Weiyi Meng Ling Feng
Stéphane Bressan Werner Winiwarter
Wei Song (Eds.)

Database Systems
for Advanced Applications

18th International Conference, DASFAA 2013
Wuhan, China, April 2013
Proceedings, Part II

LNCS 7826

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7826

Weiyi Meng Ling Feng
Stéphane Bressan Werner Winiwarter
Wei Song (Eds.)

Database Systems
for Advanced Applications

18th International Conference, DASFAA 2013
Wuhan, China, April 22-25, 2013
Proceedings, Part II

@ Springer

Volume Editors

Weiyi Meng

Binghamton University. Department of Computer Science
Binghamton, NY 13902, USA

E-mail: meng @binghamton.edu

Ling Feng

Tsinghua University, Department of Computer Science and Technology
100084 Beijing, China

E-mail: fengling @tsinghua.edu.cn

Stéphane Bressan

National University of Singapore, Department of Computer Science
117417 Singapore

E-mail: steph@nus.edu.sg

Werner Winiwarter

University of Vienna, Research Group Data Analytics and Computing
1090 Vienna, Austria

E-mail: werner.winiwarter @univie.ac.at

Wei Song

Wuhan University, School of Computer Science
430072 Wuhan, China

E-mail: songwei@whu.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-37449-4 e-ISBN 978-3-642-37450-0
DOI 10.1007/978-3-642-37450-0

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013934238
CR Subject Classification (1998): H.2-5, C.2,J.1,J.3

LNCS Sublibrary: SL 3 — Information Systems and Application,
incl. Internet/Web and HCI

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our great pleasure to present to you the proceedings of the 18th International
Conference on Database Systems for Advanced Applications (DASFAA 2013),
which was held in Wuhan, China, in April 2013. DASFAA is a well-established
international conference series that provides a forum for technical presentations
and discussions among researchers, developers, and users from academia, busi-
ness, and industry in the general areas of database systems, Web information
systems, and their applications.

The call for papers attracted 208 submissions of research papers from 28
countries (based on the affiliation of the first author). After a comprehensive re-
view process, the Program Committee selected 51 regular research papers and 10
short research papers for presentation. The acceptance rate for regular research
papers is less than 25%. The conference program also included the presenta-
tions of three industrial papers selected by the Industrial Committee chaired by
Haixun Wang and Haruo Yokota, and nine demo presentations selected from 19
submissions by the Demo Committee chaired by Hong Gao and Jianliang Xu.

The proceedings also include the extended abstracts of the two invited keynote
lectures by internationally known researchers, Katsumi Tanaka (Kyoto Univer-
sity, Japan) and Peter M.G. Apers (University of Twente, The Netherlands),
whose topics are on “Can We Predict User Intents from Queries? Intent Dis-
covery for Web Search” and “Data Overload: What Can We Do?”, respectively.
In addition, an invited paper contributed by the authors of the DASFAA 10-
year Best Paper Award winner for the year 2013, Chen Li, Sharad Mehrotra,
and Liang Jin, is included. The title of this paper is “Record Linkage: A 10-
Year Retrospective.” The Tutorial Chairs, Jian Pei and Ge Yu, organized four
tutorials given by leading experts on a wide range of topics. The titles and
speakers of these tutorials are “Behavior-Driven Social Network Mining and
Analysis” by Ee-Peng Lim, Feida Zhu, and Freddy Chua, “Understanding Short
Texts” by Haixun Wang, “Managing the Wisdom of Crowds on Social Media Ser-
vices” by Lei Chen, and “Ranking Multi-valued Objects in a Multi-dimensional
Space” by Wenjie Zhang, Ying Zhang, and Xuemin Lin. The Panel Chairs, Aoy-
ing Zhou and Jeffrey Xu Yu, organized a stimulating panel on big data research.
The panel was chaired by Xiaoyang Sean Wang. This rich and attractive confer-
ence program of DASFAA 2013 is published in two volumes of Springer’s Lecture
Notes in Computer Science series.

Beyond the main conference, Bonghee Hong, Xiaofeng Meng, and Lei
Chen, who chaired the Workshop Committee, put together three exciting work-
shops (International DASFAA Workshop on Big Data Management and An-
alytics, International Workshop on Social Networks and Social Web Mining,
and International Workshop on Semantic Computing and Personalization). The

VI Preface

workshop papers are included in a separate volume of proceedings also published
by Springer in its Lecture Notes in Computer Science series.

DASFAA 2013 was primarily sponsored and hosted by Wuhan University of
China. It also received sponsorship from the National Natural Science Founda-
tion of China (NSFC), the Database Society of the China Computer Federation
(CCF DBS), and the State Key Laboratory of Software Engineering of China
(SKLSE). We are grateful to these sponsors for their support and contribution,
which were essential in making DASFAA 2013 successful.

The conference would not have been possible without the support and hard
work of many colleagues. We would like to express our gratitude to Honorary
Conference Chairs, Lizhu Zhou and Yanxiang He, for their valuable advice on
all aspects of organizing the conference. Our special thanks also go to the DAS-
FAA Steering Committee for their leadership and encouragement. We are also
grateful to the following individuals for their contributions to making the con-
ference a success: the General Co-chairs, Jianzhong Li, Zhiyong Peng and Qing
Li, Publicity Co-chairs, Jun Yang, Xiaoyong Du and Satoshi Oyama, Local Ar-
rangements Committee Chair, Tieyun Qian, Finance Co-chair, Howard Leung
and Liwei Wang, Web Chair, Liang Hong, Best Paper Committee Co-chairs,
Changjie Tang, Hiroyuki Kitagawa and Sang-goo Lee, Registration Chair, Yun-
wei Peng, Steering Committee Liaison, Rao Kotagiri, APWEB Liaison, Xueming
Lin, WAIM Liaison, Guoren Wang, WISE Liaison, Yanchun Zhang, and CCF
DBS Liaison, Zhanhuai Li.

Our heartfelt thanks go to all the Program Committee members and external
reviewers for reviewing all submitted manuscripts carefully and timely. We also
thank all authors for submitting their papers to this conference. Finally, we thank
all other individuals and volunteers who helped make the conference program
attractive and the conference successful.

April 2013 Weiyi Meng
Ling Feng
Stéphane Bressan

Werner Winiwarter
Wei Song

Organization

Honorary Conference Co-chairs

Lizhu Zhou Tsinghua University, China
Yanxiang He Wuhan University, China

Conference General Co-chairs

Jianzhong Li Harbin Institute of Technology, China
Zhiyong Peng Wuhan University, China
Qing Li City University of Hong Kong, China

Program Committee Co-chairs

Weiyi Meng Binghamton University, USA
Ling Feng Tsinghua University, China
Stéphane Bressan National University of Singapore, Singapore

Workshop Co-chairs

Bonghee Hong Pusan National University, South Korea
Xiaofeng Meng Renmin University, China
Lei Chen Hong Kong University of Science and

Technology, China

Tutorial Co-chairs

Ge Yu Northeastern University, China

Jian Pei Simon Fraser University, Canada
Panel Co-chairs

Aoying Zhou East China Normal University, China
Jeffery Xu Yu City University of Hong Kong, China
Demo Co-chairs

Hong Gao Harbin Institute of Technology, China
Jianliang Xu Hong Kong Baptist University, China

VIII Organization

Industrial Co-chairs

Haixun Wang Microsoft Research Asia, China
Haruo Yokota Tokyo Institute of Technology, Japan

Best Paper Committee Co-chairs

Changjie Tang Sichuan University, China
Hiroyuki Kitagawa University of Tsukuba, Japan
Sang-goo Lee Seoul National University, South Korea

Publicity Co-chairs

Jun Yang Duke University, USA
Xiaoyong Du Renmin University, China
Satoshi Oyama Hokkaido University, Japan

Publication Co-chairs

Werner Winiwarter University of Vienna, Austria
Wei Song Wuhan University, China

Local Arrangements Chair

Tieyun Qian Wuhan University, China

Finance Co-chairs

Howard Leung City University of Hong Kong, China
Liwei Wang Wuhan University, China

Registration Chair

Yuwei Peng Wuhan University, China
Web Chair
Liang Hong Wuhan University, China

Steering Committee Liaison

Rao Kotagiri University of Melbourne, Australia

WAIM Liaison

Guoren Wang Northeastern University, China

APWEB Liaison

Xueming Lin

WISE Liaison

Yanchun Zhang

CCF DBS Liaison

Zhanhuai Li

Program Committees

Research Track

Toshiyuki Amagasa,
Masayoshi Aritsugi
Zhifeng Bao

Ladjel Bellatreche
Boualem Benatallah
Sourav S Bhowmick
Chee Yong Chan
Jae Woo Chang
Ming-Syan Chen
Hong Cheng

James Cheng
Reynold Cheng
Byron Choi

Yon Dohn Chung
Gao Cong

Bin Cui

Alfredo Cuzzocrea

Gill Dobbie
Eduard C. Dragut
Xiaoyong Du
Jianhua Feng
Jianlin Feng
Yunjun Gao
Wook-Shin Han
Takahiro Hara
Bingsheng He
Wynne Hsu
Haibo Hu

Organization IX

University of New South Wales, Australia

Victoria University, Australia

Northwestern Polytechnical University, China

University of Tsukuba, Japan
Kumamoto University, Japan
National University of Singapore, Singapore
Poitiers University, France
University of New South Wales, Australia
Nanyang Technological University, Singapore
National University of Singapore, Singapore
Chonbuk National University, South Korea
National Taiwan University, Taiwan
Chinese University of Hong Kong, China
Nanyang Technological University, Singapore
University of Hong Kong, China
Hong Kong Baptist University, China
Korea University, South Korea
Nanyang Technological University, Singapore
Peking University, China
Institute of High Performance Computing and
Networking of the Italian National

Research Council, Italy
University of Auckland, New Zealand
Purdue University, USA
Renmin University, China
Tsinghua University, China
Sun Yat-Sen University, China
Zhejiang University, China
Kyung-Pook National University, South Korea
Osaka University, Japan
Nanyang Technological University, Singapore
National University of Singapore, Singapore
Hong Kong Baptist University, China

X Organization

Yoshiharu Ishikawa
Adam Jatowt
Yiping Ke

Sang Wook Kim
Young-Kuk Kim
Hiroyuki Kitagawa
Hady W. Lauw
Mong Li Lee
Sang-goo Lee
Wang-Chien Lee
Hong-va Leong
Cuiping Li

Guohui Li

Xiang Li

Xuemin Lin

Jan Lindstrom
Chengfei Liu
Eric Lo

Jiaheng Lu

Nikos Mamoulis
Shicong Meng
Xiaofeng Meng
Yang-Sae Moon
Yasuhiko Morimoto
Miyuki Nakano
Vincent T. Y. Ng
Wilfred Ng

Katayama Norio
Makoto Onizuka

Sang Hyun Park
Uwe Rohm

Ning Ruan
Markus Schneider
Heng Tao Shen
Hyoseop Shin
Atsuhiro Takasu
Kian-Lee Tan
Changjie Tang
Jie Tang

Yong Tang
David Taniar
Vincent S. Tseng

Nagoya University, Japan

Kyoto University, Japan

Institute of High Performance Computing,
A*STAR, Singapore

Hanyang University, South Korea

Chungnam National University, South Korea

University of Tsukuba, Japan

Singapore Management University, Singapore

National University of Singapore, Singapore

Seoul National University, South Korea

Pennsylvania State University, USA

Hong Kong Polytechnic University, China

Renmin University, China

Huazhong University of Science and
Technology, China

Nanjing University, China

University of New South Wales, Australia

IBM Helsinki Lab, Finland

Swinburne University of Technology, Australia

Hong Kong Polytechnic University, China

Renmin University, China

University of Hong Kong, China

IBM Thomas J. Watson Research Center, USA

Renmin University, China

Kangwon National University, South Korea

Hiroshima University, Japan

University of Tokyo, Japan

Hong Kong Polytechnic University, China

Hong Kong University of Science and
Technology, China

National Institute of Informatics, Japan

NTT Cyber Space Laboratories, NTT
Corporation, Japan

Yonsei Universiy, South Korea

University of Sydney, Australia

Kent State University, USA

University of Florida, USA

University of Queensland, Australia

Konkuk University, South Korea

National Institute of Informatics, Japan

National University of Singapore, Singapore

Sichuan University, China

Tsinghua University, China

South China Normal University, China

Monash University, Australia

National Cheng Kung University, Taiwan

Vasilis Vassalos

Guoren Wang
Jianyong Wang
John Wang

Wei Wang
Chi-Wing Wong

Huayu Wu

Xiaokui Xiao
Jianliang Xu
Man-Lung Yiu
Haruo Yokota
Jae Soo Yoo
Ge Yu

Jeffrey X. Yu
Qi Yu

Zhongfei Zhang
Rui Zhang
Wenjie Zhang
Yanchun Zhang
Baihua Zheng
Kai Zheng
Aoying Zhou
Lei Zou

Industrial Track

Bin Yao

Chiemi Watanabe

Jun Miyazaki

Kun-Ta Chuang

Seung-won Hwang

Wexing Liang
Ying Yan

Demo Track

Aixin Sun
Chaokun Wang
Christoph Lofi
De-Nian Yang

Organization

Athens University of Economics and Business,
Greece

Northeastern University, China

Tsinghua University, China

Griffith University, Australia

University of New South Wales, Australia

Hong Kong University of Science and
Technology, China

Singapore’s Institute for Infocomm Research
(I2R), Singapore

Nanyang Technological University, Singapore

Hong Kong Baptist University, China

Hong Kong Polytechnic University, China

Tokyo Institute of Technology, Japan

Chungbuk National University, South Korea

Northeastern University, China

Chinese University of Hong Kong, China

Rochester Institute of Technology, USA

Binghamton University, USA

University of Melbourne, Australia

The University of New South Wales, Australia

Victoria University, Australia

Singapore Management University, Singapore

University of Queensland, Australia

East China Normal University, China

Peking University, China

Shanghai Jiaotong University, China

Ochanomizu University, Japan

Nara Institute of Science and Technology,
Japan

National Cheng Kung University, South Korea

POSTECH, South Korea

Dalian University of Technology, China

Microsoft, USA

Nanyang Technological University, Singapore

Tsinghua University, China

National Institute of Informatics, Japan

Institute of Information Science, Academia
Sinica, Taiwan

XI

XIT Organization

Feida Zhu
Feifei Li
Guoliang Li
Ilaria Bartolini
Jianliang Xu
Jin-ho Kim
Lipyeow Lim
Peiquan Jin
Roger Zimmermann
Shuigeng Zhou
Weining Qian
Wen-Chih Peng
Yaokai Feng
Yin Yang
Zhanhuai Li
Zhaonian Zou

External Reviewers

Shafiq Alam
Duck-Ho Bae
Sebastian Bre
Xin Cao
Alvin Chan
Chen Chen
Lisi Chen
Shumo Chu
Xiang Ci

Zhi Dou

Juan Du
Qiong Fang
Wei Feng
Lizhen Fu

Xi Guo
Zhouzhou He
Jin Huang
Min-Hee Jang
Di Jiang

Yexi Jiang
Akimitsu Kanzaki
Romans Kaspeovics
Selma Khouri
Sang-Chul Lee
Sangkeun Lee
Jianxin Li

Lu Li

Singapore Management University, Singapore

University of Utah, USA

Tsinghua University, China

University of Bologna, Italy

Hong Kong Baptist University, China
Kangwon National University, South Korea
University of Hawaii at Manoa, USA

USTC, China

National University of Singapore, Singapore

Fudan University, China

East China Normal University, China
National Chiao Tung University, Taiwan
Kyushu University, Japan

Advanced Digital Sciences Center, Singapore
Northwestern Polytechnical University, China
Harbin Institute of Technology, China

Sheng Li
Yingming Li
Yong Li
Bangyong Liang
Bo Liu

Cheng Long
Yifei Lu

Lydia M
Youzhong Ma
Silviu Maniu
Jason Meng
Sofian Maabout
Takeshi Misihma
Luyi Mo
Jaeseok Myung
Sungchan Park
Peng Peng

Yun Peng
Yinian Qi
Jianbin Qin
Chuitian Rong
Wei Shen
Hiroaki Shiokawa
Matthew Sladescu
Zhenhua Song
Yifang Sun

Jian Tan

Wei Tan

Ba Quan Truong
Jan Vosecky
Guoping Wang
Liaoruo Wang
Lu Wang
Yousuke Watanabe
Chuan Xiao

Yi Xu

Zhigiang Xu
Kefeng Xuan
Da Yan
ByoungJu Yang
Xuan Yang
Liang Yao
Jongheum Yeon
Jianhua Yin
Wei Zhang
Xiaojian Zhang
Yutao Zhang
Geng Zhao

Pin Zhao

Xueyi Zhao
Zhou Zhao

Rui Zhou
Xijaoling Zhou
Qijun Zhu

Table of Contents — Part 11

Graph Data Management I

Shortest Path Computation over Disk-Resident Large Graphs Based on
Extended Bulk Synchronous Parallel Methods
Zhigang Wang, Yu Gu, Roger Zimmermann, and Ge Yu

Fast SimRank Computation over Disk-Resident Graphs...............
Yinglong Zhang, Cuiping Li, Hong Chen, and Likun Sheng

S-store: An Engine for Large RDF Graph Integrating Spatial
Information
Dong Wang, Lei Zou, Yansong Feng, Xuchuan Shen,
Jilei Tian, and Dongyan Zhao

Physical Design

Physical Column Organization in In-Memory Column Stores
David Schwalb, Martin Faust, Jens Krueger, and Hasso Plattner

Semantic Data Warehouse Design: From ETL to Deployment a la

Ladjel Bellatreche, Selma Khouri, and Nabila Berkani

A Specific Encryption Solution for Data Warehouses
Ricardo Jorge Santos, Deolinda Rasteiro, Jorge Bernardino, and
Marco Vieira

NameNode and DataNode Coupling for a Power-Proportional Hadoop
Distributed File System. i
Hieu Hanh Le, Satoshi Hikida, and Haruo Yokota

Knowledge Management

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge

Xiaolu Zhang, Yueguo Chen, Jinchuan Chen, Xiaoyong Du, and
Lei Zou

ServiceBase: A Programming Knowledge-Base for Service Oriented
Development e
Moshe Chai Barukh and Boualem Benatallah

16

31

48

64

84

99

XIV Table of Contents — Part 11

On Leveraging Crowdsourcing Techniques for Schema Matching
Networks . ..o
Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltin Miklds, and

Karl Aberer

MFSV: A Truthfulness Determination Approach for Fact Statements . . .
Teng Wang, Qing Zhu, and Shan Wang

Temporal Data Management

A Mechanism for Stream Program Performance Recovery in Resource
Limited Compute Clusters i
Miyuru Dayarathna and Toyotaro Suzumura

Event Relationship Analysis for Temporal Event Search...............
Yi Cai, Qing Li, Haoran Xie, Tao Wang, and Huaging Min

Social Networks IT

Dynamic Label Propagation in Social Networks
Juan Du, Feida Zhu, and Fe-Peng Lim

MAKM: A MAFTA-Based k-Means Algorithm for Short Text in Social
Networks
Pengfei Ma and Yong Zhang

Detecting User Preference on Microblog.........
Chen Xu, Mingi Zhou, Feng Chen, and Aoying Zhou

Query Processing 11

MusTBLEND: Blending Visual Multi-Source Twig Query Formulation
and Query Processingin RDBMS
Ba Quan Truong and Sourav S Bhowmick

Efficient SPARQL Query Evaluation via Automatic Data

Partitioning
Tao Yang, Jinchuan Chen, Xiaoyan Wang, Yueguo Chen, and
Xiaoyong Du

Content Based Retrieval for Lunar Exploration Image Databases.
Hui-zhong Chen, Ning Jing, Jun Wang, Yong-guang Chen, and
Luo Chen

Searching Desktop Files Based on Access Logs.............
Yukun Li, Xiyan Zhao, Yingyuan Xiao, and Xiaoye Wang

155

Table of Contents — Part 11 XV

An In-Memory/GPGPU Approach to Query Processing for
Aspect-Oriented Data Management 275
Bernhard Pietsch

Graph Data Management II

On Efficient Graph Substructure Selection 284
Xiang Zhao, Haichuan Shang, Wenjie Zhang, Xuemin Lin, and
Weidong Xiao

Parallel Triangle Counting over Large Graphs 301
Wenan Wang, Yu Gu, Zhigang Wang, and Ge Yu

Data Mining

Document Summarization via Self-Present Sentence Relevance Model... 309
Xiaodong Li, Shanfeng Zhu, Haoran Xie, and Qing Li

Active Semi-supervised Community Detection Algorithm with Label
Propagation 324
Mingwei Leng, Yukai Yao, Jianjun Cheng, Weiming Lv, and
Xiaoyun Chen

Computing the Split Points for Learning Decision Tree in
MapReduce 339
Mingdong Zhu, Derong Shen, Ge Yu, Yue Kou, and Tiezheng Nie

FP-Rank: An Effective Ranking Approach Based on Frequent Pattern
Analysis 354
Yuanfeng Song, Kenneth Leung, Qiong Fang, and Wilfred Ng

Applications

A Hybrid Framework for Product Normalization in Online Shopping . . 370
Li Wang, Rong Zhang, Chaofeng Sha, Xiaofeng He, and Aoying Zhou

Staffing Open Collaborative Projects Based on the Degree of
Acquaintance 385
Mohammad Y. Allaho, Wang-Chien Lee, and De-Nian Yang

Industrial Papers

Who Will Follow Your Shop? Exploiting Multiple Information Sources

in Finding Followers 401
Liang Wu, Alvin Chin, Guandong Xu, Liang Du, Xia Wang,
Kangjian Meng, Yonggang Guo, and Yuanchun Zhou

XVI Table of Contents — Part 11

Performance of Serializable Snapshot Isolation on Multicore Servers
Hyungsoo Jung, Hyuck Han, Alan Fekete, Uwe Réhm, and
Heon Y. Yeom

A Hybrid Approach for Relational Similarity Measurement
Zhao Lu and Zhixian Yan

Demo Papers I: Data Mining

Subspace MOA: Subspace Stream Clustering Evaluation Using the
MOA Framework

Marwan Hassani, Yunsu Kim, and Thomas Seidl

Symbolic Trajectories in SECONDO: Pattern Matching and
Rewriting
Fabio Valdés, Maria Luisa Damiani, and Ralf Hartmut Giiting

ReTweetP: Modeling and Predicting Tweets Spread Using an Extended
Susceptible-Infected- Susceptible Epidemic Model
Yiping Li, Zhuonan Feng, Hao Wang, Shoubin Kong, and Ling Feng

TwiCube: A Real-Time Twitter Off-Line Community Analysis Tool
Juan Du, Wei Xie, Cheng Li, Feida Zhu, and Ee-Peng Lim

Demo Papers II: Database Applications

TaskCardFinder: An Aviation Enterprise Search Engine for Bilingual
MRO Task Cardsuutt e e e
Qingwei Liu, Hao Wang, Tangjian Deng, and Ling Feng

EntityManager: An Entity-Based Dirty Data Management System
Hongzhi Wang, Xueli Liu, Jianzhong Li, Xing Tong,
Long Yang, and Yakun Li

RelRec: A Graph-Based Triggering Object Relationship Recommender
SYSEEIM .o
Yuwen Dai, Guangyao Li, and Ruoyu Li

IndoorDB: Extending Oracle to Support Indoor Moving Objects
Managementt
Qianyuan Li, Peiquan Jin, Lei Zhao, Shouhong Wan, and Lihua Yue

HITCleaner: A Light-Weight Online Data Cleaning System............
Hongzhi Wang, Jianzhong Li, Ran Huo, Li Jia, Lian Jin,
Xueying Men, and Hui Xie

Author Index

416

458

Table of Contents — Part 1

Keynote Talks

Peter Apers

Can We Predict User Intents from Queries? - Intent Discovery for Web
Search - ...
Katsumi Tanaka

Invited Paper from Recipients of Ten-Year Best
Paper Award

Record Linkage: A 10-Year Retrospective
Chen Li, Sharad Mehrotra, and Liang Jin

Social Networks 1

Finding Rising Stars in Social Networks...........
Ali Daud, Rashid Abbasi, and Fagir Muhammad

Expertise Ranking of Users in QA Community.......................
Yuanzhe Cai and Sharma Chakravarthy

Community Expansion in Social Network
Yuanjun Bi, Weili Wu, and Li Wang

Query Processing 1

Similarity Joins on Item Set Collections Using Zero-Suppressed Binary
Decision Diagrams it
Yasuyuki Shirai, Hiroyuki Takashima, Koji Tsuruma, and
Satoshi Oyama

Keyword-Matched Data Skyline in Peer-to-Peer Systems
Khaled M. Banafaa, Ruizuan Li, Kunmei Wen, Xiwu Gu, and
Yuhua Li

Adaptive Query Scheduling in Key-Value Data Stores
Chen Xu, Mohamed Sharaf, Mingi Zhou, Aoying Zhou, and
Xiaofang Zhou

13

25

41

56

71

86

XVIII Table of Contents — Part I

Nearest Neighbor Search

Near-Optimal Partial Linear Scan for Nearest Neighbor Search in
High-Dimensional Space i 101
Jiangtao Cui, Zi Huang, Bo Wang, and Yingfan Liu

AVR-Tree: Speeding Up the NN and ANN Queries on Location Data ... 116
Qianlu Lin, Ying Zhang, Wenjie Zhang, and Xuemin Lin

Top-k Neighborhood Dominating Query 131
Xike Xie, Hua Lu, Jinchuan Chen, and Shuo Shang

OptRegion: Finding Optimal Region for Bichromatic Reverse Nearest
Neighbors 146
Huaizhong Lin, Fangshu Chen, Yunjun Gao, and Dongming Lu

Index

Generalization-Based Private Indexes for Outsourced Databases 161
Yi Tang, Fang Liu, and Liging Huang

Distributed AH-Tree Based Index Technology for Multi-channel

Wireless Data Broadcast i 176
Yongtian Yang, Xiaofeng Gao, Xin Lu, Jiaofei Zhong, and
Guihai Chen

MVP Index: Towards Efficient Known-Item Search on Large Graphs. . 193
Ming Zhong, Mengchi Liu, Zhifeng Bao, Xuhui Li, and Tieyun Qum

Indexing Reverse Top-k Queries in Two Dimensions 201
Sean Chester, Alex Thomo, S. Venkatesh, and Sue Whitesides

Query Analysis

Beyond Click Graph: Topic Modeling for Search Engine Query Log
Analysis . ..o 209
Di Jiang, Kenneth Wai-Ting Leung, Wilfred Ng, and Hao Li

Continuous Topically Related Queries Grouping and Its Application
on Interest Identification 224
Pengfei Zhao, Kenneth Wai-Ting Leung, and Dik Lun Lee

Efficient Responsibility Analysis for Query Answers 239
Biao Qin, Shan Wang, and Xiaoyong Du

Minimizing Explanations for Missing Answers to Queries
on Databases 254
Chuanyu Zong, Xiaochun Yang, Bin Wang, and Jingjing Zhang

Table of Contents — Part 1

XML Data Management

A Compact and Efficient Labeling Scheme for XML Documents.
Rung-Ren Lin, Ya-Hui Chang, and Kun-Mao Chao

Querying Semi-structured Data with Mutual Exclusion
Huayu Wu, Ruiming Tang, and Tok Wang Ling

XReason: A Semantic Approach that Reasons with Patterns to Answer

XML Keyword QUETIESottt
Cem Aksoy, Aggeliki Dimitriou, Dimitri Theodoratos, and
Xiaoying Wu

History-Offset Implementation Scheme of XML Documents and Its
Evaluations e
Tatsuo Tsuji, Keita Amaki, Hiroomi Nishino, and Ken Higuchi

Privacy Protection

On the Complexity of ¢-Closeness Anonymization and Related
Problems
Hongyu Liang and Hao Yuan

Distributed Anonymization for Multiple Data Providers in a Cloud
SYSEEIN . .t
Xiaofeng Ding, Qing Yu, Jiuyong Li, Jizue Liu, and Hai Jin

Subscription Privacy Protection in Topic-Based Pub/Sub
Weiziong Rao, Lei Chen, Mingzuan Yuan, Sasu Tarkoma, and
Hong Mei

Feel Free to Check-in: Privacy Alert against Hidden Location Inference
Attacks in GeoSNSo
Zheng Huo, Xiaofeng Meng, and Rui Zhang

Differentially Private Set-Valued Data Release against Incremental
Updates . ..o e
Xiaogian Zhang, Xiaofeng Meng, and Rui Chen

Uncertain Data Management

Consistent Query Answering Based on Repairing Inconsistent
Attributes with Nulls.
Jie Liu, Dan Ye, Jun Wei, Fei Huang, and Hua Zhong

On Efficient k-Skyband Query Processing over Incomplete Data
Xiaoye Miao, Yunjun Gao, Lu Chen, Gang Chen, Qing Li, and
Tao Jiang

XIX

XX Table of Contents — Part 1

Mining Frequent Patterns from Uncertain Data with MapReduce

for Big Data Analytics. o

Carson Kai-Sang Leung and Yaroslav Hayduk

Efficient Probabilistic Reverse k-Nearest Neighbors Query Processing

on Uncertain Data

Jiajia Li, Botao Wang, and Guoren Wang

Efficient Querying of Correlated Uncertain Data with Cached

Results ..o

Jinchuan Chen, Min Zhang, Xike Xie, and Xiaoyong Du

Author Index

Shortest Path Computation over Disk-Resident
Large Graphs Based on Extended Bulk
Synchronous Parallel Methods

Zhigang Wang!, Yu Gu!, Roger Zimmermann?, and Ge Yu!

! Northeastern University, China
wangzhigang mail@yahoo.cn, {guyu,yuge}@ise.neu.edu.cn
2 National University of Singapore, Singapore
rogerz@comp.nus.edu. sg

Abstract. The Single Source Shortest Path (SSSP) computation over
large graphs has raised significant challenges to the memory capacity and
processing efficiency. Utilizing disk-based parallel iterative computing is
an economic solution. However, costs of disk I/O and communication
affect the performance heavily. This paper proposes a state-transition
model for SSSP and then designs two optimization strategies based on it.
First, we introduce a tunable hash index to reduce the scale of waste ful
data loaded from the disk. Second, we propose a new iterative mechanism
and design an Across-step Message Pruning (ASMP) policy to deal with
the communication bottleneck. The experimental results illustrate that
our SSSP computation is 2 times faster than a basic Giraph (a memory-
resident parallel framework) implementation. Compared with Hadoop
and Hama (disk-resident parallel frameworks), the speedup is 21 to 43.

1 Introduction

The Single Source Shortest Path (SSSP) computation is a classical problem
with numerous applications and has been well-studied over the past decades.
However, new challenges have been raised by the rapid growth of graph data. For
instance, up to March 2012, Facebook has owned about 900 million vertices (i.e.,
users) and over 100 billion edges. Such large graphs have exceeded the memory
capacity of a single machine [1]. Even for memory-resident parallel frameworks
[23], the data processing capacity of a given cluster is also limited [4]. This
problem can be relieved by enlarging the cluster scale, but the consumption will
also increase. It is an economic solution if we extend memory-resident parallel
frameworks by spilling data on the disk [5]. In this case, how to reduce costs
of disk I/O and message communication becomes challenging especially for the
iterative computation tasks, such as SSSP.

For in-memory algorithms on SSSP, some are difficult to be executed in par-
allel due to the inherent priority order of relaxation and others perform poorly if
data are organized as their sophisticated structures on the disk [6[7]. External-
memory algorithms with the polynomial I/O complexity have also been pro-
posed [§]. However, the practical performance is unsatisfactory [9] considering

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 1-{[5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

2 Z. Wang et al.

the impact of wasteful data (load a block of data from the disk but only use
a portion). In addition, they are all centralized algorithms and take no account
of the communication cost. Recently, G. Malewicz et al. propose a new paral-
lel iterative implementation for SSSP (P-SSSP) and evaluate its performance on
Pregel, a memory-resident parallel framework [2] based on the Bulk Synchronous
Parallel (BSP) model [10]. Although its outstanding performance is impressive,
the runtime will increase rapidly if it is implemented on disk-based frameworks,
such as Hama and Hadoop [BITI]. I/O costs incurred by reading waste ful data
may offset the parallel gains. Furthermore, the large scale of messages will also
exacerbate costs of disk-accesses and communication. In this paper, we aim to
crack the nut for these two problems of disk-resident P-SSSP over large graphs.

Based on the theoretical and experimental analysis on P-SSSP, we divide iter-
ations into three stages: divergent — steady — convergent, and then propose a
state-transition model. It adopts a bottom-up method to evaluate which stage the
current iteration belongs to. Afterwards, two optimization policies are designed
by analyzing features of the three states.

For divergent and convergent states, the scale of processed data will shade as
the iteration progresses, which leads to huge costs of reading waste ful data. A
tunable hash index is designed to skip wasteful data to the utmost extent by
adjusting the bucketing granularity dynamically. The time of adjusting depends
on the processed data scale instead of inserting or deleting elements, which is
different from existing mechanisms [12I13]. In addition, for different adjusting
operations (i.e., bucketing granularity), we adopt a Markov chain to estimate
their cumulative impacts for iterations and then execute the optimal plan. An-
other optimization is an Across-step Message Pruning (ASMP) policy. The large
scale of messages during the steady state incurs expensive costs of disk I/O and
communication. The further analysis shows that a considerable portion of mes-
sages are redundant (i.e., the value of a message is not the real shortest distance).
By extending BSP, we propose a new iterative mechanism and design the ASMP
policy to prune invalid messages which have received. Then a large portion of
new redundant messages will not be generated.

Experiments illustrate the runtime of our tunable hash index is 2 times as
fast as that of a static one because roughly 80% of wasteful data are skipped.
The ASMP policy can reduce the message scale by 56% during the peak of
communication, which improves the performance by 23%. The overall speedup
of our P-SSSP computation compared to a basic implementation of Giraph [3],
an open-source clone of Pregel, is a factor of 2. For Hadoop and Hama, the
speedup is 21 to 43. In summary, this paper makes the following contributions:

— State-Transition Model: We propose a state-transition model which di-
vides iterations of P-SSSP into three states. Then we analyze characteristics
of the three states, which is the theoretical basis for optimization policies.

— Tunable Hash Index: It can reduce costs of reading wasteful data dy-
namically as the iteration progresses, especially for divergent and convergent
states. A Markov chain is used to choose the optimal bucketing granularity.

Shortest Path Computation over Disk-Resident Large Graphs 3

— Across-step Message Pruning: By extending BSP, this policy can prune
invalid received messages and avoid the generation of redundant messages.
Consequently, the message scale is reduced, especially for the steady state.

The remaining sections are structured as follows. Section 2 reviews the related
work. Section 3 gives the state-transition model. Section 4 describes the tunable
hash index. Section 5 proposes the Across-step Message Pruning policy. Section
6 presents our performance results. Section 7 concludes and offers an outlook.

2 Related Work

Many algorithms have been proposed for the SSSP computation. However, cen-
tralized in-memory algorithms can not process increasingly massive graph data.
Advanced parallel algorithms perform poorly if data are spilled on the disk [6l/7].
For example, the A-stepping algorithm must adjust elements among different
buckets frequently [6] and Thorup’s method depends on a complex in-memory
data structure [7], which is I/O-inefficient. Existing external-memory algorithms
are dedicated to designing centralized I/O-efficient data structure [§]. Although
they have optimized the I/O complexity, the effect is limited for reducing the
scale of loaded waste ful data because their static mechanisms can not be ad-
justed dynamically during the computing.

Nowadays, most of existing indexes are in-memory or designed for the s-t
shortest path [I4JTI5], which is not suitable for SSSP over large graphs. As a pre-
computed index, VC-index is proposed to solve the disk-resident SSSP problem
[9). However, this centralized index is still static and requires nearly the same
storage space with the initial graph or more. Also, dynamic hash methods for
general applications have been proposed, but they are concerned on adjusting
the bucketing granularity with changes in the scale of elements [I2JI3]. While,
in our case, the element number (vertices and edges) in a graph is constant.

Implementing iterative computations on parallel frameworks has been a trend.
The representative platform is Pregel [2] based on BSP and its open-source im-
plementations, Giraph and Hama [35]. Pregel and Giraph are memory-resident,
which limits the data processing capacity of a given cluster. This problem also
exists for Trinity [16], another well-known distributed graph engine. Although
Hama supports disk operations, it ignores the impact of wasteful data. For
other disk-based platforms based on MapReduce, such as Hadoop, HaLoop and
Twister [IIIT7IT8], restricted by HDFS and MapReduce, it is also difficult to
design optimization policies to eliminate the impact.

The parallel computing of SSSP can be implemented by a synchronous mech-
anism, such as BSP [I0], or an asynchronous strategy [4]. Compared with the
former, although the latter accelerates the spread of messages and improves the
speed of convergence, a large scale of redundant messages will be generated,
which increases the communication cost. The overall performance of them de-
pends on a graph’s density when data are memory-resident [4]. However, for the
asynchronous implementation of disk-based SSSP, the frequent update of vertex
values will lead to fatal I/O costs, so BSP is more reasonable in this case.

4 Z. Wang et al.

3 State-Transition Model

3.1 Preliminaries

Let G = (V, E,w) be a weighted directed graph with |V| vertices and |E| edges,
where w : E — N* is a weight function. For vertex v, the set of its outgoing
neighbors is adj(v) = {u|(v,u) € E}. Given a source vertex vs, 6(u), the length
of a path from vs to u, is defined as Y w(e), e € path. § is initialized as +oo. The
SSSP problem is to find the minimal §(u), Yu € V. By convention, §(u) = +oo if
u is unreachable from vs. We assume that a graph is organized with the adjacency
list and each vertex is assigned a unique ID which is numbered consecutively.

The P-SSSP computation proposed by Pregel is composed of a sequence of
SuperSteps (i.e., iterations). At the first SuperStep 1, only v, sets its §(vs) = 0.
Then Yu € adj(vs), a message (i.e., candidate shortest distance) is generated:
msg(u) = (u,m), m = 6(vs) +w(vs, u), and sent to u. At ta, vertex u with a list
of msg(u), namely Imsg(u), sets its §(u) = min{d(u), min{lmsg(u)}}. Here, if
msg;(u) < msg;(u), that means m; < m;. If §(u) is updated, new messages will
be generated and sent to neighbors of u. The remaining iterations will repeat
these operations until Yv € V, its §(v) is not be updated. Operations of one
SuperStep are executed by several tasks in parallel.

If a large graph exceeds the memory capacity of a given cluster, the topology
of the graph is firstly spilled on the disk. Furthermore, the overflowing mes-
sages will also be spilled. Data are divided into three parts and respectively
stored: message data, vertex data and outgoing edge data. For example, an
initial record {u, d(u), adj(u)&w,lmsg(uw)} will be partitioned into three parts:
{Imsg(u)}, {u,d(u)} and {adj(u)&w}. {u,0(v)} and {adj(u)&w} are stored in
two files respectively but located on the same line, which avoids the cost of re-
structuring when sending messages. By this mechanism, the topology of a graph
will not be accessed when receiving messages. In addition, we only need to rewrite
{u,d(u)} on the disk and ignore {adj(u)&w} when updating J.

Now, we give two notations used throughout this paper. We define load ratio
as LR = |Vj|/|V], where |V;| denotes the scale of vertices loaded from the disk.
Another notation is load ef ficiency, which is defined as LE = |V, |/|Vi|, where
[V,,| denotes the scale of vertices with received messages Imsg.

3.2 Three Stages of Iterations and State-Transition

The iterative process of P-SSSP is a wavefront update from v, [2]. At the early
stage, the message scale of the SuperStep ¢; is small because only a few vertices
update their §. However, most of these messages will lead to updating § at ¢;11
because a majority of vertices still keep § = +00. Then more new messages will
be generated since |adj(u)| > 1 generally. Consequently, the message scale will
increase continuously. If most of vertices have updated their ¢, the speedup of the
message scale will decrease. As more and more vertices have found the shortest
distance, their § will be updated no longer. Then the number of messages will
reduce until iterations terminate. We have run the P-SSSP implementation on

Shortest Path Computation over Disk-Resident Large Graphs 5

our prototype system over real graphs, S-LJ and USA-RN (described in Section
6). As illustrated in Fig[ll(a), the message scale can be simulated as a parabola
opening downwards. This curve can also express the trend of processed vertices,
since only vertices with received messages will be processed. Furthermore, we
divide the process into three stages: divergent — steady — convergent.

1e+008 3.0

—=— sJ —=— S-LJ
o 16+007 USA-RN —~ 25 USA-RN
© 1e+006 @
8 16+005 '— steady state =— g 2.0 \— steady state
:%» 1e+004 divergent state ‘;, 1.5 divergent state
[=
a 1e+003 S 1.0 convergent state
ﬂé 1e+002 S
1e+001 convergent state 0.5
1e+000 0.0 e —
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
iteration iteration
(a)received message scale (b)performance

Fig. 1. Three processing stages of P-SSSP

Considering the message scale of divergent and convergent states, we only
need to process a small portion of vertices. However, graph data must be loaded
in blocks since they are spilled on the disk, which leads to a low LE and incurs
considerable costs of reading wasteful data. In addition, the running time at
the steady state is more than that of other two states obviously (Fig dib)).
The reason is that massive messages lead to expensive costs of communication
and disk-accesses (LR is high because many vertices need to process received
messages). To improve the performance, we expect a low LR but a high LE.

We notice that there is no general standard to separate the three states be-
cause real graphs have different topology features. For example, S-LJ spreads
rapidly at the divergent state. However, it is the opposite for USA-RN, which is
a sparser graph. In section 4.2, we will introduce a bottom-up method to separate
different states according to dynamical statistics.

4 A Tunable Hash Index

4.1 Hash Index Strategy

It is essential to match {Imsg(u)} with {u,d(u)} when updating §. By a static
hash index, we can load messages of one bucket into memory. Then {u, d(u)} and
{adj(u)&w} in the same bucket are read from the local disk one by one to com-
plete matching operations. The static hash index can avoid random disk-accesses.
Data in buckets without received messages will be skipped, which improves LFE,
but the effect is limited because |V,| is changing continuously among the three
states. Therefore, we propose a tunable hash index to maximize the scale of
skipped graph data by adjusting the bucketing granularity dynamically.

6 Z. Wang et al.

Three parts of data (described in Section 3.1) will be partitioned by the same
hash function. Illustrated in Fig[2] index metadatas of buckets are organized as a
tree which includes three kinds of nodes: Root Node (T'), Message Node (e.g., H')
and Data Node (e.g., Hi). The Message Node is a basic unit for receiving and
combining (i.e., only save the minimal msg(u) for vertex u) messages. Initially,
every Message Node has one child node, Data Node, which is the basic unit
for loading {u, §(u)} and {adj(u)&w}. The metadata is a three-tuple { R, M, A}.
R denotes the range of vertex IDs. M is a key-value pair, where key is the
number of direct successor nodes and value = [R.length/key]. A is a location
flag. For a Message Node, it means the location of memory-overflow message files
(dir). For a leaf node, it includes the starting offset of {u, d(u)} and {adj(u)&w}.
For anyone of parallel tasks, we deduce that the number of its Message Nodes
depends on Bs, which is the cache size of sending messages. In order to simplify
the calculation, we estimate the cache size in the number of messages instead
of bytes. Bs is defined by disk I/O costs and communication costs of the real
cluster. Limited by the manuscript length, the details are not illustrated here.

_ Node R M A
MGG Index | Zlrooy |[0998) [(3.333) |null
NMotadata | H(1.0.0) [10333)_[(1,333) [dir

\ locate H(2,0,0) |[333,666) |(1,333) _|dir

HP——{H3,0,0) [[666,998) [(1,332) | dir

H(1,1,0) [[0.333) | (0.0) offset
H(2,1,0) |[333.666) | (0,0) offset
AH(3,1,0) [[666.998) [(0.0) offset

i 3 times ! ;
¢+ |H(1,1,0) |[0333) |(2,167) |null °
VOLH(1L1L1) [[0,167) [(0,0) offset || 20
H3 \, [H(1,1,2) [167,333) |[(0,0) offset E
L [H(3,1,0) [[666,998) [(2,166) |null -
Hf—» H(3,1,1) |[666,832) |(0,0) offset | &,
1 @

MERGE | | Index Tree | H(3,1,2) |[832,998) |(0,0) offset

Fig. 2. The tunable hash index

The number of Message Nodes is fixed, but Data Nodes may be split or
merged recursively during iterations. The former is only for leaf nodes. If one
bucket sz is split into V. J’ child buckets H J’k, 1<k<N ;, that means vertex and
outgoing edge data are divided equally in consecutive order. Then, the metadata
of H; needs to be updated (e.g., H). The merging operation is only for a direct
predecessor node of leaf nodes. All child nodes will be merged and their parent
node becomes a new leaf node (e.g., H{).

_getID(msg(v)) — 0
N M.value

k +1 (1)
To skip buckets without messages, we must locate the leaf node every message
belongs to. Given a message msg(v), we can locate Hj’k it belongs to by Formula
[where 6 is the minimal vertex ID in R of HjZ The time complexity is £2((h —
1) - |E|/N¢), where h is the height of the tree and N, is the number of parallel
tasks. In Fig[2 for (670,12), we can find the leaf node Hi by locating 3 times.

Shortest Path Computation over Disk-Resident Large Graphs 7

4.2 Adjust Hash Index Dynamically

Although splitting a leaf node can improve its load ef ficiency, the time of
splitting and the number of child nodes are two critical problems.

Algorithm 1. Global Adjusting Type for Leaf Nodes

Input : Statistics of the current SuperStep ¢;: S; slope of t;—1: K
Output: Global adjusting type of tiy1: AT slope of t;: K

1 Job Master

2 wait until all tasks report the vector® and active®

3 vector + Z;j;l vector® /* Ni: the number of parallel tasks */

4 active < S, active®

5 put active into HistoryQueue and estimate K by the last K values

6 AT = max{vector()|0 < i < 2}

7 send {AT, K’} to each task

8 Task k

9 wvector® « (0,0,0) /* count the number of every adjusting type */
10 while S* # ¢ do
11 S¥ « remove one from S* /* SF: the statistics of the ith leaf node */
12 type = get AdjustType(K, LEF) /* type: Split(0), Merge(1), None(2) */
13 vector® [type]++
14 active® = active® + getActive(SF) /* the number of processed vertices */

send vector® and active” to Job Master
wait until Job Master returns {AT, K'} and then set K = K

[
(<IN

Algorithm [is used to obtain a global adjusting type (AT) of the SuperStep
ti+1, which solves the first problem. It is also a bottom-up method to separate
the three states. AT includes Split, Merge and None. Algorithm [I] runs in a
master-slave mode between two consecutive SuperSteps. First, task k judges
the expected adjustment type for every leaf node by LE¥ and K, then records
statistics (Steps 10-14). LE; is load ef ficiency of the ith leaf node at ¢;. K is
the slope of a fitting curve about active’s changing. Second, Job Master sums
for all reports (Steps 3-4). K’ (i.e., K of t;) and AT are computed, and then
sent to every task (Steps 5-7). Generally, KA = 5 by considering the robustness
and veracity. The three states can be separated by AT and K " as follows: the
divergent state, AT € {Split, None}&Kl > 0; the steady state, AT € {Merge};
the convergent state, AT € {Split, None}&K < 0.

In the function getAdjustType(K, LEY), we first try to estimate the effect of
Split. If it is positive, type is Split, else None. If type of all child nodes of the
same parent node is None, we consider merging child nodes. Similarly, if the
estimated result is positive, type of them will be changed to Merge.

The effect of Split depends on the number of child nodes. We use a Markov
chain to find the optimal value, which solves the second problem. For a leaf node

8 Z. Wang et al.

H]z which is split into N,]’ child nodes, let V;’k be the set of vertices in H;k and
t‘/;ij be the set of processed vertices at the SuperStep ¢, then tV;j cy V;’k = Vji,
where V]Z is the vertex set of H]z ! A denotes the set of child nodes with received
messages at ¢, then ‘A = {k['V7 NV}, # $,1 <k < Ni}.

Theorem 1. For H;, let the random wvariable X (t) be |'A| at the SuperStep t,
then the stochastic process {X (t),t € T'} is a homogeneous Markov chain, where
T={0,1,2,....tup} and ty, is an upper bound of the process.

Proof. In our case, the time set can be viewed as the set of SuperStep coun-
ters and the state-space set is I = {a;|0 < a; < N;} In fact, A denotes the
distribution of messages among child nodes. At the SuperStep t, vertices send
new messages based on their current § and received messages from ¢-1. There-
fore, *t1A, 724, ..., ™" A only depend on ‘A. The transition probability from
tA to "1 A is decided by ‘A and 6. So X (t) has the Markov property. Consid-
ering I and T are discrete, then {X(¢),t € T} is a Markov chain. Furthermore,
Py (t,t + At) = P,y (At) in the transition matrix P, so it is also homogeneous.

The original probability can be estimated by a sampling distribution. At ¢,,, we
can get a random sample from = V;fj, then the distribution of vertices among
N j’ child buckets can be calculated. Optimistically, we think the probability dis-
tribution of going from the state a, to the state a, is an arithmetic progression.
Its common difference d = (LE;) - K and the minimal value is (2y)/x(z +1).
Then, pyy, the 1-step transition probability, can be calculated. The Am-step
transition probability satisfies the Chapman-Kolmogorov equation. Therefore,
P{X(tm+am) = ay|X({m) = a3} = pz(tm)Puy(Am). We can calculate the
mathematical expectation about the number of skipped buckets at t,,+Am:

45(m+Am Z Z - pac m)Pacy(Am) (2)

rz=1y=1

Considering the time complexity described in Section 4.1, we can infer the split-
ting cost W(N}, At) = kAztl(Tcqu(Ah\EVNt)), where Ah is the change of
height for the index tree after splitting. Specially, Ah = 0 if N j’ = 1. T,p, is the
cost of executing one instruction. At = t,,, —t,,. If K <0, t,,;, is the max number
of iterations defined by the programmer, else At = K 5. The benefit of splitting
H]z is that data in some child buckets will not be accessed from the disk. Then
the saving cost is:

, . VZ Z
v (N}, At D(N:, bt Am 3
(V.40 =) A; +am) (3)
where Vé» is the vertex data scale of H j’ in bytes,]E; is the outgoing edge data
scale and sq is the speed of disk-accesses. The candidate values of NV, ; are C' =
{(n,p)]1 < n < &}, where p = ¥'(n, At) — ¥(n, At). ¢ is a parameter which
insures the size of our index will not be more than the given memory capacity.

Shortest Path Computation over Disk-Resident Large Graphs 9

For Split, we find the optimal splitting value v as follows: first, compute a
subset C' of C by choosing the maximal p in (n, p); then, V(n, p) € C’, ~ is the
minimal n. If v = 1, type = None, otherwise, type = Split. For Merge, we view
the parent node as a leaf node and assume 7 be the real number of its child
nodes. Then, if p < 0, types of its child nodes will be changed to Merge.

5 Message Pruning Optimization

In this section, we propose a new iterative pattern, namely EBSP, by extend-
ing BSP. EBSP updates ¢ synchronously but processes messages across-step.
By integrating the Across-step Message Pruning (ASMP) policy, the scale of
redundant messages can be reduced effectively.

5.1 Analyze Messages of P-SSSP

Definition 1. Multipath- Vertex

Given a directed graph, let the collection of vertices be Vi = {vjv € V; Av €
Vi A\v e Vi,i#j#k}, where V; is the collection of vertices located i-hop
away from the source vertex. FEvery vertex in Vi, is a Multipath- Vertex.

As shown in Fig B we assume s is the source vertex, then the 1-hop collec-
tion is Vi = {a,b,¢,d, e} and the 2-hop collection is Vo = {e, f, g}. Obviously,
e € V1 Va, is a Multipath-Vertex. As its successor vertices, f,g,h,i are also
Multipath-Vertices. For P-SSSP, the synchronous implementation based on BSP
can reduce the number of redundant messages [2]. For example, during the ith
SuperStep, vertex u receives two messages msgf1 and msgf2 at the time of ¢;
and t9, where t; < to. According to the synchronous updating mechanism, if
o(u) > msgf1 > msgf"’, msgf1 is invalid and will be eliminated. Consequently,
redundant messages motivated by msgf1 will not be generated. However, our
in-depth analysis finds that the similar phenomenon will occur again and can
not be eliminated by BSP due to the existence of Multipath-Vertices. Consid-
ering the following scenario, u receives msg; at the jth SuperStep, 7 =i + 1.
If msgf"’ > msg;, all messages generated by u at ¢ are still redundant. Fur-
thermore, redundant messages will be spread out continuously along outgoing
edges until the max-HOP vertex is affected in the worst case. That incurs extra
costs of disk-accesses and communication. In addition, some buckets may not be
skipped because they have messages to process, even though the messages are
redundant.

Fig Bl illustrates the phenomena in a directed graph. At the 1th SuperStep,
d(e) is updated to 4, then e sends messages to f and g. However, at the 2th
SuperStep, d(e) is updated to 2 again (instead of 3). Then, the previous messages
are invalid. Consequently, f, g, h,i are processed twice.

5.2 Across-Step Message Pruning

For BSP, § is updated only by depending on messages from the last SuperStep
(in Section 3.1). If we can cumulate more messages before updating J, then the

10 Z. Wang et al.

b{1} all} g{6, 4}

(3) 2 }} ,/VQ:\\‘\\\\

$ & Yo e
/ . 18,61h
T *
c{1} {1}d {5,3}f i{13, 11}

Fig. 3. The analysis of P-SSSP

impact of Multipath-Vertices will be relieved greatly. Consequently, we propose
the EBSP model by extending BSP.

Definition 2. EBSP

Let M1 be the set of messages for the SuperStep t; 1. Att;, it is possible that
M7 # ¢, M7 C My, if messages are sent asynchronously. When processing
vertices at t;, the domain of referenced messages is M; U M7, ;.

EBSP will not affect the correctness of P-SSSP. Based on EBSP, we propose
a novel technique called Across-step Message Pruning (ASMP) to relieve the
phenomena of disseminating redundant messages. Algorithm [introduces the
processing of one Message Node H¥. First, we load all received messages from
t-1 into memory and put them into M} after combining (in Section 4.1). Then
the memory-resident received messages (without combination) of t+1 will be
used to prune messages in M} (Steps 3-8). A leaf node will be skipped if all
of its messages in M} are pruned. By this policy, new messages of t+1 will be
obtained to optimize the synchronous update mechanism. Instead of combining
existing messages, our policy is denoted to avoiding the generation of redundant
messages, which is more effective. It can improve the performance of communi-
cation and disk-accesses. The scale of redundant messages which are eliminated
by ASMP can be estimated by Theorem [2

Theorem 2. In Algorithm [B, for one vertex v, if §(v,) > msgr(v.) >
msgfj_l(vr), then the mazimal number of pruned messages is I'(vy):

|adj(v7") ‘7 Ur = UmazHOP

F(’UT) = |adj(’l)r)‘ —+ Z F(Um),vr 7{ UmazHOP (4)
Yum €adj(vy)

where Vmazgop 8 the farthest one among reachable vertices of v,..

Proof. Normally, if 6(v,) > msgF(v,), §(v,) will be updated and then messages
will be sent to adj(v,). However, in Algorithm Bl msgl(v,) will be pruned if
msgk(v,) > msgfj_l(vr). Recursively, at the SuperStep t + 1, Vv, € adj(v,),
§(vm) will not be updated if my, ; (v,) > mfb(vm) or mf, 1 (vm) > 8(vm). The
pruning effect will not stop until v,eegop is processed.

Shortest Path Computation over Disk-Resident Large Graphs 11

Algorithm 2. Across-step Message Pruning
Input : message set for H* at the SuperStep ¢ and t + 1: MF, Mtkjl
Output: message set after pruning: M
V¥ « extract vertex IDs from M}
Vtkfl + extract vertex IDs from Mtkjl
foreach u € V;* N Vt’f,fl do

msgr(u) « getMsg(MF, u)

ms!)fj—l(“) <~ min{getMsg(ijl,u)}

if msgf(u) > msgfj;l(u) then

put msgl (u) into the Pruning Set M,

N0 A WN =

®

M = M — M,
9 return MY

We notice that if My = M} J Mtkjl, ¢ will also be updated across-step, which
is called an Across-step Vertex Updating (ASVU) policy. ASVU can accelerate
the spread of messages. Therefore, the iteration will converge in advance com-
pared with ASMP. However, Mtk_f_'l is only a subset of MF, ;, so its elements may
not be the minimal message value of t+1. For example, if d(u) > msgF(u) >
msgfj_l(u), then ¢ will be updated at t. However, if msgfj_l(u) > msgy, 1 (u),
msgf+1(u) € M}, |, messages generated at ¢ are also redundant, which offsets
the pruning gains. Specially, compared with ASMP, if u € thj_l Au & VE and
o(u) > msgf’jrl(u) > msgy,,(u), extra redundant messages will be generated.

6 Experimental Evaluation

To evaluate our patterns, we have implemented a disk-resident prototype system
based on EBSP, namely DiterGraph. Data sets are listed in Table[Il The weight
of unweighted graphs is a random positive integer. All optimization policies
are evaluated over real graphs [I9J20l21]. Then we validate the data processing
capacity of DiterGraph over synthetic data sets and compare it with Giraph-
0.1, Hama-0.5 and Hadoop-1.1.0. Our cluster is composed of 41 nodes which are
connected by gigabit Ethernet to a switch. Every node is equipped with 2 Intel
Core i3-2100 CPUs, 2GB available RAM and a Hitachi disk (500GB and 7,200
RPM).

6.1 Evaluation of Tunable Hash Index and Static Hash Index

Fig [illustrates the effect of our tunable hash index by comparing it to a static
hash index. Their initial bucket number computed based on B is equivalent.
However, the bucketing granularity of the static hash index will not be adjusted
dynamically. In our experiments, we set By as 4000 according to the speed of
communication and disk-accesses (described in Section 4.1). For USA-RN, we

12 Z. Wang et al.

Table 1. Characteristics of data sets

Data Set ABBR. Vertices Edges Avg. Degree Disk Size
Social-LiveJournall S-LJ 4,847,571 68,993,773 14.23 0.9GB
Full USA Road Network USA-RN 23,947,347 5,833,333 0.244 1.2GB
Wikipedia page-to-page Wiki-PP 5,716,808 130,160,392 22.76 1.5GB
Synthetic Data Sets Syn-D, 1-600M 13-8100M 13.5 0.2-114GB

14 0.9 45 v
= 1ol E==a static-hash 08 Bz static-hash ~ 40 V] of static-hash
§ 1| == tunabe-hash F o7 mm— tunable-hash RS e V] of tunable-hash
T 4 06 T 0
E 8 2 05 R
> 6 S 04 4 20
[=4
€ 4 g o3 2 15 0.00582
< S o2 S 10
2 2 0.1 > 5 .
0 4 0 b o
S-LJ USA-RN Wiki-PP S-LJ USA-RN Wiki-PP S-LJ USA-RN Wiki-PP
graph type graph type graph type
(a)overall performance (b)average LR (c)average vertex scale
1.2 0.4 - 0.8 -
—o— static-hash —o— static-hash —o— static-hash
- 10 . | % tunable-hash D ~---_tunable-hash B -~ tunable-hash
T Y 4 0.3 k1 0.6 4.8s (static)
£ 08 (Zs’fjfc) I\ £ £ 3 3.4s (unable)
> 0.6 (tunable) > 02 the divergent state o 041 |
E 04 5 e convergentstate g E the convergent state
s - S o1 S 02
2 o2] 2 2
00 R 00 00 K K K3
"0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 "0 50 100 150 200 250
iteration iteration iteration
(d)performance(S-LJ) (e)performance(USA-RN) (f)performance(Wiki-PP)
12
70 ——V, IS —— ¥p . nach
L —o-— V| of static-hash 610t L —o~ V| of static-has
2 :g x- V| of tunable-hash 2 e ¥‘poislatic-hash 2 x- V] of tunable-hash
o B) K] - \/) of tunable-hash °
S 40!l | x <u Il
3 3 x 3
x 30 ~— latency—= X i x
2 2 : 2 wox £
2 0 % 2 X g 10 .
0 P = 0
0 5 10 15 20 25 30 35 40 50 100 150 200 250 0 50 100 150 200 250
iteration iteration iteration
(g)vertex scale(S-LJ) (h)vertex scale(USA-RN) (i)vertex scale(Wiki-PP)

Fig. 4. Tunable hash index vs. static hash index (real data sets, 20 nodes)

only show the statistics of the first 300 iterations. In fact, it requires hundreds
of iterations to fully converge because the graph has a huge diameter.

As shown in Fig[d{a), for Wiki-PP, the speedup of our tunable index compared
to the static index is roughly a factor of 2. The tunable hash index has reduced
its average LR of one iteration by 80.6% (FigHl(b)), which means a large portion
of wasteful data have been skipped. Therefore, its average LE (|V,|/|Vi]) is
improved by roughly 5 times (Fig H(c)). The average LR of USA-RN is also
reduced by up to 86%, but the overall performance is only improved by 28%,
which is less than Wiki-PP. The reason is that USA-RN is a sparse graph, then
the essential cost of warm-up (e.g., the initialization overhead of disk operations

Shortest Path Computation over Disk-Resident Large Graphs 13

and communication) occupies a considerable portion of the running time, which
affects the overall effect of our index.

For S-LJ, the gain is not as obvious as that of USA-RN and Wiki-PP. By
analyzing the performance of every iteration (Fig [(d)-(f)), we notice that, for
USA-RN and Wiki-PP, their resident time of the divergent or convergent state
is much longer than that of S-LJ. During these two states, just as illustrated
in Fig ll(g)-(i), the scale of wasteful data is reduced efficiently by the tunable
hash index. For example, P-SSSP over Wiki-PP took 290 iterations to converge.
Figlli) shows a large subset of vertices have found the shortest distance within
the first 40 iterations. The remaining 250 iterations update less than 3% of 4.
Therefore, the cumulate effect of adjustments is tremendous. However, for S-LJ,
the number of iterations is only 44. Considering the latency of adjustments (Fig
H(g)), the overall gain is not remarkable.

6.2 Evaluation of ASMP and ASVU

This suit of experiments is used to examine the effect of ASMP and ASVU
(described in Section 5.2). They are implemented based on the tunable hash
index. As a comparative standard, the baseline method in experiments does not
adopt any policies (both ASMP and ASVU) to optimize the message-processing.

3.0 0.3 35
—e— baseline —e— baseline 30 —e— baseline
% 25 o ASMP O o o ASMP
T 0 X ASVU T T 25 x--- ASVU
E £ E 20
o 15 X \—the steady stat had pa 4!
E’ w%,_ o sleady siale g’ E’ 1.5 F | —— the steady state
0[P i < T
5 ASVU finishes at 40 5 5" ASVU finishes at 288
2 o5 = 05 X
X, X
0.0 0 0.0 <
0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 0 50 100 150 200 250
iteration iteration iteration
(a)performance(S-LJ) (b)performance(USA-RN) (c)performance(Wiki-PP)
~ 60 ~ s
s EoRm baseline . B baseline ~ &m baseline
% o 50 %
= z 2 10
@ o 40 @
b kK b
° g 3 ° g
g % 20 g 5
1] 2 1]
o g 10 8
£ > £ T :
0 - 0 .
S-LJ USA-RN Wiki-PP S-LJ USA-RN Wiki-PP S-LJ USA-RN Wiki-PP
_graph type graph type graph type
(d)received message scale (e)processed vertex scale (f)generated message scale

Fig. 5. Analysis on ASMP and ASVU (real data sets, 20 nodes)

As shown in Fig[El(a)-(c), the ASMP policy can optimize the performance of
the steady state obviously. Especially for S-LJ, the overall performance can be
improved by up to 23% because its resident time of the steady state is relatively
longer than that of USA-RN and Wiki-PP. As illustrated in Fig E(d)-(f), the
effect of ASMP is tremendous at the iteration where the received message scale

14 Z. Wang et al.

has reached the peak. Exemplified by S-LJ, the number of received messages
(M) can be reduced by 56%. Then, compared with the baseline method, 45%
vertices will be skipped at this iteration, which reduces the cost of disk-accesses
(FigBlle)). Finally, the scale of new messages also decreases by 46% (Fig Bl(f)),
which reduces the communication cost. We notice that the iterations of S-1.J and
Wiki-PP with ASVU are both completed in advance (Fig[Bla) and (c)) because
ASVU can accelerate the spread of messages. However, considering the impact
of redundant messages (Fig[B(d)-(f)), the contributions to overall performance of
ASVU is not as obvious as that of ASMP. Especially, for S-L.J, the performance
of ASMP is 16% faster than that of ASVU.

6.3 Evaluation of Data Processing Capacity and Overall Efficiency

Compared to Giraph, Hama and Hadoop, the P-SSSP implementation on Diter-
Graph can be executed over large graphs efficiently with limited resources. First,
we set the number of nodes as 10. As shown in Figure[Bla), benefitted from our
tunable hash index and ASMP, the running time of DiterGraph is two times
faster than that of Giraph. Compared with Hadoop and Hama, the speedup is
even 21 to 43. We are unable to run P-SSSP on Giraph when the vertex scale
is more than 4 million, as the system runs out of memory. Second, we evaluate
the scalability of DiterGraph by varying graph sizes and node numbers (Figure
[B(b)). Given 40 nodes, when the number of vertices varies from 100 million to
600 million, the increase from 415 seconds to 3262 seconds demonstrates that the
running time increases linearly with the graph size. Given the graph size, such
as 600 million, the running time decreases from 9998 seconds to 3262 seconds
when the number of nodes increases from 10 to 40.

10000 lm DiterGraph (disk-based) 12 10 nodes
3 Giraph (memory-based) _ mmm 20 nodes
— [x=x=zxd Hama (disk-based) & mw 10 xxxxd 30 nodes
2 " Hadoop (disk-| based) 5 o 40 nodes
@ 1000 & Z 8
£ g
)] = 6
£ o
100 £ 4
g E
2 2
1 0 NS NS 0 N k / 2o %N
M 2M 3M 4M 5M 100M 225M 350M 475M 600M
vertex number vertex number
(a)DiterGraph vs. Others(10 nodes) (b)Scalability of DiterGraph

Fig. 6. Data processing capacity and overall efficiency (synthetic data sets)

7 Conclusion and Future Work

In this paper, we propose a novel state-transition model for P-SSSP. Then a
tunable hash index is designed to optimize the cost of disk-accesses. By ex-
tending BSP, we propose the ASMP policy to reduce the message scale. The

Shortest Path Computation over Disk-Resident Large Graphs 15

extensive experimental studies illustrate that the first policy can optimize the
performance during the divergent and convergent states. And the second policy
is effective for the steady state. In future work, we will extend our methods for
incremental-iterative algorithms, such as the connected components computa-
tion, belief propagation and the incremental PageRank computation.

Acknowledgments. This research is supported by the National Natural Sci-
ence Foundation of China (61272179, 61033007, 61003058), the National Ba-
sic Research Program of China (973 Program) under Grant No.2012CB316201,
and the Fundamental Research Funds for the Central Universities (N110404006,
N100704001).

References

1. Gao, J., Jin, R.M., Zhou, J.S., et al.: Relational Approach for Shortest Path Dis-
covery over Large Graphs. PVLDB 5(4), 358-369 (2012)

2. Malewicz, G., Austern, M.H., Bik, A.J.C., et al.: Pregel: A System for Large-Scale
Graph Processing. In: Proc. of SIGMOD, pp. 135-146 (2010)

3. Apache Incubator Giraph, http://incubator.apache.org/giraph/

4. Ewen, S., Tzoumas, K., Kaufmann, M., et al.: Spinning Fast Iterative Data Flows.
PVLDB 5(11), 1268-1279 (2012)

5. Apache Hama, http://hama.apache.org/

6. Meyer, U., Sanders, P.: A-Stepping: A Parallel Single Source Shortest Path Algo-
rithm. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998.
LNCS, vol. 1461, pp. 393-404. Springer, Heidelberg (1998)

7. Thorup, M.: Undirected Single-Source Shortest Paths with Positive Integer Wights
in Linear Time. JACM 46(3), 362-394 (1999)

8. Meyer, U., Osipov, V.: Design and Implementation of a Practical 1/O-efficient
Shortest Paths Algorithm. In: Proc. of ALENEX, pp. 85-96 (2009)

9. Cheng, J., Ke, Y., Chu, S., et al.: Efficient Processing of Distance Queries in Large
Graphs: A Vertex Cover Approach. In: Proc. of SIGMOD, pp. 457-468 (2012)

10. Valiant, L.G.: A Bridging Model for Paralle] Computation. Communications of the
ACM 33(8), 103-111 (1990)

11. Apache Hadoop, http://hadoop.apache.org/

12. Fagin, R., Nievergelt, J., Pippenger, N.: Extendible Hashing - A Fast Access
Method for Dynamic Files. TODS 4(3), 315-344 (1979)

13. Litwin, W.: Linear Hashing: A New Tool for File and Table Addressing. In: Proc.
of VLDB, pp. 212-223 (1980)

14. Xiao, Y.H., Wu, W.T., Pei, J.: Efficiently Indexing Shortest Paths by Exploiting
Symmetry in Graphs. In: Proc. of EDBT, pp. 493-504 (2009)

15. Wei, F.: TEDI: Efficient Shortest Path Query Answering on Graphs. In: Proc. of
SIGMOD, pp. 99-110 (2010)

16. Trinity, http://research.microsoft.com/en-us/projects/trinity/

17. Bu, Y., Howe, B., Balazinska, M., et al.: HaLoop: Efficient Iterative Data Process-
ing on Large Clusters. PVLDB 3(1-2), 285-296 (2010)

18. Twister: Iterative MapReduce, http://www.iterativemapreduce.org/

19. SNAP: Network dataset,
http://snap.stanford.edu/data/soc-LiveJournall.html

20. 9th DIMACS, http://www.dis.uniromal.it/challenge9/download.shtml

21. Using the Wikipedia link dataset, http://haselgrove.id.au/wikipedia.htm

http://incubator.apache.org/giraph/
http://hama.apache.org/
http://hadoop.apache.org/
http://research.microsoft.com/en-us/projects/trinity/
http://www.iterativemapreduce.org/
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://www.dis.uniroma1.it/challenge9/download.shtml
http://haselgrove.id.au/wikipedia.htm

Fast SimRank Computation over Disk-Resident
Graphs*

Yinglong Zhang!2, Cuiping Li', Hong Chen!, and Likun Sheng?

! Key Lab of Data Engineering and Knowledge Engineering of Ministry of Education,
and Department of Computer Science, Renmin University of China, China
zhang yinglong@126.com
2 JiangXi Agricultural University, China

Abstract. There are many real-world applications based on similarity
between objects, such as clustering, similarity query processing, infor-
mation retrieval and recommendation systems. SimRank is a promis-
ing measure of similarity based on random surfers model. However, the
computational complexity of SimRank is high and several optimization
techniques have been proposed. In the paper optimization issue of Sim-
Rank computation in disk-resident graphs is our primary focus. First we
suggest a new approach to compute SimRank.Then we propose optimiza-
tion techniques that improve the time cost of the new approach from O
(kN?D?) to O(kNL), where k is the number of iteration, N is the number
of nodes, L is the number of edges, and D is the average degree of nodes.
Meanwhile, a threshold sieving method is presented to reduce storage
and computational cost. On this basis, an external algorithm computing
SimRank in disk-resident graphs is introduced. In the experiments, our
algorithm outperforms its opponent whose computation complexity also
is O(kNL).

Keywords: SimRank, Random walk, Graph, Similarity.

1 Introduction

The measure of similarity between objects plays significant role in many graph-
based applications; examples include recommendation systems, fraud detection,
and information retrieval. In contrast to textual content, link structure is a more
homogeneous and language independent source of information and it is in general
more resistant against spamming [1]. Thus a lot of link-based similarity measures
have been proposed.

Among these link-based similarity measures, SimRank [2] is one of promising
ones because it was defined based on human intuition: two objects are similar
if they are referenced by similar objects|2], and a solid graph theory: random
surfers model. Random surfers model is also a theoretical foundation of many
other algorithms: PageRank|3], HITS[4], etc.

* This work is supported by the Fundamental Research Funds for the Central Univer-
sities,and the Research Funds of Renmin University of China(Grant No.12XNH178).

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 16-B0] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Fast SimRank Computation over Disk-Resident Graphs 17

Several algorithms have been proposed on SimRank optimization |1, 5-8].
These optimization algorithms improve efficiency adopting different strategies.
To the best of our knowledge, most existing algorithms didn’t consider the situ-
ation that graph is a large disk-resident graph except [1]. However the research
paper [1] approximate SimRank scores using probabilistic approach, thus their
result is inherently probabilistic. Can we design a scalable and feasible algorithm
to compute SimRank scores when graph is a large disk-resident graph? The issue
has inspired our study.

The challenges of computing SimRank scores of a large disk-resident graph
are following: first, its time complexity is O(kN2D?) ;| where k is the number of
iteration, N is number of nodes, and D is the average incoming degree of nodes,
and O(kN*) in the worst case, using original method. Second, the main overhead
is I/O when graph cannot be held into main memory and we need to random
access data frequently from disk. So we want to design a novel feasible algorithm
to reduce I/0.

In this paper, we propose a new approach to compute SimRank scores adopt-
ing the random surfer-pairs model which was used to interpret SimRank in the
original SimRank proposal [2]. We briefly describe our approach below. From
perspective of the model, the SimRank score s(a, b) measures how soon two ran-
dom surfers are expected to meet at the same node if they started at nodes a and
b and randomly walked the graph backwards |2]. Thus SimRank score s(a, b) is
summed up all first meeting-time probabilities of two surfers randomly walking
from nodes a and b in reversed graph. Our naive and external algorithms are
based on that we start from nodes, at which the two surfers can first meet, to
compute these first meeting-time probabilities instead of starting from nodes a
and b to compute the probabilities.

The main contributions of this paper are the following:

— We propose a new approach to compute SimRank scores.

— Optimization techniques are suggested, which improve time complexity from
O (kN2D?) to O(kNL), where L is number of edges. A threshold sieving
method to accurately estimate SimRank scores is introduced for further im-
proving the efficiency of the approach.

— An external algorithm is designed to compute SimRank scores over disk-
resident graphs.

— Experimental results over both synthetic and real data sets show the algo-
rithm is effective and feasible.

The rest of this paper is organized as follows. In the next section SimRank is
reviewed, then a new approach is proposed. In sec.3, optimization techniques of
the new approach are suggested and a threshold sieving method is introduced. In
sec.4, an external algorithm based on the new approach is proposed. In section 5,
the experimental results are reported. Section 6 gives the overview of the related
works, and concludes paper in section 7.

18 Y. Zhang et al.

2 The SimRank Fundamentals

In this section, we first review SimRank technique proposed in 2] (Sect 2.1).
Then we propose a new formula directly derived from the random surfer-pairs
model which was used to interpret SimRank (Sect 2.2). At last a naive algorithm
is given (Sect 2.3).

2.1 SimRank Overview

Given a directed graph G = (V, E) where nodes in V represent objects and
edges in F represent relationships between objects. For any v € V, I(v) and
O(v) denote in-neighbors and out-neighbors of v, respectively. I;(v) or O;(v) is
an individual member of I(v), for 1 <+ < |I(v)], or of O(v), for 1 < j < |O(v)|.
The SimRank score of nodes between a and b defined as follows:

1, ifa=10
(a,b) = { T TSV S (@), 5 (0) (1)
sta,0) = H@)11)] » [(a) and 1(8) # 0

0 otherwise

where ¢ is constant decay factor and default value of ¢ is 0.6 in the paper.
The naive solution 2] of equation (1) can be reached by iteration to a fixed-
point:

eI R (Lia), 1;,0))

1)1 la) and I0) 0 (2)

Riy1(a,b) =
,where Ry(a,b) = 1(for a = b) or Ro(a,b) = 0(for a # b).

The theory of expected-f meeting distance in [2] shows that SimRank score
s(a, b) measures how soon two random surfers are expected to meet at the same
node if they started at nodes a and b and randomly walked the graph backwards.
Based on the theorem, SimRank score between a and b also can be defined:

s(a,b) = Z P(1)d™ (3)

7:(a,b)—(z,x)

where 7 is a tour (paths may have cycles) along which two random suffers walk
backwards starting at nodes a and b respectively until they first and only first
meet at any node x ; ¢ is a constant decay factor of SimRank.

The tour 7 consists of two paths corresponding to the two suffers: pathl=(v;
s ooy Um @), path2=(w1 , ..., Wy , x); v1 = a,w; = b . Obviously the length
of pathl equals the length of path2 . Length I(7) of tour 7 is the length of pathl
or path2. The probability P(pathl) of walking on pathl is [[;-, ‘I(:'ll)i)ll For tour
7, the probability P(7) of traveling 7 is P(pathl)P(path2) = [~ |I(vi)\\11(wj)\’
or 1ifl(7) =0.

In the paper if there is a tour 7 along which two random surfers walk back-
wards starting at two nodes a and b respectively until they first meet at some

Fast SimRank Computation over Disk-Resident Graphs 19

node x, we say node pairs (a,b) has a meeting-node z correspond to the tour 7
of which the length is I(7). We also say the node x is the tour 7’s meeting-node
and the tour 7 is a tour corresponding to node pairs (a, b) which we call as start
node pair. In the paper we use symbol (a,b) or 7 to refer a tour according to
context. The start node pair (a,b) and (b,a) are equivalent because similarity

scores are symmetric. In the paper, if no specified it means a < b for the symbol
of (a,b).

2.2 Computing SimRank Based on Random Surfer Model

To compute similarity, using formula (3) we need to obtain all tours for each pair
nodes by walking backwards all paths from the two nodes. However it is time
consuming to obtain all tours. Now we give a solution of Ry based on formula

3).
Proposition 1. Ry(a,b), the similarity of between a and b on iteration k+1,
can be computed by:

Ri11(a,b) = Z P(1)c(7) (4)
7:(a,b)—(z,x)
I(r)<k+1
where T is a tour along which two random suffers walk backwards starting at
nodes a and b respectively until they first and only first meet at node x.

The proof is omitted due to the limitation of spac.
From above proposition, to compute Ry (a,b) we only need to obtain all the
corresponding tours of the length equal or less than & and sum up these tours.

2.3 Naive Algorithm

From Eq.(3]) and proposition 1, we know that computing SimRank scores equals
obtaining all corresponding tours. How can we efficiently obtain tours?

Observation 1. For tours 7:(e, f) — (x,z), T can be expanded to obtain tours
7':(0i(e),0;(f)) — (x,x) , of which the length is I(T) + 1 , by just walking
one step from (e, f) to their out neighbor Ole, f). It avoids random walking
I(T) + 1 steps starting at (O;(e),0;(f)) to obtain 7 by only appending path
((Oi(e),0;(f)), (e, f)) at the beginning of T.The length I(t') is: I(t) + 1. The

probability P(7") of traveling 7' is: P(1') = |I(Oi(e;;|(|71)(oj(f))| .

Given a tour of which length is k: 7:(e, f) — (z,z), in the paper symbol
vr k.2 (€, f) denotes the value of the tour: P(7)c!(™); based on observation 1,

o UT,kT,&L’(e? f)
s (GO = 0,05) ®)

According to both proposition 1 and observation 1, we have following proposi-
tion:

! Proof can be visited at http://ishare.iask.sina.com.cn/f/34372408.html

http://ishare.iask.sina.com.cn/f/34372408.html

20 Y. Zhang et al.

Proposition 2. Ryii(a,b), the similarity between a and b on iteration k+1,
can be computed by:

Vr e,
Ryy1(a,b) = Ri(a,b) + Z . sz (€ f) ©)
: [(a)[[1(b)|
T:(e,f)—=(z,x)
a€O0(e)AbeO(f)

where ¢ is constant decay factor .

)= (w,z) P(T)).

. 'Uf,uzc(eaf) —
Proof. Fromobservation 1, (e, f)—(z,2) C\I(;)Hl(b)l = ZT:E?T):]CJ,»I

a€O0(e)NbeO(f)
According to proposition 1, the proposition holds.

Our naive algorithm based on observation 1, Eq.(H) and proposition 2: for each
(x, x) we first walk from the meeting-node to its out neighbors to obtain tours
and their values v, 1 5, then expand tours to obtain other tours and v, 2, just
walking one step from current start node pairs to its out neighbors, and so on.

Obviously if a node is a meeting-node, the node has at least two out-neighbors.
Our naive algorithm based on observation 1 and proposition 2. Because the time
requirement of naive algorithm is O(n®D?),which is more expensive than that
of original method [2], the algorithm is not listed in the paper.

3 Optimization Strategies

Naive method computes SimRank scores in a depth-first traverse style. We pro-
cess meeting-nodes one by one: after processing all its tours of which the length
is equal less than k for a given meeting-node, we process next one until all
meeting-nodes are processed.

However the naive method is time consuming and not practical. In this sec-
tion, several optimization techniques are suggested to improve efficiency of the
method.

3.1 Breadth-First Computation

Since the depth-first computation is inefficient, we consider computing SimRank
scores in a breadth-first traverse manner.

For all meeting-nodes, first we obtain their all tours of which the length is
1. Then, we extend the tours to obtain all tours of which the length is 2 . We
continue to extend the tours until the length of tours equal k.

One advantage of using the breadth-first traverse method can improve effi-
ciency. At each iteration for different meeting-node x the corresponding tours
are merged by the following formula.

wle, f) = 3 vrnale f) (7)

The value of the merged tour denoted by wvy/(e, f).

Fast SimRank Computation over Disk-Resident Graphs 21

And based on E.q.(H), () and proposition2 Ry1(a,b), the similarity between
a and b on iteration k41, can be computed by:

Ryy1(a,b) = Ri(a,b) + viyi1(a,b) (8)
Zi j v (Ii(a)vl'(b))
where vi41(a,0) = = 1)/
Another advantage of using the breadth-first traverse is that tours are grouped
by first node at each iteration for reducing I/0 to external algorithm, the details
are discussed in the next section.

3.2 Threshold-Sieved Similarity

Threshold-sieved similarity was first introduced by [5] to filter low and neverthe-
less non-zero similarity scores because these similarity scores lead to overhead
in both storage and computation. However the threshold-sieved similarity in [5]
can not apply to our algorithm which adopts different method.

At k+1th iteration based value of tours vg, we compute similarity scores
and achieve information of new tours vi41 based on equations(d) (). After a
few iterations, there are many low and nevertheless tours and similarity scores
which both lead to heavy overhead in both storage and computation. So we
effectively handle desired similarity scores and tours by filtering nevertheless
similarity scores and tours.

Given threshold parameter 4, we define threshold-sieved similarity score
R} (*,%) and tours vy (*, *) as follows:

R(l)(aa b) = RO(aa b)v R%(a,a) = Rk(aa a) =1 (9)
vy(a,b) = vo(a,b) =1, if a = byvy(a,b) = vo(a,b) =0, if a # b (10)

Ry 1 (a,b) = Ry (a,b) + vj, 41 (a, b)

if either (right-hand side> ¢ for k=0 or right-hand side> (1 —¢)é for k > 1) or
Ri(a,b) # 0;

t1(a,b) = 0, otherwise. (12)
’U;c+1(aﬂb) HI ka)

if right-hand side> ¢ for k=0 or right-hand side> (1 — ¢)d for k£ > 0

Vj,41(a,b) = 0, otherwise. (14)

22 Y. Zhang et al.

In definitions () to (), a and b are assumed to be different nodes.
First we give the estimate for threshold-sieved v} (a,b) with respective to
vg(a, b):

Proposition 3. For k=0,1,...the following estimate hold: vi(a,b) — v} (a,b) <
J.

Proof. For k=0, the estimate obviously holds because of vg(a,b) = v{(a,b)
For k=1, the difference v;(a,b) — v} (a,b)
> vo(e, f) < 6, so the proposition holds.

a€O0(e)NbeO(f)
vo(e,f)<8

Assume the proposition holds for k (k > 1), let us estimate the difference
vr1(a,b) — vy, (a,b) for k+1 (two cases):
case 1: if vj_ , (a,b) = 0, then from (I3) and (I4) we have

— c
(@) (®)]

HI ka (b)) < (1 —¢)s (15)

and
vkt1(a,b) — v q(a,b) = veri(a,b) < using [[8) < wviri1(a,b) + (1 —c)d —
|1(a)|c|1(b)\ iZj:vL(fi(a)Jj(b)) =(1—-¢c)d+ \I(Q)ﬁz(bﬂ %(Uk(li(a)vlj(b)) - ,U;C(Ii(a/
Liv)<(1—-e)d+cd=9¢

case 2:v,(a,b) # 0, the difference vi11(a,b) — vy, (a,b)

= @) Z(Uk(i(a), I;(b)) — vi.(Li(a), I;(b))) < 6

thereby showmg that indeed the proposition holds for k+1. a

Similar to [5], we also give the following estimate for threshold-sieved similarity
scores R} (a,b) with respective to conventional similarity scores Ry(a,b):

Proposition 4. For k=0,1,2,. .. the following estimate hold: Ry(a,b) — R} (a,b)
< A, where A\ = kd.

The proof is omitted due to the limitation of space@.

Proposition Ml states that difference between threshold-sieved R (a,b) and
conventional similarity scores Ry (a,b) does not exceed A at worst case. The
parameter A is generally chosen to control over the difference by a user. Given
A, obviously § = %. If A is chosen to be zero, then § = 0 and R} (a,b) = Ri(a,b).

The difference between threshold-sieved and theoretical SimRank scores is
same with that of the paper [5] and discussed in details in [5].

4 Tour Algorithm

When the graph is a massive graph and disk-resident, the challenge is how to
efficiently achieve the similarity of nodes.

2 Proof can be visited at http://ishare.iask.sina.com.cn/f/34372408. html

http://ishare.iask.sina.com.cn/f/34372408.html

Fast SimRank Computation over Disk-Resident Graphs 23

Algorithm 1. Tour algorithm
Input:
edg, ¢,A,K// K is a number of iteration
Output:
srt // SimRank Result
1: 6« ﬁ
read blocks from edg and achieve tours which of length is 1,save merged tours into
ct and edg;
for k=2to K do
par + singleStepFromTour(edg, ct, §);// 1th stage:get par
ct, srt < singleStepFromPartialTour(ed, par, srt,0);// 2th stage:get srt
end for

N

In the external algorithm called by tour algorithm, we adopt the strategies:
breadth-first computation, tours merging, and threshold-sieved similarity.

The tour algorithm will sequentially read and write from three kinds of file:
edg, ct and srt.

The disk file edg contains all edges of the graph and read only. Each line of
the disk file is a triplet (tailNode, headNode,p) corresponding to an directed
edge, where tailNode and headNode are identifies of nodes in the graph, and
p= |I(heaC}NOde)‘. FEdg is sorted by tailNode. Since in the algorithm we always
need to obtain all out-neighbors of a node, the out-neighbors were clustered into
one block by the sorting for reducing I/0.

Algorithm 2. singleStepFromTour
Input:
input-graph edg,ct, C,§
Output:
par file
1: empty par
2: while ledg.ecof() AND lIct.eof() do
read data blocks from edg and ct to get partial tours.
4 pu are merged into sorted buffer M by Eq. ({8)
5 if the sorted buffer M is full then
6: M merged with already sorted file par
7
8:

end if
end while

Algorithm 1 is the tour algorithm. In line 1 we achieve tours directly from
meeting-nodes, merge tours based on E.q.([), and store the values into files ct
and srt.

At kth(k > 2) iteration, the disk file ¢t contains all tours of which the length
exactly equal £ — 1, and the disk file srt contains similarity of nodes achieved
at k — 1th iteration. The formats of each line in both files are same: (n; :

24 Y. Zhang et al.

na,v(ni,n2),...,ng,v(ng,ne)),where v(n,n;) is the value of the tour (n1,n;) in
ct,v(n,n;) is the similarity score of (n1,n;) in srt,n; < n; and 2 < i < t. Files
are sorted by node nj.

Algorithm 3. singleStepFromPartial Tour
Input:
edg,par, c,0
Output:
ct, srt
1: empty ct
2: while ledg.ecof() AND !par.eof() do

3: read blocks from edg and par to get new tour.

4: new tours vy are merged into sorted buffer M by Eq. (I7)

5. if Ipar.eof() then

6: if the sorted buffer M is full then

7 M merged with already sorted file ¢t and empty M

8: end if

9: end if

10: if lpar.eof() then

11: M and remaining of par be merged with ¢t and all small values skip due to
Eq.(@3) @4)

12: else

13: M be merged with ¢t and all small values skip due to Eq.(I3) (4]

14: end if

15: end while

16: while !ct.eof() OR !srt.eof () do

17: read blocks from ct and srt,get new score by Eq.([Il) (I2))and save it into stemp
18: end while

19: srt < stemp

At k(k > 2) iteration we adopt two-stage strategy (lines 4,5 of algorithm 1)
due to the limitation of main memory space:

First stage: we call a method (Algorithm [) to generate a par file from ct file
and edg file. Par contains the partial tours and is sorted by first node of partial
node pairs. The values pv, ,; (its initial value is zero) of partial tours (f,a) can
be calculated(a is a out-neighbor of e) by:

poasa(fia)+ = o) (16)

Each line of par is (p1 : p2,v(p1,p2) .- -, P, v(p1, pt)), where v(p1,p;) is the value
of partial node pair (p1,p;) (2 < ¢ < t). For each pair nodes (p1,p;), the first
node is second node of corresponding tours before walking forward the one step,
second node of the pair is the out-neighbor which we reach after walking forward
the single step. Partial tours are sorted by the first node.

Fast SimRank Computation over Disk-Resident Graphs 25

Second stage: the procedure (algorithm 3) is called. In the algorithm 3 we
achieve the ct file from the par file and edg file based on following:

pAUk+1 (fa a)
vpy1(a, b)+ = (17)
i [1(b)]
(b is a out-neighbor of f and the initial value of vjy1(a,b) is zero). Then we
obtain new SimRank scores from the new ct file and srt file based on the equa-

tions (1) (I2)).

4.1 Complexity Analysis

Let us analyze the time requirement of tour algorithm. Let D be average of
|O(a)| over all nodes a. At first iteration(line 2 of algorithm [II), we can obtain
D(D — 1) tours for each meeting-node z. So, at worst, the time requirement is
O(nD?) for all meeting-node z.

At the kth(k > 1) iteration, we obtain new tours based on current tours by
following two stages:

1. Walking forward one step to its out-neighbors from a node which is common
first node shared by a group of current tours:(n; : ng, v(ni, n2), ..., ng, v(ng, nt)).
At worst, the max size of the group is n — 1. Time requirement of walking single
step from one group of current tours is O(nD). The time cost is O(n?D) for all
groups. (Algorithm [2])

2. Walking forward one step to its out-neighbors from a node which is common
first node shared by a group of partial tours. At worst, the max size of the group
is also n — 1. The time cost is O(n?D) for all groups.(Algorithm [3])

At each iteration, the time requirement to generate sorted file by merging with
the sorted buffer at most is O(nlogan).

According to above analysis, the cost to obtain tours is O(n?D) at each it-
eration. Because the number of edges is [= nD, the total cost of computation
SimRank scores is O(Knl), where K is number of iterations.

4.2 I/0 Analysis

Tour algorithm sequentially reads(writes) blocks to process data from(to) the
files. In contrast, algorithms based on Eq.(2]) compute score of (a,b) by random
accessing scores of (I;(a),I;(b)) (1 < i < |I(a)] and 1 < j < |I(D)|) at each
iteration because the scores of (I;(a), I;(b)) can not be clustered in a block and
the random accessing causes heavy I/O cost. According to above discussion, tour
algorithm is an I/O efficient method comparing algorithms based on Eq.(2)).

5 Experimental Studies

In this section, we report our experimental studies on the effectiveness and
efficiency of Tour algorithm. We implemented all experiments on a PC with

26 Y. Zhang et al.

i7 —2620M CPU, 8G main memory , running windows 7 operating system. All
algorithms are implemented in C++ and the runtime reported in all experiments
includes the I/0 time.

The first experiment shows feasibility and effectiveness of our tour algorithm.
The second experiment shows effectiveness and efficiency of tour algorithm in
comparison with excellent algorithms: partial sums and outer summation which
are published in [5]. Finally, the third experiment illustrates the feasibility and
efficiency of the tour algorithm on the real data. Our real datasets used in ex-
periment are from Stanford Large Network Dataset Collection.

5.1 Feasibility and Effectiveness of Tour Algorithm

The time cost of tour algorithm is O(n?D). In theory D equals n at worst,
in this situation the time cost of our algorithm is O(n3) and the algorithm
is infeasible. So we want to know what the degree value of real graph is in
most situation. Stanford Large Network Dataset Collection is a data collection
including social networks, web graphs, road networks, internet networks, citation
networks, collaboration networks, and communication networks. Table [is a
statistics on 40 data sets with 10 categories from the Stanford Large Network
Dataset Collection. Each rows of table is a data set and its value ’?L is largest
among datasets of corresponding category. From the table we conclude that the
degree D < n at worst for real graph in most situation. So our algorithm, of
which the time cost is O(n?D), is feasible and it is unnecessary to consider the
worst case:D equals n.

Table 1. Statistics based on 40 data sets with 10 categories from Stanford Large
Network Dataset Collection

Category Name Nodes Edges Average degree
Social networks soc-Slashdot0811 77,360 905,468 11.7
Communication networks email-Enron 36,692 367,662 20
Citation networks Cit-HepTh 27,770 352,807 12.7
Web graphs Web-Stanford 281,903 2,312,497 8
Product co-purchasing networks Amazon0505 410,236 3,356,824 8
Internet peer-to-peer networks p2p-Gnutella04 10,876 39,994 3.7
Road networks roadNet-PA 1,088,092 3,083,796 5.7
Signed networks soc-sign-Slashdot 77,357 516,575 6.7
Location-based online social networks loc-Brightkite 58,228 214,078 7
Memetracker and Twitter Twitter7 17,069,982 476,553,560 27.9

Then we compare tour algorithm with original method based on Eq.(2). In
this subsection, we set the damping factor C' = 0.8 and K = 5. In this subsec-
tion and the next, data sets we used are synthetic data which were produced by
scale-free graph generator@. Given 3 synthetic data set whose average degrees
are all: 3, figure 1 shows that tour algorithm(A = 0) is better than the original

3http://snap.stanford.edu/data/index.html
4 Derek Dreier. Barabasi Graph Generator v1.4. University of California Riverside,
Department of Computer Science.

http://snap.stanford.edu/data/index.html

Fast SimRank Computation over Disk-Resident Graphs 27

1800

o Tou meKhoﬁI 0.55
1600 oSSR =5) 05
.
1400 =045
% 04
1200 g
Fiooo 2%
P
£ 800 £025 carseilo Se
-4 El
600 202
20.15
400 E
2ol
200 0.05
0 T 3 3 7 5 O "% 5 & 5 T8 9 10
Node size(k) Iteration

Fig. 1. Tour method VS. original method Fig. 2. Ratio of numbers of tours to n?

1000 2500

artial syms == —— pv e
900 o SRR = T o
800 2000
700
= 600 21500
z 2
£ 500 E
E <
Z 400 Z1000
300
200 500
100 * |
0 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1001 150k 200k 250k b
Node size Degree

Fig. 3. Tour method VS. partial sums Fig. 4. Tour method VS. partial sums on
different node degree

method(threshold tour:A = 0.01). The reasons are following: we compute the
score of every node pairs (n? of these) according to formula (Z)); Actually there
are some node pairs that do not require computing similarity scores, which con-
sume time, because SimRank score of their in-neighbor pairs is zero. However
using tour method we obtain tours without these brute forces trying every node
pairs at each iteration.

Table 2. Number of tours after each iteration for a graph n = 5005 nodes, degree
D=3

k Number of tours
A=0 A =0.01
Absolute Relative Absolute Relative

1185,196 0.007399n2 172,131 0.006877n>
27,774,172 0.310594n2 771,665 0.03083n>
312,522,105 0.500284n2 183,155 0.007317n?
412,522,510 0.5003n2 1253 0.00005n2
512,522,510 0.5003n2 55 0.000002n>

28 Y. Zhang et al.

The computational complexity of tour algorithm depends on number of tours.
Figure 2 shows ratio of numbers of tours to n? at each iteration on graphs
with different degrees and n = 5000 nodes without adopting Threshold-sieved
technology. Table 2] shows the number of tours at each iteration on the same
graph for A =0 and A = 0.01 respectively.

5.2 Tour Algorithm vs Partial Sums and Outer Summation

In this subsection we compare tour algorithm with partial sums (including select-
ing essential node pairs) and outer summation. The three algorithms all adopt
the threshold-sieved strategy. Partial sums and outer summation are excellent
algorithms. Time cost of partial sums is the same as tour algorithm: O(n?D).
And time cost of outer summation is O(loZZn)' According to the last subsection
the degree D <« n at worst for real graph in most situation so outer summa-
tion is infeasible against both partial sums and tour algorithm in practice. The
conclusion is validated by our experiment(figure [B]). For ease and fairness of
comparison, we set the damping factor C = 0.6,A = 0.05 and K = 5 in this
subsection and the next. These parameters are set in accordance with the last
experiment of [5]. Figure Bl shows the computation time of the three algorithms
over four different size synthetic graphs. The average node degree of the four
graphs are all 3. Because the cost time of outer summation is very expensive we
run experiment only on the first graph using outer summation. Figure [3] shows
tour algorithm is faster than opponents.

In the second experiment, we generate three graphs whose node number all
are: 200k. The average degree of the three graphs is 3,6 and 12 respectively.
Figure [shows result of the experiment: although degree of graphs vary tour al-
gorithm is always better than the partial sums and the tour algorithm is affected
less than partial sums by node degree.

Table 3. Computation time of tour algorithm on real graphs

Name of graph Amazon0505 Amazon0302 web-Stanford ~ web-go
Number of nodes 410,236 262,111 281,903 875,713
Number of edges 3,356,824 1,234,877 2,312,497 5,105,039
Computation time(seconds) 654 173 2075 995

5.3 Experiments on Real Graphs

In this subsection, four real datasets are used(table [3)). Table [l shows computa-
tion time of tour algorithm adopting the threshold-sieved strategy on different
real datasets. Two datasets are belong to the category:Product co-purchasing
networks, Number of nodes and value f of Amazon0505 are the largest among
datasets of corresponding category. So the computation time on Amazon0302 is
much faster than the time on Amazon0505. The other two datasets are belong to
the category: web graphs. Among datasets of corresponding category, value g of

Fast SimRank Computation over Disk-Resident Graphs 29

web-Stanford is the largest and number of nodes of web-go is the largest respec-
tively. Although number of nodes of web-go is larger than that of web-Stanford,
the computation time of web-go is faster than that of web-Stanford. The reason
is values of tours are small and lots of tours are pruned at each iteration for
the web-go graph. In a short, computation time on the different real datasets is
accepted and tour algorithm is feasibility and efficiency in the PC environment.

6 Related Works

There are many real-world applications based on similarity between objects, such
as clustering, similarity query processing, and information retrieval etc. According
to the research [5], similarity measures are outlined two categories: (1) content-
or text-based similarity measures, and (2) link-based ones that consider object-
to-object relations expressed in terms of links |1, |2, |9-11]. SimRank [2] is one of
promising ones among these link-based similarity measures.Several algorithms
have been proposed on SimRank optimization |57, [1, 18, [12].

Fogaras and Récz [1] suggested a general framework of SimRank computa-
tion based on Monte Carlo method. Their algorithms run in external memory.
Their computation is stochastic because their algorithm is based on Monte Carlo
method. In comparison, our algorithm is a deterministic solution.

Lizorkin et al. [5] proposed a technique of accuracy estimation and opti-
mization techniques that improve the computational complexity from O(n?) to

min(O(nl), O(loZZn)). Three optimization are suggested in their research: partial
sums, outer summation and threshold-sieved similarity.

Li et al. |6] presented a approximate SimRank computation algorithms. As
discussed in paper [12], the method is not preferable in practice. In |&],Li et al.
exploit GPU to accelerate the computation of SimRank on large graphs.

Yu et al. [12] proposed optimization techniques based on matrix method to
compute SimRank. The time cost of the technique exactly is O(Knl) for sparse
graphs, whereas the cost of our tour algorithm also is O(K'nl) in the worst case.
For dense graphs they also proposed optimization technique. However, based on
our statistics in Table [most real datasets are sparse graphs.

In contrast with above mentioned optimization algorithms, Li et al. [7] pro-
posed a Single-Pair SimRank approach to obtain the similarity of a single node-
pair. Research|13] extends the similarity join operator to link-based measures.
[14] approach SimRank from a top-k querying perspective. Research[15] focus on
that the question the most similar £ nodes to a given query node on disk-resident
Graphs.

7 Conclusions

This paper investigates optimization of SimRank computation for disk-resident
graph. First we have proposed a new approach based on the random surfer-
pairs model: we start from meeting-node to compute first meeting-time prob-
abilities of two random surfers instead of starting from nodes a and b. Then

30 Y. Zhang et al.

several optimization techniques have been presented: breadth-first computation
and threshold-sieved similarity etc. On this basis, an external algorithm, tour
method, has been introduced. At each iteration, tours are grouped by first node
to reduce the times of accessing disk data in the tour method. At last, we demon-
strate its efficiency and effectiveness on synthetic and real data sets.

Acknowledgments. This work also are supported by the National Natural Sci-
ence Foundation of China(Grant No.61070056,61033010,61272137,61202114) and
National Basic Research Program of China (973 Program)(No. 2012CB316205).
This work is partially done when the author visited Sa-Shixuan International Re-
search Centre for Big Data Management and Analytics hosted in Renmin Univer-
sity of China. This Center is partially funded by a Chinese National “111” Project.

References

1. Fogaras, D., Racz, B.: Practical algorithms and lower bounds for similarity search
in massive graphs. IEEE Trans. Knowl. Data Eng. 19(5), 585-598 (2007)

2. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD,
pp. 538-543 (2002)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proc.7th International World Wide Web Conference (1988)

4. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604-632 (1999)

5. Lizorkin, D., Velikhov, P., Grinev, M.N.; Turdakov, D.: Accuracy estimate and
optimization techniques for simrank computation. VLDB J. 19(1), 45-66 (2010)

6. Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., Wu, T.: Fast computation of
simrank for static and dynamic information networks. In: EDBT, pp. 465-476
(2010)

7. Li, P, Liu, H., Yu, J.X., He, J., Du, X.: Fast single-pair simrank computation. In:
SDM, pp. 571-582 (2010)

8. He, G., Feng, H., Li, C., Chen, H.: Parallel simrank computation on large graphs
with iterative aggregation. In: KDD, pp. 543-552 (2010)

9. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural similarity measure
over information networks. In: CIKM, pp. 553-562 (2009)

10. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271-279
(2003)

11. Xi, W., Fox, E.A.) Fan, W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.: Simfusion:
measuring similarity using unified relationship matrix. In: SIGIR, pp. 130-137
(2005)

12. Yu, W., Zhang, W., Lin, X., Zhang, Q., Le, J.: A space and time efficient algorithm
for simrank computation. World Wide Web J. 15(3), 327-353 (2012)

13. Sun, L., Cheng, R., Li, X., Cheung, D.W., Han, J.: On link-based similarity join.
PVLDB 4(11), 714-725 (2011)

14. Lee, P., Lakshmanan, L.V.S., Yu, J.X.: On top-k structural similarity search. In:
ICDE, pp. 774-785 (2012)

15. Sarkar, P., Moore, A.W.: Fast nearest-neighbor search in disk-resident graphs. In:
KDD, pp. 513-522 (2010)

S-store: An Engine for Large RDF Graph
Integrating Spatial Information

Dong Wang!, Lei Zou'*, Yansong Feng', Xuchuan Shen', Jilei Tian?,
and Dongyan Zhao!

! Peking University, Beijing, China
zoulei@pku.edu.cn
2 Nokia Research Center GEL, Beijing, China
{WangD,zoulei, fengyansong, shenxuchuan, zhaody}@pku.edu.cn,
jilei.tian@nokia.com

Abstract. The semantic web data and the SPARQL query language
allow users to write precise queries. However, the lack of spatial informa-
tion limits the use of the semantic web data on position-oriented query.
In this paper, we introduce spatial SPARQL, a variant of SPARQL lan-
guage, for querying spatial information integrated RDF data. Besides,
we design a novel index SS-tree for evaluating the spatial queries. Based
on the index, we propose a search algorithm. The experimental results
show the effectiveness and the efficiency of our approach.

Keywords: spatial query, RDF graph.

1 Introduction

The Resource Description Framework (RDF)[I3] is the W3C’s recommenda-
tion as the basement of the semantic web. An RDF statement is a triple as
(subject, predicate, object), which describes a property value of the subject. In
real world, a large amount of RDF data are relevant to spatial information. For
example, “London locatedIn England” describes a geographic entity London is
located in a geographic location England; and the statement “Albert Einstein
hasWonPrize Nobel Prize” is related to a geographic location of the event, i.e.
Sweden.

Recently, researchers have begun to pay attention to the spatial RDF data. In
fact, several real-world spatial RDF data sets have already been released, such as
YAGOA[12], OpenStrectMap[I0] etc. YAGO2[1Z] is an RDF data set based on
Wikipidea and WordNet. Additionally, YAGO?2 integrates GeoNames@, which is
a geographical database that contains more than 10 million geographical names,
for expressing the spatial information of the entities and the statements.

* Corresponding author.

! mttp://www.mpi-inf .mpg.de/yago-naga/yago/downloads . html
2 http://planet.openstreetmap.org/

3 http://www.geonames . org/about . html

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 31-f7] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://planet.openstreetmap.org/
http://www.geonames.org/about.html

32 D. Wang et al.

Although the traditional spatial databases can manage spatial data efficiently,
the “pay-as-you-go” nature of RDF enables spatial RDF data provide more
flexible queries. Furthermore, due to the features of Linked Data, spatial RDF
data sets are linked to other RDF repositories, which can be queried using both
semantic and spatial features. Thus, the spatial information integrated RDF
data is more suitable for providing location-based semantic search for users. For
example, a user wants to find a physicist who was born in a rectangular area
between 59°N 12°E and 69°N 22°E (this area is southern Germany), and won
some academic award in a rectangular area between 48.5°N 9.5°E and 49.5°N
10.5°E (it is in Sweden). The query can be represented as a SPARQL-like query
in the following. Section M gives the formalized definition.

SELECT ?x WHERE{

7x wasBornlIn 7y 711,
7x hasWonPrize 7z 712.
Ty type star city .

7z type Academic Prize.}
Filter {IN(?11,[(59,12),(69,22)] AND IN(?12 ,[(48.5,9.5),(49.5,10.5)]}

Few SPARQL query engines consider spatial queries, and to the best of our
knowledge only two proposals exist in literature. Brodt et al. exploit RDF-3X
[14] to build a spatial feature integrated query system [4]. They use GeoRSS
GMLIg| to express spatial features. The R-tree and RDF-3X indexes are used
separately for filtering the entities exploiting the spatial and the RDF semantic
features, respectively. Besides, the method only supports the range queries over
the spatial entities. YAGO2 demd provides an interface for SPARQL like queries
over YAGO2 data. However, the system uses hard-coded spatial predicates on
spatial statements. Different from the above approaches, we introduce a hybrid
index integrating both the spatial and semantic features, and the range queries
and spatial joins are both supported in our solution.

In this paper, we introduce the spatial query over the RDF data, a variant of
the SPARQL language for integrating the spatial feature constraint such as the
range query and the spatial join. The spatial constraints assert the corresponding
entities or events located in an absolute location area or near some entities in
the query. For instance, users could search for a football club founded before
1900 nearby London, or a park nearby a specific cinema.

For effectively and efficiently solving the spatial queries, we introduce a tree-
style index structure (called SS-tree). The SS-tree index is a hybrid tree-style
index integrating the semantic features and the spatial features. Based on SS-
tree, we introduce a list of pruning rules that consider both spatial and semantic
constraints in the query, and propose a top-down searching algorithm. The tree
nodes dissatisfying the signature constraints or the spatial constraints are safely
filtered, and the subtrees rooted on the nodes are pruned. We make the following
contributions in this paper.

1. We formalize the spatial queries, a variant of SPARQL language, on the RDF
data integrating the spatial information. Besides, we introduce two spatial

4http://www.mpi-inf .mpg.de/yago-naga/yago/demo. html

http://www.mpi-inf.mpg.de/yago-naga/yago/demo.html

S-store: An Engine for Large RDF Graph Integrating Spatial Information 33

predicates: the range query predicate and the spatial join predicate. The
spatial queries can express both spatial constraints and semantic constraints.

2. We classify the entities into two categories: the spatial entities and the non-
spatial entities. Based on these two categories, we build a novel tree-style
index integrating the spatial features and semantic features. Additionally, we
introduce a list of pruning rules for efficiently exploiting the spatial feature
and the semantic feature of the index.

3. We evaluate our approach on a large real-world data set YAGO2, and the
result shows our approach outperforms the baseline by several orders of
magnitude.

2 Related Work

Many RDF manage systems [IIT920/T4T82I5] have been proposed in the past
years. RDF-3x[15], Hexstore[I8] and gStore[2]] are the state-of-the-art RDF
manage systems. Since none of the systems takes spatial feature into consid-
eration, all the systems are unsuitable for spatial RDF data management.
Brodt et al.[4] and Virtuoso[7] utilize RDF query engines and spatial index
to manage spatial RDF data. [4] uses RDF-3x as the base index, and adds an
spatial index for filtering entities before or after RDF-3x join operations. These
two approaches only support range query (and spatial join[7]) on entities, and
the spatial entities follow the GeoRSS GML[16] model. YAGO2 demo employs
six (hard coded) spatial predicates “northOf”, “eastOf”, “southOf”, “westOf”,
“nearby” and “locatedIn” over statements. Users can construct queries as a
list of triple patterns with the spatial predicates. Other spatial queries are not
supported. The technical detail and the performance are not reported.

2.1 Spatial Information Integrating in RDF

There are many ways to represent spatial features in RDF data. OpenGIS Simple
Features Specification[IT] introduces a complex structure for describing complex
spatial entities, such as points, lines, polygons, rings etc.. A complex shape can
be decomposed into several simpler shapes, where each simple shape has its
specific URI. Each spatial entity may be described by a list of statements.

The W3C Geo Vocabulary[3] is a decomposed approach. Each spatial entity
is considered as a point with explicit latitude and longitude. Other feature types
are not modeled in the W3C Geo Vocabulary.

Geography Markup Language (GML)[8] is an RDF /XML style language, and
it can be translated into the RDF format. GeoRSS GMLI[L6] models spatial
features as abstract Geometry classes and for subclasses Point, Line, Box and
Polygon. Each spatial feature can be translated into a list of RDF statements.

In the above approaches, only spatial entities are modeled in RDF data.
YAGO2[12] models spatial features of events, i.e., statements. For example, “Per-
son Bornln Time” must happen in a specific location. Thus, this event has spa-
tial features. Therefore, YAGO2 models statements as SPOTLX tuples (subject,

34 D. Wang et al.

predicate, object, time, location, context). In this paper, we only focus on SPOL
tuples. The “location” feature is modeled as the W3C Geo Vocabulary format.

3 Preliminary

Since our method is based on our previous work gStore system and VS-tree
index[21], to make the paper be self-contained, this section provides a simple
overview of gStore and VS-tree. More details can be found at [21I]. By encoding
each entity and class vertex into a bit string called signature, gStore transforms
an RDF graph into a data signature graph. Then, a tree-style index VS-tree is
proposed over the data signature graph. The VS-tree is an extended S-tree[6].
The nodes on the same level and the corresponding edges constitute a signa-
ture graph. A pruning rule for subgraph query over the data signature graph is
proposed for executing SPARQL queries.

11011

[
. - I I
Data Signature Graph G G' 11010 01001

Baden-Wiirttemberg G* ‘1‘750’15 0 a3

11010 00010 HHOE, 01010
{11011 11011 J————f - | 11000 00100 |d
PRGN e o R FYTTRIIO 0 el
o

Ulm L0010, Clemens_Betzel
¢ ==>{1101000010 01001 10010

o101 01 0110 Baden-Wiirttemberg 010011

01011 11110

Gdansk [ot011 11‘000\ [ot011 llllor’&m’lg’ﬁoml 10100 'ﬁmoooomn
01001 a o » Nobel_Prize ah
11 1 Fanny_Normann Albert_Einstein Ll Gdarisk
Fanny_Normann ' e . .
ClemensﬁBetzel ——— Super Edge :l Parent-Child Relation
Fig. 1. Signature Graph Fig. 2. VS-tree
The signature sig of each subject s depends on all the edges {e1,ea,...,e,}

adjacent to s. For each e;, gStore uses a list of hash functions to generate a signa-
ture sig.e;, where the front N bits denote the predicate, and the following M bits
denote the object. The valid bits depend on the hash code of the corresponding
textual information. To determine the valid bits, gStore exploits several hash
functions. The signature sig of s follows sig = sig.e1|sig.ez|...|sig.en.

For example, in Figure] there’s four edges starting from Ulm (#8, #9,
#10 and #11). Suppose that we set the first five bits for the predicate and
the following five bits for the object, we can get four signatures 1100001000,
1000101010, 1001000010 and 0001100011 corresponding to the four edges. Thus,
Ulm can be represented as 1101101011. Figure [3 shows the encoding processing
for “Ulm”. Figure [1l shows the signature graph of Figure [l Note that only the
entity and class vertices in the RDF graph are encoded.

After the signature graph is generated, the VS-tree is built by inserting nodes
into VS-tree sequentially. The corresponding VS-tree is shown in Figure

S-store: An Engine for Large RDF Graph Integrating Spatial Information 35

(Coordinates, 48.39841/9.99155)
[t] 01000 |
(isCalled, “Ulm”) VID [vLabel| adjList {(cLabel, nLabel) }
[0 | [o0] Vertex 002 (Coordinates, 48.39841/9.99155),
(LocatedIn, Baden-Wiirttemberg) OR [11011 01011 (type, Populated_place),
[(1o00 | [o0]) ; 0oz | im (isCalled, “Ulm”),
/ vSig(v).e vSig(v).n (LocatedIn, Baden-Wiirttemberg)

(type, Populated_place)

[oot || 00011 |

eSig(e).e eSig(e).n

Fig. 3. Encoding Technique

4 Problem Definition

We formally define the spatial RDF and spatial SPARQL query as follow.

Definition 1. An entity e is called a spatial entity if it has an explicit location
labeled with the coordinates x and y (for the two-dimensional situation). The
other entities are called the non-spatial entities.

Definition 2. A statement is a four-tuple (s,p,o,l), where s, p, o and | rep-
resent for subject, predicate, object and location, respectively. The location
feature denotes the location where the statement happens. Note that | can be
null. If the | of a statement is not null, the statement is called a spatial state-
ment. Otherwise, it’s called a non-spatial statement. A collection of statements
(including spatial and non-spatial statements) is called a spatial RDF data set.

Definition 3. A spatial triple pattern is a four-tuple (s,p,o0,l), where s, p, o
and | represent for subject, predicate, object and location respectively. Each
item can be a variable. Note that if | is not a variable, it should be omitted.

Definition 4. A spatial query is a list of spatial triple patterns with some spatial
filter conditions. If there’s no spatial filter condition, the spatial query is reduced
to a traditional SPARQL query.

Figure d{(a) shows a subset of a spatial RDF data set. Ulm, Baden- Wiirttemberg
and Gdarisk are spatial entities, and some statements are spatial statements, such
as #1, #2 and #6. Besides, there’re a lot of non-spatial entities and non-spatial
statements. For example, people have no spatial information, since we can’t
locate a person on the map. Similarly, the statements like (People hasName
Name) are non-spatial statements. In S-store, we use “spatial predicate” to
represent the spatial queries. In this stage, we support the range query and the
spatial join semantics. In practice, we use sl(?x) for denoting the spatial label of
variable ?x. Besides, dist(a, b)ﬁ< r denotes the distance between a and b should

5 In this paper, for the ease of the presentation, we adopt the Euclidean distance
between two locations. Actually, we can use “the earth’s surface distance” to define
the distance between two locations based on latitudes and longitudes.

36 D. Wang et al.

Subject Predict Object Location(x,y) American_physi ‘ German_physicists
#1 | Albert_Einstein Bornln Ulm (48.39841,9.99155) German_vegetarians
#2 | Albert Einstein | BomOnDate 1879-03-14 (48.39841,9.99155) “Albert Einstein”
#3 | Albert_Einstein type American_physicists
#4 Albert_Einstein type German physicists | | ____________ _ASPTFINER| " ””” Pe !
#5 | Albert_Einstein type German_vegetarians | | 1(48,29841,9.99155) |
#6 /\]bcnﬁl::?nstcm WonPrize NobclivPrisz (59.35,18.0667) 1(48.39%41,9.99155) | 48.39841/9.99155
#7 | Albert_Einstein hasName “Albert Einstein” . Oy Wi
#3 Ulm Coordinates | 48.39841/9.99155 [(48.39841,9.99155) 667) |
Ulm isCalled “Ulm” (4839841,9.99155)| oo |(48:39841.9.99155) PR oot
#10 Ulm Locatedin | Baden-Wiirttemberg
#11 Ulm type Populated_place | (48.39841,9.99155) e ‘
#12| Baden-Wiirttemberg | hasCapital Ulm y 1 Coordlinates |
#13 | Baden-Wirttemberg | Coordi 185090 @590 |/ e L (4§5.9.0)
#14 | Baden-Wiirttemberg | LocatedIn Germany
#15 Nobel_Prize type Academic_awards
#16] Nobel Prize hasName “Nobel Prize”
#17| _Fanny Normann diedIn Ulm (48.39841,9.99155)
#18] Fanny Normann | hasName | “Fanny Normann”
#19| Fanny Normann type actor » L L(48.39841.9.99155
%20 Clemens Betzel diedIn Gdansk (5435,18.66667) | s435/18.66667 Y Normann
#21| Clemens Betzel | diedOnDate 1945-03-27 (5435,18.66667) | T dedin
#22| Clemens Betzel | BorOnDate 1895-06-09 (48.39841,9.99155) | 7~ Coordivates 1l (54.35.1866667)| | diedOnpate 1
#23| _Clemens Betzel type People_from_Ulm
#24 Gdansk Coordi 54.35/18.66667 (54.35,18.66667) | I cgma - L ——>455830 v
#25 Gdansk Population 455830 (54.35,18.66667) 1945-03-27

(@) (b)

Fig. 4. Spatial RDF Graph

below the threshold r, where a and b should be a specific location or a variable. If
either of @ and b is a constant, the query is called a range query. If both of @ and
b are variables, the query is called a spatial join query. Note that a spatial query
can be a range query and a spatial join query at the same time. The following
query examples Q1 and Q2 demonstrate the range query and the spatial join
query respectively. The former one queries a person who died in a popular place
near coordinates (48.39841,9.99155), and the latter one queries two people where
the first person died near the place where the second person died.

Q1:

Select 7x Where

{7x diedIn ?y.

7y type Populated place.

} Filter{dist(sl(?y),(48.39841,9.99155)) <1}
Q2:

Select 7x1,7x2 ‘Where

{7x1 diedIn 7yl 711.

7x2 diedIn 7y2.

} Filter{dist (sl (?711),s1(?7y2))<1}

The spatial RDF data set and the spatial query can be also modeled as graphs
(Definitions B and [Bl). The query processing is to find the matches (Definition [7)
of a spatial query graph @ in a spatial RDF data graph G. Figure[d{(b) shows the
graph corresponding to the spatial RDF data set in Figure[}(a), where the spatial
entities and the spatial statements are all surrounded by the red rectangles.

S-store: An Engine for Large RDF Graph Integrating Spatial Information 37

Definition 5. The spatial RDF data graph is denoted as G = (V, E, Ly, Lg, Sv,
Sg), where

(1)V =ViUV, UV, UV, denote all RDF vertexes where Vi, Ve and V, are the
sets of literal vertices, entity vertices, class vertices and blank nodes respectively.

(2) E is the collection of the edges between vertices.

(3) Ly = {URI} U {LiteralValue} is the collection of text label of each
vertex, where v € {Ve U V.} < label(v) € {URI} and v € V; < label(v) €
{LiteralValue}. For v € V, label(v) = ¢.

(4)LE is the collection of edge labels, i.ce., all predicates plus null value.

(5)Sv and Sg represent the spatial labels of V and E respectively, where the
spatial labels denote where the entity locates (the event happens) in, i.e., the
latitude and longitude (only valid for spatial entities and spatial statements).

Definition 6. The spatial RDF query graph is denoted as G = (V,E, Ly, Lg,
SCyv,SCg), where

()V =ViUV. UV, UV, UV, where V, denotes the parameter vertices, and
Vi, Vo, Vi and V,, are the same as in Definition [A

(2)E and Lg are the same as in Definition[3

(3) Ly is the same as in Definition[A For v € V,, label(v) = ¢.

(4)SCv and SCE represent the spatial constraints of V. and E respectively,
where the spatial constraints can be an absolute area or the relative position for
some parameter.

Definition 7. Consider a spatial RDF graph G and a spatial query graph Q
with n vertices {v1,...,vp}. A set of n distinct vertices {u1,...,u,} in G is said
to be a match of Q iff. the following conditions hold:

1. If v; e VUV, UV}, w; € {ViUV.UV,} and label(v;) = label(u;);

2. If v; € V,, there is no constraint over u;;

3. If v; € V,, the spatial label S(u;) must satisfy the spatial constraint SC(v;);

4. If there is an edge v;v; from v; to v; in Q , there is also an edge u;u; from
u; to u; in G. If vivj has predicate p and spatial constraint SC(v;v;), wiu,; must
have the same predicate p and spatial label S(u;u;) satisfy SC(viv;).

5 Overview of S-store

S-store employs a hybrid index that integrates both R-tree[d] and VS-tree[2]].
Therefore, the pruning strategies of R-tree and gStore are also integrated as the
searching strategy for S-store. Our framework consists of the pre-processing, the
index construction and the query processing stages.

In the pre-processing stage, we first encode each vertex and edge as a bit
string (we call it a signature). The encoding technique is shown in Section [3]
and more information can be found in [2I]. Subsequently, we build the spatial
signature graph G*. Figure [l shows a running example.

In the index construction stage, we construct a tree-style index based on the
spatial signature graph for effectively reducing the search space. The index is
called SS-tree. Figure [shows an running example. The nodes on the same level

38 D. Wang et al.

Spatial Signature Graph ~ ro-oioooo oo ooo

I Baden-Wiirttemberg
|

,,,,,,,,,,,,,,,,,,,,, 1/ 11010 00010

MBR:(B,B)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

! 2x1 2y1
e 1000 00100 ; ‘ :
Famy Nomann 01001 10010 MERCT T} 11000001003 O, 01001 00000 - - —A1001 — + 00000 00000
!

Clomens Bewel | MBR:(C,C) ! | MBR:mbry2+1 |
A: Point(48.39841,9.99155) B: Point(48.5,9.0) x2 01001 | 2 MBRombry2 3
C: Point(54.35,18.66667) D: Point(59.35,18.0667) ‘01001 00000}‘ *H 00000 00000 ‘ mbry2 |
Fig. 5. Spatial Signature Graph Fig.6. Q1 and Q2

of the SS-tree form a spatial signature graph. If there’s a match of a query @
in a lower spatial signature graph, there must be a corresponding match in each
higher spatial signature graph. Therefore, we need to guarantee that SS-tree is
a height-balanced tree.

In the query processing stage, given a query graph @, we first convert @) into
the spatial signature query graph Q* as in the pre-processing stage. Figure
shows the spatial signature query graphs of the Q1 and the Q5. Note that, if
there is a set of vertices in G matches a query graph @, there must be a corre-
sponding match in G* of @*. Subsequently, we implement a top-down searching
algorithm over SS-tree to find the matches of @* in G*. At last, we retrieve the
corresponding textual result and return it to the user.

Definition 8. Given a spatial signature graph G* and a spatial signature query
graph Q* with n signature vertices {qi,...,qn}, a set of distinct signature vertices
{sig1,...,8ign} in G* is a match of Q* iff. the following conditions hold:

1. Yq;, sig;.signature&q;.signature = q;.signature;

2. ¥q;, the spatial label S(sig;) must satisfy the spatial constraint SC(q;);

3. If there is an edge q;q; from g; to q; in Q* , there is also an edge sig;sig;
from sig; to sig; in G*, and g;q;.signature&sig;sig;.signature = g;q;.signature.
If qiq; has spatial constraint SC(qiq;), sigi;sig; must have the spatial label
S(sigisig;) satisfy SC(qiq;).

6 Index Construction

In this section, we would introduce our spatial RDF index SS-tree. The index
is presented as a tree-style. Generally speaking, we build the SS-tree based on
VS-tree in gStore. The difference between S-store and gStore is that S-store can
answer spatial queries.

6.1 Spatial Signature Graph Generation

First, we convert a data graph into a spatial signature data graph before building
SS-tree. Since the spatial signature data graph can be regarded as a signature

S-store: An Engine for Large RDF Graph Integrating Spatial Information 39

graph including spatial features, we generate the signature graph as described
in Section [l Then, for each vertex (v;) and each edge e;, we set the M BR(v;)
and the M BR(e;). The signature and the MBR features of the spatial signature
data graph are used to compute the features of the tree nodes on the high level.
the unsatisfied tree nodes can be filtered early to save the space and time cost.
Due to the space limit, the detailed information is omitted.

6.2 SS-tree Construction

The entities can be separated into two parts based on the spatial features. C is the
non-spatial entity set, and Cy is the spatial entity set. For example, in Figure[d] col-
lection C; = {Albert Einstein, Fanny Normann, Clemens Betzel, Nobel Prize}
and collection Cy = {Ulm, Baden-Wiirttemberg, Gdarisk} respectively.

G' i
‘1101111111 d} MRy
77777777 (cy_
| 00010 — 7
G’ | MBR:(D.D)]
410101111110
(c,ml
d} [
-k -1100000100 d; MBR: |
& 01011 11110 | ~og] co |
I MBRED.D). | a1t 10010l - T alt1tot1 01011 | vee T

00010 | “otoot | 10030] wu’n;gr;ge;g’"‘
| MBR{D.D) MR | {11010 00010

77777 |— — —| L _
01011 11000 01001 10010 . ‘

00011 10100
Fanny_Normann Clemens_Betzel
Nobel_Prize

— —— Super Edge

A: Point(48.39841,9.99155) B: Point(48.5,9.0) C: Point(54.35,18.66667)] Parent-Child Relation
D: Point(59.35,18.0667) E: Point(48.39841,9.0) F: Point(59.35,18.66667)

Fig. 7. SS-tree

Based on C; and (s, we can generate two induced spatial signature graphs
G7 and G3 from G*. The induced graph G can be composed into V;* and E,
Where V;* =the vertices corresponding to C’,7 and Ef = {viu|v € VZ*/\UZ € VZ*}

In the following, we use “compute the features” to denote the bottom-up
feature constructing process. The process obeys the following rule:

— SS-tree Rule: Consider two spatial signature nodes v1,v9 and their father
nodes n1, no. The following conditions hold:

(1) ny.sig&vy.sig = v1.8ig, no.sig&vs.sig = v2.8ig;

(2) v1.MBR € n1. MBR, v3.MBR € ny.M BR;

(3) If there’s an edge vivy between v and ve, there must be an edge nins
between ny and nsy, where ninq.sig&vive.sig = v1v2.5ig and vivo. M BR €
nine. M BR, even if n; = ns.

40 D. Wang et al.

Non-spatial Entities. For collection C}, we build a VS-tree over G}. The VS-
tree constructing method can be found in [21]. After the VS-tree’s completed,
we compute the MBR features for each edge based on the SS-tree rule (2). T}
consists of the VS-tree and the spatial features. For example, in Figure[7] the gray
nodes and the edges between them compose the sub-SS-tree T3. The edge d$d3
has the spatial feature because the edge between the child node Albert Einstein
of d} and the child node Nobel Prize of dj owns a spatial feature.

Spatial Entities. For entity collection C, we build a R-tree over G5. Based
on the R-tree structure, we first compute the features of the R-tree vertices base
on SS-tree rule (1). Then, we add the edges between the upper level vertices
of the R-tree and compute the features of the added edges based on the SS-
tree rule (3). For example, in Figure[1 the white nodes and the edges between
them compose the sub-SS-tree T5. The signature of the node dg 1101101011 =
1101101011]|1101000010, where the former signature belongs to the node “Ulm”
and the latter signature belongs to the node Baden-Wiirttemberg, and “Ulm”
and Baden-Wiirttemberg are the children of d3.

Combination. Since SS-tree should be a height-balanced tree, we should mod-
ify the tree height to balance T7 and T5. We employ the following operation
called one step growth to increase tree height. Given a tree T', we add a node n
as the father of T’s root, and n would be the new root of T.

Given trees T1 and T, we grow the lower tree with several steps to ensure the
tree heights are equal. And then, we add a node n as new tree T’s root, and set
the roots of T7 and T5 as n’s children. The new tree is called T3.

Based on T3, we first add all edges e;; = {v;vj|v; € G} Av; € G5} between
G7 and G3, and then add the corresponding edges and compute the features
for the edges based on the SS-tree rule (3). For example, the edge between
“Albert Einstein” and “Ulm” is added in this stage, and the corresponding edges
d3d3 and d?2d3 are added subsequently.

7 Query Processing

Given a spatial query @, we first convert the) to a spatial signature graph Q*.
The converting processing consists of three steps.

(1) Encode the triple patterns as described in Section [611

(2) For each range query predicate, we add the corresponding absolute MBR on
the specific variables.

(3) For each spatial join predicate, we add the relevant MBRs on the variables.

The Q% and Q% corresponding to Q1 and Q2 are shown in Figure Bl The signa-
tures are generated as G to G*, where the variables contribute no valid bit. The
range query predicate of @1 is converted to the absolute MBR binding 7y in Q7,
and the spatial join predicate of ()2 is converted to the relevant MBRs in Q3.

S-store: An Engine for Large RDF Graph Integrating Spatial Information 41

After the corresponding Q* is generated, we next search the matches of Q*
in G* exploiting the SS-tree. Consider a spatial signature query graph Q* =
{q1,..-,qn}, we first generate the node candidate set NodeSet; for each vari-
able ¢;, and then verify each candidate in the query candidate set QQSet =
{NodeSet1 x ... x NodeSet,} to generate the matches of Q* in G*. At last, we
generate the matches of @) in G based on the matches of Q*.

7.1 Pruning Rules

For efficiently generating the node candidate set, we have the following five
pruning rules. Pruning rule 1 is based on the fact that only spatial entities can
be bound by spatial predicates. Pruning rules 2 and 3 are based on that if the
distance between v and v is no less than the distance between v; and v; where
v; and v; are the descendant of vy and vy respectively. Pruning rule 4 is based
on that v.sig&wv;.sig = v;.sig if v; is the descendant of v. Pruning rule 5 is based
on that if there’s no satisfied edge between v; and wvo, there’s no satisfied edge
between v; and v; where v; and v; are the descendant of v; and v, respectively.
Due to the space limit, we can’t state the pruning rules in detail.

Pruning Rule 1. If a variable is bound with a spatial predicate, the subtree
T1 induced by C7 can be pruned safely.

Pruning Rule 2. Consider a variable v bound with a range query predicate, if
there is a tree node n where v.mbr has no intersection with n.mbr, the subtree
rooted on n can be pruned safely.

Pruning Rule 3. Consider two variables v; and v; bound by a spatial join
predicate, and NodeSet; is the candidate set of v; and NodeSet; is the candidate
set of v;. Suppose the max distance is set to be MaxDist. Let n; € NodeSet;,
if the distance from MBR of n; to any node n; € NodeSet; is larger than
MazxDist, n; can be safely pruned.

Pruning Rule 4. Consider a variable v, if there is a tree node n where
v.sig&n.sig! = n.sig, the subtree rooted on n can be pruned safely.

Pruning Rule 5. Consider two linked variables v; and v; with an edge e = v;v;
from v; to v;, and NodeSet; is the candidate set of v; and NodeSet; is the candi-
date set of v; in the same spatial signature graph. Let n; € NodeSet;, if there’s
no edge from n; to any node n; € NodeSet;, n; can be safely pruned. What’s
more, if there’s a range predicate on e, the unsatisfied edges are considered
nonexistent. The pruning rule is based on the fact that if there’s no satisfied
edge from n; to any node n; € NodeSet;, there’s no satisfied edge from the
descendants of n; to any descendants of the n; € NodeSet;.

Algorithm [I] describes the top-down node candidate sets generating process.
The use of the pruning rules is shown in Line 9-21.

42 D. Wang et al.

Algorithm 1. Query Processing
Require: Q* = (v1,...,v,), SS-tree T, root r of T, signature data graph G*.
Ensure: The node candidate sets {NodeSet} of nodes of Q* in G*.

1: Set each NodeSet; = r //initialize the node candidate set.

2: while true do

3: if VNodeSet; € G* then

4: return {NodeSet} //the sets contains real data points.
5: for all NodeSet; do
6: NodeSet; =the children of each node n; € NodeSet;
7 Set MBR; = |J{n|n € NodeSet;}
8: for all node n; € NodeSet; do
9: if n, € T1 A v, is binding then
10: remove n from tempNodeSet // pruning rule 1.
11: if v;.sig&mn;.sig! = ni.sig then
12: remove n from tempNodeSet //pruning rule 2.
13: if v; is bound by range query predicates then
14: if intersection(v;.mbr,n;.mbr) = ¢ then
15: remove n from tempNodeSet //pruning rule 3.
16: if Je = v;v; then
17: if n;.neighbour N NodeSet; = ¢ then
18: remove n from tempNodeSet //pruning rule 4.
19: if dist(vs,v;) <=1 then
20: if dist(n;, MBR;) > | then
21: remove n from tempNodeSet //pruning rule 5.

7.2 Verification

Consider the node candidate set {NodeSet}, we generate a list of nodes

(n1,...,ny,) from each item of { NodeSet} respectively, and verify if (n1,...,n,)
forms the connected regions corresponding to the connected regions in Q*. If
(n1,...,ny,) can form, we consider it as a match candidate of @Q*, or we dis-

card it otherwise. The generating process can be realized by employing a BFS
algorithm starting from the smallest node candidate sets in each connected re-
gion. For example, @5 has two connected regions. Since 7z; and ?z2 have the
highest selectivity in each connected region respectively, the NodeSet,, and
NodeSet,, are selected as the start points. Then, we run BFS from NodeSet,,
and NodeSet,,. If there’s an edge e = viv; in Q*, there must be an corresponding
edge.

Given a match candidate Q) of @Q*, we verify if all the spatial constraints are
satisfied. The satisfied match candidates are the matches of Q*. Subsequently,
since the encoding technique may bring false positive error, we verify if all edges
in @ are satisfied given a match of Q*. The valid candidates are the matches of
Q. Then, the matches of @ is returned to users.

S-store: An Engine for Large RDF Graph Integrating Spatial Information 43

Algorithm 2. Varification

Require: node candidates {NodeSet}, Q* = (v1,...,vn), Q, G.

Ensure: the matches {M} of Q.

: Set the match candidate list of Q* L = ¢.

: for each connected region @Q; C Q* do

Select the NodeSet; with the smallest size in Q;.

Set the Q;’s match candidate set M¢ = ¢. //Initialize the match candidate sets.

5 for each node n, € NodeSet; do

6 Run the BFS process from ny.

7 if Imatch candidate m’ of Q; then

8: M.add(mt). //If all edges are valid, it’s a match candidate.
9: Set MY = M} x ... x M*. //The match candidates of Q™.
10: Set M™* = ¢. //The matches of Q*.

11: for each m} € M} do

12: if all spatial join predicates are valid on m then

13: M*.add(m}).

14: Set M = ¢. //The matches of Q.

15: for each m* € M* do

16: Get the subgraph m C G corresponding to m*.

17: if all literal constraints are valid on m then
18: M.add(m).
19: return M.

8 Experiments

To the best of our knowledge, only YAGO2 Demo and the system implemented
by A. Brodt et al.[4] (DisRDF for short) are available spatial RDF data manage-
ment system. YAGO2 Demo only accepts range queries over spatial statements
based on several hard-coded spatial predicates. DisSRDF models the spatial enti-
ties with various shapes and only accepts range queries over the spatial entities.
Since we support both range query and spatial join semantic over the spatial
entities and the spatial statements, the comparisons to other approaches are not
applicable. Thus, we focus on the performance and the specific characteristics of
our approach.

8.1 Data Set and Setup

Data Set YAGO? is a real data set based on Wikipedia ,WordNet and GeoN-
ames. The latest version of YAGO2 have more than 10 million entities and 440
million statements. We obtain a spatial RDF data set from YAGO2 by removing
some statements that describe the date when another statement is extract or the
URL where another statement is extract from. The condensed data set has more
than 10 million entities/classes and more than 180 million statements. More than
7 million entities are spatial entities, and more than 90 million statements are
spatial statements.

44 D. Wang et al.

Queries & Setup In order to evaluate our approach, we manually generate 10
sample spatial SPARQL queries that have different features. The sample queries
are divided into 5 classes, i.e., A, B, C, D, E. The queries in set A are star
queries with the range query predicates over the entities. The queries in set B
are the queries with the range query predicates over the entities. The queries in
set C are the queries with spatial join predicates over entities. The queries in set
D are the queries with range query and spatial join predicates over statements.
The queries in set E are combined queries. The queries are given in our technical
report [17].

Table 1. The Result Set Size of Queries

Al A2 B1B2C1C2D1D2E1E2
Spatial Queries 3 1177 1 10 18 25 2 23 7 12
SPARQL Queries 10,137,491 8,567 36 50 36 50 36 50 40 50

Table [[l shows the selectivity of each query. In order to show the inefficiency
of post-processing method (i.e., finding SPARQL query results by ignoring the
spatial constraints and then verifying the candidates by the spatial predicates),
we also report the result sizes of all queries discarding the spatial constraints.
We run all queries on a PC with an Intel Xeon CPU E5645 running at 2.40 GHz
and 16 GB main memory.

Table 2. Statistics of Node Capability —Table 3. Statistics of Tree-Construction

Node Index Tree Node Index Node Index Tree Node
Capability Size(MB) Height Count Style Capability Size(MB) Height Count

30 5,537 6 571,064 SS- 100 3,342 4 170,121
50 4,376 5 341,905 tree 150 2,938 4 113,365
100 3,342 4 170,121 VS- 100 4,332 3 204,890
150 2,938 4 113,365 tree+ 150 3,990 3 138,931

8.2 Evaluating Node Capability

In this subsection, we evaluate whether the different node capabilities (i.e., the
maximal number of child nodes of each node in the tree index) affect the off-line
and the on-line performance. In the evaluation, the node capabilities are set to
30, 50, 100, 150 respectively.

Table Bl shows the storage cost of SS-tree with different node capabilities.
Obviously, lower node capability leads to larger node count, higher tree height
and larger storage requirement, vice versa. Figure B shows the count of node
access during search. Clearly, the count of node access depends on the capability
of each node. Note that the count of data points involved during search = #
of accessed nodes x node capability, which means the operation count on data

S-store: An Engine for Large RDF Graph Integrating Spatial Information 45

0 I - i 0
I 50 m 50
100 3000 i n i 100
I 150 Ml . 150
3
2500)
5| »
£ 2000
3
o
o

ime

bl

. |Fh|W| | |
1 2] 4]] 4] 6 7 8

Queries Queries

of Node Access
w s
T

N

10
Fig. 8. Node Capability - Nodes Access Fig. 9. Node Capability - Time Cost

points may be lower in the lower node capability situation. Figure [reports the
query time cost of each query. The query time cost is proportional to the count
of data points involved during search in most cases.

8.3 Evaluating Entity Organization

In this subsection, we evaluate whether the different entity organization styles
affect the off-line and the on-line performance. We compare the SS-tree and the
VS-tree plus spatial features (denoted as VS-tree+). Table Bl shows the results.
The SS-tree demands lower storage space than VS-tree+ when the node capa-
bilities are the same. Figure [I0 and [T show the count of nodes accessed and the
time cost of each query. As we supposed, SS-tree works better for spatial feature
filtering. Since SS-tree organize spatial entities in a R-tree, SS-tree works better
on query 1, 2, 3, 4, 9 and 10, where the queries have spatial predicates on nodes.

Bl SS-tree Capability 100 Bl SS-tree Capability 100
45 [SS-tree Capability 150 [SS-tree Capability 150
[C_1VS-tree+ Capability 100 12000} [CZIvs-tree+ Capability 100
4 I VS-tree+ Capability 150 I VS-tree+ Capability 150
15 10000
2 -
[2)
§ 3 \E’ 8000
5 2
% 25 e}
(o) L
Z 2 so0
] [
H*
15 4000
il
2000
" I I H
M.l ‘ el ol | ‘
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Queries Queries
Fig. 10. SS-tree - Nodes Access Fig.11. VS-tree+ - Time Cost

8.4 Evaluating Performance

For evaluating the efficiency of our approach, we implement a baseline approach
based on the method of [4]. The baseline approach adopts the post-processing

46 D. Wang et al.

solution, running SPARQL queries by ignoring the spatial predicates and then
refining the candidates by considering the spatial constraints. In this subsection,
we make a comparison between S-store and the baseline approach.

In practice, the baseline approach exploits gStore[2I] as the RDF management
system, and the node capability is set to 150. Besides, the MySQL is used to
retrieve the coordinates of the entities and the statements.

The query response times are shown in Table dl where G-store+ denotes the
baseline approach. Since Al and A2 have many candidate results (see Table [II),
the time cost of the baseline is unacceptable. We can’t get the results of Al in
reasonable time (more than half an hour), and the time cost for A2 is about
113 seconds. However, our approach (S-store) can answer the query Al and A2
in 213 and 165 milliseconds, respectively. Although the other queries have just
a few candidate results without spatial predicates, S-store still outperforms the
baseline approach.

Table 4. The Performance comparison

Time Cost (ms)
Al A2 B1 B2 C1 C2 D1 D2 E1l E2

S-store 213 165 863 1,518 2,800 2,710 2,571 2,668 1,418 1,816
G-store+ >30min 112,406 5,894 9,555 4,478 4,127 3,624 6,750 5,839 3,779
Speed-up Ratio 99.8% 85.4% 84.1% 37.5% 34.3% 29.1% 60.5% 75.7% 51.9%

9 Conclusions

In this paper, we introduce spatial queries, a variant of SPARQL language, for
querying RDF data with spatial features. Spatial queries employ spatial predi-
cates for expressing the range query and the spatial join constraints. Besides, we
introduce a novel index called SS-tree for evaluating the spatial queries. Based
on SS-tree, we propose several pruning rules and a searching algorithm. The
experimental results show the effectiveness and the efficiency of our approach.
The spatial queries just cost a few seconds on YAGO2 data set, which has more
than 10 million entities and 180 million statements.

Acknowledgments. Dong Wang and Lei Zou were supported by NSFC un-
der Grant No.61003009. Xuchuang Shen and Dongyan Zhao were supported
by NSFC under Grant No.61272344 and National High Technology Research
and Development Program of China under Grant No. 2012AA011101. Lei Zou’s
work was partially supported by State Key Laboratory of Software Engineer-
ing(SKLSE), Wuhan University, China.

S-store: An Engine for Large RDF Graph Integrating Spatial Information 47

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: Sw-store: a vertically parti-
tioned dbms for semantic web data management. VLDB J 18(2) (2009)

Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data
management using vertical partitioning. In: VLDB (2007)

. Brickley, D.: Basic geo (wgs84 lat/long) vocabulary. W3C Semantic Web Interest

Group (2006), http://www.w3.0rg/2003/01/geo/

. Brodt, A., Nicklas, D., Mitschang, B.: Deep integration of spatial query processing

into native rdf triple stores. In: Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 33-42. ACM
(2010)

. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for

storing and querying RDF and RDF schema. In: Horrocks, 1., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54-68. Springer, Heidelberg (2002)

. Deppisch, U.: S-tree: A dynamic balanced signature index for office retrieval. In:

SIGIR (1986)

. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Pellegrini, T,

Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked
Media. SCI, vol. 221, pp. 7-24. Springer, Heidelberg (2009)

. Groger, G., Kolbe, T., Czerwinski, A., Nagel, C.: Opengis city geography markup

language (citygml) encoding standard. Open Geospatial Consortium Inc. Reference
number of this OGC®) project document: OGC (2008)

. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-

MOD (1984)

Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Computing 7(4), 12-18 (2008)

Herring, J.: Opengis® implementation specification for geographic information-
simple feature access-part 1: Common architecture. Open Geospatial Consortium,
p- 95 (2006)

Hoffart, J., Suchanek, F., Berberich, K., Weikum, G.: Yago2: a spatially and tem-
porally enhanced knowledge base from wikipedia. Artificial Intelligence (2012)
Klyne, G., Carroll, J., McBride, B.: Resource description framework (rdf): Con-
cepts and abstract syntax. W3C Recommendation 10 (2004)

Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. PVLDB 1(1) (2008)
Neumann, T., Weikum, G.: x-rdf-3x: Fast querying, high update rates, and consis-
tency for rdf databases. PVLDB 1(1) (2010)

Singh, R., Turner, A., Maron, M., Doyle, A.: Georss: Geographically encoded ob-
jects for rss feeds (2008)

Wang, D., Zou, L., Feng, Y., Shen, X., Tian, J., Zhao, D.: S-store: An engine for
large rdf graph integrating spatial information (2013),
http://www.icst.pku.edu.cn/intro/leizou/TR/2013/
TR-DB-ICST-PKU-2013-001.pdf

Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. PVLDB 1(1) (2008)

Wilkinson, K.: Jena property table implementation. In: SSWS (2006)

Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient rdf storage and
retrieval in jena2. In: SWDB (2003)

Zou, L., Mo, J., Chen, L., Ozsu, M., Zhao, D.: gstore: answering sparql queries via
subgraph matching. Proceedings of the VLDB Endowment 4(8), 482-493 (2011)

http://www.w3.org/2003/01/geo/
http://www.icst.pku.edu.cn/intro/leizou/TR/2013/TR-DB-ICST-PKU-2013-001.pdf
http://www.icst.pku.edu.cn/intro/leizou/TR/2013/TR-DB-ICST-PKU-2013-001.pdf

Physical Column Organization in In-Memory
Column Stores

David Schwalb, Martin Faust, Jens Krueger, and Hasso Plattner

Hasso Plattner Institute, Potsdam, Germany

Abstract. Cost models are an essential part of database systems, as
they are the basis of query performance optimization. Disk based sys-
tems are well understood and sophisticated models exist to compare
various data structures and to estimate query costs based on disk 10
operations. Cost models for in-memory databases shift the focus from
disk IOs to main memory accesses and CPU costs. However, modeling
memory accesses is fundamentally different and common models do not
apply anymore.

In this work, we examine the plan operations scan with equality se-
lection, scan with range selection, positional lookup and insert in in-
memory column stores regarding different physical column organizations.
We consider uncompressed columns, bit compressed and dictionary en-
coded columns with sorted and unsorted dictionaries. Furthermore, we
discuss tree indices on columns and dictionaries and present a detailed
parameter evaluation, considering the number of distinct values, value
skewness and value disorder. Finally, we present and evaluate a cost
model based on cache misses for estimating the runtime of the discussed
plan operations.

1 Introduction

In-memory column stores commence to experience a growing attention by the re-
search community. They are traditionally strong in read intensive scenarios with
analytical workloads. A recent trend introduces column stores for the backbone
of business applications as a combined solution for transactional and analytical
processing. This approach introduces high performance requirements as well for
read performance as also for write performance to the systems.

Typically, optimizing read and write performance of data structures results in
trade-offs, as e.g. higher compression rates introduce overhead for writing, but in-
crease read performance. The underlying idea of this paper is a database system,
which supports different data structures with unique performance characteris-
tics, allowing to switch and choose the used structures at runtime depending on
the current, historical or expected future workloads. This paper will not provide
a complete description or design of such a system, but focuses on selected data
structures for in-memory column stores.

Our contributions are i) a detailed parameter discussion and analysis for the
operations scan with equality selection, scan with range selection, lookup and

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 48-F3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Physical Column Organization in In-Memory Column Stores 49

insert on different physical column organizations in in-memory column stores
and ii) a cache based cost model for each operation and column organization.

The remainder of the paper is structured as follows. Sectionlgives an overview
of related work, followed by a system definition in Section Bl Section @l introduces
the considered plan operators and their implementation, followed by a discus-
sion of parameter influences in Section Bl Then, Section [l introduces a cache
miss based cost model estimating the costs for the discussed plan operations,
followed by Section [introducing column and dictionary indices and their re-
spective costs. Section [§] closes the paper with concluding remarks.

2 Background and Related Work

This section gives an overview and background of related work regarding in-
memory column stores, followed by work concerning cost models for main mem-
ory databases and cache effects.

Recent research started questioning the separation of transactional and ana-
lytical systems and introduced efforts of uniting both systems again [4J6J8IT2]13].
The back-bone of such a system’s architecture could be a compressed in-memory
column-store, as proposed in [[12]. Column oriented databases have proven to
be advantageous for read intensive scenarios [9,[14], especially in combination
with an in-memory architecture. Such a system has to handle contradicting re-
quirements for many performance aspects. The question becomes which column
oriented data structures are used in combination with light-weight compression
techniques, enabling the system to find a balanced trade-off between the con-
tradicting requirements. This paper aims at studying these trade-offs and at
analyzing possible data structures.

Relatively little work has been done on researching main memory cost models.
This probably is due to the fact, that modeling the performance of queries in
main memory is fundamentally different than in disk based systems were 10
access is clearly the most expensive part. In in-memory databases, query costs
consist of memory and cache access costs on the one hand and CPU costs on
the other hand. Manegold and Kersten [10] describe a generic cost model for in-
memory database systems, to estimate the execution costs of database queries
based on their cache misses. The main idea is to describe and model reoccurring
basic patterns of main memory access. More complex patterns are modeled by
combining the basic access patterns with a presented algebra. In contrast to
the cache-aware cost model from Manegold which focusses on join operators, we
compare scan and lookup operators on different physical column layouts.

The influences of the memory hierarchy on application performance has been
extensively studied in literature. Various techniques have been proposed to mea-
sure costs of cache misses and pipeline stalling. Most approaches are based on
handcrafted micro benchmarks exposing the respective parts of the memory hi-
erarchy. Barr, Cox and Rixner [2] study the penalties occurring when missing the
translation look-aside buffer (TLB) in systems with radix page tables like the
x86-64 system and compare different page table organizations. Due to the page

50 D. Schwalb et al.

Table 1. Parameter symbol overview

Description Unit Symbol Description Unit Symbol
Value Domain - A\ Number distinct values - d
Dictionary - D Uncompr. Value-Length bytes e
Number of rows - r Compr. Value-Length bits e
Value Disorder - U Query Selectivity rOws s
Value Skewness - k value-id of v; - 1d(vs)

table access, the process of translating a virtual to a physical address can induce
additional TLB cache misses, depending on the organization of the page table.
Babka and Tuma [I] present a collection of experiments investigating detailed
parameters and provide a framework measuring performance relevant aspects of
the memory architecture of x86-64 systems. The experiments vary from deter-
mining the presence and size of caches, the cache line sizes to measure cache
miss penalties.

3 System Definition

This section gives a formal definition of the used system, considered physical col-
umn organizations and examined parameters. We consider a database consisting
of a set of tables T. A table t € T consists of a set of attributes A;. The number
of attributes of a table ¢ will be denoted as |A;|. We assume the value domain V
of each attribute a € A; to be finite and require the existence of a total order p
over V. In particular, we define e as the value length of attribute ¢ and assume
V to be the set of alphanumeric strings with the length e. An attribute a is a
sequence of r values v € D with D C V, where 7 is also called number of rows of
a and D also called the dictionary of a.

Table [I] gives an overview of the examined parameters. D is a set of values
D = {v1,...,vn}. We define d := |D| as the number of distinct values of an
attribute. In case the dictionary is sorted, we require V,,,ep : v; < v;4+1. In case the
dictionary is unsorted, v1, ..., v, are in insertion order of the values in attribute
a. The position of a value v; in the dictionary defines its value-id id(v;) := i.
For bit-compression, the number of values in I is limited to 2°, with b being the
number of bits used to encode values in the value vector. We define e. := b as
the compressed value length of a, requiring e. > [loga(d)] bits. The degree of
sortedness of the values in a is described by the measure of disorder denoted by
u, based on Knuth’s measure of disorder, which describes the minimum amount
of elements that need to be removed from a sequence so that the sequence would
be sorted [7]. Finally, we define the value skewness k, describing the distribution
of values of an attribute, as the exponent characterizing a Zipfian distribution.
We chose to model the different distributions by a Zipfian distribution, as the
authors in [5] state that the majority of columns analyzed from financial, sales
and distribution modules of a enterprise resource planning (ERP) system were
following a power-law distribution — a small set of values occurs very often, while
the majority of values is rare.

Physical Column Organization in In-Memory Column Stores 51

The logical view of a column is a simple collection of values, allowing to
append new values, retrieving the value from a position and scanning the com-
plete column with a predicate. How the data is actually stored in memory is
not specified. In general, data can be organized in memory in a variety of dif-
ferent ways, e.g. in standard vectors in insertion order, ordered collections or
collections with tree indices [I3]. In addition to the type of organization of data
structures, the used compression techniques are also essential for the resulting
performance characteristics. Regarding compression, we will focus on the light
weight compression techniques, dictionary encoding and bit compression.

Uncompressed columns store the values as they are inserted in sequential
manner, as e.g. used in [§]. In a dictionary encoded column, the actual column
contains two containers: the attribute vector and the value dictionary. The at-
tribute vector is a vector storing only references to the actual values of e. bit,
which represent the index of the value in the value dictionary and is also called
value-id. For the remainder, we assume e, = 32 bit. The value dictionary may
be an unsorted or ordered collection. Usually it is advisable to maintain a tree
index structure on top of an unsorted dictionary.

4 Operators

We consider the plan operators scan with equality selection, scan with range
selection, positional lookup and inserting new values and discuss their theoreti-
cal complexity. These operators were chosen, as we identified them as the most
basic operators needed by a database system, assuming a insert only system as
proposed in [A&[T2I13]. Additionally, more complex operators can be assembled
by combining these basic operators, as e.g. a nested loop join consisting of mul-
tiple scans. We differentiate between equality and range selections as they have
different performance characteristics due to differences when performing value
comparisons introduced by the dictionary encoding.

A scan with equality selection sequentially iterates through all values of
a column and returns a list of positions where the value in the column equals
the searched value. The costs for an equal scan on an uncompressed column are
characterized by comparing all = values and by building the result set, resulting
in O(r- e+ s-r). On a column with a sorted dictionary, the value-id in the value
dictionary of the column for the searched value z is retrieved first by performing
a binary search for z in the dictionary. Then, the value-ids of the column are
scanned sequentially and each matching value-id is added to the set of results.
The costs for an equal scan on a column with a sorted dictionary consist of the
binary search cost in the dictionary and comparing each value-id, resulting in
O(log d+ - e.+s- 7). In contrast to the sorted dictionary case, the search costs
for a column with an unsorted dictionary are linear, resulting in a complexity
for an equal scan of O(d+ r-e. +s- 7).

A scan with range selection sequentially iterates through all values of a
column and returns a list of positions where the value in the column is between a
low and high boundary. The implementation of a range scan for an uncompressed

52 D. Schwalb et al.

column is similar to the equal scan, the comparisons can be performed directly on
the values while iterating sequentially through the column. Therefore, the costs
are determined by the value length e, the number of rows 7 and the selectivity s
of the scan, resulting in O(r- e+ s- 7). The implementation for the range scan on
a dictionary encoded column with a sorted dictionary works as follows. First, the
value-ids of low and high are retrieved with a binary search in the dictionary. As
the dictionary is sorted idjow < idpigh = value(idiow) < value(idnign) applies.
Therefore, the value-ids of the column can be scanned and it can be decided only
by comparing with the value-ids of low and high if the current value-id has to
be a part of the result set. The costs are similar to the costs for an equal scan,
determined by the binary search costs, the scanning of the column and building
the result set, resulting in O(log d+7-e.+s-r). Finally, on an unsorted dictionary,
we can not draw any conclusions of the relations between two values based on
their value-ids in the dictionary. We iterate sequentially through the value-ids of
the column. For each value-id, we perform a lookup retrieving the actual value
stored in the dictionary, resulting in a complexity of O(r-e.+r-e+ s- 7).

A positional lookup retrieves the value of a given position p from the col-
umn. The output is the actual value, as the position is already known. In case
of an uncompressed column, the value can be retrieved directly, resulting in a
complexity of O(e). In the case of a dictionary encoded column, the value-id is
first retrieved for position p and then a dictionary lookup is performed in or-
der to retrieve the searched value. The costs depend on the compressed and the
uncompressed value length, resulting in a complexity of O(e. + €).

An insert operation appends a new row to a column. As we keep the rows
always in insertion order, this can be implemented as a trivial append operation,
where we assume that there is enough free and allocated space to store the
inserted row. In the case of a dictionary encoded column, we have to check if
the value is already in the dictionary. First, a binary search is performed on the
dictionary for value v. If v is not found in the dictionary, it is inserted so that
the sort order of the dictionary is preserved. In case that v is not inserted at the
end of the dictionary a re-encode of the complete column has to be performed,
in order to reflect the updated value-ids of the dictionary. After the re-encode or
if v was already found in the dictionary, the value-id is appended to the column.
The complexity is in O(log d+ d+ - e.+ e). In case of a column with an unsorted
dictionary, we first search for the inserted value in the dictionary by performing
a linear search. As the dictionary is not kept in a particular order, the values
are always appended to the end of the dictionary. Therefore, no re-encode of the
column is necessary. The resulting complexity is O(d + e. + e).

5 Parameter Effects

In the previous sections we defined plan operators and discussed their imple-
mentations and complexity depending on the parameters defined in Section [3
This section thrives to experimentally verify the theoretical discussion of the

Physical Column Organization in In-Memory Column Stores 53

160M [L1:32k] [L2:256K] [L3:12mb]
4 M

140M

120M i 700M

100M

80M 400M
60M A 300M

40M

20M ; 7 n o
210 212 2 216 218 220 222 10 P P 216 P 220 222

Number of Distinct Values Number of Distinct Values

Uncompr. — S.Dict. === U.Dict. - Uncompr. — SDict. == U.Dict.

(a) Equal Scan (b) Range Scan

Fig. 1. CPU cycles for equal scan and @ range scan on one column with number
of distinct values d varied from 2'° to 22, r =22 4 =12%3 e =8, k=0 and a query
selectivity of s = 2,000

parameters and their influence on plan operations Due to space limitations, we
only show some detailed experimental results.

Number of Rows. The number of rows 7 has a linear influence on the perfor-
mance of scan operations, whereas the time per row stays constant. For positional
lookups, the number of rows has no influence on the performance on the lookup
operation. When inserting new values into a column, the number of rows r has
no influence on the time an actual insert operation takes, regardless if the col-
umn is uncompressed or dictionary encoded. However, on dictionary encoded
columns with a sorted dictionary, the number of rows has a linear influence on
the re-encode operation if necessary.

Number of Distinct Values. We now focus on the number of distinct values
d of a column and their influence on scan, insert and lookup operations. When
scanning a column with an equal scan, we expect the number of distinct values
to influence the dictionary encoded columns, but not the uncompressed column.
Figure shows the results of an experiment performing an equal scan on a
column with 223 rows and d varied from 219 to 223. We chose a selectivity of 2,000
rows, in order to keep the effect of writing the result set minimal. As expected,
the runtime for the scan on the uncompressed column is not affected and we
clearly see the linear impact on the column with an unsorted dictionary. In
contrast to an equal scan, the implementation of a range scan only differs in the
case for an unsorted dictionary. Therefore, the cases for an uncompressed column
and a column with a sorted dictionary are the same as discussed for the equal
scan operation, as Figure shows. In case of an unsorted-dictionary encoded
column, Figureshows a strong impact of the varied number of distinct values
on the runtime. The increase in CPU cycles with increasing distinct values is
due to a cache effect. As u = 223, we access the dictionary in a random fashion
while iterating over the column. As long as the dictionary is small and fits into

1 All experiments were conducted on an Intel Xeon X5650, with 2x6 cores, hyper-
threading, 2.67 GHz and 48 GB main memory. The system had 32 KB L1 data
cache (8-way), 256 KB L2 cache (8-way), 12 MB L3 cache (16-way) and a two level
TLB with 64 and 512 entries.

54 D. Schwalb et al.

the cache, these accesses are relatively cheap. With a growing number of distinct
values the dictionary gets too large for the individual cache levels and the number
of cache misses per dictionary access increases, resulting in increasing time for
the scan operation. Considering a value length of 8 bytes, we can identify jumps
slightly before each cache level size of 32KB, 256KB and 12MB.

Value Disorder. When performing an equal scan, the comparisons can be done
directly on the value-ids in case of a dictionary encoded column or are done
directly on the values in case of an uncompressed column. Therefore, the value
disorder does not influence the performance of equal scans. Regarding range
scan operations, we see no influence in case of an uncompressed column or a
column with a sorted dictionary when variying the disorder of values in a column.
In case of a dictionary encoded column with an unsorted dictionary, we se an
increase in CPU cycles. In contrast to an equal scan, the range scan operation
on an unsorted dictionary has to lookup the actual values in the dictionary in
order to compare them. When the value disorder is low, temporal and spatial
locality for the dictionary access is high, which results in good cache usage with
a high number of cache hits. The greater the disorder gets, the more random the
accesses to the dictionary get and the number of cache misses when accessing
the dictionary increases, resulting in more CPU cycles for the scan operation.
The value disorder has no influence on single positional lookups and inserts.

Value Length. For uncompressed columns, we see an increase for the scan opera-
tion with longer values, as expected. However, every 16 bytes we noticed a perfro-
mance jump, due to alignment effects. In case of a dictionary compressed column,
we see no significant influence in case of a sorted dictionary based on the value
length. When using an unsorted dictionary, the costs for scanning the dictionary
are significantly higher and we identify a significant impact of the value length on
the total scan costs. In case of an uncompressed column, we see an increase in costs
with larger value lengths and the same alignment effect, as the values are compared
directly and larger values result in larger costs for comparing the values. Similar
to the equal scan, we see no significant impact of the value length for the case of a
sorted dictionary but an increase in case of an unsorted dictionary. The costs for a
positional lookup do increase linearly with increasing size of values, as the actual
values are returned by the lookup operation, resulting in more work for longer val-
ues. The costs for inserting new values always increase with larger values, as the
costs for writing the values do increase.

Value Skewness. The skewness of values influences the pattern in which the
dictionary of a column is accessed when scanning its value-ids and looking them
up in the dictionary, the more skew the value distribution, the less cache misses
occur. In case of an equal scan, positional lookup or insert we do not have this
pattern of scanning the column and accessing the dictionary. Therefore, we do
not expect the skewness of values in a column to influence these operations, which
is outlined by the experimental result shown in Figure for a scan operation
with equality selection. In contrast, Figure shows the influence of the value
skewness on a range scan operation. In case of a dictionary encoded column
with an unsorted dictionary, we scan the value-ids of the column sequentially

Physical Column Organization in In-Memory Column Stores 55

400M 400M
350M

350M g

300M
250M
200M 250M
150M
100M

300M

200M

150M

50M

100M
0.0 500.0 1000.0 1500.0 2000.0 00 02 04 06 08 10 12 14 16 18 20
Skewness of Values Skewness of Values

Uncompr. — SDict. == UDict. = Uncompr.— SDict.== UDict,

(a) Equal Scan (b) Range Scan

Fig. 2. CPU cycles for equal scan and @ range scan on one column with value
skewness k varied from 0 to 2, » = 20 million, d = 200,000, v = 20 million, e = 8 and
a query selectivity of s = 2,000

and randomly access the value dictionary (value disorder w = 20 million). The
more skew the value distribution is, the more likely it gets that a value with
a high frequency is accessed and is still in the cache. Therefore the number of
cache misses is reduced for skewed value distributions, resulting in a faster range
scan operation.

6 Estimating Cache Misses

In the previous section, we found parameters like the influence of the number
of distinct values or the value skewness on a scan operator with range selection,
that were not inferable based on the theoretical complexity. These influences are
based on cache effects, which will be discussed in this section followed by a cost
model to predict the number of cache misses for our discussed plan operators. In
traditional disk based systems, IO operations are counted and used as the basic
unit of measurement. For in-memory database systems 1O operations are not of
interest and the focus shifts to main memory accesses.

In general, assuming that all data resides in main memory, the total execu-
tion time of an algorithm can be separated into the time spent computing Tepy
and the time for accessing the data in memory Thjenm [10]. Due to increasing
processor speeds but stagnating memory speeds, memory access is getting more
expensive in relation, as more CPU cycles are wasted while stalling for memory
access [3,I0I1]. In case the considered algorithms are close to be bandwidth
bound, Thfem, is the dominant factor driving the execution time. Additionally,
modeling T py requires internal knowledge of the used processor, is very im-
plementation specific and also dependent on the resulting machine code created
by the compiler, which makes it hard to model. As our considered operations on
the various data structures only perform a small amount of computations while
accessing large amounts of data, we assume our algorithms to be bandwidth
bound and believe Thserm to be a good estimation of overall costs. The costs
for accessing memory can vary heavily due to the underlying memory hierar-
chy and mechanisms like prefetching and virtual address translation and can be
quantified by the number of cache misses on each level in the memory hierarchy.

56 D. Schwalb et al.

3.0M [L1:32k) [L2: 256k] [L3: 12mb]
M

25M 14M ,/
20M 1M = 5
1.5M 10M

paebtt PR et "
PRETE :
;. r :

Thaeas

P LV !
M 0 e :
16KB 64KB 256KB IMB 4MB 16MB 64MB
Dictionary Size

0.
2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
Number of Rows

L1 Misses Uncompressed ~ +
L1 Misses Sorted = L1 Misses + Pred.L1 Misses —
L1 Misses Unsorted + L2 Misses = Pred.L2 Misses ===
Pred. L1 Misses Uncompressed — L3 Misses ~ » Pred. L3 Misses
Pred. L1 Misses Dictionary TLB Misses @ Pred. TLB Misses ==

(a) Equal scan (b) Range Scan

Fig. 3. Evaluation of predicted cache misses

We will provide explicit functions to calculate the estimated number of cache
misses for each operation and data structure. Some cost functions are based on
the work presented in [I0], where the authors describe a generic cost model,
estimating the execution costs of algorithms based on cache misses by modeling
basic access patterns and an algebra to model more complex patterns. We de-
velop own parameterized cost functions estimating the number of cache misses
for each operation, specifically designed for the operations and data structures.
With the specific parameters for each cache level, the cache misses on that level
can be predicted. Furthermore, the total costs can be calculated by multiplying
the number of cache misses with the latency of the next level in the hierarchy as
proposed in [10]. Measuring the individual cache level latencies requires accurate
calibration and is very system specific. As a simpler and more robust estimation,
we use the number of cache misses as a direct indicator for the resulting number
of cycles, only roughly weighting the different cache levels. The cache level in the
hierarchy is indicated by 4, whereas the Transaction Look-Aside Buffer (TLB) is
treated as an additional level in the hierarchy. The cache line size or block size
of a respective level is given by B; and the size by C;. The number of cache lines
at the level 7 is denoted by #i. The function M;(o, c) describes the estimated
amount of cache misses for an operation o on a column c. The operations are
escan, rscan, lookup and insert. The respective physical column organization is
given by a subscript indicating A) an uncompressed column with, B) a dictio-
nary encoded column with an unsorted dictionary and C') a dictionary encoded
column with a sorted dictionary.

Scan with Equality Selection. An equal scan on uncompressed columns,
consists of sequentially iterating over the column, resulting in as many cache
misses as the column covers cache lines. In case the column is dictionary encoded
with a sorted dictionary, the binary search for the searched value results in
logs random cache misses, while the sequential scan over the compressed value-
ids results in as many cache misses as the compressed column covers cache
lines (Equation [I). The number of cache misses for an equal scan on a column
with an unsorted dictionary is similar as with a sorted dictionary, but instead
of a binary search a linear search is performed, scanning in average half the
dictionary (Equation [). Figure shows that the predicted cache misses

Physical Column Organization in In-Memory Column Stores 57

M;(escang, c) = F'T.BC'eC—‘ + logy(c.d - c.e) (1)
i
M ()= c.r-c.e n cd-c.e @)
i(escanc,c) = B, 5. B,

follow closely the measured number of misses for the equal scan experiment
varying the number of rows.

Scan with Range Selection. In case of an uncompressed column, a scan with
range selection iterates sequentially over the uncompressed values, comparing the
values with the requested range. Similarly, in case of a sorted dictionary, the
searched values are retrieved from the dictionary with a binary search and the value-
ids are scanned sequentially for the search value-ids. In both cases, the resulting
cache misses are the same as for a scan with equality selection. For unsorted dictio-
naries, the scan operation sequentially iterates over the column and has to perform
a random accesses into the dictionary due to the range selection. Regarding the
random access into the dictionary, we assume that every value in the dictionary is
accessed at least once. In the best case the access to the dictionary is sequentially
utilizing all values in a cache-line. In the worst case, every access to the dictionary
may result in a cache miss. The number of cache misses increases with increasing
dictionary sizes respective to the cache size and the amount of disorder in the col-
umn. Therefore, we model the number of random misses by interpolating between
0 and the number of rows in the column.

In order to smoothly interpolate between two values, we define the following
helper functions. I; is a simple linear interpolation function between gy and
y1, whereas t varies from 0 to 1. Furthermore, we define I; as a decelerating
interpolation function.

Based on I; and I, we construct I. as a cosinus-based interpolation function
to smoothly interpolate between two values, as we found this interpolation type
to fit well to the cache characteristics. Finally, we introduce I as a helper function
modeling a function stepping smoothly from yg to y; around a location of x,
whereas p indicates the range in which the interpolation and 7 the degree of
how asymmetric the interpolation is performed. These values might be system
specific and can be calibrated as needed.

If the number of covered cache-lines C; is smaller than the number of avail-
able cache-lines #;, every cache-line is loaded at its first access and remains in
the cache. For subsequent accesses, this cache-line is already in the cache and the

Ii(yo,y1,t) = yo +t- (y1 — %o) (3)

Id(y()vyl’t) :Il(yanlvl_ (1_t)2) (4)

1 — cos(m - 14(0, 1at>))

Ic(yanlat) :Il(yoayla 9

58 D. Schwalb et al.

Yo 1 x < 2%07F

I(xaxoayoaylapa 7_) ={y:zT > PACEG (6)

Ie(yo, y1, log;fg:ﬁ‘;“) selse

Mj (rscanc, c) = I(c.d,logy(C;),0,c.ry p, T) (7)

) Mr
M (rscanc: ¢) = max (ARG R) ®)
M® (rscanc, ¢) = I(c.d,log,(Cyp - 4°),0, c.r, p, T) (9)

access does not create an additional cache miss. If C; > #;, then already loaded
cache-lines may be evicted from cache by loading other cache-lines. Subsequent
accesses then have to load the same cache-line again, producing more cache
misses. The worst case is that every access to a cache-line has to load the line
again, because it was already evicted, resulting in col.r cache misses. Assuming
randomly distributed values in a column, the number how often cache-lines are
evicted depends on the ratio of the number of cache-lines #; and the number of
covered cache-lines C;. With increasing C; the probability that cache-lines are
evicted before they are accessed again increases. Equation[7] outlines the number
of random cache misses.

The number of sequential cache misses is calculated in Equation§and depends
on the success of the prefetcher. In case no or only a few random cache misses occur,
the prefetcher has not enough time to load the requested cache lines, resulting in
sequential misses. With increasing numbers of random cache misses, the time win-
dow for prefetching increases, resulting in less sequential cache misses. Assuming
a page size of 4KB, we found MY to be a good estimation, as a micro benchmark
turned out that every three random cache misses when accessing the dictionary
leave the prefetcher enough time to load subsequent cache lines. Additionally, we
also have to consider extra penalties payed for TLB misses, as outlined by Eqau-
tion[d In case an address translation misses the TLB and the requested page table
entry is not present in the respective cache level another cache miss occurs. In the
worst case, this can introduce an additional cache miss for every dictionary lookup.

Finally, the total number of cache misses for a scan operation with range selec-
tion on a column with an uncompressed dictionary is given by adding random,
sequential and TLB misses. Figure shows a comparison of the measured
effect of an increasing number of distinct values on a range scan on an uncom-
pressed column with the predictions based on the provided cost functions. The
figure shows the number of cache misses for each level and the model correctly
predicts the jumps in the number of cache misses.

Lookup. A lookup on an uncompressed column results in as many cache misses
as one value covers cache lines on the respective cache level. In case the column

Physical Column Organization in In-Memory Column Stores 59

is dictionary encoded it makes no difference if the lookup is performed on a
column with a sorted or an unsorted dictionary, hence we provide one function
M; (lookupp) for both cases.

Insert. The insert operation is the only operation we consider writing to main
memory. Although it is not quite accurate, we will treat write access similar as
reading from main memory and only consider resulting cache misses. An insert
into an uncompressed column is trivial, resulting in as many cache misses as
one value covers cache lines on the respective cache level. In case we perform an

. [c. i .d-c.
M;(insertg,c) = FBe—‘ + c;C—‘ + |log, (c Bé e)—‘ (10)
</ c.e] c.e. | cd-ce
Mg (insertc, c) = B, + B, + 9. B, (11)
7 K3 7

insert into a column with a sorted dictionary, we first perform a binary search
determining if the value is already in the dictionary, before writing the value and
value-id, assuming the value was not already in the dictionary (Equation [IT).
The number of cache misses in the unsorted dictionary case are similar to the
sorted dictionary case, although the cache misses for the search depend linearly
on the number of distinct values (Equation [IT]).

7 Index Structures

This section discusses the influence of index structures on top of the evaluated
data structures and their influence on the discussed plan operators. First, we
extend the unsorted dictionary case by adding a tree structure on top, keeping
a sorted order and allowing binary searches. Second, we discuss the influence of
inverted indices on columns and extend our model to reflect these changes. As
tuples are stored in insertion order, we assume an index to be a separate auxiliary
data structure on top of a column, not affecting the placement of values inside
the column. Furthermore, we distinguish between column indices and dictionary
indices. A column index is built on top of the values of one column, e.g. by
creating a tree structure to enable binary search on the physically unsorted
values in the column. In contrast, a dictionary index is a B*-Tree built only on
the distinct values of a column, enabling binary searching an unsorted dictionary
in order to find the position of a given value in the dictionary.

Column and dictionary indices are assumed to be implemented as B™-Tree
structures. We denote the fan out of a tree index structure with Iy and the
number of nodes needed to store d keys with I,,. The fan out constrains the
number n of child nodes of all internal nodes to I;/2 < n < I;. Ip, denotes
the numbers of cache lines covered per node at cache level 7. The number of
matching keys for a scan with a range selection is denoted by ¢.ny and q.n,
denotes the average number of occurrences of a key in the column.

60 D. Schwalb et al.

7.1 Dictionary Index

A dictionary index is defined as a BT-Tree structure on top of an unsorted dic-
tionary, containing positions referencing to the values in the dictionary. Looking
up a record is not affected by a dictionary index as the index can not be lever-
aged performing the lookup and does not have to be maintained. Also, scans
with range selections still need to lookup and compare the actual values as the
value-ids of two values still allow no conclusions about which value is larger or
smaller.

Regarding equal scans on a column with a dictionary index, we can leverage
the dictionary index for retrieving the value-id and perform a binary search.
Therefore, the costs for the binary search depend logarithmically on the number
of distinct values of the column. When comparing costs for a scan with equality
selection for a column using an unsorted dictionary without a dictionary index
to a column with a dictionary index, we notice similar costs for the scan op-
eration on columns with few distinct values. However, as the dictionary grows,
the costs for linearly scanning the dictionary increase linearly in case of not us-
ing a dictionary index and the costs with an index only increase slightly due to
the logarithmic cost for the binary search, resulting in better performance when
using a dictionary index.

One main cost factor for inserting new values into a column with an unsorted
dictionary is the linear search determining if the value is already in the dictionary.
This can be accelerated through the dictionary index, although it comes with the
costs of maintaining the tree structure. Assuming the new value is not already
in the dictionary, the costs for inserting it are writing the new value in the
dictionary, writing the compressed value-id, performing the binary search in the
index and adding the new value to the index.

Considering the discussed operations, a dictionary encoded column always
profits by using a dictionary index. Therefore, we do not provide adapted cost
functions for a dictionary index as we do not have to calculate in which cases it is
advisable to use. Even insert operations do profit from the index as the dictionary
can be searched with logarithmic costs, which outweighs the additional costs of
index maintenance.

7.2 Column Index

We assume a column index to be a BT-Tree structure, similar to the dictionary
index described above. However, the index is built on top of the complete column
and not only on the distinct values. Therefore, the index does not only store one
position, but has to store a list of positions for every value. A column index can
be added to any column, regardless of the physical organization of the column.
Performing positional lookups does not profit from a column index.

A search with equality selection can be answered entirely by using the column
index. Therefore, the costs do not depend on the physical layout of the column
and the same algorithm can be used for all column organizations (Equation [I2)).
First, the index is searched for value X by binary searching the tree structure

Physical Column Organization in In-Memory Column Stores 61

400M 7™M
350M o M o L2
s Y L
300M PVAR 5M //
250M T 2 4M e >
$ 200M - P £ 3m T R
A T P s o
S 150M I y “,‘Kgxux!g::
5 100M R
50M
i 4M 5M 6M 7M 8M 9M 10M
0 .
M 2M 3M 4M 5M 6M 7M 8M 9M 10M Selectivity
Selectivity L1+ TLB = Pred.L3 wwn
L2 = Pred.L1 — Pred.TLB
no index — with index ===+ L3 = Pred.L2 ===

Fig. 4. CPU cycles for scan with a range selection on a column with and without
a column index. @ shows the respective cache misses for the case of using a column
index. r=10M, d=1M, e=8, u=0, k= 0.

resulting in a list of positions. If the value is not found, an empty list is re-
turned. The resulting list of positions then has to be converted into the output
format by adding all positions to the result array. Locating the leaf node for the
searched key requires reading log,f (I,) - Ip, cache lines for reading every node
from the root node to the searched leaf node, assuming each accessed node lies
on a separate cache line. Then, iterating through the list of positions and adding
every position to the result array requires to read and write ¢.n,/B; cachelines,
assuming the positions are placed sequentially in memory. Searches with range
selection can also be answered entirely by using the column index (Equation[I3).
Assuming the range selection matches any values, we locate the node with the
first matching value by performing a binary search on the column index. The
number of cache misses for the binary search are log;, (I,) - Ip,. Then, we se-
quentially retrieve the next nodes by following the next pointer of each node
until we find a node with a key greater or equal to high. Assuming completely
filled nodes, this requires reading all nodes containing the g.nj; matching keys,
resulting in ¢.ny /Iy nodes. For all matching nodes the positions are added to the
result array, requiring to read and write ¢.n,/B; cache lines per key. Inserting
new values into the physical organization of a column is not affected by a col-
umn index. However, the new value has also to be inserted into the column index
(Equation [I4)). The costs incurring for the index maintenance are independent
from the physical organization of the column. This requires searching the tree
structure for the inserted value, reading log; (I5,) - Ip, cache lines. If the value
already exists, the newly inserted position is added to the list of positions of the
respective node, otherwise the value is inserted and the tree has to be potentially
rebalanced. The costs for rebalancing are in average log; (In) - Ip, -

Figure shows a comparison for a range scan on a column index compared
to a column with a sorted dictionary and without an index. The figure shows
the resulting CPU cycles for the scan operation with increasing result sizes. For
small results the index performs better, but around a selectivity of roughly 4
million the complete scan performs better due to its sequential access pattern.

62 D. Schwalb et al.

Figure shows the resulting cache misses for the scan operation using the
column index and the predictions based on the defined model.

Mij(escan) =log, (In) - I, +2 - q.ng - {Q-Bn‘v—‘ (12)
Mi(rscany) = logy, (1) - Ip, + Ip, - ¥ +2q.m - | 7" (13)
s I B;

i

M;(insert;) = 2 - IOng (In) - IB,

8 Conclusions

In this paper, we presented a cost model for estimating cache misses for the
plan operation equal scan, range scan, positional lookup and insert in a column-
oriented in-memory database. We presented a detailed parameter analysis and
cost functions predicting cache misses and TLB misses for different column or-
ganizations. The number of distinct values has a strong impact on range and
equal scans, and renders unsorted dictionaries unusable for columns with a large
amount of distinct values and dictionaries larger than available cache sizes. How-
ever, if the disorder in the column is low, the penalties payed for range scans are
manageable. Additionally, the skewness of values in a column can influence the
performance of range scan operators, although the impact is small unless the
distribution is extremely skewed. Finally, we presented dictionary and column
indices and argued that dictionary encoded columns always profit from using
a dictionary index. Uncompressed columns seem to be well suited for classical
OLTP workloads with a high number of inserts and mainly single lookups. As
the number of scan operations and especially range scans increases, the addi-
tional insert expenses pay off, rendering dictionary encoded columns suitable for
analytical workloads. Considering mixed workloads, the optimal column organi-
zation highly depends on the concrete workload.

References

1. Babka, V., et al.: Investigating Cache Parameters of x86 Family Processors. In:
SPEC (2009)

2. Barr, T., et al.: Translation Caching: Skip, Don’t Walk (the Page Table). ACM
SIGARCH (2010)

3. Drepper, U.: What Every Programmer Should Know About Memory (2007)

4. Grund, M., et al.. HYRISE—A Main Memory Hybrid Storage Engine. VLDB
(2010)

5. Hiibner, et al: A cost-aware strategy for merging differential stores in column-
oriented in-memory DBMS. BIRTE Workshop (2011)

6. Kemper, A., Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: ICDE (2011)

10.

11.

12.

13.

14.

Physical Column Organization in In-Memory Column Stores 63

Knuth, D.E.: Art of Computer Programming, vol. 3: Sorting and Searching.
Addison-Wesley Professional (1973)

Kriiger, J., et al.: Fast Updates on Read Optimized Databases Using Multi Core
CPUs. VLDB (2011)

MacNicol, R., French, B.: Sybase IQ Multiplex — Designed For Analytics. VLDB
(2004)

Manegold, S.: et al. Generic database cost models for hierarchical memory systems.
VLDB (2002)

Moore, G.: Cramming more components onto integrated circuits. Electronics 38
(1965)

Plattner, H.: A Common Database Approach for OLTP and OLAP Using an In-
Memory Column Database. Sigmod (2009)

Plattner, H., et al.: In-Memory Data Management: An Inflection Point for Enter-
prise Applications (2011)

Zukowski, M., et al.: MonetDB/X100 - A DBM in The CPU Cache. IEEE Data
Eng. Bull. (2005)

Semantic Data Warehouse Design:
From ETL to Deployment a la Carte

Ladjel Bellatreche!, Selma Khouri':2, and Nabila Berkani?

! LIAS/ISAE-ENSMA, France
{bellatreche,selma.khouri}@ensma.fr
? National High School for Computer Science (ESI), Algeria
{n berkani,s khouri}@esi.dz

Abstract. In last decades, semantic databases (SDB) emerge and be-
come operational databases, since the major vendors provide semantic
supports in their products. This is mainly due to the spectacular devel-
opment of ontologies in several domains like E-commerce, Engineering,
Medicine, etc. Contrary to a traditional database, where its tuples are
stored in a relational (table) layout, a SDB stores independently ontology
and its instances in one of the three main storage layouts (horizontal, ver-
tical, binary). Based on this situation, SDB become serious candidates
for business intelligence projects built around the Data Warehouse (DW)
technology. The important steps of the DW development life-cycle (user
requirement analysis, conceptual design, logical design, ETL, physical
design) are usually dealt in isolation way. This is mainly due to the com-
plexity of each phase. Actually, the DWW technology is quite mature for
the traditional data sources. As a consequence, leveraging its steps to
deal with semantic DV becomes a necessity. In this paper, we propose a
methodology covering the most important steps of life-cycle of semantic
DW. Firstly, a mathematical formalization of ontologies, SDB and se-
mantic DW is given. User requirements are expressed on the ontological
level by the means of the goal oriented paradigm. Secondly, the ETL
process is expressed on the ontological level, independently of any imple-
mentation constraint. Thirdly, different deployment solutions according
to the storage layouts are proposed and implemented using the data ac-
cess object design patterns. Finally, a prototype validating our proposal
using the Lehigh University Benchmark ontology is given.

1 Introduction

Data are the most important asset of organizations since they are manipulated,
processed and managed in the organization’s daily activity. The best decisions
are made when all the relevant data available are taken into consideration. These
data are stored in various heterogeneous and distributed sources. To exploit these
mine of data, data warehouse (DW) technology showed its efficiency. It aims at
materializing data and organizing them in order to facilitate their analysis. A
DW can be seen as a materialized data integration system, where data are viewed

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 64-B3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 65

in a multidimensional way [3] (i.e., data are organized into facts describing sub-
jects of analysis. These data are analyzed according to different dimensions).
A data integration system offers a global schema representing a unified view of
data sources. Formally, it may be defined by a triple: <G, S, M> [I8], where G
is the global schema, S is a set of local schemas that describe the structure of
each source participating in the integration process, and M is a set of assertions
relating elements of the global schema G with elements of the local schemas S.
Usually, G and S are specified in suitable languages that may allow for the ex-
pression of various constraints [8]. In the DW context, the integration aspect
is performed through ETL (Extract-Transform-Load) process, where data are
extracted from sources, pre-processed and stored in a target DWW schema [27].

As any information system, the construction of a traditional DW should pass
through a number of phases characterizing its life-cycle: requirements analysis,
conceptual design, logical design, ETL process and physical design [I1]. Require-
ment analysis phase identifies which information is relevant to the decisional
process by either considering the decision maker needs or the actual availability
of data in the operational sources. Conceptual design phase aims at deriving an
implementation-independent and expressive conceptual schema. Logical design
step takes the conceptual schema and creates a corresponding logical schema on
the chosen logical model (relational, multidimensional, hybrid, NoSql models).
Usually the relational table layout is advocated in the ROLAP implementation.
ETL designs the mappings and the data transformations necessary to load into
the logical schema of the DWW the data available at the operational data source
level. Physical design addresses all the issues related to the suite of tools chosen
for implementation - such as indexing and partitioning. We notice however, that
these phases are usually treated in the literature in isolated way. This is due to
the difficulty and the complexity of each phase.

Parallel to this, ontologies emerge in several domains like E-commerce, Engi-
neering, Environment, Medicine, etc. The most popular definition of ontology is
given by Gruber [I2]. An ontology is a formal, explicit specification of a shared
conceptualization. Conceptualization refers to an abstract model of some domain
knowledge in the world that identifies that domain’s relevant concepts [6]. The shar-
ing characteristic reflects that ontology has to be consensual and accepted by a
group of experts in a given domain. Based on this definition, we claim that ontolo-
gies leverage conceptual models. These nice characteristics have been exploited by
academician and industrials to define data integration systems. They contribute
in resolving the different syntax and semantics conflicts identified in data sources.
Two main architectures of ontology-based data integration system following the
<G,S, M> framework are distinguished [3]: (1) in the first architecture, domain
ontologies played the role of the global schema (G). A typical example system fol-
lowing this architecture is SIMS [1]]. (2) In the second architecture, each source is
associated to a local ontology referencing a global ontology (in a priori or a poste-
rior manners) and mappings are defined between the global and the local ontologies.
The MECOTA system [29] is an example of this architecture.

66 L. Bellatreche, S. Khouri, and N. Berkani

Recently, a couple of studies proposed to store ontologies describing the sense
of database instances and those instances in the same repository. Such database
is called Semantic Databases (SDB). Different SDBs were proposed by both
industrial (Oracle, IBM Sor) and academic communities, that differ according
to their architectures and their storage layouts: vertical, horizontal, binary (see
Section 3). The emergence of SDBs makes these sources candidates for DW
systems. Unfortunately, no complete method considering the particularities of
SDBs in DWW design exists. The availability of ontologies may allow defining
semantic mappings between schemas of source and the target DWW schema. This
leverages the integration process to the ontological level, and frees it from all
implementation issues. But, it requires a new step concerning the deployment of
the logical schema of the warehouse according the target storage layout.

In this paper, we propose a methodology for designing semantic warehouses,
where ontologies are confronted to each step of the life-cycle: requirements anal-
ysis, conceptual design, logical design, ETL process, deployment and physical
design. The contributions of the paper are:

1. Formalization of a conceptual framework <G,S, M>, handling SDBs di-
versity and definition of a DW requirements model following a goal-driven
approach.

2. Proposition of a complete ontology-based method for designing semantic
DWs taking as inputs the framework <G,S, M> and the requirements
model.

3. Implementation of a case tool supporting the method and validation of the
method through a case study instantiating <G, S, M> framework with Or-
acle SDB and LUBM benchmark. To the best of our knowledge, this work
is the sole that covers all steps of DW design using a semantic approach.

The paper is organized as follows. Section 2 presents the related work of DW
design. We focus on ontology-based design methods. Section 3 gives some pre-
liminaries about Semantic Databases. Section 4 describes the design method.
Section 5 presents a case study validating our proposal. Section 6 presents the
case tool supporting our proposal. Section 7 concludes the paper by summarizing
the main results and suggesting future work.

2 Related Work: Towards an Ontological Design

Two main approaches exist for the initial design of DW [30]: the supply-driven
approach and the demand-driven approach. In the first category, the DW is de-
signed starting from a detailed analysis of the data sources. User requirements
impact on design by allowing the designer to select which parts of source data
are relevant for the decision making process. The demand-driven approaches
starts from determining the information requirements of DW users or decision
makers. This approach gives user requirements a first role in determining the
information contents for analysis. Requirements analysis differs according to the
analyzed objects. We distinguish process-driven, user-driven or goal-driven anal-
ysis. Process-driven analysis [T9/15] analyze requirements by identifying business

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 67

process of the organization. User-driven analysis [30] identifies requirements of
each target user and unifies them in a global model. Goal driven analysis [10]
has been frequently used for DWW development. It identifies goals and objectives
that guide decisions of the organization at different levels.

As we said before, ontologies played a crucial role in several facets in the pro-
cess of construction and exploitation of data integration systems: global schema
definition, syntactic and semantic conflict resolution, query processing, caching,
etc. Similarly, ontologies have been exploited in some steps of DW design cycle.
First in the requirements analysis step, where we proposed in [I3] to specify DW
business requirements using an OWL domain ontology covering a set of sources.
This projection allows defining the DW conceptual and then logical model. On-
tologies largely contribute in the requirement engineering field to specify, unify,
formalize requirements and to reason on them to identify ambiguity, comple-
mentary and conflict [23].

Ontologies were timidly used in the ETL step. [4] proposed a method for
integrating relational data sources into a DWW schema using an ontology as a
global schema playing an intermediary model between the target DWW model and
sources schemas. Skoutas et al. [27] automate the ETL process by constructing
an OWL ontology linking schemas of semi-structured and structured (relational)
sources to a target DWWV schema.

Other design methods used ontologies for multidimensional modeling tasks.
[24] defines the DWW multidimensional model (facts and dimensions) from an
OWL ontology by identifying functional dependencies (Functional Object Prop-
erties) between ontological concepts. A functional property is defined as a prop-
erty that can have only one (unique) value j for each instance 1, i.e. there cannot
be two distinct values j; and jo such that the pairs (i,j1) and (i, j2) are both
instances of this property. [25] and [22] are two attempts that propose ontologi-
cal methods combining multidimensional modeling and ETL steps: [25] is based
on Skoutas’s study [27], and defines an ETL and a design process for analyzing
source data stores. It identifies the ETL operations to execute according to a
multidimensional model defined. The logical and physical design steps are not
considered in this work. [22] considers semantic data provided by the semantic
web and annotated by OWL ontologies, from which a DWW model is defined and
populated. However, the ETL process in this work is dependent of a specific
instance format (triples).

Three observations can be made by analyzing the studied works:

1. We notice that ontologies are used in different design steps separately, prov-
ing their usefulness, but no method propose to extend the role of ontologies
all along the design steps.

2. The discussed works consider logical schemas of sources as inputs of the
DW system, and make an implicit assumption that the DWW model will be
deployed using the same representation (usually using a relational represen-
tation). The main contribution of our method compared to these works is
that we define the ETL process is fully defined at the ontological level, which

68 L. Bellatreche, S. Khouri, and N. Berkani

allows the deployment of the DWW model in different platforms according
designer recommendations.

3. almost no existing works consider Semantic Databases as candidates to build
the DW.

3 Preliminaries: Semantic Databases

In this section, we review the main concepts related to semantic databases:
ontologies, storage layouts, architectures, etc. to facilitate the presentation of
our proposal.

The massive use of ontologies by applications contributes largely of the gen-
eration of mountains of data referencing these ontologies. In the first generation
of ontological applications, the semantic data are managed in the main memory
like in OWLIM or Jena. Due to their growing, scalable solutions were developed.
SDB is one of the most popular solutions. It allows the storage of data and their
ontology in the same repository. Note that one important lesson learned from
almost 50 years of database technology is the advantage of data modeling, and
the physical and logical data independence. Object Management Group (OMG)
followed this trend, and defined a design architecture organized in four levels:
data of real world, the model, the meta-model and the meta-meta-model.

To ensure the same success of traditional databases, SDB design has to fol-
low these same levels. Both industrial (like Oracle [31] and IBM SOR [20]) and
academic (OntoDB [7]) communities defined SDB solutions, having different
architectures and proposed through an evolving process. Fig. [l illustrates the
evolution of SDBs architectures according to the design levels. With the in-
creasing use of ontologies in different domains, different ontological languages
and formalisms have been proposed: RDF, RDFS, OWL, PLIB, KIF (MO level
in Fig.[I)). Storing ontologies in a database is made according to a specific storage
layout.

The diversity of ontology formalisms proposed gave rise to different storage
layouts (M1 level). We distinguish three main relational representations [7]: ver-
tical, binary and horizontal. Vertical representation stores data in a unique table
of three columns (subject, predicate, object) (eg. Oracle). In a binary represen-
tation, classes and properties are stored in different tables (eg. IBM SOR). Hor-
izontal representation translates each class as a table having a column for each
property of the class (eg. OntoDB). Other hybrid representations are possible.

SDBs can materialize models of different levels, which gave rise to different
SDB architectures. First SDBs (type I) proposed a similar architecture as tradi-
tional database using two parts: data part and the meta schema part (catalog).
In the data part, ontological instances and also the ontology structure (concepts
and properties) are stored (MO and M1 levels). For example, Oracle [31I] SDB
uses vertical representation to store the ontology model and its data in a unique
table. A second architecture (type II) separates the ontology model from its data
that can be stored in different schemas. This architecture is thus composed of
three parts [7]: the meta-schema, the ontology model and the data schema (eg.

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 69

M3 Meta
Meta-Mo

y
Meta-schema

M2 Meta-Model
Reflexive meta-model (Gene cess)

M1 Conceptual Model (local ontology)
Diverse storage schemas: triples, binary, horizo:

Ontological instances (real world)
Diverse ontological languages : Rdf, Rdfs, Owl, Plib, ...

Fig. 1. Evolution of SDBs (ontology models, storage layouts and architectures)

IBM SOR [20] SDB). This architecture outperforms the first one, but the ontol-
ogy schema is based on the underlying ontology model and is thus static. A third
architecture (type III) extends the second one by adding a new part which is a
reflexive meta-model of the ontology (eg. OntoDB [7]), offering more flexibility
to the ontology part (M2 and M3 levels).

4 Our Proposal

Our DW design follows the mixed approach, where data sources and user re-
quirements have the same role. Another characteristic of our proposal is that
it exploits the presence of ontologies. To fulfill our needs, we fix four objectives
that we discuss in the next sections:

1. Obj;: leveraging the integration framework <G,S, M> by an ontology;

2. Obja: user requirement have to be expressed by the means of ontology;

3. Objs: ETL process has to be defined on ontological level and not on physical
or conceptual levels, and

4. Objs: The deployment process needs to consider the different storage layouts
of semantic DW.

4.1 Obj;i: Integration Framework for SDBs

In this section, we define an integration framework <G, S, M> adapted to SDB
specificities.

The Global Schema G. Schema G is represented by a Global Ontology (GO).
Different languages were defined to describe ontologies. OWL language is the
language recommended by W3C consortium for defining ontologies. Description
Logics (DLs) [2] present the formalism underlying OWL language. We thus use
DLs as a basic formalism for specifying the framework.

70 L. Bellatreche, S. Khouri, and N. Berkani

In DL, structured knowledge is described using concepts denoting unary pred-
icates and roles denoting binary predicates. Concepts denote sets of individuals,
and roles denote binary relationships between individuals. Two types of con-
cepts and roles are used: atomic and concept descriptions. Concept descriptions
are defined based on other concepts by applying suitable DL constructors (eg.
intersection, value restriction, limited existential quantification, etc), equipped
with a precise set-theoretic semantics.

A knowledge base in DL is composed of two components: the T'Box (Termi-
nological Box), and the ABox (Assertion Box). The T Box states the intentional
knowledge of the modeled domain. Usually, terminological axioms have the form
of inclusions: C C D (R C S) or equalities: C =D (R = S) (C,D denote concepts,
R,S denote roles). For example, in the ontology model of Fig. 2l representing the
ontology of LUBM benchmark related to the university domain, the concept Uni-
versity can be defined as an Organization by specifying the axiom: University
C Organization. The ABox states the extensional knowledge of the domain and
defines assertions about individuals. Two types of assertions are possible: con-
cept assertions (Eg. Student(Ann)) and role assertions (e.g. TakeCourse(Ann,
Mathematics)).

1.
E Person | oo

.

[& student | E Employee | IE TeachingAssistant
[1 1 1
[

[Epean |
I 1
1

orgiublication

AV 1.
—— 1

I
N AN

1
L] E ResearchGroup|
V_V \ E3th

E Work publicationResearch

Fig. 2. LUBM global schema

Based on these definitions, the GO is formally defined as follows:
GO :< C R, Ref(C), formalism >, such that:

— C: denotes Concepts of the model (atomic concepts and concept descrip-
tions).

— R: denotes Roles of the model. Roles can be relationships relating concepts
to other concepts, or relationships relating concepts to data-values.

— Ref : C — (Operator, Exp(C,R)). Ref is a function defining terminologi-
cal axioms of a DL TBox. Operators can be inclusion (C) or equality (=).
Ezp(C,R) is an expression over concepts and roles of GO using constructors
of DLs such as union, intersection, restriction, etc. (e.g., Ref(Student)—(C,
Person M VYtakesCourse(Person, Course))).

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 71

— Formalism : is the formalism followed by the global ontology model like
RDF, OWL, etc. Note that the definition of the GO concerns only its TBox,
which is usually assumed in DZS.

The Sources S. The set of sources considered are SDBs. Each SDB is defined
by its local ontology (O;) and its instances part (the ABOX). As, explained pre-
viously, the ontology model and its instances can be stored using different storage
layouts. SDBs may have different architectures. A SDB is formally defined as
follows < O;, I, Pop,SLo,,SLr, Ar > where:

— O;: <C, R, Ref, formalism> is the ontology model of the SDB.

— I: presents the instances (the ABox) of the SDB.

— Pop: C — 2! is a function that relates each concept to its instances.

— SLo,: is the Storage Layout of the ontology model (vertical, binary or hori-
zontal).

— SLy: is the Storage Layout of the instances I.

— Ar: is the architecture of the SDB.

The Mappings M. Mappings assertions relate a mappable element
(MapEImG) of schema G (MapSchemaG) to a mappable element (MapEIm.S)
of a source schema (MapSchemaS). These assertions can be defined at the in-
tensional level (TBox) or at the extensional level (ABox). Different types of
semantic relationships can be defined between mappable elements (Equivalence,
Containment or Overlap). Discovering such mappings is related to the domain of
schema and ontology matching/alignment, which is out of the scope of this pa-
per. The mapping assertions are formally defined as follows M:< MapSchemaG,
MapSchemaS, MapEImG, MapEImS, Interpretation, SemanticRelation >. This
formalization is based on [26] meta-model:

— MapSchemaG and MapSchemaS: present respectively the mappable
schema of the global and the local ontology.

— MapEImG and MapEImS: present respectively a mappable element of the
global and the local ontology schema. This element can be a simple concept,
instance or an expression (Ezp) over the schema.

— Interpretation: presents the Intentional interpretation or Extensional in-
terpretation of the mapping. In our study, the availability of global and local
ontologies allows to define intentional mappings.

— SemanticRelation: three relationships are possible: Equivalence, Contain-
ment or Ouerlap. Equivalence states that the connected elements represent
the same aspect of the real world. Containment states that the element in
one schema represents a more specific aspect of the world than the element
in the other schema. Overlap states that some objects described by an ele-
ment in one schema may also be described by the connected element in the
other schema.

72 L. Bellatreche, S. Khouri, and N. Berkani

4.2 Objz: Goal-Oriented Requirements Model

A goal is an objective that the system under consideration should achieve. Iden-
tifying goals of users is a crucial task for DW development. Indeed, the DW is
at the core of a decisional application that needs to analyze the activity of an
organization and where goals are important indicators of this activity. After an-
alyzing works of goal-oriented literature, we proposed a Goal model considered
as a pivot model since it combines three widespread goal-oriented approaches:
KAOS [17], Tropos [28] and iStar [5]. The model is presented in Fig. B (right
part). Fig. Bl presents a set of goals examples.

Let us take a goal Goall: ” Improve the quality of teaching of courses according
to the dean of the university”. The goal model is composed of a main entity Goal
described by some characteristics (name, context, priority). A goal is issued and
achieved by some actors (dean). A goal is characterized by two coordinates: (1) a
Result to analyze (quality of teaching) that can be quantified by given formal or
semi-formal metrics measuring the satisfaction of the goal (number of students
attending the course), and (2) some Criteria influencing this result (course).

Two types of goals are identified: functional and non-functional goals. A non-
functional requirement is defined as an attribute or constraint of the system (such
as security, performance, flexibility, etc). Two types of relationships between
goals are distinguished (reflexive relations): AND/OR relationships decomposing
a general goal into sub-goals and influence relationships (positive, negative or
ambiguous influence). User’s goals in our method are used at different stages
of the method. First, goals will be used to identify the most relevant data to

< <enumeration> >

H Refinement || [Contribution © NFGoalType
‘ = type : i H = type : EContributil = performance

= security

H Functional E NonFunctional = maintainability
_ = type : NFGoalType = portability
- 1 = usability
= reliability
\ = efficiency
H Role scope E Concept defineds [BAdor rpsponsiblef E Goal : 1 caraet E GoalRelation| <<enumeration> >
o N | 1|+= name : EString OUC: " £ EContribution
= priority : Elnll - positive
= context : EString - conflict
And —_—
L < <enumeration > »
ria 0,140, 2 ERefinement
H Ressource | + definedsy - 0. E Criteria = orRefinement
- " = andRefinement
< <enumeration> >
£ EORelation
0.1 definedBy ~ |
0 target
0.4 .
H ResRelation - T
[Brormal | [E SemiFormal | - opEnsebliste

= type : ESFormal < <enumeration> >
©

| 2emathop |
ot
T Conjonction [HwMathop | [E statisticop | =g
| = type : EMathOp| | = type : EStatisOp | <enumerations5)| ~ S
[I J 2 Estatisop | L—95
(a) (b} - effectif < <enumeration > >
= min 2 Esformal
= max =tn
- moy = affichage

Fig. 3. Requirements model proposed

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 73

materialize in the DW. They are also used to identify the multidimensional
concepts (facts and dimensions) of the DWW model.

4.3 Design Method

We propose a method for designing a semantic DWW covering the following steps:
requirements analysis, conceptual design, logical design, ETL process, deploy-
ment and physical design. Fig. [illustrates these steps.

Requirements Analysis. This step allows the designer identifying the follow-
ing: (1) the set of relevant properties used by the target application and (2) the set
of treatments it should answer. The first set allows the construction of the dictio-
nary containing the relevant concepts required for the application. As the ontol-
ogy describe all concepts and properties of a given domain, a connection between
requirement model and the ontology model is feasible. To do so, we define a con-
nection between coordinates of each goal (Result and Criteria) and the resources
(concepts and roles) of the GO (Fig.BHeft part). This allows the designer to choose
the most relevant ontological concepts to express user’s goals. Knowing that the
GO is linked to the data sources, these concepts chosen to express goals inform the
designer about the most relevant data to store in the DYV model.

For example, Goall is specified using the following resources of the LUBM
ontology (Fig. 2) (Student, Course, Work and Dean concepts).

T Global Ontology ————> Mappings (Ref) I
(Global Schema) LUBM Benchmark —> ETL Process based on mappings :
|

|

|
|
|
| 2 !) .
I I:> Steps of Our Method

= R R P
o | 5, G T W i i ,
SDB S, q —————— % Requirement

Model
; Conceptual Model =] =
H (Ontology annotated DWO -
!
'
h
; U

B Triples

K Logical Model Subject | Predicate | Objeet

/
(Example. Vertical Representation)

Oracle Linde
SDB S2 DA%%!—}
0

Horizontal Fragment

/
'
'

'

Extraction (Retrieve, check Mappings + extract)
Transformation (Convert, Filter, Aggregate)
Loading (Detect duplicate values, Save instances)

=]

racle
‘DB S3

n

Oracle |60 Link H
>

SDB s4| %

Complex view

DL Constructors

ocal Ontology (ODIT)

Semantic Data Warehouse (SDW)

Fig. 4. Design method proposed

74 L. Bellatreche, S. Khouri, and N. Berkani

Increase number of
studentsin each
program university

Increase
number
publications

mprove quality
of teaching for
each course

Diversify
streams

ncrease numbel
studentsin
gsearch maste

Increase funding of
programs for each
research field

Create new
research
programs

Crease subventio
of students in
gsearch maste

Facilitate access
to subventions
for each program

Decrease number
employeesin the
university

Reduce
expenses of

Reduce
expenses of

Fig. 5. Goals of university domain

Conceptual Design. A DW ontology (DWO) (that can be viewed as a con-
ceptual abstraction of the DW) is defined from the global ontology (GO) by
extracting all concepts and properties used by user goals. Three scenarios mate-
rialize this definition:

1. DWO = GO: the GO corresponds exactly to users’ requirements,
2. DWO C GO: the DWO is extracted from the GO,
3. DWO D GO: the GO does not fulfill all users’ requirements.

The designer may extend the DWO by adding new concepts and properties in
the case, where the GO does not satisfy all her /his requirements. The concepts
belonging to DW O and do not reference any concept of sources are annotated
and are set by null values in the target warehouse.

DWO is defined, we exploit its automatic reasoning capabilities to correct all
inconsistencies. Two usual reasoning mechanisms can first be used: (a) checking
the consistency of the ontology (classes and instances) and (b) inferring subsump-
tion relationships. This reasoning is supported by most existing reasoners (racer,
Fact++) and allows the detection of design errors. Another reasoning mechanism
is defined in order to propagate influence relationships between goals, as explained
in [I4]. Influence relationships are used afterwards to explore the multidimensional
structure of the DWW model, where we consider ’fact’ concepts as central concepts
and ’dimensions’ as concepts influencing them. The multidimensional role of con-
cepts and properties are then discovered and stored as ontological annotations. We
propose the algorithm [l for multidimensional annotations.

Logical Design. The logical DWW model is generated by translating the DWO
to a relational model (other data models can be chosen). Several works in the lit-
erature proposed methods for translating ontologies described in a given formal-
ism (PLIB, OWL, RDF) to a relational or an object-relational representations
(9]

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 75

begin
for Fach goal G do
Each concept (resp. role) used as a result of G is a fact (resp. measure)
candidate;
Each concept (resp. role) used as a criterion of G is a dimension (resp.
dimension attribute) candidate;
Criteria of goals influencing G are dimension candidates of the measure
identified for G;
Concepts of measures are facts candidates;
Concepts of dimension attributes are dimension candidates;
if fact concept F is linked to a dimension by (1,n) relationship then
keep the two classes in the model
else
Reject the dimension class;
end
Hierarchies between dimensions are constructed by looking for (1,n)
relationships between classes identified as dimensions (for each fact);
end
Generalization (is-a) relationships existing in the ontology between facts or
between dimensions are added in the model.;
end

Algorithm 1. Multidimensional annotations

Objs: ETL Process. The goal of the ETL process is to populate the target
DW schema obtained in the previous step, by data of sources. [27] defined ten
generic operators typically encountered in an ETL process, which are:

1.

10.

EXTRACT (S,C): extracts, from incoming record-sets, the appropriate por-
tion.

. RETRIEVE(S,C): retrieves instances associated to the class C' from the

source S.
MERGE(S,I): merges instances belonging to the same source.

. UNION (C,C’): unifies instances whose corresponding classes C' and C’ be-

long to different sources S and S’.

. JOIN (C, C’): joins instances whose corresponding classes C' and C’ are

related by a property.

. STORE(S,C, I): loads instances I corresponding to the class C' in a target

data store S.
DD(I): detects duplicate values on the incoming record-sets.

. FILTER(S,C,C’): filters incoming record-sets, allowing only records with val-

ues of the element specified by C’.

. CONVERT(C,C’): converts incoming record-sets from the format of C' to

the format of C”.

AGGREGATE (F, C, C): aggregates incoming record-sets applying the ag-
gregation function F (e.g., COUNT, SUM, AVG, MAX) defined in the target
data-store.

76 L. Bellatreche, S. Khouri, and N. Berkani

These operators have to be leveraged to deal with the semantic aspects of sources.
Therefore, we propose an Algorithm [for populating the DWO schema. The
algorithm is based on the generic conceptual ETL operators as presented above.
They can then be instantiated according to one of the storage layouts: vertical,
binary, horizontal. Each operator will correspond to a defined query.

Based on the framework <GO,SDB,M >, the integration process depends on
the semantics of mappings (SemanticRelation) between GO and local ontologies
(8DB), where four semantics mappings are identified: (1) Equivalent (Cgo =
Cspg) and (2) Containment sound (Cao D Cspp): where no transformation
is needed. Instances are extracted from sources, merged, united or joined then
loaded in the target data store. (3) Containment complete (Cao C Cspg): where
source instances satisfy only a subset of the constraints required by GO classes,
some instances need to be transformed (converted, filtered and aggregated) then
merged, unified or joined and finally loaded to the target data store. (4) Overlap
mappings: where we need to identify the constraints required by GO classes
and not applied to the source classes. This case is then treated same as the
Containment (Complete) scenario. Algorithm [2] depicts the ETL process based
on these four scenarios.

Obj,4: Deployment and Physical Design. In a traditional DWW, the deploy-
ment followed one-to-one rule, where each warehouse table is stored following one
storage layout. In a semantic DW, the deployment may followed one-to-many
rule (& la carte), where the ontology model and the instances may have several
storage layouts independently. Our proposal offers designers the possibility to
choose her/his favorite storage (within the DBMS constraints) and then deploy
the warehouse accordingly.

The target DWW model defined by our proposal is populated according to a
given DBMS. In the next section, a validation of our proposal is given using
Oracle DBMS. An Oracle SDB is used to store the target DWW model and the
ontology defining its semantics.

5 Implementation

In order to demonstrate the feasibility of our proposal, we experiment it using
Lehigh University BenchMark LUBM! (containing 4230 individuals) and Oracle
SDB. Note that Oracle supports languages RDF and OWL to enable its users to
get benefit from a management platform for semantic data. Oracle has defined
two subclasses of DLs: OWLSIF and OWLPrime. We used OWLPrimd? frag-
ment which offers a richer set of DL constructors. The framework <GO, SDBs,
Mappings> is thus instantiated as follows <GO: LUBM Ontology, SDBs: Or-
acle SDBs, Mappings: defined between local ontologies of sources and LUBM
ontology>. LUBM Ontology model is used as the global ontology GO, and is
presented in Fig.

! http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
2 http://www.w3.org/2007/0WL/wiki/OracleOwlPrime

http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
http://www.w3.org/2007/OWL/wiki/OracleOwlPrime

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 7

begin
Input:
DWO: DW Ontology (Schema) and Si: Local Source (SDB)

Output: DWO populated (schema + instances)
for Fach C : Class of ontology DWO do
Ipwo = ¢
for Each source Si do
if Cs= C /* instances in Si satisfy all constraints imposed by DWOx*/
then
| C’= IdentifyClasse (Si, C) /*identify class from Six/
else
if Cs C C /+Instances in Si satisfy all comnstraints imposed by DWO,
plus additional ones */ then
| C’= IdentifyClasse (Si, C) /*identify class from Si*/
else
if CsD C Or Overlap mappings /* Instances satisfy only a subset of
constraints imposed by DWO%/ then
if format(C) # format(Cs) then
Cconv= CONVERT (C, Cs) /*identify the constraint of format
‘ conversion from the source to the target DWO*/
end
if C represent aggregation constraint then
Caggr= AGGREGATE (F, C, Cs) /*identify the constraint of
‘ aggregation defined by Fx*/
end
if C represents filter constraint then
Cfilt= FILTER (Si, C, Cs) /*identify the filter constraint
‘ defined in the target DWO%*/
end
C’= ClasseTransformed (Si, C, Cconv, Caggr, Cfilt) /* Associate to the
class C’ the constraint of conversion, aggregation or filtering
defined by Cconv, Caggr and Cfiltx*/
end

end
end
I,;= RETRIEVE (Si, C’) /*Retrieve instances of C’ and applying constraints
of conversion, aggregation or filtering if necessary*/
if more than one instance are identified in the same source then
| Ipwo= MERGE (Ipwo, Isi) /*Merge instances of Si*/
end
if classes have the same super class then
Ipwo= UNION (Ipwo, Is;) /*Unites instances incoming from different
sources*/
else
if classes are related by same property then
| Ipwo= JOIN (Ipwo, Isi) /* Join incoming instances*/
end
end
if Source contain instances more than needed then
Ipwo= EXTRACT (Ipwo, Is) /* Extract appropriate portion of
instances*/
end

end
STORE(DWO,C, DD(Ipwo)) /*Detects duplicate values of instances and load

them in DWO*/
end

end

Algorithm 2. The population of the DWW by the means of ontological ETL operators

78 L. Bellatreche, S. Khouri, and N. Berkani

The adopted scenario for evaluating our proposal consists in creating 4 Oracle
S8DBs (S1, Sz, Ss and S4), where each source references the Lehigh University
Benchmark (LUBM) ontology. The first three sources are defined using simple
mappings between their local ontologies and the LUBM ontology as follows:

1. the first source is defined as a projection on a set of classes of the LUBM
ontology. It can be viewed as a vertical fragment of the global ontology
(LUMB), where some classes are considered.

2. the second one is defined as a restriction of a set of roles for each LUBM
ontology (horizontal fragment).

3. the third one is defined by simultaneously applying the projection and the
restriction operations on LUMB ontology (mixed fragment).

Our proposal supports also complex mapping, where a source may be defined as
a view over the ontology, i.e., an expression using DL constructors. For instance,
our fourth source contains three classes: Person, Student and Employee defined
as follows:

1. S4.Cy: Person, Ref (Person) = (Student U Employee) N V member (Person,
Organization)

2. S4.C5: Student, Ref (Student) = Student N VtakesCourse (Person, Course)

3. S4.C3: Employee, Ref (Employee) = Person N YWorksFor (Person, Organi-
zation)

Each source is thus instantiated using our framework as follows S;: < Oioracie,
Individuals (triples), Pop is given in tables RDF link$ and RDF values$, Ver-
tical, Vertical, type I>. Vertical storage is the relational schema composed of
one table of triples (subject, predicate, object). For example: (Student, type,
Class) for the ontology storage and (Student#1, type, Student) and (Student#1,
takeCourse, Course#1) for the instances storage. And the mapping assertions
between global and local ontology of the source are instantiated as follows:
< Oioracte of each source, GO (LUBM ontology model), Expression over GO,
Class of a source S, Intentional interpretation, (Equivalent, Containment or
Overlap): owl:SubClassOf and owl:equivalentClass in OWLPrime>.

We considered requirements presented in Fig. Bl The projection of these re-
quirements on the GO gives the schema of the DWO. For this case study, our
DWO corresponds to scenario 2 (DWO C GO). The algorithm 1 is applied to
annotate this ontology with multidimensional concepts. The multidimensional
schema presented in Fig.[flis obtained, where three facts are identified (in a dark
color) linked to their dimensions.

The DWO annotated is translated to a relational schema. We also used Or-
acle SDBs to store the final DWW schema and instances. The DWO is thus
translated into a vertical relational schema (N-Triple file). Oracle SDB allows to
load N-Triple files into a staging table using Oracle’s SQL*Loader utility. The
ETL algorithm we defined is applied to populate the relational schema. The al-
gorithm uses conceptual ETL operators that must be translated according the
vertical representation of Oracle. Oracle offers two ways for querying semantic

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 79

H Program
1
Ssign memba
E Subvention H Student
2843\1 Mn\l‘ masterDegreeFrom
1 1 H Person
E Institute B University >

T T s

H Organization

Fig. 6. Multidimensional model generated by our method

data: SQL and SPARQL. We choose SPARQL to express this translation. Due
to lack of space, we show the translation of some operators as an example: the
namespace of University Ontology of benchmark LUBM: PREFIX univ-bench:
http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#

EXTRACT operator is translated as follows: Select ?Instance# Where
{?Instance# rdf:type nameSpace:Class. ?Instance NameSpace:DataProperty
value condition}

Example 1. Extract students those age = 15 years.
Select ?student Where { ?student rdf:type univ-bench:Student. ?student univ-
bench:age 15}

RETRIEVE operator is translated as follows: Select ?Instances# Where
{?Instances# rdf:type Namespace:Class}

Example 2. Retrieve instances of the Student class.
Select ?InstanceStudent Where { ?InstanceStudent rdf:type univ-bench:Student}

FILTER operator is translated as follows: Select ?instance ?P where { ?Instance
rdf:type namespace:Class ; namespace:P ?P . FILTER (?P > wvalue condition)}

Ezxample 3. Filter incoming student instances allowing only those with age is
greater than 16 years:

Select ZinstanceStudent %age where {? instanceStudent rdf:type univ-
bench:Student ; univ-bench:age ?age . FILTER (%age > 16) }

The result of this integration process is a DWW whose schema is populated by in-
stances selected from Oracle SDBs. For more details, refer to the video available
at: http://www.lias-lab.fr/forge/deploymentalacarte/video.html

http://www.lias-lab.fr/forge/deploymentalacarte/video.html

80 L. Bellatreche, S. Khouri, and N. Berkani

6 Case Tool

The proposed tool is implemented in Java language and uses OWL API to access
ontologies. The tool takes as inputs a set of requirements and a set of SDBs that
participates in the construction of the DW. These sources reference a shared on-
tology formalized in OWL. SDBs are configured by some connection parameters.
The first steps (conceptual and logical design) are supported by a model-to-model
transformation process. The access to all ontologies is made through the OWL
API. Requirements are expressed following our goal oriented model. The DW O is
extracted as a module using ProSé plug-in available within Protégé editor, which
ensures the logical completeness of the extracted ontology. Fact++ reasoner is
invoked to classify the DWO class’s taxonomy and to check its consistency. In-
fluence rules defined between goals are implemented using SWRL (Semantic Web
Rule Language) language El, which must be combined with Jesdd inference engine
to execute defined SWRL rules and apply them on the DWO. A parser analyzes
the requirements in order to identify the multidimensional aspects of the concepts
and the roles by the means of Algorithm 1.

The ETL process is implemented in the tool such that the technical details
(the translation of the ETL operators) are hidden to the user. Regarding the
deployment of the DW, the tool offers the designer the possibility to choose
her/his favorite storage layout and architecture of the target DBMS according
her/his requirements. The proposed ETL algorithm is implemented in our tool.
Based on the existing mappings between the SDB schemas and the target DW
schema, the tool allows an automatic extraction of the appropriate data from
the SDB sources, their transformation (filtering, conversion and aggregation)
and the computation of the new values in order to obey to the structure of the
DW classes. Then, data are loaded to the appropriate classes of the DWW model.

In order to obtain a generic implementation of the ETL process, we imple-
mented the ETL algorithm using the Model- View-Controller (MVC) architecture
[16]. We used Data Access Object (DAQO) Design patterns [21] that implement the
access mechanism required to handle the (§DBs). The DAO solution abstracts
and encapsulates all access to persistent storage, and hides all implementation
details from business components and interface clients. The DAO pattern pro-
vides flexible and transparent accesses to different layout storage. Based on the
chosen storage layout, the architecture of the SDBs and the target DYV model,
the right object DAO is selected.

The demonstration link illustrates the different layers of the architecture
which are: (1) View Layer: the user interface. (2) Controller Layer: rep-
resents the events (user actions, changes done on the model and view layers);
(3) Model Layer: represents DAO layers containing the implementation of the
conceptual ETL operators. The tool provides a semantic DWW populated from
data of SDBs.

3http://www.w3.org/Submission/SWRL/
4http://www.jessrules.com/

http://www.w3.org/Submission/SWRL/
http://www.jessrules.com/

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 81

7 Conclusion

Semantic data currently exists everywhere. To facilitate their management, SDB
technology has been proposed. As a consequence, they are candidate for aliment-
ing warehouse projects. After a deep study of SDBs, we first proposed a generic
integration framework dedicated to these databases, and a goal model specify-
ing users requirements. We then proposed a method taking these two inputs to
design semantic DWs. The method covers the following steps: requirement anal-
ysis, conceptual design, logical design, ETL process and physical design. The user
holds an important place in the method, and the DWW multidimensional model is
essentially defined to achieve its goals. The method is validated through experi-
ments using LUBM benchmark and Oracle SDBs. These experiments show the
feasibility of our proposal. The experiment uses . Some mapping assertions are
defined between the local ontologies of Oracle SDBs and LUBM ontology schema
(considered as the global ontology). The presence of ontologies allows defining
semantic mappings between data sources and the target DW model, indepen-
dently of any implementation constraint. The DWW model can thus be deployed
using a given platform chosen by the designer. The method is supported by a
case tool implementing all the steps of the method. The tool automates the
ETL process where the appropriate data is extracted automatically from the
SDIB sources, transformed and cleaned, then loaded to the target DW. The only
effort provided by the designer is the translation of the generic conceptual ETL
operators according the logical level of the target DBMS.

Currently, we are studying three main issues: (1) the evaluation of our ap-
proach by the means of real applications, (2) the consideration of advanced
deployment infrastructures (e.g. cloud) and (3) the study of the impact of the
evolution of ontologies and user’s requirements on our proposal.

References

1. Arens, Y., Hsu, C., Knoblock, C.: Query processing in the SIMS information me-
diator. In: Readings in Agents, pp. 82-90. Morgan Kaufmann Publishers Inc., San
Francisco (1998)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

3. Bellatreche, L., et al.: Contribution of ontology-based data modeling to automatic
integration of electronic catalogues within engineering databases. Computers in
Industry Journal Elsevier 57(8-9), 711-724 (2006)

4. Calvanese, D., Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data integration
in data warehousing. Int. J. Cooperative Inf. Syst. 10(3), 237-271 (2001)

5. Cares, C., Franch, X., Lopez, L., Marco, J.: Definition and uses of the i* metamodel.
In: Proceedings of the 4th International i* Workshop, pp. 20-25 (June 2010)

6. Cruz, I.F., Xjao, H.: The role of ontologies in data integration. Jounal of Engineer-
ing Intelligent Systems 13(4), 245-252 (2005)

82

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

L. Bellatreche, S. Khouri, and N. Berkani

Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An ontology-based database
for data intensive applications. In: Kotagiri, R., Radha Krishna, P., Mohania, M.,
Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 497-508. Springer,
Heidelberg (2007)

Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. In: ICDT, pp. 207-224 (2003)

Gali, A., Chen, C.X., Claypool, K.T., Uceda-Sosa, R.: From ontology to relational
databases. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q.,
Grandi, F., Mangina, E.E.,; Song, 1.-Y., Mayr, H.C. (eds.) ER Workshops 2004.
LNCS, vol. 3289, pp. 278-289. Springer, Heidelberg (2004)

Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: DOLAP 2005, pp. 47-56 (2005)

Golfarelli, M.: Data warehouse life-cycle and design. In: Encyclopedia of Database
Systems, pp. 658-664. Springer US (2009)

Gruber, T.: A translation approach to portable ontology specifications. In Knowl-
edge Acquisition 5(2), 199-220 (1993)

Khouri, S., Bellatreche, L.: A methodology and tool for conceptual designing a
data warehouse from ontology-based sources. In: DOLAP 2010, pp. 19-24 (2010)

Khouri, S., Boukhari, I., Bellatreche, L., Jean, S., Sardet, E., Baron, M.: Ontology-
based structured web data warehouses for sustainable interoperability: requirement
modeling, design methodology and tool. To appear in Computers in Industry Jour-
nal (2012)

Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Di-
mensional Data Warehouses. John Wiley (1996)

Krasner, G.E., Pope, S.T.: A cookbook for using the model-view-controller user
interface paradigm in smalltalk-80. In: JOOP, pp. 18-22 (August/September 1988)
Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: IEEE
International Symposium on Requirements Engineering, p. 249 (2001)

Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233246
(2002)

List, B., Schiefer, J., Tjoa, A.M.: Process-oriented requirement analysis supporting
the data warehouse design process a use case driven approach. In: Ibrahim, M.,
Kiing, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 593-603. Springer,
Heidelberg (2000)

Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: Sor: A practical
system for ontology storage, reasoning and search. In: VLDB, pp. 1402-1405 (2007)
Matid, D., Butorac, D., Kegalj, H.: Data access architecture in object oriented
applications using design patterns. In: IEEE MELECON, May 12-15, pp. 18-22
(2004)

Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Deci-
sion Support Systems 52(4), 853-868 (2012)

Pires, P.F., Delicato, F.C., Cébe, R., Batista, T.V., Davis, J.G., Song, J.H.: Inte-
grating ontologies, model driven, and cnl in a multi-viewed approach for require-
ments engineering. Requirements Engineering 16(2), 133-160 (2011)

Romero, O., Abellé, A.: A framework for multidimensional design of data ware-
houses from ontologies. Data Knowl. Eng. 69(11), 1138-1157 (2010)

Romero, O., Simitsis, A., Abells, A.: GEM: Requirement-driven generation of
ETL and multidimensional conceptual designs. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2011. LNCS, vol. 6862, pp. 80-95. Springer, Heidelberg (2011)

26.

27.

28.

29.

30.

31.

Semantic Data Warehouse Design: From ETL to Deployment & la Carte 83

Brockmans, S., Haase, P., Serafini, L., Stuckenschmidt, H.: Formal and concep-
tual comparison of ontology mapping languages. In: Stuckenschmidt, H., Parent,
C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 267-291.
Springer, Heidelberg (2009)

Skoutas, D., Simitsis, A.: Ontology-based conceptual design of etl processes for
both structured and semi-structured data. Int. J. Semantic Web Inf. Syst. 3(4),
1-24 (2007)

Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The tropos metamodel and its
use. Informatica 29, 401-408 (2005)

Wache, H., Scholz, T., Stieghahn, H., Konig-Ries, B.: An integration method for
the specification of rule-oriented mediators. In: DANTE, pp. 109-112 (1999)
Winter, R., Strauch, B.: A method for demand driven information requirements
analysis in data warehousing projects. In: 36th HICSS, p. 231 (2003)

Wu, Z., Eadon, G., Das, S., Chong, E., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for rdfs/owl constructs and user-defined rules
in oracle. In: ICDE, pp. 1239-1248 (2008)

A Specific Encryption Solution for Data Warehouses

Ricardo Jorge Santosl, Deolinda Rasteiroz, Jorge Bernardin03, and Marco Vieira!

'CISUC - FCTUC - University of Coimbra — 3030-290 Coimbra — Portugal
2DFM - ISEC - Polytechnic Institute of Coimbra — 3030-190 Coimbra — Portugal
*CISUC - ISEC - Polytechnic Institute of Coimbra — 3030-190 Coimbra — Portugal
lionsoftware.ricardo@gmail.com, {dml, jorgel}@isec.pt,
mvieira@dei.uc.pt

Abstract. Protecting Data Warehouses (DWs) is critical, because they store the
secrets of the business. Although published work state encryption is the best
way to assure the confidentiality of sensitive data and maintain high perfor-
mance, this adds overheads that jeopardize their feasibility in DWs. In this
paper, we propose a Specific Encryption Solution tailored for DWs (SES-DW),
using a numerical cipher with variable mixes of eXclusive Or (XOR) and mod-
ulo operators. Storage overhead is avoided by preserving each encrypted
column’s datatype, while transparent SQL rewriting is used to avoid I/O and
network bandwidth bottlenecks by discarding data roundtrips for encryption and
decryption purposes. The experimental evaluation using the TPC-H benchmark
and a real-world sales DW with Oracle 11g and Microsoft SQL Server 2008
shows that SES-DW achieves better response time in both inserting and query-
ing, than standard and state-of-the-art encryption algorithms such as AES,
3DES, OPES and Salsa20, while providing considerable security strength.

Keywords: Encryption, Confidentiality, Security, Data Warehousing.

1 Introduction

Data Warehouses (DWs) store extremely sensitive business information. Unautho-
rized disclosure is therefore, a critical security issue. Although encryption is used to
avoid this, it also introduce very high performance overheads, as shown in [16]. Since
decision support queries usually access huge amounts of data and substantial response
time (usually from minutes to hours) [12], the overhead introduced by using encryp-
tion may be unfeasible for DW environments if they are too slow to be considered
acceptable in practice [13]. Thus, encryption solutions built for DWs must balance
security and performance tradeoff requirements, i.e., they must ensure strong security
while keeping database performance acceptable [13, 16].

As the number and complexity of “data-mix” encryption rounds increase, their se-
curity strength often improves while performance degrades, and vice-versa. Balancing
performance with security in real-world DW scenarios is a complex issue which
depends on the requirements and context of each particular environment. Most en-
cryption algorithms are not suitable for DWs, because they have been designed as a

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 84-D8] 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Specific Encryption Solution for Data Warehouses 85

general-purpose “one fits all” security solution, introducing a need for specific solu-
tions for DWs capable of producing better security-performance tradeoffs.

Encryption in DBMS can be column-based or tablespace-based. Using tablespace
encryption implies losing the ability to directly query data that we do not want or need
to encrypt, adding superfluous decryption overheads. Best practice guides such as
[14] recommend using column-based encryption for protecting DWs. Thus, we pro-
pose a column-based encryption solution and for fairness we compare it with other
similar solutions.

In this paper, we propose a lightweight encryption solution for numerical values
using only standard SQL operators such as eXclusive OR (XOR) and modulo (MOD,
which returns the remainder of a division expression), together with additions and
subtractions. We wish to make clear that it is not our aim to propose a solution as
strong in security as the state-of-the-art encryption algorithms, but rather a technique
that provides a considerable level of overall security strength while introducing small
performance overheads, i.e., that presents better security-performance balancing. To
evaluate our proposal, we include a security analysis of the cipher and experiments
with standard and state-of-the art encryption algorithms such as Order-Preserving
Encryption (OPES) [3] and Salsa20 (alias Snuffle) [5, 6], using two leading DBMS.

In summary, our approach has the following main contributions and achievements:

e SES-DW avoids storage space and computational overhead by preserving each
encrypted column’s original datatype;

e Each column may have its own security strength by defining the number of encryp-
tion rounds to execute. This also defines how many encryption keys are used, since
each round uses a distinct key (thus, the true key length is the number of rounds
multiplied by the length of each round’s encryption key). This enables columns
which store less sensitive information to be protected with smaller-sized keys and
rounds and thus, process faster than more sensitive columns;

e Our solution is used transparently in a similar fashion as the Oracle TDE [11, 14]
and requires minimal changes to the existing data structures (just the addition of a
new column), and the SES-DW cipher uses only standard SQL operators, which
makes it directly executable in any DBMS. This makes our solution portable, low-
cost and straightforward to implement and use in any DW;

e Contrarily to solutions that pre-fetch data, by simply rewriting queries we avoid
I/0 and network bandwidth congestion due to data roundtrips between the database
and encryption/decryption mechanism, and consequent response time overhead,;

e The experiments show that our technique introduces notably smaller storage space,
response and CPU time overheads than other standard and state of the art solutions,
for nearly all queries in all tested scenarios, in both inserting and querying data.

The remainder of the paper is organized as follows. In section 2 we present the guide-
lines and describe our proposal. In Section 3, we discuss its security issues. Section 4
presents experimental evaluations using the TPC-H decision support benchmark and a
real-world DW with Oracle 11g and Microsoft SQL Server 2008. Section 5 presents
related work and finally, section 6 presents our conclusions and future work.

86 R.J. Santos et al.

2 SES-DW: Specific Encryption Solution for Data Warehouses

In this section we point out a set of considerations concerning the use of encryption
solutions in DW environments, which guide the requirements that serve as the foun-
dations of our proposal, and then we describe our approach and how it is applied.

2.1 The Foundations of SES-DW

Standard encryption algorithms were conceived for encrypting general-purpose data
such as blocks of text, i.e., sets of binary character-values. Standard ciphers (as well
as their implementations in the leading DBMS) output text values, while DW data is
mostly composed by numerical datatype columns [12]. Most DBMS provide built-in
AES and 3DES encryption algorithms and enable their transparent use. However, they
require changing each encrypted column’s datatype at the core to store the ciphered
outputs. To use the encrypted values for querying once decrypted, the textual values
must be converted back into numerical format in order to apply arithmetic operations
such as sums, averages, etc., adding computational overheads with considerable per-
formance impact. Since working with text values is much more computationally ex-
pensive than working with numeric values, standard ciphers are much slower than
solutions specifically designed for numerical encryption such as ours, which is specif-
ically designed for numerical values and avoids datatype conversion overheads.

Data in DWs is mostly stored in numerical attributes that usually represent more
than 90% of the total storage space [12]. Numerical datatype sizes usually range from
1 to 8 bytes, while standard encryption outputs have lengths of 8 to 32 bytes. Since
DWs have a huge amount of rows that typically take up many gigabytes or terabytes
of space, even a small increase of any column size required by changing numeric
datatypes to textual or binary in order to store encryption outputs introduces very
large storage space overheads. This consequently increases the amount of data to
process, as well as the required resources, which also degrades database performance.
While encrypting text values is mainly not so important for DWs, efficiently encrypt-
ing numerical values is critical. In our approach, we preserve the original datatype and
length of each encrypted column, to maintain data storage space.

Topologies involving middleware solutions such as [15] typically request all the
encrypted data from the database and execute decrypting actions themselves locally.
This strangles the database server and/or network with communication costs due to
bandwidth consumption and I/O bottlenecks given the data roundtrips between mid-
dleware and database, jeopardizing throughput and consequently, response time. Giv-
en the typically large amount of data accessed for processing DW queries, previously
acquiring all the data from the database for encrypting/decrypting at the middleware
is impracticable. Therefore, our approach is motivated by the requirement of using
only operators supported by native SQL. This enables using only query rewriting for
encrypting and decrypting actions and no external languages or resources need to be
instantiated, avoiding data roundtrips and thus, avoiding I/O and network overhead
from the critical path when compared to similar middleware solutions.

A Specific Encryption Solution for Data Warehouses 87

In what concerns the design of “data mixing” for each of the cipher’s rounds, we
discard bit shifting and permutations, commonly used by most ciphers, since there is
no standard SQL support for these actions. We also discard the use of substitution
boxes (e.g. AES uses several 1024-byte S-boxes, each of which converts 8-bit inputs
to 32-bit outputs). Although complex operations such as the use of S-boxes provide a
large amount of data mixing at reasonable speed on several CPUs, thus achieving
stronger security strength faster than simple operations, the potential speedup is fairly
small and is accompanied by huge slowdowns on other CPUs. It is not obvious that a
series of S-box lookups (even with large S-boxes, as in AES, increasing L1 cache
pressure on large CPUs and forcing different implementation techniques on small
CPUs) is faster than a comparably complex series of integer operations. In contrast,
simple operations such as bit additions and XORs are consistently fast, independently
from the CPU. Our approach aims to be DBMS platform independent, making it usa-
ble in any DW without depending on any programming language or external resource,
as well as specific CPU models. Given the requirements described in the former para-
graphs, the proposed solution is described in the next subsections.

2.2 The SES-DW Cipher

Considering x the plaintext value to cipher and y the encrypted ciphertext, NR the
number of rounds, RowK a 2'** bit encryption key, Operation[f] a random binary
vector (i.e., each element is 1 or 0), XorK[f] and ModK][t] as vectors where each ele-
ment is an encryption subkey with the same bit length as the plaintext x, and F(¢) a
MOD/XOR mix function (explained further), where t represents each individual en-
cryption round number (i.e., t = 1...NR). Figures 1.a and 1.b show the external view of
the SES-DW cipher for respectively encrypting and decrypting.

X

RowK ¥
input P L RowK
Operation[1] F(1) ModKI[1] \ v
output —H<+«—eXorK[NR]
Y .
<+—e XorK[1 yinput
r Operation[NR] e F"(NR) ModK[NR]
yinput ModK[2] output
fonfz 2) 14 Modkiz] | Y
operationt]ﬂo)utput I 4¢—eXorK[NR-1]
4 .
E «—o yinput
Xork{2] Operation[NR-1] F '(NR-1) ModK[NR-1] \
‘-' . output

input
Operation[NR] F(NR) ModK[NR]

output
4

4
pe—e XorK[1]
yinput

ModK[1]

a«—oXorK[NR] Operation[1]

v

y X

Fig. 1a. The SES-DW encryption cipher Fig. 1b. The SES-DW decryption cipher

88 R.J. Santos et al.

As illustrated, we randomly mix MOD with XOR throughout the encryption
rounds, given a random distribution of 1 and O values of vector Operation. In the
rounds where Operation[t] = 0, only XOR is used with the respective XorK[f]; in
rounds where Operation[t] = 1, we first perform MOD with addition and subtraction
using the respective ModK[t] and RowK][j], and TabK, and afterwards XOR with the
respective XorK[t]. To avoid generating a ciphertext that may overflow the bit length
of x it must be assured that the bit length of the term using MOD (EncryptOutput +
(RowK[j] MOD ModK][t]) - ModK][t]) is smaller or equal to the bit length of x.

As an example of encryption, consider the encryption of an 8 bit numerical value
(x =126) executing 4 rounds (NR = 4), given the following assumptions:

Operation = [0, 1, 0, 1] XorK = [31, 2, 28, 112]

For t=1 (round 1), EncryptOutput = 126 XOR 31 = 97

For t=2 (round 2), EncryptOutput = (97+ (15467801 MOD 36)-36) XOR 2 = 64
For t=3 (round 3), EncryptOutput = 64 XOR 28 = 92

For t=4 (round 4), EncryptOutput = ((92+15467801 MOD 19)-19) XOR 112 = 40

Thus, Encrypt(126, 4) = 40. In the decryption cipher, shown in Figure 1.b, F'() also
represents the reverse MOD/XOR mix function for decryption. Given this, the SES-
DW cipher decryption function for decrypting x with NR rounds is:

FUNCTION Decrypt (x,NR)

DecryptOutput = x
FOR t = NR DOWNTO 1 STEP -1

DecryptOutput = DecryptOutput XOR XorK|[t]
IF Operation[t] = 1 THEN
DecryptOutput = DecryptOutput - (RowK MOD ModK[t]) + ModKI[t]
END_TIF
END_FOR

RETURN DecryptOutput

Considering the encryption example previously shown, we now demonstrate the de-
cryption process for y = 40, given the same Operation, RowK, XorK and ModK:

For t=4 (round 1), DecryptOutput = (40 XOR 112)-(15467801 MOD 19)+19 = 92
For t=3 (round 2), DecryptOutput = 92 XOR 28 = 64
For t=2 (round 3), DecryptOutput = (64 XOR 2)-(15467801 MOD 36)+36 = 97

For t=1 (round 4), DecryptOutput = 97 XOR 31 = 126

Thus, Decrypt(40, 4) = 126, which is the original x plaintext value. Although our
cipher only works with numerical values, we maintain the designation of plaintext and
ciphertext respectively for the true original input value and ciphered value.

2.3 The SES-DW Functional Architecture

The system’s architecture is shown in Figure 2, made up by three entities: 1) the en-
crypted database and its DBMS; 2) the SES-DW security middleware application; and
3) user/client applications to query the encrypted database. The SES-DW middleware
is a broker between the DBMS and the user applications, using the SES-DW encryp-
tion and decryption methods and ensuring queried data is securely processed and the
proper results are returned to those applications. We assume the DBMS is a trusted
server and all communications are made through SSL/TLS secure connections, to
protect SQL instructions and returned results between the entities.

A Specific Encryption Solution for Data Warehouses 89

Black Box
(Encryption Keys,
User Access Definitions,

Query Action Log)
Query Query
__Results | SES-DW _ Results _
oot [* | Middieware [* ~| DBus [T Encnped
PP User = | Application | Rewritten atabase
Queries User Queries

Fig. 2. The SES-DW Data Security Architecture

The Black Box is stored on the database server, created for each encrypted data-
base. This process is similar to an Oracle Wallet, which keeps all encryption keys and
definitions for each Oracle Database [14]. However, contrarily to Oracle, where a
DBA has free access to the wallet, in our solution only the SES-DW middleware can
access the Black Box, i.e., absolutely no user has direct access to its content. In the
Black Box, the middleware will store all encryption keys and predefined data access
policies for the database. The middleware will also create a history log for saving
duplicates of all instructions executed in the database, for auditing and control pur-
poses. All Black Box contents are encrypted using AES with a 256 bit key.

To obtain true results, user actions must go through the security middleware appli-
cation. Each time a user requests any action, the application will receive and parse the
instructions, fetch the encryption keys, rewrite the query, send it to be processed by
the DBMS and retrieve the results, and finally send those results back to the applica-
tion that issued the request. Thus, SES-DW is transparently used, since query rewrit-
ing is transparently managed by the middleware. The only change user applications
need is to send the query to the middleware, instead of querying the database directly.

To encrypt a database, a DBA requires it through the SES-DW middleware. Enter-
ing login and database connection information, the middleware will try to connect to
that database. If it succeeds, it creates the Black Box for that database, as explained
earlier. Afterwards, the middleware will ask the DBA which tables and columns to
encrypt. All the required encryption keys (RowK, XorK, ModK) for each table and
column will be generated, encrypted by an AES256 algorithm and stored in the Black
Box. Finally, the middleware will encrypt all values in each column marked for en-
cryption. Subsequent database updates must always be done through the middeware,
which will apply the cipher to the values and store them directly in the database.

To implement SES-DW encryption in a given table 7, consider the following: Sup-
pose table T with a set of N numerical columns C; = {C}, C,, ..., Cy} to encrypt and a
total set of M rows R; = {R;, R;, ..., Ry}. Each value to encrypt in the table will be
identified as a pair (R;, C;), where Rj and Ci respectively represent the row and col-
umn to which the value refers (j = {1..M} and i = {1..N}). To use the SES-DW cipher,
we generate the following encryption keys and requirements:

e An encryption key TabK, a 128 bit random generated value, constant for table T;

e Vector RowK]j], with j = {1..M}, for each row j in table T. Each element holds a
random 128 bit value;

e Define NR; with i = {1..N}, which gives the number of encryption rounds to ex-
ecute for each column C;. We define NR; = SBL/BitLength(C;), where SBL; is the
desired security bit strength for the XorK and ModK encryption keys of column C;

90 R.J. Santos et al.

and BitLength(C)) is the datatype bit length of column C; (e.g. if we want to secure
a 16 bit column C; with a security strength of 256 bits, then the number of encryp-
tion rounds would be 256/16 = 16);

e Vectors XorK;[t] and ModK[t], with t = {1..NR;}, for each C,, filled with randomly
generated unique values. The bit length of each key is equal to the bit length of
each C;’s datatype;

e A vector Operation;[t], with t = {1..NR;}, for each column C,, filled randomly with
1 and 0 values, so that the count of elements equal to 1 is the same as the count of
elements equal to 0 (e.g. Operation; = [0,1,0,0,1,1,0,1], with NR;= 8).

Since the number of rows in a DW fact table is often very big, the need to store a
RowK]j] encryption key for each row j poses a challenge. If these values were stored
in a lookup table separate from table 7, a heavy join operation between those tables
would be required to decrypt data. Given the typically huge number of rows in fact
tables, this must be avoided. For the same reasons, storing RowK][j] in RAM is also
impracticable. To avoid table joins, as well as oversized memory consumption, the
values of RowK][j] must be stored along with each row j in table T, as an extra column
Cyy ;. This is the only change needed in the DW data structure in order to use SES-
DW. To secure the value of RowK([j], it should be XORed with key TabK before be-
ing stored. To retrieve the true value of RowK][j] in order to use the SES-DW algo-
rithms, we need to simply calculate (Rj, Cy,;) XOR TabK.

3 Security Issues

Threat Model. All user instructions are managed by the SES-DW middleware, which
transparently rewrites them to query the DBMS and retrieve the results. The users
never see the rewritten instructions. For security purposes, the middleware shuts off
database historical logs on the DBMS before requesting execution of the rewritten
instructions, so they are not stored in the DBMS, since this would disclose the encryp-
tion keys. All communications between user applications, the SES-DW middleware
and the DBMS are done through encrypted SSL/TLS connections. In what concerns
the Black Box, all content is encrypted using the AES 256 algorithm, making it as
secure in this aspect as any other similar solution for stored data (e.g. Oracle 11g TDE
and SQL Server 2008 TDE). The only access to the Black Box content is done by the
middleware, which is managed only by the application itself. We assume the DBMS
is an untrusted server such as in the Database-As-A-Service (DAAS) model and the
“adversary” is someone that manages to bypass network and SES-DW access con-
trols, gaining direct access to the database. We also assume the SES-DW algorithms
are public, so the attacker can replicate the encryption and decryption functions,
meaning that the goal of the attacker is to obtain the keys in order to break security.

Using Variable Key Lengths and MOD-XOR Mixes. The bit length of the encryp-
tion keys XorK and ModK are the same as the bit length of each encrypted column,
meaning that an 8 bit sized column datatype will have 8 bit sized encryption keys. It is
obvious that using 8 bit keys on their one is not secure at all. However, since all keys
are distinct in each round, executing 16 rounds would be roughly equivalent to having

A Specific Encryption Solution for Data Warehouses 91

a 16*8 = 128 bit key in the encryption process. It is up to the DW security administra-
tor to decide how strongly secure each column should be, which defines how many
rounds should be executed, considering the bit length of the column’s datatype.

The MOD operator is used in the cipher because it is non-injective, given that for X
MOD Y = Z, the same output Z, considering Y a constant, can have an undetermined
number of possibilities in X as an input that will generate the same value Z (e.g. 15
MOD 4=3, 19 MOD 4=3, 23 MOD 4=3, etc). Since MOD operations are non-
injective, the encryption rounds using MOD are also non-injective. Given that injec-
tivity is a required property for invertibility, our cipher is thus not directly invertible.
It is also true that the same ciphered output values are most likely to come from dif-
ferent original input values. Moreover, randomly using the XOR and MOD operators
as the two possible operators for each round also increases the number of possibilities
an attacker needs to test in exhaustive searches for the output values of each encryp-
tion round, since the attacker does not know the rounds in which MOD is used with
XOR and needs to test both hypothesis (XOR and MOD-XOR). Furthermore, if the
attacker does not know the security strength chosen for encrypting each column, s/he
does not know how many encryption rounds were executed for each ciphered value.

By making the values of XorK; and ModK;, distinct between columns, we also
make encrypted values independent from each other between columns. Even if the
attacker breaks security of one column in one table row, the information obtained
from discovering the remaining encryption keys is limited. Thus, the attacker cannot
infer information enough to break overall security; in order to succeed, s/he must
perform recover all the keys for all columns.

Attack Costs. To break security by key search in a given column C;, the attacker
needs to have at least one pair (plaintext, ciphertext) for a row j of C;, as well as the
security bit strength involved, as explained in subsection 2.3, because it will indicate
the number of rounds that were executed. In this case, taking that known plaintext, the
respective known ciphertext, and the Cy,; value (storing RowK; XOR TabK, as ex-
plained in subsection 2.3), s/he may then execute an exhaustive key search.

The number of cipher rounds for a column C; is given by NRi, and B is the bit-
length of C;’s datatype. Since half the values of vector Operation are zeros and the
other half are ones, the probability of occurrences of 1 and O is equal, i.e.,
Prob(Operation[t]=0) = V2 = Prob(Operation[t]=1), where the number of possible
values for Operation[1] is 2% Considering P, each XorK and ModK subkey also has a
length of B bits and thus, each XorK and ModK subkeys have a search space with 2
possible values. TabK is a 128 bit value, thus with a search space of 2'* possible
values. Considering the cipher’s algorithm and given the probability of {0, 1} values
in Operation, a XOR is executed in all rounds (NRi), while a MOD is executed before
the XOR in half the rounds (NRi/2). Given this, the key search space dimension con-
sidering the combination of XOR and MOD/XOR rounds is given by G(x):

. NRi

NR1+T
G(x) — Z F(x)) 2(ﬁx)+128
x=1

92 R.J. Santos et al.

(" /NRi-x
<NRi) ,x=1
- X
NRi-x
Fx—1)+ (-1D~* <NRi) , 2 <=x<=NRi/2
— X
2
F(x) = < F(x—1) ,NRi/2+1 <= x <= NRi
NRi
NRi, (¥~ 1
Flx—1)+ (-)* =) () , NRi+1 <=x <= NRi + NRi/2 - 1
x—NRi—1
NRi
<NRi> ,X=NRi+ NRi/2
\ 2

Considering Y as the number of attempts to discover the keys, Y is a discrete random
variable with support S = {1...N }, where N represents the search space’s dimension.
For one attempt, considering a random variable B, it has only two possibilities:

B= {0, given the attempt is not successful
1, given the attempt is successful

Therefore, B follows a Bernoulli distribution with probability p = ProlB=1) = 1/N.
Since the number of attempts is limited, given the search space is finite, variable Y also

has a finite support S = {1...N}. The probability of being successful after k attempts is
o _ k-1
given by: Prob(Y = k) = Prob(AnAn..nAnA)=(1-2) .1 k=1..N.
Note that the probability of being needed more than m attempts is given by:

1

Prob(Y >m) = By Prob(t =k) = i (1- ;)k_l 2=-1/N)" [(1 -(1- %)N_m)].

The probability of needing n more attempts, given m initial unsuccessful attempts (for
m > 1 and n > 1) is given by Prob(Y >m+n | Y >m) = Prob(Y>m+n) | Prob(Y>m),
since the event {Y > m+n} is contained in {Y > m}, which means that after having m
unsuccessful attempts, being successful after n more attempts only depends on those n
additional attempts and not on the initial m attempts, i.e., it does not depend on the
past. For the complete search space, the average number of attempts is then given by:

YN _ k.Prob(Y = k) = %Zﬁﬂ k (1 - %)k_l = (%)

From the series theory it is known that Y% x* = ﬁ , if IxI<1, which is the case in

() for (1-2). Thus, (552, x%)' = () & Si kakt =

1

oo o i<l

Thus, the average number of attempts for finding the keys is (x) = %W =
1-(1—
N.
N which is equal to the dimension of the key search space (N). Note however, that
this is the worst case complexity. It is possible for the attacker to reduce the key
search space by chosen plaintext attacks. Since the same 7abK key is used for en-
crypting all RowK, as explained in previous subsection (Cy,,(row j) = RowK][j] @
TabK), the information leakage given by y,®y,=(x;®TabK)®(x,®TabK) <
y1@y2=(x1®x2)®(TabK@TabK) (=4 y1@y2=x1®x2 lmphes that CN+](rOW]) @ CN+](rOW
j+1) = RowK[j] ® RowK[j+1], reducing the possible search space for RowK to 2%
instead of 2'** in each row. If the attacker manages to use very low RowK values,

A Specific Encryption Solution for Data Warehouses 93

which are most probably smaller than the value of the ModK encryption keys (i.e.
RowK<ModK][t]), then the (RowK MOD ModK][t]) — ModK][t] operation in the cipher
will be reduced to RowK — ModK]¢], thus further reducing complexity. In this case,
for example, taking more than one (plaintext, ciphertext) pair y; = Encrypt(x;,2) and
y2= Encrypt(x,,2) for 2 encryption rounds on the same row, where Operation=[0,1]:

y1® y, = (x,® XorK[1] + RowK — ModK|[2]) ® (x,® XorK[1] + RowK — ModK|[2])

Considering that each x; has a length of B bits, given the encryption key RowK has a
reduced search space of 2% (as previously mentioned) and each XorK and ModK have
a search space of 28, the key search space in this example is given by 276 Since
XorK[1] and ModK][2] are just half the keys for the 2 round SES-DW, to obtain the
remaining XorK[2] and ModK[1] keys, the search space is incremented by 2P Since
the number of XorK and ModK encryption keys is the same as the number of rounds,
the generic expression for the reduced key search space in this type of attack is given
by G(x) = QVRIB+64 4 ONRIB Note that for an 8 bit value (B = 8) encrypted by 16 rounds
(NRi = 16), using 16 XorK and ModK subkeys with 8 bits each (each total key length
for XorK and ModK is 16*8 = 128 bits), the key search space complexity is 2'** + 2'**
= 6,3x1057, which remains a considerable measure of security strength.

SES-DW Entropy. In information theory, entropy is a measure of randomness or
uncertainty. In this context, the term usually refers to Shannon’s entropy, which quan-
tifies the randomness of a variable based upon the knowledge of the information
contained in its message. The entropy of a discrete variable X with n bits in length is
given by the following expression, where Prob(x;) is the probability of occurrence of
each x; within the probability distribution of all possible integer values [1...2"]:

Entropy(X) = —Z?:l(Prob(X = x;).log,Prob(X = x;))

Since numeric datatype storage sizes are typically 8, 16, 32, 64 or 128 bits, each of
our cipher’s input/output values (as well as the encryption keys) respectively have a
number of 2%, 2'®, 2%%, 2% or 2'* possible combinations. While it is computationally
fast to obtain the probability distribution in the first case by combining all possible
input and encryption key values (with all 8 bit values = [1...2%]) using two cipher
rounds (the minimum number of rounds), for the remaining (216, 232 2% and 2128) the
task gets exponentially time-expensive. Therefore, after a series of statistical regres-
sion experiments using the calculated 8 bit probability distribution for SES-DW, we
found that the logarithmic regression (y = a + b.In(x)) generated the most adjusted
statistical model for representing the cipher’s probability distribution (with R*>=0.98
and a standard error of 0.001). Knowing that the accumulated probability for n bits
must be equal to 1, using the logarithmic regression function we must ensure that:

flzn a+b.in(x)dx=1

This expression leads to Prob(x;) = &+ b.In(x;), representing the estimated proba-
bility distribution function for n bits SES-DW, where:

~ n ~ F—(on—14L
q= 1-n.b.2™.In(2) +b A b= (2)

2n—1 2202 _ 2 2n=1.In (2)

94 R.J. Santos et al.

Given Prob(x), the entropy of SES-DW for n=8, 16, 32, 64 and 128 bits is shown
in Table 1. As seen, the entropy produced for #n bits is nearly n, thus meaning the gen-
erated ciphertexts are very close to a uniformly random # bit value.

Table 1. Estimated SES-DW entropy values

Number of bits (n) | SES-DW Entropy
8 7,967144
16 15,972308
32 31,979863
64 63,986246
128 127,989741

4 Experimental Evaluation

We used the TPC-H benchmark [17] (1GB and 10GB scale sizes) and a real-world
sales DW storing one year of commercial data (taking up 2GB of data). We tested all
scenarios using Oracle 11g and Microsoft SQL Server 2008 DBMS, on a Pentium
Core2Duo 3GHz CPU with a 1.5TB SATA hard disk and 2GB RAM (512MB of
devoted to database memory cache), with Windows 2003 Server. The TPC-H schema
has one fact table (Lineltem), and seven dimension tables. The Sales DW database
schema has one fact table (Sales) and four dimension tables. In TPC-H setups, four
numerical columns of Lineltem were encrypted (L_Quantity, L_ExtendedPrice, L_Tax
and L_Discount). In the Sales DW, five numerical columns were encrypted
(S_ShipToCost, S_Tax, S_Quantity, S_Profit, and S_SalesAmount). We compare our
solution with the column-based AES128, AES256 and 3DES168 algorithms, and
OPES [3] and Salsa20 [5, 6]. OPES and Salsa20 were implemented using C++.

4.1 Analyzing Storage Size and Loading Time

Tables 2 and 3 show the results of data storage size and loading time (in seconds),
respectively, for loading the TPC-H 1GB Lineltem table in each setup. The results in
the remaining databases are similar, with absolute values nearly proportional to their
database sizes, and due to lack of space and to avoid redundancy are not included.
The results shown are an average of six executions for each tested scenario on each
DBMS (with standard deviation in Oracle 11g between [2.27, 22.12], and in SQL
Server 2008 between [3.19, 20.45]).

Table 2. TPC-H 1GB Lineitem Fact Table Storage Size Overhead

Oracle TPC-H 1GB SQL Server TPC-H 1GB
Storage Size (Overhead) Storage Size (Overhead)
Standard 772MB 1237MB
AES128/256 1960MB (+1188MB / 154%) 2410MB (+1173MB / 95%)
3DES168 1572MB (+800MB / 104%) 2181MB (+944MB / 76%)
OPES 790MB (+18MB / 2%) 1258MB (+21MB / 2%)
Salsa20 1064MB (+292MB / 38%) 1553MB (+316MB / 26%)
SES-DW 868MB (+96MB / 12%) 1339MB (+102MB / 8%)

A Specific Encryption Solution for Data Warehouses 95

Table 3. TPC-H 1GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 1GB SQL Server TPC-H 1GB
Loading Time (Overhead) Loading Time (Overhead)
Standard 253 s 171s
AES128 608 s (355 s/141%) 382 s (211s/123%)
AES256 636 s (383 s/ 152%) 407 s (236 s / 138%)
3DES168 617 s (364 s/ 144%) 389 s (218s/127%)
OPES 353 s (100 s / 40%) 229 s (58 s /34%)
Salsa20 419 s (166 s/ 66%) 281 s (110 s/ 64%)
SES-DW128 279's (26 s/ 10%) 1915 (20 s/ 12%)
SES-DW256 294 s (415 /16%) 199 s (28 s / 16%)
SES-DW1024 451 s (198 s/ 78%) 284 s (113 s/ 66%)

As shown, OPES and SES-DW have much smaller storage space overheads (2% to
12%, 18MB to 102MB) than Salsa20 (26% to 38%, 292MB to 316MB), 3DES168
(76% to 104%, 800MB to 944MB) and AES (95% to 154%, 1173MB to 1188MB of
overhead). However, in loading time, SES-DW presents the best results by far (10%
to 16%, 20 to 41 seconds of overhead). Considering these results, SES-DW is much
more efficient, introducing small overheads for similar key sizes. Note that the worst
result for SES-DW 1024, which is similar to Salsa20; however, it refers to using 1024
bit encryption keys, far higher than the remaining tested algorithms. Also note that the
results for the TPC-H 10GB database are approximately proportional to those of the
1GB database, which means ten times bigger. Since 1GB is actually a very small size
for a DW database, it is easy to conclude that the overheads introduced by encryption
are extremely significant and may in fact introduce considerable hardware cost.

4.2 Analyzing Database Query Performance

The TPC-H workload included the benchmark queries 1, 3, 6, 7, 8, 10, 12, 14, 15, 17,
19 and 20 (all accessing fact table Lineltem). For Sales DW, the workload was a set
of 29 queries, all processing the Sales fact table, as a set of usual decision support
daily (9 queries), monthly (9 queries) and annual (11 queries) queries. All results are
an average from six executions in each scenario (Oracle 11g standard deviations be-
tween [0.47, 42.23] and [0.55, 61.34] for 1GB and 10GB TPC-H, respectively, and
[0.63, 59.17] for the Sales DW, and SQL Server between [0.56, 49.56] and [0.63,
58.30] for 1GB and 10GB TPC-H, respectively, and [0.47, 66.08] for the Sales DW).
Figure 3 shows total workload execution time overhead for each scenario, while Fig-
ure 4 shows the same for CPU time overhead. The Standard execution time (execu-
tion time of the workload against a non-encrypted database) for each scenario is 492,
5037, and 1766 seconds in Oracle 11g, and 452, 4294, and 1690 seconds in SQL
Server 2008, for the 1GB, 10GB TPC-H and Sales DW, respectively.

It can be seen that SES-DW with 128-bit and 256-bit security has the best response
and CPU time overheads for all scenarios, followed by Salsa20 and further by AES,
while OPES has results leveled between AES and 3DES. Notice that observing the
results for the TPC-H database, SES-DW shows better scalability than the remaining
ciphers. In fact, SES-DW 1024-bit in the TPC-H 10GB is nearly as fast as Salsa20,
the best solution after SES-DW. This means that the relative gains by using SES-DW

96 R.J. Santos et al.

W AES1Z8 m AES256 @ 3DES168 % OPES =Salsa20 = SES-DW128 w SES-DW256 & SES-DW1024

Oracle SQL Server Oracle sQL Server Oracle SQL Server Sales
TPC-H 1GB TPC-H 1GB TPC-H 10GB TPC-H 10GB Sales DW 2GB DW 2GB

TR

Fig. 3. Total query workload response time overheads (%) for each setup

Oracle SQL Server Oracle SQL Server Oracle SQL Server Sales
TPC-H 1GB TPC-H 1GB TPC-H 10GB TPC-H 10GB Sales DW 2GB DW 2GB

10000%

1000%

100%

%

y
.
.

Qg

Fig. 5. TPC-H 10GB individual query exec. time overhead p/encrypt. algorithm in Oracle 11g

increases as database size scales up, compared with the remaining ciphers. Notice that
being 100% faster in TPC-H 10GB means a saving of 5037 seconds (almost 1,5
hours) in total query workload response time.

Considering these results, since 10GB is actually a small size for a DW database, it
is easy to conclude from the overall results that performance overheads introduced by
data encryption algorithms in DWs are in fact extremely significant, and even mini-
mum gain in response/CPU time is an important achievement.

The results for individual query execution time in Oracle 11g for TPC-H 10GB
scenarios are shown in Figure 5, with a logarithmic scale. These results show that all
queries have similar proportional overhead to those of the complete workload. This is
also true for all the other scenarios, making it redundant to include all in this section.
It can be seen that most queries processed by AES and 3DES have overheads of sev-
eral orders of magnitude higher than SES-DW.

The number of CPU clock cycles spent on encryption and decryption depends on
the algorithm and CPU architecture in which they are executed. As an example, the
work in [7] refers that AES [2] with a 128 bit key takes up, on average, 20 clock
cycles per encrypted byte on a Pentium IV, for encrypting a 16 byte value, resulting in
a total of 20 x 16 = 320 clock cycles. The same algorithm with a 256 bit key takes up
an average of 28 clock cycles per encrypted byte, meaning it needs 28*16 = 448 clock
cycles for encrypting the same 16 byte value. We measured a speed of 8.53 cycles per
byte for SES-DW on a Pentium IV for 128 bits encryption values. This makes SES-
DW more than twice as fast as AES 128 on the same CPU model.

A Specific Encryption Solution for Data Warehouses 97

5 Related Work

The work in [4] proposes perturbed tables in a DW for preserving privacy that obfus-
cates data and explain data reconstruction for executing queries. Although providing
strong guarantees against privacy breaches, these methods produce errors in data re-
construction, which we avoid. A lightweight database encryption scheme for column-
oriented DBMS is proposed in [9], with low decryption overhead. In [3] an Order
Preserving Encryption Scheme (OPES) for numeric data is proposed, by flattening
and transforming the plain text distribution onto a target distribution, based on value-
based buckets. This solution allows any comparison operation to be directly applied
on encrypted data. A similar solution for processing queries without decrypting data
was proposed by [10], using the database-as-a-service paradigm.

The Data Encryption Standard (DES) [8] is a 64 bit block cipher which uses a 56
bit key. As an enhancement of DES, the Triple DES (3DES) encryption standard was
proposed [1]. The 3DES encryption method is similar to the original DES, but it is
applied three times to increase the encryption level, using three different 56 bit keys.
Thus, the effective key length is 168 bits. The algorithm increases the number of
cryptographic operations, making it one of the slowest block cipher methods. The
Advanced Encryption Standard (AES) is currently the most used encryption standard
[2]. AES provides three key lengths: 128, 192 and 256 bits. It is fast and able to pro-
vide stronger encryption, compared to other algorithms such as DES [13]. Brute force
attack is the only known effective attack known against it. As we have demonstrated
in [16], these ciphers introduce very much performance overhead for DWs.

In the search for more computationally efficient algorithms by exchanging a small
number of complex operations such as S-box lookups for longer chains of simpler
operations, the Salsa20 (alias Snuffle) family of ciphers [6] was proposed. These ci-
phers have been well studied and are considered fast high security solutions.

An Enterprise Application Security solution is presented in [15], acting as a wrap-
per/interface between user applications and the encrypted database server. This solu-
tion aims to ensure data integrity and efficient query execution over encrypted data-
bases, by evaluating most queries at the application server and retrieving only the
necessary records from the database server.

6 Conclusions and Future Work

We propose an encryption solution specifically designed for enhancing data confiden-
tiality in DWs. This solution is transparent and only require user applications to send
their queries to a middleware security broker instead of the DBMS. Only the final
processed results are returned to the authorized user applications that requested them.
All SQL commands and actions are encrypted and stored in a log by the security bro-
ker, which can be audited by any user with administration rights. In the database,
the data always stays encrypted, never allowing breaches before queries finish execu-
tion. If an attacker bypasses the broker and gains direct access, s/he just sees en-
crypted “realistic-looking” values. In addition, since data schemas and column-types
are preserved and the encrypted data is realistic but not real, our method allows using
the database (or “as-is” replicas) for testing purposes and direct querying during

98 R.J. Santos et al.

application software development, generating realistic but not real results. This also
avoids disclosure of the real original data if any attacker bypasses database access
control and can retrieve data directly from the database. The proposed solution is
independent from DBMS and CPU specific features and requires small computational
efforts and can be straightforward and easily implemented in any database. Since it
basically works by transparently rewriting user queries, it minimizes efforts in chang-
ing user applications and does not jeopardize network and I/O bandwidth. Our tech-
nique shows better database performance than standard and state-of-the-art encryption
solutions while providing considerable security strength, making it a valid option for
balancing performance with security from the DW perspective. As future work, we
intend to take advantage of the history log stored in the Black Box in order to manage
intrusion detection for attackers that obtain valid database login credentials.

References

1. 3DES, Triple DES, National Bureau of Standards, Nat. Inst. of Standards and Technology
(NIST), Fed. Inform. Processing Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3 (2005)

2. AES, Advanced Encryption Standard. NIST, FIPS-197 (2001)

3. Agarwal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-Preserving Encryption for Numeric
Data. In: ACM SIG Conf. on Management Of Data, SIGMOD (2004)

4. Agrawal, R., Srikant, R., Thomas, D.: Privacy Preserving OLAP. In: ACM SIG Conf.
Management Of Data, SIGMOD (2005)

5. Bernstein, D.J.: Snuffle 2005: The Salsa Encryption Function,
http://cr.yp.to/snuffle.html

6. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet, O. (eds.)
New Stream Cipher Designs. LNCS, vol. 4986, pp. 84-97. Springer, Heidelberg (2008)

7. Bernstein, D.J., Schwabe, P.: New AES software speed records. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322-336. Springer,
Heidelberg (2008)

8. DES, Data Encryption Standard, National Bureau of Standards, Nat. Inst. of Standards and
Technology (NIST), Federal Inform. Processing Standards (FIPS) Pub 46 (1977)

9. Ge, T., Zdonik, S.: Fast, Secure Encryption for Indexing in a Column-Oriented DBMS. In:
Int. Conf. Data Engineering, ICDE (2007)

10. Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over Encrypted Data in the
Database-Service-Provider Model. ACM C. Management of Data, SIGMOD (2002)

11. Huey, P.: Oracle Database Security Guide 11g. Oracle Corp. (2008)

12. Kimball, R., Ross, M.: The Data Warehouse Toolkit, 2nd edn. Wiley & Sons Inc. (2002)

13. Nadeem, A., Javed, M.Y.: A Performance Comparison of Data Encryption Algorithms. In:
IEEE Int. Conf. on Information and Communication Technologies, ICICT (2005)

14. Oracle Corporation, Oracle Advanced Security Transparent Data Encryption Best Practic-
es, Oracle White Paper (July 2010)

15. Radha, V., Kumar, N.H.: EISA - An Enterprise Application Security Solution for Databas-
es. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2005. LNCS, vol. 3803, pp. 164—176. Sprin-
ger, Heidelberg (2005)

16. Santos, R.J., Bernardino, J., Vieira, M.: Evaluating the Feasibility Issues of Data Confiden-
tiality Solutions from a Data Warehousing Perspective. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWakK 2012. LNCS, vol. 7448, pp. 404-416. Springer, Heidelberg (2012)

17. Transaction Processing Council, The TPC Decision Support Benchmark H,
http://www.tpc.org/tpch/default.asp

NameNode and DatalNode Coupling
for a Power-Proportional Hadoop
Distributed File System

Hieu Hanh Le, Satoshi Hikida, and Haruo Yokota

Department of Computer Science, Tokyo Institute of Technology, Japan
{hanhlh,hikida}@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract. Current works on power-proportional distributed file systems
have not considered the cost of updating data sets that were modified
(updated or appended) in a low-power mode, where a subset of nodes
were powered off. Effectively reflecting the updated data is vital in mak-
ing a distributed file system, such as the Hadoop Distributed File System
(HDFS), power proportional. This paper presents a novel architecture,
a NameNode and DataNode Coupling Hadoop Distributed File System
(NDCouplingHDF'S), which effectively reflects the updated blocks when
the system goes into a high-power mode. This is achieved by coupling the
metadata management and data management at each node to efficiently
localize the range of blocks maintained by the metadata. Experiments us-
ing actual machines show that NDCouplingHDF'S is able to significantly
reduce the execution time required to move updated blocks by 46% rel-
ative to the normal HDFS. Moreover, NDCouplingHDF'S is capable of
increasing the throughput of the system that is supporting MapReduce
by applying an index in metadata management.

Keywords: power-proportionality, HDFS, metadata management.

1 Introduction

Energy-aware commercial off-the-shelf (COTS)-based distributed file systems for
cloud applications are increasingly moving toward power-proportional designs,
as the configuration of the systems is changeable on demand. Specifically, the
system is designed to operate in multiple gears and each gear contains a different
number of active nodes. Multi-gear operation is made possible through a number
of recent works that focus on power-proportional data placement layouts [IL2].
However, those works have not yet dealt with the reflecting of an updated data
set that is modified (or appended) in a low gear mode when several nodes are
powered off. In low gear, the currently active nodes should update the modified
data instead of the inactive nodes. When the system moves to a high gear, to
share the load equally to all active nodes, it is necessary to let the reactivated
nodes catch up with the modification of the data set.

In addition to normal operations, the process of reflecting the updated data set
increases several costs of metadata management (MDM) and data transference
inside the system. Carrying out this process effectively is vital in realizing power

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 99-[07] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

100 H.H. Le, S. Hikida, and H. Yokota

proportionality for a distributed file system, such as the Hadoop Distributed File
System (HDFS) [3], which is already widely used as a distributed file system for
effective big data processing in the cloud. In the current HDFS architecture,
reflecting updated files is ineffectively restrained at the NameNode because of
access congestion in the metadata information of blocks.

This paper presents a novel architecture called the NameNode and DataNode
Coupling HDFS (NDCouplingHDFS), which is designed to effectively reflect up-
dated data in the power-proportional HDFS. NDCouplingHDFS couples MDM
and data management to localize the range of blocks maintained by the meta-
data. Through this idea, the process is effectively distributed to multiple nodes
as the load is shared among the nodes and each node can focus on its own work
because all the necessary information is located locally.

Moreover, to raise the efficiency of reflecting updated data, it is preferable to
eliminate the bottleneck of MDM at the single NameNode in a normal HDF'S by
using distributed MDM. Taking the locality of the file system into consideration,
we suggest two approaches of distributed MDM based on a tree structure, namely
static directory partitioning and the B-tree-based index method. In the first
approach, we divide the namespace of the system among all the nodes, as each
node will maintain a subpart of the directory hierarchy. In the second approach,
we apply the parallel index technique, called Fat-Btree [4], which is used in
current database management to manage the metadata of the file system. Our
main contributions are the following.

— NDCouplingHDF'S is proposed to solve the problem of reflecting updated
(or appended) data sets when the power-proportional file system shifts from
low gear to a higher gear.

— NDCouplingHDFS improves the IO throughput of the metadata operation
of the HDFS by implementing distributed MDM with an index technique.

— An empirical experiment to evaluate NDCouplingHDFS is performed on
actual machines. The empirical experimental results show that NDCou-
plingHDFS is able to significantly reduce the execution time to transfer
updated blocks by 46% relative to a normal HDFS.

The remainder of this paper is organized as follows. Related work is introduced in
Sect. 2l Section [B] describes our proposed system with the architecture and data
flow. Section [presents a performance evaluation of our proposals. Conclusions
and future work are discussed in Sect. Bl

2 Related Work

RABBIT [I] is the first work that aims to provide power proportionality to
an HDFS by focusing on read performance. RABBIT uses the equal-work data
layout policy using data replication. However, RABBIT does not yet consider
the cost of reflecting updated data in low gear. Kim et al. [2] suggest a fractional
replication method to achieve a balance between the power consumption and
performance of a system. Their work considers the problem of identifying a
suitable time to gear down and save power.

NameNode and DataNode Coupling for Power-Proportional HDF'S 101

System Namespace [a - z]

fa-i) [i-p) [p-2]

Qf 2
NameNode NameNode NameNode
@ Management Management Management

T TN\

Distributed Other Distributed Other
MDM Modules MDM Modules

Distributed Other
MDM Modules

[Storage Mar\agemenl] [Smrage Managemem] [Storage Management]

=

@ Send metadata request @ Forward request to
of SubNamespace C responsible nodes
@ Return results
NDCe i 1 NDC i 2 NDC it 3

Client
open “weather.dat”

@ serve the request and

blocks return the results

Fig. 1. A NameNode and DataNode Coupling HDFS architecture and data flow

Write Off-loading [5] is motivated by the goal of saving power through spin-
ning down unnecessary disks. It allows write requests on spun-down disks to be
temporarily redirected to other active disks in the file system. As a result, this
technique lengthens the spin-down durations, thereby achieves additional power
saving. Although not aiming to provide power proportionality, the idea could
be considered as a solution for multigear file systems dealing with updated data
when the system operates in low gear.

In previous work, we have taken into consideration the cost of updated data
reflection relating to the size of moving data in a power-proportional HDFS [6].
As the size of moving data is small, the reflection process could be shortened.

3 NDCouplingHDF'S

In this part, the assumptions employed in this paper is given. Then, the architec-
ture of our system and two methods for distributed MDM are described. Finally,
we present the system’s behavior in reflecting updated data.

3.1 Assumptions and Conditions
In our proposal, we employed the following assumptions and conditions.

1. Data layout policy: The scope of this paper is limited to the MDM and the
cost of reflecting updated data at power-proportional file systems. In low
gear, the data from inactive nodes are replicated at other, active nodes.

2. Replication: When data are replicated at other nodes, their metadata are
also replicated at the same node.

3. Failure: We suppose that all nodes in the system operate without failure.

3.2 Architecture and Data Flow of NDCouplingHDFS

The architecture and the data flow of NameNode and DataNode Coupling HDFS
(NDCouplingHDF'S) are shown in Figure[ll NDCouplingHDF'S contains a cluster

102 H.H. Le, S. Hikida, and H. Yokota

of NDCouplingNodes. There are two types of modules at each node in NDCou-
plingHDFS: the NameNode Management (NM) and the Storage Management
(SM). The NM includes the new distributed MDM and other unmodified mod-
ules (such as Block Placement, Block Mapping) as in a normal HDFS. The
important difference from a default HDFS is that the namespace of the file sys-
tem is divided among all the nodes and the local distributed MDM only manages
the metadata for files that are locally located. The SM at NDCouplingNode is
the SM at DataNode in a normal HDFS.

Next, the data flow for the client interacting with NDCouplingHDF'S is ex-
plained using Fig. [[I At first, the client randomly connects to a node to access
the file system (open weather.dat). At this node, the request is forwarded to
the corresponding node that contains the metadata of this file by distributed
MDM. Then, the distributed MDM at this node looks for the file’s metadata
and sends the result back to the client. Finally, based on this result, the client
opens connections to the responsible nodes to retrieve or store the file’s blocks.

3.3 Distributed Metadata Management

In this part, we describes two approaches of employing distributed MDM to
identify the responsible NDCouplingNode that contains the metadata for the
accessed files.

Static Directory Partitioning Method. In this paper, we first try the static
directory partitioning (SDP) method in distributing the namespace to multi-
ple nodes in the system. Here, subparts of the directory hierarchy are manually
assigned to individual nodes. All the nodes in the system have the mapping in-
formation about which node is responsible for what subpart of the file system
directory. The system can process the request at most one hop to determine the
appropriate nodes because the subparts of the hierarchy are treated as indepen-
dent structures.

Fat-Btree-Based Method. This method applies Fat-Btree to perform dis-
tributed MDM. Fat-Btree is an update-conscious parallel B-tree structure that
was originally proposed in database management as an indexing technique for
efficient data management [4[7]. Because of the parallel tree structure, the dis-
tributed MDM based on Fat-Btree achieves higher performance for search query
processing while maintaining good locality tracking of the file system.

Alternative Techniques. To realize good performance with distributed MDM,
many recent systems distribute the metadata across multiple nodes utilizing dis-
tributed hash table [8,[0]. However, distributing metadata by hashing eliminates
all hierarchical localities such as the POSIX directory access semantics.

3.4 Updated Data Reflection

Here, we describe the behavior of NDCouplingHDFS in serving the updated-data
requests in low gear and reflecting the updated data when the system changes to

NameNode and DataNode Coupling for Power-Proportional HDF'S 103

Update (al, b1, c1, d1)

l updated updated
replicated \'{ph’cated
Metadata a1 meta | ([Catmets) [atmeta]
‘cop)
T T — T
- Y Gearlp D
1
@ @
-
o (1 —
Low Gear High Gear

Fig. 2. Operations at updated data reflection processes of NDCouplingHDF'S

high gear by reactivating a subset of nodes. In the normal HDF'S, basically all the
operations are similar however because there is only a single NameNode that is
in charge of MDM, all the metadata operations are proccessed at the NameNode.
Figure 2] shows an example of a four-node system in which each node maintains
a subNamespace of the system. In low gear, Node 1 and Node 4 are inactive,
and their maintenance data are consequently replicated at Node 2 and Node 3.
During low gear, the part of the new updated data that is maintained by inactive
nodes are reflected at predefined active nodes. Information about the data, the
temporary node, and the intended node is saved into a Log file. In this example,
Node 2 will update the data (here is al) that should be updated by Node 1.

When the system changes to high gear by reactivating nodes (Node 1 and
Node 4), the following four-step operations are carried out.

Step 1: Transfer Updated Metadata. The active nodes check the Log files
and transfers only the different metadata to the reactivated nodes.

Step 2: Issue Block Transfer Commands. Next, the MDM searches for
updated file blocks using the information in Log file. It then issues the block
transfer command by filling the block transfer queue of each SM with the block
and destination node paired information. After each constant heartbeat, the SM
receives a command and transfers the blocks to the destination nodes. There are
two considerable approaches for issuing a command. The sequential issuance
method repeats the above search-and-issue operation for each transferred file,
while the batch issuance method first looks for all the blocks and their des-
tination nodes and then places them into a queue.

Step 3: Transfer Updated Blocks. When the SM receives the command
issued by MDM, it sends the blocks to the destination nodes. However, in the
current implementation in this part of the HDF'S, for each block, the system has
to open a new connection to the destination node. In order to reduce the cost of
opening new network connection, we suggest the batch transfer method which

104 H.H. Le, S. Hikida, and H. Yokota

Table 1. Characteristics of the configurations used in updated-data reflection experi-
ments

Configuration NormalHDFS SSS SBS SBB FBB
Metadata management Centralized SDP SDP SDP Fat-Btree
Command issuance Sequential Sequential Batch Batch Batch
Block transference Sequential Sequential Sequential Batch Batch
Updated metadata transference - O O O O

Table 2. Experimental en- Table 3. Specification of a Table 4. HDFS informa-

vironment node tion and parameters
Gears 2 CPU TM8600 1.0GHz version 0.20.2
nodes Low Gear 8 Memory DRAM 4GB maz.rep-stream 100
nodes High Gear 16 NIC 1000 Mb/s heartbeat interval 1
updated files 16000 OS Linux 3.0 64bit
file size 1IMB Java JDK-1.7.0

sends all the blocks through just a single connection. The current implementation
in the HDFS is called the sequential transfer method.

Step 4: Reflect Updated Metadata. The MDM updated the metadata for
the newly arrived files as in the default HDFS based on the notifications from
SM.

4 Experimental Evaluation

We carried out an empirical experiment with actual machines to verify the ef-
fectiveness of NDCouplingHDFS in terms of reducing the cost of updated-data
reflection when the system shifts to higher gear. Next, we examined the effec-
tiveness of distributed MDM relating to the scalability of metadata operations.

4.1 Updated-Data Reflection

To verify the effectiveness of each contribution proposed in Sect. [3, we prepared
five configurations which are formed from the combinations of distributed MDM,
command issuance method and block transference method. Table [l shows the
characteristics of these configurations.

Experimental Environment. We compare the proposed NDCouplingHDFS
with the normal HDFS by changing the configuration of the system (Tab. [2I).
Both systems operate in two gears, a Low Gear and a High Gear with different
number of active nodes (eight and 16 nodes). For NormalHDFS; there is one
further node to be in charge of the NameNode. Because we address MDM in
this paper, the number of appended files when the system operates at Low
Gear is fixed at 16000 dividing equally to 16 nodes. Here, we use low-power-
consuming ASUS Eeebox EB1007 machines, whose specifications are given in
Tab. Bl The maz.rep-stream, which specifies the maximum number of blocks
that can be replicated by a SM at the same time, is set to 100. To efficiently
perform the updated data reflection, the communication frequency between NM
and SMs is maximized by setting heartbeat interval to one (Tab. H).

NameNode and DataNode Coupling for Power-Proportional HDF'S 105

400
350
300
250
200
150
100

50

SDP
Fat-Btree fmussi

Execuion tme [s]

Read Throughput [operations/s]
Wite Throughput [operations/s]

1 2 4

2 4

Number of nodes Number of nodes

(a) Updated data reflection ~ (b) Read throughput (c) Write throughput

1

Nomal SsS s8s. 88, FBB
HOFS s

Fig. 3. Experiment results

Experimental Results. Figure shows the execution time for reflecting
the updated data with different configurations. The left vertical axis shows the
execution time from the time that the system begins to change from low gear to
high gear until all the just-activated nodes catch up with the most current status
of the updated data set. The right vertical axis shows the maximum number of
transfer block command issuances, which is the number of times that the SM
has to make a connection with the MDM to drain the block transfer queue.

Performance of NDCouplingHDFS. To confirm the NDCouplingHDFS’s
performance, we focus on the experimental results of NormalHDFS and SSS,
the simplest configuration of NDCouplingHDFS, in Fig. We see that ND-
CouplingHDF'S has significantly reduced cost (nearly 41%) in reflecting updated
data. In the HDF'S, because of the high load at the NameNode with the process-
ing of 8000 files that should be replicated to eight nodes, it requires about 40
connections between the NM and SM to drain the block transfer queue of the
SM (about 58 seconds). Meanwhile, the process is distributed to eight nodes in
NDCouplingHDFS, hence overall is completed in only about 34 seconds.

Performance of the Command Issuance. From the results of SSS and
SBS, we see that the batch command issuance provided a slightly worse result
than did sequential command issuance. The reason is that the SMs in SBS
wasted several first connections to the NM before it had finished retrieving all
1000 updated files’ data. On the other hand, the SM in SSS can perform the
block replication process immediately from the very first communication.

Performance of the Block Transfer Method. Figure [3(a)|shows that SBB
reduces the execution time of the process to 31 seconds compared with SBS. This
means that batch block transfer was able to reduce the cost of opening a new
network connection for sending blocks. In total, SDP-based NDCouplingHDF'S
was able to reduce the execution time required for reflecting the updated data
by 46% relative to NormalHDF'S.

Fat-Btree-Based Method. There was little difference between the perfor-
mance of FBB and SBB. The cost of the latter is slightly less by 0.5 seconds
owing to the lower cost of MDM operations. This is due to the process of trans-
ferring incremental metadata, as the Fat-Btree-based method has to transfer
more information than SDP because of the complex structure.

106 H.H. Le, S. Hikida, and H. Yokota

4.2 Distributed MDM Performance

In this part, we report the performance evaluation relating to the scalability of
metadata operations to confirm the effect of SDP and Fat-Btree-based methods.
The configurations of this experiment are shown in Tab.

Table 5. Workload used in distributed MDM performance evaluation experiment

Fat-Btree leaf fanout 16
Data size (#files) 3000
Number of nodes 1, 2, 4, 8

File size 1IKB

) #files
#write accesses per node #nodes

#read accesses per node # files

Experimental Results. Figureandshow the read and write through-
put of two evaluated methods. Here, the operation includes searching/creating
for the metadata and reading/writing the physical data of the query file. Fig-
ure [3(b)|shows that the read performance of the Fat-Btree method significantly
scales out. The good balance of the parallel B-tree structure means that the read
requests are effectively distributed to all the nodes; hence, the overall through-
put increased as the number of nodes increased. In contrast, in the SDP method,
the throughput slightly decreased as the number of nodes increased from one to
two. The reason is that the cost of opening a new connection to other responsible
nodes is much larger than the cost of searching for the responsible metadata.
From Fig. which describes the overall throughput for write requests, the
Fat-Btree method is seen not to provide such a considerable efficiency compare
with the SDP method because of the high synchronization cost inside the B-tree
structures during an update. Overall, the Fat-Btree is believed more suitable for
the read-mostly workloads in MapReduce applications.

5 Conclusion and Future Work

In this paper, we first described the problem of inefficient reflection of up-
dated data in power-proportional distributed file system and then proposed
the NDCouplingHDFS architecture, which couples metadata management and
data management at each node to solve it. Empirical experiments verified that
our solution was able to shorten the execution time required to reflect updated
data by 46% relative to the time required by the default HDFS. Moreover, ND-
CouplingHDFS was able to increase the throughput of the system supporting
MapReduce by applying an index in metadata management. In the future, we
would like to carry out more experiments with different workloads and a larger
scale of nodes. Moreover, we would like to develop a system that integrates ND-
CouplingHDF'S with suitable data placement to provide power proportionality.

Acknowledgements. This work is partly supported by Grants-in-Aid for Sci-
entific Research from Japan Science and Technology Agency (A) (#22240005).

NameNode and DataNode Coupling for Power-Proportional HDF'S 107

References

w

. Amur, H., Cipar, J., Gupta, V., Ganger, G.R., Kozuch, M.A., Schwan, K.: Robust

and Flexible Power-proportional Storage. In: Proc. the 1st ACM Symposium on
Cloud Computing, SoCC 2010, pp. 217-228 (2010)

. Kim, J., Rotem, D.: Energy Proportionality for Disk Storage using Replication.

In: Proc. the 14th Int’l Conference on Extending Database Technology, pp. 81-92
(2011)

. Apache Hadoop: HDFS Hadoop Wiki, http://wiki.apache.org/hadoop/HDFS
. Yokota, H., Kanemasa, Y., Miyazaki, J.: Fat-Btree: An Update Conscious Paral-

lel Directory Structure. In: Proc. the 15th Int’l Conference on Data Engineering,
pp. 448-457. IEEE Computer Society (1999)

. Narayanan, D., Donnelly, A., Rowstron, A.: Write Off-loading: Practical Power Man-

agement for Enterprise Storage. In: Proc. 6th USENIX Conference on File and Stor-
age Technologies, pp. 253-267 (2008)

. Le, H.H., Hikida, S., Yokota, H.: An Evaluation of Power-proportional Data Place-

ment for Hadoop Distributed File Systems. In: Proc. Cloud and Green Computing,
pp. 752-759. IEEE Computer Society (2011)

. Yoshihara, T., Kobayashi, D., Yokota, H.: A Concurrency Control Protocol for

Parallel B-tree Structures Without Latch-coupling for Explosively Growing Digital
Content. In: Proc. the 11th Int’l Conference on Extending Database Technology:
Advances in Database Technology, pp. 133-144. ACM (2008)

. Rodeh, O., Teperman, A.: zFS-a Scalable Distributed File System using Object

Disks. In: Proc. 20th IEEE/11th NASA Goddard Conference on Mass Storage Sys-
tems and Technologies (MSST 2003), pp. 207-218. IEEE (2003)

. Braam, P.: The Lustre Storage Architecture

http://wiki.apache.org/hadoop/HDFS

Mapping Entity-Attribute Web Tables
to Web-Scale Knowledge Bases

Xiaolu Zhang, Yueguo Chen, Jinchuan Chen, Xiaoyong Du, and Lei Zou

Renmin University of China
Peking University
{zx1ruc2010, chenyueguo, jcchen,duyong}@ruc.edu.cn, zoulei@pku.edu.cn

Abstract. There are many entity-attribute tables on the Web that can
be utilized for enriching the entities of knowledge bases (KBs). This
requires the schema mapping (matching) between the Web tables and
the huge KBs. Existing solutions on schema mapping are inadequate for
mapping a Web table and a KB, because of many reasons such as (1)
there are many duplicates of entities and their types in a KB; (2) the
schema of KB is often implicit, informal, and evolving over time; (3) the
KB is typically very large in volume. In this paper, we propose a pure
instance-based schema mapping solution to statistically find the effective
mapping between a Web table and a KB via the matched data examples.
Besides, we propose efficient solutions on finding the matched data ex-
amples as well as the overall mapping of a table and a KB. Experiments
over real data sets show that our solution is much more accurate than the
two baselines of existing solutions. Results also show that our solution is
feasible for the mapping of Web tables to large scale KBs.

1 Introduction

The advance of information extraction and data integration techniques has
promoted the prosperity of many Web-scale knowledge bases (KBs) such as
FreeBase[6], YAGO|21], Linked Data[12]. These KBs typically utilize RDF triples
to represent their basic information units. They have been widely used in applica-
tions such as semantic search, text understanding and question answering[22J12].
To effectively support these applications, a KB needs have information of a huge
number of open domain entities. Many approaches have been tried to enlarge
the population of entities in a KB. Although the size of Web-scale KBs keeps
growing very fast, the coverage of a single KB is still very limited, compared to
the numerous entities in the real world.

The current Web contains billions of tables, among which a huge number of
tables (154M found in the Webtables project [§]) contain high-quality relational
data. Of these high qualified tables, there are many entity-attribute tables that
contain information of some entities of the same type [8I23]. Typically, informa-
tion of an entity appears in one row with each column representing an attribute
of the entity. One typical example of Web tables is the Google Fusion Table [11]
where people can publish tabular data as they want. It is possible that some en-
tities in a Web table may have corresponding entries in the KBs, from which we

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 108-[[22] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases 109

may learn the mapping between the Web table and the KBs. With the mapping,
we are able to automatically inject entities of the Web table into the KBs. The
problem is therefore a schema mapping problem in which we want to find the
mapping between a Web table and a KB.

In the past decades, there have been many approaches[20/15/41T9] proposed
for automatic schema mapping, typically focused on finding the mappings of
attributes between two schemas. These approaches can be categorized into
schema-based approaches[I7/T6], instance-based approaches[I3[14], as well as
their combinations [9]. Schema-based approaches use the schema-level informa-
tion for matching. They cannot be applied in our problem because Web tables
often do not have schemas. Even for the KBs, they do not have explicit schemas
too. As such, the instance-based approaches[I3/T4], which consider the data con-
tents for schema mapping, are preferred in our problem. However, there are
challenges to apply existing instance-based approaches here because (1) there
are many duplicates of entities and their types in a KB; (2) the schema of KB
is often implicit, informal, and evolving over time; (3) the KB is typically very
large in volume. The matching approaches will be neither efficient nor effective
when the whole KB is modeled as a big table of all entities.

To address the above challenges, we propose a novel instance-based schema
mapping approach for the integration of Web tables with KBs. In our study,
we assume that high qualified entity-attribute Web tables have been extracted.
We also assume that literal information of entities has been extracted from the
KBs, i.e., the URIs in KBs have been transformed into literal names, so that we
can focus on the direct semantic matches of texts in both Web tables and the
KBs. Techniques on assigning URIs[I2] to the literal information of entities are
beyond the scope of the paper. In our approach, the mapping between a Web
table and a KB is discovered from the mappings between the tuples of the Web
table and the entities of the KB. We propose techniques to efficiently conduct
the proposed instance-based schema mapping. The contributions of the paper
can be summarized as follows:

— We formalize the table-to-KB schema mapping problem that statistically
finds the effective table-to-KB mapping between a Web table and a KB via
the matched data examples.

— We propose a technique that is able to tune the number of tuples used for
finding the table-to-KB mapping, so that instance-based schema mapping
can be conducted in a feasible time without the loss of accuracy too much.

— Extensive experimental results show that the proposed schema mapping so-
lution is very effective for mapping Web tables to KBs, paying a feasible
workload for the mapping task.

The rest of the paper is organized as follows. Section [2] introduces some related
work. Section [3 states the problem of table-to-KB schema mapping. Then, we
discuss efficient solution of schema mapping in Section @l The experimental study
is given in Section B followed by the conclusions given in Section [6l

110 X. Zhang et al.

2 Related Work

Schema Mapping. Rahm et al. did a good survey[20] about approaches to au-
tomatic schema mapping. The solutions are classified into schema-based[I7J16]
and instance-based[I3l[14] based on either only schema information (metadata)
or data content is used for finding the mappings between columns of two schemas.
Do et al. developed the COMA system[9] for the flexible combination of schema
mapping approaches, and then developed a tool called COMA++[3] to cope with
schema and ontology matching. Due to the lack of schema information, instance-
based approaches are more suitable for the table-to-KB schema mapping prob-
lem. Existing instance-based approaches[I3[14] typically utilize the statistical
information of data contents within a column for matching. However, it faces
with a problem that many predicates (columns) of the KBs contain data of the
same type and they often have similar distribution of data values. This causes
that a column of the Web table often matches with a large number of predicates
in the KBs, although most of them are not good mapping results.

Some recent works of schema mapping[TJ2/T9] use data examples to filter and
refine the detected schema mappings. However, they are not designed for finding
the schema mapping. As will be shown in our experiments, only a few data
examples are often far from enough for effectively finding the mapping between
a Web table and a KB, considering that the KB contains a huge number of
predicates (columns) and the examples may not have good matches in the KB.

Web Data Integration. A vast amount of structured information is contained
in the Web tables [8]. Cafarella et al. proposed the OCTOPUS system[7], which
enables users to create new datasets from those tables extracted from the Web.
In recent years, Linked Data[l2] has been widely accepted as an important way
of integrating the massive Web datasets. It allows the interlinkage of datasets
through the RDF links created between data items from different data sources.
As of Sep. 2011, there have been 31 billion RDF triples in the Linked Data
cloud. However, such a way of integrating Web datasets has some problems: (1)
Different RDF datasets may contain multiple copies of the same data (entity).
Although entity resolution[5] can help to remove some duplicates, the problem
will be still serious due to the huge diversity of the Linked Data. (2) Although
interlinked, datasets cannot be integrated as one global schema, due to the di-
versity and flexibility of the huge amount of individual schemas in the Linked
Data. (3) Although very large, the coverage of existing Linked Data is still very
limited compared to the numerous entities in the real world. Preda et al.[I8]
proposed an ANGIE system to dynamically and virtually enrich RDF KB by
Web services.

3 Table-to-KB Schema Mapping

An entity-attribute table contains information of entities. We define the column
containing entity names as the key column of a table. It satisfies some constraints:
1) no duplicated names in the column, i.e., the cardinality of the key column

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases 111

should be equal to the number of rows of the table; 2) its values are not numerical
or IDs (it can be easily detected when it contains sequential numbers or IDs of
common prefixes). This is reasonable because one of our assumptions is that
the applied entity-attribute Web table should contain information of entities
distinguished by their names within a column. If a table has more than one
candidate key columns (satisfying the above two constraints), only the first one
will be picked as the key column. We ignore tables whose entity names are
distributed over multiple columns. An example of a Web table and its key column
is shown in Figlll Note that our solution fails to integrate a Web table with the
KB when it does not contain a key column.

1 Grand lllusion true Jean Renoir France 1937
2 | Seven Samurai true Akira Kurosawa Japan 1954
3 | The Lady Vanishes true Alfred Hitchcock United Kingdom 1938
4 | Amarcord true Federico Fellini ltaly 1974
5 | The 400 Blows true Frangois Truffaut ~ France 1959
6 | The Naked Kiss false Samuel Fuller United States 1964
7 | Shock Corridor false Samuel Fuller United States 1963

Fig. 1. An example of a Web table and its key column (squared)

Let ¢q, ..., cq be the d columns contained by a table T'. A tuple ¢ in the table
T can then be represented as t = [t(1),...,t(d)]. For a KB E, an entity e is
denoted as the set of all triples having the same subject. An entity e may have
multiple triples for the same predicate. We denote e(j) as the set of objects that
the entity e has on the predicate p;.

Definition 1 (Mapping Unit). Given a value/cell t(i) of a tuple t, an object
set e(j) of an entity e, and a matching threshold 0 < § < 1.0, there is a mapping
unit m(t(2),e(j)) = j between t(i) and e(j), if Jo € e(j) such that t(i) = o
(when c; is the key column), or Jo € e(j) such that sim(t(i),0) > 60 (when c; is
not the key column,).

Similarity measures such as Jaccard similarity can be applied to evaluate the
similarity of two sets of words. Given a tuple ¢ and an entity e, when there is a
mapping unit m(t(i),e(j)), we use m(i,j) = j to represent it for simplicity. For
each attribute ¢(i), we use M(t(i),e) to denote the set of all possible mapping
units between t(7) and the object sets of e. Note that M (£(4), e) can be an empty
set if £(7) is not similar enough to any object of e. For example, in Figure 2] a
mapping unit between the cell 1964, and the predicate Release date(4) is 9. The
set of mapping units for the cell Samuel Fuller and the given entity is {3,5,6}.

Definition 2 (Mapping Vector). Given a table T of d columns with ¢;; as
its key column, a mapping vector M = [mq,...,my] defines, for each m; #0, a
mapping of a column ¢; to a predicate pp,. It must satisfy that m; # 0.

112 X. Zhang et al.

@ The Naked Kiss Cinematography: Stanley Cortez
@ Initial release date: Oct 29, 1964

@ Directed by: Samuel Fuller

Release date(4): 1964 @

Set Decoration by: Victor A
Gangelin
usic by: Pual Dunlap

Languages: English Language @

Country of origin: United States®

@ Also knbwn as: The Naked Kiss of America

‘The Naked Kiss‘False ‘ Samuel Fuller | United States‘ 1964 ‘ M=[1,0, 3,13, 2]

Fig. 2. An example of a mapping vector, with the entity information from Freebase

In the above definition, m; = 0 means that column ¢; does not match with
any predicate. Given a tuple ¢ and an entity e, for each attribute ¢(¢), we have
a mapping unit set M (t(i),e). Then, we are able to generate a set M(t,e)
of mapping vectors by a Cartesian product of the non-empty mapping unit
sets of all attributes of £. An example of a mapping vector is shown in Fig[2
A derived mapping vector M = [mq,...,mq| satisfies: 1) m; € M(t(i),e) if
M(t(i),e) # 0; 2) m; = 0 if M(t(i),e) = 0; 3) my # 0. Therefore, |M(t,e)| =
HM(t(i)’e)ﬂ, [M(t(3),e)| if M(¢(i'),e) # 0. M(t,e) =0 if M(t(i'),e) = 0.

Next, we define an important measure of a mapping vector. The confidence of
a mapping vector M = [mq,...,my], denoted as ¢(M), is defined as the number
of non-zero mapping units (i.e., m; # 0) in M. It describes strength of a mapping
vector. For the running example of Figl2] ¢(M) = 4. The larger the ¢(M), the
better the match between a tuple and an entity (or between a table and a KB).
According to this measure, we are able to define significant mapping vectors that
we are interested in among all the mapping vectors:

Definition 3 (Significant Mapping Vector). Given a threshold § of matched
columns, a mapping vector M is a significant mapping vector if ¢(M) > 4.

A significant mapping vector shows that there are enough (§) attributes of ¢ that
can find their matches in the predicates of e. Given a tuple ¢, we call those entities
in KB that have significant mapping vectors with ¢ (i.e., M(t,e) # () as the
relevant entities of ¢. Given a table T" C T', we use M(T") to denote the multiset
of all significant mapping vectors of M(t,e) generated from all combinations
oft €T and e € E, i.e., M = {M|c(M) > §M € M(t,e),t € T',e € E}.
As long as |[M(T")| is no less than a user specified size 7, we say that M(T")
is an evidencing multiset of mapping vectors, that can be used for discovering
mapping vectors between a table T and the KB FE.

Given two mapping vectors M = [mq,...,mq] and M' = [m},...,m}], we
say M’ dominates M, denoted as M’ < M, if Ym; # 0, m, = m,. For example,
[1,0,3,13,2] = [1,0,3,0,2], while [1,0,3,13,2] £ [1,0,3,0,9]. It is obvious that
it M' < M and M < M’, we have M = M'. With the definition of dominating
relationship, we are able to define another interesting measure of a mapping
vector, the support of a mapping vector, denoted as s(M). Given a mapping

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases 113

vector M and a multiset M(T"”) of mapping vectors detected from a table 7" C T
and a KB E, the support of M to the set M(T’), is the number of mapping
vectors in M(T”’) dominating M. It basically defines the number of evidences
(mapping vectors) supporting the mapping vector M.

With the above two measures (the confidence and the support), we are able
to define the utility of a mapping vector as:

Definition 4 (Utility Function). Given an evidencing mapping vector set
M(T"), the utility of a mapping vector M is a function of two measures of
mapping vectors, u(M) = c¢(M)log(s(M)).

Note that the utility function may have some other alternatives. We define it as
u(M) = ¢(M)log(s(M)) simply because when c¢(M) is enlarged, the number of
mapping vectors it dominates is exponentially enlarged.

With the above definitions, our major problem is that:

Definition 5 (Table-to-KB Schema Mapping). Given a table T and a KB
E, three parameters 6, 6, and T, find the significant mapping vector (if exists) that
having the mazimum utility to a multiset M(T") satisfying either |M(T")| > T
orT' =T.

Our solution to this problem has two main steps:

1. To find a sub table T C T that is able to generate an evidencing multiset
of mapping vectors M(T") such that either |[M(T")| > 7 or T' =T

2. To find the significant mapping vector having the maximal utility to M (T"),
called as the table-to-KB mapping vector.

As an instance-based schema mapping solution for huge KBs, the efficiency issue
is a very important challenge. We will discuss how to address it in details in the
following section.

4 An Efficient Solution for Table-to-KB Schema Mapping
4.1 Generating an Evidencing Multiset of Mapping Vectors

The evidencing multiset of mapping vectors are generated from tuple-entity
pairs. Obviously, it is not necessary to generate mapping vectors from all possi-
ble tuple-entity pairs because most of them do not form any significant mapping
vector or even any mapping unit. In our solution, the evidencing multiset of
mapping vectors M(T") is obtained by merging the significant mapping vectors
generated from some selected tuples of the table T.

A Baseline Solution. For each tuple ¢, we want to efficiently get the relevant
entities of t. This is achieved by first finding mapping units for the attributes of t.
To obtain the mapping units of an attribute ¢(¢), a baseline solution is to utilize
the inverted indexes for the objects (attributes) of entities in the KB. Given an
attribute ¢(7) of n distinct words and a matching threshold 6, according to the

114 X. Zhang et al.

Jaccard similarity, the objects that can form mapping units with ¢(¢) must share
at least @n common words of ¢(i). Accordingly, those candidate objects are found
by merging the inverted indexes of words in ¢(¢), filtering objects presenting less
than On inverted indexes. After that, a refining process is required by computing
the Jaccard similarities between the candidate objects and t(¢). Those whose
similarities are no less than 6 form mapping units of ¢(¢). With the lists of map-
ping units for different attributes ¢(),7 = 1,...,d, we are able to generate the
significant mapping vectors of M(t, e) by the combination (Cartesian product)
of mapping units of the same entity e, in different lists.

The major issue of the baseline solution is the low efficiency. Considering that
a table of hundreds of cells, if each cell invokes an above keyword search process,
the total time cost for processing a table can be as large as tens to hundreds of
seconds, not feasible for practical solutions. As such, we propose a very efficient
solution for generating the evidencing mapping vector set M (T").

Fast Evidencing Set Generation. In entity-attribute Web tables, the number
of rows may vary significantly, from tens to thousands. When a table contains
a large number of entities, on one hand, many of them may not have relevant
entities in KB. It will be better if we can quickly judge whether there are relevant
entities of a given tuple, so that we can efficiently prune the tuples without
relevant entities by avoiding the expensive search process over them. On the
other hand, a large table may contain many tuples having relevant entities in
KB. We may not use all of these tuples with relevant entities to find mapping
vectors, because the table-to-KB mapping vector is likely to converge when the
set M(T") grows up to certain size. As such, it is beneficial if we find mapping
vectors from some selected tuples of the table T'.

To efficiently judge whether a tuple contains relevant entities or not, we pro-
pose to apply memory-based indexes. To be a relevant entity e of a tuple t,
according to the Definition [[] and Definition 2] the entity name of ¢ in the key
column must exactly match with an object of e. In other words, we expect that
the name of a relevant entity matches with the name of the entity described by
t. For this purpose, we are able to create inverted indexes for only the entity
names in the KB. Because entity names are often short texts, the inverted in-
dexes of all entity names do not cost too much space. They can be held in the
main memory, which leads to an efficient solution to filter irrelevant entities by
only their names. Given an entity name of a tuple, we are able to find candidates
of its relevant entities based on the indexes. Note that information (predicates
and objects) of entities are stored externally, and indexed by their entity IDs.
To check whether a candidate relevant entity is a real relevant entity or not, we
need load information of the candidate entity from external devices, and com-
pare them with the tuple ¢ based on the Definition Bl Consequently, the major
cost of generating the evidencing multiset of mapping vectors M (7T”) comes from
loading entities from external devices by paying expensive I/Os.

To save the cost of generating M(T"), we need control the number of entities
loaded from external devices. On the other hand, to guarantee the accuracy of
table-to-KB schema mapping, the size of M(T”) should be significant enough.

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases 115

This somehow contradicts with the reduction of the number of entities to be
loaded. To address this conflict, we propose to load candidate relevant entities
of tuples that potentially have less ambiguity, i.e., those tuples having less can-
didate relevant entities (found by the in-memory indexes) are firstly used for
loading candidate relevant entities and generating the significant mapping vec-
tors. Algorithm [Il shows the detailed process of our solution to efficiently gener-
ate significant mapping vector set. Note that, the generation process terminates
when 7 significant mapping vectors have been found.

Algorithm 1. Generating significant mapping vectors
Input: T, a table with ¢; as the key column

Input: 7, the maximal number of mapping vectors in M (T")
Output: M(T")

1 set M(T") as 0
2 find candidate relevant entities for all the cells in the key column c¢; using
in-memory indexes
3 rank all the tuples as a list 7”, based on the number of the candidate relevant
entities they have, in an ascending order
while |[M(T")| < T do
pick a tuple ¢ from the top of the list 7"
retrieve all candidate relevant entities of ¢
foreach retrieved candidate e do
compute the significant mapping vectors between ¢ and e
insert them into M(T")
10 if [M(T")| > 7 then
11 break
12 return M(7T")

© 0N o Toh

4.2 Finding the Table-to-KB Mapping Vector

Given a set of significant mapping vectors M(T"), to find the Table-to-KB map-
ping vector, a straightforward solution is to enumerate all the significant mapping
vectors dominated by each detected significant mapping vector in M(T"). Then,
we can compute the utility of each significant mapping vector to the set M(T”),
and find the significant mapping vector (if exists) with maximal utility. For a
significant mapping vector M € M(T"), it totally dominates 2¢(M) — 29 4 1 sig-
nificant mapping vectors. As a result, when ¢(M) is relatively large, there will be
a large number of significant mapping vectors to be enumerated, simply for one
mapping vector M. The enumeration will be very time-consuming. To solve this
problem, we propose a best first search algorithm that is able to incrementally
find significant mapping vectors in a bottom-up manner. It avoids the enumer-
ation process by heuristically expanding the mapping vector of maximal utility
having been found. To do this, we need record the significant mapping vectors
in M(T”) in a way of using binary words. See details in Fig[3

For each column ¢;, one binary word is used for each predicate that the column
¢; maps to, according to the significant mapping vectors of M(T”). A binary

116 X. Zhang et al.

pu| 1

Pi3 1
P21
e 2;; 1 - k—B([0,p22, 0]

23
P2 1

Ck

Fig. 3. Binary words for recording significant mapping vectors

word contains M (T")| bits, with each bit records whether a significant mapping
vector maps to the predicate in the column ¢;. In this way, a significant mapping
vector can be represented by a column in the bitmap. For an example of Fig[3]
M, = [p11,0,...], M2 = [p11,p24,...] and M3 = [p13,p22,...]. By using the
binary words, given a mapping vector M, we are able to efficiently find the
significant mapping vectors dominating it in the set M(T"). This can be achieved
by the conjunction of all binary words of mapping units of M. For example, to
find the significant mapping vectors dominating M = [p11,p24,0, ..., 0], we need
conduct a bitwise AND operation over the binary words of ¢1-p1; (the first row)
and ca-pa4 (the seventh row). According to the derived conjunctive binary word,
we can make sure that My is a significant mapping vector dominating M. With
the conjunctive binary word of a mapping vector, the support of a mapping
vector s(M) can be efficiently computed by counting the number of ones in the
conjunctive binary word. With binary words, we are able to design the Algorithm
to efficiently find table-to-KB mapping vector.

d

- [1,0,513,00 [1,0,5,0,2]

d

2 [1,03.00] [1,0,50,0] - [1,0,00.2]
\

1 [1,0,0,0,0] [7,0,0,0,0]

Fig. 4. An example of expanding mapping vectors in Algorithm

As shown in Algorithm [it maintains a heap H for mapping vectors to be
expanded. The algorithm initiates with mapping vectors determined simply by
the key column. Each time it picks a mapping vector M of maximal utility from
H for expanding. The expansion is conducted only it may potentially contain
the mapping vector of maximal utility, determined by the upper bound of the

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases 117

Algorithm 2. Search table-to-KB mapping vector

Input: M(T’), in the format of binary words
Output: Mz, the table-to-KB mapping vector

-

set H as), be a heap recording all mapping vectors to be expanded
generate mapping vectors (with confidence 1) only for the key column, and
insert them into H as seeds to be expanded
set Umaz = 0, Mmaez =0
while H # () do
pop the mapping vector M of maximal utility from H
if d-s(M) > Umasz then
expand M by introducing a new column has not been expanded by M
foreach expanded mapping vector M’ do
if d- s(M') > Umas then
push M’ into H
if w(M') > Umasz and c(M') > § then
set Umaz as u(M')
13 set Myaz as M’
14 return M,,qqz

© 00N O U AW [

N
N = O

utilities of all mapping vectors expanded from M (i.e., d-s(M)). The expansion
terminates when no mapping vector exists in H. Finally, M, is returned as the
table-to-KB mapping vector if it is a significant mapping vector. FigMlillustrates
the best first expansion process. Note that, to avoid the repetition of expansion,
each mapping vector only expands in columns to the right of the most right
column that it has expanded. For example, in Fig[l the mapping vector M =
[1,0,5,0,0] can only expand its last two columns, instead of the second one.

5 Evaluation

5.1 Experimental Settings

We use the DBPedia 3.7 datasetl] as the KB in our experiments. The version
we used contains 3.64 million entities. The most popular types of entities in
DBPedia include persons, places, music albums, films, etc. We extracted literal
information from the subjects and objects (by removing the URI prefixes for
semantic matching) of the entities in the KB. There are no standard test sets. In
our study, the tests are based on twelve Web tables (listed in Table[I]) randomly
searched from the Google Fusion Table search interfacdd. They contain entities
such as persons, movies and songs. Not all the columns are used for schema
mapping. We filter those columns that satisfy one of the conditions: 1) IDs; 2)
URLs; 3) more than one third of cells are empty cells. We also remove rows
which have more than one half of cells are empty.

! http://dbpedia.org/
2 http://www.google.com/fusiontables/

http://dbpedia.org/
http://www.google.com/fusiontables/

118 X. Zhang et al.

Table 1. Web tables used in experiments

Table Table Names No. of columns No. of rows
1 Emily’s list of person 4 206
2 Academy award-winning films 4 1152
3 American films of 1993 4 180
4 American superhero animated 6 40
5 Christmas hit singles in the US 4 443
6 museums 4 78
7 new leadership of American PAC 4 232
8 Miss America 5 80
9 Obama for America 4 1456
10 criterions on Netflix 5 520
11 songs 5 757
12 football players 8 54

Two instance-based approaches[20] are applied as baselines. The first one is
based on the word frequency (mentioned in [20]) of columns in tables and predi-
cates in the KB. The predicate with the maximal cosine similarity is selected as
a mapping predicate of a column. The second one (COMA++[I0]) extends the
COMA [3] with two instance-based matchers that utilize certain constraints and
linguistic approaches. It applies a propagation algorithm to propagate the simi-
larity values of elements to their parents. Our solution is labeled as T2KB. Note
that we also implement an entropy based approach [I3] that works by computing
the “mutual information” between pairs of columns within each schema. How-
ever, its performance is so poor that most columns are not correctly mapped.
So we do not show its results for comparison. We use Java to implement our
algorithms. The experiments are conducted on a server with a 1.8G 24 Core
processor, 128GB memory, running 64-bit Linux Redhat kernel.

5.2 Accuracy Comparison

TablePlshows the precision and recall of the compared methods over 12 tested ta-
bles. The precision of an approach is defined as the number of corrected matched
columns (manually evaluated) over the number of detected matched columns.
The recall is defined as the number of corrected matched columns over the num-
ber of columns in the table. From the results, we can see that, the precision and
the recall of T2KB are much better than those of WF and COMA in almost all
the cases. The accuracy of WF is the worst. This is reasonable because it is hard
to find an ideal predicate simply based on the word frequency, due to the large
number of candidate predicates in the KB. The accuracy of COMA is much bet-
ter than that of WF because it is also based on instance-based schema matching.
However, compared to the proposed T2KB, COMA is still not accurate enough.
Moreover, it is very inefficient. The mapping of a table requires several minutes
in average. For the T2KB approach, we can see that its precision is very high,
which means that the discovered matched columns have very high accuracy.

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases 119

Table 2. Comparison of accuracy

WF (Word Frequency) COMA T2KB

Table Prec./Recall Prec./Recall Prec./Recall
1 0.25/0.25 0.67/0.50 1.00/0.75
2 0.25/0.25 0.33/0.25 0.33/0.25
3 0.25/0.25 0.75/0.75 1.00/0.75
4 0.17/0.17 0.67/0.67 0.50/0.33
5 0.50/0.50 1.00/1.00 1.00/0.75
6 0.25/0.25 0.75/0.75 1.00/1.00
7 0.50/0.50 0.33/0.25 0.67/0.50
8 0.00/0.00 0.20/0.20 1.00/0.60
9 0.50/0.50 0.33/0.25 1.00/0.75
10 0.20/0.20 0.60/0.60 1.00/0.80
11 0.40/0.40 0.80/0.80 1.00/0.80
12 0.40/0.25 0.60/0.38 0.80/0.50

To further compare the accuracy of the applied schema mapping solutions,
we show the mapping results of two examples. The mapping predicate (if exists)
of each column is shown. It is bolded if labeled as a corrected match. Table B3]
shows the details of the “criterions on Netflix” table, where both the precision
and the recall of T2KB outperform those of the other two approaches. For the
T2KB approach, the column Year is mapped to the predicate released, which is
actually more concrete than the simple mapping to the predicate Year.

Table 3. Accuracy for the table “criterions on Netflix” table (No. 10)

Method Title Streaming Director Country Year Precison Recall
WEF nextissue international mayor nationalorigin lastrace 0.20 0.20

COMA name data director name year 0.60 0.60

T2KB name / director = country released 1.00 0.80

Table dlshows an example where all the solutions do not work well. One reason
for the bad mapping results is that columns awards and nominations contain
small numbers, which causes them to be easily mapped to a wrong predicate.

5.3 Impacts of Parameters

We test the impacts of three parameters in the T2KB approach, 7, § and 6.
The results are shown in Fig[ll The performance when tuning the parameter
7 (by fixing § = 0.2, 6 = 3) is shown in Figl5(a)i5(b)l As can be seen from
Fig when enlarging 7, both the precision and the recall climb in general.
They converge when 7 is enlarged up to around 300. This is reasonable because
the more mapping vectors used in M(T"), the higher reliability of the derived
table-to-KB mapping vector. In the test cases, the average total numbers of

120 X. Zhang et al.

Table 4. Accuracy for the table “Academy award-winning films” (No. 2)

Method film year awards nominations Precision Recall
WEF englishtitle yearestimate yushos count 0.25 0.25

COMA name / title m 0.33 025

T2KB name / gross gross 0.33 0.25

accuracy
time(s)

04l

precision —e—
02| recall -+ 0.5
0 0
10 100 1000 10 100 1000
(a) accuracy when tuning 7 (b) efficiency when tuning 7

1 2

0.8 |- 15 Jﬁ
g 06 @
s 5 1
g oaf) £
precision —e— oo [05
02 recall -+ M
0 0
01 02 03 04 05 06 0.7 0.8 09 01 02 03 04 05 06 0.7 08 09
(¢) accuracy when tuning 6 (d) efficiency when tuning 6
1 T T 2
08¢ 15 /
g 06 T o @
s T 1
S o4l e £
precision —e—
02 recall ——+— 05
o L L) O L L
2 3 4 5 2 3 4 5
(e) accuracy when tuning § (f) efficiency when tuning §

Fig. 5. Impacts of parameters on the performance of the T2KB approach

mapping vectors is around 1000. This explains why the precision and recall
converge when 7 is larger than around 300.

For the efficiency shown in Fig the time cost increases when enlarging
7, simply because more entities need to be loaded and more vectors need to
be processed. In general, the T2KB approach can be conducted within a few
seconds, which is much more efficient than the COMA approach that typically
requires hundreds of seconds for a mapping task. We also test the performance of
T2KB when the mentioned baseline solution (in Sec[]]) is applied for generating
significant mapping vectors. It takes 127 seconds in average, far more slower than
the proposed solution.

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases 121

Figl5(c)f5(d)| show the performance of T2KB when 6 is tuned from 0.1 to
0.9 (by fixing 7 = 300, § = 3). The enlargement of 6 causes the reduction
of both precision and recall in general. This is because higher 6 causes less
mapping vectors in M(T”), leading to a lower accuracy. In other experiments,
we set @ = 0.2 by defaults. For the efficiency in Fig the time cost slightly
increases when enlarging 6, because more entities are need to be loaded for
generating enough mapping vectors. There is a drop when @ is enlarged from 0.7
to 0.9, this is because all relevant entities have been loaded for # = 0.7. When
0 is further enlarged, the reduction of the number of mapping vectors in M(T")
saves the cost of generating the table-to-KB mapping vector using Algorithm [21

For the parameter § in Figf5(e)H5(f), we can see that the best accuracy is
achieved when § = 3. This is reasonable because small § generates too many
false positive mapping vectors which may generate some false mapping units
in the table-to-KB mapping vector. On the other hand, large § will cause the
number of significant mapping vectors to be very small, which causes the derived
table-to-KB mapping vector not reliable. In other experiments, we set § = 3 by
defaults. For efficiency in Fig the time cost increases when ¢ is enlarged in
general. The reason is the same as that for the parameter 6 in Fig

6 Conclusions

We propose a pure instance-based schema mapping solution that finds the table-
to-KB schema mapping from the mapping vectors generated from tuples and
entities. We show that the proposed solution is more accurate than the two
baselines of instance-based approaches for the given table-to-KB schema map-
ping problem. We also demonstrate that by using the proposed techniques for
efficient computing the mapping vector, the proposed instance-based schema
mapping solution can be efficiently processed. It is feasible for the schema map-
ping of large Web tables and huge knowledge bases.

Acknowledgements. This work is supported by the National Science Foun-
dation of China under grant NO.61170010, National Basic Research Program of
China (973 Program) No. 2012CB316205 ,and HGJ PROJECT 2010ZX01042-
002-002-03.

References

1. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding
and design by example. In: ICDE, pp. 10-19 (2008)

2. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Characterizing schema mappings
via data examples. ACM Trans. Database Syst. 36(4), 23 (2011)

3. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with coma++. In: SIGMOD Conference, pp. 906-908 (2005)

4. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping.
Springer (2011)

122

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

X. Zhang et al.

Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom,
J.: Swoosh: a generic approach to entity resolution. VLDB J. 18(1), 255-276 (2009)
Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD
Conference, pp. 1247-1250 (2008)

Cafarella, M.J., Halevy, A.Y., Khoussainova, N.: Data integration for the relational
web. PVLDB 2(1), 1090-1101 (2009)

Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. PVLDB 1(1), 538-549 (2008)

Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: VLDB, pp. 610-621 (2002)

Engmann, D., Mafimann, S.: Instance matching with coma++. In: BTW Work-
shops, pp. 28-37 (2007)

Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W.: Google fusion tables: data management, integration and collaboration
in the cloud. In: SoCC, pp. 175-180 (2010)

Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)
Kang, J., Naughton, J.F.: On schema matching with opaque column names and
data values. In: SIGMOD Conference, pp. 205-216 (2003)

Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema
matching. In: ICDE, pp. 57-68 (2005)

Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB, pp. 49-58 (2001)

Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: ICDE, pp. 117-128
(2002)

Popa, L., Velegrakis, Y., Miller, R.J., Herndndez, M.A., Fagin, R.: Translating web
data. In: VLDB, pp. 598-609 (2002)

Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.:
Active knowledge: dynamically enriching rdf knowledge bases by web services. In:
SIGMOD Conference, pp. 399-410 (2010)

Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema mapping. In:
SIGMOD Conference, pp. 73-84 (2012)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334-350 (2001)

Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW, pp. 697-706 (2007)

Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: a probabilistic taxonomy for text
understanding. In: SIGMOD Conference, pp. 481-492 (2012)

Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: Infogather: entity augmen-
tation and attribute discovery by holistic matching with web tables. In: SIGMOD
Conference, pp. 97-108 (2012)

ServiceBase: A Programming Knowledge-Base
for Service Oriented Development

Moshe Chai Barukh and Boualem Benatallah

School of Computer Science & Engineering,
University of New South Wales, Sydney — Australia
{mosheb, boualem}@cse.unsw.edu.au

Abstract. In recent times we have witnessed several advances in modern web-
technology that has transformed the Internet into a global deployment and
development platform. Such advances include Web 2.0 for large-scale
collaboration; Social-computing for increased awareness; as well as Cloud-
computing, which have helped virtualized resources over the Internet. As a
result, this new computing environment has thus presented developers with
ubiquitous access to countless web-services, along with computing resources,
data-resources and tools. However, while these web-services enable tremendous
automation and re-use opportunities, new productivity challenges have also
emerged: The same repetitive, error-prone and time consuming integration
work needs to get done each time a developer integrates a new API. To address
these challenges we have developed ServiceBase, a "programming" knowledge-
base, where common service-related low-level logic can be abstracted,
organized, incrementally curated and thereby re-used by other application-
developers. A framework is also proposed for decomposing and mapping raw
service-messages into more common data-constructs, thus making interpreting,
manipulating and chaining services further simplified despite their underlying
heterogeneity. More so, empowered by this knowledge, we expose a set of APIs
to simplify the way web-services can be used in application-development.

Keywords: Service Oriented Architecture, Web-Services, Web 2.0.

1 Introduction

In parallel with cloud computing, we have witnessed several other advances that are
transforming the Internet into a global development and deployment platform. These
include Web 2.0, Service Oriented Architectures (SOA) and social computing. SOA
enables modular and uniform access to heterogeneous and distributed services; Web
2.0 technologies provide a Web-scale sharing infrastructure and platform, while
advances in Social-computing are increasing transparency, awareness, and
participants’ collaboration and productivity. Developers are thus offered with
ubiquitous access to a network of logical services along with computing resources,
data sources, and tools. In a nutshell, the new computing environment enabled by
advances in the above areas, consists of data, computational resources, both
virtualized and physical services, and networked devices distributed over the Internet.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 123-[38] 2013.
© Springer-Verlag Berlin Heidelberg 2013

124 M.C. Barukh and B. Benatallah

This new computing paradigm provides a holistic environment in which users,
workers, services, and resources establish on-demand interactions to meet multiple
simultaneous goals. More specifically, such Web-services and APIs are widely
adopted by programmers to build new applications in various programming languages
on top enterprise as well as social media, Internet-of-Things, and crowd and cloud
services (from resources to platforms). For instance, a number of added value
applications such as Tweetdeck' have been built on top the Twitter API.
Organizations like Mashery® and Apigee’ are building on these trends to provide
platforms for the management of APIs. For instance, ProgrammableWeb now has
more than 6,700 APIs in its directory. These services can be combined to build
composite applications and higher-level services using service composition
techniques [2].

However, while advances in Web service and services composition have enabled
tremendous automation and reuse opportunities, new productivity challenges have
also emerged. The same repetitive, error-prone and time consuming integration work
needs to get done each time a developer integrates a new API, [1,2]. Furthermore, the
heterogeneity associated with services also means service-programming has remained
a technical and complex task, [3]. For example, the developer would need sound
understanding of the different service types and their various access-methods, as well
as being able to format input data, or parse and interpret output data in the various
different formats that they may be available in, (e.g. XML, JSON, SOAP,
Multimedia, HTTP, etc.). In addition to API integration work, programmers may also
need to develop additional functionality such as: user management, authentication-
signing and access control, tracing, and version management.

In order to address these challenges, we have designed and developed ServiceBase,
a “programming” knowledge-base, where common service-related low-level logic can
be abstracted, organized, incrementally curated and thereby re-used by other
application-developers. Architecturally, we have drawn inspiration from Freebase
and Wikipedia, where just as encyclopediatic information is distributed in the form of
user-contributed content, similarly, technical knowledge about services could be both
populated and shared amongst other developers for the purpose of simplified reuse.
More specifically, we offer the following main contributions: (i) We define a unified
services representation model to appropriately capture service-knowledge that is
organized in our programming-base; (ii) To augment a further level of simplicity, we
provide a framework for mapping between native service message formats and more
common data-structures. This means that input and/or output messages of services
can be decomposed and represented as various types of atomic (string, numeric,
binary), or complex (list, tuple) fields, thus making service messages easier to
interpret and manipulate; (iii) Empowered by this knowledge stored in the base, we
then provide a set of APIs that expose a common-programming interface to
developers, thereby simplifying service integration in application development. For
example, invoking a service-method could be done in a few simple lines of code, and
does not entail the programmer to be aware of and program the low-level details, such

! http://www. tweetdeck.com
2 http://www.mashery.com
3 http://apigee.com

ServiceBase: A Programming Knowledge-Base for Service Oriented Development 125

as protocol for access (i.e. REST vs. SOAP), message-formats (i.e. XML vs. JSON),
authorization-control (i.e. formulating and signing OAuth request). This is
implemented by a service-bus middleware that translates high-level methods to more
concrete service calls, by looking-up and then building the necessary information
from the knowledge-base. Similarly, we have provided other simple methods for:
subscribing to feeds; listening to events; and setting-up callbacks, etc.

2 Unified Web-Services Representation Model

At the most basic level, standardizations such as WSDL have provided an agreed
means for describing low-level APIs, and much less formally, the same might be true
for the documentation of RESTful Service APIs. However, it is clear most of these
have been focused primarily for the purpose of service-description and discovery,
where the emphasis on simplifying service-execution is almost neglected, [2,5,7].

In this section, rather than treating services as isolated resources, we describe a
unified and hierarchical representation model for the logical organization of services
in the knowledge-base.

The type of knowledge captured includes: fundamental service information such as
access-protocol, the set of operations and message formats; authorization information in
the case of secure-access services; an end-user base that allows users to pre-authorise
secure-services, and therefore applications written using ServiceBase, only need to use a
single access-token per user, rather than having to manage a set of different token for
each secure service per user; message-transformation rules for mapping between raw
message-types and relatively more simpler message-field object. A summarized version
of the service model has been described in the UML-diagram as illustrated in Figure 1,
and elucidated further below:

Services. The class Service is an abstract superclass for all specialized service types
being implemented. Namely, we support three main types, REST, WSDL and Feed-
based services. A RESTService extends Service and requires that a base-endpoint be
specified that makes up the common part of the RESTful call. WSDLServices require
a wsdl source file, whereby the system can then perform runtime parsing in order to
simplify the formulation and validation of the service-model. StreamServices further
extends RESTServices, and allows Feed sources to be specified. Furthermore, in order
to deal with access to secure services using OAuth [8], AuthorisationInfo allows for
this information to be defined and attached to service-objects. Furthermore, our
unique service-model organizes the service into a logical hierarchy, thus enabling
children services to inherit the knowledge already registered at the parent. The benefit
of this means: not only is it easier to add new services, but it also creates the notion of
a service-community (similar to our previous work [4]). In this manner, similar
services can be defined with a common-set of operations and share a similar interface,
thus simplifying interoperability between services (e.g. replacing one service with
another) — we shall give an example of this later in this paper.

126 M.C. Barukh and B. Benatallah

Service OperationType

Messa
ID :String [Name : String Ee
Name : Strin Description : Stri MessageBody : Document
ing pion : String 1 N oY
o 1 N Format : String
Description : String P :Message
Authlnfo i OutputMessage : Message addField(field : Field)
, 14 |removeField(name : String)
1 | Togs List<Tags> -OperationType(name) : OperationType Y " H
Ops : List<OperationType> setinputMessage(msg : Message) “getField(name : String)
Feads : List<FoedType> +setOutputMessage(msg : Message
HetpMessage
WSDLOperationType RESTOperationType
RESTServi ‘WSDLServit .
L il PortType : String HetpMethodPath : String addParara(name)
:URL WSDLFile : File TechOpName : Sering HiepVerb : String +setParam(name,value)
*addOperationType(op : +addOperationType(op : : String RequiresAuth : bool *removeParam(name)
RESTOperationType) WSDLOperationType) “WSDLOperationType (name, port, RESTOperationType (name, method, “getParam(name) : String
<removeOperationType(op) removeOperationType(op) opname, binding) : WSDLOperationType | | verb, auth) : RESTOperationType addPath(name)
“getOperationType(op) “getOperationType(op) p ge(msg : SO g P :Message) +setPath(name.value)
-setOutputMessage(msg : SOAPMessage) | |-setOutputMessage(msg : Message) -removePath(name)
+getPath(name) : String
+setBody(msg : Message) [
StreamService FeedType -getBody(msg : Message
~addFeed(feed : Feed) Name :String Tara
sremoveFeed(feed) FeedEndpoint : URL 1N Name -String JSONMessage
N """T‘"L"“”T";’ Value : String +setFromString(msg : String)
1 + Dol (uri : File)
InterStyle : InteractionStyle 1
-getAss :S:
OutputMessage : XMLMessage pphetingl Seig)
- " Name : String
1 [ServiceLib : OAuthServicebng qlpaaicl w8 oy XMLMessage
T |API_key : String | —————
AccessTokenURL [T T—
API_secret : String | AuthorisationURL Feedinstance «setFromString(msg : String)
(Authorsaion e J InstanceName : String +setFromFile(uri : ile)
Owner : User sgetAsString) :String
authori O SharedWith : List<User>
Em isPublic :boo! SoAPMesage
+addParam(namexpath)
Field +setParam(name,value)
hes i [ID : String N | [reetvaluetname)
| Name :Scing opoeng |
ListField ppingRule :SON
<T extends Field> TupleField)
AttributeField)| (1o oot <T extends Field> -gencrateMapping() JSON Multimsdiaassage
: Fields :Sex<T> MIMEType : MultimediaType
Data : List<T> ields : Set
Value :T) T eld(field T) Data : byte[)
~gec(i :int) - :
-setvalue(val :T) | |5 d‘MEL ' <removeField(field :T) +setData(data : byte[])
~getValue() :T remove(i :int) ~getField(name : String) : T +setFromFile(uri : File)
siterator() : lterator<T> | |"iterator() : Iterator<T> +getData : byte[

Fig. 1. Summarized view of the Unified Service-Representation Model

OperationType. From a technical standpoint, the notion of a service-operation might
take upon different meanings for different service types. For example, in the case of
REST, while there are generally four basic operation-types (get, put, post, delete),
often what are more relevant to the end-user are the various methods that are
available. For example, searching for photos on Flickr might be considered a user-
operation, accessed via the endpoint /?method=flickr.photos.search. WSDL
services are slightly different in that operations are generally expressed as an RPC
call. However, we propose in both cases service-access can be simplified by
abstracting the low-level details from the end-user. For example, it would be much
more convenient to express a call to Flickr as “/Flickr/getPhotos”, and similarly
for an operation available in WSDL, such as “/Flights/getBooking”, rather than
having to specify the more technical low-level details to make the call. In our model,
this is therefore supported by the abstract superclass OperationType, although since
the low-level details of operations may differ between different service
representations, we have therefore specialized into various sub-classes.

FeedType. The detection of RSS or ATOM feeds can also be supported and is
defined using the FeedType class. This specifies the endpoint, the interaction-style
used to read feeds, as well as any instance parameters. There are three main
interaction-styles supported: polling (i.e. periodic pull at a predefined interval);
streaming (i.e. an open call that allows data to be pushed to the caller); and publish-
subscribe (i.e. this involves registering to a hub that actively sends data only when
new content is available). However, the definition of FeedType still remains abstract,

ServiceBase: A Programming Knowledge-Base for Service Oriented Development 127

in the sense that they may not point to any specific feed-source. For example, a Flickr
discussion feed can be defined by the endpoint: http://api.flickr.com/services
/feeds/groups_discuss.gne, but also requires a parameter groupID be specified
to identify the particular discussion group. Various instances of the feed can now be
instantiated, using the FeedlInstance object, to create several customized instances of
this feed without having to re-define the common low-level details. Moreover, as
certain feed-sources may require authorisation, the owner can appropriately restrict
access to specific feed-instances and not others by sharing only with specific users.
Alternatively, it could be defined as public-view.

Messages. The class Messages represent the various serialization-types for both
incoming and outgoing data that is associated with services. All message-types that we
support are specializations of the superclass Message. Messages can be used both at
design-time by curators when registering services, as well as at execution-time by
developers when interacting with services. An HttpMessage encapsulates standard
information such as parameters, and payload/body, but also supports parameterized path
values, such as “/questions/{qg_ id}/related”. A MultimediaMessage allows
representing any Internet Media File [9] not already directly supported. For example,
Images, PDFs, WordDocuments, etc. While SOAPMessages are inherently XML, we
provide added support, since we know the schema of the messages. A Parameter of a
SOAP message is defined as the triple <name, xpath, value?>, where name is a user-
defined name given to the parameter, while xpath is the query used to reach the
respective data-field; optionally a pre-defined value can be assigned to this parameter.

Message-Fields. Although all services need to define their native input and output
message types, we have also chosen to further decompose any Message into a set of
user-defined MessageFields. There are several benefits for this: (i) Firstly, working
with fields means the end-programmer do not need to worry about the low-level logic
of working with raw messages, such as formatting and parsing messages. (ii)
Secondly, fields provide a unique means for representing similar (yet heterogeneous)
services in a common-interface. For example, in the example described later, we show
how various database-services could be abstracted to a common set of operations: put,
get, read and delete, etc. This being despite their underlying heterogeneity (e.g. a
JSON versus an XML data-interchange model). (iii) Thirdly, applications written
using fields to interact with services means changes in the underlying web-services
(i.e. the service-provider modifies their API or message structure or format, etc.),
would not require any modifications to the application-code. (Although of course,
these changes would need to be made in the mapping-logic, but would only need to be
done once, instead of for each and every application that is using the web-service).

We have found three field-types to be appropriate: AttributeFields are simple and
define a name and value pair; the value-type includes any common primitive type,
such as string, integer and date, as well as binary-array to handle media-files. We
then support two complex types, which may itself contain other atomic or complex
fields nested within them. The complex type ListField represents an indefinite,
ordered list of field-elements of the same type (usually instantiated at ‘run-time’ to
handle an unknown collection of items). While, TupleField represents a finite
collection of fields, akin to a Struct or Class, which can therefore be of arbitrary type,
(but instantiated at ‘design-time’).

128 M.C. Barukh and B. Benatallah

Mapping Rules. However, in order to enable fields, mappings need to be defined,
which specifies transformation-rules that map between the defined field and the
corresponding raw-message. In some cases, the mapping-rules can be completely
generated automatically, such as in the case of WSDL services. However, in the case
of REST, which is far more informal and does not prescribe pre-defined schemas, the
mappings would need to be specified with some human-assistance. However, the
overall benefit is still clear: once a mapping has been registered in the base, others can
then reuse it multiple times. Mappings are structured in our system in JSON-format,
which to begin with can be generated as a template; it then allows the rules to be
entered in order to map to the specific raw-message. The basic template structure for
each field-type has been illustrated in Figure 2 below. Although for nested fields, the
JSON-template generated would be a corresponding nested structure. Note, the
concept of a nodepath expression shown for list, has been defined in the work
presented at [10], and is only necessary when dealing with raw messages schema that
are hierarchically organized XML/JSON data. The value defines the path-to-the-node
(i.e. sub-tree) that are to be considered distinct elements of the list.

“attribute” : { “list” : { “tuple” : {
“value” : “formula” “nodepath” : “formula”, (nested field/s)
} (nested field) }
}
(A) B) ©

Fig. 2. Mapping-rule structures associated with message-field types, where: (A) Attribute-field;
(B) List-field; and (C) Collection-field

To specify a rule means to enter specific type of formulae to tell the system how to
perform the mapping. For example, for an attribute field, a formula might involve an
xpath expression over the native XML message in order to get to the desired node.
The formulae would often involve utilising functions; at present we have preloaded
our system with the following set of 6 functions:

xpath (expr), jsonpath(expr), httpparam(expr),
httppath (expr), httpheader (expr), payload().

Although, depending upon which type of message the mapping is loaded upon, the
functions defined may behave differently. For instance, if loaded to an input message,
the function would act to “write” to the raw message from the field-values; while if
loaded for an output message, it would act to “read” from the raw message and
populate into field-values. Moreover, in a typical service-invocation, mappings
would need to be performed both ways: from fields to raw-messages during the input;
and vice-versa during the output. Given that we support 5 distinct raw-message types,
we have therefore implemented 10 transformation algorithms.

3 ServiceBase System Architecture and Implementation

Figure 3 illustrates the system design and interaction of the main components of the
ServiceBase system. As mentioned, drawing inspiration from a Web2.0-oriented
ecosystem, the service-base acts as a community between service-curators (those that
primarily add/maintain services in the base), service-consumers (mostly application

ServiceBase: A Programming Knowledge-Base for Service Oriented Development 129

developers integrating services in their implementation), and end-users (the final
users who ultimately interact with the various service-oriented applications). We
begin therefore in this section by describing the main APIs exposed by ServiceBase,
and in the subsequent sections we introduce a running example, in order to convey the
more technical details of the APIs, as it would be used in a real-life scenario.

Service ey
. escTole® o
Mol) et Application
Service GranS.T-c-’\-(F' Developer
Service i G !
Curator K -
Model ¥ Regi End-User ..,
egister S .. .
“Update Service Consumes End-User
, ; Identify with Services

Service 5
. ServiceBus
K}

- H .
Service Users ServiceBus
AP AP API
) L3

Register/Manipulate/ End-User
& Query Services Management Fetch Data from
H ServiceBus

ServiceBus

:

Generic Service-Access Layer

Generic WSDL
Client

Generic Feed Client
Polling / PubSub / Streami

Generic SOAP
Client

<
> K] _® amazon j
| | flicks |=l<stackoverflow

o/

Fig. 3. ServiceBase System Architecture

Service Repository

t

3.1 ServiceBase APIs

The programmatic interface to ServiceBase offers the following APIs:

This ServiceAPI is primarily used by service-curators in order to register new
services into the knowledge-base, but also to: search, explore, update and delete
service-definitions that have already been registered.

The ServiceBusAPI would primarily be used by application-developers as the main
gateway to interact with any of the registered services. In particular, the API provides
methods for simplified invocation-calls, feed subscriptions, querying (pull) of feed-
events, listening (asynchronous callback push) of events, authorising services, etc.

The UsersAPI provide a means for end-users to identify themselves with the
service-base. A registered user in the service-base is then able to assign/revoke
authorisation privileges to various services. In this manner, application that are
written on top of services which require access to secure resources (for example,
invoking an operation to get the specified user’s collection of Google Docs), can then
be further simplified, as the entire logic for handling the secure calls is managed by
the service-bus, rather than the application developer. Secure calls can be processed
on behalf of a specific user simply by requesting from the user, or having shared, an
access-key, (done via OAuth, [8]) which is then passed into the invocation method.

130 M.C. Barukh and B. Benatallah

3.2 Service-Modelling Example

As mentioned, services are modeled using the unified services representation model.
In order to apply this to a real-world scenario, we consider what the organization of
service-entities would look like to model a variety of database services (i.e. database-
as-a-service). We also show the process (i.e. the work involved by a typical service-
curator) in order to register new services into the base, and the extent of re-use that
can be achieved in order to simplify this process. Consider the illustration shown in
Figure 4 below — in particular, the hierarchical organization of services entities means
adding services as a descendant of a parent service enables inheriting (i.e. re-using)
the higher-level knowledge stored. Therefore, at each node: new knowledge could be
added, or if inherited, variations or specializations could be made. This organization is
the key to enabling incremental growth of the service knowledge base.

Stream Social DB P query(qry:String)— result:Field
Services Services Services ‘
Dquery
X P createlnstance(...)
Non [>query Relational P deletelnstance(...)

P get(id:String) — result:Field
P put(id:String, data:Field) — void
P> delete(id:String) — void

relational

Amazon
query

RDS
put Key-
Ddelete Ty DB
P get(id:String) =\ cos
gerteTe) Store Dquery
result:String get
query Doc Eput
Record \>Put iz Ddelete
Store [Ddelete
Pget(id:String) —
result:List<>
Redis List<>
DB Tuple<> .
At<String> Simple
query Att<String> DB
HBase get
ut
DB Selete query [>put Poperation(ﬁelds ,,,,, fields) = output
get delete [>inherited operation

Fig. 4. Organization of DB-Services in ServiceBase

In this particular example, we consider DB-services to be split amongst two main
types: relational and non-relational data-stores. It is clear however even at this
abstract level, both service types support a “query” operation, and therefore this
operation-type can be modeled at the uppermost parent level. Non-relational database
inherits the DB-service entity, but defines 3 more operations that could be considered
common amongst non-relational stores, similar to the work found at [12]. Namely
these are: “get”, “put” and “delete”. As modeling the various operation-types require
specifying the input and output message-fields, in some cases we may use the
superclass Field to support an arbitrary field structure. For example, this is the case
for the return type “result” of the “ger” operation (when defined at the high-level).
However, non-relational services can be further divided into three main sub-types,

¢

ServiceBase: A Programming Knowledge-Base for Service Oriented Development 131

those being: key-value stores; record-stores and document-stores. Specializations can
thus be applied, for example, the “get” operation of record-stores, could be modeled
as we have illustrated in Figure 5 shown below.

List<>""'°""'[cable]/—\
List<> e o e e o e o s o« [row] I
Tuple<>e o o oo oo °[celll_>_,/ﬂz =
Attribute<String> « « [cell_name]. e
Attribute<String> « * [cell_value

Fig. 5. Illustration of the “get”-operation fields representing a table-record

3.3 Incremental Enrichment of Services in the Knowledge-Base

Given the above model, we may now show how a concrete service, such as HBase (a
popular non-relational record-stored database-service) could be added. A snippet of
the code as shown in the listing below involves defining the new service to inherit the
knowledge (i.e. definition of the operation-types, structure of the messages, mapping
templates) that has already been defined in the record-store entity. This therefore
simplifies the process, however it does also require customizations in order to meet
the specifics of the concrete service, which cannot otherwise be directly automated.

WooJoul kW

//Retrieves the “RecordStore” service-entity:
Service record_store = ServiceAPI.getServiceByName (“*RecordStore”) ;

//Defines a new service “HBase” to inherit “RecordStore”:
RESTService HBase = new
RESTService
.RESTServiceBuilder (“HBase”)
.inherit (record_store)
Lbuild() ;

//The operation “get” can be retrieved, since it is inherited:
OperationType get = HBase.getOperationType (“get”);

//Customizing the input message to “http” and adding mapping info:
HttpMessage msg_inl = new HttpMessage (get.getInputMessage());
msg_inl.getField() .loadMapping (“in_mapl.json") ;
get.setInputMessage (msg_inl) ;

//Customizing the output message to “xml” and adding mapping info:
XMLMessage msg_outl = new XMLMessage (get.getOutputMessage()) ;
msg_outl.getField() .loadMapping (“out_mapl.json”) ;
get.setOutputMessage (msg_outl) ;

//Contents of in_mapl.json:
{ " Idll s {

"value" : "write(httpparam(id))"
}}

//Contents of out_mapl.json:
{"Table" : {
"nodepath" : "xpath('//Item')",

"Row" : {
"nodepath" : "xpath('//Attribute')",
"Cell" : {
"CellName" : {
"value" : "read(xpath('//Attribute/Name/text())')"
Y,
"CellvValue" :

{
"value" : "read(xpath('//Attribute/Value/text())')"
}

1}

132 M.C. Barukh and B. Benatallah

In order to provide additional support, in the mappings shown, we illustrate in bold-
text the template that can be generated for the required mapping (i.e. by calling
.generateMapping () on the particular field object) — leaving just the specifics to be
filled-in. Although, consider now the case where another method could be added to
the record-store service-entity, for example: getTableList, which takes no
message arguments, but returns a list of names, itemizing all the tables defined in the
store. The code to add this operation-type is shown in the listing below; and serves to
demonstrate how service-entities can grow incrementally. Now, in the case that
another concrete record-store service would be added (for example, Google
BigTable), the new operation-type could easily be inherited.

//Retrieves the “RecordStore” service-entity:
Service record_store = ServiceAPI.getServiceByName (“RecordStore”) ;

//Define the new operation-type:
OperationType get_tables = new OperationType (“GetTableList”);

//Define the input message and fields:
Message msg_in = new Message() ;

WooJoulk W

10. //Define the output message and fields:
11. Message msg_out = new Messagel();
12. AttributeField<String> table_names =
new AttributeField<String>(“TableNames”) ;
13. ListField table_list = new ListField(“Tables”, table_names) ;
14. msg_out.addField(table_list);

16. //Add input and output messages to operation-type:
17. get_tables.setInputMessage (msg_in);
18. get_tables.setOutputMessae (msg_out) ;

20. //Add operation-type to service:
21. record_store.addOperationType (get_tables) ;

23. //Update service-entity:
24. ServiceAPI.updateService (record_store) ;

3.4 Use-Case Scenario

We have shown in the above how service-entities are incrementally enriched. In some
cases although it requires some work, once this knowledge has been entered, we can
then re-use and utilize for enabling simplified integration to services in application
development. We demonstrate this over a simple use-case scenario, which we have
implemented: Consider we would like to visualize the contributions of users to a
particular Google Document. At present, since the GoogleDoc API only returns the
twenty-most recent changes, we are required to log this data ourselves; to do so we
utilize HBase. This data, which can be stored in a table in HBase, can then be queried
for analysis in order to formulate the required visualization.

Based on our evaluation, implementing this using traditional means (i.e. without
using ServiceBase) required a total of approximately 326 lines-of-code, and 3
dependency libraries. Whereas as demonstrated below, a solution using ServiceBase
could be implemented in less than 77 lines-of-code, with no additional libraries.

The implementation we have devised could be divided into two parts: (i) A
deamon process that monitors changes on the particular GDoc, and logs this data into
the database-service; (ii) The request-reply function that when called queries this
database and returns an appropriate visualization.

ServiceBase: A Programming Knowledge-Base for Service Oriented Development 133

We first use ServiceBase to create a FeedlInstance of the generic Google Document
DocChanges [15] FeedType , and then create a subscription to this, as shown below:

1. FeedInstance activity_feed =
new FeedInstance (googleDocs.getFeedTypeByName (“ActivityFeed”)) ;
2. activity_feed.setInstanceName (*MoshesGDocActivity”) ;
activity_ feed.setPathParam(“user_id”, “moshe..@gmail.com”) ;
4. activity_feed.setPublic(false);

w

5. //Register the feed-instance on the service-bus:
6. ServiceAPI.registerFeedInstance (access_key, activity_feed);

7. //Create a subscription to this event:
8. String subscription_id =
ServiceBus.subscribe (“/GoogleDocs/ActivityFeed/MoshesGDocActivity”) ;

Upon doing so, an event-callback could then be written that acts on the event that a
new change has occurred. If so, an entry is added to the database to log this change.
The code below thus represents the deamon process that could be inserted:

1. public class EventHandlers {

2. @EventCallback (tag="my_handler_id")

3. public void MyHandler (Field gdoc_activity, String sub_id) {

4. //Get the data needed from activity field object:

5. gdoc_activity = (TupleField) gdoc_activity;

6. String doc_id = gdoc_activity.getField(“gdoc_id”) .getValue() ;
7. String author = gdoc_activity.getField(“author”) .getValue() ;

8. String desc = gdoc_activity.getField(“description”).getValue() ;
9. //Get DB-service object:

10. Service HBase = ServiceAPI.getServiceByName (“HBase”) ;

11. ListField row = (ListField)HBase.getOperationTypeByName (“put”)
12. .getInputMessage () .getField() ;
13. //Formulate input Message-Fields:

14. TupleField gdoc_id = new TupleField(“Cell”);

15. cell.addField(new AttributeField<String>(“CellName”, “gdoc_id")) ;
16. cell.addField(new AttributeField<String>(“CellvValue”,doc_id)) ;
17. row.add (gdoc_id) ;

18. TupleField author_username = new TupleField(“Cell”);

19. cell.addField(new AttributeField<String>(“CellName”, “usrname”)) ;
20. cell.addField(new AttributeField<String>(“Cellvalue”, author)) ;
21. row.add (author_username) ;

22. TupleField description = new TupleField(“Cell”);

23. cell.addField(new AttributeField<String>(“CellName”, “desc”));
24. cell.addField(new AttributeField<String>(“CellvValue”, desc));
25. row.add (description) ;

26. //Invoke DB-service to add data:

27. ServiceBus.invoke (HBase, “put”, row);

28. }

29. 1}

30. ServiceBus.addEventListner (access_key, subscription_id,
new EventHandlers(), “my_handler_id”);

134 M.C. Barukh and B. Benatallah

Finally, in order to produce the required visualization, we implement the following
function that queries the database-service for analysis. (In this example, we simply
assume any change counts as 1-point towards the scores that calculates contributions).
We use Google Chart API [11] for creating a visualization of data.

1.

s ow

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.

public String getGraph(String access_key, String doc_id) {

//Get Service-entity from bus:
RESTService HBase = ServiceAPI.getServiceByName ("HBase") ;
RESTOperationType getRecord =
HBase.getOperationTypeByName ("GetRecord") ;
AttributeField<String> id =
new AttributeField<String>("id", doc_id);

//Invoke service to query DB for log-data:
Field changes =
ServiceBus.invoke (access_key, HBase, getRecord, id);

//Calculate contributions:
HashMap<String, Integer> user_score =
new HashMap<String, Integer> () ;

for (Field rows : (ListField<Field>) changes) {
for (Field cell : (ListField<Field>) rows) {
cell = (TupleField) cell;
if(cell.get("name") .compareTo ("username")==0) {
String username = ((TupleField)cell) .get("value");

if (user_score.get (username) !=null) {
int curr_score = user_score.get (username) .parselnt();
user_score.put (username, curr_score+l);

}

else
user_score.put (username, 1);

}

//Use Google Graph API for getting a visualisation URL:
Service googleGraph = ServiceAPI.getServiceByName (“GoogleGraph”) ;

ListField pie_data = (ListField) googleGraph
.getOperationType (“createPieChart)
.getInputMessage ()
.getField() ;

for (String username : user_score.keySet()) {

TupleField chartdata = new TupleField(“ChartData”) ;
chartdata.addField(
new AttributeField(“label”, username) ;
chartdata.addField(
new AttributeField(“value”, user_score.get (username)) ;
pie_data.add(chartdata) ;
}
String url =
ServiceBus.invoke (null, googleGraph, “createPieChart”, pie_data);

return url;

ServiceBase: A Programming Knowledge-Base for Service Oriented Development 135

4 Evaluation

We have evaluated the overall effectiveness of our proposed approach (i.e. to simplify
access and integration of web-services in application development), by adopting the
above scenario in a user-study. The factors used to measure effectiveness were: (i)
The total number of lines-of-code excluding white-space and comments; (ii) Number
of extra dependencies needed; and (iii) Time taken to complete task. The study was
conducted on a total of five participants, all of which possessed an average to
moderately-high level of software development expertise. In order to further balance
the evaluation, three participants were asked to attempt the implementation using
traditional techniques first, and then secondly using ServiceBase; whereas the other
two participants were asked to do this in reverse. The results of our study are shown
in the graphs as illustrated at Figure 6 below.

_. 500 _ 140
=) B =
> £
% 400 == ~ == £ 120 =
2 N ~ = 100 i =
300 = - -—
s § o 1 | B
S 200 g 60
g S 40
= 100 . ' s 20
= o
) 0 . . N £ 0
S E
1 2 3 4 5 = 1 2 3 4 5
& serviceBase [_] Traditionai [serviceBase [Traditional

Fig. 6. Evaluation Results for GDocs Contribution Calculator use-case

As an overall analysis, it is clear that across all participants, the number of lines of
code and time taken to complete the task is significantly reduced when using
ServiceBase than in comparison to the traditional development approaches. In general
as well, while the implementations using ServiceBase did not require any additional
libraries, the traditional approaches in contrast required on average at least two to
three additional libraries. In light of these results, this evaluation study successfully
demonstrates the anticipated benefit of our proposed approach.

5 Related Work

Web-Service Types, Modeling Technique and Concerns. There are clearly two
widely accepted representation approaches for services, namely SOAP and REST
[2,5,7]. Nonetheless, while both strive to achieve the same underlying goal, there has
in fact been much debate about whether “REST has replaced SOAP services!” [6], or
questions posed relating to “which one is better?” [16]. While the conclusions of these
debates are largely beyond the scope of our exploration, it is clear that RESTful
service has by far outweighed SOAP service offerings. In fact, at the time of writing,
there has been a reported 500 SOAP services in contrast to over 2,800 RESTful
services. The clear reasons for this is due to the fact that RESTful services are by far

136 M.C. Barukh and B. Benatallah

easier to understand and provides better support for modern web-technology. For
example, whereas SOAP enforces XML, RESTful services support a more human-
friendly JSON, that also enables increased support for embedding JavaScript and
Ruby. SOAP services on the other hand have mainly focused on enterprise resulting
in a more verbose architecture. Particularly WSDL guided by the increasingly family
of WS-* standards. However, it is precisely the lack of standards surrounding REST
that has polarized the community for or against REST being the next generation of
web-services technology, [17].

Web-Services Repositories, Access Techniques and Concerns. Ultimately, the
value of service-models is assessed by its usefulness, such as: whether services can be
stored and explored; and whether the model enables a degree of automated support to
utilize them in application development. In the SOAP community, while standards
such as UDDI were proposed to act as a global-repository, it seemed the idea soon
failed where the emphasis has shifted to simply relying on web-based engines in order
to locate services, similar to what is done for RESTful services. For example,
ProgrammableWeb list thousands of APIs, however clearly not much of the meta-
information available would be useful to support or simplify service-execution.

Towards an Abstract Architecture for Uniform Presentation of Resources. To
address these challenges, we have thus been motivated to propose a unified service
representation model, which is an essential component in order to provide a common
interface for interacting with services. This means the heterogeneity of services can be
masked by more high-level operations that automate the concrete set of instructions
behind the scenes. From an architectural perspective, there are in fact several works
that share the same motivation, although for other more specific domains.

For example, in the case of data-storage services, BStore [18] is a framework that
allows developers to separate their web application code from the underlying user
data-storages. The architecture consists of three components: file-systems, which
could be considered as data-storage APIs (or services in our model); the file-system
manager acting as the middleware (or service-bus in our model); and applications that
require access to the underlying user-data. A common-interface is then proposed for
both loading storage-services as well as for applications to access this data.

Another example is SOS [12], which also defines a common-interface to interact
with non-relational databases. Similar to the concept of the unified-model, they
provide a meta-model approach to map specific interfaces of various systems to a
common one. However, since the work mainly deals with data-storage services, the
common set of operations is relatively simple. Also relevant is that the work deals
with providing a common model for run-time data. In this manner further similarity
can be drawn to the message-fields and mapping component of our system, where
interestingly they too identify three main constructs for modeling heterogeneous data,
which they refer to as String, Collection and Object.

In the case of Feed-based services, the work at [15] presents an architecture for
consumers of feeds to organize the services that they are using, share them, or use it
to build tools which would implement a decentralized system for publishing,
consuming and managing feed-subscription. We identify the middleware in their
framework to be the feed-subscription manager (FSM), which decouples consumers
from the underlying feed-services. In this case, the common representation model for

ServiceBase: A Programming Knowledge-Base for Service Oriented Development 137

feeds is expressed via an Atom feed. Common operations to services are then
expressed via AtomPub in order to interact with the various underlying feed-sources.

However, in all cases mentioned above, while they share similar concepts of
architecture, their applicability is still only limited to a particular domain.

6 Conclusions

Although the Internet continues to flourish with a growing number of APIs, there still
lie significant challenges in integrating services in everyday application development.
Motivated by this need, we proposed in this paper a platform for simplified access to
web-services. In order to achieve this, we first addressed the heterogeneity of various
service representation types by proposing a unified service model and mapping
framework. Inspired from the Web2.0 paradigm, we design a programming
knowledge-base, such that common service-knowledge can be abstracted, organized,
incrementally curated and thereby re-used by other developers. Empowered by this,
we have implemented a set of APIs that offers a common programming interface for
significantly simplified access to service, accordingly, we have conducted an
evaluation to verify the overall effectiveness of our proposed work.

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE
Internet Computing 12(5), 44-52 (2008)

2. Pautasso, C., Zimmermann, O., Leymann, F.: Restful Web Services vs. “Big” Web
Services: Making the Right Architectural Decision. In: 17th International Conference on
World Wide Web, pp. 805-814. ACM (2008)

3. Voida, A., Harmon, E., Al-Ani, B.: Homebrew Databases: Complexities of Everyday
Information Management in non-profit Organizations. In: Conference on Human Factors
in Computing Systems (CHI). ACM Press, Vancouver (2011)

4. Benatallah, B., Dumas, M., Sheng, Q.Z.: Facilitating the rapid development and scalable
orchestration of composite web services. Distributed and Parallel Databases 17(1), 5-37
(2005)

5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services: Concepts, Architectures,
and Application, 354 Pages. Springer (2004) ISBN: 978-3-540-44008-6

6. How REST replaced SOAP on the Web, http://www.infoqg.com/
articles/rest-soap

7. Geambasu, R., Cheung, C., Moshchuk, A., Gribble, S., Levy, H.M.: Organizing and
sharing distributed personal web-service data. In: 17th International Conference on World
Wide Web, pp. 755-764. ACM Press (2008)

8. OAuth, http://oauth.net/

9. Wikipedia: ‘Internet Media Type’,
http://en.wikipedia.org/wiki/Internet_media_type

10. Kwok, W.: Bidirectional transformation between relational data and XML document with
semantic preservation and incremental maintenance. PhD Thesis, University of Hong
Kong

11. Google Image Chart API, https://developers.google.com/chart/image/

138

12.

13.

14.
15.

16.

17.

18.

M.C. Barukh and B. Benatallah

Atzeni, P., Bugiotti, F., Rossi, L.: SOS (Save Our Systems): A uniform programming
interface for non-relational systems. In: 15th International Conference on Electronic
Conference (EDBT), Berlin, Germany (2012)

OrientDB Graph-Document NoSQL DBMS,
http://www.orientdb.org/index.htm

Amazon Simple DB, http://aws.amazon.com/simpledb/

Wilde, E., Liu, Y.: Feed Subscription Management. University of California, Berkley
School of Information Report 2011-042 (2011)

REST and SOAP: When Should I Use Each?
http://www.infoqg.com/articles/rest-soap-when-to-use

Duggan, D.: Service Oriented Architecture: Entities, Services, and Resources. Wiley-IEEE
Computer Society, NJ (2012)

Chandra, R., Gupta, P., Zeldovich, N.: Separating Web Applications from User Data
Storage with BStore. In: WebApps (2010)

On Leveraging Crowdsourcing Techniques
for Schema Matching Networks

Nguyen Quoc Viet Hung'!, Nguyen Thanh Tam', Zoltan Miklés?, and Karl Aberer!

! Ecole Polytechnique Fédérale de Lausanne
{quocviethung.nguyen, tam.nguyenthanh,karl.aberer}@epfl.ch
2 Université de Rennes 1
zoltan.miklos@univ-rennesl. fr

Abstract. As the number of publicly-available datasets are likely to grow, the
demand of establishing the links between these datasets is also getting higher and
higher. For creating such links we need to match their schemas. Moreover, for
using these datasets in meaningful ways, one often needs to match not only two,
but several schemas. This matching process establishes a (potentially large) set
of attribute correspondences between multiple schemas that constitute a schema
matching network. Various commercial and academic schema matching tools
have been developed to support this task. However, as the matching is inherently
uncertain, the heuristic techniques adopted by these tools give rise to results that
are not completely correct. Thus, in practice, a post-matching human expert effort
is needed to obtain a correct set of attribute correspondences.

Addressing this problem, our paper demonstrates how to leverage crowdsourc-
ing techniques to validate the generated correspondences. We design validation
questions with contextual information that can effectively guide the crowd work-
ers. We analyze how to reduce overall human effort needed for this validation
task. Through theoretical and empirical results, we show that by harnessing nat-
ural constraints defined on top of the schema matching network, one can signifi-
cantly reduce the necessary human work.

1 Introduction

There are more and more services on the internet that enable users to upload and
share structured data, including Google Fusion Tables [[13], Tableausoftwar Factuaﬂ
These services primarily offer easy visualization of the uploaded data as well as tools
to embed the visualisation to blogs or Web pages. As the number of publicly avail-
able datasets grows rapidly and they are often fragmented into different sources, it is
essential to create the interlinks between these datasets [7]. For example, in Google Fu-
sion Tables, the coffee consumption data are distributed among different tables in that
each table represents for a specific region [[13]. In order to extract generic information
for all regions, we need to aggregate and mine across multiple tables. This raises the
challenges for interconnecting table schemas to achieve an integrated view of data.

'http://www.tableausoftware.com/public
2http://www.factual.com/

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 139-[[54] 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.tableausoftware.com/public
http://www.factual.com/

140 N.Q. Viet Hung et al.

One of the major challenges in interconnecting the datasets is to establish the con-
nections between attributes of individual schemas that describe the datasets. The pro-
cess of establishing correspondences between the attributes of two database schemas
has been extensively researched, and there is a large body of work on heuristic match-
ing techniques[4, 22]. Beside the research literature, numerous commercial and aca-
demic tools, called schema matchers, have been developed. Even though these match-
ers achieve impressive performance on some datasets, they cannot be expected to yield
a completely correct result since they rely on heuristic techniques. In practice, data
integration tasks often include a post-matching phase, in which correspondences are
reviewed and validated by human experts.

Given our application context, the large number of schemas and (possible) connec-
tions between them, the validation task would require an extreme effort. In this paper
we demonstrate the use of crowdsourcing techniques for schema matching validation.
Specifically, we study a setting in which the two schemas to be matched do not exist
in isolation but participate in a larger matching network and connect to several other
schemas at the same time. Beside interconnecting structured data on the Internet, there
are a number of application scenarios in which such model can be applied, for example
schema matching in large enterprises [[18,24] or service mashups [9].

Crowdsourcing techniques have been successfully applied for several data manage-
ment problems, for example in CrowdSearch [26] or CrowdScreen [[19]. McCann et al.
[[17], have already applied crowdsourcing methods for schema matching. In their work,
they focused on matching a pair of schemas, but their methods are not directly applica-
ble for the matching network that is our main interest. Leveraging network information,
we define natural constraints that not only effectively guide the crowd workers but also
significantly reduce the necessary human efforts.

Our contributions can be summarized as follows.

— We analyze the schema matching problem in networks whose schemas are matched
against each other. On top of such networks, we exploit the relations between cor-
respondences to define the matching network constraints.

— We design questions presented to the crowd workers in a systematic way. In our
design, we focus on providing contextual information for the questions, especially
the transitivity relations between correspondences. The aim of this contextual infor-
mation is to reduce question ambiguity such that workers can answer more rapidly
and accurately.

— We design an aggregate mechanism to combine the answers from multiple crowd
workers. In particular, we study how to aggregate answers in the presence of match-
ing network constraints. Our theoretical and empirical results show that by harness-
ing the network constraints, the worker effort can be lowered considerably.

The rest of the paper is structured as follows. The next section gives an overview of
our framework. In Section 3l we describe how to design the questions that should be
presented to crowd workers. In Sectiond] we formulate the problem of aggregating the
answers obtained from multiple workers. Section[3clarifies our aggregate methods that
exploit the presence of matching network constraints. Section [6] presents experimental
results. Section[7lsummarizes related work, while Section [l concludes the paper.

On Leveraging Crowdsourcing Techniques for Schema Matching Networks 141

2 Overview

Schema matching network is a network of schemas, together with the pairwise attribute
correspondences between the attributes of the corresponding schemas. In our setting we
suggest that these schema matching networks shall be constructed in the following two-
step incremental process: (1) generate pairwise schema matchings using existing tools
such as COMA [10] and AMC [20], (2) validate the generated matching candidates by
crowd workers (i.e. decide whether the generated correspondence is valid or not). After
the first step, the schema matching network is constructed and defined as a tuple (S, C),
where S is a set of schemas and C is a set of correspondences generated by matching
tools.

User Corr Answer Answer Aggregation ‘

3 ggreg ‘ 4 Corr Aggr Error
uy (e True - Rate
u, [True 4 True 0.067

- N
@ False . o b
N_Us 1 Question Builder ‘ 5 2 Falce 012
c o
2 \ ~__ Selection Condition € = 0.1
— T >
S @ e Decision |
5 1 orr lecision
Workers €% =24
&H C4 True

Fig. 1. Architecture of the crowdsourcing framework

For realizing the second second step of validating the correspondences, we propose
the framework depicted in Figure[Il The input to our framework is a set of correspon-
dences C. These correspondences are fetched to Question Builder component to gener-
ate questions presented to crowd workers. A worker’s answer is the validation of worker
u; on a particular correspondence ¢; € C, denoted as a tuple (u;, ¢;, a), where a is the
answer of worker u; on correspondence ¢;. Domain values of a are {true, false}, where
true/ false indicates c; is approved/disapproved.

In general, the answers from crowd workers might be incorrect. There are several
reasons for this, such as the workers might misunderstand their tasks, they may acci-
dentally make errors, or they simply do not know the answers. To cope with the prob-
lem of possibly incorrect answers, we need aggegation mechanismes, realized in the
Answer Aggregation component. We adopt probabilistic aggregation techniques. We
estimate the quality of the aggregated value by comparing the answers from different
workers. The aggregated result of a correspondence is a tuple {a*, e), where a* is the
aggregated value, e is the error rate of aggregation. If the error rate e is greater than a
pre-defined threshold €, we continue to fetch ¢ into Question Builder to ask workers for
more answers. Otherwise, we make the decision a* for the given correspondence. This
process is repeated until the halting condition is satisfied. In our framework, the halting
condition is that all correspondences are decided.

142 N.Q. Viet Hung et al.

In our setting, it is reasonable to assume that there is an objective ground truth, i.e.,
there exists a single definitive matching result that is external to human judgment. How-
ever, this truth is hidden and no worker knows it completely. Therefore, we leverage the
wisdom of the crowd in order to approximate the hidden ground truth (with the help
of our aggregation techniques). However, approximating the ground truth with limited
budget raises several challenges: (1) How to design the questions for effective answers?
(2) How to make aggregation decision based on the answers from workers? (3) How
to reduce the number of questions with a given quality requirement? In the following
sections, we will address these challenges.

3 Question Design

In this section, we demonstrate how to design questions using the set of candidate corre-
spondences. Generally, a question is generated with 3 elements: (1) Object, (2) Possible
answers and (3) Contextual information. In our system, the object of a question is an
attribute correspondence. The possible answers which a worker can provide are either
true (approve) or false (disapprove). The last element is contextual information, which
plays a very important role in helping workers answer the question more easily. It pro-
vides a meaningful context to make the question more understandable. In our work, we
h have used three kinds of contextual information:

— All alternative targets: We show a full list of candidate targets generated by
matching tools. By examining all possible targets together, workers have can better
judge whether the given correspondence is correct or not as opposed to evaluating
a single value correspondence. Figure 2l A) gives an example of this design.

— Transitive closure: We do not only display all alternatives, but also the transi-
tive closure of correspondences. The goal of displaying the transitive closure is
to provide a context that shall help workers to resolve the ambiguity, when other-
wise these alternatives are hard to distinguish. For example, in Figure 2I(B), work-
ers might not be able to decide which one of two attributes CRM.BirthDate and
CRM.Name corresponds to the attribute MDM.BirthName. Thanks to the tran-
sitive closure MDM.BirthName — CRM.Name — SRM.BirthName, workers
can confidently confirm the correctness of the match between CRM.Name and
MDM.BirthName.

— Transitive violation: In contrast to transitive closure, this design supports a worker
to identify incorrect correspondences. Besides all alternatives, the contextual infor-
mation contains a circle of correspondences that connects two different attributes
of the same schema. For instance, in Figure 2(C), workers might find it difficult to
choose the right target among CRM.BirthDate, CRM.Name for MDM.BirthName.
The transitive violation CRM.Name — SRM.BirthName — MDM.BirthName —
CRM.BirthDate is the evidence that helps worker to reject the match between
MDM.BirthName and CRM.BirthDate.

Comparing to the question generating and posting strategy presented in [17], our ques-
tion design is more general. In our approach, both the pairwise information (i.e., data

On Leveraging Crowdsourcing Techniques for Schema Matching Networks 143

MDM CRM MDM CRM

MDM CRM [@Bithoate D
: N BirtName | ..® (01.01-1986 BirthName (01-01-1986)
@) BirthDate ! (Alice) ?
® Name (Alice) @e... -+ @ Name
(01-01-1986) | | (Bob)
Contextual BirthName @2 ! N AN B) (Bob)
Information (Alice) .'\. - i M 4)
Bob) | (4
J (Bob) | SRM| srm @
J J | BlnhName BirthName
(i) (12-12-1968)
Does atiribute BirthName match attribute Name? | Does MDM.BirthName match CRM.Name? Does MDM.BirthName match CRM.BirthDate?
Question ® Yes ONo | © Yes ONo O Yes ® No
(A) (B) ©)

Fig. 2. Question designs with 3 different contextual information: (A) All alternative targets, (B)
Transitive closure, (C) Transitive violation

value and all alternatives) and the network-level contextual information (i.e., transitive
closure and transitive violation) are displayed to help the workers to answer the ques-
tion more effectively. To evaluate the effectiveness of the question design, we conducted
some experiments in section |6} It turned out that the contextual information proposed
as above is critical. Having the contextual information at hand, the workers were able
to answer the questions faster and more accurately. Subsequently, the total cost could
be substantially reduced since the payment for each task can be decreased [2].

4 Aggregating User Input

In this section we explain our aggregation techniques. After posting questions to crowd
workers (as explained in Section[3)), for each correspondence ¢ € C, we collect a set of
answers 7. (from different workers) in which each element could be true(approve) or
false(disapprove). The goal of aggregation is to obtain the aggregated value a. as well
as estimate the probability that a, is incorrect. This probability is also called the error
rate of the aggregation e,.

In order to compute the aggregated value a. and error rate e, we first derive the prob-
ability of possible aggregations Pr(X,.). In that, X, is a random variable of aggregated
values of ¢ and domain values of X, is {true, false}. This value refers to the ground
truth, however that is hidden from us, thus we try to estimate this probability with the
help of aggregation methods. There are several techniques proposed in the literature
to compute this probability such as majority voting [2] and expectation maximization
(EM) [8]. While majority voting aggregates each correspondence independently, the
EM method aggregates all correspondences simultaneously. More precisely, the input
of majority voting is the worker answers . for a particular correspondence ¢, whereas
the input of EM is the worker answers 7 = | ¢ 7. for all correspondences.

In this paper, we use EM as the main aggregation method to compute the probabil-
ity Pr(X.). The EM method differs from majority voting in considering the quality of
workers, which is estimated by comparing the answers of each worker against other
workers answers. More precisely, the EM method uses maximum likelihood estimation
to infer the aggregated value of each correspondence and measure the quality of that
value. The reason behind this choice is that the EM model is quite effective for labeling
tasks and robust to noisy workers [23].

144 N.Q. Viet Hung et al.

After deriving the probability Pr(X.) for each correspondence ¢ € C, we will com-
pute the aggregation decision {a., e.) = g(c), where a. is the aggregated value and e,
is the error rate. The aggregation of this decision is formulated as follows:

(©) = (true, 1 — Pr(X, = true)) If Pr(X. = true) > 0.5)
8= (false, 1 — Pr(X, = false)) ~ Otherwise

In equation 1] the error rate is the probability of making wrong decision. In order to
reduce error rate, we need to reduce the uncertainty of X, (i.e., entropy value H(X,)).
If the entropy H(X,) is closed to 0, the error rate is closed to 0. For the experiments
described in section [@] in order to achieve lower error rate, we need to ask more ques-
tions. However, with given requirements of low error rate, the monetary cost is limited
and needs to be reduced. In next section, we will leverage the constraints to solve this
problem.

5 Leveraging Constraints to Reduce User Efforts

For experiments described in section[6 we found that to achieve lower error rate, more
answers are needed. This is, in fact, the trade-off between the cost and the accuracy[26].
The higher curve of Figure [3ldepicts empirically a general case of this trade-off.

l Without constraint

Increase Error Rate

T T
Increase #Answers

Fig. 3. Optimization goal

We want to go beyond this trade-off by lowering this curve as much as possible.
When the curve is lower, with the same error rate, the number of answers is smaller. In
other words, with the same number of answers, the error rate is smaller. To achieve this
goal, we leverage the network consistency constraints to adjust the error rate with the
same number of answers. In this section, we will show how to exploit these constraints.

5.1 Aggregating with Constraints

In section[] we already formulate the answer aggregation. Now we leverage constraints
to adjust the error rate of the aggregation decision. More precisely, we show that by
using constraints, it requires fewer answers to obtain aggregated result with the same
error rate. In other words, given the same answer set on a certain correspondence, the
error rate of aggregation with constraint is lower than the one without constraint. We
consider very natural constraints that we assume to hold; in other words we assume that
these are hard constraints.

On Leveraging Crowdsourcing Techniques for Schema Matching Networks 145

Given the aggregation g,(c) of a correspondence ¢, we compute the justified aggrega-
tion g%(c) when taking into account the constraint y. The aggregation g/(c) is obtained
similarly to equation[]] except that the probability Pr(X,) is replaced by the conditional
probability Pr(X.|y) when the constraint y holds. Formally,

V() = (true, 1 — Pr(X, = truely)) If Pr(X, = truely) > 0.5 @
8xlc) = (false, 1 — Pr(X. = falsely)) Otherwise

In the following, we describe how to compute Pr(X.|y) with 1-1 constraint and circle
constraint. Then, we show why the affect of constraints can reduce error rate. We leave
the investigation of other types of constraints as an interesting future work.

5.2 Aggregating with 1-1 Constraint

Our approach underlies the intuition illustrated in Figure (A), depicting two corre-
spondences ¢; and ¢, with the same source attribute. After receiving the answer set
from workers and applying probabilistic model (section[d)), we obtained the probability
Pr(X., = true) = 0.8 and Pr(X., = false) = 0.5. When considering ¢, independently,
it is hard to conclude ¢, being approved or disapproved. However, when taking into
account ¢; and 1-1 constraint, ¢, tends to be disapproved since ¢; and ¢, cannot be ap-
proved simultaneously. Indeed, following probability theory, the conditional probability
Pr(X,., = falsely,-1) = 0.83 > Pr(X., = false).

s T Pr(X,, = true) =038 € C C3 Prob Yu
S b T T T 0.32 1.0
C. Pr(X,, = false) = 0.5 T T E 0.32 0.0
c,® T F T 0.08 0.0
— c4 c, Prob y; 4 T F F 0.08 A
T T 04 A F T T 0.08 0.0

T F 04 10 Pr(X, =true)=08 | F T F 0.08 A

F T 01 10 Pr(X, =true)=08 | F F T 002 A

F _F 01 1.0 Pr(X., =true)y=05 LF_F F 0.02 A

0.4 +0.1 032+ A x 0.02

Pr(X,, =) = - -
(Xe, = falselri1) = ;o gai 0401701 (X = truelvo) 032+2xAxX008+2xAXx0.02

~ 0.83 withA =0 =~ 0.9 with A = 0.2

(A) (B)

Fig. 4. Compute conditional probability with (A) 1-1 constraint and (B) circle constraint

In what follows, we will formulate 1-1 constraint in terms of probability and then
show how to compute the conditional probability Pr(X,|y;-1).

Formulating 1-1 Constraint. Given a matching between two schemas, let us have a set
of correspondences {co, c, . . ., cx} that share a common source attribute. With respect
to 1-1 constraint definition, there is at most only one ¢; is approved (i.e., X, = true).
However there are some exceptions where this constraint does not hold. For instance,
the attribute name might be matched with firstname and lastname. But these cases
only happen with low probability. In order to capture this observation, we formulate
1-1 constraint as follows:

146 N.Q. Viet Hung et al.

1 Ifm<1
Pryi-ilXep, Xeys -5 Xe) = {A €[0,11 Ifm>1)

where m is the number of X, assigned as true. When 4 = 0, there is no constraint
exception. In general, 4 is close to 0. The approximated value of 4 can be obtained
through statistical model [6].

Computing Conditional Probability. Given the same set of correspondence
{co,c1,...,ck} above, let denote p; as Pr(X., = true) for short. Without loss of gener-
ality, we consider c(be the favourite correspondence whose probability pg is obtained
from the worker answers. Using the Bayesian theorem and equation [3] the conditional
probability of correspondence ¢y with 1-1 constraint y;_; is computed as:

Pr(y1-11Xe, = true) x Pr(X,, =t L A1 — x) X
Pr(Xe, = truelyi-1) = r1-1lXe, = true) X PrXe, = true) _ (x+ A1 =x) X p,
Pr(yi-1) y+A(1—y)
where x=T1,a-p)
=TT (1= p) + 250 9 T s (1= P

“)

x can be interpreted as the probability of the case where all other correspondences
except ¢ being disapproved. y can be interpreted as the probability of the case where all
correspondences being disapproved or only one of them being disaproved. The precise
derivation of equationdlis put in the Appendix.

5.3 Aggregating with Circle Constraint

Figure H(B) depicts an example of circle constraint for three correspondences ¢y, ¢z, ¢3.
After receiving the answer set from workers and applying probabilistic model (section
M), we obtained the probability Pr(X,, = true) = Pr(X., = true) = 0.8 and Pr(X,, =
true) = 0.5. When considering c3 independently, it is hard to conclude c¢3 being true or
false. However, when taking into account ¢y, c; under the 1-1 constraint, c3 tends to be
true since the circle created by ¢y, ¢», c3 shows an interoperability. Therefore, following
probability theory, the conditional probability Pr(X., = truely;—1) = 0.9 > Pr(X., =
true).

In the following we will formulate circle constraint in terms of probability and then
show how to compute the conditional probability Pr(X,|yc).

Formulating Circle Constraint. Following the notion of cyclic mappings in [€], we
formulate the conditional probability of a circle as follows:

1 Ifm=k+1
Pr(70|XCnsXC]7"'7XCk) = O Ifm = k (5)
4 Iftm<k

Where m is the number of X, assigned as true and 4 is the probability of compensating
errors along the circle (i.e., two or more incorrect assignment resulting in a correct
reformation).

On Leveraging Crowdsourcing Techniques for Schema Matching Networks 147

Computing Conditional Probability. Given a closed circle along ¢y, cy, ..., c, let
denote the constraint on this circle as yo, and p; as Pr(X., = true) for short. Without
loss of generality, we consider ¢y to be the favorite correspondence whose probability
po is obtained by the answers of workers in the crowdsourcing process. Following the
Bayesian theorem and equation[3] the conditional probability of correspondence ¢y with
circle constraint is computed as:

Pr(yol|Xe, = true) X Pr(X,, = true) (15 (p) +4(1 = x) X p,
Pr(yo) T T () + 401 -y)

(6)
where x =15, (p) + 2y [= p) T i p)]
y = Hf:o (pi) + Zi'(:() [(1=p) Hj:o,j;ei pjl
x can be interpreted as the probability of the case where only one correspondence among
ci,...,Cr €xcept cg is disapproved. y can be interpreted as the probability of the case
where only one correspondence among ¢y, ¢y, . . ., ¢ is disapproved. The detail deriva-
tion of equation[6is put in the Appendix.

Pr(X,, = truelyy) =

5.4 Aggregating with Multiple Constraints

In general settings, we could have a finite set of constraints I" = {1, ..., y,}. Let denote
the aggregation with a constraint y; € I' is g (c) = (a.,e’), whereas the aggregation
without any constraint is simply written as g.(c) = {(a., e.). Since the constraints are
different, not only could the aggregated value a'. be different (a’. # @) but also the error
rate ei could be different (ei, * ei). In order to reach a single decision, the challenge
then becomes how to define the multiple-constraint aggregation g% (c) as a combination
of single-constraint aggregations g, (c).

Since the role of constraints is to support reducing the error rate and the aggrega-
tion g,(c) is the base decision, we compute the multiple-constraint aggregation g’ (c) =
(ac, ey, where e/ = min({e'|a. = a.} U e.). Therefore, the error rate of final aggregated
value is reduced by harnessing constraints. For the experiments in real datasets de-
scribed in the next section, we will show that this aggregation reduces a half of worker
efforts while preserving the quality of aggregated results.

6 Experiments

The main goal of the following evaluation is to analyze the use of crowdsourcing tech-
niques for schema matching network. To verify the effectiveness of our approach, three
experiments are performed: (i) effects of contextual information on reducing question
ambiguity, (ii) relationship between the error rate and the matching accuracy, and (iii)
effects of the constraints on worker effort. We proceed to report the results on the real
datasets using both real workers and simulated workers.

148 N.Q. Viet Hung et al.

6.1 Experimental Settings

Datasets. We have used 3 real-world datasets: Google Fusion Tables, University App-
Form, and WebForm. They are publicly available on our website B. In the experiments,
the topology of schema matching network is a complete graph (i.e. all graph nodes are
interconnected with all other nodes). In that, the candidate correspondences are gener-
ated by COMA [10] matcher.

Worker Simulation. In our simulation, we assume that the ground truth is known in
advance (i.e. the ground truth is known for the experimenter, but not for the (simulated)
crowd worker). Each simulated worker is associated with a pre-defined reliability r that
is the probability of his answer being correct against the ground truth.

6.2 Effects of Contextual Information

In this experiment, we select 25 correct correspondences (i.e., exist in ground truth)
and 25 incorrect correspondences (i.e., not exists in ground truth). For each correspon-
dence, we ask 30 workers (Bachelor students) with three different contextual informa-
tion: (a) all alternatives, (b) transitive closure, (c¢) transitive violation. Then, we collect
the worker answers for each correspondence.

30 : : 30
TE
g 20 + 4 20 F E
&
210 | 410} _
[a)
E

0 ! ! 0 8o

0 10 20 30 0 10 20 30 0 10 20 30

#Approvals

Fig. 5. Effects of contextual information. (a) all alternatives, (b) transitive closure, (c) transitive
violation

Figure [5] presents the result of this experiment. The worker answers of each case
are presented by a collection of ‘x’ and ‘0’ points in the plots. In that, *0’ points indi-
cate correspondences that exist in ground truth, whereas ‘x’ points indicate correspon-
dences that do not exist in ground truth. For a specific point, X-value and Y-value are
the number of workers approving and disapproving the associated correspondences, re-
spectively. Therefore, we expect that the ‘0’ points are placed at the right-bottom of the
coordinate plane, while the ‘X’ points stay at the left-top of the coordinate plane.

Comparing Figure B(b) with Figure [5(a) , the ‘0’ points tend to move down to the
bottom-right of the baseline (# ‘approve’ answers increases and # ‘disapprove’ answers
decreases). Whereas, the movement of the ‘X’ points is not intensive. This can be inter-
preted that presenting the transitive closure context help workers to give feedback more
exactly but also make them misjudge the incorrect correspondences.

3http://lsirwww.epfl.ch/schema_matching

http://lsirwww.epfl.ch/schema_matching

On Leveraging Crowdsourcing Techniques for Schema Matching Networks 149

In order to study the effects of transitive violation, we compare Figure [5(c) with
Figure[3la). Intuitively, the ‘x’ points move distinctly toward the top-left of the baseline,
while the position of ‘o’ points keeps stable. This observation shows that transitive
violations help workers identify the incorrect correspondences, in contrast to the effect
of transitive satisfactions mentioned above.

Since in real settings the ground truth is not known before-hand, we cannot choose
appropriate design type for each question. Following the principle of maximum entropy,
in order not to favour any of the design types, we design each question in type (b) and
(c) with probability of 0.5. In case the given correspondence does not involve in any
transitive satisfaction and violation, we design its question in type (a).

6.3 Relationship between Error Rate and Matching Accuracy

In order to assess the matching accuracy, we borrow the precision metric from infor-
mation retrieval, which is the ratio of correspondences existing in ground truth among
all correspondences whose aggregated value is true. However, the ground truth is not
known in general. Therefore, we use an indirect metric—error rate—to estimate the
matching quality. We expect that the lower error rate, the higher quality of matching
results.

N ‘ ‘ ‘ bonstraiﬁtlil
| o NoConstraint]
5 0.9 §
2 o8l N
g 08 %
L
N
0.6 ‘0.%\ b 0):5\ 0,@ b"%‘ b@

Error Rate

Fig. 6. Relationship between error rate and precision

The following empirical results aim to validate this hypothesis. We conduct the ex-
periment with a population of 100 simulated workers and their reliability scores are
generated according to normal distribution N(0.7,0.04). Figure [6] depicts the relation-
ship of the error rate and precision. In that, we vary error threshold € from 0.05 to 0.3,
meaning that the questions are posted to workers until the error rate of aggregated value
is less than the given threshold €. The precision is plotted as a function of €. We aggre-
gate the worker answers by two strategies: without constraint and with constraint. Here
we consider both 1-1 constraint and circle constraint as hard constraints, thus 4 = 0.

The key observation is that when the error rate is decreased, the precision approaches
to 1. Reversely, when the error rate is increased, the precision is reduced but greater
than 1 — €. Another interesting finding is that when the error rate is decreased, the
value distribution of precision in case of with and without constraint is identical. This
indicates our method of updating the error rate is relevant.

150 N.Q. Viet Hung et al.

In summary, the error rate is a good indicator of the quality of aggregated results. In
terms of precision, the quality value is always around 1 — €. In other words, the error
threshold € can be used to control the real matching quality.

6.4 Effects of the Constraints

In this experiment set, we will study the effects of constraints on the expected cost in real
datasets. In Section[3] we already seen the benefit of using constraints in reducing error
rate. Therefore, with given requirement of low error, the constraints help to reduce the
number of questions (i.e., the expected cost) that need to ask workers. More precisely,
given an error threshold (e = 0.15,0.1,0.05), we iteratively post questions to workers
and aggregate the worker answers until the error rate is less than €. We use simulated
workers with reliability r varying from 0.6 to 0.8. Similar to the above experiment, we
set 4 = 0. The results are presented in Figure [7}

NoConstraint —=— Constraint —e—
“75 T T T T T T T T T
8 40 =0.15 1 40 - £=0.10 . 40 1
°
2
g 20 E 20 |- E 20
& i% 5

y y
S 0 L 0
06 065 0.7 0.75 0.8 06 065 0.7 075 0.8 06 065 0.7 075 0.8

Worker Reliablity

Fig. 7. User Efforts: effects of constraints

A significant observation in the results is that for all values of error threshold and
worker reliability, the expected cost of the aggregation with constraints is definitely
smaller (approximately a half) than the case without constraints. For example, with
worker reliability is » = 0.6 and error threshold € = 0.1, the expected number of ques-
tions is reduced from 31 (without constraints) to 16 (with constraints). This concludes
the fact that the constraints help to reduce the error rate, and subsequently reduce the
expected cost.

Another key finding in Figure [7] is that, for both cases (using vs. not using con-
straints in the aggregation), the expected cost increases significantly as the value for
error threshold € decreases. For example, it requires about 20 questions (without con-
straints) or 10 questions (with constraints) to satisfy error threshold € = 0.15. Whereas,
it takes about 40 questions (without constraints) or 20 questions (with constraints) to
satisfy error threshold € = 0.05. This result supports the fact that to reduce error rate,
we need to ask more questions.

7 Related Work

We now review salient work in schema matching and crowdsourcing areas that are
related to our research.

On Leveraging Crowdsourcing Techniques for Schema Matching Networks 151

Schema Matching. Database schema matching is an active research field. The devel-
opments of this area have been summarized in two surveys [4, [22]. Existing works on
schema matching focused mainly on improving quality parameters of matchers, such
as precision or recall of the generated matchings. Recently, however, ones started to
realize that the extent to what precision and recall can be improved may be limited for
general-purpose matching algorithms. Instead of designing new algorithms, there has
been a shift towards matching combination and tuning methods. These works include
YAM [L1], systematic matching ensemble selection [12] or automatic tuning of the
matcher parameters [15].

While there is a large body of works on schema matching, the post-matching recon-
ciliation process (that is central to our work) has received little attention in the literature.
Recently, there are some works [[14, 17, 21] using pay-as-you-go integration method
that establishes the initial matching and then incrementally improves matching quality.
While the systems in [14, 21] rely on one user only, the framework in [17] relies on
multiple users.

Schema Matching Network. The idea of exploiting the presence of a large set of
schemas to improve the matchings has been studied before. Holistic matching [25]
attempted to exploit statistical co-occurrences of attributes in different schemas and
use them to derive complex correspondence. Whereas, corpus-based matching [16]
attempted to use a ‘corpus’ of schemas to augment the evidences that improve exist
matchings and exploit constraints between attributes by applying statistical techniques.
Network level constraints, in particular the circle constraints, were originally consid-
ered in [1, 6] in which they study the establishment of semantic interoperability in a
large-scale P2P network. In this paper, we study contextual information and integrity
constraints (e.g., 1-1 and circle constraints) on top of the schema matching network.

Crowdsourcing. In recent years, crowdsourcing has become a promising methodol-
ogy to overcome human-intensive computational tasks. Its benefits vary from unlimited
labour resources of user community to cost-effective business models. The book [2]
summarized problems and challenges in crowdsourcing as well as promising research
directions for the future. A wide range of crowdsourcing platforms, which allows users
to work together in a large-scale online community, have been developed such as Ama-
zon Mechanical Turk and CloudCrowd.

On top of these platforms, there are also many crowdsourcing applications that have
been built for specific domains. For example, in [26], the crowdsourcing is employed
to validate the search results of automated image search on mobile devices. In [3], the
authors leveraged the user CAPTCHAS s inputs in web forms to recognize difficult words
that cannot solved precisely by optical character recognition (OCR) programs.

Regarding the utilization of constraints, there are some previous works such as [3,
27]. In [27], the constraints were used to define the tasks for collaborative planning sys-
tems whereas in [5], the constraints were used to check worker quality by quantifying
the consistency of worker answers. In our work, the constraints are used to adjust the
error rate for reducing worker efforts.

152 N.Q. Viet Hung et al.

8 Conclusions and Future Work

Using shared datasets in meaningful ways frequently requires interconnecting several
sources, i.e., one needs to construct the attribute correspondences between the con-
cerned schemas. The schema matching problem has, in this setting, a completely new
aspect: there are more than two schemas to be matched and the schemas participate in
a larger schema matching network. This network can provide contextual information to
the particular matching tasks.

We have presented a crowdsourcing platform that is able to support schema match-
ing tasks. The platform takes the candidate correspondences that are generated by pair-
wise schema matching and generates questions for crowd workers. The structure of the
matching network can be exploited in many ways. First, as this is a contextual infor-
mation about the particular matching problem, it can be used to generate questions that
guide the crowd workers and help them to answer the questions more accurately. Sec-
ond, natural constraints about the attribute correspondences at the level of the network
enable to reduce the necessary efforts, as we demonstrated this through our experiments.

Our work opens up several future research directions. First, one can extend our
notion of schema matching network and consider representing more general integrity
constraints (e.g., functional dependencies or domain-specific constraints). Second, one
can devise more applications which could be transformed into the schema matching
network. While our work focuses on schema matching, our techniques, especially the
constraint-based aggregation method, can be applied to other tasks such as entity reso-
Iution, business process matching, or Web service discovery.

Acknowledgment. This research has received funding from the NisB project - Euro-
pean Union’s Seventh Framework Programme (grant agreement number 256955) and
the PlanetData project - Network of Excellence (grant agreement number 257641).

References

[1] Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: Start making sense: The Chatty Web ap-
proach for global semantic agreements. JWS, 89-114 (2003)

[2] von Ahn, L.: Human computation. In: DAC, pp. 418—419 (2009)

[3] von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: Recaptcha: Human-based
character recognition via web security measures. Science, 1465-1468 (2008)

[4] Bernstein, P.A., Madhavan, J., Rahm, E.: Generic Schema Matching, Ten Years Later.
PVLDB, 695-701 (2011)

[5] Chen, K.T., Wu, C.C., Chang, Y.C., Lei, C.L.: A crowdsourceable qoe evaluation frame-
work for multimedia content. In: MM, pp. 491-500 (2009)

[6] Cudré-Mauroux, P., Aberer, K., Feher, A.: Probabilistic message passing in peer data man-
agement systems. In: ICDE, p. 41 (2006)

[7] Das Sarma, A., Fang, L., Gupta, N., Halevy, A., Lee, H., Wu, F.,, Xin, R., Yu, C.: Finding
related tables. In: SIGMOD, pp. 817-828 (2012)

[8] Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using
the EM algorithm. J. R. Stat. Soc., 20-28 (1979)

[9] Di Lorenzo, G., Hacid, H., Paik, H.: y., Benatallah, B.: Data integration in mashups. In:
SIGMOD, pp. 59-66 (2009)

[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

On Leveraging Crowdsourcing Techniques for Schema Matching Networks 153

Do, H., Rahm, E.: COMA: a system for flexible combination of schema matching ap-
proaches. In: PVLDB, pp. 610-621 (2002)

Duchateau, F., Coletta, R., Bellahsene, Z., Miller, R.J.: (Not) yet another matcher. In:
CIKM. pp. 1537-1540 (2009)

Gal, A., Sagi, T.: Tuning the ensemble selection process of schema matchers. JIS, 845-859
(2010)

Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W.,
Goldberg-Kidon, J.: Google fusion tables: web-centered data management and collabora-
tion. In: SIGMOD, pp. 1061-1066 (2010)

Jeftery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace sys-
tems. In: SIGMOD, pp. 847-860 (2008)

Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.S.: eTuner: tuning schema matching soft-
ware using synthetic scenarios. JVLDB 16, 97-122 (2007)

Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema matching. In:
ICDE, pp. 57-68 (2005)

McCann, R., Shen, W.: Matching schemas in online communities: A web 2.0 approach. In:
ICDE, pp. 110-119 (2008)

Nguyen, H., Fuxman, A., Paparizos, S., Freire, J., Agrawal, R.: Synthesizing products for
online catalogs. PVLDB, 409—418 (2011)

Parameswaran, A.G., Garcia-Molina, H., Park, H., Polyzotis, N., Ramesh, A., Widom, J.:
Crowdscreen: algorithms for filtering data with humans. In: SIGMOD, pp. 361-372 (2012)
Peukert, E., Eberius, J., Rahm, E.: AMC - A framework for modelling and comparing
matching systems as matching processes. In: ICDE, pp. 1304—1307 (2011)

Qi, Y., Candan, K.S., Sapino, M.L.: Ficsr: feedback-based inconsistency resolution and
query processing on misaligned data sources. In: SIGMOD, pp. 151-162 (2007)

Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching.
JVLDB, 334-350 (2001)

Sheng, V.S., Provost, F.: Get Another Label? Improving Data Quality and Data Mining
Using Multiple, Noisy Labelers. In: SIGKDD, pp. 614-622 (2008)

Smith, K.P., Morse, M., Mork, P., Li, M., Rosenthal, A., Allen, D., Seligman, L., Wolf, C.:
The role of schema matching in large enterprises. In: CIDR (2009)

Su, W.,, Wang, J., Lochovsky, F.: Holistic schema matching for web query interfaces. In:
Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Bohm, K., Kem-
per, A., Grust, T., Bohm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 77-94. Springer,
Heidelberg (2006)

Yan, T., Kumar, V.: CrowdSearch: exploiting crowds for accurate real-time image search
on mobile phones. In: MobiSys, pp. 77-90 (2010)

Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D., Horvitz, E.: Human computation tasks
with global constraints. In: CHI, pp. 217-226 (2012)

Appendix

Compute Conditional Probability Pr(X.|yi-1): According to Bayes theorem,

Pr(Xely1-1) =

Pr(y1-11Xe)XPr(Xe,)

Pr(yry) . Now we need to compute Pr(y;_1) and Pr(yi_1|X,).

Let denote p; = Pr(X,, = true), for short. In order to compute Pr(y;_;), we do follow-
ing steps: (1) express Pr(y;-1) as the sum from the full joint of y,_y, co, ¢y, . .., Ck, (2)
express the joint as a product of conditionals. Formally, we have:

154 N.Q. Viet Hung et al.

Pr(y1-1) = ZCOLI Pr(71 1» XC()’XC]"' Xck)
—ZPT(’)/]]| co’ L]"' XLk)XPr(cos c17-~-7XCk)
=1 X Pr(Xee. Xeys - - Xem(Xeys Xeys - - X)) £ 1)
+AXPr(Xey, Xeys - XeIm(Xeg, Xeys oo, X)) > 1)
=y+4x(1-y)

where m is function counting the number of X, assigned as frue
y= H;Z:() 1-p)+ Z?:o [pi H?:o,j;ei (1- pj)]

Similar to computing Pr(yi-1), we also express Pr(yi-11X,,) as the sum from the full
joint of yj_y, ¢i,...,c, and then express the joint as a product of conditionals. After
these steps, we have Pr(y-i|X., = true) = x + 4 X (1 — x), where x = I—[le (1 - p).
After having Pr(y;_;) and Pr(yi-1|X,,), we can compute Pr(X,,|y;-1) as in equation]

Compute Conditional Probability Pr(X.|yo): According to Bayes theorem,
Pr(Xelyo) = Pr(yol;(r(;xfr(xm) In order to compute Pr(yolX,.,) and Pr(yo), we also

express Pr(yylX,,) as the sum from the full joint of y;_i, cp,ci,...,cx and then ex-
press the joint as a product of conditionals. After some transformations, we can obtain
equation[6l

MFSV: A Truthfulness Determination
Approach for Fact Statements*

Teng Wang'-2, Qing Zhu'2, and Shan Wang'-?

! Key Laboratory of the Ministry of Education for Data Engineering and Knowledge
Engineering, Renmin University of China, Beijing, China
2 School of Information, Renmin University of China, Beijing, China
{wangteng, zq, swang}@ruc.edu.cn

Abstract. How to determine the truthfulness of a piece of information becomes
an increasingly urgent need for users. In this paper, we propose a method called
MFSV, to determine the truthfulness of fact statements. We first calculate the
similarity between a piece of related information and the target fact statement
and capture the credibility ranking of the related information through combining
importance ranking and popularity ranking. Based on these, contributions of a
piece of related information to the truthfulness determination is derived. Then we
propose two methods to determine the truthfulness of the target fact statement. At
last, we run comprehensive experiments to show MFSV’s availability and high
accuracy.

Keywords: Fact statements, credibility ranking, similarity, truthfulness.

1 Introduction

Untruthful information spreads on the Web, which may mislead other users and have
a negative impact on user experience. It is required to determine the truthfulness of a
piece of information. Information is mainly loaded by sentences. The sentences state
facts, rather than opinions, are called fact statements [10]. In this paper, we mainly fo-
cus on positive fact statement. Fact statements, which state correct objective facts, are
trustful fact statements, others are called untruthful fact statements. Before determin-
ing the truthfulness of a fact statement, a user should specify some part(s) of the fact
statement he/she is not sure about. The part(s) is/are called the doubt unit(s) of the fact
statement[[10]]. If the doubt unit(s) is/are specified, the fact statement can be regarded
as an answer to a question. If there is only one correct answer to the question, the fact
statement to the question is an unique-answer fact statement; otherwise, it is a multi-
answer one. In [9]|[10], the trustful fact statement is picked out from the target fact
statement and the alternative fact statements. There are three limitations in these stud-
ies: (i) The doubt unit(s) must be specified, otherwise the alternative fact statements

* This work is partly supported by the Important National Science & Technology Specific
Projects of China (Grant No.2010ZX01042-001-002), the National Natural Science Founda-
tion of China (Grant No.61070053), the Graduates Science Foundation of Renmin University
of China(Grant No.12XNH177).

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 155-[163] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

156 T. Wang, Q. Zhu, and S. Wang

can’t be found. (ii) If too much information is included by the doubt unit(s), it is very
hard to find proper alternative fact statements. (iii) These methods can not be used for
multi-answer fact statements, since only one fact statement is considered trustful.

The contributions and the rest of the paper are organized as follows. Section 2 briefly
summarize the related works. Section 3 describes how to determine the truthfulness of
a fact statement using MF SV . Experiments and analysis are shown in Section 4. At last,
we conclude this paper.

2 Related Works

Some researchers hold the opinion that credible sources are very likely to present trust-
ful information. They analyze the features (e.g., page keywords, page title, page style)
of credible web pages[1][2][3]. Exploiting the analytical results, users can determine
whether a web page is credible or not. Other researchers focus on spam web pages
detection for filtering low quality web pages [4][S]. But incorrect information may be
presented on non-spam pages.

Study [6] propose a method to determine the truthfulness of a piece of news. In
this method, the information related to the piece of news is collected from reputable
news web site. Analyzing the consistence between the news and the related informa-
tion, the truthfulness of the news can be determined. In [7]], the focus is the truth-
fulness determination of an event. The relatedness between the event and its related
information captured from certain web sites is measured, and the truthfulness of the
event is determined. Studies in [6] and [7] are used for domain-dependent informa-
tion. In [8], Honto?searchl.® is proposed to help users to determine an uncertain
fact. In Honto?searchl.0, sentiment distribution analysis and popularity evolution
analysis are the key factors in helping users to determine the target uncertain fact.
Honto?search2.0 is proposed in [9]. The objective of the system is to help users to
efficiently judge the credibility by comparing other facts related to the input uncertain.
Verify[[10] can determine a fact statement through finding alternative fact statements
and ranking these fact statements, the one on the highest position is the trustful one.

3 Proposed Solution

The goal of this paper is to determine whether a fact statement is trustful or not, even if
the fact statement is a multi-answer one.

3.1 Similarity Measurement

In this section, we discuss how to measure the similarity between a piece of related
information (derived from the search engine) and the target fact statement.

Necessary Sentence Generation. Not all words are necessary for the fact statement
truthfulness determination. We call the words, which contributes to the truthfulness de-
termination necessary words. Given a piece of information r; related to the fact state-
ment fs, we use N; and ns; to denote the collection of necessary words and the necessary

MFSV: A Truthfulness Determination Approach for Fact Statements 157

sentence of r; respectively. We use the following steps to find the necessary words: L.
Find the consecutive sentences c; of r;. N; can be extracted from ¢;, since ¢; is the short-
est consecutive sentences which include /s keywords set K. IL. Use Stanford Parser’
to find the grammatical relationships between words in ¢;. We divide the 52 grammatical
relationships in Stanford Parser into two categories based on their importance to sen-
tence skeleton: essential grammatical relationships, represented by R, and unessential
grammatical relationships represented by R,. IIL. Set N; to K,, and use the following
heuristic rules to find N;. We use D; = {d;i,...,din}(1 < m) to denote the collection
of the grammatical relationships of ¢;. The heuristic rules used for N; extraction are as
follows: (i) If d;;(1 < j < m) is essential, d;j.dependent and d;;.governor are put into
N;. (i) If d;;(1 < j < m) is unessential and d;j.dependent € N;, d;j.governor are put
into N;. We sort the words in N; by their positions in ¢; and get a order. According to
this order, we assemble the words in A, thus, the necessary sentence ns; is generated.

Similarity Computation. The similarity between r; and fs can be replaced by the
similarity of ns; and fs. We refine the method in [[11]] to calculate the similarity. First,
we construct semantic vectors and order vectors by finding best matching word of the
target word for ns; and fs, and calculate the semantic similarity and order similarity
respectively; then, combining the semantic similarity and order similarity, we get the
overall similarity between ns; and fs. We adopt a word similarity computing method
in [11].

Semantic Similarity Computation. The semantic similarity between ns; and fs is cal-
culated by the cosine similarity of their semantic vectors. We first delete the stop words
in ns; and fs, and then get the words collections of ns; and fs. W) = {w1,...,wi,, } and
Wa = {wa1,...,wa,, } denote the two word collections of ns; and fs respectively. We set
W=WuW, and W = {wl,...,wk}. Weuse V| = {Vlly---,V]k} and V, = {V21,... 7V2k}
to denote the semantic vectors of ns; and fs respectively. The rules to work v{; out are
as follows: (i) If w; € Wy, vy; = 1. (ii) If w; ¢ W, we find the best matching word(wy,,,)
of w; from W, and set vi; = S,,(Wi, Wy,). Especially, if wy,, does not exist, vi;; = 0. In
semantic vector construction, the value of { is 0.2. The semantic similarity between ns;
and f's is calculated by Equation 11

Vi.Va
Ss(ns;, fs) = (D)
slasi f5) Vil lIval
Order Similarity Computation. We measure the order similarity of ns; and fs based
on their order vectors. Oy = {o11,...,01;} and Oy = {021,...,02} denote the order

vectors of ns; and fs. We use the following rules to work out oy;: (i) If w; € Wy, oy;
is the position of w; in ns;. (ii) If w; ¢ Wi, we find the best matching word(wy,,) of w;
from W; by Algorithm 2. If wy,, exists, vy; is the position of wy,, in ns;; if not, o1; = 0.
Especially, in constructing order vector, the value of { in Algorithm 2 is 0.4. We use
equation2to get the order similarity between ns; and fs.

101 =0
|01+ 0y

1 http://nlp.stanford.edu/software/stanford-dependencies.shtml

So(nsi, fs) =1—)

http://nlp.stanford.edu/software/stanford-dependencies.shtml

158 T. Wang, Q. Zhu, and S. Wang

Overall Similarity Computation. The overall similarity S(ns;, fs) between ns; and fs
can be calculated by combination of Sy(ns;, fs) and S, (ns;, fs) through equation[3 The
optimal value of 6 is 0.85 in equation[3

0S;(sn;, f5) + (1 — 0)S,(sn;, fs) if ; is positive on fs
S(sni, fs) = 3)
—(08s(snj, fs)+ (1 —0)S,(sn;, fs)) if r; is negative on fs

3.2 Credibility Ranking

Generally, credible sources are likely to present trustful information. In addition, if an
information source is important and popular, it may be credible[12]. In the following,
we first introduce the importance ranking and the popularity ranking, then we merge
the two rankings to get the credibility ranking.

Importance Ranking. The information related to the target fact statement is captured
by a search engine, it appears in order. We combine the order and the pagerank level
values to capture the importance ranking of the related information. Given two pieces
of information 7; and r; related to the target fact statement, we use pl; and pl; to denote
the pagerank level values of the web pages from which r; and r; are derived. Irank is
used to denote the importance ranking of the related information. Irank; is the position
of rj in Irank. If pl; > pl;, Irank; < Irank;; If pl; = pl; and i < j, Irank; < Irank;.

Popularity Ranking. Alexa ranking?” is introduced to measure the popularity of the
web sites from which the related information is derived. Given a fact statement fs and
the related information collection R, Alexa; is used to denote the position of the web
site, which r; € R is derived from, in Alexa ranking. However, Alexa ranking is an
absolute ranking. Given r; and r;, the gap between Alexa; and Alexa; may be very large.
We adopt two methods to get different popularity rankings. (i) We get the popularity
ranking, represented by Prank, by sorting Alexa;(1 < i< n) on ascending order; (ii) The
popularity ranking, represented by GRrank, is captured by linearly mapping Alexa;(1 <
i < n) into the range from 1 to n.

Credibility Ranking. We make use of the classical ranking merging algorithms (Borda
and Footrule) to get the credibility ranking. Borda[13]|[14] is a positional algorithm.
Given Irank, Prank and the related information collection R, By (ri) denotes the
Borda scores of r; € R on Irank and By, (r;) is the number of the related informa-
tion which is below r; in Irank. Similarly, Bp,..(r;) can be derived. B(r;) is the total
scores of r; on the two rankings, which is the sum of B,k (r;) and Bpgpi (Fi)-
Footrule[13] is a merging algorithm based on the distance. Given Irank, Prank
and the related information collection R. We construct an complete bipartite graph
G(V,E,W).V is composed of R and P. P is the collection of positions and P = {1,...,|
R|}. E is the collection of edges. W is the collection of the weights of the edges. Given
a edge < ri,p > (ri € R,p € P), the weight w(r;, p) =| Irank; — p | + | Prank; — p |.
By finding the complete matching at minimal cost on the graph, the merging result of

2 https://www.alexa.com

https://www.alexa.com

MFSV: A Truthfulness Determination Approach for Fact Statements 159

Irank and Prank can be derived. We get an importance ranking (/rank) and two popu-
larity rankings (Prank and GPrank), four credibility rankings according to the merging
algorithm Borda and Footrule, they are CBrank (merge Irank and Prank using Borda),
CBGrank (merge Irank and PGrank using Borda), CFrank (merge Irank and Prank
using Footrule), CF Grank (merge Irank and PGrank using Footrule).

3.3 Fact Statement Determination

The information related to the target fact statement can be divided into three categories:
positive, negative and neutral, according to the similarity between the related informa-
tion and the target fact statement. Given a fact statement fs and the related information
collection R, we use Rpos, Ry and Ry, to denote the collections of positive, nega-
tive and neutral related information respectively. With the help of k, we get Ryos, Ryeg
and Rye,. If S(ri, fs) > K, 1;i € Rposs if | S(ri, f5) | K, 1i € Ryeu 5 if S(r, fs) < 0 and
| S(ri, fs) |> K, ri € Ryeq. The optimal value of k is evaluated by experiments.
Combining the similarity and the credibility ranking, we measure contributions of a
piece of related information to the truthfulness determination. Given a piece of informa-
tion r; related to the target fact statement fs, the contributions of r; to the truthfulness
determination of fs is defined as S(r;, f's)/Crank;. Here, Crank; is the credibility rank-
ing value of r;. Then we propose two ways to determine the truthfulness of the target
fact statement: baseline determination method and SVM-based determination method.

Baseline Determination Method. We believe that if a fact statement is trustful, the con-
tributions of the positive related information should be larger than that of the negative
related information. According to this idea, we propose baseline determination method
(BMD). The procedure of determining the truthfulness of the target fact statement are:
L. The positive and negative contributions of the related information are worked out
respectively. The positive contributions are the sum of the contributions of the related
information in S),s. Similarly, the negative contributions can be worked out. IL. The
sum of the contributions of positive and negative related information is worked out. If it
is larger or equal to &, we think the target fact statement is trustful; if not, it is untruthful.
Here, § is a constant and the optimal value of § is evaluated by experiments.

SVM-Based Determination Method. Classification method can be used to determine
the truthfulness of a fact statement. In this section, we make use of SVM model to
predict the classification of a fact statement and propose SVM-based determination
method (SVM-DM). In this method, some fact statements, whose truthfulness is certain,
are chosen as train set and the classification model is obtained. Using the classification
model, we predict the classification of the fact statement whose truthfulness is needed
to be determined. Contributions of positive, neutral, and negative to a fact statement are
considered as classification features; and the classification vector of the fact statement
is composed of the contributions of positive, neutral, and negative related information.
In order to avoid features in larger numeric ranges dominating those in smaller numeric
ranges, we linearly scale each feature to the range [-1,1]. We chose RBF as the kernel
of SVM classification.

160 T. Wang, Q. Zhu, and S. Wang

4 Experiments

We generate a synthetic dataset according to [[10]]. The dataset is composed of 50 trustful
fact statements and 50 untruthful fact statements. These fact statements are fetched from
Trec20074. Among trustful fact statements, 30 are unique-answer ones and the rest are
multi-answer ones. For each fact statement, we use Yahoo boss 2.0° to collect the top-
150 search results as the related information. 11 experienced users, who are graduate
students and experienced Internet users, help to mark the search results.

4.1 Evaluations of Key Parameters

Distribution of Related Information. We use Py to denote the percent of the related
information including the meanings of the target fact statements. fs, and fs,, denote
trustful unique-answer fact statement and trustful multi-answer fact statement respec-
tively. Fig[IIshows Py values when n changes. Here, n is the number of the related infor-
mation considered in the truthfulness determination of a fact statement. It can be seen
that, Py for fs, decreases with the increase of n. For a multi-answer fact statement, there
are more than one correct answer to the question corresponding to the multi-answer fact
statement. Thus, Py for fs, is always larger than Py for fs,,. From the experiment, we
can see when 7 is larger, more neutral or negative related information comes out.

0.9 0.8 120
—afs g
u > =)
100]
£ S 80
o 0.7] T 0.4 Z
3 g 604 ——CBrank
© ——CBGrank
0.6] 02 8 40 —CFrank
z —~ CFGrank
.5 2
0 J0 45 80 115 150 8.1 0.3 0.5 0.7 0.9 00 50 100 150
Top-n search results Value of x Positions of search results

Fig. 1. Distribution of the re- Fig. 2. Fl-measure on kK Fig. 3. Distributions of the
lated information credibility rankings

The Optimal Value of x Detection. We measure the F1-measure values for each cate-
gory at different values of k. Then, we calculate the average of the F1-measure values
for the three categories at different x values. We believe the optimal value of « is the
value which makes the average F1-measure value greatest. Fig[2lshows the average F1-
measure value when the value of k varies. It can be seen that, the average F1-measure
value reaches the peak (near 0.65) when x = 0.5. Thus, the optimal value of « is set to
0.5, also the default value in following experiments.

Distribution of Credibility Ranking. Fig3lshow the distributions of the four credibil-
ity rankings when n = 150. The x-axis is the positions of the related information, and
y-axis is the average of credibility ranking values of the related information at corre-
sponding positions. From this figure, the rank values are thickly located on [20-120].

3 http://trec.nist.gov
4 http://boss.yahoo.com

http://trec.nist.gov
http://boss.yahoo.com

MFSV: A Truthfulness Determination Approach for Fact Statements 161

It means the importance ranking and the popularity ranking can not replace each other.
And the importance ranking or the popularity ranking can not replace credibility rank-
ing. In addition, we can see some related information, which is at higher positions in the
appearing order, is at lower positions in credibility ranking. It means that some related
information at higher positions in the appearing order may be not credible. That is con-
sistent with our observation. Since the gaps of Alexa ranking is considered in CBGrank
and CF Grank, the ranges of CBGrank and CF Grank are larger than those of CBrnak
and CFrank.

4.2 Evaluation of Determination Methods

Baseline Determination Method. The portion of the considered related information &
and the adopted credibility ranking influence the determination precision. By experi-
ments, we find when CF Grank is adopted, the method has the best performance. Fig4]
shows the precision on 6 and n, when the credibility ranking is CF Grank. When § = 0.9
and n = 60, the precision reaches the peak (0.74). Fig[3 shows the precision on & on
different credibility rankings, when n = 60. CF Grank and CBGrank can bring higher
precision than CFrank and CBrank. With the increase of § when § < 0.9, the preci-
sion increases and the precision decreases with the increase of &, when & > 0.9. Figld]
shows the precision on # and four credibility rankings when § = 0.9. It can be seen that,
CF Grank and CBGrank bring higher precision peak than CFrank and CBrank.

-..,n=60, 5=0.9

0.7
c
5 08 2
‘@ G 0.6
G 0.4 o
3 T =
: il H CBGrank
02 SO 150 05 [ICFrank
0. 115 Il CFGrank
. 0.4 UL
16 10 “050709 11131517 1.9
2 n Value of §
Fig. 4. Precision of BDM on n and 6 Fig. 5. Precision of BDM on &
0.8 1
[_JCBrank
0.9} |EECBGrank
[_CFrank
c 0.7 c 0.8} |IMCFGrank
K<) k<]
3 807
Y Q
006 I CBGrank & 06
[ICFrank
I CFGrank 0.5
05 [T 0.4
10 30 50 70 90 110130150 10 30 50 70 90 110130150
Top-n search results Ton-n search results

Fig. 6. Precision of BDM on n Fig. 7. Precision of SVM — DM

162 T. Wang, Q. Zhu, and S. Wang

SVM-Based Determination Method. We adopt libsvm®, RBF kernel function and
three-fold cross validation to get the precision. Figd7l shows the precision on n and the
four credibility rankings, it can be seen that the precision reaches the peak (0.79), when
CFrank is adopted. Regardless of which one is adopted in the four credibility rankings,
the precision first increases and then decreases, with the increase of n. Especially, when
n =90 and CF'rank is adopted, we have the highest precision.

5 Conclusion and Future Work

In this paper, we propose a new method MF SV to determine the truthfulness of a fact
statement. The results of experiments show MFSV is available and can be used for
multi-answer fact statements. However, we just focus on domain-independent fact state-
ments and ignore the domain knowledge. In the future, we will focus on the truthfulness
determination of domain-dependent fact statements and we believe the usage of domain
knowledge can help to determine a fact statement more accurately.

Acknowledgments. We would like to thank Prof. Weiyi Meng from Binghamton Uni-
versity for his help on this work.

References

1. McKnight, D.H., Kacmar, J.: Factors and effects of information credibility. In: ICEC 2007,
pp- 423-432 (2007)

2. Schwarz, J., Morris, M.R.: Augmenting web pages and search results to scport credibility
assessment. In: CHI 2011, pp. 1245-1254 (2011)

3. Lucassen, T., Schraagen, J.M.: Trust in Wikipedia: how users trust information from an un-
known source. In: WICOW 2010, pp. 19-26 (2010)

4. Gyongyi, Z., Garcia-Molina, G., Pedersen, J.: Combating web spam with TrustRank. In:
VLDB 2004, pp. 576-587 (2004)

5. Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web pages through con-
tent analysis. In: WWW 2006, pp. 83-92 (2006)

6. Nagura, R., Seki, Y., Kando, N., Aono, M.: A method of rating the credibility of news docu-
ments on the web. In: SIGIR 2006, pp. 683-684 (2006)

7. Lee, R., Kitayama, D., Sumiya, K.: Web-based evidence excavation to explore the authentic-
ity of local events. In: WICOW 2008, pp. 63—-66 (2008)

8. Yamamoto, Y., Tezuka, T., Jatowt, A., Tanaka, K.: Supporting Judgment of Fact Trustworthi-
ness Considering Temporal and Sentimental Aspects. In: Bailey, J., Maier, D., Schewe, K.-
D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 206-220. Springer,
Heidelberg (2008)

9. Yamamoto, Y., Tanaka, K.: Finding Comparative Facts and Aspects for Judging the Credi-
bility of Uncertain Facts. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS,
vol. 5802, pp. 291-305. Springer, Heidelberg (2009)

5 http://www.csie.ntu.edu.tw/~cjlin

http://www.csie.ntu.edu.tw/~cjlin

MFSV: A Truthfulness Determination Approach for Fact Statements 163

. Li, X., Meng, W., Yu, C.: T-verifier: verifying truthfulness of fact statements. In: ICDE 2011,

pp. 63-74 (2011)

. Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.: Sentence similarity based on se-

mantic nets and corpus statistics. IEEE TKDE 18(8), 1138-1150 (2006)

. Schwarz, J., Morris, M.R.: Augmenting Web pages and search results to support credibility

assessment. In: CHI 2011, pp. 1245-1254 (2011)

. Dwork, C., Kumary, R., Naorz, M., Sivakumarx, D.: Rank aggregation methods for the Web.

In: WWW 2001, pp. 613-622 (2001)

. Young, H.P.: An axiomatization of Borda’s rule. J. Economic Theory 9, 43-52 (1974)

A Mechanism for Stream Program Performance
Recovery in Resource Limited Compute Clusters

Miyuru Dayarathna! and Toyotaro Suzumura®-2
! Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
dayarathna.m.aa@m.titech.ac.jp, suzumura@cs.titech.ac.jp
2 IBM Research - Tokyo

Abstract. Replication, the widely adapted technique for crash fault
tolerance introduces additional infrastructural costs for resource lim-
ited clusters. In this paper we take a different approach for maintaining
stream program performance during crash failures. It is based on the
concepts of automatic code generation. Albatross, the middleware we in-
troduce for this task maintains the same performance level during crash
failures based on predetermined priority values assigned to each stream
program. Albatross constructs different versions of the input stream pro-
grams (sample programs) with different levels of performance character-
istics, and assigns the best performing programs for normal operations.
During node failure or node recovery, potential use of a different version
of sample program is evaluated in order to bring the performance of each
job back to its original level. We evaluated effectiveness of this approach
with three different real world stream computing applications on System
S distributed stream processing platform. We show that our approach is
capable of maintaining stream program performance even if half of the
nodes of the cluster has been crashed using both Apnoea, and Regex
applications.

Keywords: stream computing, data-intensive computing, reliability,
highly availability, performance, auto-scaling, autonomic computing, au-
tomatic code generation.

1 Introduction

Highly availability is a key challenge faced by stream processing systems in
providing continuous services. Crash faults such as operating system halts, power
outages, virtual machine crashes, etc. may paralyze or take an entire application
out of service. Crash faults take more time to recover since some of those need
direct intervention from system administrators [I8]. The widely adapted solution
for recovering from crash faults in stream computing systems has been physical
replication [8]. These techniques require k replicas to tolerate up to (k - 1)
simultaneous failures [I5]. Maintaining such large number of backup nodes costs
a lot in terms of electricity, rack space, cabling, and ventilation. These are the
key problems faced by cloud data centers.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 164-[[78] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Stream Program Performance Recovery in Resource Limited Clusters 165

Balancing local stream processing load with public cloud (i.e., use of Hybrid
Cloud [5]) would be a solution for maintaining stream program performance
[I3][11]. Yet such approaches require access to public clouds which makes it
impossible to use such solutions in certain applications. For example, if the
stream application deals with sensitive information (e.g., health care, national
defense, etc.) it would be very difficult to follow such solution. Moreover, certain
stream processing systems have license, and software issues [I1] which makes it
impossible to deploy them in hybrid cloud environments.

We have observed that data flow graphs tend to maintain similar shaped per-
formance curves (i.e., similar performance characteristics) within similar stream
environment conditions [4]. This indicates that relative performance of such data
stream graphs is a predictable quantity.

Considering the obstacles associated with replication for maintaining perfor-
mance, and characteristics of data stream programs; we introduce a different,
more efficient solution for maintaining stream program performance which is
applicable in resource limited stream computing clusters. Our approach is based
on automatic code generation. Specifically, we generate a variety of data flow
graphs (we call these “sample programs”) with each giving different performance
characteristics for a set of stream programs that are to be deployed in the node
cluster. We select sample programs (one per input program) with consistent high
throughput performance compared to the input programs, and run them in the
cluster. During a node failure (e.g., system crash/shutdown) which affects a sub
set of nodes in the cluster, we evaluate feasibility of performance maintenance
using the existing stream applications and introduce different sample applica-
tions which produce better performance in the new environment. Our approach
assigns priority to each input program and tries to maintain performance of high
prioritized programs.

Albatross, the middleware on which we implemented the above approach mon-
itors the performance status of each node, stream processing jobs and conducts
the switching of sample programs appropriately to respond to the changes hap-
pen in the node cluster.

1.1 Contributions

1. Code generation for performance - We propose a new method for maintaining
system performance during node crashes using automatic code generation.
This approach reduces the requirement of keeping additional backup nodes.

2. Switching between different versions - We describe a method for swapping
different versions of data stream programs with minimal effect on their run-
time performance and without loss of integrity of data.

We implemented and evaluated our approach on System S [I] which is a large-
scale, distributed stream processing middleware developed by IBM Research. In
a cluster of 8 nodes we observed that our method is able to partially restore
(complete restoration for some applications) performance compared to naive

166 M. Dayarathna and T. Suzumura

deployment. Our method was successful in maintaining performance of two dif-
ferent stream applications even when the number of nodes were reduced by half
due to crash faults.

2 Background

We briefly describe operator-based data stream processing systems [I12][4] and
what we mean by resource limited compute clusters below.

2.1 Resource Limited Stream Compute Clusters

While our approach can be applied in public compute clusters, dynamic resource
allocation has become a great problem in resource limited small (typically pri-
vate) compute clusters. What we mean by use of the term “Resource Limited
Stream Compute Clusters” is a compute cluster with fixed set of nodes which
cannot be expanded dynamically. Our emphasize is on the number of available
nodes rather than the amount of available resources in a particular node of such
cluster because we believe that it does not matter how much resources a node
has if it crashes suddenly. Such compute clusters are widely run by financial, aca-
demic, and health care [3] institutions that operate variety of stream processing
applications. An important feature of these clusters is that it takes considerable
amount of time to replace a defected node in such private clusters compared to
public clusters (e.g., Amazon EC2) which can easily provision nodes on demand.
We believe that our approach for performance recovery is best applicable to such
resource limited clusters.

2.2 System S and SPADE

We use System S which is an operator-based [12][4], large-scale, distributed data
stream processing middleware for implementing Albatross prototype [I][17]. Sys-
tem S uses an operator-based programming language called SPADE [6] for defin-
ing data flow graphs. SPADE depends on a code-generation framework instead
of using type-generic operator implementations. SPADE has a set of built-in op-
erators (BIOP), and also supports for creating customized operators (i.e., User
Defined Operators (UDOP)) which allow for extending the SPADE language.
Communication between operators is specified as streams. SPADE compiler fuses
operators into one or more Processing Elements (PEs) during compilation pro-
cess. A PE is a software component which spawns a unique process during the
running time of its corresponding program. System S scheduler makes the con-
nection between PEs during runtime. Out of the BIOPs used for implementing
the sample programs described in this paper (abbreviations we use are shown
in parenthesis), Source (S) creates a stream from data coming from an exter-
nal source, Sink (SI) converts a stream into a flow of tuples that can be used
by external components. Functor (F) performs tuple-level manipulations (e.g.,
filtering, mapping, projection, etc.). Aggregate (AG) groups, and summarizes
incoming tuples. Split (SP) splits a stream into multiple output streams. Join
(J) operator correlates two streams using join predicates.

Stream Program Performance Recovery in Resource Limited Clusters 167

2.3 Automatic Sample Program Generation with Hirundo

On a mechanism called Hirundo [4], we developed techniques for automatically
generate data flow graphs with varied performance characteristics for a given
stream application. Hirundo analyses and identifies the structure of a stream
program, and transforms the program’s data flow graph in to many different
versions. While an in depth description of the Hirundo’s code generator is out
of the scope of this paper, we provide a brief description of its sample program
generation. We explain sample program generation by Hirundo below by taking
two stream applications called Regex, and Apnoea. We do not use VWAP in the
following explanation because Regex and VWAP both have similar structure.
Note that our aim in Hirundo was to produce optimized stream program(s) for
a given stream application which is different from the aim of this work.

Stream Applications. In this paper we use three real world stream applica-
tions as examples. The first application is called “Regex” is a regular expression
based data transformation application (The data flow graph is shown in Figure
[i(a)). It consists of five operators and it converts date portion of datetime tu-
ples represented as 2011-07-11 to 11-JUL-2011. Moreover, all the “00”s in the
time portion of the tuples are changed to “22”s.

The second application is a Volume Weighted Average Price (VWAP) ap-
plication. VWAP is calculated as the ratio of the value traded and the volume
traded within a specified time period. The application we used (illustrated at [I])
is part of a larger financial trading application. The data flow graph of VWAP
application consists of five operators (see Figure [II(b)).

The third application (shown in Figure[lc)) is called Apnoea [3] which is part
of a framework for real time analysis of time series physiological data streams
extracted from a range of medical equipments to detect clinically significant
conditions of premature infants.

Program Transformation. As shown in Figure [J(a), the original Regex pro-
gram consists of five operators and is a linear Directed Acyclic Graph (DAG).
This program is represented as S F1 F2 F3 SI by Hirundo. Hirundo’s program
transformation algorithm traverses this program three operator blocks at a time
and produces transformed operator blocks as shown in Figure 2I(b). We call this
process as Tri-Operator (Tri-OP) transformation [4]. During the transformation
number of operators of some (or all) operators in the original data flow graph
are changed. E.g., Number of F1, and F2 operators in the input program are in-
creased by 4, and 2 respectively. Maximum operator count a particular operator
could have is represented as depth (d). Number of sample programs generated
increases with increase of depth value. E.g., When used for transforming Regex
application, for a depth of 4 Hirundo generated 32 sample programs; where as
a depth of 6 resulted in 136 sample programs. The generated operator blocks
are stitched together in a process called “Operator Blocks Fusion”. This results
in sample programs like the example shown in Figure 2fc). This entire process
takes only few seconds.

168 M. Dayarathna and T. Suzumura

QT F1 : Filters the F2 : Conducts date .
(a) ;];S:Jtcl;;lscs date time tuples it time format fg(}:ﬂREpla‘c‘es“ rsels‘ui(z:;lse‘shc Regex
receives conversion with “22
Date &
00 —0-0—©
values
(b) S : Injects input F1 : Filters tuples AG : Finds max/min F2 : Calculates SI: Stores the VWAP
tuples for valid records of the trading prices VWAP result tuples
Trades
T O—0—0—0—@
Quotes

- AGI : Aggregates RR (type 3) with in
(C) F4 : Filters and outputs 15 seconds time window. Sends an average Apnoea

tuples of babies of 35 y .

) value over the aggregate per each 1 second.
years age. F5 : Releases an alarm
(boolean true) if RR average == 0.
This means the neonate has not

breathed for last 15 seconds.

F1 : Filters the input
tuples for type 3 (RR)

¢ AG2: Aggregates tuples F6 : Releases an
by HR (type 1) withina alarm (boolean
time window of 20s. true) if HR
Releases an average value average < 100, results from
tuple each second. F5and J1

S : Injects
input tuples.

J2 : Joins the

ST : Stores the
result tuples.

F2 : Filters the
input tuples for
type 1 (ECG-HR).

J1 : Joins the results fron
F6 and F7

) F7 : Releases an alarm (boolean true)
F3 : Filters the 3, .
., R K fSPO2 age < 85.
input tuples for =" — Al average
type 2 (SpO2). AG3 : Aggregates tuples by SPO2 (type 2). This
is done within a time window of 20s. A tuple with average is output every second.

Ke S —Source F —Functor AG —Aggregate £ Operators on rays =+ Streams on rays
Y J —Join SI — Sink Q Operators notonrays — Streams not on rays

Fig. 1. Data flow graphs of example input stream applications

T ass 3
Input pass2 jo | PSS, Output

() Input program (S_F1_F2_F3_SI)

OPB2
™ ‘Cand late ray’

Identification

S-F1-F4-AGI-F5-12-S1

program
(Apnoea)

OPBI (Transformed operator bl
(¢) Program Transformation

O
S —Source] - Join
F —Functor Sl - Sink|
G — Aggregate
operators on rays

© O operators not on rays
- strcams on rays

—» streams not on rays
OO Transformer blocks

(©) The sample program after fusion of transformed operator (f) The sample program after fusion
blocks (The program is represented as 25_4F1_2F2_2F3_4SI). of transformed operator block.

Fig. 2. An example for data flow graph transformation in Hirundo. (a) Data flow graph
of Regex application. (b) Transformed operator blocks output by Hirundo for Regex
application. (¢) Sample program generated for Regex. (d) Data flow graph of Apnoea.
(e) Transformation of the ray F3-AG3-F7. (f) A Sample program generated for Apnoea.

Stream Program Performance Recovery in Resource Limited Clusters 169

Since Apnoea is a multipath DAG its most expensive path is identified by
profiling the Apnoea input application for a short period in the intended cluster.
Then the ray (high lighted in dotted lines) of the most expensive path (S-F3-
AG3-F7-J1-J2-SI) is transformed using Tri-OP transformation. The transformed
operator block (shown in the right side of the Figure Ple)) is stitched with the
original DAG through operator block fusion which yields the sample application
shown in Figure 2(f).

3 Related Work

Stream program performance maintenance is closely related with works con-
ducted on highly availability, and fault tolerance of stream processing systems.
Hwang et al. [9], and Gu et al. [7] have described two main approaches for highly
availability called Active Standby (AS), and Passive Standby (PS). In AS two
or more copies of a job are run independently on different machines. In PS a
primary copy periodically checkpoints its state to another machine and uses that
copy for recovery during failures. Both these approaches involve replication. Our
approach is completely different from AS since, ours is based on automatic code
generation and does not require backup machines. However, we share a common
feature with PS since we keep incoming data tuples in main memory during the
crash recovery period to avoid data losses.

Recently, MapReduce has been used for creating streaming applications.
Hadoop Streaming [16] is one such implementation where Unix standard streams
have been used as the interface between Hadoop, and user programs. However,
it should be noted that standard Unix streams (e.g., stdin, sdout, stderr, etc.)
represent only few examples of use of streams compared to the wide variety of
application scenarios addressed by dedicated stream processing middleware such
as System S. Logothetis et al. describe an in-situ MapReduce architecture that
mines data (i.e., logs) on location where it appears [14]. They employ load shed-
ding techniques to improve fidelity under limited CPU resources. In contrast
to such load shedding techniques [2] currently our approach does not discard
parts of the incoming data to recover the lost performance. Instead, Albatross
transforms the stream application to a different form which could process the
incoming data as it is.

Khandekar et al. [12], and Wolf et al. [I7] discuss optimizing stream job per-
formance in the context of operator fusion (COLA) and operator scheduling
(SODA) respectively. However, their approaches do not focus on maintaining
an agreed level of performance. Instead their focus is on performance improve-
ment. Furthermore, COLA works on finding the optimal fusion of processing
elements (using compiler outputs) of a single program, whereas Albatross con-
structs and uses many versions of input program(s) during its operation. This
is because Albatross needs different versions with different performance levels
during performance maintenance process.

170 M. Dayarathna and T. Suzumura

4 Approach for Performance Maintenance

We formerly define our approach below. The notation used in our description is
explained in Table [II

Table 1. Notation

Notation Description

Exn Stream processing environment with N nodes. (N > 1)
S Set of input stream programs. (|S| = n, n>0)
u Performance margin for stream processing environment E. (u€{0,...,100}, u€R+).

This value is calculated by Albatross using current performance information of E
(As described in Section E2]).

m A performance window set by user. (mé€ {0, ...,100}, meR+)

M; Input stream program priority margin. (Vi, j where i,jeN, M;,M; €R+, i,j€{0,...,(n-
1)}, i,jeN, M;#M;, Z::olMi:100)~ Priority margin is used for ranking input
programs based on their importance. This value needs to be specified by user
prior running Albatross.

r Calibration run. If r = 0 it is a normal mode run. When Albatross is deployed in
its usual operation its called normal mode run.

P(ST) Sample program set generated for S during calibration run r. (r€N, r#0). A cali-
bration is a running of entire sample program space with the intention of obtaining
the performance information.

Pgo) Sample program set generated for S during normal mode run. Here, 0 in Pg)i)
represents a normal mode run of Albatross.

XN Selected sample program set. (X, GPgoi), [XN|=n, [Xn;| = 1)

perf (x) Predicate for performance (e.g., throughput, elapsed time, etc.) of sample program

X

Given an En which receives a steady flow of input data streams, a set of input
programs S (|S| = n) each having a priority margin M;, a set of sample programs
generated during past calibration sessions (each represented as r) of S programs
denoted by Pg), Albatross generates P(Soi) for each S; (i €{0,...,(n-1)}, ieN).
Then, it selects sample program set Xy considering the empirical performance
information of each Pg;), compiles and runs them in Ep. The algorithm that
selects each sample program Xy, is described in next section.

During a sudden node failure which results in a different environment Epy/
with N’ nodes (N'<N; N’>0), Albatross selects Xy (X CPgoi), IXn/| = n,
|Xn/| = 1) sample programs if M;>(u+m) and compiles them. Then, Albatross
cancels the programs Xy, and starts running both X, and Xy program sets in
En’ (with N’ nodes) for a time window of W;. For each program Xy, and XN/
perf (Xy/) is compared with perf (Xy,) in the context of Ey/. Programs with
highest performance for each ¢ is kept running and the other jobs are canceled.

When the crashed nodes comes back online, En+ changes back to Ex. There-
fore, the programs Xy, are switched back to Xn;.

4.1 Program Ranking Algorithm

It should be noted that the sample program sets generated by Albatross are not
exponential. E.g., For VWAP for a transformation depth of 4 it produces only

Stream Program Performance Recovery in Resource Limited Clusters 171

24 sample applications. Transformation depth (d) is a non-zero integer which
denotes the extent to which the input application’s data flow graph is expanded
[4]. Albatross uses the same program generator from Hirundo, and more details
on sample program space is available from [4].

Albatross uses empirical performance information gathered from previous cal-
ibration sessions to estimate which sample program version should be the best
match for the stream processing environment E. Note that in the case of Sys-
tem S we assume the operator placement decisions will be the same for multiple
runs of a particular program on a specific node configuration. The Algorithm 1
describes the selection process. To maintain brevity we only describe the algo-
rithm’s inputs and outputs below.

Algorithm 1: ion of Sample Program

Input : Input application’s name (appname), structure of the input stream 21: end for

application (G), transformation depth (d), number of nodes (nodes) /* Sort labels ascending order using range values */
Output : Replacement sample program (selectedLabel) 22: sortByRangeAsc(labelPerfStat)
Description : 23: selectedLabel — @ /% Select sam ith hi
. ! . : E sample program with higher average */
I optrunDict — ge'lLaleslThrgeOpIrunlDs(appname, G, d, nodes) 24: for all label in labelPerfStat do: /* throughput compared to the Input app*/
2: for all optrun in optrunDict do /* Get sample program performance details */ 25 if label.min > inputStat.max then
3: perfDict[optrun] « getPerfInfoForOptrun(optrun) 2;,‘ seleéledLabel - lab;el
4: end for 27: break
5. labelDiffTable «— {} 2% endif
6: for all optrun in perfDict do /* Aggregate throughput information for each label */ 29 end for
; fnrlflljl‘llzli)hg_:lbﬁpliu: ‘1’", dontrunlabel 30: if selectedLabel = @ then /* If could not find a suitable app, */
¥ LpelDifTTableflabel] append(optrunflabel] 31: for all label in labelPerfStat do: /* select using average throughput */
10: end :“ or 32: if label.average > inputStat.average then
il ;’ ° 33 selectedLabel « label
5 :"p“l‘ at /* Find range, average, */ 34: break
12: label Perfslalik O . /% min, max throughput */ 35: end if
13: for all label in labelDiffTable do: /% values for each group */ 3¢, end for
14: labelPerfStat[label].range « range(labelDiffTable[label]) :‘7: end if
15: labelI‘ertStal[label].av‘erage - gverage(labelplt'fTable[label]) 38: if selectedLabel = @ then /* If no suitable app found then return the input app*/
16: labelPerfStat[label].min < minimum(labelDiffTable[label]) .
. . 39: selectedLabel « appname

17: labelPerfStat[label].max < maximum(labelDiffTable[label]) 40: end if
18: if label is Input App then 41' return selectedLabel
19: inputStat « labelPerfStat[label]
20: endif

Input to the algorithm is the application’s name (this is the name assigned to a
SPADE application under its Application meta-information tag [Application]),
the structure of the input stream application G (G is a directed graph where each
operator is represented as a vertex, and each stream that connects two operators
is represented by an edge), transformation depth of the calibration run (i.e., d)
and the number of nodes that are currently available on the stream processing
environment. As the output, algorithm selects the first sample program which has
higher average throughput compared to input stream application and has a higher
minimum throughput relative to maximum throughput of input application (lines
24 - 29). If it could not find a suitable label it reduces the restrictions, and tries to
select the sample program label which has higher average throughput compared to
the input application (lines 30 - 37). If this attempt also fails the algorithm returns
the input application’s name (appname) as the sample application label since the
algorithm needs to specify at least one application label (Xy;,) that should be run
in the environment. Note that a label is an identification string. For Linear DAGs
it represents arrangement of operator blocks in the sample program. E.g., Label
S 4F 8F 4F 4SImeans the sample program has one source, four F1 functors, eight
F2 functors, four F3 functors, and four sinks. However, for multipath DAGs (E.g.,
Apnoea) the label serves only as a unique ID.

172 M. Dayarathna and T. Suzumura

We select only the latest three calibration run results for sample program se-
lection algorithm since a sample program produces similar performance behavior
across multiple runs in the same stream computing environment. We make the
selection of the sample program label in two steps (in lines 24 - 29 and in lines
30 - 37). The programs selected by considering the fact that having higher min-
imum throughput than the input application’s maximum throughput, do have a
higher probability of producing higher throughput compared to a decision made
considering only the average throughput values (lines 24 - 29).

4.2 Program Switching Model

We employ a program switching model to remove programs (which are registered
with low priority) during drastic node failures that makes the remaining nodes
fully or close to fully utilized. The elimination model is formed by Cartesian
product of resource availability functions (u) which can be defined as follows.
If availability of a resource such as total amount of memory, total amount of
CPU, etc. is denoted by p(y) and program switching function (binary) is given

by ¢(z),

(current level of resource y)

p(y) = (initial level of resource y)

u =100 x [[p(y) (2)

o) = { o M e P =0 ®

Current implementation of Albatross uses only two resource availability vari-
ables: RAM availability (p(R)), and Node availability (p(N)). Hence, Equation
3 can be simplified to,

1 [M; — ((p(R) x p(N) x 100) +m)] > 0

) = {0 | () oth(erzuise : ! (@)
The choice of p(RAM) and p(Node) was made because successful operation
of stream processing systems largely dependent on main memory availability.
Node availability was also introduced to the program switching model because
p(Node) directly reflects not only p(RAM), but also other resource availability
metrics such as CPU availability, network availability, etc. on a homogeneous
cluster. This results in simplified parabola shape u for which users of Albatross
can easily specify the priority value m before running Albatross.

5 Implementation

Albatross prototype was developed using Python. Architecture of Albatross is
shown in Figure Bl The input to Albatross is a collection of directories each

Stream Program Performance Recovery in Resource Limited Clusters 173

Input (programs and Network File Server (NFS) [¢———————%| DYEEMIS
configuration information) Sample Programs Control Cc dsd

|
Program
Generator
Parallel
Compiler

StreamFarm

s || CSering Je
v
.

.

-Spring ¢»| Farm

‘Workers|

Program Runtime
Calibrator Orchestrator

SPADE | Main Module

Program 1
SPADE
Program 2 et o
_Communicalion
1 v
SPADE Albatross
Program n Srammar
| Albatross

Input directory

Input
Gateway

Performance
Meter

[I Worker

Sample
Program
Version
Selector

Program
Structure
Analyzer

o
(S}

[)

Farm Manager |

Albatross database

‘ommands

Fig. 3. System Architecture of Albatross

containing an input stream program. Each program is associated with a configu-
ration file which lists information such as transformation depth (d) of the input
program, the priority margin (M,), etc.

Albatross has been developed targeting stream programs written in SPADE
language. Therefore, Albatross depends on System S and SPADE compiler dur-
ing its operations. System S is dependent on a shared file system such as Network
File System (NFS), General Parallel File System (GPFS), etc. [10]. However, Al-
batross does not use NFS as a secondary storage to avoid potential performance
bottlenecks. The experiments we conducted using Albatross were supported by a
stream workload synthesis tool that we developed called “StreamFarm”. Hence,
Albatross does not depend on any significant file I/O during its operations. Al-
batross utilizes an SQLite database to store its information. Brief descriptions
of important components of Albatross are described in below subsections.

We make several assumptions in creating the fault-tolerance model of Alba-
tross. In current version of Albatross we do not employ any stream summa-
rization/load shedding [2] techniques during the crash recovery period. All the
incoming tuples are buffered in memory of the node which holds the gateway
component during the crash recovery. We assume that the stream data is not
bigger than what could be stored in memory of that node during that time
period. Furthermore, we assume that the node which keeps Albatross and the
gateway component processes does not crash during a fault recovery session.

Runtime Orchestrator module monitors health of the cluster using periodic
heartbeat messages (i.e., ping messages). If a node crash was detected, the Input
Gateway is informed to start the tuple buffering process. Next, the System S
runtime is stopped, and the defected node is removed from the node list of System
S instance configuration. After this System S is restarted on the remaining nodes.
The sample programs selected by Albatross’s program ranking algorithm, and
the original programs are run in the environment for a short period to select the
best versions to be deployed. Next, the programs not selected are stopped, and
removed from the environment. Finally, the buffered data tuples are directed to
the chosen applications.

All the data streams that go in/out to/from the sample applications travels
through the module called Gateway. The Gateway is used for measuring the

174 M. Dayarathna and T. Suzumura

data rates of the streams. The data rate information is used by Program Version
Selector to switch between the sample programs that are suitable for a partic-
ular environment (Ex). However, in the experiments described in Section [we
utilized the data rate reporting mechanism of StreamFarm to obtain the data
rate information.

Furthermore, the Gateway buffers the tuples in memory, while Albatross con-
ducts sample programs switching. After the appropriate sample programs are
selected the buffered tuples are released to System S jobs before the incoming
tuples are served. When the buffer gets emptied the incoming tuples are directed
to System S jobs rather than adding them to the tail of the tuple queue. In the
current version of Albatross the gateway is located on a single node.

6 Experimental Evaluation

6.1 Experimental Setup

We used two clusters (lets call them A and B) of Linux Cent OS release 5.4
installed with IBM Infosphere Streams Version 1.2 and Python 1.7. Each node
in cluster A had a Quad-Core AMD Phenom' 9850 processor, 512 KB L2
cache per core, 8GB memory, 160GB hard drive, 1 Gigabit Ethernet. Each node
of cluster B had a dual core AMD OpteronTM Processor 242, 1IMB L2 cache
per core, 8GB memory, 250GB hard drive, 1Gigabit Ethernet. We used SQLite
version 3 as Albatross’s database, and cluster B had JRE 1.6.0 installed. Both
the A and B clusters were reserved for running only these experiments during
the experiment period.

6.2 Evaluation of Stream Program Performance Variation

We modified Albatross not to respond to crash failures, and ran two sample ap-
plications of Regex and VWAP on Cluster A. Then we crashed two nodes which
left only 6 operational nodes. The two applications showed different character-
istics after the crash (See Figure Hla)). In the case of VWAP the throughput
dropped from an average of 84.16KB/s to an average of 21.38KB/s, a reduction
of average data rate by 74.6%. In the case of regex application it completely
stopped outputing data. Therefore, we observed that for certain applications,
crash faults result in no output of data from System S. Some other applications
output data at a reduced rate, but might produce different outcome than what
is expected. In both the scenarios we need an explicit intervention like done by
Albatross.

We ran Albatross in the Calibration Mode with VWAP application in cluster
A with 8 nodes. The results of six calibration runs is shown in Figure E(b). We
observed that certain applications produce similar performance behavior across
the six experiments (E.g., S 6F AG F SI) and some applications produce higher
performance compared to the input application (E.g., 8 6F AG F SI). This
indicates that our program transformation method generates sample programs
with consistent yet different levels of performance.

Stream Program Performance Recovery in Resource Limited Clusters 175

‘Thousands

Thousands
;
%
2

+Optrun 1
HOptrun 2
A0ptrun3
+Optrun 4
XOptrun 5
©Optrun6

8 Nodes 6 Nodes

Throughput (B\s)

Throughput (Bs)

&
Time (Time of the day) (a) Sample Program Label (b)

Fig.4. (a) How the sample programs’ performance change when two nodes were
crashed. (b) Throughput of sample applications produced for VWAP application for
Six calibration runs.

6.3 Evaluation of Performance Recovery Process

The VWAP, Regex, and Apnoea applications were calibrated by Albatross for
three times prior the experiment for each node configuration (i.e., 8 nodes, 6
nodes, etc.). After the calibrations were complete, the three applications were
submitted to Albatross in three separate runs. Albatross and System S were
run in the cluster A, while StreamFarm was ran on cluster B to avoid poten-
tial interferences. StreamFarm allowed us to maintain a steady, high data rates
throughout the experiments which gave us great support compared to file based
methods that we used in our previous work [4].

Performance recovery process for Regex application during two consccutive node erashes A akbadby
X T

$Nodes | 6 Nodes | 4 Nodes

Ji -
Midhanet crashed 3

a0 7
3 H Discharge of contents

\ofmpulmpk buffer

roughput (Bs)
»

Th

0 |
Two nodes J-.-
il

Crashed l

Fig. 5. Recovering performance of Regex application during two consecutive node
crashes

While in the middle of the experiment run, two nodes were crashed. The re-
sulted throughput curves are shown in Figures [l and [0l We observed that for
Regex application (See Figure[l) the new sample program introduced for 6 nodes
environment (S 4F 8F 4F 4SI) was unable to produce a higher throughput com-
pared to initial sample application (4S 4F 4F 2F 2SI), hence it’s execution was
canceled. The previous sample application (4S 4F 4F 2F 2SI) was run in the
environment since Albatross could not find a better version of the Regex sample
applications to run, yet we get only partial degradation of the Regex stream job’s
performance despite loss of two nodes. However, in the case of VWAP applica-
tion Albatross’s choice was much accurate, and performance of the new sample

176 M. Dayarathna and T. Suzumura

Performance recovery process for VWAP application with input tuple, P recovery process for Apnoea application during two consecutive node crashes

£ buffering e £
Nod e TS Y

des

Tw
—-—
-
-

Throughput (B\S) Thousan

he day) ()

Fig. 6. Performance recovery process when (a) two nodes were crashed for VWAP. (b)
two consecutive node crashes for Apnoea.

application (8S 48F AG F SI) resembled almost the same performance of ini-
tial sample application (8S 64F AG F SI). Note that Regex application consists
of a chain of Functors where as VWAP application has an Aggregate operator
that outputs data after gathering a group of tuples. Hence, the wavy curve of
VWAP application compared to Regex application is formed by the aggrega-
tion operation done by VWAP. The temporary high throughput rise in both the
graphs are due to the excess tuples during the release of buffered tuples just
after completion of recovery process. For Apnoea, the new sample application
SF AG F F 4AG 4F F AG F J J SI was able to restore the performance (with
a partial degradation) while the initial sample application could not produce any
output.

During the rest of the experiment we used only Regex and Apnoea applica-
tions. We used the full functionality of Albatross as with the previous experi-
ment. After the first crash we allowed sufficient time for the recovery process
and then crashed another two nodes. The results are shown in Figure [and
in Figure [B(b). After the second crash we observed that for the Regex applica-
tion, the initial sample program (4S 4F 4F 2F 2SI) was unable to restore the
performance with 4 nodes, and the job was undertaken by 4S 8F 4F 4F 4SI
which was able to produce almost the same throughput of the initial program
with 8 nodes. In the case of Apnoea application, the new sample application
introduced (S F AG F 2F 2AG 2F F AG F J J SI) could not restore the per-
formance. Hence, the previous sample application was deployed to maintain
performance with 4 nodes cluster.

7 Discussion

From the evaluation results it was clear that Albatross is able to restore the
operations back to the normal level (e.g., VWAP on 6 nodes, Regex on 4 nodes,
and Apnoea on 4 nodes) or at least run the jobs with relatively lesser performance
yet with a guarantee of the correctness of the execution (e.g., Regex on 6 nodes,
and Apnoea on 6 nodes). Furthermore, Albatross was able to restore performance
even when half of the nodes in the cluster were crashed (e.g., Apnoea, and Regex
each on 4 nodes).

There are many further work, and limitations of the current prototype. The
types of input stream applications that the current prototype can support are

Stream Program Performance Recovery in Resource Limited Clusters 177

limited since Albatross’s grammar covers a subset of the SPADE language con-
structs. Furthermore, the approach is infeasible for a large number of applica-
tions each demanding maintenance of higher performance. Our current program
switching model is designed to avoid this. Data rate might not produce the cor-
rect picture of performance of certain stream applications. E.g., An application
that aggregates tuples may emit one tuple per minute irrespective of the number
of nodes that serve data for the aggregate operator. Moreover, it takes consider-
able amount of time (Rounded average recover times : 6 minutes for VWAP, 3
minutes for Regex application, and 5 minutes for Apnoea) to restore the normal
operations of all the stream jobs. Most of this time is spent for orchestrating the
System S runtime (start/stop System S runtime, reschedule PEs), and sample
application compilation which accounts for significant time compared to Alba-
tross’s scheduling algorithm. However, the time period might be different for
some other stream processing system. The release of tuples buffered by Alba-
tross temporarily increases the data rate which might not be expected by some
applications which receive data from System S jobs.

8 Conclusions and Future Work

In this paper we introduced a technique for maintaining performance during
crash failures of stream computing systems. Our approach is widely applicable
for resource limited stream processing clusters. It is based on automatic code
generation. To this end we introduced Albatross, a python based middleware
that monitors the status of the node clusters and strives to maintain the per-
formance via swapping the sample programs generated for each input program.
We observed that Albatross can maintain the same performance of the Regex
(with 8 nodes, 4 nodes crashed), VWAP (with 8 nodes, 2 nodes crashed), and
Apnoea (with 8 nodes, 4 nodes crashed) stream jobs despite loss of nodes from
the stream processing environment. Therefore, we came to conclusion that our
approach is capable of maintaining stream program performance even if 50% of
the nodes in the cluster has been crashed in stream applications such as Regex,
and Apnoea.

In future we hope to devise a sophisticated scheduling algorithm for Alba-
tross’s stream job control process to reduce the time taken for recovery process.
We are also investigating on use of load shedding techniques to improve the
stability of the performance recovery process.

Acknowledgments. This research was supported by the Japan Science and
Technology Agency’s CREST project titled “Development of System Software
Technologies for post-Peta Scale High Performance Computing”.

References

1. Andrade, H., Gedik, B., Wu, K.-L., Yu, P.S.: Scale-up strategies for processing
high-rate data streams in systems. In: IEEE 25th International Conference on
Data Engineering, ICDE 2009, March 29-April 2, pp. 1375-1378 (2009)

178

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Dayarathna and T. Suzumura

Babcock, B., Datar, M., Motwani, R.: Load shedding in data stream systems. In:
Data Streams, vol. 31, pp. 127-147. Springer US (2007)

Catley, C., et al.: A framework to model and translate clinical rules to support
complex real-time analysis of physiological and clinical data. In: Proceedings of
the 1st ACM International Health Informatics Symposium, THI 2010, pp. 307-315.
ACM, New York (2010)

Dayarathna, M., Suzumura, T.: Hirundo: a mechanism for automated production of
optimized data stream graphs. In: Proceedings of the Third Joint WOSP/SIPEW
International Conference on Performance Engineering, ICPE 2012, pp. 335-346.
ACM, New York (2012)

Furht, B., Escalante, A.: Handbook of Cloud Computing. Springer-Verlag New
York, Inc. (2010)

Gedik, B., et al.: Spade: the system s declarative stream processing engine. In:
SIGMOD 2008, pp. 1123-1134. ACM, New York (2008)

Gu, Y., Zhang, Z., Ye, F., Yang, H., Kim, M., Lei, H., Liu, Z.: An empirical study of
high availability in stream processing systems. In: Middleware 2009, pp. 23:1-23:9.
Springer-Verlag New York, Inc., New York (2009)

Hwang, J.-H., Cetintemel, U., Zdonik, S.: Fast and highly-available stream pro-
cessing over wide area networks, pp. 804-813 (April 2008)

Hwang, J.-H., et al.: High-availability algorithms for distributed stream processing.
In: Proceedings of the 21st International Conference on Data Engineering, ICDE
2005, pp. 779-790. IEEE Computer Society, Washington, DC (2005)

IBM. Ibm infosphere streams version 1.2.1: Installation and administration guide
(October 2010)

Ishii, A., Suzumura, T.: Elastic stream computing with clouds. In: 2011 ITEEE
International Conference on Cloud Computing (CLOUD), pp. 195-202 (July 2011)
Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J., Wu, K.-L., Andrade,
H., Gedik, B.: COLA: Optimizing stream processing applications via graph parti-
tioning. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896,
pp. 308-327. Springer, Heidelberg (2009)

Kleiminger, W., Kalyvianaki, E., Pietzuch, P.: Balancing load in stream processing
with the cloud. In: Data Engineering Workshops (ICDEW), pp. 16-21 (April 2011)
Logothetis, D., Trezzo, C., Webb, K.C., Yocum, K.: In-situ mapreduce for log
processing. In: USENIXATC 2011, Berkeley, CA, USA, p. 9. USENIX Association,
Berkeley (2011)

Tanenbaum, A.S., Steen, M.V.: Distributed Systems. Pearson Education, Inc.
(2007)

White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2010)

Wolf, J., et al.: Soda: an optimizing scheduler for large-scale stream-based dis-
tributed computer systems. In: Middleware 2008, pp. 306-325. Springer-Verlag
New York, Inc., New York (2008)

Zhang, Z., et al.: A hybrid approach to high availability in stream processing sys-
tems. In: Distributed Computing Systems (ICDCS), pp. 138-148 (June 2010)

Event Relationship Analysis for Temporal Event Search

Yi Cail>*, Qing Li?, Haoran Xie?, Tao Wang!, and Huaqing Min'

! School of Software Engineering, South China University of Technology, Guangzhou, China
ycai@scut.edu.cn
2 Department of Computer Science, City University of Hongkong, Hongkong, China

Abstract. There are many news articles about events reported on the Web daily,
and people are getting more and more used to reading news articles online to
know and understand what events happened. For an event, (which may consist of
several component events, i.e., episodes), people are often interested in the whole
picture of its evolution and development along a time line. This calls for model-
ing the dependent relationships between component events. Further, people may
also be interested in component events which play important roles in the event
evolution or development. To satisfy the user needs in finding and understand-
ing the whole picture of an event effectively and efficiently, we formalize in this
paper the problem of temporal event search and propose a framework of event
relationship analysis for search events based on user queries. We define three
kinds of event relationships which are temporal relationship, content dependence
relationship, and event reference relationship for identifying to what an extent a
component event is dependent on another component event in the evolution of
a target event (i.e., query event). Experiments conducted on a real data set show
that our method outperforms a number of baseline methods.

1 Introduction

With the development of the Internet, news events are reported by many news articles in
the form of web pages. People are getting more and more used to reading news articles
online to know and understand what events happened. For a composite/complex event,
it may consist of several component events, i.e., episodes. There are some interrela-
tionships among these component events as they may be dependent on each other. For
example, the event of “Toyota 2009-2010 vehicle recalls” contains several interrelated
component events, e.g., the event “Toyota recall due to safety problems from 2009 to
2010” causes the happening of the event “NHTSA conduct investigations for Toyota re-
call” and the event “US congressional hearings hold for Toyota recall”, and so on. Also,
the event “US congressional hearings hold for Toyota recall” has a strong relationship
with the event “Toyota’s president to testify in US congressional hearings”.

Quite often, what people interested in is not just a sole news article on an event, but
also the related events reported by other news articles. Indeed, they are often interested
in the whole picture of an event evolution or development along a timeline. This calls
for modeling the dependence relationships between component events, and identifying

* Corresponding author.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 179-[193] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

180 Y. Cai et al.

which component events play important roles in the entire event evolution or develop-
ment. Unfortunately, the current news web sites do not facilitate people in finding out
relevant news articles easily, and people may need to go through all these news articles
in order to find out the interrelationships between component events. Current prevailing
search engines (such as Google, Yahoo and so on) allow users to input event keywords
as a query and return a list of news web pages related to the query. However, instead
of organizing the result by events and relationships between events, these engines just
provide users with a ranking list of news web pages. It is difficult and time consuming
for users to view of the huge amount of news articles and to obtain the main picture of
an event. Therefore, it is necessary to provide an effective way for users to efficiently
search events they are interested in, and organize the search results in an easily un-
derstandable manner syntactically, so that users can obtain the main pictures of their
interested events easily and meaningfully from the semantic perspective.

Although there have been some previous works attempting to find and link incidents
in news [2] [3] or discover the event evolution graphs [[17] [15]], they only focus on time
sequence and content similarity between two component events in identifying their de-
pendence relationships. However, using these two factors only is inadequate in identi-
fying dependence relationships among the component events in order to form the main
picture of a big event evolution or development. For example, event “Toyota recall due
to safety problems from 2009 to 2010 shares little similar content with events “NHTSA
conduct investigations for Toyota recall” and “US congressional hearings hold for Toy-
ota recall”. It is obvious that the first event has a strong effect on the latter two events
as it caused them to happen. Unfortunately, previous works do not analyze the event
relationships well and cannot find out the dependence relationships between any two
events which do not share enough similar content. As a result, the main picture of a
“big event” discovered by previous works often is incomplete and several significant
relationships are missing.

In this paper, to satisfy the user needs mentioned above in finding and understanding
the whole picture of a complex event effectively and efficiently, we conduct an in-
depth event relationship analysis for event search and propose a framework to search
events based on user queries. The new characteristics of the proposed framework and
the contributions of our work are as follows.

— In previous works, to discover dependence relationships between events, content
similarity of events is measured by matching the keywords (terms) of events. How-
ever, there may be some keywords (in two events) which are actually related/
dependent but not identical. For example, “hospital” and “doctor” are dependent,
but previous methods treat them as no relationship. To avoid this limitation, we
adopt mutual information to measure the dependence between two terms (features),
and then aggregate all mutual information between features in events to measure
the content dependence degree between events. Such a process is named as content
dependence (CD) analysis and the dependence relationship discovered based on
dependence features of two events is named as content dependence relationship.

— As mentioned in paragraph 4, only content dependence analysis on events is in-
adequate to detect all event dependence relationships. According to the studies in
Journalism [11]] and our observation, it is not unusual for authors (reporters) to write

Event Relationship Analysis for Temporal Event Search 181

news articles on an event by referring to other events, when the authors consider
there is a dependent relationship between them. For instance, some news articles
about the event “Toyota recall due to safety problems from 2009 to 2010 refer
to the event “NHTSA conduct investigations for Toyota recall”. Motivated by this
prevalent phenomena, We explore event reference (ER) analysis to detect whether
there is an inter-event relationship specified by authors. The relationship between
two events discovered by ER analysis is named as event reference (ER) relation-
ship, which has not been explored by previous works.

In contrast to previous works which only consider temporal relationship and con-
tent similarity, we adopt three kinds of event relationships (viz, temporal relation-
ship, CD relationship obtained by CD analysis and ER relationship obtained by ER
analysis) to identify the dependence relationship between two events. Note that CD
and ER relationships are essentially event dependence relationships which are dis-
covered by two different ways respectively. We name them by two different names
with respect to the different ways for discovering them. CD relationships and ER
relationships can be complementary to each other in identifying event dependence
relationships.

The search results are organized by a temporal event map (TEM) which constitutes
the whole picture about an event’s evolution or development along the timeline.
Figure 1 shows an example TEM of the event “Toyota 2009-2010 vehicle recalls”.
A TEM provides a way to organize and represent the events search results by show-
ing the interrelationships between/among the events. It provides an easier and more
efficient means for users to know and understand their interested events in a com-
prehensive way.

To evaluate the performance of our proposed approach, we conduct experiments on
a real data set by comparing with a number of baseline methods. Experiment re-
sults show that our method outperforms baselines in discovering event dependence
relationships.

Honda adds
437,000 cars to
global air bag
recall

Competitor
reactions

Fig. 1. An example of the TEM about the event “Toyota 2009-2010 vehicle recalls”

Toyota sees
billions hit from
recall problems

182 Y. Cai et al.

The rest of this paper is organized as follows. In section 2, we formulate the event
search problem. Section 3 introduces the (temporal) event search framework. We con-
duct experiments on a real data set to evaluate the proposed methods for event search in
section 4. In section 5, to further illustrate and evaluate our method, we study a query
case about the event “SARS” happened in 2003. Related works are studied in section 6.
We conclude the paper and introduce potential future works in section 7.

2 Problem Formulation

According to [9] and [17]], an event is something that happens at some specific time and
place. In reality, events often are reported by some documents, such as news articles
in web pages. Formally, for an event a, there is a set of documents talking about a,
and such a set of documents, denoted as R, = {d{,d%,---,d%}, is named as related
document set of a. Each document is about one event and an event can be reported by
multiple documents. A document introducing an event includes the start time, place(s)
and content of the event. Thus, for each document d¢, there should be a timestamp Tda,
a set of place names qga = {ts,1, -, %zn} and a set of terms hga = {fz 1, ", fmn}
about the event’s content. We define an event as follows.

Definition 1. An event a is a tuple (L,, P,, F,) where L, is the life cycle of a, P, is
the set of places where a happens, and F, is the set of features describing a.

The life cycle L, of event a is the period (time interval) from the beginning time St to
the end time Et, of a, i.e., L, = [Stq, Ft,], where St, is the earliest timestamp among
all the timestamps of related documents of a, and E', is the latest timestamp among all
that of related documents of a. The place set P, of an event a is a set of terms denoted
by P, where P, = {tq.1,%0,2," ", ta,m} and each t, , is a term which represents a
place. For an event, it may consist of several component events, i.e., episodes.

For example, for the event of SARS epidemic which happened in 2002 among some
37 countries around the world, the life cycle of this event is from November 2002 to
May 2006. The place of the event includes China, Canada, Singapore and so on. There
are many reported news on the event on the Web. To describe the event, we can extract
from the set of documents the set F, of features (i.e., keywords), such as “SARS”, “flu-
like”, “fever” and so on. The event of SARS epidemic consists of several component
events such as “Experts find disease infect and SARS outbreaks”, “China informs and
cooperates with WHO”, “SARS has great impact on economy” and so on.

Definition 2. Foreach event a, it contains a set of component events denoted as CE, =
{a1,a2, -, an} where 1 < n, a, is a component event of a and R, = R,, U R,, U
---UR,,.

Definition 3. Among all the component events of an event a, the seminal component
event of a is the one whose start time is the same as that of a, i.e., the start time of the
seminal component event is no later than those of the other component events of a.

Definition 4. Among all the component events of an event a, the ending component
event of a is the one whose end time is as the same as that of a, i.e., the end time of the
ending component event is no earlier than those of the other component events of a.

Event Relationship Analysis for Temporal Event Search 183

For an event a and its component events, it is obvious that St, = Min],(St,,),
Et, = Mazx} (Et,,), P, = P,y UP,, U---UP, and F, = Rq, UF,, U---UF,, .
We observe that there is a temporal requirement for two events to have a dependence
relationship between them, as follows.

Observation 1. If there is a dependence relationship from event a to event b, i.e., a
is dependent on b, then there is a temporal relationship between a and b such that
Sty <= Stg, i.e., b happens earlier than or at the same time as a.

Definition 5. A Temporal Event Map is a weighted directed graph, denoted by T EM =
(N, E,Wy), which consists of events as nodes, relations as edges, and weights on the
edges as strength degrees of dependence relationships. In particular, each vertexv € N
is an event, each edge e, € F is a dependence relationship between two events, and
wy € Wy is a weight which indicates the strength degree of a dependence relationship.

An example of temporal event map of the event “Toyota 2009-2010 vehicle recalls” is
shown in Fig. 10

We formulate the problem of temporal event search as follows. The input of the
search problem is a tuple (I, I,,, Iy) where I, is a time interval, I, is a set of terms of
places, and I is a set of keywords about an event content. The event which is relevant to
(corresponding to) the input is named as the target event, i.e., the event happens in the
places in I,, during I, and the feature set of the target event contains ;. The output of
the search problem is a TEM constituting all the component events of the target event.

The problem of temporal event search can thus be regarded as a function ¢:

¢:IxD—=T

where [is the set of input, D is the set of documents and 7" is the set of TEMs.
For the example of Fig. 1, we may have the following input:

I, =[1/11/2009,23/2/2010]; I, = (USA); I; = (Toyota, recall)

then the temporal event map for such a search task is the one shown in Figure 1.

3 Event Relationship Analysis

In this section, we propose a framework of event relationship analysis to support tempo-
ral event search. In our method, we first identify a set of related documents for the target
event and extract component events from the related documents. We conduct content de-
pendence (CD) and event reference (ER) relationship analysis to identify dependence
between events

! We use the width of a line to indicate the strength of a dependence relationship.
2 In the rest of the paper, we use the term “event” to denote “component event” for convenience
wherever there is no ambiguity.

184 Y. Cai et al.

3.1 Preliminaries

A user query can be considered as search requirements corresponding to a target event
which satisfies all the needs from the user. The related document set of the target event
can be obtained by a function 6:

0:IxD—R

where [is the set of input, D is the set of documents and R is the set of related document
sets.

In general, we consider (I¢, I,,, I7) as three kinds of (not all are compulsory) user
search requirements. In some cases, users may only input one or two of the (I, I, If).
For such special cases, we only take the user input requirements into consideration, i.e.,
subset of (I, I, If).

For each target event a corresponding to an input [and its related document set R,,,
we can detect several component events from R,. All component events of a should
happen during I, and their places are contained in I, and features contained in I;. The
component event detection of a target event is a function ¢:

p:R—=>FE

where R is the set of related documents and E is the set of the component events.

For the problem of event detection, there have been many existing works published
such as [[1]] [12]] [14]. In this paper, we adopt the topic-model based method [14] as the
preferred method to detect events.

3.2 Content Dependence Analysis

In analyzing content dependence (CD) relationships for temporal event search, we no-
tice that features of an event a may have various degrees of importance in representing
a. Some features are more representative than others for the event. An event can be
represented by a feature vector, denoted by ?a, which is a set of feature:value pairs.

?a = (fa,l : Ua,lafa,2 Va2, 'afa,n : 'Ua,n)vv'ivo < Vq,i <1

where f, ; is a feature and v, ; is the importance degree of f, ; for the event a. Hence,
Vq,; is the NTF-IEF (normalized term frequency-inverse event frequency) value of f, ;,

ie.,
v = g N (1
’ MAXu(tfa,u) efi
where tf, ; is the frequency of term ¢ in R,, IV is the total number of component
events, M AX,,(tf,.,) is the maximal value among all ¢ f, ,, and ef; is the number of
component events containing term f ;.

As mentioned before, previous works use content similarity (most works adopt co-
sine similarity) to identify dependence relationships between events. However, two
events may have some keywords which are dependent but not identical, which causes
the previous works to be inadequate in measuring how relevant these two events are.

Event Relationship Analysis for Temporal Event Search 185

According to [10], variables (i.e., keywords) which are not statistically independent
suggest the existence of some functional relation between them, and mutual informa-
tion provides a general measure of dependencies between variables. Thus, we adopt
mutual information to measure the dependence between features, and further use an
aggregation of all mutual information between the feature sets in two events to measure
the content dependence degree between them.

Formally, for two events a and b, the content dependence degree, denoted by C'd(a, b),
is an aggregation of all mutual information between all features in ﬁa and thatin F'p,

as follows: > 1o 1))
fme? peF, el
Cd(a,b) = (2)
FallFl
where \?a\ (|?b\) is the cardinality of the set ?a (?b), and I(fs, fy) is the depen-
dence degree between features f, and f,, measured as follows:

P(fa)P(fy)

where P(fs, f,) is the probability of f, and f, co-occurring in the same document
among all the related documents, and P(f) is the probability of f, occurring in a doc-
ument among all documents, and P(f,) is the probability of f, occurring in a document
among all the documents.

By measuring all mutual information between two component events, we can obtain
a component content dependence matrix of an event a, denoted as M ¢, as follows:

I(fmafy):P(fmafy)IOg (3)

Cd(1,1),C0d(1,2), -, Cd(1,m)
Me =

Cd(n,1),Cd(n,2),--,Cd(n,m)

where each entry is a content dependence degree between two component events.

3.3 Event Reference Analysis

Although content dependence measurement can address the limitation of content sim-
ilarity measurement, it may still miss some dependence relationships between events.
In particular, the existence of a dependence relationship between two events does not
necessarily mean that there exists a content dependence relationship between them. In
many cases, although the contents of two events are very different and even of different
topics, people may still regard that there is a dependence relationship between them. For
instance, “Experts find disease infect and SARS outbreaks” has an impact on “SARS
has great impact on economy” and “SARS has a great impact on Tourism”. The latter
two events are dependent on the first one even though their content dependence degree
is indeed very small.

According to the studies of Journalism [11], when authors of news articles about
an event a find and regard that there exists a dependence relationship between a and b
(e.g., b triggers the happening of a, or a is evolved from b and so on), their articles may
actually refer event b. This is in line with our observation on our collected data set. For

186 Y. Cai et al.

instance, some news articles about the event “Toyota recall due to safety problems from
2009 to 2010 refer to the event “NHTSA conduct investigations for Toyota recall”.
Such an explicit reference relationship made by authors in their news articles reflect
their viewpoints and consideration on the inter-event relationships [[11]. Therefore, we
may regard such event reference relationships as more meaningful and reliable than
content dependence relationships, and ER relationship analysis provides a way to dis-
cover those event dependence relationships missed by CD analysis and obtain a more
complete temporal event map (TEM).

We can also observe that when a news article of an event ¢ refers to another event a,
there are usually some phrases that identify event a in the documents of event ¢, and we
name such phrases as core features of a. The definitions of core feature set of an event
is defined below.

Definition 6. The core feature set of an event a, denoted by F¢ is a set of features
which are salient in the event, distinguishable from those of other events, and jointly
can identify the event.

For two events a and b, if there exists a related document of b, denoted as dg,, such
that 3f; € F¢, fi € d°, and 7(d%) > St, (i.e., a happens earlier than b), then we say
there is a reference relationship from b to a, i.c., a is a reference of b or b refers to
a. Such a reference relationship is a fuzzy relationship, and the more core features of a
are mentioned in b, the more strength degree of the relationship. For example, for the
event “US congressional hearings hold for Toyota recall” denoted by a and the event
“Toyota’s president to testify in US congressional hearings” denoted by b, we find that
the core feature set of event a is FY = {congress, hearing, safety} while the core
feature set of b is FY = {Akio, Toyoda, testify, apologize}. For event a, some of
its core features also exist in some documents (news articles) of b, (e.g., “congress”,
“hearing” and “safety” all appear in the news titled as “Toyota’s president to testify
before Congress” on Feb 19, 2010), so we say b refers to a.

The strength degree of a reference relationship from b to a is determined by a func-
tion C'r(a, b) which is to be defined below. For event b referring to event a, it should
follow the temporal restriction of Observation 1. For two events a and b, in order to find
out whether b refers to a, we need to discover the core feature set of ¢ first and then
check whether the core features of a exist in the related documents of b.

According to our observation, the core feature set of an event has the following
properties.

Property 1. The core features of an event a are the most salient and representative fea-
tures of a, i.e., the features appear in the related documents of a with a high frequency.

Property 2. The core features of an event a are distinguishable from those of other
events, i.e., the core features should facilitate us in identifying event a from all other
events easily.

Based on the above properties, we propose the following function to select core
features of an event a:

u(fi,a) = p(fila) - p(alfi) 4)

Event Relationship Analysis for Temporal Event Search 187

where p(f;|a) is the probability of feature f; to exist in the related documents of event
a, and p(a|f;) is the probability of a document (in which f; is a feature) being on event
a. Note that p(f;|a) and p(a|f;) reflect the properties 1 and 2 respectively.

We select top-k core features based on equation 4. For two events a and b, the more
related documents of b refer to more core features of a, the stronger is the reference
relation from b to a. We propose a function to measure the strength degree of a reference
relation from « to b as follows:

Yoty My

_ bi _ 1 a
Cr(a,b) = || X Nb’VMb’i > 1 (5)

where NNy, is the number of related documents of b, My, is the number of core features
of a existing in the document d?, |F¢| is the cardinality of F¢. Note that there is a re-
striction for My'; in C'r(a, b) where M, »i > 1, highlighting that a reference relationship
from b to a should refer more than one core feature of a.

For the reason that the values of Cr(a,b) and Cr(b,a) may be greater than zero,
a could refer to b and also b could refer to a, and the strength degrees of reference
relationship from a to b could be different with that from b to a. An event can be refereed
by many other events. Besides, one event can also refer to many other events.

By measuring all component event reference degree between any two events, we can
obtain an component event reference matrix of a target event a, denoted by M, as
follows:

Cr(1,1),Cr(1,2),---,Cr(1,m)
M) =

Cr(n,1),Cr(n,2),---,Cr(n,m)

Each entry is a reference degree between two events.

3.4 Temporal Event Map Construction

We adopt content dependence (CD) analysis and event reference (ER) analysis to iden-
tify event dependence relationships. In cases when users are only interested in the ER
relationships between events, we can do a projection on the TEM and obtain an event
reference TEM, which is a sub-graph of the entire TEM. Similarly, if users are only
interested in the CD relationships between events, we also can do a projection on the
TEM and obtain a content dependence TEM. Besides, it is easy to show all the CD, ER
and event dependence relationships in a TEM. While there are many interesting issues
related to the visualization of TEM, we omit further discussion here since are our focus
in this paper is on event relationship analysis.

4 Evaluation

In this section, we conduct experiments on a real data set to evaluate our approach by
comparing it with a number of baseline methods.

188 Y. Cai et al.

4.1 Experiment Setting

To evaluate our method for temporal event search, we collect 5063 English news articles
(i.e., web page documents of news) from some mainstream news websites such as CNN
News and BBC News. We select ten queries about major events to test our method,
such as “Toyota 2009-2010 vehicle recalls”, “2010 Copiap mining accident”, “SARS in
2003” and so on. Among these, the event “SARS in 2003” contains the most number of
related news articles (i.e., 231 articles), and the event “Christchurch Earthquake in 2010
in New Zealand” contains the fewest number of related news articles (i.e., 39 articles).
According to our observation on the data set, when an event a refers to another event
b, the number of referred core features of b is often around ﬁveE Thus, we select top-5
core features to measure event reference relationships in our experiment.

To compare with our method, we adopt three baseline methods. The first one is the
state-of-the-art method of discovering event evolution relationship proposed by Yang
[17], which is similar to the method in [2] and we denote it as EEG. The second
baseline, denoted as C'D M, only considers content dependence analysis and does not
use event reference analysis to judge event dependence relationships. Different from
C DM, the third one, denoted as FRM , only considers event reference analysis instead
of using content dependence analysis to judge event dependence relationships.

We have invited five human subjects to annotate the dependence relationships be-
tween events. All the annotated relationships are combined synthetically to obtain a set
of relationships, i.e., the union of all the relationships annotated. Such a set of relation-
ships given by the annotators is considered as a standard answer set (ground truth) of
event dependence relationships. For the reason that different people may have different
viewpoints on the event relationships due to, e.g., their knowledge and background, not
every annotator came up with the same set of dependence relationships. Therefore, the
standard answer set is an aggregation of the annotations given by all the annotators.

For the evaluation we use Precision, Recall and F' — measure as the metrics.
We denote the set of event dependent relationships (i.e., edges in a TEM) annotated by
annotators as R 4, and the set of event dependence relationships discovered by machine
as R);. The metrics are defined as follows:

Ra N Rm ; Recall = Ra 0 B

Precision =
Ry Ry

7 2 x Precision x Recall
— measure =
Precision + Recall

4.2 Experiment Results

In constructing TEM , there is a parameter o which is used to prune the “weak” event
dependency relationships. So first, we test different values of « to evaluate the effect of
a on Precision, Recall and F-measure for setting the best value of parameter « for the
following experiment. In our testing, we use two query events, one is “SARS in 2003

3 Such an observation is only based on our collected data set. Tt could be different for other data
sets.

Event Relationship Analysis for Temporal Event Search 189

12 08

0.8 4—

0.7 +—

0.64—

e BOur method
04 mEEG

04 A 0.31—

0.24—

L 01T

o 01 02 03 04 05 06 07 08 09 1 Precision Recall F-measre

Fig. 2. The effect of « on Precision, Re- Fig. 3. Our method vs. EEG
call and F-measure

0.9 LE]

0.7 4+— 07 4+—

0.64— 64—

02 B0ur method o O methiod
o4 mcoM 0% mERM

0.31— 031—

0.24— 024—

0.1 4+— 0.1 4—

Precision Recall F-measure Precision Recall F-measre

Fig. 4. Our method vs. CDM Fig. 5. Our method vs. ERM

which contains the most number of related news articles and the other is “Christchurch
Earthquake in 2010 in New Zealand” which contains the fewest number of related news
articles. Figure 2 shows the effect of o on Precision, Recall and F-measure. Accord-
ing to Fig. 2, we find that as « increases, the Precision and F-measure increase while
Recall decreases. The reason is that when the value « is small, there are many event de-
pendence relationships whose dependence degree is great than « (but the dependence
relationship is still actually “weak”), so the Recall is high and the Precision is low.
As « increases, more and more event dependence relationships of which dependence
degree is lower than « are pruned, so the Recall becomes lower and the Precision
becomes higher. When o« = .65, we obtain the highest value of F-measure. Thus, we
set a = 0.65 for all the test queries subsequently.

After setting the value of «, we conduct all test queries and average the results of
them on different metrics. Figures 3-5 show the comparison of our method with all
the three baseline methods on Precision, Recall and F' — measure. According to
Figures 3-5, it is obvious that our method outperforms all the baseline methods on
Precision, Recall and F—measure. The Precision and Recall values of our method
are around 0.8, meaning that not only most event dependence relationships discovered
by our method are correct, but also our method can discover more event dependence
relationships than the baselines. Our method’s F' — measure score is also around 0.8
since it is a combination of Precision and Recall. Note that C DM outperforms EEG
a little on all the metrics, indicating that using mutual information to measure feature

190 Y. Cai et al.

Fig. 6. The Result of EEG Fig.7. The Result of Anno- Fig.8. The Result of Our
tators Method

dependence is better than just matching keyword similarity (as done by previous works).
ERM outperforms EEG and C DM on all three metrics. It indicates that using event
reference analysis (i.e., ERM) to identify event dependence relationships is more ef-
fective than using content dependence relationship analysis (i.e., CDM) and content
similarity analysis (i.e., EEG). Besides, it is quite interesting to see that the Recall of
CDM is greater than that of ERM, while both of them are smaller than that of our
method. This means that the event dependence relationships identified by C DM and
ERM are indeed different and complementary, and our method being a combination
of CDM and ERM has the strength of both methods’. In other words, taking both
content dependence and event reference analysis into consideration in identifying event
dependence relationships can perform better than taking just one of these.

4.3 Case Study

To illustrate the performance of our proposed method more clearly, we further show a
specific search case on the query event “SARS happened from 1/3/2003 to 30/6/2003
around the world” denoted by Qsars. The test query is I, = (China),l; =
[1/3/2003,30/6/2003],1I; = (SARS).

Table 1. Component Events for the query about SARS event from 1/3/2003 to 30/6/2003

Component Event Summary
1 SARS has great impact on Tourism
SARS cases are reported and updated regularly to reflect the disease seriousness
Experts treat patients with medicine in hospital
SARS has great impact on transportation especially airline
Experts find disease infect and SARS outbreaks
SARS has great impact on economy
Other countries donate and offer help for China for SARS
Scientists’ find coronavirus and conduct animal test for vaccine
9 China informs and cooperates with WHO on fighting SARS
10 China makes effort on prevent disease spread
11 Beijing has made SARS under control
12 Quarantine probable cases and close schools for disinfecting

[IR e NNV, NSRS]

Event Relationship Analysis for Temporal Event Search 191

Table 2. Comparison on discovered event relationships of our method and EEG for Qsars

Correct Missed Incorrect New Total
Our method 20 7 2 2 24
FEEG 10 17 2 0o 12

Table 1 shows all the component events which are related to () s 4rs. Table 2 shows
the statistics of the discovered event relationships by our method and FEG based on
the results of human annotators for this case. Figures 6-8 show the relationship graph
(or TEM) obtained by £ EG method, given by the human annotators and our method
for Qs ars, respectively. Our method can find more and miss less correct inter-event
relationships. In addition, our method can discover not only the inter-event relationships
but also the strength degrees of such relationships. More interestingly, our method can
find some new relationships which were not found by £ EG and even human annotators.
Such new relationships are confirmed and approved by the annotators as meaningful
ones (e.g., the relationship from event 5 to event 2 and the relationship from event 3 to
event 2).

5 Background and Related Works

There are many works about processing events which may include news event or system
events, although most of these work focus on news event.

To the best of our knowledge, there is no work on temporal event search before. A
related work is done by Jin et al. [6] who present a temporal search engine supporting
temporal content retrieval for Web pages called TISE. Their work supports Web pages
search with temporal information embedded in Web pages, and the search relies on a
unified temporal ontology of Web pages. TISE handles Web pages search only, and it
cannot handle event search nor discover the event relationships.

Topic detecting and tracking (TDT) is a hot research topic related to our work. Given
a stream of constantly generated new documents, TDT groups documents of the same
topic together and tracks the topic to find all subsequent documents. There are several
techniques on detecting news topics and tracking news articles for a new topic. For
instance, Allan et al. [1]] define temporal summaries of news stories and propose meth-
ods for constructing temporal summaries. Smith [12] explores detecting and browsing
events from unstructured text. Some techniques are proposed to detect particular kinds
of events. For example, Fisichella et al. [7]] propose a game-changing approach to detect
public health events in an unsupervised manner. Modeling and discovering relationships
between events as generally out of the scope of current TDT research.

Mei and Zhai [8] study a particular task of discovering and summarizing the evo-
lutionary patterns of themes in a text stream. A theme in an interval may be part of
an event or a combination of several events that occur in the interval. Their work does
not however capture the interrelationships of major events. Fung et al. [4] propose an
algorithm named Time Driven Documents-partition to construct an event hierarchy in a
text corpus based on a user query.

192 Y. Cai et al.

Some other works focus on discovering stories from documents and representing the
content of stories by graphs. For example, Subasic et al. [13] investigate the problem
of discovering stories. Ishii et al. [S]] classify extracted sentences to define some simple
language patterns in Japanese so as to extract causal relations, but their work cannot
handle cases which are not defined in their patterns.

An event evolution pattern discovery technique is proposed by Yang et al. in [[16].
It identifies event episodes together with their temporal relationships. They consider
temporal relationships instead of evolution relationships. Although the temporal rela-
tionships can help organize event episodes in sequences according to their temporal
order, they do not necessarily reflect evolution paths between events. An extended work
of them occurs in [[15]. Yang et al. [[17] define the event evolution relationships between
events and propose a way to measure the event evolution relationships. In their work,
identifying an event evolution relationship between two events depends on the simi-
larity of the features of the two events. Based on a small number of documents and
events in a news topic, Nallapati et al. [9] define the concept of event threading. Their
definition of event threading is a content similarity relationship from previous event to
a later event. The event threading is organized as a tree structure rather than a graph.
In order to identify event threading, they employ a simple similarity measure between
documents to cluster documents into events and the average document similarity to es-
timate the content dependencies between events. Feng and Allan [2]] extend Nallapati’s
work to passage threading by breaking each news story into finer granules, and propose
a model called incident threading in [3]].

6 Conclusions and Future Works

In this paper, we have defined three kinds of event relationships which are temporal
relationship, content dependence relationship and event reference relationship, and have
applied them to measure the degree of inter-dependencies between component events
to support temporal event search. We have also formalized the problem of event search
and proposed a framework to search events according to user queries. Experiments on
a real data set show that our proposed method outperforms the baseline methods, and it
can discover some new relationships missed by previous methods and sometimes even
human annotators.

Admittedly, several possible future extensions can be made to our work. In our cur-
rent method, only top-5 core features are selected for event reference analysis over the
collected data set. How to choose the “right” number of core features for event refer-
ence analysis automatically for different data sets is an open issue for further study.
Another potential extension is to implement a visualization tool with a sophisticated
user interface based on our current method.

Acknowledgements. This work is supported by Foundation for Distinguished Young
Talents in Higher Education of Guangdong, China (NO. LYM11019); the Guangdong
Natural Science Foundation, China (NO. S2011040002222); the Fundamental Research
Funds for the Central Universities,SCUT (NO. 2012ZM0077); and Guangdong Province
University Innovation Research and Training Program (1056112107).

Event Relationship Analysis for Temporal Event Search 193

References

11.

12.

13.

16.

17.

. Allan, J., Gupta, R., Khandelwal, V.: Temporal summaries of new topics. In: SIGIR 2001:

Proceedings of the 24th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 10-18. ACM, New York (2001)

. Feng, A., Allan, J.: Finding and linking incidents in news. In: CIKM 2007: Proceedings of

the Sixteenth ACM Conference on Conference on Information and Knowledge Management,
pp- 821-830. ACM, New York (2007)

. Feng, A., Allan, J.: Incident threading for news passages. In: CIKM 2009: Proceeding of the

18th ACM Conference on Information and Knowledge Management, pp. 1307-1316. ACM,
New York (2009)

. Fung, G.P.C,, Yu, J.X., Liu, H., Yu, P.S.: Time-dependent event hierarchy construction. In:

Proceedings of KDD 2007, pp. 300-309. ACM, New York (2007)

. Ishii, H., Ma, Q., Yoshikawa, M.: Causal network construction to support understanding of

news. In: Proceedings of HICSS 2010, pp. 1-10. IEEE Computer Society, Washington, DC
(2010)

. Jin, P, Lian, J., Zhao, X., Wan, S.: Tise: A temporal search engine for web contents. In: IITA

2008: Proceedings of the 2008 Second International Symposium on Intelligent Information
Technology Application, pp. 220-224. IEEE Computer Society, Washington, DC (2008)

. Fisichella, K.D.M., Stewart, A., Nejdl, W.: Unsupervised public health event detection for

epidemic intelligence. In: CIKM 2010: Proceeding of the 19th ACM Conference on Infor-
mation and Knowledge Management (2010)

. Mei, Q., Liu, C., Su, H., Zhai, C.: A probabilistic approach to spatiotemporal theme pattern

mining on weblogs. In: WWW 2006: Proceedings of the 15th International Conference on
World Wide Web, pp. 533-542. ACM, New York (2006)

. Nallapati, R., Feng, A., Peng, F., Allan, J.: Event threading within news topics. In: CIKM

2004: Proceedings of the Thirteenth ACM International Conference on Information and
Knowledge Management, pp. 446-453. ACM, New York (2004)

. Steuer, J.S.R., Daub, C.O., Kurths, J.: Measuring distances between variables by mutual

information. In: Proceedings of the 27th Annual Conference of the Gesellschaft fiir Klassi-
fikation: Cottbus, pp. 81-90. Springer (2003)

Rich, C.: Writing and Reporting News: A Coaching Method, 6th edn. Wadsworth Publishing
Company (2009)

Smith, D.A.: Detecting and browsing events in unstructured text. In: SIGIR 2002: Proceed-
ings of the 25th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 73-80. ACM, New York (2002)

Subasic, 1., Berendt, B.: Web mining for understanding stories through graph visualisation.
In: ICDM 2008: Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, pp. 570-579. IEEE Computer Society, Washington, DC (2008)

. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of

academic social networks. In: KDD, pp. 990-998 (2008)

. Yang, C.C., Shi, X.: Discovering event evolution graphs from newswires. In: WWW 2006:

Proceedings of the 15th International Conference on World Wide Web, pp. 945-946. ACM,
New York (2006)

Yang, C.C., Shi, X.-D., Wei, C.-P.: Tracing the Event Evolution of Terror Attacks from On-
Line News. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.)
ISI 2006. LNCS, vol. 3975, pp. 343-354. Springer, Heidelberg (2006)

Yang, C.C., Shi, X., Wei, C.-P.: Discovering event evolution graphs from news corpora.
Trans. Sys. Man Cyber. Part A 39(4), 850-863 (2009)

Dynamic Label Propagation in Social Networks

Juan Du, Feida Zhu, and Ee-Peng Lim

School of Information System,
Singapore Management University
{juandu, fdzhu,eplim}@smu.edu.sg

Abstract. Label propagation has been studied for many years, starting
from a set of nodes with labels and then propagating to those without
labels. In social networks, building complete user profiles like interests
and affiliations contributes to the systems like link prediction, personal-
ized feeding, etc. Since the labels for each user are mostly not filled, we
often employ some people to label these users. And therefore, the cost
of human labeling is high if the data set is large. To reduce the expense,
we need to select the optimal data set for labeling, which produces the
best propagation result.

In this paper, we proposed two algorithms for the selection of the opti-
mal data set for labeling, which is the greedy and greedyMax algorithms
according to different user input. We select the data set according to
two scenarios, which are 1) finding top-K nodes for labeling and then
propagating as much nodes as possible, and 2) finding a minimal set of
nodes for labeling and then propagating the whole network with at least
one label. Furthermore, we analyze the network structure that affects
the selection and propagation results. Our algorithms are suitable for
most propagation algorithms. In the experiment part, we evaluate our
algorithms based on 500 networks extracted from the film-actor table in
freebase according to the two different scenarios. The performance in-
cluding input percentage, time cost, precision and fl-score were present
in the results. And from the results, the greedyMax could achieve higher
performance with a balance of precision and time cost than the greedy
algorithm. In addition, our algorithm could be adaptive to the user input
in a quick response.

1 Introduction

The problem of label propagation has in recent years attracted a great deal of
research attention [12][17, @], especially in the setting of social networks where an
important application of it is to better understand the elements of the network,
such as user profiles [§]. As user profiles are often represented by node labels
denoting their interests, affiliations, occupations, etc, it is therefore desirable
to know the correct labels for as many nodes as possible. However, in real-life
social network applications, complete label information of the entire network is
rare due to users’ privacy concern and unwillingness to supply the information.
Consequently, label propagation has been widely used to derive from the known

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 194-P09] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Dynamic Label Propagation in Social Networks 195

labels of a subset of nodes the unknown ones of the other nodes for the rest of
the network [I]. The underlying assumption is the well-observed phenomenon of
“homophily” in social networks, i.e., users with strong social connections tend
to share similar social attributes.

To trigger the label propagation process over a social network, we need to
first acquire the correct labels for an initial set of nodes, which we called a seed
set. As the acquisition cost of the labels is usually high, e.g., by human labeling
and verification, the goal for label propagation in these settings is usually to
find as small a seed set as possible such that the knowledge of these node labels
would maximize the label propagation. A seemingly similar problem is the classic
influence maximization problem, the goal of which is to find as small a set of
nodes as possible to initiate certain adoption (e.g., products, innovation, etc.)
such that it will trigger the maximum cascade, which has been the focus of many
influential research works including Kleinberg’s [6].

However, it is important to note the critical difference between our problem
and the influence maximization problem. Our label propagation problem has an
extra dimension of complexity as a result of the uncertainty of the labels assigned
to the seed set. In the influence maximization problem, the labels to be assigned
to the seed set are mainly for status indication which are known a priori — if
a node is chosen as a seed to initiate the adoption, its label is set as “active”,
otherwise, its label remains as “inactive”. The challenge is to find the right set to
assign the initial “active” labels to maximize the cascade. On the other hand, in
our label propagation problem, labels represent categorical attributes the values
of which remain undecided until specified by users, i.e., for each node in the seed
set, technically, users can specify any chosen label from the label universe. The
challenge in identifying the right set is not only to study the network structure
but to consider all possibilities of label assignment as well.

This important difference between the two problems also suggests that, in our
problem setting, a dynamic model of seed set computation based on step-wise
user input could be more suitable. Instead of computing the seed set all at once,
we in fact should compute the seed set one node at a time based on user input
for the next label. As shown in Example [I different label revealed at each step
could lead to drastically different propagation result.

Ezample 1. In Figure [Il suppose in Step 1 the network is initialized with only
node 4 labeled as “A” and the propagation method is the majority voting al-
gorithm such that each node gets the label of the majority of its neighbors.
Depending on which node and its label is known in Step 2, we would get entirely
different final propagation result. If in Step 2 we know node 6 with label “B”,
the propagation can not proceed, and if node 5 is further known with the same
label “B”, the result will be as shown in the right-upper network. On the other
hand, if in Step 2 node 1 is revealed with label “A” the network will be fully
propagated with label “A”. Yet, if in Step 2 node 1 is labeled as “B” instead,
then more nodes’ labels need to be known in order to continue the propagation.

Therefore, in this paper, we propose the dynamic label propagation problem,
which is to find, incrementally based on user input, the optimal seed set to

196 J. Du, F. Zhu, and E.-P. Lim

Fig. 1. Examples of different propagation results by dynamic label input

propagate the entire network. A closely related problem is to find the optimal
k-size seed set where k is a user-specified parameter, e.g., budget constraint. We
show that both problems are NP-hard, and present a greedy algorithm which
gives good empirical results. We propose four evaluation criteria and compared
different propagation models. To explore the connection between the actual label
distribution and the network structure properties, we show the propagation re-
sults for some widely-used network measures including density, modularity and
single node number. Our empirical results on a real-world data set demonstrate
the effectiveness and efficiency of our proposed greedy algorithm.

The rest of the paper is organized as follows. We first introduce some popular
propagation algorithms and the relation to our algorithm of finding the optimal
given label set in Section Pl And in Section Bl we provide the details of our
algorithms. Some network structure analysis that will affect the selection and
propagation are shown in Section @l And we evaluate the algorithms in Section
Bl The related work is introduced in Section [f] and finally our work is concluded
in Section [7

2 Problem Formulation

2.1 Problem Definition

We denote a labeled network as G = (V, E, L), where V|, E and L represent
the non-empty sets of nodes, edges, labels respectively. Given a labeled network
G = (V,E, L), there exists an Oracle function Og : V — L such that given
a query of any node v € V, Og(v) € L, which simulates user input on the
node labels. We assume initially no labels are know for any node of G, and each
node could obtain a label of L during the label propagation, which could get
updated during the process. However, we also assume that labels obtained from
the Oracle will never change.

Dynamic Label Propagation in Social Networks 197

We begin by defining the notion of a propagation scheme as follows. The idea
is that, given a set of nodes whose labels are known initially, a propagation
scheme defines the set of the nodes each of which would obtain a label by the
end of the label propagation process. The propagation scheme is defined as a
function to achieve the greatest generality since the exact choice of the propa-
gation algorithm would depend on the nature of the application. We leave the
detailed discussion of the propagation scheme to subsequent parts of the paper.

Definition 1. [Propagation Scheme] Given a labeled network G = (V, E, L),
an Oracle function Og and a S C 'V such that for each v € S, Og(v) is known,
a propagation scheme is a function P : 2V — 2V such that P(S) C V and for
each v € P(S), v would obtain a label by the end of the label propagation process.

The question of the greatest interest to users is the Minimum Label Cover (MLC)
problem which is to find the smallest node set to obtain labels initially such that
the subsequent propagation could cover the whole network, i.e., assign labels for
every node. A closely related problem is the K-set Label Cover (KLC) problem
in which we are interested in how much of the network we can at most cover if
we know the labels of K nodes, which is useful for applications in which a budget
is given to acquire the initial labels. These two problems are related in that a
solution to the KLC problem would also give a solution to the MLC problem.
Notice that in both problem settings, the Oracle to reveal the node labels is
not available to the algorithm to find the seed set. In contrast, in our dynamic
problem definitions later, the Oracle is available at each step to answer label
queries.

Definition 2. [Minimum Label Cover (MLC)] Given a labeled network
G = (V,E,L) and a propagation scheme P(.), the Minimum Label Cover prob-
lem is to find a node set S of minimum cardinality, such that the label propagation
as defined by P(.) would cover the entire network, i.e., S = argmin{S|P(S) =

K
V}.

Definition 3. [K-set Label Cover (KLC)] Given a labeled network G =
(V,E, L), a propagation scheme P(.) and a positive integer K, the K-set Label
Cover problem is to find a node set SK of cardinality K such that the label prop-
agation as defined by P(.) would achieve the maximum coverage of the network,
i.e., SK = argmax{S||S| = K}.

|P(S)]

We are now ready to define our dynamic label propagation problem, which es-
sentially is to solve MLC and KLC incrementally given user input at each step.

Definition 4. [Dynamic Minimum Label Cover (DMLC)] Given a la-
beled network G = (V, E, L) , an Oracle function Og and a propagation scheme
P(.), the Dynamic Minimum Label Cover problem is to find a node sequence of
minimum length, S = (v1,va,...,v|s|), such that the label propagation as defined
by P(.) would cover the entire network, i.e., S = argmin g {S|P(S) = V}.

198 J. Du, F. Zhu, and E.-P. Lim

Definition 5. [Dynamic K-set Label Cover (DKLC)] Given a labeled net-
work G = (V,E,L) , an Oracle function Og, a propagation scheme P(.) and a
positive integer K, the Dynamic K-set Label Cover problem is to find a node
sequence of length K, § = (v1,va,...,vk), such thal the label propagation
as defined by P(.) would achieve the mazimum coverage of the network, i.e.,
SK = argmax{S||S| = K}

[P(S)]

2.2 Complexity Analysis

In this section we give some complexity analysis of the varied problem settings,
mostly based on known hardness results with some quite straightforward problem
reductions. The detailed proofs are omitted due to space limit. First it is not
hard to see the NP-hardness of the MLC problem as a result of the following
theorem from [6].

Theorem 1. [6] The influence maximaization problem is NP-hard for the Lin-
ear Threshold model.

In our definition of the MLC problem, if we set the propagation scheme to be
the function which corresponds to the Linear Threshold model as described in
[6], and our label set L to be the set containing only a single label, then the
status of a node whether or not it has acquired this label would map exactly
to the status of being “active” or “inactive” as in the Linear Threshold model
in [6]. Therefore, the influence maximization problem is indeed a sub-problem
of the MLC problem. Due to Theorem [I we have the following theorem for the
MLC problem.

Theorem 2. The MLC problem is NP-hard.

As we can solve the MLC problem in polynomial time by systematically try a
sequence of increasing values of K for the corresponding KL.C problem, Theorem
implies that the KL.C problem is also NP-hard.

Corollary 1. The KLC problem is NP-hard.

By similar argument, if we set our label set L to be the set containing only a
single label to match exactly the status of a node being “active” or “inactive”
as in the Linear Threshold model in [6], the having the Oracle available will not
lend additional information as in this case the label, which is actually status,
is known a priori. As such, the static versions of the problem are actually sub-
problems of the dynamic versions. We therefore also have the following results
by similar argument.

Theorem 3. The DMLC problem is NP-hard.

Corollary 2. The DKLC problem is NP-hard.

Dynamic Label Propagation in Social Networks 199

Since both versions of the dynamic label propagation problems are NP-hard, we
resort to heuristic algorithms. In particular, we develop a greedy algorithm which
will be detailed in Section Bl In [6], it has been shown that such a greedy hill-
climbing algorithm would give an approximation to within a factor of (1—1/e—e¢)
for Linear Threshold model. It is worth noting that in this paper we are not
limited to the Linear Threshold model, as we will discuss in the following. Un-
fortunately, the approximation bounds are not known for the greedy algorithm
in models with other propagation methods, e.g., K-nearest neighbor algorithm,
which we would like to explore in our future study.

2.3 Propagation Models

We present a discussion of some widely-used propagation models focusing on
their applicability in our problem setting.

K-nearest Neighbor Algorithm. K-nearest neighbor algorithm (KNN) is a
method for classification, while in label propagation, it is also widely used. The
idea of KNN is that the node will be labeled as the same label as his nearest
top-K nodes’ labels. The distance of two nodes could be measured by different
factors like SimRank [5], which measures the structural-context similarity. In
this case, the selection prefers the nodes that are more similar to others.

Linear Threshold Model. Linear threshold model is widely used in informa-
tion diffusion. Given a set of active node, and a threshold # for each node, at
each step, an inactive node will become active if the sum of the weights of the
edges with active neighbors exceeds the threshold . Similar to this process, dur-
ing the label propagation, a node will accept the label if the sum of the weights
of the edges with neighbors by this label exceeds the threshold 6. In the linear
threshold model, the selection prefers the nodes with higher degree and higher
edge weights. We call it majority voting in the following sections to differentiate
the propagation with information diffusion.

Independence Cascading Model. Independence cascading model is another
widely used model in information diffusion and was also deeply discussed in [6]
along with linear threshold model. When a node v becomes active in step ¢, it
is given a single chance to activate each currently inactive neighbor w with a
predefined probability. In addition, if v succeeds, then w will become active in
step t+ 1; but whether or not v succeeds, it cannot make any further attempts to
activate w in subsequent rounds. Obviously, in the label propagation scenario,
node v should be able to propagate its labels out at any steps rather than only
once. And therefore, this model is not suitable for label propagation.

Supervised Learning Algorithm. Supervised learning algorithms use the
nodes with existing labels to train the classifier and then propagate to the un-
labeled nodes, like Support Vector Machine(SVM) and Hidden Markov Model.

200 J. Du, F. Zhu, and E.-P. Lim

These algorithms need a certain number of labeled nodes as training dataset to
train the model first. However, in our case, the labeling of the nodes is unknown
and need to be adaptive to the user input in a quick response, and thus the
supervised learning algorithms are not quite suitable.

3 Seed Node Detection Algorithm

3.1 Design Ideas

The complexity of the formation of set S is O(2™ — 1), where n is vertex number.
In addition, the selection also needs to consider the situation of nodes with differ-
ent labels, which consequently will decrease the performance. So before propaga-
tion on the incomplete network, we need to employ some techniques to simplify
it first. And according to the different characteristics of various networks, the
techniques might be varies. Here, we introduce two approaches: pruning and
clustering.

Pruning. In social network like twitter, there are some users who have many
followers such as celebrities, film stars and politicians. We call these users as
“Hub users”. When the label stands for affiliations rather than interests, the
propagation will fail due to the existence of these “Hub users”. In addition, the
normal users who do not know each other off-line will decrease the performance
of propagating affiliations as well. And thus, we need to prune some users before
propagation under different circumstances.

Besides, in social network, some nodes are isolated due to a lot of reasons
such as they are puppets or new-comers. In this situation, the degree of these
nodes in a certain target network is usually small. If these spam nodes are
not essential in the specific scenario, then it could be pruned. Since different
pruning techniques will be employed according to different label propagation
scenarios, so the modification of the network will not affect the propagation
result significantly.

By pruning techniques, we could not only remove noise nodes to increase
precision, but also decrease the number of nodes in the network. And thus the
computation time according to O(2"™ — 1) will be reduced.

Clustering. To reduce the complexity, another step is to divide the network into
several subgraphs. However, a question is that if the network could be clustered
well and then the minimum set S will be inferred by randomly choose a node
in each cluster directly. Actually, the clustering approach of previous research
works cannot achieve best results, which consequently leads the wrong labeling
by choosing only one node. And therefore, the idea is that, before propagation,
we just do a roughly clustering on the network. For each cluster, we select a
minimum set §’, and then union all the S§’. During the combination, the nodes
those could be propagated by the others in S’ will be deleted. Actually, the
selection after clustering might not be the optimal one compared to that on the
original network. However, to deal with large networks, it works when considering
time cost.

Dynamic Label Propagation in Social Networks 201

Finding Set S. To select set S, there are two approaches. The first one is to give
the final result S directly in off-line mode, and the other one is to add the node
to S online. The main difference between these two selection processes is that
the second one is more dynamic. In the off-line modes, as long as the prediction
of one node’s label is different from the actual one, the selection according to
the propagation result might be changed, as shown in Example [l And thus, it
needs to pre-compute all the situations for the nodes with different labels, which
is impractical for large and complex networks. On contrary to the off-line mode,
the online one picks up the nodes dynamically according to the user input. Once
a node’s label was given by users, the selection considers the current network
states. In another words, in each iteration 7, the selection depends on the network
structure and the labels constructed in (i — 1)’s iteration rather than the initial
network state. The details of the algorithm will be shown as follows.

3.2 Algorithm

We propose a greedy algorithm to select the set S dynamically, which is called
G-DS. In each iteration, we pick up a node which maximizes the propagation cov-
erage. The measurement of the maximization considers different labels. Suppose
in the ¢’s iteration, the existing labels in the network are the set £ = 11,15, ..., .
And then, for each unknown vertex v, we calculate the increase coverage “Cov”
by v labeled as [, as

#known label nodes
x = 3 1
Cov(v, 1) #total nodes (1)

and the probability “P” that v to be labeled as I, according to the current
network status in the (i — 1)’s iteration is

Plu,1,) = #nodes labeled as l:r inv's neighbors, @)
#v's neighbors
and finally sum up Cov * P for each label to get the average coverage AvgCov
as Equation[3l In each iteration, we pick up the vertex with the largest AvgCov
score. The G-DS algorithm is shown in Algorithm [

Score = AvgCov(v) = Z Cov(v,l;) * P(v,ly). (3)
lo€LULnew

However, the performance of the G-DS algorithm is low. The time complexity is
O(n?) in the worst case, where n is the node number in the network. Each time
to choose a node, it needs to calculate the score for each unlabeled nodes with dif-
ferent existing labels. In order to improve the efficiency, we propose a semi-greedy
algorithm, called GMaz-DS. GMax-DS algorithm is similar to the G-DS algorithm.
However, instead of calculating the AvgCov score for all the situations, it only con-
siders the most possible label for node v according to the current network states as

202 J. Du, F. Zhu, and E.-P. Lim

Algorithm 1. G-DS Algorithm

Require: G = (V,E,L), k
Ensure: K| ==k or |K| == |V|
1: S=0,K=0,L=90
2: while |[K| < k or |[K| < |V]| do
start the 4’s iteration
for each v € (V — K) do
for each [, € L do
compute AvgCov(v) according to the (i — 1)’s iteration
end for
: end for
9: S.add(maz(AvgCov(v)))
10: input the label Oc(v) for the node with the max(AvgCov(v)) score
11: propagate the network by S, update K
12: addl’ to L if L does not contain it
13: end while
14: return S

3
4
5:
6:
7
8

in Equation[dl For example, for vertex v, its neighbors have labels like l1,l> and I3,
among which, I; occurs most, and thus the score is calculated as Cov(v, ;).

Score = Cov(v, lymaz) = Cov(v, linaz) * Praz- (4)

In the GMaz-DS algorithm, we replace the score in Algorithm [line 6 with the
one in Equation [d Since we just consider the label with the highest probability
during the calculation, the computation cost will be significantly decreased. And
the time complexity of GMaz-DS in the worst case is O(n?).

4 Social Network Structure

In real cases, the label distribution is related to the network structures. And
therefore, the network structure will also affect the performance of our algorithm.
So in this section, we present some structure features in social networks which
might influence the performance of the selection. Actually, the performance is
related to the propagation method as well. And thus, all the comparisons are
based on the same propagation method. We randomly extracted 15 networks
from film-actor table in FreeBas, and compared the performance based on two
simple propagation methods, KNN and majority voting algorithms. The results
based on different network attributes are shown in Figure

4.1 Graph Density

If the graph is less dense, then it indicates that the nodes are not well connected
to others. Usually, the nodes with the same labels are more coherent. The prop-
agation methods propagate the labels to a node from its neighbors or similar

! http://www.freebase.com/view/film/actor

http://www.freebase.com/view/film/actor

Dynamic Label Propagation in Social Networks 203

Input percentage VS Graph density
120.00%

100.00%
—— G-DS(KNN)
80.00%
——6-Ds(v0.5)
~——G-DS(V0.3)

—— GMax-DS(KNN)

input percentage
s 9
5 3
s 8
g 8
E

2000% ——GMax-DS(v0.5)

——GMax-DS(v0.3)
0.00%

N S S SRS
Q- Q- & o Q\
FFEFFEFF S

(a) Input (%) on density

Input percentage VS Modularity
120.00%
100.00%
——G-DS(KNN)
——G-Ds(v0.5)
——G-Ds(v0.3)

80.00%

60.00%

Input percentage

40.00% ——Gmax-DS(KNN)
2000% ——GMax-DS(V0.5)
——GMax-Ds(v0.3)

0.00%
P > o AV

I MR
R I S 4

2

o

(b) Input (%) on modularity

Time cost VS Graph density

=) —— G-DS(KNN)
‘é’ii F \r\ /\ ——G-DS(v0.5)
S a0 / v v \ ——G-D5(v0.3)
£ 200 I Max-DS(KNN)

\ ——GMax-DS(V0.5)

——GMax DS(V0.3)

0.001

s

0.028

0.04
0.043
0.076

g
S

0.003

o
88
S o

0.028
0.028
0.028
0.028

©
8
S

0.028

Time cost VS Modularity
9.00
8.00
7.00 = G-DS(KNN)

% o0 ——G-DS(V0.5)

g0 1/ v ——G-DS(V0.3)

E 4.00 \

E 300 DS(KNN)
2.00 ‘_/_\ ——GMax-DS(V0.5)
1.00 : é ——GMax-DS(v0.3)
0.00

0203
0243
0258

026
0271
0271
0271
0273
0.462
0.503
0.745
0815
0816
0872

0.773

(c) Time cost on density

(d) Time cost on modularity

Precision VS Graph density
120.00%
100.00%
g ——G-DS(KNN)
80.00%
5 ——G-DS(V0.5)
g o000 [——Gnsv03)
¢ s000% - ——GMaxDS(KNN)
2000% - ——GMaxDs(V05)
~———GMax-DS(V0.3)
0o00% -
> > SO T, RS P
FESFE S S

(e) Precision on density

Precision VS Modularity
12000% —

100.00%
——G-DS(KNN)
80.00%

——G-Ds(v0.5)
60.00% 6-D5(v0.3)
40.00% ——GMax-DS(KNN)

Precision

——GMax-DS(V0.5)
~——GMax-DS(v0.3)

2000% —

0.00%

I I SR S N
$ & &N © @
(ARSI RS

(f) Precision on modularity

Fig. 2. Performance according to the G-DS and GMaz-DS algorithms by KNN and
Majority voting propagation methods under different network structures (The differ-
ent methods are shown in different colors. Note that some networks are with similar
properties and thus their points meet on the graph.)

nodes. However, in a sparse network, it is hard to propagate the labels. As in
Figure @l(a), (c) and (e) shows, the performance will arise linearly when the

density increases.

4.2 Modularity

Modularity[I0] measures the strength of a division of a network into modules. Net-
works with high modularity have dense connections between the nodes within the
modules but sparse connections between nodes in different modules. So according
to the definition of modularity, a network with higher modularity requires less in-
put for labels. In addition, it is much easier for labels to be propagated within the
modules rather than across the modules, and therefore increases the precision. The

204 J. Du, F. Zhu, and E.-P. Lim

results are shown in Figure2l (b), (d) and (f), which indicates that the performance
will also arise when modularity increases. (The modularity score is calculated based
on [2].)

4.3 Single Node Number

Actually, according to the analysis of graph density and modularity, the tendency
of input percentage, time cost and precision shown in Figure[2lshould be linearly.
However, there is some exceptions. We further looked into these networks and
found that these graphs include many one-degree nodes, which we also mentioned
in Section[3l And here, if we just propagate these nodes from the only neighbor
they connect to is unsafe. So here we will just pick up these one-degree nodes
and add them to the input set, which increases the input percentage and the
final precision in our result.

The reasons why we choose density and modularity as the attributes we fur-
ther looked into is that: 1) the network structures they present affect the prop-
agation performance directly, and 2) they are related to some other attributes
like average degree, cluster coefficient, etc. However, there might be some other
factors. And due to the limitation of the pages, we do not enumerate all the
attributes here.

5 Experiment

5.1 Dataset

We utilized the film-actor table from FreeBase. In a network, the nodes indicate
the actors and the edges stand for the relations that these two actors appeared
in the same film. The labels for the node are the films that the actor performed
within the network. We randomly extracted 500 networks from FreeBase for
different actors’ networks. The descriptions of the 500 networks are shown in
Table [l Furthermore, in Figure Bl we present a propagation result for a 131-
vertex network from the set we select by GMaz-DS and KNN, where the color
indicates different labels. The size of the seed set is 13 and the precision is around
84.2%, which strongly illustrates that our algorithm works in real case.

Table 1. Description for the 500 networks extracted from freebase film-actor table

Node Edge Density

#Minimum 2 81 0.94
#Medium 13 148 2.15
#Max 458 6937 6.21

#Average 24.50 37751 1.84

Dynamic Label Propagation in Social Networks 205

Fig. 3. Case study of the propagation result: the size of set S is 13, and the vertex
number is 131. The precision is 84.2%.

5.2 Experiment Setup

We compared the G-DS and the GMaz-DS algorithm according to different
performance measurements. And based on the two scenarios we discussed in
section[I] the comparison also included the two scenarios, which are the selection
of the minimal set and the size-k set. The propagation algorithms we chose
here are KNN and majority voting. In addition, we also compare our algorithm
with the naive off-line one, which is to check all the possible seed sets and
pick up the best one. “TK” stands for the selection of top-k nodes while “A”
is to cover the whole network. And “GA” indicates the G-DS algorithm while
“GM” means the GMaz-DS algorithm. In addition, “K” and “V” indicate the
propagation algorithms respectively, “K” is KNN and “V” is the majority voting
with different thresholds as 0.3 and 0.5.

5.3 Experiment Result

Time Cost. Since our algorithm needs to be adaptive to the user input, so
the time cost for the selection should be limited. Once the labels for a node are
decided, our algorithm needs to pick up another node into S for input quickly.
So, in our experiments, we evaluate the time cost in both scenarios. The result
is shown in Figure @ and notice that the time is normalized to log. Mostly our
algorithm spent only less than 0.0001 seconds to select the data set for input. The
only one extreme case is larger than 1. Since G-DS algorithm need to consider all
the possible labels in the selection, it takes more time than GMaz-DS algorithm
when the network is with more labels.

F1-score under KMLC. Considering the scenario of selecting the size-k set
for input, we evaluate the fl-score where k is equal to 3, 5 and 10. The result
is given in Figure Bl When using the KNN propagation algorithm, the fl-score
could be mostly beyond 90%. On contrary, by majority voting algorithms with
threshold as 0.3, the fl-score is around 70% in average. In addition, comparing
G-DS with GMax-DS algorithms, GMaz-DS outperforms G-DS algorithm in
both propagation algorithms.

206 J. Du, F. Zhu, and E.-P. Lim

O;DD?FH????
I i ; § |

i i

ke e
r: o“* r: & o+ o‘? ,coY O" 0“* > 0“ 0" r}“*— o“‘ caY < ,0‘&*- §
&’5«"’/\‘5/\5/\‘3«”/\%/\‘:,\@,\@,\&,\@v‘rvv’ P I A R P P R AP S

o o
s o
EER T —

F [T} -+
% [THwem +

I s

«D]»Ww "
@4,4, N —
% LT3 wows +

b Lot s 4+

| e ——

6‘4,/r [T - st
94,L [T} +

‘*‘«1,r - T mrsn s 4+
6‘¢,/r [T} s
®4’L D}W

Fig. 4. Time cost (normalized to log) of Fig.5. Fl-score of selecting top-K nodes
the selection

j + ﬁ + ﬁ + I;I é + l;l L&
02 oz—fH H% = 7 T4 T S TR |
orgraalolsals’o
o s JdT LT LT iLToLT T T I
& & & & o‘?*- o‘? S e“‘ o‘* @V o <$ 0?* 0“ o@‘bc}“ ,0\?*‘ & ,e&p“‘
¥ ¥ ¥ ¥ &S S /\«o Rt ,\»9 ,\»& PUI R S

Fig.6. Precision of covering all the Fig.7. Input percentage of covering all
nodes with at least one label the nodes with at least one label

Precision under MLC. To pick up the minimal set, we evaluate the preci-
sion score and the results are shown in Figure [fl The median number mostly
reaches 100% and the lower bound of the precision is around 80%, which indi-
cates that our selection performs well to ensure the precision independence of
the propagation algorithms.

Input Percentage under MLC. Actually, the precision is also related to
the input percentage. When the input percentage is higher, then the precision
will consequently be higher. So we further looked into the input percentage
by different propagation methods with G-DS and GMaz-DS algorithms. The
evaluation result is illustrated in Figure [[In general, the input percentage is
less than 40%, and the average value for KNN and majority voting is 10% and
30% respectively. Some values are even smaller as 1 or 3. In this experiment, we
could find that according to different propagation methods, the input percentage
could varies, which has already been discussed in Sectionl In addition, by KNN,
the input percentage is around 10% in average and the maximum value is around
25%. In most real cases, this number of input is acceptable.

Compared to the Naive Selection. Furthermore, we also compared our
GMaz-DS algorithm to the force brute selection. The results are shown in Table
Bl The propagation method here is KNN. We might see from the table that the
precision and the input percentage of our algorithms are mostly the same as
the naive one. However, considering the time cost, different with our algorithm,
the naive one will increase exponentially when the vertex number increases. On
contrary, ours grow linearly and is under control.

Dynamic Label Propagation in Social Networks 207

Table 2. Performance comparison between naive algorithm and GMax-DS algorithm
based on the networks with different vertex number

5 10 15 19 20
Input percentage Naive 20% 10% 7% 5% 10%
GMaz-DS 20% 10% % 5% 15%*
Precision Naive 100% 100% 100% 100% 100%
GMax-DS 100% 100% 100% 100% 95%"
Time cost(s) Naive 0.1 8 789 7882 18379
GMaz-DS 0.015 0.124 0.063 0.156 0.327

From the above experiments, we might infer that the time cost of the GMaz-
DS algorithm is less than that of the G-DS algorithm. And in general, the time
cost is limited to an acceptable value, which could be adaptive to the user input.
In addition, to find the size-k set S, even the size is quite small as 3, some
network could also be propagated well and achieve higher fl-score. However, it
would be better if k increases. To select the set S to cover the whole network,
the precision could achieve higher even the input percentage is small.

6 Related Work

To our knowledge, there is no work on dynamic label propagation in social net-
work. However, there is some researches in information diffusion to find the most
influential user sets, which is similar to our problem to some extents. Both are
propagated from neighbors. But the difference is that, in information diffusion,
the status of a node is usually active or in active[d]; while in label propagation,
the node might have multiple labels. In information diffusion, the status is not
intrinsic like retweeting the posts [I1], while for label propagation, a node’s la-
bel like affiliation is intrinsic and will not changed according to different network
structures. And thus, the problem in label propagation is more complicated than
that in information diffusion.

In information diffusion, one of the most widely used algorithms to find the
most influential nodes is the greedy algorithm. David Kempe [6] proposed a
greedy algorithm to maximize the spreading of influence through social network
first. He proved that the optimization problem of selecting the most influential
nodes is NP-hard and provided the first provable approximation guarantees for
efficient algorithm. The algorithm utilized the submodular functions to ensure
finding the most influential nodes in each iteration. Later, based on Kempe’s
work, Yu Wang [13] proposed a new algorithm called Community-based Greedy
algorithm for mining top-K influential nodes to improve the efficiency in large
graphs.

In addition, there are some other attributes to measure the role of the nodes
in the network, like the degree centrality, closeness centrality, betweenness cen-
trality, eigenvector centrality, etc. [14] measured the node’s importance in the

208 J. Du, F. Zhu, and E.-P. Lim

network respectively in different aspects. And some papers also compared dif-
ferent measures. For example, Kwak et al. [7] looked into three measurements -
number of followers, page-rank and number of retweets, and drew a conclusion
that the finding of influential nodes differs by different measurements. As well
as Kwak’s work, [3] and [15] also compared diffe