-art non-
learning based decipherment methods significantly. 

Keywords: Power analysis, side channel attack, unsupervised learning. 

1 Introduction  

In cryptography, side channel attack is a kind of attacking strategy taking advantage 
of the information gained from physical implementation of a cryptosystem to obtain 
the cryptographic keys of the device. One major advantage of side channel attack lies 
in its non-intrusive characteristic that allows the attacker to obtain side information 
that facilitates the deciphering of the key. It also enjoys a much lower computational 
complexity than cryptanalytic-theoretical attack, most of which is of super-
polynomial complexity. For well-designed ciphers, side channel attack might be the 
only feasible way to recover the key to the device in practice.  In this work we would 
like to introduce a machine-learning based attacking strategy for side channel attack. 

We focus on a s pecific type of side channel attack called po wer analysis, but in 
general the proposed technique can be applied to several other kinds of side channel 
attacks such as electromagnetic attacks and acoustic cryptanalysis. Power analysis is a 
form of side channel attack, with which the power consumption of a cryptographic 
device (e.g. a smart card) is  analyzed to obtain the cryptographic key of the device. 
As some cryptographic devices are implemented using semiconductor logic gates, and 
current flows across the silicon substrate when change is applied to or removed from 
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the gate, it is not hard to imagine that through examining the power consumption of 
the device externally it is possible to determine what kind of operations (i.e. macro-
characteristics) are executed on the device chip. One can then use such information to 
guess the secret key that corresponds to the hypothesized operations.  

Le (2006) classified these techniques into two categories: attacks without reference 
devices and attacks using reference devices. With a reference device, it is possible to 
arrange different keys and plaintexts to feed into the device and record th e output 
ciphertexts and power traces for further analysis. Without the reference device, while 
the outputs can s till be measured, we have no idea what the inputs (i.e. keys) are. 
Hence, attacks using reference devices is like the supervised machine learning scena-
rio, where the training data are labeled with known keys, and no (input, output) rela-
tion is provided for the other case. Therefore, attacking without reference devices is 
considered a much harder unsupervised learning problem. 

In this paper, we propose an efficient, extensible unsupervised framework of power 
analysis based on machine learning techniques. We model the decipherment process 
as identifying a key that minimizes the training error of a given time stamp, which can 
be done unsupervised without using any labeled training data. Besides, the approach 
can be v iewed as parameter estimation in abstraction, where the parameter domain 
contains all pos sible key candidates. To tack le sparse-training situation, we further 
propose a technique to exploit the dependency of multiple round functions in the en-
cryption process. Finally we perform experiments on datasets obtained from the DPA 
Contest to show that the proposed method outperforms the competitors significantly. 

The contributions of this paper are as follows. First, to the best of our knowledge, 
there has not yet been any work aiming at exploiting machine learning approaches to 
perform unsupervised side channel attack. Here we show that with careful design, 
simple machine learning techniques such as regression models can be ex ploited to 
tackle a cryptography problem. In this work, we hope to send an encouraging message 
to ML researchers on how the bridge between machine learning and cryptography can 
be established by demonstrating how the side-channel attack problem can be con-
ducted from learning point of view. 

2 Related Work 

The concept of side channel cryptanalysis was first proposed by Kelsey (1998), which 
describes the use of side channel information such as current consumption leaked 
from imperfect implementation to facilitate breaking the cipher system. It is concep-
tually different from traditional cryptanalysis. That is, side channel cryptanalysis uses 
the correlation between plaintext and ciphertext to guess what happens inside a cryp-
tosystem and further infer the key of the system. Side channel attack exploits the fact 
that most implementations of a cryptography system are not perfect and hence could 
inevitably leak some side channel information. The side channel information can be in 
the form of, for example, the electromagnetic (EM) g auged from CMOS device 
(Agrawal et al., 2002), or the electric current in standard block ciphers (Kocher et al., 
1999) such as what has been used to attack many implementations of Data Encryption 
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Standard (DES) or Advanced Encryption Standard (AES). There are s ome other 
forms of power analysis, such as timing attack (Kocher, 1996), template attack (Chari 
et al., 2002), and acoustic attack (Backes et al., 2010). 

Analyzing the snooped data is a non-intrusive attack of a cryptographic implemen-
tation, and power analysis is one of the most successful forms of such attack. The key 
reason to the success of power analysis lies in that the power consumption of a device 
generally possesses some correlation to the intermediate values that can be produced 
based on the cipher algorithm. In other words, maximum correlation can be obtained 
given correct hypothesis on the key. Below we will discuss some popular approaches 
based on this concept including DPA (Kocher et al., 1999), CPA (Brier et al., 2004), 
and BS-CPA (Komano et al., 2010). 

Differential Power Analysis (DPA) is a t ype of attack that examines the power 
consumption signals through exploiting statistic measures to retrieve the correct key 
that has the maximum likelihood of producing the observed power consumptions. 
Similar to DPA, Correlation Power Analysis (CPA) is b ased on the linear relation 
between the real power consumption of the device and the intermediate values from 
the encipher model; it can be regarded as a form of multi-bit DPA. Messerges et al. 
(2002) demonstrate that CPA is just another form under DPA divided by a normaliza-
tion factor. Built-In Determined Sub-Key Correlation Power Analysis (BS-CPA) is an 
enhancement of CPA that results in efficient trace usage. Whenever a sub-key is de-
termined in each S -box, the BS-CPA can pass such information to as sist other S-
boxes to decrease the signal-to-noise ratio. In DPA Contest 2008, BS-CPA has been 
shown to be the most effective method. We will later compare our method with it. 

In recent years, machine learning techniques have been playing an increasingly 
important role in attacking a cryptosystem. Hospodar (2011) proposed a supervised 
learning architecture to attack an AES system by side channel information. It regards 
the power consumption signal as an instance, divides the key bits into several binary 
labels and treats the problem as several binary classification tasks with Least Squares 
Support Vector Machine (LS-SVM) as the learner. The experiments show that LS-
SVM is suitable for such purpose (Chari et al., 2002). A similar supervised approach 
is proposed by Lerman (2011). In practice, however, such labeled training examples 
are not available in most situations because it requires knowing the hidden key infor-
mation in advance. Acknowledging such fact, we design an unsupervised learning 
approach that follows different assumptions than the previous work. In our case, only 
one single encrypted device with unknown key is needed.. 

3 Methodology 

We start by interpreting the encoding process using Shannon's Noisy Channel Model. 
As shown in Figure 1, the inputs X to the channel contain a set of plaintext or known 
ciphertext (denoted as C={c1...cn}) and an unknown secret key (denoted as key), 
while the interaction of the inputs produces the observed outcome Y={y1...yn} that 
reflects a s equence of measured power consumption. Note th at it is  possible (and 
generally required for side channel attack) to use a variety of cipher-texts interacting 
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with the same key to produce a set of observations. The noisy channel P(X|Y) can be 
considered as a black box that produces an output given an input. Given a fully ob-
served Y and a partially observed X with P(X|Y) unobserved, the goal then becomes 
to recover the missing part of X (i.e. the secret key) using Y and C. The problem can 
then be mathematically formulated as argmaxx P(X|Y). We can first use Baye's rule to 
decompose argmaxxP(X|Y) into argmaxx[P(Y|X)*P(X)]. This essentially tells us that a 
proper X should not only possess a higher chance to produce the observation Y, but 
also has a higher chance to occur among other X's. Here we assume no prior know-
ledge about X in  a cryptography system, and consequently P(X) is uniformly distri-
buted. In this problem, we are given a s et of n instances as inputs X={xk=(ck,key), 
where k=1...n}, where ck is a known cipher-text with the corresponding observation 
yk, but the secret key is unknown. Assuming the deciphering processes are indepen-
dent for each cipher-text, the problem argmaxxP(Y|X) can be transformed to  

 argmax P( | , ) P( | , ) . . . P( | , )  (1) 

Then it becomes obvious that with a faithful estimation of P(yk|ck.key), one can even-
tually solve (1) by enumerating all p ossible keys. Here, a f aithful estimation of 
P(yk|ck.key) implies that among all possible keys (key1...keym), only the correct key 
(denoted as keyc) shall obtain high P(y|c,key) value. Mathematically, a faithful esti-
mation of P(yk|ck.key) should possess the following property: 

 max P( | , ) P( | , ) … P( | , ),  1, ,  P( 1| 1, ) P( 2| 2, ) …P( | , ) 
In other words, incorrect keys should possess much lower probability of producing y 
than the correct one. After taking log on both sides, we can obtain  max logP( | , ) logP( | , ) . . . logP( | , ),  1, ,  logP( | , ) logP( | , )  logP( | , ) 

The above equation is reasonable as the power signature reflects only the interaction 
between the correct key and the ciphertext. Therefore, we propose a t hree-stage 
framework to solve this problem: 

1. Build m different learners ML1... MLm, each contains n instances (I1,...In) that cor-
respond to one single key: ML I (c , , y ), I (c , , y ), … , I (c , , y ) , r ∈ 1, m  

For each input instance (c, key), we generate a s et of features f(c, key) to train the 
learners MLr. The generation of such features depends heavily on the backend crypto-
graphy algorithm. An example will be demonstrated in the experiment section. 

2. We propose to model logP(yk|ck,key) using the inverse of training errors of the 
learners.  
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Fig. 1. The Framework 

Acknowledging the fact that P(yk|ck,key) represents how likely yk results from an 
interaction between ck and key, here we assume that the relationship between the 
input {c, key} and output y are learnable (i.e. low prediction errors) for correct key, 
and not learnable (high prediction errors) for incorrect keys. Therefore, the predicta-
bility of a machine learner has been used here to estimate the quality of a noisy chan-
nel. The channel corresponds to the right key should contain less noise and conse-
quently be more learnable.  Figure 1 illustrates the process. Next we assume the rela-
tion between trace sample y and features x generated from each pair of cipher-text and 
key candidate can be modeled simply as y wT n 

where n can be assumed as Gaussian noise as in (Prouff et al., 2009), and its density 
function can be written as P(n) 1√2πσ exp (( )2 ) 

where σ is the standard deviation of the noise. As a result, the weight vector w for 
each timestamp and each pos sible key candidate can be derived by ordinary least 
square (OLS). Furthermore, coefficients of determination are used to normalize dif-
ferent scales at different time stamps. 

Above we have explained how a supervised learning model can be e xploited to 
solve such an unsupervised decipherment problem. However, for power analysis, 
there is still one more issue to be addressed. Although the outputs y for power  
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analysis can be regarded as a sampled time sequence {y1...yq}, truth is that for most of 
the features generated, only very few signal in certain particular time stamps of y 
reveals apparent relationships with respect to (c, key). That is, usually only the right 
combination of key (denoted as keyc) and time stamp (denoted as tc) possess higher 
learnability than other time stamp. Therefore, instead of building m different learners, 
we propose to create m*q different learners (q represents the number of samples for 
each time sequence) and argue that the one with the best predictability does reflect the 
correct key and time stamp. 

3.1 Sub-Key Breaker 

One major concern for such key enumeration approach lies in the fact that there are 
exponentially many keys to try. To conquer this problem, we follow a commonly used 
strategy of CPA (Brier et al., 2004) to divide the key into several sub-keys according 
to the permutation of inputs of substitution boxes (S-boxes). S-boxes are i mportant 
components in block cipher design, which perform substitution and provide nonli-
nearity between ciphertexts and plaintexts. For instance, the length of key is 56 bits 
for DES; based on such a 56-bit key, each round a 48-bit round key is derived and 
distributed to 8  S-boxes (see section 4.1 for details). Generally, each sub-key has 
certain physical meaning, and w e can extract features from it given some domain 
knowledge. Then we can apply the method proposed in 3.1 on each sub-key indepen-
dently for better efficiency. 

3.2 Dual-Round Approach for Multi-round Ciphers 

So far we have introduced our approach to obtain the secret key from power traces. 
The quality of the results depends significantly on whether there are sufficient exam-
ples (or traces) to learn from. Without sufficient training examples, by chance some 
incorrect key might possess high P(y|c,key) and create false positives under our 
framework. One practical method to determine whether there is sufficient trace is to 
draw the “learning curve” that indicates whether the deciphered key becomes stable. 
In our experiments, we consider the deciphering process as completed if the results do 
not change after 100 additional traces are added. 

The method mentioned in 3.1 might not be as effective if the number of traces is 
not enough to reveal the correct key (or to eliminate the false positives). Experiments 
show that in multiple-round ciphers, the encryption process that affects the power 
signal in each round does correspond to one particular time interval. Therefore it is  
possible to generate multiple training instances based on information from different 
rounds. Remember in Section 3.1 we have described how to break a longer key into 
sub-keys for analysis. In general these sub-keys are organized differently in different 
rounds. For examples, some bits might be grouped into the same sub-key in one round 
and broken into several different sub-keys in another round. For each  round, some 
sub-keys can be deciphered easily (i.e. requiring fewer traces to converge to a steady 
result), while others require more training examples. Here we would like to further 
describe how one can fully exploit the side channel information from multiple-round 
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ciphers given a li mited number of traces. For Feistel cip hers with multiple rounds 
such as DES, if we are given some information of dependency between sub-keys in 
different rounds, a modified version of our method can exploit the relations between 
these sub-keys to improve the deciphering performance. The intuition behind our idea 
is as follows: if a correct sub-key in one round is identified (i.e. possesses lower train-
ing error than most of other candidates), then we can propagate such information to 
other learners and group the overlapped bit using the learned values. By doing such, 
the search space for other harder sub-keys is reduced, which alleviates the high de-
mand for training traces and reduces the false positives.  

An example is shown in Figure 2. It is  known that some of the key bits such as b0 
and b4 are used in both rounds, indicated by the connecting edges. Therefore, we can 
search for the key bits in these two rounds simultaneously. The difficulty of finding 
the correct key of the harder round (need more traces to break) can be reduced with 
the help of the easier one because of the increasing of signal-to-noise ratio when con-
sidering all cases at the same time. In dual-round approach, during training we first 
identify a set of S-boxes, called S-boxes set, whose bits overlapped with each other to 
some extent. Then within each S-boxes set, we train each of the S-boxes independent-
ly, but weighted-sum the errors of each to represent the quality of a particular assign-
ment of bits. The weight is determined by the inverse of the “number of S-boxes” in 
each round containing in this particular S-boxes set. That is, if an S-box set contains 
one S-box in round 1 and two S-boxes in round 2, then the weight for the round 1 S-
box is twice as much as that of the ones in round 2.  

 

 
Fig. 2. Example of key dependency. The endpoints of each edge have the same key bit. In other 
words, the key bits used in both rounds are overlapped.  

4 Experiments 

We evaluate our models using the power consumption traces of the unprotected DES 
crypto-processor on the SecmatV1 SoC (System on Chip) in ASIC (Application-
Specific Integrated Circuits), which is provided by DPA Contest 2008 and focuses on 
Differential Power Analysis or s imilar attacks. Here we select the first 1000 traces 
from secmatv1_2006_04_0809 for experimentation, with each trace con taining 16 
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nominal DES runs. The raw signal of each trace looks like the one shown in Figure 3. 
To smooth the signal and eliminate apparent outliers, we take the average of ten orig-
inal samples as one sample for every power consumption trace in our dataset. As the 
number of learners we need to create is proportional to the number of temporal sam-
ples, here we choose to use only 20 samples per trace for efficiency purpose. Experi-
ments show that we can still achieve high-quality results based on only 20 learners. 

This experiment tries to address two issues. First, we would like to know whether 
our method can accurately identify the correct key. Second, given that the correct key 
can be di scovered, we want to compare our method with two popular non-learning 
based methods, CPA and BS-CPA, to s ee whether our method can find the correct 
key using fewer number of power traces (i.e. ac hieve the same quality using fewer 
data). For the second purpose, we gradually increase the training data size until the 
outputs become stable. Based on the rule from the DPA Contest, the attack is consi-
dered successful if the correct key appears and remains unchanged for 100 consecu-
tive trace additions. 

 

 
Fig. 3. A sample averaged power consumption trace, containing 20003 samples 

4.1 Feature Generation 

Here we first describe the encryption process of DES. In the encryption of DES, the 
plaintext is first permuted and divided into two 32-bit halves, L_0 and R_0. These 
two half-blocks are th en processed by 16 iden tical stages called rounds. For each  
round, there is a 48-bit round key involved, which is a permutation of the original key 
and can be computed reversely. Hence, we can figure out 48 bits of the original key 
by revealing a round key, and then the other 8 bits can be found by exhaustive search. 
In every round, the right half is expanded to 48 bits and XORed with the round key. 
Then it is split into eight 6-bit blocks and fed to eight S-boxes, each of which has a 4-
bit output and generates a 32-bit value that is then permuted again, XORed with the 
left half to become the new right half. For a typical implementation of the DES, the 
two half-blocks keep the same addresses in memory throughout the encryption. 
Therefore, after a round ends and before the next one begins, the register storing the 
right half must be replaced by a new value, which results in several bit flips and extra 
power consumption. By modeling the power consumption, we can derive the condi-
tion of the bit f lips and eventually derive the round key. Because the eight S-boxes 
form a parallel structure, we can attack them one at a time. Each S-box is related to 6 
bits of the round key and the four output bits are stored to some known addresses. 
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We take the first S-box of the first round as an example. The right half before the 
first round, R_0, is known and the four output bits of the target S-box can be com-
puted by assuming a hypothetical 6-bit value as the relevant part of the round key. 
Therefore, we are able to find whether the bit flips for these four bits and can generate 
four features, each is 1 or 0, representing whether the bit flips or not. 

Thus, the first feature we extract is to compute the hamming distance, which meas-
ures the corresponding bits flip between the old and new right half of register in the 
first or the last round of DES (Kocher et al., 1999). The second feature is to compute 
the hamming distance between the old and new left half of register in the first or the 
last round of DES (Almeida, 2008). The difference between left half and right half is 
that the left half inherits from previous right half directly and does not divide into 8 S-
boxes. Therefore, when we attack different S-boxes in a rou nd, each S-box has its 
hamming distance value. Since the output of each S-box has 4 bits , the first feature 
value of each S-box is between 0 and 4. On the other side, the hamming distance of 
left half register is always the same in a round because it inherits directly from the 
right half of previous round. Since there are 32 bits in the left half register, the second 
feature value of each round is between 0 and 32. In single-round approach, we extract 
those features in the last, or the 16th round, of DES. All traces and features are then 
normalized to zero mean and unit variance. 

 

 
Fig. 4. On the left hand side is average traces used for each algorithm, S-box of BS-CPA, CPA, 
and learning-based regression methods. On the right side is the comparison of our regression-
based method and the dual-round approach. 

4.2 Experiment of Single-Round Approach 

In order to compare the efficiency of our model, we use CPA and built-in determined 
sub-key CPA (BS-CPA) (Komano et al., 2010) as competitive algorithms against our 
model. For each competitive algorithm, we add 10 traces each time until a correct and 
stable key is found. As mentioned previously, we adopt the sub-key breaker to attack 
the sub-key (or S-box) one by one. Acknowledging the fact that the order of the traces 
to be added can affect the results as some training inputs are more representative, here 
we shuffle the order of traces each time and then average results from 20 different 
orders to obtain the average number of traces used for each algorithm. We depict the 
average traces of each method in the left hand side of Figure 4. In some cases such as 
S-box3 or S-box7, our method gets worse results. We believe that it is caused by the 
noise in the current traces o r overfitting; however, our learning-based method per-
forms better than others in most of the cases. 
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First round of S-box4                        First round of S-box5 
  * * * * * *

 
 
 

* *
Last round of S-box6 

Fig. 5. Key dependency between the first round of S-box4, S-box5 and the last round of S-box6 

4.3 Experiment of Dual-Round Approach 

In real world scenario, sometimes there are only limited numbers of traces available. 
Therefore, we can resort to the dual-round approach that exploits extra multi-round 
information. For DES, we exploit the first and the last rounds. That is, we explore key 
dependency between the first and the last of nominal DES round. Once we obtain a 
possible key candidate in one round with high confidence, we can pass such informa-
tion to the other round to reduce the search space of all possible key candidates. Before 
pursuing dual-round attack, we need to first observe the dependency of key bits, which 
can be derived from the encryption algorithm itself. For example, the bit0 and bit2 of 
the S-box6 in the last nominal DES round do not have corresponding key bits in the 
first round. The bit1, bit3, bit4 and bit5 of S-box6 in the last round have corresponding 
key bit positions 35, 29, 34 and 24 in the first nominal DES round respectively. 

The single-round results in Figure 4 show that S-box5 is the most difficult sub-key 
to attack, as it requires the most traces on average. If we can use the knowledge of key 
dependency from another round, it is  possible to reduce traces required to attack S-
box5. Figure 5 shows the key dependency between the first round of S-box4, S-box5 
and the last round of S-box6.  We have realized that there are two overlapped keys 
between S-box5 in the first round and S-box6 in the last round, and another two over-
lapped bits between S-box6 in the last round with S-box4 in the first round. There-
fore, it is possible to propagate the key bits learned in an easier S-box (e.g. S-box4) to 
the harder ones. We realize such idea by considering the bits in these three S-boxes 
altogether and use the weighted sum of the errors to evaluate the quality of certain 
assignment. Even though not all key bits has a corresponding mapping between the 
first and the last round, we still need to search all possible combinations of those non-
overlapped bits. The higher the key dependency, the more likely we can use fewer 
traces or training examples to decipher the key.  

4.4 Results of Dual Round Experiment 

Here we compare the dual-round approach with the single-round approach. We focus 
on deciphering the S-boxes in the last nominal DES round using the dual-round attack 
technique because we can easily compare the results with our single-round approach. 
The right hand side of Fig. 4.  shows the results of regression-based single-round 
approach and dual-round approach. Table 1 s hows the numbers of average traces 
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required for each S-box. Not surprisingly, the dual-round approach has better perfor-
mance than single-round approach in most situations. Such results demonstrate that 
dual-round approach can trim the search space to avoid the interference of some po-
tential false positives because an incorrect key needs to perform well in both rounds 
to be selected as false positives, which is less likely to happen comparing with single-
round approach. 

Table 1. The experiment results of single-round approach and dual-round approach 

Method Single-round approach Dual-round approach 
Used traces Avg. Avg. 

S-box0 82 76 
S-box1 101 82.5 
S-box2 97.5 101.5 
S-box3 118.5 115.5 
S-box4 99 70.5 
S-box5 121 89.5 
S-box6 104 89.5 
S-box7 117 112.5 

5 Conclusion 

Side channel attacks play an important role in cryptography. Despite that in theory, 
cryptographers can design provably-secure cryptographic algorithms, these algo-
rithms need to be i mplemented and carried out by computing hardware. The imple-
mentations can subject to s ide channel attacks no matter how secure the algorithms 
are in theory. This is why many industrial and governmental standards such as FIPS 
(Federal Information Processing Standard), CC (Common Criteria), and EMV (Euro-
pay, MasterCard, and VISA) require that compliant security products have various 
levels of countermeasure against side channel attacks. It is therefore crucial to under-
stand how efficient such attacks can be with advanced techniques from, e.g., machine 
learning, as well as to gain some insights into how these attacks work in order to de-
sign more effective countermeasures. In this paper, we introduced a novel unsuper-
vised, regression-based approach to perform side-channel attack. We further extend 
this approach to consider information from multiple rounds with promising results. 
We hope this paper can serve as an encouraging example to show how machine learn-
ing approaches can be carefully crafted to solve a well-known security problem. 
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Abstract. Traditional active learning selects the most informative (e.g.,
the most uncertain) example and queries an oracle for the label. How-
ever, as more examples are learned in the process, even the most un-
certain examples can become certain. In this case, would it be better to
make predictions directly and take the consequence if the prediction is
wrong, rather than asking the oracle for labels? In this paper, we propose
a new learning paradigm. In contrast to the traditional active learning,
the learner can obtain true labels not only by querying oracles but also
by making predictions and taking the consequence. Under this paradigm,
we further propose a novel algorithm named Decisive Learner which al-
ways chooses the most decisive action (either querying oracles or making
predictions) in the learning process. Compared to other typical learners
(indecisive learners, traditional active learners, conservative learners),
we show empirically that our decisive learner makes fewer mistakes and
incurs the smallest total costs in the learning process.

Keywords: active learning; decisive learner; decisive actions;

1 Introduction

In traditional active learning, the learner chooses the most informative example
in the unlabeled pool to query the oracle for its label. By doing so, the learner
is likely to achieve high accuracy by using few labeled examples. Many variants
of active learning [10,13] have been proposed (see reviews in Section 2), among
which uncertain sampling [12] is one of the most intuitive and commonly used
strategies. In uncertain sampling, the learner selects the most uncertain example
which is closest to the decision boundary. By halving the version space, uncertain
sampling can make the learning process converge quickly.

Most previous works on active learning assume the true labels can only be
obtained by querying oracles. However, in many real world applications, labels
can be acquired (revealed) alternatively by making predictions directly and tak-
ing the consequence. For example, when a learning system sorts letters by using
OCR (optical character recognition) devices of the post office, if the hand-written
codes are ambiguous, or too difficult to recognize, they will be passed to the or-
acles (human) for labels. However, if the OCR can predict accurately the hand-
written zip codes, the letter will be sorted and mailed to the recipient directly.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 426–437, 2013.
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If the prediction is not correct, the letter will be returned and redelivered (cost
or consequence of the wrong prediction).

In the above example, the acquired true labels can be given to the learner
(OCR system) to further train the predictive model. We can see, besides querying
oracles, making predictions provides another way to obtain the true labels in the
learning process. In fact, this type of problems is ubiquitous in the real world. In
order to effectively deal with the problems, we propose a new learning paradigm,
where we consider two actions for acquiring true labels in the learning process.
One action is to query oracles (e.g., human or experts). Certain cost has to
be paid for each query. The other action is to make predictions (e.g., directly
mailing the letter). After the prediction, the true label will be revealed. If the
prediction is correct, no cost is paid; otherwise, misclassification cost has to be
paid. To determine which action to choose for an example, we should compare
the query cost and the misclassification cost. Since the correct action is unknown
before each action is taken, we use expected misclassification cost.

0 10.5 βα
Query oraclesMake predictions Make predictions

Fig. 1. Probability interval to query oracles. For the examples with the probability in
[α, β], the learner will query oracles; otherwise, the learner will make predictions.

Based on the querying cost and the expected misclassification cost, we can
easily derive a probability interval as [α, β] (see more details in Section 3.2)
shown in Figure 1. For the examples with the probability falling in the interval,
the learner will choose to learn them by querying an oracle for its label; otherwise,
the learner will choose to make predictions on them directly. The interval is, in
fact, the same as the rejection interval in the classifiers with reject option [6,2],
where the learner can reject to make predictions on an example when it is not
certain about it. However, unlike our paradigm, it does not make predictions
during the learning process.

During the learning process of our new paradigm, if the posterior probability
produced by the learner is accurate, then the action taken on each example will
be always correct and optimal. Therefore, the action order in the learning process
will not matter. When all unlabeled examples are learned, the learner can always
learn the same predictive model. However, in reality, the posterior probability
may not be very accurate particularly in the beginning of the learning. For those
examples close to α or β, it is likely that wrong actions will be taken, which may
consequently lead to a higher cost. We call those examples indecisive examples,
and the actions taken on them indecisive actions. We call the examples far away
from α and β decisive examples, and the actions taken on them decisive actions.

What is the optimal order of actions in the case where the probability is
not perfectly accurate? To tackle the problem under the new paradigm, in this
paper, we propose a novel learning algorithm, called Decisive Learner (DL).
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DL always takes the most decisive actions and attempts to make as few mistakes
on the actions as possible in the learning process. As more examples are learned
and the learner becomes more reliable, the indecisive examples may become
decisive, thus fewer wrong actions will be taken. We also empirically study the
performance of DL on 10 real-world datasets, by comparing it with other typical
learners under different cost settings. The experimental results demonstrate that
DL has an overall best performance in terms of the total cost.

The main contributions of this work are in two folds.

1. We propose a new learning paradigm, where the learner can take two actions
(querying oracles and making predictions). Different from traditional active
learning, in addition to querying oracles, the learner can acquire the true
labels of the examples by making predictions and taking the consequence.

2. Under the new paradigm, we propose a novel learning algorithm to find
the optimal action sequence. As a result, the total cost (querying cost and
misclassification cost) is minimized in the learning process.

The rest of the paper is organized as follows. In Section 2, we will review some
related work and discuss the difference with our work. In Section 3, we will
introduce some preliminary for our problem setting and the new concept of
decisive action. Section 4 will talk about the proposed algorithm to select actions.
In Section 5, we will experimentally compare our algorithm with other typical
learning algorithms. Discussion and future work will be presented in the last
section.

2 Related Work

Our paradigm is bridging between the traditional active learning and classifica-
tion with rejection. It is also similar to two-oracle setting in active learning. In
this section, we will discuss the similarities and differences with them.

In traditional active learning, learner tends to choose the most informative
example in the unlabeled pool to query oracle for its label. Uncertainty sampling
[10] is one of the most intuitive and commonly used active learning strategies.
It selects the most uncertain example which is closest to the decision boundary,
which is one option in our learner DL.

As we mentioned in Section 1, traditional active learning has only one option
to obtain the true labels, which is to query oracles. Most of the previous works
assume that there exists at least one oracle who can provide the labels of the
examples. In [15], the assumption is that we have one perfect oracle who can
correctly give all labels. [14,5] study the setting where the oracle is noisy and may
mislabel the examples. [4,14] explore the case where multiple oracles or labelers
may contribute to the quality of the labels. We can see in those works querying
oracles (human experts or labelers) has been regarded as the only approach to
retrieve the true labels.

In our paradigm, we can have two options (actions) to acquire the true labels.
Besides querying oracles, the learner can make predictions directly and the true
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label will be revealed from the feedback (success or failure). Thus, we need
to consider not only the cost to query oracles but also the cost of the wrong
predictions. The best learning strategy might not be always selecting the most
informative (or uncertain) examples as in the traditional active learning. Our
goal is to explore the best learning sequence that minimizes the total cost under
this new paradigm.

For the classification with rejection (also known as abstaining classifiers), the
learner can reject to make predictions on the uncertain examples. The decision
when to reject to make predictions also relies on the ratio between the mis-
classification cost and the reject cost. [7] studies how to effectively reduce the
misclassification rate without considering the cost ratio. However, the existing
works on classification with rejection only study how to minimize the cost given a
predictive model, while in our paradigm we care more about the learning process
that builds the predictive model with the minimal total cost.

In our paradigm, since making predictions can reveal the true labels, it can
be regarded as another oracle. However, our paradigm is substantially different
from the two-oracle setting [4] in active learning. In our paradigm, the “oracle”
(the model for making predictions) is updated with each new labeled example,
while the two oracles in the two-oracle setting are static.

3 New Learning Paradigm

In this section, we will first formally define our paradigm setting where the goal
is to minimize the total cost during the learning process, and then introduce a
new concept named decisive action in detail.

3.1 Paradigm Setting

Given a set of labeled data L, a set of unlabeled data U and a learner M learned
from L, M is allowed to select examples from U , retrieve the labels from an
oracle O and update its model iteratively. Given an example in U , its label can
be obtained by taking one of the two actions. The first action is to query the
oracle O for its label by paying the querying cost Cq. The second action is to
make a prediction (positive or negative) on the example. The consequence of the
prediction will reveal the true label. If the prediction is wrong, we have to pay
the misclassification cost CFN for false negative and CFP for false positive pre-
dictions. For each example with a posterior probability produced by the learner,
the action to take can be determined. The goal of this learning problem is to
find a proper learning sequence for the examples from U , such that the total cost
is minimized.

3.2 Choice of Actions

For an example x in U , how to choose the action depends on the costs of the two
possible actions. Given the probability of being positive p(1|x) predicted by the
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learner, the expected misclassification cost will be P (1|x) × CFN if 0 ≤ P (1|x) ≤
0.5, or (1− P (1|x))× CFP if 0.5 < P (1|x) ≤ 1, where CFN and CFP are the costs
for false negative and false positive. If the expected misclassification cost is less
than the cost of querying the oracle, we should make the prediction directly;
otherwise, we should query the oracle for the label. Therefore, we can calculate
the values of α and β in Figure 1 of Section 1: α = Cq/CFN and β = 1−Cq/CFP .
Without loss of generality, we transform Figure 1 into Figure 2 and look close
into the region of [0.5, 1.0]. Instead of P (1|x), the horizontal axis in Figure 2
changes to P (d|x). Here, d is the prediction (0 or 1) made by the learner, which
depends on the higher probability of P (0|x) and P (1|x). If P (0|x) > 0.5, then
d = 0; otherwise, d = 1. In the following, we will introduce two concepts that are
related to the choice of actions.

The first concept we will introduce is action boundary. In Figure 2, due to the
similarity, we only look into the threshold β = 1 − Cq/CFP for P (d|x), instead
of two thresholds α and β in Figure 1. For examples with 0.5 ≤ P (d|x) < β, we
should query the oracle; while for examples with β ≤ P (d|x) ≤ 1, we should make
predictions. We call the threshold β action boundary. The position of β is not
necessarily in the center of the axis, instead it relies on the cost of querying the
oracle and the misclassification cost. If the oracle is too expensive to query, the
value 1 − Cq/CFP will be small, and thus β will be closer to 0.5. If the wrong
prediction is costly, β will be closer to 1.

Fig. 2. Illustration for action boundary as well as decisive and indecisive action. The
horizontal axis represents P (d|x).

The correct choice of the actions depends on the accuracy of the posterior
probability P (d|x). Here, the accurate probability means that the probability is
perfectly calibrated [16]. Different classifiers have different calibration behaviors.
For example, the scores produced by naive bayes, decision tree and SVM are not
calibrated, while bagged decision tree and random forest can produce calibrated
probabilities [11,16]. In addition, the insufficiency of training data may also lead
to the inaccuracy of the probability, particularly in the beginning of the learning
process when the learner does not observe enough examples. If a classifier can
produce perfectly calibrated probability P (d|x), then the action taken on each
example in U will always be the correct choice.

The second concept, in terms of the choice of actions, is Indecisive and Deci-
sive Actions. The inaccuracy of the posterior probabilities P (1|x) will easily lead
to the wrong choice of the actions, particularly in the boundary area close to β

as shown in Figure 2. For the boundary examples, the learner is not sure which
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action to take. Therefore, we call those boundary examples indecisive examples,
and the actions taken on them indecisive actions. For the examples far away
from the action boundary β (approaching 0.5 or 1), the learner is more certain
about which action to take and the actions taken on them will be less likely to
be mistaken. Hence, we call those examples decisive examples, and their actions
decisive actions1. In fact, there is no clear threshold to distinguish decisive and
indecisive actions. In Figure 2, we use the darkness to demonstrate the deci-
siveness of the actions. The darker the color of the area, the less decisive the
actions taken in the area. We can see that the decisiveness of the actions grad-
ually decreases from β to the two ends (0.5 or 1). In Figure 2, the decisiveness
of actions looks similar to the uncertainty of examples, but they are different.
The probabilities of uncertain examples are close to 0.5, while the probabilities
of decisive actions varies within [0.5, 1] depending on Cq and CFP .

Based on the decisiveness of action, in the next section, we will propose a new
learning strategy to minimize the total cost.

4 Decisive Learner

The key issue to the learning problem defined in Section 3 is how to correctly
determine the learning sequence on the examples in U such that we can minimize
the total cost. In the following, we will propose a novel learning strategy that
selects examples from the most decisive to the most indecisive.

4.1 Algorithm

We design a novel learner called Decisive Learner (DL). The basic idea of DL is
that the decisive examples take precedence to be selected for learning since the
actions taken on them are more likely to be correct, and the indecisive examples
will be left for learning later. As we mentioned in Section 1, when more examples
are observed by the learner, the model built will become more accurate, the
indecisive examples may become decisive, and consequently actions will be less
likely to be mistaken. There are two types of decisive examples: examples (close
to 0.5) to query the oracle and examples (close to 1) to make predictions. Both
of the two types examples are beneficial for the learner. The examples with
probabilities close to 0.5 can help the learner achieve high accuracy with few
examples. Direct prediction on the examples with probabilities close to 1 makes
good use of the current learner and is likely to obtain the true labels without
any cost. Moreover, those (certain) examples can make the learner more robust.
Therefore, in our algorithm, we take advantage of both types of examples by
alternating them.

Specifically, the algorithms of decisive learner can be decomposed into the
following four steps.

1 In this paper, for each selected example an action will be taken, thus we regard
taking actions and selecting examples equivalently.
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Fig. 3. Illustration of the learning process for the decisive learner (DL). DL learns
the examples in the intervals (shadowed) alternately on the two sides of the action
boundary β, gradually approaching β. The actions are taken from the most decisive to
the most indecisive.

1. Splitting Probability Interval: Each of the probability ranges [0.5, β) and
[β, 1.0] is split into k equal intervals. Each example in U falls in an interval
according to the posterior probability P (d|x) predicted by the current learner.

2. Selecting the Starting Interval: The learner chooses the most decisive
interval which is furthest from the action boundary β to start the learning.

3. Learning in an Interval: The current learner checks if there is any example
in U located in the current interval. If yes, we select the most decisive example
in the current interval, acquire its label by taking the corresponding action
and update the learner, and then repeat step 3; otherwise, we go to step 4.

4. Alternating Interval: If all examples in U are learned, we terminate the
learning; otherwise, the learner selects an interval on the other side of β as
the next interval, and then go back to step 3 to learn examples in it.

From the algorithm of DL, it is clear that the learner always learns the most
decisive examples and attempts to make as few mistakes on the actions as pos-
sible. This feature ensures that DL achieves a good performance in terms of the
total cost.

5 Empirical Studies

In this section, we will empirically study the performance of DL in terms of the
total cost. We will compare it with other three typical learners.

5.1 Datasets and Cost Ratios

We will evaluate the performance of DL on 10 UCI datasets [1], including
abalone, adult-census, anneal, credit-g, diabetes, nursery, sick spambase, splice
and waveform, with the size ranging from 898 to 32561.
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To be more comprehensive, our evaluation will be conducted under different
cost ratios (the misclassification cost CFN and CFP over the oracle querying
cost Cq). As different values of CFN and CFP will not affect the comparison
results, we let CFN = CFP = Cm, and choose three cost ratios, Cm/Cq = 2.5,
Cm/Cq = 4 and Cm/Cq = 10. Since β = 1 − Cq/Cm, the corresponding action
boundary β are 0.6, 0.75 and 0.9. The reason we choose the minimum cost
ratio as 2.5 is that we should make sure Cm/Cq ≥ 2; otherwise, for any P (d|x),
Cm× (1−P (d|x)) < 2×Cq× 0.5 < Cq, meaning that making predictions is always
better than querying oracles regardless of P (d|x) and thus we do not need to
conduct our research.

5.2 Other Learners

In our experiments, DL will be compared with other three typical learners with
different learning sequence under our learning paradigm. We will give a brief
introduction of them in this subsection.

Fig. 4. Illustration of the learning process for four learners. DL is the decisive learner.
IL is the indecisive learner, opposite of DL. AGG is the aggressive learner which is the
traditional uncertain sampling. CON is the conservative learner which learns in the
same sequence as self-directed learning.

1. Indecisive Learner: The first learner is named indecisive learner (IL),
which takes the opposite learning sequence of DL (see Figure 4 for illustra-
tion). It always selects the most indecisive examples in the learning process.
Specifically, it has the same interval splitting strategy as DL and also alter-
nates the intervals on both sides of β. The only difference is that it starts
from the closest interval to β where examples are indecisive. It can be ex-
pected that the learner will make many mistakes on actions, especially at
the beginning of the learning process.

2. Aggressive Learner: Aggressive learners (AGG) are those that choose the
most challenging example (i.e., the example that is least certain by the cur-
rent learner), to learn in each iteration. It is the same as uncertainty sampling
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[15] in the traditional active learning. It always gives preference to the ex-
ample that is closest to the decision boundary and queries the oracle for its
label.

3. Conservative Learner: In contrast to the aggressive learner, conservative
learner (CON ) always exploits the data it can predict well and tries to make
as few mistakes on the predictions as possible. Thus, it prefers to learn
the examples with the posterior probability P (d|x) close to 1. The learning
sequence of conservative learner is the same as self-directed learning [9].

Furthermore, for all the four learners (DL, IL, AGG and CON), we use bagged
decision tree as the base classifier, due to its well-calibrated posterior probability
as we mentioned in Section 3.2.

5.3 Experimental Setting

For each of the 10 UCI datasets, we randomly select 100 examples as the labeled
set, and use it to train the initial classifier for each of the four learners. The rest
of the examples belong to the unlabeled set. For the four learners mentioned in
Section 5.2, we calculate the total cost (the misclassification cost and the cost of
querying the oracle) spent in the entire learning process. The less the cost, the
better the learner. We run the four learners on the 10 datasets under the three
cost ratios (Section 5.1) for 10 times. Friedman test and Wilcoxon signed-rank
test will be chosen to statistically test the difference of the total cost of the four
learners. It should be noted that after learning all the unlabeled examples, the
four learners should have the same predictive model, since the model is built on
the same set of examples.

5.4 Statistic Testing Methods

The total cost in each repeat can be affected by the initial split of the dataset,
thus the cost may have large variance in different repeats and even the data itself
may not be normally distributed. In this case, Friedman test can be a reasonable
choice for our statistic testing, since it uses the ranks of the data rather than
their raw values to calculate the statistic. Friedman test has been widely used
to test whether there is a statistically significant difference between a group of
values [3,8]. If significant difference exists in the group, we still need a post-hoc
test on different pairs of groups to report their statistical difference. Wilcoxon
signed-rank is a commonly used post-hoc test following Friedman test [3,8], thus
we will use it in our experiment.

5.5 Comparative Results

Table 1 demonstrates the average total costs of the four learners on the 10 UCI
datasets, under three cost ratios. In order to evaluate the statistical difference,
we also calculate the ranking of the four learners based on Wilcoxon signed-rank
test. The ranking is calculated by the following steps. For each row in the table,
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we first sort the four learners by their average costs ascending. Then we compare
the learner with the smallest mean to the one with the largest mean. If there
is no significant difference, all the learners will be ranked as 1; otherwise, we
continue to compare the smallest mean with the second largest mean, until all
the learners have been compared or no significant difference is found. In the next
round, we will compare the second smallest mean with the largest mean, and
repeat the same step. The process iterates until all learners are ranked.

In Table 1, the rank of each learner is presented in the bracket next to the
average total cost. The four rows in the bottom of Table 1 present the average
rank of the four learners over all the 10 datasets under the cost ratio (2.5, 4 and
10) respectively, as well as the overall average rank over 30 rows in the table. We
can see clearly that DL is top ranked in 27 out of the total 30 comparisons and
has the lowest average rank 1.1 over the 30 rows. The average costs on all the 10
datasets are also presented in Table 1, and we can see that DL is much better
than the other three learners. Both the rank and the average costs illustrate that
DL has the overall best performance in terms of the total cost.

Theoretically, IL is supposed to have the poorest performance since it always
selects the most indecisive actions and is expected to make many mistakes.
However, we observe that it is not exactly the case in Table 1. Overall, the
average rank (2.4) of IL is slightly better than that (2.5) of AGG. A closer look
reveals that under the cost ratio 4 and 10, IL indeed has the lowest rank among
the four learners. The slight superiority of IL to AGG is due to the fact that IL
performs much better than AGG when the cost ratio is 2.5. Under the cost ratio
2.5, β (1-1/2.5=0.6) is relatively close to 0.5. IL starts learning from the examples
with probability around 0.6 while AGG from the examples with probability close
to 0.5. Although the examples selected by IL are not as informative as those
selected by AGG, they are still useful for the learner. Furthermore, IL can even
save more costs by directly making predictions on the examples to the right side
of β, as the expected cost of making predictions on those examples is lower than
the cost to query the oracle ((1− P (d|x))× Cm < Cq, where P (d|x) > β).

From the average rank in Table 1, we can also observe that DL is more likely to
have better performance when the cost ratio is high, as its average rank increases
when cost ratio becomes higher. It means when the misclassification cost is much
higher than the querying cost, it is safer and more desirable to use DL as the
learner.

6 Conclusion

This paper proposed a new learning paradigm where the learner is able to take
two possible actions (querying oracles and making predictions) to acquire true
labels for new examples. The new paradigm is different from the traditional
active learning where oracles are the only source to obtain true labels. Under the
new learning paradigm, we proposed a novel learning algorithm named decisive
learner (DL), which always selects the most decisive examples and makes as few
mistakes on the actions as possible in the learning process. In the experiments,
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Table 1. Statistical comparisons between the four learners in terms of the cost. Each
cell shows the average cost and its rank (in the bracket) of a specific learner on a
dataset under a cost ratio. The rank is calculated by a statistical test named Wilcoxon
signed-rank. The cells in bold represent the winner(s) in the corresponding row.

Cost ratio DL IL AGG CON

abalone
2.5 889(1) 955(2) 1031(3) 891(1)
4 1081(1) 1313(3) 1238(2) 1341(3)
10 1461(1) 1520(2) 1410(1) 1723(3)

adult-census
2.5 4803(1) 4904(2) 5511(3) 4813(1)
4 5893(1) 7178(3) 6887(2) 7102(3)
10 8097(1) 9228(3) 9121(2) 9199(2)

anneal
2.5 66(1) 75(2) 88(2) 58(1)
4 102(1) 124(2) 124(2) 101(1)
10 130(1) 210(3) 194(3) 167(2)

credit-g
2.5 268(1) 282(2) 308(3) 271(1)
4 331(1) 397(3) 350(2) 396(3)
10 375(1) 400(2) 380(2) 445(3)

diabetes
2.5 195(1) 204(2) 211(2) 194(1)
4 234(1) 262(2) 241(1) 274(2)
10 290(1) 294(1) 285(1) 309(1)

nursery
2.5 273(1) 276(1) 385(3) 285(2)
4 349(1) 436(3) 497(4) 391(2)
10 610(1) 879(3) 802(2) 764(2)

sick
2.5 84(1) 93(1) 93(1) 83(1)
4 122(1) 143(2) 132(1) 137(2)
10 217(1) 258(2) 254(2) 270(2)

spambase
2.5 416(3) 364(1) 628(4) 389(2)
4 554(1) 704(3) 891(4) 623(2)
10 753(1) 1436(3) 1415(2) 1335(2)

splice
2.5 391(2) 322(1) 625(3) 333(1)
4 557(1) 673(2) 802(3) 535(1)
10 688(1) 1094(2) 1077(2) 1055(3)

waveform
2.5 640(1) 624(1) 940(2) 614(1)
4 847(1) 959(2) 1101(3) 971(2)
10 1039(1) 1503(3) 1341(2) 1952(4)

average cost overall 1058(1) 1237(2) 1278(3) 1234(2)

average rank

2.5 1.3 1.5 2.6 1.2
4 1 2.5 2.4 2.1
10 1 2.4 1.9 2.4
overall 1.1 2.1 2.3 1.9

we demonstrated the outstanding performance of DL in reducing the total cost,
compared to three other typical learning strategies under the same learning
paradigm. The proposed learning algorithm (decisive learner) can be applied to
various real-world applications, such as optical character recognition and online
advertising.
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Abstract. The finite element method is a numerical simulation tech-
nique for solving partial differential equations. Domain decomposition
provides a means for parallelizing the expensive simulation with modern
computing architecture. Choosing the sub-domains for domain decom-
position is a non-trivial task, and in this paper we show how this can
be addressed with machine learning. Our method starts with a base-
line decomposition, from which we learn tailored sub-domain overlaps
from localized neighborhoods. An evaluation of 527 partial differential
equations shows that our learned solutions improve the baseline decom-
position with high consistency and by a statistically significant margin.

Keywords: domain decomposition, numerical simulation.

1 Introduction

Numerical simulation in product development has become a standard. It is used
in various applications such as semiconductor manufacturing [2], crash-test sim-
ulation [8], and fluidic system design [11]. Numerical simulation can also be sup-
ported by machine learning for the purpose of approximating solutions [14]. In
this setting, a margin of error is tolerated in return for predictions from learned
models that bypass on-the-fly simulation.

A key challenge in numerical simulation concerns the efficiency and stability of
parameterized numerical simulation methods. These methods are often difficult
to deploy for end-users. As a result, the most robust and parameter-independent
methods (such as direct solvers for linear systems) are often preferred over the
most efficient and parameter-dependent methods (such as domain decomposition
and iterative solvers) in many engineering contexts. Our key idea is that the
parameters in this latter group (for example, the overlaps of sub-domains when
simulating partial differential equations) can be learned to converge the ease of
use towards the parameter-independent methods. A consequential benefit is that
the efficiency of the learned solutions can be increased.
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Fig. 1. (a) Our strategy for implementing a learnable domain decomposition problem.
(b) A smaller problem showing overlaps (e.g., Ω1 ∩Ω2) and boundaries (e.g., ∂Ω1).

Parallelizing the simulation of models using domain decomposition in natural
and engineering sciences is based on partial differential equations on a given
domain. The approach requires the decomposition of a domain Ω ⊂ Rm, m ∈
{1, 2, 3}, into some number of sub-domains Ωi, i = 1..n ∈ N. For overlapping
domain decomposition methods, the size of the sub-domain overlaps influence
the stability and computational cost of the approach. Finding a near-optimal
choice of parameters for optimizing the overlaps is an open problem. In many
applications it is chosen with human intuition and experience using only a global
setting. In this paper, we demonstrate that when using machine learning we can
automate the choice of these parameters with local settings.

Our approach is to improve the efficiency of a default checkerboard sub-
domain pattern such as the example shown in Figure 1a. Here, we consider the
properties of the boundaries of each sub-domain as features. When dealing in
two dimensions, each sub-domain Ωi contains interesting relationships with the
adjacent sub-domains {Ωi, i = 1..36 | ∂Ω21∩Ωi �= ∅} that we may capture. This
is represented in Figure 1a as the red neighborhood of nine sub-domains. In this
example, a modified material setting passes through most of sub-domain Ω21,
and we should extend some of the sub-domain boundaries such that this material
boundary is not too close to the initial partition. So for example, area bound-
ary P4 has been extended by some amount ΔP4 so that the modified western
sub-domain boundary is not too close to the material boundary.

For the purposes of machine learning, we are interested to learn the relative
computational costs of the neighborhoods and then combine this knowledge to
reduce the computational costs of the whole domain. To do this, the numerical
simulation of the domain is computed for several variations of the neighbor-
hood, and the relative improvement or degradation of the computational cost
is recorded. So in the case of Figure 1a, we have 36 neighborhoods to consider
including some interesting cases around the perimeter. The neighborhood fea-
tures that we wish to capture include material regions that cross sub-domain
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boundaries or have close proximity to these boundaries. Therefore the mapping
between these features and the computational cost can be cast as a regression
problem, and we wish to learn solutions that reduce the cost.

Our contributions in this paper are summarized as follows: (1) We propose a
machine learning approach for automating and optimizing the overlap construc-
tion for domain decomposition methods. (2) We create a unique problem set
of interest to both novice and expert users. (3) We develop and apply a novel
taxonomy of the feature space in our problem setting. (4) We devise a machine
learning framework for overlap optimization including a training corpus and an
appropriate performance measure.

The remainder of this paper is organized as follows. In Section 2 we provide
the necessary background on partial differential equations and domain decom-
position. In Section 3 we give the details of our methodology including data and
the evaluation measure. In Section 4 we compare the results of our method to
an expert human baseline. Finally in Section 5 we offer concluding remarks.

2 Solving PDEs Using Domain Decomposition

Numerical methods for solving any partial differential equation (PDE) [3] tend
to involve a huge number of unknowns, especially in three dimensions. The power
of a single computer is often no longer sufficient to solve the resulting equations.
In this case, parallel computing with domain decomposition is one of the most
successful strategies to solve these equations efficiently [10,12].

A PDE-based model consists of four components: the equations, the related
parameter sets (or material properties), the domain these equations are solved
on, and the boundary values given for the domain. The goal of domain decompo-
sition is to split the domain into smaller sub-domains and iterate to coordinate
the merging of the solution between these sub-domains.

Schwarz and other domain decomposition methods have overlapping and non-
overlapping variants for solving boundary-value problems [10,12]. If a domain de-
composition method is overlapping, then some portion of each problem is solved
redundantly. Conversely if a domain decomposition method is non-overlapping,
then the sub-domain boundaries are only touching. Most overlapping methods
are categorized as additive or multiplicative, concerning the transfer data from
one sub-domain to another. Additive methods have better properties concerning
parallelization than multiplicative ones.

The overlapping additive Schwarz method, as utilized in this paper, is a sim-
ple and robust approach for applying domain decomposition. With sufficient
overlap as demonstrated in Figure 1b, it can be applied to nearly every PDE.
A disadvantage of this method is its slow convergence. For example, faster but
more complicated non-overlapping methods such as FETI approaches [12] ex-
ist for some structural mechanic problems. These approaches can work without
overlaps on the application domains, but they are less robust. They are not suit-
able, for example, for many fluid mechanic problems where overlapping Schwarz
methods are also applicable. Nevertheless, all overlapping domain decomposition
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methods share the same basic demands and requirements that we want to solve
in this paper, so our results are broadly applicable.

The parameters of domain decomposition are the positions of the introduced
artificial boundaries and thus the size of the overlap. This means that the effi-
ciency of domain decomposition is highly parameter-dependent since each new
sub-domain creates artificial boundaries. An artificial boundary introduces er-
rors arising from the domain decomposition procedure, which in turn leads to
more iterations. The numerical effect of an artificial boundary diminishes when
moving from the boundary to the inner part of a sub-domain. Thus, a bigger
overlap leads to more information exchange between the sub-domains and there-
fore to artificial boundary conditions that are more closely related to the solution
of the PDE, which leads to faster and more stable convergence. Beyond this, it
is known that jumps in the material parameters influence convergence behavior
if they occur next to the artificial boundaries.

In summary, a bigger overlap will decrease the number of iterations, however
this will increase the size of the sub-domains and the computational overhead of
the domain decomposition approach. This is a critical trade-off that influences
the division of Ω into sub-domains. Beyond this trade-off, the number of compu-
tation units must be kept in mind when applying parallelization technology. For
a computing cluster with m units, at least m sub-domains are desired, otherwise
domain decomposition is not used to its fullest potential. However, we are less
interested in obeying this technical constraint in this work, as our goal is to
instead evaluate performance with a generalized strategy that is independent of
specific computing infrastructure.

3 Overlap Optimization Learning Approach

In this section, we first describe our general problem specification, and the ap-
proaches for generating the associated data and feature sets. Following this, we
provide the details of our evaluation measure and describe our learning objective
together with the methodology that we deploy.

3.1 Problem Definition

As an example PDE for solving in this paper, we use Poisson’s equation, which
is a prototype of so-called elliptic PDEs of second order, with some Dirichlet
boundary conditions:

− ε(x)∇2u = f(x) on Ω ; u = g(x) on ∂Ω (1)

This equation has application in modeling stationary heat, and we use it as an
example to motivate our work. Consider Ω as the geometry on which we want
so solve the heat equation such as a bar, f(x) ≥ 0 as heat sources, ε(x) as the
material property, and g(x) as known temperatures on the boundary ∂Ω of the
domain Ω. A direct connection of two materials in a model could represent an
ε-jump, and a blending of materials could represent a smoother ε-transition. We
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note that Poisson’s equation is a quite simple PDE, but there are additional
applications in Newtonian gravity and electrostatics, which is why we use it in
this paper. The results concerning machine learning and domain decomposition
achieved on this example can easily be transferred to other problems with a
similar behavior, such as stress modeling used in engineering science. However,
there are some models arising in fluid dynamics, for example, that behave dif-
ferently concerning domain decomposition. These are less stable and need more
care concerning parameter fitting. Transferring our approach to these models
might need more work, but there are bigger benefits to gain because it is harder
for humans to fit the model parameters.

For solving PDEs, domain decomposition can be applied to numerical methods
such as spectral methods [5] and finite volumes [13]. We concentrate on the finite
element method (FEM) [3], which is a standard method in most engineering soft-
ware solutions. This problem is applied on the unit square using finite elements
with continuous piecewise linear base functions on a regular triangulation, thus
in Equation 1 we have Ω = [0, 1]× [0, 1]. Apart from the unit-square restriction,
we only use rectangular partitioning in order to constrain the initial problem
space. Notice that for the unit square with a structured grid, the checkerboard
pattern with equal-size squares is a common and good default choice for the
sub-domains. In this setting, the sub-domains all contain the same number of
unknowns, and they have a good ratio between area and boundary.

3.2 Approach for Generating Diffusion Specifications

Each diffusion specification, or set of material values within the unit square to
solve Poisson’s equation, is a unique problem. This can imply that each problem
must be learned individually and that results cannot carry over between different
diffusion specifications. To address this, we are interested in learning patterns
from neighborhoods of sub-domains as per Figure 1a, so that the knowledge
about common patterns can be reapplied to whole problems. In this respect,
we develop a deterministic algorithm for producing a large dataset of diffusion
specifications for the neighborhood patterns to be learned from.

Our dataset is based on the placement of shapes with different material val-
ues in the domain, whereas in every shape the material value is constant. The
shapes are circles and squares of various sizes that fit within the unit square or
are truncated at the boundary. The shapes are arranged in one of three patterns
with up to four shapes each: The Nested pattern uses a nested arrangement of
shapes where the first shape is the largest and all successive shapes are included
within. The Isolated pattern is comprised of stand-alone shapes without over-
lap or connection. The Sequence pattern uses different shapes arranged from
a start point in a specific straight-line direction that can be just in contact or
overlapping. The patterns, shape positions, and shape sizes are selected with a
pseudo-random number generator with a deterministic sequence and fixed seed
to make the data reproducible. Note also that the last-defined material setting
takes precedence in the case of overlap. In general, one can expect that a skilled
human will often be able to do a better job than machine learning for simple
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two-dimensional problems such as the Isolated case. But for more complicated
problems in two dimensions (such as Nested and Sequence problems) and
certainly in three dimensions, which is a typical application area for domain de-
composition, machine learning will be helpful for both novice and expert users.

3.3 Approach for Generating Domain Specifications

Considering any checkerboard organization of sub-domains with uniform overlap,
our goal is to improve on this baseline by learning from various permutations.
Specifically, we can learn from permutations when the boundaries of the sub-
domains are extended, retracted, or left alone in the north, east, south, and west
directions. Since our goal is to learn from individual 9-region neighborhoods by
modifying the boundaries of the central sub-domain, we can apply boundary
modifications to each sub-domain in isolation. For example, when considering
a uniform overlap of 0.4%, we can optionally modify the boundaries by ±0.2%
to create three variations per sub-domain (0.2%, 0.4%, and 0.6%) when the
boundaries are adjusted uniformly therefore creating 3 × 16 = 48 combinations
for a 4 × 4 checkerboard. Other combinations are possible, such as adjusting
boundaries in all individual combinations instead of uniformly, but we leave this
for future work.

3.4 Extracting Features from Neighborhoods

In consideration of a 9-region neighborhood as per Figure 1a, we have devel-
oped features that capture interesting changes in the material setting ε around
and within the overlapping region of a pair of sub-domains. Figure 2a provides
an example for a modified sub-domain Ω̂1 and the northern overlapping re-
gion Ω̂1 ∩Ω2 with Ω2. The example shows nine rows of unknowns surrounding
the boundary ∂northΩ1 and the modified boundary ∂northΩ̂1. In this case the
rows are of key interest but the columns are not, as they capture changes in the
materials that are perpendicular to the overlapping regions, and extending or
shrinking the overlapping region does not affect the measurement.

The features we are interested in come from a single-line or multi-line region
immediately above or below the ∂northΩ̂1 boundary as shown in Figure 2a. The
number of lines in such a region is variable, and for now we simply consider two
lines per region. For example, Figure 2a shows two lines for regions ‘E’ and ‘F’.
In this respect, we propose two feature sets called Fine and Coarse based on
single-line and multi-line features respectively. We also propose a third feature
set called Combined for Fine and Coarse together. For all three feature sets,
we can capture various maximums, minimums, and differences between epsilon
values within the regions of interest. Specifically, we capture (1) the maximum
value in a region, (2) the minimum value in a region, (3) the maximum difference
between values in a region, (4) the maximum difference between values in a
region and the boundary, and (5) the minimum difference between values in
a region and the boundary. Figure 2 provides a worked example where Fine is
regions A–D (20 features), Coarse is regions E–F (10 features), and Combined
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B 1 000 100 900 0 0

C 1 000 100 900 900 0

D 10 000 1 000 9 000 9 900 0

E 10 000 100 9 900 9 000 0

F 10 000 100 9 900 9 900 0

(a) (b)

Fig. 2. (a) A fragment of a unit square for two overlapping sub-domains Ω̂1 and Ω2.
Notations ‘A’ to ‘F’ denote our features as the relationship between the rows referenced
with arrows and the ∂northΩ̂1 boundary. (b) Extracted values assuming the pink, gray,
and blue unknowns take ε = 10 000, ε = 1000, and ε = 100 respectively.

is regions A–F (30 features). Then the full feature sets are realized when the
eastern, southern, and western boundaries are processed.

3.5 The FPO Evaluation Measure

Developing a measure to evaluate the goodness of a sub-domain specification for
any diffusion specification is non-trivial. Key variables such as the number of
iterations and the amount of overlap have a complex relationship between one
another, so these need to be carefully combined. Our approach should optimize
the use of domain decomposition techniques that are designed to speed up sim-
ulation for parallel platforms. In a real-world application, a user is interested in
optimizing the real-world time that a simulation needs, such as the chosen imple-
mentation, the computing network, and the use of cluster computing. Given this
variability, we want to concentrate on the theoretical aspects of the algorithm
together with a given abstract hardware scenario. Our goal is to minimize the
number of floating point operations (FPO).

To justify this choice, first assume that we have a hardware architecture with s
computation nodes. To use this architecture in an optimal way, let s also repre-
sent the number of sub-domains, ni be the number of unknowns in a sub-domain,
and l be the number of domain decomposition iterations. In a single iteration
step, s linear equation systems have to be solved whereas the size of all equation
systems is ni. If one now assumes that a direct solver such as LU decomposi-
tion [9] is used, the first domain decomposition iteration of the matrix has the
complexity of O(n3). For all remaining l iterations, one just has to solve one
upper right and one lower left matrix of the complexity O(n2). Hence, FPO is
defined as:

FPO ≈
s∑

i=1

n3
i

3
+ l · n2

i .
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FPO is only meaningful when comparing solutions with the same number of
sub-domains on the same hardware architecture.

3.6 Machine Learning Methodology

In order to learn from 9-region neighborhoods, we must simulate a large number
of diffusion specifications with multiple sub-domain boundary settings in each
neighborhood and derive the corresponding FPO scores. We do not simulate the
neighborhoods of the unit square in isolation, because introduced additional ar-
tificial boundary conditions will influence the numerical behavior and so perturb
the machine learning. Instead, the areas outside the neighborhood of interest are
simply considered constant, and we are interested in relative changes to FPO
when varying the sub-domain boundaries.

With a database of simulation results, we aim to predict the FPO scores
for unseen neighborhoods with regression. Then we adopt the boundary recom-
mendations that minimize FPO for each neighborhood and combine these to
create a new solution. Using 527 diffusion specifications each having 48 domain
decomposition permutations as per Section 3.3, the steps are as follows:

1. Training. For each diffusion file:

(a) Perform feature extraction for all 48 permutations of the neighborhoods.

(b) Compute FPO for all 48 permutations with simulation.

(c) Record the mapping from the set of input features to FPO.

2. Testing. For each diffusion file:

(a) Perform feature extraction for all 48 permutations of the neighborhoods.

(b) Predict FPO for all 48 permutations using a regression model with the
data from Step 1c.

(c) Identify the minimum FPO value for each neighborhood.

3. Evaluation. For each diffusion file:

(a) Create a new domain specification using the best results from Step 2c
and compute FPO with simulation.

(b) Compare the FPO score from Step 3a with that of the baseline.

The training and testing described above is performed with 10-fold cross-validation.
A separate validation set of diffusion specifications was used during the devel-
opment of our approach to avoid overfitting.

4 Analysis and Results

In this section we determine an expert human baseline, analyze our data, report
improvements achieved by our method, and offer a forward plan with ideas to
generate further improvements.
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4.1 Baseline Overlap Decision

The baseline comparison for our methodology should be a human solution, since
we are aiming to improve the FPO estimator from what humans can achieve.
One solution is to apply a global overlap to all sub-domains. From our expertise
of numerical simulation, the overlapping regions may consume up to around
5% of the available unknowns as a guideline. Guidelines are rarely given in the
literature, but the work of Bjorstad and Hvidsten [1] provides one example based
on 6%. An analysis of several checkerboard grid sizes and global overlap settings
will guide the decision. The required data is given in Table 1 with our highlighted
choice in bold. We adopt this choice because: (1) The 4 × 4 checkerboard gives
a good mixture of center, boundary, and corner neighborhoods, (2) the 0.4%
global overlap avoids extremes, and (3) it is compatible with the literature.

4.2 Data Analysis

We examined the data from all diffusion specifications from our validation and
test sets to better understand the effectiveness of our feature sets. Partial re-
sults for 1 000 diffusion specifications are given in Table 2. The columns show
the number of times the invalid (i.e., outside of unit square), no difference, de-
fault setting, and other measurements are observed. As shown, 25% of all values
are invalid cases, which accounts for attempted measurements outside the unit
square for a 4 × 4 grid — this effect diminishes for larger grids. We could give
special consideration to boundary cases, but we leave this for future work for
now, as many regression algorithms can handle missing values. We also see large
numbers of no difference and default cases, however this redundancy is mitigated
by the fact that our method uses vectors of measurements.

The other cases are where we can learn the most from. However, features (2)
and (4) indicate that we do not have enough data for our problem setting, so we
omit these. Also features (1) and (3) have the same number of measurements,
and our analysis showed that these are correlated in almost all cases, so one
should be omitted here too due to redundancy. In general, relative values (such
as differences) are more interesting than absolute values (such as maximums
and minimums), since the absolute values are dependent on the specific problem
settings. With all the above considerations in mind, we only consider features (3)
and (5), cutting the feature sets to 40% of those proposed in Section 3.4.

Table 1. Baseline choice considering experiment size, global overlap, and the literature

Global Total overlap for various grid sizes (% of unknowns)
overlap 1× 1 2× 2 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8

minimum 0.00 0.40 0.80 1.19 1.59 1.99 2.38 2.77
0.2% 0.00 1.19 2.38 3.56 4.73 5.90 7.06 8.21
0.4% 0.00 1.99 3.95 5.90 7.82 9.73 11.62 13.48
0.6% 0.00 2.77 5.51 8.21 10.87 13.48 16.06 18.60
0.8% 0.00 3.56 7.06 10.49 13.85 17.16 20.40 23.57
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Table 2. The feature extraction data demonstrates some redundancy in the feature
sets. All values shown are for the “north” boundary and the “Fine A” region.

Feature Invalid No Diff Default Other Total

(1) Max Value in Region 12 000 0 34 171 1 829 48 000
(2) Min Value in Region 12 000 0 35 990 10 48 000
(3) Max Diff in Region 12 000 34 171 0 1 829 48 000
(4) Min Diff to Boundary 12 000 36 000 0 0 48 000
(5) Max Diff to Boundary 12 000 35 361 0 639 48 000

4.3 Regression Algorithms and Feature Sets

We now compare the learned FPO scores with the baseline. We consider the
three feature sets, Combined, Fine, and Coarse, and four regression algo-
rithms, namely simple linear regression, nearest neighbor regression, decision
tree regression, and support vector machine regression.1 We found that only the
nearest neighbor regression algorithm offered improvement. Since our interesting
features are sparse (cf. Table 2), this indicates that we only have so many inter-
esting near neighbors to learn from for each prediction, making nearest neighbor
a good choice as the learning algorithm.

The median learned FPO scores for the nearest neighbor regression algorithm
expressed as a fraction of the baseline are 0.9778 for Combined, 0.9791 for
Fine, and 0.9830 for Coarse. This improvement is statistically significant in
all cases (p < 2.2 × 10−16) when using a paired Student’s t-test and the effect
size is large (Cohen’s d = 0.85 for Combined versus baseline, d = 0.79 for Fine
versus baseline, and d = 0.62 for Coarse versus baseline). We also examined
the differences between the features sets, but we found these of little interest as
the effect sizes are small.

We must point out that our baseline is an expert human baseline, which we
consider as the best baseline. In contrast, the novice baseline setting can be con-
sidered the minimum overlap comprising one line of unknowns. This baseline can
lead to extreme behavior in many cases and simulation that does not converge in
a reasonable amount of time. As a result we cannot compute this baseline, but
we note that our approach does not exhibit the behavior of the novice baseline.

So far FPO is reduced to around 0.98 of the baseline and we have statistically
significant improvements with large effect sizes. An explanation for this result is
that our method provides a very consistent improvement for our test instances.
For instance, Figures 3a and 3b show a shift in the score distributions leaving lit-
tle overlap. Specifically, our method improves the baseline score for all instances
except for 33 of 527 as shown in Figure 3c. We would like to further improve the
cost saving to a 0.95 or 0.90 fraction to be completely satisfied, which we aim to
achieve in future work with the following forward plan.

1 Weka 3.7.7 [7]: weka.classifiers.functions.LinearRegression, weka.classifiers.lazy.IBk,
weka.classifiers.trees.M5P, and weka.classifiers.functions.SMOreg respectively.
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Fig. 3. The histogram shift and the scatterplot demonstrates consistent improvement

4.4 Forward Plan

The results presented above are our first for overlap optimization. An end goal
is to consider three-dimensional problems later. First we wish to improve our
approach for two-dimensional problems by implementing and experimenting with
several extensions. For the first extension we wish to increase the checkerboard
size for more fine-grained and precise learning. Second, we want to increase the
training set size with additional diffusion specifications. Third, we wish to apply
non-uniform boundary adjustments with sub-domains. Finally, we would like to
drop the checkerboard constraint in favor of polygonal boundaries. We anticipate
that these items each offer incremental improvements, and the final sum will be
of most interest.

5 Conclusions

In this paper, we proposed a machine learning method for optimizing overlaps of
domain decomposition problems. The key idea proposed was to learn properties
of sub-domain neighborhoods, so that a complete solution can be assembled
automatically and solved more efficiently with domain decomposition. To achieve
this, our method introduced a novel feature set with the purpose of capturing
interesting properties of sub-domain boundaries. When compared with an expert
human baseline, our method offered a consistent and statistically significant
improvement for the Poisson’s equation. In addition, several avenues of future
work have been identified that we expect will offer further improvements.

Finally, we emphasize that this work represents one part of a many-fold ap-
plication of machine learning in a practical numerical simulation setting. Our
earlier work in this field has demonstrated the behavioral learnability of bridge
models [4] in an integrative structural design setting [6] for identifying robust
solutions in civil engineering. Conversely, domain decomposition concerns par-
allelization for efficiency, so the bringing together of both dimensions provides
potency for machine learning to have a high impact in numerical simulation.
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Abstract. K-Nearest Neighbor based regression algorithm assigns a
value to the query instance based on the values of its neighborhood in-
stances. Although kNN has proved to be a ubiquitous classification/regre-
ssion tool with good scalability but it suffers from some drawbacks. One
of its biggest drawback is that, it is a lazy learner i.e. it uses all the
training data at runtime. In this paper, we propose a novel, efficient
and accurate, clustering based kNN regression algorithm CLUEKR hav-
ing the advantage of low computational complexity. Instead of searching
for nearest neighbors directly in the entire dataset, we first hierarchically
cluster the data and then find the cluster in which the query point should
lie. Our empirical experiments with several real world datasets show that
our algorithm reduces the search space for kNN significantly and is yet
accurate.

Keywords: Regression, Efficient, Accurate, K-Nearest Neighbor, Clus-
ters, Hierarchy, Likelihood.

1 Introduction

The problem of regression is to estimate the value of a dependent variable based
on the values of one or more independent variables, e.g., predicting price in-
crease based on demand or money supply based on inflation rate etc. Regression
analysis helps to understand how the typical value of the dependent variable
changes when any one of the independent variables is varied, while the other
independent variables are held fixed. Regression algorithms can be used for pre-
diction (including forecasting of time-series data), inference, hypothesis-testing
and modeling of causal relationships.

In statistics, Regression is considered as collection of statistical function-fitting
techniques. These techniques are classified according to the form of the function
being fit to the data. Regression analysis has been studied extensively in statis-
tics, but there have been only a few studies from the data mining perspective.
Majority of this study resulted into algorithms that fall under the following
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broad categories - Linear Regression [12], Nearest Neighbor Algorithms [5], De-
cision Trees [3], Support Vector Machines [4], Neural Networks [7] and Logistic
Regression [8]. However most of these algorithms were originally developed for
classification purpose, but have been later modified for regression.

In the recent past, a lot of research centered at nearest neighbor methodology
has been performed. Instead of being computationally expensive kNN algorithm
is very simple to understand, accurate, requires only a few parameters to be
tuned and is robust with regard to the search space. Also kNN classifier can be
updated at a very little cost as new training instances with known classes are
presented. A strong point of kNN is that, for all data distributions, its probability
of error is bounded above by twice the Bayes probability of error[10]. However
one of the major drawbacks of kNN is that, it is a lazy learner i.e. it uses all
the training data at runtime. However for majority of the datasets, we perform
as accurate as kNN. In this paper, we propose a novel, efficient and accurate,
clustering based kNN regression algorithm CLUEKR, which instead of searching
for nearest neighbors directly in the entire dataset, first find the cluster in which
the query point has maximum likelihood of occurrence. We first hierarchically
cluster the data in the pre-processing step, then a recursive search starting from
root node of the hierarchy is performed. For current search node in the hierarchy,
we select a cluster among its child, in which the query point has maximum
likelihood of occurrence and then a recursive search is applied to it. Finally we
find the k nearest neighbors of query points in the obtained cluster and return
the weighted mean of their response variable as result.

The organization of rest of the paper is as follows. In section 2, we throw
light on related, and recent, work in the literature. Section 3 deals with problem
formulation. We explain the modified algorithm in Section 4. In Section 5, ex-
perimental results are presented together with a thorough comparison with the
state-of-the-art algorithms. Finally, in Section 6, conclusions are drawn.

2 Related Work

Traditional Statistical Approaches follow a methodology that requires the form
of the curve to be specified in advance. This requires regression problems in
each special application domain be studied and solved optimally for that domain.
Another problem with these approaches is outlier (extreme cases) sensitivity. The
most common statistical regression approach is linear regression which assumes
the entire data to follow a linear relationship between the response and feature
variables. But this assumption is unlikely to hold on variety of application.

Segmented or piecewise regression [11] is a method in regression analysis in
which the independent variable is partitioned into intervals and a separate line
segment is fit to each interval. It is is essentially a wedding of hierarchical clus-
tering and standard regression theory. It can also be performed on multivariate
data by partitioning the various independent variables. Segmented regression is
useful when the independent variables, clustered into different groups, exhibit
different relationships between the variables in these regions. The boundaries
between the segments are breakpoints.
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Most of the Regression approaches in data mining falls under these categories
- Nearest Neighbor, Regression trees, Neural Networks, and Support Vector Ma-
chines. Regression trees are a variation of decision trees in which the predicted
outcome is a real number. Neural Networks and SVM techniques are quite com-
plex and an in-depth analysis of results obtained is not possible.

One of the oldest, accurate and simplest method for pattern classification
and regression is K-Nearest-Neighbor (kNN) [5]. kNN algorithms have been
identified as one of the top ten most influential data mining algorithms [14] for
their ability of producing simple but powerful classifiers. It has been studied at
length over the past few decades and is widely applied in many fields. Despite
its simplicity, the kNN rule often yields competitive results. However one of the
major drawbacks of kNN is that, it is a lazy learner i.e. it uses all the training
data at the runtime.

A recent work on prototype reduction, called Weighted Distance Nearest
Neighbor (WDNN) [9] is based on retaining the informative instances and learn-
ing their weights for classification. The algorithm assigns a non negative weight
to each training instance tuple at the training phase and only the training in-
stances with positive weight are retained (as the prototypes) in the test phase.
However the algorithm is specifically designed for classification purpose and can-
not be used for regression.

In another recent work [13], a Parameterless, Accurate, Generic, Efficient
NN-Based Regression algorithm PAGER is proposed, which is based on the as-
sumption that value of the dependent variable varies smoothly with the variation
in values of independent variable. For each dimension in the search space, the
authors construct a 1-dimensional predictor as a line passing through two closest
neighbor of the query point. For each of the predictor obtained, they determine
the mean error occurred if the predictor was used in prediction of the k-nearest
neighbors. A weight inversely proportional to the mean error is assigned to each
predictor. Finally a weighted sum of the value output by individual predictors
for the query instance is assigned to it.

Saket and others propose a kNN based regression algorithm BINER : BINary
search based Efficient Regression [2], which instead of directly predicting the
value of response variable recursively narrows down the range in which the re-
sponse variable lies. In the pre-processing step training data is sorted based on
the value of response variable and is hierarchically structured. At each level in
the hierarchy, data is divided into three parts, one containing elements from first
to middle, other contains elements from middle to last and the third contains
elements from middle of first portion to middle of second portion. The algorithm
then finds the portion in which the query point has maximum likelihood to lie
and finally kNN algorithm is applied to that portion.

Qi Yu and others in one of their recent work [15] proposed a methodology
named Optimally Pruned K-Nearest Neighbors (OP-kNNs) which builds a one
hidden-layer feedforward neural network using K-Nearest Neighbors as kernels to
perform regression. The approach performed better compared to state-of-the-art
methods while remaining fast.
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3 Problem Formulation

In this section, we present the problem of regression and notation used to model
the dataset.

The problem of regression is to estimate the value of a dependent variable
(known as response variable) based on the values of one or more independent
variables (known as feature variables). We model the tuple as {X , y} where X
is an ordered set of attribute values like {x1, x2, . . . , xd} and y is the numeric
variable to be predicted. Here xi is the value of the ith attribute and there are
d attributes overall corresponding to a d-dimensional space.

Formally, the problem has the following inputs:

– An ordered set of feature variables Q i.e. {q1, q2, . . . , qd}
– A set of n tuples called the training dataset, D, = {(X1, y1), (X2, y2), . . . ,

(Xn, yn)}.

The output is an estimated value of y for the given query Q. Mathematically, it
can be represented as

y = f(X,D, parameters), (1)

where parameters are the arguments which the function f() takes. These are
generally set by user and are learned by trial and error method.

4 The CLUEKR Algorithm

We describe our proposed algorithm in this section. Our algorithm proceeds in
two steps :

– It first find the cluster in the hierarchy, in which the query point has maxi-
mum likelihood of occurrence.

– kNN is applied to points present in the cluster, and weighted mean of the k
nearest neighbors of query point in the cluster is quoted as output.

Size of the obtained cluster is less compared to the size of entire dataset, in this
way our algorithm reduce the search space for K-Nearest Neighbor algorithm.
Now we explain in detail about the clustering phase (pre-processing step) first
and later throw light on the actual algorithm.

4.1 Pre-processing

In the pre-processing step, data is hierarchically clustered and mean value for
each of the cluster is calculated and stored. Each node in this hierarchy consist
of clusters containing data point, which are recursively divided into three child
clusters as we move down the hierarchy. We make use of the fact that similar
instances have similar value of response variable (basic analogy on which kNN
works), while selecting the cluster center. Each cluster node is sorted based on
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the value of response variable, then n/4 and 3n/4 ranked instance are selected as
the center for two of the child clusters. For the third cluster, mean of the other
two cluster’s center is taken as center. All the points present in the cluster node
are divided into child cluster, based on to which child cluster center the point is
closest.

We aim to divide each cluster nodes is such a fashion, that each child node
contains half the data present in the parent node. However at each level we have
added an extra child cluster to make the division of points smooth, this cluster
also contain points belonging to other cluster that lies at its boundary with
other cluster. This will help to properly classify the query instance that lie at
the boundary of clusters. Boundary points to third cluster are defined as, points
whose distance ratio from other cluster center to third cluster center is between
0.9 to 1.0.

We recursively divide the cluster nodes, till we get a cluster node which contain
less that 2 ∗ k points. The limiting size of 2 ∗ k was chosen in order to keep a
margin for selection of k nearest neighbors.

4.2 Actual Algorithm

Pseudo code for the actual algorithm is provided in Algo. 1. The recursive search
starts from the root node and goes down the hierarchy. In order to find the cluster
among the child nodes (for current node in the search) in which the query point
has maximum likelihood of occurrence, distance of query point from mean value
of all the child cluster of current node is calculated (lines 1-3). If the two closest
distances comes out to be similar (Confidance returns false) then we can’t say
with confidence, that which child cluster to pick and hence kNN algorithm is
applied to the current cluster (line 5), else recursive search continues on the child
cluster which is closest to the Query point (lines 7-8) i.e distance from mean of
that cluster is least.

We say that two distances, di and dj are similar if min(di/dj , dj/di) is greater
than 0.90. The value of 0.90 was selected by experimentations and it works well
on most of the datasets as shown in the experimental section.

Algorithm 1. CLUEKR : Pseudo code

Input: Query instance Q, Pointer to Root node in hierarchy R, Parameter k
Output: V alue of Response V ariable for Query instance Q
1: for each node j in childs of R do
2: dist[j] = distance(Q,mean(j))
3: end for
4: if Confidance(dist) then
5: ChildP tr = argmin(dist)
6: return CLUEKR(Q,ChildP tr, k)
7: else
8: return kNN(Q, Data of R, k)
9: end if
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4.3 Complexity Analysis

We perform complexity analysis for both pre-processing step and actual algo-
rithm in this section.

– In the pre-processing step, hierarchy consisting of cluster node is constructed,
for which each cluster node is divided into child clusters. Assuming that we
have data points sorted based on the value of response variable in the cluster
node to be split, we can select the centers for child cluster directly and then
data can be redistributed among the clusters in O(ns), where ns is the size
of cluster node to be spitted. If the cluster node is transversed in sorted
order of response variable to redistribute data in child cluster, then child
cluster will also contain data, sorted based on response variable. So if the
root node has sorted data based on response variable, all other nodes in the
hierarchy will also follow the same ordering of data. As data is distributed
from parent to child cluster, total amount of data present in child cluster
is equal to data present in the parent cluster (ignoring the extra boundary
points present in third cluster). Total time complexity of pre-processing step
comes out to O(n∗ log(n))+O(h∗n), where n∗ log(n) is the cost involved in
sorting root node and h ∗n is the cost of splitting cluster nodes to construct
a hierarchy of height h. This also involve the cost of calculating mean of each
cluster node, as it can be calculated during the transversal of cluster node
for distribution of data.

– At runtime our algorithm first performs a search for the cluster in the hier-
archy,in which the query point has maximum likelihood of occurrence and
then kNN is applied to the obtained cluster. Runtime complexity of our al-
gorithm is O(h + nc), where h is the height of the hierarchy and nc is the
size of the cluster obtained. As nc is supposed to be less compared to n, our
algorithm is faster at runtime compared to kNN.

5 Experimental Study

5.1 Performance Model

In this section, we demonstrate our experimental settings. The experiments were
obtained on a wide variety of real life datasets obtained from UCI data repos-
itory [1] and Weka Datasets [6].A short description of all the datasets used is
provided in Table 1. We have compared our performance against the follow-
ing approaches: K Nearest Neighbor, Isotonic , Linear Regression(Linear Reg.),
Least Mean Square (LMS) algorithm, Radial Basis Function Network (RBF Net-
work), Regression Tree (RepTree) and Decision Stump(Dec Stump). Most of the
algorithms are available as part of the Weka toolkit. All the results have been
obtained using 10-fold cross validation technique.

We have used two metrics for quantifying our results, namely, Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE). MAE is mean of the abso-
lute errors (actual output - predicted output). RMSE is square root of mean of
squared errors.We have used euclidean distance matrix to calculate the distances
in our algorithm.
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Table 1. Dataset Description

Dataset #Instances #Attributes Dataset #Instances #Attributes

Autompg 392 8 Bank 8192 9

Bodyfat 252 15 Concrete 1030 9

Cpu 209 7 Forestfire 517 11

Flow 103 8 Housing 507 14

Space 3107 7 Slump 103 8

Synfriedman 500 6 Synfriedman1 500 6

Table 2. Comparison of results of CLUEKR with other standard approaches

Dataset
CLUEKR kNN Isotonic Linear Reg. LMS RBF Rep Tree Dec Stump

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Autompg 2.36 3.24 2.40 3.59 3.16 4.3 2.56 3.4 2.50 2.59 3.90 5.07 2.30 3.31 4.2 5.18

Bank 0.02 0.03 0.02 0.03 0.03 0.46 0.02 0.03 0.03 0.05 0.04 0.06 0.02 0.03 0.04 0.05

Bodyfat 0.51 0.65 0.49 0.62 0.52 0.67 0.43 0.56 0.45 0.58 0.61 0.77 0.52 0.67 0.63 0.8

Concrete 7.20 9.92 5.71 8.14 10.81 13.45 8.30 10.45 9.52 17.53 13.38 16.56 5.43 7.38 11.54 14.46

Cpu 21.45 70.76 18.79 74.37 23.12 50.95 36.05 66.24 33.97 108.32 51.87 126.35 32.34 93.21 71.56 126.40

Flow 11.27 14.78 11.89 16.42 11.55 14.18 10.99 13.26 13.28 18.56 14.76 17.42 12.11 15.57 12.48 15.41

Forestfire 21.83 69.04 21.75 68.13 19.18 63.5 19.92 64.28 12.88 64.91 18.86 63.86 19.24 64.56 18.93 64.68

Housing 2.96 4.63 2.97 4.63 3.80 5.32 3.39 4.91 3.42 5.55 6.13 8.42 3.18 4.84 5.61 7.5

Slump 5.56 7.75 5.89 9.83 5.86 7.52 6.67 7.82 6.68 10.56 6.98 8.73 6.14 8.19 7.05 8.86

Space 0.10 0.17 0.10 0.17 0.12 0.16 0.11 0.16 0.11 0.15 0.14 0.19 0.10 0.14 0.13 0.18

Synf. 2.10 2.64 1.96 2.45 3.69 4.44 2.25 2.83 2.24 2.82 3.86 4.81 2.69 3.45 3.73 4.63

Synf. 1 1.92 2.48 1.75 2.16 3.59 4.32 2.76 4.65 2.45 4.71 3.92 4.91 2.57 3.24 3.69 4.4

Table 3. Comparison of dataset size with size of the cluster obtained

Dataset Dataset Size Cluster Size %Ratio Dataset Dataset Size Cluster Size %Ratio

Autompg 392 76 20 Bank 8192 2975 36

Bodyfat 252 50 20 Concrete 1030 191 18

Cpu 209 53 25 Forestfire 517 156 30

Flow 103 35 33 Housing 507 105 20

Space 3107 262 9 Slump 103 34 33

Synf. 500 143 28 Synf. 1 500 136 27
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5.2 Results and Discussion

Table 2 compares the results obtained for our algorithm with other existing state
of art approaches, top two results are highlighted in bold. As can be seen from
the results, for majority of the datasets, we perform as accurate as kNN, however
for some of the datasets, our algorithm also outperform kNN. Also our algorithm
more than often outperforms other existing state-of-the art algorithms. However
for concrete dataset in which the response variable is highly non-linear function of
its attributes, we do not perform as good as for other datasets. Table 3 compares
average size of cluster obtained by our algorithm with original dataset size.Ratio
column in the table shows the percentage ratio of the cluster size obtained by
our algorithm to the original dataset size. It is clear from the data, that our
algorithm reduces the search space for kNN significantly, however the degree of
reduction varies depending on the type of dataset.

6 Conclusion

In this paper, we have proposed a novel clustering based k nearest neighbor
regression algorithm which is efficient and accurate. Our work is based on reduc-
ing the search space for nearest neighbors for any given point. We hierarchically
cluster the data in pre-processing step and then search is performed to find
the cluster in the hierarchy, in which the query point has the maximum likeli-
hood of occurrence. We have also evaluated our approach against the existing
state-of-the-art regression algorithms. As shown in the experimental section, our
approaches reduces the search space for kNN significantly and is yet accurate.
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Abstract. In recent years, there have been increasing efforts in applying
association rule mining to build Associative Classification (AC) models.
However, the similar area that applies association rule mining to build
Associative Regression (AR) models has not been well explored. In this
work, we fill this gap by presenting a novel regression model based on
association rules called AREM. AREM starts with finding a set of re-
gression rules by applying the instance based pruning strategy, in which
the best rules for each instance are discovered and combined. Then a
probabilistic model is trained by applying the EM algorithm, in which
the right hand side of the rules and their importance weights are up-
dated. The extensive experimental evaluation shows that our model can
perform better than both the previously proposed AR model and some
of the state of the art regression models, including Boosted Regression
Trees, SVR, CART and Cubist, with the Mean Squared Error (MSE)
being used as the performance metric.

Keywords: association rule, regression rule, associative regression, prob-
abilistic model, EM algorithm, instance based pruning.

1 Introduction

In recent years, there have been increasing efforts in applying association rule
mining to build classification models [1] [2] [3] [4] [5], which have resulted in
the area of Associative Classification (AC) modeling. Several studies [1] [2] [3]
have provided empirical evidence that AC classifiers can outperform tree-based
[6] and rule-induction based models [7] [8]. The good performance of the AC
models can be attributed to the fact that by using a bottom-up approach to
rule discovery (either via frequent itemset mining or instance-based rule mining)
they can discover better rules than the traditional heuristic-driven top-down
approaches.

Regression is a data mining task that is applicable to a wide-range of ap-
plication domains. However, despite the success of association rule mining for
classification, it has not been extensively applied to develop models for regres-
sion. We are only aware of the Regression Based on Association (RBA) method
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developed by Ozgur et al. [9] that uses association rule mining to derive a set
of regression rules. Since regression models need to predict a continuous value,
whereas the classification models need to predict a categorical value, the methods
developed for AC modeling are in general not applicable for solving regression
problems.

Motivated by the success of AC modeling, we study the problem of applying
the association rule mining to build an Associative Regression (AR) model. We
believe this is an important problem for the following two reasons: First, an
AR model is built upon a set of regression rules, which in many cases, can be
easily interpreted by domain experts and thus provide valuable insights. Second,
the good performance of the well studied AC classifiers leads us to believe that
the AR model may potentially perform better than the tree-based [10] [11] and
rule-induction based [12] regression models.

We present an associative regression model utilizing expectation maximiza-
tion [13], called AREM. An AR model consists of three major components: (i)
the method used to identify the sets of itemsets that form the left hand sides
of the rules, (ii) the method used to estimate the right hand sides of the rules,
and (iii) the method used to compute a prediction. Drawing upon approaches
used for developing AC models, AREM uses an instance-based approach to se-
lect a subset of frequent itemsets that are used to form the left hand side of
the rules. However, unlike existing AC and AR models, it develops and utilizes
a probabilistic model coupled with an EM-based optimization approach to de-
termine the right hand side of the rules and also assign a weight to each rule
that is used during prediction. The advantage of this probabilistic model is that
it allows AREM to capture the interactions of the various rules and to learn
the parameters that lead to more accurate predictions. Our experimental evalu-
ation shows that AREM outperforms several state of the art regression models
including RBA [9], Boosted Regression Trees [10], SVR [14], CART [11] and
Cubist [12] on many data sets, with the Mean Square Error (MSE) being used
as the performance metric.

The remainder of this paper is organized as follows. Section 2 introduces some
notations and definitions. Section 3 presents the related work in this area. AREM
is formally presented in Section 4. In Section 5, we explain the experimental
design and results for model evaluation. And finally Section 6 concludes.

2 Notations and Definitions

The methods developed in this work apply to datasets whose instances are de-
scribed by a set of features that are present. Such datasets occur naturally in
market basket transactions (features represent the set of products purchased) or
bag-of-word modeling of documents (features correspond to the set of words in
the document). We will refer to these features as items. Note that other types of
datasets can be converted to the above format via discretization techniques [15].

Let the data set D = {(τi, yi)|i = 1, 2, ..., N} be a set of N instances. The
instance (with index) i is a tuple (τi, yi), where τi is a set of items (or, an
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itemset), and yi is the real-valued target variable. Given an itemset x, and an
instance (τi, yi), we say, x is contained in (τi, yi), or, (τi, yi) contains x, if x ⊆ τi.
The support of itemset x, is defined as the number of instances in D that contain
x. The itemset x is frequent if its support is not less than s0, where s0 is the
user specified parameter. For itemset x, we define its mean (μx) and standard
deviation (σx) as computed from the set of target variables from instances in D
that contain x.

A regression rule is of the form rx : x → αx. The rule’s left hand side (LHS) x
is an itemset.The rule’s right hand side (RHS) αx is the target value predicted
by this rule. Each rule is also associated with a positive value wx which is used
as the weight when combining multiple rules together for making predictions.
The rule rx is frequent if its itemset x is frequent.

3 Related Work

To our best knowledge, the RBA [9] model is the only previous work on associa-
tive regression. It starts with mining the set of frequent itemsets which form the
set of rules’ LHS. For each frequent itemset x, RBA computes the rule’s RHS as
the mean of x. It also computes the standard deviation σx of x. These rules are
then ranked by variance (i.e., σ2

x) from small to large. The database sequential
coverage is applied to prune rules which are ranked low. For making predictions,
three weighting schemes for wx are developed: (1) equal, where rules are equally
weighted, (2) supp, where the rule rx is weighted by the support of x, and (3)
inv-var, where the rule’s weight is inverse proportional to the variance σ2

x.
Associative Classification (AC) [16] is an area that applies similar techniques,

but the focus is on the Classification task. Among the many methods developed
for AC modeling [1] [2] [3] [5], Harmony [4] is the model that employs a similar
rule pruning strategy to AREM: it mines the highest confidence rules for each
instance and combines them to the final rule set.

AR and AC models are descriptive in that they can be easily interpreted by
end users. Tree based and rule induction based models are another two groups of
descriptive models. The classification and regression tree (CART) [11] partitions
the input space into smaller, rectangular regions, and assigns the average of the
target variables as the predicted value to each region. Cubist [12] is a rule based
algorithm and fits a linear regression model to each of the regions. Boosting [10] is
a technique to build ensemble models by training each new model to emphasize
the training instances that previous models misclassified. Boosted regression
trees have shown to be arguably the best algorithms for web-ranking [17].

4 The AREM Model

The AREM model training consists of two major components. First, it discovers
a set of frequent regression rules rx : x → μx, where μx is the mean value of x in
D. We denote this set of rules by R. Second, for each rx ∈ R, AREM updates
its RHS to a new value αx by learning a probabilistic model. The EM algorithm
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is applied for model learning where αx is learned together with the rule’s weight
wx.

For the rule discovery component (i.e., the first component above), AREM
follows a two-step approach to find the rule set R. First, it uses the FP Growth
algorithm [18] to find all frequent itemsets x in D. For each frequent itemset x,
AREM generates the rule rx : x → μx, where μx is the mean value of x in D.
Let F be this set of frequent rules. Second, for each training instance i, let Fi

be the set of rules rx from F such that x ⊆ τi. AREM selects K rules from Fi

to form the set Ri. Finally, R is the union of these rules Ri over all training
instances i in D. Since R will in general contain fewer rules than F , this step
applies instance based approach to prune the initial set of frequent rules.

Using the set of updated rules R with the associated weights, AREM predicts
the target variable of a test itemset τ as follows. First, it identifies the set of rules
Rτ = {rx1 , . . . , rxm} ⊆ R whose LHS are subsets of τ (i.e., (xi → αxi) ∈ Rτ if
xi ⊆ τ), then it eliminates from Rτ all but the k rules that have the highest wxi

values among them. This set of rules, denoted by Rk
τ , is then used to predict the

target variable using the formula

ŷ =

∑
rxi

∈Rk
τ
wxiαxi∑

rxi
∈Rk

τ
wxi

, (1)

which is nothing more than the average of the RHS of the k rules weighted by
their corresponding wxi values. In the case when the test itemset τ is not covered
by rules in R, i.e., |Rτ | = 0, we simply predict ŷ as the global mean of target
variables in database D.

AREM model requires the specification of four parameters: (i) the minimum
support s0, (ii) the number of rulesK that are selected for each training instance,
(iii) the number of EM steps M for rule parameter learning, and (iv) the number
of rules k from R that are used for predicting the target variable. Even though
the optimal values of these parameters need to be determined using a cross-
validation framework, our experience has been that the performance of AREM
remains consistently good for a wide range of these values.

In the rest of this section we describe the probabilistic model that we devel-
oped for estimating from D the αx and wx parameters of the rules in R and the
method used to select for each training instance i the K rules from Fi.

4.1 The Probabilistic Model

Let X be the set of itemsets of rules in R (i.e., X = {x|rx ∈ R}). Consider
an arbitrary training instance (τ, y). The goal of the probabilistic model is to
specify the probability of target variable y given τ , i.e., P [y|τ ]. We want to relate
this quantity to the set of itemsets in X . To this end, we treat itemset x as a
random variable that takes values in X and write P [y|τ ] as

P [y|τ ] =
∑
x

P [y, x|τ ] =
∑
x

P [y|τ, x]P [x|τ ],
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where P [y|τ, x] is the probability of generating the target variable y given τ and
x, which is generated from τ with probability P [x|τ ]. Our goal then becomes to
specify P [y|τ, x] and P [x|τ ] and relate them to αx and wx.

In order to specify P [y|τ, x], we first assume the conditional independence
P [y|τ, x] = P [y|x]. That is, we assume that once the itemset x is known, the
probability of y is not dependent on τ , which simplifies our model so that the
dependency of τ is fully captured in P [x|τ ]. Given that, we then model P [y|x] as
a Normal distribution whose mean is the RHS of the rule x → αx and standard
deviation βx. That is,

P [y|x] = N (y|αx, β
2
x). (2)

Next, we specify P [x|τ ] by considering how AREM makes predictions. In order
to simplify this discussion we ignore the fact that AREM picks the top k rules
(i.e., it uses the set of rules in Rk

τ ) and assume that it predicts the target value
by using all the rules in Rτ . Specifically, Equation 1 now becomes

ŷ =

∑
rxi

∈Rτ
wxiαxi∑

rxi
∈Rτ

wxi

=
∑
x

αx
Ix⊆τwx∑
x′⊆τ wx′

, (3)

where Ix⊆τ is the indicator function which takes value 1 (0) when x ⊆ τ is true
(false).

From the probabilistic modeling point of view, we predict the target variable
as the expected value of y given τ , that is,

ŷ = E[y|τ ] =
∑
x

E[y|τ, x]P [x|τ ]. (4)

From Equation 2, we get E[y|τ, x] = αx. To specify P [x|τ ], we compare Equation
3 with 4, and get

P [x|τ ] = Ix⊆τwx∑
x′⊆τ wx′

. (5)

To summarize, we have reached a two step model P [y, x|τ ] = P [y|x]P [x|τ ]. In the
first step, a regression rule’s LHS x ∈ X is generated based on τ with probability
P [x|τ ] given by Equation 5. In the second step, the target variable y is generated
by x with probability P [y|x] given by Equation 2.

4.2 EM Algorithm: Learning αx, βx and wx

Denote by θ = {αx, βx, wx|x ∈ X} the complete set of model parameters. The
maximum likelihood estimation of θ given the training data set is to maximize

L(θ) =
∑
i

log (P [yi|τi, θ]) =
∑
i

log (
∑
xi

P [yi, xi|τi, θ]), (6)

where we have introduced xi to denote the itemset generated by our probabilistic
model for instance i. The difficulty of this optimization problem comes from the
summation inside the logarithmic function. This is due to the existence of the



464 Z. Jiang and G. Karypis

hidden variables xi, which are not directly observable from the training data set.
EM algorithm is the standard approach to solve this problem.

EM algorithm is an iterative optimization technique. In the following, we add
a subscript t to all model parameters to denote the parameters used by EM
algorithm at iteration t. For each iteration t, EM algorithm finds the updated
set of parameters θt+1 given the current parameter estimations θt. This is ac-
complished by maximizing the function

Q(θt+1, θt) =
∑
i

∑
xi

P [xi|τi, yi, θt] log(P [yi, xi|τi, θt+1]). (7)

This optimization problem is much easier than the original one for Equation 6,
due to the fact that the logarithmic function is now inside the summation. The
EM algorithm at iteration t is splitted into an E-step which computes πi,xi,t =
P [xi|τi, yi, θt] and an M-step which optimizes Q(θt+1, θt) given πi,xi,t. After
each iteration, the log-likelihood function L is guaranteed to be increased, that
is, L(θt+1) ≥ L(θt).

At iteration t = 0, we initialize the weight wx,0 to one and αx,0, βx,0 to the
mean and standard deviation of x in D. For the E-step, we first apply Bayes’
Theorem so that

πi,xi,t = P [xi|τi, yi, θt] =
P [yi|τi, xi, θt]P [xi|τi, θt]

P [yi|τi, θt]
∝ P [yi|τi, xi, θt]P [xi|τi, θt].

According to Equations 5 and 2, we have

P [yi|τi, xi, θt]P [xi|τi, θt] ∝ N (yi|αxi,t, β
2
xi,t)wxi,tIxi⊆τi .

Combining these two Equations, we get

πi,xi,t =
N (yi|αxi,t, β

2
xi,t)wxi,tIxi⊆τi∑

x′⊆τi
N (yi|αx′,t, β2

x′,t)wx′,t
. (8)

For the M-step, we split P [yi, xi|τi, θt+1] as P [yi|xi, θt+1]P [xi|τi, θt+1], so that
Q = Q1 + Q2, where Q1 contains only αx,t+1, βx,t+1 and Q2 contains only
wx,t+1.

Next, we optimize Q1 which is given by

Q1 =
∑
i

∑
xi⊆τi

πi,xi,t log(P [yi|xi, θt+1]).

By changing the order of summation, we can write Q1 =
∑

x Qx, where

Qx =
∑

i:x⊆τi

πi,x,t log(P [yi|x, θt+1]).

One can see that different itemsets are decoupled from each other, so we only
need to solveQx for ∀x ∈ X . Observe that Qx is nothing but the weighted version
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of the log-likelihood function of model P [y|x, θt+1] = N (y|αx,t+1, β
2
x,t+1), where

the weights are given by πi,x,t for instance i. The solution is straightforward:

αx,t+1 =

∑
i:x⊆τi

πi,x,tyi∑
i:x⊆τi

πi,x,t
, (9)

and,

β2
x,t+1 =

∑
i:x⊆τi

πi,x,t(yi − αx,t+1)
2∑

i:x⊆τi
πi,x,t

. (10)

In Equations 9 and 10, the parameters αx and βx are the weighted mean and
standard deviation where the weight of instance i at iteration t is given by πi,x,t.
This weighting mechanism can help to remove the outlier instance whose πi,x,t
is small.

Now, we optimize Q2 which is given by

Q2 =
∑
i

∑
xi⊆τi

πi,xi,t log(P [xi|τi, θt+1]).

By plugging Equation 5 into Q2, and taking the derivative, we get

∂Q2

∂wx,t+1
=

∑
i:x⊆τi

(
πi,x,t
wx,t+1

− 1∑
x′⊆τi

wx′,t+1
).

One can see that different weights wx,t+1 are coupled in the above equation. So
the exact analytical solution becomes impossible. To ensure the simplicity and
computational efficiency of our approach, we make an approximation here by
replacing t + 1 by t in the second term of RHS. Then by setting the derivative
to zero, we get

wx,t+1

wx,t
=

∑
i:x⊆τi

πi,x,t∑
i:x⊆τi

wx,t∑
x′⊆τi

wx′,t

. (11)

From Equations 9, 10 and 11, we see that πi,x plays the key role of relating
parameters αx and βx to weights wx, so that they can interact with each other
and be optimized consistently.

Finally, we note that AREM introduces a parameter M which controls the
number of EM-steps. After the EM algorithm is completed, the rule’s RHS and
weight are finalized to be αx,M and wx,M .

4.3 Instance Based Rule Mining

The instance based rule mining is applied in the rule discovery component of
AREM discussed at the beginning of Section 4, which selects K rules from Fi

to form Ri for each training instance i. For this, AREM first ranks rules in Fi

by some “quality” metric, and then select the top K rules. The “quality” metric
captures the quality of a rule from an instance’s perspective. From our proba-
bilistic model, P [x|τi, yi] is the natural choice for the “quality” metric: a rule is
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Table 1. Data Set Summary

Data Set
BestBuy CitySearch Yelp

Airline Socmob Pollen Spacega
dep wf dep wf dep wf

# of instances 10k 10k 10k 10k 10k 10k 10k 1156 3848 3107
# of items 1347 1010 1530 1080 2273 1662 676 44 17 24
density (%)a 1.29 1.52 1.36 1.95 1.35 1.94 1.63 11.36 23.53 25.00

# of trialsb 20 20 20 20 20 20 20 200 50 60
a
The “density” captures how sparse the data set is. It is the percentage of
non-zero entries if the data is converted into the matrix format.

b
Number of trials the data set is randomized and then splitted into 80%
training set, 10% validation set and 10% testing set.

better if it has a higher probability of being generated by the instance. We use
the initialized rule parameters wx,0, αx,0 and βx,0 for computing P [x|τi, yi]. From
P [x|τi, yi] ∝ P [x, yi|τi] ∝ N (yi|αx,0, β

2
x,0)wx,0, We have that for the ranking’s

purpose P [x|τi, yi] is equivalent to N (yi|αx,0, β
2
x,0), where wx,0 = 1 is dropped.

Thus, AREM uses N (yi|αx,0, β
2
x,0) for rule ranking for each instance.

4.4 Comparing AREM with RBA

We summarize the main differences between AREM and RBA as follows. First,
in determining a small set of itemsets to form the final rules’ LHS, AREM applies
an instance based approach, while RBA applies the database sequential coverage
technique. Second, in determining the final rules’ RHS, AREM learns them in
the EM framework, while RBA simply uses the mean of the rules’ itemsets. It
turns out that, in AREM, the rule’s RHS is the weighted mean, which is likely
to be a better estimation than the unweighted mean used by RBA. Third, in
determining the rule weights used for predictions, AREM learns them together
with rules’ RHS, while RBA pre-specifies methods for computing them. These
pre-specified methods may be reasonable but they are not optimized. Finally, in
determining top k rules used for making predictions, AREM selects rules with
the highest weights, while RBA selects rules with the smallest variance. Our
choice is consistent with our probabilistic model in that rules with higher chance
of being generated (see Equation 5) are more important and should be selected.

5 Experimental Study

5.1 Data Sets

We evaluate the performance of AREM on 10 data sets summarized in Table
1. The first six data sets are randomly sampled from user reviews downloaded
from three websites: “BestBuy” [19], “CitySearch” [20], and “Yelp” [21]. Each
instance corresponds to the review of a product where the target variable to
predict is the user’s rating which ranges from one to five. The review text is
parsed and a set of features, or items, is extracted. We constructed two types
of features: “dep” and “wf”. For “dep”, the Stanford dependencies [22] between
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words in each sentence are extracted. Each dependency is a triplet containing
the name of the relation, the governor and the dependent. For “wf”, words in
the review text are extracted. We remove the infrequent items whose relative
supports (that is, the support divided by |D|) are less than 0.5%. The “Airline”
data set is downloaded from DataExpo09 competition [23]. The last three data
sets are downloaded from CMU StatLib [24].

5.2 Models

For model comparison’s purpose, we focus on descriptive models and select sev-
eral state of the art tree-based and rule-based regression models. The support
vector regression (SVR) [14] is an exception. It is included because it is one of
the best known and standard models for regression.
SVR We use “libsvm” [25] for SVR, and use only the linear kernel. Model
parameters tuned are: C and ε, where ε is the size of ε-insensitive tube, and C
controls the model complexity.
CARTk This group of models contain the Classification And Regression Tree
(CART) [11] and the Boosted Regression Tree [10] where CART of fixed size
is acting as the weak learners. So, CARTk stands for CART being boosted k
times [26]. We tuned three parameters for CARTk: depth, leaf and lrate, where
depth is the maximum depth of the tree, leaf is the minimum number of leaf
samples of the tree, and lrate is the learning rate of the gradient boosting method.
CUBISTk Cubist [12] is a rule based algorithm which has the option of build-
ing committee models. The number of members in the committee is captured
in k. We tuned two binary parameters for CUBISTk: UB (unbiased), and CP
(composite). Parameter UB instructs CUBIST to make each rule approximately
unbiased. Parameter CP instructs CUBIST to construct the composite model.
RBAk We implemented the RBA model following [9]. Here k is the number of
top ranked rules used for prediction. We tuned two parameters for RBAk: s0 and
weight, where s0 is the minimum support threshold, and weight is the weighting
scheme used for prediction, which can take three values supp, inv-var and equal.
AREMk Here, k is the number of top ranked rules used for prediction. We
tuned three parameters for AREMk: s0,K andM , where s0 is the minimum sup-
port threshold, K is the number of high quality rules for each training instance
during pruning, and M is the number of EM steps during model training.

The parameter k in the above models (except SVR) can be uniformly inter-
preted as the number of rules used for making predictions. For our experimental
study, we choose k to be 1, 5, 10, 15 and 20 for all four models. The rationale of
choosing these values comes from the following: if k is too large, these models’
strength of being interpretable essentially disappears; on the other hand, if k is
too small, the performance may not be satisfactory. We choose the maximum k
value to be 20 as a compromise from these two extreme case considerations.

5.3 Evaluation

We used the Mean Squared Error (MSE) between the actual and predicted
target variable’s values as the performance metric. For each (model, data) pair,
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Table 2. Model Comparison: Average MSE

model\data BestBuy CitySearch Yelp
Airline Socmob Pollen Spacega

dep wf dep wf dep wf
SVR 0.945 0.810 0.961 0.814 0.935 0.770 0.643 0.535 0.469 0.480
CART1 1.014 0.875 1.131 0.974 1.118 0.924 0.649 0.440 0.487 0.488
CART5 0.937 0.815 0.997 0.847 0.994 0.804 0.640 0.349 0.481 0.480
CART10 0.921 0.799 0.962 0.827 0.962 0.782 0.642 0.349 0.482 0.481
CART15 0.913 0.790 0.956 0.809 0.946 0.765 0.640 0.349 0.483 0.482
CART20 0.909 0.787 0.949 0.814 0.939 0.755 0.640 0.341 0.483 0.484
CUBIST1 1.043 0.880 1.210 0.990 1.130 0.959 0.658 0.363 0.501 0.490
CUBIST5 1.070 0.937 1.213 0.966 1.129 0.949 0.663 0.367 0.500 0.494
CUBIST10 1.074 0.943 1.216 0.973 1.138 0.946 0.664 0.370 0.499 0.492
CUBIST15 1.080 0.947 1.218 0.976 1.138 0.944 0.664 0.369 0.499 0.493
CUBIST20 1.081 0.951 1.221 0.985 1.137 0.944 0.664 0.369 0.499 0.493
RBA1 1.111 1.004 1.200 1.141 1.156 1.023 0.730 0.533 0.507 0.530
RBA5 0.969 0.898 1.044 0.928 1.026 0.930 0.682 0.562 0.496 0.496
RBA10 0.964 0.878 1.041 0.894 1.019 0.915 0.685 0.594 0.497 0.496
RBA15 0.962 0.872 1.040 0.893 1.015 0.904 0.685 0.603 0.497 0.497
RBA20 0.964 0.872 1.038 0.890 1.013 0.903 0.685 0.603 0.497 0.497
AREM1 1.248 1.235 1.354 1.248 1.311 1.241 0.754 0.421 0.581 0.628
AREM5 0.875 0.763 0.908 0.844 0.953 0.799 0.670 0.307 0.499 0.529
AREM10 0.862 0.751 0.896 0.784 0.920 0.753 0.657 0.299 0.483 0.507
AREM15 0.864 0.753 0.894 0.773 0.921 0.748 0.652 0.299 0.481 0.490
AREM20 0.865 0.758 0.899 0.770 0.926 0.749 0.646 0.300 0.481 0.483

we first identified a set of parameter configurations that was likely to achieve
the best performance. The model was then trained on the training set and MSE
was calculated on the validation set for each of the parameter configurations.
Then we selected the parameter configuration that gives the best MSE on the
validation set, and computed the corresponding MSE on the testing set. This
process is repeated for the number of trials shown in Table 1. Finally, we reported
the average MSE on all testing trials.

For a given data set, in order to compare model m1 to model m2, we take into
account the distribution of the MSE values computed on multiple testing trials
for each model. Let μ1, σ1, n1 (μ2, σ2, n2) be the mean, standard deviation and
the number of observations of the set of MSE values for model m1 (m2), respec-
tively. We introduce μm1−m2 = μ2 − μ1 and σm1−m2 =

√
σ2
1/n1 + σ2

2/n2. The
quantity μm1−m2/σm1−m2 is used in statistical testing [27] for the comparison
of two population means. Under the null hypothesis that two population means
are the same, μm1−m2/σm1−m2 can be assumed to have the Normal distribution
N (0, 1). So the more deviated from zero this quantity is, the more likely that
two models are performing differently.

5.4 Experimental Results

The average MSE for the discussed set of models on the various data sets are
shown in the Table 2, where the best results have been highlighted. Table 3
shows the quantity μm1−m2/σm1−m2 for comparing AREMk to the rest of the
models. Note that CART1 is the standard CART model, in contrast to CARTk

which stands for the boosted regression tree. For easy comparison, we derive the
win-tie-loss from Table 3 and present them in Table 4.
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Table 3. Compare AREMk To Other Models: μm1−m2/σm1−m2

Model\Data
BestBuy CitySearch Yelp

Airline Socmob Pollen Spacega
dep wf dep wf dep wf

CARTk 2.86 2.71 4.26 2.65 1.73 0.56 -0.61 2.29 0.09 -0.12
SVR 4.65 4.16 4.97 2.95 1.26 1.80 -0.35 10.51 -2.14 -0.11
RBAk 4.98 8.15 10.18 8.11 8.64 12.17 3.15 9.68 2.74 0.52
CART1 7.89 8.36 16.78 11.48 16.50 13.84 0.23 6.77 1.15 0.23
CUBISTk 8.04 7.50 20.25 11.49 16.43 13.76 1.03 3.49 3.15 0.31

Table 4. Compare AREMk To Other Models: win-tie-loss

comparing criteriaa\model CARTk SVRk RBAk CART1 CUBISTk

|μm1−m2 | ≥ σm1−m2 6-4-0 7-2-1 9-1-0 8-2-0 9-1-0
|μm1−m2 | ≥ 2σm1−m2 5-5-0 5-4-1 9-1-0 7-3-0 8-2-0
|μm1−m2 | ≥ 3σm1−m2 1-9-0 4-6-0 8-2-0 7-3-0 8-2-0
a It is a tie if |μm1−m2 | < nσm1−m2 . Otherwise, it is a win
or loss depending on the sign of μm1−m2 .

Tables 3 and 4 show that AREM is performing better than all competing
methods on most of the data sets. For almost all cases, AREM is either better
or at least as good as the competing method (with the only exception on “Pollen”
when compared to SVR). It is also interesting to observe that AREM performs
almost uniformly well on the review data sets, but not as uniform on the rest of
the data sets. Given that the review data sets have much larger number of items
(see Table 1), we think this is an indication that AREM is more suitable for high-
dimensional and sparse data sets. Finally, from Table 2, we can see how different
k values affect the AREM’s performance. When k = 1, the performance is not
satisfactory. This is not surprising because our probabilistic model is optimized
for large number of rules. However, as k becomes sufficiently large (15 or 20),
the performance improves considerably and remains quite stable.

6 Conclusions

We have proposed a novel regression model based on association rules called
AREM. AREM applies the instance based rule mining approach to discover
a set of high quality rules. Then the rules’ RHS and importance weights are
learned consistently within the EM framework. Experiments based on 10 in
house and public datasets show our model can perform better than RBA [9],
Boosted Regression Trees [10], SVR [14], CART [11] and Cubist [12].
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Abstract. One-class learning aims at constructing a distinctive classi-
fier based on the labeled one class data. However, it is a challenge for
the existing one-class learning methods to transfer knowledge from a
source task to a target task for uncertain data. To address this chal-
lenge, this paper proposes a novel approach, called uncertain one-class
transfer learning with SVM (UOCT-SVM), which first formulates the un-
certain data and transfer learning into one-class SVM as an optimization
problem and then proposes an iterative framework to build an accurate
classifier for the target task. Our proposed method explicitly addresses
the problem of one-class transfer learning with uncertain data. Extensive
experiments has found our proposed method can mitigate the effect of
uncertain data on the decision boundary and transfer knowledge to help
build an accurate classifier for the target task, compared with state-of-
the-art one-class learning methods.

Keywords: Transfer Learning, Data of Uncertainty, One-class Learning.

1 Introduction

One-class learning has been proposed to handle the case where only one class of
data is labeled in the training phase [19,17]. In this case, the labeled class of data
is called target class, while all other samples not in this class are called the non-
target class. In some real-world applications, such as anomaly detection [5,21],
it is easy to obtain one class of normal data, whereas collecting and labeling
abnormal instances may be expensive or impossible. To date, one-class learning
has been found in a large variety of applications from anomaly detection [5],
automatic image annotation [11], to sensor data drift detection [18].

The previous one-class learning can be classified into two broad categories:
(1) the methods for one-class learning with unlabeled data [13,12,25,4,24], in
which they first extracts negative examples from the unlabeled data, and then
constructs a binary classifier based on the labeled target class and the extracted
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negative class. For example, the method in [25] first uses a 1-DNF technique
to extract negative documents and utilize SVM to iteratively build a binary
classifier. (2) the method for one-class learning without unlabeled data [17,14],
in which one-class SVM first maps the target data into a feature space and then
constructs a hyper-plane to separate the target class and the origin of the feature
space. The learned classifier is then utilized to classify a test sample into target
class or non-target class.

Despite much progress on the one-class learning, most of the previous work
considers the one-class learning as a single learning task. However, in many
real-world applications, we expect to reduce the labeling effort of a new task
(referred to as target task) by transferring knowledge from the related task
(source task), which is called transfer learning [15]. For example, we may have
plenty of user’s previously labeled documents, which indicate the users’ inter-
est; as time goes on, user’s interest may gradually drift; however, we may not
have too much user’s currently labeled documents, since labeling plenty of doc-
uments timely may be impossible for the user. Therefore, we expect the user’s
previously labeled documents can transfer knowledge to help build an one-class
classifier for the target task. Another important observation is that, collected
data in many real-world applications is uncertain in nature [2]. This is because
data collection methodologies are only able to capture a certain level of infor-
mation, making the extracted data incomplete or inaccurate [2]. For example,
in environmental monitoring applications, sensor networks typically generate a
large amount of uncertain data because of instrument errors, limited accuracy
or noise-prone wireless transmission [2]. Therefore, it is necessary to develop the
one-class transfer learning method for uncertain data, and build an accurate
classifier by transferring knowledge from the source task to the target task for
prediction.

This paper addresses the problem of one-class transfer learning with uncer-
tain data. To build an one-class transfer learning classifier for uncertain data,
we have two challenges. The first one is to formulate data of uncertainty and
transfer learning into the one-class learning. The second is to solve the formu-
lated optimization to build an one-class classifier for the target task. To handle
the above challenge, we propose a novel approach, called uncertain one-class
transfer learning with SVM (UOCT-SVM), which incorporates data uncertainty
and knowledge transfer into one-class SVM and provides an efficient framework
to build an one-class classifier for the target task. The contribution of our work
can be summarized as follows.

1. We incorporate the transfer learning and uncertain data into the one-class
SVM such that the transferred knowledge can benefit the one-class classi-
fier for the target task. To handle uncertain data, we introduce the bound
score into the learning to relocate the uncertain data and refine the decision
boundary.

2. We propose the usage of an iterative framework to mitigate the effect of
noise on the one-class classifier and transfer knowledge from the source task
to the target task. To the best of our knowledge, this is the first work to
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explicitly handle data uncertainty and knowledge transfer in the one-class
learning.

3. We conduct extensive experiments to evaluate the performance of our UOCT-
SVM method. The results show that our UOCT-SVM can mitigate the effect
of noise on the decision boundary and transfer knowledge to help build an ac-
curate classifier for the target task compared with state-of-the-art one-class
learning methods.

Section 2 discusses the related work. Section 3 introduces the preliminaries. Sec-
tion 4 presents our proposed approach. Section 5 reports experimental
results. Section 6 concludes the paper and future work.

2 Related Work

In this section, we briefly review previous work related to our study.

2.1 Mining Uncertain Data

In data collection, some records in the data might be degraded due to noise,
precision of equipment, and are considered uncertain in their representation [2].
We briefly review the previous work on uncertain data as follows.

For the clustering and classification methods with uncertain data, they de-
velop on the clustering and classification methods. FOPTICS [9] introduces a
fuzzy distance function to measure the similarity between uncertain data on top
of the hierarchical density-based clustering algorithm. The method in [8] studies
the problem of clustering uncertain objects whose locations are described by
probability density functions to cluster uncertain data. In addition, binary SVM
is extended to handle uncertain data [7] to provide a geometric algorithm.

2.2 Transfer Learning

In transfer learning [15], the knowledge is expected to transfer from a source
task into the learning of target task such that the transferred knowledge can
benefit the learned classifier for the target task. We briefly review some of them
as follows.

The work in [10] assumes the distribution of target and source tasks fit the
Gaussian process. However, it assumes the distribution of the data to be specified
as a priori, which makes them inapplicable to many real-world applications.
Other algorithms such as [16] assume that some instances or features can be
used as a bridge for knowledge transfer.

Multi-task learning [20] is closely related to transfer learning. In multi-task
learning, several tasks are learned simultaneously. In contrast to multi-task learn-
ing, transfer learning focuses on transferring knowledge from the source task to
the target task, rather than ensuring the performance of each task.
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Fig. 1. (A): Illustration of reachability area of instance xi. (B): Illustration of the
method used to add the noise to a data example: x is an original data example, v is a
noise vector, xv is the new data example with added noise. Here we have xv = x+v. .

3 Preliminary

3.1 One-Class SVM

Suppose the training target class is S = {x1,x2, . . . ,x|S|}, where xi ∈ Rn. In
one-class SVM, input data is mapped from the input space into a feature space
and the inner product of two vectors φ(x) and φ(xi) can be calculated by a
kernel function K(x,xi) = φ(x) · φ(xi). One-class SVM aims to determine a
hyperplane to separate the target class and the origin of the space:

min 1
2 ‖ w ‖2 −ρ+ C

∑|S|
i=1 ξi

s.t. w · xi ≥ ρ− ξi

ξi ≥ 0, i = 1, 2, . . . , |S|, (1)

where w is vector, parameter C is used to tradeoff the sphere volume and the
errors. After solve problem (1) and obtain w and ρ = w ·φ(x). For a test sample
xt , if w · φ(xt) > ρ, it is classified into the target class; otherwise, it belongs to
the non-target class.

In this paper, we extend the standard one-class SVM for one-class transfer
learning with data of uncertainty.

3.2 Uncertain Model

For the labeled target class, we assume each input data xi is subject to an
additive noise vector 'xi. In this case, the original uncorrupted input xs

i is
denoted xs

i = xi + 'xi. We can assume 'xi follows a given distribution. The
method of bounded and ellipsoidal uncertainties has been investigated in [6,14].
In this situation, we consider a simple bound score for each instance such that
‖ 'xi ‖≤ δi.

We then let xi +'xi (‖ 'xi ‖≤ δi) denote the reachability area of instance
xi as illustrated in Figure 1. (A). We then have

‖ xs
i ‖=‖ xi +'xi ‖≤‖ xi ‖ + ‖ 'xi ‖≤ ‖ xi ‖ +δi (2)
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In this way, xs
i falls in the reachability area of xi. By using the bound score

for each input sample, we can convert the uncertain one-class transfer learning
into standard one-class learning with constraints.

4 One-Class Transfer Learning on Uncertain Data

In this section, we put forward our one-class transfer learning to handle uncertain
data. Suppose we have two tasks, that is, to train one-class classifier on Ss for
source task and on St for target task. Let

w1 = wo + υ1 and w2 = wo + υ2, (3)

where w1 and w2 are parameters of the one-class SVM for source and target tasks,
respectively. wo is a common parameter while υ1 and υ2 are specific parameters.
Here, wo can be considered as a bridge to transfer knowledge from source task
to the target task [20]. By assuming ρ1 = w1 ·x and ρ2 = w2 ·x to be two hyper-
planes for Ss and St respectively, w1 and w2 can be denoted as wt = w0+vt, t =
1, 2 and the extended version of one-class transfer learning for uncertain data
can be written as follows.

min 1
2‖wo‖2 +

∑2
t=1 Ct‖υt‖2 − ρ1 − ρ2 + C(

∑
xi∈Ss

ξi +
∑

xj∈St
ξj)

s.t. (wo + υ1) · (xi +'xi) ≥ ρ1 − ξi, xi ∈ Ss

(wo + υ2) · (xj +'xj) ≥ ρ2 − ξj , ξj ≥ 0 xj ∈ St

ξi ≥ 0, ξj ≥ 0, ‖'xi‖ ≤ δi, ‖'xj‖ ≤ δj. (4)

For the above optimization, we then have:

1 xi+'xi and xj+'xj denote the original vectors which are affected by 'xi

and 'xj . Thus, one-class transfer learning classifier can be less sensitive to
the sample corrupted by noise since we can always determine a choice of
'xi to render xi + 'xi to refine the one-class transfer decision boundary.
‖'xi‖ ≤ δi and ‖'xj‖ ≤ δj restrict the range of the uncertain information
by a bound score, which has been utilized in previous work [14].

2 We utilize common parameter wo as a bridge to transfer knowledge from
source task to target task. Parameters C1 and C2 control the preference of
the two tasks. If C1 > C2, task 1 is preferred to task 2; otherwise, task 2 is
preferred to task 1. Parameters ξi and ξj are defined as measures of error.

4.1 Solution to Uncertain One-Class Transfer Learning Classifier

As the above optimization problem (4) is far more complicated than the stan-
dard one-class SVM, we will use an iterative approach to calculate ρ1, ρ2, 'xi

and 'xj such that we can obtain the one-class transfer learning classifier for
uncertain data. The iterative steps can be summarized as follows. (a): fix each
'xi and 'xj to solve the problem (4) to obtain ρ1 and ρ2; (b): fix the obtained
ρ1 and ρ2 to calculate 'xi and 'xj iteratively. We detail the alternating two
steps as follows. (We omit the detailed derivation of the Theorems in this section
due to space limitation)
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Calculation of Classifier by Fixing � xi and � xj. First of all, we fix
each ' xi and ' xj as small values such that ‖ 'xi ‖< δi, ‖ 'xj ‖< δj

1.
Based on this, the constrains ‖ 'xi ‖< δi, ‖ 'xj ‖< δj in problem (4) won’t
have effect on the solution. Then, problem (4) is equivalent to

min 1
2‖wo‖2 +

∑2
t=1 Ct‖υt‖2 − ρ1 − ρ2 + C(

∑
xi∈Ss

ξi +
∑

xj∈St
ξj)

s.t. (wo + υ1) · (xi +'xi) ≥ ρ1 − ξi, ξi ≥ 0 xi ∈ Ss

(wo + υ2) · (xj +'xj) ≥ ρ2 − ξj , ξj ≥ 0 xj ∈ St (5)

We then have the following Theorem.

Theorem 1: By using Lagrangian function [22], the solution of the optimization
problem (5) is to solve the following dual problem

F (α) = 1
2‖wo‖2 + C1‖υ1‖2 + C2‖υ2‖2 −

∑
xi∈Ss

αi[(w0 + v1) · xi]

−
∑

xj∈St
αj [(w0 + v2) · xj ] (6)

s.t. 0 ≤ αi ≤ C, 0 ≤ αj ≤ C,
∑

xi∈Ss
αi = 1,

∑
xj∈St

αj = 1,

in which

wo =
∑

xi∈Ss
αi · xi +

∑
xj∈St

αj · xj ,

v1 = 1
2

∑
xi∈Ss

αi · xi, v2 = 1
2

∑
xj∈St

αj · xj ,

where αi and αj are the Lagrange multipliers and xi = xi+'xi, xj = xj+'xj .
After solve optimization problem (6), we obtain αi and αj , and ρ1 = (w0+v1)·xi

and ρ2 = (w0 + v2) · xj .

Calculation of � xi and � xj by Fixing the Classifier. After setting
'xi and 'xj as a small values which are less than δi and δj respectively, and
solving optimization problem (6), we obtain ρ1 and ρ2. The next step is to use
the obtained ρ1 and ρ2 to calculate new 'xi and 'xj . We then have Theorem
2 as follows.

Theorem 2: If the hyperplanes for the source and target tasks are denoted as
ρ1 = (w0 + v1) · x, and ρ2 = (w0 + v2) · x, the solution of problem (4) over 'xi

and xj are

'xi = δi
w0 + v1

‖ w0 + v1 ‖ , (7)

'xj = δj
w0 + v2

‖ w0 + v2 ‖ . (8)

This Theorem indicates that, for a given ρ1 and ρ2, the minimization of problem
(4) over 'xi and 'xj is quite straightforward.

After that, we have one round of alternation and continue to update ρ1, ρ2,
'xi, 'x2 until the algorithm converges.

1 We set � xi = 0 and � xj = 0 in the first step of the iterative framework.
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Algorithm 1. Uncertain one-class transfer learning with uncertain data

Input: Ss, St ; // source and target tasks
........... C1, C2 and C. // parameters
........... δi, δj // bound value for samples in both tasks.
Output: ρ1 and ρ2.

1: Initialize each �xi = 0 and �xj = 0;
2: t=0;
3: Initialize Fva(t) =∞;
4: repeat
5: t = t+ 1;
6: Fix �xi for i = 1, 2, . . . , |Ss| and �xj for j = 1, 2, . . . , |St| to solve problem (5);

7: Let Fva(t) = F (α);
8: Obtain αi, i = 1, 2, . . . , |Ss|;
9: Obtain αj , j = 1, 2, . . . , |St|;
10: Obtain the hyperplane ρ1 = (w0 + v1) · x for source task;
11: Obtain the hyperplane ρ2 = (w0 + v2) · x for the target task;
12: Fix ρ1 and ρ1 to update each �xi and �xj according to Equation (7) and (8);
13: until |Fva(t)− Fva(t− 1)| < ε|Fva(t− 1)|
14: Return ρ1 = (w0 + v1) · x and ρ2 = (w0 + v2) · x.

To utilize Theorem 1 and Theorem 2 iteratively to calculate ρ and 'x, we
have Theorem 3 as follows.

Theorem 3: If optimal 'xi = δi
w0+v1

‖w0+v1‖ and 'xj = δj
w0+v2

‖w0+v2‖ are fixed, the

solution of problem (4) is equivalent to optimization problem (6).

From 'xi = δi
w0+v1

‖w0+v1‖ , we have ‖'xi‖ = δi
‖w0+v1‖
‖w0+v1‖ = δi, then the constrains

'xi ≤ δi in problem (4) won’t have any effect on problem (4). The same analysis
can be used to 'xj = δj

w0+v2

‖w0+v2‖ . Thus, problem (4) equals to problem (6).

Iterative Framework. So far, we have introduced the framework to update
ρ1, ρ2, 'xi and 'xj at a round, and we can use the above steps to obtain an
uncertain one-class transfer learning classifier. By referring to the alternating
optimization method in [6], we propose the usage of the iterative approach to
solve problem (4) in Algorithm 1.

In Algorithm 1, ε is a threshold. Since the value of Fval(t) is nonnegative,
with the decreasing of Fval(t), |Fval(t)−Fval(t− 1)|/|Fval(t− 1)| will be smaller
than a threshold. Thus, Algorithm 1 can converge in finite steps.

After that, we obtain the uncertain one-class transfer learning classifiers for
the target task. We then utilize the learned classifier for prediction.

Note:(1): For the determination of δi for the sample xi in Ss, we calculate
the average distance of xi between it and the its k−nearest neighbors. The same
operation is utilized to the sample xj in St. This setting is previously utilized
in the previous work [14]. At the beginning of the framework, we initialize each
'xi = 0, 'xj = 0 and update them base on (7) and (8). Then, we can have
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'xi ≤ δi and 'xj ≤ δj . (2): Above, we present the formulation of uncertain
one-class transfer learning in the input space; while for the kernel space, we can
utilize K(x,q) = φ(x) · φ(q) in the above formulation.

5 Experiments

5.1 Baseline and Metrics

In this section, we investigate the performance of our proposed UOCT-SVM
method. In transfer learning, we expect the transferred knowledge from the
source task to the target task can improve the performance of the classifier built
on the target task. For comparison, another two methods are used as baselines.

1. The first method is the standard one-class SVM (OC-SVM), which deter-
mines a hyperplane to separate the target class and the origin of feature
space. This baseline is used to show the improvement of our method over
the standard one-class SVM.

2. The second baseline is the uncertain one-class SVM (UOC-SVM) [14], which
builds one-class classifier on uncertain data. This baseline is utilized to inves-
tigate the ability of transferred knowledge contributed to the construction
of classifier on the target data.

The performance of classification systems is typically evaluated in terms of F-
measure [23], we use it as metrics. The F measure trades off precision p and recall
r: F = 2p · r/(p+ r). From the definition, we know only when both precision
and recall are large, will the F-measure exhibit large value.

5.2 Dataset and Experiment Setting

One-Class Learning Data. To evaluate the properties of our approach, we
conduct experiments on 20 Newsgroups 2 and Reuters-21578 3. Both data sets
have hierarchical structures. The 20 Newsgroups corpus contains several top
categories, and under the top categories, there are 20 sub-categories where each
subcategory has 1000 samples. Similarly, Reuters-21578 contains Reuters news
wire articles organized into five top categories, and each category includes dif-
ferent sub-categories.

Following the previous work [17,19] for one-class learning, we reorganize the
original data in a way for the one-class transfer learning problem as follows.
For the 20 Newsgroups, we consider one sub-category as target class, and se-
lect a number of example from other categories as non-target class. Specifically,
we first choose a sub-category (a1) from a top category (A), and consider this
sub-category (a1) as the target class and consider the examples from other top
categories, i.e., except for category (A) as non-target class. Based on the this,
we generate target class and non-target class for the source task. For the target

2 Available at http://people.csail.mit.edu/jrennie/20Newsgroups/
3 Available at http://www.daviddlewis.com/resources/testcollections/

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/
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task, we choose a sub-category (a2) from the same top category (A) as that for
the source task, and consider this sub-category (a2) as the target class; while
take the examples from other top categories except for (A) as non-target class.

For the Reuters-21578, each top category has many sub-categories, for ex-
ample, “people” has 267 sub-categories and the size of each sub-category is not
always large. We organize it as follows. For a top category (A), all of the subcat-
egories are organized into two parts (denoted as a(1) and a(2)), and each part
is approximately equal in size. We then regard a(1) and a(2)) as the target class
of the source task and target task respectively. We also consider the examples
from the other category except for (A) as the non-target class for the source and
target task respectively.

In the above operations, we generate target class from the same top category
(A), that are a(1) and a(2), for the source task and target task, this is because
we should guarantee the two tasks are related. Otherwise, the transfer learning
may not, and may even hurt, the performance of a target task, which can be
referred to as negative transfer [3].

Uncertain Information Generation. We note that the above data are de-
terministic, so we need to model and involve uncertainty to these data sets.
Following the method in the previous work [1], we generate the uncertain data
as follows.

For generate data, we first compute the standard deviation σ0
i of the entire

data along the ith dimension, and then obtain the standard deviation of the
Gaussian noise σi randomly from the range [0, 2·η ·σ0

i ]. For the ith dimension, we
add noise from a random distribution with standard deviation σi. Thus, a data
example xj is added with the noise, i.e., σxj = [σ

xj

1 , σ
xj

2 , · · · , σxj

r−1, σ
xj
r ]. Here, r

denotes the number of dimensions for a data example xj , and σ
xj

i , i = 1, · · · r
represents the noise added into the ith dimension of the data example. Fig. 1
(B) illustrates the basic idea of the method.

In the experiment, RBF kernel function (K(x,xi) = exp(−‖ x− xi ‖22/2σ2))
is used in the experiment since it is the most common kernel function. The
σ in RBF kernel function is ranged from 2−10 to 210. In our method, C1 and
C2 control the tradeoff between the source task and target task. Since we care
about the target task more than the source task, we set C2 > C1 and C1, C2, C
is chosen from 1 to 1000. For the k-nearest neighbors to generate bound score,
we set k equal to ten percent of the training target class. We set ε is set as 0.15
in the experiment. All the experiments are on a laptop with a 2.8 GHz processor
and 3GB DRAM.

Performance Comparison. For the target data set, we randomly choose
around 20% to form a training set while the remaining example are used for
testing. This is because transfer learning always assumes we do not have suffi-
cient training data for the target task. We also conduct 10-fold cross validation
on the test set. For the source data, since we are more concerned about the per-
formance of the target task we incorporate around 80% them into training and
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Fig. 2. The performance of OC-SVM, UOC-SVM and UOCT-SVM at different noise
level
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Table 1. The average F-measure accuracy and standard deviation for the target task
obtained by OC-SVM, UOC-SVM and UOCT-SVM methods

Number Source task Target task OC-SVM UOC-SVM UOCT-SVM

1 Com-misc Com-wind.x 0.61 ± 0.042 0.66 ± 0.035 0.71 ± 0.035
2 Rec-autos Rec-moto 0.62 ± 0.034 0.67 ± 0.031 0.72 ± 0.029
3 Sci-med Sci-elec 0.73 ± 0.053 0.78 ± 0.042 0.81 ± 0.042
4 Talk-religion Talk-christ 0.53 ± 0.055 0.58 ± 0.052 0.62 ± 0.049
5 Com-wind.misc Com-graphics 0.71 ± 0.045 0.77 ± 0.042 0.80 ± 0.042
6 Rec-baseball Rec-hockey 0.72 ± 0.032 0.78 ± 0.031 0.82 ± 0.030
7 Orgs(1) Orgs(2) 0.70 ± 0.051 0.76 ± 0.049 0.79 ± 0.045
8 People(1) People(2) 0.74 ± 0.047 0.80 ± 0.035 0.82 ± 0.042

the remaining are used for testing. To avoid a sampling bias, we repeat the above
process 10 times, and report the average f-measure accuracy and the standard
deviations in Table 1, in which we set the noise level at 0.4.

It can be seen that, our proposed UOCT-SVM method always provides a su-
perior performance compared with UOC-SVM. Although both UOCT-SVM and
UOC-SVM can handle data of uncertainty, our method can transfer knowledge
from the source task to the target task such that we can develop an accurate
classifier for the target task. In addition, both UOCT-SVM and UOC-SVM per-
form much better than the standard OC-SVM, this occurs because UOCT-SVM
and UOC-SVM reduce the effect of the noise on the decision boundary; as re-
sults, they can deliver better one-class classifier compared with the standard
OC-SVM. In addition, we find the standard deviation of our method is less than
the UOC-SVM and OC-SVM for most data sets.

Performance on Different Noise Levels. We investigate the performance
sensitivity of three methods on different noise level from 0.4 to 1. In Fig. 2,
we illustrate the variation in effectiveness with increasing noise error. On the
x−axis, we illustrate the noise level. On the y−axis, we illustrate the average f-
measure value. It is clear that in each case, the f-measure value reduces with the
increasing noise level. This occurs because when the level of noise increases, the
target class potentially becomes less distinguishable from the non-target class.
However, we can clearly see that, UOCT-SVM approach can still consistently
yield higher f-measure value than OC-SVM and UOC-SVM. This indicates that,
UOCL method can reduce the effect of noise. In addition, UOC-SVM performs
better than OC-SVM since UOC-SVM can reduce the effect of noise on the
decision classifier.

Average Running Time Comparison. So far, we have investigated the
performance of the three methods, it is interesting to compare the running
time of them. The average running time of OC-SVM, UOC-SVM and UOCT-
SVM are 1553, 4763 and 6980 seconds respectively. We find that the standard
one-class SVM performs much faster than UOC-SVM and UOCT-SVM since
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OC-SVM does not consider the data of uncertainty and transfer knowledge in
the learning; as a result, it performs faster while has the lowest accuracy com-
pared with UOC-SVM and UOCT-SVM. In addition, UOC-SVM proceeds faster
than UOCT-SVM, since the latter one transfers knowledge from the source task
to the target task to benefit the classifier for target task, which takes time to
fulfill the knowledge transfer.

6 Conclusion and Future Work

This paper proposes a novel approach, called UOCT-SVM, for one-class transfer
learning with uncertain data. Our proposed UOCT-SVM first formulates the
uncertain data and transfer learning to the one-class SVM learning as an op-
timization problem, and then puts forward an efficient framework to solve the
optimization problem such that we can obtain an accurate classifier for the target
task by transferring knowledge from the source task to the target task. Extensive
experiment has investigated the performance of our proposed UOCT-SVM.

In the future, we would like to investigate how to design better methods to
generate bound scores based on the data characteristics in a given application
domain.
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Abstract. Amongst the wealth of available machine learning algorithms
for forecasting time series, linear regression has remained one of the most
important and widely used methods, due to its simplicity and inter-
pretability. A disadvantage, however, is that a linear regression model
may often have higher error than models that are produced by more so-
phisticated techniques. In this paper, we investigate the use of a grouping
based quadratic mean loss function for improving the performance of lin-
ear regression. In particular, we propose segmenting the input time series
into groups and simultaneously optimizing both the average loss of each
group and the variance of the loss between groups, over the entire series.
This aims to produce a linear model that has low overall error, is less
sensitive to distribution changes in the time series and is more robust to
outliers. We experimentally investigate the performance of our method
and find that it can build models which are different from those produced
by standard linear regression, whilst achieving significant reductions in
prediction errors.

Keywords: Time series prediction, samples grouping, quadratic mean.

1 Introduction

The forecasting of time series is a well known and significant prediction task.
Many methods have been proposed in this area, ranging from the simple to the
very sophisticated. An important class of techniques includes methods which
learn a model based on optimizing a regularized risk function, such as linear
regression, Gaussian processes, neural networks and support vector machines.
Common drawbacks in the development of time series forecasting methods are
that many of them are applicable to only a specific type of time series, such as
medical data or stock market series; they may require certain conditions to be
fulfilled; or the improvement in performance is associated with a high increase
in complexity.

Linear regression is one of the most popular and widely used techniques for
time series prediction, since it is simple, intuitive and produces models with a
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high degree of interpretability. Its performance is also often surprisingly good
compared to more complex methods. Nevertheless, reduction of prediction error
is a key concern and it remains attractive to consider techniques for improving
the behavior of standard linear regression, particularly for challenging circum-
stances. Such circumstances include non stationary and noisy time series, where
changes in the distribution of the series often occur over time.

Given these issues, this paper investigates a modification of linear regression
that takes a different perspective. Given a single univariate time series, instead
of optimizing the arithmetic mean of the loss over all training samples, we pro-
pose to optimize the quadratic mean of the loss over groups of training samples.
In particular, the univariate time series is segmented into a number of groups,
where each group contains one or more samples. A linear model is then learned
which simultaneously optimizes both the average loss of each group, as well as
the variance of the loss across groups. In other words, there are two concur-
rent optimization objectives. First, the model which is produced should have
low overall error rate - this is achieved by ensuring the average loss within each
group is small. Second, the groups should not vary too much with respect to the
error rate of each individual group - this ensures that there is no single group
which can significantly bias the characteristics of the output model. A primary
question is how should the univariate time series be segmented into groups ?
Our proposal is to segment the samples according to their distribution charac-
teristics. The intuition here is that we would like to learn a model which is not
biased towards any single distribution, since we do not know which distribution
the future behavior of the time series will most resemble.

We experimentally evaluate the performance of our technique using 20
real stock market datasets, 5 non-financial time series datasets and 5 synthetic
datasets. We find that our new method (which we call QMReg) can produce
linear models which are quite different from those of standard linear regression,
and often have significantly less error, with empirical reductions typically in the
range of 10%-30%. Our proposed method is an intuitive technique that ensures
more evenly distributed, less volatile error and sensitivity to changes in the dis-
tribution of the series.

2 Related Work

Data mining researchers have a range of different types of classification and re-
gression algorithms at their disposal, and many of them have been applied to the
time series forecasting problem. Artificial Neural Networks(ANNs) [17], Support
Vector Machines [13] and Hidden Markov Models [20] [9] are other methods that
have been used with some success for financial time series forecasting, and clus-
tering has been used as an aid in the forecasting process as well.

The practical use of linear regression along with statistical knowledge is
embodied in the Autoregressive Integrated Moving Average (ARIMA) models,
which are descriptive, intuitive and often perform as well as advanced models.
Weighted linear regression and AutoRegressive Conditional Heteroskedasticity
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(ARCH) models are more complex modifications of linear regression, which re-
quire some additional statistical expertise.

Robust regression is a more complex type of linear regression that assesses
the statistical properties of the data samples when learning a model [15], by han-
dling the outliers in the data, and assigning appropriate weights (or losses) to
reduce their influence [18]. Incorrect labelling of a sample as an outlier can be a
concern when using robust regression. Choosing the most appropriate approach
often requires statistical expertise by the user.

Since our method is based on grouping of instances as input to a loss mini-
mization function, a potentially related area of research is regularized multitask
learning [16], where the objective is to learn multiple classification tasks simul-
taneously, rather than independently. However, to our knowledge, research in
multitask learning has not used a quadratic mean loss function for the simulta-
neous optimization of loss across groups, as is done in this paper.

3 Distribution Based Quadratic Mean Convex
Optimization

We propose an algorithm that has two phases: (1) detection of distribution
change points to segment the time series into groups, and (2) training the re-
gression model using a quadratic mean to minimize both the individual loss of
each group and the variance of the loss across groups.

3.1 Time Series Segmentation - Distribution Change Points
Detection

Distribution changes in time series variables are from a continuous process, sub-
ject to a set of external factors [1] [5]. The task of breaking up the samples of a
dataset into segments or groups based on distribution or similarities is not an un-
familiar challenge - simple clustering be effective in many cases. When it comes
to time series, as we may prefer to preserve the time element, distribution based
methods can also be used. Potential candidate tests for non-parametric change
point detection methods include the Wilcoxon rank sum method (WXN) and
the kernel change method (KCD) [14]. They can be applied for this task as they
are understandable and easy to introduce in the learning process. The Wilcoxon
rank sum method (WXN) assess whether two sets of data samples follow the
same distribution according to a statistical measure. It is an easy to implement
statistical test, and no a-priori knowledge is required (other than specification
of an appropriate p-value, commonly set to 0.05).

The WXN paradigm is as follows: for a fixed window of m points, [1, m],
we appoint after it another sliding window of the same length, [m+ 1, 2m]. We
move the second window and compare if the samples in both windows follow the
same distribution: if that is the case, we continue moving the second window,
until the distribution changes. The change point will be at the last sample of the
second window (point 2m + p), p>0, where we detect the group window v for
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that group of samples; we move the first window just after that point [2m+p+1,
3m+ p], the second window comes after the first one [3m+ p+ 1, 4m+ p] and
we repeat the process for the rest of the dataset(Figure 1). The choice of the
window size m can vary, and we choose it to be the same size as the testing set.

Fig. 1. The Wilcoxon method with a fixed reference window and a sliding window

3.2 Quadratic Mean Based Empirical Loss Function

The quadratic mean is defined as the square root of the average of the squares
of each element in a set. In the case of just two errors, ε1 and ε2, the values of
the quadratic mean QM and the arithmetic mean AM can be written as:

AM =
ε1 + ε2

2
, QM =

√
ε21 + ε22

2
=

√
AM2 + (

ε1 − ε2
2

)2 (1)

This shows that the quadratic mean is lower bounded by the arithmetic mean,
and this bound is reached when ε1=ε2. This form of optimization was successfully
tested for the scenario of imbalanced relational datasets [7] where there are only
two groups (positive and negative classes). The more advanced form we use in
our methods is specialised for the case of time series and permits any number of
groups.

Many machine learning methods address the learning process as finding
the minimum of the regularized risk function. For n training samples (xi, yi)
(i=1,..,n), where xi ∈ Rd is the feature vector of the i–th training sample, d is
the number of features, and yi ∈ {–1, 1} is the true label for the i–th training
sample (in the case of classification) and yi ∈ R in the case of regression, the
regularized risk function is:

w∗ = argminw λwTw+Remp(w) (2)

w is the weight vector which also includes the bias term b (which makes x
having and additional bias feature xd+1 ≡ 1), and λ is a positive parameter that
balances the two items in Equation 2, and Remp(w) = 1

n

∑n
i=1 l(xi, yi,w). The

loss function l(xi,yi,w) in Remp(w) measures the distance between a true label
yi and the predicted label from the forecasting done using w, and in the case of
Linear Regression it has the form of 1

2 (w
Tx-y)2.
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We investigate the use of the quadratic mean as a risk function which balances
k values, instead of just two values. Each value represents the average loss for
a group of instances. The grouping of instances can be conducted in a range of
ways. A simple way is to segment the time series data into k groups by their
distribution, and we use the Wilcoxon method for that purpose. Each group
consists of consecutive data samples, and may vary in size depending on the
distribution of the underlying data. The effect of using the quadratic mean is to
produce a model which optimizes the average loss for each group, as well as the
variance of the average loss across the k groups.

The details behind the groups error optimization are as follows: with n sam-
ples, we denote the sizes of k groups as n1, n2,..,nk, where n1+n2+..+nk=n.
The empirical loss function of k group has the form of:

RQM
emp,k(w) =

√∑k
j=1 fj(w)2

k
(3)

where fj is the average error for group j consisting of nj consecutive samples
following the same distribution

fj(w) =

∑nj

i=1 l(xji, yji,w)

nj
(4)

where xji is the i-th sample of group j, and yji is the i-th output of group j.
After some manipulation, it can be rewritten as

RQM
emp,k(w) =

√
μ2 + σ2 (5)

where μ is the mean error of the k groups 1
k

∑j=k
j=1 fj(w) and σ is the standard

deviation of the error across groups 1, . . . , k. This form clearly shows the overall
loss is the sum of two components, the average loss per group and the variance
across groups.

An ideal w minimizes the square root of the average of squares of errors per
group, while keeping the structural risk minimization as well, therefore resulting
in the final optimization function

w∗ = argmin
w

λwTw+RQM
emp(w) (6)

This form of calculation of the loss function is the form we use for the proposed
QMReg model, and this empirical loss function introduces robustness in the
algorithm, making it capable of minimizing the effect of outliers and the error
per distribution group. By using linear optimization methods, such as the bundle
method [6], we can calculate the subradients of the empirical loss and use them to
iteratively update the w vector in a direction that minimizes the quadratic mean
loss presented at Formula 3. The loss for a given sample is l(xi,yi,w)= 1

2 (w
Tx-

y)2, and it’s gradient will have the from of l′(xi,yi,w)=(wTx − y)2. Using this
in the calculation of the loss for a group in Equation 4, for the k groups of
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Algorithm 1. Bundle methods for solving the k-group quadratic mean mini-
mization problem

Input: convergence threshold ε; initial weight vector w0;

1: // Step 1: Change point detection
2: Initialize distribution windows Window1 (starting form the first sample) and

Window2 (which follows Window1)
3: Initialize iteration index k ← 1, initialize group window vk as empty
4: repeat
5: if samples in Window1 and Window2 have different distribution (according to

Wilcoxon rank sum test) - change point detected then
6: vk ← samples starting Window1 till end of Window2
7: Set Window1 after vk, Window2 follows Window1
8: k ← k+1
9: else
10: Move Window2 one sample further
11: end if
12: until all samples passed
13: // Step 2: Weight vector training:
14: Initialize iteration index t ← 0;
15: repeat
16: t ← t + 1;
17: Compute subgradient at ← ∂wRQ

emp,k(wt−1);

18: Compute bias bt ← RQ
emp,k(wt−1) – wT

t−1at;

19: Update the lower bound Rlb
t (w) = max1≤i≤t wT ai+bi;

20: Update wt ← argminw Jt(w) = λwTw+Rlb
t (w);

21: Compute current gap εt ← min0≤i≤t J(wi) – Jt(wt)
22: until εt ≤ ε or εt − εt−1 ≈ 0
23: Return wt

samples, the subgradient function will have the form of Equation 7, and the
detailed pseudo-code of the entire learning process is presented as Algorithm 1.

∂wRQ
emp,k(w) = ∂w

√∑k
j=1 fj(w)2

k
=

1

2
(

∑k
j=1 fj(w)2

k
)−

1
2 (

k∑
j=1

2fj(w)f ′
j(w)

k
) (7)

3.3 ”Every Sample as a Group” Strategy

We compare our method of k groups with 2 extreme cases - when there is only
one group, and when every single instance is a group. It can be easily shown that
in the case of 1 group, the quadratic mean is equivalent to the standard linear
regression model. As a single instance can be represented as a group, we inves-
tigate this research direction as well. The resulting model is QMSampleGroup.
In this case the quadratic mean will try to minimize the variance of error across
the entire set of samples.
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4 Experiments and Results

Evaluation of the performance of the QMReg method was the main target of
the experimental work we conducted. To achieve this goal in the experiments
both real datasets and synthetic datasets were used. We tested 20 real stock
market time series datasets obtained from [11], in the time frame of 2000-2012.
We obtained daily stock market closing prices, one of the most often analysed
types of data [1]. The sizes of the datasets are between 200 and 600 samples,
divided on training set and test set.

A synthetic dataset was created, and 4 different versions of it were also
tested (Table 1). The initial set represented a visible deterministic trend, after
which 2 types of changes were introduced: increasing or decreasing the last sam-
ples, and adding different amounts of noise, in order to test the newly proposed
algorithm the ability to work with noisy data. We also performed testing on
5 non-financial time series, revealing opportunities for application of quadratic
mean based approach in the non-financial time series domain [12].

Table 1. Synthetic datasets description

Dataset Description

Simulated sample 1 Visible deterministic trend
Simulated sample 2 Deterministic trend, structural break(in same direction), caused

by increasing the last samples, noise(10% of original value)
Simulated sample 3 Deterministic trend, structural break(in opposite direction),

caused by decreasing the last samples, noise(10% of orig. value)
Simulated sample 4 Deterministic trend, structural break(in same direction), last

samples increased further, noise(25% of original value)
Simulated sample 5 Deterministic trend, structural break(in opposite direction),

last samples decreased further, noise(25% of original value)

4.1 Testing and Results

Comparison between 6 methods was conducted in order to evaluate the ef-
fect of the QMReg methodology: Standard Least Squares Linear Regression
(LS, regressing to past 4 values), Distribution based Quadratic Mean Linear
Regression (QMReg, regressing to past 4 values), Quadratic Mean Linear Re-
gression with every sample as a group (QMSampleGroup, regressing to past 4
values), ARIMA(3,0,1), Robust Regression (Huber M -estimator) and SVM Re-
gression(SVM, α = 1, C=1, ε=0.001, ξ=ξ∗=0.001),). The Root Mean Square
Error(RMSE) was chosen as a performance metric, and we also calculate the
error reduction (ER) compared to the Least Squares models:

ER =
RMSE of LS− RMSE of QS methods

RMSE of LS
∗ 100.

From the results presented in Table 2, we can clearly see that the QMReg method
performed significantly better than the standard Least Squares linear regression,
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Table 2. Root Mean Square Error (RMSE) and Error reduction (ER) of QMReg and
QMGroupSample methods compared to LS(in %)

Datasets

RMSE ER
LS QMReg QM ARIMA Robust SVM QMReg

Sample Regress. Regress.
Group

Amazon.com 0.725 0.625 0.628 1.85 0.6269 0.629 13.8
Apple 3.75 3.513 3.4 16.1 3.566 3.44 6.3
American Express 0.913 0.645 0.64 1.61 0.635 0.642 29.4
British Airways 0.129 0.1163 0.118 0.228 0.121 0.1182 9.6
Boeing 1.36 1.22 1.23 8.28 1.188 1.15 10.3
Coke 0.558 0.378 0.428 1.04 0.375 0.382 32.3
Colgate Plamolive 0.996 0.69 0.714 1.6 0.693 0.707 30.7
Ebay 0.66 0.615 0.622 2.17 0.616 0.614 6.8
Fedex 1.99 1.13 1.132 1.67 1.098 0.87 43.2
Ford 0.276 0.273 0.275 0.85 0.273 0.267 1.1
Hewlett-Packard 0.889 0.554 0.581 1.94 0.566 0.589 37.7
IBM 7.54 7.17 7.826 25.6 7.725 7.443 4.9
Intel 0.932 0.819 0.83 2.36 0.832 0.838 12.1
Island Pacific 1.18 1.12 1.085 1.11 1.113 1.1 5.1
Johnson & Johnson 0.439 0.382 0.413 1.1 0.392 0.399 13.0
McDonalds 0.756 0.71 0.716 2.5 0.719 0.704 6.1
Microsoft 0.439 0.256 0.383 0.91 0.258 0.27 41.7
Starbucks 0.619 0.618 0.614 1.86 0.621 0.624 0.2
Siemens 2.391 2.1 2.12 3.4 2.097 2.1 12.2
Walt Disney 0.75 0.565 0.54 3.2 0.542 0.552 24.7
Simulated sample 1 1.82 1.79 1.668 11.87 1.81 1.96 1.6
Simulated sample 2 5.6 1.838 1.949 12 1.781 1.843 67.2
Simulated sample 3 2.65 1.88 1.898 11.9 1.982 2.06 29.1
Simulated sample 4 2.52 2.14 2.81 12.8 2.31 2.17 15.1
Simulated sample 5 8.6 6.9 7.39 8.26 6.77 2.67 19.8
Chemical process 0.241 0.225 0.274 0.36 0.234 0.228 6.6
Temperature anomalies 14.38 13.52 13.57 16.3 13.53 13.57 6.0
Radioactivity 14.63 12.315 14.44 10.1 11.197 10.72 15.8
Airline passengers 49.78 45.81 46.6 118.8 48.398 56.3 8.0
Chocolate 1764 1382 1635 1970 1680 1686 21.7

Wilcoxon signed base 1.83E-06 1.3E-04 3.56E-05 9.78E-06 9.31E-05
rank test p-value base 0.00286 1.30E-05 0.2563 0.2845

base 1.43E-05 0.1682 0.2845

much better than the ARIMA model, and very similar to the Robust Regression
and SVM, and was the method with the most stable convergence towards the
optimal weight vector as well, which was not always the case with Least Squares.
The performance of the QMReg method was mostly greater for datasets where
higher number of groups was detected. The SVM output arguable less easy
to interpret - support vector samples in the dataset are not as much of use as
simple coefficients for the features. With similar performance as SVM regression,



492 G. Ristanoski, W. Liu, and J. Bailey

Fig. 2. Error between the groups of the loss, for Microsoft dataset

Fig. 3. Robust regression and QMReg comparison - the pluses are the outliers, and the
black dots are future samples to be predicted. Robust regression considers the points at
the very end as possible outliers, while QMReg detects the subtle change of direction
and adjusts the line accordingly.

QMReg does show potential for use in cases when one is not familiar with more
complex forecasting methods, but can interpret the output of a linear regression
model. The objective of the QMReg to reduce the loss between groups can be seen
from Figure 2 which graphically shows how the errors per group are minimized
and made more even when QM grouping in performed.

The Robust regression is easy to interpret too, but a more statistical analysis
of the data is required - the non-parametric QMReg can be used as a black-box
method, and still deliver similar results. The difference with Robust regression
can be seen from Figure 3: the crossed points are outliers, and red points are
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the test samples. We can notice that both methods are dealing successfully with
the outliers, but the subtle change in the distribution is more correctly detected
by the QMReg method, while robust regression is considering the end points as
possible outliers and still keeps the line towards the overall mean. It is this subtle
change detection that further leads to lower error for QMReg (RMSE=0.89) than
the Robust regression error (RMSE=2.09). We can see the QMReg is highly
competitive when compared to Robust regression, and based on Figure 3 we
believe it may have the potential to deal with non-stationary behaviour better.

4.2 Loss Function Analysis

By performing grouping among the training set, the QM methods tend to mini-
mize not only the overall training error, but the error per group. This results in a
lower variance in the loss, as it can be seen from Table 3: the standard deviation
in QMReg method was at its best up to 58% less than the one of the LS method.
The grouping performed in the case of QMReg was also conducted for LS. The
loss per group was calculated, and standard deviation among the loss per group
showed that the QM method indeed minimizes the loss amongst the groups:
Table 3 shows the standard deviation of the error per group is statistically lower
in the case of QMReg when compared to LS.

5 Conclusion and Future Work

Time series forecasting is a classic prediction problem, for which linear regression
is one of the best known and most widely used methods. In this paper, we have
proposed a technique that enhances standard linear regression, by employing an
optimization objective which explicitly recognises different groups of samples.
Each group corresponds to a segment of the time series whose samples have
similar distribution characteristics. Our objective simultaneously minimizes the
expected loss of each group, as well as the variance of the loss across the groups.
By doing so, we ensure a model that produces more stable, less volatile predic-
tions, and capable of additionally minimizing the effect of outliers or noisy data.

The experimental study highlighted the promise of our approach, showing
that it could produce linear models different to that of standard linear regression
and which also achieved consistent reductions in error in the range 10% to 30%
on average, up to 40% error reduction in some cases. As the performance of our
proposed method is comparable to more advanced forecasting methods(SVM re-
gression and Robust Regression), our model has an advantage that it improves
the performance of linear regression while avoiding unnecessary complexity and
unwanted parameters, so it can be used by more general practitioners on diverse
types of time series.

For future work, we would like to investigate the use of weighted groupings,
for cases where the quality of a group with respect to the prediction task can be
estimated, and introduce the time element in the learning process even further.
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Table 3. Loss function mean and standard deviation for entire training set, and stan-
dard deviation of loss across groups per training set

Loss function Standard deviation for
Dataset LS QMReg loss across groups

mean st. dev. mean st. dev. LS QMReg

Amazon.com 0.7074 1.1087 0.5081 0.8229 0.4888 0.3139
Apple 15.1928 27.2601 13.9676 26.0380 8.8954 8.3127
American Express 1.1356 2.2984 0.8372 1.5941 0.8179 0.5714
British Airways 0.0303 0.0483 0.0203 0.0398 0.0199 0.0156
Boeing 2.2065 3.5453 0.9353 1.5959 1.1735 0.4683
Coke 0.4660 1.1622 0.2504 0.8432 0.5104 0.2234
Colgate Plamolive 1.3929 2.8065 0.7759 2.1025 1.2410 0.5965
Ebay 0.2531 0.4295 0.2224 0.4208 0.1550 0.1060
Fedex 6.4903 9.3358 2.5329 3.9214 3.9518 1.3231
Ford 0.0680 0.1184 0.0681 0.1191 0.0485 0.0481
Hewlett-Packard 0.9649 2.2101 0.5336 1.2165 0.9802 0.4411
IBM 85.553 133.895 60.431 123.244 52.7541 56.8021
Intel 1.2986 2.4139 1.1098 2.0457 0.6658 0.4592
Island Pacific 0.9762 1.3706 0.5165 0.8315 0.4787 0.1660
Johnson & Johnson 0.2526 0.4612 0.2372 0.4137 0.1572 0.1343
McDonalds 0.3491 0.7640 0.2742 0.5731 0.2595 0.1650
Microsoft 0.2600 0.6304 0.1980 0.5074 0.1563 0.0867
Starbucks 0.1654 0.4354 0.1672 0.4239 0.1295 0.1232
Siemens 4.6880 6.1569 4.0694 5.4571 1.7561 1.2753
Walt Disney 0.4286 0.7747 0.2374 0.4255 0.3840 0.1434
Simulated sample 1 3.5835 3.2914 2.9072 2.7637 0.8706 0.6042
Simulated sample 2 14.5109 26.8793 4.6307 15.8900 13.8375 5.0620
Simulated sample 3 9.3680 18.8459 3.7615 8.3814 5.8793 1.6188
Simulated sample 4 40.6497 86.3151 31.5504 80.3505 38.3393 29.8716
Simulated sample 5 93.7317 133.0539 53.3164 104.7921 51.9541 29.3767
Chemical process 0.0680 0.1442 0.0756 0.1653 0.0339 0.0277
Temperature anomalies 232.47 368.44 206.57 318.60 16.7000 52.8821
Radioactivity 175.04 230.35 180.35 244.17 46.7919 31.9748
Airline passengers 809.82 1418.44 796.04 1130.33 490.8909 426.3732
Chocolate 1499216 2158796 952022 1486350 622544.00 467145.00

Wilcoxon signed rank base 2.72E-05 3.90E-05 base 0.0001816
test p-value
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13. Muller, K.-R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.:
Using Support Vector Machines for Time Series Prediction (2000)

14. Liu, X., Wu, X., Wang, H., Zhang, R., Bailey, J., Kotagiri, R.: Mining distribution
change in stock order streams. In: IEEE 26th International Conference on Data
Engineering, ICDE (2010)

15. Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing. Elsevier
Academic Press, New York (2005)

16. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 109–117 (2004)

17. Adhikari, R., Agrawal, R.K.: A novel weighted ensemble technique for time series
forecasting. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012,
Part I. LNCS, vol. 7301, pp. 38–49. Springer, Heidelberg (2012)

18. Khoa, N.L.D., Chawla, S.: Robust outlier detection using commute time and
eigenspace embedding. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.)
PAKDD 2010, Part II. LNCS, vol. 6119, pp. 422–434. Springer, Heidelberg (2010)

19. Widiputra, H., Pears, R., Kasabov, N.: Multiple time-series prediction through
multiple time-series relationships profiling and clustered recurring trends. In:
Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635,
pp. 161–172. Springer, Heidelberg (2011)

20. Cheng, H., Tan, P.-N.: Semi-supervised learning with data calibration for long-term
time series forecasting. In: Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2008)

21. Meesrikamolkul, W., Niennattrakul, V., Ratanamahatana, C.A.: Shape-based clus-
tering for time series data. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.)
PAKDD 2012, Part I. LNCS, vol. 7301, pp. 530–541. Springer, Heidelberg (2012)

http://www.wessa.net/stocksdata.wasp
http://robjhyndman.com/tsdldata/data/9-17b.dat


Twin Bridge Transfer Learning

for Sparse Collaborative Filtering

Jiangfeng Shi1,2, Mingsheng Long1,2, Qiang Liu1,
Guiguang Ding1, and Jianmin Wang1

1 MOE Key Laboratory for Information System Security;
TNLIST; School of Software

2 Department of Computer Science & Technology,
Tsinghua University, Beijing, China

{shijiangfengsjf,longmingsheng}@gmail.com,

{liuqiang,dinggg,jimwang}@tsinghua.edu.cn

Abstract. Collaborative filtering (CF) is widely applied in recommender
systems. However, the sparsity issue is still a crucial bottleneck for most
existing CF methods. Although target data are extremely sparse for a
newly-built CF system, some dense auxiliary data may already exist in
othermatured related domains. In this paper,wepropose anovel approach,
TwinBridge Transfer Learning (TBT), to address the sparse collaborative
filtering problem. TBT reduces the sparsity in target data by transferring
knowledge from dense auxiliary data through two paths: 1) the latent fac-
tors of users and items learned from two dense auxiliary domains, and 2)
the similarity graphs of users and items constructed from the learned la-
tent factors. These two paths act as a twin bridge to allow more knowledge
transferred across domains to reduce the sparsity of target data. Exper-
iments on two benchmark datasets demonstrate that our TBT approach
significantly outperforms state-of-the-art CF methods.

Keywords: Collaborative Filtering, Sparsity, Transfer Learning, Latent
Factor, Similarity Graph, Twin Bridge.

1 Introduction

Recommender systems are widely deployed on the Web with the aim to improve
the user experience [1]. Well-known e-commerce providers, such as Hulu (video)
and NetFlix (movies), are highly relying on their developed recommender sys-
tems. These systems attempt to recommend items that are most likely to attract
users by predicting the preference (ratings) of the users to the items. In the last
decade, collaborative filtering (CF) methods [2–4], which utilize users’ past rat-
ings to predict users’ future tastes, have been most popular due to their generally
superior performance [5, 6]. Unfortunately, most of previous CF methods have
not fully addressed the sparsity issue, i.e., the target data are extremely sparse.

Recently, there has been an increasing research interest in developed transfer
learning methods to alleviate the data sparsity problem [7–13]. The key idea
behind is to transfer the common knowledge from some dense auxiliary data
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to the sparse target data. The common knowledge can be encoded into some
common latent factors, and extracted by the latent factorization models [14].
Good choices for the common latent factors can be the cluster-level codebook
[8, 9], or the latent tastes of users/latent features of items [11–13]. The transfer
learning methods have achieved promising performance over previous methods.

However, when the target data are extremely sparse, existing transfer learning
methods may confront the following issues. 1) Since the target data are extremely
sparse, the latent factors extracted from the auxiliary data may transfer negative
information to the target data, i.e., the latent factors are likely to be inconsistent
with the target data, which may result in overfitting [15]. We refer to this issue
as negative transfer. 2) As the target data are extremely sparse, it is expected
that more common knowledge should be transferred from the auxiliary data to
reduce the sparsity of the target data [16]. We refer to this issue as insufficient
transfer. Solving these two issues both can reduce the sparsity more effectively.

In this paper, we propose a novel approach, Twin Bridge Transfer Learning
(TBT), for sparse collaborative filtering. TBT aims to explore a twin bridge cor-
responding to the latent factors which encode the latent tastes of users/latent
features of items, and the similarity graphs which encode the collaboration infor-
mation between users/items. TBT consists of two sequential steps. 1) It extracts
the latent factors from dense auxiliary data and constructs the similarity graphs
from these extracted latent factors. 2) It transfers both the latent factors and
the similarity graphs to the target data. In this way, we can enhance sufficient
transfer by transferring more common knowledge between domains, and allevi-
ate negative transfer by filtering out the negative information introduced in the
latent factors. Extensive experiments on two real-world data sets show promising
results obtained by TBT, especially when the target data are extremely sparse.

2 Related Work

Prior works using transfer learning for collaborative filtering assume that there
exist a set of common latent factors between the auxiliary and target data.
Rating Matrix Generative Model (RMGM) [9] and Codebook Transfer (CBT) [8]
transfer the cluster-level codebook to the target data. However, since codebook
dimension cannot be too large, the codebook cannot transfer enough knowledge
when the target data are extremely sparse. To avoid this limitation, Coordinate
System Transfer (CST) [12], Transfer by Collective Factorization (TCF) [11],
and Transfer by Integrative Factorization (TIF) [13] extract both latent tastes of
users and latent features of items, and transfer them to the target data. However,
these methods do not consider the negative transfer issue, which is more serious
when the target data are extremely sparse. Also, they only utilize a single bridge
for knowledge transfer. Different from all these methods, our approach explores
a twin bridge for transferring more useful knowledge to the sparse target data.

Neighborhood structure has beenwidely used inmemory-basedCF [17] or graph
regularizedmethods [4]. Neighborhood-BasedCF Algorithm [17] predicts missing
ratings of target users by their nearest neighbors. Graph Regularized Weighted
Nonnegative Matrix Factorization (GWNMTF) [4] encodes the neighborhood
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Table 1. Notations and their descriptions in this paper

Notation Description Notation Description

τ dataset index, τ ∈ {1, 2} R m × n rating matrix
m #target users Z m × n indicator matrix
n #target items U m × k latent tastes of users
p #nearest neighbors V n × k latent features of items
k #latent factors B k × k cluster-level codebook

λU , λV regularization param of latent factors γU , γV regularization param of similarity graphs

information into latent factor models, which can preserve the similarity between
user tastes or item features. However, these methods depend largely on dense rat-
ings to compute accurate neighborhood structure, which is impossible when the
data are extremely sparse.Different from thesemethods, our approach extracts the
latent factors of users/items from some dense auxiliary data, and then constructs
the neighborhood structure from these latent factors. In this way, the constructed
neighborhood structure is more accurate for sparse CF.

3 Problem Definition

We focus on sparse collaborative filtering where the target data are extremely
sparse. Suppose in the target data, we have m users and n items, and a set of
integer ratings ranging from 1 to 5. R ∈ Rm×n is the rating matrix, where Rij is
the rating that user i gives to item j. Z ∈ {0, 1} is the indicator matrix, Zij = 1
if user i has rated item j, and Zij = 0 otherwise. In order to reduce the sparsity
in the target data, we assume that there exist some dense auxiliary data, from
which we can transfer some common knowledge to the target data. Specifically,
we will consider two sets of auxiliary data, whose rating matrices are R1 and
R2, with indicator matrices Z1 and Z2, respectively. R1 shares the common set
of users with R, while R2 shares the common set of items with R. For clarity,
the notations and their descriptions are summarized in Table 1.

Definition 1 (Learning Goal). The goal of TBT is to construct 1) latent fac-
tors U0,V0 from R1,R2 and 2) similarity graphs LU ,LV from U0,V0 (Figure
1), and use them as the twin bridge to predict missing values in R (Figure 2).

4 Twin Bridge Transfer Learning for Recommendation

In this section, we present our proposed TBT approach, which is comprised of
two sequential steps: 1) twin bridge construction, and 2) twin bridge transfer.

4.1 Twin Bridge Construction

In the first step, we aim to construct the latent factors and similarity graphs of
users and items, which will be used as the twin bridge for knowledge transfer.
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Fig. 1. Step 1 of TBT: twin bridge construction. The goal is to extract the latent
factors and construct the similarity graphs from two sets of dense auxiliary data.

 

  

  

 

  

   

Fig. 2. Step 2 of TBT: twin bridge transfer. ’−→’ represents matrix tri-factorization,
’− →’ represents twin bridge transfer, � represents the transferred knowledge structure

Latent Factor Extraction. We adopt the graph regularized weighted nonneg-
ative matrix tri-factorization (GWNMTF) method proposed by Gu et al. [4] to
extract the latent factors from the two sets of dense auxiliary data R1 and R2

L = min
Uτ ,Bτ ,Vτ≥0

∥∥∥Zτ �
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where γU and γV are graph regularization parameters, LU
τ , L

V
τ are the graph

Laplacian matrices, ‖·‖ is the Frobenius norm of matrix. Uτ = [uτ∗1, ..., u
τ
∗k] ∈

Rm×k are the k latent tastes of users, with each uτi∗ representing the latent taste
of user i. Vτ = [vτ∗1, ..., v

τ
∗k] ∈ Rn×k are the k latent features of items, with

each vτi∗ representing the latent feature of item i. Bτ ∈ Rk×k is the cluster-level
codebook representing the association between Uτ and Vτ , τ ∈ {1, 2}.

Since auxiliary data R1 share the common set of users with the target data
R, we can share the latent tastes of users between them, that is, U0 = U1,
where U0 denotes the common latent tastes of users. Similarly, since auxiliary
data R2 share the common set of items with the target data R, we can share
the latent features of items between them, that is, V0 = V2, where V0 denotes
the common latent features of items. U0 and V0 are the common latent factors,
which will be used as the first type of bridge for knowledge transfer.

It is worth noting that, the latent factors extracted by GWNMTF can respect
the intrinsic neighborhood structure better than those extracted by Sparse Sin-
gular Value Decomposition (SVD) [12], thus can fit sparse target data better.
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Similarity Graph Construction. Collaboration information between users or
items contained in the rating matrix has been widely explored for CF. However,
in extremely sparse target data, two users may rate the same item with low
probability though they have the same taste. To avoid this data sparsity issue,
we construct the similarity graphs from dense auxiliary data since they share
common users or items with target data. Because U0 and V0 are denser than
R1 and R2 and can better respect the collaboration information underlying the
target data, we propose to construct similarity graphs of users and items from
U0 and V0, respectively. We define the distance between users/items as follows:

(WU )ij =

{
1, if u0

i∗ ∈ Np

(
u0
j∗
)
or u0

j∗ ∈ Np

(
u0
i∗
)

0, otherwise

(WV )ij =

{
1, if v0

i∗ ∈ Np

(
v0
j∗
)
or v0

j∗ ∈ Np

(
v0
i∗
)

0, otherwise

(2)

where u0
i∗ is the ith row of U0 to denote the latent taste of user i, v0

i∗ is the ith
row of V0 to denote the latent feature of item i, Np(u

0
i∗) and Np(v

0
i∗) are the

sets of p-nearest neighbors of u0
i∗ and v0

i∗, respectively. The positive semi-definite
symmetric matrices WU and WV are the weight matrices for the similarity
graphs, which will be used as the second type of bridge for knowledge transfer.

4.2 Twin Bridge Transfer

In the second step, we introduce the objectives for latent factor transfer and
similarity graph transfer respectively, and then integrate them into a unified
optimization problem for twin bridge transfer learning.

Latent Factor Transfer. Since the latent factors of users/items may not be
shared as a whole between domains, we propose to transfer latent factors U0,V0

to the target data via two regularization terms ‖U−U0‖2F and ‖V −V0‖2F ,
instead of enforcing U ≡ U0,V ≡ V0. This leads to the latent factor transfer

min
U,V,B≥0

OUV =
∥∥Z)

(
R−UBVT

)∥∥2
F
+ λU ‖U−U0‖2F + λV ‖V −V0‖2F (3)

where λU , λV are regularization parameters indicating our confidence on the
latent factors. Since the target data are extremely sparse, the latent factors
U0,V0 may transfer some negative information to the target data. Therefore,
we introduce similarity graph transfer as a complementary method in the sequel.

Similarity Graph Transfer. Based on the manifold assumption [18], similar
users/items should have similar latent tastes/features. Therefore, preserving the
neighborhood structure underlying the users/items in the target data are reduced
to the following graph regularizers encoding the constructed similarity graphs
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where DU = diag
(∑

j (WU )ij

)
, DV = diag

(∑
j (WV )ij

)
. LU = DU − WU

and LV = DV −WV are the graph Laplacian matrices for the similarity graphs.
Incorporating the graph regularizers into the objective function of nonnegative

matrix tri-factorization, we obtain the following similarity graph transfer

min
U,V,B≥0

OGUGV =
∥∥Z)

(
R−UBVT

)∥∥2
F
+ γUGU + γV GV (5)

where γU , γV are regularization parameters indicating our confidence on the
similarity graphs. With similarity graph transfer, we can essentially filter out
the negative information in the latent factors by using the nearest neighbor rule.
However, since the target data are extremely sparse, only transferring knowledge
from the similarity graphs may be insufficient. Thus we seek an integrated model.

Twin Bridge Transfer. Considering the aforementioned limitations, we in-
tegrate the latent factor transfer and similarity graph transfer into a unified
twin bridge transfer (TBT) method. In TBT, firstly, we extract the latent fac-
tors of users/items and construct the similarity graphs from them. Secondly, we
transfer latent factors as the first bridge to solve the insufficient transfer issue.
As mentioned before, these latent factors may contain negative information for
the target data and result in the negative transfer issue. So thirdly, we transfer
the similarity graphs as the second bridge to alleviate negative transfer and to
transfer more knowledge to the target data. It is worth noting that, each of the
twin bridge can enhance the learning of the other bridge during the optimiza-
tion procedure due to their complementary property. Therefore, we incorporate
Equations (3) and (5) into a unified Twin Bridge Transfer optimization problem

min
U,V,B≥0

O =
∥∥∥Z� (

R−UBVT
)∥∥∥2

F
+λU ‖U−U0‖2F+λV ‖V −V0‖2F+γUGU+γV GV

(6)

where λU , λV , γU , γV are regularization parameters. If λU , λV > γU , γV , the
transferred latent factors dominate the recommendation results; otherwise, the
transferred similarly graphs dominate the recommendation results. With TBT,
we can transfer more knowledge from dense auxiliary data to sparse target data
to reduce the data sparsity, and substantially avoid the negative transfer issue.

4.3 Learning Algorithm

We solve the optimization problem in Equation (6) using the gradient descent
method. The derivative of O with respect to U (the other variables are fixed) is

∂O
∂U

= −2Z)RVBT + 2Z)
(
UBVT

)
VBT + 2λU (U −U0) + 2γULUU
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Algorithm 1. TBT: Twin Bridge Transfer Learning for Collaborative Filtering

Input: Data sets R,Rτ ,Z,Zτ , τ ∈ {1, 2}, parameters k, p, λU , λV , γU , γV .
Ouput: Latent factors U, V, and B.
1: Extract latent factor U0,V0 by Equations (1).
2: Construct similarity graphs GU ,GV from U0,V0 by Equations (4).
3: for it← 1 to maxIt do
4: update U, V, and B by Equations (7)∼(9), respectively.
5: end for

Using Karush-Kuhn-Tucker (KKT) condition [19] for nonnegativity of U, we get[
−Z)RVBT + Z)

(
UBVT

)
VBT + λU (U−U0) + γULUU

]
)U = 0

Since LU may take mixed signs, we replace it with LU = L+
U −L−

U , where L
+
U =

1
2 (|LU |+ LU ), L

−
U = 1

2 (|LU | − LU ) are positive-valued matrices. We obtain

U ← U)

√
Z)RVBT + λUU0 + γUL

−
UU

Z) (UBVT )VBT + λUU+ γUL
+
UU

(7)

Likewise, we derive V and B in similar way and get the following update rules

V ← V )

√√√√ (Z)R)
T
UB+ λV V0 + γV L

−
V V

(Z) (UBVT ))
T
UB+ λV V + γV L

+
V V

(8)

B ← B)

√
UT (Z)R)V

UT (Z) (UBVT ))V
(9)

According to [4], updating U, V and B sequentially by Equations (7)∼(9) will
monotonically decrease the objective function in Equation (6) until convergence.

The learning algorithm for TBT is summarized in Algorithm 1. The time
complexity is O(maxIt · kmn+mn2+m2n), which is the sum of TBT cost plus
the time cost for the latent factor extraction and similarity graphs construction.

5 Experiments

In this section, we conduct experiments to compare TBT with state-of-the-art
collaborative filtering methods on benchmark data sets with high sparsity level.

5.1 Data Sets

MovieLens10M1 MovieLens10M consists of 10,000,054 ratings and 95,580 tags
given by 71,567 users to 10,681 movies. The preference of the user for a movie
is rated from 1 to 5 and 0 indicates that the movie is not rated by any user.

1 http://www.grouplens.org/node/73/

http://www.grouplens.org/node/73/
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Table 2. Description of the data sets for evaluation

Data Sets
MovieLens10M Epinions

Size Sparsity Size Sparsity

R
Target (training)

5000×5000

0.01∼1%

1662×2078

0.01∼1%
Target (test) 8.22∼8.13% 1.86∼0.87%

R1 (user side) Auxiliary 2.31% 0.65%
R2 (item side) Auxiliary 9.14% 1.28%

Epinions2 In epinions.com, users can assign products with integer ratings
ranging from 1 to 5. The dataset used in our experiments is collected by crawling
the epinions.com website during March, 2012. It consists of 3,324 users who
have rated a total of 4,156 items, and the total number of ratings is 138,133.

The data sets used in the experiments are constructed using the same strategy
as [12]. For the MovieLens10M data set, we first randomly sample a 104 × 104

dense rating matrix X from the MovieLens data. Then we take the submatrices
R = X1∼5000,1∼5000 as the target rating matrix, R1 = X1∼5000,5001∼10000

as the user-side auxiliary data and R2 = X5001∼10000,1∼5000 as the item-side
auxiliary data. In this way, R and R1 share common users but not common
items, while R and R2 share common items but not common users. We use the
same construction strategy for the Epinions data. In all experiments, the target
ratings R are randomly split into a training set and a test set. To investigate the
performance of each method on sparse data, we sampled training set randomly
with a variety of sparsity levels from 0.01% to 1%, as summarized in Table 2.

5.2 Evaluation Metrics

We adopt two evaluation metrics, Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE), which are widely used for evaluating collaborative filter-
ing algorithms [4, 12]. MAE and RMSE are defined as

MAE =

∑
i,j

∣∣∣Rij − R̃ij

∣∣∣
|TE | RMSE =

√√√√∑
i,j (Rij − R̃ij)

2

|TE |

Where Rij is the rating that user i gives to item j in test set, while R̃ij is the
predicted value of Rij by CF algorithms, |TE| is the number of ratings in test
set. We run each method 10 repeated trials with randomly generated training set
and test set from R, and report the average MAE and RMSE of each method.

5.3 Baseline Methods & Parameter Settings

We compare TBT with Probabilistic Matrix Factorization (PMF) [20], Weight
Nonnegative Matrix Factorization (WNMF) [21], Graph Regularized Weighted
Nonnegative Matrix Tri-Factorization (GWNMTF) [4], Coordinate System Trans-
fer (CST) [12], our proposed TBTUV (defined in Equation (3)) and TBTG

2 http://www.epinions.com/

http://www.epinions.com/
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Table 3. MAE & RMSE comparison on MovieLens10M

Sparsity
Methods Without Transfer Method With Transfer
PMF WNMF GWNMTF CST TBTG TBTUV TBT

MAE

0.01% 1.171 2.7966 0.8321 0.9814 0.7535 0.7272 0.6978±0.0006
0.05% 1.0256 1.3835 0.7663 0.8409 0.6945 0.7492 0.6903±0.0007
0.10% 0.90232 0.9506 0.7407 0.7629 0.6853 0.7275 0.6840±0.0005
0.50% 0.73368 0.697 0.6862 0.6799 0.6707 0.6785 0.6690±0.0001
1% 0.70398 0.6743 0.6728 0.6677 0.6649 0.6677 0.6640±0.0000

Average 0.9073 1.3004 0.7396 0.7866 0.6938 0.7100 0.6810±0.0004

RMSE

0.01% 1.3717 3.1434 1.0299 1.3926 0.9445 0.9397 0.8995±0.0011
0.05% 1.2333 1.8779 0.97 1.1225 0.8896 0.9594 0.8893±0.0012
0.10% 1.1097 1.3199 0.944 0.997 0.8812 0.935 0.8817±0.0008
0.50% 0.93171 0.9076 0.8802 0.8755 0.8628 0.8734 0.8608±0.0001
1% 0.90112 0.8718 0.8645 0.8605 0.8561 0.8601 0.8550±0.0000

Average 1.1095 1.6241 0.9377 1.0496 0.8868 0.9135 0.8772±0.0007

Table 4. MAE & RMSE comparison on Epinions

Sparsity
Methods Without Transfer Method With Transfer
PMF WNMF GWNMTF CST TBTG TBTUV TBT

MAE

0.01% 1.6758 3.7617 0.9875 0.9781 0.9066 0.8806 0.8737±0.0046
0.05% 1.6341 3.0304 0.9792 0.9629 0.8838 0.9122 0.8740±0.0043
0.10% 1.5555 2.3353 0.9682 0.9506 0.8773 0.9258 0.8682±0.0018
0.50% 1.1083 1.0465 0.8902 0.8837 0.8543 0.8846 0.8441±0.0016
1% 0.9824 0.8769 0.8539 0.8467 0.8379 0.8478 0.8294±0.0008

Average 1.3912 2.2102 0.9358 0.9244 0.8720 0.8902 0.8579± 0.0026

RMSE

0.01% 1.8474 3.999 1.2665 1.3063 1.1427 1.1366 1.1164±0.0022
0.05% 1.8136 3.4811 1.2508 1.2695 1.118 1.1755 1.1116±0.0022
0.10% 1.7464 2.9094 1.233 1.2403 1.1173 1.1919 1.1105±0.0021
0.50% 1.3641 1.4222 1.1289 1.1422 1.0885 1.1369 1.0790±0.0007
1% 1.218 1.1457 1.0932 1.0981 1.0766 1.095 1.0688±0.0005

Average 1.5979 2.5915 1.1945 1.2113 1.1086 1.1472 1.0973±0.0015

(defined in Equation (5)). Different numbers of latent factors {5, 10, 15, 20} and
different values of regularization parameters {0.01, 0.1, 1, 10,100} of each method
are tried, with the best ones selected for comparison. Since all the algorithms are
iterative ones, we run each of them 1000 iterations and report the best results.

5.4 Experimental Results

The experimental results on MovieLens10M and Epinions are shown in Table 3
and Table 4 respectively. From the tables, we can make several observations.

• TBT performs better than all baseline methods under all sparsity levels. It
confirms that simultaneously transferring latent factors and similarity graphs as
twin bridge can successfully reduce the sparsity in the target data.

• It is interesting to see that, for our method, the sparser the target data are,
the more improvement can be achieved. This can be explained by two reasons.

First, when the rating data are sparse, matrix factorization methods that rely on
neighborhood information is ineffective due to: 1) it is impossible to compute the
similarity between users/items when data are extremely sparse, and 2) even if
some similarity information is calculated, this information may be too limited to
recommend correct items. So its prediction performance gets worse when rating
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Fig. 3. Impact of #latent factors on Epinions (above) and MovieLens10M (bottom)

data are coming more spare. To handle this problem, we construct a twin bridge,
which can transfer more knowledge from dense auxiliary data to the target data.

Secondly, towards the negative transfer issue, CST encounters the problem
that the transferred latent factors extracted from the auxiliary data may con-
tain some negative information for the target data. Our twin bridge transfer
mechanism alleviates this problem by using similarity graphs as regularization
when training the recommendation model. Notably, the graph regularization can
filter out the negative information introduced by the transferred latent factors.
With this advantage, TBT is made more robust to the extremely sparse data.

• Although TBT is a combination of our proposed TBTUV and TBTG, it
outperforms both of them. This proves that the twin bridge transfer can reinforce
the learning of both bridges. Each bridge emphasizes different properties of the
data and enriches the matrix tri-factorization with complementary information.

• Unfortunately, transfer learning method CST has not consistently out-
performed non-transfer learning methods GWNMTF. CST takes advantage on
moderately sparse data (0.1%∼1%) by knowledge transfer. However, under ex-
tremely sparsity levels (0.01%∼0.1%), the latent factors transferred by CST may
contain some negative information for the target data. In this case, GWNMTF
performs better than CST, since it is not affected by the negative transfer issue.

5.5 Parameter Sensitivity

We investigate the parameter sensitivity by varying the values of k, λ and γ under
different sparsity levels. As Figure 3 shows, under a given sparsity level, the more
latent factors used, the better the performance is. Typically, we set k = 20 as
used by baseline methods. For λ and γ, We set λ = γ in TBT for easy comparison
with baselines, and report average MAE in Figure 4. Each column corresponds
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Fig. 4. Regularization param impact on Epinions (above)/MovieLens10M (bottom)

to a specific sparsity level of training ratings while each row corresponds to a
different dataset. We observe that, 1) TBT method performs much more stably
under different parameter values and sparsity levels than the baseline methods,
and 2) neither non-transfer method GWNMTF or single bridge transfer methods
CST/TBTG can perform stably under different parameter values, sparsity levels,
or data sets. Luckily, our TBT benefits from its twin bridge mechanism and
performs much more robustly under all of these experimentation settings.

6 Conclusion

In this paper, we proposed a novel approach, Twin Bridge Transfer Learning
(TBT), to reduce the sparsity in the target data. TBT consists of two sequential
steps: 1) TBT extracts latent factors of users and items from dense auxiliary data
and constructs similarity graphs from them; 2) TBT utilizes the latent factors
and similarity graphs as twin bridge to transfer knowledge from dense auxiliary
data to sparse target data. By using the twin bridge, TBT can enhance sufficient
transfer by transferring more knowledge, while alleviate negative transfer by
regularizing the learning model with the similarity graphs, which can naturally
filter out the negative information contained in the latent factors. Experiments
on real-world data sets validate the effectiveness of the proposed TBT approach.
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(No. 2010ZX01042-002-002-01), the 973 Program of China (No. 2009CB320706),
the National Natural Science Foundation of China (No. 61050010, No. 61073005,
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Abstract. We propose a novel method called sparse dimensionality re-
duction (SDR) in this paper. It performs dimension selection while reduc-
ing data dimensionality. Different from traditional dimensionality reduc-
tion methods, this method does not require dimensionality estimation.
The number of final dimensions is the outcome of the sparse compo-
nent of this method. In a nutshell, the idea is to transform input data
to a suitable space where redundant dimensions are compressible. The
structure of this method is very flexible which accommodates a series of
variants along this line. In this paper, the data transformation is carried
out by Laplacian eigenmaps and the dimension selection is fulfilled by
l2/l1 norm. A Nesterov algorithm is proposed to solve the approximated
SDR objective function. Experiments have been conducted on images
from video sequences and protein structure data. It is evident that the
SDR algorithm has subspace learning capability and may be applied to
computer vision applications potentially.

1 Introduction

Recent years have been witnessing large increase in studies on dimensionality
reduction (DR). The purpose of DR is mainly to find the corresponding coun-
terparts (or embeddings) of the input data of dimension M in a much lower
dimensional space (so-called latent space, usually Euclidean) of dimension n
and n � M without incurring significant information loss. A number of new
algorithms which are specially designed for nonlinear dimensionality reduction
(NLDR) have been proposed such as Lapacian Eigenmaps (LE) [1], Isometric
mapping (Isomap) [2], Local Tangent Space Alignment (LTSA) [3], Gaussian
Process Latent Variable Model (GPLVM) [4] etc. to replace the simple linear
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methods such as Principal Component Analysis (PCA) [5], Linear Discriminant
Analysis (LDA) [6] in which the assumption of linearity is essential.

Among these NLDR methods, it is worth mentioning those which can handle
highly structured or so-called non-vectorial data (for example proteins, which
are not readily converted to vectors) directly without vectorization. This cate-
gory includes the “kernelized” linear methods. Typical methods are Kernel PCA
(KPCA) [7], Generalized Discriminant Analysis (GDA or KLDA) [8] and so on.
The application of the kernel function not only introduces certain nonlinearity
implied by the feature mapping associated with the kernel which enables the
algorithms to capture the nonlinear features, but also embraces much broader
types of data including the aforementioned non-vectorial data. Meanwhile, ker-
nels can also be regarded as a kind of similarity measurements which can be used
in measurement matching algorithms like Kernel Laplacian Eigenmaps (KLE)
[9] and Twin Kernel Embedding (TKE) [10]. Because these methods can directly
use the structured data through kernel functions and hence bypass the vectoriza-
tion procedure which might be a source of bias, they are widely used in complex
input patterns like proteins, fingerprints, etc.

Although DR is proven to work well for some machine learning tasks such
as classification [11], an inevitable question yet to be answered in applying DR
is how to estimate the dimensionality which is the so-called intrinsic dimension
estimation. Various methods have been presented in machine learning literature
[12]. Nevertheless, a very simple way for dimension estimation is to reduce the
dimension one at a time in a suitable space until significant information loss
occurs and then stop. This procedure does the reduction and dimension estima-
tion at the same time. There are two very important ingredients in this method:
the proper space of the transformed data and the stop criterion of dimension
reducing. These two should be combined seamlessly.

Interestingly, we can look at this problem the other way around. Instead of
dropping dimensions, we can select dimensions in a suitable space. To do this
properly, we refer to the variable selection framework. The nature of the variable
selection problem is combinatorial optimization and hence NP hard. Neverthe-
less, there is a recent trend of using sparse approximation to solve this problem
which has attracted attention in statistics and machine learning society. The
earliest work is from [13] called the LASSO. By adding an l1 norm constraint
on the coefficients of a linear regression model, the original combinatorial op-
timization problem was converted to a convex optimization problem which is
much easier to solve. The optimization is normally cast as a regularization prob-
lem solved by lots of efficient algorithms such as coordinate descent [14], iter-
ative shrinkage-thresholding [15] and etc. Several sparsity encouraging models
have been proposed afterwards with various properties. For example, the group
LASSO [16] has the group selection property by applying the l2/l1 norm to the
group coefficients.

The above discuss leads to a novel method for dimensionality reduction which
selects dimensions in transformed space and the selection is carried out by sparse
methods. What follows is how to choose the transformed space? The research in
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this decade on dimensionality reduction provides many solutions to this ques-
tion. We choose Laplacian eigenmaps in this paper because it approximates the
embedded manifold through a mapping function with proximity preserving prop-
erty. However, It is very convenient to extend this choice to other methods such
as LLE, TKE and etc. depending on the application at hand. Another variable
in this idea is the sparse method normally by using sparsity encouraging norms.
Since different sparsity encouraging norms come with different features, they
provide us flexibility for various machine learning tasks, for example subspace
learning, feature extraction etc. We use l2/l1 norm here for its group selection
capability which is suitable for our dimension selection purpose. In Section 3, we
will briefly discuss some of its variants and show how this idea could be used for
subspace learning. Since this method involves sparse models for dimensionality
reduction, we call it sparse dimensionality reduction or SDR for short.

The most related work is [17] where a rank prior as a surrogate of data di-
mensionality was imposed on GPLVM. In [17] the transformation of data was
carried out by GPLVM, which converted the data to a space where a low rank
representation (measured by rank prior) was possible. The stopping criterion was
the stationary point of the optimization process. The work in [18] is also similar
to ours but it was built on a sparse linear regression model and a dictionary in
high dimensional space is required.

The paper is organized as follows. Section 2 briefly reviews Laplacian eigen-
maps. Section 3 explains the proposed SDR method in detail followed by a
section for the optimization procedure. In Section 5, we present several experi-
mental results using SDR on visualization to show its effectiveness. We conclude
this paper in Section 6.

2 Laplacian Eigenmaps

In the following discussion, let yi ∈ RM be the i-th data sample on a manifold
embedded in M dimensional space. Laplacian eigenmaps (LE) [1] is a typical
nonlinear method that belongs to the family of graph-based DR methods. It
attempts to preserve proximity relations in the input data which is expressed
by a weight matrix based on adjacency graph (or called neighborhood graph).
This adjacency graph G is constructed by referring to ε neighborhood or n
nearest neighbor criterion. An edge will connect yj and yi if ‖yi − yj‖2 < ε
(ε neighborhood), or if yj is among n nearest neighbors of yi and vice versa
(n nearest neighbor is more commonly used). The adjacency graph plays an
important role in dimensionality reduction which leads to a series of graph based
methods [19,20].

After the construction of the adjacency graph, the weights on the edges are
evaluated that stand for the proximity relations among the input data. There are
also two variations of setting the weights in LE: (a) exponential decay function:

the weight wij =

{
e−σ‖yi−yj‖2

, if yi is connected with yj ;
0, otherwise.
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(b) binary (σ = 0): wij = 1 if yi and yj are connected, and wij = 0 otherwise.
This simplification avoids the need to choose σ.

The weight matrix W ({wij}) containing the proximity information is then
used to construct the Laplacian of the graph L = D−W where D is a diagonal
matrix and its ii-th element [D]ii =

∑N
j=1 wij . The reason for Laplican is that the

optimal locality preserving maps of the data on manifold onto RK (K is at most
M − 1 because of the removal of arbitrary translation) can be approximated by
obtaining the smallestK eigen vectors (excluding the eigen vector corresponding
to eigenvalue 0) from the following generalized eigendecomposition

min. tr[XTLX] (1)

s.t. XTDX = I

where X of size N ×K is the matrix of maps of yi’s in RK and I is the identity
matrix with compatible dimensions. For dimensionality reduction purpose, K is
selected (somewhat arbitrarily) much less than M or by dimension estimation.

LE is a local method since it is based on the adjacency graph. Several variants
have been derived from original LE such as the LPP (Locality Preserving Pro-
jection) [21] and the KLE (Kernel LE) [9]. LPP introduces a linear constraint
between input data and embeddings, i.e xi = Ayi while KLE replaces the weight
matrix by a sparse kernel Gram matrix.

3 Data Reduction with Dimension Selection

We interpret the dimensionality reduction as a process of space transformation
under the framework of Laplacian eigenmaps. The assumption is that the data
lie on or near to a dimensional manifold embedded in M dimensional ambient
space. The Laplacian eigenmaps is to unfold the manifold in a K dimensional
subspace. As we do not know the intrinsic dimension of the manifold, We have to
resort to other methods, which may be heterogeneous totally to LE, to estimate
the dimensionality in advance.

However, if the unfolded manifold is indeed low dimensional, it should be
“compressible”, i.e. we can drop redundant dimensions while maintain the struc-
ture of the unfolded manifold in this transformed space. As discussed in Section
1, the force of compressing can be realized by introducing sparsity encouraging
norms. The suitable one is the l2/l1 norm [16] defined as

||X||2/1 =

K∑
i=1

||Xi||2

where Xi is the i-th column of X and || · ||2 is l2 norm. When X is a row vector,
l2/l1 norm degenerates to normal l1 norm. An outstanding feature of l2/l1 norm
is its group selection capability meaning that the elements in some l2 norms
(groups) will be compressed towards zero altogether if the norm is minimized, for
example in the group variable selection in [16,22]. For our purpose of dimension
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selection, we use it to vanish the whole dimension, which is regarded as group
in terms of l2/l1 norm, if it is dispensable.

Our sparse dimensionality reduction (SDR) takes the following form

min. tr[XTLX] (2)

s.t. XTDX = I

||X||2/1 ≤ t

where t ∈ R+ is the parameter to control the “dimension sparsity”. Following the
previous discussion, the rationale is quite clear, that is we unfold the manifold in
such a way that some of the dimensions can be reduced or in other words the most
important dimensions can be selected. The algorithm starts with a generalized
eigen decomposition, i.e. (2) without l2/l1 norm constraint. Once the selection
completes, we retain the selected dimensions only from the initialization only.
Details about implementation will be presented in Section 4.

Interestingly, if we substitute the l2/l1 norm by the nuclear norm in (2) as
follows

min. tr[XTLX] (3)

s.t. XTDX = I

||X||∗ ≤ t,

the idea would be unfolding the manifold such that the rank of the of the embed-
dings, i.e. X, is restricted. This is equivalent to finding a subspace in RK that
reveals the lower dimensional structure of the manifold. It suggests that poten-
tially SDR can be used as a tool for subspace learning [23]. More generally, we
can use other sparsity encouraging norms denoted as lq, which certainly brings
different interpretation to this method.

Furthermore, we can extend this idea to LPP which is in line with LE. LPP
has another layer on top of LE which is a linear mapping from input data to
embeddings. In this case, we have the following objective in variable A

min. tr[AYTLYAT ] (4)

s.t. AYTDYAT = I

||A||q ≤ t,

where A ∈ RK×M is the linear transformation matrix. q varies depending on
the purpose of the application.

The flexibility of SDR enables it to embrace a lot of existing DR methods as
well as sparse methods. In this paper, we focus only on (2) for its simplicity and
direct understanding of dimension selection.

4 SDR Implementation

We proceed to obtaining the solution for SDR in (2). Direct optimization of
the objective of SDR in (2) is very difficult because the nonsmooth l2/l1 norm
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constraint and quadratic equality constraint, which makes it a quadratic pro-
gramming with quadratic constraint (QPQC) problem with additional norm
restriction. The quadratic equality constraint effectively excludes some popular
alternating optimization schemes such as ADMM [24] since the augmented La-
grange term from the equality has no close form solution. It also throws some
trouble to second order optimizer such as Newton-Raphson method because the
Hessian is a tensor. To maintain the convexity of the original problem and also
to make it easier to solve, we relax the equality constraint by converting it to a
regularization term in the objective so that the first order algorithms are appli-
cable. As a result, the original SDR problem has been converted to the following
form

min.
1

2
tr[XTLX] +

λ

4
||XTDX − I||2F + zeT t (5)

s.t. ||X||2/1 � t

where || · ||F denotes the F norm of a matrix and e is an all one column vector.
Note that we add another regularizer to the l2/l1 norm of X, zeT t (t ∈ RK),
and the i-th element of t is responsible for ||Xi||2. z has the same function as
t in (2) controlling the dimension sparsity. The introduction of this additional
regularization does not bring extra complexity; however, it enables us to use
the efficient Euclidean projection explained in [25] with which (5) can be solved
using Nesterov algorithm [26] easily. We will not go into too much detail of the
algorithm but provide the necessary elements to make it work. Write

f(X, t) = tr[XTLX] + λ||XTDX− I||2F + zeT t

supposing λ and z are given. We have the derivatives

∂f(X, t)

∂X
= LX+ λDX(XTDX− I) (6)

and ∂f(X,t)
∂t = ze for this first order algorithm. The detailed optimization pro-

cedures are shown in Table 1.
In Nesterov algorithm, there are two sequences of variables, the target in the

optimization problem, X and t in this case, and assistant variables, S and h
shown in Table 1 corresponding to X and t respectively. The assistant variable
is a linear combination of current and previous estimation of the target, e.g.
Si = Xi+αi(Xi −Xi−1). The tentative new estimation is given by the gradient
projection in Line 6, where PC(x) is the Euclidean projection of x onto the
feasible convex set C. In our case, C is the set of values satisfying ||X||2/1 � t. The
Euclidean projection of the given pair U and v is the solution to the following

min
X,t

1

2
||X−U||22 +

1

2
||t− v||22 (7)

s.t. ||X||2/1 � t.
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Table 1. SDR algorithm implementation

Optimize SDR via Nesterov algorithm

Input: L, D, λ, z, X0, t0
Output: optimal X and t
1. Initialization: X1 = X0, t1 = t0, l−1 = l0 = 1, γ0 = 1.
2. for i = 1 to ...
3. αi =

li−2−1

li−1
, Si = Xi + αi(Xi −Xi−1), hi = ti + αi(ti − ti−1)

4. for k = 1 to ...
5. γ = 2k−1γi−1

6. [Xi+1, ti+1] = PC([Si, ti]− f ′([Si,ti])
γi

)

7. if f([Si+1, ti+1]) ≤ fγ,[Si,ti]([Si+1, ti+1]) then
8. γi = γ, break
9. end if
10. end for
11. li = (1 +

√
1 + 4l2i−1)/2

12. if convergent then stop and output Xi and ti as the solution.
13. end for

fγ,x(y) is the the linear approximation of the objective function f(y) at the
point x regularized by the proximality

fγ,x(y) = f(x) + f ′(x)T (y − x) +
γ

2
||y − x||22.

The algorithm in Table 1 has incorporated the Nemirovski line search in Line
4 to 10 for better efficiency. The initialization of X can be obtained from the
solution of the generalized eigendecomposition LX = DXΛ where Λ is the
diagonal matrix of the eigenvalues. Note that the last eigenvalue is 0 and its
corresponding eigenvector should be removed to obtain translation invariant as
in LE. The initial t can simply be the l2 norm of each column of X.

The convergence is guaranteed by Nesterove algorithm. The computational
complexity is mainly from matrix multiplications in the evaluation of the gra-
dient in (6). The Euclidean projection in (7) is linear time. So the dominant
complexity is O(K3N4) since D in (6) is a diagonal matrix. It may look very
high. But as it iterates, many columns ofX become zero, which effectively brings
down K. Our experience with computation time is that it completes in several
minutes on uptodate personal computer for N = 2000, K = 600.

5 Experimental Results

We applied the SDR to several data sets: COIL data set, Frey faces and SCOP
protein structure data where LE has difficulties. They are widely used for ma-
chine learning and image processing tests. We mainly reduced the dimensionality
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to 2 so that we can plot the embeddings in 2D plane for interpretation. z is se-
lected by bisection so that only required dimensions were selected. To construct
LE initialization for the SDR algorithm and LE itself, we set the number of
nearest neighbors to be 5 and used simple binary weight for images data. We
used KLE with Mammoth kernel for protein data where the number of nearest
neighbors was 8. All these parameters were frequently used or reported to be
somewhat optimal. For other methods in protein experiment, we also set their
parameters to their reported optimal if any. In SDR optimization procedure, we
set the update tolerance to be 1e-10 and maximum number of iterations to be
100, whichever reaches first stops the algorithm. It turned out that these settings
worked well on the data sets we have tested in this section.

5.1 COIL 3D Images

We demonstrate SDR’s dimension selection capability against LE in this ex-
periment. We took the first 20 objects from Columbia Object Image Library
(http://www1. cs.columbia.edu/CAVE/software/softlib/coil-100.php). Each ob-
ject has 72 greyscale images of size 128 × 128 taken from video frames. Since all
the images have been perfectly aligned and noise free, traditional methods like
PCA can achieve good embedding. However, we focus on dimension selection
capability of SDR here. In regard to 2D display, we expected that the objects to
line up in the 2D plane somehow with some overlap. As we can see from Fig. 1
(b) where shapes stand for objects, LE’s result is 3 isolated islands with heavy
overlapping. However the 2D space selected by SDR reveals two cups classes
clearly with overlap in the middle with other objets, which is closer to our ex-
pectation. This suggests SDR’s subspace learning capability, which is further
confirmed in the following experiment.

We further extended the target dimension from 1 to 10 and used the 1 nearest
neighbor (1NN) classification errors rate as in [4] to compare the results quantita-
tively. The smaller the error rate, the better the method. The 1NN classification
error rates are plotted in Figure 1 (c). It turned out that dimensions selected by
SDR are consistently better although they are not optimized for classification
task.

5.2 Frey Faces

In this subsection, the input data is 1,965 images (each 28 × 20 grayscale) of
a single person’s face taken from a video sequence which was also used in [27].
It is widely accepted that two parameters control the images, the face direction
and facial expression. Intuitively, there should be two axes in 2D plane for these
two parameters fused together somehow. However, the understanding like this
is somewhat artificial. This may not even close to the truth. But we hope our
algorithms can shed some light on these two parameters. Very interestingly as
shown in Figure 2 (a) corresponding to SDR results, three axes for happy, sad
and plain expressions respectively with continuously changing face direction can
be clearly observed. It turns out that SDR identified the major dimensions as
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facial expressions. The way that SDR axes are lined up once again pronounces its
potential in subspace learning. The LE’s result smeared out the facial expression
and direction, which is not really informative.

5.3 Protein Structure Data

We move from image data (mainly video sequences) to protein structure data
where KLE is more suitable because of the non-vectorial property of the pro-
tein data. Experiment was conducted on the SCOP (Structural Classification Of
Protein). This database is available at http://scop.mrc-lmb.cam.ac.uk/scop/. It
provides a detailed description of the structural and evolutionary relationships of
the proteins of known structure. 292 protein sequences from different superfami-
lies and families were extracted for the test. The kernel we used is the Mammoth
kernel, a so-called alignment kernel [28].

Only the results of SDR and KLE are plotted in Figure 3 for limited space.
However other methods were tested. Each point (denoted as a shape in the figure)
represents a protein. The same shapes with the same colors are the proteins from
the same families (shown in legend) while the same shapes with different colors
represent the proteins from different families but the same superfamilies. Except
for better scattered clusters in SDR result, one noticeable difference is that one
family dominates (diamonds) the horizontal axis in the middle in SDR result
and others are projected to the other axis as 2D space is apparently not enough
for this data set.

(a) SDR
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Fig. 3. 2D visualization of protein structure data

We used “purity” [10] to quantify the clusters produced by different methods.
It uses the fraction of the number of samples from the same class as given point
in a neighborhood of size n. The purity is the average of the fraction over all
points. The higher the purity, the better the quality of the clusters. As we can
see from Figure 3 (c), SDR has the purest clusters when n < 9. Although it
drops below KLE when n ≥ 9, it is still better than other methods in this test.
Note that for linear methods like PCA we used the vectorization method derived
form the kernel introduced in [10].
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6 Conclusion

We proposed a novel method called sparse dimensionality reduction (SDR) in
this paper along with a practical optimization algorithm to minimize an approx-
imated SDR objective. SDR projects input data to a space where the redundant
dimensions are compressible, and therefore it is not necessary to specify the
dimensionality of the target space. The dimension sparsity parameter z in (5)
is determined empirically. Bisection can be used if the target dimensionality is
clear as shown in the experiments. If the final dimensionality is tied up with some
quantitative standard such as MSE in regression, we can optimize z against it.
It exhibits subspace learning property and the interesting results in images from
video sequences suggested that SDR may be suitable for, and not confined to,
computer vision applications such as subspace identification etc.
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Abstract. In data mining and machine learning, we often represent instances by
multiple views for better descriptions and effective learning. However, such com-
prehensive representations can introduce redundancy and noise. Learning with
these multi-view data without any preprocessing may affect the effectiveness of
visual classif cation. In this paper, we propose a novel mixed-norm joint sparse
learning model to effectively eliminate the negative effect of redundant views
and noisy attributes (or dimensions) for multi-view multi-label (MVML) clas-
sif cation. In particular, a mixed-norm regularizer, integrating a Frobenius norm
and an 
2,1-norm, is embedded into the framework of joint sparse learning to
achieve the design goals, which include selecting signifi ant views, preserving
the intrinsic view structure and removing noisy attributes from the selected views.
Moreover, we devise an iterative algorithm to solve the derived objective function
of the proposed mixed-norm joint sparse learning model. We theoretically prove
that the objective function converges to its global optimum via the algorithm.
Experimental results on challenging real-life datasets show the superiority of the
proposed learning model over state-of-the-art methods.

Keywords: Feature selection, Joint sparse learning, Manifold learning.

1 Introduction

In many real-world applications in data mining and machine learning, data are naturally
described by multiple views [7]. For example, in document analysis, web pages can be
represented by their content or the content of the pages pointing to them; In bioinfor-
matics, genes can be described with the feature space (corresponding to the genetic
activity under the biological conditions) as well as the term space (corresponding to
the text information related to the genes); Images are represented by different kinds of
low-level visual features, such as color histograms, bags of visual words, and so on.

Actually, different views describe different aspects of data. No one among them is
absolutely better than others for describing the data [10]. Thus, a good alternative is to
simultaneously employ multiple views to learn the data. This is well known as multi-
view learning [2]. Multi-view learning has been shown to be more effective than single-
view learning, particularly in the scenario where the weaknesses of a single view can be

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 520–531, 2013.
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strengthened by others [14]. For example, in content analysis, color features have been
shown to be sensitive to scaling, while SIFT features are robust to scaling. Combining
color and SIFT features to perform multi-view learning can boost the performance by
complementing each other’s robustness on different aspects of the data.

Meanwhile, existing multi-view learning methods have several limitations. First, not
all views of data are useful for some specifi learning tasks since some of them may
be redundant. However, existing methods are often designed to learn from all views
of the data, without taking the redundancy issue into account. For example, canonical
correlation analysis (CCA) and its kernel edition KCCA (e.g., [4,16]) were designed
to learn a common latent feature space by learning from all views of the data. Second,
multi-view data often contain noise, which easily affects the effectiveness of learning
tasks while learning from all views of the data. Third, the intrinsic group structure of
each individual view (i.e., view structure) in the data should also be preserved. Given
multi-view data, each view of the data is a natural group to describe an aspect of the
data. For example, a color histogram feature naturally forms a group for describing the
color characteristics of image data.

Given that data are often represented by multiple views and associated with multiple
object categories, this paper focuses on the problem of visual classificati n with multi-
view multi-label (MVML) learning. In this paper, we propose a novel mixed-norm joint
sparse learning model, which aims to select representative views and remove noisy at-
tributes for MVML classificati n. More specificall , we f rst employ a least square loss
function measured via a Frobenius norm (or F -norm in short) in each view to pursue
a minimal regression error across all the views. We then introduce a new mixed-norm
regularizer (i.e., combining an F -norm with an �2,1-norm) to avoid redundant views
and preserve the intrinsic view structure via the F -norm regularizer, and remove noisy
attributes via the �2,1-norm regularizer. We further devise a novel iterative algorithm to
eff ciently solve the objective function of the proposed mixed-norm joint sparse learning
model, and then theoretically prove that the proposed algorithm enables the objective
function to converge to its global optimum. After performing the iterative algorithm,
the derived regression coeff cient matrix only contains a few non-zero rows in a few
selected views due to the mixed-norm regularizer. This makes the test process more
eff cient. Finally, we conduct an extensive experimental study on real-life datasets to
compare the effectiveness of the proposed learning model with state-of-the-art methods
for MVML classificati n.

We summarize the contributions of this paper as follows:

– We identify limitations in traditional multi-view learning, mainly caused by re-
dundant visual features and noisy attributes. In this paper, we devise an effective
solution to tackle the limitations via the proposed mixed-norm joint sparse learn-
ing model, which can be applied to many real-world applications, such as MVML
visual classification

– The proposed model focuses on embedding a mixed-norm regularizer into the ex-
isting joint sparse learning framework. We solve the derived objective function by a
simple yet eff cient optimization algorithm, which theoretically guarantees that the
object ive function converges to its global optimum.
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– To perform MVML classif cation, the proposed model can be regarded as
simultaneously performing two types of feature selection, i.e., view-selection and
attribute-selection respectively. View-selection aims to discard redundant views and
preserve the intrinsic view structure via the F -norm regularizer, while attribute-
selection aims to select useful attributes in the selected views of the data via the
�2,1-norm regularizer. These two types of feature selection lead to a new mixed
joint sparsity, i.e., the view sparsity and the row sparsity simultaneously. To the
best of our knowledge, no research efforts have been proposed on performing two
types of feature selection in the joint sparse learning framework. Moreover, exten-
sive experimental results on the public datasets show that the proposed model is
more effective than state-of-the-art methods.

2 Approach

In this paper, �p-norm of a vector v ∈ Rn is define as ‖v‖p =

(
n∑

i=1

|vi|p
) 1

p

, where

vi is the ith element of v. �r,p-norm over a matrix M ∈ Rn×m is define as ‖M‖r,p =⎛⎝ n∑
i=1

(
m∑
j=1

‖mij‖r
) p

r

⎞⎠
1
p

, where mij is the element of the ith row and jth column.

The transpose of X is denoted as XT , the inverse of X is X−1, and the trace operator
of a matrix is denoted by the symbol “tr”.

2.1 Loss Function

Given the g-th view Xg of the training data X, we need to obtain its regression coeffi
cients Wg . In MVML learning, we wish to obtain the minimal difference between the
training label Y = [YT

1 , ...,Y
T
n ]

T and the summation of all G views on the multiplica-

tion between Xg and Wg , i.e.,
G∑

g=1
XgWg . Therefore, a least square loss function can

be def ned as follows:
min

W
‖Y −XW‖2F (1)

where X = [X1, ...,Xg, ...,XG]. Obviously, Eq.1 meets our goal of minimizing the
regression error across all views.

2.2 Mixed-Norm Regularizer

Given a loss function (such as in Eq.1), during the optimization process we also de-
sign a mixed-norm regularizer, aiming to meet other goals, such as removing redun-
dant views and noisy attributes. In this paper, we achieve these goals by performing
two types of feature selection, i.e., view-selection for removing redundant views and
attribute-selection for deleting noisy attributes. To this end, we propose a new mixed-
norm regularizer by integrating an F -norm regularizer with an �2,1-norm regularizer.



Multi-View Visual Classifi ation via a Mixed-Norm Regularizer 523

More concretely, in the proposed joint sparse learning model, theF -norm regularizer
generates the codes of redundant views as zeros and the others as non-zeros; the �2,1-
norm regularizer generates the codes of noisy attributes as zeros and the others as non-
zeros. Then with the impact of sparse views and attributes, MVML classificatio can
be effectively and efficientl performed. Moreover, the mixed-norm regularizer enables
us to avoid the issue of over-f tting.

In this paper, the �2,1-norm regularizer is define as:

‖W‖2,1 =
m∑
i=1

‖(W)i‖2 =
m∑
i=1

√√√√ c∑
j=1

m2
ij (2)

where (W)j is the j-th row of matrix W, and indicates the effect of the j-th attribute to
all data points. As mentioned by existing literatures, e.g., [12], the �2,1-norm regularizer
was designed to measure the distance of the attributes via the �2-norm, while performing
summation over all data points via the �1-norm. Thus the �2,1-norm regularizer leads to
the row sparsity as well as to consider the correlations of all attributes.

The F -norm regularizer is define as:

‖W‖F =

√√√√mg∑
g=1

‖Wg‖22 =

√√√√mg∑
g=1

c∑
j=1

w2
g,j (3)

where Wg is the g-th block of matrix W (or the submatrix formed by all the rows
belonging to the g-th view), and indicates the effect of the g-th block (i.e., there are
sequential mg rows in the g-th view) to all data points.

2.3 Objective Function

By considering three equations together, i.e., Eq.1, Eq.2 and Eq.3, we obtain the ob-
jective function of the proposed mixed-norm joint sparse learning model as follows:

min
W

1
2‖Y −XW‖2F + λ1‖W‖2,1 + λ2

G∑
g=1

‖Wg‖F (4)

where both λ1 (λ1 > 0) and λ2 (λ2 > 0) are tuning parameters.
Similar to the mixed sparsity using the �1-norm regularizer and the �2,1-norm reg-

ularizer together in separable sparse learning, the proposed mixed regularizer leads to
the mixed joint sparsity. That is, it f rst discriminates redundant views via the F -norm
regularizer, and then detects noisy attributes in the selected views via the �2,1-norm
regularizer.

Actually, some literatures have focused on the mixed sparsity, such as elastic net [19]
and sparse group lasso [11] in separable sparse learning, adaptive multi-task lasso [8] in
joint sparse learning, and so on. For example, an elastic net combines the �1-norm regu-
larizer with the �2-norm regularizer for achieving the element sparsity (via the �1-norm
regularizer) and impact group effect (via the �2-norm regularizer). Sparse group lasso
achieves the mixed sparsity, i.e., the element sparsity via the �1-norm regularizer as well
as the group sparsity via the �2,1-norm regularizer. As mentioned in Section 2, neither
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elastic net nor sparse group lasso benefit for feature selection. Recently, adaptive multi-
task lasso combines the �1-norm regularizer with the �2,1-norm regularizer in multi-task
learning to achieve feature selection (via the �2,1-norm regularizer) and deletes noisy
elements (via the �1-norm regularizer). Obviously, existing literatures mentioned above
were not designed to delete redundancy views and to perform feature selection at the
same time, as the proposed method in this paper does.

Next we explain why the proposed mixed-norm regularizer leads to the mixed joint
sparsity, i.e., simultaneously obtaining two types of sparsity. While the value of λ2 is
larger, the minimization process in Eq.4 drives the value of the F -norm (i.e., the third
term in Eq.4) smaller. This tends to force the values of some blocks (e.g., the value of
the g-th block is ‖Wg‖F ) with small values to be smaller. After several iterations, the
values of these blocks in W are close to zero. Thus we obtain a sparse W with zero
value in some blocks, e.g., the g-th block. This indicates that the corresponding views
(e.g., the g-th view) of X are redundant views since the sparsity appears in those blocks
(e.g., the g-th block) of W. The sparse blocks of W remove the corresponding views
of X from the test process. Meanwhile, we also notice that the larger the value of λ2,
the more the block sparsity. With the same principle, while the value of λ1 is larger,
the minimization process in Eq.4 forces some rows in W to be zero, i.e., the attributes
corresponding to the sparse rows in W are not involved the test process. Hence, the
proposed mixed-norm regularizer leads to the mixed joint sparsity, which achieves the
block sparsity as well as the row sparsity.

According to above analysis, Eq.4 can be used to select a few useful attributes from
a few representative (or signif cant) views of the data for the visual classif cation. This
has the following advantages. First, it benef ts for improving the eff ciency of the test
process due to the sparse W. Second, these two kinds of feature selection help to avoid
the impact of redundant views and noisy attributes in the test process, thus benef t for
effectively performing the MVML classific tion. Third, it induces the mixed joint spar-
sity as well as leads to a hierarchical coding model (i.e., non-sparse attributes generated
from non-sparse views), which plays an important role in many applications where a
feature hierarchy exists. Last but not the least, views-selection via the F -norm regu-
larizer also preserves the individual view structures of the non-sparse views since each
view is regarded as a block.

2.4 Classification

By solving Eq.4, we obtain the optimal W. Given a test dataset Xtest, we obtain the
corresponding label set Ytest by Ytest = XtestW in the test process. Due to inducing
by the proposed mixed-norm regularizer, only a few blocks in the derived W are non-
zeros, and also only a few rows in these non-zero blocks are non-zeros. This makes the
test process more eff cient to be performed.

After ranking Ytest according to the label values, the top-k labels are assigned to the
test data as the predicted labels. This rule is the same to existing multi-label methods,
e.g., [18].
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3 Optimization

Eq.4 is obviously convex since it consists of three norms, which have been shown to be
convex [6]. Therefore, Eq.4 has the global optimum. However, its optimization is very
challenging because both the ‖W‖F -norm and the ‖W‖2,1-norm in Eq.4 are convex
but non-smooth. In this section we solve this problem by calculating sub-gradients of
the mixed-norm regularizer, i.e., the ‖W‖F -norm and the ‖W‖2,1-norm respectively.

3.1 The Proposed Solver

By setting the derivative of Eq.4 with respect to W as zero, we obtain:

(XTX+ λ1C+ λ2D)W = XTY (5)

where C is a diagonal matrix with the i-th diagonal element:

Ci,i =
1

2‖(W)i‖2
(6)

where (W)i denotes the i-th row of W, i = 1, ..., n. D = diag(D1, ...,DG), where
the symbol ‘diag’ is the diagonal operator and each Dg (g = 1, ..., G) is also a diagonal
matrix with the i-th diagonal element as:

Dj,j =
1

2‖Wg‖F
(7)

where j = 1, ...,mg.
By observing Eq.5, we f nd that both the matrix C and the matrix D depend on

the value of matrix W. In this paper we design a novel iterative algorithm to optimize
Eq.5 by alternatively computing the W and the C (with the D). We fi st summarize the
details in Algorithm 1, and then prove that in each iteration the updated W and the C
(with the D) make the value of Eq.4 decrease.

Algorithm 1. The proposed method for solving Eq.4
Input: Y ∈ Rn×c,X ∈ Rn×D, λ1 and λ2;
Output: W ∈ RD×c;

1 Initialize t = 0;
2 Initialize C0 as a D ×D identity matrix;
3 Initialize D0 as a D ×D identity matrix;
4 repeat

5 W[t+1] = (XTX+ λ1C
[t] + λ2D

[t])
−1

XTY;
6 Update C[t+1] via Eq.6;
7 Update D[t+1] via Eq.7;
8 t = t+1;
9 until No change on the objective function value in Eq.4;
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With Algorithm 1, at each iteration, given the fi ed C and D, the W is updated by
Eq.5. Then the C and the D can be updated with the f xed W. The iteration process is
repeated until there is no change on the value of Eq.4.

3.2 Convergence

In this subsection we introduce Theorem 1 to guarantee that Eq.4 monotonically de-
creases in each iteration of Algorithm 1. Following the literature in [9,17], we f rst give
a lemma as follows:

Lemma 1. For any positive values ai and bi, i = 1, ...,m, the following holds:

m∑
i=1

b2i
ai

≤
m∑
i=1

a2
i

ai
⇐⇒

m∑
i=1

(bi+ai)(bi−ai)
ai

≤ 0

⇐⇒
m∑
i=1

(bi − ai) ≤ 0 ⇐⇒
m∑
i=1

bi ≤
m∑
i=1

ai (8)

Theorem 1. In each iteration, Algorithm 1 monotonically decreases the objective func-
tion value in Eq.4.

Proof. According to the fi th line of Algorithm 1, we denote the W[t+1] as the results
of the (t+ 1)-th iteration of Algorithm 1, then we have:

W[t+1] = min
W

1

2
‖Y −XW‖2F + λ1tr(W

TC[t]W)

+λ2

G∑
g=1

tr((Wg)T (Dg)[t]Wg) (9)

Then we can get:

1

2
‖Y −X(W[t+1])T ‖2F + λ1tr((W

[t+1])TC[t]W[t+1])

+ λ2

G∑
g=1

tr(((Wg)[t+1])T (Dg)[t](Wg)[t+1])

≤ 1

2
‖Y −X(W[t])T ‖2F + λ1tr((W

[t])TC[t]W[t])

+ λ2

G∑
g=1

tr(((Wg)[t])T (Dg)[t](Wg)[t])

(10)

which indicates that:

1

2
‖Y −X(W[t+1])T ‖2F +

n∑
i=1

‖(W[t+1])
i‖22

2‖(W[t])
i‖2

) +
G∑

g=1

‖(Wg)[t+1]‖2F
2‖(Wg)[t]‖F

)

≤ 1

2
‖Y −X(W[t])T ‖2F +

n∑
i=1

‖(W[t])
i‖22

2‖(W[t])
i‖2

) +

G∑
g=1

‖(Wg)[t]‖2F
2‖(Wg)[t]‖F

)

(11)
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Substituting bi and ai with
∥∥(W[t+1])i

∥∥
2

(or ‖(Wg)[t+1]‖F ) and
∥∥(W[t])i

∥∥
2

(or
‖(Wg)[t]‖F ) in Lemma 1, we have:

1

2
‖Y −X(W[t+1])T ‖2F + λ1

n∑
i=1

‖(W[t+1])
i‖2 + λ2

G∑
g=1

‖(Wg)[t+1]‖F

≤ 1

2
‖Y −X(W[t])T ‖2F + λ1

n∑
i=1

‖(W[t])
i‖2 + λ2

G∑
g=1

‖(Wg)[t]‖F

(12)

This indicates that the objective function value in Eq.4 monotonically decreases in each
iteration of Algorithm 1. Therefore, due to the convexity of Eq.4, Algorithm 1 enables
Eq.4 to converge to its global optimum.

4 Experimental Analysis

In order to evaluate the performance of the proposed mixed-norm joint sparse learning
(denoted as F2L21F 1 for short from its objective function), we compare it with several
state-of-the-art methods on public datasets (e.g., MIRFLICKR [5] and NUS-WIDE [3])
for MVML classif cation, by evaluating the average precision and Hamming loss.

4.1 Experiment Setup

We use four datasets, including MIRFlickr, NUS-WIDE, SCENE and OBJECT in our
experiments for MVML classif cation. The comparison methods include the method in
[15] (denoted as F2F from its objective function, for simplicity) which only considers
the block sparsity, the method in [12] (denoted as F2L21) which only considers the row
sparsity, the MKCCA method in [1] which does not consider the feature redundancy
and noise, and the single view method WorstS (or BestS) which has the worst (or best)
classificatio performance from the data represented by a single view via ridge regres-
sion (i.e., all single views are tested). We use two popular evaluation metrics (i.e., the
average precision (AP) and Hamming loss (HL)) in multi-label learning [13] to evaluate
the effectiveness of all the methods in our experiments.

Given the ground true label matrix Y 1 ∈ {0, 1}n×c (where n is the number of in-
stances and c is the number of labels) and the predicted one Y 2 ∈ {0, 1}n×c obtained
by the algorithm for performing MVML learning, average precision (AP) is def ned as:

AP =
1

n× c

n∑
i=1

card(Y 1i ∩ Y 2i)

card(Y 1i ∪ Y 2i)
(13)

where the symbol “Card” means the cardinality operation.
HL measuring the recovery error rate is define as:

HL =
1

n× c

n∑
i=1

c∑
j=1

Y 1i,j ⊕ Y 2i,j (14)

where ⊕ is an XOR operation, a.k.a. exclusive disjunction.
1 F2 means the least square loss function, L21 means the 
2,1-norm regularizer, and F means

the F -norm regularizer.
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According to the literatures, e.g., [13,18], the larger (or smaller) the performance on
AP (or HL) is, the better the method.

4.2 Experimental Results

In this subsection, we report the results on MVML classif cation. First, we evaluate
the convergence rate of the proposed F2L21F on all four datasets, for evaluating the
efficie cy of our optimization algorithm, in terms of the objective function value in
each iteration. Second, we test the parameters’ sensitivity of the proposed model on
λ1 and λ2, aiming at obtaining the best performance of the proposed F2L21F. Finally,
we compare F2L21F with the comparison algorithms in terms of average precision and
Hamming loss.

Convergence Rate. We solve Eq.4 by the proposed Algorithm 1. In this experiment,
we want to know the convergence rate of Algorithm 1. Here we report some of the
results in Fig.1 and Fig.2 due to the page limit. Fig.1 shows the results on the objective
function value while fi ing the value of λ1 (i.e., λ1 = 1) and varying λ2. Fig.2 shows
the results on the objective function value while fi ing the value of λ2 (i.e., λ2 = 1)
and varying λ1. In both Fig.1 and Fig.2, the x-axis and y-axis denote the number of
iterations and the objective function value respectively.
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Fig. 1. An illustration on convergence rate of Algorithm 1 for solving the proposed objective
function with fi ed λ1, i.e., λ1 = 1

We can observe from both Fig.1 and Fig.2 that: 1) the objective function value rapidly
decreases at the f rst few iterations; and 2) the objective function value becomes stable
after about 30 iterations (or even less than 20 in many cases) on all datasets. This con-
f rms a fast convergence rate of Algorithm 1 to solve the proposed optimization problem
in Eq.4. Similar results are observed for other λ1 and λ2 values.

Parameters’ Sensitivity. In this experiment, we test different settings on parameters
λ1 and λ2 in the proposed F2L21F, by varying them as {0.01, 0.1, 1, 10, 100, 1000}.
The results on average prediction and Hamming are illustrated in Fig.3.

It is clear that the proposed F2L21F is sensitive to the parameters’ setting, similar
to other sparse learning methods [11,18]. However, we f nd the worst performance is
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Fig. 2. An illustration on convergence rate of Algorithm 1 for solving the proposed objective
function with fi ed λ2, i.e., λ2 = 1
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Fig. 3. The results of average precision (f rst row) and Hamming loss (second low) on various
parameters’ settings on different datasets

always obtained when both λ1 and λ2 have extremely large values. For example, when
the values of parameters pair (λ1, λ2) are around (10,10), F2L21F achieves the best
performance. Actually, in our experiments such a setting simultaneously leads to both
the row sparsity (via the λ1) and the block sparsity (via the λ2).

Comparison. In this experiment, we compare our proposed method with state-of-the-
art methods for MVML classif cation. We set the values of parameters for the compari-
son methods by following the instructions in their original papers. For all the methods,
we randomly sample 60% of the original data as the training data, and leave the rest
as the test data. We randomly generate ten runs, and report the average result and the
standard deviation on the average precision and Hamming loss, as shown in Fig.4. Note
that we do not use dataset MIRFlickr since it has only two views.

From Fig.4, we have the following observations: 1) The proposed F2L21F always
achieves the best performance. Among six views in NUS-WIDE and f ve views in
SCENE and OBJECT, the 64-D color histogram is detected as a redundant view in
F2L21F. F2L21 and MKCCA use all the views to perform MVML classificati n and
obtain worse performance than F2L21F. This conf rms that some views (e.g., the color
histogram in the tested datasets) are not helpful in the learning process and may even
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Fig. 4. Comparison on average precision (left) and Hamming loss (right) for all methods on differ-
ent datasets. Note that the range shown at the top of the bar represents the performance standard
deviation.

degrade the performance, especially when many views are available. F2L21F is able
to identify those redundant views and avoid their negative impact on the classif cation.
Although F2F can also discover those redundant views, it is not able to remove noisy at-
tributes from the selected views, leading to worse performance than F2L21F. This result
proves the effectiveness of F2L21F in removing redundant views and noisy attributes by
employing the proposed mixed-norm regularizer in MVML classif cation. 2) The per-
formance of single view learning methods (i.e., BestS and WorstS) is always worse than
those multi-view learning methods. This again confirm the advantages of using multi-
views in visual classif cation. 3) The sparse learning methods (i.e., F2L21F, F2F, and
F2L21) consistently outperform MKCCA. This shows the superiority of sparse learn-
ing which encodes negligible elements as zeros and only selects important elements
to perform MVML classif cation. Moreover, in our implementation the computational
cost of F2L21F is about tens times faster than that of MKCCA, indicating much higher
eff ciency than MKCCA.

In sum, more views can help improve the performance of visual classificatio since
more information can be utilized in the learning process. On the other hand, more views
may also potentially introduce higher redundancy and more noise which compromise the
performance. The proposed F2L21F is able to identify those redundant views and noisy
attributes so that MVML classificatio can be performed for more effective performance.

5 Conclusion

In this paper we proposed a mixed-norm joint sparse learning model for multi-view
multi-label (MVML) classification The proposed method, powered by a mixed-norm
regularizer, can effectively avoid the negative impact of redundant views and noisy
attributes from the multi-view representation of a large amount of data. Extensive ex-
perimental results have shown that the proposed method outperforms state-of-the-art
learning methods for MVML classif cation. In the future, we will extend the proposed
method into its kernel edition to project noise more clearly, and involve other learning
models, such as semi-supervised MVML classificatio and transfer MVML classifica
tion, to leverage the widely available unlabeled data and heterogenous data.
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Abstract. Term-based approaches can extract many features in text
documents, but most include noise. Many popular text-mining strategies
have been adapted to reduce noisy information from extracted features;
however, text-mining techniques suffer from low frequency. The key is-
sue is how to discover relevance features in text documents to fulfil user
information needs. To address this issue, we propose a new method to
extract specific features from user relevance feedback. The proposed ap-
proach includes two stages. The first stage extracts topics (or patterns)
from text documents to focus on interesting topics. In the second stage,
topics are deployed to lower level terms to address the low-frequency
problem and find specific terms. The specific terms are determined based
on their appearances in relevance feedback and their distribution in top-
ics or high-level patterns. We test our proposed method with extensive
experiments in the Reuters Corpus Volume 1 dataset and TREC topics.
Results show that our proposed approach significantly outperforms the
state-of-the-art models.

Keywords: Feature extraction, Pattern mining, Relevance feedback,
Text classification.

1 Introduction

One of the objectives of knowledge extraction is to build user profiles by finding a
set of features from feedback documents to describe user information needs. This
is a particularly challenging task in modern information analysis, empirically and
theoretically [11,13]. This problem has received much attention from the data
mining, web intelligence, and information retrieval communities.

Information retrieval has deployed many effective term-based methods to find
popular terms [14]. The advantages of term-based methods include efficient com-
putational performance and mature theories for term weighting. However, many
noisy terms can be extracted from the large-scale feedback documents. Words
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and phrases have also been used as terms in many models. Many researchers
believe phrases are more useful and crucial than words for query expansion in
building effective ranking functions [14,4,22]. However, there are usually many
redundant and noisy phrases [18,19].

Popular terms are useful for describing documents; however, they do not focus
on the interesting topics in these documents. We argue that patterns (itemsets,
or sets of terms) can be a good alternative form of terms for describing interesting
topics in documents.

Data-mining techniques have been developed–e.g., maximal, closed, and mas-
ter patterns–for removing redundant and noisy patterns [27,25]. By using the ad-
vantages of data-mining techniques, pattern taxonomy models (PTM) [24,23,12]
have been proposed for using closed sequential patterns in text classification.
These pattern mining-based approaches have improved the effectiveness for rel-
evant (positive) feedback documents, but offer fewer significant improvements
compared with term-based methods for using both relevant and irrelevant
feedback.

Existing approaches focus more on extracting general or popular topics from
feedback documents rather than what users really want. Several attempts have
been made to determine terms specificity regarding to term distribution in docu-
ments. For example, Inverse Document Frequency (IDF ) measures terms speci-
ficity in a set of documents, but much noisy information in text documents affects
IDF for finding specific features.

This research proposes a specificity definition for mining specific features for
user information needs. The proposed approach includes two stages. The first
stage extracts high-level patterns (or topics) from text documents to focus on
interesting topics in order to reduce the noise. The second stage deploys these
topics (high-level patterns) to lower level terms to address the low-frequency
problem in order to find specific features. The proposed approach can determine
specific terms based on both their appearances in relevance feedback and their
distribution in interesting topics (or high-level patterns).

The remainder of this paper is organized as follows. Section 2 introduces a
detailed overview of related works. Section 3 reviews concepts of patterns in text
documents. Section 4 proposes a method of mining specific features from positive
feedback documents. Section 5 shows empirical results; Section 6 reports related
discussions, followed by the final sections concluding remarks.

2 Related Work

Scientists have proposed many types of text representation. A well-known one is
the bag-of-words model that uses keywords, or terms, in the vector of the feature
space. In [9], the tf*idf weighting scheme was used for text representation in
Rocchio classifiers. Enhanced from tf*idf, the global IDF and entropy weighting
scheme was proposed in [5]. Various weighting schemes for the bag-of-words
representation were given in [1,7].

Bag of words problem is how to select a limited number of feature terms to
increase the system’s efficiency and avoid overfitting [19]. To reduce the number
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of features, many dimensionality reduction approaches have been conducted using
feature selection techniques like information gain, mutual information, chi-square,
and odds ratio [19].

In [2], data-mining techniques analyzed text by extracting co-occurring terms
as descriptive phrases from document collections. However, the effectiveness of
the text classification systems using phrases as text representation showed no
significant improvement. The likely reason is that a phrase-based method has
lower consistency of assignment and lower document frequency for terms [8].

The data-mining community has extensively studied pattern mining for many
years. Usually, existing data-mining techniques discover numerous patterns (e.g.,
sets of terms) from a training set, but many patterns may be redundant [25].
Nevertheless, the challenge is dealing effectively with the many discovered pat-
terns and terms with much noise.

Regarding to these setbacks, closed patterns present a promising alternative
to phrases [23,6]. Patterns, like terms, enjoy good statistical properties. To use
closed patterns effectively in text mining, patterns have been evaluated by being
deployed into a vector with a set of terms and term-weight distributions. The
pattern-deploying method encouragingly improves effectiveness compared with
traditional probabilistic models and Rocchio-based methods [23,12].

In summary, we can group the existing methods for finding relevance features
into three approaches. The first one is to revise feature terms in both positive and
negative samples, like Rocchio-based models [15]. The second approach is based
on how often terms appear or do not appear in positive and negative samples
like probabilistic-based models [26]. The third approach is to describe specific
features based on their appearances in both patterns or/and documents [23,10].
In this paper, we further develop the third approach to utilize high-level patterns
(or topics) extracted from only positive samples (relevant documents) for finding
specific terms. The major research issue is how to determine the topics specificity
of terms according their distributions in both documents and topics.

3 Definition

In this paper, we assume that all documents are split in paragraphs. So a given
document d yields a set of paragraphs PS(d). Let D be a training set of docu-
ments, which consists of a set of positive documents, D+; and a set of negative
documents, D−. Let T = {t1, t2, . . . , tm} be a set of terms (or keywords) which
are extracted from the set of positive documents, D+.

3.1 Frequent and Closed Patterns

Let T = {t1, t2, . . . , tm} be a set of terms which are extracted from D+. Given a
termset X , a set of terms, in document d, coverset(X) = {dp|dp ∈ PS(d), X ⊆
dp}. Its absolute support supa(X) = |coverset(X)|; and its relative support

supr(X) = |coverset(X)|
|PS(d)| . A termset X is called frequent pattern if its supa (or

supr) ≥ min sup, a minimum support.
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Table 1. A set of paragraphs

Parapgraph Terms

dp1 t1 t2
dp2 t3 t4 t6
dp3 t3 t4 t5 t6
dp4 t3 t4 t5 t6
dp5 t1 t2 t6 t7
dp6 t1 t2 t7

Table 2. Frequent patterns and cover-
ing sets

Freq. Pattern Covering Set

{t3, t4, t6} {dp2, dp3, dp4}
{t3, t4} {dp2, dp3, dp4}
{t3, t6} {dp2, dp3, dp4}
{t4, t6} {dp2, dp3, dp4}
{t3} {dp2, dp3, dp4}
{t4} {dp2, dp3, dp4}
{t1, t2} {dp1, dp5, dp6}
{t1} {dp1, dp5, dp6}
{t2} {dp1, dp5, dp6}
{t6} {dp2, dp3, dp4, dp5}

Table 1 lists a set of paragraphs for a given document d, where PS(d) =
{dp1, dp2, . . . , dp6}, and duplicate terms are removed. Let min sup = 3 giving
rise to ten frequent patterns which are illustrated in Table 2. Normally not all
frequent patterns are useful [24,25]. For example, pattern {t3, t4} always occurs
with term t6 in paragraphs (see Table 1); therefore, we want to keep the larger
pattern only.

Given a set of paragraphs Y ⊆ PS(d), we can define its termset, which satisfies

termset(Y ) = {t|∀dp ∈ Y ⇒ t ∈ dp}.

Let Cls(X) = termset(coverset(X)) be the closure of X . We call X closed if
and only if X = Cls(X).

Let X be a closed pattern. We have

supa(X1) < supa(X) (1)

for all pattern X1 ⊃ X .

3.2 Closed Sequential Patterns

A sequential pattern s =< t1, . . . , tr > (ti ∈ T ) is an ordered list of terms.
A sequence s1 =< x1, . . . , xi > is a sub-sequence of another sequence s2 =<
y1, . . . , yj >, denoted by s1 , s2, iff ∃j1, . . . , ji such that 1 ≤ j1 < j2 . . . < ji ≤ j
and x1 = yj1 , x2 = yj2 , . . . , xi = yji . Given s1 , s2, we usually say s1 is a
sub-pattern of s2, and s2 is a super-pattern of s1. In the following, we simply
say patterns for sequential patterns.

Given a pattern (an ordered termset) X in document d, �X� is still used to
denote the covering set of X , which includes all paragraphs ps ∈ PS(d) such
that X , ps, i.e., �X� = {ps|ps ∈ PS(d), X , ps}. Its absolute support and
relative support are defined as the same as for the normal patterns.

A sequential pattern X is called frequent pattern if its relative support ≥
min sup, a minimum support. The property of closed patterns can be used to
define closed sequential patterns. A frequent sequential patternX is called closed
if not ∃ any super-pattern X1 of X such that supa(X1) = supa(X).
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4 Acquiring User Information Needs

Extracting high-level patterns from text documents would help us to focus on
interesting topics in positive (relevant) feedback documents. In this paper, a fea-
ture’s specificity describes the extent to which the feature focuses on interesting
topics.

4.1 Two Levels of Features

Term-based user profiles are considered the most mature theories for term weight-
ing to emerge over the last couple decades in information retrieval. A term-based
model is based on the bag of words, which uses terms as elements and evaluates
term weights based on terms’ appearance or distribution in documents. This
main drawback is that the relationship among words cannot be depicted [20].
Another problem in considering single words as features is semantic ambigui-
ties, such as synonyms and polysemy. To overcome the limitations of term-based
approaches, pattern mining-based techniques are used for information filtering
systems, as patterns are less ambiguous and more discriminative than individual
terms; but, pattern-based approaches suffer from low frequency problem.

To improve the efficiency of pattern taxonomy mining, an algorithm, SP-
Mining(D+,min sup) [24], was proposed to find closed sequential patterns in
paragraphes for all documents ∈ D+ that used the well-known Apriori property
to reduce searching space. For all positive documents d ∈ D+, the SPMining
algorithm discovered all closed sequential patterns based on a given min sup.

Let SP1, SP2, ..., SPn be the sets of discovered closed sequential patterns for
all document di ∈ D+(i = 1, · · · , n), where n = |D+|). All possible candidates
of specific terms can be obtained from all SPi (i = 1, · · · , n) as follows:

T =

n⋃
i=1

{t|t ∈ p, p ∈ SPi}

4.2 Specificity of Low-level Features

We assume a topic is a set of terms. We call a topic interesting if it is a closed
sequential pattern. Usually large number of topics can be extracted from feed-
back documents, and there are overlaps among many topics. It is very difficult
to determine which topic are useful to describe user information needs. More-
over, the user can be interested in one or many topics. Thus, in this paper we
define the specificity of a term t based on the specificity of topics that contain t
(ST ); its distribution in topics (or term’s frequency in patterns, TFP ) and its
appearance in documents (or called document frequency, DF )

The specificity of any given term t to topics ST can be measured by the topics
size and the terms distribution in topics that contain t. The topic that contains
more terms is unlikely used by other irrelevant documents, and then it is more
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likely a specific topic for user information needs. Thus, a large topic that contains
term t is more important than a short topic. Moreover, the relative support of
topics is significant for measure the term’s specificity. Therefore, the specificity
of a term to topics ST can be calculated as follows:

ST (t) =

n∑
i=1

∑
t∈p⊆SPi

supr(p, di)× |p|

where supr(p, di) is the relative support of pattern p in document di and n is
the number of positive feedback documents.

All positive documents in the user feedback describe user information needs.
In other words, terms that appear in all positive documents are likely specific
features. For example, if the user seeks information about Unicef, we expect the
keyword Unicef appear in all positive feedback documents; however, many feed-
back documents contain noisy terms. To reduce noisy terms, the terms frequency
will be calculated only according to their appearances in the extracted topics
rather than in documents.

Based on the above analysis, in this paper, we propose the following equation
to calculate the specificity of term t for all t ∈ T :

spe(t) = TFP (t)×DF (t)× ST (t)

=

(
n∑

i=1

∑
t∈p⊆SPi

supa(p, di)

)
×
(

|coverage(t,D+)|
|D+|

)
×(

n∑
j=1

∑
t∈p⊆SPj

(
supr(p, dj)× |p|

))

= 1
n |coverage(t,D+)| ×

(
n∑

i=1

∑
t∈p⊆SPi

supa(p, di)

)
×(

n∑
j=1

∑
t∈p⊆SPj

(
supr(p, dj)× |p|

))

= r(t)
n ×

n∑
i=1

n∑
j=1

( ∑
t∈p⊆SPi

supa(p, di)×
∑

t∈q⊆SPj

(
supr(q, dj)× |q|

))

where, supa(p, di) is the frequency of patterns that contain term t in document
d; r(t) = |coverage(t,D+)| is the number of positive documents that contain
terms t; and n is the total number of positive documents.

For a term t, the higher of its spe score is, the more useful for describing the
user information needs. The relevance of an incoming document d to the user
information needs can be evaluated using the following ranking function:

rank(d) =
∑
t∈T

spe(t)τ(t, d)

where τ(t, d) = 1 if t ∈ d; τ(t, d) = 0 otherwise.
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5 Evaluation

In this paper, we conduct binary text classification to test the proposed approach.
We use routing filtering to avoid the need for threshold tuning, which is beyond
our research scope. The proposed model in this paper is called Specific Feature
Discovery (SFD). The SFD model uses positive relevance feedback to build user
profiles. Unlike other models, it uses only positive feedback for selecting useful
features.

According to Buckley and others [3], 50 topics are adequate to make a stable,
high quality experiment. This evaluation used the 50 expert-designed topics
in Reuters Corpus Volume 1 (RCV1) [21]. RCV1 corpus consists of 806,791
documents produced by Reuter’s journalists. The document collection is divided
into training sets and test sets. These topics were developed by human assessors
of the National Institute of Standards and Technology (NIST). The documents
are treated as plain text documents by preprocessing the documents. The tasks
of removing stop-words according to a given stop-words list and stemming term
by applying the Porter Stemming algorithm are conducted.

5.1 Baseline Models and Setting

The main baseline models were the well-known term-based methods: Rocchio,
BM25 and SVM. The Rocchio algorithm [17] has been widely adopted in the
areas of text categorization and information filtering. It can be used to build a
profile for representing the concept of a topic which consists of a set of relevant
(positive) and irrelevant (negative) documents. we set α = β = 1.0 in this paper.

BM25 [16] is one of state-of-the-art term-based models. The values of k1 and
b are set as 1.2 and 0.75, respectively, in this paper.

Information filtering can also be regarded as a special form of text classifica-
tion [19]. SVM is a statistical method that can be used to find a hyperplane that
best separates two classes. SVM achieved the best performance on the Reuters-
21578 data collection for document classification [28]. The decision function in
SVM is defined as:

h(x) = sign(w · x+ b) =

⎧⎨⎩
+1 if (w · x+ b) > 0

−1 otherwise

where x is the input object; b ε - is a threshold and w =
∑l

i=1 yiαixi for
the given training data: (xi, yi), ..., (xl, yl), where xi ε -n and yi = +1(−1), if
document xi is labelled positive (negative). αi ε - is the weight of the sample
xi and satisfies the constraint:

∀i : αi ≥ 0 and

l∑
i=1

αiyi = 0 (2)
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To compare with other baseline models, SVM was used to rank documents rather
than to make binary decisions. For this purpose, threshold b was ignored. For
the documents in a training set, we knew only what were positive (or negative),
but not which one was more important. To avoid this bias, we assigned the same
αi value (i.e., 1) to each positive document first, and then determined the same
αi (i.e., ά) value to each negative document based on Eq.(2). Therefore, we used
the following weighting function to estimate the similarity between a testing
document and a given topic:

weight(d) = w · d

where · means inner product ; d is the term vector of the testing document; and

w = (
∑

di∈D+

di) + (
∑

dj∈D−
djά).

For each topic, we also chose 150 terms in the positive documents, based on
tf*idf values for all term-based baseline models.

5.2 Evaluation Measures

Precision p and recall r are suitable because the complete classification is based
on the positive class. In order to evaluate the effectiveness of the proposed
SFD method, we utilized a variety of existing methods; Mean Average Preci-
sion (MAP),breakeven points(b/p), the precision of top-20 returned documents,
F-scores and recall at 11-points (IAP). These methods have been widely used
to evaluate the performance of information filtering system.

A statistical method, t-test, was also used to analyse the experimental results.
The t-test assesses whether the means of two groups are statistically different
from each other. If the p-value associated with t is significantly low (<0.05), there
is evidence to reject the null hypothesis, and the difference in means across the
paired observations is significant.

In summary, the effectiveness is measured by five different means: the average
precision of the top 20 documents, F1 measure, Mean Average Precision (MAP),
the break-even point (b/p), and Interpolated Average Precision (IAP) on 11-
points. The larger their values are, the better the system performs.

5.3 Results

We compared the proposed method, SFD, with baseline models, including Roc-
chio, BM25, and SVM. The experimental results for all 50 assessing topics are
reported in Table 3, with the percentage changes %chg. The percentage changes
%chg of the proposed SFD model were compared with the performance of the
best baseline model (Rocchio). The SFD model outperforms all the baseline
models, including the deployment of sequential closed patterns without using
the specificity score (Seq. Cls). The average percentage of improvement over the
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Fig. 1. Comparison of the results in all assessing topics

Table 3. Detailed comparisons of all models in all assessing topics

top-20 MAP Fβ=1 b/p IAP

SFD 0.543 0.473 0.456 0.460 0.496
Seq.Cls* 0.496 0.444 0.439 0.430 0.464

Rocchio 0.474 0.431 0.431 0.420 0.452
SVM 0.453 0.409 0.421 0.408 0.435
BM25 0.445 0.407 0.414 0.407 0.428

%chg +12.71% +9.05% + 5.70% +8.59% +8.84%

* Applying Deploying method to sequential closed patterns without weight revision.

standard measures is 8.98%, with a maximum of 12.71% and minimum 5.70%
compared with the best results in Table 3.

The improvements are consistent and very significant on all five measures, as
shown by 11-points on all 50 assessing topics in Figure 1. The t-test p values in
Table 4 indicate the significance of improvements in the SFD model statistically.
Therefore, we conclude the SFD model is an exciting achievement in discovering
high-quality features in text documents because it uses high-level patterns to get
low-level terms and revises low-level terms based on specificity and distributions
in positive relevance feedback.

5.4 Discussion

Generally, term-based approaches extract many terms from documents without
considering terms relationships. The advantage of using patterns is that they
carry more semantic information than single terms–but these suffer from low
frequency [10]. Based on that observation, we used the patterns in this paper
to consider the relationship among terms to reduce the extracted noise terms in
features extracted from documents. As shown in Table 5, the number of extracted
patterns is about 202 patterns with an average length of 2 terms in patterns.
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Table 4. T-Test p-values for all models compared with the SFD model in all assessing
topics

top-20 MAP Fβ=1 b/p IAP

Rocchio 0.02621 0.03650 0.05762 0.08629 0.02868
SVM 0.00269 0.00122 0.00658 0.02094 0.00135
BM25 0.00516 0.00424 0.00645 0.03155 0.00206

Table 5. Patterns statistical information for the proposed model

|SP | Average length of P |T | supr

50 Topics 202 2 156 86.393

Table 6. Statistical information for the proposed model

|D+| Average No. terms terms weight in topics spe

13 156 202.788 250.570

From that information, we expected about 404 = 202∗2 terms in all patterns. But
the actual number of terms deployed from those patterns are 156 terms, which
indicated that about 61.37 = 404−156

404 of the patterns overlap. This overlapping
from the closed pattern indicates some terms importance in the documents.

As shown in Table 5, the average weight of patterns for each topic is 86.393
distributed into 202 patterns on average, which gave about 0.428 = 86.393

202 . On
the other hand, Table 6 shows a weight of about 202.788 distributed in 156 terms
on average. That information indicates a weight of about 57.40% = 202.788−86.393

202.788
is increased according to terms from the deploying method.

Using common sense, we know that positive terms with large specificity are
more interesting than general terms with less specificity for a given topic. How-
ever, evaluating the specificity of a given term is challenging. The proposed
model calculates the specificity of terms based on the specificity of each term
to the topic ST , distribution of terms in topic TFP , and appearance of terms
in the documents DF . Unlike other models, in this paper, specific terms ap-
pear in most positive patterns in positive documents. As shown in Table 6,
before revision, 202.788 was distributed to all positive terms as weights; the
spe increased the weight of terms to 250.570. The percentage of increase is
19.07% = 250.570−202.788

250.570 . However, the amount of increase differs for each term.

6 Conclusions

It has been proven that pattern-based approaches are useful for improving the
quality of feature selection from text documents, although they suffer from low
frequency. To solve that problem, deploying methods have been proposed to
deploy high-level patterns into low-level terms. However, these deploying meth-
ods cause many low-level terms to have the same weight regardless of a terms
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specificity. The proposed SFD approach utilizes term distribution in high-level
patterns (topics) and terms document frequency to calculate terms specificity
according to their appearances and distribution in topics. The experimental re-
sults on RCV1 demonstrate that the proposed method has performed excitingly,
with an average 8.98% improvement over the state-of-the-art benchmarks.
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Abstract. The wrapper feature selection approach is useful in identi-
fying informative feature subsets from high-dimensional datasets. Typ-
ically, an inductive algorithm “wrapped” in a search algorithm is used
to evaluate the merit of the selected features. However, significant bias
may be introduced when dealing with highly imbalanced dataset. That
is, the selected features may favour one class while being less useful to
the adverse class. In this paper, we propose an ensemble-based wrapper
approach for feature selection from data with highly imbalanced class
distribution. The key idea is to create multiple balanced datasets from
the original imbalanced dataset via sampling, and subsequently evaluate
feature subsets using an ensemble of base classifiers each trained on a
balanced dataset. The proposed approach provides a unified framework
that incorporates ensemble feature selection and multiple sampling in a
mutually beneficial way. The experimental results indicate that, overall,
features selected by the ensemble-based wrapper are significantly bet-
ter than those selected by wrappers with a single inductive algorithm in
imbalanced data classification.

1 Introduction

Feature selection is a critical procedure for high-dimensional data classification.
The benefits of feature selection are several-fold and dependent on the applica-
tions. For creating classification models, feature selection can often improve pre-
dictive accuracy and comprehensibility [1]. For many bioinformatics applications,
feature selection is a critical procedure for identifying important biomarkers [2].

The techniques for feature selection are commonly classified as filter approach,
wrapper approach, and embedded approach. Filter approach and embedded ap-
proach are relatively computationally efficient and are commonly applied as a
fast feature ranking procedure [3]. In contrast, wrapper approach evaluates fea-
tures by performing internal classification with a given inductive algorithm [4].
Therefore, they are much more computation intensive. Nevertheless, wrapper ap-
proach remains attractive for two reasons. Firstly, wrapper approach evaluates
features iteratively with respect to an inductive algorithm. Therefore, features
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selected by wrapper approach are more likely to suit the inductive algorithm,
and therefore, yield high classification accuracy [4]. Secondly, wrapper approach
evaluates features jointly and are effective in capturing intrinsic relationships
such as interactions among multiple features [5].

Learning from imbalanced data is an important problem in many data mining
applications. Such a case arises when samples from one class significantly out-
number those from the other class. Imbalanced data are common in text mining
[6] and bioinformatics where the minority class often represents the rare cases. It
is well known that many classification algorithms are sensitive to the imbalanced
class distribution [7]. Therefore, many strategies have been proposed to deal with
class imbalance learning. Generally, they fall into two categories: cost-sensitive
learning and data sampling [8]. With cost-sensitive learning, a given algorithm
will receive a higher penalty when a mistake is made on the minority class than
on the majority class. The advantage of cost-sensitive learning is that it does
not modify the class distribution. However, an accurate cost-metric needs to be
specified beforehand. As for data sampling, the learning instances in the major-
ity class and minority class are manipulated in certain way so as to balance the
class distribution. The downside is that sampling strategies may introduce noise
or remove useful information while modifying class distribution.

The challenges of feature selection and imbalanced data classification meet
when the dataset to be analysed is of both high-dimensionality and highly im-
balanced class distribution [9]. In such a scenario, if wrapper approach is adopted
for feature selection, the inductive algorithm may introduce significant bias be-
cause the merit of the feature subset is evaluated based on the performance of
the inductive algorithm. Therefore, if the inductive algorithm favours a single
class, the features selected will also bias to this class while being less useful to
the adverse class.

In this study, we propose an ensemble-based wrapper approach for feature
selection from highly imbalanced datasets. The proposed algorithm retains the
advantages of wrapper feature selection while also maximises data usage and
reduce feature selection bias simultaneously by training multiple base classifiers
with balanced sample subsets. A hybrid multiple sampling procedure is employed
to create balanced sample subsets. Together we introduce a unified framework
that incorporates ensemble feature selection and multiple sampling in a mutually
beneficial manner.

The paper is organised as follows. In Section 2, we outline the proposed frame-
work and describe each component in details. Section 3 describes the experimen-
tal procedure. Results are presented in Section 4 and Section 5 concludes the
paper.

2 Ensemble-Based Wrapper Approach

Wrapper algorithms, in general, consist of three main components [10]: (1) a
search algorithm, (2) a fitness function, and (3) an inductive algorithm. The
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proposed system adheres to this structure. In this section, we outline the system
and describe each component.

2.1 System Overview

A schematic representation of the proposed ensemble-based wrapper approach is
shown in Figure 1. The imbalanced training dataset is balanced by a hybrid sam-
pling approach (which will be explained in Section 2.3). Such a hybrid sampling
procedure is applied multiple times producing multiple sets of balanced training
data each of which is used to train a base classifier. The base classifiers trained
on the balanced datasets are subsequently applied to classify an imbalanced test
dataset. The classification distributions of each sample in the test dataset are
normalised and combined, and the area under ROC curve (AUC) is calculated
as the fitness indices for feature selection. The wrapper procedure terminates
when it reaches a predefined number of iteration or a desired number of features
is selected (i.e. greedy search), and the final feature subsets are used for further
validation.

Hybrid Sampling 

 
Imbalanced 
Train Data 

 

 
Balanced 
Train Data 

 

 
Balanced 
Train Data 

 
a T

 
Balanced 
Train Data 

 

Combine Normalized 
Classification Distribution 
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Algorithm 

Selected 
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Fig. 1. A schematic representation of the ensemble-based wrapper approach

2.2 Search Algorithm

There are several popular search strategies, including hill climbing algorithms
best exemplified by forward selection and backward elimination [11,12] and evo-
lutionary algorithms such as genetic algorithm [13] and particle swarm optimi-
sation [14].

In this study, we apply two search algorithms. The first one is a hill climb-
ing algorithm that starts with an empty set and greedily selects a feature at a
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time that maximises the given fitness function. This is a typical greedy forward
selection approach and at each step the best feature f∗ is determined by:

f∗ = argmax
f �∈S

fitness(S ∪ {f})

where S is the set that contains the features selected so far and f is a feature
under evaluation according to a fitness function.

The second search algorithm is a simple elitism genetic algorithm. The feature
size is pre-specified and the algorithm selects the best feature set that maximises
the given fitness function through genetic operations such as crossover and mu-
tation. Here each feature in the best set S∗ is determined simultaneously:

S∗ = arg max
i=1...p

fitness(Si)

where p is the population size of the genetic algorithm.
The above two typical yet simple wrapper procedures offer a transparent way

to compare different inductive components.

2.3 Hybrid Sampling from Imbalanced Data

Sampling is a popular approach to balance the dataset with imbalanced class
distribution. The simplest methods are random under-sampling and random
over-sampling [15]. The random under-sampling method balances the dataset
by randomly removing samples in the majority class. On the contrary, the ran-
dom over-sampling method balances the dataset by sampling from the minority
class with/without replacement and reattaching them to the dataset. A more
sophisticated approach is to synthesise “new” samples from the minority class
(known as SMOTE) [16]. Several studies also found that better results can be
achieved by increasing minority samples and decreasing majority samples simul-
taneously [17,18].

Here we apply our own hybrid approach in which the dataset (denoted as D)
is balanced by increasing minority class with SMOTE and decreasing majority
class with random under-sampling as follows:

IR = Random(Imaj , (Nmaj − 3/2×Nmin))
IS = SMOTE(Imin, 1/2×Nmin)
D∗ = (Imin ∪ IS) ∪ (Imaj\IR)

where Imaj , Imin, Nmaj and Nmin are the majority samples, minority samples,
and their sample sizes, respectively. Random(.) randomly selects from Imaj a
subset of samples IR and SMOTE(.) creates synthetic samples IS using Imin.
The balanced dataset D∗ retains the original minority samples and introduces
1/2 × Nmin synthetic minority samples. The majority samples IR are reduced
to match the new set of minority samples in D∗ and result in a class ratio of 1.
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2.4 Ensemble Learning

The classic idea of ensemble is to generate multiple datasets using a sampling
method such as bootstrap, and train a set of homogeneous learning algorithms
which classify new instances in a consensus manner [19]. This idea has been
extended both to imbalanced data classification [20] and feature filtering [21].
However, no work has been done to unify them as a single procedure which may
be mutually beneficial.

Here, we extend the idea of ensemble to feature selection in a wrapper manner
and provide a unified framework that incorporates ensemble feature selection as
well as multiple sampling. Specifically, given a training dataset constrained by
a set of features S, suppose we apply the above hybrid sampling procedure L
times, each time producing a balanced sampling dataset D∗S

i (i = 1...L), and
each sampling dataset is used to train a base classifier denoted as hi. Then,
the ensemble classification distribution y of each test sample x is computed as
follows:

pE(y|x,S) = 1

L

L∑
i=1

Prob(hi(x),D
∗S
i )

where Prob(hi(x),D
∗S
i ) is a probability vector computed by using an ensemble

of L base classifiers (hi), each is trained on a balanced sampling set D∗S
i selected

by the feature set S. Therefore, both feature set information and data sampling
information are incorporated in an ensemble framework.

2.5 Fitness Function

An inductive algorithm (classifier) is commonly used to generate fitness indices
in wrapper algorithms. It is well known that the overall accuracy as a metric
is biased when the class distribution is imbalanced in the data. A more reliable
way to compute the fitness of a feature set in such a case is to use the area
under the ROC curve (AUC). AUC is a numeric value summarising the trade-off
between the true positive rate and the false positive rate across the entire sample
classification distribution of a dataset.

When using a single inductive algorithm, the AUC value is directly calculated
by sorting the classification probability of each sample, calculating trade-off value
of the true positive rate and false positive rate at each classification threshold,
and calculating the area under the trade-off values. As to the ensemble classi-
fier, classification distribution of each sample is combined and normalised across
all base classifiers. Then, the same procedure as those for a single inductive
algorithm is applied to calculate the AUC value.

Accordingly, we define the fitness of a feature subset as follows:

fitness(S) = AUC(p(y|x1,S)...p(y|xm,S))

where x1 is the first sample in the test dataset and m is the total sample size.
Function AUC(.) calculates the AUC value.
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2.6 Main Algorithm of Ensemble-Based Wrapper Approach

Algorithm 1 represents the core of the ensemble-based wrapper approach in
pseudo-code:

Algorithm 1. Ensemble Component

Input: A feature subset S; Imbalanced training set DT and test set Dt

Output: Fitness of S

1: Fit = 0;
2: // constrain the data dimension using the input feature subset:
3: DS

T = constrainDataDimension(DT , S);
4: E = ∅;
5: for i = 1 to L do
6: // Sampling to create a balanced dataset using training set:
7: D∗S

i = hybridSampling(DS
T );

8: // Train a base classifier using balanced dataset:
9: hi = trainClassifier(D∗S

i );
10: // Add the base classifier to the ensemble:
11: E = E ∪ hi;
12: end for
13: DS

t = constrainDataDimension(Dt, S);
14: // Apply the ensemble of classifiers to the test set:
15: Fit = calculateAUC(E, DS

t );
16: return Fit;

The ensemble component is independent from the search algorithm. It is flex-
ible and can be reused in different wrapper algorithms.

3 Experimental Procedure

In this section, we summarise the datasets used for evaluation and detail the
algorithms and parameter settings. Following that, the performance evaluation
is described.

3.1 Datasets and Data Partitioning

We used 5 datasets with high-dimensionality and highly imbalanced class distri-
bution. Table 1 summarises the datasets.

Specifically, fbis, re0, and oh5 are text mining datasets extracted by Han
and Karypis [22]. The ALL (acute lymphoblastic leukemia) dataset is from a
leukemia study [23], and the oil dataset is from study [24].

For datasets with multiple classes, we reserved the class with the small-
est number of samples as the minority class and combined the other classes
as the majority class. To make the problem computationally less demanding,
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Table 1. Summary of datasets

Name # Sample # Feature Minority class ratio

fbis 1250 2000 0.0304
re0 1504 2886 0.0073
oh5 918 3012 0.0643
ALL 248 12626 0.0605
oil 937 50 0.0438

for datasets with very high dimensions, we applied a χ2 filtering to reduce the
feature size to 500.

The datasets are partitioned using the double-level cross-validation strategy.
That is for each dataset, we partitioned it using a 2-fold stratified cross-validation
to obtain the training and evaluation sets. For the training set, it is further par-
titioned using a 5-fold stratified cross-validation to obtain the internal training
and internal testing sets for feature selection. The evaluation set is reserved from
the feature selection procedure and is only used for evaluating the usefulness of
the selected features after the feature selection procedure.

3.2 Algorithms and Parameter Settings

For the greedy forward feature selection algorithm, we specified it to search 20
steps in which 1 to 20 features are selected one after an other. As for the genetic
algorithm, we set both the population size and the termination generation to
20. The crossover probability and the mutation probability are 0.7 and 0.1,
respectively. The “chromosome” is coded as a string of feature indexes, and the
chromosome size of 1 to 20 are tested which corresponds to the feature subset size
of 1 to 20. Different from the greedy forward feature selection algorithm which
builds the feature subset on previously selected features, the genetic algorithm
tests different size of feature subsets separately.

The decision tree algorithm (J48) is used for induction in our wrapper al-
gorithms. In ensemble learning, the decision tree algorithm is prevailingly used
as the base classifier because it is relatively fast to train and unstable to small
changes in the data [25]. These are the important merits to our wrapper algo-
rithms since we need to evaluate features using multiple classifiers in an efficient
manner. Yet, it is widely known that the decision tree algorithm is sensitive to
the imbalance of the data class distribution [26]. Hence, it is of both theoretical
and practical interests to use decision tree in our experimental settings. For the
ensemble wrapper, we used the ensemble size of 20. That is 20 different sampling
dataset are produced in each iteration and 20 decision tree classifiers are trained
on these sampling dataset and then used for feature selection.

To evaluate the selected features, we used 6 different classification algorithms,
including random forest (RF), nearest neighbour with k=3 (3-NN), nearest
neighbour with k=7 (7-NN), logistic regression (LogReg), multiple layer percep-
tron (MLP), and alternating decision tree (ADTree). The rationale is that if the
wrapper algorithm is able to select useful features, the selected features should
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be able to improve the classification result regardless what type of classification
algorithm is used. Therefore, evaluating a wide range of different classifiers can
better reflect the genuine usefulness of the selected features.

3.3 Performance Evaluation

In this study, we focus on comparing wrapper algorithms with ensemble-based
imbalanced sampling and classification component to wrapper algorithms with
a single inductive algorithm. We refer to the first approach as the ensemble ap-
proach and the latter as the single approach. To summarise the performance
results, the AUC values obtained from each classifier using features selected
by ensemble approach and single approach are compared. If the ensemble ap-
proach yields a higher AUC value compared to the single approach, we label it
as “ensemble win”. Similarly, if the ensemble approach yields a lower AUC value
compared to the single approach, we label it as “single win”. When the AUC
values from these two approaches are equal, we obtain a “tie”. The comparison
is conducted from feature size 1 to 20.

In addition, the Friedman test [27] is applied to evaluate the performance of
each classifier. The confidence of 95% is used under the null hypothesis that the
performance of each classifier is not significantly different by using the features
selected by the ensemble approach and the single approach. The null hypothesis
is rejected if there are significant performance difference when using features
selected by ensemble approach as to single approach.

4 Results

AUC comparison of ensemble wrapper and single wrapper using greedy forward
feature selection with fbis and re0 dataset are plotted in Figure 2 and Figure 3,
respectively. As can be seen, the ensemble wrapper approach exhibited a better
performance compared to the single wrapper approach. We summarise results
in Figures 2 and 3 and the rest of the comparison across using feature sets with
size from 1 to 20 in Table 2 and Table 3 (see 3.3 for details of the summarisation
method). Specifically, Table 2 shows the comparison of the ensemble approach
and the single approach using greedy forward selection algorithm, and Table 3
shows the comparison using genetic algorithm. It is clear that across all datasets
most classifiers achieves better classifications using features selected by ensemble
approach than those selected by single approach. This implies that the ensemble
approach is more robust to high-dimensionality and highly imbalanced class
distribution. Hence, the features selected by the ensemble approach are likely to
be more useful to both the majority class and the minority class.

The greedy forward selection appears to be more sensitive to ensemble com-
ponent. In most cases, the improvements are significant. In comparison, genetic
algorithm based selection is less sensitive to the ensemble component, and most
improvements are moderate. This may attributed to their different feature se-
lection styles. That is, greedy forward selection builds the feature subset on
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Table 2. Comparison of ensemble and single approaches using greedy forward selection

fbis dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 17 17 20 14 13 15
Single Win 3 3 0 6 7 5

Friedman Test 0.0017 � 0.0017 � 7.74e-6 � 0.073 0.1797 0.0253 �
Re0 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 20 20 20 20 20 20
Single Win 0 0 0 0 0 0

Friedman Test 7.74e-6 � 7.74e-6 � 7.74e-6 � 7.74e-6 � 7.74e-6 � 7.74e-6 �
Oh5 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 12 16 6 15 13 17
Single Win 7 3 13 4 6 2

Tie 1 1 1 1 1 1
Friedman Test 0.251 0.0029 � 0.108 0.011 � 0.108 5.79e-4 �

ALL dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 15 15 15 17 15 6
Single Win 5 5 5 3 5 14

Friedman Test 0.025 � 0.025 � 0.025 � 0.0017 � 0.025 � 0.073

Oil dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 19 7 10 15 18 19
Single Win 1 13 10 5 2 1

Friedman Test 5.69e-5 � 0.179 1 0.025 � 3.46e-4 � 5.69e-5 �
� Results with significant differences (p-value lower than 0.05) using Friedman test
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Fig. 2. AUC comparison of ensemble wrapper and single wrapper using greedy forward
selection and fbis dataset. The feature size from 1 to 20 selected by ensemble and single
wrappers are evaluated by 6 different classification algorithms.
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Table 3. Comparison of ensemble and single approaches using genetic algorithm

fbis dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 16 12 16 13 11 17
Single Win 4 8 4 7 9 3

Friedman Test 0.0073 � 0.3711 0.0073 � 0.1797 0.654 0.0017 �
Re0 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 13 16 18 15 11 15
Single Win 7 4 2 5 9 5

Friedman Test 0.1797 0.0073 � 3.46e-4 � 0.025 � 0.654 0.025 �
Oh5 dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 11 12 12 14 12 11
Single Win 9 8 8 6 8 9

Friedman Test 0.654 0.3711 0.3711 0.1797 0.3711 0.654

ALL dataset
RF 3-NN 7-NN LogReg MLP ADTree

Ensemble Win 12 16 16 13 17 16
Single Win 8 4 4 7 3 4

Friedman Test 0.3711 0.0073 � 0.0073 � 0.1797 0.0017 � 0.0073 �
Oil dataset

RF 3-NN 7-NN LogReg MLP ADTree
Ensemble Win 12 15 12 13 19 15
Single Win 8 5 8 7 1 5

Friedman Test 0.3711 0.025 � 0.3711 0.179 5.69e-5 � 0.025 �
� Results with significant differences (p-value lower than 0.05) using Friedman test.
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Fig. 3. AUC comparison of ensemble wrapper and single wrapper using greedy forward
selection and re0 dataset. The feature size from 1 to 20 selected by ensemble and single
wrappers are evaluated by 6 different classification algorithms.

previously selected features. Therefore, if a good feature is selected, it will con-
tinually be used in later iterations. Whereas, the genetic algorithm tries different
size of feature subsets separately, and for each run the initiation, crossover, and
mutation operations introduces randomness to the selection procedure. It follows
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that the greedy forward selection approach is likely to aggregate the effect of the
ensemble through iterations, while the genetic algorithm approach may reduce
the effect of the ensemble due to its stochastic behaviour.

It is interesting to see that different classification algorithms performed dif-
ferently even with the same set of features. For the extreme case, in Table 2
the classification results of 7-NN on oh5 dataset and 3-NN and 7-NN on oil
dataset contradict to the rest of the classifiers. Even for classifiers with similar
comparison results, each of them may still behave differently throughout the
feature subset size of 1 to 20. For example, in Figure 2, RF shows an increasing
trend when more features are added. However, LogReg and ADTree indicate a
decreasing trend when more features are included, whereas the performance of
MLP increases first and then decreases. Note that the same sets of features and
the same evaluation dataset are used for each classification algorithm. There-
fore, it is clear that using a single classification algorithm for results evaluation
is insufficient. Instead, multiple classification algorithms should be evaluated in
order to reflect the general usefulness of the selected features.

5 Conclusion

In this study, we proposed an ensemble approach that incorporate feature selec-
tion and imbalanced data sampling in a wrapper framework. Using two search
algorithms and several high-dimensional and highly imbalanced datasets, we
demonstrated that features selected by the ensemble-based wrapper approach
are more useful than the traditional approach (i.e. using single inductive algo-
rithm) in terms of feature selection and imbalance learning. This implies that
the traditional approach that uses a single inductive algorithm for feature evalu-
ation may perform suboptimally when the dataset is of both high-dimensionality
and highly imbalanced class distribution. By designing a multiple sampling and
an ensemble feature evaluation components, we can correct the undesirable bias
and identify more useful features and/or feature subsets.
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Abstract. Complexity networks, such as social networks, biological net-
works and co-citation networks, are ubiquitous in reality. Identifying
groups from data is critical for network analysis, for it can offer deep
insights in understanding the structural properties and functions of com-
plex networks. Over the past decades, many endeavors from interdisci-
plinary fields have been attempted to identify groups from data. However,
little attention has been paid on exploring groups and their relationships
from different views. In this work, we address this issue by using canon-
ical correlation analysis (CCA) to analyze groups and their interplays
in the networks. To further improve the interpretability of results, we
solve the optimization problem with sparse learning, and then propose a
generalized framework of group discovery from heterogeneous data. This
framework enables us to find groups and explicitly model their relation-
ships from diverse views simultaneously. Extensive experimental studies
conducted on both synthetic and DBLP datasets demonstrate the effec-
tiveness of the proposed method.

Keywords: Group discovery, complexity network, canonical correlation
analysis, LASSO, Sparse learning.

1 Introduction

It is well known that everything in the universe is relevant to others and nothing
independently exists. According to different functions and properties, entities
intertwined with each other form groups, resulting in complex networks [14].
Typical examples include functional regulation models of proteins in biology
[10], trophic pathways of species in ecology [3,8], communities of people in soci-
ology [16], interlinks of web pages in World Wide Web [5], collaboration relation-
ships of authors in bibliography [11], and many others. Since complex networks
are ubiquitous in reality, network learning now gains increasing attentions from
a variety of disciplines including computer science, physics, economics, business
marketing, biology, engineering, epidemiology, social and behavioral science [4].

Exploring the structures, functions, as well as the interactions of networks is
very important, because it may provide us an insightful understanding how the
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networks work [16,4,20]. For example, identifying collaboration relationships of
scientists provides us an indication to which topics are popular and what the
research trends will be potentially studied in future [11]; uncovering functional
modules of proteins helps us understand which causes lead to certain diseases
and how the proteins are co-regularized [10]; revealing social communities of
people aids us in finding out what the interests and opinions of people are [23].

An essential yet challenging task of network learning is to discover functional
units in complex networks [4]. In literature, the functional unit is also known
as community, module, clique, cluster or coalition, depending on the specific
contexts or applications at hand [16]. These terms cover the entities only. Here we
call the functional unit as group, for the interplays between the entities have also
been taken into account. Since group discovery is helpful to analyze the network
structures and further capture knowledge about the functions and properties of
the network systems, it is not surprised that it has attracted many attentions
from different domains [20,17,19].

Over the last decades, group discovery has been extensively investigated and
dozens of discovery methods, including graph partition models, clique based
models, clustering models, modularity maximization models, and so on, have
been developed [4]. However, most of them place emphases merely on identify-
ing function units. To the best of our knowledge, the interrelations of groups,
which are very common in nature, have not been fully exploited. In some cases,
identifying the interrelations is more crucial to understand the structural and
functional properties, for it may offer us an insightful perspective to the net-
works.

Another issue is that the existing methods only take the entities with the
same type into consideration and ignore other information with different types.
Empirical studies show that the network structures in real world are complex
and often involve the entities derived from heterogeneous data sources. The
information with different types may bring benefits to explore and analyze the
complex networks if it had been taken into account in network learning.

In this paper, we present a generalized framework to explicitly address the
problems mentioned above. It adopts canonical correlation analysis (CCA) to
analyze groups and their interrelations simultaneously. It not only allows to
handle the groups with different types, but also provides an effective solution
to scale their interrelations in a quantitative manner. Furthermore, we turn the
objective function of CCA into a LASSO penalized least square problem (i.e.,
�1-norm penalty) by using complex linear algebra equivalent transformations.
Consequently, the proposed method can obtain an optimal sparse solution for
large-scale complex networks. Specifically, the contributions of this work are
twofold: 1) Our method can handle the entities from the networks with different
types, and is also extensible to the multi-view or multi-slice situations after some
revisions have been made. 2) Since our method adopts LASSO (�1-norm penalty)
to uncover groups and their interrelations, it has sparse property and the final
results can be interpreted easily.
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The rest of this paper is organized as follows. Section 2 briefly recalls previous
related work. We presents the basic concept of CCA in Section 3. Section 4 pro-
poses a new group discovery method by using sparse learning. The experimental
results and discussions on artificial and real world networks have been provided
in Section 5, followed by the conclusions in Section 6.

2 Related Work

Group discovery is a hot topic in network learning. Over the past years, a consid-
erable number of discovery methods have been witnessed. Here only the latest
methods will be discussed briefly. Interested readers can refer to good survey
literature (see e.g., [4]) and references therein to get more information.

Since complex networks are often represented as graphs, graph analysis, which
has solid mathematical and theoretical fundamentals, has been extensively inves-
tigated in network learning. This kind of discovery methods apply graph theory
to explore groups, which tightly connected with each other by edges [4]. Typical
examples of such kind include clique-based, graph partition-based, ratio cut-
based, normalized cut-based and max-flow-min-cut detection approaches. Note
that graph partitioning is a NP-hard problem. Moreover, it is also need the
number of groups and even their sizes, which are usually unknown in advance.

Clustering is another solution for group discovery. The clustering techniques,
such as hierarchical clustering, partitional clustering and spectral clustering,
have been taken to identify groups from data. For instance, Chi et al. [2] dis-
closed communities and evaluated their evolution process by using the spectral
clustering, which usually partitions nodes in a graph into clusters in terms of
the eigenvectors of its matrix representation. Like the graph-based methods, the
limitation of clustering is its relatively high computational cost, and the number
of clusters should also be pre-specified in some situations.

Modularity is widely used as a stopping measure for clustering, resulting in the
prevalence of the modularity maximization-based community discovery meth-
ods [13]. The great success of this framework relies on the modularity assump-
tion, that is, the higher a modularity is, the better its corresponding partition
is. This implies that the partition with maximum modularity on a given graph
is the best group. As a typical example, Jiang and McQuay [7] exploited modu-
larity Laplacian to discover communities by optimizing the modularity functions
with additional nonnegative constraint. However, the modularity optimization
is also NP-complete. Additionally, in real world the assumption of modularity
maximum is not always true [4].

Statistical inference is a powerful tool to deduce properties of data in ma-
chine learning, and has also been used to model and analyze graph topological
structures. The discovery methods based on block modeling, Bayesian inference,
latent Dirichlet allocation and model selection belong to this kind of representa-
tive cases. For example, Yang et al. [22] estimated parameters with a Bayesian
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treatment in modeling networks and then developed a dynamic stochastic block
model to find communities and their evolution in dynamic situations.

More recent studies of group discovery focus on exploring the evolution or
behaviors of groups from the multi-slice or multi-dimension prospective. The
representative examples of such framework have been illustrated in [14,22,12,18].
Pons and Latapy [15] integrated the communities discovered by different meth-
ods in a post-processing way. Tang et al. [20] exploited four integration strategies,
i.e., network interactions, utility functions, structural features and community
partitions, to fuse the communities derived from multi-dimension sources. Lan-
cichinetti et al. [9] took edge directions, edge weights, overlapping communities,
hierarchies and community dynamics into account to identify the significant
communities.

It is worthy to notice that most of discovery algorithms mentioned above can
not handle data from heterogeneous sources and the interrelations of groups. The
networks in reality, however, often encounter groups with different types. Thus
identifying groups with different types and their interrelations is important, be-
cause it may bring more information and provide us a deep insight to understand
the working mechanisms of the networks. Recently, author-topic model (ATM)
has gained much attraction in information retrieval [1]. It mainly adopts graph-
based (e.g., LDA and pLDA), semantic-based (e.g., PCA, LSI and pLSI) or their
extensions with other techniques (e.g., Gibbs sampling and HMM) to reveal the
groups of authors and topics [1]. However, ATM only qualitatively describes the
relationships of groups. As far as we are aware, little attention has been put on
measuring the interrelations of groups in a quantitative way.

3 Canonical Correlation Analysis

Canonical correlation analysis (for short, CCA) proposed by Hotelling is a well-
known multivariate technique [6]. Let X = {x1, ..., xp} and Y = {y1, ..., yq} be
two sets of variables, and both of them are centralized, i.e.,

∑p
i=1 xi = 0 and∑q

i=1 yi = 0. CCA aims at obtaining two weighted linear combinations ωX and
ωY of X and Y , respectively, such that their correlation is maximal, i.e.,

ρ(ωX , ωY ) = max
< ωX , ωY >

‖ωX‖‖ωY ‖ , (1)

where ωX = Xu and ωY = Y v are canonical variates with the weight vectors
u′ = (u1, ..., up) and v′ = (v1, ..., vq).

The intuitive meanings of CCA is that it projects two sets of variables into a
lower-dimensional space in which they are maximally correlated. Since solving
the maximal value of ρ(ωX , ωY ) is invariant to the scaling of u and v either
together or independently, Eq. 1 can be rewritten as follows:

argmaxu,v u
′X ′Y v

s.t. u′X ′Xu = 1, v′Y ′Y v = 1.
(2)

For the optimization problem in Eq. 2, one of frequently used solutions is to for-
mulate it as a Lagrangian optimization form. Due to the limitation of space, here
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we will not provide the details of inferences step by step. Eventually, the CCA
formulation seeks for solving the eigenvectors and eigenvalues of the following
generalized eigenvalue problem:

X ′Y (Y ′Y )−1Y ′Xu = λX ′Xu
Y ′X(X ′X)−1X ′Y v = λY ′Y v

(3)

where λ is the eigenvalue, and u and v are its corresponding eigenvectors with
respect to X and Y , respectively. If X ′X is invertible (i.e., non-singular), the
first formula of Eq. 3 can be further formulated as a standard eigenvalue problem
of (X ′X)−1X ′Y (Y ′Y )−1Y ′Xu = λu. Otherwise, other strategies, such as gen-
eralized inverses and regularization, should be considered to obtain the inverse
of X ′X or Y ′Y .

4 Group Relationship Discovery

4.1 Problem Statement

Assume X = {x1, x2, ..., xp} ∈ -n×p and Y = {y1, y2, ..., yq} ∈ -n×q are two sets
of variables (or features) representing n instances (or samples), where xi∩yj = ∅
for i = 1, ..., p and j = 1, ..., q. They can be treated as the n instances observed
from two different perspectives.

In this paper, the purpose of group discovery is twofold. The first one is, for
each set of variables, e.g., X , to identify a set of groups GX = {GXi|GXi ⊆
X, i = 1, ..., k}, such that the elements are highly relative to each other in the
same group GXi, while irrelative to those in other groups GXj (i �= j). Similar
operations can be performed on Y to obtain GY . The second task of this paper
is to scale the relationships between groups derived from different types, e.g.,
GXi ∈ GX and GY j ∈ GY , in a quantitative manner.

Since the group interrelations are often hidden and implicitly observed through
a large number of variables, it is not appropriate to evaluate correlations be-
tween pairs of variables individually, or simply calculate the accumulative total
of dependencies between variables from groups with different views. A desirable
solution is to take the groups as a whole, rather than their individual variables,
into account in extracting the group interrelations.

4.2 Obtaining the First Group

Given two sets of variables X and Y , CCA can effectively obtain their canon-
ical variates such that the correlations between them are maximal. However,
one of the CCA problems is that the computational cost of matrix decomposi-
tion is relatively high, especially when the quantity of variables exceeds tens of
thousands. The non-singular property of matrix is the second issue that should
also be taken into consideration. Here we go further and efficiently solve it via
�1-norm regularization.

For the Eq. 2, we have the following property:
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Property 1. The optimization problem of CCA (i.e., Eq. 2) is equivalent to a
distance minimization problem between two matrices, i.e.,

argminu,v f(u, v) = ‖Xu− Y v‖2
s.t. u′X ′Xu = 1, v′Y ′Y v = 1.

(4)

One may observe that this formulation is a least square if either Xu or Y v is
fixed, i.e.,

f(u) = ‖Xu− α‖2
f(v) = ‖β − Y v‖2 (5)

To solve this optimization problem above, Partial Least Squares (PLS) seems
to be an effective technique. The off-the-shelf method of PLS performs a re-
gression operation on each formulation within Eq. 5 alternately, and ultimately
obtains u and v. However, a possible drawback of PLS is that interpreting the
derived results becomes impossible, since u and v are weighted combinations of
all available variables in X and Y , respectively.

The interpretability of the obtained results is very important for the practi-
cal applications. It directly affects users understanding data, such as providing
evidences for decision-makers, boosting product promotion for businessmen, un-
covering pathogenies of diseases for doctors. An effective strategy is to make the
results sparse via variable selection.

We resort to a least absolute shrinkage and selection operator (for short,
LASSO) penalized model [21] to fulfill the purpose of variable selection. The un-
derlying is that LASSO enables us estimating the objective function and achiev-
ing variable selection simultaneously in one stage, where variables will be selected
by assigning zeros to the weights of variables with very small coefficients. Specif-
ically, the first objective function f(u) in Eq. 5 has been transformed to the
following form after a �1-norm constraint has been performed on u.

f(u) = ‖Xu− α‖2 + λu
∑

|ui| (6)

where λu (λu ≥ 0) is a tuning constant for u. Under this constraint, the weights
of some variables become zero if λu is enough small. Specifically, each weight
coefficient ui decreases after comparing with a threshold. If ui is lower than the
threshold it will be set to zero, otherwise it will be modified or preserved. Thus
the purpose of sparse solution can be achieved. Given λu, ui is determined via
the soft-thresholding strategy, i.e.,

ui = sgn((α′X)i)(|(α′X)i| − λu)+ (7)

where sgn(z) is the sign function of z, and (z)+ is defined to z if z > 0 and
0 if z ≤ 0. Similarly, f(v) can also be handled by performing another �1-norm
penalty regularization λv.

After u and v have been obtained, the new coordinate systems of X and Y are
formed and represented as Xu and Y v, respectively. Since u and v are sparse,
Xu and Y v have good interpretability and represent the first group derived
from X and Y , respectively. More importantly, this pair of groups has maximal
correlation, which can be measured in a quantitative way, i.e., ρ =< Xu, Y v >,
after normalized.



562 H. Liu et al.

4.3 Obtaining the Rest Groups

Assume the same instances are observed from two different views. Obtaining only
one group from data is not enough, since it is unlikely to describe all relationships
of variables, especially in high-dimensional settings. Therefore, additional groups
should also be uncovered from data. To untie this knot, an alternative solution
is to minimize the criterion of discovering the first group (i.e., Eq. 4) repeatedly,
each time on the residual variables obtained by wiping off the information of the
groups found previously.

To achieve the goal, a trick is available, where the original data will be updated
according to the information of the obtained groups. The central idea is similar
to the whitening step in image processing, which has often been used to lessen
dependencies or correlations of images. Specifically, after the first group Xu has
been disclosed, the original data X is extended as X ′

n = [X ′ u√
ρ ], where ρ is

the canonical correlation. This extension aims to lessen the effect of Xu, so as
not to frustrate the process of discovering other groups in succession. Y can also
be handled in a similar way. Indeed, this extension process is lossless, because
the original and extension matrices have the same canonical variates. Under the
context of Xn (or Yn), we can obtain its first canonical variate Xnu2 (or Ynv2),
which actually is the second group of X (or Y ). Akin to u2, other groups can
be identified by updating X continuously, until the extension matrix contain no
more useful information.

4.4 Group Discovery Algorithm

Based on the analysis above, we present a new group discovery algorithm shown
as Alg. 1. It consists of two main loops, one nested within the other. The inner
iteration aims to identify one group, whereas the outer loop obtains all groups
hidden behind data.

The algorithm starts at initializing relative parameters, such as normalizing
X and Y . In the outer loop, the initial weights of variables vk (or uk) is set,
guaranteeing the inner iteration convergence. For simplicity, here we take the
first right singular vector of Yk as the initial value of vk. Once the vector has been
assign an initial value, the inner iteration can solve the optimization problem
of CCA by using �1-norm penalty. The process is repeated until the residual
matrices have no more useful information, or k is larger than a pre-specified
threshold K.

5 Simulation Experiments

5.1 Experiments on Synthetic Datasets

The synthetic data consists of two datasets. Each one represents the same 100
samples observed from different views. The first dataset X has 60 variables
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Algorithm 1. Identifying groups and their relationships

1). Initialize parameters, e.g., X1=X and Y1=Y .

2). For k = 1, ..., K:

2.1) Initialize v and normalize it.

2.2) Repeat until convergence

2.2.1) Obtain u by virtue of Eq. 7.

2.2.2) Normalize u as u = u
‖u‖.

2.2.3) Obtain v by virtue of Eq. 7.

2.2.4) Normalize v as v = v
‖v‖.

2.3) Estimate the correlation ρ(Xu, Y v).
2.4) Update the residual matrices Xk and Yk.

{x1, ..., x60} that belongs to six groups GX = {xg1, ..., xg6} with 10 variables
in each group. The second dataset Y represents the same samples from another
view. It contains 150 variables {y1, ..., y150} also organized into six groups GY =
{yg1, ..., yg6} with the mean number of variables. Links between GX and GY are
generated as follows. For each sample in each dataset, it is randomly assigned to
one of groups and the probabilities of variables corresponding to the group are
larger than 0.2. For other groups, the values are less than 0.1.

The experimental results on the artificial datasets are presented in Table 1,
where |xg| denotes the number of variables contained within the i-th group xgi.
From this table, we know that the proposed method has excellent performance.
It not only identified all groups from both datasets, but also correctly measured
the interrelations between them. Additionally, the correlations of the groups
were also simultaneously calculated in a quantitative way after the groups were
obtained. For example, the group xg5 (the 6th line) obtained from X was ex-
actly matched with the group yg5 from Y , and their correlation coefficient was
0.832. From the perspective of individual groups, the performance of the pro-

Table 1. Experimental results on the synthetic data

No. Group pair |yg| |xg| Correlation coefficient

1 (xg1, yg1) 23 9 0.950
2 (xg2, yg2) 23 9 0.879
3 (xg6, yg6) 25 10 0.877
4 (xg4, yg4) 24 10 0.870
5 (xg3, yg3) 24 10 0.841
6 (xg5, yg5) 25 10 0.832

posed method is also quite well (see the |xg| and |yg| columns in Table 1). It
successfully identified all groups from the artificial data. More importantly, the
disclosed groups contain the right members, and are subsets of the corresponding
assumption ones. For instance, the xg2 group is a subset of the assumption one
in X , for it contains all members, i.e., x21, ..., x30, except x22. Besides, the size
of each disclosed group also approaches that of the original one.
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To further demonstrate the effectiveness, we calculated the similarity of the
disclosed results to the assumption ones. Since the distributions of groups are
known in advance, we took normalized mutual information (NMI) and Jaccard
coefficient as our measurements in the simulation experiments. In our exper-
iments, the values of NMI of the discovered groups XG = {xg1, .., xg6} and
Y G = {yg1, ..., yg6} to the assumption ones GX and GY are 0.992 and 0.991,
respectively. Correspondingly, the Jaccard coefficients are 0.967 and 0.96, respec-
tively. These factors indicate that the proposed method is good at identifying
groups from data and the groups identified by our method are quite similar the
assumption ones.

5.2 Experiments on DBLP Datasets

A typical application of group discovery is science bibliography, where the groups
of keywords and authors are quite ubiquitous. Here we also carried out ex-
periments on the DBLP database [19]. For the convenience of discussion, we
downloaded the DBLP database1 and extracted 1071 papers published in five
international conferences from 2000 to 2004. In our experiment, the papers were
organized into two datasets, where the first one A involved 2022 authors, while
the second one T contained 1065 terms extracted from paper titles.

After performing the proposed method on A and T , we obtained 143 groups
of authors GA and terms GT , where the authors in the ith group GAi are as-
sociated with the terms within the ith group GTi. Table 2 lists 10 over 143
disclosed groups, where CC denotes the correlation coefficient of GAi to GTi,
while #P,#A and #T indicate how many papers, authors and terms were in-
volved in each group. As an example, the 8th group of authors GA8 (GT8) covers
two papers involving 7 authors (7 terms). The topic of this pair mainly concerns
semantic information by parsing structures of texts.

Table 2. Ten groups discovered from the DBLP corpus

No CC #P #A #T Authors Terms

Gp1 0.999 3 5 11 S Donoho, S Zhu, ... option, markets, ...
Gp2 0.998 3 5 9 D Cau, S Acid, ... effects, causality, ...
Gp4 0.994 3 6 6 C Borgelt, K Lou, ... expectation, fuzzy,...
Gp5 0.993 4 6 5 ZW Ras, R Wong, ... profit, rules, ...
Gp6 0.993 2 4 6 S Zhang, Y Zhu, ... elastic, burst, ...
Gp8 0.991 2 7 7 S Pradhan, L Lloyd, ... structure, parsing, ...
Gp11 0.990 2 3 4 M Sauban, BF White,... profiling, document, ...
Gp25 0.986 2 3 5 J Adibi, E Oja,... hidden, markov, ...
Gp38 0.979 3 3 6 PW Eklund, G Stumme,... discovery, ontologies, ...
Gp107 0.946 3 9 6 P Kim, J Ye, ... media, stream, ...

1 http://www.public.asu.edu/~{}ltang9/data/dblp.tar.gz

http://www.public.asu.edu/~{}ltang9/data/dblp.tar.gz
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An interesting discovery made by the proposed method is that co-authors were
not always be included into the same author group. For instance, the three papers
in the 107th author group had 10 authors totally, while only 9 was included
within this author group. The missing co-author is M. Vazirgiannis. In fact,
M. Vazirgiannis published more papers about clustering than semantics. This
means that the results identified by our method rely on keywords in each group
on the whole, rather simply collect co-occurrence information.

The interrelations between GAi and GTi were also estimated by the proposed
method and illustrated as a dot graph (see Fig. 1), where the x-axis denotes
the group pairs Gpi = (GAi, GTi). The large values of correlation coefficients
elucidate the effectiveness of our method, for in each group pair the disclosed
groups with different types were tightly related with each other. Among the 143
coefficients, only six of them were lower than 0.90, whereas the minimal one was
still larger than 0.81. This, however, is reasonable for the last six group pairs
were identified upon the residual information the previously discovered groups
left and covered more authors and terms.

Fig. 1. The correlation coefficients of group pairs

Identifying hot topics is one of major tasks extensively studied in the field of
author-topic models. This goal can also be achieved by our method. We obtained
the hot topics in terms of the quantities of papers covered by the group pairs
for the sake of simplification. Fig. 2 provides us an intuitive observation about
the popularity of topics during the five years. From this graph, one may easily
observe what topics are hot during the past years. For instance, Gp97 followed
by Gp140 and Gp135 was the most popular topic comprising 15 research papers.
It concerned the study of category, mining and relationship, and included six
authors, e.g., P Yu, R Hilderman, H Hamilton, etc. Another interesting fact is
that identifying the groups and their relationships can also offer some insights
into the research trends and the collaboration relationships between different
research teams if the latest information is available.
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Fig. 2. The cloud graph of groups

6 Conclusions

Generally, additional information from heterogeneous sources is helpful to ana-
lyze and understand network structures and functions. In this paper, we propose
a statistical learning framework to discover groups and capture their interrela-
tions from different data sources. The central idea of our method is to formulate
group discovery as an optimization problem of CCA, and then extend it to a
LASSO problem to achieve the sparse purpose. Within this framework, group
discovery and their relationship measurement are turned out to be easily fulfilled
in one stage. Simulation experiments were conducted on both carefully designed
synthetic datasets and the DBLP corpus. The experimental results show that
the proposed method tends to identify accurate group information and reveal
useful insights in a given network from two different views.
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Abstract. Multiplex document networks have multiple types of links
such as citation and coauthor links between scientific papers. Inferring
thematic topics from multiplex document networks requires quantifying
and balancing the influence from different types of links. It is therefore a
problem of considerable interest and represents significant challenges. To
address this problem, we propose a novel multiplex topic model (MTM)
that represents the topic influence from different types of links using
a factor graph. To estimate parameters in MTM, we also develop an
approximate inference algorithm, multiplex belief propagation (MBP),
which can estimate the influence weights of multiple links automatically
at each learning iteration. Experimental results confirm the superiority
of MTM in two applications, document clustering and link prediction,
when compared with several state-of-the-art link-based topic models.

Keywords: Multiplex topic models, belief propagation, factor graph.

1 Introduction

Documents contain not only content information but also relational information
such as coauthors, citations and geographic locations, leading to themultiplex net-
work structures. For instance, the bibliographic field of a scientific paper has a list
of entries: authors, venues, time, and references, representing different types of re-
lations between papers. Citation and coauthor links exist widely in both scientific
papers and web pages, and thus attract considerable interest in the topic model-
ing community [1–5]. Intuitively, the papers cited each other, written by the same
author, or published in the same venue, will have stronger topic correlations. Pre-
vious topic models consider only equal-weightedmultiplex structures in document
networks, i.e., citation and coauthor links have been treated equally in topic for-
mation. However, in real-world applications it is obvious that different links may
play different roles in topic modeling. For example, two authors who often col-
laborate on some papers tend to be interested in the same topics, while the cited
paper may be from an interdisciplinary area with a quite different topic. How to
quantify and balance different types of links in document networks for a better
topic modeling performance still remains a challenging and unsolved problem.

J. Pei et al. (Eds.): PAKDD 2013, Part I, LNAI 7818, pp. 568–582, 2013.
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In this paper, we propose a novel multiplex topic model (MTM) for multi-
plex document networks. MTM uses a factor graph [6, 7] to combine multiple
types of links into the topic modeling process. The factor graph provides a nat-
ural graphical description that factorizes the joint probability of MTM into a
product of local functions. The topic label for each word is represented as the
variable node in the factor graph, and different links between documents can
be encoded by the factor nodes with parameterized functions to encourage or
penalize specific topic labeling configurations through links. To maximize the
joint probability of MTM, we develop a multiplex belief propagation (MBP) al-
gorithm for approximate inference and parameter estimation. MBP is a message
passing algorithm [8] based on multiple links. We quantify and balance the link
influence by consistency of messages passed through the link. Intuitively, if the
passed messages are more consistent, they will influence the topic labeling config-
uration more through the link. To summarize, the methodological contributions
of our work are: (1) MTM that incorporates different types of links using the
factor graph, (2) MBP that maximizes the joint probability of MTM by passing
messages through multiple links, and (3) balance of link influences by the consis-
tency of messages passed through links. Experimental results confirm that MTM
has the superior performance in two applications, document clustering and link
prediction, when compared with several state-of-the-art link-based topic models
including author-topic models (ATM) [1], relational topic models (RTM) [2] and
multirelational topic models (MRTM) [3].

2 Related Work

As one of the simplest topic models, latent Dirichlet allocation (LDA) [9] has
achieved great successes in text analysis due to its ability in reducing the di-
mensionality of text data. Since LDA ignores multiple types of links in multi-
plex document networks, there have been many link-based topic models that
fall broadly into two categories. The first is to build generative models that
generate both content and link such as ATM [1], RTM [2] and topic-link LDA
(TLLDA) [4]. ATM and RTM are typical single-link topic models for coauthor
and citation links, respectively. Neither of them combines coauthor and citation
links together. TLLDA generates citation links by incorporating the coauthor
link contribution. But it does not clearly show how these links mutually influ-
ence each other. The second focuses on depicting topic influences between doc-
uments through links. For example, NetPLSA [10] regularizes the topic labeling
configuration with the citation links. Furthermore, TMBP [11] develops a joint
regularization framework to combine the multiplex network structure with topic
modeling. MRTM [3] and iTopic model [5] describe multiple dependencies be-
tween documents within the Markov random field (MRF) [8] framework. MRTM
combines both coauthor and citation links in either the parallel or the cascade
manner. iTopic model transforms multiple types of links into one single type,
so that it cannot directly deal with multiplex document networks. Note that
most previous studies face the same unsolved problem: how to automatically
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determine the influence of different types of links for a better topic modeling
performance? This motivates the MTM model in the following sections.

3 Multiplex Topic Models

In this section, we will address three questions: 1) how to represent the joint
probability of MTM by a factor graph, 2) how to perform approximate inference
based on the factor graph, and 3) how to learn the weights of different types of
links.

3.1 Factor Graph Representation for MTM

Probabilistic topic modeling can be interpreted as a labeling problem [7]. LDA [9]
assigns a set of thematic topic labels zW×D = {zkw,d} to explain the observed non-
zero elements in the document-word matrix xW×D = {xw,d}, where the notation
1 ≤ k ≤ K is the topic index, the notations 1 ≤ w ≤ W and 1 ≤ d ≤ D are
the word index in the vocabulary and the document index in corpus. The topic
label satisfies

∑
k z

k
w,d = 1 and zkw,d = {0, 1}. The non-zero element xw,d �= 0

denotes the number of word counts at index {w, d}. The document-specific topic
proportion θ = {θd(k)} generates the topic label zkw,d, and the topic-specific
multinomial distribution φ = {φw(k)} generates the word token w forming the
word counts xw,d. In this paper, the Dirichlet hyperparameters α, β in LDA are
assumed to be fixed for simplicity [12]. The best topic labeling configuration z∗ is
inferred by maximizing the joint probability p(x, z|θ,φ;α, β) in terms of z. Note
that LDA does not consider the multiplex network structure that influences the
topic labeling configuration z.

To address this problem, MTM takes the observed multiplex network struc-
ture G into account. So, the objective of MTM turns to maximizing the joint
probability p(x,G, z|θ,φ;α, β). Clearly, the best topic labeling configuration z∗

depends not only on x but G as well. We assume that x and G are condi-
tionally independent with regard to z. According to the Bayes’ rule and LDA
assumption [9], this joint probability can be decomposed into three parts:

p(x,G, z|θ,φ;α, β) = p(x|z,φ;β)p(z|θ;α)p(G|z), (1)

where the first two parts are standard LDA objective function [7], and the third
part p(G|z) shows that the multiplex document network structure is conditioned
only on z for simplicity. Unlike LDA, MTM (1) explains how the content x and
the link G influence the topic labeling configuration z.

Using the Multinomial-Dirichlet conjugacy [13], we can integrate out {θ,φ}
in (1) and obtain the objective function in the collapsed z space,

p(x,G, z;α, β) = p(x, z;α, β)p(G|z). (2)
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Fig. 1. (A) Factor graph representation forMTM, (B)multiplexmessage passing process

The first term of (2) is the joint probability of LDA [14],

p(x, z;α, β) ∝
∏
d

∏
k

Γ

(∑
w

xw,dz
k
w,d + α

)
×

∏
w

∏
k

Γ

(∑
d

xw,dz
k
w,d + β

)
Γ

(∑
w,d

xw,dz
k
w,d +Wβ

)−1

, (3)

where Γ (·) is the gamma function. The second term of (2) is still the likelihood
function of G given the topic labeling configuration z.

The collapsed LDA in (3) can be represented by a factor graph in Fig. 1A
without looking at the factors ηc and δa. In the collapsed space {z, α, β}, the
factors θd and φw are denoted by squares, and their connected variables zw,d

are denoted by circles. The factor θd connects the neighboring topic labels
{zkw,d, z

k
−w,d} at different word indices within the same document d. We see that

the factor θd describes the dependency between zkw,d and zk−w,d in the first term

Γ (
∑

w xw,dz
k
w,d +α) of (3). The factor φw connects the neighboring topic labels

{zkw,d, z
k
w,−d} at the same word index w but in different documents. We see that

the factor φw describes the dependency between zkw,d and zkw,−d in the second

term Γ (
∑

d xw,dz
k
w,d+β) of (3). Since the third term Γ (

∑
w,d xw,dz

k
w,d+Wβ)−1

of (3) is a normalization factor in terms of k [7], we do not explicitly connect φw

with all hidden variables zk for a better illustration. The hyperparameters {α, β}
can be viewed as pseudo counts having the same layer with hidden variables z [7].

The second part p(G|z) of (2) is the likelihood function of the topic labeling
configuration under the constraints of multiple links. Without loss of generality,
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we consider two types of links in this paper: citation and coauthor links, i.e.,
G = {c, a}. Thus, we can re-write p(G|z) as

p(G|z) =
∏
c

p(c|zc)
∏

a∈Ad

p(a|zAd
), (4)

where zc is a pair of topic labeling configurations {z·,d, z·,dc} connected by the
citation link c, and zAd

is the topic labeling configuration of all documents
written by the coauthors a ∈ Ad of the document d. The notations 1 ≤ c ≤ C and
1 ≤ a ≤ A denote citation link and author indices in corpus. Eq. (4) shows that
each citation link c is generated by the pairwise topic configurations of two cited
documents zc, while each author a is conditioned on the topic configurations
from all coauthors zAd

in the document d. As a result, Eq. (4) describes the
multiplex document network structure in terms of citation and coauthor links. In
the next section, we shall design the citation likelihood as a function of similarity
between two linked documents, and design the coauthor likelihood as a function
of similarity among coauthor topic proportions.

Incorporating (4), we can represent the complete MTM by the factor graph
as shown in Fig. 1A. The factors ηc and δa denote the citation and coauthor
links, respectively. For example, the factor ηc connects topic labels z·,1 and z·,d
on different word indices if the document pair {1, d} has a citation link, and
the factor δa connects topic labels z·,d and z·,D on different word indices if the
document pair {d,D} has the same author a. From Fig. 1A, we see that MTM
assigns a set of thematic topic labels, z = {zkw,d}, to explain the nonzero el-
ements in the document-word matrix x = {xw,d} by taking multiple types of
links into consideration. The factor θd connects topic labels z·,d on different
word indices within the same document d, while the factor φw connects topic
labels zw,· on the same word index w but in different documents. Through four
types of factor nodes {θd, φw, ηc, δa}, the topic label zw,d depends on its neigh-
bors {z−w,d, zw,−d, zc, zAd

}. The notations −w and −d represent all word and
document indices except for w and d. Because the factor graph Fig. 1A contains
loops, we usually can make only approximate inference for the conditional pos-
terior probability p(zkw,d = 1|z−w,d, zw,−d, zc, zAa), referred to as the message.
In the next subsection, we propose a novel MBP algorithm for passing messages
over the factor graph Fig. 1A, which maximizes the joint probability (2) in the
collapsed space.

3.2 Multiplex Belief Propagation

To maximize the objective (2) with hidden variables z, we often use the itera-
tive expectation-maximization (EM) algorithm [8]. Fortunately, the factor graph
representation in Fig. 1A facilitates a special EM algorithm called MBP for ap-
proximate inference and parameter estimation. There are two important steps
in MBP within the EM framework. In the E-step, MBP infers the conditional
posterior probability called message μw,d(k) = p(zkw,d = 1|z−w,d, zw,−d, zc, zAd

).

The message is a K-tuple vector satisfying 0 ≤ μw,d(k) ≤ 1,
∑K

k=1 μw,d(k) = 1.
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In the M-step, MBP uses the messages to update parameters in MTM, including
the document-specific topic proportions θ and topic-specific multinomial param-
eters φ. These two steps repeat for several iterations until convergence.

Fig. 1B shows the message passing process based on the factor graph. Mes-
sages are passed from factor nodes to variables, and the message μw,d(k) is
influenced by the four types of messages: μηc→zw,d

(k), μθd→zw,d
(k), μφw→zw,d

(k)
and μδa→zw,d

(k). The factors θd, φw and δa are parameterized functions, and
their values can be estimated using EM algorithm. The message μθd→zw,d

(k) is
from the neighboring words in the same document d by the factor θd, implying
that different words in the same document tend to have similar topic labels. The
message μφw→zw,d

(k) is associated with the messages from the same word in
different documents, which indicates that the same word in different documents
are likely to be assigned the same topic label. The message μηc→zw,d

(k) receives
the messages from all cited documents from the factor node ηc, which encour-
ages citing and cited documents to have similar topics. The message μδa→zw,d

(k)
is from the neighboring words written by the same author a, which encourages
topic smoothness among topic labels zw,d attached to the author a. Generally,
a document d has multiple coauthors a ∈ Ad. So, we sum and pass all messages
from coauthors attached to the document d, i.e.,

∑
a∈Ad

μδa→zw,d
(k), accumu-

lating the influence from all coauthors. Note that the normalization factor in (3)
prevents all words from having the same topic label, which forms different the-
matic topic groups.

In the E-step, according to the standard sum-product algorithm [6, 8], the
message μw,d(k) is proportional to the product of all incoming messages from
factors in Fig. 1B,

μw,d(k) ∝ μθd→zw,d
(k)× μφw→zw,d

(k)× μηc→zw,d
(k)×

∑
a∈Ad

μδa→zw,d
(k), (5)

However, in practice, the direct product operation cannot balance the messages
from different sources. For example, the message μθd→zw,d

(k) is from the neigh-
boring words within the same document d, the message μηc→zw,d

(k) is from all
cited documents, and the message μδa→zw,d

(k) is from the words in different doc-
uments written by the same author a. If we use the product of these three types
of messages, we cannot distinguish which one influences more on the topic label
zw,d. To quantify and balance different types of messages, we use the weighted
sum of the three types of message,

μw,d(k) ∝
[
λdμθd→zw,d

(k) + λcμηc→zw,d
(k) (6)

+ λa
∑
a∈Ad

μδa→zw,d
(k)

]
× μφw→zw,d

(k),

where λd, λc, λa ∈ [0, 1], λd+λc+λa = 1 are the weights to balance the three mes-
sages μθd→zw,d

(k), μηc→zw,d
(k) and μδa→zw,d

(k). To infer the message μw,d(k),
we have to determine the weight vector λ = {λd, λc, λa} and compute the four
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messages sending to the variable node zw,d from its connected factor nodes. If
λc = λa = 0, Eq. (6) reduces to the following message update equation,

μw,d(k) ∝ μθd→zw,d
(k)× μφw→zw,d

(k), (7)

which is the message passing algorithm for LDA [7]. Comparing (6) with (7),
we find that MTM is a natural extension of LDA by considering multiplex doc-
ument structure G = {c, a}. We shall discuss how to automatically learn the
weight vector λ to achieve the desired topic modeling performance in the next
subsection.

Eq. (6) transforms the standard sum-product [6] to the sum-sum message
update equation. In practice, such a transformation often works because the
weighted sum is a widely used method to combine different sources of infor-
mation [15]. Eq. (6) also follows our intuition on topic modeling. The message
μθd→zw,d

(k) reflects the content information from the document d, the message
μηc→zw,d

(k) encodes the citation information from cited documents, and the mes-
sage

∑
a∈Ad

μδa→zw,d
(k) is from documents written by authros/coauthors. Since

the message μφw→zw,d
(k) is vocabulary word-specific rather than document-

specific, it does not need to have a balancing weight as the above document-level
messages. Therefore, we still multiply μφw→zw,d

(k) by the weighted messages as
the standard sum-product algorithm.

Following [7], the messages from factors {θd, φw} to variables are the normal-
ized sum of all incoming messages from the neighboring variables.

μθd→zw,d
(k) = fθd

(
μ−w,d(k) + α

)
, (8)

μφw→zw,d
(k) = fφw

(
μw,−d(k) + β

)
, (9)

where μ−w,d(k) =
∑

−w xw,dμw,d(k), μw,−d(k) =
∑

−d xw,dμw,d(k), fθd and fφw

are the factor functions that encourage or penalize the incoming messages. Based
on the topic smoothness prior, we follow [7] and design fθd and fφw as follows:
fθd = 1/[

∑
k[μ−w,d(k) + α]], fφw = 1/[

∑
w[μw,−d(k) + β]].

In Fig. 1A, the citation link c connects a document pair {d, dc}, and the factor
ηc connects word topic labels z·,d and z·,dc . We assume that the cited documents
are more likely to have similar topics, and use the similarity matrix L(d, dc) to
encourage similar topics. The similarity matrix is built using the standard cosine
similarity between two vectors x·,d and x·,dc . The higher similarity L(d, dc) the
more influence of the passed message. Note that L is a pre-computed similarity
matrix as one of inputs for the MBP algorithm. The message μηc→zw,d

(k) receives
all the incoming message sending to the factor ηc from the variable node z·,dc ,
which can be calculated as follows,

μηc→zw,d
(k) =

∑
dc
L(d, dc)μ·,dc(k)∑
k

∑
dc
L(d, dc)

, (10)

where the denominator is a normalization function in terms of k.
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Fig. 1A shows that coauthor links can be also encoded into the factor graph.
For example, the document pair {d, da} is connected by the author index a. The
factor δa connects the documents written by the same author, which in turn
indicates that the research expertise of an author could be characterized by the
document topics. We assume that documents written by the same author are
more correlated than other documents, so we design the factor function fδa as
follows,

fδa =

∑
d,da∈Da

μ·,d ◦ μ·,da

|d, da ∈ Da|
, (11)

where the notation ◦ denotes the Hadamard (element-wise) product [2] between
two vectors, Da is a set of documents that are associated with author a, |d, da ∈
Da| indicates the total number of document pairs connected with the author
a. The Hadamard product captures similarity between topic proportions of the
connected documents with the author a. Consequently, Eq. (11) is the average
Hadamard product of all pairs of documents connected with the author a, which
encourages that documents written by the same author tend to have similar
topic proportions. Based on (11), the message from factor δa is calculated as
follows,

μδa→zw,d
(k) = fδa

∑
da∈Da\d

μ·,da
. (12)

where da ∈ Da\d denotes all connected documents with the author a except the
current document d in Fig. 1A.

In (8),(9),(10) and (12), we have shown how to calculate the four types of
messages from factors to variables in Fig. 1B. Then, we update the message
μw,d(k) using (6). Note that we have to estimate the weight vector λ to balance
different sources of incoming messages.

In the M-setup, we estimate the parameters θd and φw based on the inferred
messages. To estimate parameters θ and φ, we follow [7],

θd(k) =
μ·,d(k) + α∑
k[μ·,d(k) + α]

, (13)

φw(k) =
μw,·(k) + β∑
w[μw,·(k) + β]

, (14)

which are actually the normalized sum of messages flowing to factors θd and φw .
Similar to the document-specific proportion θd, we can view the factor δa as the
author-specific topic proportion,

δa(k) =

∑
da∈Da

μ·,da
(k)

|Da|
, (15)

The underlying intuition behind the factor δa is that the topic proportion of
each author is determined by the average topic proportions of his/her written
documents.
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3.3 Learning Link Weights

Learning link weights is a challenging problem because different links play dif-
ferent roles in multiplex document networks. One possible method is to optimize
the objective (2) in terms of the weight vector λ. But this strategy does not work
in practice for two main reasons. First, λ introduces more free parameters in (2)
that make the optimization problem complicated. Second, λ often varies during
the topic modeling process to reflect the dynamical change of influence from
different types of links. This dynamic property of λ may make the optimization
problem even harder.

Here we propose a consistency-based method to quantify λ at each learn-
ing iteration. Our intuition is that if the messages received by the factor node
are more consistent, their influence weight should be also larger. For exam-
ple, if two cited papers have quite different topics implying inconsistency, their
influence to the citing document will be small. If two coauthored papers have
quite similar topics implying consistency, their influence to the current document
will be large. As a result, the link weight is proportional to the consistency of
messages.

Inspired by [16–18], we use the absolute difference of messages at successive
learning iterations t− 1 and t to quantify the consistency of messages,

λd =
∑
d

∑
k

∑
w

|μθd→zw,d
(k)t − μθd→zw,d

(k)t−1|, (16)

λc =
∑
d

∑
k

∑
w

|μηc→zw,d
(k)t − μηc→zw,d

(k)t−1|, (17)

λa =
∑
d

∑
k

∑
w

|μδa→zw,d
(k)t − μδa→zw,d

(k)t−1|. (18)

The larger accumulated difference means that the passed messages are more
consistent owing to the fast convergence speed. So, we can update the weights λ
of different types of links by (16), (17) and (18). Note that we need to normalize
weights to satisfy λd + λa + λc = 1 at each learning iteration. Our experiments
confirm that the consistency-based link weights work very well in practice.

Fig. 2 summarizes the MBP algorithm for MTM. For each learning iteration
t, the E-step updates the message μw,d(k), and in the meanwhile estimate the
link weight λ. The M-step estimates the parameters including the document-
specific topic proportion θd(k), the topic-specific distribution φw(k), and the
author-specific topic proportion δa(k). The computational complexity of MBP
is O(TKDCA), where T is the number of learning iterations, K the number
of topics, D the number of documents, C the number of citation links, and A
the number of authors. Theoretical proof of the convergence of MBP is out of
the scope of this paper. Generally, MBP can be viewed as a generalized EM
algorithm [8]. By repeatedly running E step and M step, MBP can converge to
a local maximum of objective (2) under a fixed number of iterations.
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input : W,T,K,L(d, dc), λd, λa, λc.
output : θd, φw, δa.
initialize: μzw,d

(k) → random initialization and normaization, λd = λa = λc = 1/3.
begin

for t ← 1 to T do
1. E-step:
μθd→zw,d

(k) =
μ−w,d(k)+α∑
k[μ−w,d(k)+α] ;

μφw→zw,d
(k) =

μw,−d(k)+β∑
w[μw,−d(k)+β] ;

μηc→zw,d
(k) =

∑
dc

L(d,dc)μ·,dc (k)∑
k

∑
dc

L(d,dc)μ·,dc (k)
;

μδa→zw,d
(k) = fδa

∑
da∈Da\d μd,a(k);

μw,d(k) ∝
[
λd μθd→zw,d

(k) + λc μηc→zw,d
(k) + λa

∑
a∈Ad

μδa→zw,d
(k)

]
× μφw→zw,d

(k);

λd =
∑

d

∑
k

∑
w |μθd→zw,d

(k)t − μθd→zw,d
(k)t−1|;

λc =
∑

d

∑
k

∑
w |μηc→zw,d

(k)t − μηc→zw,d
(k)t−1|;

λa =
∑

d

∑
k

∑
w |μδa→zw,d

(k)t − μδa→zw,d
(k)t−1|;

2. M-step:
θd(k) = [μ·,d(k) + α]/

∑
k[μ·,d(k) + α];

φw(k) = [μw,·(k) + β]/
∑

w[μw,·(k) + β];
δa(k) =

∑
da∈Da

μ·,da(k)/|Da|;
end

end

Fig. 2. The multiplex belief propagation (MBP) algorithm

Table 1. Statistics of document data sets

Data sets CL D W C A
CORA 7 2410 2961 8651 2480
DBLP 3 8023 3387 38165 6974

4 Experiments

We compare MTM with some sate-of-the-art link-based topic models such as
RTM [2], ATM [1] and MRTM [3] on two publicly available data sets CORA [19]
and DBLP1. For a fair comparison, the open source codes are implemented using
MATLAB/MEX C++ platform [20]. For simplicity, we use the same hyperpa-
rameters α = 50/K, β = 0.01, where K is the number of topics. Using the
same T = 500 learning iterations, we compare these topic models in two tasks:
document clustering and link prediction.

Table 1 summarizes the statistics of the two data sets, where CL is the number
of document categories,D is the number of documents,W is the vocabulary size,
C is the total number of citation links and A is the total number of authors. In
the following experiments, we randomly divide the entire CORA and DBLP in
halves, and choose one half as the training set and the other one as the test set
for the link prediction task.

4.1 Document Clustering

Topic modeling techniques can be used as dimensionality reduction methods.
The reduced document-specific topic proportions could be viewed as a soft clus-
tering result. We can directly extract the clusters by assigning the cluster label
with the highest topic proportion to each document, i.e., C = arg maxkθd(k).

1 http://dblp.uni-trier.de/xml/

http://dblp.uni-trier.de/xml/
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Fig. 3. Document clustering results: (A) NMI as a function of K ∈ {10, 20, 30, 40, 50},
(B) Q-function as a function of K ∈ {10, 20, 30, 40, 50}

We use two performance metrics to compare the document clustering results:
normalized mutual information (NMI) [21] and Q-function [5, 22]. The former
compares the predicted cluster labels C with the correct labels manually assigned
by experts, and the latter measures the consistency of the clustering results over
the network without using pre-existing labels. The value of NMI is in the range
[0, 1]. It is higher if the predicted cluster labels are more consistent with the cor-
rect class labels. The value of Q-function lies in the range [−1, 1]. It is positive
if the number of edges within groups exceeds the expected number on the basis
of chance.

Fig. 3 shows the document clustering results of different link-based topic mod-
els. In Fig. 3A, on the CORA data set, MTM outperforms ATM and RTM around
23% and 10% in terms of NMI, respectively. Also, on the DBLP data set, MTM
outperforms ATM and RTM more than 20% in terms of NMI, respectively. Such
a salient improvement has been largely attributed to the ability of MTM in
handling multiple types links in document networks. Although MRTM can also
handle coauthor and citation links it has a sightly bad overall performance on
document clustering. One reason is that MRTM is very sensitive to the hyper-
parameters α and β, and it is difficult to determine the best hyperparameters to
achieve the overall good performance. Another reason is that MRTM is unable
to balance topic influences from citation and coauthor links. In contrast, MTM
dynamically tunes the link weight vector λ to reflect the truth that different links
play different roles in topic modeling. Fig. 3B shows the Q-function on CORA
and DBLP. Clearly, MTM achieves twice or three times higher Q-function values
than those of RTM, ATM and MRTM, which implies that MTM can yield much
more consistent document clustering results. As a summary, in the document
clustering application, MTM significantly outperforms several state-of-the-art
link-based topic models like RTM, ATM and MRTM.

4.2 Link Prediction

In this subsection, we perform two tasks of link prediction: citation link predic-
tion and article recommendation. For the first task, we examine all algorithms
on CORA and DBLP and compare MTM with RTM, ATM and MRTM. We fol-
low the experimental setup in RTM [2] by first fitting the model to the training
set with citation links, and then use a logistic regression model to predict the
links on the test set. The input to the logistic regression model is the Hadamard
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Fig. 4. Link prediction results: (A) F-measure as a function of topics K ∈
{10, 20, 30, 40, 50}, (B) recall@M on out-of-matrix prediction tasks by varying the
number of recommended articles M ∈ {20, 40, 60, · · · , 200}

product of the topic proportions of each pair of documents. Citation link predic-
tion results in terms of F-measure [3] are presented in Fig. 4A. MTM performs
better than ATM, RTM and MRTM with 13%, 16% and 5% higher F-measure
on CORA. Also, MTM yields 7%, 5% and 22% higher F-measure than ATM,
RTM and MRTM on DBLP. The reason why the performance improvement on
DBLP is much higher than that on CORA is that DBLP contains more citation
links and authors than CORA, which shows the advantage of MTM in handling
multiple types of links. Overall, the citation link prediction result demonstrates
the effectiveness of MTM for modeling multiplex document networks.

Besides citation link prediction, MTM can address the out-of-matrix predic-
tion problem [23] in recommending scientific articles to researchers very well.
In this task, we consider how to recommend the newly published articles to the
readers. We assume that the author a writes a paper d indicating that the author
a likes reading the paper d. Thus, we form the prediction of whether an author
a will like a paper d with the inner product between their topic proportions,
ra,d = δTa θd. In our model, δa denotes the author-specific topic proportion and
θd is the document-specific topic proportion. We will present each author with
M articles sorted by their predicted ratings ra,d and evaluate based on which
of these papers were actually written by the authors. We use the recall@M [23]
metric to evaluate the article recommendation performance. For each author,
the definition of recall@M is

recall@M =
number of artices the author likes in top M

total number of article the author likes
, (19)

The above equation calculates the user-specific recall, and the overall recall for
the entire system can be summarized using the average recall from all authors.
We only consider the rated articles within the top M articles. A higher recall
with lower M indicates a better system. When we use MTM, ATM and MRTM
to recommend articles, we set K = 50 and M ∈ {20, 40, 60, · · · , 200}. Note that
RTM can only process citation links so it cannot do article recommendation
task.

Fig. 4B shows the performance of different models for out-of-matrix predic-
tion. When compared with ATM and MRTM, MTM works much better for out-
of-matrix prediction with 16% and 21% recall enhancement on CORA. Also,
MTM has a 43% and 44% higher recall than ATM and MRTM on DBLP, when
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Fig. 5. (A) Clustering accuracy of the number of iterations when the topic K = 10,
(B) Link weights by varying the number of iterations T ∈ {20, 40, 60, · · · , 500}

the number of recommended documents M is small. The reason why MTM is
superior to ATM and MRTM is that weighted citation links are incorporated
into article recommendation. Although MRTM also uses citation links, it does
not quantify and balance the influence of citation and coauthor links accounting
for a relatively worse performance.

4.3 Analysis of Link Weights

One of major contributions of this work is to automatically estimate weights
to balance citation and coauthor link information. Fig. 5A shows the clustering
accuracy progresses along with the changes of the weights of different types of
links. Fig. 5B shows how the learned weights change at different iterations and
finally converge to the fixed values for the two data sets. We see that the content
information has the highest weight in the topic modeling process for the CORA
data set, while the citation has the highest weight for the DBLP data set. The
major reason lies in that CORA uses the paper abstract but DBLP uses the
paper titles as its content. Clearly, the content information of CORA is more
important than that of DBLP. Moreover, DBLP has a much more number of
citation links than CORA, so that the citation link information may play a
major role in DBLP during the topic modeling process. Since the two metrics
F-measure and Q-function can capture the characteristic of the citation network,
the higher citation link weight for DBLP explains the much better citation link
prediction results in Fig. 4A. As we see in Fig. 4B, the learned weights reflect
the multiplex structure of document networks.

5 Conclusions

In this paper, we propose a novel MTM for multiplex document networks. This
model has the following advantages. First, MTM naturally represent both cita-
tion and coauthor relations using the factor graph, which clearly illustrates the
topic labeling dependencies in the multiplex document networks. Furthermore,
this factor graph can be extended to represent more types of relational infor-
mation of scientific papers such as venue and time. Second, this factor graph
facilitates efficient MBP algorithm for approximate inference and parameter es-
timation within the EM framework. In the E-step, we infer the posterior topic
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distribution over each word. In the M-step, we estimate parameters based on the
inferred messages. Finally, MBP uses a consistency-based method to automati-
cally learn the link weights that can balance different types of link information
during the message passing process. Experimental results on document clustering
and link prediction show that MTM achieves the best performance among several
state-of-the-art link-based topic models. Since our model has shown promising
results on article recommendation, we are interested in designing more accurate
recommendation system by incorporating more meta-data into the proposed
MTM based on the factor graph representation.
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Abstract. Recently, ranking-based clustering on heterogeneous information 
network has emerged, which shows its advantages on the mutual promotion of 
clustering and ranking. However, these algorithms are restricted to information 
network only containing heterogeneous relations. In many applications, net-
worked data are more complex and they can be represented as a hybrid network 
which simultaneously includes heterogeneous and homogeneous relations. It is 
more promising to promote clustering and ranking performance by combining 
the heterogeneous and homogeneous relations. This paper studied the ranking-
based clustering on this kind of hybrid network and proposed the ComClus al-
gorithm. ComClus applies star schema with self loop to organize the hybrid 
network and uses a probability model to represent the generative probability of 
objects. Experiments show that ComClus can achieve more accurate clustering 
results and do more reasonable ranking with quick and steady convergence. 

Keywords: Clustering, Ranking, Heterogeneous Information Network,  
Probability Model. 

1 Introduction 

Information network analysis is an increasingly important direction in data mining in 
the past decade. Man y analytical techniques have been developed to ex plore struc-
tures and properties of information networks, among which clustering and ranking are 
two primary tasks. The clustering task [1] partitions objects into different groups with 
similar objects gathered and dissimilar objects separated. Spectral method [1,4] is 
widely used in graph clustering. The ranking task [6,10,12] evaluates the importance 
of objects based on some ranking function, such as PageRank [12] or MultiRank [10]. 
Clustering and ranking are often regarded as two independent tasks and they are ap-
plied separately to information network analysis.  However, integrating clustering 
and ranking makes more sense in many applications [2-3,11]. On one hand, the know-
ledge of important objects in a cluster helps to understand this cluster; on the other 
hand, knowing clusters is benefited to make more elaborate ranking. Some prelimi-
nary works have explored this issue [11].  
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Although it is a promising way to do clustering and ranking together, previous ap-
proaches confine it to a “pure” heterogeneous information network which does not 
consider the homogeneous relations among same-typed objects. For ex ample,  
RankClus [2] only considers relations between two-typed objects; NetClus [3] just 
considers relations among center type and attribute types. However, in many applica-
tions, the networked data are more complex. They include heterogeneous relations 
among different-typed objects as well as homogeneous relations among same-typed 
objects. Taking bibliographic data as an example which is shown in Fig. 1(a), papers, 
venues, authors and their relations construct a heterogeneous information network. 
Simultaneously, the network also includes the citation relations among papers and the 
social network among authors. It is important to cluster on such a hybrid network 
which includes heterogeneous and homogeneous relations at the same time. The hybr-
id network can more authentically represent real n etworked data. Moreover, more 
information from heterogeneous and homogeneous relations is promising to promote 
the performance of clustering and ranking.  

Although it is important to integrate clustering and ranking on the hybrid network, 
it is seldom studied due to the following challenges. 1) It is d ifficult to effectively 
organize networked data. The hybrid network is more complex than either of them. 
The way to organize the network not only needs to effectively represent objects and 
their relations but also benefits for clustering and ranking analysis. 2) It is not easy to 
integrate information from heterogeneous and homogeneous relations to improve 
clustering and ranking performances. It is obvious that more information from differ-
ent sources can help to obtain  better performances. However, we need to des ign an 
effective mechanism to make full use of information from these two networks.  

In this paper, we study the ranking based clustering problem on a hybrid network 
and propose a novel ComClus algorithm to solve it. A star schema with self loop is 
applied to organize the hybrid network. The ComClus employs a probability model to 
represent the generative probability of objects and the experts model and generative 
method are used to effectively combine the information from heterogeneous and ho-
mogeneous relations. Moreover, through applying the probability information 
of objects, we propose ComRank to identify the importance of objects based on 
ComClus. Experiments on DBLP show that ComClus achieves better clustering and 
ranking accuracy compared to well-established algorithms. In addition, ComClus has 
better stability and quicker convergence. 
 

 
(a) Bibliographic data       (b)Hybrid network          (c)Star schema with self loop    (d)Clusters on hybrid network 

Fig. 1. An example of clustering on bibliographic data 
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2 Problem Formulation  

In this section, we give the problem definition and some important concepts used in 
this paper. 

Definition 1. Information Network. Given 1  types of nodes,  is a vertex set, 
denoted by , , , … . . . , , where  represents the -  node belong-
ing to the -  type. An information network can be represented as a weighted net-
work G , , , if . E is a b inary relation on , and  is a 
weight mapping from an edge e∈E to a real number w∈ . If 2 the informa-
tion network G is heterogeneous information network; and homogeneous informa-
tion network when 1.  

For a network with multiple types of nodes, K-partite network [7,9] and star schema 
[3] are widely used. These network structures only have heterogeneous relations 
among different-typed nodes, without considering the homogeneous relations among 
same-typed nodes. However, real networked data are more complex hybrid networks 
where links exist not only in heterogeneous nodes but also in homogeneous nodes. So 
we propose the star schema with self loop for this kind of networks.  

Definition 2. Star schema with self loop network. An information network , ,  on K+1 types of nodes  is called star schema with self loop 
network,   and . If   ,  ∈ , ∈ ∈ ( 0) . If e ,  ∈ , ∈ ∈ (   0) or ∈ ∈ ( 0). Type is called t he center type (denoted as 

), and ( 0) is called dependent types (denoted as ).  

 is the links set among the same-typed nodes (called homo-link) and  is 
the links set among the different-typed nodes (called hete-link). Then the hete-link 
can be written as e< , >, representing the link between center node and dependent 
node. The homo-link is the link between two same-typed nodes, which is denoted as 
e< , > or e< , >. 

Fig. 1 shows such an example. For a complex bibliographical data (see Fig. 1(a)), 
we can organize it as a hybrid network which includes heterogeneous network among 
different layers and homogeneous network on the same layer in Fig.1 (b). As shown 
in Fig. 1(c), the hybrid network can be represented with a star schema with self loop 
where “paper” is the center type, while “venue” and “author” are dependent types.  

Now, we can formulate the problem of clustering on hybrid network. Given a net-
work , , ,  and the cluster number N, our goal is to find a 
clusters set , where  is defined as , . is a subnet of 
G, ,  and , ∈ . The probability function  
represents the possibility that node  belongs to cluster , ( ) ∈ 0,1 , and ∑ ( ) = 1. In our solution, we restrict probability function of center node ( ) ∈ 0,1 , and for dependent node ,  is the successive probability measure 
from 0 to 1. 
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3 The ComClus Algorithm  

After introducing the basic framework of ComClus, this section describes the Com-
Clus in detail and then proposes ComRank for estimating the importance of objects. 

3.1 The Framework of ComClus 

The basic idea of ComClus is to determine the memberships of center nodes and then 
estimate the memberships of dependent nodes by center nodes. We consider that the 
probability of center node is estimated by two probabilities: homogeneous probability 
and heterogeneous probability. The homogeneous probability of center node depends 
on its homo-links. The heterogeneous probability of center node is generated by the 
dependent nodes that are correlated with it. In order to co-consider the heterogeneous 
and homogeneous probability for center nodes, generative method and experts model 
are used to mix these two types information. Finally, we estimate the posterior proba-
bility for center node according to the Bayesian rule and reassign the memberships of 
center nodes. The ComClus will iteratively calculate posterior probability until the 
memberships do not change. Algorithm 1 shows the basic framework of ComClus.  
 

Algorithm 1. ComClus: Detecting N clusters on hybrid information network 
Input: Cluster number N and hybrid network G 
Output: Membership of center node, the posterior probability of dependent node 
1:Begin: 
2: Randomly partition on network G 
3: Calculate global probability of center node for smoothing: ( | ) 
4: repeat 
5:   foreach subnet Gn  G 
6:     Calculate the homogeneous probability of center node: ( | , ) 
7:     Calcu late the conditional probability of dependent node:  
8:     Calculate the heterogeneous probability of center node: ( , ) 
9:     Calcu late the mixed probability: ( | ) 
10:   end 12:   Calculate the center node posterior probability: ( | ) and Reassign 
13: until ( ) convergence obtained 
14: Calculate the dependent node posterior probability: ( | ) 
15:End 
 

3.2  Homogeneous Probability for Center Node 

The homogeneous probability of depends on its homo-links and denotes as ( | , ) . ( | , )  represents the fraction of links that the center node   
connects to other center nodes on G. This idea is inspired by a general phenomenon 
that a n ode has higher probability to connect with nodes within the same cluster.  
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For convenience, ( | ) denotes the number of homo-links of  and the 
number of in- degree of center node   on homogeneous network is denoted as ( | ). 

 ( | , )  ( | )∑ ( | ) | |  (1) 

 ( | )  |∑  || |  (2) 

The value of ( | )  is calculated by the quoted times of  on G, 
which will be used to rank (in Sect.3.7 Eq. (11)) and filter the unimportant nodes (in 
Sect.3.3 Eq. (3)) in our algorithm. The center node   has higher possibility to be 
assigned into a cluster with higher ( | , ). Therefore, the clustering result will 
benefit from the homogeneous information. 

3.3 Conditional Probability for Dependent Node 

We consider that the heterogeneous probability of center node  is generated by its 
related dependent nodes . Therefore, we need to estimate the probability of , 
which can be represented as ( | )  , . The probability of 

dependent type  being selected is (  | ) | || | , where | | is the number of nodes 
in dependent type d layer, and | | is the number of all n odes in G. After the type   being selected, the probability  ,  can be estimated. We utilize the two 
dependent types  ,  to mutually estimate the probability for  ,  
and  , .  is the related dependent type set of . Take  ,  as 
an instance. By taking advantage of the homogeneous information of , we set  , ( | )∑ ( | ) | |  at the beginning of iteration. We consider the 

center node  is the medium between  and  . Naturally, an important me-
dium   should have a higher ( | ) than an ordinary one. Besides, 
we use  as a filter factor to expand the ( | )  gap among 
ent . Repeat calculating (4) and (5) until the convergence is obtained. 

 
1  ( | ) ( | )  ( | ) ( | )0                                                                            (3) 

 ( | )  ( | ) ∑ ,  ,( )| |  (4) 

  , ∑ , ( | )( )| |  (5) 
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where ( )  is the number of hete-links of on .  We run the same 
process for  to get the probability  , . As a res ult, the “productive” 
dependent nodes and the “barren” nodes can be distinguished obviously. Normaliza-
tion method can be used when necessary. 

3.4 Heterogeneous Probability for Center Node 

After conditional probability of dependent nodes being figured out, we can estimate 
the heterogeneous probability for . Here, we make an independency assumption 
that the dependent nodes generate the heterogeneous probability of center node inde-
pendently. Given dependent node probabilities which are related to , the heteroge-
neous probability of center node  can be denoted as ( | , ). 

 ( , ) ∏ ∏  ,| |  (6) 

3.5 Mixed Probability for Center Node 

Until now, we obtain the homogeneous and heterogeneous probability of center 
node . Next, the major difficulty in estimating the probability measure is how to 
jointly consider the homogeneous and heterogeneous distribution of center nodes. To 
mix the two distributions, we employ two methods: a generative method of center 
node and a mixture of experts model [5]. 

In the generative method, we consider the center n ode  is generated by two 
parts: the homogeneous and h eterogeneous information of . The former is ( | , ) and the latter is ( , ). We can calculate the conditional probability 
on hybrid network G as follows: 

 ( | ) = ( | , ) ( , ) (7) 

In experts model, we regard the homogeneous and heterogeneous information of  
as “homogeneous expert” and “heterogeneous expert”. Then we can evaluate mixed 
probability of center node according to its own distribution. The mixture of experts 
model is denoted as follows: 

 ( | ) ∑ ( | ) (8) 

where  2 represents the number of experts. If 1, the homogeneous expert 
takes into effect: ( | )= ( | , ). If 2, the heterogeneous expert is acti-
vated as: ( | )  ( , ) . ( )∑ ( )  can be seen as the 

weight of corresponding expert, and we adopt Softmax function to compute it. ( ) 
is the weight of expert m, which is proportional to the number of heter-links or homo-
links of  . For example, the weight of homogeneous expert of   is calculated by 
the following formula: ( ) = || ∑ ( || | ) . Because we only have 
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two experts, the ( ) is simply set as 1- ( ). Obviously, the weight is dynamic 
for each . 

Both methods can evaluate the conditional probability of center node, which can be 
applied to different scenarios. The generative method equally treats the homogeneous 
and heterogeneous information, because it simply products homogeneous and hetero-
geneous probability. Therefore, the generative method is suitable for the hybrid net-
work with the same scales of homogeneous and heterogeneous relations. The mixture 
of experts model can dynamically adjust the weights of distributions (by ). As a 
result, the method is more suitable for the hybrid network of which the homogenous 
and heterogeneous parts have different size. 

Besides, to avoid zero probabilities, we smooth the distribution by the following 
formula: ( | ) ( | )  (1 ) ( | ), where  is a smoothing para-
meter. G is the whole hybrid network and  is the n-th subnet. 

3.6 Posterior Probability for Nodes  

In the previous subsection, we get the conditional probability of center node  by 
mixing two distributions. Now, we need to calculate the posterior probability ( | ) for each  , and reassign the memberships for center nodes. The posterior 
probability of center node can be calculated by Bayesian rule: ( | )  ( | ) ( ), where ( | ) is the conditional probability in cluster  and ( ) represents the cluster size. However, the size of cluster  is not fixed. For the 
purpose of getting the ( ), the EM algorithm can be used to get the local optimum ( ) by maximizing the log likelihood of center nodes in different areas. 

 ∑ log ∑ ( | ) ( )| |  (9) 

where | | is the size of , and N+1 represents the global distribution on G. The 
target is to maximize   and two iterative steps can be set to optimize the value P. 
We set ( )  before the first iteration. The following two steps run iterative-
ly until the convergence is obtained. ( | ) ( | ) ( ); ( )∑ ( | )| || | . Finally, we will have a  dimensional indicator vector ( ), which 
is made up of posterior probability of . Then we can calculate the indicator of 
membership for each center node with K-means.  

After the iterative process is finished, the posterior probability of dependent node 
 can be evaluated by the average posterior probability of center nodes con-

necting with . The notation  is a set o f center nodes connecting with  and | | is the size of set . 

  ∑ | || |  (10) 
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3.7 Ranking for Nodes  

As an additional benefit for ComClus, the posterior probabilities of nodes can be used 
for ranking nodes. Once the cluster process is finished, we can further figure out the 
rank of nodes in their cluster. We proposed a function (called ComRank) to evaluate 
the importance of nodes. 

 ( | ) ( | ) ( | ) (11) 

where ( | ) is th e probability of center node . Generally, the rank of center 
node is p roportional to its ( | ). It is n atural in many applications. 
Taking bibliographic network as an example, the goodness of a paper i s decided by 
the number of citations to a large extent. Another factor of rank function is the post-
erior probability, which can be seen as a cluster coefficient and represents the degree 
of membership in that cluster. The rank of dependent node  can be computed ac-
cording to the rank of center nodes connecting with it.  

 ( | ) ∑ ( | ) ( | ) (12) 

4 Experiment  

In this section, we evaluate the effectiveness of our ComClus algorithm, and compare 
it with the state-of-the-art methods on two data sets. 

4.1 Data Set 

The DBLP is a dataset of bibliographic information in computer science domain. We 
use it to build a hybrid network with three-typed nodes: papers (center type), venues 
(dependent type) and authors (dependent type). Homo-links among authors form a co-
author network, and homo-links among papers form a paper citation network. Hete-
links are the writing relation between authors and papers and the publication relation 
between venues and papers. We extract venues from different areas according to the 
categories of China Computer Federation (http://www.ccf.org.cn). Moreover, CCF 
provides three levels for ranking venues: A, B, C. The class A is top venues, such as 
KDD in data mining (DM). The class B is some famous venues such as SDM, ICDM. 
The class C is admitted venues such as WAIM. In the experiments, we extract two 
different-scaled subsets of the DBLP which are called DBLP-L and DBLP-S. 

The DBLP-S is a small size dataset and it includes three areas in computer domain: 
database, data mining, and information retrieval. There are 21venues (7 venues for 
each area, covering three levels), 25,020 papers and 10,907 authors in DBLP-S. Two 
or three venues for each level are picked out. 

The DBLP-L is a large dataset. There are eight areas included, which are computer 
network, information security, computer architecture, theory, software engineering & 
programming language, artificial intelligence& pattern recognition, computer  
graphics, data mining& information retrieval &database. There are 2 80 venues  
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(35 venues for each area), 275,649 papers, and 238,673 authors. For each area, five 
venues are in A level and fifteen venues are selected in B or C level. 

In these two datasets, venues are labeled with their research areas. Moreover, in 
DBLP-S, we randomly label 1031 papers and 1295 authors with three research areas, 
which are used to evaluate the clustering accuracy. All the results are based on 20 
runnings, and average results are shown. 

4.2 Clustering Accuracy Comparison Experiments 

For accuracy evaluation, we apply our method to cluster on both DBLP-S and DBLP-
L. We compare ComClus with the representative ranking-based clustering algorithm 
NetClus which can be applied in heterogeneous networks organized as star schema. 
The smoothing parameter  is fixed at 0.7 in both two algorithms. The filter factor  
in ComClus is 3. The clustering accuracy of paper is the fraction of nodes identified 
correctly. For author and venue nodes, the accuracy is the posterior probability frac-
tion of nodes identified correctly. Results are s hown in Table 1.  The two different 
mixture methods of ComClus both have higher accuracy than NetClus. The lower 
deviation of ComClus implies that ComClus is stead ier than NetClus. The results 
show that, the additional homogeneous relation utilized by ComClus is h elpful for 
improving its accuracy as well as stability. In addition, ComClus with experts model 
achieves better perf ormance than ComClus with generative method. We think the 
reason is that experts model considers the weight of heterogeneous and homogeneous 
information. In the following experiments, we use ComClus with experts model as the 
standard version of ComClus.  

Table 1. Clustering accuracy comparison for different-typed nodes   

Accuracy 
ComClus(experts method) ComClus(generative method) NetClus 

Mean Dev. Mean Dev. Mean Dev. 
Paper(DBLP-S) 0.774 0.019 0.766 0.021 0.715 0.066 
Venue(DBLP-S) 0.855 0.018 0.777 0.028 0.739 0.067 
Author(DBLP-S) 0.731 0.018 0.680 0.016 0.697 0.052 
Venue(DBLP-L) 0.681 0.041 0.648 0.046 0.579 0.084 

 
Since the hybrid network includes homogeneous network, we compare ComClus 

with those clustering algorithms on homogeneous network, where a repres entative 
spectral clustering algorithm Normalize Cut [4] is employed. We design the similarity 
of two nodes ( , ) as: ( , ) ( , ), where  is the adjacent vector of node 
i. The result is shown in Table 2, which clearly illustrates that ComClus is better than 
Normalized Cut. ComClus combines the information from homogeneous and hetero-
geneous relations. It makes ComClus outperform Normalized Cut which only uses 
homogeneous network information.  

Table 2. Clustering accuracy comparison on homogeneous network 

Accuracy ComClus Normalized Cut 
Paper Accuracy 0.787 0.457 
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4.3 Ranking Accuracy Comparison Experiment 

On DBLP-L, we make a ranking accuracy comparison between ComRank and Autho-
rithyRank which is a rank method in NetClus[3]. In this application, it is hard to defi-
nitely compare the goodness of two venues, whereas we can roughly distinguish their 
levels. For example, it is difficult to compare the ranking of SDM and ICDM. But we 
can safely say that SDM and ICDM are on the same level and they are worse than the 
top level venues (e.g., KDD) and better than the common level venues (e.g., WAIM). 
Inspired by RankingLoss measure [8], we define LevelRankingLoss to ev aluate the 
disorder ratio of object pairs on their levels and it is abbreviated as LRLoss. Without 
loss of generality, we define LRLoss on bibliographic data. First, we define a triple to 
represent a v enue: , , , where  represents a v enue,  is 
the level of , ∈ A, B, C  (the recommended level of CCF).  is the rank num-
ber of  generated by the algorithms(the smaller, the better). The LRLoss is defined 
as follows. 

 ∑ | || | | | (13) 

where R is the size of Cartesian product of  set and  , | ,   , . Here,  
denotes the complementary set. | |  is the number of misordered pairs for 

. For example, = <KDD, A, 2>, =<ICDM, B, 1> 
can be seen as one LossPair for .  

We select the top 5 and top 10 venues in different areas and then calculate LRLoss 
for them. Additionally, we also compare the accuracy of the global rank on both 
ComRank and NetClus. Results are shown in Fig2. 
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(a) 3 areas top5 venues on DBLP-S  (b) 3 areas top10 venues on DBLP-L (c) 8 areas top 10 venues on DBLP-L 

Fig. 2. Ranking accuracy comparison (The smaller LRLoss, the better) 

The results clearly show that ComRank better ranks these venues, since its LRLoss is 
lower than that of AuthorityRank on all research areas. We think the additional homoge-
neous information utilized by ComRank contributes to its better ranking performance.  

4.4 Case Study 

In this section, we further show the performance of ComRank with a ranking case 
study.  
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Table 3. Top 15 venues with global rank on DBLP-S 
ComRank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Venue SIGMOD VLDB SIGIR ICDE KDD PODS WWW CIKM ICDM EDBT PKDD WSDM PAKDD WebDB DEXA 
#Papers 2428 2444 2509 2832 1531 940 1501 2204 1436 747 680 198 1030 972 1731 
Level A A A A A A B B B B B B B C C 

AuthorityRank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Venue VLDB ICDE SIGMOD SIGIR KDD WWW CIKM ICDM PODS DEXA PAKDD EDBT PKDD WSDM ECIR 

#Papers 2444 2832 2428 2509 1531 1510 2204 1436 940 1731 1030 747 680 198 575 
Level A A A A A B B B A C B B B B C 

 
Table 3 sho ws the top 15 venues ranked by ComRank and AuthorityRank on 

DBLP-S. The results show that the ranks of venues generated by ComRank are all 
consistent with the recommended level by CCF. However, there are some disordered 
venues in AuthorityRank, which implies that AuthorityRank is sensitive to the num-
ber of papers. That is, AuthorityRank tends to rank a venue publishing many papers 
with a higher value. For example, AuthorityRank ranks PODS with a low value and 
DEXA with a relati vely high value because PODS published not many papers and 
DEXA published so many papers. In contrast, ComRank considers the citation infor-
mation from homogeneous network. So ComRank avoids these shortcomings.  

4.5 Convergence and Stability Experiments 

For observing the convergence, we compare each cluster probability distribution with 
global distribution by average KL divergence [3]. Next, we use entropy to measure 
the unpredictability of cluster and prove the algorithm stability.  

 ( ) ∑ ( ( | )|| ( | )) (14) 

 ( ) ∑ ∑| |  (15) 
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(a)AvgKL of venues    (b) AvgKL of authors   (c)AvgEntropy of papers   (d) AvgEntropy of authors   (e)AvgEntropy of venues 

Fig. 3. The change of AvgKL and AvgEntropy of nodes with iteration number 

As shown in Fig. 3(a) and (b), the convergence of our algorithm is faster than Net-
Clus. From the results shown in Fig. 3(c), (d) and (e), we can observe that ComClus 
achieves lower  . The reason is that ComClus prevents the negative effects 
of unimportant paper by the factor . Besides, in ComRank, the distribution informa-
tion of objects comes from heterogeneous and homogeneous relations. However, the 
distribution information of objects in NetClus is o nly from heterogeneous network. 
More information helps ComClus fast converge and achieve steady solution.  
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5 Conclusions 

In this paper, we proposed a n ew ranking-based clustering algorithm ComClus on 
heterogeneous information networks. Different from conventional clustering methods, 
ComClus can group different-typed objects on a hybrid network which includes the 
homogeneous network and heterogeneous relations together. Through applying prob-
ability information in ComClus, ComClus can also rank the importance of objects. 
The experiments on real datasets have demonstrated that our algorithm can generate 
more accurate cluster and rank with quicker and steadier convergence.  
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Abstract. Internet has emerged as a powerful technology for collecting labeled
data from a large number of users around the world at very low cost. Conse-
quently, each instance is often associated with a handful of labels, precluding any
assessment of an individual user’s quality. We present a probabilistic model for
regression when there are multiple yet some unreliable observers providing con-
tinuous responses. Our approach simultaneously learns the regression function
and the expertise of each observer that allow us to predict the ground truth and
observers’ responses on the new data. Experimental results on both synthetic and
real-world data sets indicate that the proposed method has clear advantages over
“taking the average” baseline and some state-of-art models.

1 Introduction

With the recent advent of social web services, the data can now be shared and pro-
cessed by a large number of users. As a consequence, researchers are faced with data
sets that are labeled by multiple users. For example, Wikipedia provides a feedback tool
to engage readers in the assessment of article quality based on four criteria, i.e. “trust-
worthy”, “objective”, “complete” and “well-written”. The Amazon Mechanical Turk
is an online system that allows the requesters to hire users from all over the world to
perform crowdsourcing tasks. Galaxy Zoo is a website where visitors label astronomi-
cal images. While providing large amounts of cheap labeled data in a short time, these
platforms usually have little quality control over users. Thus, the response of each user
can vary widely, and in some cases may even be adversarial. A natural question to ask
is how to integrate opinions from multiple users for obtaining an objective opinion. The
commonly used “majority vote” and “take the average” heuristics completely ignore
the individual expertise and may fail in the settings with non-Gaussian or adversarial
noise. This casts a challenge of learning from multiple sources for the machine learning
and data mining researchers [2].

Despite these web applications, one can f nd this problem in wide range of domains.
Recently, sensor networks have been deployed for the scientif c monitoring of remote
and hostile environments. For example, researchers deployed a 16-node sensor network
on a tree to study its elevation under different weather fronts [9]. Each node samples
climate data at regular time intervals and the statistics are collected. Using sensor data
in this manner presents many novel challenges, such as fusing noisy readings from sev-
eral sensors, detecting faulty and aging sensors. Importantly, it is necessary to use the
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trends and correlations observed in previous data to predict the value of environmental
parameters into the future, or to predict the reading of a sensor that is temporarily un-
available (e.g. due to network outages). However, these tasks may have to be performed
with only limited knowledge of the location, reliability, and accuracy of each sensor.

In this work, the labeler (including user, annotator and sensor) mentioned above is
referred to as the observer. Given an instance, the label (e.g. annotation, reading) pro-
vided by an observer is called the response. Unlike the conventional supervised learn-
ing scenario, in our setting each instance is associated with a set of responses, yet the
ground truth is unknown as some responses may be subjective or come from unreliable
observers. We concentrate on the regression problem with continuous responses from
multiple observers. Specificall , our method provides a principled way to answer the
following questions:

1. How to learn a regression function to predict the ground truth precluding the prior
knowledge of observers?

2. How to estimate the expertise of each observer without knowing the ground truth?

2 Related Work and Novel Contributions

There is a number of studies dealing with the setting involving multiple labelers, yet
most of them focus on the classificatio problem. Early work such as [3,4,8] focus on
estimating the error rates of observers. In the machine learning community, the prob-
lem of estimating the ground truth from multiple noisy labels is addressed in [7]. In-
stead of estimating the ground truth and learning the classif er separately, recent interest
has shifted towards on learning classif ers directly from such data. Authors of [2] pro-
vide a general theory of selecting the most informative samples from each source for
model training. Later, a probabilistic framework is presented by [5,6] to address the
classification regression and ordinal regression problem with multiple annotators. The
framework is based on a simple assumption that the expertise of each annotator does not
depend on the given data. This assumption is infringed in [10,13] and later is extended
to the active learning scenario [12]. There are some other related work that focus on
different settings [1,11].

The above studies paid little attention to the regression problem under multiple ob-
servers, which is the main core of this paper. Moreover, our work differs from the related
work in various aspects. First, we employ a less-parametric method, i.e. the Gaussian
process (GP), to model the observers and the regression function. This allows us to
associate the observer’s expertise with both ground truth and input instance. Moreover,
our model is presented in an extensible probabilistic framework. The missing data and
prior knowledge can be straightforwardly incorporated into the model.

The rest of this paper is organized as follows. Section 3 formulates the problem and
introduces a probabilistic framework. The framework consists of two parts. The re-
gression model is introduced in Section 3.2. A linear and a non-linear observer model
is proposed in Section 3.3 and Section 3.4, respectively. Section 4 reports the exper-
imental results on both synthetic and real-world data sets. Conclusions are drawn in
Section 5.



Learning from Multiple Observers with Unknown Expertise 597

3 Probabilistic Formulation

Denote the instance space X ⊆ RL and the response space Y ⊆ RD and the ground
truth space Z ⊆ RD . Given N instances x1, . . . ,xN where xn ∈ X , denote the ob-
jective ground truth for xn as zn ∈ Z . In our setting, the ground truth is unknown.
Instead, we have multiple responses yn,1, . . . ,yn,M ∈ Y for xn provided by M dif-
ferent observers. For compactness, the N × L matrix of instance xn,l is represented as
X := [x1, . . . ,xN ]

�. The N×M×D tensor of observers’ responses yn,m,d is denoted
by Y := [y1,1, . . . ,y1,M ; . . . ;yN,1, . . . ,yN,M ]. The N × D matrix of ground truth
zn,d is denoted by Z := [z1, . . . , zN ]�.

Given the training data X and Y, our goal is threefold. First, it is of interest to get
an estimate of the unknown ground truth Z. The second goal is to learn a regression
function f : X → Z which generalizes well on unseen instances. Finally, for each
observer we want to model its expertise as a function of the input instance and the
ground truth, i.e. g : X × Z → Y .

3.1 Probabilistic Framework

To formulate this problem from the probabilistic perspective, we consider the training
data X and Y as random variables. The ground truth Z is unknown and hence is a latent
variable. In general, the observed response Y depends both on the unknown ground
truth and the instance. That is, observers may exhibit varying levels of expertise on
different instances. On Wikipedia the assumption is particularly true for the novice
readers, whereas the rating from an expert reader is consistent across different types
of articles. Figure 1 illustrates the conditional dependence between X,Y and Z with a
graphical model. As a consequence, the joint conditional distribution can be expressed
as

p(Y,Z,X) = p(Z |X)p(Y |Z,X)p(X)

∝
N∏

n=1

D∏
d=1

p(zn,d |xn)

M∏
m=1

p(yn,m,d |xn, zn,d), (1)

where the term p(X) is dropped as we are more interested in the other two conditional
distributions. There are two underlying assumptions in this model. First, each dimen-
sion of the ground truth is independent, but is not identically distributed. Second, all
observers respond independently.

Note that the f rst term in (1) indicates the probabilistic dependence between the
ground truth and the input instance, whereas the second term characterizes the ob-
servers’ expertise. Previous work have explored different parametric methods to model
these two conditional distributions [10,13,5,12,6]. A distinguishing factor in this pa-
per is that, we employ the Gaussian process as the backbone to construct the model.
Specif cally, the generative process of Y can be interpreted as follows

zn,d = fd(xn) + εn, (2)
yn,m,d = gm,d(xn, zn,d) + ξm,d, (3)
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xn yn,mzn

M
N

Fig. 1. Graphical model of instances X, unknown ground truth Z and responses Y from M
different observers. Only the shaded variables are observed.

where ε and ξ is independent identically distributed Gaussian noise, respectively. Note
that the choice of {fd} and {gm,d} characterizes the regression function and the ob-
servers, respectively. In particular, an ideal observer would have gm,d(zn,d) = zn,d on
every d. Therefore, our goal can be understood as searching {fd} and {gm,d} given
the training data. Intuitively, if two instances are close to each other in X , then their
corresponding ground truth should be close in Z through the mapping of {fd}, which
in turn restricts the searching space of {gm,d} when Y is known.

3.2 Regression Model

We f rst concentrate on Eq. (2) and represent functions {fd} by the Gaussian process
with some non-linear kernel. Specificall , the conditional distribution of the ground
truth given the training instances is assumed to be

p(Z |X) =
D∏

d=1

N (z:,d |0,Kd) , (4)

where the dth dimension of the ground truth is denoted as z:,d. We introduce a N ×N
kernel matrix Kd that depends on X, where each element is given by the value of a
composite covariance function kd : X × X → R0+, made up of several contributions
as follows

kd(xi,xj) := κ21,d exp

(
−
κ22,d
2

‖xi − xj‖2
)
+κ23,d+κ24,dx

�
i xj+κ25,dδ(xi,xj). (5)

The noise term ε in Eq. (2) is folded into the Kronecker delta function δ(xi,xj). The
covariance function involves an exponential of a quadratic term, with the addition of a
constant bias, a linear and a noise terms. For each dimension, the parameters need to be
learned from the data are κ1,d, . . . , κ5,d.

3.3 Linear Observer Model

To model the observer’s expertise, we now concentrate on (3) and assume that {gm,d} is
a linear mapping from Z to Y , which does not depend on the instance at all.
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Denote y:,m,d the dth dimension response of all training instances provided by the mth

observer. The second conditional distribution in (1) is assumed to be

p(Y |Z,X) = p(Y |Z) =
M∏

m=1

D∏
d=1

N
(
y:,m,d

∣∣wm,dz:,d + μm,d1, σ
2
m,dI

)
, (6)

where 1 is an all-ones vector with length N and I is a N × N identity matrix. Each
observer is characterized by 3×D parameters, i.e. wm,d, μm,d, σm,d ∈ R.

Parameter Estimation. Now we can combine Eq. (6) with Eq. (4) and estimate the
set of all parameters, i.e. Θ := {{κ1,d, . . . , κ5,d}, {wm,d}, {μm,d}, {σm,d}}, by max-
imizing the likelihood function p(Y |X,Θ). In the linear observer model, the latent
variable Z can be marginalized out, which yields

p(Y |X,Θ) =

M∏
m=1

D∏
d=1

N
(
μm,d1, w

2
m,dKd + σ2

m,dI
)
.

The maximum likelihood estimator of μm,d is given by μ̃m,d = 1
N

∑N
n=1 yn,m,d. We

hereinafter use the short-hand y:,m,d := y:,m,d − μ̃m,d1. As a consequence, the log-
likelihood function is given by

F LOB := log p(Y |X,Θ) =

M∑
m=1

D∑
d=1

log p(y:,m,d |X,Θ)

=

M∑
m=1

D∑
d=1

−N

2
log(2π)− 1

2
log |C| − 1

2
tr
(
y�
:,m,dC

−1y:,m,d

)
,

(7)

where C := w2
m,dKd + σ2

m,dI. To f nd the parameters by maximizing Eq. (7), we take
the partial derivatives of F LOB with respect to the parameters and obtain

∂F LOB

∂wm,d
= wm,dtr

(
BC−1Kd

)
, (8)

∂F LOB

∂σm,d
= σm,dtr

(
BC−1

)
, (9)

∂F LOB

∂κi,d
=

M∑
m=1

1

2
w2

m,dtr

(
BC−1 ∂Kd

∂κi,d

)
, (10)

where B := C−1y:,m,dy
�
:,m,d − I and ∂Kd

∂κi,d
is a matrix of element-wise partial deriva-

tives of Eq. (5) with respect to κ1,d, . . . , κ5,d. As there exists no closed-form solution,
we resort to L-BFGS quasi-Newton method to maximize F LOB. Essentially, in each it-
eration the gradients are computed by Eqs. (8) to (10) and the parameters are updated
accordingly.

Estimate of Ground Truth. Note that the ground truth Z is marginalized out from
Eq. (7) and still remains unknown. To estimate the ground truth of all training instances,
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we need to f nd the posterior of Z, i.e. p(Z |Y,X) = p(Y |Z,X)p(Z |X)/p(Y |X).
By using the property of Gaussian distribution, one can show that the posterior of z:,d
follows N (u,V), where

u = V

(
M∑

m=1

wm,d

σ2
m,d

y:,m,d

)
, V =

(
M∑

m=1

w2
m,d

σ2
m,d

I+K−1
d

)−1

. (11)

The above computation is repeated D times on every dimension to obtain the estimate
of ground truth Z̃.

Prediction on New Instance. Given a new instance x∗, we are interested in predicting
the ground truth z∗ by using the learned regression function. This can be derived from
the joint distribution [

z̃:,d
z∗,d

]
∼ N

(
0,

[
Kd k�

∗
k∗ kd(x∗,x∗)

])
, (12)

where k∗ := [kd(x∗,x1), . . . , kd(x∗,xN )]. It turns out that p(z∗,f |X, z̃:,d,x∗) follows
a Gaussian distribution. Hence, the best estimate for the ground truth is

z̃∗,d = k∗K
−1
d z̃:,d, (13)

and the uncertainty is captured in its variance

var(z̃∗,d) = kd(x∗,x∗)− k∗K
−1
d k�

∗ . (14)

As a consequence, the response from an observer can be also predicted by

ỹ∗,m,d = (1 + w̃m,d)z̃∗,d + μ̃m,d, (15)

with variance σ̃m,d.

Priors on Parameters. Note that wm,d is an important indicator of the observer’s
expertise. On the one hand, a genuine observer would have wm,d close to 1, whereas
an adversarial observer gives wm,d close to −1. On the other hand, we encouragewm,d

to be a small value unless supported by the data. Without any knowledge on observers,
we can only expect that wm,d takes value either around 1 or −1, which inspires the
following penalty function

penalty(wm,d) :=

⎧⎨⎩
η(wm,d − 1)2 if wm,d > 1;
0 if −1 ≤ wm,d ≤ 1;
η(wm,d + 1)2 if wm,d < −1,

(16)

where η controls the value of penalty as shown in Fig. 2 (see “general”). When wm,d

takes value between [−1, 1], there is no penalty and the gradient is given by Eq. (8)
directly. When |wm,d| > 1 we penalize wm,d and keep it from being too large. This
allows our model to search a reasonable solution for wm,d without over-fittin on the
training data.
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In the case that observers are highly reliable, the learned wm,d should be close to
1 and μm,d, σm,d close to 0. One can add a Laplacian prior for observers’ parameters,
which leads to an L1 regularization. The penalty term induced by the Laplacian prior
for wm,d is −(12 log λ +

√
2
λ |wm,d − 1|), where a smaller value of λ suggests that the

observer is more reliable. The maximization of F LOB can be carried out by computing
the sub-gradient of wm,d, μm,d and σm,d, respectively.

−3 −2 −1 0 1 2 3
0

2

4

6

8

 

 
General η=0.5

General η=2

Laplace λ=1

Laplace λ=2

Gaussian

Fig. 2. Penalty functions of wm,d induced by different prior models. The “general” penalty func-
tion corresponds to Eq. (16). Similar penalty functions can be added to μm,d and σm,d as well.

The relationship between observers can be incorporated into the model as well. For
example, the demographic information of users or the geographic location of sensors
can be represented as a M × M proximity matrix P. In particular, we expect two ob-
servers have similar parameters if they are highly correlated in P. Assuming P is a
positive defi ite matrix, we can set the prior distribution of w:,d set as N (w:,d |1,P).
As a consequence, we add a penalty term −

∑D
d=1 tr(w

�
:,dPw:,d) to Eq. (6). The gra-

dient of wm,d is computed by Eq. (8) with an additional term −2Pm,:w:,d. Figure 2
illustrates different penalty functions of wm,d.

Missing Responses. The model can be extended to handle the training data with miss-
ing responses. First of all, we partition the responses Y = (Yo,Yu), where Yo rep-
resents the observed part and Yu is the missing part of the responses. Consequently,
the latent variables in our model consists of Z and Yu. The expectation maximization
(EM) algorithm can be developed for estimating the model parameters. In the E-step,
we fi the model parameter Θ and compute the suff cient statistics of Z̃ by Eq. (11) and
then update Ỹu by its prediction using Eq. (15). In the M-step, we use L-BFGS to max-
imize log p(Ỹ, Z̃ |X,Θ) and update Θ. The two steps are repeated until the likelihood
reaches a local maximum.

3.4 Non-linear Observer Model

The assumptions behind the linear observer model may not be appropriate in some
scenarios. For instance, if the thermistor is being used to measure the temperature of
the environment, due to the self-heating effect the electrical heating may introduce a
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signif cant error, which is known as a nonlinear function of the actual environment tem-
perature. Moreover, the observers’ responses may depend on the input instance. With
these considerations in mind, we propose a more sophisticated model which assumes
that {gm,d} is a nonlinear mapping from X × Z to Y . By representing {gm,d} as the
Gaussian process, the second conditional distribution in (1) has the form of

p(Y |Z,X) =

M∏
m=1

D∏
d=1

N (y:,m,d |0,Sm,d) , (17)

where Y is connected with X and Z by a N × N kernel matrix Sm,d. The (i, j)th

element in Sm,d is given by

sm,d ({zi,xi}, {zj,xj}) := φ2
m,1,d exp

[
−
φ2
m,2,d

2
(zi,d − zj,d)

2

]
+ φ2

m,3,d

+ φ2
m,4,dzi,dzj,d + φ2

m,5,dδ(zi,d, zj,d)

+ φ2
m,6,d exp

[
−1

2

L∑
l=1

η2m,l,d(xi,l − xj,l)
2

]
, (18)

where xi,l is the lth dimension of the instance xi. This covariance function has a similar
form as Eq. (5), but with the addition of an automatic relevance determination kernel
on X. By incorporating a separate parameter ηm,l,d for each input dimension l, we can
optimize these parameters to infer the relative importance of different dimensions of an
instance from the data. One can see that, as ηm,l,d becomes small, the response yn,m,d

becomes relatively insensitive to xn,l. This allows us to detect the dimensions of X that
substantially affect the observer’s response.

Parameter Estimation. The observer model in Eq. (17) can be combined with Eq. (4)
to form our new model,

p(Y |X,Θ) =

∫
p(Y |Z,X,Θ)p(Z |X,Θ)dZ,

where Θ := {{κ1,d, . . . , κ5,d}, {φm,1,d, . . . , φm,6,d}, {ηm,l,d}} is the set of model pa-
rameters to be inferred from the data. Unfortunately, such marginalization of Z in-
tractable as the latent variable z appears nonlinear in the kernel matrix. Instead, we
seek a maximum a posterior (MAP) solution by maximizing

log p(Z,Θ |Y,X) = log p(Y |Z,X,Θ) + log p(Z |X,Θ) + constant, (19)

with respect to Z and Θ. Substituting Eq. (17) and Eq. (4) into Eq. (19) gives

F NLOB := log p(Z,Θ |Y,X) = −1

2

D∑
d=1

M∑
m=1

(
ln |Sm,d|+ tr(S−1

m,dy:,m,dy
�
:,m,d)

)

− 1

2

D∑
d=1

(
ln |Kd|+ tr(K−1

d z:,dz
�
:,d)
)
+ constant. (20)
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The partial derivative of F NLOB with respect to the latent variable is given by

∂F NLOB

∂z:,d
= tr

((
S−1
m,dy

�
:,m,dy:,m,dS

−1
m,d − S−1

m,d

) ∂Sm,d

∂z:,d

)
−K−1

d z:,d. (21)

The gradients with respect to the parameters of kernel matrix can be likewise derived as
in the linear observer model. Finally, these gradients are used in the L-BFGS algorithm
for maximizing F NLOB.

When the algorithm converges, the estimate of ground truth is directly given by the
stationary point of F NLOB. Predicting the response of a new instance can be carried out
in the same way as in Eq. (11). Moreover, the estimation of themth observer’s response
is given by

ỹ∗,m,d = s∗S
−1
m,dỹ:,m,d,

where s∗ := [sm,d(z̃∗, z̃1,x∗,x1), . . . , sm,d(z̃∗, z̃N ,x∗,xN )].

Initialization. Note that seeking the MAP solution of Z and Θ simultaneously may
lead to a bad local optimum. Specificall , the model may stuck in a solution where
{fd} is too trivial (e.g. close to a constant) and {gm,d} is too complicated (e.g. highly
non-linear), which contradicts our intuition. To mitigate this problem, we f rst f t the
training data with the linear observer model. The idea is to f nd an initial approximation
of {fd} by restricting {gm,d} as linear. Then, we take Z̃ estimated by the linear observer
model as the initialization of the ground truth, and train the nonlinear observer model
to further ref ne {fd} and {gm,d}.

4 Experimental Results

To evaluate the performance of our algorithm on predicting the ground truth and the ob-
servers’ responses, we set up two experiments1. First, the effectiveness of our models
is demonstrated on the synthetic data. The second experiment is conducted on the real-
world data. In both experiments, the ground truth is known and observers’ responses
are simulated by mapping the ground truth with some random nonlinear functions. As
a consequence, the performance can be evaluated straightforwardly. Two metrics are
considered here, i.e. the mean absolute normalized error (MANE) and the Pearson cor-
relation coeff cient (PCC). In MANE, we f rst rescale the actual value and its predicted
value into [0, 1] respectively, and then measure the mean absolute error. MANE value
close to 0 and PCC value close to 1 indicate that the algorithm performs well. In partic-
ular, the expected MANE of a random predictor is 0.5.

The proposed linear observer model (LOB) and nonlinear observer model (NLOB)
are compared with several baselines. We f rst refer SVR and GPR as the Support Vec-
tor Regression and Gaussian Process Regression trained with the ground truth, respec-
tively. Then we combine responses from multiple observers by taking the average and
then using it for training, which we denote as SVR-AVG and GPR-AVG, respectively.

1 For reproducing the experimental results, our MATLAB implementation is available at
http://home.in.tum.de/˜xiaoh.

http://home.in.tum.de/~xiaoh
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Fig. 3. (a) Synthetic data generated for the experiment. Responses from observers are represented
by markers with different colors. The right panel illustrates randomly generated {gm} used for
simulating four observers. Shaded area represents the pointwise variance. Note that the 4th ob-
server is adversarial, as his response tends to be the opposite of the ground truth. (b, c, d) Pre-
dicted ground truth on the test set by applying SVR-AVG, GPR-AVG and LOB, respectively. (e)
Predicted ground truth and learned observer functions given by NLOB.

For a fair comparison, the covariance function of x in GPR and GPR-AVG has the same
composite form as in Eq. (5). In addition to these non-parametric methods, Raykar
refers to the model in which both p(Z |X) and p(Y |Z) are Gaussian in the spirit
of [6].
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4.1 Synthetic Examples

To create one-dimensional synthetic data (i.e. L := 1 and D := 1), we set f(x) :=
sin(6x) sin(x

2 ). The training instancesX are generated by randomly sampling 30 points
in [0, 2π] from the uniform distribution. The test instances are obtained using a dis-
cretization of [0, 2π] with equal space of 0.05, which results in 126 points. Four simu-
lated observers are obtained by setting the corresponding {gm} as a random nonlinear
monotonic function. For a training instance x, themth observer provides its response by
gm(f(x)) plus some Gaussian noise. An illustration of our synthetic data is depicted in
Fig. 3(a). Figure 3(b, c, d, e) shows the results given by the baselines and our method.
Not surprisingly, taking the average of observers’ responses is not an effective solu-
tion. In contrast, our LOB and NLOB models outperform baseline methods signif cantly,
which yield lower MANE and higher PCC. Moreover, the observers’ functions learned
by NLOB are very close to those predefine {gm} in Fig. 3(a).

4.2 On Real-World Data

We download four real-world data sets from UCI Machine Learning Repository, namely
AUTO, COMMUNITY, CONCRETE and WINE. On each data set, we randomly select 500
instances and generate 20 observers in the same manner as in Section 4.1. The number
of adversarial observers is fi ed to 6. The experiment is conducted with 10-fold cross-
validation. The prediction result of the ground truth and observers’ responses is summa-
rized in Table 1. It is notable that the proposed LOB and NLOB signif cantly outperform
SVR/GPR-AVG and Raykar on inferring the ground truth. In general, additional im-
provements are observed when NLOB is used. Comparing it with the SVR/GPR column,
one can see that the regression function learned by NLOB is almost as good as the one
trained using the ground truth. We remark that the promising performance of NLOB is
achieved by merely learning from a set of observers without any prior knowledge of
their expertise and the ground truth. Furthermore, LOB and NLOB also show encourag-
ing performance on predicting responses of observers, which can be proved useful in
many applications such as the recommendation system.

Table 1. Prediction of the ground truth and observers’ responses. In each cell, the upper value
is MANE, while PCC is at the bottom. For the ground truth and the average baselines we only
report the best performance, where a superscript S denotes that the performance is achieved by
SVR or SVR-AVG; for GPR and GPR-AVGwe use the superscript G. The best model on each data
set is highlighted by bold font. Note that only LOB and NLOB can predict observers’ responses.

Data set Ground truth Observers’ responses
SVR/GPR SVR/GPR-AVG Raykar LOB NLOB LOB NLOB

AUTO
0.19 ± 0.05G 0.21 ± 0.07G 0.25 ± 0.08 0.26 ± 0.05 0.20± 0.04 0.26 ± 0.04 0.25± 0.09

0.84 ± 0.07G 0.63 ± 0.43G 0.50 ± 0.22 0.84± 0.05 0.82 ± 0.08 0.75± 0.05 0.70 ± 0.11

COMMUNITY
0.15 ± 0.03G 0.27 ± 0.08S 0.22 ± 0.10 0.17 ± 0.03 0.16± 0.03 0.26 ± 0.04 0.25± 0.09

0.80 ± 0.08G 0.44 ± 0.38S 0.70 ± 0.13 0.76 ± 0.04 0.77± 0.04 0.62± 0.09 0.55 ± 0.15

CONCRETE
0.15 ± 0.02G 0.22 ± 0.08G 0.20 ± 0.08 0.18 ± 0.07 0.17± 0.06 0.26 ± 0.04 0.15± 0.06

0.76 ± 0.08G 0.60 ± 0.46G 0.66 ± 0.21 0.78 ± 0.11 0.79± 0.09 0.66 ± 0.18 0.72± 0.15

WINE
0.20 ± 0.06G 0.30 ± 0.05S 0.29 ± 0.06 0.27 ± 0.09 0.25± 0.07 0.32 ± 0.07 0.24± 0.07

0.67 ± 0.12G 0.52 ± 0.30G 0.38 ± 0.19 0.58 ± 0.20 0.61± 0.17 0.47 ± 0.18 0.48± 0.15
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5 Conclusion

This paper investigates the regression problem under multiple observers providing re-
sponses that are not absolutely accurate. The problem involves learning a regression
function and observers’ expertise from such data without any prior information of the
observers. Based on the Gaussian process, we propose a probabilistic framework and
develop two models. Our approach provides an estimate of the ground truth and also
predicts the responses of each observer given new instances. Experiments show that the
proposed method outperforms several baselines and leads to a performance close to the
model trained with the ground truth.

There are many opportunities for future research. One possible direction is to extend
our model with multiple kernel learning. The idea is to let the algorithm pick or com-
posite different covariance functions instead of f xing the combination in advance. As a
consequence, the algorithm may learn complex f ts for the observers by selecting mul-
tiple kernels in a data-dependent way. Moreover, it would be highly benef cial to design
active sampling methods for selecting which instance and whose response should be
learned next.
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Mladenić, Dunja II-185
Morrison, Donn II-25
Moulavi, Davoud II-160
Murase, Kazuyuki II-317



Author Index 609

Nguyen, Phuoc I-289
Nguyen, Tu Dinh I-123
Ni, Eileen A. I-426
Ni, Lionel M. II-73

Ohama, Iku II-147
Okazaki, Naoaki I-378

Papalexakis, Evangelos I-86
Pasquier, Claude I-26
Pears, Russel II-461
Peng, Wen-Chih I-99, I-339
Peng, Yun I-187
Pham, Duc-Son II-123
Phung, Dinh I-123, II-123, II-546
Plant, Claudia I-249
Poncelet, Pascal I-314
Prakash, B. Aditya I-201
Pudi, Vikram I-450, II-305

Qian, Feng I-174
Qian, Zhuzhong II-37
Qiao, Zhi II-509

Rahimi, Seyyed Mohammadreza II-377
Rana, Santu II-546
Ren, Yongli II-390
Ristanoski, Goce I-484
Rupnik, Jan II-185

Saha, Budhaditya II-123
Sakthithasan, Sripirakas II-461
Sakurai, Yasushi I-86
Sander, Joerg II-160
Sanhes, Jérémy I-26
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