
Searching Desktop Files Based on Access Logs

Yukun Li, Xiyan Zhao, Yingyuan Xiao, and Xiaoye Wang

Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin
Key Laboratory of Computer Vision and System, Ministry of Education

Tianjin University of Technology, 300384, Tianjin, China
{liyukun,yyxiao,wangxy}@tjut.edu.cn, zhaoxiyan322@sina.com

Abstract. People often meet trouble in searching a desktop file when
they can not remember exact words of its filename. In this paper, we
firstly propose an algorithm to generate access logs by monitoring desk-
top operations and implement a prototype. By running it in several com-
puters of selected participants we collected a data set of access logs. Then
we propose a graph model to represent personal desktop files and their re-
lationships, and highlight two file relationships(content relationship and
time relationship) to help users search desktop files. Based on the graph
model, we propose a desktop search method, and the experimental results
show the feasibility and effectiveness of our methods.

1 Introduction

When people want to re-find a desktop file and can not remember its loca-
tion, they often choose desktop search tools to do it. Because most desktop
search tools are based on keyword search technology, people often meet trouble
in searching a desktop file when forgetting exact words of the filename. Because
of the limitation of human memory, it is unreasonable to ask each person to
exactly remember words of every filename of desktop. For example, if a user
wants to search the file “An draft on dataspace framework.pdf” with existing
desktop search tools, he/she has to remember one or some words of set {“draft”,
“dataspace”, “framework”}. Because most existing desktop search tools do not
distinct accessed files from a great number of system files, they often work at
low performance. This paper focuses on helping people efficiently search desktop
file when they lose memory about exact file information.

1.1 Related Work

Chirita and Nejdl [1] proposed to connect semantically related desktop items
by exploiting analysis information about sequences of accesses. Peery et al. [2]
presented a multi-dimension query method in personal dataspace, which individ-
ually grades each dimension(content, structure and metadata), then combines
the three dimension scores into a meaningful unified score. All the works above
do not refer to how to get the access logs and how to search desktop files based

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 267–274, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

268 Y. Li et al.

on them. In [3], an idea about identifying personal tasks based on user’s op-
erations was proposed and demonstrated. In [4], a method on querying per-
sonal file based on user’s working context was proposed. Some researchers of
database area studied about managing personal data set, and the work involves
personal dataspace model [5,6], pay-as-you-go integration [7,8], index [9] and
query. Some interesting prototypes were developed like iMemes [10], Semex [7],
MyLifeBit [11], HyStack [12] and so on. The works listed above didn’t efficiently
solve the problem on how to search desktop file based on access logs.

1.2 Contribution Summary

The contributions of this paper can be summarized as below:(1) Propose an
algorithm to generate access logs by monitoring user’s operations on desktop and
implement a prototype system, and by running it on several computers of selected
participants we collect a data set of access logs from eight persons.(2)Propose
a graph model to represent personal desktop files and their relationships, and
highlight two file relationships(content relationship and time relationship) to
help users re-find personal desktop files, furthermore propose a desktop search
method based on the graph model.

The rest is organized as follows: In section 2, we describe our desktop search
method. Section 3 is about experiments. Section 4 concludes this paper.

2 Searching Methods Based on Access Logs

As most accesses to desktop files are re-finding [13], we propose that (1)it should
be enough for desktop search to scan only the accessed files, (2)the accessed files
can be identified by monitoring desktop operations and (3)the access logs can
provide additional methods about desktop search.

2.1 Generating Access Logs

We propose to generate user access logs bymonitoring the recently-accessed folder
of operating system likeWindowsXP, and take a 3-ary tuple {OperationTime, Op-
eratedFileName, OperatedDirectory}to represent the schema. The steps include:
(1) If a change of the latest accessed desktop file is detected, a new access record
will be generated, and the attributes OperationTime, OperatedFileName andOp-
eratedDirectory can be identified through APIs provided by operating system; (2)
If the latest accessed file is not involved in the log table, it means the user is access-
ing a new file. By this method we developed a prototype and collected logs of eight
persons about one year.

Table 1 shows a part of an author’s access logs, which includes 8 records and
refers to 5 different desktop files. Except “A proposal for applying an award.doc”,
all the files are related to the activity “submitting to DASFAA 2013”, although
some filenames are not similar, like “figure1.vsd” and “submission to DASFAA

Searching Desktop Files Based on Access Logs 269

2012”. When the user wants to re-find “figure1.vsd” and only remembers it re-
lates to the activity “submitting to DASFAA 2013”, instead of remembering
the filename “figure1.vsd”, it will be difficult for user to do by existing desktop
search tools. But if the time relation between the two files is highlighted, which
will provide the user additional ways for searching “figure1.vsd”. Therefore be-
sides content similarity, we propose to highlight time relationship to help users
search desktop files more efficiently.

Table 1. Overview of a part of a user’s access logs

No User File name Access time

1 U1 Submission to DASFAA 2012.tex 2012-10-01 14:00

2 U1 figure1.vsd 2012-10-01 14:02

3 U1 Experimental data for DASFAA submission.xls 2012-10-01 14:05

4 U1 Comments from a Coauthor.doc 2012-10-01 14:20

5 U1 A proposal for applying an award.doc 2012-10-01 14:30

6 U1 Submission to DASFAA 2012.tex 2012-10-01 14:35

7 U1 figure1.vsd 2012-10-01 15:30

8 U1 Experimental data for DASFAA submission.xls 2012-10-01 15:40

2.2 Desktop File Graph Model and Construction

We propose a graph model to describe desktop files and their relationships, and
name it DFG(Desktop File Graph). A DFG is described as G(F,R,n), where F is
a set of desktop files accessed by user, n is the number of files in F , and R is a set
of file relationships. Based on the observations mentioned in section 2.1, we take
the following two relationships into consideration: content similarity(Co) and
time relationship(Ti), where Co means the similarity of two files in content, and
Ti means the possibility that two files are accessed together. The DFG model
provides an additional method for users to search desktop files. How to identify
the relationships is the key problem. In this section, we propose methods to
identify the two relationships.

As to content relationship, we propose to take filename similarity to approx-
imately represent the content relationship of two files. For each file, we take a
set of tokens included in the filename to denote its content. By computing the
similarity of token sets of two files, we can work out the content similarity of
them. In our work we take the formula 1 to compute Jaccard similarity [14] of
the two token sets of the files Fi and Fj , and regard it as the content relationship
of the two files.

Co(Fi, Fj) =
|Fi.Stoken ∩ Fj .Stoken|
|Fi.Stoken ∪ Fj .Stoken| (1)

In formula 1, Fi.Stoken means the token set of file Fi, and Fj .Stoken means the
token set of file Fj . If Sim(Fi, Fj) is bigger than 0, we add an edge between Fi

270 Y. Li et al.

and Fj in the graph to denote the content relationship, and the weight of the
edge (Fi,Fj) equals to the value of Co(Fi, Fj).

As to the time relationship, Our algorithm is based on the position below: If
two files are often accessed at the same time, we think they have time relation.
The hard problem is how to decide “at the same time”. In this work we propose
to take “accessed sequentially” to approximately evaluate “accessed at the same
time”. For example, let A and B be two files, the more times they are accessed
sequentially, the closer time relationship they have.

How to compute the time relationship is a challenging problem. Firstly, to
two given files, the times they are accessed sequentially is dynamic; Secondly,
it needs a method to increasingly update the time relation value based on its
existing value. We propose a simple method to compute it as formula 2.

T in(Fi, Fj) =
T in−1(Fi, Fj)+1

2
(2)

In formula 2, T in−1(Fi, Fj) means the existing time relation value between the
two files denoted by Fi and Fj , and the initial value T i0(Fi, Fj) is 0. When a new
sequential access to Fi and Fj is found during monitoring user accesses, their
time relation will be updated based on formula 2. The new value will be bigger
than the old one, and its maximum value will not exceed 1. For example, when
their first sequential access is found, T i1(Fi, Fj) = (0+1)/2 =0.5, and when the
second sequential access is found, T i2(Fi, Fj) = (0.5+1)/2 =0.75.

Algorithm 1 shows the process of constructing desktop file graph. It supposes
there exists a desktop file graph Gs, and shows how the file set and the two file
relationship sets will be updated when a new access to a desktop file is found.

2.3 Searching Method

we propose a simple interface to perform the graph-based search, whose format is
“keyword1, keyword2, ..., keywordn\[C|T]”, where keywordi is a keyword user
input, C and T are options which are set by users when they plan to search
desktop files, where C means searching based on content relationship and T
means searching based on time relationship. For example, “database, index \ C”
means searching the files including keywords “database” and “index” based on
content relationship, “database, index \ T” means searching the files whose
filename includes keywords “database” and “index” based on time relation-
ship. Based on the input keywords, we take Jaccard [14] method to compute
the similarity between the input keywords(In.Skeywords) and each file’s token
set(Fi.Stoken, 1 ≤ i ≤ n) by formula 3, and get a n-ary vector Vs as the primary
results, which is taken to generate final results based on the desktop file graph.

Vs(i) =
|Fi.Stoken ∩ In.Skeywords|
|Fi.Stoken ∪ In.Skeywords| . (3)

Assume the desktop file space is a graph G(F,Co, T i, n), where F is the set of
desktop files accessed by user, n is the number of files in F , Co is the edge set

Searching Desktop Files Based on Access Logs 271

Algorithm 1. Constructing desktop file graph

Input: A new accessed file f and a graph Gs(F,Co, T i,m, n), where F is a set of files,
Co is the content relation set, Ti is the time relation set, n is the total number of files,
and m is the ID number of the file accessed last time.
Output: An updated graph Gs(F,Co, T i,m, n).

1: procedure Constructing Desktop F ile Graph(f,Gs(F,Co, T i,m, n))
2: if f ∈ F then
3: find the ID number of f in Gs.F and store it into k
4: else
5: add a new file Gs.Fn+1

6: n = n + 1, k = n
7: for (int i = 1, i ≤ n, i++) do
8: Sco = |Gs.Fi.T okens

⋂
Gs.Fk.T okens| / |Gs.Fi.T okens

⋃
Gs.Fk.T okens|

9: if Sco > 0 then
10: Co(Gs.Fi, Gs.Fk) = Sco

11: end if
12: end for
13: end if
14: T i(Gs.Fm, Gs.Fk) = (T i(Gs.Fm, Gs.Fk) + 1)/2
15: end procedure

of content relationship, T i is the edge set of time relationship. In our method,
we imagine G(F,Co, T i, n) as two virtual graphs Gc(F,Co, n) and Gt(F, T i, n),
and take two n× n adjacency matrixes to present them, where the nondiagonal
element aij is the weight of the edge from vertex i to vertex j, and the diagonal
element aii is set 1 here. Let M be the adjacency matrixes of selected graph view
(Gc(F,Co, n) or Gt(F, T i, n)), based on Vs we can compute the result file set by
the formula Vr = Vs ×M , and the result Vr is a n-ary vector. Based on Vr, we
can compute the final result Rs by the formula Rs = {Fi|Vr(i) �= 0, 0 ≤ i ≤ n}.
Naturally, based on the values of Vr, the searching results can be ranked easily.

3 Experiments

Table 2 shows the participants’ attributes(age, sex and position) and data sets.
The parameters of data set include time length of data collection(Time), ac-
cess times, accessed files, re-access times, and the ratio of re-access times to
access times(Re-accessRatio). From the table we can discover most operations
of desktop are re-accesses.

3.1 Experimental Design

We create a benchmark with the help of the participants. To the best of our
knowledge there is no existing benchmark on evaluating desktop re-finding meth-
ods. Based on the number of the files a user wants to search, we classify the
searching cases into two categories: single file search and multiple file search.

272 Y. Li et al.

Table 2. Overview the statistics on access log collection

User Age Sex Position Time Access Accessed Re-access Re-accessRatio
(day) Times Files Times (%)

U1 26 Female Master 351 9514 1836 7678 80.70

U2 25 Male Master 351 5994 2291 3703 61.78

U3 27 Female Master 223 1005 393 612 60.90

U4 36 Male PhD 355 7320 1894 5426 74.13

U5 25 Male Master 354 15040 3829 11211 74.54

U6 29 Male PhD 183 3021 813 2208 73.09

U7 22 Female Undergraduate 213 6064 1522 4542 74.90

U8 23 Female Undergraduate 233 6587 1755 4832 73.36

Single file search means relocating a specific file, and multiple file search means
searching multiple files. We ask each participant to design some searching cases
according to their searching experience, and give the correct answer for each
search based on what they want to find. We let each user Ui design 10 search
samples respectively for single file search and multiple file search, and ask them
to give a file or a file set to every search sample as right answer.

We take the popular measures recall,precision and F-score [15] to evaluate
our methods. Because we have not found existing work about helping users
search desktop files based on monitoring user access logs, and desktop search
tools are popular ways for users to re-find desktop files, we select two popular
desktop tools MS desktop search and Google desktop search engine as baseline to
evaluate our method. To each search, we perform it with different methods and
take top-k files returned as the final results, and set k = 30 in our experiments.
By comparing the final results with the benchmark for each search sample, we
can compute the recall, precision and F-score of each search, then we can work
out the average value of recall, precision and F-score of each method.

3.2 Experimental Results

Figure 1 illustrates the advantages of our method: (1)Either to single file search
or to multiple file search, our access log-based method’s F-score is the best; (2)
The recall of our method equals to 1 approximately, which is much better than
other tools; (3) Precisions of all methods are not high, which is in accord with
our expects because there exist some unrelated files whose names share some
same words. Totally our method has better precision than other desktop search
tools.

Like desktop search engine, our method also has two types of cost: off-line cost
and online cost. (1)As to online cost, MS desktop search tool shows the lowest
performance, it always takes several minutes to handle a search and returns
a great number of files which often include many system files. Our log-based
method and Google Desktop search engine show a better online performance,
especially the log-based method’s average response time is less than one second,

Searching Desktop Files Based on Access Logs 273

Comparison of three methods (Single File Search)

0

0.2

0.4

0.6

0.8

1

Log-based Google Desktop MS Desktop

Recall Precision F-score

Comparison of three methods (Multiple File Search)

0

0.2

0.4

0.6

0.8

1

Log-based Google Desktop MS desktop

Recall Precision F-score

 (a) (b)

Fig. 1. Comparison of log-based method, Google desktop and MS desktop

which can satisfy most users’ needs. (2)As to off-line cost, the cost of our method
is much lower than the selected desktop search tools. Take google desktop search
for example, it always takes several hours to build the initial index in some cases,
and the update of index is also delayed much more, which sometimes results in
search failure. To MS desktop search, it has little additional cost for updating.
Totally, our access log-based method’s performance is comprehensively better
than other desktop search tools, and can satisfy users’ requirements.

We also have the following observations in experiments. (1)Sometimes users do
not name a desktop file according to its content for some reasons like “download
it from a web site and keep its original filename”, “get it from other persons”, and
so on; (2)People archive personal desktop files with folders according to different
rules. For example, some folders are created based on user activities, like “Sub-
mission to DASFAA 2013”, which includes the files related to the submission to
DASFAA 2013, and sometimes based on the file categories, like “dataspace pa-
per”, which includes the papers related to dataspace topic.(3)Access logs provide
users additional facets to search desktop files like access frequency, access time,
operation types and so on. The observations discover some interesting research
topics and we will study them in the future.

4 Conclusions

In this paper, we firstly propose a method to generate access logs by monitor-
ing users’ operations on desktop and build a data set of access logs of eight
persons. Then we propose a desktop search method based on access logs. The
experimental results show the effectiveness of our method.

Acknowledgments. This research was supported by the Natural Science Foun-
dation of China under grant number 61170027, 61170174; Natural Science Foun-
dation of Tianjin under grant number 11JCYBJC26700.

274 Y. Li et al.

References

1. Chirita, P.-A., Nejdl, W.: Analyzing User Behavior to Rank Desktop Items. In:
Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209,
pp. 86–97. Springer, Heidelberg (2006)

2. Peery, C., Wang, W., Marian, A., Nguyen, T.D.: Multi-Dimensional Search for
Personal Information Management Systems. In: 11th International Conference on
Extending Database Technology, pp. 464–475. ACM Press, Nantes (2008)

3. Li, Y., Zhang, X., Meng, X.: Exploring Desktop Resources Based on User Ac-
tivity Analysis. In: 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, p. 700. ACM Press, Geneva (2010)

4. Li, Y., Meng, X.: Supporting Context-based Query in Personal DataSpace. In:
18th ACM Conference on Information and Knowledge Management, pp. 2–6. ACM
Press, Hong Kong (2009)

5. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: A new ab-
straction for information management. SIGMOD Record (SIGMOD) 34(4), 27–33
(2005)

6. Dittrich, J.P., Antonio, M., Salles, V.: iDM:A unified and versatile data model for
personal dataspace management. In: 32nd International Conference on Very Large
Data Bases, pp. 367–378. ACM Press, Seoul (2006)

7. Dong, X., Halevy, A.: A platform for personal information management and in-
tegration. In: 2nd Biennial Conference on Innovative Data Systems Research,
pp. 119–130. Online Proceedings, Asilomar (2005)

8. Dong, X., Halevy, A., Yu, C.: Data integration with uncertainty. In: The 33rd
International Conference on Very Large Data Bases, pp. 687–698. ACM Press,
Vienna (2007)

9. Dong, X., Halevy, A.: Indexing dataspaces. In: The ACM SIGMOD International
Conference on Management of Data, pp. 43–54. ACM Press, Beijing (2007)

10. Blunschi, L., Dittrich, J.P., Girard, O.R., Karakashian, S.K., Salles, M.A.V.: A
Dataspace Odyssey: The iMeMex Personal Dataspace Management System. In:
3rd Biennial Conference on Innovative Data Systems Research, pp. 114–119. Online
Proceedings, Asilomar (2007)

11. Gemmell, J., Bell, G., Lueder, R., Drucker, S.M., Wong, C.: MyLifeBits: fulfilling
the Memex vision. In: 10th ACM International Conference on Multimedia, pp.
235–238. ACM Press, Juan les Pins (2002)

12. Karger, D.R., Bakshi, K., Huynh, D., Quan, D., Sinha, V.: Haystack: A customiz-
able general-purpose information management tool for end users of semistructured
data. In: 2nd Biennial Conference on Innovative Data Systems Research, pp. 13–26.
Online Proceedings, Asilomar (2005)

13. Elsweiler, D., Baillte, M., Ruthven, I.: Exploring Memory in Email Refinding. ACM
Transactions on Information Systems(TOIS) 26(4), Article No.21 (2008)

14. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: 16th
International Conference on World Wide Web, pp. 131–140. ACM Press, Banff
(2007)

15. Raghavan, V.V., Bollmann, P., Jung, G.S.: Retrieval System Evaluation Using
Recall and Precision: Problems and Answers. In: 12th International Conference
on Research and Development in Information Retrieval, pp. 59–68. ACM Press,
Cambridge (1989)

	Searching Desktop Files Based on Access Logs
	Introduction
	Related Work
	Contribution Summary

	Searching Methods Based on Access Logs
	Generating Access Logs
	Desktop File Graph Model and Construction
	Searching Method

	Experiments
	Experimental Design
	Experimental Results

	Conclusions
	References

