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Preface

It is our great pleasure to present to you the proceedings of the 18th International
Conference on Database Systems for Advanced Applications (DASFAA 2013),
which was held in Wuhan, China, in April 2013. DASFAA is a well-established
international conference series that provides a forum for technical presentations
and discussions among researchers, developers, and users from academia, busi-
ness, and industry in the general areas of database systems, Web information
systems, and their applications.

The call for papers attracted 208 submissions of research papers from 28
countries (based on the affiliation of the first author). After a comprehensive re-
view process, the Program Committee selected 51 regular research papers and 10
short research papers for presentation. The acceptance rate for regular research
papers is less than 25%. The conference program also included the presenta-
tions of three industrial papers selected by the Industrial Committee chaired by
Haixun Wang and Haruo Yokota, and nine demo presentations selected from 19
submissions by the Demo Committee chaired by Hong Gao and Jianliang Xu.

The proceedings also include the extended abstracts of the two invited keynote
lectures by internationally known researchers, Katsumi Tanaka (Kyoto Univer-
sity, Japan) and Peter M.G. Apers (University of Twente, The Netherlands),
whose topics are on “Can We Predict User Intents from Queries? Intent Dis-
covery for Web Search” and “Data Overload: What Can We Do?”, respectively.
In addition, an invited paper contributed by the authors of the DASFAA 10-
year Best Paper Award winner for the year 2013, Chen Li, Sharad Mehrotra,
and Liang Jin, is included. The title of this paper is “Record Linkage: A 10-
Year Retrospective.” The Tutorial Chairs, Jian Pei and Ge Yu, organized four
tutorials given by leading experts on a wide range of topics. The titles and
speakers of these tutorials are “Behavior-Driven Social Network Mining and
Analysis” by Ee-Peng Lim, Feida Zhu, and Freddy Chua, “Understanding Short
Texts” by Haixun Wang, “Managing the Wisdom of Crowds on Social Media Ser-
vices” by Lei Chen, and “Ranking Multi-valued Objects in a Multi-dimensional
Space” by Wenjie Zhang, Ying Zhang, and Xuemin Lin. The Panel Chairs, Aoy-
ing Zhou and Jeffrey Xu Yu, organized a stimulating panel on big data research.
The panel was chaired by Xiaoyang Sean Wang. This rich and attractive confer-
ence program of DASFAA 2013 is published in two volumes of Springer’s Lecture
Notes in Computer Science series.

Beyond the main conference, Bonghee Hong, Xiaofeng Meng, and Lei
Chen, who chaired the Workshop Committee, put together three exciting work-
shops (International DASFAA Workshop on Big Data Management and An-
alytics, International Workshop on Social Networks and Social Web Mining,
and International Workshop on Semantic Computing and Personalization). The
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workshop papers are included in a separate volume of proceedings also published
by Springer in its Lecture Notes in Computer Science series.

DASFAA 2013 was primarily sponsored and hosted by Wuhan University of
China. It also received sponsorship from the National Natural Science Founda-
tion of China (NSFC), the Database Society of the China Computer Federation
(CCF DBS), and the State Key Laboratory of Software Engineering of China
(SKLSE). We are grateful to these sponsors for their support and contribution,
which were essential in making DASFAA 2013 successful.

The conference would not have been possible without the support and hard
work of many colleagues. We would like to express our gratitude to Honorary
Conference Chairs, Lizhu Zhou and Yanxiang He, for their valuable advice on
all aspects of organizing the conference. Our special thanks also go to the DAS-
FAA Steering Committee for their leadership and encouragement. We are also
grateful to the following individuals for their contributions to making the con-
ference a success: the General Co-chairs, Jianzhong Li, Zhiyong Peng and Qing
Li, Publicity Co-chairs, Jun Yang, Xiaoyong Du and Satoshi Oyama, Local Ar-
rangements Committee Chair, Tieyun Qian, Finance Co-chair, Howard Leung
and Liwei Wang, Web Chair, Liang Hong, Best Paper Committee Co-chairs,
Changjie Tang, Hiroyuki Kitagawa and Sang-goo Lee, Registration Chair, Yun-
wei Peng, Steering Committee Liaison, Rao Kotagiri, APWEB Liaison, Xueming
Lin, WAIM Liaison, Guoren Wang, WISE Liaison, Yanchun Zhang, and CCF
DBS Liaison, Zhanhuai Li.

Our heartfelt thanks go to all the Program Committee members and external
reviewers for reviewing all submitted manuscripts carefully and timely. We also
thank all authors for submitting their papers to this conference. Finally, we thank
all other individuals and volunteers who helped make the conference program
attractive and the conference successful.

April 2013 Weiyi Meng
Ling Feng

Stéphane Bressan
Werner Winiwarter

Wei Song
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Uwe Röhm University of Sydney, Australia
Ning Ruan Kent State University, USA
Markus Schneider University of Florida, USA
Heng Tao Shen University of Queensland, Australia
Hyoseop Shin Konkuk University, South Korea
Atsuhiro Takasu National Institute of Informatics, Japan
Kian-Lee Tan National University of Singapore, Singapore
Changjie Tang Sichuan University, China
Jie Tang Tsinghua University, China
Yong Tang South China Normal University, China
David Taniar Monash University, Australia
Vincent S. Tseng National Cheng Kung University, Taiwan



Organization XI

Vasilis Vassalos Athens University of Economics and Business,
Greece

Guoren Wang Northeastern University, China
Jianyong Wang Tsinghua University, China
John Wang Griffith University, Australia
Wei Wang University of New South Wales, Australia
Chi-Wing Wong Hong Kong University of Science and

Technology, China
Huayu Wu Singapore’s Institute for Infocomm Research

(I2R), Singapore
Xiaokui Xiao Nanyang Technological University, Singapore
Jianliang Xu Hong Kong Baptist University, China
Man-Lung Yiu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Jae Soo Yoo Chungbuk National University, South Korea
Ge Yu Northeastern University, China
Jeffrey X. Yu Chinese University of Hong Kong, China
Qi Yu Rochester Institute of Technology, USA
Zhongfei Zhang Binghamton University, USA
Rui Zhang University of Melbourne, Australia
Wenjie Zhang The University of New South Wales, Australia
Yanchun Zhang Victoria University, Australia
Baihua Zheng Singapore Management University, Singapore
Kai Zheng University of Queensland, Australia
Aoying Zhou East China Normal University, China
Lei Zou Peking University, China

Industrial Track

Bin Yao Shanghai Jiaotong University, China
Chiemi Watanabe Ochanomizu University, Japan
Jun Miyazaki Nara Institute of Science and Technology,

Japan
Kun-Ta Chuang National Cheng Kung University, South Korea
Seung-won Hwang POSTECH, South Korea
Wexing Liang Dalian University of Technology, China
Ying Yan Microsoft, USA

Demo Track

Aixin Sun Nanyang Technological University, Singapore
Chaokun Wang Tsinghua University, China
Christoph Lofi National Institute of Informatics, Japan
De-Nian Yang Institute of Information Science, Academia

Sinica, Taiwan



XII Organization

Feida Zhu Singapore Management University, Singapore
Feifei Li University of Utah, USA
Guoliang Li Tsinghua University, China
Ilaria Bartolini University of Bologna, Italy
Jianliang Xu Hong Kong Baptist University, China
Jin-ho Kim Kangwon National University, South Korea
Lipyeow Lim University of Hawaii at Manoa, USA
Peiquan Jin USTC, China
Roger Zimmermann National University of Singapore, Singapore
Shuigeng Zhou Fudan University, China
Weining Qian East China Normal University, China
Wen-Chih Peng National Chiao Tung University, Taiwan
Yaokai Feng Kyushu University, Japan
Yin Yang Advanced Digital Sciences Center, Singapore
Zhanhuai Li Northwestern Polytechnical University, China
Zhaonian Zou Harbin Institute of Technology, China

External Reviewers

Shafiq Alam
Duck-Ho Bae
Sebastian Bre
Xin Cao
Alvin Chan
Chen Chen
Lisi Chen
Shumo Chu
Xiang Ci
Zhi Dou
Juan Du
Qiong Fang
Wei Feng
Lizhen Fu
Xi Guo
Zhouzhou He
Jin Huang
Min-Hee Jang
Di Jiang
Yexi Jiang
Akimitsu Kanzaki
Romans Kaspeovics
Selma Khouri
Sang-Chul Lee
Sangkeun Lee
Jianxin Li
Lu Li

Sheng Li
Yingming Li
Yong Li
Bangyong Liang
Bo Liu
Cheng Long
Yifei Lu
Lydia M
Youzhong Ma
Silviu Maniu
Jason Meng
Sofian Maabout
Takeshi Misihma
Luyi Mo
Jaeseok Myung
Sungchan Park
Peng Peng
Yun Peng
Yinian Qi
Jianbin Qin
Chuitian Rong
Wei Shen
Hiroaki Shiokawa
Matthew Sladescu
Zhenhua Song
Yifang Sun
Jian Tan

Wei Tan
Ba Quan Truong
Jan Vosecky
Guoping Wang
Liaoruo Wang
Lu Wang
Yousuke Watanabe
Chuan Xiao
Yi Xu
Zhiqiang Xu
Kefeng Xuan
Da Yan
ByoungJu Yang
Xuan Yang
Liang Yao
Jongheum Yeon
Jianhua Yin
Wei Zhang
Xiaojian Zhang
Yutao Zhang
Geng Zhao
Pin Zhao
Xueyi Zhao
Zhou Zhao
Rui Zhou
Xiaoling Zhou
Qijun Zhu



Table of Contents – Part II

Graph Data Management I

Shortest Path Computation over Disk-Resident Large Graphs Based on
Extended Bulk Synchronous Parallel Methods . . . . . . . . . . . . . . . . . . . . . . . 1

Zhigang Wang, Yu Gu, Roger Zimmermann, and Ge Yu

Fast SimRank Computation over Disk-Resident Graphs . . . . . . . . . . . . . . . 16
Yinglong Zhang, Cuiping Li, Hong Chen, and Likun Sheng

S-store: An Engine for Large RDF Graph Integrating Spatial
Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Dong Wang, Lei Zou, Yansong Feng, Xuchuan Shen,
Jilei Tian, and Dongyan Zhao

Physical Design

Physical Column Organization in In-Memory Column Stores . . . . . . . . . . 48
David Schwalb, Martin Faust, Jens Krueger, and Hasso Plattner

Semantic Data Warehouse Design: From ETL to Deployment à la
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Abstract. The Single Source Shortest Path (SSSP) computation over
large graphs has raised significant challenges to the memory capacity and
processing efficiency. Utilizing disk-based parallel iterative computing is
an economic solution. However, costs of disk I/O and communication
affect the performance heavily. This paper proposes a state-transition
model for SSSP and then designs two optimization strategies based on it.
First, we introduce a tunable hash index to reduce the scale of wasteful
data loaded from the disk. Second, we propose a new iterative mechanism
and design an Across-step Message Pruning (ASMP) policy to deal with
the communication bottleneck. The experimental results illustrate that
our SSSP computation is 2 times faster than a basic Giraph (a memory-
resident parallel framework) implementation. Compared with Hadoop
and Hama (disk-resident parallel frameworks), the speedup is 21 to 43.

1 Introduction

The Single Source Shortest Path (SSSP) computation is a classical problem
with numerous applications and has been well-studied over the past decades.
However, new challenges have been raised by the rapid growth of graph data. For
instance, up to March 2012, Facebook has owned about 900 million vertices (i.e.,
users) and over 100 billion edges. Such large graphs have exceeded the memory
capacity of a single machine [1]. Even for memory-resident parallel frameworks
[2,3], the data processing capacity of a given cluster is also limited [4]. This
problem can be relieved by enlarging the cluster scale, but the consumption will
also increase. It is an economic solution if we extend memory-resident parallel
frameworks by spilling data on the disk [5]. In this case, how to reduce costs
of disk I/O and message communication becomes challenging especially for the
iterative computation tasks, such as SSSP.

For in-memory algorithms on SSSP, some are difficult to be executed in par-
allel due to the inherent priority order of relaxation and others perform poorly if
data are organized as their sophisticated structures on the disk [6,7]. External-
memory algorithms with the polynomial I/O complexity have also been pro-
posed [8]. However, the practical performance is unsatisfactory [9] considering
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the impact of wasteful data (load a block of data from the disk but only use
a portion). In addition, they are all centralized algorithms and take no account
of the communication cost. Recently, G. Malewicz et al. propose a new paral-
lel iterative implementation for SSSP (P-SSSP) and evaluate its performance on
Pregel, a memory-resident parallel framework [2] based on the Bulk Synchronous
Parallel (BSP) model [10]. Although its outstanding performance is impressive,
the runtime will increase rapidly if it is implemented on disk-based frameworks,
such as Hama and Hadoop [5,11]. I/O costs incurred by reading wasteful data
may offset the parallel gains. Furthermore, the large scale of messages will also
exacerbate costs of disk-accesses and communication. In this paper, we aim to
crack the nut for these two problems of disk-resident P-SSSP over large graphs.

Based on the theoretical and experimental analysis on P-SSSP, we divide iter-
ations into three stages: divergent → steady → convergent, and then propose a
state-transition model. It adopts a bottom-upmethod to evaluate which stage the
current iteration belongs to. Afterwards, two optimization policies are designed
by analyzing features of the three states.

For divergent and convergent states, the scale of processed data will shade as
the iteration progresses, which leads to huge costs of reading wasteful data. A
tunable hash index is designed to skip wasteful data to the utmost extent by
adjusting the bucketing granularity dynamically. The time of adjusting depends
on the processed data scale instead of inserting or deleting elements, which is
different from existing mechanisms [12,13]. In addition, for different adjusting
operations (i.e., bucketing granularity), we adopt a Markov chain to estimate
their cumulative impacts for iterations and then execute the optimal plan. An-
other optimization is an Across-step Message Pruning (ASMP) policy. The large
scale of messages during the steady state incurs expensive costs of disk I/O and
communication. The further analysis shows that a considerable portion of mes-
sages are redundant (i.e., the value of a message is not the real shortest distance).
By extending BSP, we propose a new iterative mechanism and design the ASMP
policy to prune invalid messages which have received. Then a large portion of
new redundant messages will not be generated.

Experiments illustrate the runtime of our tunable hash index is 2 times as
fast as that of a static one because roughly 80% of wasteful data are skipped.
The ASMP policy can reduce the message scale by 56% during the peak of
communication, which improves the performance by 23%. The overall speedup
of our P-SSSP computation compared to a basic implementation of Giraph [3],
an open-source clone of Pregel, is a factor of 2. For Hadoop and Hama, the
speedup is 21 to 43. In summary, this paper makes the following contributions:

– State-Transition Model: We propose a state-transition model which di-
vides iterations of P-SSSP into three states. Then we analyze characteristics
of the three states, which is the theoretical basis for optimization policies.

– Tunable Hash Index: It can reduce costs of reading wasteful data dy-
namically as the iteration progresses, especially for divergent and convergent
states. A Markov chain is used to choose the optimal bucketing granularity.
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– Across-step Message Pruning: By extending BSP, this policy can prune
invalid received messages and avoid the generation of redundant messages.
Consequently, the message scale is reduced, especially for the steady state.

The remaining sections are structured as follows. Section 2 reviews the related
work. Section 3 gives the state-transition model. Section 4 describes the tunable
hash index. Section 5 proposes the Across-step Message Pruning policy. Section
6 presents our performance results. Section 7 concludes and offers an outlook.

2 Related Work

Many algorithms have been proposed for the SSSP computation. However, cen-
tralized in-memory algorithms can not process increasingly massive graph data.
Advanced parallel algorithms perform poorly if data are spilled on the disk [6,7].
For example, the Δ-stepping algorithm must adjust elements among different
buckets frequently [6] and Thorup’s method depends on a complex in-memory
data structure [7], which is I/O-inefficient. Existing external-memory algorithms
are dedicated to designing centralized I/O-efficient data structure [8]. Although
they have optimized the I/O complexity, the effect is limited for reducing the
scale of loaded wasteful data because their static mechanisms can not be ad-
justed dynamically during the computing.

Nowadays, most of existing indexes are in-memory or designed for the s-t
shortest path [14,15], which is not suitable for SSSP over large graphs. As a pre-
computed index, VC-index is proposed to solve the disk-resident SSSP problem
[9]. However, this centralized index is still static and requires nearly the same
storage space with the initial graph or more. Also, dynamic hash methods for
general applications have been proposed, but they are concerned on adjusting
the bucketing granularity with changes in the scale of elements [12,13]. While,
in our case, the element number (vertices and edges) in a graph is constant.

Implementing iterative computations on parallel frameworks has been a trend.
The representative platform is Pregel [2] based on BSP and its open-source im-
plementations, Giraph and Hama [3,5]. Pregel and Giraph are memory-resident,
which limits the data processing capacity of a given cluster. This problem also
exists for Trinity [16], another well-known distributed graph engine. Although
Hama supports disk operations, it ignores the impact of wasteful data. For
other disk-based platforms based on MapReduce, such as Hadoop, HaLoop and
Twister [11,17,18], restricted by HDFS and MapReduce, it is also difficult to
design optimization policies to eliminate the impact.

The parallel computing of SSSP can be implemented by a synchronous mech-
anism, such as BSP [10], or an asynchronous strategy [4]. Compared with the
former, although the latter accelerates the spread of messages and improves the
speed of convergence, a large scale of redundant messages will be generated,
which increases the communication cost. The overall performance of them de-
pends on a graph’s density when data are memory-resident [4]. However, for the
asynchronous implementation of disk-based SSSP, the frequent update of vertex
values will lead to fatal I/O costs, so BSP is more reasonable in this case.
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3 State-Transition Model

3.1 Preliminaries

Let G = (V,E, ω) be a weighted directed graph with |V | vertices and |E| edges,
where ω : E → N∗ is a weight function. For vertex v, the set of its outgoing
neighbors is adj(v) = {u|(v, u) ∈ E}. Given a source vertex vs, δ(u), the length
of a path from vs to u, is defined as

∑
ω(e), e ∈ path. δ is initialized as +∞. The

SSSP problem is to find the minimal δ(u), ∀u ∈ V . By convention, δ(u) = +∞ if
u is unreachable from vs. We assume that a graph is organized with the adjacency
list and each vertex is assigned a unique ID which is numbered consecutively.

The P-SSSP computation proposed by Pregel is composed of a sequence of
SuperSteps (i.e., iterations). At the first SuperStep t1, only vs sets its δ(vs) = 0.
Then ∀u ∈ adj(vs), a message (i.e., candidate shortest distance) is generated:
msg(u) = 〈u,m〉, m = δ(vs) +ω(vs, u), and sent to u. At t2, vertex u with a list
of msg(u), namely lmsg(u), sets its δ(u) = min{δ(u),min{lmsg(u)}}. Here, if
msgi(u) < msgj(u), that means mi < mj . If δ(u) is updated, new messages will
be generated and sent to neighbors of u. The remaining iterations will repeat
these operations until ∀v ∈ V , its δ(v) is not be updated. Operations of one
SuperStep are executed by several tasks in parallel.

If a large graph exceeds the memory capacity of a given cluster, the topology
of the graph is firstly spilled on the disk. Furthermore, the overflowing mes-
sages will also be spilled. Data are divided into three parts and respectively
stored: message data, vertex data and outgoing edge data. For example, an
initial record {u, δ(u), adj(u)&ω, lmsg(u)} will be partitioned into three parts:
{lmsg(u)}, {u, δ(u)} and {adj(u)&ω}. {u, δ(u)} and {adj(u)&ω} are stored in
two files respectively but located on the same line, which avoids the cost of re-
structuring when sending messages. By this mechanism, the topology of a graph
will not be accessed when receiving messages. In addition, we only need to rewrite
{u, δ(u)} on the disk and ignore {adj(u)&ω} when updating δ.

Now, we give two notations used throughout this paper. We define load ratio
as LR = |Vl|/|V | , where |Vl| denotes the scale of vertices loaded from the disk.
Another notation is load efficiency, which is defined as LE = |Vp|/|Vl| , where
|Vp| denotes the scale of vertices with received messages lmsg.

3.2 Three Stages of Iterations and State-Transition

The iterative process of P-SSSP is a wavefront update from vs [2]. At the early
stage, the message scale of the SuperStep ti is small because only a few vertices
update their δ. However, most of these messages will lead to updating δ at ti+1

because a majority of vertices still keep δ = +∞. Then more new messages will
be generated since |adj(u)| > 1 generally. Consequently, the message scale will
increase continuously. If most of vertices have updated their δ, the speedup of the
message scale will decrease. As more and more vertices have found the shortest
distance, their δ will be updated no longer. Then the number of messages will
reduce until iterations terminate. We have run the P-SSSP implementation on
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our prototype system over real graphs, S-LJ and USA-RN (described in Section
6). As illustrated in Fig 1(a), the message scale can be simulated as a parabola
opening downwards. This curve can also express the trend of processed vertices,
since only vertices with received messages will be processed. Furthermore, we
divide the process into three stages: divergent → steady → convergent.
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Fig. 1. Three processing stages of P-SSSP

Considering the message scale of divergent and convergent states, we only
need to process a small portion of vertices. However, graph data must be loaded
in blocks since they are spilled on the disk, which leads to a low LE and incurs
considerable costs of reading wasteful data. In addition, the running time at
the steady state is more than that of other two states obviously (Fig 1(b)).
The reason is that massive messages lead to expensive costs of communication
and disk-accesses (LR is high because many vertices need to process received
messages). To improve the performance, we expect a low LR but a high LE.

We notice that there is no general standard to separate the three states be-
cause real graphs have different topology features. For example, S-LJ spreads
rapidly at the divergent state. However, it is the opposite for USA-RN, which is
a sparser graph. In section 4.2, we will introduce a bottom-upmethod to separate
different states according to dynamical statistics.

4 A Tunable Hash Index

4.1 Hash Index Strategy

It is essential to match {lmsg(u)} with {u, δ(u)} when updating δ. By a static
hash index, we can load messages of one bucket into memory. Then {u, δ(u)} and
{adj(u)&ω} in the same bucket are read from the local disk one by one to com-
plete matching operations. The static hash index can avoid random disk-accesses.
Data in buckets without received messages will be skipped, which improves LE,
but the effect is limited because |Vp| is changing continuously among the three
states. Therefore, we propose a tunable hash index to maximize the scale of
skipped graph data by adjusting the bucketing granularity dynamically.
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Three parts of data (described in Section 3.1) will be partitioned by the same
hash function. Illustrated in Fig 2, index metadatas of buckets are organized as a
tree which includes three kinds of nodes: Root Node (T ), Message Node (e.g.,H1)
and Data Node (e.g., H1

1 ). The Message Node is a basic unit for receiving and
combining (i.e., only save the minimal msg(u) for vertex u) messages. Initially,
every Message Node has one child node, Data Node, which is the basic unit
for loading {u, δ(u)} and {adj(u)&ω}. The metadata is a three-tuple {R,M,A}.
R denotes the range of vertex IDs. M is a key-value pair, where key is the
number of direct successor nodes and value = �R.length/key	. A is a location
flag. For a Message Node, it means the location of memory-overflow message files
(dir). For a leaf node, it includes the starting offset of {u, δ(u)} and {adj(u)&ω}.
For anyone of parallel tasks, we deduce that the number of its Message Nodes
depends on Bs, which is the cache size of sending messages. In order to simplify
the calculation, we estimate the cache size in the number of messages instead
of bytes. Bs is defined by disk I/O costs and communication costs of the real
cluster. Limited by the manuscript length, the details are not illustrated here.
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Fig. 2. The tunable hash index

The number of Message Nodes is fixed, but Data Nodes may be split or
merged recursively during iterations. The former is only for leaf nodes. If one
bucket Hi

j is split into N i
j child buckets Hi

jk
, 1 ≤ k ≤ N i

j , that means vertex and
outgoing edge data are divided equally in consecutive order. Then, the metadata
of Hi

j needs to be updated (e.g., H3
1 ). The merging operation is only for a direct

predecessor node of leaf nodes. All child nodes will be merged and their parent
node becomes a new leaf node (e.g., H1

1 ).

k =
getID(msg(v))− θ

M.value
+ 1 (1)

To skip buckets without messages, we must locate the leaf node every message
belongs to. Given a message msg(v), we can locate Hi

jk
it belongs to by Formula

1, where θ is the minimal vertex ID in R of Hi
j . The time complexity is Ω((h−

1) · |E|/Nt), where h is the height of the tree and Nt is the number of parallel
tasks. In Fig 2, for 〈670, 12〉, we can find the leaf node H3

11 by locating 3 times.
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4.2 Adjust Hash Index Dynamically

Although splitting a leaf node can improve its load efficiency, the time of
splitting and the number of child nodes are two critical problems.

Algorithm 1. Global Adjusting Type for Leaf Nodes

Input : Statistics of the current SuperStep ti: S; slope of ti−1: K
Output: Global adjusting type of ti+1: AT ; slope of ti: K

′

1 Job Master

2 wait until all tasks report the vectork and activek

3 vector ←∑Nt
k=1 vector

k /* Nt: the number of parallel tasks */

4 active←∑Nt
k=1 active

k

5 put active into HistoryQueue and estimate K
′
by the last KΔ values

6 AT = max{vector(i)|0 ≤ i ≤ 2}
7 send {AT,K

′} to each task

8 Task k

9 vectork ← 〈0, 0, 0〉 /* count the number of every adjusting type */

10 while Sk �= φ do

11 Sk
i ← remove one from Sk /* Sk

i : the statistics of the ith leaf node */

12 type = getAdjustType(K,LEk
i ) /* type: Split(0), Merge(1), None(2) */

13 vectork[type]++

14 activek = activek + getActive(Sk
i ) /* the number of processed vertices */

15 send vectork and activek to Job Master

16 wait until Job Master returns {AT,K
′} and then set K = K

′

Algorithm 1 is used to obtain a global adjusting type (AT ) of the SuperStep
ti+1, which solves the first problem. It is also a bottom-up method to separate
the three states. AT includes Split, Merge and None. Algorithm 1 runs in a
master-slave mode between two consecutive SuperSteps. First, task k judges
the expected adjustment type for every leaf node by LEk

i and K, then records
statistics (Steps 10-14). LEi is load efficiency of the ith leaf node at ti. K is
the slope of a fitting curve about active’s changing. Second, Job Master sums
for all reports (Steps 3-4). K

′
(i.e., K of ti) and AT are computed, and then

sent to every task (Steps 5-7). Generally, KΔ = 5 by considering the robustness
and veracity. The three states can be separated by AT and K

′
as follows: the

divergent state, AT ∈ {Split,None}&K
′
> 0; the steady state, AT ∈ {Merge};

the convergent state, AT ∈ {Split,None}&K
′ ≤ 0.

In the function getAdjustT ype(K,LEk
i ), we first try to estimate the effect of

Split. If it is positive, type is Split, else None. If type of all child nodes of the
same parent node is None, we consider merging child nodes. Similarly, if the
estimated result is positive, type of them will be changed to Merge.

The effect of Split depends on the number of child nodes. We use a Markov
chain to find the optimal value, which solves the second problem. For a leaf node
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Hi
j which is split into N i

j child nodes, let V i
jk

be the set of vertices in Hi
jk

and
tV ij

p be the set of processed vertices at the SuperStep t, then tV ij
p ⊆

⋃
V i
jk

= V i
j ,

where V i
j is the vertex set of Hi

j .
tΛ denotes the set of child nodes with received

messages at t, then tΛ = {k|tV ij
p ∩ V i

jk

= φ, 1 ≤ k ≤ N i

j}.

Theorem 1. For Hi
j, let the random variable X(t) be |tΛ| at the SuperStep t,

then the stochastic process {X(t), t ∈ T } is a homogeneous Markov chain, where
T = {0, 1, 2, ..., tup} and tup is an upper bound of the process.

Proof. In our case, the time set can be viewed as the set of SuperStep coun-
ters and the state-space set is I = {ai|0 ≤ ai ≤ N i

j}. In fact, tΛ denotes the
distribution of messages among child nodes. At the SuperStep t, vertices send
new messages based on their current δ and received messages from t-1. There-
fore, t+1Λ, t+2Λ, ..., t+nΛ only depend on tΛ. The transition probability from
tΛ to t+1Λ is decided by tΛ and δ. So X(t) has the Markov property. Consid-
ering I and T are discrete, then {X(t), t ∈ T } is a Markov chain. Furthermore,
Pxy(t, t+Δt) = Pxy(Δt) in the transition matrix P , so it is also homogeneous.

The original probability can be estimated by a sampling distribution. At tm, we
can get a random sample from tmV ij

p , then the distribution of vertices among

N i
j child buckets can be calculated. Optimistically, we think the probability dis-

tribution of going from the state ax to the state ay is an arithmetic progression.
Its common difference d = (LEi) · K and the minimal value is (2y)/x(x + 1).
Then, pxy, the 1-step transition probability, can be calculated. The Δm-step
transition probability satisfies the Chapman-Kolmogorov equation. Therefore,
P{X(tm+Δm) = ay|X(tm) = ax} = px(tm)Pxy(Δm). We can calculate the
mathematical expectation about the number of skipped buckets at tm+Δm:

Φ(N i
j , tm+Δm) =

Ni
j∑

x=1

Ni
j∑

y=1

(N i
j − x)px(tm)Pxy(Δm) (2)

Considering the time complexity described in Section 4.1, we can infer the split-
ting cost Ψ(N i

j , Δt) =
∑Δt

k=1(TcpuΩ(Δh|E|/Nt)), where Δh is the change of

height for the index tree after splitting. Specially, Δh = 0 if N i
j = 1. Tcpu is the

cost of executing one instruction. Δt = tup−tm. If K < 0, tup is the max number
of iterations defined by the programmer, else Δt = KΔ. The benefit of splitting
Hi

j is that data in some child buckets will not be accessed from the disk. Then
the saving cost is:

Ψ
′
(N i

j , Δt) = (
Vi

j + Ei
j

sdN i
j

)
Δt∑

Δm=1

Φ(N i
j , tm+Δm) (3)

where Vi
j is the vertex data scale of Hi

j in bytes, Ei
j is the outgoing edge data

scale and sd is the speed of disk-accesses. The candidate values of N i
j are C =

{〈n, ρ〉|1 ≤ n ≤ ε}, where ρ = Ψ
′
(n,Δt) − Ψ(n,Δt). ε is a parameter which

insures the size of our index will not be more than the given memory capacity.
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For Split, we find the optimal splitting value γ as follows: first, compute a
subset C

′
of C by choosing the maximal ρ in 〈n, ρ〉; then, ∀〈n, ρ〉 ∈ C

′
, γ is the

minimal n. If γ = 1, type = None, otherwise, type = Split. For Merge, we view
the parent node as a leaf node and assume γ be the real number of its child
nodes. Then, if ρ < 0, types of its child nodes will be changed to Merge.

5 Message Pruning Optimization

In this section, we propose a new iterative pattern, namely EBSP, by extend-
ing BSP. EBSP updates δ synchronously but processes messages across-step.
By integrating the Across-step Message Pruning (ASMP) policy, the scale of
redundant messages can be reduced effectively.

5.1 Analyze Messages of P-SSSP

Definition 1. Multipath-Vertex
Given a directed graph, let the collection of vertices be Vmul = {v|v ∈ Vi

∧
v ∈

Vj

∧
...
∧
v ∈ Vk, i 
= j 
= k}, where Vi is the collection of vertices located i-hop

away from the source vertex. Every vertex in Vmul is a Multipath-Vertex.

As shown in Fig 3, we assume s is the source vertex, then the 1-hop collec-
tion is V1 = {a, b, c, d, e} and the 2-hop collection is V2 = {e, f, g}. Obviously,
e ∈ V1

⋂
V2, is a Multipath-Vertex. As its successor vertices, f, g, h, i are also

Multipath-Vertices. For P-SSSP, the synchronous implementation based on BSP
can reduce the number of redundant messages [2]. For example, during the ith
SuperStep, vertex u receives two messages msgt1i and msgt2i at the time of t1
and t2, where t1 < t2. According to the synchronous updating mechanism, if
δ(u) > msgt1i > msgt2i , msgt1i is invalid and will be eliminated. Consequently,
redundant messages motivated by msgt1i will not be generated. However, our
in-depth analysis finds that the similar phenomenon will occur again and can
not be eliminated by BSP due to the existence of Multipath-Vertices. Consid-
ering the following scenario, u receives msgj at the jth SuperStep, j = i + 1.
If msgt2i > msgj , all messages generated by u at i are still redundant. Fur-
thermore, redundant messages will be spread out continuously along outgoing
edges until the max-HOP vertex is affected in the worst case. That incurs extra
costs of disk-accesses and communication. In addition, some buckets may not be
skipped because they have messages to process, even though the messages are
redundant.

Fig 3 illustrates the phenomena in a directed graph. At the 1th SuperStep,
δ(e) is updated to 4, then e sends messages to f and g. However, at the 2th
SuperStep, δ(e) is updated to 2 again (instead of 3). Then, the previous messages
are invalid. Consequently, f, g, h, i are processed twice.

5.2 Across-Step Message Pruning

For BSP, δ is updated only by depending on messages from the last SuperStep
(in Section 3.1). If we can cumulate more messages before updating δ, then the
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Fig. 3. The analysis of P-SSSP

impact of Multipath-Vertices will be relieved greatly. Consequently, we propose
the EBSP model by extending BSP.

Definition 2. EBSP
Let Mi+1 be the set of messages for the SuperStep ti+1. At ti, it is possible that

M s
i+1 
= φ, M s

i+1 ⊆ Mi+1, if messages are sent asynchronously. When processing
vertices at ti, the domain of referenced messages is Mi ∪M s

i+1.

EBSP will not affect the correctness of P-SSSP. Based on EBSP, we propose
a novel technique called Across-step Message Pruning (ASMP) to relieve the
phenomena of disseminating redundant messages. Algorithm 2 introduces the
processing of one Message Node Hk. First, we load all received messages from
t-1 into memory and put them into Mk

t after combining (in Section 4.1). Then
the memory-resident received messages (without combination) of t+1 will be
used to prune messages in Mk

t (Steps 3-8). A leaf node will be skipped if all
of its messages in Mk

t are pruned. By this policy, new messages of t+1 will be
obtained to optimize the synchronous update mechanism. Instead of combining
existing messages, our policy is denoted to avoiding the generation of redundant
messages, which is more effective. It can improve the performance of communi-
cation and disk-accesses. The scale of redundant messages which are eliminated
by ASMP can be estimated by Theorem 2.

Theorem 2. In Algorithm 2, for one vertex vr, if δ(vr) > msgkt (vr) >
msgks

t+1(vr), then the maximal number of pruned messages is Γ (vr):

Γ (vr) =

⎧⎪⎨⎪⎩
|adj(vr)|, vr = vmaxHOP

|adj(vr)|+
∑

∀vm∈adj(vr)

Γ (vm), vr 
= vmaxHOP
(4)

where vmaxHOP is the farthest one among reachable vertices of vr.

Proof. Normally, if δ(vr) > msgkt (vr), δ(vr) will be updated and then messages
will be sent to adj(vr). However, in Algorithm 2, msgkt (vr) will be pruned if
msgkt (vr) > msgks

t+1(vr). Recursively, at the SuperStep t + 1, ∀vm ∈ adj(vr),

δ(vm) will not be updated if mk
t+1(vm) > mks

t+2(vm) or mk
t+1(vm) ≥ δ(vm). The

pruning effect will not stop until vmaxHOP is processed.
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Algorithm 2. Across-step Message Pruning

Input : message set for Hk at the SuperStep t and t+ 1: Mk
t , M

ks
t+1

Output: message set after pruning: Mk
t

1 V k
t ← extract vertex IDs from Mk

t

2 V ks
t+1 ← extract vertex IDs from Mks

t+1

3 foreach u ∈ V k
t ∩ V ks

t+1 do
4 msgkt (u)← getMsg(Mk

t , u)

5 msgks
t+1(u)← min{getMsg(Mks

t+1, u)}
6 if msgkt (u) > msgks

t+1(u) then

7 put msgkt (u) into the Pruning Set Mp

8 Mk
t = Mk

t −Mp

9 return Mk
t

We notice that if Mk
t = Mk

t

⋃
Mks

t+1, δ will also be updated across-step, which
is called an Across-step Vertex Updating (ASVU) policy. ASVU can accelerate
the spread of messages. Therefore, the iteration will converge in advance com-
pared with ASMP. However, Mks

t+1 is only a subset of Mk
t+1, so its elements may

not be the minimal message value of t+1. For example, if δ(u) > msgkt (u) >
msgks

t+1(u), then δ will be updated at t. However, if msgks

t+1(u) > msgkt+1(u),
msgkt+1(u) ∈ Mk

t+1, messages generated at t are also redundant, which offsets

the pruning gains. Specially, compared with ASMP, if u ∈ V ks
t+1 ∧ u 
∈ V k

t and

δ(u) > msgks
t+1(u) > msgkt+1(u), extra redundant messages will be generated.

6 Experimental Evaluation

To evaluate our patterns, we have implemented a disk-resident prototype system
based on EBSP, namely DiterGraph. Data sets are listed in Table 1. The weight
of unweighted graphs is a random positive integer. All optimization policies
are evaluated over real graphs [19,20,21]. Then we validate the data processing
capacity of DiterGraph over synthetic data sets and compare it with Giraph-
0.1, Hama-0.5 and Hadoop-1.1.0. Our cluster is composed of 41 nodes which are
connected by gigabit Ethernet to a switch. Every node is equipped with 2 Intel
Core i3-2100 CPUs, 2GB available RAM and a Hitachi disk (500GB and 7,200
RPM).

6.1 Evaluation of Tunable Hash Index and Static Hash Index

Fig 4 illustrates the effect of our tunable hash index by comparing it to a static
hash index. Their initial bucket number computed based on Bs is equivalent.
However, the bucketing granularity of the static hash index will not be adjusted
dynamically. In our experiments, we set Bs as 4000 according to the speed of
communication and disk-accesses (described in Section 4.1). For USA-RN, we
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Table 1. Characteristics of data sets

Data Set ABBR. Vertices Edges Avg. Degree Disk Size

Social-LiveJournal1 S-LJ 4,847,571 68,993,773 14.23 0.9GB
Full USA Road Network USA-RN 23,947,347 5,833,333 0.244 1.2GB
Wikipedia page-to-page Wiki-PP 5,716,808 130,160,392 22.76 1.5GB
Synthetic Data Sets Syn-Dx 1-600M 13-8100M 13.5 0.2-114GB
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Fig. 4. Tunable hash index vs. static hash index (real data sets, 20 nodes)

only show the statistics of the first 300 iterations. In fact, it requires hundreds
of iterations to fully converge because the graph has a huge diameter.

As shown in Fig 4(a), for Wiki-PP, the speedup of our tunable index compared
to the static index is roughly a factor of 2. The tunable hash index has reduced
its average LR of one iteration by 80.6% (Fig 4(b)), which means a large portion
of wasteful data have been skipped. Therefore, its average LE (|Vp|/|Vl|) is
improved by roughly 5 times (Fig 4(c)). The average LR of USA-RN is also
reduced by up to 86%, but the overall performance is only improved by 28%,
which is less than Wiki-PP. The reason is that USA-RN is a sparse graph, then
the essential cost of warm-up (e.g., the initialization overhead of disk operations



Shortest Path Computation over Disk-Resident Large Graphs 13

and communication) occupies a considerable portion of the running time, which
affects the overall effect of our index.

For S-LJ, the gain is not as obvious as that of USA-RN and Wiki-PP. By
analyzing the performance of every iteration (Fig 4(d)-(f)), we notice that, for
USA-RN and Wiki-PP, their resident time of the divergent or convergent state
is much longer than that of S-LJ. During these two states, just as illustrated
in Fig 4(g)-(i), the scale of wasteful data is reduced efficiently by the tunable
hash index. For example, P-SSSP over Wiki-PP took 290 iterations to converge.
Fig 4(i) shows a large subset of vertices have found the shortest distance within
the first 40 iterations. The remaining 250 iterations update less than 3% of δ.
Therefore, the cumulate effect of adjustments is tremendous. However, for S-LJ,
the number of iterations is only 44. Considering the latency of adjustments (Fig
4(g)), the overall gain is not remarkable.

6.2 Evaluation of ASMP and ASVU

This suit of experiments is used to examine the effect of ASMP and ASVU
(described in Section 5.2). They are implemented based on the tunable hash
index. As a comparative standard, the baseline method in experiments does not
adopt any policies (both ASMP and ASVU) to optimize the message-processing.
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Fig. 5. Analysis on ASMP and ASVU (real data sets, 20 nodes)

As shown in Fig 5(a)-(c), the ASMP policy can optimize the performance of
the steady state obviously. Especially for S-LJ, the overall performance can be
improved by up to 23% because its resident time of the steady state is relatively
longer than that of USA-RN and Wiki-PP. As illustrated in Fig 5(d)-(f), the
effect of ASMP is tremendous at the iteration where the received message scale
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has reached the peak. Exemplified by S-LJ, the number of received messages
(Mt) can be reduced by 56%. Then, compared with the baseline method, 45%
vertices will be skipped at this iteration, which reduces the cost of disk-accesses
(Fig 5(e)). Finally, the scale of new messages also decreases by 46% (Fig 5(f)),
which reduces the communication cost. We notice that the iterations of S-LJ and
Wiki-PP with ASVU are both completed in advance (Fig 5(a) and (c)) because
ASVU can accelerate the spread of messages. However, considering the impact
of redundant messages (Fig 5(d)-(f)), the contributions to overall performance of
ASVU is not as obvious as that of ASMP. Especially, for S-LJ, the performance
of ASMP is 16% faster than that of ASVU.

6.3 Evaluation of Data Processing Capacity and Overall Efficiency

Compared to Giraph, Hama and Hadoop, the P-SSSP implementation on Diter-
Graph can be executed over large graphs efficiently with limited resources. First,
we set the number of nodes as 10. As shown in Figure 6(a), benefitted from our
tunable hash index and ASMP, the running time of DiterGraph is two times
faster than that of Giraph. Compared with Hadoop and Hama, the speedup is
even 21 to 43. We are unable to run P-SSSP on Giraph when the vertex scale
is more than 4 million, as the system runs out of memory. Second, we evaluate
the scalability of DiterGraph by varying graph sizes and node numbers (Figure
6(b)). Given 40 nodes, when the number of vertices varies from 100 million to
600 million, the increase from 415 seconds to 3262 seconds demonstrates that the
running time increases linearly with the graph size. Given the graph size, such
as 600 million, the running time decreases from 9998 seconds to 3262 seconds
when the number of nodes increases from 10 to 40.
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Fig. 6. Data processing capacity and overall efficiency (synthetic data sets)

7 Conclusion and Future Work

In this paper, we propose a novel state-transition model for P-SSSP. Then a
tunable hash index is designed to optimize the cost of disk-accesses. By ex-
tending BSP, we propose the ASMP policy to reduce the message scale. The
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extensive experimental studies illustrate that the first policy can optimize the
performance during the divergent and convergent states. And the second policy
is effective for the steady state. In future work, we will extend our methods for
incremental-iterative algorithms, such as the connected components computa-
tion, belief propagation and the incremental PageRank computation.
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Abstract. There are many real-world applications based on similarity
between objects, such as clustering, similarity query processing, infor-
mation retrieval and recommendation systems. SimRank is a promis-
ing measure of similarity based on random surfers model. However, the
computational complexity of SimRank is high and several optimization
techniques have been proposed. In the paper optimization issue of Sim-
Rank computation in disk-resident graphs is our primary focus. First we
suggest a new approach to compute SimRank.Then we propose optimiza-
tion techniques that improve the time cost of the new approach from O
(kN2D2) to O(kNL), where k is the number of iteration, N is the number
of nodes, L is the number of edges, and D is the average degree of nodes.
Meanwhile, a threshold sieving method is presented to reduce storage
and computational cost. On this basis, an external algorithm computing
SimRank in disk-resident graphs is introduced. In the experiments, our
algorithm outperforms its opponent whose computation complexity also
is O(kNL).

Keywords: SimRank, Random walk, Graph, Similarity.

1 Introduction

The measure of similarity between objects plays significant role in many graph-
based applications; examples include recommendation systems, fraud detection,
and information retrieval. In contrast to textual content, link structure is a more
homogeneous and language independent source of information and it is in general
more resistant against spamming [1]. Thus a lot of link-based similarity measures
have been proposed.

Among these link-based similarity measures, SimRank [2] is one of promising
ones because it was defined based on human intuition: two objects are similar
if they are referenced by similar objects[2], and a solid graph theory: random
surfers model. Random surfers model is also a theoretical foundation of many
other algorithms: PageRank[3], HITS[4], etc.
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Several algorithms have been proposed on SimRank optimization [1, 5–8].
These optimization algorithms improve efficiency adopting different strategies.
To the best of our knowledge, most existing algorithms didn′t consider the situ-
ation that graph is a large disk-resident graph except [1]. However the research
paper [1] approximate SimRank scores using probabilistic approach, thus their
result is inherently probabilistic. Can we design a scalable and feasible algorithm
to compute SimRank scores when graph is a large disk-resident graph? The issue
has inspired our study.

The challenges of computing SimRank scores of a large disk-resident graph
are following: first, its time complexity is O(kN2D2) , where k is the number of
iteration, N is number of nodes, and D is the average incoming degree of nodes,
and O(kN4) in the worst case, using original method. Second, the main overhead
is I/O when graph cannot be held into main memory and we need to random
access data frequently from disk. So we want to design a novel feasible algorithm
to reduce I/O.

In this paper, we propose a new approach to compute SimRank scores adopt-
ing the random surfer-pairs model which was used to interpret SimRank in the
original SimRank proposal [2]. We briefly describe our approach below. From
perspective of the model, the SimRank score s(a, b) measures how soon two ran-
dom surfers are expected to meet at the same node if they started at nodes a and
b and randomly walked the graph backwards [2]. Thus SimRank score s(a, b) is
summed up all first meeting-time probabilities of two surfers randomly walking
from nodes a and b in reversed graph. Our naive and external algorithms are
based on that we start from nodes, at which the two surfers can first meet, to
compute these first meeting-time probabilities instead of starting from nodes a
and b to compute the probabilities.

The main contributions of this paper are the following:

– We propose a new approach to compute SimRank scores.
– Optimization techniques are suggested, which improve time complexity from

O (kN2D2) to O(kNL), where L is number of edges. A threshold sieving
method to accurately estimate SimRank scores is introduced for further im-
proving the efficiency of the approach.

– An external algorithm is designed to compute SimRank scores over disk-
resident graphs.

– Experimental results over both synthetic and real data sets show the algo-
rithm is effective and feasible.

The rest of this paper is organized as follows. In the next section SimRank is
reviewed, then a new approach is proposed. In sec.3, optimization techniques of
the new approach are suggested and a threshold sieving method is introduced. In
sec.4, an external algorithm based on the new approach is proposed. In section 5,
the experimental results are reported. Section 6 gives the overview of the related
works, and concludes paper in section 7.
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2 The SimRank Fundamentals

In this section, we first review SimRank technique proposed in [2] (Sect 2.1).
Then we propose a new formula directly derived from the random surfer-pairs
model which was used to interpret SimRank (Sect 2.2). At last a naive algorithm
is given (Sect 2.3).

2.1 SimRank Overview

Given a directed graph G = (V,E) where nodes in V represent objects and
edges in E represent relationships between objects. For any v ∈ V , I(v) and
O(v) denote in-neighbors and out-neighbors of v, respectively. Ii(v) or Oj(v) is
an individual member of I(v), for 1 ≤ i ≤ |I(v)|, or of O(v), for 1 ≤ j ≤ |O(v)|.
The SimRank score of nodes between a and b defined as follows:

s(a, b) =

⎧⎪⎪⎨⎪⎪⎩
1, if a = b
c
∑|I(a)|

i

∑|I(b)|
i S(Ii(a),Ij(b))

|I(a)||I(b)| , I(a) and I(b) 
= ∅
0 otherwise

(1)

where c is constant decay factor and default value of c is 0.6 in the paper.
The naive solution [2] of equation (1) can be reached by iteration to a fixed-

point:

Rk+1(a, b) =
c
∑|I(a)|

i

∑|I(a)|
i Rk(Ii(a), Ij(b))

|I(a)||I(b)| , I(a) and I(b) 
= ∅ (2)

,where R0(a, b) = 1(for a = b) or R0(a, b) = 0(for a 
= b).
The theory of expected-f meeting distance in [2] shows that SimRank score

s(a, b) measures how soon two random surfers are expected to meet at the same
node if they started at nodes a and b and randomly walked the graph backwards.
Based on the theorem, SimRank score between a and b also can be defined:

s(a, b) =
∑

τ :(a,b)→(x,x)

P (τ)cl(τ) (3)

where τ is a tour (paths may have cycles) along which two random suffers walk
backwards starting at nodes a and b respectively until they first and only first
meet at any node x ; c is a constant decay factor of SimRank.

The tour τ consists of two paths corresponding to the two suffers: path1=( v1
, . . . , vm , x), path2=( w1 , . . . , wm , x); v1 = a, w1 = b . Obviously the length
of path1 equals the length of path2 . Length l(τ) of tour τ is the length of path1
or path2. The probability P (path1) of walking on path1 is

∏m
i=1

1
|I(vi)| . For tour

τ , the probability P (τ) of traveling τ is P (path1)P (path2) =
∏m

i=1
1

|I(vi)||I(wj)| ,

or 1 if l(τ) = 0.
In the paper if there is a tour τ along which two random surfers walk back-

wards starting at two nodes a and b respectively until they first meet at some
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node x, we say node pairs (a, b) has a meeting-node x correspond to the tour τ
of which the length is l(τ). We also say the node x is the tour τ ′s meeting-node
and the tour τ is a tour corresponding to node pairs (a, b) which we call as start
node pair. In the paper we use symbol (a, b) or τ to refer a tour according to
context. The start node pair (a, b) and (b, a) are equivalent because similarity
scores are symmetric. In the paper, if no specified it means a ≤ b for the symbol
of (a, b).

2.2 Computing SimRank Based on Random Surfer Model

To compute similarity, using formula (3) we need to obtain all tours for each pair
nodes by walking backwards all paths from the two nodes. However it is time
consuming to obtain all tours. Now we give a solution of Rk based on formula
(3).

Proposition 1. Rk(a, b), the similarity of between a and b on iteration k+1,
can be computed by:

Rk+1(a, b) =
∑

τ :(a,b)→(x,x)
l(τ)≤k+1

P (τ)cl(τ) (4)

where τ is a tour along which two random suffers walk backwards starting at
nodes a and b respectively until they first and only first meet at node x.

The proof is omitted due to the limitation of space1.
From above proposition, to compute Rk(a, b) we only need to obtain all the

corresponding tours of the length equal or less than k and sum up these tours.

2.3 Näıve Algorithm

From Eq.(3) and proposition 1, we know that computing SimRank scores equals
obtaining all corresponding tours. How can we efficiently obtain tours?

Observation 1. For tours τ :(e, f) → (x, x), τ can be expanded to obtain tours
τ ′:(Oi(e), Oj(f)) → (x, x) , of which the length is l(τ) + 1 , by just walking
one step from (e, f) to their out neighbor O(e, f). It avoids random walking
l(τ) + 1 steps starting at (Oi(e), Oj(f)) to obtain τ ′ by only appending path
((Oi(e), Oj(f)), (e, f)) at the beginning of τ .The length l(τ ′) is: l(τ) + 1. The

probability P (τ ′) of traveling τ ′ is: P (τ ′) = P (τ)
|I(Oi(e))||I(Oj(f))| .

Given a tour of which length is k : τ :(e, f) → (x, x), in the paper symbol
vτ,k,x(e, f) denotes the value of the tour: P (τ)cl(τ); based on observation 1,

vτ ′,k+1,x(Oi(e), Oj(f)) = c
vτ,k,x(e, f)

|I(Oi(e))||I(Oj(f))|
(5)

According to both proposition 1 and observation 1, we have following proposi-
tion:
1 Proof can be visited at http://ishare.iask.sina.com.cn/f/34372408.html

http://ishare.iask.sina.com.cn/f/34372408.html
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Proposition 2. Rk+1(a, b), the similarity between a and b on iteration k+1,
can be computed by:

Rk+1(a, b) = Rk(a, b) +
∑

τ :(e,f)→(x,x)
a∈O(e)∧b∈O(f)

c
vτ,k,x(e, f)

|I(a)||I(b)| (6)

where c is constant decay factor .

Proof. Fromobservation1,
∑

τ :(e,f)→(x,x)
a∈O(e)∧b∈O(f)

c
vτ,k,x(e,f)
|I(a)||I(b)| =

∑
τ :(a,b)→(x,x)

l(τ)=k+1

P (τ)cl(τ).

According to proposition 1, the proposition holds.

Our näıve algorithm based on observation 1, Eq.(5) and proposition 2: for each
(x, x) we first walk from the meeting-node to its out neighbors to obtain tours
and their values vτ,1,x, then expand tours to obtain other tours and vτ,2,x just
walking one step from current start node pairs to its out neighbors, and so on.

Obviously if a node is a meeting-node, the node has at least two out-neighbors.
Our näıve algorithm based on observation 1 and proposition 2. Because the time
requirement of naive algorithm is O(n3D2),which is more expensive than that
of original method [2], the algorithm is not listed in the paper.

3 Optimization Strategies

Näıve method computes SimRank scores in a depth-first traverse style. We pro-
cess meeting-nodes one by one: after processing all its tours of which the length
is equal less than k for a given meeting-node, we process next one until all
meeting-nodes are processed.

However the näıve method is time consuming and not practical. In this sec-
tion, several optimization techniques are suggested to improve efficiency of the
method.

3.1 Breadth-First Computation

Since the depth-first computation is inefficient, we consider computing SimRank
scores in a breadth-first traverse manner.

For all meeting-nodes, first we obtain their all tours of which the length is
1. Then, we extend the tours to obtain all tours of which the length is 2 . We
continue to extend the tours until the length of tours equal k.

One advantage of using the breadth-first traverse method can improve effi-
ciency. At each iteration for different meeting-node x the corresponding tours
are merged by the following formula.

vk(e, f) =
∑
x

vτ,k,x(e, f) (7)

The value of the merged tour denoted by vk(e, f).
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And based on E.q.(5),(7) and proposition 2, Rk+1(a, b), the similarity between
a and b on iteration k+1, can be computed by:

Rk+1(a, b) = Rk(a, b) + vk+1(a, b) (8)

where vk+1(a, b) =
∑

i,j vk(Ii(a),Ij(b))

|I(a)||I(b)| .

Another advantage of using the breadth-first traverse is that tours are grouped
by first node at each iteration for reducing I/O to external algorithm, the details
are discussed in the next section.

3.2 Threshold-Sieved Similarity

Threshold-sieved similarity was first introduced by [5] to filter low and neverthe-
less non-zero similarity scores because these similarity scores lead to overhead
in both storage and computation. However the threshold-sieved similarity in [5]
can not apply to our algorithm which adopts different method.

At k+1th iteration based value of tours vk, we compute similarity scores
and achieve information of new tours vk+1 based on equations(7)(8). After a
few iterations, there are many low and nevertheless tours and similarity scores
which both lead to heavy overhead in both storage and computation. So we
effectively handle desired similarity scores and tours by filtering nevertheless
similarity scores and tours.

Given threshold parameter δ, we define threshold-sieved similarity score
R′

k(∗, ∗) and tours v′k(∗, ∗) as follows:

R′
0(a, b) = R0(a, b), R

′
k(a, a) = Rk(a, a) = 1 (9)

v′0(a, b) = v0(a, b) = 1, if a = b; v′0(a, b) = v0(a, b) = 0, if a 
= b (10)

R′
k+1(a, b) = R′

k(a, b) + v′k+1(a, b)

if either (right-hand side> δ for k=0 or right-hand side> (1− c)δ for k ≥ 1 ) or
R′

k(a, b) 
= 0;

(11)

R′
k+1(a, b) = 0, otherwise. (12)

v′k+1(a, b) =
c

|I(a)||I(b)|
∑
i,j

v′k(Ii(a), Ij(b))

if right-hand side> δ for k=0 or right-hand side> (1− c)δ for k > 0

(13)

v′k+1(a, b) = 0, otherwise. (14)
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In definitions (11) to (14), a and b are assumed to be different nodes.
First we give the estimate for threshold-sieved v′k(a, b) with respective to

vk(a, b):

Proposition 3. For k=0,1,. . . the following estimate hold: vk(a, b)− v′k(a, b) ≤
δ.

Proof. For k=0, the estimate obviously holds because of v0(a, b) = v′0(a, b)
For k=1, the difference v1(a, b)− v′1(a, b)

= c
|I(a)||I(b)|

∑
a∈O(e)∧b∈O(f)

v0(e,f)≤δ

v0(e, f) ≤ δ, so the proposition holds.

Assume the proposition holds for k (k > 1), let us estimate the difference
vk+1(a, b)− v′k+1(a, b) for k+1 (two cases):

case 1: if v′k+1(a, b) = 0, then from (13) and (14) we have

c

|I(a)||I(b)|
∑
i,j

v′k(Ii(a), Ij(b)) ≤ (1− c)δ (15)

and
vk+1(a, b) − v′k+1(a, b) = vk+1(a, b) ≤ using (15) ≤ vk+1(a, b) + (1 − c)δ −

c
|I(a)||I(b)|

∑
i,j

v′k(Ii(a), Ij(b)) = (1 − c)δ + c
|I(a)||I(b)|

∑
i,j

(vk(Ii(a), Ij(b)) − v′k(Ii(a),

Ij(b))) ≤ (1− c)δ + cδ = δ
case 2:v′k+1(a, b) 
= 0, the difference vk+1(a, b)− v′k+1(a, b)

= c
|I(a)||I(b)|

∑
i,j

(vk(Ii(a), Ij(b))− v′k(Ii(a), Ij(b))) ≤ δ

thereby showing that indeed the proposition holds for k+1. ��

Similar to [5], we also give the following estimate for threshold-sieved similarity
scores R′

k(a, b) with respective to conventional similarity scores Rk(a, b):

Proposition 4. For k=0,1,2,. . . the following estimate hold: Rk(a, b)−R′
k(a, b)

≤ �, where � = kδ.

The proof is omitted due to the limitation of space2.
Proposition 4 states that difference between threshold-sieved R′

k(a, b) and
conventional similarity scores Rk(a, b) does not exceed � at worst case. The
parameter � is generally chosen to control over the difference by a user. Given
�, obviously δ = 


k . If� is chosen to be zero, then δ = 0 and R′
k(a, b) = Rk(a, b).

The difference between threshold-sieved and theoretical SimRank scores is
same with that of the paper [5] and discussed in details in [5].

4 Tour Algorithm

When the graph is a massive graph and disk-resident, the challenge is how to
efficiently achieve the similarity of nodes.

2 Proof can be visited at http://ishare.iask.sina.com.cn/f/34372408.html

http://ishare.iask.sina.com.cn/f/34372408.html
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Algorithm 1. Tour algorithm

Input:
edg, c,	,K// K is a number of iteration

Output:
srt // SimRank Result

1: δ ← �
K

2: read blocks from edg and achieve tours which of length is 1,save merged tours into
ct and edg;

3: for k = 2 to K do
4: par ← singleStepFromTour(edg, ct, δ);// 1th stage:get par
5: ct, srt← singleStepFromPartialTour(ed, par, srt, δ);// 2th stage:get srt
6: end for

In the external algorithm called by tour algorithm, we adopt the strategies:
breadth-first computation, tours merging, and threshold-sieved similarity.

The tour algorithm will sequentially read and write from three kinds of file:
edg, ct and srt.

The disk file edg contains all edges of the graph and read only. Each line of
the disk file is a triplet (tailNode, headNode, p) corresponding to an directed
edge, where tailNode and headNode are identifies of nodes in the graph, and
p = 1

|I(headNode)| . Edg is sorted by tailNode. Since in the algorithm we always

need to obtain all out-neighbors of a node, the out-neighbors were clustered into
one block by the sorting for reducing I/O.

Algorithm 2. singleStepFromTour

Input:
input-graph edg,ct, C,δ

Output:
par file

1: empty par
2: while !edg.eof() AND !ct.eof() do
3: read data blocks from edg and ct to get partial tours.
4: p̂v are merged into sorted buffer M by Eq. (16)
5: if the sorted buffer M is full then
6: M merged with already sorted file par
7: end if
8: end while

Algorithm 1 is the tour algorithm. In line 1 we achieve tours directly from
meeting-nodes, merge tours based on E.q.(7), and store the values into files ct
and srt.

At kth(k ≥ 2) iteration, the disk file ct contains all tours of which the length
exactly equal k − 1, and the disk file srt contains similarity of nodes achieved
at k − 1th iteration. The formats of each line in both files are same: (n1 :
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n2, v(n1, n2), . . . , nt, v(n1, nt)),where v(n, ni) is the value of the tour (n1, ni) in
ct,v(n, ni) is the similarity score of (n1,ni) in srt,n1 ≤ ni and 2 ≤ i ≤ t. Files
are sorted by node n1.

Algorithm 3. singleStepFromPartialTour

Input:
edg,par, c,δ

Output:
ct, srt

1: empty ct
2: while !edg.eof() AND !par.eof() do
3: read blocks from edg and par to get new tour.
4: new tours vk+1 are merged into sorted buffer M by Eq. (17)
5: if !par.eof() then
6: if the sorted buffer M is full then
7: M merged with already sorted file ct and empty M
8: end if
9: end if
10: if !par.eof() then
11: M and remaining of par be merged with ct and all small values skip due to

Eq.(13)(14)
12: else
13: M be merged with ct and all small values skip due to Eq.(13)(14)
14: end if
15: end while
16: while !ct.eof() OR !srt.eof() do
17: read blocks from ct and srt,get new score by Eq.(11) (12)and save it into stemp
18: end while
19: srt← stemp

At k(k ≥ 2) iteration we adopt two-stage strategy (lines 4,5 of algorithm 1)
due to the limitation of main memory space:

First stage: we call a method (Algorithm 2) to generate a par file from ct file
and edg file. Par contains the partial tours and is sorted by first node of partial
node pairs. The values p̂vk+1(its initial value is zero) of partial tours (f, a) can
be calculated( a is a out-neighbor of e) by:

p̂vk+1(f, a)+ = c
vk(e, f)

|I(a)| (16)

Each line of par is (p1 : p2, v(p1, p2) . . . , pt, v(p1, pt)), where v(p1, pi) is the value
of partial node pair (p1, pi) (2 ≤ i ≤ t). For each pair nodes (p1, pi), the first
node is second node of corresponding tours before walking forward the one step,
second node of the pair is the out-neighbor which we reach after walking forward
the single step. Partial tours are sorted by the first node.
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Second stage: the procedure (algorithm 3) is called. In the algorithm 3 we
achieve the ct file from the par file and edg file based on following:

vk+1(a, b)+ =
p̂vk+1(f, a)

|I(b)| (17)

(b is a out-neighbor of f and the initial value of vk+1(a, b) is zero). Then we
obtain new SimRank scores from the new ct file and srt file based on the equa-
tions (11) (12).

4.1 Complexity Analysis

Let us analyze the time requirement of tour algorithm. Let D be average of
|O(a)| over all nodes a. At first iteration(line 2 of algorithm 1), we can obtain
D(D − 1) tours for each meeting-node x. So, at worst, the time requirement is
O(nD2) for all meeting-node x.

At the kth(k > 1) iteration, we obtain new tours based on current tours by
following two stages:

1. Walking forward one step to its out-neighbors from a node which is common
first node shared by a group of current tours:(n1 : n2, v(n1, n2), . . . , nt, v(n1, nt)).
At worst, the max size of the group is n− 1. Time requirement of walking single
step from one group of current tours is O(nD). The time cost is O(n2D) for all
groups.(Algorithm 2)

2. Walking forward one step to its out-neighbors from a node which is common
first node shared by a group of partial tours. At worst, the max size of the group
is also n− 1. The time cost is O(n2D) for all groups.(Algorithm 3)

At each iteration, the time requirement to generate sorted file by merging with
the sorted buffer at most is O(nlog2n).

According to above analysis, the cost to obtain tours is O(n2D) at each it-
eration. Because the number of edges is l = nD, the total cost of computation
SimRank scores is O(Knl), where K is number of iterations.

4.2 I/O Analysis

Tour algorithm sequentially reads(writes) blocks to process data from(to) the
files. In contrast, algorithms based on Eq.(2) compute score of (a, b) by random
accessing scores of (Ii(a), Ij(b)) (1 ≤ i ≤ |I(a)| and 1 ≤ j ≤ |I(b)|) at each
iteration because the scores of (Ii(a), Ij(b)) can not be clustered in a block and
the random accessing causes heavy I/O cost. According to above discussion, tour
algorithm is an I/O efficient method comparing algorithms based on Eq.(2).

5 Experimental Studies

In this section, we report our experimental studies on the effectiveness and
efficiency of Tour algorithm. We implemented all experiments on a PC with
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i7− 2620M CPU, 8G main memory , running windows 7 operating system. All
algorithms are implemented in C++ and the runtime reported in all experiments
includes the I/O time.

The first experiment shows feasibility and effectiveness of our tour algorithm.
The second experiment shows effectiveness and efficiency of tour algorithm in
comparison with excellent algorithms: partial sums and outer summation which
are published in [5]. Finally, the third experiment illustrates the feasibility and
efficiency of the tour algorithm on the real data. Our real datasets used in ex-
periment are from Stanford Large Network Dataset Collection3.

5.1 Feasibility and Effectiveness of Tour Algorithm

The time cost of tour algorithm is O(n2D). In theory D equals n at worst,
in this situation the time cost of our algorithm is O(n3) and the algorithm
is infeasible. So we want to know what the degree value of real graph is in
most situation. Stanford Large Network Dataset Collection is a data collection
including social networks, web graphs, road networks, internet networks, citation
networks, collaboration networks, and communication networks. Table 1 is a
statistics on 40 data sets with 10 categories from the Stanford Large Network
Dataset Collection. Each rows of table is a data set and its value D

n is largest
among datasets of corresponding category. From the table we conclude that the
degree D � n at worst for real graph in most situation. So our algorithm, of
which the time cost is O(n2D), is feasible and it is unnecessary to consider the
worst case:D equals n.

Table 1. Statistics based on 40 data sets with 10 categories from Stanford Large
Network Dataset Collection

Category Name Nodes Edges Average degree

Social networks soc-Slashdot0811 77,360 905,468 11.7

Communication networks email-Enron 36,692 367,662 20

Citation networks Cit-HepTh 27,770 352,807 12.7

Web graphs Web-Stanford 281,903 2,312,497 8

Product co-purchasing networks Amazon0505 410,236 3,356,824 8

Internet peer-to-peer networks p2p-Gnutella04 10,876 39,994 3.7

Road networks roadNet-PA 1,088,092 3,083,796 5.7

Signed networks soc-sign-Slashdot 77,357 516,575 6.7

Location-based online social networks loc-Brightkite 58,228 214,078 7

Memetracker and Twitter Twitter7 17,069,982 476,553,560 27.9

Then we compare tour algorithm with original method based on Eq.(2). In
this subsection, we set the damping factor C = 0.8 and K = 5. In this subsec-
tion and the next, data sets we used are synthetic data which were produced by
scale-free graph generator4. Given 3 synthetic data set whose average degrees
are all: 3, figure 1 shows that tour algorithm(Δ = 0) is better than the original

3 http://snap.stanford.edu/data/index.html
4 Derek Dreier. Barabasi Graph Generator v1.4. University of California Riverside,
Department of Computer Science.

http://snap.stanford.edu/data/index.html
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method(threshold tour:Δ = 0.01). The reasons are following: we compute the
score of every node pairs ( n2 of these) according to formula (2); Actually there
are some node pairs that do not require computing similarity scores, which con-
sume time, because SimRank score of their in-neighbor pairs is zero. However
using tour method we obtain tours without these brute forces trying every node
pairs at each iteration.

Table 2. Number of tours after each iteration for a graph n = 5005 nodes, degree
D = 3

k Number of tours

	 = 0 	 = 0.01

Absolute Relative Absolute Relative

1 185,196 0.007399n2 172,131 0.006877n2

2 7,774,172 0.310594n2 771,665 0.03083n2

3 12,522,105 0.500284n2 183,155 0.007317n2

4 12,522,510 0.5003n2 1253 0.00005n2

5 12,522,510 0.5003n2 55 0.000002n2
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The computational complexity of tour algorithm depends on number of tours.
Figure 2 shows ratio of numbers of tours to n2 at each iteration on graphs
with different degrees and n = 5000 nodes without adopting Threshold-sieved
technology. Table 2 shows the number of tours at each iteration on the same
graph for Δ = 0 and Δ = 0.01 respectively.

5.2 Tour Algorithm vs Partial Sums and Outer Summation

In this subsection we compare tour algorithm with partial sums (including select-
ing essential node pairs) and outer summation. The three algorithms all adopt
the threshold-sieved strategy. Partial sums and outer summation are excellent
algorithms. Time cost of partial sums is the same as tour algorithm: O(n2D).

And time cost of outer summation is O( n3

log2n
). According to the last subsection

the degree D � n at worst for real graph in most situation so outer summa-
tion is infeasible against both partial sums and tour algorithm in practice. The
conclusion is validated by our experiment(figure 3). For ease and fairness of
comparison, we set the damping factor C = 0.6,Δ = 0.05 and K = 5 in this
subsection and the next. These parameters are set in accordance with the last
experiment of [5]. Figure 3 shows the computation time of the three algorithms
over four different size synthetic graphs. The average node degree of the four
graphs are all 3. Because the cost time of outer summation is very expensive we
run experiment only on the first graph using outer summation. Figure 3 shows
tour algorithm is faster than opponents.

In the second experiment, we generate three graphs whose node number all
are: 200k. The average degree of the three graphs is 3,6 and 12 respectively.
Figure 4 shows result of the experiment: although degree of graphs vary tour al-
gorithm is always better than the partial sums and the tour algorithm is affected
less than partial sums by node degree.

Table 3. Computation time of tour algorithm on real graphs

Name of graph Amazon0505 Amazon0302 web-Stanford web-go

Number of nodes 410,236 262,111 281,903 875,713

Number of edges 3,356,824 1,234,877 2,312,497 5,105,039

Computation time(seconds) 654 173 2075 995

5.3 Experiments on Real Graphs

In this subsection, four real datasets are used(table 3). Table 3 shows computa-
tion time of tour algorithm adopting the threshold-sieved strategy on different
real datasets. Two datasets are belong to the category:Product co-purchasing
networks, Number of nodes and value D

n of Amazon0505 are the largest among
datasets of corresponding category. So the computation time on Amazon0302 is
much faster than the time on Amazon0505. The other two datasets are belong to
the category: web graphs. Among datasets of corresponding category, value D

n of
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web-Stanford is the largest and number of nodes of web-go is the largest respec-
tively. Although number of nodes of web-go is larger than that of web-Stanford,
the computation time of web-go is faster than that of web-Stanford. The reason
is values of tours are small and lots of tours are pruned at each iteration for
the web-go graph. In a short, computation time on the different real datasets is
accepted and tour algorithm is feasibility and efficiency in the PC environment.

6 Related Works

There are many real-world applications based on similarity between objects, such
as clustering, similarity query processing, and information retrieval etc.According
to the research [5], similarity measures are outlined two categories: (1) content-
or text-based similarity measures, and (2) link-based ones that consider object-
to-object relations expressed in terms of links [1, 2, 9–11]. SimRank [2] is one of
promising ones among these link-based similarity measures.Several algorithms
have been proposed on SimRank optimization [5–7, 1, 8, 12].

Fogaras and Rácz [1] suggested a general framework of SimRank computa-
tion based on Monte Carlo method. Their algorithms run in external memory.
Their computation is stochastic because their algorithm is based on Monte Carlo
method. In comparison, our algorithm is a deterministic solution.

Lizorkin et al. [5] proposed a technique of accuracy estimation and opti-
mization techniques that improve the computational complexity from O(n4) to

min(O(nl), O( n3

log2n
)). Three optimization are suggested in their research: partial

sums, outer summation and threshold-sieved similarity.
Li et al. [6] presented a approximate SimRank computation algorithms. As

discussed in paper [12], the method is not preferable in practice. In [8],Li et al.
exploit GPU to accelerate the computation of SimRank on large graphs.

Yu et al. [12] proposed optimization techniques based on matrix method to
compute SimRank. The time cost of the technique exactly is O(Knl) for sparse
graphs, whereas the cost of our tour algorithm also is O(Knl) in the worst case.
For dense graphs they also proposed optimization technique. However, based on
our statistics in Table 1, most real datasets are sparse graphs.

In contrast with above mentioned optimization algorithms, Li et al. [7] pro-
posed a Single-Pair SimRank approach to obtain the similarity of a single node-
pair. Research[13] extends the similarity join operator to link-based measures.
[14] approach SimRank from a top-k querying perspective. Research[15] focus on
that the question the most similar k nodes to a given query node on disk-resident
Graphs.

7 Conclusions

This paper investigates optimization of SimRank computation for disk-resident
graph. First we have proposed a new approach based on the random surfer-
pairs model: we start from meeting-node to compute first meeting-time prob-
abilities of two random surfers instead of starting from nodes a and b. Then
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several optimization techniques have been presented: breadth-first computation
and threshold-sieved similarity etc. On this basis, an external algorithm, tour
method, has been introduced. At each iteration, tours are grouped by first node
to reduce the times of accessing disk data in the tour method. At last, we demon-
strate its efficiency and effectiveness on synthetic and real data sets.
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Abstract. The semantic web data and the SPARQL query language
allow users to write precise queries. However, the lack of spatial informa-
tion limits the use of the semantic web data on position-oriented query.
In this paper, we introduce spatial SPARQL, a variant of SPARQL lan-
guage, for querying spatial information integrated RDF data. Besides,
we design a novel index SS-tree for evaluating the spatial queries. Based
on the index, we propose a search algorithm. The experimental results
show the effectiveness and the efficiency of our approach.

Keywords: spatial query, RDF graph.

1 Introduction

The Resource Description Framework (RDF)[13] is the W3C’s recommenda-
tion as the basement of the semantic web. An RDF statement is a triple as
〈subject, predicate, object〉, which describes a property value of the subject. In
real world, a large amount of RDF data are relevant to spatial information. For
example, “London locatedIn England” describes a geographic entity London is
located in a geographic location England; and the statement “Albert Einstein
hasWonPrize Nobel Prize” is related to a geographic location of the event, i.e.
Sweden.

Recently, researchers have begun to pay attention to the spatial RDF data. In
fact, several real-world spatial RDF data sets have already been released, such as
YAGO21[12], OpenStreetMap2[10] etc. YAGO2[12] is an RDF data set based on
Wikipidea and WordNet. Additionally, YAGO2 integrates GeoNames3, which is
a geographical database that contains more than 10 million geographical names,
for expressing the spatial information of the entities and the statements.

� Corresponding author.
1 http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
2 http://planet.openstreetmap.org/
3 http://www.geonames.org/about.html

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 31–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Although the traditional spatial databases can manage spatial data efficiently,
the “pay-as-you-go” nature of RDF enables spatial RDF data provide more
flexible queries. Furthermore, due to the features of Linked Data, spatial RDF
data sets are linked to other RDF repositories, which can be queried using both
semantic and spatial features. Thus, the spatial information integrated RDF
data is more suitable for providing location-based semantic search for users. For
example, a user wants to find a physicist who was born in a rectangular area
between 59◦N 12◦E and 69◦N 22◦E (this area is southern Germany), and won
some academic award in a rectangular area between 48.5◦N 9.5◦E and 49.5◦N
10.5◦E (it is in Sweden). The query can be represented as a SPARQL-like query
in the following. Section 4 gives the formalized definition.

SELECT ?x WHERE{
?x wasBornIn ?y ? l 1 .
?x hasWonPrize ?z ? l 2 .
?y t yp e s t a r c i t y .
? z type Academic Prize .}

F i l t e r {IN(? l1 , [ ( 5 9 , 1 2 ) , ( 6 9 , 2 2 ) ] AND IN(? l2 , [ ( 4 8 . 5 , 9 . 5 ) , ( 4 9 . 5 , 1 0 . 5 ) ] }

Few SPARQL query engines consider spatial queries, and to the best of our
knowledge only two proposals exist in literature. Brodt et al. exploit RDF-3X
[14] to build a spatial feature integrated query system [4]. They use GeoRSS
GML[8] to express spatial features. The R-tree and RDF-3X indexes are used
separately for filtering the entities exploiting the spatial and the RDF semantic
features, respectively. Besides, the method only supports the range queries over
the spatial entities. YAGO2 demo4 provides an interface for SPARQL like queries
over YAGO2 data. However, the system uses hard-coded spatial predicates on
spatial statements. Different from the above approaches, we introduce a hybrid
index integrating both the spatial and semantic features, and the range queries
and spatial joins are both supported in our solution.

In this paper, we introduce the spatial query over the RDF data, a variant of
the SPARQL language for integrating the spatial feature constraint such as the
range query and the spatial join. The spatial constraints assert the corresponding
entities or events located in an absolute location area or near some entities in
the query. For instance, users could search for a football club founded before
1900 nearby London, or a park nearby a specific cinema.

For effectively and efficiently solving the spatial queries, we introduce a tree-
style index structure (called SS-tree). The SS-tree index is a hybrid tree-style
index integrating the semantic features and the spatial features. Based on SS-
tree, we introduce a list of pruning rules that consider both spatial and semantic
constraints in the query, and propose a top-down searching algorithm. The tree
nodes dissatisfying the signature constraints or the spatial constraints are safely
filtered, and the subtrees rooted on the nodes are pruned. We make the following
contributions in this paper.

1. We formalize the spatial queries, a variant of SPARQL language, on the RDF
data integrating the spatial information. Besides, we introduce two spatial

4 http://www.mpi-inf.mpg.de/yago-naga/yago/demo.html

http://www.mpi-inf.mpg.de/yago-naga/yago/demo.html
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predicates: the range query predicate and the spatial join predicate. The
spatial queries can express both spatial constraints and semantic constraints.

2. We classify the entities into two categories: the spatial entities and the non-
spatial entities. Based on these two categories, we build a novel tree-style
index integrating the spatial features and semantic features. Additionally, we
introduce a list of pruning rules for efficiently exploiting the spatial feature
and the semantic feature of the index.

3. We evaluate our approach on a large real-world data set YAGO2, and the
result shows our approach outperforms the baseline by several orders of
magnitude.

2 Related Work

Many RDF manage systems [1,19,20,14,18,2,5] have been proposed in the past
years. RDF-3x[15], Hexstore[18] and gStore[21] are the state-of-the-art RDF
manage systems. Since none of the systems takes spatial feature into consid-
eration, all the systems are unsuitable for spatial RDF data management.

Brodt et al.[4] and Virtuoso[7] utilize RDF query engines and spatial index
to manage spatial RDF data. [4] uses RDF-3x as the base index, and adds an
spatial index for filtering entities before or after RDF-3x join operations. These
two approaches only support range query (and spatial join[7]) on entities, and
the spatial entities follow the GeoRSS GML[16] model. YAGO2 demo employs
six (hard coded) spatial predicates “northOf”, “eastOf”, “southOf”, “westOf”,
“nearby” and “locatedIn” over statements. Users can construct queries as a
list of triple patterns with the spatial predicates. Other spatial queries are not
supported. The technical detail and the performance are not reported.

2.1 Spatial Information Integrating in RDF

There are many ways to represent spatial features in RDF data. OpenGIS Simple
Features Specification[11] introduces a complex structure for describing complex
spatial entities, such as points, lines, polygons, rings etc.. A complex shape can
be decomposed into several simpler shapes, where each simple shape has its
specific URI. Each spatial entity may be described by a list of statements.

The W3C Geo Vocabulary[3] is a decomposed approach. Each spatial entity
is considered as a point with explicit latitude and longitude. Other feature types
are not modeled in the W3C Geo Vocabulary.

Geography Markup Language (GML)[8] is an RDF/XML style language, and
it can be translated into the RDF format. GeoRSS GML[16] models spatial
features as abstract Geometry classes and for subclasses Point, Line, Box and
Polygon. Each spatial feature can be translated into a list of RDF statements.

In the above approaches, only spatial entities are modeled in RDF data.
YAGO2[12] models spatial features of events, i.e., statements. For example, “Per-
son BornIn Time” must happen in a specific location. Thus, this event has spa-
tial features. Therefore, YAGO2 models statements as SPOTLX tuples 〈subject,
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predicate, object, time, location, context〉. In this paper, we only focus on SPOL
tuples. The “location” feature is modeled as the W3C Geo Vocabulary format.

3 Preliminary

Since our method is based on our previous work gStore system and VS-tree
index[21], to make the paper be self-contained, this section provides a simple
overview of gStore and VS-tree. More details can be found at [21]. By encoding
each entity and class vertex into a bit string called signature, gStore transforms
an RDF graph into a data signature graph. Then, a tree-style index VS-tree is
proposed over the data signature graph. The VS-tree is an extended S-tree[6].
The nodes on the same level and the corresponding edges constitute a signa-
ture graph. A pruning rule for subgraph query over the data signature graph is
proposed for executing SPARQL queries.

Data Signature Graph *G
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Fig. 1. Signature Graph Fig. 2. VS-tree

The signature sig of each subject s depends on all the edges {e1, e2, . . . , en}
adjacent to s. For each ei, gStore uses a list of hash functions to generate a signa-
ture sig.ei, where the front N bits denote the predicate, and the followingM bits
denote the object. The valid bits depend on the hash code of the corresponding
textual information. To determine the valid bits, gStore exploits several hash
functions. The signature sig of s follows sig = sig.e1|sig.e2| . . . |sig.en.

For example, in Figure 4, there’s four edges starting from Ulm (#8, #9,
#10 and #11). Suppose that we set the first five bits for the predicate and
the following five bits for the object, we can get four signatures 1100001000,
1000101010, 1001000010 and 0001100011 corresponding to the four edges. Thus,
Ulm can be represented as 1101101011. Figure 3 shows the encoding processing
for “Ulm”. Figure 1 shows the signature graph of Figure 4. Note that only the
entity and class vertices in the RDF graph are encoded.

After the signature graph is generated, the VS-tree is built by inserting nodes
into VS-tree sequentially. The corresponding VS-tree is shown in Figure 2.
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4 Problem Definition

We formally define the spatial RDF and spatial SPARQL query as follow.

Definition 1. An entity e is called a spatial entity if it has an explicit location
labeled with the coordinates x and y (for the two-dimensional situation). The
other entities are called the non-spatial entities.

Definition 2. A statement is a four-tuple 〈s, p, o, l〉, where s, p, o and l rep-
resent for subject, predicate, object and location, respectively. The location
feature denotes the location where the statement happens. Note that l can be
null. If the l of a statement is not null, the statement is called a spatial state-
ment. Otherwise, it’s called a non-spatial statement. A collection of statements
(including spatial and non-spatial statements) is called a spatial RDF data set.

Definition 3. A spatial triple pattern is a four-tuple 〈s, p, o, l〉, where s, p, o
and l represent for subject, predicate, object and location respectively. Each
item can be a variable. Note that if l is not a variable, it should be omitted.

Definition 4. A spatial query is a list of spatial triple patterns with some spatial
filter conditions. If there’s no spatial filter condition, the spatial query is reduced
to a traditional SPARQL query.

Figure 4(a) shows a subset of a spatial RDF data set. Ulm, Baden-Württemberg
andGdańsk are spatial entities, and some statements are spatial statements, such
as #1, #2 and #6. Besides, there’re a lot of non-spatial entities and non-spatial
statements. For example, people have no spatial information, since we can’t
locate a person on the map. Similarly, the statements like 〈People hasName
Name〉 are non-spatial statements. In S-store, we use “spatial predicate” to
represent the spatial queries. In this stage, we support the range query and the
spatial join semantics. In practice, we use sl(?x) for denoting the spatial label of
variable ?x. Besides, dist(a, b)5< r denotes the distance between a and b should

5 In this paper, for the ease of the presentation, we adopt the Euclidean distance
between two locations. Actually, we can use “the earth’s surface distance” to define
the distance between two locations based on latitudes and longitudes.
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Subject Predict Object

Albert_Einstein BornIn Ulm
Albert_Einstein BornOnDate 1879-03-14
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Fig. 4. Spatial RDF Graph

below the threshold r, where a and b should be a specific location or a variable. If
either of a and b is a constant, the query is called a range query. If both of a and
b are variables, the query is called a spatial join query. Note that a spatial query
can be a range query and a spatial join query at the same time. The following
query examples Q1 and Q2 demonstrate the range query and the spatial join
query respectively. The former one queries a person who died in a popular place
near coordinates (48.39841,9.99155), and the latter one queries two people where
the first person died near the place where the second person died.

Q1:
Select ?x Where
{?x d iedIn ?y .
?y type Populated p lace .
} F i l t e r { d i s t ( s l (?y ) , (48 .39841 ,9 .99155)) <1}
Q2:
Select ?x1 , ? x2 Where
{?x1 d iedIn ?y1 ? l 1 .
?x2 d iedIn ?y2 .
} F i l t e r { d i s t ( s l (? l 1 ) , s l (? y2))<1}
The spatial RDF data set and the spatial query can be also modeled as graphs
(Definitions 5 and 6). The query processing is to find the matches (Definition 7)
of a spatial query graph Q in a spatial RDF data graph G. Figure 4(b) shows the
graph corresponding to the spatial RDF data set in Figure 4(a), where the spatial
entities and the spatial statements are all surrounded by the red rectangles.
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Definition 5. The spatial RDF data graph is denoted as G = 〈V,E, LV , LE, SV ,
SE〉, where

(1)V = Vl ∪ Ve ∪ Vc ∪ Vb denote all RDF vertexes where Vl, Ve and Vc are the
sets of literal vertices, entity vertices, class vertices and blank nodes respectively.

(2) E is the collection of the edges between vertices.
(3) LV = {URI} ∪ {LiteralV alue} is the collection of text label of each

vertex, where v ∈ {Ve ∪ Vc} ↔ label(v) ∈ {URI} and v ∈ Vl ↔ label(v) ∈
{LiteralV alue}. For v ∈ Vb, label(v) = φ.

(4)LE is the collection of edge labels, i.e., all predicates plus null value.
(5)SV and SE represent the spatial labels of V and E respectively, where the

spatial labels denote where the entity locates (the event happens) in, i.e., the
latitude and longitude (only valid for spatial entities and spatial statements).

Definition 6. The spatial RDF query graph is denoted as G = 〈V,E, LV , LE ,
SCV , SCE〉, where

(1)V = Vl ∪ Ve ∪ Vc ∪ Vb ∪ Vp, where Vp denotes the parameter vertices, and
Vl, Ve, Vc and Vb are the same as in Definition 5.

(2)E and LE are the same as in Definition 5.
(3) LV is the same as in Definition 5. For v ∈ Vp, label(v) = φ.
(4)SCV and SCE represent the spatial constraints of V and E respectively,

where the spatial constraints can be an absolute area or the relative position for
some parameter.

Definition 7. Consider a spatial RDF graph G and a spatial query graph Q
with n vertices {v1, . . . , vn}. A set of n distinct vertices {u1, . . . , un} in G is said
to be a match of Q iff. the following conditions hold:

1. If vi ∈ {Vl ∪ Vc ∪ Ve}, ui ∈ {Vl ∪ Vc ∪ Ve} and label(vi) = label(ui);
2. If vi ∈ Vb, there is no constraint over ui;
3. If vi ∈ Vp, the spatial label S(ui) must satisfy the spatial constraint SC(vi);
4. If there is an edge vivj from vi to vj in Q , there is also an edge uiuj from

ui to uj in G. If vivj has predicate p and spatial constraint SC(vivj), uiuj must
have the same predicate p and spatial label S(uiuj) satisfy SC(vivj).

5 Overview of S-store

S-store employs a hybrid index that integrates both R-tree[9] and VS-tree[21].
Therefore, the pruning strategies of R-tree and gStore are also integrated as the
searching strategy for S-store. Our framework consists of the pre-processing, the
index construction and the query processing stages.

In the pre-processing stage, we first encode each vertex and edge as a bit
string (we call it a signature). The encoding technique is shown in Section 3,
and more information can be found in [21]. Subsequently, we build the spatial
signature graph G�. Figure 5 shows a running example.

In the index construction stage, we construct a tree-style index based on the
spatial signature graph for effectively reducing the search space. The index is
called SS-tree. Figure 7 shows an running example. The nodes on the same level



38 D. Wang et al.

01011 11000

00011 1010011011 01011

01011 11110

11000 00100

11010 00010

Spatial Signature Graph

01001 10010

10010
Ulm

Albert_Einstein

Baden-Württemberg

Nobel_Prize

Fanny_Normann

Gdańsk

Clemens_Betzel

01010
01001

01001

00010

MBR:(B,B)

A: Point(48.39841,9.99155)
C: Point(54.35,18.66667)

B: Point(48.5,9.0)

MBR:(A,A)

MBR:(C,C)

MBR:(A,A)
MBR:(A,A)

MBR:(C,C)

D: Point(59.35,18.0667)

MBR:(D,D)
*
1Q 01001 00000 00011 0001101001

?x ?y MBR:
((47.39841,8.99155),
(49.39841,10.99155))

*
2Q 01001 00000 00000 0000001001

?x1 ?y1

MBR:mbry2±1

01001 00000 00000 0000001001
?x2 ?y2

MBR:mbry2

Fig. 5. Spatial Signature Graph Fig. 6. Q1 and Q2

of the SS-tree form a spatial signature graph. If there’s a match of a query Q
in a lower spatial signature graph, there must be a corresponding match in each
higher spatial signature graph. Therefore, we need to guarantee that SS-tree is
a height-balanced tree.

In the query processing stage, given a query graph Q, we first convert Q into
the spatial signature query graph Q� as in the pre-processing stage. Figure 6
shows the spatial signature query graphs of the Q1 and the Q2. Note that, if
there is a set of vertices in G matches a query graph Q, there must be a corre-
sponding match in G� of Q�. Subsequently, we implement a top-down searching
algorithm over SS-tree to find the matches of Q� in G�. At last, we retrieve the
corresponding textual result and return it to the user.

Definition 8. Given a spatial signature graph G� and a spatial signature query
graph Q� with n signature vertices {q1, . . . , qn}, a set of distinct signature vertices
{sig1, . . . , sign} in G� is a match of Q� iff. the following conditions hold:

1. ∀qi, sigi.signature&qi.signature = qi.signature;
2. ∀qi, the spatial label S(sigi) must satisfy the spatial constraint SC(qi);
3. If there is an edge qiqj from qi to qj in Q� , there is also an edge sigisigj

from sigi to sigj in G�, and qiqj .signature&sigisigj.signature = qiqj .signature.
If qiqj has spatial constraint SC(qiqj), sigisigj must have the spatial label
S(sigisigj) satisfy SC(qiqj).

6 Index Construction

In this section, we would introduce our spatial RDF index SS-tree. The index
is presented as a tree-style. Generally speaking, we build the SS-tree based on
VS-tree in gStore. The difference between S-store and gStore is that S-store can
answer spatial queries.

6.1 Spatial Signature Graph Generation

First, we convert a data graph into a spatial signature data graph before building
SS-tree. Since the spatial signature data graph can be regarded as a signature
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graph including spatial features, we generate the signature graph as described
in Section 3. Then, for each vertex (vi) and each edge ej , we set the MBR(vi)
and the MBR(ej). The signature and the MBR features of the spatial signature
data graph are used to compute the features of the tree nodes on the high level.
the unsatisfied tree nodes can be filtered early to save the space and time cost.
Due to the space limit, the detailed information is omitted.

6.2 SS-tree Construction

The entities can be separated into two parts based on the spatial features.C1 is the
non-spatial entity set, andC2 is the spatial entity set. For example, in Figure 4, col-
lection C1 = {Albert Einstein, Fanny Normann, Clemens Betzel, Nobel Prize}
and collection C2 = {Ulm, Baden-Württemberg, Gdańsk} respectively.
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Based on C1 and C2, we can generate two induced spatial signature graphs
G�

1 and G�
2 from G�. The induced graph G�

i can be composed into V �
i and E�

i ,
where V �

i =the vertices corresponding to Ci, and E�
i = {vkvl|vk ∈ V �

i ∧vl ∈ V �
i }.

In the following, we use “compute the features” to denote the bottom-up
feature constructing process. The process obeys the following rule:
– SS-tree Rule: Consider two spatial signature nodes v1,v2 and their father

nodes n1, n2. The following conditions hold:

(1) n1.sig&v1.sig = v1.sig, n2.sig&v2.sig = v2.sig;
(2) v1.MBR ∈ n1.MBR, v2.MBR ∈ n2.MBR;
(3) If there’s an edge v1v2 between v1 and v2, there must be an edge n1n2

between n1 and n2, where n1n2.sig&v1v2.sig = v1v2.sig and v1v2.MBR ∈
n1n2.MBR, even if n1 = n2.
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Non-spatial Entities. For collection C1, we build a VS-tree over G�
1. The VS-

tree constructing method can be found in [21]. After the VS-tree’s completed,
we compute the MBR features for each edge based on the SS-tree rule (2). T1

consists of the VS-tree and the spatial features. For example, in Figure 7, the gray
nodes and the edges between them compose the sub-SS-tree T1. The edge d31d

3
2

has the spatial feature because the edge between the child node Albert Einstein
of d31 and the child node Nobel Prize of d32 owns a spatial feature.

Spatial Entities. For entity collection C2, we build a R-tree over G�
2. Based

on the R-tree structure, we first compute the features of the R-tree vertices base
on SS-tree rule (1). Then, we add the edges between the upper level vertices
of the R-tree and compute the features of the added edges based on the SS-
tree rule (3). For example, in Figure 7, the white nodes and the edges between
them compose the sub-SS-tree T2. The signature of the node d33 1101101011 =
1101101011|1101000010, where the former signature belongs to the node “Ulm”
and the latter signature belongs to the node Baden-Württemberg, and “Ulm”
and Baden-Württemberg are the children of d33.

Combination. Since SS-tree should be a height-balanced tree, we should mod-
ify the tree height to balance T1 and T2. We employ the following operation
called one step growth to increase tree height. Given a tree T , we add a node n
as the father of T ’s root, and n would be the new root of T .

Given trees T1 and T2, we grow the lower tree with several steps to ensure the
tree heights are equal. And then, we add a node n as new tree T ’s root, and set
the roots of T1 and T2 as n’s children. The new tree is called T3.

Based on T3, we first add all edges eij = {vivj |vi ∈ G�
1 ∧ vj ∈ G�

2} between
G�

1 and G�
2, and then add the corresponding edges and compute the features

for the edges based on the SS-tree rule (3). For example, the edge between
“Albert Einstein” and “Ulm” is added in this stage, and the corresponding edges
d31d

3
3 and d21d

2
2 are added subsequently.

7 Query Processing

Given a spatial query Q, we first convert the Q to a spatial signature graph Q�.
The converting processing consists of three steps.

(1) Encode the triple patterns as described in Section 6.1.
(2) For each range query predicate, we add the corresponding absolute MBR on

the specific variables.
(3) For each spatial join predicate, we add the relevant MBRs on the variables.

The Q�
1 and Q�

2 corresponding to Q1 and Q2 are shown in Figure 6. The signa-
tures are generated as G to G�, where the variables contribute no valid bit. The
range query predicate of Q1 is converted to the absolute MBR binding ?y in Q�

1,
and the spatial join predicate of Q2 is converted to the relevant MBRs in Q�

2.
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After the corresponding Q� is generated, we next search the matches of Q�

in G� exploiting the SS-tree. Consider a spatial signature query graph Q� =
{q1, . . . , qn}, we first generate the node candidate set NodeSeti for each vari-
able qi, and then verify each candidate in the query candidate set QSet =
{NodeSet1 × . . .×NodeSetn} to generate the matches of Q� in G�. At last, we
generate the matches of Q in G based on the matches of Q�.

7.1 Pruning Rules

For efficiently generating the node candidate set, we have the following five
pruning rules. Pruning rule 1 is based on the fact that only spatial entities can
be bound by spatial predicates. Pruning rules 2 and 3 are based on that if the
distance between v1 and v2 is no less than the distance between vi and vj where
vi and vj are the descendant of v1 and v2 respectively. Pruning rule 4 is based
on that v.sig&vi.sig = vi.sig if vi is the descendant of v. Pruning rule 5 is based
on that if there’s no satisfied edge between v1 and v2, there’s no satisfied edge
between vi and vj where vi and vj are the descendant of v1 and v2 respectively.
Due to the space limit, we can’t state the pruning rules in detail.

Pruning Rule 1. If a variable is bound with a spatial predicate, the subtree
T1 induced by C1 can be pruned safely.

Pruning Rule 2. Consider a variable v bound with a range query predicate, if
there is a tree node n where v.mbr has no intersection with n.mbr, the subtree
rooted on n can be pruned safely.

Pruning Rule 3. Consider two variables vi and vj bound by a spatial join
predicate, and NodeSeti is the candidate set of vi and NodeSetj is the candidate
set of vj . Suppose the max distance is set to be MaxDist. Let ni ∈ NodeSeti,
if the distance from MBR of ni to any node nj ∈ NodeSetj is larger than
MaxDist, ni can be safely pruned.

Pruning Rule 4. Consider a variable v, if there is a tree node n where
v.sig&n.sig! = n.sig, the subtree rooted on n can be pruned safely.

Pruning Rule 5. Consider two linked variables vi and vj with an edge e = vivj
from vi to vj , and NodeSeti is the candidate set of vi and NodeSetj is the candi-
date set of vj in the same spatial signature graph. Let ni ∈ NodeSeti, if there’s
no edge from ni to any node nj ∈ NodeSetj, ni can be safely pruned. What’s
more, if there’s a range predicate on e, the unsatisfied edges are considered
nonexistent. The pruning rule is based on the fact that if there’s no satisfied
edge from ni to any node nj ∈ NodeSetj, there’s no satisfied edge from the
descendants of ni to any descendants of the nj ∈ NodeSetj .

Algorithm 1 describes the top-down node candidate sets generating process.
The use of the pruning rules is shown in Line 9-21.
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Algorithm 1. Query Processing

Require: Q� = 〈v1, . . . , vn〉, SS-tree T , root r of T , signature data graph G�.
Ensure: The node candidate sets {NodeSet} of nodes of Q� in G�.
1: Set each NodeSeti = r //initialize the node candidate set.
2: while true do
3: if ∀NodeSeti ∈ G� then
4: return {NodeSet} //the sets contains real data points.
5: for all NodeSeti do
6: NodeSeti =the children of each node ni ∈ NodeSeti
7: Set MBRi =

⋃{n|n ∈ NodeSeti}
8: for all node ni ∈ NodeSeti do
9: if ni ∈ T1 ∧ vi is binding then
10: remove n from tempNodeSet // pruning rule 1.
11: if vi.sig&ni.sig! = ni.sig then
12: remove n from tempNodeSet //pruning rule 2.
13: if vi is bound by range query predicates then
14: if intersection(vi.mbr, ni.mbr) = φ then
15: remove n from tempNodeSet //pruning rule 3.
16: if ∃e = vivj then
17: if ni.neighbour ∩NodeSetj = φ then
18: remove n from tempNodeSet //pruning rule 4.
19: if dist(vi, vj) <= l then
20: if dist(ni,MBRj) > l then
21: remove n from tempNodeSet //pruning rule 5.

7.2 Verification

Consider the node candidate set {NodeSet}, we generate a list of nodes
〈n1, . . . , nn〉 from each item of {NodeSet} respectively, and verify if 〈n1, . . . , nn〉
forms the connected regions corresponding to the connected regions in Q�. If
〈n1, . . . , nn〉 can form, we consider it as a match candidate of Q�, or we dis-
card it otherwise. The generating process can be realized by employing a BFS
algorithm starting from the smallest node candidate sets in each connected re-
gion. For example, Q�

2 has two connected regions. Since ?x1 and ?x2 have the
highest selectivity in each connected region respectively, the NodeSetx1 and
NodeSetx2 are selected as the start points. Then, we run BFS from NodeSetx1

andNodeSetx2. If there’s an edge e = vkvl inQ�, there must be an corresponding
edge.

Given a match candidate Q�
c of Q�, we verify if all the spatial constraints are

satisfied. The satisfied match candidates are the matches of Q�. Subsequently,
since the encoding technique may bring false positive error, we verify if all edges
in Q are satisfied given a match of Q�. The valid candidates are the matches of
Q. Then, the matches of Q is returned to users.
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Algorithm 2. V arification

Require: node candidates {NodeSet}, Q� = 〈v1, . . . , vn〉, Q, G.
Ensure: the matches {M} of Q.
1: Set the match candidate list of Q� L = φ.
2: for each connected region Qi ⊆ Q� do
3: Select the NodeSetj with the smallest size in Qi.
4: Set the Qi’s match candidate set M i

c = φ. //Initialize the match candidate sets.

5: for each node nk ∈ NodeSetj do
6: Run the BFS process from nk.
7: if ∃match candidate mi

c of Qi then
8: M i

c .add(m
i
c). //If all edges are valid, it’s a match candidate.

9: Set M�
c = M1

c × . . .×Mk
c . //The match candidates of Q�.

10: Set M� = φ. //The matches of Q�.
11: for each m�

c ∈M�
c do

12: if all spatial join predicates are valid on m�
c then

13: M�.add(m�
c).

14: Set M = φ. //The matches of Q.
15: for each m� ∈M� do
16: Get the subgraph m ⊆ G corresponding to m�.
17: if all literal constraints are valid on m then
18: M.add(m).
19: return M .

8 Experiments

To the best of our knowledge, only YAGO2 Demo and the system implemented
by A. Brodt et al.[4] (DisRDF for short) are available spatial RDF data manage-
ment system. YAGO2 Demo only accepts range queries over spatial statements
based on several hard-coded spatial predicates. DisRDF models the spatial enti-
ties with various shapes and only accepts range queries over the spatial entities.
Since we support both range query and spatial join semantic over the spatial
entities and the spatial statements, the comparisons to other approaches are not
applicable. Thus, we focus on the performance and the specific characteristics of
our approach.

8.1 Data Set and Setup

Data Set YAGO2 is a real data set based on Wikipedia ,WordNet and GeoN-
ames. The latest version of YAGO2 have more than 10 million entities and 440
million statements. We obtain a spatial RDF data set from YAGO2 by removing
some statements that describe the date when another statement is extract or the
URL where another statement is extract from. The condensed data set has more
than 10 million entities/classes and more than 180 million statements. More than
7 million entities are spatial entities, and more than 90 million statements are
spatial statements.
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Queries & Setup In order to evaluate our approach, we manually generate 10
sample spatial SPARQL queries that have different features. The sample queries
are divided into 5 classes, i.e., A, B, C, D, E. The queries in set A are star
queries with the range query predicates over the entities. The queries in set B
are the queries with the range query predicates over the entities. The queries in
set C are the queries with spatial join predicates over entities. The queries in set
D are the queries with range query and spatial join predicates over statements.
The queries in set E are combined queries. The queries are given in our technical
report [17].

Table 1. The Result Set Size of Queries

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

Spatial Queries 3 1177 1 10 18 25 2 23 7 12

SPARQL Queries 10,137,491 8,567 36 50 36 50 36 50 40 50

Table 1 shows the selectivity of each query. In order to show the inefficiency
of post-processing method (i.e., finding SPARQL query results by ignoring the
spatial constraints and then verifying the candidates by the spatial predicates),
we also report the result sizes of all queries discarding the spatial constraints.
We run all queries on a PC with an Intel Xeon CPU E5645 running at 2.40 GHz
and 16 GB main memory.

Table 2. Statistics of Node Capability

Node Index Tree Node

Capability Size(MB) Height Count

30 5,537 6 571,064

50 4,376 5 341,905

100 3,342 4 170,121

150 2,938 4 113,365

Table 3. Statistics of Tree-Construction

Index Node Index Tree Node

Style Capability Size(MB) Height Count

SS- 100 3,342 4 170,121
tree 150 2,938 4 113,365

VS- 100 4,332 3 204,890
tree+ 150 3,990 3 138,931

8.2 Evaluating Node Capability

In this subsection, we evaluate whether the different node capabilities (i.e., the
maximal number of child nodes of each node in the tree index) affect the off-line
and the on-line performance. In the evaluation, the node capabilities are set to
30, 50, 100, 150 respectively.

Table 2 shows the storage cost of SS-tree with different node capabilities.
Obviously, lower node capability leads to larger node count, higher tree height
and larger storage requirement, vice versa. Figure 8 shows the count of node
access during search. Clearly, the count of node access depends on the capability
of each node. Note that the count of data points involved during search = #
of accessed nodes × node capability, which means the operation count on data
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Fig. 8. Node Capability - Nodes Access Fig. 9. Node Capability - Time Cost

points may be lower in the lower node capability situation. Figure 9 reports the
query time cost of each query. The query time cost is proportional to the count
of data points involved during search in most cases.

8.3 Evaluating Entity Organization

In this subsection, we evaluate whether the different entity organization styles
affect the off-line and the on-line performance. We compare the SS-tree and the
VS-tree plus spatial features (denoted as VS-tree+). Table 3 shows the results.
The SS-tree demands lower storage space than VS-tree+ when the node capa-
bilities are the same. Figure 10 and 11 show the count of nodes accessed and the
time cost of each query. As we supposed, SS-tree works better for spatial feature
filtering. Since SS-tree organize spatial entities in a R-tree, SS-tree works better
on query 1, 2, 3, 4, 9 and 10, where the queries have spatial predicates on nodes.

Fig. 10. SS-tree - Nodes Access Fig. 11. VS-tree+ - Time Cost

8.4 Evaluating Performance

For evaluating the efficiency of our approach, we implement a baseline approach
based on the method of [4]. The baseline approach adopts the post-processing
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solution, running SPARQL queries by ignoring the spatial predicates and then
refining the candidates by considering the spatial constraints. In this subsection,
we make a comparison between S-store and the baseline approach.

In practice, the baseline approach exploits gStore[21] as the RDF management
system, and the node capability is set to 150. Besides, the MySQL is used to
retrieve the coordinates of the entities and the statements.

The query response times are shown in Table 4, where G-store+ denotes the
baseline approach. Since A1 and A2 have many candidate results (see Table 1),
the time cost of the baseline is unacceptable. We can’t get the results of A1 in
reasonable time (more than half an hour), and the time cost for A2 is about
113 seconds. However, our approach (S-store) can answer the query A1 and A2
in 213 and 165 milliseconds, respectively. Although the other queries have just
a few candidate results without spatial predicates, S-store still outperforms the
baseline approach.

Table 4. The Performance comparison

Time Cost (ms)
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

S-store 213 165 863 1,518 2,800 2,710 2,571 2,668 1,418 1,816

G-store+ >30min 112,406 5,894 9,555 4,478 4,127 3,624 6,750 5,839 3,779

Speed-up Ratio 99.8% 85.4% 84.1% 37.5% 34.3% 29.1% 60.5% 75.7% 51.9%

9 Conclusions

In this paper, we introduce spatial queries, a variant of SPARQL language, for
querying RDF data with spatial features. Spatial queries employ spatial predi-
cates for expressing the range query and the spatial join constraints. Besides, we
introduce a novel index called SS-tree for evaluating the spatial queries. Based
on SS-tree, we propose several pruning rules and a searching algorithm. The
experimental results show the effectiveness and the efficiency of our approach.
The spatial queries just cost a few seconds on YAGO2 data set, which has more
than 10 million entities and 180 million statements.
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Abstract. Cost models are an essential part of database systems, as
they are the basis of query performance optimization. Disk based sys-
tems are well understood and sophisticated models exist to compare
various data structures and to estimate query costs based on disk IO
operations. Cost models for in-memory databases shift the focus from
disk IOs to main memory accesses and CPU costs. However, modeling
memory accesses is fundamentally different and common models do not
apply anymore.

In this work, we examine the plan operations scan with equality se-
lection, scan with range selection, positional lookup and insert in in-
memory column stores regarding different physical column organizations.
We consider uncompressed columns, bit compressed and dictionary en-
coded columns with sorted and unsorted dictionaries. Furthermore, we
discuss tree indices on columns and dictionaries and present a detailed
parameter evaluation, considering the number of distinct values, value
skewness and value disorder. Finally, we present and evaluate a cost
model based on cache misses for estimating the runtime of the discussed
plan operations.

1 Introduction

In-memory column stores commence to experience a growing attention by the re-
search community. They are traditionally strong in read intensive scenarios with
analytical workloads. A recent trend introduces column stores for the backbone
of business applications as a combined solution for transactional and analytical
processing. This approach introduces high performance requirements as well for
read performance as also for write performance to the systems.

Typically, optimizing read and write performance of data structures results in
trade-offs, as e.g. higher compression rates introduce overhead for writing, but in-
crease read performance. The underlying idea of this paper is a database system,
which supports different data structures with unique performance characteris-
tics, allowing to switch and choose the used structures at runtime depending on
the current, historical or expected future workloads. This paper will not provide
a complete description or design of such a system, but focuses on selected data
structures for in-memory column stores.

Our contributions are i) a detailed parameter discussion and analysis for the
operations scan with equality selection, scan with range selection, lookup and
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insert on different physical column organizations in in-memory column stores
and ii) a cache based cost model for each operation and column organization.

The remainder of the paper is structured as follows. Section 2 gives an overview
of related work, followed by a system definition in Section 3. Section 4 introduces
the considered plan operators and their implementation, followed by a discus-
sion of parameter influences in Section 5. Then, Section 6 introduces a cache
miss based cost model estimating the costs for the discussed plan operations,
followed by Section 7 introducing column and dictionary indices and their re-
spective costs. Section 8 closes the paper with concluding remarks.

2 Background and Related Work

This section gives an overview and background of related work regarding in-
memory column stores, followed by work concerning cost models for main mem-
ory databases and cache effects.

Recent research started questioning the separation of transactional and ana-
lytical systems and introduced efforts of uniting both systems again [4,6,8,12,13].
The back-bone of such a system’s architecture could be a compressed in-memory
column-store, as proposed in [4, 12]. Column oriented databases have proven to
be advantageous for read intensive scenarios [9, 14], especially in combination
with an in-memory architecture. Such a system has to handle contradicting re-
quirements for many performance aspects. The question becomes which column
oriented data structures are used in combination with light-weight compression
techniques, enabling the system to find a balanced trade-off between the con-
tradicting requirements. This paper aims at studying these trade-offs and at
analyzing possible data structures.

Relatively little work has been done on researching main memory cost models.
This probably is due to the fact, that modeling the performance of queries in
main memory is fundamentally different than in disk based systems were IO
access is clearly the most expensive part. In in-memory databases, query costs
consist of memory and cache access costs on the one hand and CPU costs on
the other hand. Manegold and Kersten [10] describe a generic cost model for in-
memory database systems, to estimate the execution costs of database queries
based on their cache misses. The main idea is to describe and model reoccurring
basic patterns of main memory access. More complex patterns are modeled by
combining the basic access patterns with a presented algebra. In contrast to
the cache-aware cost model from Manegold which focusses on join operators, we
compare scan and lookup operators on different physical column layouts.

The influences of the memory hierarchy on application performance has been
extensively studied in literature. Various techniques have been proposed to mea-
sure costs of cache misses and pipeline stalling. Most approaches are based on
handcrafted micro benchmarks exposing the respective parts of the memory hi-
erarchy. Barr, Cox and Rixner [2] study the penalties occurring when missing the
translation look-aside buffer (TLB) in systems with radix page tables like the
x86-64 system and compare different page table organizations. Due to the page
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Table 1. Parameter symbol overview

Description Unit Symbol

Value Domain - V
Dictionary - D
Number of rows - r
Value Disorder - u
Value Skewness - k

Description Unit Symbol

Number distinct values - d
Uncompr. Value-Length bytes e
Compr. Value-Length bits ec
Query Selectivity rows s
value-id of vi - id(vi)

table access, the process of translating a virtual to a physical address can induce
additional TLB cache misses, depending on the organization of the page table.
Babka and Tuma [1] present a collection of experiments investigating detailed
parameters and provide a framework measuring performance relevant aspects of
the memory architecture of x86-64 systems. The experiments vary from deter-
mining the presence and size of caches, the cache line sizes to measure cache
miss penalties.

3 System Definition

This section gives a formal definition of the used system, considered physical col-
umn organizations and examined parameters. We consider a database consisting
of a set of tables T. A table t ∈ T consists of a set of attributes At. The number
of attributes of a table t will be denoted as |At|. We assume the value domain V
of each attribute a ∈ At to be finite and require the existence of a total order ρ
over V. In particular, we define e as the value length of attribute a and assume
V to be the set of alphanumeric strings with the length e. An attribute a is a
sequence of r values v ∈ D with D ⊆ V, where r is also called number of rows of
a and D also called the dictionary of a.

Table 1 gives an overview of the examined parameters. D is a set of values
D = {v1, ..., vn}. We define d := |D| as the number of distinct values of an
attribute. In case the dictionary is sorted, we require ∀vi∈D : vi < vi+1. In case the
dictionary is unsorted, v1, ..., vn are in insertion order of the values in attribute
a. The position of a value vi in the dictionary defines its value-id id(vi) := i.
For bit-compression, the number of values in D is limited to 2b, with b being the
number of bits used to encode values in the value vector. We define ec := b as
the compressed value length of a, requiring ec ≥ �log2(d)	 bits. The degree of
sortedness of the values in a is described by the measure of disorder denoted by
u, based on Knuth’s measure of disorder, which describes the minimum amount
of elements that need to be removed from a sequence so that the sequence would
be sorted [7]. Finally, we define the value skewness k, describing the distribution
of values of an attribute, as the exponent characterizing a Zipfian distribution.
We chose to model the different distributions by a Zipfian distribution, as the
authors in [5] state that the majority of columns analyzed from financial, sales
and distribution modules of a enterprise resource planning (ERP) system were
following a power-law distribution – a small set of values occurs very often, while
the majority of values is rare.
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The logical view of a column is a simple collection of values, allowing to
append new values, retrieving the value from a position and scanning the com-
plete column with a predicate. How the data is actually stored in memory is
not specified. In general, data can be organized in memory in a variety of dif-
ferent ways, e.g. in standard vectors in insertion order, ordered collections or
collections with tree indices [13]. In addition to the type of organization of data
structures, the used compression techniques are also essential for the resulting
performance characteristics. Regarding compression, we will focus on the light
weight compression techniques, dictionary encoding and bit compression.

Uncompressed columns store the values as they are inserted in sequential
manner, as e.g. used in [8]. In a dictionary encoded column, the actual column
contains two containers: the attribute vector and the value dictionary. The at-
tribute vector is a vector storing only references to the actual values of ec bit,
which represent the index of the value in the value dictionary and is also called
value-id. For the remainder, we assume ec = 32 bit. The value dictionary may
be an unsorted or ordered collection. Usually it is advisable to maintain a tree
index structure on top of an unsorted dictionary.

4 Operators

We consider the plan operators scan with equality selection, scan with range
selection, positional lookup and inserting new values and discuss their theoreti-
cal complexity. These operators were chosen, as we identified them as the most
basic operators needed by a database system, assuming a insert only system as
proposed in [4,8,12,13]. Additionally, more complex operators can be assembled
by combining these basic operators, as e.g. a nested loop join consisting of mul-
tiple scans. We differentiate between equality and range selections as they have
different performance characteristics due to differences when performing value
comparisons introduced by the dictionary encoding.

A scan with equality selection sequentially iterates through all values of
a column and returns a list of positions where the value in the column equals
the searched value. The costs for an equal scan on an uncompressed column are
characterized by comparing all r values and by building the result set, resulting
in O(r ·e+ s ·r). On a column with a sorted dictionary, the value-id in the value
dictionary of the column for the searched value x is retrieved first by performing
a binary search for x in the dictionary. Then, the value-ids of the column are
scanned sequentially and each matching value-id is added to the set of results.
The costs for an equal scan on a column with a sorted dictionary consist of the
binary search cost in the dictionary and comparing each value-id, resulting in
O(log d+ r ·ec+ s ·r). In contrast to the sorted dictionary case, the search costs
for a column with an unsorted dictionary are linear, resulting in a complexity
for an equal scan of O(d+ r · ec + s · r).

A scan with range selection sequentially iterates through all values of a
column and returns a list of positions where the value in the column is between a
low and high boundary. The implementation of a range scan for an uncompressed
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column is similar to the equal scan, the comparisons can be performed directly on
the values while iterating sequentially through the column. Therefore, the costs
are determined by the value length e, the number of rows r and the selectivity s
of the scan, resulting in O(r ·e+s ·r). The implementation for the range scan on
a dictionary encoded column with a sorted dictionary works as follows. First, the
value-ids of low and high are retrieved with a binary search in the dictionary. As
the dictionary is sorted idlow < idhigh ⇒ value(idlow) < value(idhigh) applies.
Therefore, the value-ids of the column can be scanned and it can be decided only
by comparing with the value-ids of low and high if the current value-id has to
be a part of the result set. The costs are similar to the costs for an equal scan,
determined by the binary search costs, the scanning of the column and building
the result set, resulting inO(log d+r·ec+s·r). Finally, on an unsorted dictionary,
we can not draw any conclusions of the relations between two values based on
their value-ids in the dictionary. We iterate sequentially through the value-ids of
the column. For each value-id, we perform a lookup retrieving the actual value
stored in the dictionary, resulting in a complexity of O(r · ec + r · e+ s · r).

A positional lookup retrieves the value of a given position p from the col-
umn. The output is the actual value, as the position is already known. In case
of an uncompressed column, the value can be retrieved directly, resulting in a
complexity of O(e). In the case of a dictionary encoded column, the value-id is
first retrieved for position p and then a dictionary lookup is performed in or-
der to retrieve the searched value. The costs depend on the compressed and the
uncompressed value length, resulting in a complexity of O(ec + e).

An insert operation appends a new row to a column. As we keep the rows
always in insertion order, this can be implemented as a trivial append operation,
where we assume that there is enough free and allocated space to store the
inserted row. In the case of a dictionary encoded column, we have to check if
the value is already in the dictionary. First, a binary search is performed on the
dictionary for value v. If v is not found in the dictionary, it is inserted so that
the sort order of the dictionary is preserved. In case that v is not inserted at the
end of the dictionary a re-encode of the complete column has to be performed,
in order to reflect the updated value-ids of the dictionary. After the re-encode or
if v was already found in the dictionary, the value-id is appended to the column.
The complexity is in O(log d+d+r·ec+e). In case of a column with an unsorted
dictionary, we first search for the inserted value in the dictionary by performing
a linear search. As the dictionary is not kept in a particular order, the values
are always appended to the end of the dictionary. Therefore, no re-encode of the
column is necessary. The resulting complexity is O(d+ ec + e).

5 Parameter Effects

In the previous sections we defined plan operators and discussed their imple-
mentations and complexity depending on the parameters defined in Section 3.
This section thrives to experimentally verify the theoretical discussion of the
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Fig. 1. CPU cycles for (a) equal scan and (b) range scan on one column with number
of distinct values d varied from 210 to 223, r = 223, u = 223, e = 8, k = 0 and a query
selectivity of s = 2,000

parameters and their influence on plan operations.1 Due to space limitations, we
only show some detailed experimental results.

Number of Rows. The number of rows r has a linear influence on the perfor-
mance of scan operations, whereas the time per row stays constant. For positional
lookups, the number of rows has no influence on the performance on the lookup
operation. When inserting new values into a column, the number of rows r has
no influence on the time an actual insert operation takes, regardless if the col-
umn is uncompressed or dictionary encoded. However, on dictionary encoded
columns with a sorted dictionary, the number of rows has a linear influence on
the re-encode operation if necessary.

Number of Distinct Values. We now focus on the number of distinct values
d of a column and their influence on scan, insert and lookup operations. When
scanning a column with an equal scan, we expect the number of distinct values
to influence the dictionary encoded columns, but not the uncompressed column.
Figure 1(a) shows the results of an experiment performing an equal scan on a
column with 223 rows and d varied from 210 to 223. We chose a selectivity of 2,000
rows, in order to keep the effect of writing the result set minimal. As expected,
the runtime for the scan on the uncompressed column is not affected and we
clearly see the linear impact on the column with an unsorted dictionary. In
contrast to an equal scan, the implementation of a range scan only differs in the
case for an unsorted dictionary. Therefore, the cases for an uncompressed column
and a column with a sorted dictionary are the same as discussed for the equal
scan operation, as Figure 1(b) shows. In case of an unsorted-dictionary encoded
column, Figure 1(b) shows a strong impact of the varied number of distinct values
on the runtime. The increase in CPU cycles with increasing distinct values is
due to a cache effect. As u = 223, we access the dictionary in a random fashion
while iterating over the column. As long as the dictionary is small and fits into

1 All experiments were conducted on an Intel Xeon X5650, with 2x6 cores, hyper-
threading, 2.67 GHz and 48 GB main memory. The system had 32 KB L1 data
cache (8-way), 256 KB L2 cache (8-way), 12 MB L3 cache (16-way) and a two level
TLB with 64 and 512 entries.
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the cache, these accesses are relatively cheap. With a growing number of distinct
values the dictionary gets too large for the individual cache levels and the number
of cache misses per dictionary access increases, resulting in increasing time for
the scan operation. Considering a value length of 8 bytes, we can identify jumps
slightly before each cache level size of 32KB, 256KB and 12MB.

Value Disorder. When performing an equal scan, the comparisons can be done
directly on the value-ids in case of a dictionary encoded column or are done
directly on the values in case of an uncompressed column. Therefore, the value
disorder does not influence the performance of equal scans. Regarding range
scan operations, we see no influence in case of an uncompressed column or a
column with a sorted dictionary when variying the disorder of values in a column.
In case of a dictionary encoded column with an unsorted dictionary, we se an
increase in CPU cycles. In contrast to an equal scan, the range scan operation
on an unsorted dictionary has to lookup the actual values in the dictionary in
order to compare them. When the value disorder is low, temporal and spatial
locality for the dictionary access is high, which results in good cache usage with
a high number of cache hits. The greater the disorder gets, the more random the
accesses to the dictionary get and the number of cache misses when accessing
the dictionary increases, resulting in more CPU cycles for the scan operation.
The value disorder has no influence on single positional lookups and inserts.

Value Length. For uncompressed columns, we see an increase for the scan opera-
tion with longer values, as expected. However, every 16 bytes we noticed a perfro-
mance jump, due to alignment effects. In case of a dictionary compressed column,
we see no significant influence in case of a sorted dictionary based on the value
length. When using an unsorted dictionary, the costs for scanning the dictionary
are significantly higher and we identify a significant impact of the value length on
the total scan costs. In case of an uncompressed column, we see an increase in costs
with larger value lengths and the same alignment effect, as the values are compared
directly and larger values result in larger costs for comparing the values. Similar
to the equal scan, we see no significant impact of the value length for the case of a
sorted dictionary but an increase in case of an unsorted dictionary. The costs for a
positional lookup do increase linearly with increasing size of values, as the actual
values are returned by the lookup operation, resulting in more work for longer val-
ues. The costs for inserting new values always increase with larger values, as the
costs for writing the values do increase.

Value Skewness. The skewness of values influences the pattern in which the
dictionary of a column is accessed when scanning its value-ids and looking them
up in the dictionary, the more skew the value distribution, the less cache misses
occur. In case of an equal scan, positional lookup or insert we do not have this
pattern of scanning the column and accessing the dictionary. Therefore, we do
not expect the skewness of values in a column to influence these operations, which
is outlined by the experimental result shown in Figure 2(a) for a scan operation
with equality selection. In contrast, Figure 2(b) shows the influence of the value
skewness on a range scan operation. In case of a dictionary encoded column
with an unsorted dictionary, we scan the value-ids of the column sequentially
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Fig. 2. CPU cycles for (a) equal scan and (b) range scan on one column with value
skewness k varied from 0 to 2, r = 20 million, d = 200,000, u = 20 million, e = 8 and
a query selectivity of s = 2,000

and randomly access the value dictionary (value disorder u = 20 million). The
more skew the value distribution is, the more likely it gets that a value with
a high frequency is accessed and is still in the cache. Therefore the number of
cache misses is reduced for skewed value distributions, resulting in a faster range
scan operation.

6 Estimating Cache Misses

In the previous section, we found parameters like the influence of the number
of distinct values or the value skewness on a scan operator with range selection,
that were not inferable based on the theoretical complexity. These influences are
based on cache effects, which will be discussed in this section followed by a cost
model to predict the number of cache misses for our discussed plan operators. In
traditional disk based systems, IO operations are counted and used as the basic
unit of measurement. For in-memory database systems IO operations are not of
interest and the focus shifts to main memory accesses.

In general, assuming that all data resides in main memory, the total execu-
tion time of an algorithm can be separated into the time spent computing TCPU

and the time for accessing the data in memory TMem [10]. Due to increasing
processor speeds but stagnating memory speeds, memory access is getting more
expensive in relation, as more CPU cycles are wasted while stalling for memory
access [3, 10, 11]. In case the considered algorithms are close to be bandwidth
bound, TMem is the dominant factor driving the execution time. Additionally,
modeling TCPU requires internal knowledge of the used processor, is very im-
plementation specific and also dependent on the resulting machine code created
by the compiler, which makes it hard to model. As our considered operations on
the various data structures only perform a small amount of computations while
accessing large amounts of data, we assume our algorithms to be bandwidth
bound and believe TMem to be a good estimation of overall costs. The costs
for accessing memory can vary heavily due to the underlying memory hierar-
chy and mechanisms like prefetching and virtual address translation and can be
quantified by the number of cache misses on each level in the memory hierarchy.
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Fig. 3. Evaluation of predicted cache misses

We will provide explicit functions to calculate the estimated number of cache
misses for each operation and data structure. Some cost functions are based on
the work presented in [10], where the authors describe a generic cost model,
estimating the execution costs of algorithms based on cache misses by modeling
basic access patterns and an algebra to model more complex patterns. We de-
velop own parameterized cost functions estimating the number of cache misses
for each operation, specifically designed for the operations and data structures.
With the specific parameters for each cache level, the cache misses on that level
can be predicted. Furthermore, the total costs can be calculated by multiplying
the number of cache misses with the latency of the next level in the hierarchy as
proposed in [10]. Measuring the individual cache level latencies requires accurate
calibration and is very system specific. As a simpler and more robust estimation,
we use the number of cache misses as a direct indicator for the resulting number
of cycles, only roughly weighting the different cache levels. The cache level in the
hierarchy is indicated by i, whereas the Transaction Look-Aside Buffer (TLB) is
treated as an additional level in the hierarchy. The cache line size or block size
of a respective level is given by Bi and the size by Ci. The number of cache lines
at the level i is denoted by #i. The function Mi(o, c) describes the estimated
amount of cache misses for an operation o on a column c. The operations are
escan, rscan, lookup and insert. The respective physical column organization is
given by a subscript indicating A) an uncompressed column with, B) a dictio-
nary encoded column with an unsorted dictionary and C ) a dictionary encoded
column with a sorted dictionary.

Scan with Equality Selection. An equal scan on uncompressed columns,
consists of sequentially iterating over the column, resulting in as many cache
misses as the column covers cache lines. In case the column is dictionary encoded
with a sorted dictionary, the binary search for the searched value results in
log2 random cache misses, while the sequential scan over the compressed value-
ids results in as many cache misses as the compressed column covers cache
lines (Equation 1). The number of cache misses for an equal scan on a column
with an unsorted dictionary is similar as with a sorted dictionary, but instead
of a binary search a linear search is performed, scanning in average half the
dictionary (Equation 2). Figure 3(a) shows that the predicted cache misses
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Mi(escanB, c) =

⌈
c.r · c.ec

Bi

⌉
+ log2(c.d · c.e) (1)

Mi(escanC , c) =

⌈
c.r · c.ec

Bi

⌉
+

⌈
c.d · c.e
2 · Bi

⌉
(2)

follow closely the measured number of misses for the equal scan experiment
varying the number of rows.

Scan with Range Selection. In case of an uncompressed column, a scan with
range selection iterates sequentially over the uncompressed values, comparing the
values with the requested range. Similarly, in case of a sorted dictionary, the
searchedvalues are retrieved fromthedictionarywithabinary searchand thevalue-
ids are scanned sequentially for the search value-ids. In both cases, the resulting
cachemisses are the same as for a scan with equality selection. For unsorted dictio-
naries, the scan operation sequentially iterates over the column and has to perform
a random accesses into the dictionary due to the range selection. Regarding the
random access into the dictionary, we assume that every value in the dictionary is
accessed at least once. In the best case the access to the dictionary is sequentially
utilizing all values in a cache-line. In the worst case, every access to the dictionary
may result in a cache miss. The number of cache misses increases with increasing
dictionary sizes respective to the cache size and the amount of disorder in the col-
umn. Therefore, we model the number of randommisses by interpolating between
0 and the number of rows in the column.

In order to smoothly interpolate between two values, we define the following
helper functions. Il is a simple linear interpolation function between y0 and
y1, whereas t varies from 0 to 1. Furthermore, we define Id as a decelerating
interpolation function.

Based on Il and Id, we construct Ic as a cosinus-based interpolation function
to smoothly interpolate between two values, as we found this interpolation type
to fit well to the cache characteristics. Finally, we introduce I as a helper function
modeling a function stepping smoothly from y0 to y1 around a location of x0,
whereas ρ indicates the range in which the interpolation and τ the degree of
how asymmetric the interpolation is performed. These values might be system
specific and can be calibrated as needed.

If the number of covered cache-lines Ci is smaller than the number of avail-
able cache-lines #i, every cache-line is loaded at its first access and remains in
the cache. For subsequent accesses, this cache-line is already in the cache and the

Il(y0, y1, t) = y0 + t · (y1 − y0) (3)

Id(y0, y1, t) = Il(y0, y1, 1− (1− t)2) (4)

Ic(y0, y1, t) = Il

(
y0, y1,

1− cos(π · Id〈0, 1, t〉)
2

)
(5)
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I(x, x0, y0, y1, ρ, τ) =

⎧⎪⎨⎪⎩
y0 : x < 2x0−ρ

y1 : x ≥ 2x0+ρ∗τ

Ic(y0, y1,
log2(x)−x0+ρ

ρ∗(τ+1) ) : else

(6)

Mr
i (rscanC , c) = I(c.d, log2(Ci), 0, c.r, ρ, τ) (7)

Ms
i (rscanC , c) = max

(⌈
C(i, c)

4096

⌉
,C(i, c)− Mr

i

3

)
(8)

Mtlb
i (rscanC , c) = I(c.d, log2(Ctlb · 4i), 0, c.r, ρ, τ) (9)

access does not create an additional cache miss. If Ci > #i, then already loaded
cache-lines may be evicted from cache by loading other cache-lines. Subsequent
accesses then have to load the same cache-line again, producing more cache
misses. The worst case is that every access to a cache-line has to load the line
again, because it was already evicted, resulting in col.r cache misses. Assuming
randomly distributed values in a column, the number how often cache-lines are
evicted depends on the ratio of the number of cache-lines #i and the number of
covered cache-lines Ci. With increasing Ci the probability that cache-lines are
evicted before they are accessed again increases. Equation 7 outlines the number
of random cache misses.

The number of sequential cache misses is calculated in Equation 8 and depends
on the success of the prefetcher. In case no or only a few randomcachemisses occur,
the prefetcher has not enough time to load the requested cache lines, resulting in
sequential misses.With increasing numbers of random cachemisses, the time win-
dow for prefetching increases, resulting in less sequential cache misses. Assuming
a page size of 4KB, we found Ms

i to be a good estimation, as a micro benchmark
turned out that every three random cache misses when accessing the dictionary
leave the prefetcher enough time to load subsequent cache lines. Additionally, we
also have to consider extra penalties payed for TLB misses, as outlined by Eqau-
tion 9. In case an address translation misses the TLB and the requested page table
entry is not present in the respective cache level another cache miss occurs. In the
worst case, this can introduce an additional cachemiss for every dictionary lookup.

Finally, the total number of cache misses for a scan operation with range selec-
tion on a column with an uncompressed dictionary is given by adding random,
sequential and TLB misses. Figure 3(b) shows a comparison of the measured
effect of an increasing number of distinct values on a range scan on an uncom-
pressed column with the predictions based on the provided cost functions. The
figure shows the number of cache misses for each level and the model correctly
predicts the jumps in the number of cache misses.

Lookup. A lookup on an uncompressed column results in as many cache misses
as one value covers cache lines on the respective cache level. In case the column
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is dictionary encoded it makes no difference if the lookup is performed on a
column with a sorted or an unsorted dictionary, hence we provide one function
Mi(lookupB/C) for both cases.

Insert. The insert operation is the only operation we consider writing to main
memory. Although it is not quite accurate, we will treat write access similar as
reading from main memory and only consider resulting cache misses. An insert
into an uncompressed column is trivial, resulting in as many cache misses as
one value covers cache lines on the respective cache level. In case we perform an

Mi(insertB , c) =

⌈
c.e

Bi

⌉
+

⌈
c.ec
Bi

⌉
+

⌈
log2

(
c.d · c.e

Bi

)⌉
(10)

Ms
i (insertC , c) =

⌈
c.e

Bi

⌉
+

⌈
c.ec
Bi

⌉
+

⌈
c.d · c.e
2 · Bi

⌉
(11)

insert into a column with a sorted dictionary, we first perform a binary search
determining if the value is already in the dictionary, before writing the value and
value-id, assuming the value was not already in the dictionary (Equation 10).
The number of cache misses in the unsorted dictionary case are similar to the
sorted dictionary case, although the cache misses for the search depend linearly
on the number of distinct values (Equation 11).

7 Index Structures

This section discusses the influence of index structures on top of the evaluated
data structures and their influence on the discussed plan operators. First, we
extend the unsorted dictionary case by adding a tree structure on top, keeping
a sorted order and allowing binary searches. Second, we discuss the influence of
inverted indices on columns and extend our model to reflect these changes. As
tuples are stored in insertion order, we assume an index to be a separate auxiliary
data structure on top of a column, not affecting the placement of values inside
the column. Furthermore, we distinguish between column indices and dictionary
indices. A column index is built on top of the values of one column, e.g. by
creating a tree structure to enable binary search on the physically unsorted
values in the column. In contrast, a dictionary index is a B+-Tree built only on
the distinct values of a column, enabling binary searching an unsorted dictionary
in order to find the position of a given value in the dictionary.

Column and dictionary indices are assumed to be implemented as B+-Tree
structures. We denote the fan out of a tree index structure with If and the
number of nodes needed to store d keys with In. The fan out constrains the
number n of child nodes of all internal nodes to If/2 ≤ n ≤ If . IBi denotes
the numbers of cache lines covered per node at cache level i. The number of
matching keys for a scan with a range selection is denoted by q.nk and q.nv

denotes the average number of occurrences of a key in the column.
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7.1 Dictionary Index

A dictionary index is defined as a B+-Tree structure on top of an unsorted dic-
tionary, containing positions referencing to the values in the dictionary. Looking
up a record is not affected by a dictionary index as the index can not be lever-
aged performing the lookup and does not have to be maintained. Also, scans
with range selections still need to lookup and compare the actual values as the
value-ids of two values still allow no conclusions about which value is larger or
smaller.

Regarding equal scans on a column with a dictionary index, we can leverage
the dictionary index for retrieving the value-id and perform a binary search.
Therefore, the costs for the binary search depend logarithmically on the number
of distinct values of the column. When comparing costs for a scan with equality
selection for a column using an unsorted dictionary without a dictionary index
to a column with a dictionary index, we notice similar costs for the scan op-
eration on columns with few distinct values. However, as the dictionary grows,
the costs for linearly scanning the dictionary increase linearly in case of not us-
ing a dictionary index and the costs with an index only increase slightly due to
the logarithmic cost for the binary search, resulting in better performance when
using a dictionary index.

One main cost factor for inserting new values into a column with an unsorted
dictionary is the linear search determining if the value is already in the dictionary.
This can be accelerated through the dictionary index, although it comes with the
costs of maintaining the tree structure. Assuming the new value is not already
in the dictionary, the costs for inserting it are writing the new value in the
dictionary, writing the compressed value-id, performing the binary search in the
index and adding the new value to the index.

Considering the discussed operations, a dictionary encoded column always
profits by using a dictionary index. Therefore, we do not provide adapted cost
functions for a dictionary index as we do not have to calculate in which cases it is
advisable to use. Even insert operations do profit from the index as the dictionary
can be searched with logarithmic costs, which outweighs the additional costs of
index maintenance.

7.2 Column Index

We assume a column index to be a B+-Tree structure, similar to the dictionary
index described above. However, the index is built on top of the complete column
and not only on the distinct values. Therefore, the index does not only store one
position, but has to store a list of positions for every value. A column index can
be added to any column, regardless of the physical organization of the column.
Performing positional lookups does not profit from a column index.

A search with equality selection can be answered entirely by using the column
index. Therefore, the costs do not depend on the physical layout of the column
and the same algorithm can be used for all column organizations (Equation 12).
First, the index is searched for value X by binary searching the tree structure
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Fig. 4. CPU cycles for (a) scan with a range selection on a column with and without
a column index. (b) shows the respective cache misses for the case of using a column
index. r = 10M , d =1M, e = 8, u = 0, k = 0.

resulting in a list of positions. If the value is not found, an empty list is re-
turned. The resulting list of positions then has to be converted into the output
format by adding all positions to the result array. Locating the leaf node for the
searched key requires reading logIf (In) · IBi cache lines for reading every node
from the root node to the searched leaf node, assuming each accessed node lies
on a separate cache line. Then, iterating through the list of positions and adding
every position to the result array requires to read and write q.nv/Bi cachelines,
assuming the positions are placed sequentially in memory. Searches with range
selection can also be answered entirely by using the column index (Equation 13).
Assuming the range selection matches any values, we locate the node with the
first matching value by performing a binary search on the column index. The
number of cache misses for the binary search are logIf (In) · IBi . Then, we se-
quentially retrieve the next nodes by following the next pointer of each node
until we find a node with a key greater or equal to high. Assuming completely
filled nodes, this requires reading all nodes containing the q.nk matching keys,
resulting in q.nk/If nodes. For all matching nodes the positions are added to the
result array, requiring to read and write q.nv/Bi cache lines per key. Inserting
new values into the physical organization of a column is not affected by a col-
umn index. However, the new value has also to be inserted into the column index
(Equation 14). The costs incurring for the index maintenance are independent
from the physical organization of the column. This requires searching the tree
structure for the inserted value, reading logIf (In) · IBi cache lines. If the value
already exists, the newly inserted position is added to the list of positions of the
respective node, otherwise the value is inserted and the tree has to be potentially
rebalanced. The costs for rebalancing are in average logIf (In) · IBi .

Figure 4(a) shows a comparison for a range scan on a column index compared
to a column with a sorted dictionary and without an index. The figure shows
the resulting CPU cycles for the scan operation with increasing result sizes. For
small results the index performs better, but around a selectivity of roughly 4
million the complete scan performs better due to its sequential access pattern.
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Figure 4(b) shows the resulting cache misses for the scan operation using the
column index and the predictions based on the defined model.

Mi(escanI) = logIf (In) · IBi + 2 · q.nk ·
⌈
q.nv

Bi

⌉
(12)

Mi(rscanI) = logIf (In) · IBi + IBi ·
q.nk

If
+ 2q.nk ·

⌈
q.nv

Bi

⌉
(13)

Mi(insertI) = 2 · logIf (In) · IBi (14)

8 Conclusions

In this paper, we presented a cost model for estimating cache misses for the
plan operation equal scan, range scan, positional lookup and insert in a column-
oriented in-memory database. We presented a detailed parameter analysis and
cost functions predicting cache misses and TLB misses for different column or-
ganizations. The number of distinct values has a strong impact on range and
equal scans, and renders unsorted dictionaries unusable for columns with a large
amount of distinct values and dictionaries larger than available cache sizes. How-
ever, if the disorder in the column is low, the penalties payed for range scans are
manageable. Additionally, the skewness of values in a column can influence the
performance of range scan operators, although the impact is small unless the
distribution is extremely skewed. Finally, we presented dictionary and column
indices and argued that dictionary encoded columns always profit from using
a dictionary index. Uncompressed columns seem to be well suited for classical
OLTP workloads with a high number of inserts and mainly single lookups. As
the number of scan operations and especially range scans increases, the addi-
tional insert expenses pay off, rendering dictionary encoded columns suitable for
analytical workloads. Considering mixed workloads, the optimal column organi-
zation highly depends on the concrete workload.
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Abstract. In last decades, semantic databases (SDB) emerge and be-
come operational databases, since the major vendors provide semantic
supports in their products. This is mainly due to the spectacular devel-
opment of ontologies in several domains like E-commerce, Engineering,
Medicine, etc. Contrary to a traditional database, where its tuples are
stored in a relational (table) layout, a SDB stores independently ontology
and its instances in one of the three main storage layouts (horizontal, ver-
tical, binary). Based on this situation, SDB become serious candidates
for business intelligence projects built around the Data Warehouse (DW)
technology. The important steps of the DW development life-cycle (user
requirement analysis, conceptual design, logical design, ETL, physical
design) are usually dealt in isolation way. This is mainly due to the com-
plexity of each phase. Actually, the DW technology is quite mature for
the traditional data sources. As a consequence, leveraging its steps to
deal with semantic DW becomes a necessity. In this paper, we propose a
methodology covering the most important steps of life-cycle of semantic
DW. Firstly, a mathematical formalization of ontologies, SDB and se-
mantic DW is given. User requirements are expressed on the ontological
level by the means of the goal oriented paradigm. Secondly, the ETL
process is expressed on the ontological level, independently of any imple-
mentation constraint. Thirdly, different deployment solutions according
to the storage layouts are proposed and implemented using the data ac-
cess object design patterns. Finally, a prototype validating our proposal
using the Lehigh University Benchmark ontology is given.

1 Introduction

Data are the most important asset of organizations since they are manipulated,
processed and managed in the organization’s daily activity. The best decisions
are made when all the relevant data available are taken into consideration. These
data are stored in various heterogeneous and distributed sources. To exploit these
mine of data, data warehouse (DW) technology showed its efficiency. It aims at
materializing data and organizing them in order to facilitate their analysis. A
DW can be seen as a materialized data integration system, where data are viewed
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in a multidimensional way [3] (i.e., data are organized into facts describing sub-
jects of analysis. These data are analyzed according to different dimensions).
A data integration system offers a global schema representing a unified view of
data sources. Formally, it may be defined by a triple: <G,S,M> [18], where G
is the global schema, S is a set of local schemas that describe the structure of
each source participating in the integration process, and M is a set of assertions
relating elements of the global schema G with elements of the local schemas S.
Usually, G and S are specified in suitable languages that may allow for the ex-
pression of various constraints [8]. In the DW context, the integration aspect
is performed through ETL (Extract-Transform-Load) process, where data are
extracted from sources, pre-processed and stored in a target DW schema [27].

As any information system, the construction of a traditional DW should pass
through a number of phases characterizing its life-cycle: requirements analysis,
conceptual design, logical design, ETL process and physical design [11]. Require-
ment analysis phase identifies which information is relevant to the decisional
process by either considering the decision maker needs or the actual availability
of data in the operational sources. Conceptual design phase aims at deriving an
implementation-independent and expressive conceptual schema. Logical design
step takes the conceptual schema and creates a corresponding logical schema on
the chosen logical model (relational, multidimensional, hybrid, NoSql models).
Usually the relational table layout is advocated in the ROLAP implementation.
ETL designs the mappings and the data transformations necessary to load into
the logical schema of the DW the data available at the operational data source
level. Physical design addresses all the issues related to the suite of tools chosen
for implementation - such as indexing and partitioning. We notice however, that
these phases are usually treated in the literature in isolated way. This is due to
the difficulty and the complexity of each phase.

Parallel to this, ontologies emerge in several domains like E-commerce, Engi-
neering, Environment, Medicine, etc. The most popular definition of ontology is
given by Gruber [12]. An ontology is a formal, explicit specification of a shared
conceptualization. Conceptualization refers to an abstract model of some domain
knowledge in theworld that identifies thatdomain’s relevant concepts [6].The shar-
ing characteristic reflects that ontology has to be consensual and accepted by a
group of experts in a given domain. Based on this definition, we claim that ontolo-
gies leverage conceptual models. These nice characteristics have been exploited by
academician and industrials to define data integration systems. They contribute
in resolving the different syntax and semantics conflicts identified in data sources.
Two main architectures of ontology-based data integration system following the
<G,S,M> framework are distinguished [3]: (1) in the first architecture, domain
ontologies played the role of the global schema (G). A typical example system fol-
lowing this architecture is SIMS [1]. (2) In the second architecture, each source is
associated to a local ontology referencing a global ontology (in a priori or a poste-
riormanners) andmappings aredefinedbetween the global and the local ontologies.
The MECOTA system [29] is an example of this architecture.
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Recently, a couple of studies proposed to store ontologies describing the sense
of database instances and those instances in the same repository. Such database
is called Semantic Databases (SDB). Different SDBs were proposed by both
industrial (Oracle, IBM Sor) and academic communities, that differ according
to their architectures and their storage layouts: vertical, horizontal, binary (see
Section 3). The emergence of SDBs makes these sources candidates for DW
systems. Unfortunately, no complete method considering the particularities of
SDBs in DW design exists. The availability of ontologies may allow defining
semantic mappings between schemas of source and the target DW schema. This
leverages the integration process to the ontological level, and frees it from all
implementation issues. But, it requires a new step concerning the deployment of
the logical schema of the warehouse according the target storage layout.

In this paper, we propose a methodology for designing semantic warehouses,
where ontologies are confronted to each step of the life-cycle: requirements anal-
ysis, conceptual design, logical design, ETL process, deployment and physical
design. The contributions of the paper are:

1. Formalization of a conceptual framework <G,S,M>, handling SDBs di-
versity and definition of a DW requirements model following a goal-driven
approach.

2. Proposition of a complete ontology-based method for designing semantic
DWs taking as inputs the framework <G,S,M> and the requirements
model.

3. Implementation of a case tool supporting the method and validation of the
method through a case study instantiating <G,S,M> framework with Or-
acle SDB and LUBM benchmark. To the best of our knowledge, this work
is the sole that covers all steps of DW design using a semantic approach.

The paper is organized as follows. Section 2 presents the related work of DW
design. We focus on ontology-based design methods. Section 3 gives some pre-
liminaries about Semantic Databases. Section 4 describes the design method.
Section 5 presents a case study validating our proposal. Section 6 presents the
case tool supporting our proposal. Section 7 concludes the paper by summarizing
the main results and suggesting future work.

2 Related Work: Towards an Ontological Design

Two main approaches exist for the initial design of DW [30]: the supply-driven
approach and the demand-driven approach. In the first category, the DW is de-
signed starting from a detailed analysis of the data sources. User requirements
impact on design by allowing the designer to select which parts of source data
are relevant for the decision making process. The demand-driven approaches
starts from determining the information requirements of DW users or decision
makers. This approach gives user requirements a first role in determining the
information contents for analysis. Requirements analysis differs according to the
analyzed objects. We distinguish process-driven, user-driven or goal-driven anal-
ysis. Process-driven analysis [19,15] analyze requirements by identifying business
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process of the organization. User-driven analysis [30] identifies requirements of
each target user and unifies them in a global model. Goal driven analysis [10]
has been frequently used for DW development. It identifies goals and objectives
that guide decisions of the organization at different levels.

As we said before, ontologies played a crucial role in several facets in the pro-
cess of construction and exploitation of data integration systems: global schema
definition, syntactic and semantic conflict resolution, query processing, caching,
etc. Similarly, ontologies have been exploited in some steps of DW design cycle.
First in the requirements analysis step, where we proposed in [13] to specify DW
business requirements using an OWL domain ontology covering a set of sources.
This projection allows defining the DW conceptual and then logical model. On-
tologies largely contribute in the requirement engineering field to specify, unify,
formalize requirements and to reason on them to identify ambiguity, comple-
mentary and conflict [23].

Ontologies were timidly used in the ETL step. [4] proposed a method for
integrating relational data sources into a DW schema using an ontology as a
global schema playing an intermediary model between the target DW model and
sources schemas. Skoutas et al. [27] automate the ETL process by constructing
an OWL ontology linking schemas of semi-structured and structured (relational)
sources to a target DW schema.

Other design methods used ontologies for multidimensional modeling tasks.
[24] defines the DW multidimensional model (facts and dimensions) from an
OWL ontology by identifying functional dependencies (Functional Object Prop-
erties) between ontological concepts. A functional property is defined as a prop-
erty that can have only one (unique) value j for each instance i, i.e. there cannot
be two distinct values j1 and j2 such that the pairs (i, j1) and (i, j2) are both
instances of this property. [25] and [22] are two attempts that propose ontologi-
cal methods combining multidimensional modeling and ETL steps: [25] is based
on Skoutas’s study [27], and defines an ETL and a design process for analyzing
source data stores. It identifies the ETL operations to execute according to a
multidimensional model defined. The logical and physical design steps are not
considered in this work. [22] considers semantic data provided by the semantic
web and annotated by OWL ontologies, from which a DW model is defined and
populated. However, the ETL process in this work is dependent of a specific
instance format (triples).

Three observations can be made by analyzing the studied works:

1. We notice that ontologies are used in different design steps separately, prov-
ing their usefulness, but no method propose to extend the role of ontologies
all along the design steps.

2. The discussed works consider logical schemas of sources as inputs of the
DW system, and make an implicit assumption that the DW model will be
deployed using the same representation (usually using a relational represen-
tation). The main contribution of our method compared to these works is
that we define the ETL process is fully defined at the ontological level, which
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allows the deployment of the DW model in different platforms according
designer recommendations.

3. almost no existing works consider Semantic Databases as candidates to build
the DW .

3 Preliminaries: Semantic Databases

In this section, we review the main concepts related to semantic databases:
ontologies, storage layouts, architectures, etc. to facilitate the presentation of
our proposal.

The massive use of ontologies by applications contributes largely of the gen-
eration of mountains of data referencing these ontologies. In the first generation
of ontological applications, the semantic data are managed in the main memory
like in OWLIM or Jena. Due to their growing, scalable solutions were developed.
SDB is one of the most popular solutions. It allows the storage of data and their
ontology in the same repository. Note that one important lesson learned from
almost 50 years of database technology is the advantage of data modeling, and
the physical and logical data independence. Object Management Group (OMG)
followed this trend, and defined a design architecture organized in four levels:
data of real world, the model, the meta-model and the meta-meta-model.

To ensure the same success of traditional databases, SDB design has to fol-
low these same levels. Both industrial (like Oracle [31] and IBM SOR [20]) and
academic (OntoDB [7]) communities defined SDB solutions, having different
architectures and proposed through an evolving process. Fig. 1 illustrates the
evolution of SDBs architectures according to the design levels. With the in-
creasing use of ontologies in different domains, different ontological languages
and formalisms have been proposed: RDF, RDFS, OWL, PLIB, KIF (M0 level
in Fig. 1). Storing ontologies in a database is made according to a specific storage
layout.

The diversity of ontology formalisms proposed gave rise to different storage
layouts (M1 level). We distinguish three main relational representations [7]: ver-
tical, binary and horizontal. Vertical representation stores data in a unique table
of three columns (subject, predicate, object) (eg. Oracle). In a binary represen-
tation, classes and properties are stored in different tables (eg. IBM SOR). Hor-
izontal representation translates each class as a table having a column for each
property of the class (eg. OntoDB). Other hybrid representations are possible.

SDBs can materialize models of different levels, which gave rise to different
SDB architectures. First SDBs (type I ) proposed a similar architecture as tradi-
tional database using two parts: data part and the meta schema part (catalog).
In the data part, ontological instances and also the ontology structure (concepts
and properties) are stored (M0 and M1 levels). For example, Oracle [31] SDB
uses vertical representation to store the ontology model and its data in a unique
table. A second architecture (type II ) separates the ontology model from its data
that can be stored in different schemas. This architecture is thus composed of
three parts [7]: the meta-schema, the ontology model and the data schema (eg.
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Fig. 1. Evolution of SDBs (ontology models, storage layouts and architectures)

IBM SOR [20] SDB). This architecture outperforms the first one, but the ontol-
ogy schema is based on the underlying ontology model and is thus static. A third
architecture (type III ) extends the second one by adding a new part which is a
reflexive meta-model of the ontology (eg. OntoDB [7]), offering more flexibility
to the ontology part (M2 and M3 levels).

4 Our Proposal

Our DW design follows the mixed approach, where data sources and user re-
quirements have the same role. Another characteristic of our proposal is that
it exploits the presence of ontologies. To fulfill our needs, we fix four objectives
that we discuss in the next sections:

1. Obj1: leveraging the integration framework <G,S,M> by an ontology;
2. Obj2: user requirement have to be expressed by the means of ontology;
3. Obj3: ETL process has to be defined on ontological level and not on physical

or conceptual levels, and
4. Obj4: The deployment process needs to consider the different storage layouts

of semantic DW .

4.1 Obj1: Integration Framework for SDBs

In this section, we define an integration framework <G,S,M> adapted to SDB
specificities.

The Global Schema G. Schema G is represented by a Global Ontology (GO).
Different languages were defined to describe ontologies. OWL language is the
language recommended by W3C consortium for defining ontologies. Description
Logics (DLs) [2] present the formalism underlying OWL language. We thus use
DLs as a basic formalism for specifying the framework.
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In DL, structured knowledge is described using concepts denoting unary pred-
icates and roles denoting binary predicates. Concepts denote sets of individuals,
and roles denote binary relationships between individuals. Two types of con-
cepts and roles are used: atomic and concept descriptions. Concept descriptions
are defined based on other concepts by applying suitable DL constructors (eg.
intersection, value restriction, limited existential quantification, etc), equipped
with a precise set-theoretic semantics.

A knowledge base in DL is composed of two components: the TBox (Termi-
nological Box), and the ABox (Assertion Box). The TBox states the intentional
knowledge of the modeled domain. Usually, terminological axioms have the form
of inclusions: C � D (R � S) or equalities: C ≡ D (R ≡ S) (C,D denote concepts,
R,S denote roles). For example, in the ontology model of Fig. 2, representing the
ontology of LUBM benchmark related to the university domain, the concept Uni-
versity can be defined as an Organization by specifying the axiom: University
� Organization. The ABox states the extensional knowledge of the domain and
defines assertions about individuals. Two types of assertions are possible: con-
cept assertions (Eg. Student(Ann)) and role assertions (e.g. TakeCourse(Ann,
Mathematics)).

Fig. 2. LUBM global schema

Based on these definitions, the GO is formally defined as follows:
GO :< C,R,Ref(C), formalism >, such that:

– C: denotes Concepts of the model (atomic concepts and concept descrip-
tions).

– R: denotes Roles of the model. Roles can be relationships relating concepts
to other concepts, or relationships relating concepts to data-values.

– Ref : C → (Operator, Exp(C,R)). Ref is a function defining terminologi-
cal axioms of a DL TBox. Operators can be inclusion (�) or equality (≡).
Exp(C,R) is an expression over concepts and roles of GO using constructors
of DLs such as union, intersection, restriction, etc. (e.g., Ref(Student)→(�,
Person � ∀takesCourse(Person, Course))).
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– Formalism : is the formalism followed by the global ontology model like
RDF, OWL, etc. Note that the definition of the GO concerns only its TBox,
which is usually assumed in DIS.

The Sources S. The set of sources considered are SDBs. Each SDB is defined
by its local ontology (Oi) and its instances part (the ABOX). As, explained pre-
viously, the ontology model and its instances can be stored using different storage
layouts. SDBs may have different architectures. A SDB is formally defined as
follows < Oi, I, Pop, SLOi , SLI , Ar > where:

– Oi: <C, R, Ref, formalism> is the ontology model of the SDB.
– I: presents the instances (the ABox) of the SDB.
– Pop : C → 2I is a function that relates each concept to its instances.
– SLOi : is the Storage Layout of the ontology model (vertical, binary or hori-

zontal).
– SLI : is the Storage Layout of the instances I.
– Ar: is the architecture of the SDB.

The Mappings M . Mappings assertions relate a mappable element
(MapElmG) of schema G (MapSchemaG) to a mappable element (MapElmS)
of a source schema (MapSchemaS). These assertions can be defined at the in-
tensional level (TBox) or at the extensional level (ABox). Different types of
semantic relationships can be defined between mappable elements (Equivalence,
Containment or Overlap). Discovering such mappings is related to the domain of
schema and ontology matching/alignment, which is out of the scope of this pa-
per. The mapping assertions are formally defined as follows M:< MapSchemaG,
MapSchemaS, MapElmG, MapElmS, Interpretation, SemanticRelation >. This
formalization is based on [26] meta-model:

– MapSchemaG and MapSchemaS: present respectively the mappable
schema of the global and the local ontology.

– MapElmG and MapElmS: present respectively a mappable element of the
global and the local ontology schema. This element can be a simple concept,
instance or an expression (Exp) over the schema.

– Interpretation: presents the Intentional interpretation or Extensional in-
terpretation of the mapping. In our study, the availability of global and local
ontologies allows to define intentional mappings.

– SemanticRelation: three relationships are possible: Equivalence, Contain-
ment or Overlap. Equivalence states that the connected elements represent
the same aspect of the real world. Containment states that the element in
one schema represents a more specific aspect of the world than the element
in the other schema. Overlap states that some objects described by an ele-
ment in one schema may also be described by the connected element in the
other schema.
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4.2 Obj2: Goal-Oriented Requirements Model

A goal is an objective that the system under consideration should achieve. Iden-
tifying goals of users is a crucial task for DW development. Indeed, the DW is
at the core of a decisional application that needs to analyze the activity of an
organization and where goals are important indicators of this activity. After an-
alyzing works of goal-oriented literature, we proposed a Goal model considered
as a pivot model since it combines three widespread goal-oriented approaches:
KAOS [17], Tropos [28] and iStar [5]. The model is presented in Fig. 3 (right
part). Fig. 5 presents a set of goals examples.

Let us take a goal Goal1: ”Improve the quality of teaching of courses according
to the dean of the university”. The goal model is composed of a main entity Goal
described by some characteristics (name, context, priority). A goal is issued and
achieved by some actors (dean). A goal is characterized by two coordinates: (1) a
Result to analyze (quality of teaching) that can be quantified by given formal or
semi-formal metrics measuring the satisfaction of the goal (number of students
attending the course), and (2) some Criteria influencing this result (course).

Two types of goals are identified: functional and non-functional goals. A non-
functional requirement is defined as an attribute or constraint of the system (such
as security, performance, flexibility, etc). Two types of relationships between
goals are distinguished (reflexive relations): AND/OR relationships decomposing
a general goal into sub-goals and influence relationships (positive, negative or
ambiguous influence). User’s goals in our method are used at different stages
of the method. First, goals will be used to identify the most relevant data to

Fig. 3. Requirements model proposed
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materialize in the DW . They are also used to identify the multidimensional
concepts (facts and dimensions) of the DW model.

4.3 Design Method

We propose a method for designing a semantic DW covering the following steps:
requirements analysis, conceptual design, logical design, ETL process, deploy-
ment and physical design. Fig. 4 illustrates these steps.

Requirements Analysis. This step allows the designer identifying the follow-
ing: (1) the set of relevant properties used by the target application and (2) the set
of treatments it should answer. The first set allows the construction of the dictio-
nary containing the relevant concepts required for the application. As the ontol-
ogy describe all concepts and properties of a given domain, a connection between
requirement model and the ontology model is feasible. To do so, we define a con-
nection between coordinates of each goal (Result and Criteria) and the resources
(concepts and roles) of theGO (Fig. 3-left part). This allows the designer to choose
the most relevant ontological concepts to express user’s goals. Knowing that the
GO is linked to the data sources, these concepts chosen to express goals inform the
designer about the most relevant data to store in the DW model.

For example, Goal1 is specified using the following resources of the LUBM
ontology (Fig. 2) (Student, Course, Work and Dean concepts).

Fig. 4. Design method proposed
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Fig. 5. Goals of university domain

Conceptual Design. A DW ontology (DWO) (that can be viewed as a con-
ceptual abstraction of the DW) is defined from the global ontology (GO) by
extracting all concepts and properties used by user goals. Three scenarios mate-
rialize this definition:

1. DWO = GO: the GO corresponds exactly to users’ requirements,
2. DWO ⊂ GO: the DWO is extracted from the GO,
3. DWO ⊃ GO: the GO does not fulfill all users’ requirements.

The designer may extend the DWO by adding new concepts and properties in
the case, where the GO does not satisfy all her/his requirements. The concepts
belonging to DWO and do not reference any concept of sources are annotated
and are set by null values in the target warehouse.

DWO is defined, we exploit its automatic reasoning capabilities to correct all
inconsistencies. Two usual reasoning mechanisms can first be used: (a) checking
the consistency of the ontology (classes and instances) and (b) inferring subsump-
tion relationships. This reasoning is supported by most existing reasoners (racer,
Fact++) and allows the detection of design errors. Another reasoning mechanism
is defined in order to propagate influence relationships between goals, as explained
in [14]. Influence relationships are used afterwards to explore themultidimensional
structure of the DW model, where we consider ’fact’ concepts as central concepts
and ’dimensions’ as concepts influencing them. The multidimensional role of con-
cepts and properties are then discovered and stored as ontological annotations.We
propose the algorithm 1 for multidimensional annotations.

Logical Design. The logical DW model is generated by translating the DWO
to a relational model (other data models can be chosen). Several works in the lit-
erature proposed methods for translating ontologies described in a given formal-
ism (PLIB, OWL, RDF) to a relational or an object-relational representations
[9].
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begin
for Each goal G do

Each concept (resp. role) used as a result of G is a fact (resp. measure)
candidate;
Each concept (resp. role) used as a criterion of G is a dimension (resp.
dimension attribute) candidate;
Criteria of goals influencing G are dimension candidates of the measure
identified for G;
Concepts of measures are facts candidates;
Concepts of dimension attributes are dimension candidates;
if fact concept F is linked to a dimension by (1,n) relationship then

keep the two classes in the model
else

Reject the dimension class;
end
Hierarchies between dimensions are constructed by looking for (1,n)
relationships between classes identified as dimensions (for each fact);

end
Generalization (is-a) relationships existing in the ontology between facts or
between dimensions are added in the model.;

end

Algorithm 1. Multidimensional annotations

Obj3: ETL Process. The goal of the ETL process is to populate the target
DW schema obtained in the previous step, by data of sources. [27] defined ten
generic operators typically encountered in an ETL process, which are:

1. EXTRACT (S,C): extracts, from incoming record-sets, the appropriate por-
tion.

2. RETRIEVE(S,C): retrieves instances associated to the class C from the
source S.

3. MERGE(S,I): merges instances belonging to the same source.
4. UNION (C,C’): unifies instances whose corresponding classes C and C′ be-

long to different sources S and S′.
5. JOIN (C, C’): joins instances whose corresponding classes C and C′ are

related by a property.
6. STORE(S,C, I): loads instances I corresponding to the class C in a target

data store S.
7. DD(I): detects duplicate values on the incoming record-sets.
8. FILTER(S,C,C’): filters incoming record-sets, allowing only records with val-

ues of the element specified by C’.
9. CONVERT(C,C’): converts incoming record-sets from the format of C to

the format of C′.
10. AGGREGATE (F, C, C’): aggregates incoming record-sets applying the ag-

gregation function F (e.g., COUNT, SUM, AVG, MAX) defined in the target
data-store.
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These operators have to be leveraged to deal with the semantic aspects of sources.
Therefore, we propose an Algorithm 2 for populating the DWO schema. The
algorithm is based on the generic conceptual ETL operators as presented above.
They can then be instantiated according to one of the storage layouts: vertical,
binary, horizontal. Each operator will correspond to a defined query.

Based on the framework <GO,SDB,M >, the integration process depends on
the semantics of mappings (SemanticRelation) between GO and local ontologies
(SDB), where four semantics mappings are identified: (1) Equivalent (CGO ≡
CSDB) and (2) Containment sound (CGO ⊃ CSDB): where no transformation
is needed. Instances are extracted from sources, merged, united or joined then
loaded in the target data store. (3) Containment complete (CGO ⊂ CSDB): where
source instances satisfy only a subset of the constraints required by GO classes,
some instances need to be transformed (converted, filtered and aggregated) then
merged, unified or joined and finally loaded to the target data store. (4) Overlap
mappings: where we need to identify the constraints required by GO classes
and not applied to the source classes. This case is then treated same as the
Containment (Complete) scenario. Algorithm 2 depicts the ETL process based
on these four scenarios.

Obj4: Deployment and Physical Design. In a traditional DW , the deploy-
ment followed one-to-one rule, where each warehouse table is stored following one
storage layout. In a semantic DW , the deployment may followed one-to-many
rule (à la carte), where the ontology model and the instances may have several
storage layouts independently. Our proposal offers designers the possibility to
choose her/his favorite storage (within the DBMS constraints) and then deploy
the warehouse accordingly.

The target DW model defined by our proposal is populated according to a
given DBMS. In the next section, a validation of our proposal is given using
Oracle DBMS. An Oracle SDB is used to store the target DW model and the
ontology defining its semantics.

5 Implementation

In order to demonstrate the feasibility of our proposal, we experiment it using
Lehigh University BenchMark LUBM1 (containing 4230 individuals) andOracle
SDB. Note that Oracle supports languages RDF and OWL to enable its users to
get benefit from a management platform for semantic data. Oracle has defined
two subclasses of DLs: OWLSIF and OWLPrime. We used OWLPrime2 frag-
ment which offers a richer set of DL constructors. The framework <GO, SDBs,
Mappings> is thus instantiated as follows <GO: LUBM Ontology, SDBs: Or-
acle SDBs, Mappings: defined between local ontologies of sources and LUBM
ontology>. LUBM Ontology model is used as the global ontology GO, and is
presented in Fig. 2.

1 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
2 http://www.w3.org/2007/OWL/wiki/OracleOwlPrime

http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
http://www.w3.org/2007/OWL/wiki/OracleOwlPrime
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begin
Input:

DWO: DW Ontology (Schema) and Si: Local Source (SDB)
Output: DWO populated (schema + instances)
for Each C : Class of ontology DWO do

IDWO = φ
for Each source Si do

if Cs ≡ C /* instances in Si satisfy all constraints imposed by DWO*/

then
C’= IdentifyClasse (Si, C) /*identify class from Si*/

else
if Cs ⊂ C /*Instances in Si satisfy all constraints imposed by DWO,

plus additional ones */ then
C’= IdentifyClasse (Si, C) /*identify class from Si*/

else
if Cs⊃ C Or Overlap mappings /* Instances satisfy only a subset of

constraints imposed by DWO*/ then
if format(C) �= format(Cs) then

Cconv= CONVERT (C, Cs) /*identify the constraint of format

conversion from the source to the target DWO*/

end
if C represent aggregation constraint then

Caggr= AGGREGATE (F, C, Cs) /*identify the constraint of

aggregation defined by F*/

end
if C represents filter constraint then

Cfilt= FILTER (Si, C, Cs) /*identify the filter constraint

defined in the target DWO*/

end
C’= ClasseTransformed (Si, C, Cconv, Caggr, Cfilt) /* Associate to the

class C’ the constraint of conversion, aggregation or filtering

defined by Cconv, Caggr and Cfilt*/

end

end

end
Isi= RETRIEVE (Si, C’) /*Retrieve instances of C’ and applying constraints

of conversion, aggregation or filtering if necessary*/

if more than one instance are identified in the same source then
IDWO= MERGE (IDWO, Isi) /*Merge instances of Si*/

end
if classes have the same super class then

IDWO= UNION (IDWO, Isi) /*Unites instances incoming from different

sources*/
else

if classes are related by same property then
IDWO= JOIN (IDWO, Isi) /* Join incoming instances*/

end

end
if Source contain instances more than needed then

IDWO= EXTRACT (IDWO, Isi) /* Extract appropriate portion of

instances*/
end

end
STORE(DWO,C, DD(IDWO)) /*Detects duplicate values of instances and load

them in DWO*/
end

end

Algorithm 2. The population of the DW by the means of ontological ETL operators
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The adopted scenario for evaluating our proposal consists in creating 4 Oracle
SDBs (S1, S2, S3 and S4), where each source references the Lehigh University
Benchmark (LUBM) ontology. The first three sources are defined using simple
mappings between their local ontologies and the LUBM ontology as follows:

1. the first source is defined as a projection on a set of classes of the LUBM
ontology. It can be viewed as a vertical fragment of the global ontology
(LUMB), where some classes are considered.

2. the second one is defined as a restriction of a set of roles for each LUBM
ontology (horizontal fragment).

3. the third one is defined by simultaneously applying the projection and the
restriction operations on LUMB ontology (mixed fragment).

Our proposal supports also complex mapping, where a source may be defined as
a view over the ontology, i.e., an expression using DL constructors. For instance,
our fourth source contains three classes: Person, Student and Employee defined
as follows:

1. S4.C1: Person, Ref (Person) = (Student ∪ Employee) ∩ ∀ member (Person,
Organization)

2. S4.C2: Student, Ref (Student) = Student ∩ ∀takesCourse (Person, Course)
3. S4.C3: Employee, Ref (Employee) = Person ∩ ∀WorksFor (Person, Organi-

zation)

Each source is thus instantiated using our framework as follows Si: < OiOracle,
Individuals (triples), Pop is given in tables RDF link$ and RDF values$, Ver-
tical, Vertical, type I>. Vertical storage is the relational schema composed of
one table of triples (subject, predicate, object). For example: (Student, type,
Class) for the ontology storage and (Student#1, type, Student) and (Student#1,
takeCourse, Course#1) for the instances storage. And the mapping assertions
between global and local ontology of the source are instantiated as follows:
< OiOracle of each source, GO (LUBM ontology model), Expression over GO,
Class of a source S, Intentional interpretation, (Equivalent, Containment or
Overlap): owl:SubClassOf and owl:equivalentClass in OWLPrime>.

We considered requirements presented in Fig. 5. The projection of these re-
quirements on the GO gives the schema of the DWO. For this case study, our
DWO corresponds to scenario 2 (DWO ⊂ GO). The algorithm 1 is applied to
annotate this ontology with multidimensional concepts. The multidimensional
schema presented in Fig. 6 is obtained, where three facts are identified (in a dark
color) linked to their dimensions.

The DWO annotated is translated to a relational schema. We also used Or-
acle SDBs to store the final DW schema and instances. The DWO is thus
translated into a vertical relational schema (N-Triple file). Oracle SDB allows to
load N-Triple files into a staging table using Oracle’s SQL*Loader utility. The
ETL algorithm we defined is applied to populate the relational schema. The al-
gorithm uses conceptual ETL operators that must be translated according the
vertical representation of Oracle. Oracle offers two ways for querying semantic
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Fig. 6. Multidimensional model generated by our method

data: SQL and SPARQL. We choose SPARQL to express this translation. Due
to lack of space, we show the translation of some operators as an example: the
namespace of University Ontology of benchmark LUBM: PREFIX univ-bench:

http://www.lehigh.edu/∼zhp2/2004/0401/univ-bench.owl#

EXTRACT operator is translated as follows: Select ?Instance# Where
{?Instance# rdf:type nameSpace:Class. ?Instance NameSpace:DataProperty
value condition}

Example 1. Extract students those age = 15 years.
Select ?student Where {?student rdf:type univ-bench:Student. ?student univ-
bench:age 15}

RETRIEVE operator is translated as follows: Select ?Instances# Where
{?Instances# rdf:type Namespace:Class}

Example 2. Retrieve instances of the Student class.
Select ?InstanceStudent Where {?InstanceStudent rdf:type univ-bench:Student}

FILTER operator is translated as follows: Select ?instance ?P where {?Instance
rdf:type namespace:Class ; namespace:P ?P . FILTER (?P > value condition)}

Example 3. Filter incoming student instances allowing only those with age is
greater than 16 years:
Select ?instanceStudent ?age where {? instanceStudent rdf:type univ-
bench:Student ; univ-bench:age ?age . FILTER (?age > 16) }

The result of this integration process is a DW whose schema is populated by in-
stances selected from Oracle SDBs. For more details, refer to the video available
at: http://www.lias-lab.fr/forge/deploymentalacarte/video.html

http://www.lias-lab.fr/forge/deploymentalacarte/video.html
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6 Case Tool

The proposed tool is implemented in Java language and uses OWL API to access
ontologies. The tool takes as inputs a set of requirements and a set of SDBs that
participates in the construction of the DW . These sources reference a shared on-
tology formalized in OWL. SDBs are configured by some connection parameters.
The first steps (conceptual and logical design) are supported by a model-to-model
transformation process. The access to all ontologies is made through the OWL
API. Requirements are expressed following our goal oriented model. TheDWO is
extracted as a module using ProSé plug-in available within Protégé editor, which
ensures the logical completeness of the extracted ontology. Fact++ reasoner is
invoked to classify the DWO class’s taxonomy and to check its consistency. In-
fluence rules defined between goals are implemented using SWRL (Semantic Web
Rule Language) language 3, which must be combined with Jess4 inference engine
to execute defined SWRL rules and apply them on the DWO. A parser analyzes
the requirements in order to identify the multidimensional aspects of the concepts
and the roles by the means of Algorithm 1.

The ETL process is implemented in the tool such that the technical details
(the translation of the ETL operators) are hidden to the user. Regarding the
deployment of the DW , the tool offers the designer the possibility to choose
her/his favorite storage layout and architecture of the target DBMS according
her/his requirements. The proposed ETL algorithm is implemented in our tool.
Based on the existing mappings between the SDB schemas and the target DW
schema, the tool allows an automatic extraction of the appropriate data from
the SDB sources, their transformation (filtering, conversion and aggregation)
and the computation of the new values in order to obey to the structure of the
DW classes. Then, data are loaded to the appropriate classes of the DW model.

In order to obtain a generic implementation of the ETL process, we imple-
mented the ETL algorithm using the Model-View-Controller (MVC) architecture
[16]. We used Data Access Object (DAO) Design patterns [21] that implement the
access mechanism required to handle the (SDBs). The DAO solution abstracts
and encapsulates all access to persistent storage, and hides all implementation
details from business components and interface clients. The DAO pattern pro-
vides flexible and transparent accesses to different layout storage. Based on the
chosen storage layout, the architecture of the SDBs and the target DW model,
the right object DAO is selected.

The demonstration link illustrates the different layers of the architecture
which are: (1) View Layer: the user interface. (2) Controller Layer: rep-
resents the events (user actions, changes done on the model and view layers);
(3) Model Layer: represents DAO layers containing the implementation of the
conceptual ETL operators. The tool provides a semantic DW populated from
data of SDBs.

3 http://www.w3.org/Submission/SWRL/
4 http://www.jessrules.com/

http://www.w3.org/Submission/SWRL/
http://www.jessrules.com/
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7 Conclusion

Semantic data currently exists everywhere. To facilitate their management, SDB
technology has been proposed. As a consequence, they are candidate for aliment-
ing warehouse projects. After a deep study of SDBs, we first proposed a generic
integration framework dedicated to these databases, and a goal model specify-
ing users requirements. We then proposed a method taking these two inputs to
design semantic DWs. The method covers the following steps: requirement anal-
ysis, conceptual design, logical design, ETL process and physical design. The user
holds an important place in the method, and the DW multidimensional model is
essentially defined to achieve its goals. The method is validated through experi-
ments using LUBM benchmark and Oracle SDBs. These experiments show the
feasibility of our proposal. The experiment uses . Some mapping assertions are
defined between the local ontologies of Oracle SDBs and LUBM ontology schema
(considered as the global ontology). The presence of ontologies allows defining
semantic mappings between data sources and the target DW model, indepen-
dently of any implementation constraint. The DW model can thus be deployed
using a given platform chosen by the designer. The method is supported by a
case tool implementing all the steps of the method. The tool automates the
ETL process where the appropriate data is extracted automatically from the
SDB sources, transformed and cleaned, then loaded to the target DW . The only
effort provided by the designer is the translation of the generic conceptual ETL
operators according the logical level of the target DBMS.

Currently, we are studying three main issues: (1) the evaluation of our ap-
proach by the means of real applications, (2) the consideration of advanced
deployment infrastructures (e.g. cloud) and (3) the study of the impact of the
evolution of ontologies and user’s requirements on our proposal.
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Abstract. Protecting Data Warehouses (DWs) is critical, because they store the 
secrets of the business. Although published work state encryption is the best 
way to assure the confidentiality of sensitive data and maintain high perfor-
mance, this adds overheads that jeopardize their feasibility in DWs. In this  
paper, we propose a Specific Encryption Solution tailored for DWs (SES-DW), 
using a numerical cipher with variable mixes of eXclusive Or (XOR) and mod-
ulo operators. Storage overhead is avoided by preserving each encrypted  
column’s datatype, while transparent SQL rewriting is used to avoid I/O and 
network bandwidth bottlenecks by discarding data roundtrips for encryption and 
decryption purposes. The experimental evaluation using the TPC-H benchmark 
and a real-world sales DW with Oracle 11g and Microsoft SQL Server 2008 
shows that SES-DW achieves better response time in both inserting and query-
ing, than standard and state-of-the-art encryption algorithms such as AES, 
3DES, OPES and Salsa20, while providing considerable security strength. 

Keywords: Encryption, Confidentiality, Security, Data Warehousing. 

1 Introduction 

Data Warehouses (DWs) store extremely sensitive business information. Unautho-
rized disclosure is therefore, a critical security issue. Although encryption is used to 
avoid this, it also introduce very high performance overheads, as shown in [16]. Since 
decision support queries usually access huge amounts of data and substantial response 
time (usually from minutes to hours) [12], the overhead introduced by using encryp-
tion may be unfeasible for DW environments if they are too slow to be considered 
acceptable in practice [13]. Thus, encryption solutions built for DWs must balance 
security and performance tradeoff requirements, i.e., they must ensure strong security 
while keeping database performance acceptable [13, 16]. 

As the number and complexity of “data-mix” encryption rounds increase, their se-
curity strength often improves while performance degrades, and vice-versa. Balancing 
performance with security in real-world DW scenarios is a complex issue which  
depends on the requirements and context of each particular environment. Most en-
cryption algorithms are not suitable for DWs, because they have been designed as a 
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general-purpose “one fits all” security solution, introducing a need for specific solu-
tions for DWs capable of producing better security-performance tradeoffs.  

Encryption in DBMS can be column-based or tablespace-based. Using tablespace 
encryption implies losing the ability to directly query data that we do not want or need 
to encrypt, adding superfluous decryption overheads. Best practice guides such as 
[14] recommend using column-based encryption for protecting DWs. Thus, we pro-
pose a column-based encryption solution and for fairness we compare it with other 
similar solutions. 

In this paper, we propose a lightweight encryption solution for numerical values 
using only standard SQL operators such as eXclusive OR (XOR) and modulo (MOD, 
which returns the remainder of a division expression), together with additions and 
subtractions. We wish to make clear that it is not our aim to propose a solution as 
strong in security as the state-of-the-art encryption algorithms, but rather a technique 
that provides a considerable level of overall security strength while introducing small 
performance overheads, i.e., that presents better security-performance balancing. To 
evaluate our proposal, we include a security analysis of the cipher and experiments 
with standard and state-of-the art encryption algorithms such as Order-Preserving 
Encryption (OPES) [3] and Salsa20 (alias Snuffle) [5, 6], using two leading DBMS.  

In summary, our approach has the following main contributions and achievements: 

• SES-DW avoids storage space and computational overhead by preserving each 
encrypted column’s original datatype; 

• Each column may have its own security strength by defining the number of encryp-
tion rounds to execute. This also defines how many encryption keys are used, since 
each round uses a distinct key (thus, the true key length is the number of rounds 
multiplied by the length of each round’s encryption key). This enables columns 
which store less sensitive information to be protected with smaller-sized keys and 
rounds and thus, process faster than more sensitive columns; 

• Our solution is used transparently in a similar fashion as the Oracle TDE [11, 14] 
and requires minimal changes to the existing data structures (just the addition of a 
new column), and the SES-DW cipher uses only standard SQL operators, which 
makes it directly executable in any DBMS. This makes our solution portable, low-
cost and straightforward to implement and use in any DW; 

• Contrarily to solutions that pre-fetch data, by simply rewriting queries we avoid 
I/O and network bandwidth congestion due to data roundtrips between the database 
and encryption/decryption mechanism, and consequent response time overhead; 

• The experiments show that our technique introduces notably smaller storage space, 
response and CPU time overheads than other standard and state of the art solutions, 
for nearly all queries in all tested scenarios, in both inserting and querying data. 

The remainder of the paper is organized as follows. In section 2 we present the guide-
lines and describe our proposal. In Section 3, we discuss its security issues. Section 4 
presents experimental evaluations using the TPC-H decision support benchmark and a 
real-world DW with Oracle 11g and Microsoft SQL Server 2008. Section 5 presents 
related work and finally, section 6 presents our conclusions and future work. 
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2 SES-DW: Specific Encryption Solution for Data Warehouses 

In this section we point out a set of considerations concerning the use of encryption 
solutions in DW environments, which guide the requirements that serve as the foun-
dations of our proposal, and then we describe our approach and how it is applied. 

2.1 The Foundations of SES-DW 

Standard encryption algorithms were conceived for encrypting general-purpose data 
such as blocks of text, i.e., sets of binary character-values. Standard ciphers (as well 
as their implementations in the leading DBMS) output text values, while DW data is 
mostly composed by numerical datatype columns [12]. Most DBMS provide built-in 
AES and 3DES encryption algorithms and enable their transparent use. However, they 
require changing each encrypted column’s datatype at the core to store the ciphered 
outputs. To use the encrypted values for querying once decrypted, the textual values 
must be converted back into numerical format in order to apply arithmetic operations 
such as sums, averages, etc., adding computational overheads with considerable per-
formance impact. Since working with text values is much more computationally ex-
pensive than working with numeric values, standard ciphers are much slower than 
solutions specifically designed for numerical encryption such as ours, which is specif-
ically designed for numerical values and avoids datatype conversion overheads. 

Data in DWs is mostly stored in numerical attributes that usually represent more 
than 90% of the total storage space [12]. Numerical datatype sizes usually range from 
1 to 8 bytes, while standard encryption outputs have lengths of 8 to 32 bytes. Since 
DWs have a huge amount of rows that typically take up many gigabytes or terabytes 
of space, even a small increase of any column size required by changing numeric 
datatypes to textual or binary in order to store encryption outputs introduces very 
large storage space overheads. This consequently increases the amount of data to 
process, as well as the required resources, which also degrades database performance. 
While encrypting text values is mainly not so important for DWs, efficiently encrypt-
ing numerical values is critical. In our approach, we preserve the original datatype and 
length of each encrypted column, to maintain data storage space. 

Topologies involving middleware solutions such as [15] typically request all the 
encrypted data from the database and execute decrypting actions themselves locally. 
This strangles the database server and/or network with communication costs due to 
bandwidth consumption and I/O bottlenecks given the data roundtrips between mid-
dleware and database, jeopardizing throughput and consequently, response time. Giv-
en the typically large amount of data accessed for processing DW queries, previously 
acquiring all the data from the database for encrypting/decrypting at the middleware 
is impracticable. Therefore, our approach is motivated by the requirement of using 
only operators supported by native SQL. This enables using only query rewriting for 
encrypting and decrypting actions and no external languages or resources need to be 
instantiated, avoiding data roundtrips and thus, avoiding I/O and network overhead 
from the critical path when compared to similar middleware solutions. 
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In what concerns the design of “data mixing” for each of the cipher’s rounds, we 
discard bit shifting and permutations, commonly used by most ciphers, since there is 
no standard SQL support for these actions. We also discard the use of substitution 
boxes (e.g. AES uses several 1024-byte S-boxes, each of which converts 8-bit inputs 
to 32-bit outputs). Although complex operations such as the use of S-boxes provide a 
large amount of data mixing at reasonable speed on several CPUs, thus achieving 
stronger security strength faster than simple operations, the potential speedup is fairly 
small and is accompanied by huge slowdowns on other CPUs. It is not obvious that a 
series of S-box lookups (even with large S-boxes, as in AES, increasing L1 cache 
pressure on large CPUs and forcing different implementation techniques on small 
CPUs) is faster than a comparably complex series of integer operations. In contrast, 
simple operations such as bit additions and XORs are consistently fast, independently 
from the CPU. Our approach aims to be DBMS platform independent, making it usa-
ble in any DW without depending on any programming language or external resource, 
as well as specific CPU models. Given the requirements described in the former para-
graphs, the proposed solution is described in the next subsections. 

2.2 The SES-DW Cipher 

Considering x the plaintext value to cipher and y the encrypted ciphertext, NR the 
number of rounds, RowK a 2128 bit encryption key, Operation[t] a random binary 
vector (i.e., each element is 1 or 0), XorK[t] and ModK[t] as vectors where each ele-
ment is an encryption subkey with the same bit length as the plaintext x, and F(t) a 
MOD/XOR mix function (explained further), where t represents each individual en-
cryption round number (i.e., t = 1...NR). Figures 1.a and 1.b show the external view of 
the SES-DW cipher for respectively encrypting and decrypting. 

 

Fig. 1a. The SES-DW encryption cipher 

 

Fig. 1b. The SES-DW decryption cipher 
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As illustrated, we randomly mix MOD with XOR throughout the encryption 
rounds, given a random distribution of 1 and 0 values of vector Operation. In the 
rounds where Operation[t] = 0, only XOR is used with the respective XorK[t]; in 
rounds where Operation[t] = 1, we first perform MOD with addition and subtraction 
using the respective ModK[t] and RowK[j], and TabK, and afterwards XOR with the 
respective XorK[t]. To avoid generating a ciphertext that may overflow the bit length 
of x it must be assured that the bit length of the term using MOD (EncryptOutput + 
(RowK[j] MOD ModK[t]) - ModK[t]) is smaller or equal to the bit length of x.  

As an example of encryption, consider the encryption of an 8 bit numerical value 
(x  = 126) executing 4 rounds (NR = 4), given the following assumptions: 

Operation = [0, 1, 0, 1]   XorK = [31, 2, 28, 112] 

For t=1 (round 1), EncryptOutput = 126 XOR 31 = 97 
For t=2 (round 2), EncryptOutput = (97+(15467801 MOD 36)-36) XOR 2 = 64 
For t=3 (round 3), EncryptOutput = 64 XOR 28 = 92 
For t=4 (round 4), EncryptOutput = ((92+15467801 MOD 19)-19) XOR 112 = 40 

Thus, Encrypt(126, 4) = 40. In the decryption cipher, shown in Figure 1.b, F-1(t) also 
represents the reverse MOD/XOR mix function for decryption. Given this, the SES-
DW cipher decryption function for decrypting x with NR rounds is: 
   FUNCTION Decrypt(x,NR)  
      DecryptOutput = x 
      FOR t = NR DOWNTO 1 STEP -1 
         DecryptOutput = DecryptOutput XOR XorK[t] 
         IF Operation[t] = 1 THEN 
            DecryptOutput = DecryptOutput - (RowK MOD ModK[t]) + ModK[t] 
         END_IF 
      END_FOR 
   RETURN DecryptOutput    

Considering the encryption example previously shown, we now demonstrate the de-
cryption process for y = 40, given the same Operation, RowK, XorK and ModK: 

 For t=4 (round 1), DecryptOutput = (40 XOR 112)-(15467801 MOD 19)+19 = 92 
 For t=3 (round 2), DecryptOutput = 92 XOR 28 = 64 
 For t=2 (round 3), DecryptOutput = (64 XOR 2)–(15467801 MOD 36)+36 = 97 
 For t=1 (round 4), DecryptOutput = 97 XOR 31 = 126 

Thus, Decrypt(40, 4) = 126, which is the original x plaintext value. Although our 
cipher only works with numerical values, we maintain the designation of plaintext and 
ciphertext respectively for the true original input value and ciphered value. 

2.3 The SES-DW Functional Architecture 

The system’s architecture is shown in Figure 2, made up by three entities: 1) the en-
crypted database and its DBMS; 2) the SES-DW security middleware application; and 
3) user/client applications to query the encrypted database. The SES-DW middleware 
is a broker between the DBMS and the user applications, using the SES-DW encryp-
tion and decryption methods and ensuring queried data is securely processed and the 
proper results are returned to those applications. We assume the DBMS is a trusted 
server and all communications are made through SSL/TLS secure connections, to 
protect SQL instructions and returned results between the entities. 
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Fig. 2. The SES-DW Data Security Architecture 

The Black Box is stored on the database server, created for each encrypted data-
base. This process is similar to an Oracle Wallet, which keeps all encryption keys and 
definitions for each Oracle Database [14]. However, contrarily to Oracle, where a 
DBA has free access to the wallet, in our solution only the SES-DW middleware can 
access the Black Box, i.e., absolutely no user has direct access to its content. In the 
Black Box, the middleware will store all encryption keys and predefined data access 
policies for the database. The middleware will also create a history log for saving 
duplicates of all instructions executed in the database, for auditing and control pur-
poses. All Black Box contents are encrypted using AES with a 256 bit key. 

To obtain true results, user actions must go through the security middleware appli-
cation. Each time a user requests any action, the application will receive and parse the 
instructions, fetch the encryption keys, rewrite the query, send it to be processed by 
the DBMS and retrieve the results, and finally send those results back to the applica-
tion that issued the request. Thus, SES-DW is transparently used, since query rewrit-
ing is transparently managed by the middleware. The only change user applications 
need is to send the query to the middleware, instead of querying the database directly. 

To encrypt a database, a DBA requires it through the SES-DW middleware. Enter-
ing login and database connection information, the middleware will try to connect to 
that database. If it succeeds, it creates the Black Box for that database, as explained 
earlier. Afterwards, the middleware will ask the DBA which tables and columns to 
encrypt. All the required encryption keys (RowK, XorK, ModK) for each table and 
column will be generated, encrypted by an AES256 algorithm and stored in the Black 
Box. Finally, the middleware will encrypt all values in each column marked for en-
cryption. Subsequent database updates must always be done through the middeware, 
which will apply the cipher to the values and store them directly in the database. 

To implement SES-DW encryption in a given table T, consider the following: Sup-
pose table T with a set of N numerical columns Ci = {C1, C2, …, CN} to encrypt and a 
total set of M rows Rj = {R1, R2, …, RM}. Each value to encrypt in the table will be 
identified as a pair (Rj, Ci), where Rj and Ci respectively represent the row and col-
umn to which the value refers (j = {1..M} and i = {1..N}). To use the SES-DW cipher, 
we generate the following encryption keys and requirements: 

• An encryption key TabK, a 128 bit random generated value, constant for table T; 
• Vector RowK[j], with j = {1..M}, for each row j in table T. Each element holds a 

random 128 bit value; 
• Define NRi with i = {1..N}, which gives the number of encryption rounds to ex-

ecute for each column Ci. We define NRi = SBLi/BitLength(Ci), where SBLi is the 
desired security bit strength for the XorK and ModK encryption keys of column Ci 
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and BitLength(Ci) is the datatype bit length of column Ci (e.g. if we want to secure 
a 16 bit column Ci with a security strength of 256 bits, then the number of encryp-
tion rounds would be 256/16 = 16); 

• Vectors XorKi[t] and ModKi[t], with t = {1..NRi}, for each Ci, filled with randomly 
generated unique values. The bit length of each key is equal to the bit length of 
each Ci’s datatype; 

• A vector Operationi[t], with t = {1..NRi}, for each column Ci, filled randomly with 
1 and 0 values, so that the count of elements equal to 1 is the same as the count of 
elements equal to 0 (e.g. Operationi = [0,1,0,0,1,1,0,1], with NRi = 8). 

Since the number of rows in a DW fact table is often very big, the need to store a 
RowK[j] encryption key for each row j poses a challenge. If these values were stored 
in a lookup table separate from table T, a heavy join operation between those tables 
would be required to decrypt data. Given the typically huge number of rows in fact 
tables, this must be avoided. For the same reasons, storing RowK[j] in RAM is also 
impracticable. To avoid table joins, as well as oversized memory consumption, the 
values of RowK[j] must be stored along with each row j in table T, as an extra column 
CN+1. This is the only change needed in the DW data structure in order to use SES-
DW. To secure the value of RowK[j], it should be XORed with key TabK before be-
ing stored. To retrieve the true value of RowK[j] in order to use the SES-DW algo-
rithms, we need to simply calculate (Rj, CN+1) XOR TabK. 

3 Security Issues 

Threat Model. All user instructions are managed by the SES-DW middleware, which 
transparently rewrites them to query the DBMS and retrieve the results. The users 
never see the rewritten instructions. For security purposes, the middleware shuts off 
database historical logs on the DBMS before requesting execution of the rewritten 
instructions, so they are not stored in the DBMS, since this would disclose the encryp-
tion keys. All communications between user applications, the SES-DW middleware 
and the DBMS are done through encrypted SSL/TLS connections. In what concerns 
the Black Box, all content is encrypted using the AES 256 algorithm, making it as 
secure in this aspect as any other similar solution for stored data (e.g. Oracle 11g TDE 
and SQL Server 2008 TDE). The only access to the Black Box content is done by the 
middleware, which is managed only by the application itself. We assume the DBMS 
is an untrusted server such as in the Database-As-A-Service (DAAS) model and the 
“adversary” is someone that manages to bypass network and SES-DW access con-
trols, gaining direct access to the database. We also assume the SES-DW algorithms 
are public, so the attacker can replicate the encryption and decryption functions, 
meaning that the goal of the attacker is to obtain the keys in order to break security. 
 
Using Variable Key Lengths and MOD-XOR Mixes. The bit length of the encryp-
tion keys XorK and ModK are the same as the bit length of each encrypted column, 
meaning that an 8 bit sized column datatype will have 8 bit sized encryption keys. It is 
obvious that using 8 bit keys on their one is not secure at all. However, since all keys 
are distinct in each round, executing 16 rounds would be roughly equivalent to having 
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a 16*8 = 128 bit key in the encryption process. It is up to the DW security administra-
tor to decide how strongly secure each column should be, which defines how many 
rounds should be executed, considering the bit length of the column’s datatype. 

The MOD operator is used in the cipher because it is non-injective, given that for X 
MOD Y = Z, the same output Z, considering Y a constant, can have an undetermined 
number of possibilities in X as an input that will generate the same value Z (e.g. 15 
MOD 4=3, 19 MOD 4=3, 23 MOD 4=3, etc). Since MOD operations are non-
injective, the encryption rounds using MOD are also non-injective. Given that injec-
tivity is a required property for invertibility, our cipher is thus not directly invertible. 
It is also true that the same ciphered output values are most likely to come from dif-
ferent original input values. Moreover, randomly using the XOR and MOD operators 
as the two possible operators for each round also increases the number of possibilities 
an attacker needs to test in exhaustive searches for the output values of each encryp-
tion round, since the attacker does not know the rounds in which MOD is used with 
XOR and needs to test both hypothesis (XOR and MOD-XOR). Furthermore, if the 
attacker does not know the security strength chosen for encrypting each column, s/he 
does not know how many encryption rounds were executed for each ciphered value. 

By making the values of XorKi and ModKi, distinct between columns, we also 
make encrypted values independent from each other between columns. Even if the 
attacker breaks security of one column in one table row, the information obtained 
from discovering the remaining encryption keys is limited. Thus, the attacker cannot 
infer information enough to break overall security; in order to succeed, s/he must 
perform recover all the keys for all columns. 

 

Attack Costs. To break security by key search in a given column Ci, the attacker 
needs to have at least one pair (plaintext, ciphertext) for a row j of Ci, as well as the 
security bit strength involved, as explained in subsection 2.3, because it will indicate 
the number of rounds that were executed. In this case, taking that known plaintext, the 
respective known ciphertext, and the CN+1 value (storing RowKj XOR TabK, as ex-
plained in subsection 2.3), s/he may then execute an exhaustive key search.  

The number of cipher rounds for a column Ci is given by NRi, and β is the bit-
length of Ci’s datatype. Since half the values of vector Operation are zeros and the 
other half are ones, the probability of occurrences of 1 and 0 is equal, i.e., 
Prob(Operation[t]=0) = ½ = Prob(Operation[t]=1), where the number of possible 
values for Operation[t] is 2NRi. Considering β, each XorK and ModK subkey also has a 
length of β bits and thus, each XorK and ModK subkeys have a search space with 2β 
possible values. TabK is a 128 bit value, thus with a search space of 2128 possible 
values. Considering the cipher’s algorithm and given the probability of {0, 1} values 
in Operation, a XOR is executed in all rounds (NRi), while a MOD is executed before 
the XOR in half the rounds (NRi/2). Given this, the key search space dimension con-
sidering the combination of XOR and MOD/XOR rounds is given by G(x): 

ሻݔሺܩ                                                            ൌ ෍ ሻேோ௜ାಿೃ೔మ௫ୀଵݔሺܨ . 2ሺఉ௫ሻାଵଶ଼ 
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ቆேோ௜ି௫ಿೃ೔మ ି ௫ቇ , x = 1 
ݔሺܨ െ 1ሻ ൅ ሺെ1ሻ௫  ቆேோ௜ି௫ಿೃ೔మ  ି ௫ቇ , 2 <= x <= NRi/2 ܨሺݔሻ ൌ ݔሺܨ          െ 1ሻ , NRi/2+1 <= x <= NRi ܨሺݔ െ 1ሻ ൅ ሺെ1ሻሺ௫ିಿೃ೔మ ሻ  ൭௫ିಿೃ೔మ ିଵ௫ିேோ௜ିଵ൱ , NRi+1 <= x <= NRi + NRi/2 - 1 
ቆேோ௜ಿೃ೔మ ቇ , x = NRi + NRi/2 

 
Considering Y as the number of attempts to discover the keys, Y is a discrete random 
variable with support S = {1…N }, where N represents the search space’s dimension. 
For one attempt, considering a random variable B, it has only two possibilities:                                    ܤ ൌ ൜0, ,1݈ݑ݂ݏݏ݁ܿܿݑݏ ݐ݋݊ ݏ݅ ݐ݌݉݁ݐݐܽ ݄݁ݐ ݊݁ݒ݅݃ ݈ݑ݂ݏݏ݁ܿܿݑݏ ݏ݅ ݐ݌݉݁ݐݐܽ ݄݁ݐ ݊݁ݒ݅݃  

Therefore, B follows a Bernoulli distribution with probability p = Prob(B=1) = 1/N. 
Since the number of attempts is limited, given the search space is finite, variable Y also 
has a finite support S = {1…N}. The probability of being successful after k attempts is 

given by: ܾܲ݋ݎሺܻ ൌ ݇ሻ ൌ ҧܣሺܾ݋ݎܲ ת ҧܣ ת … ת ҧܣ ת ሻܣ ൌ ቀ1 െ ଵேቁ௞ିଵ . ଵே  , k=1… N. 
Note that the probability of being needed more than m attempts is given by:    ܾܲ݋ݎሺܻ ൐ ݉ሻ ൌ  ∑ ሺܻܾ݋ݎܲ ൌ ݇ሻ ൌ  ∑ ቀ1 െ ଵேቁ௞ିଵ . ଵே ൌ ሺ1 െ 1/ܰሻ௠. ൤൬1 െ ቀ1 െ ଵேቁேି௠൰൨ே௞ୀ௠ାଵே௞ୀ௠ାଵ . 

The probability of needing n more attempts, given m initial unsuccessful attempts (for 
m > 1 and n > 1) is given by Prob(Y >m+n | Y >m) = Prob(Y>m+n) / Prob(Y>m), 
since the event {Y > m+n} is contained in {Y > m}, which means that after having m 
unsuccessful attempts, being successful after n more attempts only depends on those n 
additional attempts and not on the initial m attempts, i.e., it does not depend on the 
past. For the complete search space, the average number of attempts is then given by: 

                    ∑ ݇. ሺܻܾ݋ݎܲ ൌ ݇ሻ ൌ ଵே ∑ ݇ ቀ1 െ ଵேቁ௞ିଵ ൌ ሺכሻே௞ୀଵே௞ୀଵ . 

From the series theory it is known that  ∑ ௞ݔ ൌ ଵଵି௫ାஶ௞ୀ଴   , if |1>|ݔ, which is the case in ሺכሻ for ቀ1 െ ଵேቁ. Thus, ሺ∑ ௞ାஶ௞ୀଵݔ ሻᇱ ൌ ቀ ଵଵି௫ቁᇱ
 ∑ ݇. ௞ିଵାஶ௞ୀଵݔ ൌ ଵሺଵି௫ሻమ , |1>|ݔ. 

Thus, the average number of attempts for finding the keys is ሺכሻ ൌ 1ܰ . 1൬1െቀ1െ1ܰቁ൰2 ൌܰ which is equal to the dimension of the key search space (N). Note however, that 
this is the worst case complexity. It is possible for the attacker to reduce the key 
search space by chosen plaintext attacks. Since the same TabK key is used for en-
crypting all RowK, as explained in previous subsection (CN+1(row j) = RowK[j] ⊕ 
TabK), the information leakage given by y1⊕y2=(x1⊕TabK)⊕(x2⊕TabK) ⇔ 
y1⊕y2=(x1⊕x2)⊕(TabK⊕TabK) ⇔ y1⊕y2=x1⊕x2 implies that CN+1(row j) ⊕ CN+1(row 
j+1) = RowK[j] ⊕ RowK[j+1], reducing the possible search space for RowK to 264 
instead of 2128 in each row. If the attacker manages to use very low RowK values, 
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which are most probably smaller than the value of the ModK encryption keys (i.e. 
RowK<ModK[t]), then the (RowK MOD ModK[t]) – ModK[t] operation in the cipher 
will be reduced to RowK – ModK[t], thus further reducing complexity. In this case, 
for example, taking more than one (plaintext, ciphertext) pair y1 = Encrypt(x1,2) and 
y2 = Encrypt(x2,2) for 2 encryption rounds on the same row, where Operation=[0,1]: ݕଵ ݕଶ ൌ ሺݔଵ ܺܭݎ݋ሾ1ሿ ൅ ܭݓ݋ܴ െ ሾ1ሿܭݎ݋ܺ ଶݔሾ2ሿሻ  ሺܭ݀݋ܯ ൅ ܭݓ݋ܴ െ   ሾ2ሿሻܭ݀݋ܯ

Considering that each xi has a length of β bits, given the encryption key RowK has a 
reduced search space of 264 (as previously mentioned) and each XorK and ModK have 
a search space of 2β, the key search space in this example is given by 22β+64. Since 
XorK[1] and ModK[2] are just half the keys for the 2 round SES-DW, to obtain the 
remaining XorK[2] and ModK[1] keys, the search space is incremented by 22β. Since 
the number of XorK and ModK encryption keys is the same as the number of rounds, 
the generic expression for the reduced key search space in this type of attack is given 
by G(x) = 2NRi*β+64 + 2NRi*β. Note that for an 8 bit value (β = 8) encrypted by 16 rounds 
(NRi = 16), using 16 XorK and ModK subkeys with 8 bits each (each total key length 
for XorK and ModK is 16*8 = 128 bits), the key search space complexity is 2192 + 2128 ≅ 6,3x1057, which remains a considerable measure of security strength. 

SES-DW Entropy. In information theory, entropy is a measure of randomness or 
uncertainty. In this context, the term usually refers to Shannon’s entropy, which quan-
tifies the randomness of a variable based upon the knowledge of the information  
contained in its message. The entropy of a discrete variable X with n bits in length is 
given by the following expression, where Prob(xi) is the probability of occurrence of 
each xi within the probability distribution of all possible integer values [1…2n]: ݕ݌݋ݎݐ݊ܧሺܺሻ ൌ െ ∑ ൫ܾܲ݋ݎሺܺ ൌ .௜ሻݔ ሺܾܺ݋ݎଶܲ݃݋݈ ൌ ௜ሻ൯ଶ೙௜ୀଵݔ    

Since numeric datatype storage sizes are typically 8, 16, 32, 64 or 128 bits, each of 
our cipher’s input/output values (as well as the encryption keys) respectively have a 
number of 28, 216, 232, 264, or 2128 possible combinations. While it is computationally 
fast to obtain the probability distribution in the first case by combining all possible 
input and encryption key values (with all 8 bit values = [1...28]) using two cipher 
rounds (the minimum number of rounds), for the remaining (216, 232, 264 and 2128) the 
task gets exponentially time-expensive. Therefore, after a series of statistical regres-
sion experiments using the calculated 8 bit probability distribution for SES-DW, we 
found that the logarithmic regression ( ݕ ൌ ܽ ൅ ܾ. ݈݊ሺݔሻ ) generated the most adjusted 
statistical model for representing the cipher’s probability distribution (with R2>=0.98 
and a standard error of 0.001). Knowing that the accumulated probability for n bits 
must be equal to 1, using the logarithmic regression function we must ensure that: ׬ ܽ ൅ ܾ. ݈݊ሺݔሻ ݀ݔଶ೙ଵ ൌ 1  

This expression leads to ܾܲ݋ݎሺݔ௜ሻ ൌ ොܽ ൅ ෠ܾ. ݈݊ሺݔ௜ሻ, representing the estimated proba-
bility distribution function for n bits SES-DW, where: ොܽ ൌ ଵି௡.௕.ଶ೙.௟௡ሺଶሻଶ೙ିଵ ൅ ܾ     ∧     ෠ܾ ൌ ௑തିቀଶ೙షభାభమቁଶమ೙షమ ି భర – ௡ . ଶ೙షభ .  ୪୬ ሺଶሻ     
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Given ܾܲ݋ݎሺݔሻ, the entropy of SES-DW for n=8, 16, 32, 64 and 128 bits is shown 
in Table 1. As seen, the entropy produced for n bits is nearly n, thus meaning the gen-
erated ciphertexts are very close to a uniformly random n bit value. 

Table 1. Estimated SES-DW entropy values 

Number of bits (n) SES-DW Entropy
8 7,967144 

16 15,972308 
32 31,979863 
64 63,986246 
128 127,989741 

4 Experimental Evaluation 

We used the TPC-H benchmark [17] (1GB and 10GB scale sizes) and a real-world 
sales DW storing one year of commercial data (taking up 2GB of data). We tested all 
scenarios using Oracle 11g and Microsoft SQL Server 2008 DBMS, on a Pentium 
Core2Duo 3GHz CPU with a 1.5TB SATA hard disk and 2GB RAM (512MB of 
devoted to database memory cache), with Windows 2003 Server. The TPC-H schema 
has one fact table (LineItem), and seven dimension tables. The Sales DW database 
schema has one fact table (Sales) and four dimension tables. In TPC-H setups, four 
numerical columns of LineItem were encrypted (L_Quantity, L_ExtendedPrice, L_Tax 
and L_Discount). In the Sales DW, five numerical columns were encrypted 
(S_ShipToCost, S_Tax, S_Quantity, S_Profit, and S_SalesAmount). We compare our 
solution with the column-based AES128, AES256 and 3DES168 algorithms, and 
OPES [3] and Salsa20 [5, 6]. OPES and Salsa20 were implemented using C++. 

4.1 Analyzing Storage Size and Loading Time 

Tables 2 and 3 show the results of data storage size and loading time (in seconds), 
respectively, for loading the TPC-H 1GB LineItem table in each setup. The results in 
the remaining databases are similar, with absolute values nearly proportional to their 
database sizes, and due to lack of space and to avoid redundancy are not included. 
The results shown are an average of six executions for each tested scenario on each 
DBMS (with standard deviation in Oracle 11g between [2.27, 22.12], and in SQL 
Server 2008 between [3.19, 20.45]). 

Table 2. TPC-H 1GB Lineitem Fact Table Storage Size Overhead 

 
 

Oracle TPC-H 1GB 
Storage Size (Overhead) 

SQL Server TPC-H 1GB  
Storage Size (Overhead) 

Standard 772MB 1237MB 
AES128/256 1960MB (+1188MB / 154%) 2410MB (+1173MB / 95%) 

3DES168 1572MB (+800MB / 104%) 2181MB (+944MB / 76%) 
OPES 790MB (+18MB / 2%) 1258MB (+21MB / 2%) 

Salsa20 1064MB (+292MB / 38%) 1553MB (+316MB / 26%) 
SES-DW 868MB (+96MB / 12%) 1339MB (+102MB / 8%) 
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Table 3. TPC-H 1GB Lineitem Fact Table Loading Time Overhead 

 
 

Oracle TPC-H 1GB 
Loading Time (Overhead) 

SQL Server TPC-H 1GB  
Loading Time (Overhead) 

Standard 253 s 171 s 
AES128 608 s (355 s / 141%) 382 s (211 s / 123%) 
AES256 636 s (383 s / 152%) 407 s (236 s / 138%) 

3DES168 617 s (364 s / 144%) 389 s (218 s / 127%) 
OPES 353 s (100 s / 40%) 229 s (58 s / 34%) 

Salsa20 419 s (166 s / 66%) 281 s (110 s / 64%) 
SES-DW128 279 s (26 s / 10%) 191 s (20 s / 12%) 
SES-DW256 294 s (41 s / 16%) 199 s (28 s / 16%) 

SES-DW1024 451 s (198 s / 78%) 284 s (113 s / 66%) 

As shown, OPES and SES-DW have much smaller storage space overheads (2% to 
12%, 18MB to 102MB) than Salsa20 (26% to 38%, 292MB to 316MB), 3DES168 
(76% to 104%, 800MB to 944MB) and AES (95% to 154%, 1173MB to 1188MB of 
overhead). However, in loading time, SES-DW presents the best results by far (10% 
to 16%, 20 to 41 seconds of overhead). Considering these results, SES-DW is much 
more efficient, introducing small overheads for similar key sizes. Note that the worst 
result for SES-DW 1024, which is similar to Salsa20; however, it refers to using 1024 
bit encryption keys, far higher than the remaining tested algorithms. Also note that the 
results for the TPC-H 10GB database are approximately proportional to those of the 
1GB database, which means ten times bigger. Since 1GB is actually a very small size 
for a DW database, it is easy to conclude that the overheads introduced by encryption 
are extremely significant and may in fact introduce considerable hardware cost. 

4.2 Analyzing Database Query Performance 

The TPC-H workload included the benchmark queries 1, 3, 6, 7, 8, 10, 12, 14, 15, 17, 
19 and 20 (all accessing fact table LineItem). For Sales DW, the workload was a set 
of 29 queries, all processing the Sales fact table, as a set of usual decision support 
daily (9 queries), monthly (9 queries) and annual (11 queries) queries. All results are 
an average from six executions in each scenario (Oracle 11g standard deviations be-
tween [0.47, 42.23] and [0.55, 61.34] for 1GB and 10GB TPC-H, respectively, and 
[0.63, 59.17] for the Sales DW, and SQL Server between [0.56, 49.56] and [0.63, 
58.30] for 1GB and 10GB TPC-H, respectively, and [0.47, 66.08] for the Sales DW). 
Figure 3 shows total workload execution time overhead for each scenario, while Fig-
ure 4 shows the same for CPU time overhead. The Standard execution time (execu-
tion time of the workload against a non-encrypted database) for each scenario is 492, 
5037, and 1766 seconds in Oracle 11g, and 452, 4294, and 1690 seconds in SQL 
Server 2008, for the 1GB, 10GB TPC-H and Sales DW, respectively. 

It can be seen that SES-DW with 128-bit and 256-bit security has the best response 
and CPU time overheads for all scenarios, followed by Salsa20 and further by AES, 
while OPES has results leveled between AES and 3DES. Notice that observing the 
results for the TPC-H database, SES-DW shows better scalability than the remaining 
ciphers. In fact, SES-DW 1024-bit in the TPC-H 10GB is nearly as fast as Salsa20, 
the best solution after SES-DW. This means that the relative gains by using SES-DW  
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Fig. 3. Total query workload response time overheads (%) for each setup  
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Fig. 4. Total query workload CPU time overheads (%) for each setup 

 

Fig. 5. TPC-H 10GB individual query exec. time overhead p/encrypt. algorithm in Oracle 11g 

increases as database size scales up, compared with the remaining ciphers. Notice that 
being 100% faster in TPC-H 10GB means a saving of 5037 seconds (almost 1,5 
hours) in total query workload response time. 

Considering these results, since 10GB is actually a small size for a DW database, it 
is easy to conclude from the overall results that performance overheads introduced by 
data encryption algorithms in DWs are in fact extremely significant, and even mini-
mum gain in response/CPU time is an important achievement.  

The results for individual query execution time in Oracle 11g for TPC-H 10GB 
scenarios are shown in Figure 5, with a logarithmic scale. These results show that all 
queries have similar proportional overhead to those of the complete workload. This is 
also true for all the other scenarios, making it redundant to include all in this section. 
It can be seen that most queries processed by AES and 3DES have overheads of sev-
eral orders of magnitude higher than SES-DW. 

The number of CPU clock cycles spent on encryption and decryption depends on 
the algorithm and CPU architecture in which they are executed. As an example, the 
work in [7] refers that AES [2] with a 128 bit key takes up, on average, 20 clock 
cycles per encrypted byte on a Pentium IV, for encrypting a 16 byte value, resulting in 
a total of 20 x 16 = 320 clock cycles. The same algorithm with a 256 bit key takes up 
an average of 28 clock cycles per encrypted byte, meaning it needs 28*16 = 448 clock 
cycles for encrypting the same 16 byte value. We measured a speed of 8.53 cycles per 
byte for SES-DW on a Pentium IV for 128 bits encryption values. This makes SES-
DW more than twice as fast as AES 128 on the same CPU model. 
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5 Related Work 

The work in [4] proposes perturbed tables in a DW for preserving privacy that obfus-
cates data and explain data reconstruction for executing queries. Although providing 
strong guarantees against privacy breaches, these methods produce errors in data re-
construction, which we avoid. A lightweight database encryption scheme for column-
oriented DBMS is proposed in [9], with low decryption overhead. In [3] an Order 
Preserving Encryption Scheme (OPES) for numeric data is proposed, by flattening 
and transforming the plain text distribution onto a target distribution, based on value-
based buckets. This solution allows any comparison operation to be directly applied 
on encrypted data. A similar solution for processing queries without decrypting data 
was proposed by [10], using the database-as-a-service paradigm.  

The Data Encryption Standard (DES) [8] is a 64 bit block cipher which uses a 56 
bit key. As an enhancement of DES, the Triple DES (3DES) encryption standard was 
proposed [1]. The 3DES encryption method is similar to the original DES, but it is 
applied three times to increase the encryption level, using three different 56 bit keys. 
Thus, the effective key length is 168 bits. The algorithm increases the number of 
cryptographic operations, making it one of the slowest block cipher methods. The 
Advanced Encryption Standard (AES) is currently the most used encryption standard 
[2]. AES provides three key lengths: 128, 192 and 256 bits. It is fast and able to pro-
vide stronger encryption, compared to other algorithms such as DES [13]. Brute force 
attack is the only known effective attack known against it. As we have demonstrated 
in [16], these ciphers introduce very much performance overhead for DWs. 

In the search for more computationally efficient algorithms by exchanging a small 
number of complex operations such as S-box lookups for longer chains of simpler 
operations, the Salsa20 (alias Snuffle) family of ciphers [6] was proposed. These ci-
phers have been well studied and are considered fast high security solutions. 

An Enterprise Application Security solution is presented in [15], acting as a wrap-
per/interface between user applications and the encrypted database server. This solu-
tion aims to ensure data integrity and efficient query execution over encrypted data-
bases, by evaluating most queries at the application server and retrieving only the 
necessary records from the database server. 

6 Conclusions and Future Work 

We propose an encryption solution specifically designed for enhancing data confiden-
tiality in DWs. This solution is transparent and only require user applications to send 
their queries to a middleware security broker instead of the DBMS. Only the final 
processed results are returned to the authorized user applications that requested them. 
All SQL commands and actions are encrypted and stored in a log by the security bro-
ker, which can be audited by any user with administration rights. In the database,  
the data always stays encrypted, never allowing breaches before queries finish execu-
tion. If an attacker bypasses the broker and gains direct access, s/he just sees en-
crypted “realistic-looking” values. In addition, since data schemas and column-types 
are preserved and the encrypted data is realistic but not real, our method allows using 
the database (or “as-is” replicas) for testing purposes and direct querying during  
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application software development, generating realistic but not real results. This also 
avoids disclosure of the real original data if any attacker bypasses database access 
control and can retrieve data directly from the database. The proposed solution is 
independent from DBMS and CPU specific features and requires small computational 
efforts and can be straightforward and easily implemented in any database. Since it 
basically works by transparently rewriting user queries, it minimizes efforts in chang-
ing user applications and does not jeopardize network and I/O bandwidth. Our tech-
nique shows better database performance than standard and state-of-the-art encryption 
solutions while providing considerable security strength, making it a valid option for 
balancing performance with security from the DW perspective. As future work, we 
intend to take advantage of the history log stored in the Black Box in order to manage 
intrusion detection for attackers that obtain valid database login credentials. 
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Abstract. Current works on power-proportional distributed file systems
have not considered the cost of updating data sets that were modified
(updated or appended) in a low-power mode, where a subset of nodes
were powered off. Effectively reflecting the updated data is vital in mak-
ing a distributed file system, such as the Hadoop Distributed File System
(HDFS), power proportional. This paper presents a novel architecture,
a NameNode and DataNode Coupling Hadoop Distributed File System
(NDCouplingHDFS), which effectively reflects the updated blocks when
the system goes into a high-power mode. This is achieved by coupling the
metadata management and data management at each node to efficiently
localize the range of blocks maintained by the metadata. Experiments us-
ing actual machines show that NDCouplingHDFS is able to significantly
reduce the execution time required to move updated blocks by 46% rel-
ative to the normal HDFS. Moreover, NDCouplingHDFS is capable of
increasing the throughput of the system that is supporting MapReduce
by applying an index in metadata management.

Keywords: power-proportionality, HDFS, metadata management.

1 Introduction

Energy-aware commercial off-the-shelf (COTS)-based distributed file systems for
cloud applications are increasingly moving toward power-proportional designs,
as the configuration of the systems is changeable on demand. Specifically, the
system is designed to operate in multiple gears and each gear contains a different
number of active nodes. Multi-gear operation is made possible through a number
of recent works that focus on power-proportional data placement layouts [1, 2].
However, those works have not yet dealt with the reflecting of an updated data
set that is modified (or appended) in a low gear mode when several nodes are
powered off. In low gear, the currently active nodes should update the modified
data instead of the inactive nodes. When the system moves to a high gear, to
share the load equally to all active nodes, it is necessary to let the reactivated
nodes catch up with the modification of the data set.

In addition to normal operations, the process of reflecting the updated data set
increases several costs of metadata management (MDM) and data transference
inside the system. Carrying out this process effectively is vital in realizing power
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proportionality for a distributed file system, such as the Hadoop Distributed File
System (HDFS) [3], which is already widely used as a distributed file system for
effective big data processing in the cloud. In the current HDFS architecture,
reflecting updated files is ineffectively restrained at the NameNode because of
access congestion in the metadata information of blocks.

This paper presents a novel architecture called the NameNode and DataNode
Coupling HDFS (NDCouplingHDFS), which is designed to effectively reflect up-
dated data in the power-proportional HDFS. NDCouplingHDFS couples MDM
and data management to localize the range of blocks maintained by the meta-
data. Through this idea, the process is effectively distributed to multiple nodes
as the load is shared among the nodes and each node can focus on its own work
because all the necessary information is located locally.

Moreover, to raise the efficiency of reflecting updated data, it is preferable to
eliminate the bottleneck of MDM at the single NameNode in a normal HDFS by
using distributed MDM. Taking the locality of the file system into consideration,
we suggest two approaches of distributed MDM based on a tree structure, namely
static directory partitioning and the B-tree-based index method. In the first
approach, we divide the namespace of the system among all the nodes, as each
node will maintain a subpart of the directory hierarchy. In the second approach,
we apply the parallel index technique, called Fat-Btree [4], which is used in
current database management to manage the metadata of the file system. Our
main contributions are the following.

– NDCouplingHDFS is proposed to solve the problem of reflecting updated
(or appended) data sets when the power-proportional file system shifts from
low gear to a higher gear.

– NDCouplingHDFS improves the IO throughput of the metadata operation
of the HDFS by implementing distributed MDM with an index technique.

– An empirical experiment to evaluate NDCouplingHDFS is performed on
actual machines. The empirical experimental results show that NDCou-
plingHDFS is able to significantly reduce the execution time to transfer
updated blocks by 46% relative to a normal HDFS.

The remainder of this paper is organized as follows. Related work is introduced in
Sect. 2. Section 3 describes our proposed system with the architecture and data
flow. Section 4 presents a performance evaluation of our proposals. Conclusions
and future work are discussed in Sect. 5.

2 Related Work

RABBIT [1] is the first work that aims to provide power proportionality to
an HDFS by focusing on read performance. RABBIT uses the equal-work data
layout policy using data replication. However, RABBIT does not yet consider
the cost of reflecting updated data in low gear. Kim et al. [2] suggest a fractional
replication method to achieve a balance between the power consumption and
performance of a system. Their work considers the problem of identifying a
suitable time to gear down and save power.
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Fig. 1. A NameNode and DataNode Coupling HDFS architecture and data flow

Write Off-loading [5] is motivated by the goal of saving power through spin-
ning down unnecessary disks. It allows write requests on spun-down disks to be
temporarily redirected to other active disks in the file system. As a result, this
technique lengthens the spin-down durations, thereby achieves additional power
saving. Although not aiming to provide power proportionality, the idea could
be considered as a solution for multigear file systems dealing with updated data
when the system operates in low gear.

In previous work, we have taken into consideration the cost of updated data
reflection relating to the size of moving data in a power-proportional HDFS [6].
As the size of moving data is small, the reflection process could be shortened.

3 NDCouplingHDFS

In this part, the assumptions employed in this paper is given. Then, the architec-
ture of our system and two methods for distributed MDM are described. Finally,
we present the system’s behavior in reflecting updated data.

3.1 Assumptions and Conditions

In our proposal, we employed the following assumptions and conditions.

1. Data layout policy: The scope of this paper is limited to the MDM and the
cost of reflecting updated data at power-proportional file systems. In low
gear, the data from inactive nodes are replicated at other, active nodes.

2. Replication: When data are replicated at other nodes, their metadata are
also replicated at the same node.

3. Failure: We suppose that all nodes in the system operate without failure.

3.2 Architecture and Data Flow of NDCouplingHDFS

The architecture and the data flow of NameNode and DataNode Coupling HDFS
(NDCouplingHDFS) are shown in Figure 1. NDCouplingHDFS contains a cluster
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of NDCouplingNodes. There are two types of modules at each node in NDCou-
plingHDFS: the NameNode Management (NM) and the Storage Management
(SM). The NM includes the new distributed MDM and other unmodified mod-
ules (such as Block Placement, Block Mapping) as in a normal HDFS. The
important difference from a default HDFS is that the namespace of the file sys-
tem is divided among all the nodes and the local distributed MDM only manages
the metadata for files that are locally located. The SM at NDCouplingNode is
the SM at DataNode in a normal HDFS.

Next, the data flow for the client interacting with NDCouplingHDFS is ex-
plained using Fig. 1. At first, the client randomly connects to a node to access
the file system (open weather.dat). At this node, the request is forwarded to
the corresponding node that contains the metadata of this file by distributed
MDM. Then, the distributed MDM at this node looks for the file’s metadata
and sends the result back to the client. Finally, based on this result, the client
opens connections to the responsible nodes to retrieve or store the file’s blocks.

3.3 Distributed Metadata Management

In this part, we describes two approaches of employing distributed MDM to
identify the responsible NDCouplingNode that contains the metadata for the
accessed files.

Static Directory Partitioning Method. In this paper, we first try the static
directory partitioning (SDP) method in distributing the namespace to multi-
ple nodes in the system. Here, subparts of the directory hierarchy are manually
assigned to individual nodes. All the nodes in the system have the mapping in-
formation about which node is responsible for what subpart of the file system
directory. The system can process the request at most one hop to determine the
appropriate nodes because the subparts of the hierarchy are treated as indepen-
dent structures.

Fat-Btree-Based Method. This method applies Fat-Btree to perform dis-
tributed MDM. Fat-Btree is an update-conscious parallel B-tree structure that
was originally proposed in database management as an indexing technique for
efficient data management [4, 7]. Because of the parallel tree structure, the dis-
tributed MDM based on Fat-Btree achieves higher performance for search query
processing while maintaining good locality tracking of the file system.

Alternative Techniques. To realize good performance with distributed MDM,
many recent systems distribute the metadata across multiple nodes utilizing dis-
tributed hash table [8,9]. However, distributing metadata by hashing eliminates
all hierarchical localities such as the POSIX directory access semantics.

3.4 Updated Data Reflection

Here, we describe the behavior of NDCouplingHDFS in serving the updated-data
requests in low gear and reflecting the updated data when the system changes to
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Fig. 2. Operations at updated data reflection processes of NDCouplingHDFS

high gear by reactivating a subset of nodes. In the normal HDFS, basically all the
operations are similar however because there is only a single NameNode that is
in charge of MDM, all the metadata operations are proccessed at the NameNode.
Figure 2 shows an example of a four-node system in which each node maintains
a subNamespace of the system. In low gear, Node 1 and Node 4 are inactive,
and their maintenance data are consequently replicated at Node 2 and Node 3.
During low gear, the part of the new updated data that is maintained by inactive
nodes are reflected at predefined active nodes. Information about the data, the
temporary node, and the intended node is saved into a Log file. In this example,
Node 2 will update the data (here is a1) that should be updated by Node 1.

When the system changes to high gear by reactivating nodes (Node 1 and
Node 4), the following four-step operations are carried out.

Step 1: Transfer Updated Metadata. The active nodes check the Log files
and transfers only the different metadata to the reactivated nodes.

Step 2: Issue Block Transfer Commands. Next, the MDM searches for
updated file blocks using the information in Log file. It then issues the block
transfer command by filling the block transfer queue of each SM with the block
and destination node paired information. After each constant heartbeat, the SM
receives a command and transfers the blocks to the destination nodes. There are
two considerable approaches for issuing a command. The sequential issuance
method repeats the above search-and-issue operation for each transferred file,
while the batch issuance method first looks for all the blocks and their des-
tination nodes and then places them into a queue.

Step 3: Transfer Updated Blocks. When the SM receives the command
issued by MDM, it sends the blocks to the destination nodes. However, in the
current implementation in this part of the HDFS, for each block, the system has
to open a new connection to the destination node. In order to reduce the cost of
opening new network connection, we suggest the batch transfer method which
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Table 1. Characteristics of the configurations used in updated-data reflection experi-
ments

Configuration NormalHDFS SSS SBS SBB FBB
Metadata management Centralized SDP SDP SDP Fat-Btree
Command issuance Sequential Sequential Batch Batch Batch
Block transference Sequential Sequential Sequential Batch Batch
Updated metadata transference - © © © ©

Table 2. Experimental en-
vironment

# Gears 2
# nodes Low Gear 8
# nodes High Gear 16

# updated files 16000
file size 1MB

Table 3. Specification of a
node

CPU TM8600 1.0GHz
Memory DRAM 4GB

NIC 1000 Mb/s
OS Linux 3.0 64bit

Java JDK-1.7.0

Table 4. HDFS informa-
tion and parameters

version 0.20.2
max.rep-stream 100

heartbeat interval 1

sends all the blocks through just a single connection. The current implementation
in the HDFS is called the sequential transfer method.

Step 4: Reflect Updated Metadata. The MDM updated the metadata for
the newly arrived files as in the default HDFS based on the notifications from
SM.

4 Experimental Evaluation

We carried out an empirical experiment with actual machines to verify the ef-
fectiveness of NDCouplingHDFS in terms of reducing the cost of updated-data
reflection when the system shifts to higher gear. Next, we examined the effec-
tiveness of distributed MDM relating to the scalability of metadata operations.

4.1 Updated-Data Reflection

To verify the effectiveness of each contribution proposed in Sect. 3, we prepared
five configurations which are formed from the combinations of distributed MDM,
command issuance method and block transference method. Table 1 shows the
characteristics of these configurations.

Experimental Environment. We compare the proposed NDCouplingHDFS
with the normal HDFS by changing the configuration of the system (Tab. 2).
Both systems operate in two gears, a Low Gear and a High Gear with different
number of active nodes (eight and 16 nodes). For NormalHDFS, there is one
further node to be in charge of the NameNode. Because we address MDM in
this paper, the number of appended files when the system operates at Low
Gear is fixed at 16000 dividing equally to 16 nodes. Here, we use low-power-
consuming ASUS Eeebox EB1007 machines, whose specifications are given in
Tab. 3. The max.rep-stream, which specifies the maximum number of blocks
that can be replicated by a SM at the same time, is set to 100. To efficiently
perform the updated data reflection, the communication frequency between NM
and SMs is maximized by setting heartbeat interval to one (Tab. 4).
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Fig. 3. Experiment results

Experimental Results. Figure 3(a) shows the execution time for reflecting
the updated data with different configurations. The left vertical axis shows the
execution time from the time that the system begins to change from low gear to
high gear until all the just-activated nodes catch up with the most current status
of the updated data set. The right vertical axis shows the maximum number of
transfer block command issuances, which is the number of times that the SM
has to make a connection with the MDM to drain the block transfer queue.

Performance of NDCouplingHDFS. To confirm the NDCouplingHDFS’s
performance, we focus on the experimental results of NormalHDFS and SSS,
the simplest configuration of NDCouplingHDFS, in Fig. 3(a). We see that ND-
CouplingHDFS has significantly reduced cost (nearly 41%) in reflecting updated
data. In the HDFS, because of the high load at the NameNode with the process-
ing of 8000 files that should be replicated to eight nodes, it requires about 40
connections between the NM and SM to drain the block transfer queue of the
SM (about 58 seconds). Meanwhile, the process is distributed to eight nodes in
NDCouplingHDFS, hence overall is completed in only about 34 seconds.

Performance of the Command Issuance. From the results of SSS and
SBS, we see that the batch command issuance provided a slightly worse result
than did sequential command issuance. The reason is that the SMs in SBS
wasted several first connections to the NM before it had finished retrieving all
1000 updated files’ data. On the other hand, the SM in SSS can perform the
block replication process immediately from the very first communication.

Performance of the Block Transfer Method. Figure 3(a) shows that SBB
reduces the execution time of the process to 31 seconds compared with SBS. This
means that batch block transfer was able to reduce the cost of opening a new
network connection for sending blocks. In total, SDP-based NDCouplingHDFS
was able to reduce the execution time required for reflecting the updated data
by 46% relative to NormalHDFS.

Fat-Btree-Based Method. There was little difference between the perfor-
mance of FBB and SBB. The cost of the latter is slightly less by 0.5 seconds
owing to the lower cost of MDM operations. This is due to the process of trans-
ferring incremental metadata, as the Fat-Btree-based method has to transfer
more information than SDP because of the complex structure.
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4.2 Distributed MDM Performance

In this part, we report the performance evaluation relating to the scalability of
metadata operations to confirm the effect of SDP and Fat-Btree-based methods.
The configurations of this experiment are shown in Tab. 5.

Table 5. Workload used in distributed MDM performance evaluation experiment

Fat-Btree leaf fanout 16
Data size (#files) 3000
Number of nodes 1, 2, 4, 8

File size 1KB

#write accesses per node #files
#nodes

#read accesses per node #files

Experimental Results. Figure 3(b) and 3(c) show the read and write through-
put of two evaluated methods. Here, the operation includes searching/creating
for the metadata and reading/writing the physical data of the query file. Fig-
ure 3(b) shows that the read performance of the Fat-Btree method significantly
scales out. The good balance of the parallel B-tree structure means that the read
requests are effectively distributed to all the nodes; hence, the overall through-
put increased as the number of nodes increased. In contrast, in the SDP method,
the throughput slightly decreased as the number of nodes increased from one to
two. The reason is that the cost of opening a new connection to other responsible
nodes is much larger than the cost of searching for the responsible metadata.
From Fig. 3(c) which describes the overall throughput for write requests, the
Fat-Btree method is seen not to provide such a considerable efficiency compare
with the SDP method because of the high synchronization cost inside the B-tree
structures during an update. Overall, the Fat-Btree is believed more suitable for
the read-mostly workloads in MapReduce applications.

5 Conclusion and Future Work

In this paper, we first described the problem of inefficient reflection of up-
dated data in power-proportional distributed file system and then proposed
the NDCouplingHDFS architecture, which couples metadata management and
data management at each node to solve it. Empirical experiments verified that
our solution was able to shorten the execution time required to reflect updated
data by 46% relative to the time required by the default HDFS. Moreover, ND-
CouplingHDFS was able to increase the throughput of the system supporting
MapReduce by applying an index in metadata management. In the future, we
would like to carry out more experiments with different workloads and a larger
scale of nodes. Moreover, we would like to develop a system that integrates ND-
CouplingHDFS with suitable data placement to provide power proportionality.

Acknowledgements. This work is partly supported by Grants-in-Aid for Sci-
entific Research from Japan Science and Technology Agency (A) (#22240005).
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Abstract. There are many entity-attribute tables on the Web that can
be utilized for enriching the entities of knowledge bases (KBs). This
requires the schema mapping (matching) between the Web tables and
the huge KBs. Existing solutions on schema mapping are inadequate for
mapping a Web table and a KB, because of many reasons such as (1)
there are many duplicates of entities and their types in a KB; (2) the
schema of KB is often implicit, informal, and evolving over time; (3) the
KB is typically very large in volume. In this paper, we propose a pure
instance-based schema mapping solution to statistically find the effective
mapping between a Web table and a KB via the matched data examples.
Besides, we propose efficient solutions on finding the matched data ex-
amples as well as the overall mapping of a table and a KB. Experiments
over real data sets show that our solution is much more accurate than the
two baselines of existing solutions. Results also show that our solution is
feasible for the mapping of Web tables to large scale KBs.

1 Introduction

The advance of information extraction and data integration techniques has
promoted the prosperity of many Web-scale knowledge bases (KBs) such as
FreeBase[6], YAGO[21], Linked Data[12]. These KBs typically utilize RDF triples
to represent their basic information units. They have been widely used in applica-
tions such as semantic search, text understanding and question answering[22,12].
To effectively support these applications, a KB needs have information of a huge
number of open domain entities. Many approaches have been tried to enlarge
the population of entities in a KB. Although the size of Web-scale KBs keeps
growing very fast, the coverage of a single KB is still very limited, compared to
the numerous entities in the real world.

The current Web contains billions of tables, among which a huge number of
tables (154M found in the Webtables project [8]) contain high-quality relational
data. Of these high qualified tables, there are many entity-attribute tables that
contain information of some entities of the same type [8,23]. Typically, informa-
tion of an entity appears in one row with each column representing an attribute
of the entity. One typical example of Web tables is the Google Fusion Table [11]
where people can publish tabular data as they want. It is possible that some en-
tities in a Web table may have corresponding entries in the KBs, from which we

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 108–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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may learn the mapping between the Web table and the KBs. With the mapping,
we are able to automatically inject entities of the Web table into the KBs. The
problem is therefore a schema mapping problem in which we want to find the
mapping between a Web table and a KB.

In the past decades, there have been many approaches[20,15,4,19] proposed
for automatic schema mapping, typically focused on finding the mappings of
attributes between two schemas. These approaches can be categorized into
schema-based approaches[17,16], instance-based approaches[13,14], as well as
their combinations [9]. Schema-based approaches use the schema-level informa-
tion for matching. They cannot be applied in our problem because Web tables
often do not have schemas. Even for the KBs, they do not have explicit schemas
too. As such, the instance-based approaches[13,14], which consider the data con-
tents for schema mapping, are preferred in our problem. However, there are
challenges to apply existing instance-based approaches here because (1) there
are many duplicates of entities and their types in a KB; (2) the schema of KB
is often implicit, informal, and evolving over time; (3) the KB is typically very
large in volume. The matching approaches will be neither efficient nor effective
when the whole KB is modeled as a big table of all entities.

To address the above challenges, we propose a novel instance-based schema
mapping approach for the integration of Web tables with KBs. In our study,
we assume that high qualified entity-attribute Web tables have been extracted.
We also assume that literal information of entities has been extracted from the
KBs, i.e., the URIs in KBs have been transformed into literal names, so that we
can focus on the direct semantic matches of texts in both Web tables and the
KBs. Techniques on assigning URIs[12] to the literal information of entities are
beyond the scope of the paper. In our approach, the mapping between a Web
table and a KB is discovered from the mappings between the tuples of the Web
table and the entities of the KB. We propose techniques to efficiently conduct
the proposed instance-based schema mapping. The contributions of the paper
can be summarized as follows:

– We formalize the table-to-KB schema mapping problem that statistically
finds the effective table-to-KB mapping between a Web table and a KB via
the matched data examples.

– We propose a technique that is able to tune the number of tuples used for
finding the table-to-KB mapping, so that instance-based schema mapping
can be conducted in a feasible time without the loss of accuracy too much.

– Extensive experimental results show that the proposed schema mapping so-
lution is very effective for mapping Web tables to KBs, paying a feasible
workload for the mapping task.

The rest of the paper is organized as follows. Section 2 introduces some related
work. Section 3 states the problem of table-to-KB schema mapping. Then, we
discuss efficient solution of schema mapping in Section 4. The experimental study
is given in Section 5, followed by the conclusions given in Section 6.
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2 Related Work

Schema Mapping. Rahm et al. did a good survey[20] about approaches to au-
tomatic schema mapping. The solutions are classified into schema-based[17,16]
and instance-based[13,14] based on either only schema information (metadata)
or data content is used for finding the mappings between columns of two schemas.
Do et al. developed the COMA system[9] for the flexible combination of schema
mapping approaches, and then developed a tool called COMA++[3] to cope with
schema and ontology matching. Due to the lack of schema information, instance-
based approaches are more suitable for the table-to-KB schema mapping prob-
lem. Existing instance-based approaches[13,14] typically utilize the statistical
information of data contents within a column for matching. However, it faces
with a problem that many predicates (columns) of the KBs contain data of the
same type and they often have similar distribution of data values. This causes
that a column of the Web table often matches with a large number of predicates
in the KBs, although most of them are not good mapping results.

Some recent works of schema mapping[1,2,19] use data examples to filter and
refine the detected schema mappings. However, they are not designed for finding
the schema mapping. As will be shown in our experiments, only a few data
examples are often far from enough for effectively finding the mapping between
a Web table and a KB, considering that the KB contains a huge number of
predicates (columns) and the examples may not have good matches in the KB.

Web Data Integration. A vast amount of structured information is contained
in the Web tables [8]. Cafarella et al. proposed the OCTOPUS system[7], which
enables users to create new datasets from those tables extracted from the Web.
In recent years, Linked Data[12] has been widely accepted as an important way
of integrating the massive Web datasets. It allows the interlinkage of datasets
through the RDF links created between data items from different data sources.
As of Sep. 2011, there have been 31 billion RDF triples in the Linked Data
cloud. However, such a way of integrating Web datasets has some problems: (1)
Different RDF datasets may contain multiple copies of the same data (entity).
Although entity resolution[5] can help to remove some duplicates, the problem
will be still serious due to the huge diversity of the Linked Data. (2) Although
interlinked, datasets cannot be integrated as one global schema, due to the di-
versity and flexibility of the huge amount of individual schemas in the Linked
Data. (3) Although very large, the coverage of existing Linked Data is still very
limited compared to the numerous entities in the real world. Preda et al.[18]
proposed an ANGIE system to dynamically and virtually enrich RDF KB by
Web services.

3 Table-to-KB Schema Mapping

An entity-attribute table contains information of entities. We define the column
containing entity names as the key column of a table. It satisfies some constraints:
1) no duplicated names in the column, i.e., the cardinality of the key column
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should be equal to the number of rows of the table; 2) its values are not numerical
or IDs (it can be easily detected when it contains sequential numbers or IDs of
common prefixes). This is reasonable because one of our assumptions is that
the applied entity-attribute Web table should contain information of entities
distinguished by their names within a column. If a table has more than one
candidate key columns (satisfying the above two constraints), only the first one
will be picked as the key column. We ignore tables whose entity names are
distributed over multiple columns. An example of a Web table and its key column
is shown in Fig.1. Note that our solution fails to integrate a Web table with the
KB when it does not contain a key column.

Fig. 1. An example of a Web table and its key column (squared)

Let c1, . . . , cd be the d columns contained by a table T . A tuple t in the table
T can then be represented as t = [t(1), . . . , t(d)]. For a KB E, an entity e is
denoted as the set of all triples having the same subject. An entity e may have
multiple triples for the same predicate. We denote e(j) as the set of objects that
the entity e has on the predicate pj .

Definition 1 (Mapping Unit). Given a value/cell t(i) of a tuple t, an object
set e(j) of an entity e, and a matching threshold 0 < θ < 1.0, there is a mapping
unit m(t(i), e(j)) = j between t(i) and e(j), if ∃o ∈ e(j) such that t(i) = o
(when ci is the key column), or ∃o ∈ e(j) such that sim(t(i), o) ≥ θ (when ci is
not the key column).

Similarity measures such as Jaccard similarity can be applied to evaluate the
similarity of two sets of words. Given a tuple t and an entity e, when there is a
mapping unit m(t(i), e(j)), we use m(i, j) = j to represent it for simplicity. For
each attribute t(i), we use M(t(i), e) to denote the set of all possible mapping
units between t(i) and the object sets of e. Note that M(t(i), e) can be an empty
set if t(i) is not similar enough to any object of e. For example, in Figure 2, a
mapping unit between the cell 1964, and the predicate Release date(4) is 9. The
set of mapping units for the cell Samuel Fuller and the given entity is {3, 5, 6}.
Definition 2 (Mapping Vector). Given a table T of d columns with ci′ as
its key column, a mapping vector M = [m1, . . . ,md] defines, for each mi 
= 0, a
mapping of a column ci to a predicate pmi . It must satisfy that mi′ 
= 0.



112 X. Zhang et al.

Fig. 2. An example of a mapping vector, with the entity information from Freebase

In the above definition, mi = 0 means that column ci does not match with
any predicate. Given a tuple t and an entity e, for each attribute t(i), we have
a mapping unit set M(t(i), e). Then, we are able to generate a set M(t, e)
of mapping vectors by a Cartesian product of the non-empty mapping unit
sets of all attributes of t. An example of a mapping vector is shown in Fig.2.
A derived mapping vector M = [m1, . . . ,md] satisfies: 1) mi ∈ M(t(i), e) if
M(t(i), e) 
= ∅; 2) mi = 0 if M(t(i), e) = ∅; 3) mi′ 
= 0. Therefore, |M(t, e)| =∏

M(t(i),e) 
=∅ |M(t(i), e)| if M(t(i′), e) 
= ∅. M(t, e) = ∅ if M(t(i′), e) = ∅.
Next, we define an important measure of a mapping vector. The confidence of

a mapping vector M = [m1, . . . ,md], denoted as c(M), is defined as the number
of non-zero mapping units (i.e., mi 
= 0) in M . It describes strength of a mapping
vector. For the running example of Fig.2, c(M) = 4. The larger the c(M), the
better the match between a tuple and an entity (or between a table and a KB).
According to this measure, we are able to define significant mapping vectors that
we are interested in among all the mapping vectors:

Definition 3 (Significant Mapping Vector). Given a threshold δ of matched
columns, a mapping vector M is a significant mapping vector if c(M) ≥ δ.

A significant mapping vector shows that there are enough (δ) attributes of t that
can find their matches in the predicates of e. Given a tuple t, we call those entities
in KB that have significant mapping vectors with t (i.e., M(t, e) 
= ∅) as the
relevant entities of t. Given a table T ′ ⊆ T , we use M(T ′) to denote the multiset
of all significant mapping vectors of M(t, e) generated from all combinations
of t ∈ T ′ and e ∈ E, i.e., M = {M |c(M) ≥ δ,M ∈ M(t, e), t ∈ T ′, e ∈ E}.
As long as |M(T ′)| is no less than a user specified size τ , we say that M(T ′)
is an evidencing multiset of mapping vectors, that can be used for discovering
mapping vectors between a table T and the KB E.

Given two mapping vectors M = [m1, . . . ,md] and M ′ = [m′
1, . . . ,m

′
d], we

say M ′ dominates M , denoted as M ′ � M , if ∀mi 
= 0, m′
i = mi. For example,

[1, 0, 3, 13, 2] � [1, 0, 3, 0, 2], while [1, 0, 3, 13, 2] 
� [1, 0, 3, 0, 9]. It is obvious that
if M ′ � M and M � M ′, we have M = M ′. With the definition of dominating
relationship, we are able to define another interesting measure of a mapping
vector, the support of a mapping vector, denoted as s(M). Given a mapping
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vectorM and a multisetM(T ′) of mapping vectors detected from a table T ′ ⊆ T
and a KB E, the support of M to the set M(T ′), is the number of mapping
vectors in M(T ′) dominating M . It basically defines the number of evidences
(mapping vectors) supporting the mapping vector M .

With the above two measures (the confidence and the support), we are able
to define the utility of a mapping vector as:

Definition 4 (Utility Function). Given an evidencing mapping vector set
M(T ′), the utility of a mapping vector M is a function of two measures of
mapping vectors, u(M) = c(M)log(s(M)).

Note that the utility function may have some other alternatives. We define it as
u(M) = c(M)log(s(M)) simply because when c(M) is enlarged, the number of
mapping vectors it dominates is exponentially enlarged.

With the above definitions, our major problem is that:

Definition 5 (Table-to-KB Schema Mapping). Given a table T and a KB
E, three parameters θ, δ, and τ , find the significant mapping vector (if exists) that
having the maximum utility to a multiset M(T ′) satisfying either |M(T ′)| ≥ τ
or T ′ = T .

Our solution to this problem has two main steps:

1. To find a sub table T ′ ⊆ T that is able to generate an evidencing multiset
of mapping vectors M(T ′) such that either |M(T ′)| ≥ τ or T ′ = T ;

2. To find the significant mapping vector having the maximal utility to M(T ′),
called as the table-to-KB mapping vector.

As an instance-based schema mapping solution for huge KBs, the efficiency issue
is a very important challenge. We will discuss how to address it in details in the
following section.

4 An Efficient Solution for Table-to-KB Schema Mapping

4.1 Generating an Evidencing Multiset of Mapping Vectors

The evidencing multiset of mapping vectors are generated from tuple-entity
pairs. Obviously, it is not necessary to generate mapping vectors from all possi-
ble tuple-entity pairs because most of them do not form any significant mapping
vector or even any mapping unit. In our solution, the evidencing multiset of
mapping vectors M(T ′) is obtained by merging the significant mapping vectors
generated from some selected tuples of the table T .

A Baseline Solution. For each tuple t, we want to efficiently get the relevant
entities of t. This is achieved by first finding mapping units for the attributes of t.
To obtain the mapping units of an attribute t(i), a baseline solution is to utilize
the inverted indexes for the objects (attributes) of entities in the KB. Given an
attribute t(i) of n distinct words and a matching threshold θ, according to the



114 X. Zhang et al.

Jaccard similarity, the objects that can form mapping units with t(i) must share
at least θn common words of t(i). Accordingly, those candidate objects are found
by merging the inverted indexes of words in t(i), filtering objects presenting less
than θn inverted indexes. After that, a refining process is required by computing
the Jaccard similarities between the candidate objects and t(i). Those whose
similarities are no less than θ form mapping units of t(i). With the lists of map-
ping units for different attributes t(i), i = 1, . . . , d, we are able to generate the
significant mapping vectors of M(t, e) by the combination (Cartesian product)
of mapping units of the same entity e, in different lists.

The major issue of the baseline solution is the low efficiency. Considering that
a table of hundreds of cells, if each cell invokes an above keyword search process,
the total time cost for processing a table can be as large as tens to hundreds of
seconds, not feasible for practical solutions. As such, we propose a very efficient
solution for generating the evidencing mapping vector set M(T ′).

Fast Evidencing Set Generation. In entity-attribute Web tables, the number
of rows may vary significantly, from tens to thousands. When a table contains
a large number of entities, on one hand, many of them may not have relevant
entities in KB. It will be better if we can quickly judge whether there are relevant
entities of a given tuple, so that we can efficiently prune the tuples without
relevant entities by avoiding the expensive search process over them. On the
other hand, a large table may contain many tuples having relevant entities in
KB. We may not use all of these tuples with relevant entities to find mapping
vectors, because the table-to-KB mapping vector is likely to converge when the
set M(T ′) grows up to certain size. As such, it is beneficial if we find mapping
vectors from some selected tuples of the table T .

To efficiently judge whether a tuple contains relevant entities or not, we pro-
pose to apply memory-based indexes. To be a relevant entity e of a tuple t,
according to the Definition 1 and Definition 2, the entity name of t in the key
column must exactly match with an object of e. In other words, we expect that
the name of a relevant entity matches with the name of the entity described by
t. For this purpose, we are able to create inverted indexes for only the entity
names in the KB. Because entity names are often short texts, the inverted in-
dexes of all entity names do not cost too much space. They can be held in the
main memory, which leads to an efficient solution to filter irrelevant entities by
only their names. Given an entity name of a tuple, we are able to find candidates
of its relevant entities based on the indexes. Note that information (predicates
and objects) of entities are stored externally, and indexed by their entity IDs.
To check whether a candidate relevant entity is a real relevant entity or not, we
need load information of the candidate entity from external devices, and com-
pare them with the tuple t based on the Definition 3. Consequently, the major
cost of generating the evidencing multiset of mapping vectorsM(T ′) comes from
loading entities from external devices by paying expensive I/Os.

To save the cost of generating M(T ′), we need control the number of entities
loaded from external devices. On the other hand, to guarantee the accuracy of
table-to-KB schema mapping, the size of M(T ′) should be significant enough.
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This somehow contradicts with the reduction of the number of entities to be
loaded. To address this conflict, we propose to load candidate relevant entities
of tuples that potentially have less ambiguity, i.e., those tuples having less can-
didate relevant entities (found by the in-memory indexes) are firstly used for
loading candidate relevant entities and generating the significant mapping vec-
tors. Algorithm 1 shows the detailed process of our solution to efficiently gener-
ate significant mapping vector set. Note that, the generation process terminates
when τ significant mapping vectors have been found.

Algorithm 1. Generating significant mapping vectors

Input: T , a table with ci as the key column
Input: τ , the maximal number of mapping vectors inM(T ′)
Output: M(T ′)

1 setM(T ′) as ∅
2 find candidate relevant entities for all the cells in the key column ci using

in-memory indexes
3 rank all the tuples as a list T ′, based on the number of the candidate relevant

entities they have, in an ascending order
4 while |M(T ′)| < τ do
5 pick a tuple t from the top of the list T ′

6 retrieve all candidate relevant entities of t
7 foreach retrieved candidate e do
8 compute the significant mapping vectors between t and e
9 insert them intoM(T ′)

10 if |M(T ′)| ≥ τ then
11 break

12 returnM(T ′)

4.2 Finding the Table-to-KB Mapping Vector

Given a set of significant mapping vectors M(T ′), to find the Table-to-KB map-
ping vector, a straightforward solution is to enumerate all the significant mapping
vectors dominated by each detected significant mapping vector in M(T ′). Then,
we can compute the utility of each significant mapping vector to the set M(T ′),
and find the significant mapping vector (if exists) with maximal utility. For a
significant mapping vector M ∈ M(T ′), it totally dominates 2c(M) − 2δ + 1 sig-
nificant mapping vectors. As a result, when c(M) is relatively large, there will be
a large number of significant mapping vectors to be enumerated, simply for one
mapping vector M . The enumeration will be very time-consuming. To solve this
problem, we propose a best first search algorithm that is able to incrementally
find significant mapping vectors in a bottom-up manner. It avoids the enumer-
ation process by heuristically expanding the mapping vector of maximal utility
having been found. To do this, we need record the significant mapping vectors
in M(T ′) in a way of using binary words. See details in Fig.3.

For each column ci, one binary word is used for each predicate that the column
ci maps to, according to the significant mapping vectors of M(T ′). A binary
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Fig. 3. Binary words for recording significant mapping vectors

word contains |M(T ′)| bits, with each bit records whether a significant mapping
vector maps to the predicate in the column ci. In this way, a significant mapping
vector can be represented by a column in the bitmap. For an example of Fig.3,
M1 = [p11, 0, . . .], M2 = [p11, p24, . . .] and M3 = [p13, p22, . . .]. By using the
binary words, given a mapping vector M , we are able to efficiently find the
significant mapping vectors dominating it in the setM(T ′). This can be achieved
by the conjunction of all binary words of mapping units of M . For example, to
find the significant mapping vectors dominating M = [p11, p24, 0, . . . , 0], we need
conduct a bitwise AND operation over the binary words of c1-p11 (the first row)
and c2-p24 (the seventh row). According to the derived conjunctive binary word,
we can make sure that M2 is a significant mapping vector dominating M . With
the conjunctive binary word of a mapping vector, the support of a mapping
vector s(M) can be efficiently computed by counting the number of ones in the
conjunctive binary word. With binary words, we are able to design the Algorithm
2 to efficiently find table-to-KB mapping vector.

Fig. 4. An example of expanding mapping vectors in Algorithm 2

As shown in Algorithm 2, it maintains a heap H for mapping vectors to be
expanded. The algorithm initiates with mapping vectors determined simply by
the key column. Each time it picks a mapping vector M of maximal utility from
H for expanding. The expansion is conducted only it may potentially contain
the mapping vector of maximal utility, determined by the upper bound of the
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Algorithm 2. Search table-to-KB mapping vector

Input:M(T ′), in the format of binary words
Output: Mmax, the table-to-KB mapping vector

1 set H as ∅, be a heap recording all mapping vectors to be expanded
2 generate mapping vectors (with confidence 1) only for the key column, and

insert them into H as seeds to be expanded
3 set umax = 0, Mmax = 0
4 while H �= ∅ do
5 pop the mapping vector M of maximal utility from H
6 if d · s(M) > umax then
7 expand M by introducing a new column has not been expanded by M
8 foreach expanded mapping vector M ′ do
9 if d · s(M ′) > umax then

10 push M ′ into H
11 if u(M ′) > umax and c(M ′) ≥ δ then
12 set umax as u(M ′)
13 set Mmax as M ′

14 return Mmax

utilities of all mapping vectors expanded from M (i.e., d · s(M)). The expansion
terminates when no mapping vector exists in H . Finally, Mmax is returned as the
table-to-KB mapping vector if it is a significant mapping vector. Fig.4 illustrates
the best first expansion process. Note that, to avoid the repetition of expansion,
each mapping vector only expands in columns to the right of the most right
column that it has expanded. For example, in Fig.4, the mapping vector M =
[1, 0, 5, 0, 0] can only expand its last two columns, instead of the second one.

5 Evaluation

5.1 Experimental Settings

We use the DBPedia 3.7 dataset1 as the KB in our experiments. The version
we used contains 3.64 million entities. The most popular types of entities in
DBPedia include persons, places, music albums, films, etc. We extracted literal
information from the subjects and objects (by removing the URI prefixes for
semantic matching) of the entities in the KB. There are no standard test sets. In
our study, the tests are based on twelve Web tables (listed in Table 1) randomly
searched from the Google Fusion Table search interface2. They contain entities
such as persons, movies and songs. Not all the columns are used for schema
mapping. We filter those columns that satisfy one of the conditions: 1) IDs; 2)
URLs; 3) more than one third of cells are empty cells. We also remove rows
which have more than one half of cells are empty.

1 http://dbpedia.org/
2 http://www.google.com/fusiontables/

http://dbpedia.org/
http://www.google.com/fusiontables/
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Table 1. Web tables used in experiments

Table Table Names No. of columns No. of rows

1 Emily’s list of person 4 206

2 Academy award-winning films 4 1152

3 American films of 1993 4 180

4 American superhero animated 6 40

5 Christmas hit singles in the US 4 443

6 museums 4 78

7 new leadership of American PAC 4 232

8 Miss America 5 80

9 Obama for America 4 1456

10 criterions on Netflix 5 520

11 songs 5 757

12 football players 8 54

Two instance-based approaches[20] are applied as baselines. The first one is
based on the word frequency (mentioned in [20]) of columns in tables and predi-
cates in the KB. The predicate with the maximal cosine similarity is selected as
a mapping predicate of a column. The second one (COMA++[10]) extends the
COMA[3] with two instance-based matchers that utilize certain constraints and
linguistic approaches. It applies a propagation algorithm to propagate the simi-
larity values of elements to their parents. Our solution is labeled as T2KB. Note
that we also implement an entropy based approach [13] that works by computing
the “mutual information” between pairs of columns within each schema. How-
ever, its performance is so poor that most columns are not correctly mapped.
So we do not show its results for comparison. We use Java to implement our
algorithms. The experiments are conducted on a server with a 1.8G 24 Core
processor, 128GB memory, running 64-bit Linux Redhat kernel.

5.2 Accuracy Comparison

Table 2 shows the precision and recall of the compared methods over 12 tested ta-
bles. The precision of an approach is defined as the number of corrected matched
columns (manually evaluated) over the number of detected matched columns.
The recall is defined as the number of corrected matched columns over the num-
ber of columns in the table. From the results, we can see that, the precision and
the recall of T2KB are much better than those of WF and COMA in almost all
the cases. The accuracy of WF is the worst. This is reasonable because it is hard
to find an ideal predicate simply based on the word frequency, due to the large
number of candidate predicates in the KB. The accuracy of COMA is much bet-
ter than that of WF because it is also based on instance-based schema matching.
However, compared to the proposed T2KB, COMA is still not accurate enough.
Moreover, it is very inefficient. The mapping of a table requires several minutes
in average. For the T2KB approach, we can see that its precision is very high,
which means that the discovered matched columns have very high accuracy.
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Table 2. Comparison of accuracy

Table
WF(Word Frequency) COMA T2KB

Prec./Recall Prec./Recall Prec./Recall

1 0.25/0.25 0.67/0.50 1.00/0.75

2 0.25/0.25 0.33/0.25 0.33/0.25

3 0.25/0.25 0.75/0.75 1.00/0.75

4 0.17/0.17 0.67/0.67 0.50/0.33

5 0.50/0.50 1.00/1.00 1.00/0.75

6 0.25/0.25 0.75/0.75 1.00/1.00

7 0.50/0.50 0.33/0.25 0.67/0.50

8 0.00/0.00 0.20/0.20 1.00/0.60

9 0.50/0.50 0.33/0.25 1.00/0.75

10 0.20/0.20 0.60/0.60 1.00/0.80

11 0.40/0.40 0.80/0.80 1.00/0.80

12 0.40/0.25 0.60/0.38 0.80/0.50

To further compare the accuracy of the applied schema mapping solutions,
we show the mapping results of two examples. The mapping predicate (if exists)
of each column is shown. It is bolded if labeled as a corrected match. Table 3
shows the details of the “criterions on Netflix” table, where both the precision
and the recall of T2KB outperform those of the other two approaches. For the
T2KB approach, the column Year is mapped to the predicate released, which is
actually more concrete than the simple mapping to the predicate Year.

Table 3. Accuracy for the table “criterions on Netflix” table (No. 10)

Method Title Streaming Director Country Year Precison Recall

WF nextissue international mayor nationalorigin lastrace 0.20 0.20

COMA name data director name year 0.60 0.60

T2KB name / director country released 1.00 0.80

Table 4 shows an example where all the solutions do not work well. One reason
for the bad mapping results is that columns awards and nominations contain
small numbers, which causes them to be easily mapped to a wrong predicate.

5.3 Impacts of Parameters

We test the impacts of three parameters in the T2KB approach, τ , θ and δ.
The results are shown in Fig.5. The performance when tuning the parameter
τ (by fixing θ = 0.2, δ = 3) is shown in Fig.5(a)-5(b). As can be seen from
Fig.5(a), when enlarging τ , both the precision and the recall climb in general.
They converge when τ is enlarged up to around 300. This is reasonable because
the more mapping vectors used in M(T ′), the higher reliability of the derived
table-to-KB mapping vector. In the test cases, the average total numbers of
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Table 4. Accuracy for the table “Academy award-winning films” (No. 2)

Method film year awards nominations Precision Recall

WF englishtitle yearestimate yushos count 0.25 0.25

COMA name / title m 0.33 0.25

T2KB name / gross gross 0.33 0.25
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Fig. 5. Impacts of parameters on the performance of the T2KB approach

mapping vectors is around 1000. This explains why the precision and recall
converge when τ is larger than around 300.

For the efficiency shown in Fig.5(b), the time cost increases when enlarging
τ , simply because more entities need to be loaded and more vectors need to
be processed. In general, the T2KB approach can be conducted within a few
seconds, which is much more efficient than the COMA approach that typically
requires hundreds of seconds for a mapping task. We also test the performance of
T2KB when the mentioned baseline solution (in Sec.4.1) is applied for generating
significant mapping vectors. It takes 127 seconds in average, far more slower than
the proposed solution.
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Fig.5(c)-5(d) show the performance of T2KB when θ is tuned from 0.1 to
0.9 (by fixing τ = 300, δ = 3). The enlargement of θ causes the reduction
of both precision and recall in general. This is because higher θ causes less
mapping vectors in M(T ′), leading to a lower accuracy. In other experiments,
we set θ = 0.2 by defaults. For the efficiency in Fig.5(d), the time cost slightly
increases when enlarging θ, because more entities are need to be loaded for
generating enough mapping vectors. There is a drop when θ is enlarged from 0.7
to 0.9, this is because all relevant entities have been loaded for θ = 0.7. When
θ is further enlarged, the reduction of the number of mapping vectors in M(T ′)
saves the cost of generating the table-to-KB mapping vector using Algorithm 2.

For the parameter δ in Fig.5(e)-5(f), we can see that the best accuracy is
achieved when δ = 3. This is reasonable because small δ generates too many
false positive mapping vectors which may generate some false mapping units
in the table-to-KB mapping vector. On the other hand, large δ will cause the
number of significant mapping vectors to be very small, which causes the derived
table-to-KB mapping vector not reliable. In other experiments, we set δ = 3 by
defaults. For efficiency in Fig.5(f), the time cost increases when δ is enlarged in
general. The reason is the same as that for the parameter θ in Fig.5(d).

6 Conclusions

We propose a pure instance-based schema mapping solution that finds the table-
to-KB schema mapping from the mapping vectors generated from tuples and
entities. We show that the proposed solution is more accurate than the two
baselines of instance-based approaches for the given table-to-KB schema map-
ping problem. We also demonstrate that by using the proposed techniques for
efficient computing the mapping vector, the proposed instance-based schema
mapping solution can be efficiently processed. It is feasible for the schema map-
ping of large Web tables and huge knowledge bases.
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Abstract. In recent times we have witnessed several advances in modern web-
technology that has transformed the Internet into a global deployment and 
development platform. Such advances include Web 2.0 for large-scale 
collaboration; Social-computing for increased awareness; as well as Cloud-
computing, which have helped virtualized resources over the Internet. As a 
result, this new computing environment has thus presented developers with 
ubiquitous access to countless web-services, along with computing resources, 
data-resources and tools. However, while these web-services enable tremendous 
automation and re-use opportunities, new productivity challenges have also 
emerged: The same repetitive, error-prone and time consuming integration 
work needs to get done each time a developer integrates a new API. To address 
these challenges we have developed ServiceBase, a "programming" knowledge-
base, where common service-related low-level logic can be abstracted, 
organized, incrementally curated and thereby re-used by other application-
developers. A framework is also proposed for decomposing and mapping raw 
service-messages into more common data-constructs, thus making interpreting, 
manipulating and chaining services further simplified despite their underlying 
heterogeneity. More so, empowered by this knowledge, we expose a set of APIs 
to simplify the way web-services can be used in application-development.  

Keywords: Service Oriented Architecture, Web-Services, Web 2.0. 

1 Introduction 

In parallel with cloud computing, we have witnessed several other advances that are 
transforming the Internet into a global development and deployment platform. These 
include Web 2.0, Service Oriented Architectures (SOA) and social computing. SOA 
enables modular and uniform access to heterogeneous and distributed services; Web 
2.0 technologies provide a Web-scale sharing infrastructure and platform, while 
advances in Social-computing are increasing transparency, awareness, and 
participants’ collaboration and productivity.  Developers are thus offered with 
ubiquitous access to a network of logical services along with computing resources, 
data sources, and tools. In a nutshell, the new computing environment enabled by 
advances in the above areas, consists of data, computational resources, both 
virtualized and physical services, and networked devices distributed over the Internet. 
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This new computing paradigm provides a holistic environment in which users, 
workers, services, and resources establish on-demand interactions to meet multiple 
simultaneous goals. More specifically, such Web-services and APIs are widely 
adopted by programmers to build new applications in various programming languages 
on top enterprise as well as social media, Internet-of-Things, and crowd and cloud 
services (from resources to platforms). For instance, a number of added value 
applications such as Tweetdeck1 have been built on top the Twitter API. 
Organizations like Mashery2 and Apigee3 are building on these trends to provide 
platforms for the management of APIs. For instance, ProgrammableWeb now has 
more than 6,700 APIs in its directory. These services can be combined to build 
composite applications and higher-level services using service composition 
techniques [2].  

However, while advances in Web service and services composition have enabled 
tremendous automation and reuse opportunities, new productivity challenges have 
also emerged. The same repetitive, error-prone and time consuming integration work 
needs to get done each time a developer integrates a new API, [1,2]. Furthermore, the 
heterogeneity associated with services also means service-programming has remained 
a technical and complex task, [3]. For example, the developer would need sound 
understanding of the different service types and their various access-methods, as well 
as being able to format input data, or parse and interpret output data in the various 
different formats that they may be available in, (e.g. XML, JSON, SOAP, 
Multimedia, HTTP, etc.). In addition to API integration work, programmers may also 
need to develop additional functionality such as: user management, authentication-
signing and access control, tracing, and version management.   

In order to address these challenges, we have designed and developed ServiceBase, 
a “programming” knowledge-base, where common service-related low-level logic can 
be abstracted, organized, incrementally curated and thereby re-used by other 
application-developers. Architecturally, we have drawn inspiration from Freebase 
and Wikipedia, where just as encyclopediatic information is distributed in the form of 
user-contributed content, similarly, technical knowledge about services could be both 
populated and shared amongst other developers for the purpose of simplified reuse. 
More specifically, we offer the following main contributions: (i) We define a unified 
services representation model to appropriately capture service-knowledge that is 
organized in our programming-base; (ii) To augment a further level of simplicity, we 
provide a framework for mapping between native service message formats and more 
common data-structures. This means that input and/or output messages of services 
can be decomposed and represented as various types of atomic (string, numeric, 
binary), or complex (list, tuple) fields, thus making service messages easier to 
interpret and manipulate; (iii) Empowered by this knowledge stored in the base, we 
then provide a set of APIs that expose a common-programming interface to 
developers, thereby simplifying service integration in application development. For 
example, invoking a service-method could be done in a few simple lines of code, and 
does not entail the programmer to be aware of and program the low-level details, such 

                                                           
1 http://www.tweetdeck.com 
2 http://www.mashery.com 
3 http://apigee.com 
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as protocol for access (i.e. REST vs. SOAP), message-formats (i.e. XML vs. JSON), 
authorization-control (i.e. formulating and signing OAuth request). This is 
implemented by a service-bus middleware that translates high-level methods to more 
concrete service calls, by looking-up and then building the necessary information 
from the knowledge-base. Similarly, we have provided other simple methods for: 
subscribing to feeds; listening to events; and setting-up callbacks, etc.  

2 Unified Web-Services Representation Model 

At the most basic level, standardizations such as WSDL have provided an agreed 
means for describing low-level APIs, and much less formally, the same might be true 
for the documentation of RESTful Service APIs. However, it is clear most of these 
have been focused primarily for the purpose of service-description and discovery, 
where the emphasis on simplifying service-execution is almost neglected, [2,5,7]. 

In this section, rather than treating services as isolated resources, we describe a 
unified and hierarchical representation model for the logical organization of services 
in the knowledge-base.  

The type of knowledge captured includes: fundamental service information such as 
access-protocol, the set of operations and message formats; authorization information in 
the case of secure-access services; an end-user base that allows users to pre-authorise 
secure-services, and therefore applications written using ServiceBase, only need to use a 
single access-token per user, rather than having to manage a set of different token for 
each secure service per user; message-transformation rules for mapping between raw 
message-types and relatively more simpler message-field object. A summarized version 
of the service model has been described in the UML-diagram as illustrated in Figure 1, 
and elucidated further below: 

Services. The class Service is an abstract superclass for all specialized service types 
being implemented. Namely, we support three main types, REST, WSDL and Feed-
based services. A RESTService extends Service and requires that a base-endpoint be 
specified that makes up the common part of the RESTful call. WSDLServices require 
a wsdl source file, whereby the system can then perform runtime parsing in order to 
simplify the formulation and validation of the service-model. StreamServices further 
extends RESTServices, and allows Feed sources to be specified. Furthermore, in order 
to deal with access to secure services using OAuth [8], AuthorisationInfo allows for 
this information to be defined and attached to service-objects. Furthermore, our 
unique service-model organizes the service into a logical hierarchy, thus enabling 
children services to inherit the knowledge already registered at the parent. The benefit 
of this means: not only is it easier to add new services, but it also creates the notion of 
a service-community (similar to our previous work [4]). In this manner, similar 
services can be defined with a common-set of operations and share a similar interface, 
thus simplifying interoperability between services (e.g. replacing one service with 
another) – we shall give an example of this later in this paper. 
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Fig. 1. Summarized view of the Unified Service-Representation Model 

OperationType. From a technical standpoint, the notion of a service-operation might 
take upon different meanings for different service types. For example, in the case of 
REST, while there are generally four basic operation-types (get, put, post, delete), 
often what are more relevant to the end-user are the various methods that are 
available. For example, searching for photos on Flickr might be considered a user-
operation, accessed via the endpoint /?method=flickr.photos.search. WSDL 
services are slightly different in that operations are generally expressed as an RPC 
call. However, we propose in both cases service-access can be simplified by 
abstracting the low-level details from the end-user. For example, it would be much 
more convenient to express a call to Flickr as “/Flickr/getPhotos”, and similarly 
for an operation available in WSDL, such as “/Flights/getBooking”, rather than 
having to specify the more technical low-level details to make the call. In our model, 
this is therefore supported by the abstract superclass OperationType, although since 
the low-level details of operations may differ between different service 
representations, we have therefore specialized into various sub-classes. 
 
FeedType. The detection of RSS or ATOM feeds can also be supported and is 
defined using the FeedType class. This specifies the endpoint, the interaction-style 
used to read feeds, as well as any instance parameters. There are three main 
interaction-styles supported: polling (i.e. periodic pull at a predefined interval); 
streaming (i.e. an open call that allows data to be pushed to the caller); and publish-
subscribe (i.e. this involves registering to a hub that actively sends data only when 
new content is available).  However, the definition of FeedType still remains abstract, 
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in the sense that they may not point to any specific feed-source. For example, a Flickr 
discussion feed can be defined by the endpoint: http://api.flickr.com/services 
/feeds/groups_discuss.gne, but also requires a parameter groupID be specified 
to identify the particular discussion group. Various instances of the feed can now be 
instantiated, using the FeedInstance object, to create several customized instances of 
this feed without having to re-define the common low-level details. Moreover, as 
certain feed-sources may require authorisation, the owner can appropriately restrict 
access to specific feed-instances and not others by sharing only with specific users. 
Alternatively, it could be defined as public-view. 
 

Messages. The class Messages represent the various serialization-types for both 
incoming and outgoing data that is associated with services. All message-types that we 
support are specializations of the superclass Message. Messages can be used both at 
design-time by curators when registering services, as well as at execution-time by 
developers when interacting with services. An HttpMessage encapsulates standard 
information such as parameters, and payload/body, but also supports parameterized path 
values, such as “/questions/{q_id}/related”. A MultimediaMessage allows 
representing any Internet Media File [9] not already directly supported. For example, 
Images, PDFs, WordDocuments, etc. While SOAPMessages are inherently XML, we 
provide added support, since we know the schema of the messages. A Parameter of a 
SOAP message is defined as the triple <name, xpath, value?>, where name is a user-
defined name given to the parameter, while xpath is the query used to reach the 
respective data-field; optionally a pre-defined value can be assigned to this parameter.  
 
Message-Fields. Although all services need to define their native input and output 
message types, we have also chosen to further decompose any Message into a set of 
user-defined MessageFields. There are several benefits for this: (i) Firstly, working 
with fields means the end-programmer do not need to worry about the low-level logic 
of working with raw messages, such as formatting and parsing messages. (ii) 
Secondly, fields provide a unique means for representing similar (yet heterogeneous) 
services in a common-interface. For example, in the example described later, we show 
how various database-services could be abstracted to a common set of operations: put, 
get, read and delete, etc. This being despite their underlying heterogeneity (e.g. a 
JSON versus an XML data-interchange model). (iii) Thirdly, applications written 
using fields to interact with services means changes in the underlying web-services 
(i.e. the service-provider modifies their API or message structure or format, etc.), 
would not require any modifications to the application-code. (Although of course, 
these changes would need to be made in the mapping-logic, but would only need to be 
done once, instead of for each and every application that is using the web-service). 

We have found three field-types to be appropriate: AttributeFields are simple and 
define a name and value pair; the value-type includes any common primitive type, 
such as string, integer and date, as well as binary-array to handle media-files. We 
then support two complex types, which may itself contain other atomic or complex 
fields nested within them. The complex type ListField represents an indefinite, 
ordered list of field-elements of the same type (usually instantiated at ‘run-time’ to 
handle an unknown collection of items). While, TupleField represents a finite 
collection of fields, akin to a Struct or Class, which can therefore be of arbitrary type, 
(but instantiated at ‘design-time’). 
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Mapping Rules. However, in order to enable fields, mappings need to be defined, 
which specifies transformation-rules that map between the defined field and the 
corresponding raw-message. In some cases, the mapping-rules can be completely 
generated automatically, such as in the case of WSDL services. However, in the case 
of REST, which is far more informal and does not prescribe pre-defined schemas, the 
mappings would need to be specified with some human-assistance. However, the 
overall benefit is still clear: once a mapping has been registered in the base, others can 
then reuse it multiple times. Mappings are structured in our system in JSON-format, 
which to begin with can be generated as a template; it then allows the rules to be 
entered in order to map to the specific raw-message. The basic template structure for 
each field-type has been illustrated in Figure 2 below. Although for nested fields, the 
JSON-template generated would be a corresponding nested structure. Note, the 
concept of a nodepath expression shown for list, has been defined in the work 
presented at [10], and is only necessary when dealing with raw messages schema that 
are hierarchically organized XML/JSON data. The value defines the path-to-the-node 
(i.e. sub-tree) that are to be considered distinct elements of the list.  
 
“attribute” : { 
    “value” : “formula” 
} 

“list” : { 
    “nodepath” : “formula”,   
    (nested field) 
} 

“tuple” : { 
     (nested field/s)  
} 

(A) (B) (C) 

Fig. 2. Mapping-rule structures associated with message-field types, where: (A) Attribute-field; 
(B) List-field; and (C) Collection-field 

To specify a rule means to enter specific type of formulae to tell the system how to 
perform the mapping. For example, for an attribute field, a formula might involve an 
xpath expression over the native XML message in order to get to the desired node. 
The formulae would often involve utilising functions; at present we have preloaded 
our system with the following set of 6 functions:  

  xpath(expr), jsonpath(expr), httpparam(expr),  
httppath(expr), httpheader(expr), payload().  

Although, depending upon which type of message the mapping is loaded upon, the 
functions defined may behave differently. For instance, if loaded to an input message, 
the function would act to “write” to the raw message from the field-values; while if 
loaded for an output message, it would act to “read” from the raw message and 
populate into field-values. Moreover, in a typical service-invocation, mappings 
would need to be performed both ways: from fields to raw-messages during the input; 
and vice-versa during the output. Given that we support 5 distinct raw-message types, 
we have therefore implemented 10 transformation algorithms. 

3 ServiceBase System Architecture and Implementation 

Figure 3 illustrates the system design and interaction of the main components of the 
ServiceBase system. As mentioned, drawing inspiration from a Web2.0-oriented 
ecosystem, the service-base acts as a community between service-curators (those that 
primarily add/maintain services in the base), service-consumers (mostly application 
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developers integrating services in their implementation), and end-users (the final 
users who ultimately interact with the various service-oriented applications). We 
begin therefore in this section by describing the main APIs exposed by ServiceBase, 
and in the subsequent sections we introduce a running example, in order to convey the 
more technical details of the APIs, as it would be used in a real-life scenario. 
 

 

Fig. 3. ServiceBase System Architecture 

3.1 ServiceBase APIs 

The programmatic interface to ServiceBase offers the following APIs: 
This ServiceAPI is primarily used by service-curators in order to register new 

services into the knowledge-base, but also to: search, explore, update and delete 
service-definitions that have already been registered. 

The ServiceBusAPI would primarily be used by application-developers as the main 
gateway to interact with any of the registered services. In particular, the API provides 
methods for simplified invocation-calls, feed subscriptions, querying (pull) of feed-
events, listening (asynchronous callback push) of events, authorising services, etc. 

The UsersAPI provide a means for end-users to identify themselves with the 
service-base. A registered user in the service-base is then able to assign/revoke 
authorisation privileges to various services. In this manner, application that are 
written on top of services which require access to secure resources (for example, 
invoking an operation to get the specified user’s collection of Google Docs), can then 
be further simplified, as the entire logic for handling the secure calls is managed by 
the service-bus, rather than the application developer. Secure calls can be processed 
on behalf of a specific user simply by requesting from the user, or having shared, an 
access-key, (done via OAuth, [8]) which is then passed into the invocation method.  



130 M.C. Barukh and B. Benatallah 

3.2 Service-Modelling Example 

As mentioned, services are modeled using the unified services representation model. 
In order to apply this to a real-world scenario, we consider what the organization of 
service-entities would look like to model a variety of database services (i.e. database-
as-a-service). We also show the process (i.e. the work involved by a typical service-
curator) in order to register new services into the base, and the extent of re-use that 
can be achieved in order to simplify this process. Consider the illustration shown in 
Figure 4 below – in particular, the hierarchical organization of services entities means 
adding services as a descendant of a parent service enables inheriting (i.e. re-using) 
the higher-level knowledge stored. Therefore, at each node: new knowledge could be 
added, or if inherited, variations or specializations could be made. This organization is 
the key to enabling incremental growth of the service knowledge base. 

 

Fig. 4. Organization of DB-Services in ServiceBase 

In this particular example, we consider DB-services to be split amongst two main 
types: relational and non-relational data-stores. It is clear however even at this 
abstract level, both service types support a “query” operation, and therefore this 
operation-type can be modeled at the uppermost parent level. Non-relational database 
inherits the DB-service entity, but defines 3 more operations that could be considered 
common amongst non-relational stores, similar to the work found at [12]. Namely 
these are: “get”, “put” and “delete”. As modeling the various operation-types require 
specifying the input and output message-fields, in some cases we may use the 
superclass Field to support an arbitrary field structure. For example, this is the case 
for the return type “result” of the “get” operation (when defined at the high-level). 
However, non-relational services can be further divided into three main sub-types, 
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those being: key-value stores; record-stores and document-stores. Specializations can 
thus be applied, for example, the “get” operation of record-stores, could be modeled 
as we have illustrated in Figure 5 shown below.  

 
Fig. 5. Illustration of the “get”-operation fields representing a table-record 

3.3 Incremental Enrichment of Services in the Knowledge-Base 

Given the above model, we may now show how a concrete service, such as HBase (a 
popular non-relational record-stored database-service) could be added. A snippet of 
the code as shown in the listing below involves defining the new service to inherit the 
knowledge (i.e. definition of the operation-types, structure of the messages, mapping 
templates) that has already been defined in the record-store entity. This therefore 
simplifies the process, however it does also require customizations in order to meet 
the specifics of the concrete service, which cannot otherwise be directly automated. 
 

1. //Retrieves the “RecordStore” service-entity: 
2. Service record_store = ServiceAPI.getServiceByName(“RecordStore”); 
3.  
4. //Defines a new service “HBase” to inherit “RecordStore”: 
5. RESTService HBase = new 
6.     RESTService 
7.         .RESTServiceBuilder(“HBase”) 
8.         .inherit(record_store) 
9.         .build(); 
10.  
11. //The operation “get” can be retrieved, since it is inherited: 
12. OperationType get = HBase.getOperationType(“get”); 
13.  
14. //Customizing the input message to “http” and adding mapping info: 
15. HttpMessage msg_in1 = new HttpMessage(get.getInputMessage()); 
16. msg_in1.getField().loadMapping(“in_map1.json“); 
17. get.setInputMessage(msg_in1); 
18.  
19. //Customizing the output message to “xml” and adding mapping info: 
20. XMLMessage msg_out1 = new XMLMessage(get.getOutputMessage()); 
21. msg_out1.getField().loadMapping(“out_map1.json”); 
22. get.setOutputMessage(msg_out1); 
 

1. //Contents of in_map1.json: 
2. {"Id" : { 
3.    "value" : "write(httpparam(id))" 
4. }} 
 

1. //Contents of out_map1.json: 
2. {"Table" : { 
3.    "nodepath" : "xpath('//Item')", 
4.    "Row" : { 
5.       "nodepath" : "xpath('//Attribute')", 
6.       "Cell" : { 
7.          "CellName" : { 
8.             "value" : "read(xpath('//Attribute/Name/text())')" 
9.          }, 
10.          "CellValue" : { 
11.             "value" : "read(xpath('//Attribute/Value/text())')" 
12.          } 
13.       } 
14.    } 
15. }} 
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In order to provide additional support, in the mappings shown, we illustrate in bold-
text the template that can be generated for the required mapping (i.e. by calling 
.generateMapping() on the particular field object) – leaving just the specifics to be 
filled-in. Although, consider now the case where another method could be added to 
the record-store service-entity, for example: getTableList, which takes no 
message arguments, but returns a list of names, itemizing all the tables defined in the 
store. The code to add this operation-type is shown in the listing below; and serves to 
demonstrate how service-entities can grow incrementally. Now, in the case that 
another concrete record-store service would be added (for example, Google 
BigTable), the new operation-type could easily be inherited.  
 

1. //Retrieves the “RecordStore” service-entity: 
2. Service record_store = ServiceAPI.getServiceByName(“RecordStore”); 
3.  
4. //Define the new operation-type: 
5. OperationType get_tables = new OperationType(“GetTableList”); 
6.  
7. //Define the input message and fields: 
8. Message msg_in = new Message(); 
9.  
10. //Define the output message and fields: 
11. Message msg_out = new Message(); 
12. AttributeField<String> table_names =  

new AttributeField<String>(“TableNames”); 
13. ListField table_list = new ListField(“Tables”, table_names); 
14. msg_out.addField(table_list); 
15.  
16. //Add input and output messages to operation-type: 
17. get_tables.setInputMessage(msg_in); 
18. get_tables.setOutputMessae(msg_out); 
19.  
20. //Add operation-type to service: 
21. record_store.addOperationType(get_tables); 
22.  
23. //Update service-entity: 
24. ServiceAPI.updateService(record_store); 

3.4 Use-Case Scenario 

We have shown in the above how service-entities are incrementally enriched. In some 
cases although it requires some work, once this knowledge has been entered, we can 
then re-use and utilize for enabling simplified integration to services in application 
development. We demonstrate this over a simple use-case scenario, which we have 
implemented: Consider we would like to visualize the contributions of users to a 
particular Google Document. At present, since the GoogleDoc API only returns the 
twenty-most recent changes, we are required to log this data ourselves; to do so we 
utilize HBase. This data, which can be stored in a table in HBase, can then be queried 
for analysis in order to formulate the required visualization.  

Based on our evaluation, implementing this using traditional means (i.e. without 
using ServiceBase) required a total of approximately 326 lines-of-code, and 3 
dependency libraries. Whereas as demonstrated below, a solution using ServiceBase 
could be implemented in less than 77 lines-of-code, with no additional libraries. 

The implementation we have devised could be divided into two parts: (i) A 
deamon process that monitors changes on the particular GDoc, and logs this data into 
the database-service; (ii) The request-reply function that when called queries this 
database and returns an appropriate visualization. 
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We first use ServiceBase to create a FeedInstance of the generic Google Document 
DocChanges [15] FeedType , and then create a subscription to this, as shown below: 
 

1. FeedInstance activity_feed =  
new FeedInstance(googleDocs.getFeedTypeByName(“ActivityFeed”)); 

 2. activity_feed.setInstanceName(“MoshesGDocActivity”); 
 3. activity_feed.setPathParam(“user_id”, “moshe…@gmail.com”); 
 4. activity_feed.setPublic(false); 

 
 5. //Register the feed-instance on the service-bus: 
 6. ServiceAPI.registerFeedInstance(access_key, activity_feed); 
 
 7. //Create a subscription to this event: 
 8. String subscription_id =   
           ServiceBus.subscribe(“/GoogleDocs/ActivityFeed/MoshesGDocActivity”); 

 

Upon doing so, an event-callback could then be written that acts on the event that a 
new change has occurred. If so, an entry is added to the database to log this change. 
The code below thus represents the deamon process that could be inserted: 
 

1. public class EventHandlers { 
2.   @EventCallback(tag="my_handler_id") 
3.   public void MyHandler(Field gdoc_activity, String sub_id){ 

 
4.      //Get the data needed from activity field object: 
5.      gdoc_activity = (TupleField) gdoc_activity; 
6.      String doc_id = gdoc_activity.getField(“gdoc_id”).getValue(); 
7.      String author = gdoc_activity.getField(“author”).getValue(); 
8.      String desc = gdoc_activity.getField(“description”).getValue(); 

 
9.      //Get DB-service object: 
10.      Service HBase = ServiceAPI.getServiceByName(“HBase”); 
11.      ListField row = (ListField)HBase.getOperationTypeByName(“put”) 
12.                                      .getInputMessage().getField(); 

 
13.      //Formulate input Message-Fields: 
14.      TupleField gdoc_id = new TupleField(“Cell”); 
15.      cell.addField(new AttributeField<String>(“CellName”,”gdoc_id”)); 
16.      cell.addField(new AttributeField<String>(“CellValue”,doc_id)); 
17.      row.add(gdoc_id); 

 
18.      TupleField author_username = new TupleField(“Cell”); 
19.      cell.addField(new AttributeField<String>(“CellName”,“usrname”)); 
20.      cell.addField(new AttributeField<String>(“CellValue”,author)); 
21.      row.add(author_username); 

 
22.      TupleField description = new TupleField(“Cell”); 
23.      cell.addField(new AttributeField<String>(“CellName”, “desc”)); 
24.      cell.addField(new AttributeField<String>(“CellValue”, desc)); 
25.      row.add(description); 

 
26.      //Invoke DB-service to add data: 
27.      ServiceBus.invoke(HBase, “put”, row); 
28.   } 
29. } 

 
30. ServiceBus.addEventListner(access_key, subscription_id,  

       new EventHandlers(), “my_handler_id”); 
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Finally, in order to produce the required visualization, we implement the following 
function that queries the database-service for analysis. (In this example, we simply 
assume any change counts as 1-point towards the scores that calculates contributions). 
We use Google Chart API [11] for creating a visualization of data. 

 
1. public String getGraph(String access_key, String doc_id){ 

 
2.     //Get Service-entity from bus: 
3.     RESTService HBase = ServiceAPI.getServiceByName("HBase"); 
4.     RESTOperationType getRecord =  
            HBase.getOperationTypeByName("GetRecord"); 
5.     AttributeField<String> id =  

       new AttributeField<String>("id", doc_id); 
 

6.     //Invoke service to query DB for log-data: 
7.     Field changes =  
           ServiceBus.invoke(access_key, HBase, getRecord, id); 

 
8.     //Calculate contributions:     
9.     HashMap<String,Integer> user_score =  

       new HashMap<String,Integer>(); 
        

10.     for(Field rows : (ListField<Field>) changes){ 
11.        for(Field cell : (ListField<Field>) rows){ 
12.            cell = (TupleField) cell; 
13.            if(cell.get("name").compareTo("username")==0){ 
14.              String username = ((TupleField)cell).get("value"); 
15.              if(user_score.get(username)!=null){ 
16.                 int curr_score = user_score.get(username).parseInt(); 
17.                 user_score.put(username, curr_score+1); 
18.              } 
19.              else 
20.                 user_score.put(username, 1); 
21.            } 
22.        } 
23.     } 

 
24.     //Use Google Graph API for getting a visualisation URL: 
25.     Service googleGraph = ServiceAPI.getServiceByName(“GoogleGraph”); 
26.     ListField pie_data = (ListField) googleGraph 

                           .getOperationType(“createPieChart) 
                           .getInputMessage() 
                           .getField(); 
 

27.     for(String username : user_score.keySet()){ 
28.        TupleField chartdata = new TupleField(“ChartData”); 
29.        chartdata.addField( 
30.           new AttributeField(“label”, username); 
31.        chartdata.addField( 
32.           new AttributeField(“value”, user_score.get(username)); 
33.        pie_data.add(chartdata); 
34.     } 
35.     String url = 

     ServiceBus.invoke(null, googleGraph, “createPieChart”, pie_data); 
 

36.     return url; 
37. } 
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4 Evaluation 

We have evaluated the overall effectiveness of our proposed approach (i.e. to simplify 
access and integration of web-services in application development), by adopting the 
above scenario in a user-study. The factors used to measure effectiveness were: (i) 
The total number of lines-of-code excluding white-space and comments; (ii) Number 
of extra dependencies needed; and (iii) Time taken to complete task. The study was 
conducted on a total of five participants, all of which possessed an average to 
moderately-high level of software development expertise. In order to further balance 
the evaluation, three participants were asked to attempt the implementation using 
traditional techniques first, and then secondly using ServiceBase; whereas the other 
two participants were asked to do this in reverse. The results of our study are shown 
in the graphs as illustrated at Figure 6 below. 

 

Fig. 6. Evaluation Results for GDocs Contribution Calculator use-case 

As an overall analysis, it is clear that across all participants, the number of lines of 
code and time taken to complete the task is significantly reduced when using 
ServiceBase than in comparison to the traditional development approaches. In general 
as well, while the implementations using ServiceBase did not require any additional 
libraries, the traditional approaches in contrast required on average at least two to 
three additional libraries. In light of these results, this evaluation study successfully 
demonstrates the anticipated benefit of our proposed approach. 

5 Related Work 

Web-Service Types, Modeling Technique and Concerns. There are clearly two 
widely accepted representation approaches for services, namely SOAP and REST 
[2,5,7]. Nonetheless, while both strive to achieve the same underlying goal, there has 
in fact been much debate about whether “REST has replaced SOAP services!” [6], or 
questions posed relating to “which one is better?” [16]. While the conclusions of these 
debates are largely beyond the scope of our exploration, it is clear that RESTful 
service has by far outweighed SOAP service offerings. In fact, at the time of writing, 
there has been a reported 500 SOAP services in contrast to over 2,800 RESTful 
services. The clear reasons for this is due to the fact that RESTful services are by far 
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easier to understand and provides better support for modern web-technology. For 
example, whereas SOAP enforces XML, RESTful services support a more human-
friendly JSON, that also enables increased support for embedding JavaScript and 
Ruby. SOAP services on the other hand have mainly focused on enterprise resulting 
in a more verbose architecture. Particularly WSDL guided by the increasingly family 
of WS-* standards. However, it is precisely the lack of standards surrounding REST 
that has polarized the community for or against REST being the next generation of 
web-services technology, [17].  

Web-Services Repositories, Access Techniques and Concerns. Ultimately, the 
value of service-models is assessed by its usefulness, such as: whether services can be 
stored and explored; and whether the model enables a degree of automated support to 
utilize them in application development. In the SOAP community, while standards 
such as UDDI were proposed to act as a global-repository, it seemed the idea soon 
failed where the emphasis has shifted to simply relying on web-based engines in order 
to locate services, similar to what is done for RESTful services. For example, 
ProgrammableWeb list thousands of APIs, however clearly not much of the meta-
information available would be useful to support or simplify service-execution.  

Towards an Abstract Architecture for Uniform Presentation of Resources. To 
address these challenges, we have thus been motivated to propose a unified service 
representation model, which is an essential component in order to provide a common 
interface for interacting with services. This means the heterogeneity of services can be 
masked by more high-level operations that automate the concrete set of instructions 
behind the scenes. From an architectural perspective, there are in fact several works 
that share the same motivation, although for other more specific domains. 

For example, in the case of data-storage services, BStore [18] is a framework that 
allows developers to separate their web application code from the underlying user 
data-storages. The architecture consists of three components: file-systems, which 
could be considered as data-storage APIs (or services in our model); the file-system 
manager acting as the middleware (or service-bus in our model); and applications that 
require access to the underlying user-data. A common-interface is then proposed for 
both loading storage-services as well as for applications to access this data.   

Another example is SOS [12], which also defines a common-interface to interact 
with non-relational databases. Similar to the concept of the unified-model, they 
provide a meta-model approach to map specific interfaces of various systems to a 
common one. However, since the work mainly deals with data-storage services, the 
common set of operations is relatively simple. Also relevant is that the work deals 
with providing a common model for run-time data. In this manner further similarity 
can be drawn to the message-fields and mapping component of our system, where 
interestingly they too identify three main constructs for modeling heterogeneous data, 
which they refer to as String, Collection and Object. 

In the case of Feed-based services, the work at [15] presents an architecture for 
consumers of feeds to organize the services that they are using, share them, or use it 
to build tools which would implement a decentralized system for publishing, 
consuming and managing feed-subscription. We identify the middleware in their 
framework to be the feed-subscription manager (FSM), which decouples consumers 
from the underlying feed-services. In this case, the common representation model for 
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feeds is expressed via an Atom feed. Common operations to services are then 
expressed via AtomPub in order to interact with the various underlying feed-sources.  

However, in all cases mentioned above, while they share similar concepts of 
architecture, their applicability is still only limited to a particular domain. 

6 Conclusions 

Although the Internet continues to flourish with a growing number of APIs, there still 
lie significant challenges in integrating services in everyday application development. 
Motivated by this need, we proposed in this paper a platform for simplified access to 
web-services. In order to achieve this, we first addressed the heterogeneity of various 
service representation types by proposing a unified service model and mapping 
framework. Inspired from the Web2.0 paradigm, we design a programming 
knowledge-base, such that common service-knowledge can be abstracted, organized, 
incrementally curated and thereby re-used by other developers. Empowered by this, 
we have implemented a set of APIs that offers a common programming interface for 
significantly simplified access to service, accordingly, we have conducted an 
evaluation to verify the overall effectiveness of our proposed work. 
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Abstract. As the number of publicly-available datasets are likely to grow, the
demand of establishing the links between these datasets is also getting higher and
higher. For creating such links we need to match their schemas. Moreover, for
using these datasets in meaningful ways, one often needs to match not only two,
but several schemas. This matching process establishes a (potentially large) set
of attribute correspondences between multiple schemas that constitute a schema
matching network. Various commercial and academic schema matching tools
have been developed to support this task. However, as the matching is inherently
uncertain, the heuristic techniques adopted by these tools give rise to results that
are not completely correct. Thus, in practice, a post-matching human expert effort
is needed to obtain a correct set of attribute correspondences.

Addressing this problem, our paper demonstrates how to leverage crowdsourc-
ing techniques to validate the generated correspondences. We design validation
questions with contextual information that can effectively guide the crowd work-
ers. We analyze how to reduce overall human effort needed for this validation
task. Through theoretical and empirical results, we show that by harnessing nat-
ural constraints defined on top of the schema matching network, one can signifi-
cantly reduce the necessary human work.

1 Introduction

There are more and more services on the internet that enable users to upload and
share structured data, including Google Fusion Tables [13], Tableausoftware1, Factual2.
These services primarily offer easy visualization of the uploaded data as well as tools
to embed the visualisation to blogs or Web pages. As the number of publicly avail-
able datasets grows rapidly and they are often fragmented into different sources, it is
essential to create the interlinks between these datasets [7]. For example, in Google Fu-
sion Tables, the coffee consumption data are distributed among different tables in that
each table represents for a specific region [13]. In order to extract generic information
for all regions, we need to aggregate and mine across multiple tables. This raises the
challenges for interconnecting table schemas to achieve an integrated view of data.

1 http://www.tableausoftware.com/public
2 http://www.factual.com/

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 139–154, 2013.
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One of the major challenges in interconnecting the datasets is to establish the con-
nections between attributes of individual schemas that describe the datasets. The pro-
cess of establishing correspondences between the attributes of two database schemas
has been extensively researched, and there is a large body of work on heuristic match-
ing techniques[4, 22]. Beside the research literature, numerous commercial and aca-
demic tools, called schema matchers, have been developed. Even though these match-
ers achieve impressive performance on some datasets, they cannot be expected to yield
a completely correct result since they rely on heuristic techniques. In practice, data
integration tasks often include a post-matching phase, in which correspondences are
reviewed and validated by human experts.

Given our application context, the large number of schemas and (possible) connec-
tions between them, the validation task would require an extreme effort. In this paper
we demonstrate the use of crowdsourcing techniques for schema matching validation.
Specifically, we study a setting in which the two schemas to be matched do not exist
in isolation but participate in a larger matching network and connect to several other
schemas at the same time. Beside interconnecting structured data on the Internet, there
are a number of application scenarios in which such model can be applied, for example
schema matching in large enterprises [18, 24] or service mashups [9].

Crowdsourcing techniques have been successfully applied for several data manage-
ment problems, for example in CrowdSearch [26] or CrowdScreen [19]. McCann et al.
[17], have already applied crowdsourcing methods for schema matching. In their work,
they focused on matching a pair of schemas, but their methods are not directly applica-
ble for the matching network that is our main interest. Leveraging network information,
we define natural constraints that not only effectively guide the crowd workers but also
significantly reduce the necessary human efforts.

Our contributions can be summarized as follows.

– We analyze the schema matching problem in networks whose schemas are matched
against each other. On top of such networks, we exploit the relations between cor-
respondences to define the matching network constraints.

– We design questions presented to the crowd workers in a systematic way. In our
design, we focus on providing contextual information for the questions, especially
the transitivity relations between correspondences. The aim of this contextual infor-
mation is to reduce question ambiguity such that workers can answer more rapidly
and accurately.

– We design an aggregate mechanism to combine the answers from multiple crowd
workers. In particular, we study how to aggregate answers in the presence of match-
ing network constraints. Our theoretical and empirical results show that by harness-
ing the network constraints, the worker effort can be lowered considerably.

The rest of the paper is structured as follows. The next section gives an overview of
our framework. In Section 3, we describe how to design the questions that should be
presented to crowd workers. In Section 4, we formulate the problem of aggregating the
answers obtained from multiple workers. Section 5 clarifies our aggregate methods that
exploit the presence of matching network constraints. Section 6 presents experimental
results. Section 7 summarizes related work, while Section 8 concludes the paper.
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2 Overview

Schema matching network is a network of schemas, together with the pairwise attribute
correspondences between the attributes of the corresponding schemas. In our setting we
suggest that these schema matching networks shall be constructed in the following two-
step incremental process: (1) generate pairwise schema matchings using existing tools
such as COMA [10] and AMC [20], (2) validate the generated matching candidates by
crowd workers (i.e. decide whether the generated correspondence is valid or not). After
the first step, the schema matching network is constructed and defined as a tuple (S,C),
where S is a set of schemas and C is a set of correspondences generated by matching
tools.

User Corr Answer

u1 c1 True

u2 c1 True

u3 c1 False

… c2 …

Workers

Corr Aggr Error
Rate

c1 True 0.067

c2 False 0.12

Corr Decision

c1 True

Selection Condition

Question Builder

Answer Aggregation

1

2

3 4

5

Fig. 1. Architecture of the crowdsourcing framework

For realizing the second second step of validating the correspondences, we propose
the framework depicted in Figure 1. The input to our framework is a set of correspon-
dences C. These correspondences are fetched to Question Builder component to gener-
ate questions presented to crowd workers. A worker’s answer is the validation of worker
ui on a particular correspondence c j ∈ C, denoted as a tuple 〈ui, c j, a〉, where a is the
answer of worker ui on correspondence c j. Domain values of a are {true, f alse}, where
true/ f alse indicates c j is approved/disapproved.

In general, the answers from crowd workers might be incorrect. There are several
reasons for this, such as the workers might misunderstand their tasks, they may acci-
dentally make errors, or they simply do not know the answers. To cope with the prob-
lem of possibly incorrect answers, we need aggegation mechanismes, realized in the
Answer Aggregation component. We adopt probabilistic aggregation techniques. We
estimate the quality of the aggregated value by comparing the answers from different
workers. The aggregated result of a correspondence is a tuple 〈a∗, e〉, where a∗ is the
aggregated value, e is the error rate of aggregation. If the error rate e is greater than a
pre-defined threshold ε, we continue to fetch c into Question Builder to ask workers for
more answers. Otherwise, we make the decision a∗ for the given correspondence. This
process is repeated until the halting condition is satisfied. In our framework, the halting
condition is that all correspondences are decided.



142 N.Q. Viet Hung et al.

In our setting, it is reasonable to assume that there is an objective ground truth, i.e.,
there exists a single definitive matching result that is external to human judgment. How-
ever, this truth is hidden and no worker knows it completely. Therefore, we leverage the
wisdom of the crowd in order to approximate the hidden ground truth (with the help
of our aggregation techniques). However, approximating the ground truth with limited
budget raises several challenges: (1) How to design the questions for effective answers?
(2) How to make aggregation decision based on the answers from workers? (3) How
to reduce the number of questions with a given quality requirement? In the following
sections, we will address these challenges.

3 Question Design

In this section, we demonstrate how to design questions using the set of candidate corre-
spondences. Generally, a question is generated with 3 elements: (1) Object, (2) Possible
answers and (3) Contextual information. In our system, the object of a question is an
attribute correspondence. The possible answers which a worker can provide are either
true (approve) or false (disapprove). The last element is contextual information, which
plays a very important role in helping workers answer the question more easily. It pro-
vides a meaningful context to make the question more understandable. In our work, we
h have used three kinds of contextual information:

– All alternative targets: We show a full list of candidate targets generated by
matching tools. By examining all possible targets together, workers have can better
judge whether the given correspondence is correct or not as opposed to evaluating
a single value correspondence. Figure 2(A) gives an example of this design.

– Transitive closure: We do not only display all alternatives, but also the transi-
tive closure of correspondences. The goal of displaying the transitive closure is
to provide a context that shall help workers to resolve the ambiguity, when other-
wise these alternatives are hard to distinguish. For example, in Figure 2(B), work-
ers might not be able to decide which one of two attributes CRM.BirthDate and
CRM.Name corresponds to the attribute MDM.BirthName. Thanks to the tran-
sitive closure MDM.BirthName → CRM.Name → SRM.BirthName, workers
can confidently confirm the correctness of the match between CRM.Name and
MDM.BirthName.

– Transitive violation: In contrast to transitive closure, this design supports a worker
to identify incorrect correspondences. Besides all alternatives, the contextual infor-
mation contains a circle of correspondences that connects two different attributes
of the same schema. For instance, in Figure 2(C), workers might find it difficult to
choose the right target among CRM.BirthDate, CRM.Name for MDM.BirthName.
The transitive violation CRM.Name → SRM.BirthName → MDM.BirthName →
CRM.BirthDate is the evidence that helps worker to reject the match between
MDM.BirthName and CRM.BirthDate.

Comparing to the question generating and posting strategy presented in [17], our ques-
tion design is more general. In our approach, both the pairwise information (i.e., data
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Does attribute BirthName match attribute Name?
Yes No

MDM CRM

Name
(Bob)

BirthName
(Alice)

BirthDate
(01-01-1986)

MDM

SRM

CRM

Name
(Bob)

BirthName
(Charlie)

BirthName
(Alice)

MDM

SRM

CRM

BirthDate
(01-01-1986)BirthName

(Alice) Name
(Bob)

BirthName
(12-12-1968)

Contextual 
Information

Question

(A) (B) (C)

Does MDM.BirthName match CRM.Name?
Yes No

Does MDM.BirthName match CRM.BirthDate?
Yes No

BirthDate
(01-01-1986)

Fig. 2. Question designs with 3 different contextual information: (A) All alternative targets, (B)
Transitive closure, (C) Transitive violation

value and all alternatives) and the network-level contextual information (i.e., transitive
closure and transitive violation) are displayed to help the workers to answer the ques-
tion more effectively. To evaluate the effectiveness of the question design, we conducted
some experiments in section 6. It turned out that the contextual information proposed
as above is critical. Having the contextual information at hand, the workers were able
to answer the questions faster and more accurately. Subsequently, the total cost could
be substantially reduced since the payment for each task can be decreased [2].

4 Aggregating User Input

In this section we explain our aggregation techniques. After posting questions to crowd
workers (as explained in Section 3), for each correspondence c ∈ C, we collect a set of
answers πc (from different workers) in which each element could be true(approve) or
f alse(disapprove). The goal of aggregation is to obtain the aggregated value ac as well
as estimate the probability that ac is incorrect. This probability is also called the error
rate of the aggregation ec.

In order to compute the aggregated value ac and error rate ec, we first derive the prob-
ability of possible aggregations Pr(Xc). In that, Xc is a random variable of aggregated
values of c and domain values of Xc is {true, f alse}. This value refers to the ground
truth, however that is hidden from us, thus we try to estimate this probability with the
help of aggregation methods. There are several techniques proposed in the literature
to compute this probability such as majority voting [2] and expectation maximization
(EM) [8]. While majority voting aggregates each correspondence independently, the
EM method aggregates all correspondences simultaneously. More precisely, the input
of majority voting is the worker answers πc for a particular correspondence c, whereas
the input of EM is the worker answers π =

⋃
c∈C πc for all correspondences.

In this paper, we use EM as the main aggregation method to compute the probabil-
ity Pr(Xc). The EM method differs from majority voting in considering the quality of
workers, which is estimated by comparing the answers of each worker against other
workers answers. More precisely, the EM method uses maximum likelihood estimation
to infer the aggregated value of each correspondence and measure the quality of that
value. The reason behind this choice is that the EM model is quite effective for labeling
tasks and robust to noisy workers [23].



144 N.Q. Viet Hung et al.

After deriving the probability Pr(Xc) for each correspondence c ∈ C, we will com-
pute the aggregation decision 〈ac, ec〉 = gπ(c), where ac is the aggregated value and ec

is the error rate. The aggregation of this decision is formulated as follows:

gπ(c) =

{ 〈true, 1 − Pr(Xc = true)〉 If Pr(Xc = true) ≥ 0.5
〈false, 1 − Pr(Xc = false)〉 Otherwise

(1)

In equation 1, the error rate is the probability of making wrong decision. In order to
reduce error rate, we need to reduce the uncertainty of Xc (i.e., entropy value H(Xc)).
If the entropy H(Xc) is closed to 0, the error rate is closed to 0. For the experiments
described in section 6, in order to achieve lower error rate, we need to ask more ques-
tions. However, with given requirements of low error rate, the monetary cost is limited
and needs to be reduced. In next section, we will leverage the constraints to solve this
problem.

5 Leveraging Constraints to Reduce User Efforts

For experiments described in section 6, we found that to achieve lower error rate, more
answers are needed. This is, in fact, the trade-off between the cost and the accuracy[26].
The higher curve of Figure 3 depicts empirically a general case of this trade-off.
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Goal

Fig. 3. Optimization goal

We want to go beyond this trade-off by lowering this curve as much as possible.
When the curve is lower, with the same error rate, the number of answers is smaller. In
other words, with the same number of answers, the error rate is smaller. To achieve this
goal, we leverage the network consistency constraints to adjust the error rate with the
same number of answers. In this section, we will show how to exploit these constraints.

5.1 Aggregating with Constraints

In section 4, we already formulate the answer aggregation. Now we leverage constraints
to adjust the error rate of the aggregation decision. More precisely, we show that by
using constraints, it requires fewer answers to obtain aggregated result with the same
error rate. In other words, given the same answer set on a certain correspondence, the
error rate of aggregation with constraint is lower than the one without constraint. We
consider very natural constraints that we assume to hold; in other words we assume that
these are hard constraints.
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Given the aggregation gπ(c) of a correspondence c, we compute the justified aggrega-
tion gγπ(c) when taking into account the constraint γ. The aggregation gγπ(c) is obtained
similarly to equation 1, except that the probability Pr(Xc) is replaced by the conditional
probability Pr(Xc|γ) when the constraint γ holds. Formally,

gγπ(c) =

{ 〈true, 1 − Pr(Xc = true|γ)〉 If Pr(Xc = true|γ) ≥ 0.5
〈false, 1 − Pr(Xc = false|γ)〉 Otherwise

(2)

In the following, we describe how to compute Pr(Xc|γ) with 1-1 constraint and circle
constraint. Then, we show why the affect of constraints can reduce error rate. We leave
the investigation of other types of constraints as an interesting future work.

5.2 Aggregating with 1-1 Constraint

Our approach underlies the intuition illustrated in Figure 4(A), depicting two corre-
spondences c1 and c2 with the same source attribute. After receiving the answer set
from workers and applying probabilistic model (section 4), we obtained the probability
Pr(Xc1 = true) = 0.8 and Pr(Xc2 = false) = 0.5. When considering c2 independently,
it is hard to conclude c2 being approved or disapproved. However, when taking into
account c1 and 1-1 constraint, c2 tends to be disapproved since c1 and c2 cannot be ap-
proved simultaneously. Indeed, following probability theory, the conditional probability
Pr(Xc2 = false|γ1−1) ≈ 0.83 > Pr(Xc2 = false).

c1 c2 Prob
T T 0.4
T F 0.4 1.0
F T 0.1 1.0
F F 0.1 1.0

c1 c2 c3 Prob
T T T 0.32 1.0
T T F 0.32 0.0
T F T 0.08 0.0
T F F 0.08
F T T 0.08 0.0
F T F 0.08
F F T 0.02
F F F 0.02

with

(A) (B)

with

S1

S3

S2

c1

c2 c3

S T
c1

c2

Fig. 4. Compute conditional probability with (A) 1-1 constraint and (B) circle constraint

In what follows, we will formulate 1-1 constraint in terms of probability and then
show how to compute the conditional probability Pr(Xc|γ1−1).

Formulating 1-1 Constraint. Given a matching between two schemas, let us have a set
of correspondences {c0, c1, . . . , ck} that share a common source attribute. With respect
to 1-1 constraint definition, there is at most only one ci is approved (i.e., Xci = true).
However there are some exceptions where this constraint does not hold. For instance,
the attribute name might be matched with f irstname and lastname. But these cases
only happen with low probability. In order to capture this observation, we formulate
1-1 constraint as follows:
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Pr(γ1−1|Xc0 , Xc1 , . . . , Xck) =

{
1 If m ≤ 1
Δ ∈ [0, 1] If m > 1

(3)

where m is the number of Xci assigned as true. When Δ = 0, there is no constraint
exception. In general, Δ is close to 0. The approximated value of Δ can be obtained
through statistical model [6].

Computing Conditional Probability. Given the same set of correspondence
{c0, c1, . . . , ck} above, let denote pi as Pr(Xci = true) for short. Without loss of gener-
ality, we consider c0 be the favourite correspondence whose probability p0 is obtained
from the worker answers. Using the Bayesian theorem and equation 3, the conditional
probability of correspondence c0 with 1-1 constraint γ1−1 is computed as:

Pr(Xc0 = true|γ1−1) =
Pr(γ1−1|Xc0 = true) × Pr(Xc0 = true)

Pr(γ1−1)
=

(x + Δ(1 − x)) × p0

y + Δ(1 − y)
(4)

where x =
∏k

i=1 (1 − pi)
y =
∏k

i=0 (1 − pi) +
∑k

i=0 [pi
∏k

j=0, j�i (1 − p j)]

x can be interpreted as the probability of the case where all other correspondences
except c being disapproved. y can be interpreted as the probability of the case where all
correspondences being disapproved or only one of them being disaproved. The precise
derivation of equation 4 is put in the Appendix.

5.3 Aggregating with Circle Constraint

Figure 4(B) depicts an example of circle constraint for three correspondences c1, c2, c3.
After receiving the answer set from workers and applying probabilistic model (section
4), we obtained the probability Pr(Xc1 = true) = Pr(Xc2 = true) = 0.8 and Pr(Xc3 =

true) = 0.5. When considering c3 independently, it is hard to conclude c3 being true or
f alse. However, when taking into account c1, c2 under the 1-1 constraint, c3 tends to be
true since the circle created by c1, c2, c3 shows an interoperability. Therefore, following
probability theory, the conditional probability Pr(Xc3 = true|γ1−1) ≈ 0.9 > Pr(Xc3 =

true).
In the following we will formulate circle constraint in terms of probability and then

show how to compute the conditional probability Pr(Xc|γ�).

Formulating Circle Constraint. Following the notion of cyclic mappings in [6], we
formulate the conditional probability of a circle as follows:

Pr(γ�|Xc0 , Xc1 , . . . , Xck ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 If m = k + 1
0 If m = k
Δ If m < k

(5)

Where m is the number of Xci assigned as true and Δ is the probability of compensating
errors along the circle (i.e., two or more incorrect assignment resulting in a correct
reformation).
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Computing Conditional Probability. Given a closed circle along c0, c1, . . . , ck, let
denote the constraint on this circle as γ� and pi as Pr(Xci = true) for short. Without
loss of generality, we consider c0 to be the favorite correspondence whose probability
p0 is obtained by the answers of workers in the crowdsourcing process. Following the
Bayesian theorem and equation 5, the conditional probability of correspondence c0 with
circle constraint is computed as:

Pr(Xc0 = true|γ�) =
Pr(γ�|Xc0 = true) × Pr(Xc0 = true)

Pr(γ�)
=

(
∏k

i=1 (pi) + Δ(1 − x)) × po
∏k

i=0 (pi) + Δ(1 − y)
(6)

where x =
∏k

i=1 (pi) +
∑k

i=1 [(1 − pi)
∏k

j=1, j�i p j]
y =
∏k

i=0 (pi) +
∑k

i=0 [(1 − pi)
∏k

j=0, j�i p j]

x can be interpreted as the probability of the case where only one correspondence among
c1, . . . , ck except c0 is disapproved. y can be interpreted as the probability of the case
where only one correspondence among c0, c1, . . . , ck is disapproved. The detail deriva-
tion of equation 6 is put in the Appendix.

5.4 Aggregating with Multiple Constraints

In general settings, we could have a finite set of constraints Γ = {γ1, . . . , γn}. Let denote
the aggregation with a constraint γi ∈ Γ is gγi

π (c) = 〈ai
c, e

i
c〉, whereas the aggregation

without any constraint is simply written as gπ(c) = 〈ac, ec〉. Since the constraints are
different, not only could the aggregated value ai

c be different (ai
c � a j

c) but also the error
rate ei

c could be different (ei
c � e j

c). In order to reach a single decision, the challenge
then becomes how to define the multiple-constraint aggregation gΓπ (c) as a combination
of single-constraint aggregations gγi

π (c).
Since the role of constraints is to support reducing the error rate and the aggrega-

tion gπ(c) is the base decision, we compute the multiple-constraint aggregation gΓπ (c) =
〈ac, eΓc 〉, where eΓ = min({ei

c|ai
c = ac} ∪ ec). Therefore, the error rate of final aggregated

value is reduced by harnessing constraints. For the experiments in real datasets de-
scribed in the next section, we will show that this aggregation reduces a half of worker
efforts while preserving the quality of aggregated results.

6 Experiments

The main goal of the following evaluation is to analyze the use of crowdsourcing tech-
niques for schema matching network. To verify the effectiveness of our approach, three
experiments are performed: (i) effects of contextual information on reducing question
ambiguity, (ii) relationship between the error rate and the matching accuracy, and (iii)
effects of the constraints on worker effort. We proceed to report the results on the real
datasets using both real workers and simulated workers.
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6.1 Experimental Settings

Datasets. We have used 3 real-world datasets: Google Fusion Tables, UniversityApp-
Form, and WebForm. They are publicly available on our website 3. In the experiments,
the topology of schema matching network is a complete graph (i.e. all graph nodes are
interconnected with all other nodes). In that, the candidate correspondences are gener-
ated by COMA [10] matcher.

Worker Simulation. In our simulation, we assume that the ground truth is known in
advance (i.e. the ground truth is known for the experimenter, but not for the (simulated)
crowd worker). Each simulated worker is associated with a pre-defined reliability r that
is the probability of his answer being correct against the ground truth.

6.2 Effects of Contextual Information

In this experiment, we select 25 correct correspondences (i.e., exist in ground truth)
and 25 incorrect correspondences (i.e., not exists in ground truth). For each correspon-
dence, we ask 30 workers (Bachelor students) with three different contextual informa-
tion: (a) all alternatives, (b) transitive closure, (c) transitive violation. Then, we collect
the worker answers for each correspondence.
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Fig. 5. Effects of contextual information. (a) all alternatives, (b) transitive closure, (c) transitive
violation

Figure 5 presents the result of this experiment. The worker answers of each case
are presented by a collection of ‘x’ and ‘o’ points in the plots. In that, ’o’ points indi-
cate correspondences that exist in ground truth, whereas ‘x’ points indicate correspon-
dences that do not exist in ground truth. For a specific point, X-value and Y-value are
the number of workers approving and disapproving the associated correspondences, re-
spectively. Therefore, we expect that the ‘o’ points are placed at the right-bottom of the
coordinate plane, while the ‘x’ points stay at the left-top of the coordinate plane.

Comparing Figure 5(b) with Figure 5(a) , the ‘o’ points tend to move down to the
bottom-right of the baseline (# ‘approve’ answers increases and # ‘disapprove’ answers
decreases). Whereas, the movement of the ‘x’ points is not intensive. This can be inter-
preted that presenting the transitive closure context help workers to give feedback more
exactly but also make them misjudge the incorrect correspondences.

3 http://lsirwww.epfl.ch/schema_matching

http://lsirwww.epfl.ch/schema_matching
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In order to study the effects of transitive violation, we compare Figure 5(c) with
Figure 5(a). Intuitively, the ‘x’ points move distinctly toward the top-left of the baseline,
while the position of ‘o’ points keeps stable. This observation shows that transitive
violations help workers identify the incorrect correspondences, in contrast to the effect
of transitive satisfactions mentioned above.

Since in real settings the ground truth is not known before-hand, we cannot choose
appropriate design type for each question. Following the principle of maximum entropy,
in order not to favour any of the design types, we design each question in type (b) and
(c) with probability of 0.5. In case the given correspondence does not involve in any
transitive satisfaction and violation, we design its question in type (a).

6.3 Relationship between Error Rate and Matching Accuracy

In order to assess the matching accuracy, we borrow the precision metric from infor-
mation retrieval, which is the ratio of correspondences existing in ground truth among
all correspondences whose aggregated value is true. However, the ground truth is not
known in general. Therefore, we use an indirect metric—error rate—to estimate the
matching quality. We expect that the lower error rate, the higher quality of matching
results.
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Fig. 6. Relationship between error rate and precision

The following empirical results aim to validate this hypothesis. We conduct the ex-
periment with a population of 100 simulated workers and their reliability scores are
generated according to normal distribution N(0.7, 0.04). Figure 6 depicts the relation-
ship of the error rate and precision. In that, we vary error threshold ε from 0.05 to 0.3,
meaning that the questions are posted to workers until the error rate of aggregated value
is less than the given threshold ε. The precision is plotted as a function of ε. We aggre-
gate the worker answers by two strategies: without constraint and with constraint. Here
we consider both 1-1 constraint and circle constraint as hard constraints, thus Δ = 0.

The key observation is that when the error rate is decreased, the precision approaches
to 1. Reversely, when the error rate is increased, the precision is reduced but greater
than 1 − ε. Another interesting finding is that when the error rate is decreased, the
value distribution of precision in case of with and without constraint is identical. This
indicates our method of updating the error rate is relevant.
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In summary, the error rate is a good indicator of the quality of aggregated results. In
terms of precision, the quality value is always around 1 − ε. In other words, the error
threshold ε can be used to control the real matching quality.

6.4 Effects of the Constraints

In this experiment set, we will study the effects of constraints on the expected cost in real
datasets. In Section 5, we already seen the benefit of using constraints in reducing error
rate. Therefore, with given requirement of low error, the constraints help to reduce the
number of questions (i.e., the expected cost) that need to ask workers. More precisely,
given an error threshold (ε = 0.15, 0.1, 0.05), we iteratively post questions to workers
and aggregate the worker answers until the error rate is less than ε. We use simulated
workers with reliability r varying from 0.6 to 0.8. Similar to the above experiment, we
set Δ = 0. The results are presented in Figure 7.
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Fig. 7. User Efforts: effects of constraints

A significant observation in the results is that for all values of error threshold and
worker reliability, the expected cost of the aggregation with constraints is definitely
smaller (approximately a half) than the case without constraints. For example, with
worker reliability is r = 0.6 and error threshold ε = 0.1, the expected number of ques-
tions is reduced from 31 (without constraints) to 16 (with constraints). This concludes
the fact that the constraints help to reduce the error rate, and subsequently reduce the
expected cost.

Another key finding in Figure 7 is that, for both cases (using vs. not using con-
straints in the aggregation), the expected cost increases significantly as the value for
error threshold ε decreases. For example, it requires about 20 questions (without con-
straints) or 10 questions (with constraints) to satisfy error threshold ε = 0.15. Whereas,
it takes about 40 questions (without constraints) or 20 questions (with constraints) to
satisfy error threshold ε = 0.05. This result supports the fact that to reduce error rate,
we need to ask more questions.

7 Related Work

We now review salient work in schema matching and crowdsourcing areas that are
related to our research.
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Schema Matching. Database schema matching is an active research field. The devel-
opments of this area have been summarized in two surveys [4, 22]. Existing works on
schema matching focused mainly on improving quality parameters of matchers, such
as precision or recall of the generated matchings. Recently, however, ones started to
realize that the extent to what precision and recall can be improved may be limited for
general-purpose matching algorithms. Instead of designing new algorithms, there has
been a shift towards matching combination and tuning methods. These works include
YAM [11], systematic matching ensemble selection [12] or automatic tuning of the
matcher parameters [15].

While there is a large body of works on schema matching, the post-matching recon-
ciliation process (that is central to our work) has received little attention in the literature.
Recently, there are some works [14, 17, 21] using pay-as-you-go integration method
that establishes the initial matching and then incrementally improves matching quality.
While the systems in [14, 21] rely on one user only, the framework in [17] relies on
multiple users.

Schema Matching Network. The idea of exploiting the presence of a large set of
schemas to improve the matchings has been studied before. Holistic matching [25]
attempted to exploit statistical co-occurrences of attributes in different schemas and
use them to derive complex correspondence. Whereas, corpus-based matching [16]
attempted to use a ‘corpus’ of schemas to augment the evidences that improve exist
matchings and exploit constraints between attributes by applying statistical techniques.
Network level constraints, in particular the circle constraints, were originally consid-
ered in [1, 6] in which they study the establishment of semantic interoperability in a
large-scale P2P network. In this paper, we study contextual information and integrity
constraints (e.g., 1-1 and circle constraints) on top of the schema matching network.

Crowdsourcing. In recent years, crowdsourcing has become a promising methodol-
ogy to overcome human-intensive computational tasks. Its benefits vary from unlimited
labour resources of user community to cost-effective business models. The book [2]
summarized problems and challenges in crowdsourcing as well as promising research
directions for the future. A wide range of crowdsourcing platforms, which allows users
to work together in a large-scale online community, have been developed such as Ama-
zon Mechanical Turk and CloudCrowd.

On top of these platforms, there are also many crowdsourcing applications that have
been built for specific domains. For example, in [26], the crowdsourcing is employed
to validate the search results of automated image search on mobile devices. In [3], the
authors leveraged the user CAPTCHAs inputs in web forms to recognize difficult words
that cannot solved precisely by optical character recognition (OCR) programs.

Regarding the utilization of constraints, there are some previous works such as [5,
27]. In [27], the constraints were used to define the tasks for collaborative planning sys-
tems whereas in [5], the constraints were used to check worker quality by quantifying
the consistency of worker answers. In our work, the constraints are used to adjust the
error rate for reducing worker efforts.
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8 Conclusions and Future Work

Using shared datasets in meaningful ways frequently requires interconnecting several
sources, i.e., one needs to construct the attribute correspondences between the con-
cerned schemas. The schema matching problem has, in this setting, a completely new
aspect: there are more than two schemas to be matched and the schemas participate in
a larger schema matching network. This network can provide contextual information to
the particular matching tasks.

We have presented a crowdsourcing platform that is able to support schema match-
ing tasks. The platform takes the candidate correspondences that are generated by pair-
wise schema matching and generates questions for crowd workers. The structure of the
matching network can be exploited in many ways. First, as this is a contextual infor-
mation about the particular matching problem, it can be used to generate questions that
guide the crowd workers and help them to answer the questions more accurately. Sec-
ond, natural constraints about the attribute correspondences at the level of the network
enable to reduce the necessary efforts, as we demonstrated this through our experiments.

Our work opens up several future research directions. First, one can extend our
notion of schema matching network and consider representing more general integrity
constraints (e.g., functional dependencies or domain-specific constraints). Second, one
can devise more applications which could be transformed into the schema matching
network. While our work focuses on schema matching, our techniques, especially the
constraint-based aggregation method, can be applied to other tasks such as entity reso-
lution, business process matching, or Web service discovery.

Acknowledgment. This research has received funding from the NisB project - Euro-
pean Union’s Seventh Framework Programme (grant agreement number 256955) and
the PlanetData project - Network of Excellence (grant agreement number 257641).
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Appendix

Compute Conditional Probability Pr(Xc0 |γ1−1): According to Bayes theorem,

Pr(Xc0 |γ1−1) =
Pr(γ1−1 |Xc0 )×Pr(Xc0 )

Pr(γ1−1) . Now we need to compute Pr(γ1−1) and Pr(γ1−1|Xc0).
Let denote pi = Pr(Xci = true), for short. In order to compute Pr(γ1−1), we do follow-
ing steps: (1) express Pr(γ1−1) as the sum from the full joint of γ1−1, c0, c1, . . . , ck, (2)
express the joint as a product of conditionals. Formally, we have:
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Pr(γ1−1) =
∑

c0,c1,...,ck
Pr(γ1−1, Xc0 , Xc1 , . . . , Xck )

=
∑

Pr(γ1−1|Xc0 , Xc1 , . . . , Xck ) × Pr(Xc0 , Xc1 , . . . , Xck)
= 1 × Pr(Xc0 , Xc1 , . . . , Xck |m(Xc0 , Xc1 , . . . , Xck ) ≤ 1)
+ Δ × Pr(Xc0 , Xc1 , . . . , Xck |m(Xc0 , Xc1 , . . . , Xck ) > 1)
= y + Δ × (1 − y)

where m is function counting the number of Xci assigned as true
y =
∏n

i=0 (1 − pi) +
∑n

i=0 [pi
∏n

j=0, j�i (1 − p j)]

Similar to computing Pr(γ1−1), we also express Pr(γ1−1|Xc0) as the sum from the full
joint of γ1−1, c1, . . . , ck and then express the joint as a product of conditionals. After
these steps, we have Pr(γ1−1|Xc0 = true) = x + Δ × (1 − x), where x =

∏k
i=1 (1 − pi).

After having Pr(γ1−1) and Pr(γ1−1|Xc0), we can compute Pr(Xc0 |γ1−1) as in equation 4.

Compute Conditional Probability Pr(Xc0 |γ�): According to Bayes theorem,

Pr(Xc0 |γ�) =
Pr(γ� |Xc0 )×Pr(Xc0 )

Pr(γ�) . In order to compute Pr(γ�|Xc0) and Pr(γ�), we also
express Pr(γ�|Xc0 ) as the sum from the full joint of γ1−1, c0, c1, . . . , ck and then ex-
press the joint as a product of conditionals. After some transformations, we can obtain
equation 6.
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Abstract. How to determine the truthfulness of a piece of information becomes
an increasingly urgent need for users. In this paper, we propose a method called
MFSV , to determine the truthfulness of fact statements. We first calculate the
similarity between a piece of related information and the target fact statement
and capture the credibility ranking of the related information through combining
importance ranking and popularity ranking. Based on these, contributions of a
piece of related information to the truthfulness determination is derived. Then we
propose two methods to determine the truthfulness of the target fact statement. At
last, we run comprehensive experiments to show MFSV ’s availability and high
accuracy.

Keywords: Fact statements, credibility ranking, similarity, truthfulness.

1 Introduction

Untruthful information spreads on the Web, which may mislead other users and have
a negative impact on user experience. It is required to determine the truthfulness of a
piece of information. Information is mainly loaded by sentences. The sentences state
facts, rather than opinions, are called fact statements [10]. In this paper, we mainly fo-
cus on positive fact statement. Fact statements, which state correct objective facts, are
trustful fact statements, others are called untruthful fact statements. Before determin-
ing the truthfulness of a fact statement, a user should specify some part(s) of the fact
statement he/she is not sure about. The part(s) is/are called the doubt unit(s) of the fact
statement[10]. If the doubt unit(s) is/are specified, the fact statement can be regarded
as an answer to a question. If there is only one correct answer to the question, the fact
statement to the question is an unique-answer fact statement; otherwise, it is a multi-
answer one. In [9][10], the trustful fact statement is picked out from the target fact
statement and the alternative fact statements. There are three limitations in these stud-
ies: (i) The doubt unit(s) must be specified, otherwise the alternative fact statements
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can’t be found. (ii) If too much information is included by the doubt unit(s), it is very
hard to find proper alternative fact statements. (iii) These methods can not be used for
multi-answer fact statements, since only one fact statement is considered trustful.

The contributions and the rest of the paper are organized as follows. Section 2 briefly
summarize the related works. Section 3 describes how to determine the truthfulness of
a fact statement using MFSV . Experiments and analysis are shown in Section 4. At last,
we conclude this paper.

2 Related Works

Some researchers hold the opinion that credible sources are very likely to present trust-
ful information. They analyze the features (e.g., page keywords, page title, page style)
of credible web pages[1][2][3]. Exploiting the analytical results, users can determine
whether a web page is credible or not. Other researchers focus on spam web pages
detection for filtering low quality web pages [4][5]. But incorrect information may be
presented on non-spam pages.

Study [6] propose a method to determine the truthfulness of a piece of news. In
this method, the information related to the piece of news is collected from reputable
news web site. Analyzing the consistence between the news and the related informa-
tion, the truthfulness of the news can be determined. In [7], the focus is the truth-
fulness determination of an event. The relatedness between the event and its related
information captured from certain web sites is measured, and the truthfulness of the
event is determined. Studies in [6] and [7] are used for domain-dependent informa-
tion. In [8], Honto?search1.0 is proposed to help users to determine an uncertain
fact. In Honto?search1.0, sentiment distribution analysis and popularity evolution
analysis are the key factors in helping users to determine the target uncertain fact.
Honto?search2.0 is proposed in [9]. The objective of the system is to help users to
efficiently judge the credibility by comparing other facts related to the input uncertain.
Verify[10] can determine a fact statement through finding alternative fact statements
and ranking these fact statements, the one on the highest position is the trustful one.

3 Proposed Solution

The goal of this paper is to determine whether a fact statement is trustful or not, even if
the fact statement is a multi-answer one.

3.1 Similarity Measurement

In this section, we discuss how to measure the similarity between a piece of related
information (derived from the search engine) and the target fact statement.

Necessary Sentence Generation. Not all words are necessary for the fact statement
truthfulness determination. We call the words, which contributes to the truthfulness de-
termination necessary words. Given a piece of information ri related to the fact state-
ment f s, we use Ni and nsi to denote the collection of necessary words and the necessary
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sentence of ri respectively. We use the following steps to find the necessary words: I.
Find the consecutive sentences ci of ri. Ni can be extracted from ci, since ci is the short-
est consecutive sentences which include r′is keywords set Kri . II. Use Stanford Parser1

to find the grammatical relationships between words in ci. We divide the 52 grammatical
relationships in Stanford Parser into two categories based on their importance to sen-
tence skeleton: essential grammatical relationships, represented by Re, and unessential
grammatical relationships represented by Ro. III. Set Ni to Kri and use the following
heuristic rules to find Ni. We use Di = {di1, . . . ,dim}(1 ≤ m) to denote the collection
of the grammatical relationships of ci. The heuristic rules used for Ni extraction are as
follows: (i) If di j(1 ≤ j ≤ m) is essential, di j.dependent and di j.governor are put into
Ni. (ii) If di j(1 ≤ j ≤ m) is unessential and di j.dependent ∈ Ni, di j.governor are put
into Ni. We sort the words in Ni by their positions in ci and get a order. According to
this order, we assemble the words in Ni, thus, the necessary sentence nsi is generated.

Similarity Computation. The similarity between ri and f s can be replaced by the
similarity of nsi and f s. We refine the method in [11] to calculate the similarity. First,
we construct semantic vectors and order vectors by finding best matching word of the
target word for nsi and f s, and calculate the semantic similarity and order similarity
respectively; then, combining the semantic similarity and order similarity, we get the
overall similarity between nsi and f s. We adopt a word similarity computing method
in [11].

Semantic Similarity Computation. The semantic similarity between nsi and f s is cal-
culated by the cosine similarity of their semantic vectors. We first delete the stop words
in nsi and f s, and then get the words collections of nsi and f s. W1 = {w11, . . . ,w1n1} and
W2 = {w21, . . . ,w2n2} denote the two word collections of nsi and f s respectively. We set
W =W1∪W2 and W = {w1, . . . ,wk}. We use V1 = {v11, . . . ,v1k} and V2 = {v21, . . . ,v2k}
to denote the semantic vectors of nsi and f s respectively. The rules to work v1i out are
as follows: (i) If wi ∈W1, v1i = 1. (ii) If wi �W1, we find the best matching word(wbm)
of wi from W1 and set v1i = Sw(wi,wbm). Especially, if wbm does not exist, v1i = 0. In
semantic vector construction, the value of ζ is 0.2. The semantic similarity between nsi

and f s is calculated by Equation 1.

Ss(nsi, f s) =
V1 �V2

‖V1 ‖ � ‖V2 ‖
(1)

Order Similarity Computation. We measure the order similarity of nsi and f s based
on their order vectors. O1 = {o11, . . . ,o1k} and O2 = {o21, . . . ,o2k} denote the order
vectors of nsi and f s. We use the following rules to work out o1i: (i) If wi ∈ W1, o1i

is the position of wi in nsi. (ii) If wi �W1, we find the best matching word(wbm) of wi

from W1 by Algorithm 2. If wbm exists, v1i is the position of wbm in nsi; if not, o1i = 0.
Especially, in constructing order vector, the value of ζ in Algorithm 2 is 0.4. We use
equation.2 to get the order similarity between nsi and f s.

So(nsi, f s) = 1− ‖ O1 −O2 ‖
‖ O1 +O2 ‖

(2)

1 http://nlp.stanford.edu/software/stanford-dependencies.shtml

http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Overall Similarity Computation. The overall similarity S(nsi, f s) between nsi and f s
can be calculated by combination of Ss(nsi, f s) and So(nsi, f s) through equation.3. The
optimal value of θ is 0.85 in equation.3.

S(sni, f s) =

⎧⎨⎩
θSs(sni, f s)+ (1−θ )So(sni, f s) if ri is positive on f s

−(θSs(sni, f s)+ (1−θ )So(sni, f s)) if ri is negative on f s
(3)

3.2 Credibility Ranking

Generally, credible sources are likely to present trustful information. In addition, if an
information source is important and popular, it may be credible[12]. In the following,
we first introduce the importance ranking and the popularity ranking, then we merge
the two rankings to get the credibility ranking.

Importance Ranking. The information related to the target fact statement is captured
by a search engine, it appears in order. We combine the order and the pagerank level
values to capture the importance ranking of the related information. Given two pieces
of information ri and r j related to the target fact statement, we use pli and pl j to denote
the pagerank level values of the web pages from which ri and r j are derived. Irank is
used to denote the importance ranking of the related information. Iranki is the position
of ri in Irank. If pli � pl j, Iranki � Irank j; If pli = pl j and i � j, Iranki � Irank j.

Popularity Ranking. Alexa ranking2 is introduced to measure the popularity of the
web sites from which the related information is derived. Given a fact statement f s and
the related information collection R, Alexai is used to denote the position of the web
site, which ri ∈ R is derived from, in Alexa ranking. However, Alexa ranking is an
absolute ranking. Given ri and r j , the gap between Alexai and Alexa j may be very large.
We adopt two methods to get different popularity rankings. (i) We get the popularity
ranking, represented by Prank, by sorting Alexai(1≤ i≤ n) on ascending order; (ii) The
popularity ranking, represented by GRrank, is captured by linearly mapping Alexai(1≤
i ≤ n) into the range from 1 to n.

Credibility Ranking. We make use of the classical ranking merging algorithms (Borda
and Footrule) to get the credibility ranking. Borda[13][14] is a positional algorithm.
Given Irank, Prank and the related information collection R, BIrank(ri) denotes the
Borda scores of ri ∈ R on Irank and BIrank(ri) is the number of the related informa-
tion which is below ri in Irank. Similarly, BPrank(ri) can be derived. B(ri) is the total
scores of ri on the two rankings, which is the sum of BIrank(ri) and BPrank(ri).

Footrule[13] is a merging algorithm based on the distance. Given Irank, Prank
and the related information collection R. We construct an complete bipartite graph
G(V,E,W ). V is composed of R and P. P is the collection of positions and P = {1, . . . , |
R |}. E is the collection of edges. W is the collection of the weights of the edges. Given
a edge < ri, p > (ri ∈ R, p ∈ P), the weight w(ri, p) =| Iranki − p | + | Pranki − p |.
By finding the complete matching at minimal cost on the graph, the merging result of

2 https://www.alexa.com

https://www.alexa.com
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Irank and Prank can be derived. We get an importance ranking (Irank) and two popu-
larity rankings (Prank and GPrank), four credibility rankings according to the merging
algorithm Borda and Footrule, they are CBrank (merge Irank and Prank using Borda),
CBGrank (merge Irank and PGrank using Borda), CFrank (merge Irank and Prank
using Footrule), CFGrank (merge Irank and PGrank using Footrule).

3.3 Fact Statement Determination

The information related to the target fact statement can be divided into three categories:
positive, negative and neutral, according to the similarity between the related informa-
tion and the target fact statement. Given a fact statement f s and the related information
collection R, we use Rpos, Rneg and Rneu to denote the collections of positive, nega-
tive and neutral related information respectively. With the help of κ , we get Rpos, Rneg

and Rneu. If S(ri, f s) ≥ κ , ri ∈ Rpos; if | S(ri, f s) |� κ , ri ∈ Rneu ; if S(ri, f s) ≤ 0 and
| S(ri, f s) |≥ κ , ri ∈ Rneg. The optimal value of κ is evaluated by experiments.

Combining the similarity and the credibility ranking, we measure contributions of a
piece of related information to the truthfulness determination. Given a piece of informa-
tion ri related to the target fact statement f s, the contributions of ri to the truthfulness
determination of f s is defined as S(ri, f s)/Cranki. Here, Cranki is the credibility rank-
ing value of ri. Then we propose two ways to determine the truthfulness of the target
fact statement: baseline determination method and SVM-based determination method.

Baseline Determination Method. We believe that if a fact statement is trustful, the con-
tributions of the positive related information should be larger than that of the negative
related information. According to this idea, we propose baseline determination method
(BMD). The procedure of determining the truthfulness of the target fact statement are:
I. The positive and negative contributions of the related information are worked out
respectively. The positive contributions are the sum of the contributions of the related
information in Spos. Similarly, the negative contributions can be worked out. II. The
sum of the contributions of positive and negative related information is worked out. If it
is larger or equal to δ , we think the target fact statement is trustful; if not, it is untruthful.
Here, δ is a constant and the optimal value of δ is evaluated by experiments.

SVM-Based Determination Method. Classification method can be used to determine
the truthfulness of a fact statement. In this section, we make use of SVM model to
predict the classification of a fact statement and propose SVM-based determination
method (SVM-DM). In this method, some fact statements, whose truthfulness is certain,
are chosen as train set and the classification model is obtained. Using the classification
model, we predict the classification of the fact statement whose truthfulness is needed
to be determined. Contributions of positive, neutral, and negative to a fact statement are
considered as classification features; and the classification vector of the fact statement
is composed of the contributions of positive, neutral, and negative related information.
In order to avoid features in larger numeric ranges dominating those in smaller numeric
ranges, we linearly scale each feature to the range [-1,1]. We chose RBF as the kernel
of SVM classification.



160 T. Wang, Q. Zhu, and S. Wang

4 Experiments

We generate a synthetic dataset according to [10]. The dataset is composed of 50 trustful
fact statements and 50 untruthful fact statements. These fact statements are fetched from
Trec20074. Among trustful fact statements, 30 are unique-answer ones and the rest are
multi-answer ones. For each fact statement, we use Yahoo boss 2.05 to collect the top-
150 search results as the related information. 11 experienced users, who are graduate
students and experienced Internet users, help to mark the search results.

4.1 Evaluations of Key Parameters

Distribution of Related Information. We use Pf to denote the percent of the related
information including the meanings of the target fact statements. f su and f sm denote
trustful unique-answer fact statement and trustful multi-answer fact statement respec-
tively. Fig.1 shows Pf values when n changes. Here, n is the number of the related infor-
mation considered in the truthfulness determination of a fact statement. It can be seen
that, Pf for f su decreases with the increase of n. For a multi-answer fact statement, there
are more than one correct answer to the question corresponding to the multi-answer fact
statement. Thus, Pf for f su is always larger than Pf for f sm. From the experiment, we
can see when n is larger, more neutral or negative related information comes out.
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The Optimal Value of κ Detection. We measure the F1-measure values for each cate-
gory at different values of κ . Then, we calculate the average of the F1-measure values
for the three categories at different κ values. We believe the optimal value of κ is the
value which makes the average F1-measure value greatest. Fig.2 shows the average F1-
measure value when the value of κ varies. It can be seen that, the average F1-measure
value reaches the peak (near 0.65) when κ = 0.5. Thus, the optimal value of κ is set to
0.5, also the default value in following experiments.

Distribution of Credibility Ranking. Fig3 show the distributions of the four credibil-
ity rankings when n = 150. The x-axis is the positions of the related information, and
y-axis is the average of credibility ranking values of the related information at corre-
sponding positions. From this figure, the rank values are thickly located on [20-120].

3 http://trec.nist.gov
4 http://boss.yahoo.com

http://trec.nist.gov
http://boss.yahoo.com
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It means the importance ranking and the popularity ranking can not replace each other.
And the importance ranking or the popularity ranking can not replace credibility rank-
ing. In addition, we can see some related information, which is at higher positions in the
appearing order, is at lower positions in credibility ranking. It means that some related
information at higher positions in the appearing order may be not credible. That is con-
sistent with our observation. Since the gaps of Alexa ranking is considered in CBGrank
and CFGrank, the ranges of CBGrank and CFGrank are larger than those of CBrnak
and CFrank.

4.2 Evaluation of Determination Methods

Baseline Determination Method. The portion of the considered related information δ
and the adopted credibility ranking influence the determination precision. By experi-
ments, we find when CFGrank is adopted, the method has the best performance. Fig.4
shows the precision on δ and n, when the credibility ranking is CFGrank. When δ = 0.9
and n = 60, the precision reaches the peak (0.74). Fig.5 shows the precision on δ on
different credibility rankings, when n = 60. CFGrank and CBGrank can bring higher
precision than CFrank and CBrank. With the increase of δ when δ � 0.9, the preci-
sion increases and the precision decreases with the increase of δ , when δ � 0.9. Fig.6
shows the precision on n and four credibility rankings when δ = 0.9. It can be seen that,
CFGrank and CBGrank bring higher precision peak than CFrank and CBrank.

Fig. 4. Precision of BDM on n and δ
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SVM-Based Determination Method. We adopt libsvm5, RBF kernel function and
three-fold cross validation to get the precision. Fig7 shows the precision on n and the
four credibility rankings, it can be seen that the precision reaches the peak (0.79), when
CFrank is adopted. Regardless of which one is adopted in the four credibility rankings,
the precision first increases and then decreases, with the increase of n. Especially, when
n = 90 and CFrank is adopted, we have the highest precision.

5 Conclusion and Future Work

In this paper, we propose a new method MFSV to determine the truthfulness of a fact
statement. The results of experiments show MFSV is available and can be used for
multi-answer fact statements. However, we just focus on domain-independent fact state-
ments and ignore the domain knowledge. In the future, we will focus on the truthfulness
determination of domain-dependent fact statements and we believe the usage of domain
knowledge can help to determine a fact statement more accurately.

Acknowledgments. We would like to thank Prof. Weiyi Meng from Binghamton Uni-
versity for his help on this work.
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Abstract. Replication, the widely adapted technique for crash fault
tolerance introduces additional infrastructural costs for resource lim-
ited clusters. In this paper we take a different approach for maintaining
stream program performance during crash failures. It is based on the
concepts of automatic code generation. Albatross, the middleware we in-
troduce for this task maintains the same performance level during crash
failures based on predetermined priority values assigned to each stream
program. Albatross constructs different versions of the input stream pro-
grams (sample programs) with different levels of performance character-
istics, and assigns the best performing programs for normal operations.
During node failure or node recovery, potential use of a different version
of sample program is evaluated in order to bring the performance of each
job back to its original level. We evaluated effectiveness of this approach
with three different real world stream computing applications on System
S distributed stream processing platform. We show that our approach is
capable of maintaining stream program performance even if half of the
nodes of the cluster has been crashed using both Apnoea, and Regex
applications.

Keywords: stream computing, data-intensive computing, reliability,
highly availability, performance, auto-scaling, autonomic computing, au-
tomatic code generation.

1 Introduction

Highly availability is a key challenge faced by stream processing systems in
providing continuous services. Crash faults such as operating system halts, power
outages, virtual machine crashes, etc. may paralyze or take an entire application
out of service. Crash faults take more time to recover since some of those need
direct intervention from system administrators [18]. The widely adapted solution
for recovering from crash faults in stream computing systems has been physical
replication [8]. These techniques require k replicas to tolerate up to (k - 1)
simultaneous failures [15]. Maintaining such large number of backup nodes costs
a lot in terms of electricity, rack space, cabling, and ventilation. These are the
key problems faced by cloud data centers.
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Balancing local stream processing load with public cloud (i.e., use of Hybrid
Cloud [5]) would be a solution for maintaining stream program performance
[13][11]. Yet such approaches require access to public clouds which makes it
impossible to use such solutions in certain applications. For example, if the
stream application deals with sensitive information (e.g., health care, national
defense, etc.) it would be very difficult to follow such solution. Moreover, certain
stream processing systems have license, and software issues [11] which makes it
impossible to deploy them in hybrid cloud environments.

We have observed that data flow graphs tend to maintain similar shaped per-
formance curves (i.e., similar performance characteristics) within similar stream
environment conditions [4]. This indicates that relative performance of such data
stream graphs is a predictable quantity.

Considering the obstacles associated with replication for maintaining perfor-
mance, and characteristics of data stream programs; we introduce a different,
more efficient solution for maintaining stream program performance which is
applicable in resource limited stream computing clusters. Our approach is based
on automatic code generation. Specifically, we generate a variety of data flow
graphs (we call these “sample programs”) with each giving different performance
characteristics for a set of stream programs that are to be deployed in the node
cluster. We select sample programs (one per input program) with consistent high
throughput performance compared to the input programs, and run them in the
cluster. During a node failure (e.g., system crash/shutdown) which affects a sub
set of nodes in the cluster, we evaluate feasibility of performance maintenance
using the existing stream applications and introduce different sample applica-
tions which produce better performance in the new environment. Our approach
assigns priority to each input program and tries to maintain performance of high
prioritized programs.

Albatross, the middleware on which we implemented the above approach mon-
itors the performance status of each node, stream processing jobs and conducts
the switching of sample programs appropriately to respond to the changes hap-
pen in the node cluster.

1.1 Contributions

1. Code generation for performance - We propose a new method for maintaining
system performance during node crashes using automatic code generation.
This approach reduces the requirement of keeping additional backup nodes.

2. Switching between different versions - We describe a method for swapping
different versions of data stream programs with minimal effect on their run-
time performance and without loss of integrity of data.

We implemented and evaluated our approach on System S [1] which is a large-
scale, distributed stream processing middleware developed by IBM Research. In
a cluster of 8 nodes we observed that our method is able to partially restore
(complete restoration for some applications) performance compared to naive
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deployment. Our method was successful in maintaining performance of two dif-
ferent stream applications even when the number of nodes were reduced by half
due to crash faults.

2 Background

We briefly describe operator-based data stream processing systems [12][4] and
what we mean by resource limited compute clusters below.

2.1 Resource Limited Stream Compute Clusters

While our approach can be applied in public compute clusters, dynamic resource
allocation has become a great problem in resource limited small (typically pri-
vate) compute clusters. What we mean by use of the term “Resource Limited
Stream Compute Clusters” is a compute cluster with fixed set of nodes which
cannot be expanded dynamically. Our emphasize is on the number of available
nodes rather than the amount of available resources in a particular node of such
cluster because we believe that it does not matter how much resources a node
has if it crashes suddenly. Such compute clusters are widely run by financial, aca-
demic, and health care [3] institutions that operate variety of stream processing
applications. An important feature of these clusters is that it takes considerable
amount of time to replace a defected node in such private clusters compared to
public clusters (e.g., Amazon EC2) which can easily provision nodes on demand.
We believe that our approach for performance recovery is best applicable to such
resource limited clusters.

2.2 System S and SPADE

We use System S which is an operator-based [12][4], large-scale, distributed data
stream processing middleware for implementing Albatross prototype [1][17]. Sys-
tem S uses an operator-based programming language called SPADE [6] for defin-
ing data flow graphs. SPADE depends on a code-generation framework instead
of using type-generic operator implementations. SPADE has a set of built-in op-
erators (BIOP), and also supports for creating customized operators (i.e., User
Defined Operators (UDOP)) which allow for extending the SPADE language.
Communication between operators is specified as streams. SPADE compiler fuses
operators into one or more Processing Elements (PEs) during compilation pro-
cess. A PE is a software component which spawns a unique process during the
running time of its corresponding program. System S scheduler makes the con-
nection between PEs during runtime. Out of the BIOPs used for implementing
the sample programs described in this paper (abbreviations we use are shown
in parenthesis), Source (S) creates a stream from data coming from an exter-
nal source, Sink (SI) converts a stream into a flow of tuples that can be used
by external components. Functor (F) performs tuple-level manipulations (e.g.,
filtering, mapping, projection, etc.). Aggregate (AG) groups, and summarizes
incoming tuples. Split (SP) splits a stream into multiple output streams. Join
(J) operator correlates two streams using join predicates.
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2.3 Automatic Sample Program Generation with Hirundo

On a mechanism called Hirundo [4], we developed techniques for automatically
generate data flow graphs with varied performance characteristics for a given
stream application. Hirundo analyses and identifies the structure of a stream
program, and transforms the program’s data flow graph in to many different
versions. While an in depth description of the Hirundo’s code generator is out
of the scope of this paper, we provide a brief description of its sample program
generation. We explain sample program generation by Hirundo below by taking
two stream applications called Regex, and Apnoea. We do not use VWAP in the
following explanation because Regex and VWAP both have similar structure.
Note that our aim in Hirundo was to produce optimized stream program(s) for
a given stream application which is different from the aim of this work.

Stream Applications. In this paper we use three real world stream applica-
tions as examples. The first application is called “Regex” is a regular expression
based data transformation application (The data flow graph is shown in Figure
1(a)). It consists of five operators and it converts date portion of datetime tu-
ples represented as 2011-07-11 to 11-JUL-2011. Moreover, all the “00”s in the
time portion of the tuples are changed to “22”s.

The second application is a Volume Weighted Average Price (VWAP) ap-
plication. VWAP is calculated as the ratio of the value traded and the volume
traded within a specified time period. The application we used (illustrated at [1])
is part of a larger financial trading application. The data flow graph of VWAP
application consists of five operators (see Figure 1(b)).

The third application (shown in Figure 1(c)) is called Apnoea [3] which is part
of a framework for real time analysis of time series physiological data streams
extracted from a range of medical equipments to detect clinically significant
conditions of premature infants.

Program Transformation. As shown in Figure 2(a), the original Regex pro-
gram consists of five operators and is a linear Directed Acyclic Graph (DAG).
This program is represented as S F1 F2 F3 SI by Hirundo. Hirundo’s program
transformation algorithm traverses this program three operator blocks at a time
and produces transformed operator blocks as shown in Figure 2(b). We call this
process as Tri-Operator (Tri-OP) transformation [4]. During the transformation
number of operators of some (or all) operators in the original data flow graph
are changed. E.g., Number of F1, and F2 operators in the input program are in-
creased by 4, and 2 respectively. Maximum operator count a particular operator
could have is represented as depth (d). Number of sample programs generated
increases with increase of depth value. E.g., When used for transforming Regex
application, for a depth of 4 Hirundo generated 32 sample programs; where as
a depth of 6 resulted in 136 sample programs. The generated operator blocks
are stitched together in a process called “Operator Blocks Fusion”. This results
in sample programs like the example shown in Figure 2(c). This entire process
takes only few seconds.
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Fig. 2. An example for data flow graph transformation in Hirundo. (a) Data flow graph
of Regex application. (b) Transformed operator blocks output by Hirundo for Regex
application. (c) Sample program generated for Regex. (d) Data flow graph of Apnoea.
(e) Transformation of the ray F3-AG3-F7. (f) A Sample program generated for Apnoea.
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Since Apnoea is a multipath DAG its most expensive path is identified by
profiling the Apnoea input application for a short period in the intended cluster.
Then the ray (high lighted in dotted lines) of the most expensive path (S-F3-
AG3-F7-J1-J2-SI) is transformed using Tri-OP transformation. The transformed
operator block (shown in the right side of the Figure 2(e)) is stitched with the
original DAG through operator block fusion which yields the sample application
shown in Figure 2(f).

3 Related Work

Stream program performance maintenance is closely related with works con-
ducted on highly availability, and fault tolerance of stream processing systems.
Hwang et al. [9], and Gu et al. [7] have described two main approaches for highly
availability called Active Standby (AS), and Passive Standby (PS). In AS two
or more copies of a job are run independently on different machines. In PS a
primary copy periodically checkpoints its state to another machine and uses that
copy for recovery during failures. Both these approaches involve replication. Our
approach is completely different from AS since, ours is based on automatic code
generation and does not require backup machines. However, we share a common
feature with PS since we keep incoming data tuples in main memory during the
crash recovery period to avoid data losses.

Recently, MapReduce has been used for creating streaming applications.
Hadoop Streaming [16] is one such implementation where Unix standard streams
have been used as the interface between Hadoop, and user programs. However,
it should be noted that standard Unix streams (e.g., stdin, sdout, stderr, etc.)
represent only few examples of use of streams compared to the wide variety of
application scenarios addressed by dedicated stream processing middleware such
as System S. Logothetis et al. describe an in-situ MapReduce architecture that
mines data (i.e., logs) on location where it appears [14]. They employ load shed-
ding techniques to improve fidelity under limited CPU resources. In contrast
to such load shedding techniques [2] currently our approach does not discard
parts of the incoming data to recover the lost performance. Instead, Albatross
transforms the stream application to a different form which could process the
incoming data as it is.

Khandekar et al. [12], and Wolf et al. [17] discuss optimizing stream job per-
formance in the context of operator fusion (COLA) and operator scheduling
(SODA) respectively. However, their approaches do not focus on maintaining
an agreed level of performance. Instead their focus is on performance improve-
ment. Furthermore, COLA works on finding the optimal fusion of processing
elements (using compiler outputs) of a single program, whereas Albatross con-
structs and uses many versions of input program(s) during its operation. This
is because Albatross needs different versions with different performance levels
during performance maintenance process.
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4 Approach for Performance Maintenance

We formerly define our approach below. The notation used in our description is
explained in Table 1.

Table 1. Notation

Notation Description
EN Stream processing environment with N nodes. (N > 1)
S Set of input stream programs. (|S| = n, n>0)
u Performance margin for stream processing environment E. (u∈{0, ..., 100}, u∈R+).

This value is calculated by Albatross using current performance information of E
(As described in Section 4.2).

m A performance window set by user. (m∈ {0, ..., 100}, m∈R+)
Mi Input stream program priority margin. (∀i, j where i,j∈N, Mi,Mj∈R+, i,j∈{0,...,(n-

1)}, i,j∈N, Mi 
=Mj ,
∑n−1

i=0 Mi=100). Priority margin is used for ranking input
programs based on their importance. This value needs to be specified by user
prior running Albatross.

r Calibration run. If r = 0 it is a normal mode run. When Albatross is deployed in
its usual operation its called normal mode run.

P
(r)
S Sample program set generated for S during calibration run r. (r∈N, r 
=0). A cali-

bration is a running of entire sample program space with the intention of obtaining
the performance information.

P
(0)
S Sample program set generated for S during normal mode run. Here, 0 in P

(0)
Si

represents a normal mode run of Albatross.

XN Selected sample program set. (XNi
∈P

(0)
Si

, |XN | = n, |XNi
| = 1)

perf(x) Predicate for performance (e.g., throughput, elapsed time, etc.) of sample program
x

Given an EN which receives a steady flow of input data streams, a set of input
programs S (|S| = n) each having a priority margin Mi, a set of sample programs
generated during past calibration sessions (each represented as r) of S programs

denoted by P
(r)
S , Albatross generates P

(0)
Si

for each Si (i ∈{0,...,(n-1)}, i∈N).
Then, it selects sample program set XN considering the empirical performance

information of each P
(r)
Si

, compiles and runs them in EN . The algorithm that
selects each sample program XNi is described in next section.

During a sudden node failure which results in a different environment EN ′

with N ′ nodes (N ′<N; N ′>0), Albatross selects XN ′ (XN ′
i
⊂P

(0)
Si

, |XN ′ | = n,
|XN ′

i
| = 1) sample programs if Mi≥(u+m) and compiles them. Then, Albatross

cancels the programs XN , and starts running both XN and XN ′ program sets in
EN ′ (with N ′ nodes) for a time window of Wt. For each program XNi and XN ′

i
,

perf(XN ′
i
) is compared with perf(XNi) in the context of EN ′ . Programs with

highest performance for each i is kept running and the other jobs are canceled.
When the crashed nodes comes back online, EN ′ changes back to EN . There-

fore, the programs XN ′
i
are switched back to XNi .

4.1 Program Ranking Algorithm

It should be noted that the sample program sets generated by Albatross are not
exponential. E.g., For VWAP for a transformation depth of 4 it produces only
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24 sample applications. Transformation depth (d) is a non-zero integer which
denotes the extent to which the input application’s data flow graph is expanded
[4]. Albatross uses the same program generator from Hirundo, and more details
on sample program space is available from [4].

Albatross uses empirical performance information gathered from previous cal-
ibration sessions to estimate which sample program version should be the best
match for the stream processing environment E. Note that in the case of Sys-
tem S we assume the operator placement decisions will be the same for multiple
runs of a particular program on a specific node configuration. The Algorithm 1
describes the selection process. To maintain brevity we only describe the algo-
rithm’s inputs and outputs below.

 
21:   end for 
 
22:   sortByRangeAsc(labelPerfStat) 
23:   selectedLabel ← Ø 
24:   for all label in labelPerfStat do:  
25:      if label.min > inputStat.max then 
26:          selectedLabel ← label  
27:          break 
28:      end if  
29:   end for 
30:   if selectedLabel = Ø then 
31:       for all label in labelPerfStat do:  
32:           if label.average > inputStat.average then 
33:               selectedLabel ← label  
34:               break 
35:          end if  
36:       end for 
37:   end if 
38:   if selectedLabel = Ø then 
39:           selectedLabel ← appname 
40:  end if 
41   return selectedLabel 

 
 
  

1:   optrunDict ← getLatestThreeOptrunIDs(appname, G, d, nodes) 
2:   for  all optrun   in  optrunDict   do 
3:      perfDict[optrun] ← getPerfInfoForOptrun(optrun) 
4:   end for 
5:   labelDiffTable ← {} 
6:    for all optrun in perfDict do 
7:            for all label in optrun do 
8:                 labelDiffTable[label].append(optrun[label]) 
9:            end for 
10:  end for 
11:  inputStat ← Ø 
12:  labelPerfStat ← {} 
13:  for all label in labelDiffTable do:  
14:      labelPerfStat[label].range ← range(labelDiffTable[label]) 
15:      labelPerfStat[label].average ← average(labelDiffTable[label]) 
16:      labelPerfStat[label].min ← minimum(labelDiffTable[label]) 
17:      labelPerfStat[label].max ← maximum(labelDiffTable[label]) 
18:      if label is Input App then 
19:         inputStat ← labelPerfStat[label] 
20:      end if 

Input : Input application’s name (appname), structure of the input stream  
             application (G), transformation depth (d),  number of nodes (nodes) 
Output : Replacement sample program (selectedLabel) 
Description :  

Algorithm 1: Selection of Replacement Sample Program 

/* Get sample program performance details */ 

/* Aggregate throughput information for each label */ 

/* Find range, average, */ 
/*   min, max throughput */ 
/*     values for each group */ 

/* Sort labels ascending order using range values */ 

/* Select sample program with higher average  */ 
       /* throughput compared to the Input app*/ 

/* If could not find a suitable app, */ 
/* select using average throughput */ 

/* If no suitable app found then return the input app*/ 

Input to the algorithm is the application’s name (this is the name assigned to a
SPADE application under its Applicationmeta-information tag [Application]),
the structure of the input stream application G (G is a directed graph where each
operator is represented as a vertex, and each stream that connects two operators
is represented by an edge), transformation depth of the calibration run (i.e., d)
and the number of nodes that are currently available on the stream processing
environment. As the output, algorithm selects the first sample programwhich has
higher average throughput compared to input stream application and has a higher
minimum throughput relative to maximum throughput of input application (lines
24 - 29). If it could not find a suitable label it reduces the restrictions, and tries to
select the sample program label which has higher average throughput compared to
the input application (lines 30 - 37). If this attempt also fails the algorithm returns
the input application’s name (appname) as the sample application label since the
algorithm needs to specify at least one application label (XNi) that should be run
in the environment. Note that a label is an identification string. For Linear DAGs
it represents arrangement of operator blocks in the sample program. E.g., Label
S 4F 8F 4F 4SImeans the sample programhas one source, four F1 functors, eight
F2 functors, four F3 functors, and four sinks. However, for multipath DAGs (E.g.,
Apnoea) the label serves only as a unique ID.
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We select only the latest three calibration run results for sample program se-
lection algorithm since a sample program produces similar performance behavior
across multiple runs in the same stream computing environment. We make the
selection of the sample program label in two steps (in lines 24 - 29 and in lines
30 - 37). The programs selected by considering the fact that having higher min-
imum throughput than the input application’s maximum throughput, do have a
higher probability of producing higher throughput compared to a decision made
considering only the average throughput values (lines 24 - 29).

4.2 Program Switching Model

We employ a program switching model to remove programs (which are registered
with low priority) during drastic node failures that makes the remaining nodes
fully or close to fully utilized. The elimination model is formed by Cartesian
product of resource availability functions (u) which can be defined as follows.
If availability of a resource such as total amount of memory, total amount of
CPU, etc. is denoted by p(y) and program switching function (binary) is given
by φ(x),

p(y) =
(current level of resource y)

(initial level of resource y)
(1)

u = 100×
∏

p(y) (2)

φ(x) =

{
1 [Mi − (u+m)] > 0
0 otherwise

(3)

Current implementation of Albatross uses only two resource availability vari-
ables: RAM availability (p(R)), and Node availability (p(N)). Hence, Equation
3 can be simplified to,

φ(x) =

{
1 [Mi − ((p(R)× p(N)× 100) +m)] > 0
0 otherwise

(4)

The choice of p(RAM) and p(Node) was made because successful operation
of stream processing systems largely dependent on main memory availability.
Node availability was also introduced to the program switching model because
p(Node) directly reflects not only p(RAM), but also other resource availability
metrics such as CPU availability, network availability, etc. on a homogeneous
cluster. This results in simplified parabola shape u for which users of Albatross
can easily specify the priority value m before running Albatross.

5 Implementation

Albatross prototype was developed using Python. Architecture of Albatross is
shown in Figure 3. The input to Albatross is a collection of directories each
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Fig. 3. System Architecture of Albatross

containing an input stream program. Each program is associated with a configu-
ration file which lists information such as transformation depth (d) of the input
program, the priority margin (Mi), etc.

Albatross has been developed targeting stream programs written in SPADE
language. Therefore, Albatross depends on System S and SPADE compiler dur-
ing its operations. System S is dependent on a shared file system such as Network
File System (NFS), General Parallel File System (GPFS), etc. [10]. However, Al-
batross does not use NFS as a secondary storage to avoid potential performance
bottlenecks. The experiments we conducted using Albatross were supported by a
stream workload synthesis tool that we developed called “StreamFarm”. Hence,
Albatross does not depend on any significant file I/O during its operations. Al-
batross utilizes an SQLite database to store its information. Brief descriptions
of important components of Albatross are described in below subsections.

We make several assumptions in creating the fault-tolerance model of Alba-
tross. In current version of Albatross we do not employ any stream summa-
rization/load shedding [2] techniques during the crash recovery period. All the
incoming tuples are buffered in memory of the node which holds the gateway
component during the crash recovery. We assume that the stream data is not
bigger than what could be stored in memory of that node during that time
period. Furthermore, we assume that the node which keeps Albatross and the
gateway component processes does not crash during a fault recovery session.

Runtime Orchestrator module monitors health of the cluster using periodic
heartbeat messages (i.e., ping messages). If a node crash was detected, the Input
Gateway is informed to start the tuple buffering process. Next, the System S
runtime is stopped, and the defected node is removed from the node list of System
S instance configuration. After this System S is restarted on the remaining nodes.
The sample programs selected by Albatross’s program ranking algorithm, and
the original programs are run in the environment for a short period to select the
best versions to be deployed. Next, the programs not selected are stopped, and
removed from the environment. Finally, the buffered data tuples are directed to
the chosen applications.

All the data streams that go in/out to/from the sample applications travels
through the module called Gateway. The Gateway is used for measuring the
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data rates of the streams. The data rate information is used by Program Version
Selector to switch between the sample programs that are suitable for a partic-
ular environment (EN ). However, in the experiments described in Section 6, we
utilized the data rate reporting mechanism of StreamFarm to obtain the data
rate information.

Furthermore, the Gateway buffers the tuples in memory, while Albatross con-
ducts sample programs switching. After the appropriate sample programs are
selected the buffered tuples are released to System S jobs before the incoming
tuples are served. When the buffer gets emptied the incoming tuples are directed
to System S jobs rather than adding them to the tail of the tuple queue. In the
current version of Albatross the gateway is located on a single node.

6 Experimental Evaluation

6.1 Experimental Setup

We used two clusters (lets call them A and B) of Linux Cent OS release 5.4
installed with IBM Infosphere Streams Version 1.2 and Python 1.7. Each node
in cluster A had a Quad-Core AMD Phenom

TM

9850 processor, 512 KB L2
cache per core, 8GB memory, 160GB hard drive, 1 Gigabit Ethernet. Each node
of cluster B had a dual core AMD Opteron

TM

Processor 242, 1MB L2 cache
per core, 8GB memory, 250GB hard drive, 1Gigabit Ethernet. We used SQLite
version 3 as Albatross’s database, and cluster B had JRE 1.6.0 installed. Both
the A and B clusters were reserved for running only these experiments during
the experiment period.

6.2 Evaluation of Stream Program Performance Variation

We modified Albatross not to respond to crash failures, and ran two sample ap-
plications of Regex and VWAP on Cluster A. Then we crashed two nodes which
left only 6 operational nodes. The two applications showed different character-
istics after the crash (See Figure 4(a)). In the case of VWAP the throughput
dropped from an average of 84.16KB/s to an average of 21.38KB/s, a reduction
of average data rate by 74.6%. In the case of regex application it completely
stopped outputing data. Therefore, we observed that for certain applications,
crash faults result in no output of data from System S. Some other applications
output data at a reduced rate, but might produce different outcome than what
is expected. In both the scenarios we need an explicit intervention like done by
Albatross.

We ran Albatross in the Calibration Mode with VWAP application in cluster
A with 8 nodes. The results of six calibration runs is shown in Figure 4(b). We
observed that certain applications produce similar performance behavior across
the six experiments (E.g., S 6F AG F SI) and some applications produce higher
performance compared to the input application (E.g., 8S 6F AG F SI). This
indicates that our program transformation method generates sample programs
with consistent yet different levels of performance.
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Fig. 4. (a) How the sample programs’ performance change when two nodes were
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Six calibration runs.

6.3 Evaluation of Performance Recovery Process

The VWAP, Regex, and Apnoea applications were calibrated by Albatross for
three times prior the experiment for each node configuration (i.e., 8 nodes, 6
nodes, etc.). After the calibrations were complete, the three applications were
submitted to Albatross in three separate runs. Albatross and System S were
run in the cluster A, while StreamFarm was ran on cluster B to avoid poten-
tial interferences. StreamFarm allowed us to maintain a steady, high data rates
throughout the experiments which gave us great support compared to file based
methods that we used in our previous work [4].
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Fig. 5. Recovering performance of Regex application during two consecutive node
crashes

While in the middle of the experiment run, two nodes were crashed. The re-
sulted throughput curves are shown in Figures 5 and 6. We observed that for
Regex application (See Figure 5) the new sample program introduced for 6 nodes
environment (S 4F 8F 4F 4SI) was unable to produce a higher throughput com-
pared to initial sample application (4S 4F 4F 2F 2SI), hence it’s execution was
canceled. The previous sample application (4S 4F 4F 2F 2SI) was run in the
environment since Albatross could not find a better version of the Regex sample
applications to run, yet we get only partial degradation of the Regex stream job’s
performance despite loss of two nodes. However, in the case of VWAP applica-
tion Albatross’s choice was much accurate, and performance of the new sample
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Fig. 6. Performance recovery process when (a) two nodes were crashed for VWAP. (b)
two consecutive node crashes for Apnoea.

application (8S 48F AG F SI) resembled almost the same performance of ini-
tial sample application (8S 64F AG F SI). Note that Regex application consists
of a chain of Functors where as VWAP application has an Aggregate operator
that outputs data after gathering a group of tuples. Hence, the wavy curve of
VWAP application compared to Regex application is formed by the aggrega-
tion operation done by VWAP. The temporary high throughput rise in both the
graphs are due to the excess tuples during the release of buffered tuples just
after completion of recovery process. For Apnoea, the new sample application
S F AG F F 4AG 4F F AG F J J SI was able to restore the performance (with
a partial degradation) while the initial sample application could not produce any
output.

During the rest of the experiment we used only Regex and Apnoea applica-
tions. We used the full functionality of Albatross as with the previous experi-
ment. After the first crash we allowed sufficient time for the recovery process
and then crashed another two nodes. The results are shown in Figure 5 and
in Figure 6(b). After the second crash we observed that for the Regex applica-
tion, the initial sample program (4S 4F 4F 2F 2SI) was unable to restore the
performance with 4 nodes, and the job was undertaken by 4S 8F 4F 4F 4SI
which was able to produce almost the same throughput of the initial program
with 8 nodes. In the case of Apnoea application, the new sample application
introduced (S F AG F 2F 2AG 2F F AG F J J SI) could not restore the per-
formance. Hence, the previous sample application was deployed to maintain
performance with 4 nodes cluster.

7 Discussion

From the evaluation results it was clear that Albatross is able to restore the
operations back to the normal level (e.g., VWAP on 6 nodes, Regex on 4 nodes,
and Apnoea on 4 nodes) or at least run the jobs with relatively lesser performance
yet with a guarantee of the correctness of the execution (e.g., Regex on 6 nodes,
and Apnoea on 6 nodes). Furthermore, Albatross was able to restore performance
even when half of the nodes in the cluster were crashed (e.g., Apnoea, and Regex
each on 4 nodes).

There are many further work, and limitations of the current prototype. The
types of input stream applications that the current prototype can support are
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limited since Albatross’s grammar covers a subset of the SPADE language con-
structs. Furthermore, the approach is infeasible for a large number of applica-
tions each demanding maintenance of higher performance. Our current program
switching model is designed to avoid this. Data rate might not produce the cor-
rect picture of performance of certain stream applications. E.g., An application
that aggregates tuples may emit one tuple per minute irrespective of the number
of nodes that serve data for the aggregate operator. Moreover, it takes consider-
able amount of time (Rounded average recover times : 6 minutes for VWAP, 3
minutes for Regex application, and 5 minutes for Apnoea) to restore the normal
operations of all the stream jobs. Most of this time is spent for orchestrating the
System S runtime (start/stop System S runtime, reschedule PEs), and sample
application compilation which accounts for significant time compared to Alba-
tross’s scheduling algorithm. However, the time period might be different for
some other stream processing system. The release of tuples buffered by Alba-
tross temporarily increases the data rate which might not be expected by some
applications which receive data from System S jobs.

8 Conclusions and Future Work

In this paper we introduced a technique for maintaining performance during
crash failures of stream computing systems. Our approach is widely applicable
for resource limited stream processing clusters. It is based on automatic code
generation. To this end we introduced Albatross, a python based middleware
that monitors the status of the node clusters and strives to maintain the per-
formance via swapping the sample programs generated for each input program.
We observed that Albatross can maintain the same performance of the Regex
(with 8 nodes, 4 nodes crashed), VWAP (with 8 nodes, 2 nodes crashed), and
Apnoea (with 8 nodes, 4 nodes crashed) stream jobs despite loss of nodes from
the stream processing environment. Therefore, we came to conclusion that our
approach is capable of maintaining stream program performance even if 50% of
the nodes in the cluster has been crashed in stream applications such as Regex,
and Apnoea.

In future we hope to devise a sophisticated scheduling algorithm for Alba-
tross’s stream job control process to reduce the time taken for recovery process.
We are also investigating on use of load shedding techniques to improve the
stability of the performance recovery process.
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Abstract. There are many news articles about events reported on the Web daily,
and people are getting more and more used to reading news articles online to
know and understand what events happened. For an event, (which may consist of
several component events, i.e., episodes), people are often interested in the whole
picture of its evolution and development along a time line. This calls for model-
ing the dependent relationships between component events. Further, people may
also be interested in component events which play important roles in the event
evolution or development. To satisfy the user needs in finding and understand-
ing the whole picture of an event effectively and efficiently, we formalize in this
paper the problem of temporal event search and propose a framework of event
relationship analysis for search events based on user queries. We define three
kinds of event relationships which are temporal relationship, content dependence
relationship, and event reference relationship for identifying to what an extent a
component event is dependent on another component event in the evolution of
a target event (i.e., query event). Experiments conducted on a real data set show
that our method outperforms a number of baseline methods.

1 Introduction

With the development of the Internet, news events are reported by many news articles in
the form of web pages. People are getting more and more used to reading news articles
online to know and understand what events happened. For a composite/complex event,
it may consist of several component events, i.e., episodes. There are some interrela-
tionships among these component events as they may be dependent on each other. For
example, the event of “Toyota 2009-2010 vehicle recalls” contains several interrelated
component events, e.g., the event “Toyota recall due to safety problems from 2009 to
2010” causes the happening of the event “NHTSA conduct investigations for Toyota re-
call” and the event “US congressional hearings hold for Toyota recall”, and so on. Also,
the event “US congressional hearings hold for Toyota recall” has a strong relationship
with the event “Toyota’s president to testify in US congressional hearings”.

Quite often, what people interested in is not just a sole news article on an event, but
also the related events reported by other news articles. Indeed, they are often interested
in the whole picture of an event evolution or development along a timeline. This calls
for modeling the dependence relationships between component events, and identifying
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W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 179–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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which component events play important roles in the entire event evolution or develop-
ment. Unfortunately, the current news web sites do not facilitate people in finding out
relevant news articles easily, and people may need to go through all these news articles
in order to find out the interrelationships between component events. Current prevailing
search engines (such as Google, Yahoo and so on) allow users to input event keywords
as a query and return a list of news web pages related to the query. However, instead
of organizing the result by events and relationships between events, these engines just
provide users with a ranking list of news web pages. It is difficult and time consuming
for users to view of the huge amount of news articles and to obtain the main picture of
an event. Therefore, it is necessary to provide an effective way for users to efficiently
search events they are interested in, and organize the search results in an easily un-
derstandable manner syntactically, so that users can obtain the main pictures of their
interested events easily and meaningfully from the semantic perspective.

Although there have been some previous works attempting to find and link incidents
in news [2] [3] or discover the event evolution graphs [17] [15], they only focus on time
sequence and content similarity between two component events in identifying their de-
pendence relationships. However, using these two factors only is inadequate in identi-
fying dependence relationships among the component events in order to form the main
picture of a big event evolution or development. For example, event “Toyota recall due
to safety problems from 2009 to 2010” shares little similar content with events “NHTSA
conduct investigations for Toyota recall” and “US congressional hearings hold for Toy-
ota recall”. It is obvious that the first event has a strong effect on the latter two events
as it caused them to happen. Unfortunately, previous works do not analyze the event
relationships well and cannot find out the dependence relationships between any two
events which do not share enough similar content. As a result, the main picture of a
“big event” discovered by previous works often is incomplete and several significant
relationships are missing.

In this paper, to satisfy the user needs mentioned above in finding and understanding
the whole picture of a complex event effectively and efficiently, we conduct an in-
depth event relationship analysis for event search and propose a framework to search
events based on user queries. The new characteristics of the proposed framework and
the contributions of our work are as follows.

– In previous works, to discover dependence relationships between events, content
similarity of events is measured by matching the keywords (terms) of events. How-
ever, there may be some keywords (in two events) which are actually related/
dependent but not identical. For example, “hospital” and “doctor” are dependent,
but previous methods treat them as no relationship. To avoid this limitation, we
adopt mutual information to measure the dependence between two terms (features),
and then aggregate all mutual information between features in events to measure
the content dependence degree between events. Such a process is named as content
dependence (CD) analysis and the dependence relationship discovered based on
dependence features of two events is named as content dependence relationship.

– As mentioned in paragraph 4, only content dependence analysis on events is in-
adequate to detect all event dependence relationships. According to the studies in
Journalism [11] and our observation, it is not unusual for authors (reporters) to write
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news articles on an event by referring to other events, when the authors consider
there is a dependent relationship between them. For instance, some news articles
about the event “Toyota recall due to safety problems from 2009 to 2010” refer
to the event “NHTSA conduct investigations for Toyota recall”. Motivated by this
prevalent phenomena, We explore event reference (ER) analysis to detect whether
there is an inter-event relationship specified by authors. The relationship between
two events discovered by ER analysis is named as event reference (ER) relation-
ship, which has not been explored by previous works.

– In contrast to previous works which only consider temporal relationship and con-
tent similarity, we adopt three kinds of event relationships (viz, temporal relation-
ship, CD relationship obtained by CD analysis and ER relationship obtained by ER
analysis) to identify the dependence relationship between two events. Note that CD
and ER relationships are essentially event dependence relationships which are dis-
covered by two different ways respectively. We name them by two different names
with respect to the different ways for discovering them. CD relationships and ER
relationships can be complementary to each other in identifying event dependence
relationships.

– The search results are organized by a temporal event map (TEM) which constitutes
the whole picture about an event’s evolution or development along the timeline.
Figure 1 shows an example TEM of the event “Toyota 2009-2010 vehicle recalls”.
A TEM provides a way to organize and represent the events search results by show-
ing the interrelationships between/among the events. It provides an easier and more
efficient means for users to know and understand their interested events in a com-
prehensive way.

– To evaluate the performance of our proposed approach, we conduct experiments on
a real data set by comparing with a number of baseline methods. Experiment re-
sults show that our method outperforms baselines in discovering event dependence
relationships.

Fig. 1. An example of the TEM about the event “Toyota 2009-2010 vehicle recalls”
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The rest of this paper is organized as follows. In section 2, we formulate the event
search problem. Section 3 introduces the (temporal) event search framework. We con-
duct experiments on a real data set to evaluate the proposed methods for event search in
section 4. In section 5, to further illustrate and evaluate our method, we study a query
case about the event “SARS” happened in 2003. Related works are studied in section 6.
We conclude the paper and introduce potential future works in section 7.

2 Problem Formulation

According to [9] and [17], an event is something that happens at some specific time and
place. In reality, events often are reported by some documents, such as news articles
in web pages. Formally, for an event a, there is a set of documents talking about a,
and such a set of documents, denoted as Ra = {da1 , da2 , · · · , dan}, is named as related
document set of a. Each document is about one event and an event can be reported by
multiple documents. A document introducing an event includes the start time, place(s)
and content of the event. Thus, for each document dax, there should be a timestamp τda

x
,

a set of place names qda
x
= {tx,1, · · · , tx,n} and a set of terms hda

x
= {fx,1, · · · , fx,n}

about the event’s content. We define an event as follows.

Definition 1. An event a is a tuple (La, Pa, Fa) where La is the life cycle of a, Pa is
the set of places where a happens, and Fa is the set of features describing a.

The life cycle La of event a is the period (time interval) from the beginning time Sta to
the end time Eta of a, i.e., La = [Sta, Eta], where Sta is the earliest timestamp among
all the timestamps of related documents of a, and Eta is the latest timestamp among all
that of related documents of a. The place set Pa of an event a is a set of terms denoted
by Pa where Pa = {ta,1, ta,2, · · · , ta,m} and each ta,x is a term which represents a
place. For an event, it may consist of several component events, i.e., episodes.

For example, for the event of SARS epidemic which happened in 2002 among some
37 countries around the world, the life cycle of this event is from November 2002 to
May 2006. The place of the event includes China, Canada, Singapore and so on. There
are many reported news on the event on the Web. To describe the event, we can extract
from the set of documents the set Fa of features (i.e., keywords), such as “SARS”, “flu-
like”, “fever” and so on. The event of SARS epidemic consists of several component
events such as “Experts find disease infect and SARS outbreaks”, “China informs and
cooperates with WHO”, “SARS has great impact on economy” and so on.

Definition 2. For each event a, it contains a set of component events denoted as CEa =
{a1, a2, · · · , an} where 1 ≤ n, ax is a component event of a and Ra = Ra1 ∪ Ra2 ∪
· · · ∪Ran .

Definition 3. Among all the component events of an event a, the seminal component
event of a is the one whose start time is the same as that of a, i.e., the start time of the
seminal component event is no later than those of the other component events of a.

Definition 4. Among all the component events of an event a, the ending component
event of a is the one whose end time is as the same as that of a, i.e., the end time of the
ending component event is no earlier than those of the other component events of a.
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For an event a and its component events, it is obvious that Sta = Minn
i=1(Stai),

Eta = Maxn
i=1(Etai), Pa = Pa1 ∪Pa2 ∪ · · · ∪Pan and Fa = Ra1 ∪Fa2 ∪ · · · ∪Fan .

We observe that there is a temporal requirement for two events to have a dependence
relationship between them, as follows.

Observation 1. If there is a dependence relationship from event a to event b, i.e., a
is dependent on b, then there is a temporal relationship between a and b such that
Stb <= Sta, i.e., b happens earlier than or at the same time as a.

Definition 5. A Temporal Event Map is a weighted directed graph, denoted byTEM =
(N,E,Wd), which consists of events as nodes, relations as edges, and weights on the
edges as strength degrees of dependence relationships. In particular, each vertex v ∈ N
is an event, each edge ex ∈ E is a dependence relationship between two events, and
wy ∈ Wd is a weight which indicates the strength degree of a dependence relationship.

An example of temporal event map of the event “Toyota 2009-2010 vehicle recalls” is
shown in Fig. 1.1

We formulate the problem of temporal event search as follows. The input of the
search problem is a tuple (It, Ip, If ) where It is a time interval, Ip is a set of terms of
places, and If is a set of keywords about an event content. The event which is relevant to
(corresponding to) the input is named as the target event, i.e., the event happens in the
places in Ip during It, and the feature set of the target event contains If . The output of
the search problem is a TEM constituting all the component events of the target event.

The problem of temporal event search can thus be regarded as a function φ:

φ : I ×D → T ′

where I is the set of input, D is the set of documents and T ′ is the set of TEMs.
For the example of Fig. 1, we may have the following input:

It = [1/11/2009, 23/2/2010]; Ip = (USA); If = (Toyota, recall)

then the temporal event map for such a search task is the one shown in Figure 1.

3 Event Relationship Analysis

In this section, we propose a framework of event relationship analysis to support tempo-
ral event search. In our method, we first identify a set of related documents for the target
event and extract component events from the related documents. We conduct content de-
pendence (CD) and event reference (ER) relationship analysis to identify dependence
between events.2

1 We use the width of a line to indicate the strength of a dependence relationship.
2 In the rest of the paper, we use the term “event” to denote “component event” for convenience

wherever there is no ambiguity.



184 Y. Cai et al.

3.1 Preliminaries

A user query can be considered as search requirements corresponding to a target event
which satisfies all the needs from the user. The related document set of the target event
can be obtained by a function θ:

θ : I ×D → R

where I is the set of input,D is the set of documents and R is the set of related document
sets.

In general, we consider (It, Ip, If ) as three kinds of (not all are compulsory) user
search requirements. In some cases, users may only input one or two of the (It, Ip, If ).
For such special cases, we only take the user input requirements into consideration, i.e.,
subset of (It, Ip, If ).

For each target event a corresponding to an input I and its related document set Ra,
we can detect several component events from Ra. All component events of a should
happen during It, and their places are contained in Ip and features contained in If . The
component event detection of a target event is a function ϕ:

ϕ : R → E

where R is the set of related documents and E is the set of the component events.
For the problem of event detection, there have been many existing works published

such as [1] [12] [14]. In this paper, we adopt the topic-model based method [14] as the
preferred method to detect events.

3.2 Content Dependence Analysis

In analyzing content dependence (CD) relationships for temporal event search, we no-
tice that features of an event a may have various degrees of importance in representing
a. Some features are more representative than others for the event. An event can be
represented by a feature vector, denoted by

−→
F a, which is a set of feature:value pairs.

−→
F a = (fa,1 : va,1, fa,2 : va,2, · · · , fa,n : va,n), ∀i, 0 < va,i ≤ 1

where fa,i is a feature and va,i is the importance degree of fa,i for the event a. Hence,
va,i is the NTF-IEF (normalized term frequency-inverse event frequency) value of fa,i,
i.e.,

va,i =
tfa,i

MAXu(tfa,u)
log

N

efi
(1)

where tfa,i is the frequency of term i in Ra, N is the total number of component
events, MAXu(tfa,u) is the maximal value among all tfa,u and efi is the number of
component events containing term fa,i.

As mentioned before, previous works use content similarity (most works adopt co-
sine similarity) to identify dependence relationships between events. However, two
events may have some keywords which are dependent but not identical, which causes
the previous works to be inadequate in measuring how relevant these two events are.
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According to [10], variables (i.e., keywords) which are not statistically independent
suggest the existence of some functional relation between them, and mutual informa-
tion provides a general measure of dependencies between variables. Thus, we adopt
mutual information to measure the dependence between features, and further use an
aggregation of all mutual information between the feature sets in two events to measure
the content dependence degree between them.

Formally, for two events a and b, the content dependence degree, denoted byCd(a, b),
is an aggregation of all mutual information between all features in

−→
F a and that in

−→
F b,

as follows:

Cd(a, b) =

∑
fx∈

−→
F a

∑
fy∈

−→
F b

I(fx, fy)

|−→F a||
−→
F b|

(2)

where |−→F a| (|−→F b|) is the cardinality of the set
−→
F a (

−→
F b), and I(fx, fy) is the depen-

dence degree between features fx and fy, measured as follows:

I(fx, fy) = P (fx, fy) log
P (fx, fy)

P (fx)P (fy)
(3)

where P (fx, fy) is the probability of fx and fy co-occurring in the same document
among all the related documents, and P (fx) is the probability of fx occurring in a doc-
ument among all documents, and P (fy) is the probability of fy occurring in a document
among all the documents.

By measuring all mutual information between two component events, we can obtain
a component content dependence matrix of an event a, denoted as M c

a , as follows:

M c
a =

⎧⎨⎩
Cd(1, 1), Cd(1, 2), · · · , Cd(1,m)

· · ·
Cd(n, 1), Cd(n, 2), · · · , Cd(n,m)

⎫⎬⎭
where each entry is a content dependence degree between two component events.

3.3 Event Reference Analysis

Although content dependence measurement can address the limitation of content sim-
ilarity measurement, it may still miss some dependence relationships between events.
In particular, the existence of a dependence relationship between two events does not
necessarily mean that there exists a content dependence relationship between them. In
many cases, although the contents of two events are very different and even of different
topics, people may still regard that there is a dependence relationship between them. For
instance, “Experts find disease infect and SARS outbreaks” has an impact on “SARS
has great impact on economy” and “SARS has a great impact on Tourism”. The latter
two events are dependent on the first one even though their content dependence degree
is indeed very small.

According to the studies of Journalism [11], when authors of news articles about
an event a find and regard that there exists a dependence relationship between a and b
(e.g., b triggers the happening of a, or a is evolved from b and so on), their articles may
actually refer event b. This is in line with our observation on our collected data set. For
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instance, some news articles about the event “Toyota recall due to safety problems from
2009 to 2010” refer to the event “NHTSA conduct investigations for Toyota recall”.
Such an explicit reference relationship made by authors in their news articles reflect
their viewpoints and consideration on the inter-event relationships [11]. Therefore, we
may regard such event reference relationships as more meaningful and reliable than
content dependence relationships, and ER relationship analysis provides a way to dis-
cover those event dependence relationships missed by CD analysis and obtain a more
complete temporal event map (TEM).

We can also observe that when a news article of an event c refers to another event a,
there are usually some phrases that identify event a in the documents of event c, and we
name such phrases as core features of a. The definitions of core feature set of an event
is defined below.

Definition 6. The core feature set of an event a, denoted by F c
a is a set of features

which are salient in the event, distinguishable from those of other events, and jointly
can identify the event.

For two events a and b, if there exists a related document of b, denoted as dbx, such
that ∃fi ∈ F c

a , fi ∈ dbx, and τ(dbx) > Sta (i.e., a happens earlier than b), then we say
there is a reference relationship from b to a, i.e., a is a reference of b or b refers to
a. Such a reference relationship is a fuzzy relationship, and the more core features of a
are mentioned in b, the more strength degree of the relationship. For example, for the
event “US congressional hearings hold for Toyota recall” denoted by a and the event
“Toyota’s president to testify in US congressional hearings” denoted by b, we find that
the core feature set of event a is F c

a = {congress, hearing, safety} while the core
feature set of b is F c

b = {Akio, T oyoda, testify, apologize}. For event a, some of
its core features also exist in some documents (news articles) of b, (e.g., “congress”,
“hearing” and “safety” all appear in the news titled as “Toyota’s president to testify
before Congress” on Feb 19, 2010), so we say b refers to a.

The strength degree of a reference relationship from b to a is determined by a func-
tion Cr(a, b) which is to be defined below. For event b referring to event a, it should
follow the temporal restriction of Observation 1. For two events a and b, in order to find
out whether b refers to a, we need to discover the core feature set of a first and then
check whether the core features of a exist in the related documents of b.

According to our observation, the core feature set of an event has the following
properties.

Property 1. The core features of an event a are the most salient and representative fea-
tures of a, i.e., the features appear in the related documents of a with a high frequency.

Property 2. The core features of an event a are distinguishable from those of other
events, i.e., the core features should facilitate us in identifying event a from all other
events easily.

Based on the above properties, we propose the following function to select core
features of an event a:

u(fi, a) = p(fi|a) · p(a|fi) (4)
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where p(fi|a) is the probability of feature fi to exist in the related documents of event
a, and p(a|fi) is the probability of a document (in which fi is a feature) being on event
a. Note that p(fi|a) and p(a|fi) reflect the properties 1 and 2 respectively.

We select top-k core features based on equation 4. For two events a and b, the more
related documents of b refer to more core features of a, the stronger is the reference
relation from b to a. We propose a function to measure the strength degree of a reference
relation from a to b as follows:

Cr(a, b) =

∑Nb

i=0 M
a
b,i

|F c
a |

× 1

Nb
, ∀Ma

b,i > 1 (5)

where Nb is the number of related documents of b, Ma
b,i is the number of core features

of a existing in the document dbi , |F c
a | is the cardinality of F c

a . Note that there is a re-
striction for Ma

b,i in Cr(a, b) where Ma
b,i > 1, highlighting that a reference relationship

from b to a should refer more than one core feature of a.
For the reason that the values of Cr(a, b) and Cr(b, a) may be greater than zero,

a could refer to b and also b could refer to a, and the strength degrees of reference
relationship from a to b could be different with that from b to a. An event can be refereed
by many other events. Besides, one event can also refer to many other events.

By measuring all component event reference degree between any two events, we can
obtain an component event reference matrix of a target event a, denoted by M r

a , as
follows:

M r
a =

⎧⎨⎩
Cr(1, 1), Cr(1, 2), · · · , Cr(1,m)

· · ·
Cr(n, 1), Cr(n, 2), · · · , Cr(n,m)

⎫⎬⎭
Each entry is a reference degree between two events.

3.4 Temporal Event Map Construction

We adopt content dependence (CD) analysis and event reference (ER) analysis to iden-
tify event dependence relationships. In cases when users are only interested in the ER
relationships between events, we can do a projection on the TEM and obtain an event
reference TEM, which is a sub-graph of the entire TEM. Similarly, if users are only
interested in the CD relationships between events, we also can do a projection on the
TEM and obtain a content dependence TEM. Besides, it is easy to show all the CD, ER
and event dependence relationships in a TEM. While there are many interesting issues
related to the visualization of TEM, we omit further discussion here since are our focus
in this paper is on event relationship analysis.

4 Evaluation

In this section, we conduct experiments on a real data set to evaluate our approach by
comparing it with a number of baseline methods.
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4.1 Experiment Setting

To evaluate our method for temporal event search, we collect 5063 English news articles
(i.e., web page documents of news) from some mainstream news websites such as CNN
News and BBC News. We select ten queries about major events to test our method,
such as “Toyota 2009-2010 vehicle recalls”, “2010 Copiap mining accident”, “SARS in
2003” and so on. Among these, the event “SARS in 2003” contains the most number of
related news articles (i.e., 231 articles), and the event “Christchurch Earthquake in 2010
in New Zealand” contains the fewest number of related news articles (i.e., 39 articles).
According to our observation on the data set, when an event a refers to another event
b, the number of referred core features of b is often around five.3 Thus, we select top-5
core features to measure event reference relationships in our experiment.

To compare with our method, we adopt three baseline methods. The first one is the
state-of-the-art method of discovering event evolution relationship proposed by Yang
[17], which is similar to the method in [2] and we denote it as EEG. The second
baseline, denoted as CDM , only considers content dependence analysis and does not
use event reference analysis to judge event dependence relationships. Different from
CDM , the third one, denoted as ERM , only considers event reference analysis instead
of using content dependence analysis to judge event dependence relationships.

We have invited five human subjects to annotate the dependence relationships be-
tween events. All the annotated relationships are combined synthetically to obtain a set
of relationships, i.e., the union of all the relationships annotated. Such a set of relation-
ships given by the annotators is considered as a standard answer set (ground truth) of
event dependence relationships. For the reason that different people may have different
viewpoints on the event relationships due to, e.g., their knowledge and background, not
every annotator came up with the same set of dependence relationships. Therefore, the
standard answer set is an aggregation of the annotations given by all the annotators.

For the evaluation we use Precision, Recall and F − measure as the metrics.
We denote the set of event dependent relationships (i.e., edges in a TEM) annotated by
annotators as RA, and the set of event dependence relationships discovered by machine
as RM . The metrics are defined as follows:

Precision =
RA ∩RM

RM
;Recall =

RA ∩RM

RA

F −measure =
2× Precision×Recall

Precision+Recall

4.2 Experiment Results

In constructing TEM , there is a parameter α which is used to prune the “weak” event
dependency relationships. So first, we test different values of α to evaluate the effect of
α on Precision, Recall and F-measure for setting the best value of parameter α for the
following experiment. In our testing, we use two query events, one is “SARS in 2003”

3 Such an observation is only based on our collected data set. It could be different for other data
sets.
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Fig. 2. The effect of α on Precision, Re-
call and F-measure

Fig. 3. Our method vs. EEG

Fig. 4. Our method vs. CDM Fig. 5. Our method vs. ERM

which contains the most number of related news articles and the other is “Christchurch
Earthquake in 2010 in New Zealand” which contains the fewest number of related news
articles. Figure 2 shows the effect of α on Precision, Recall and F-measure. Accord-
ing to Fig. 2, we find that as α increases, the Precision and F-measure increase while
Recall decreases. The reason is that when the value α is small, there are many event de-
pendence relationships whose dependence degree is great than α (but the dependence
relationship is still actually “weak”), so the Recall is high and the Precision is low.
As α increases, more and more event dependence relationships of which dependence
degree is lower than α are pruned, so the Recall becomes lower and the Precision
becomes higher. When α = 0.65, we obtain the highest value of F-measure. Thus, we
set α = 0.65 for all the test queries subsequently.

After setting the value of α, we conduct all test queries and average the results of
them on different metrics. Figures 3-5 show the comparison of our method with all
the three baseline methods on Precision, Recall and F − measure. According to
Figures 3-5, it is obvious that our method outperforms all the baseline methods on
Precision,Recall and F−measure. ThePrecision andRecall values of our method
are around 0.8, meaning that not only most event dependence relationships discovered
by our method are correct, but also our method can discover more event dependence
relationships than the baselines. Our method’s F − measure score is also around 0.8
since it is a combination of Precision and Recall. Note that CDM outperformsEEG
a little on all the metrics, indicating that using mutual information to measure feature
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Fig. 6. The Result of EEG Fig. 7. The Result of Anno-
tators

Fig. 8. The Result of Our
Method

dependence is better than just matching keyword similarity (as done by previous works).
ERM outperforms EEG and CDM on all three metrics. It indicates that using event
reference analysis (i.e., ERM ) to identify event dependence relationships is more ef-
fective than using content dependence relationship analysis (i.e., CDM ) and content
similarity analysis (i.e., EEG). Besides, it is quite interesting to see that the Recall of
CDM is greater than that of ERM , while both of them are smaller than that of our
method. This means that the event dependence relationships identified by CDM and
ERM are indeed different and complementary, and our method being a combination
of CDM and ERM has the strength of both methods’. In other words, taking both
content dependence and event reference analysis into consideration in identifying event
dependence relationships can perform better than taking just one of these.

4.3 Case Study

To illustrate the performance of our proposed method more clearly, we further show a
specific search case on the query event “SARS happened from 1/3/2003 to 30/6/2003
around the world” denoted by QSARS . The test query is Ip = (China),It =
[1/3/2003, 30/6/2003], If = (SARS).

Table 1. Component Events for the query about SARS event from 1/3/2003 to 30/6/2003

Component Event Summary
1 SARS has great impact on Tourism
2 SARS cases are reported and updated regularly to reflect the disease seriousness
3 Experts treat patients with medicine in hospital
4 SARS has great impact on transportation especially airline
5 Experts find disease infect and SARS outbreaks
6 SARS has great impact on economy
7 Other countries donate and offer help for China for SARS
8 Scientists’ find coronavirus and conduct animal test for vaccine
9 China informs and cooperates with WHO on fighting SARS

10 China makes effort on prevent disease spread
11 Beijing has made SARS under control
12 Quarantine probable cases and close schools for disinfecting
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Table 2. Comparison on discovered event relationships of our method and EEG for QSARS

Correct Missed Incorrect New Total
Our method 20 7 2 2 24

EEG 10 17 2 0 12

Table 1 shows all the component events which are related to QSARS . Table 2 shows
the statistics of the discovered event relationships by our method and EEG based on
the results of human annotators for this case. Figures 6-8 show the relationship graph
(or TEM) obtained by EEG method, given by the human annotators and our method
for QSARS , respectively. Our method can find more and miss less correct inter-event
relationships. In addition, our method can discover not only the inter-event relationships
but also the strength degrees of such relationships. More interestingly, our method can
find some new relationships which were not found byEEG and even human annotators.
Such new relationships are confirmed and approved by the annotators as meaningful
ones (e.g., the relationship from event 5 to event 2 and the relationship from event 3 to
event 2).

5 Background and Related Works

There are many works about processing events which may include news event or system
events, although most of these work focus on news event.

To the best of our knowledge, there is no work on temporal event search before. A
related work is done by Jin et al. [6] who present a temporal search engine supporting
temporal content retrieval for Web pages called TISE. Their work supports Web pages
search with temporal information embedded in Web pages, and the search relies on a
unified temporal ontology of Web pages. TISE handles Web pages search only, and it
cannot handle event search nor discover the event relationships.

Topic detecting and tracking (TDT) is a hot research topic related to our work. Given
a stream of constantly generated new documents, TDT groups documents of the same
topic together and tracks the topic to find all subsequent documents. There are several
techniques on detecting news topics and tracking news articles for a new topic. For
instance, Allan et al. [1] define temporal summaries of news stories and propose meth-
ods for constructing temporal summaries. Smith [12] explores detecting and browsing
events from unstructured text. Some techniques are proposed to detect particular kinds
of events. For example, Fisichella et al. [7] propose a game-changing approach to detect
public health events in an unsupervised manner. Modeling and discovering relationships
between events as generally out of the scope of current TDT research.

Mei and Zhai [8] study a particular task of discovering and summarizing the evo-
lutionary patterns of themes in a text stream. A theme in an interval may be part of
an event or a combination of several events that occur in the interval. Their work does
not however capture the interrelationships of major events. Fung et al. [4] propose an
algorithm named Time Driven Documents-partition to construct an event hierarchy in a
text corpus based on a user query.



192 Y. Cai et al.

Some other works focus on discovering stories from documents and representing the
content of stories by graphs. For example, Subasic et al. [13] investigate the problem
of discovering stories. Ishii et al. [5] classify extracted sentences to define some simple
language patterns in Japanese so as to extract causal relations, but their work cannot
handle cases which are not defined in their patterns.

An event evolution pattern discovery technique is proposed by Yang et al. in [16].
It identifies event episodes together with their temporal relationships. They consider
temporal relationships instead of evolution relationships. Although the temporal rela-
tionships can help organize event episodes in sequences according to their temporal
order, they do not necessarily reflect evolution paths between events. An extended work
of them occurs in [15]. Yang et al. [17] define the event evolution relationships between
events and propose a way to measure the event evolution relationships. In their work,
identifying an event evolution relationship between two events depends on the simi-
larity of the features of the two events. Based on a small number of documents and
events in a news topic, Nallapati et al. [9] define the concept of event threading. Their
definition of event threading is a content similarity relationship from previous event to
a later event. The event threading is organized as a tree structure rather than a graph.
In order to identify event threading, they employ a simple similarity measure between
documents to cluster documents into events and the average document similarity to es-
timate the content dependencies between events. Feng and Allan [2] extend Nallapati’s
work to passage threading by breaking each news story into finer granules, and propose
a model called incident threading in [3].

6 Conclusions and Future Works

In this paper, we have defined three kinds of event relationships which are temporal
relationship, content dependence relationship and event reference relationship, and have
applied them to measure the degree of inter-dependencies between component events
to support temporal event search. We have also formalized the problem of event search
and proposed a framework to search events according to user queries. Experiments on
a real data set show that our proposed method outperforms the baseline methods, and it
can discover some new relationships missed by previous methods and sometimes even
human annotators.

Admittedly, several possible future extensions can be made to our work. In our cur-
rent method, only top-5 core features are selected for event reference analysis over the
collected data set. How to choose the “right” number of core features for event refer-
ence analysis automatically for different data sets is an open issue for further study.
Another potential extension is to implement a visualization tool with a sophisticated
user interface based on our current method.
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Abstract. Label propagation has been studied for many years, starting
from a set of nodes with labels and then propagating to those without
labels. In social networks, building complete user profiles like interests
and affiliations contributes to the systems like link prediction, personal-
ized feeding, etc. Since the labels for each user are mostly not filled, we
often employ some people to label these users. And therefore, the cost
of human labeling is high if the data set is large. To reduce the expense,
we need to select the optimal data set for labeling, which produces the
best propagation result.

In this paper, we proposed two algorithms for the selection of the opti-
mal data set for labeling, which is the greedy and greedyMax algorithms
according to different user input. We select the data set according to
two scenarios, which are 1) finding top-K nodes for labeling and then
propagating as much nodes as possible, and 2) finding a minimal set of
nodes for labeling and then propagating the whole network with at least
one label. Furthermore, we analyze the network structure that affects
the selection and propagation results. Our algorithms are suitable for
most propagation algorithms. In the experiment part, we evaluate our
algorithms based on 500 networks extracted from the film-actor table in
freebase according to the two different scenarios. The performance in-
cluding input percentage, time cost, precision and f1-score were present
in the results. And from the results, the greedyMax could achieve higher
performance with a balance of precision and time cost than the greedy
algorithm. In addition, our algorithm could be adaptive to the user input
in a quick response.

1 Introduction

The problem of label propagation has in recent years attracted a great deal of
research attention [12, 17, 4], especially in the setting of social networks where an
important application of it is to better understand the elements of the network,
such as user profiles [8]. As user profiles are often represented by node labels
denoting their interests, affiliations, occupations, etc, it is therefore desirable
to know the correct labels for as many nodes as possible. However, in real-life
social network applications, complete label information of the entire network is
rare due to users’ privacy concern and unwillingness to supply the information.
Consequently, label propagation has been widely used to derive from the known
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labels of a subset of nodes the unknown ones of the other nodes for the rest of
the network [1]. The underlying assumption is the well-observed phenomenon of
“homophily” in social networks, i.e., users with strong social connections tend
to share similar social attributes.

To trigger the label propagation process over a social network, we need to
first acquire the correct labels for an initial set of nodes, which we called a seed
set. As the acquisition cost of the labels is usually high, e.g., by human labeling
and verification, the goal for label propagation in these settings is usually to
find as small a seed set as possible such that the knowledge of these node labels
would maximize the label propagation. A seemingly similar problem is the classic
influence maximization problem, the goal of which is to find as small a set of
nodes as possible to initiate certain adoption (e.g., products, innovation, etc.)
such that it will trigger the maximum cascade, which has been the focus of many
influential research works including Kleinberg’s [6].

However, it is important to note the critical difference between our problem
and the influence maximization problem. Our label propagation problem has an
extra dimension of complexity as a result of the uncertainty of the labels assigned
to the seed set. In the influence maximization problem, the labels to be assigned
to the seed set are mainly for status indication which are known a priori — if
a node is chosen as a seed to initiate the adoption, its label is set as “active”,
otherwise, its label remains as “inactive”. The challenge is to find the right set to
assign the initial “active” labels to maximize the cascade. On the other hand, in
our label propagation problem, labels represent categorical attributes the values
of which remain undecided until specified by users, i.e., for each node in the seed
set, technically, users can specify any chosen label from the label universe. The
challenge in identifying the right set is not only to study the network structure
but to consider all possibilities of label assignment as well.

This important difference between the two problems also suggests that, in our
problem setting, a dynamic model of seed set computation based on step-wise
user input could be more suitable. Instead of computing the seed set all at once,
we in fact should compute the seed set one node at a time based on user input
for the next label. As shown in Example 1, different label revealed at each step
could lead to drastically different propagation result.

Example 1. In Figure 1, suppose in Step 1 the network is initialized with only
node 4 labeled as “A” and the propagation method is the majority voting al-
gorithm such that each node gets the label of the majority of its neighbors.
Depending on which node and its label is known in Step 2, we would get entirely
different final propagation result. If in Step 2 we know node 6 with label “B”,
the propagation can not proceed, and if node 5 is further known with the same
label “B”, the result will be as shown in the right-upper network. On the other
hand, if in Step 2 node 1 is revealed with label “A”, the network will be fully
propagated with label “A”. Yet, if in Step 2 node 1 is labeled as “B” instead,
then more nodes’ labels need to be known in order to continue the propagation.

Therefore, in this paper, we propose the dynamic label propagation problem,
which is to find, incrementally based on user input, the optimal seed set to
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Fig. 1. Examples of different propagation results by dynamic label input

propagate the entire network. A closely related problem is to find the optimal
k-size seed set where k is a user-specified parameter, e.g., budget constraint. We
show that both problems are NP-hard, and present a greedy algorithm which
gives good empirical results. We propose four evaluation criteria and compared
different propagation models. To explore the connection between the actual label
distribution and the network structure properties, we show the propagation re-
sults for some widely-used network measures including density, modularity and
single node number. Our empirical results on a real-world data set demonstrate
the effectiveness and efficiency of our proposed greedy algorithm.

The rest of the paper is organized as follows. We first introduce some popular
propagation algorithms and the relation to our algorithm of finding the optimal
given label set in Section 2. And in Section 3 we provide the details of our
algorithms. Some network structure analysis that will affect the selection and
propagation are shown in Section 4. And we evaluate the algorithms in Section
5. The related work is introduced in Section 6 and finally our work is concluded
in Section 7.

2 Problem Formulation

2.1 Problem Definition

We denote a labeled network as G = (V,E, L), where V , E and L represent
the non-empty sets of nodes, edges, labels respectively. Given a labeled network
G = (V,E, L), there exists an Oracle function OG : V → L such that given
a query of any node v ∈ V , OG(v) ∈ L, which simulates user input on the
node labels. We assume initially no labels are know for any node of G, and each
node could obtain a label of L during the label propagation, which could get
updated during the process. However, we also assume that labels obtained from
the Oracle will never change.
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We begin by defining the notion of a propagation scheme as follows. The idea
is that, given a set of nodes whose labels are known initially, a propagation
scheme defines the set of the nodes each of which would obtain a label by the
end of the label propagation process. The propagation scheme is defined as a
function to achieve the greatest generality since the exact choice of the propa-
gation algorithm would depend on the nature of the application. We leave the
detailed discussion of the propagation scheme to subsequent parts of the paper.

Definition 1. [Propagation Scheme] Given a labeled network G = (V,E, L),
an Oracle function OG and a S ⊆ V such that for each v ∈ S, OG(v) is known,
a propagation scheme is a function P : 2V → 2V such that P (S) ⊆ V and for
each v ∈ P (S), v would obtain a label by the end of the label propagation process.

The question of the greatest interest to users is the Minimum Label Cover (MLC)
problem which is to find the smallest node set to obtain labels initially such that
the subsequent propagation could cover the whole network, i.e., assign labels for
every node. A closely related problem is the K-set Label Cover (KLC) problem
in which we are interested in how much of the network we can at most cover if
we know the labels of K nodes, which is useful for applications in which a budget
is given to acquire the initial labels. These two problems are related in that a
solution to the KLC problem would also give a solution to the MLC problem.
Notice that in both problem settings, the Oracle to reveal the node labels is
not available to the algorithm to find the seed set. In contrast, in our dynamic
problem definitions later, the Oracle is available at each step to answer label
queries.

Definition 2. [Minimum Label Cover (MLC)] Given a labeled network
G = (V,E, L) and a propagation scheme P (.), the Minimum Label Cover prob-
lem is to find a node set S of minimum cardinality, such that the label propagation
as defined by P (.) would cover the entire network, i.e., S = argmin

|S|
{S|P (S) =

V }.

Definition 3. [K-set Label Cover (KLC)] Given a labeled network G =
(V,E, L), a propagation scheme P (.) and a positive integer K, the K-set Label
Cover problem is to find a node set SK of cardinality K such that the label prop-
agation as defined by P (.) would achieve the maximum coverage of the network,
i.e., SK = argmax

|P (S)|
{S||S| = K}.

We are now ready to define our dynamic label propagation problem, which es-
sentially is to solve MLC and KLC incrementally given user input at each step.

Definition 4. [Dynamic Minimum Label Cover (DMLC)] Given a la-
beled network G = (V,E, L) , an Oracle function OG and a propagation scheme
P (.), the Dynamic Minimum Label Cover problem is to find a node sequence of
minimum length, S = (v1, v2, . . . , v|S|), such that the label propagation as defined
by P (.) would cover the entire network, i.e., S = argmin|S|{S|P (S) = V }.
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Definition 5. [Dynamic K-set Label Cover (DKLC)] Given a labeled net-
work G = (V,E, L) , an Oracle function OG, a propagation scheme P (.) and a
positive integer K, the Dynamic K-set Label Cover problem is to find a node
sequence of length K, S = (v1, v2, . . . , vK), such that the label propagation
as defined by P (.) would achieve the maximum coverage of the network, i.e.,
SK = argmax

|P (S)|
{S||S| = K}.

2.2 Complexity Analysis

In this section we give some complexity analysis of the varied problem settings,
mostly based on known hardness results with some quite straightforward problem
reductions. The detailed proofs are omitted due to space limit. First it is not
hard to see the NP-hardness of the MLC problem as a result of the following
theorem from [6].

Theorem 1. [6] The influence maximaization problem is NP-hard for the Lin-
ear Threshold model.

In our definition of the MLC problem, if we set the propagation scheme to be
the function which corresponds to the Linear Threshold model as described in
[6], and our label set L to be the set containing only a single label, then the
status of a node whether or not it has acquired this label would map exactly
to the status of being “active” or “inactive” as in the Linear Threshold model
in [6]. Therefore, the influence maximization problem is indeed a sub-problem
of the MLC problem. Due to Theorem 1, we have the following theorem for the
MLC problem.

Theorem 2. The MLC problem is NP-hard.

As we can solve the MLC problem in polynomial time by systematically try a
sequence of increasing values of K for the corresponding KLC problem, Theorem
2 implies that the KLC problem is also NP-hard.

Corollary 1. The KLC problem is NP-hard.

By similar argument, if we set our label set L to be the set containing only a
single label to match exactly the status of a node being “active” or “inactive”
as in the Linear Threshold model in [6], the having the Oracle available will not
lend additional information as in this case the label, which is actually status,
is known a priori. As such, the static versions of the problem are actually sub-
problems of the dynamic versions. We therefore also have the following results
by similar argument.

Theorem 3. The DMLC problem is NP-hard.

Corollary 2. The DKLC problem is NP-hard.



Dynamic Label Propagation in Social Networks 199

Since both versions of the dynamic label propagation problems are NP-hard, we
resort to heuristic algorithms. In particular, we develop a greedy algorithm which
will be detailed in Section 3. In [6], it has been shown that such a greedy hill-
climbing algorithm would give an approximation to within a factor of (1−1/e−ε)
for Linear Threshold model. It is worth noting that in this paper we are not
limited to the Linear Threshold model, as we will discuss in the following. Un-
fortunately, the approximation bounds are not known for the greedy algorithm
in models with other propagation methods, e.g., K-nearest neighbor algorithm,
which we would like to explore in our future study.

2.3 Propagation Models

We present a discussion of some widely-used propagation models focusing on
their applicability in our problem setting.

K-nearest Neighbor Algorithm. K-nearest neighbor algorithm (KNN) is a
method for classification, while in label propagation, it is also widely used. The
idea of KNN is that the node will be labeled as the same label as his nearest
top-K nodes’ labels. The distance of two nodes could be measured by different
factors like SimRank [5], which measures the structural-context similarity. In
this case, the selection prefers the nodes that are more similar to others.

Linear Threshold Model. Linear threshold model is widely used in informa-
tion diffusion. Given a set of active node, and a threshold θ for each node, at
each step, an inactive node will become active if the sum of the weights of the
edges with active neighbors exceeds the threshold θ. Similar to this process, dur-
ing the label propagation, a node will accept the label if the sum of the weights
of the edges with neighbors by this label exceeds the threshold θ. In the linear
threshold model, the selection prefers the nodes with higher degree and higher
edge weights. We call it majority voting in the following sections to differentiate
the propagation with information diffusion.

Independence Cascading Model. Independence cascading model is another
widely used model in information diffusion and was also deeply discussed in [6]
along with linear threshold model. When a node v becomes active in step t, it
is given a single chance to activate each currently inactive neighbor w with a
predefined probability. In addition, if v succeeds, then w will become active in
step t+1; but whether or not v succeeds, it cannot make any further attempts to
activate w in subsequent rounds. Obviously, in the label propagation scenario,
node v should be able to propagate its labels out at any steps rather than only
once. And therefore, this model is not suitable for label propagation.

Supervised Learning Algorithm. Supervised learning algorithms use the
nodes with existing labels to train the classifier and then propagate to the un-
labeled nodes, like Support Vector Machine(SVM) and Hidden Markov Model.
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These algorithms need a certain number of labeled nodes as training dataset to
train the model first. However, in our case, the labeling of the nodes is unknown
and need to be adaptive to the user input in a quick response, and thus the
supervised learning algorithms are not quite suitable.

3 Seed Node Detection Algorithm

3.1 Design Ideas

The complexity of the formation of set S is O(2n−1), where n is vertex number.
In addition, the selection also needs to consider the situation of nodes with differ-
ent labels, which consequently will decrease the performance. So before propaga-
tion on the incomplete network, we need to employ some techniques to simplify
it first. And according to the different characteristics of various networks, the
techniques might be varies. Here, we introduce two approaches: pruning and
clustering.

Pruning. In social network like twitter, there are some users who have many
followers such as celebrities, film stars and politicians. We call these users as
“Hub users”. When the label stands for affiliations rather than interests, the
propagation will fail due to the existence of these “Hub users”. In addition, the
normal users who do not know each other off-line will decrease the performance
of propagating affiliations as well. And thus, we need to prune some users before
propagation under different circumstances.

Besides, in social network, some nodes are isolated due to a lot of reasons
such as they are puppets or new-comers. In this situation, the degree of these
nodes in a certain target network is usually small. If these spam nodes are
not essential in the specific scenario, then it could be pruned. Since different
pruning techniques will be employed according to different label propagation
scenarios, so the modification of the network will not affect the propagation
result significantly.

By pruning techniques, we could not only remove noise nodes to increase
precision, but also decrease the number of nodes in the network. And thus the
computation time according to O(2n − 1) will be reduced.

Clustering. To reduce the complexity, another step is to divide the network into
several subgraphs. However, a question is that if the network could be clustered
well and then the minimum set S will be inferred by randomly choose a node
in each cluster directly. Actually, the clustering approach of previous research
works cannot achieve best results, which consequently leads the wrong labeling
by choosing only one node. And therefore, the idea is that, before propagation,
we just do a roughly clustering on the network. For each cluster, we select a
minimum set S ′, and then union all the S ′. During the combination, the nodes
those could be propagated by the others in

⋃
S ′ will be deleted. Actually, the

selection after clustering might not be the optimal one compared to that on the
original network. However, to deal with large networks, it works when considering
time cost.
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Finding Set S. To select set S, there are two approaches. The first one is to give
the final result S directly in off-line mode, and the other one is to add the node
to S online. The main difference between these two selection processes is that
the second one is more dynamic. In the off-line modes, as long as the prediction
of one node’s label is different from the actual one, the selection according to
the propagation result might be changed, as shown in Example 1. And thus, it
needs to pre-compute all the situations for the nodes with different labels, which
is impractical for large and complex networks. On contrary to the off-line mode,
the online one picks up the nodes dynamically according to the user input. Once
a node’s label was given by users, the selection considers the current network
states. In another words, in each iteration i, the selection depends on the network
structure and the labels constructed in (i− 1)’s iteration rather than the initial
network state. The details of the algorithm will be shown as follows.

3.2 Algorithm

We propose a greedy algorithm to select the set S dynamically, which is called
G-DS. In each iteration, we pick up a node which maximizes the propagation cov-
erage. The measurement of the maximization considers different labels. Suppose
in the i’s iteration, the existing labels in the network are the set L = l1, l2, ..., lk.
And then, for each unknown vertex v, we calculate the increase coverage “Cov”
by v labeled as lx as

Cov(v, lx) =
#known label nodes

#total nodes
, (1)

and the probability “P” that v to be labeled as lx according to the current
network status in the (i − 1)’s iteration is

P (v, lx) =
#nodes labeled as lx in v′s neighbors

#v′s neighbors
, (2)

and finally sum up Cov ∗ P for each label to get the average coverage AvgCov
as Equation 3. In each iteration, we pick up the vertex with the largest AvgCov
score. The G-DS algorithm is shown in Algorithm 1.

Score = AvgCov(v) =
∑

lx∈L∪lnew

Cov(v, lx) ∗ P (v, lx). (3)

However, the performance of the G-DS algorithm is low. The time complexity is
O(n3) in the worst case, where n is the node number in the network. Each time
to choose a node, it needs to calculate the score for each unlabeled nodes with dif-
ferent existing labels. In order to improve the efficiency, we propose a semi-greedy
algorithm, calledGMax-DS.GMax-DS algorithm is similar to theG-DS algorithm.
However, instead of calculating theAvgCov score for all the situations, it only con-
siders the most possible label for node v according to the current network states as



202 J. Du, F. Zhu, and E.-P. Lim

Algorithm 1. G-DS Algorithm

Require: G = (V,E,L), k
Ensure: |K| == k or |K| == |V |
1: S = ∅, K = ∅, L = ∅
2: while |K| < k or |K| < |V | do
3: start the i’s iteration
4: for each v ∈ (V −K) do
5: for each lx ∈ L do
6: compute AvgCov(v) according to the (i− 1)’s iteration
7: end for
8: end for
9: S.add(max(AvgCov(v)))
10: input the label OG(v) for the node with the max(AvgCov(v)) score
11: propagate the network by S, update K
12: add l’ to L if L does not contain it
13: end while
14: return S

in Equation 4. For example, for vertex v, its neighbors have labels like l1,l2 and l3,
among which, l1 occurs most, and thus the score is calculated as Cov(v, l1).

Score = Cov(v, lmax) = Cov(v, lmax) ∗ Pmax. (4)

In the GMax-DS algorithm, we replace the score in Algorithm 1 line 6 with the
one in Equation 4. Since we just consider the label with the highest probability
during the calculation, the computation cost will be significantly decreased. And
the time complexity of GMax-DS in the worst case is O(n2).

4 Social Network Structure

In real cases, the label distribution is related to the network structures. And
therefore, the network structure will also affect the performance of our algorithm.
So in this section, we present some structure features in social networks which
might influence the performance of the selection. Actually, the performance is
related to the propagation method as well. And thus, all the comparisons are
based on the same propagation method. We randomly extracted 15 networks
from film-actor table in FreeBase1, and compared the performance based on two
simple propagation methods, KNN and majority voting algorithms. The results
based on different network attributes are shown in Figure 2.

4.1 Graph Density

If the graph is less dense, then it indicates that the nodes are not well connected
to others. Usually, the nodes with the same labels are more coherent. The prop-
agation methods propagate the labels to a node from its neighbors or similar

1 http://www.freebase.com/view/film/actor

http://www.freebase.com/view/film/actor
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(a) Input (%) on density (b) Input (%) on modularity

(c) Time cost on density (d) Time cost on modularity

(e) Precision on density (f) Precision on modularity

Fig. 2. Performance according to the G-DS and GMax-DS algorithms by KNN and
Majority voting propagation methods under different network structures (The differ-
ent methods are shown in different colors. Note that some networks are with similar
properties and thus their points meet on the graph.)

nodes. However, in a sparse network, it is hard to propagate the labels. As in
Figure 2.(a), (c) and (e) shows, the performance will arise linearly when the
density increases.

4.2 Modularity

Modularity[10] measures the strength of a division of a network into modules. Net-
works with high modularity have dense connections between the nodes within the
modules but sparse connections between nodes in different modules. So according
to the definition of modularity, a network with higher modularity requires less in-
put for labels. In addition, it is much easier for labels to be propagated within the
modules rather than across the modules, and therefore increases the precision. The
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results are shown in Figure 2.(b), (d) and (f), which indicates that the performance
will also arisewhenmodularity increases. (Themodularity score is calculatedbased
on [2].)

4.3 Single Node Number

Actually, according to the analysis of graph density and modularity, the tendency
of input percentage, time cost and precision shown in Figure 2 should be linearly.
However, there is some exceptions. We further looked into these networks and
found that these graphs include many one-degree nodes, which we also mentioned
in Section 3. And here, if we just propagate these nodes from the only neighbor
they connect to is unsafe. So here we will just pick up these one-degree nodes
and add them to the input set, which increases the input percentage and the
final precision in our result.

The reasons why we choose density and modularity as the attributes we fur-
ther looked into is that: 1) the network structures they present affect the prop-
agation performance directly, and 2) they are related to some other attributes
like average degree, cluster coefficient, etc. However, there might be some other
factors. And due to the limitation of the pages, we do not enumerate all the
attributes here.

5 Experiment

5.1 Dataset

We utilized the film-actor table from FreeBase. In a network, the nodes indicate
the actors and the edges stand for the relations that these two actors appeared
in the same film. The labels for the node are the films that the actor performed
within the network. We randomly extracted 500 networks from FreeBase for
different actors’ networks. The descriptions of the 500 networks are shown in
Table 1. Furthermore, in Figure 3, we present a propagation result for a 131-
vertex network from the set we select by GMax-DS and KNN, where the color
indicates different labels. The size of the seed set is 13 and the precision is around
84.2%, which strongly illustrates that our algorithm works in real case.

Table 1. Description for the 500 networks extracted from freebase film-actor table

Node Edge Density

#Minimum 2 81 0.94
#Medium 13 148 2.15
#Max 458 6937 6.21
#Average 24.50 377.51 1.84
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Fig. 3. Case study of the propagation result: the size of set S is 13, and the vertex
number is 131. The precision is 84.2%.

5.2 Experiment Setup

We compared the G-DS and the GMax-DS algorithm according to different
performance measurements. And based on the two scenarios we discussed in
section 1, the comparison also included the two scenarios, which are the selection
of the minimal set and the size-k set. The propagation algorithms we chose
here are KNN and majority voting. In addition, we also compare our algorithm
with the naive off-line one, which is to check all the possible seed sets and
pick up the best one. “TK” stands for the selection of top-k nodes while “A”
is to cover the whole network. And “GA” indicates the G-DS algorithm while
“GM” means the GMax-DS algorithm. In addition, “K” and “V” indicate the
propagation algorithms respectively, “K” is KNN and “V” is the majority voting
with different thresholds as 0.3 and 0.5.

5.3 Experiment Result

Time Cost. Since our algorithm needs to be adaptive to the user input, so
the time cost for the selection should be limited. Once the labels for a node are
decided, our algorithm needs to pick up another node into S for input quickly.
So, in our experiments, we evaluate the time cost in both scenarios. The result
is shown in Figure 4, and notice that the time is normalized to log. Mostly our
algorithm spent only less than 0.0001 seconds to select the data set for input. The
only one extreme case is larger than 1. Since G-DS algorithm need to consider all
the possible labels in the selection, it takes more time than GMax-DS algorithm
when the network is with more labels.

F1-score under KMLC. Considering the scenario of selecting the size-k set
for input, we evaluate the f1-score where k is equal to 3, 5 and 10. The result
is given in Figure 5. When using the KNN propagation algorithm, the f1-score
could be mostly beyond 90%. On contrary, by majority voting algorithms with
threshold as 0.3, the f1-score is around 70% in average. In addition, comparing
G-DS with GMax-DS algorithms, GMax-DS outperforms G-DS algorithm in
both propagation algorithms.
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Precision under MLC. To pick up the minimal set, we evaluate the preci-
sion score and the results are shown in Figure 6. The median number mostly
reaches 100% and the lower bound of the precision is around 80%, which indi-
cates that our selection performs well to ensure the precision independence of
the propagation algorithms.

Input Percentage under MLC. Actually, the precision is also related to
the input percentage. When the input percentage is higher, then the precision
will consequently be higher. So we further looked into the input percentage
by different propagation methods with G-DS and GMax-DS algorithms. The
evaluation result is illustrated in Figure 7. In general, the input percentage is
less than 40%, and the average value for KNN and majority voting is 10% and
30% respectively. Some values are even smaller as 1 or 3. In this experiment, we
could find that according to different propagation methods, the input percentage
could varies, which has already been discussed in Section 2. In addition, by KNN,
the input percentage is around 10% in average and the maximum value is around
25%. In most real cases, this number of input is acceptable.

Compared to the Naive Selection. Furthermore, we also compared our
GMax-DS algorithm to the force brute selection. The results are shown in Table
2. The propagation method here is KNN. We might see from the table that the
precision and the input percentage of our algorithms are mostly the same as
the naive one. However, considering the time cost, different with our algorithm,
the naive one will increase exponentially when the vertex number increases. On
contrary, ours grow linearly and is under control.
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Table 2. Performance comparison between naive algorithm and GMax-DS algorithm
based on the networks with different vertex number

5 10 15 19 20

Input percentage Naive 20% 10% 7% 5% 10%
GMax-DS 20% 10% 7% 5% 15%�

Precision Naive 100% 100% 100% 100% 100%
GMax-DS 100% 100% 100% 100% 95%�

Time cost(s) Naive 0.1 8 789 7882 18379
GMax-DS 0.015 0.124 0.063 0.156 0.327

From the above experiments, we might infer that the time cost of the GMax-
DS algorithm is less than that of the G-DS algorithm. And in general, the time
cost is limited to an acceptable value, which could be adaptive to the user input.
In addition, to find the size-k set S, even the size is quite small as 3, some
network could also be propagated well and achieve higher f1-score. However, it
would be better if k increases. To select the set S to cover the whole network,
the precision could achieve higher even the input percentage is small.

6 Related Work

To our knowledge, there is no work on dynamic label propagation in social net-
work. However, there is some researches in information diffusion to find the most
influential user sets, which is similar to our problem to some extents. Both are
propagated from neighbors. But the difference is that, in information diffusion,
the status of a node is usually active or in active[9]; while in label propagation,
the node might have multiple labels. In information diffusion, the status is not
intrinsic like retweeting the posts [11], while for label propagation, a node’s la-
bel like affiliation is intrinsic and will not changed according to different network
structures. And thus, the problem in label propagation is more complicated than
that in information diffusion.

In information diffusion, one of the most widely used algorithms to find the
most influential nodes is the greedy algorithm. David Kempe [6] proposed a
greedy algorithm to maximize the spreading of influence through social network
first. He proved that the optimization problem of selecting the most influential
nodes is NP-hard and provided the first provable approximation guarantees for
efficient algorithm. The algorithm utilized the submodular functions to ensure
finding the most influential nodes in each iteration. Later, based on Kempe’s
work, Yu Wang [13] proposed a new algorithm called Community-based Greedy
algorithm for mining top-K influential nodes to improve the efficiency in large
graphs.

In addition, there are some other attributes to measure the role of the nodes
in the network, like the degree centrality, closeness centrality, betweenness cen-
trality, eigenvector centrality, etc. [14] measured the node’s importance in the
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network respectively in different aspects. And some papers also compared dif-
ferent measures. For example, Kwak et al. [7] looked into three measurements -
number of followers, page-rank and number of retweets, and drew a conclusion
that the finding of influential nodes differs by different measurements. As well
as Kwak’s work, [3] and [15] also compared different measures of influence like
number of mentions, a modified page-rank accounting for topics, also found that
the ranking of the influential nodes depends on the influence measures. In our
problem of label propagation, the selection of the data set for input also differs
by utilizing different propagation methods. And our selection algorithm should
be adaptive to various propagation methods.

7 Conclusion

In this paper, we proposed the G-DS and GMax-DS algorithms to select the
optimal seed set to maximize the propagation performance. Due to the label
complexity, our algorithm could adjust itself dynamically according to the var-
ious user inputs. In addition, we further analyzed various network structure
attributes since they are related to the label distribution and will affect the
selection directly. Our empirical evaluations on real-world FreeBase data set
demonstrated the effectiveness and efficiency of our algorithm in terms of input
percentage, time cost, precision and f1-score.
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Abstract. Short text clustering is an essential pre-process in social network 
analysis, where k-means is one of the most famous clustering algorithms for its 
simplicity and efficiency. However, k-means is instable and sensitive to the 
initial cluster centers, and it can be trapped in some local optimums. Moreover, 
its parameter of cluster number k is hard to be determined accurately. In this 
paper, we propose an improved k-means algorithm MAKM (MAFIA-based k-
means) equipped with a new feature extraction method TT (Term Transition) to 
overcome the shortages. In MAKM, the initial centers and the cluster number k 
are determined by an improved algorithm of Mining Maximal Frequent Item 
Sets. In TT, we claim that co-occurrence between two words in short text 
represents greater correlation and each word has certain probabilities of 
spreading to others. The Experiment on real datasets shows our approach 
achieves better results. 

Keywords: Short Text Clustering, K-Means, Feature Extraction, MAKM, TT. 

1 Introduction 

Social networks have been very popular in recent years, people can post the messages of 
what they hear, see or think, and most of them are short texts. Short text clustering is an 
essential pre-process in social network analysis, due to incredible growth of data, the 
efficiency and scalability of the clustering algorithm become more and more important. 
K-means is a widely used method in various areas, such as data mining, machine learning 
and information retrieval [2-4]. Because of its simplicity and efficiency, the k-means 
algorithm is accepted and widely used in many different applications. 

However, there are two main problems in k-means algorithm. First, the algorithm 
is extremely likely to be trapped in some local optimums. Second, the algorithm needs 
to fix the parameter k, because different k values can cause great affection to the 
clustering result. Although there are some studies on the choices of initial centers to 
avoid local optimums [5-8], these methods have not made notable gains comparing 
with the normal k-means algorithm, and less of them consider how to fix the 
parameter k. 

The main contribution of this paper is an improved k-means algorithm MAKM 
(MAFIA-based k-means) for short text clustering, in which the optimized initial 
centers and number k of clusters can be determined. In order to support MAKM, we 
also propose a new feature extract method TT (Term Transition) for short text. 
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MAKM is based on the fact that there are some key words frequently occurring in 
the same clusters, while the key words of different clusters are not exactly the same. 
Hence, the procedure for mining maximal frequent item sets is actually a course of 
clustering, with which the initial centers and cluster number k can be fixed. However, 
before this, there are two preconditions. 

Considering a cluster with key words ଵܶ and ଶܶ, a text may contain only ଵܶ or ଶܶ, or both, and we may get two maximal frequent item sets ሼ ଵܶሽ, ሼ ଶܶሽ, that will 
result in a split of the cluster. In TT, each word has certain probabilities of spreading 
to others. The more frequently two words co-occur, the larger probability of spreading 
to each other they have. So, the text simply containing ଵܶ could also be very similar 
to the text where only ଶܶ  appears, thus the maximal frequent item set will be ሼ ଵܶ, ଶܶሽ. 

Secondly, there hasn’t been a suitable minimum support for the algorithm of 
Mining Maximal Frequent Item Sets when the clusters’ sizes are greatly different. 
Specifically, large cluster will be split into several small clusters with small minimum 
support, and small cluster will be lost with large minimum support. In MAKM, we 
find all maximal frequent item sets with different minimum support in different 
iterations.  

The rest of the paper is organized as follows. In Section 2, we describe the new 
feature extraction method TT. In Section 3, we present the improved k-means 
algorithm MAKM. In Section 4, we show the experiment results on real datasets. 
Finally, we conclude this paper in Section 5. 

2 TT Algorithm 

TT (Term Transition) is a new feature extraction algorithm for short text, which 
contains two basic core ideas: feature transition and dimension reduction. 

2.1 Feature Transition 

In TT, each word has certain probabilities of spreading to others. The more frequently 
the words co-occur, the larger probability they will have. In order to derive the law of 
this diffusion, some auxiliary data structures are defined as follows. 
• Transition Probability Matrix (TPM): TPM is a m ൈ m matrix which describes 

the transition probability from one word to another. Especially, we treat TPM as P2 when only considering two words, and P2 can be formally defined as 

 P2ሾi, jሿ ൌ Pሺi|jሻ ൈ Pሺj|iሻ ൈ Pሺ୨|୧ሻPሺ୧|୨ሻାPሺ୨|୧ሻ (1) 

In order to generate TPM with multiple words, two rules should be satisfied. Rule 1: 
The sum of any word’s transition probabilities to all words (including the word itself) 
should be one; Rule 2: The ratio of transition probabilities between two words each 
other should be equal to the ratio with multiple words. So we have 
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 ቐ ∑ TPMሾi, kሿ୫ିଵ୩ୀ଴ ൌ 1TPMሾ୧,୨ሿଵି∑ TPMሾ୧,୩ሿౣషభౡసబౡಯ౟ ൌ Pଶሾ୧,୨ሿଵିPଶሾ୧,୨ሿ (2) 

Then we can obtain TPM from equation (3) 

 TPMሾi, jሿ ൌ ۔ۖەۖ
ۓ Pమሾ౟,ౠሿభషPమሾ౟,ౠሿଵା∑ Pమሾ౟,ౡሿభషPమሾ౟,ౡሿౣషభౡసబౡಯ౟              , i ് j1 െ ∑ TPMሾi, kሿ୫ିଵ୩ୀ଴୩ஷ୧    , i ൌ j (3) 

• Variation Probability Matrix (VPM): VPM is a m ൈ m matrix which denotes the 
final transition probability matrix. Let α be a feature vector of a short text, then αෝ ൌ α · VPM is the final feature vector after word transition. The final transition 
probability from word i to j depends on the weights and transition probabilities 
of all paths that arrive at it. For example, the word i can transfer to j through 
different paths, such as ሼi ՜ jሽ, ሼi ՜ kଵ ՜ jሽ, ሼi ՜ kଵ ՜ kଶ ՜ jሽ, … , ሼi ՜ kଵ ՜ڮ ՜ k୫ ՜ jሽ, It’s something like but different from Markov Chain, because we 
consider that the paths of different lengths have different weights. So we can define VPM as 

          VPM ൌ ଵஃ ∑ ሺλ · TPMሻ୩ஶ୩ୀଵ ൌ ሺ1 െ λሻ · TPM · ሺI െ λ · TPMሻିଵ,                                         where  Λ ൌ ∑ λ୩ ൌ ஛ଵି஛ஶ୩ୀଵ , and 0 ൏ ߣ ൏ 1 (4) 

Note that, the matrix ሺI െλ· TPMሻ is certainly invertible in equation (4). Because 
each value in TPM is between 0 to 1 and the summation of each row is 1, according to 
the Gershgorin Circle Theorem, the moduli of TMP’s eigenvalues are less than 1, so |I െ λ · TPM| ൌ λ ቚଵ஛ I െ TPMቚ ് 0 ሺ0 ൏ ߣ ൏ 1ሻ, and it’s invertible. We call λ the 

decay factor which corresponds to the weight of different transitions. Through 
experiments on real datasets we found that it can achieve better results when λ ൌ 0.75. 

2.2 Dimension Reduction 

The standard deviation of different dimensions reflects the ability to distinguish 
clusters. The dimensions with lower standard deviation are helpless or even harmful 
to clustering. In TT algorithm, it calculates the feature vectors in higher dimensional 
space using TF-IDF and updates each feature vectors based on equation (4). Then it 
calculates and sorts the standard deviation of each dimension, and prunes the 
dimensions with lower standard deviation using MDL (Minimal Description Length) 
method. Finally, it normalizes all feature vectors. Through experiments we found that 
most standard deviations are very small, and these words will bring negative effect to 
the clustering, such as extra time consumption and the fuzzy edges of different 
clusters. So the pruning is beneficial to the clustering algorithm. 
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The TT algorithm is summarized as follows: 

Algorithm-TT 

Input: The dataset Φ of short text. 
Output: The feature vectors of each short texts. 
1: Sampling of Φ to get a sub dataset φ; 
2: Calculate VPM on the sub dataset φ by equation (4); 
3: Initialize feature vectors of each short texts on the sub 

dataset Φ using TF-IDF; 
4: Update feature vector by α=α·VPM; 
5: Dimension reduction by MDL pruning; 
6: Normalize all feature vectors in the new dimensional space. 

3 MAKM Algorithm 

MAKM (MAFIA-based k-means) is an improved k-means algorithm for short text 
clustering. The algorithm can find the suitable number k of clusters and choose the 
optimized initial centers automatically with only one input parameter Grain Factor (γ) 
that ranges from zero to one and describes the clustering rough degree. If γ is 
approaching to one, the similar small clusters will be combined into one cluster, while 
the big one will be split to several small clusters when γ is approaching zero. 

In MAKM, we choose the optimized initial centers and find the number k of 
clusters through an improved MAFIA [1] algorithm, a method of Mining Maximal 
Frequent Item Sets. MAFIA has one input parameter, the minimum support (minsup), 
which directly determines the result. We will find all maximal frequent item sets 
(clustering centers) with different minimum support in different iterations. 

3.1 The Conversion between Short Text Dataset and Transaction Set 

In order to use the method of MAFIA, we need convert a short text dataset to a 
transaction set. Each short text will be converted to a transaction as follows: 

Let α ൌ ሺxଵ, xଶ, … , x୫ሻ be a feature vector of a short text, and suppose M is the 

root mean square of  α, i.e.  M ൌ ට∑ ୶౟౟ౣసభ୫ , then the transaction T can be obtained as 

 T ൌ ሼt|t ൌ t୧, t୧ ൐  ሽ (5)ܯ

Vice versa, if we get a transaction T, the feature vector α can be obtained as 

 α ൌ ஒ|ஒ| · VPM, where β୧ ൌ ൜1, t୧ א T 0, t୧ ב T  (6) 

3.2 The Initialization of Minimum Support 

Let I ൌ ሼiଵ, iଶ, … , i୫ሽ be a set of words, T ൌ ሼtଵ, tଶ, … , t୬ሽ be a set of transactions, 
where each transaction t୩ is a set of words such that t୩ ؿ I , and i୩. count is the 
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number of transactions that contain i୩ . Then we obtain the support of  i୩  and 
average support as 

 sup୩ ൌ ୧ౡ.ୡ୭୳୬୲∑ ୧౫.ୡ୭୳୬୲ౣషభ౫సబ  (7) 

 supୟ୴ୣ ൌ ଵ∑ ୧౫.ୡ୭୳୬୲ౣషభ౫సబ ൈ ∑ ሺi୩. count୫ିଵ୩ୀ଴ ൈ sup୩ሻ (8) 

The average support is the weighted average of each word’s support, where the 
weight is the support count. In order to make the minimum support change slowly 
when the grain factor approaching 0.5, while change quickly when the grain factor 
approaching 0 or 1, we can define the initial minimum support as 

 sup୫୧୬ ൌ ቐminሼsup୩ሽ ൅ exp ቀ ஓ଴.ହ ൈ lnሺsupୟ୴ୣ ൅ 1 െ minሼsup୩ሽሻቁ െ 1, γ ൏ 0.5supୟ୴ୣ ൅ exp ቀஓି଴.ହ଴.ହ ൈ lnሺmaxሼsup୩ሽ ൅ 1 െ supୟ୴ୣሻቁ െ 1   , γ ൒ 0.5 (9) 

3.3 The Update of Minimum Support and the Iterative Termination Condition 

The maximal frequent item sets are found by invoking MAFIA iteratively until 
convergence. Let T be all transaction sets,  Tୡ୳୰ be the transaction set during current 
iteration, and Tୢ ୣ୪  be the deleted transaction set, it’s easy to see that they satisfy T ൌ Tୡ୳୰ڂTୢ ୣ୪ and  Tୡ୳୰ ځTୢ ୣ୪ ൌ  .׎

At the beginning of each iteration, the minimum support will be recalculated by 
equation (9) on transaction set Tୡ୳୰, and then we can get a new local maximal frequent 
item set (LMFI) by invoking MAFIA. 

For each item set in LMFI, if the count in Tୡ୳୰ is greater than the count in Tୢ ୣ୪, the 
item set will be added to global maximal frequent item set (GMFI), and the 
transaction contained the item set in Tୡ୳୰  will be moved to Tୢ ୣ୪ . The iterations 
continue until there is no item set moved. 

The MAKM algorithm is summarized as follows: 

Algorithm-MAKM 
Input: The clustering grain factor γ, and the data set. 
Output: The clusters. 

1: Sampling the data points as dataset D; 
2: Convert the dataset D to a transaction set T by equation (5); 
3: Initialize the Global Maximal Frequent Item Set,GMFI ൌ  ;׎
4: Initialize the transaction sets,Tୡ୳୰ ൌ T and  Tୢ ୣ୪ ൌ  ;׎
5: REPEAT 
6:   Calculate minimum support by equation (9); 
7:   Invoke MAFIA to get the Local Maximal Frequent Item Set(LMFI);  
8:   Update GMFI, Tୡ୳୰, and Tୢ ୣ୪ described in 3.3; 
9: UNTIL (Tୢ ୣ୪ is no longer changed) 
10: Convert GMFI to feature vectors described in 3.1, and update 

feature vectors by ߙ ൌ ߙ ·  to obtain the initial cluster ܯܸܲ

centers, and the size of GMFI is the number of clusters; 
11: Invoke K-Means to get the cluster result. 
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4 Experiments 

In this section we present an evaluation of the performance of MAKM and TT on real 
datasets. 

4.1 Experimental Framework 

Datasets. We gathered data from Sina Microblog , and we used the provided API to 
gather information about a user’s social links and tweets. We launched our crawler in 
September 2011, and the crawler started at a specified user to the users he followed. 
We gathered information about a user’s follow links and all tweets ever posted. In 
total, there were 48,401,561 tweets of 84753 users. 

We selected seven specific topics, and partitioned them into two completely 
different distribution datasets. Table1 shows the distribution of the datasets. 

Table 1. The Distribution of Datasets 

 WENZHOU’s 
train crash 

Nuclear 
leakage of 
Japan 

The 
centennial 
anniversary 

Li Na won 
the France 
Open 

World 
Expo 
Shangha

Willian and 
Kate: The 
Royal 

The credit 
downgrade 
of the U.S. 

Dataset 1 80,000 40,000 20,000 15,000 8,000 8,000 7,000 
Dataset 2 8,000 8,000 8,000 8,000 8,000 8,000 7,000 

 
Preprocess. Before the clustering, we should perform some preprocessing works on 
the datasets, such as stop words removing and Chinese words segmentation. In our 
work, we use ICTCLAS, a Chinese words segmentation tool developed by intelligent 
science laboratory of institute of computing technology, Chinese academy of science. 

4.2 Results 

We conducted extensive experiments on the two datasets, some results are reported 
below. 

Fig. 1 shows the difference of category centers between the feature extraction 
method TT and TF-IDF for each category on dataset 1 and dataset 2. We found that, 
most of D-values (Difference value) are approaching zero in a category, and only a 
few D-values are a little bigger or smaller than zero. It shows that there exist 
transitions among the key tokens. 

Fig. 2 shows the change of clustering average F1 score and the number of clusters 
found against different value of grain factor γ of MAKM on dataset 1 and dataset 2. 
We can see that the clustering average F1 score is not sensitive to γ when γ changed 
from 0.5 to 1.0. However, the average F1 score decreases when γ becomes smaller. 
This is because larger γ makes similar small clusters merged to one bigger cluster, 
and smaller γ results in big cluster being split into multiple smaller clusters. 
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Fig. 1. The centroid difference of each category between TF-IDF and TT in feature extraction 
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Fig. 2. The effect of grain factor on MAKM 

Table 2. The Clustering Result of MAKM when γ ൌ 0.0 

Cluster# Accuracy(%) Recall(%) F1(%) Category
1 99.99 78.81 88.15 WENZHOU’s train crash 
2 100.00 42.96 60.10 Nuclear leakage of Japan 
3 99.98 84.74 91.73 The centennial anniversary of Tsinghua 
4 99.99 99.67 99.83 Li Na won the France Open 
5 99.80 17.01 29.06 WENZHOU’s train crash 
6 99.15 30.01 46.07 Nuclear leakage of Japan 
7 100.00 26.91 42.41 Nuclear leakage of Japan 
8 99.72 99.67 99.69 World Expo Shanghai 
9 99.97 99.78 99.88 Willian and Kate: The Royal Wedding 
10 99.91 99.98 99.95 The credit downgrade of the U.S. 
11 98.78 4.05 7.78 WENZHOU’s train crash 
12 99.77 15.26 26.47 The centennial anniversary of Tsinghua 

 
Table2 shows the detailed clustering result of MAKM when γ=0.0. We can see that 

the original seven categories are clustered to twelve clusters, and clustering accuracies 
are mostly larger than 99%. Some clustering recalls are quite low, because of the split 
of the big clusters. 
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We run the standard K-Means (KM), Hierarchical K-Means (HKM) [8] with 
different computation times (p) and MAKM 25 times on dataset 1 both equipped with 
equipped with TT feature extraction method, and we found the average number of 
iterations of MAKM is six, while the k-means is sixteen. The result is reported below. 
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Fig. 3. The average F1 score and running time comparisons among KM, HKM, and MAKM 

Fig. 3 shows the comparison results of average F1 score and running time among 
KM, HKM and MAKM on dataset 1. In the experiment, all algorithms use TT as the 
feature extraction algorithm. We set MAKM sample half of the dataset to choose  
the initial clustering centers. The grain factor γ is set to 0.8 in MAKM, and k is set to 
the actual number of categories in KM and HKM. For HKM, the computation times is 
set to 2, 3, and 4, respectively. 

After 25 times repeats, we can see that our algorithm, MAKM has great advantages 
both in accuracy and efficiency. The average F1 score of MAKM is 97.94% with 
average running time 24.21s, KM is 70.96% with 35.86s, HKM (p=2) is 76.43% with 
114.64s, HKM (p=3) is 78.72% with 141.99s, and HKM (p=4) is 86.13% with 212.96s. 
Besides, MAKM is a stable clustering algorithm when the sampling rate is 0.5. 

5 Conclusion 

In this paper, we proposed an improved k-means algorithm (MAKM) for short text 
clustering. This algorithm can determine the most suitable number k and optimized 
initial centers before the k-means procedure, which overcomes the shortage that the 
standard k-means algorithm may be trapped in some local optimums for its sensitivity 
to cluster number k and initial clustering centers. We also came up with a new feature 
extraction method TT for short text which is efficient and beneficial to support 
MAKM. We carried out experiments on the real datasets and the results show out 
MAKM can solve the problem of local optimums very well with high accuracy which 
confirms MAKM is a more stable algorithm for short text clustering. 
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Abstract. Microblog attracts a tremendous large number of users, and
consequently affects their daily life deeply. Detecting user preference for
profile construction on microblog is significant and imperative, since it
facilitates not only the enhancement of users’ utilities but also the promo-
tion of business values (e.g., online advertising, commercial recommenda-
tion). Users might be instinctively reluctant to exposure their preferences
in their own published messages for the privacy protection issues. How-
ever, their preferences can never be concealed in those information they
read (or subscribed), since users do need to get something useful in their
readings, especially in the microblog application. Based on this observa-
tion, in this work, we successfully detect user preference, by proposing
to filter out followees’ noisy postings under a dedicated commercial tax-
onomy, followed by clustering associated topics among followees, and
finally by selecting appropriate topics as their preferences. Our extensive
empirical evaluation confirms the effectiveness of our proposed method.

1 Introduction

Personalized applications are rather important and remain to be solved imper-
atively, especially in the web 2.0 era, with their ultimate intentions for online
advertising, i.e., recommending appropriate services (e.g., online games, movies,
music and commodities) for the right users [1]. Here, right means users might
be interested in the recommended services with high probability.

As one of the foundations of online advertising, user profile leverages the
system to recommend appropriate services to right users in terms of their specific
needs in a great deal. It is widely used in many personalized application scenarios,
e.g., adaptive web search [2] based on dedicated user profile to improve the
search results. Herein, user profile includes both his demographic information
- e.g., name, age, country and education level - and individual preferences (or
interests) [3], i.e, the preference levels on items such as digital products and
sport products. User preference is harder to detect but poses more value for
online advertising, compared to the demographic information. In this research,
we focus on preference detection to construct user profile.
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Our goal is to detect user preference in the new environment, i.e., microblog,
such as Twitter and Sina Microblog. Detecting user preference is not easy in
such online social network, and one challenge is useful information for preference
detection is limited within a small portion, surrounded by a large volume of noises
(useless information). For example, over 85% topics in Twitter are headline news
or persistent news [4] which are useless in preference detection.

In microblog application, a user is able to post messages, denoted as tweets,
which are propagated to others via two following relationships (i.e., followee and
follower). Microblog is different from other social networks (e.g., Facebook),
in both friendship authorization and linkages. Here, a user is allowed to follow
any user without the permission barrier [5]. Hence, the relationship linkages on
microblog are unilateral, unlike the bilateral ones in the other social networks
such as Facebook. This speciality leads to our unique observations: 1) reading
the tweets from his followees reflects user’s real preferences indeed, even if he
is reluctant to exposure preference on his own tweets; 2) the tweets from user’s
followees do belong to many topics, but only part (not all) of those topics, i.e.,
the most common ones, reveals his preference; 3) a user prefers the tweets from
his followees at different levels and inversely followees’ influences over user are
not the same with each other.

Existing works such as [6] employ homophily to leverage user’s behaviours
from social neighbours, but it only covers part of the followees in microblog.
The method in [7] simply treats users’ followees fairly to extract user preference,
which is oblivious to the difference on followees’ influence. Hence, these works
do not exploit those observations above sufficiently.

In this study, we detect the preference for any user, by filtering out and
clustering tweets from his followees, etc., based on the observations listed above
and our contributions include:

– Detailed analysis on our collected Sina Microblog dataset is provided, espe-
cially the statistics of noisiness, which shows the speciality of microblog.

– We filter out relatively useless followees, and the remainings are the high-
quality ones for user preference detection.

– We incorporate social linkages for influence evaluation, which integrates the
structure with content on social media context.

The extensive empirical evaluation confirms our two-step approach is well suited
for preference detection based on our observations and highlights the effective-
ness of this method compared to the existing work.

The rest of this paper is organized as: Section 2 describes our dataset used
in this paper; Section 3 illustrates the problem formally; Section 4 shows our
approach to detect user preference and Section 5 gives empirical evaluation;
Section 6 summarizes the related work and Section 7 concludes our paper.

2 Dataset Description

We have crawled a dataset consisted of users, relationship linkages and tweets
from Sina MicroBlog for the purpose of preference detection. This dataset is
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obtained in the following manner. Firstly, we choose 45 seed users, denoted as
a set U , from the Sina MicroBlog platform. Then, we crawl the followees and
followers of each user in U to form another user set U ′. All the tweets of users
in U = U ∪ U ′, involving 11,380 users, are crawled and inputed into a set T .

The period of the tweets in T ranges from October 2010 to March 2012, with
the number of tweets per month shown in Figure 1. We perform a semantic
grounding of the tweets against a tree-structured reference taxonomy [3], with
the leaf node as keyword and non-leaf node (except root) as topic (Figure 3).
This taxonomy is derived from the homepage of Taobao which is more suitable
for Chinese context compared with the translation of Google Taxonomy. Here,
the tweet involving any keyword in the taxonomy is considered as an interesting
tweet since it could be used for preference detection potentially. Figure 1 depicts
the number of interesting tweets as well as the one of total tweets per month. For
any user, the utilization of his tweets is defined as the percentage of the number
of his interesting tweets vs. the total tweets of this user. Figure 2 shows the
frequency distribution, as well as cumulative distribution, of the percentage of
users in U given utilization. The result indicates the utilization of most users are
limited between 20% and 40%, which brings a challenge to preference detection.
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3 Problem Statement

Formally, U = {u0, u1, · · · , u|U|−1} represents all the users in a social network

and ui is the (i+ 1)th user. The social network is depicted by a directed graph,
Gf , with users as nodes and following linkages as edges. The edge from ui to uj

indicates the following relationship between them, i.e., uj is ui’s followee and ui

is uj’s follower meanwhile. In this study, we use Eui , Rui and Dui to denote ui’s
followees, followers and friends (i.e., both followees and followers) respectively.

The problem is to find out what ui is interested in, i.e., his preference, based
on the given information. It includes the following relationship and ui’s tweets
as well as the tweets of Eui and Rui . The outcome is user preference organized
as a vector, Pui , where each element is the preference level on its corresponding
item [8]. The items in preference vector come from the top level topics (except
root) of the taxonomy in Figure 3 and Table 1 illustrates an example of this
vector.
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4 User Preference Detection

This section shows our proposed method to detect user preference on microblog.
We argue that user’s following actions reflect his preferences, since most of the
users are reluctant to exposure interests on his own tweets but his reading mate-
rials, i.e., followee’s tweets, reveal the preferences. Herein, we propose our two-
step approach to address this issue by extracting the information from followee’s
tweets (Section 4.1) firstly and then detecting preference with user’s following
linkages (Section 4.2).

4.1 Tweet Signature Extraction

We start off by extracting the information from the tweets of user’s followees,
since those are what this user wants to read on the microblog application. Here,
uij is one of ui’s followees and uij ’s tweets are summarized as tweet signature.
In this work, uij ’s tweet signature is represented as a vector:

Θuij = (θ1,uij , θ2,uij , · · · , θn,uij , · · · )
where θn,uij is uij ’s preference level on the item θn. Items in this vector are a
set of the top level topics in the aforementioned taxonomy, such as sport, digital
and food in Figure 3.
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Fig. 3. Tree-structured Taxonomy

Table 1. Preference Vector

topic sport, · · · digital, · · · food total
vector ( 0.2, · · · 0.36, · · · 0.01 ) 1

Fig. 4. An Example of Gui

The preference level θn,uij is the sum of weighted term frequency of all the
descendants of θn, i.e., desc(θn), in that taxonomy tree. Formally,

θn,uij =
∑

ωx∈desc(θn)

∑
0≤d<W

e−αdtf(ωx, T
(d)
uij

) (1)

where T
(d)
uij is the tweets generated d days ago (less than W days) by uij and α

is a decay factor (we set it to 0.025 as in [9]) to simulate the interest decline.

4.2 Capturing Preference with Following Linkage

The previous section shows how to extract the information from followees’ tweets.
In this section, we illustrate the method to detect user preference with following
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linkages. This issue is addressed from the two aspects: 1) in general, a user prefers
several main topics on what his followees talk about rather than all the topics
of his followees; 2) a user is interested in his followees at different levels which
means different followees have different influences on him. The former shows
user’s preferences on different topics whereas the latter indicates the preference
on different people. This idea drives us to filter out useless information and
evaluate the followees’ influence over him, in order to capture user preference.
The following discussions are derived from the two views above.

Followee Filtering. In microblog, a user does need to read something useful
from his followees who would post rich and colorful tweets. However, the user is
usually interested in several main topics of his followees rather than all the topics.
In this work, we exploit clustering to find those topics. That is, the followees are
clustered into several clusters by their tweet signatures and then each cluster
involves the followees with preference on some distinctive topics.

Clearly, cosine distance is appropriate to measuring the distance between
tweet signatures for clustering. In addition, we incorporate screen name within
similarity comparison, given the particularity of Chinese name. The similarity
between two screen names can be evaluated by Jaccard index of q-gram. Hence,
the distance function (Eq. 2) between two of ui’s followees, i.e., uix and uiy, is
the combination of cosine distance, in term of the tweet signature, and Jaccard
similarity, in term of the screen name.

Dist(uix, uiy) = (1 −
Θuix ·Θuiy

|Θuix ||Θuiy |
)[1−

q(SNuix) ∩ q(SNuiy )

q(SNuix) ∪ q(SNuiy )
] (2)

where SNuix denotes uix’s screen name and q(SNuix) indicates the q-gram set
of SNuix . In particular, we set q = 2. Then, we use DBSCAN to cluster those
followees. The bigger cluster indicates ui has a higher preference on the common
topics of the followees in this cluster. In other words, the bigger clusters are more
useful to detect user preference than smaller ones. Motivated by that, clusters
are ranked by size and the followees in top-k clusters, denote as E′

ui
, are selected.

Followee Influence. The key point now is to evaluate followee’s influence over
ui, since we have acquired the tweet signatures of his followees and filtered out
some useless followees. The simplest way is to treat each followee inE′

ui
fairly, i.e.,

equivalent influence, as in [7]. That is, uij’s influence over ui, i.e., Inf(ui, uij),
is 1

|E′
ui

| , where |E′
ui
| is the number of followees in E′

ui
.

It means each followee in E′
ui

has an equivalent influence over ui. However, a
user is influenced by followees at different levels generally. As an example shown
in Figure 4, ui follows ui1, ui2, ui3 and ui4. Besides, there are other following
linkages among followees, e.g., ui1 follows ui2 and ui3. From the aspect of ui, ui3’s
tweets can not only be pulled to ui (ui follows ui3) directly, but also reposted
by ui1 and ui2 (if they do) which might be pulled to ui further. Intuitively, the
influence of ui3 over ui is higher than the one of both ui1 and ui2 over ui, in
Gui , i.e., the social network between ui and his followees in E′

ui
.
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This example calls for an alternative scoring function to evaluate the impor-
tance of each user in Gui . Let s

(t)(uij) denote the score of uij after t-th iteration
and 0 < μ < 1 a dumping factor. This scoring function is:

s(t)(uij) = (1− μ)
∑

v∈E′
ui

∩Euij

s(t−1)(v)

|E′
ui

∩ Euij |
+ μ

1

|Gui |
(3)

where E′
ui

∩ Euij is uij ’s followees in Gui and |Gui | is the total number of the
users in Gui . Here, we propose the normalized PageRank-like influence. That is,

uij’s influence over ui is
s(uij)∑

v∈E′
ui

s(v) , where s(uij) is uij’s score by Eq.3 above.

Hybrid Model. After the followee filtering and influence evaluation, we propose
a hybrid model which combines ui and his followees’ tweet signatures without
loss of generality. In this model, user preference is the weighted sum of his own
and followees’ tweet signatures. Formally, ui’s preference vector Pui is:

Pui = (1− β)Θui + β
∑

uij∈E′
ui

Inf(ui, uij)Θuij (4)

where Θui is ui’s tweet signature, Θuij is tweet signature of uij , one of ui’s
followees in E′

ui
, and β is a parameter tuning the weight between ui and his

followees in E′
ui
. Clearly, this model ranks the topics intrinsically to detect the

most common ones as user preference.
In particular, different β leads our hybrid model to be with different implica-

tions. Firstly, β = 1 makes ui’s tweet signature no sense. In other words, only the
tweets from followees are used to detect ui’s preferences. Secondly, β = 0 means
only user’s own tweets are used. Hence, Pui is equal to Θuij . Finally, 0 < β < 1
is the trade-off between two cases above. Here, user preference is generated by
both his own and followees’ tweet signatures.

5 Empirical Evaluation

In this study, we invite the seed users in our dataset (Section 2) to evaluate
the effect of our proposed method. They are asked to judge the top-5 topics
in preference vector generated from different sources. DCG is used to evaluate
the quality of user preference detected by our approach. We use gain value of
5, 3, 1, and 0 for judgement grade 1, 2, 3 and 4, respectively. In the following,
Section 5.1 shows the impact of factor β and relationship in our proposed method
and Section 5.2 highlights the effectiveness of our approach.

5.1 Impact of β and Relationship

Under the framework of hybrid model, we evaluate the ability of followee’s tweets
for preference detection in comparison to 1) user’s own tweets, 2) friends’ tweets,
and 3) followers’ tweets. In particular, followees’ and friends’ influences over user
are calculated by PageRank-like influence, whereas followers’ influences over user
are calculated by equivalent influence.
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Table 2. Average DCG(λ)

λ 1 2 3 4 5

β = 0 2.50 5.22 6.90 8.15 9.59

β = 0.5, followee 2.77 6.49 7.64 8.94 10.19
β = 1.0, followee 2.92 6.70 7.85 9.35 10.64

β = 0.5, follower 2.31 5.08 6.59 8.16 9.68
β = 1.0, follower 2.38 5.05 6.77 8.15 9.76

β = 0.5, friend 2.65 5.71 7.36 8.34 9.38
β = 1.0, friend 2.81 6.47 8.01 8.95 10.08
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Impact of Factor β. Here, β is set to be 0, 0.5 and 1 respectively to tune
the weight between himself and the others. Firstly, we consider the different β
with followee in Table 1. It shows that the case with β = 1 gets the highest
gain, whereas β = 0 acquires the lowest gain. The gain of β = 0.5 is between
the value of two cases. This result shows that the tweets from followees are more
useful than his own tweets. As our observation before, the tweets from followees
are pulled to user actively so that it potentially has what user is interested in,
whereas the tweets generated by himself might reluctant to show preference.
Secondly, the result on different β with friend shows friends’ tweets is better
than user’s own tweets to detect preference. Finally, the result on different β
with follower shows the ability of followers’ tweets to find user preferences is
approximate to the one of his own tweets.

Impact of Relationship. We compare the results with different relationships,
including followees, followers and friends. At first, we focus on DCG gain of
the preference generated via different relationships with β = 1 in Table 2 which
means user’s own tweets are excluded here. Hence, the ability of information from
the followees to find user preference is much more than the one from the followers.
It verifies our observation that the following action implies user’s preferences.
It also shows the followees’ tweets do a little better than friends’ tweets. In
general, user’s friends on the social network might be his classmates, friends or
relatives in the real life. He follows those real friends whatever they talk about
on the virtual social network, which does not show a strong preference. Hence,
only the friends’ information as in [6] is not enough to detect user preferences.
Additionally, the result on different relationships with β = 0.5 illustrates the
followees’ tweets are most useful for detection.

5.2 Effectiveness Comparison

In general, the combination of followees’ tweets and β = 1 (as shown in Talbe 2
by bold font) gets the highest DCG . Under this setting, we compare four cases
further, in order to highlight the effectiveness of our filtering and PageRank-like
influence. 1) no filtering + equivalent influence: the followees are not filtered
and followee’s influences are equivalent; 2) filtering + equivalent influence: the
followees are filtered and followee’s influences are equivalent; 3) no filtering +
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PageRank-like influence: the followees are not filtered and followee’s influences
are evaluated by PageRank-like influence; 4) filtering + PageRank-like influence:
the followees are filtered and followee’s influences are evaluated by PageRank-like
influence. In particular, case 1 is the method used in [7].

The result in Figure 5 shows that case 2 has a higher score than case 1, which
highlights our followee filtering improves the quality of detecting user preferences.
The comparison between case 3 and 4 also concludes it. In addition, case 3 and
case 4 outperforms case 1 and case 2 respectively, which indicates the effect of
our PageRank-like influence evaluation.

6 Related Work

This section shows the work related to ours in two categories, including social
media and recommender system.

[10] shows initial but significant statistical results on exploring user inter-
ests in the microblogs. Interest propagation along with the friendship in social
network is discussed in [11]. However, we try to find user preference by the so-
cial network topology rather than study the pattern of interest propagation on
social media. [7] studies the profile generated from different sources, including
followees, followers, etc., but it simply treats them fairly. Besides, [6] combines
users’ behavioural and social data based on homophily. This work addresses the
social networks with bilateral relationships, whereas our work focuses on the
ones with unilateral linkages such as microblogs.

Our work is considered as one of the fundamental and critical steps in rec-
ommender system. [12] summarizes state-of-the-art recommender system. User
preference, the main topic focused in our paper, is an indispensable basic for
recommendation. Search engine usually employs user preference to improve per-
sonalized web search [2] which is a classical application of recommender system.
User preference can be extracted from a large number of logs on search engine.
However, in microblog environment, the useful information is limited as illus-
trated before.

7 Conclusion

In this paper, we explore the issue to find user preference for profile construc-
tion in microblog application. To achieve that goal, our proposed approach here
makes full use of followees’ tweets rather than user’s own tweets, since a user
might be reluctant to exposure preference actively but his following actions reveal
the preferences. Also, we explore followee filtering and PageRank-like influence
evaluation to improve the quality of preference detection. Empirical evaluation
shows our approach together with followees’ tweets is well suited for preference
detection on social network with unilateral linkages such as microblog.
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Abstract. Recently, in [3, 9] a novel XML query processing paradigm was pro-
posed, where instead of processing a visual XML query after its construction, it
interleaves query formulation and processing by exploiting the latency offered by
the GUI to filter irrelevant matches and prefetch partial query results. A key ben-
efit of this paradigm is significant improvement of the user waiting time (UWT),
which refers to the duration between the time a user presses the “Run” icon to the
time when the user gets the query results. However, the current state-of-the-art ap-
proach that realizes this paradigm suffers from key limitations such as inability to
correctly evaluate certain visual query conditions together when necessary, large
intermediate results space, and inability to handle visual query modifications,
limiting its usage in practical environment. In this paper, we present a RDBMS-
based single as well as multi-source XML twig query evaluation algorithm, called
MUSTBLEND (MUlti-Source Twig BLENDer), that addresses these limitations.
A key practical feature of MUSTBLEND is its portability as it does not employ
any special-purpose storage, indexing, and query cost estimation schemes. Exper-
iments on real-world datasets demonstrate its effectiveness and superiority over
existing methods based on the traditional paradigm.

1 Introduction

Formulating XML queries using XPath or XQuery languages often demand consider-
able cognitive effort from the end users and require “programming” skills that is at
least comparable to SQL [1, 7]. The traditional approach to address this challenge of
query formulation is to build an intuitive and user-friendly visual framework [4] on
top of a state-of-the-art XML database. Figure 1 depicts an example of such a visual
interface. Although query formulation now becomes significantly easier, evaluation of
XQuery queries (especially over multiple data sources) on existing XML supports pro-
vided by commercial RDBMSs is often slow. To get a better understanding of this prob-
lem, we experimented with the datasets and queries in Figure 21. Figure 2(c) shows the
query evaluation times on XML-extended relational engines of two popular commercial
RDBMS. Due to legal restrictions, these systems are anonymously identified as XSys-A
and XSys-B in the sequel. Observe that most queries either take more than 30 minutes
to evaluate (denoted by DNF in the paper) or are not supported by (denoted by NS) the
underlying RDBMS. Note that the query evaluation time in a visual querying framework

1 For the time being, the reader may ignore the bold underlined text and the identifiers in braces.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 228–243, 2013.
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Fig. 1. Visual interface of MUSTBLEND

is identical to the user waiting time (UWT), which refers to the duration between the
time a user clicks on the “Run” icon to the time when she gets the query results.

A Novel Visual Querying Paradigm. To resolve the issue of unusually long UWT of
many XML queries, in [3,9] we took the first step towards exploring a novel XML query
processing paradigm on top of a relational framework by blending the two tradition-
ally orthogonal steps, namely visual query formulation and query processing. Let us
illustrate this paradigm with an example. Consider the XML document in Figure 3(a).
Suppose a user wishes to retrieve the name elements of entries (entry/name) that are
related to the “human” organism (organism/name) and are created (@created) in
“2001”. Using the visual interface in Figure 1, one can formulate the query as follows.
(a) Step 1: Select the entry/name from Panel 1 to Panel 2 as output expression. Note
that Panel 1 depicts the structural summary of the XML data sources. (b) Step 2: Select
the created attribute from Panel 1, drag it to Panel 3, and add the value predicate
“2001”. (c) Step 3: Select the name of organism from Panel 1, drag it to Panel 3,
and add the predicate “human”. (d) Step 4: Click on the “Run” icon.

If we rely on traditional query processing paradigm, then the query evaluation is only
initiated after Step 4. Although the final query that a user intends to pose is revealed
gradually in a step-by-step manner during query construction (Steps 1 to 3), it is not
exploited by the query processor prior to clicking of the “Run” icon. In contrast, in
the new paradigm query construction and query processing are interleaved to prune
false results and prefetch partial query results by exploiting the latency offered by the
GUI-based query formulation (processing starts immediately after Step 1).

The key benefits of the new paradigm are as follows. First, since a complex XQuery
query is evaluated by a set of smaller queries (to retrieve partial results), this new
paradigm is less likely to stress the query optimizer compared to a single complex
XQuery in traditional paradigm. Second, it significantly improves the UWT for many
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Fig. 2. Query evaluation times of representative queries

queries. Since we initiate query processing during query construction, UWT is the time
taken to process a part of the query that is yet to be evaluated (if any).

Related Work and Motivation. Despite these appealing benefits of the new paradigm,
the approach presented in [3,9] suffers from the following limitations. Firstly, it was de-
signed only for queries in which every condition a user draws on the query canvas need
to be processed independently. For example, the conditions drawn in Steps 2 and 3 in
the above query can be independently matched against the database and the final query
results can be computed by identifying common nodes in the partial results of these two
conditions. However, this framework fail to correctly handle queries where conditions
may need to be evaluated together. Consider the XML document in Figure 3(b). Suppose
we wish to retrieve the names of proteins (interpro/name) that appear in the “Na-
ture” journal (journal element) in “2000” (year). Independent evaluation of these
two conditions as above will return the rightmost interpro/name element (“Car-
boxyl transferase”). However, it is associated with two different
publication elements instead of a single one containing “Nature” and “2000”.
Hence in order to retrieve correct results, these two conditions must be evaluated to-
gether. Secondly, [3, 9] retrieves and materializes entire subtrees satisfying matching
conditions drawn by users. However, this may adversely affect the overall prefetch-
ing performance in many cases due to the size of intermediate results. Thirdly, the
new paradigm should be efficient and robust even when modifications (e.g., deletion
or update of conditions) are committed by users during query formulation . Systematic
investigation of how it handle such query modifications was beyond the goal of the
aforementioned study. In this work, we seek to overcome these central limitations by
proposing a novel algorithm called MUSTBLEND on top of a relational framework.
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2 Visual Twig Query Model

We begin by introducing the twig query model which we support in this paper and the
visual interface to formulate such queries.

2.1 Multi-Source Twig (MUST) Pattern

Most XML processors, both native and relational, have overwhelmingly focused on
single-source AND-twig queries modeled as a twig pattern tree [6]. A single-source
twig query is evaluated on a set of documents represented by a single XML schema or
DTD. Jiang et al. [8] extended the notion of such AND-twig queries to process twigs
with both AND and OR operators. Hence, at the very least, our query model should
support such queries. Additionally, as discussed in Section 1, our query model should
support queries over multiple data sources using joins. We refer to such twig queries as
multi-source twig (MUST) patterns.

A MUST pattern Q is a graph with four types of nodes: location step query node
(QNode), logical-AND node (ANode), logical-OR node (ONode), and return node
(RNode). Each Q has a single node of type RNode which represents the output node.
While labels of ANode and ONode are always “AND” and “OR” respectively, QNodes’
and RNodes’ labels are tags. An edge in Q can be of two types, namely, axes edge
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and join edge. The former represents parent-child or attribute relationship 2 between a
pair of nodes belonging to the same source whereas the latter connects two nodes from
two different sources. Specifically, a join edge (q1, q2) asserts that q1 and q2 have equal
value3. For example, Figure 4(a) shows the MUST pattern representation of the query
Q2 in Figure 2(a). We denote the RNode by underlined tag (e.g., name); and axes and
join edges as direct and dashed lines, respectively.

Representing MUST Pattern Using XQuery. Observe that the aforementioned MUST

pattern can be represented as an XQuery query. A MUST queryQ is a 3-tuple (F ,W ,R)
where F is a set of for clause items, W is a set of predicates in DNF in the where
clause, and R contains the output expression specified in the return clause. Specifi-
cally, the syntax of Q is as follows.

FOR $x1 in p1, . . . , $xn in pn
WHERE (a1 ∧ a2 ∧ . . . ∧ ak) ∨ . . . ∨ (c1 ∧ c2 ∧ . . . ∧ cm)
RETURN r

We categorize the where-expressions in W into two types, namely join expressions and
non-join expressions. A join expression captures the join edge in a MUST pattern and
involves predicates expressing join conditions over two document sources. On the other
hand, a non-join expression expresses a filtering condition on a single document source.
In the sequel, we refer to each expression in W as condition. Finally, the return clause
has a single output expression r (RNode).

Extension of Query Model. The MUSTBLEND framework can easily support a variety
of XPath axis and qualifiers as long as the underlying XML engine can support their
evaluation. For instance, if a user visually specifies a path expression containing AD
and preceding axis at a particular formulation step, then this visual action will be
translated to a corresponding SQL statement by MUSTBLEND and forwarded to the
underlying query engine for execution. Having said this, we would like to stress that a
wide variety of XML queries are not easy to formulate even visually as it requires a deep
understanding of the language which many end-users do not possess. It is of paramount
importance to balance expressiveness and usability in MUSTBLEND as compromising
the latter will render it impractical to end-users in a wide variety of domains [7].

2.2 Visual Query Interface

Figure 1 depicts the screen dump of the current version of the path-based visual inter-
face of MUSTBLEND. The left panel (Panel 1) displays the XML structural summary
(discussed later) of different XML data sources. When the users drag a node from Panel
1, the path expression corresponding to this node is automatically built. To formulate
a query, the users first specify the output expression r (return node) by dragging that
path expression from Panel 1 and dropping it to Panel 2. The Visual Query Designer

2 We consider XPath navigation only along the child (/) and attribute (/@) axes. Exten-
sion to other navigation axis is orthogonal to the proposed technique.

3 MUSTBLEND only supports equality join condition but inequality join condition can be sup-
ported easily.
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panel (Panel 3) depicts the area for formulating query conditions. To build a non-join
condition, the users drop a path expression in this panel. A Condition Dialog will ap-
pear for users to fill in all remaining information (op, val). If the dropped expression’s
data source is different from the output expression’s data source, another dialog will
appear for users to build the join edge between the two data sources. The user may drop
a new condition on an existing condition in Panel 3 in order to indicate her intention to
consider these two conditions together. Otherwise, she may drop the new condition on a
blank space to indicate that it is independent of existing conditions. Two or more condi-
tions can be combined using AND/OR (default is AND) connectives. The circular nodes
in Figure 1 are color coded to represent AND (red) or OR (yellow) connectives. A satel-
lite view (Panel 4) is provided with zooming functionality for more user-friendliness.
The user can execute the query by clicking on the “Run” icon. The Results View (Panel
5) displays the query results.

3 Blending Visual Query Formulation and Processing

We now discuss how we can facilitate blending of query formulation and processing.
We assume that a user does not modify previously constructed query fragments during
formulation (no deletion or updates). In the next section, we shall relax this assumption.

Recall that MUSTBLEND GUI provides the flexibility to users to impose constraints
on a set of conditions together (e.g., conditions on journal and year elements).
However, this feature introduces two challenges. First, it is not always necessary that
the underlying query processor need to evaluate these conditions together (twig). Hence
we need a mechanism to detect automatically when a set of conditions should be eval-
uated together. Second, in order to facilitate evaluation of these conditions together it
is often necessary to identify a common ancestor node (e.g., publication element
for conditions on journal and year). It is unrealistic to assume that the end-users
should explicitly specify them as it requires understanding of the XML structure. We
introduce the notion of inner structure tree (IST) and user actions tree (UAT) to auto-
matically resolve these two issues. We begin by introducing some auxiliary concepts.

An XML document is modeled as ordered directed trees, denoted by D = (N ,S),
where N is a set of nodes (elements and attributes) and S is a set of edges (hierarchical
relationships). Given an XML tree D = (N ,S), a path of a node n ∈ N in D, denoted
as path(n), is a concatenation of dot-separated labels �1.�2 . . . �k, such that �i(1 ≤ i ≤
k− 1) is the label of n’s ancestor at level i. �1 is the label of the root node and �k is the
label of n itself.

We adopt the DataGuide [5] as our XML structural summary. Intuitively, a DataGuide
structural summary, denoted by S, is a tree representing all unique paths in D. That is,
each unique path p in D is represented in S by a node whose path from the root node
to this node is p. An edge may have a label "+" iff the target node of the edge has
cardinality "+" with respect to D. Further, every unique label path of D is described
exactly once, regardless of the number of times it appears in D. Figure 4(b) depicts the
structural summary of the XML document in Figure 3(b). Observe that the edges inci-
dent on interpro and publication nodes have label "+" as interprodb and
pub list nodes in Figure 3(b) have multiple occurrences of these child nodes, respec-
tively. A subtree of S is a Plus-tree (P-tree in short) if its root is the target node of an "+"
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edge. For example, in Figure 4(b) the subtree gpublication rooted at publication
node is a P-tree of S while the subtree gpub list rooted at pub list node is a subtree
but not a P-tree of S. We denote a set of all P-trees of S by ptree(S).

Inner Structure Tree (IST). Let g1, g2 ∈ ptree(S) and root(g1) 
= root(g2). Then g1
is an inner structure tree (IST) of g2, denoted by g1 � g2, if and only if g1 is a subtree of
g2. Note that path(root(g2)) is a prefix of path(root(g1)). For example, in Figure 4(b),
gpublication � ginterpro (highlighted by dashed rectangles).

User Actions Tree (UAT). A user actions tree (UAT), denoted as U , describes how a
set of conditions that are connected by AND or OR connectives are to be processed by
MUSTBLEND to generate the final query results. Each internal node of U represents
an AND or OR connective. Each leaf node of U is a 2-tuple v = (Ca,M), where Ca is
a set of non-join conditions that are processed together and M is the temporary rela-
tion that stores the prefetched data satisfying Ca. For example, Figure 5(a) depicts two
UATs. Observe that M4 in Figure 5(a)(b) is generated by evaluating C3 and C5 together
whereas M2 is generated by processing C2 independently from rest of the conditions.
When do we process a set of conditions together? We elaborate on this now.

Given a condition C, let target(C.S.exp) refers to the target node (rightmost node)
in the path expression S of C. When the exp is obvious from the context, we denote
it as target(C). If target(C) is contained in g ∈ ptree(S) then we say that g in-
cludes C, denoted by C " g. For example, consider C3 in Q2. Here target(C3) is the
journal node that is contained in gpublication. Hence, C3 " gpublication. Given a set
of conditions Ca and g ∈ ptree(S), g minimally includes Ca, denoted by Ca "m g, iff
∀Ci ∈ Ca, Ci " g and there � g′ ∈ ptree(S) such that g′ � g, ∀Ci ∈ Ca, Ci " g′.

Let C be a set of conditions and r be the output expression on S. Then the conditions
in C are processed together iff (a) the label of the parent node of C in U is AND and
(b) g1 � g2 where (g1,g2) ∈ ptree(S), Ca "m g1 and (Ca ∪ {r}) "m g2. Note that the
root(g1) is the common ancestor satisfying all conditions of C. For example, consider
Figure 5(a). Suppose target(r.exp) is the name node. If we formulate two conjunctive
conditions on nodes journal and year, then they can be evaluated together to find
publication nodes satisfying these conditions. This is because gpublication is an IST

of ginterpro, gpublication minimally includes the conditions on journal and year,
and ginterpro minimally includes the conditions on journal, year, and name.
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Algorithm 1. The MUSTBLEND algorithm
Input: Actions on the user interface
Output: Query results M

1 Initialize M and user actions tree U ;
2 Initialize queue Q;
3 Mo ← fetchOutputExp(r);
4 A ← getGUIAction();
5 while (A 
= “Run”) do
6 if (A == “Add”) then
7 Cadd is the new condition;
8 Ctarget is the drop target;
9 SQL ← fetchCondMatch(r, C , Cadd, Ctarget);

10 U .insert(Cadd);
11 Q.insert( SQL);
12 else
13 if (A == “Delete”) then
14 Cdel is the deleted condition;
15 U ← deleteHandler(Cdel , U , Q);
16 else
17 if (A == “Update”) then
18 Cold and Cnew are old and new conditions;
19 Initialize upFlag = ∅;
20 U ← updateHandler(Cold , Cnew, upFlag, U , Q);

21 C.insert(Ci);
22 A ← getGUIAction();

23 if (Q 
= ∅) then
24 Wait for materializing all partial results;
25 else
26 Modify U by removing unnecessary internal nodes;
27 M ← retrieveFinalResults(U ,r);

28 return M

3.1 Algorithm MUSTBLEND

We now present the Algorithm MUSTBLEND (Algorithm 1). Importantly, for the sake of
generality, we present a generic approach that is independent of any specific relational
approaches. The reader may refer to [11] for an example of how various subroutines
in the algorithm can be realized on a specific tree-unaware XML storage system. First,
when the output expression r is dragged into Panel 2, it materializes the identifiers of
the elements/attributes in the XML tree that satisfy r by invoking the fetchOutputExp
procedure (Line 03). It generates an SQL query for this task. An identifier of an element
n in an XML tree D is one or more attributes of n that can uniquely identify n in D.
Note that we materialize the identifiers instead of entire subtrees because it is more
space-efficient. It is worth mentioning that the identifier scheme is not tightly coupled
to any specific system as any numbering scheme (e.g., region encoding, dewey number-
based [6]) that can uniquely identify nodes in an XML tree can be used as an identifier.

Next, Lines 05–22 are executed repeatedly until the “Run” icon is clicked. When a
user drags a new query condition Cadd and drops it on an existing condition Ctarget,
Lines 07–11 are executed. The algorithm invokes the fetchCondMatch procedure to
materialize the identifiers in Mo that satisfy Cadd (Line 9). Then, it adds Cadd into
the UAT U (Line 10). Figure 5(b) depicts the UAT generated after the conditions in the
running query are visually formulated. MUSTBLEND detects that C3 and C5 need to
be processed together and identifies the common ancestor. Lines 13–20 are executed if
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the user modifies a portion of the query that have already been constructed. We shall
elaborate on these steps in Section 4. Note that the translated SQL queries generated by
these steps are inserted into a queue Q. These queries are then processed sequentially
in another process thread. The node identifiers retrieved by the above steps are materi-
alized in a set of relations where the schema of each relation contains only document
identifier and node identifier attributes.

Once all the conditions are visually formulated, the user may click on the “Run” icon
to retrieve the query results. Once the materialization of all partial results are completed,
the algorithm invokes the retrieveFinalResults (Line 27) which traverses U to retrieve
the query results from the temporary tables storing the partial results.

fetchCondMatch Procedure. Let S1 and S2 be the structural summaries of the data
sources of the output expression r and the new condition Ccur, respectively. First, this
procedure retrieves the P-trees g1 and g2 that minimally includes the two input condition
sets ({r, Ccur, Ctarget} "m g1, {Ccur, Ctarget} "m g2). Next, it determines if join
across data sources is needed by comparing the data sources of r and Ccur. If join is
not required (S1 = S2) then it first retrieves the set of conditions Ca that have already
been formulated by the user and C " g2 ∀C ∈ Ca and Ctarget ∈ Ca. If g2 � g1 then it
generates an SQL statement that processes the conditions in Ca and Ccur together due
to reasons discussed earlier. Otherwise, it first generates SQL statements to retrieve the
node identifiers satisfying Ccur and then it appends statements for determining subtrees
that contain these identifiers as well as satisfy r. Note that when the user dropsCcur on a
blank space, then Ctarget = ∅. In this case, g2 is set to S2. Consequently, the condition
g2 � g1 is not satisfied and the above step is followed to process the new condition
independently. When join across data sources is required, this procedure first updates
g1 where {Cj , Ccur, Ctarget} "m g1. Then an SQL query is generated for prefetching
portion of data satisfying Ccur using the join condition Cj . Due to space constraints,
the formal description of the algorithm is given in [11].

retrieveFinalResults Procedure. This procedure can be divided into two main steps: (a)
processing of the UAT and (b) retrieval of complete subtrees from the database satisfy-
ing the query [11]. The objective of the first step is to retrieve all identifiers of instances
of r that satisfy the set of conditions in the UAT. After that, the second step is used to
build an SQL query to extract all subtrees satisfying the identifiers extracted from the
first step. While the second step is straightforward, we propose a disk-based and main
memory-based strategies called DISKRETRIEVE and MEMRETRIEVE, respectively, to
realize the first step. The DISKRETRIEVE strategy processes U recursively and returns
an SQL query to retrieve the identifiers from the materialized relations. Given the node
root in U , the algorithm first identifies whether it is an “AND” node or an “OR” node.
If it is an “AND” node, then it adds the “INTERSECT” operator into the SQL statement.
Otherwise, the “UNION” operator is used. Then, it retrieves the child nodes of root and
processes them one by one. If the child node is a leaf node, then the algorithm adds
corresponding SQL statement. Otherwise, it recursively process the internal nodes and
finally returns an SQL query for execution. For example, reconsider the UAT in Fig-
ure 5(b). The SQL query generated by this procedure is as follows: select * from
M1 INTERSECT select * from M2 INTERSECT select * from M4.



MUSTBLEND: Blending Visual Multi-Source Twig Query Formulation 237

While the DISKRETRIEVE strategy requires the partial results to be materialized
in the database and retrieved the final results using SQL queries, the MEMRETRIEVE

approach reduces I/O cost by storing the identifiers in memory. In particular, it stores the
partial results in the main memory4 and use a similar procedure to the aforementioned
algorithm except that it retrieves the intermediate relations directly from the memory
instead of building SQL queries.

Remark. Observe that Algorithm MUSTBLEND does not exploit predicate selectivities
to optimize prefetching performance. Unfortunately, this strategy is ineffective here
as users can formulate low and high selective conditions in any arbitrary sequence of
actions. Consequently, it is not advantageous to speculate an end-user’s subsequent ac-
tions in order to take full advantage of selectivity estimates.

4 Visual Query Modifications

In this section, we address the issue of modification to a visual query. We consider
two types of modification, namely delete and update. Deletion enables a user to delete
a query condition Cdel ∈ C that has been constructed by him. The update operation
allows a user to update a previously formulated condition or change the default AND

connective to OR. Specifically, we allow the following updates types (a) Update of the
value of a condition. (b) Update of the operator of a condition. (c) Update of AND/OR

connectives. Note that the path expression of a condition is not allowed to be updated
visually as it often demands syntactic knowledge of XPath expressions from the users.
To modify the path expression, one must delete the condition and add a new one.

Handling Deletions. The deleteHandler procedure handles deletion of a conditionCdel

in the following way. First, it checks if the translated SQL query for Cdel is still in the
query queue Q. If it is, then it indicates that the query has not been executed yet. Hence,
the algorithm will remove it from Q. Otherwise, the results of Cdel have already been
materialized in a temporary table MC . Consequently, the algorithm will dropMC . Next,
it updates the UAT U by deleting Cdel from it. Finally, it checks if an internal node
of U has become a leaf node due to the deletion of Cdel and modify U accordingly
(packUAT procedure). For example, consider the UAT in Figure 5(a). Figure 5(b)(b)
depicts the structure of the UAT after deleting C3 and C4. Note that if Cdel ∈ Ca (where
1 ≤ i ≤ |Ca|) is deleted, then all conditions in (Ca − Cdel) shall be reevaluated. The
algorithms in Section 3.1 can be exploited for this purpose.

Handling Updates. We first discuss updates on conditions (leaf nodes in the UAT) and
then present the effect of updates on the internal nodes. Suppose that a user updates the
condition Cold ∈ C to Cnew. Let Mold and Mnew be the materialized tables satisfying
Cold and Cnew, respectively. There are four possible cases as follow for such update
operation. (a) Case 1: Mold ⊂ Mnew. In this case the results in Mold also satisfy Cnew .
However, not all nodes satisfying Cnew have been retrieved. Hence, it is necessary to
retrieve these additional nodes and merge them with Mold. (b) Case 2: Mold ⊃ Mnew.
Nodes satisfying Cnew are already in Mold; however Mold also contains nodes that do

4 The intermediate relations are implemented using HashMap.
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not match Cnew . Consequently, these nodes need to be deleted. (c) Case 3: (Mold ∩
Mnew) 
= ∅ and (Mold 
= Mnew). This case represents the scenario where some of the
nodes in Mold are part of the result matches for Cnew. Note that Mold also contains
nodes that are not relevant to Cnew . Hence, we need to delete non-matching nodes from
Mold and retrieving matching nodes that are not in Mold. (d) Case 4: (Mold∩Mnew) =
∅. We delete Mold and retrieve matching nodes for Mnew.

The updateHandler procedure first determines whether the update operation is on
a query condition or on an AND/OR node. If the former is true then it determines the
update code (1, 2, and 0 for Cases 1, 2, and 3 and 4, respectively) based on Cold and
Cnew only. In case, it is not possible to determine the code (e.g., the value of a condition
is a string) then by default it is considered as Case 4. If the update code is 0, then
it considers this modification as deletion of Cold and insertion of Cnew. Note that if
Cold ∈ Ca then we execute these two steps as well. If the update code is greater than
0, then the algorithm first checks if the SQL query for Cold is still in Q. If it is still in
Q, then Cnew will be translated into an SQL query by using the algorithms discussed in
the preceding section and it will replace the old query in Q with the new one. On the
other hand, if the SQL query for Cold has already been executed, then the algorithm will
generate an INSERT SQL statement (for Case 1) or a DELETE statement (for Case 2).
Note that the former statement retrieves additional nodes from the database that satisfy
Cnew and inserts them in Mold. Similarly, the latter statement deletes nodes in Mold

that do not satisfy Cnew .
Now consider the update of an AND node (recall that it is created by default) to an OR

node. If each child leaf node n of an updated AND node represents a single condition
C then there is no modification to the prefetching process during query formulation.
However, if at least one of the child node n contains two or more conditions (Ca) that
need to be processed together then n needs to be modified along with its prefetched
relation (if any). Consequently, the algorithm first removes unnecessary internal nodes
(if any) from U that may have resulted due to the update operation. If n is updated to
OR node, then it is decomposed into a set of leaf nodes where each node represents a
single query condition Ci ∈ Ca. The prefetched partial results (if any) associated with
n is deleted and SQL queries for each Ci where 1 < i ≤ |Ca| are generated to prefetch
partial results matching each of these conditions. Otherwise, if an OR node is restored
back to an AND node then the original leaf nodes are restored. Due to space constraints,
the formal description of updateHandler is reported in [11].

5 Performance Study

MUSTBLEND is implemented in Java on top of a recently proposed path materialization-
based (PM) [6] XPath processor5 on relational backend called ANDES [10]. We create
two variants of MUSTBLEND (see retrieveFinalResults procedure), namely one having
DISKRETRIEVE strategy (denoted by MB-H) and another MEMRETRIEVE strategy (de-
noted by MB-M). All experiments were conducted on an Intel Core 2 Quad 2.66GHz
processor and 3GB RAM. The operating system was Windows XP. The RDBMS used
was MS SQL Server 2008 Developer Edition.

5 PM approach has advantages over node-based approach when XML data are schemaless [6].
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Query MB-M MB-H

Q1 0.12 0.24
Q2 0.13 0.25
Q3 26.1 0.73

(a) User Waiting Times (in sec.)

Q4 134.4 0.83

XSys-A XSys-B

NS NS
DNF NS
DNF NS
68.6 269.9

Zorba

NS
1495.8
171.9
0.45

Q5 0.16 0.20
Q6 0.25 0.24
Q7 1.34 0.61
Q8 0.13 0.45

3.2 16.0
2.0 18.0

72.6 449.2
165.5 NS

0.45
0.64
0.47

145.8
Q9 2.16 0.51

Q10 0.16 0.86
DNF NS
NS NS

1400.6
NS

Query MB-M ANDES

Q1 2.14 DNF
Q2 9.39 18.3
Q3 2.18 DNF

(b) TPT vs complete query 
execution times (in sec.)

Q4 1.26 12.7
Q5 1.83 2.1
Q6 1.29 68.1
Q7 1.66 22.0
Q8 1.38 18.5
Q9 2.91 19.6

Q10 3.37 7.1

Fig. 6. Performance results (DNF – Did Not Finish in 30min; NS – Not Supported)

Query

Q1

Q2

Q4

Q6

Q9

Step Out

0.10 (179430)
-

0.09 (179430)
-

0.12 (179430)
-

0.03 (18093)
-

0.08 (171790)
-

Approach

MB-M
MB-H
MB-M
MB-H
MB-M
MB-H
MB-M
MB-H
MB-M
MB-H

Step 1

0.28 (6123)
-

0.32 (5850)
-

0.23 (7566)
-

0.18 (35)
-

0.15 (5601)
-

Step 2

0.32 (156172)
-

0.34 (9595)
-

0.13 (9595)
-

0.17 (12479)
-

1.14 (130318)
-

Step 3

0.24 (9)
-

7.28 (30294)
-

134.41
0.78

0.28 (18064)
-

0.96 (70327)
-

Step 4

0.09
0.20

1.14 (4317)
-
-
-

0.43 (682)
-

2.23
0.58

Step 5

-
-

0.10
0.22

-
-

0.21
0.20

-
-

TPT

2.03
2.14
9.27
9.39

134.89
1.26
1.30
1.29
4.56
2.91

Fig. 7. Running times of materialization of partial results (in sec.) for representative queries

We compare our ANDES-based MUSTBLEND implementation with two popular
commercial XML-extended relational engines, XSys-A and XSys-B (see Section 1), re-
alizing traditional query processing paradigm. Appropriate indexes were created for all
approaches and prior to our experiments, we ensure that statistics had been collected.
The bufferpool of the RDBMS was cleared before each run. We also compare Zorba
(try.zorba-xquery.org), an open-source XQuery processor written in C++ which
adopted latest optimization techniques [2]. We do not compare it with [9] as the latter
does not correctly support queries that require a set of conditions to be evaluated together
(e.g., Q2).

Experimental Setup. We use the XML representations of UNIPROT, PDB, and INTER-
PRO downloaded from their official websites. The features of these datasets are given
in Figure 2(b). Since Zorba fails to handle large datasets (UNIPROT), we reduce the
UNIPROT dataset by a factor of 50 (28MB) so that we can study its performance.

We chose ten single and multi-source twig queries that join up to three data sources.
Q1 to Q4 are shown in Figure 2(a) and the remaining queries are given in [11] (due
to space constraints). These queries are selected based of several features such as re-
sult size, number of conditions in the where clause, number of data sources, exis-
tence of ISTs with minimally inclusive conditions (highlighted in underlined bold), and
existence of AND/OR connectives. The subscripts of the labels in curly braces in the
where clause represent the default sequence of steps for formulation of conditions in
MUSTBLEND. Note that if a join and a non-join condition have same subscript then it
means that the join condition is formulated immediately after its non-join counterpart
and are evaluated together in MUSTBLEND. For example, the sequence of steps of Q1 is

try.zorba-xquery.org
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Query

Q5

Q3

Sequence

[C2, C1]

[C2, C1, C3, J3]
[C3, J3, C1, C2]

Time

0.09

0.18
0.81

Time

0.10

0.34
0.15

Time

-

0.82
0.34

Time

-

-
-

MB-M

0.14

26.5
26.5

MB-H

0.26

0.70
0.78

[C3, J3, C2, C1] 0.89 0.24 0.34 - 25.6 0.77

Q10 [C1, C2, J3, J4]
[C1, J3, J4, C2]

0.79
0.80

0.32
1.21

0.17
0.17

1.21
0.32

0.15
0.16

0.90
0.93

[C2, C1, J3, J4] 0.17 0.67 1.21 0.18 0.15 0.92

Fig. 8. Effect of query formulation sequence (in sec.)

depicted in Figure 2(a). Note that the join condition J2 and the non-join condition C2

share same subscript. That is, J2 is specified immediately after the formulation of C2

and are processed together in one step. Unless mentioned otherwise, we shall be using
the default sequence for formulating a query.

In order to formulate visual queries, fifteen unpaid volunteers with no prior knowl-
edge of XQuery query language participated in the experiments. Details related to par-
ticipants’ profile is given [11]. Each query was formulated six times by each participant
(using the default sequence unless specified otherwise) and reading of the first formula-
tion of each query was ignored. The average query formulation time (QFT) for a query
by all participants is shown in the right-most column in Figure 2(a).

Experimental Results. We now present performance results of MB-H and MB-M.
User Waiting Times (UWT). Figure 6(a) shows the average user waiting time (UWT)

of all approaches. It is computed by taking the average of the UWTs of all partici-
pants. In XSys-A, XSys-B, and Zorba, UWT refers to the query execution times. Clearly,
disk-based and memory-based variants of MUSTBLEND are significantly faster than
approaches based on traditional paradigm in most queries. In particular, MB-M and MB-
H are at least two orders of magnitude faster than XSys-A or XSys-B for queries that
join multiple data sources (Q1 − Q3, Q8 − Q10). Also, MB-H typically has superior
performance compared to MB-M especially for queries with larger result size (e.g., Q3,
Q4). Note that UWT of MB-H is less than a second for all queries. Lastly, although we
use a much smaller UNIPROT dataset for Zorba, surprisingly, MB-M and MB-H are still
significantly faster than Zorba.

Materialization of partial results. We now report the execution times for material-
ization of partial results of a set of conditions in a visual query. Figure 7 reports the
performance of five representative queries (results for all benchmark queries are avail-
able in [11]). Each column labeled Step i represents the running time associated with
the materialization of corresponding query condition(s) of i-th step (subscript in the
label inside curly braces) in the sequence. The last step in MB shown in bold refers
to retrieval of entire subtrees satisfying the complete query. The values in parenthesis
represent the size of the materialized relations. Step out refers to the output expression
selection step. In response to this action, MUSTBLEND retrieve all nodes (identifiers)
in the database satisfying the output expression. Notably, the only difference between
MB-M and MB-H is the last step where final results are retrieved (retrieveFinalResults
procedure). The preceding steps are identical in both approaches.

We can make the following observations. First, the large size of intermediate results
does not adversely affect the UWT. Additionally, retrieving all the node identifiers (can
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Id Original query

MQ1

for $entry in doc('UNIPROT.XML')/uniprot/entry
where ($entry/keyword = "3D-structure" {C1}
or $entry/keyword = "Calcium" {C2}) 
and ($entry/organism/name[contains (., "Cell")] {C3}
or $entry/organism/name = "Mouse" {C4})
return $entry/gene

MQ2

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro

where $entry/organism/name[contains(., "Human")] {C1}
and $interpro/pub_list/publication/journal = “Structure”{C2}
and $interpro/pub_list/publication/year = “2002” {C3}
and $interpro/@id = $entry/dbReference/@id {J2}
return $entry/name

MQ3

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro,
$cell in doc('PDB.XML')/datablock/cellCategory/cell

where $entry/keyword = "3D-structure" {C1}
and $entry/organism/name[contains(., "Human")] {C2}
and $interpro/@id = $entry/dbReference/@id {J3}
and $cell/@entry_id = $entry/dbReference/@id {J4}
return $entry/name

Modified query

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro,
$publication in $interpro/pub_list/publication

where ($entry/organism/name[contains(., "Human")] {C1}
and $entry/protein/name[contains(., “protein”)]) {C4}
and ($interpro/pub_list/publication/journal = “Structure” {C2}
or $interpro/pub_list/publication/journal = “Cell” {C5}) 
and $publication/year > “1980” {C6}
and $publication/year <= “2000” {C7}
and $interpro/@id = $entry/dbReference/@id {J2}
return $entry/name

for $entry in doc('UNIPROT.XML')/uniprot/entry
where ($entry/keyword = "3D-structure" {C1}
or $entry/keyword = "Calcium") {C2}
and ($entry/organism/name[contains (.,"virus")] {C5}
or $entry/organism/name = "Human") {C6} and
$entry/feature/@description[contains(.,"protein")]{C7}
return $entry/gene

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro,
$publication in $interpro/pub_list/publication,
$cell in doc('PDB.XML')/datablock/cellCategory/cell

where $entry/keyword = "3D-structure" {C1}
and $entry/organism/name[contains(., "Mouse")] {C5}
and $publication/year > “1956” {C6}
and $publication/year <= “2000” {C7}
and $interpro/@id = $entry/dbReference/@id {J3}
and $cell/@entry_id = $entry/dbReference/@id {J4}
return $entry/name

Fig. 9. Effect of query modifications

be large) satisfying an output expression is feasible as it does not affect the prefetching
operations and UWT adversely. Second, MB-M is faster than MB-H when the final result
set is small (e.g., Q1, Q2, Q10) whereas MB-H is faster when the final result set is
large (e.g., Q3, Q4). Finally, for the majority of the queries in MB, interestingly, the
total prefetching times (the total time taken for all prefetching operations, denoted by
TPT) are significantly less than the query execution times in XSys-A, XSys-B, and Zorba
(Figure 6(a)). This is due to benefits of the new paradigm mentioned in Section 1.

TPT vs complete query execution times. The aforementioned experiments do not
demonstrate whether the performance benefit of MUSTBLEND is due to the visual
querying paradigm instead of the efficiency of underlying storage scheme of ANDES.
In this experiment, we shall shed light on this issue. Specifically, we measure the TPT of
Q1−Q10 using MB-H and the execution time of each query in its entirety on ANDES.
Note that we did not undertake similar experiments on XSys-A, XSys-B, and Zorba as
these systems do not allow us to retrieve and materialize node identifiers as partial result
matches. Recall that in MUSTBLEND we only materialize node identifiers in order to
minimize intermediate results size. Figure 6(b) reports the performance results. Clearly,
in most cases the TPT is significantly lower than the cost of executing an entire query
on ANDES. Observe that the UWT (Figure 6(a)) is also significantly smaller than the
evaluation time of an entire query on ANDES.

Effect of query formulation sequence. A visual query can be formulated by following
different sequence of steps. We now assess the effect of these different sequences on the
UWT in MB. Figure 8 lists different formulation sequences for three representative queries
(results for all benchmark queries are available in [11]), average times (all participants)
to retrieve partial results, and the average UWT. Note that Q5, Q3 and Q10 are on one,
two and three data sources. Notably, there are hardly any significant changes in both the
prefetch times and the UWT. This is primarily due to the following reasons. Firstly, GUI

latency can always be exploited by MUSTBLEND at each step irrespective of the ordering



242 B.Q. Truong and S.S Bhowmick

Query

MQ1

MQ2

Sequence of Modifications

1. Update C4 to C6 (Case 4)

3. Insert $entry/protein/name = “Protein”
4. Delete $entry/protein/name = “Protein”

Prefetch Time

0.23

0.17
-

Avg. UWT

1.2

0.05
0.31

Result 
Size
1928

0
2135

2. Update C3 to C5 (Case 4) 0.13 1.46 2135

MQ3

Same sequence as IM
1. Update the value of C1 to “Mouse” (Case 4)

-
0.46

0.42
0.42

866
972

5. Insert C7 0.38 0.41 866

2. Update C3 to C6 (Case 1)
3. Insert C7

5. Insert C5
6. Update to OR node for C2 and C5

4. Update the value of C1 to “Human”

1. Insert C6

7. Insert C4

2. Insert C7

Type

IM

IM

IM

BM

BM

BM Same sequence as IM

Same sequence as IM

3. Update C2 to C5 (Case 4)

7.36

0.41
5.96

6.57

0.69
3.66

1653

1401
0

1.31 2.76 1638

0.60
-

0.97
0.98

1740
1740

7.92 8.35 2748

1.33 0.20 2

0.40
-

0.10
0.12

1
1

1.38 0.55 2

Fig. 10. Effect of query modification in MUSTBLEND (in sec.)

of the visual steps. Secondly, in any query formulation sequence, each visual step results
in evaluation of a simple XPath fragment, which is much faster to evaluate compared to
a large chunk of complex XQuery as the former stresses the underlying query processor
less.

Effect of query modifications. Figure 9 depicts three representative queries on one,
two, and three data sources before and after modifications (denoted by MQ1, MQ2,
and MQ3, respectively). In this figure, we highlight the changes in underlined bold. For
ease of reference, all unique conditions in the original and modified versions of a query
are given unique identifiers (e.g., C1). In order to simulate real-world scenario, we con-
sider two types of modification scenario, namely incremental and bulk modifications.
In incremental modification (denoted by IM), after each modification action we execute
the query by clicking on the “Run” icon. Hence, if there are n modifications performed
by a user then the query is evaluated n times. On the other hand, in bulk modification
(denoted by BM), all modifications to a query is first formulated before it is executed.
Hence a modified query is executed only once.

Figure 10 reports the performances of IM and BM in MB-M. Since deletion of a condi-
tion does not require retrieval of new matches, we mainly focus on updates. To simulate
real-world scenario, we mix update operations with insertion of new conditions. The
sequence of operations performed by a user for a query is recorded in the second col-
umn. As a user may insert/update a condition and restore it back later (this modification
will not appear in the final modified query) after realizing his mistake, we represent
this scenario by inserting (resp. updating) and deleting (resp. update back) query con-
ditions that do not appear in Figure 9 (e.g., the third and fourth modification actions
for MQ1, first and fourth updates for MQ2). We can make the following observations
from the results in Figure 10. First, all prefetching activities in IM due to the modifi-
cations are completed within few seconds. Second, the UWTs for both IM and BM are
significantly faster than traditional approaches. The modified MQ2 and MQ3 do not
return any results in 30 minutes or they are not supported by XSys-A and XSys-B. The
UWTs of MQ1 for XSys-A and XSys-B are 173.7s and 866.6s, respectively. Zorba takes
22.1s and 2957.7s for modified MQ1 and MQ2, respectively. However, it does not
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support MQ3. These results clearly demonstrate that MUSTBLEND’s performance is
not adversely affected by query modifications, highlighting again its strength.

6 Conclusions

Our research sought to understand and provide insights to a new XML query processing
paradigm where the latency offered by visual query formulation is utilized to prefetch
partial results. We have presented MUSTBLEND - an algorithm to realize this paradigm
over relational framework by addressing some of the central limitations of [3,9]. Specif-
ically, it can handle richer variety of queries and only stores synopsis of intermediate
results to make the overall process space-efficient. As MUSTBLEND does not employ
special-purpose storage, indexing, and cost estimation schemes to improve UWT, it can
easily be built on top of any off-the-shelf RDBMS. Further, the proposed algorithm en-
sures that the prefetching activities are completely transparent to the users and their
interaction behaviors are not affected by this paradigm. MUSTBLEND has excellent
performance for a wide variety of queries. It can also gracefully accommodate modifi-
cations to a query during construction. All these features are important for deployment
of MUSTBLEND in real-world environment.
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Abstract. The volume of RDF data increases very fast within the last
five years, e.g. the Linked Open Data cloud grows from 2 billions to 50
billions of RDF triples. With its wonderful scalability, cloud computing
platform like Hadoop is a good choice for processing queries over large
data sets. Previous works on evaluating SPARQL queries with Hadoop
mainly focus on reducing the number of joins through careful split of
HDFS files and algorithms for generating Map/Reduce jobs. However,
the way of partitioning RDF data could also affect the performance.
Specifically, a good partitioning will greatly reduce or even totally avoid
cross-node joins and significantly reduce the cost of query evaluation.
Based on HadoopDB, this work processes SPARQL queries in a hybrid
architecture where Map/Reduce takes charge of the computing tasks
and an RDF query engine, RDF-3X, stores the data and evaluates join
operations over local data. Based on analysis of query work-loads, we
propose a novel algorithm for automatically partitioning RDF data. We
also present an approximate solution to physically place the partitions
in order to reduce data redundancy. All the proposed approaches are
evaluated by extensive experiments over large RDF data sets.

1 Introduction

RDF, an abbreviation for Resource Description Framework, is a model recom-
mended by W3C for data interchange on the Web. Basically, RDF represents
each fact as a triple < s, p, o >. RDF dataset is essentially a graph with each ver-
tex per entity and each edge per relationship between two entities. The SPARQL
query is a widely accepted query language for accessing RDF triples. A SPARQL
query contains a set of triple patterns, i.e. at least one element of s, p, and o is a
variable. It can also be represented as a graph, with some vertexes or edge labels
(predicates) as variables. The results of a SPARQL query are sub-graphs of the
RDF graph. Hence a SPARQL query is basically a sub-graph pattern matching
task. As a running example, Fig. 1 illustrates the statement and corresponding
query graph of a SPARQL query, which tries to find all the persons who obtained
his/her degree from the same university which he/she currently belongs to.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 244–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In recent years, with the quick proliferation of RDF data, it is often infea-
sible to store all RDF triples in a single node, which motivates the interests
of processing SPARQL queries in a distributed environment, especially within
the Hadoop platform [10,12]. Benefiting from the Map/Reduce framework, these
works obtain high scalability of evaluating SPARQL queries over billions of RDF
triples. However, SPARQL queries usually contain multiple joins and these join
operations may be conducted in multiple worker nodes, which is not favored
by Map/Reduce because cross-node communications are not permitted in the
map phase. Thus a SPARQL query may need multiple M/R jobs which is quite
expensive since each such job requires several seconds to fire up, not to speak of
the time cost of communication between multiple nodes.

?X1

?X2

m
em

berO
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uat
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m

subOrgOf

ty
pe

University
type

Department

SELECT ?X1, ?X2, ?X3,?X4

WHERE

{  ?X1 type ?X4

?X2 type Department

?X3 type University              

?X1 memberOf ?X3

?X2 subOrgOf ? X3

?X1 graduateFrom ?X2}

type
?X3

?X4

(a) Query Statement (b)  Query Graph

Fig. 1. An example of a SPARQL Query

In the distributed database community, a classical technique to reduce cross-
node communication is data partitioning. The basic idea is to put the tuples
which may be involved in a join in the same worker node [4,14,6]. For this pur-
pose, usually we need to analyze previous query workloads and identify which
tuples or rows are probably appear in the same queries [14,6]. Taking this idea,
this work aims at facilitating scalable and efficient processing of SPARQL queries
via automatic data partitioning. Our work is based on the HadoopDB project [3],
which proposes a hybrid architecture by combining Map/Reduce and databases.
The principle idea is to execute M/R jobs over a database cluster. In this way, the
hybrid system could inherit the scalability and fault-tolerance from Map/Reduce
framework while obtaining high efficiency from the powerful capability of pro-
cessing complex operators like joins and aggregations in traditional databases.
In our work, each worker node is equipped with a RDF-3X query engine [13], a
state-of-art single-node system for processing SPARQL queries.

Our partitioning approach is inspired by the observation that in many ap-
plications there usually exist some frequent query patterns. A query pattern is
a special SPARQL query, which essentially defines a code such that a group
of similar SPARQL queries can be compiled according to it. For example, the
query shown in Fig. 1 can be regarded as a query pattern. The variable X4

can be replaced by different constants like Student, Professor, and Staff and
correspondingly generate different queries. The general idea of our partitioning
approach is to divide the RDF graph into twigs, or tiny sub-graphs, according
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to the frequent query patterns1. We can then ensure that no cross-node joins
are needed when processing SPARQL queries complied with any query pattern.
What should also be mentioned is that, thanks to the powerful capability of
RDF-3X for processing triple joins, even for queries not in any identified pat-
terns, the query performance of our system would also defeat those works based
on Hadoop systems [10].

The work most similar to ours is [9], where the authors also propose to evaluate
SPARQL queries over HadoopDB. In [9], the whole RDF graph is divided into
several huge sub-graphs based on a graph partitioner METIS [2]. These sub-
graphs would be stored at different worker-nodes, with triples near the division
boundaries replicated to multiple nodes. Based on this partitioning, most queries
could be answered based on the triples inside a single node.

Compared with [9], our solution has several significant advantages. First of
all, [9] does not consider the dynamic properties in query workloads, and cannot
guarantee that there are no cross-node joins for frequent query patterns. Sup-
pose a query pattern happens to involve the triples on the partition boundaries,
querying the queries compiled with this pattern have to coordinate triples in
different nodes. Secondly, [9] may result in many duplicated triples and does not
mention how to alleviate this redundancy. In our solution, the partitioning con-
tains two steps. The first step is exactly a logical partitioning, i.e. it will divide
the original dataset into many small parts but does not really move them. At
the second step, we will place these partitions into different worker nodes. Dur-
ing this placement phase, we will try to reduce the data redundancy by putting
partitions with large overlapping into the same worker node. Finally, the parti-
tioning in [9] is based on graph partitioning, a known NP-complete problem [5],
which will cost lots of computational efforts.

The contributions of our work are summarized as follows.

– We propose a query-driven data partitioning approach and based on it de-
velop an efficient solution for processing SPARQL queries over large scale
RDF data.

– We prove that the placement problem of reducing data redundancy is NP-
hard.

– We present an approximate algorithm for reducing data redundancy, which
is based on the LNS (Large Neighborhood Search) solution [14].

– We conduct extensive experiments over two large datasets, i.e. LUBM [8]
and BTC [1], to evaluate the efficiency and effectiveness of our proposed
approaches.

Next we will illustrate the architecture of our system in Sec. 2. We then discuss
the partition and placement approaches in Sec.3. Sec. 4 will report our experi-
mental results. We will discuss related works in Sec. 5 and conclude this paper
in Sec. 6.

1 The query patterns are assumed to be available, and the efforts of analyzing query
workloads and identifying frequent patterns exceed the scope of this paper.
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2 System Architecture

Our system architecture is illustrated in Figure 2. This system contains three
modules including Data Pre-Processor, Query Engine and a hybrid platform
combining Map/Reduce and RDF-3X.

RDF/XML

Query Pattern

SPARQL
QUERY

Fig. 2. System Architecture

In the data pre-processor, RDF data are partitioned according to query pat-
terns. The data partition procedure guarantees that there are no cross-node joins
when evaluating any queries compiling to any registered pattern. Each query pat-
tern would have an independent partitioning. All the partitions generated by all
the frequent query patterns need to be put into the nodes, through the data
placement procedure. Note that a triple may appear in multiple partitions since
we perform an independent partitioning for each query pattern. Hence the major
concern of the placement procedure is to reduce the data redundancy. Once ob-
taining the partitions, the data loader procedure on each worker node will load
all triples to the RDF-3X database installed in that machine.

In the query engine, after receiving a SPARQL query, the pattern detector
figures out whether this query matches any query pattern. If YES, because the
triples of each sub-graph matching this query have been placed to a single worker,
we can pushdown the whole query to RDF-3X and simply generate one M/R
job to retrieve the results. For those queries matching no patterns, we just gen-
erate M/R jobs according to the algorithm in [10]. In practice, we can design
query patterns to accommodate as many queries as possible, e.g. by replacing
more constants with variables. Finally, the query engine submits the jobs to
MapReduce framework.

Queries are executed usingMapReduce with RDF-3X as a local engine.MapRe-
duce checks configuration files and locates data replications with job parameters.
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Then each task sends SPARQL queries to RDF-3X installed in each worker node.
Query results are returned back as the InputFormat of Mapper.

3 Data Partitioning

We now illustrate the data partitioning process, which contains two steps, i.e.
query-driven partitioning and placement.

3.1 Query-Driven Partitioning

Since each SPARQL query pattern can be regarded as a directed graph, we
will use “edge” and “triple pattern” interchangeably when the meaning is clear
from the context. For each such sub-graph matching a given query pattern, if
all triples in this sub-graph are placed into the same worker node, there would
be no cross-node joins when evaluating all queries within this pattern. This
property will be guaranteed by our partitioning algorithm. Before going into the
algorithm details, we first illustrate a framework to present the principle idea of
our partitioning algorithm.

Algorithm 1. PartitioningFramework(RDF dataset D, Query Q)

1 Q′ ← an empty graph;
2 Randomly choose an edge e0 from Q and insert it into Q′ ;
3 S ← all triples matching e0;
4 Randomly choose a partition for each triple in S;
5 Record the partition information;
6 while E(Q′) < E(Q) do
7 Select an edge e such that e ∈ E(Q) \ E(Q′) and e is connected to Q′;
8 Insert e into Q′;
9 S ← all triples matching e;

10 foreach triple t in S do
11 Find the set of triples S′ that can be joined with t according to Q

and have already been partitioned;
12 Put t in each of the partition containing at least one triple in S′;

13 Record the partition information;

Algorithm Framework. Alg. 1 illustrates a framework of our partition algo-
rithm. We first initialize an empty graph Q′, which will be used to record the
progress of partitioning. Next, Step 2 tries to randomly choose an edge from Q
and add it to Q′. All triples matching this edge will be loaded by scanning the
whole dataset (Step 3), and each matched triple will be assigned to a random
partition (Step 4). We will store the partitioning informations, e.g. the partition
which a triple is assigned to, in a table (Step 5). After processing this initial
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edge, we then add other edges in Q to Q′ one by one. Step 7 claims that the
edge which we choose at each step must be connected to Q′, which is a crit-
ical requirement to ensure the algorithm target. Again, we retrieve all triples
matching this new edge (Step 9). Now we need to decide the partitions for these
matched triples. For this purpose, we basically conduct a join according to the
structure of Q between these new coming triples and those have already been
partitioned (Step 11).

Lemma 1. For any query pattern Q, all sub-graphs matching Q will have their
triples assigned to the same partition if we divide the original dataset according
to Algorithm 1.

Proof. Without lose of generalization, suppose Q contains m edges. We change
the indices of these m edges and get e1, · · · , em such that ei is the ith edge in-
serted intoQ′ according to Algorithm 1. Any sub-graph matchingQ also contains
m triples. Again, we change the indices of the m triples in a specific sub-graph
to obtain t1, · · · , tm so that ti has ei as its corresponding triple pattern in Q.
It is not hard to see that ti must be placed into the same partition as ti−1 for
i = 2, · · · ,m. Thus all these m triples must appear in the same partition which
is initially decided by t1.

The Partition Algorithm. The framework in Algorithm 1 cannot be directly
applied in practice. This algorithm requires a table or index to record the parti-
tioning decision for each processed triple, which is not feasible due to the large
volume of RDF dataset. Moreover, the RDF dataset is usually quite skew. Some
triple patterns may have huge number of matched triples. This skewness must
be handled carefully otherwise the performance could be very bad. We now illus-
trate several techniques utilized for overcoming these shortcomings and, based
on these techniques, present the partitioning algorithm.

A Compact Data Structure for Storing the Partitioning Results. In
Alg. 1, for each e chosen to be inserted into Q′, all the triples matching e should
be checked to see whether they could join with previous partitioned triples. This
triple-to-triple join is quite costly in terms of both computation and memory
with the existence of billions of triples. In order to improve the performance, we
now present a compact data structure to store the partitioning results.

This structure is based on the following observation. Any triple t which could
be joined with existing ones must satisfy the following two requirements: (1) its
corresponding triple pattern e must share at least one common variable with one
or more edges in Q′, and (2) there exists at least one partitioned triple t′ such
that both t and t′ are assigned with the same value for this common variable.
Therefore, instead of recording all the partitioned triples, we just need to keep all
the distinct values of each variable that have shown in any partitioned triples.
Specifically, we construct a Hash table for each variable v in Q′ containing a
set of (var key, pos) entries with one var key per distinct value of v, and the
corresponding pos be the identifier no. of the partition storing all the triples
having the same value, i.e. var key, to this variable v.
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Thus every time we join a candidate triple with previous allocated ones, our
algorithm will first look up the Hash table with its value on the joined variable
and then assign this triple to the corresponding partition indicated by the re-
turned pos value. In the meanwhile, if this triple contains another variable, its
value should be added to the index for the follow-up operations.

Algorithm 2. Partitioning(TripleSet D, Query Q, Int n )

1 TP ← estimate(Q,D);
2 Q′ ← an empty graph;
3 while |E(Q′)| < |E(Q)| do
4 e ← chooseEdge(Q,Q′, TP );
5 STemp ← loadTriples(D, e);
6 foreach t ∈ STemp do
7 if E(Q′)=0 then
8 i ← a random value in [1, · · · , n];
9 foreach v in V ar(e) do

10 putIndex(Γ ,hash(t,e,v),i);

11 else
12 foreach v in V ar(e) ∩ V ar(Q′) do
13 i ← readIndex(Γ ,hash(t,e,v));
14 if i < 0 then
15 continue;

16 else
17 add t into Si;

18 foreach v in V ar(e) ∩ (V ar(Q) \ V ar(Q′)) do
19 i ← readIndex(Γ ,hash(t,e,V ar(e) \ v));
20 putIndex(Γ ,hash(t,e,v),i);

21 insert e to Q′;

Choosing Edges Based on Selectivity Estimation. In practice, the selec-
tivities of the triple patterns could be quite skew. For LUBM dataset containing
1 billion triples, if we first choose the edge ?X1 type ?X4 in the example query
in Fig.1, about 109 of records need to be retrieved and recorded in the index.
Clearly, not all the records can satisfy the query. Many retrieved triples have
no contributions to the query results. In this work, we adopt the selectivity es-
timation technique to improve the performance. As a classical method in the
database community, the principle of selectivity estimation is to evaluate predi-
cates with low selectivities first in order to reduce the number of tuples involved
in joins. We utilize a simple heuristic to estimate the selectivity of each triple
pattern. Suppose the number of triples contained in a predicate is nump, and
the number of distinct values of the variable in this triple pattern is numv, the
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selectivity of this triple pattern is estimated by nump/numv. For details, please
refer to our technical report [18].

The Algorithm. Now, we are ready to present the partitioning algorithm,
which is listed in Alg. 2. Step 1 is to construct a list TP storing the selectivities
of each triple pattern by analyzing D. The chooseEdge function in Step 4 is to
select a new edge which should be connected to Q′. This selection is based on
the priorities stored in TP . Steps 7-10 is to process the first edge. Each triple
matching the first edge will be assigned to a random partition (Step 8). A hash
function computes a Hash code for the variable value of this triple with this
triple pattern, and this code would be used as the key to store the partition
result in an index Γ (Step 10). For subsequent edges, a variable on the edges
may be join variable, i.e. appearing in Q′, or non-joinable variable, i.e. not in
Q′. The partition of the current triple is decided by its join variables through
checking the index(Step 13). Note that a triple cannot be joined if we cannot find
its key in the index(Steps 14-15). We also store the partition information for the
non-joinable variables (Steps 18-20), which may be used to link with follow-up
edges. Note that there is at most one non-joinable variable for each edge.

3.2 Placement

According to the partitioning process shown in Sec. 3.1, each query pattern will
generate n partitions. We now discuss how to physically place these partitions
in different worker nodes. Note that when partitioning the original RDF dataset
according to a query pattern Q, those triples which could not satisfy this pattern
will not be assigned to any partition. Thus, after processing all the m query pat-
terns, there are still a large portion of triples satisfying no patterns and therefore
are not partitioned. In practice, such triples will be seldom accessed and we call
them cold triples. Each of these cold triples would be assigned to a randomly
chosen worker node. In this section, we focus on the placement of the hot triples,
i.e. those probably satisfying at least one query pattern. Since our partitioning
algorithm guarantees no cross-node joins for queries compiled to frequent pat-
terns, the major concern of placement is to reduce the data redundancy, i.e.
the number of replicated triples among different worker nodes. We will discuss
how to estimate data redundancy and give the definition of the placement prob-
lem. Then we will prove that the placement problem is NP-hard. Finally we will
illustrate an efficient approximate solution for this problem.

Problem Definition. During the partitioning process, we totally generatem·n
partitions. Hence each reasonable placement solution, denoted by P , needs to
arrange these m ·n partitions in a m ·n matrix such that: i) the ith column of P
contains all the partitions corresponding to the ith query pattern (i = 1, · · · ,m)
and, ii) all partitions in the jth row would be put into the jth worker node
(j = 1, · · · , n). Thus a placement solution is exactly a m · n matrix and there
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could be nm different possible solutions. The data redundancy of a placement
solution P could be evaluated by the following equation.

γP =
∑

∀i,j(i
=j)

γi,j −
n∑

i=1

m∑
j=1

γi,j (1)

Here γi,j is the number of replicated triples in the ith and jth partitions, and
γP means the overall redundancy of this solution. The value of each γi,j can be
estimated based on the index described in Sec. 13. The details are skipped due to
page limit. Interested readers are recommended to read our technical report [18].
The first part on the right side is basically the total number of replicated triples
among all the m · n partitions. The value of

∑m
j=1 γi,j is the overall redundancy

among all partitions in the jth row. The second part is just to compute the sum
of all redundancy in each row. When evaluating γP , the row-level redundancy
should be subtracted since all partitions in a row would be put in the same
worker node. Note that the first part is a constant for all different placement
solutions. Hence in order to minimize γP , we just need to maximize the value of
the second part.

Definition 1. Given the partitioning results of the m query patterns, i.e. a set
of m·n partitions, the placement problem is to minimize the data redundancy
as defined in Equation 1 by arranging these m · n partitions into the n worker
nodes.

P=

p11,  p12,  p13, p14

p21,  p22,  p23, p24

p31,  p32,  p33, p34

p41,  p42,  p43, p44

P'=
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Fig. 3. An example of placement solution

Complexity Analysis. The placement problem could be transformed to the
maximum weight independent set problem (MWIS in short). For any graph where
each vertex is attached with a positive weight, a maximum independent set
(MIS) is a set of vertexes in this graph which are pairwise disconnected and,
all other vertexes should have at least one neighbor in this set. A MWIS is just
the heaviest MIS. Let us define a reasonable combination, denoted as C, as a set
of m partitions each of which corresponds with a distinct query, i.e. a row in a
placement solution. Hence there could be totally nm reasonable combinations.
We then build a graph G by adding a node for each reasonable combination, and
adding an edge between two nodes if and only if their underlying combinations



Efficient SPARQL Query Evaluation via Automatic Data Partitioning 253

contain overlapping partitions. Each node is attached with a weight which is
equal to the overall redundancy of this combination. Fig. 3.2 illustrates a simple
example for partitioning a dataset into four nodes according to four queries.
On the left part, there are two possible placement solutions, P and P ′. Each
element of the two matrixs, e.g. p11, is a partition generated in the partitioning
process. The difference between P and P ′ are highlighted in red color. Each row
represents a reasonable combination with their labels, i.e. C1, · · · , C8, listed on
the right. The graph on the right part of this figure contains eight nodes for these
combinations, with edges connecting combinations with overlapped elements. For
example, the nodes C1 and C6 are connected since both nodes contain the same
element p11.

Algorithm 3. Placement(Solution P )

1 SearchArray ← Relax(P );
2 best ← Evaluate(P );
3 scoreOfOneSearch ←LocalSearch(SearchArray, best);
4 while scoreOfOneSearch > best do
5 best ← scoreOfOneSearch;
6 ideal ← array stored in LocalSearch;
7 SearchArray ← Relax(ideal);
8 LocalSearch(SearchArray, best);

9 return ideal;

Note that in any placement solution, there will be no repeated partitions and
all the nm partitions should show up. Clearly, each maximum independent set
will constitute a solution P , and the optimal solution is exactly the one with the
largest sum-of-weight. The MWIS problem is known to be NP-hard [16], and we
have to resort to some approximate approaches.

A LNS-Based Approximate Algorithm. In this paper, we adopt the LNS
(Large Neighborhood Search) algorithm [14]. The principle of LNS is an iterative
process. Starting from an initial solution, each iteration will search the nearby
solutions of the previous optimal solution, and repeat this procedure if finding a
better solution. Otherwise, if no better solutions are found in the neighborhood,
the current optimal solution will be output as the result. The algorithm is illus-
trated in Algorithm 3. Firstly, we takes the output of the partitioning algorithm
as the initial solution. Then in relaxation part, some placed parts in the initial
solution will be selected to be relaxed according to proportion ratios given as
parameters (Step 2). In the core phrase of LNS, the LocalSearch function will
explore nearby solutions and try to find better solutions (Step 4,9). The process
will be repeated if a better solution is met during the local search process (Steps
5-9).
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4 Experimental Analysis

4.1 Experiment Setup

Hardware. We perform our experiments on a 8 node cluster. Each node has the
following configuration: two 2.4GHz Intel(R) Xeon(R) E5654 processors, 48GB
main memory and 250G disk space. We run the partitioning and placement
algorithms on one of the machine in cluster with an extra 4.5T hard disk.

Software. We modify the source codes of Hadoop-0.20.2 in order to adapt with
RDF storage. The version of the RDF-3X engine used in our experiments is
0.3.7. In the pre-processor module, we parse each SPARQL query with jena-
2.6.2 together with arq-2.8.3 [17]. In comparison with the state-of-art, we also
implement the system in [10], called TKDE11 in this paper. We do not com-
pare the performance with the system in [9], since it usually evaluates SPARQL
queries over database clusters instead of the Map/Reduce platform.

DataSets and Queries. Throughout our experiments, we use one synthetic
dataset, the Lehigh University Benchmark(LUBM) [8] and one realistic dataset,
the Billion Triple Challenge 2010(BTC) [1]. LUBM generates synthetic data
about universities on a university domain ontology. Besides data generator,
LUBM also has 14 standard queries focusing on both scalability and inference
testing. In our experiments, we generate a dataset of 10,000 universities with
default parameters. The LUBM dataset contains around 1.1 billion triples. BTC
contains the triples from twelve sources such as Yago, DBPedia, and Freebase [7].
We choose BTC to test effectiveness and efficiency of our solutions on large scale
and real-life RDF data. After cleaning the noisy or duplicated data, we obtain
about 1.28 billion triples. Before the query execution, we also encode each field
of these triples into integers to facilitate the query processing.

Query patterns are obtained by rewriting the SPARQL queries. We sim-
ply unbound some concrete values as variables in some triple patterns. For
example, in LUBM query1, we turn triple pattern ?X ub:takesCourse

<http://www.Department0.University0.edu/GraduateCourse0> into
?X ub:takesCourse ?Y to generate a query pattern. The complete list of all
queries used in our experiments can be found in our technical report [18].

Table 1. Query running time in seconds of LUBM 10000 dataset

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Our Solution 16.3 235.2 16.3 16.3 16.3 255.4 22.4
TKDE11 116.3 687.6 174.4 757.8 371.1 342.8 289.2

Q8 Q9 Q10 Q11 Q12 Q13 Q14
Our Solution 28.3 165.2 16.4 15.3 17.5 74.5 213.3
TKDE11 1320.3 1371.8 184.5 103.3 56.0 91.0 325.9

<http://www.Department0.University0.edu/GraduateCourse0>
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4.2 Evaluation

Partitioning Time. In our system, the time for partitioning the LUBM dataset
is about 20 minutes. The RDF-3X needs about 40 minutes for loading these
triples and building the index.

Query Performance. Next, we will compare the performance between our
solution and TKDE11, and evaluate the effectiveness of our placement algorithm
for reducing data redundancy.

Table 1 illustrates the query performance of our solution and TKDE11. We
can observe that our solution always performs better than TKDE11. Moreover,
for most queries such as Q1, Q3-Q5, and Q7-Q11, the performance of our solution
is about one order of magnitude faster than its competitor. These results validate
the principle idea that good data partitioning can significantly improve query
performance. Next we will analyze the results in detail.

1. For the queries with simple semantic and small result set like Q1, Q3-Q5,
Q7-Q8, Q10, and Q11-Q12, our solution performs about 10 times faster
than TKDE11. The reasons are two folds: 1) there are only one or two join
variables in those queries and their triple patterns usually contain constants,
which ensure RDF-3X to utilize its index for selecting candidate triples very
fast and, 2) their result sets are quite small, less than 103 triples, and little
time cost is needed in data transformation between the map and reduce
processes.

2. Q2 and Q9 are queries with complex structure, and small result set. Specif-
ically, there is a triangle relationship among three variables, say ?X ?Y and
?Z. When dealing with these queries, TKDE11 will generate two M/R jobs
with job1 evaluating two joins on ?X and ?Y separately, and job2 joining
the output of job1 with ?Z. The time cost is huge with large middle files
written to and read from HDFS files. On the contrast, our solution can ben-
efit from the powerful capabilities of RDF-3X for evaluating joins. Moreover,
our system needs only M/R job based on our partitioning approach.

3. The performance of our method is slightly better than TKDE11 in Q6, Q13
and Q14. These queries all have huge results, larger than 108 triples. Lots of
triples should be scanned and large amount of triples need to be transfered
between RDF-3X engine and Map/Reduce framework. Hence both the query
execution and result retrieval phases will cost a lot of time compared with
those queries in the above cases.

For the queries matching no frequent patterns, our method has similar per-
formance as TKDE11. The only difference between our solution and TKDE11
method for processing these queries is where the data comes from. We evaluate
this case using some queries in LUBM query set by processing each triple pattern
at a time. There are no evident difference in the time costs of both methods.
Thus we do not report the numbers here.

It should be noted that the queries above are tested using cold runs, which
means that the main memory and file system cache were cleared before execution.
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Also, because RDF-3X does not support inferencing, we rewrite the reasoning-
needed queries in LUBM query set to equivalent ones using union operations
before query execution.

The time of query processing tested on BTC is presented in Table 2. Due to the
feature of large number of distinct predicates for BTC dataset, the result set for
queries over BTC is much smaller than that of the queries over LUBM. Relatively
simple query and smaller results explains the resemblance of the query time for
our solution in Table 2. It should be noted that there is predicate variable in Q1
and Q4, in which case our solution performs far better than TKDE11 strategy
because we do not need to scan the whole triples to get the result.

Table 2. Query running time in seconds of BTC dataset

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Our Solution 16.1 16.2 16.2 15.2 15.9 16.1 16.3
TKDE11 296.1 45.1 95.6 330.3 22.3 74.5 22.8

Placement. We test the effectiveness of our placement algorithm with various
column adjust number K and row adjust number M , i.e. at each iteration of
Algorithm 3, K columns and M rows of the previous matrix are relaxed which
define a neighborhood containing (M !)K different solutions. The y-axis in Fig-
ure 4 and Figure 5 is the ratio of redundancy decrease, which is computed by
1 − γ′/γ with γ′ and γ are the redundancies of the final solution and initial
solution respectively.

As illustrated in Figure 4, it is obvious that the higher K and M are, the
better performance is achieved. Figure 5 illustrates the redundancy decrease
ratio obtained after each iteration of searching neighborhood with different K
and M . Clearly, the redundancy becomes smaller after each iteration, and after
several runs the redundancy becomes stable.

5 Related Work

SPARQL Query Processing. Most previous works on evaluating SPARQL
queries over RDF data are based on a single node [13,7,17]. The RDF-3X [13]
is widely accepted as the state of art for SPARQL query engine, which stores
all triples in B+ tree, and builds exhausted indexes of all SPO permutations.
Due to the centralized mode, these works cannot scale to handle huge volume of
RDF triples which are still increasing in high velocity.

In order to process such huge RDF datasets, [12,10,11] suggest to store RDF
triples in HDFS files and evaluate SPARQL queries by rewriting them as a series
of Map/Reduce jobs. [10] presents a method for generating Map/Reduce jobs
and heuristics of dividing RDF triples into separate HDFS files. Myung et. al. [12]
propose an algorithm for basic graph pattern matching, and they will process a
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SPARQL query by a sequence of Map/Reduce jobs. None of these works consider
to improve query performance through better data partitioning. The work in [9]
proposes to partition a RDF dataset according to its graphical features and
try to avoid cross-node communications by replicating some vertexes near the
boundaries of each partition. However, as illustrated in Sec.1, our solution has
several evident advantages compared with [9].

Data Partitioning. In distributed databases, data partitioning is one of the
most important technologies for achieving platform scalability. The partitioning
solutions are realized mainly in horizontal partitioning or vertical partitioning [4].
In brief, horizontal partitioning, such as Hash, Round-robin, Range, etc., is to
divide a relational table into multiple groups of rows, whereas vertical partition-
ing is tries to divide a table into several clusters of columns. Recently, along with
the quick development of practical applications, researchers tend to use nested
horizontal or vertical partitioning methods [15], or even hybrid approaches [4], to
achieve better performance. The idea of improving performance through clever
partitioning gives us a good inspiration, but all of these works focus on relational
databases and cannot be applied directly to partition RDF datasets. The works
in [6] design partitioning based on elaborative analysis on query workloads such
that frequent queries could be answered more quickly, which is also adopted in
this paper in our data partitioning solution.
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6 Conclusion and Future Works

In this paper, we propose a automatic data partitioning approach in order to
improve the performance of processing SPARQL queries in a Map/Reduce frame-
work. Compared with previous works, our system can completely avoid cross-
node joins for frequent queries and reduce data redundancy. According to the
simulation results, our method could accelerate the query processing time by up
to two orders of magnitude. Our on-going projects include how to perform up-
date or even migration when there are significant changes on the dataset and/or
workload, e.g. large number of new-coming tiples, new identified query patterns,
and skewed query accessing.
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based workload partitioning strategy for parallel data aggregation. In: PPSC (2001)
7. Du, F., Chen, Y., Du, X.: Partitioned indexes for entity search over rdf knowledge

bases. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.)
DASFAA 2012, Part I. LNCS, vol. 7238, pp. 141–155. Springer, Heidelberg (2012)

8. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3),
158–182 (2005)

9. Huang, J., Ren, D.J.K.: Scalable sparql querying of large rdf graphs. PVLDB 4(11),
1123–1134 (2011)

10. Husain, M., McGlothlin, J., Masud, M.M., Khan, L., Thuraisingham, B.: Heuris-
tics based query processing for large rdf graphs using cloud computing. IEEE
TKDE 23(9), 1312–1327 (2011)

11. Kim, H., Ravindra, P., Anyanwu, K.: Scan-sharing for optimizing rdf graph pattern
matching on mapreduce. In: IEEE CLOUD, pp. 139–146 (2012)

12. Myung, J., Yeon, J., Lee, S.-G.: Sparql basic graph pattern processing with iterative
mapreduce. In: Proc. of the 2010 Workshop on Massive Data Analytics on the
Cloud, MDAC 2010, pp. 6:1–6:6 (2010)

13. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. PVLDB 1(1),
647–659 (2008)

14. Pavlo, A., Curino, V., Zdonik, S.: Skew-aware automatic database partitioning in
shared-nothing, parallel oltp systems. In: SIGMOD 2012, pp. 61–72 (2012)

15. Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database design
in a parallel database. In: SIGMOD 2002, pp. 558–569 (2002)

16. Sanghavi, S., Shah, D., Willsky, A.S.: Message passing for maximum weight inde-
pendent set. IEEE Trans. on Information Theory 55(11), 4822–4834 (2009)

17. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In: ISWC 2003, pp. 131–150 (2003)

18. Yang, T., Chen, J., Wang, X., Chen, Y., Du, X.: Efficient sparql query evaluation
via automatic data partitioning, technical report (2012),
http://iir.ruc.edu.cn/~jchchen/rdfpartition.pdf

http://www.hpi.uni-potsdam.de/naumann/sites/btc2010
http://glaros.dtc.umn.edu/gkhome/views/metis/index.html/
http://iir.ruc.edu.cn/~jchchen/rdfpartition.pdf


Content Based Retrieval for Lunar Exploration

Image Databases

Hui-zhong Chen1,2, Ning Jing1, Jun Wang3, Yong-guang Chen4,
and Luo Chen1

1 School of Electronic Science and Engineering,
National University of Defense Technology, Changsha, China

2 Shanghai Branch, Southwest Electronic and Telecommunication
Research Institution, Shanghai, China

3 The Third Research Institute of Ministry of Public Security, Shanghai, China
4 Ordnance Engineering College, Shijiazhuang, China

Abstract. Being a novel research aspect following the recent new round
of lunar explorations, content-based lunar image retrieval provides a con-
venient and efficient way for accessing relevant lunar remote sensing im-
ages by their visual contents. In this paper, we introduce a novel method
for mining relevant images in lunar exploration databases. A novel fea-
ture descriptor derived from relationships of salient craters in lunar im-
ages and a compound feature model organizing different features are
proposed. Based on the features, similarity measurement rules and a re-
trieval algorithm are proposed and described in detail. Both theoretical
analysis and experimental results of our method are provided, verifying
that our features and model are effective and the method can get a good
relevant retrieval results in lunar image databases.

Keywords: Content-based lunar image retrieval, Feature extraction,
Similarity measurement, Relevant retrieval, Image mining.

1 Introduction

With the new round of lunar exploration recently, several programs by different
countries have been developed or in plan, such as the CLEMENTINE, LRO of
USA, SMART-1 of ESA, SELENE of Japan, Luna-Glob of Russia, MoonLITE of
UK, Chandrayaan-1 of India and Chang’e of China et al. Large quantities of lunar
remote sensing images are obtained and available to the public soon after the
mission. The databases containing massive and diverse images are conventionally
organized by keys like mission Sol. or spacecraft clock time, which makes it
difficult for users to retrieve and take advantage of the full potential of the
image data [9].

Following the current lunar exploration missions, content-based lunar image
retrieval has been studied as a quite novel research aspect. C. Meyer et al.[9] of
NASA Ames research center proposed a method for content-based retrieval of
images for planetary exploration.
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Being a relevant research domain, for earth remote sensing images, there are
various contributions that focus on content-based retrieval and, oftentimes, con-
sidered as image information mining[8]. For example, in GeoIRIS system[14], a
content retrieval system architecture is designed, covering the function of auto-
matic feature extraction, visual content mining from large-scale image databases.
Recently, [13] presented a novel indexing structure that was developed to effi-
ciently and accurately perform content-based shape retrieval of objects from
a large-scale satellite imagery database. [2] described a framework for model-
ing directional spatial relationships among objects and using this information
for contextual classification and retrieval. [3]proposed a knowledge-discovery al-
gorithm that links low-level image features with high-level visual semantics to
automate the process of retrieving semantically similar images. More earlier rel-
evant contributions can be found in [1][12][11][4] et al.

Lunar images are lack of color information and the shape of objects contained
is about the same. Therefore it brings new challenges to us and further researches
are required for the content-based lunar image retrieval.

2 Problem Description

To retrieve relevant images, content features are extracted and indexes are built
in the preprocessing stage and stored after that. The images whose features
belong to the top k best matches are returned as the resulting. Figure 1 gives
out the overall structure of content-based lunar image retrieval.

Query
Image

Similarity
Measurement

Building
Index

Feature
Extraction

Query
Feature

IndexesTop k Best
Matches

Features

Results

Feature
Databases

Lunar Image 
Databases

Fig. 1. Overall structure of content-based lunar image retrieval, the grey arrows demon-
strate the preprocessing steps and the black arrows demonstrate the retrieval steps

Firstly, several notations are defined: I: a lunar remote sensing image;N : num-
ber of images in the database; I: image set in the database, I = {Ii| i = 1, 2, . . .N};
F: content feature of I; Iq : sample query image; Iresult : image set of query results;
k: number of resulting image sets; S: similarity value.
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Then the problem can be defined as follows:

Definition 1. (problem of feature extraction): Given a lunar remote sensing
image I, find a method Extract(·), s.t. F = Extract(I).

Definition 2. (problem of similarity measurement): Given two lunar remote
sensing images I1 and I2, find a method S(·, ·), s.t. Sim12 = S (F1, F2), the
higher Sim12 is, the more similar I1 and I2 are in content.

Definition 3. (problem of content-based lunar image retrieval): Given a query
sample Iq, find a set of k lunar images Iresult from the database, s.t. ∀Ii ∈
I\Iresult, ∀Ij ∈ Iresult, Simjq ≥ Simiq.

3 Feature Extraction

We have developed a compound feature model that supports different content
features. And we also propose a feature descriptor particularly for lunar images
based on the salient regions.

3.1 Compound Feature Model

Most lunar images looks similar, because their visual contents are about the
same. In this condition, to organize different features including global descriptors
and local descriptors, a compound feature model is defined as follows:

F =
(−→
gf,MF,LF

)
(1)

Here,
−→
gf = {gf1, gf2, . . . , gfD} is aD-dimensional global feature vector, and each

image has only one
−→
gf . MF is the set of Dm-dimensional mid-level local feature

descriptors, MF = {−−→mfi

∣∣∣ i = 1, 2, . . . , Nm}, −−→mfi = {mfi1,mfi2, . . . ,mfiDm}.

And LF denotes the set of low-level local features: LF = {−→lfi
∣∣∣ i = 1, 2, . . . , Nl},

−→
lfi = {lfi1, lfi2, . . . , lfiDl

} . The ”mid-level” means the descriptors are calculated
on the low-level features, The detail will be described in the next section.

We use HU moment[5] as shape feature, Tamura[15] descriptor as texture
feature, and they are combined into one feature vector as the global compound
feature. SURF local descriptors are used as low-level features.

3.2 LIFBS Feature

LIFBS is based on the salient regions of a lunar image. Here, the saliency means
the most visually attentive parts in a lunar image, usually containing big and
conspicuous impact craters.They are set of circle regions, which can be calculated
by automated Crater Detection Algorithms (CDAs)[10][6] or labeled by users
manually. Below are some notations to be used in the description of LIFBS
generating algorithm: c: c = (x, y), center position of a salient region; r: radius
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of a salient region; H : visual strength of a salient region; SR: a salient region,
SR = (c, r,H); Ns: number of salient regions in a lunar image; SRS: set of all
salient regions in a lunar image, SRS = {SRi| i = 1, 2, . . . , Ns}.

Then the detailed LIFBS generating algorithm is as follows: Step 1. Input
SRS, ∀SRi, SRj ∈ SRS and i 
= j, calculate the distance between centers:

Dij = Dist (SRi, SRj) =

√
(xi − xj)

2
+ (yi − yj)

2
(2)

for each SRi ∈ SRS, repeat Step 2 - Step 6.
Step 2. Sort all the SRj , j 
= i in ascend order according to Dij , mark the

rank order number as o, and j = rank−1 (o).
Step 3. Let o = 1, set SRi’s nearest neighboring salient region SRj , j =

rank−1 (o) as the base neighboring salient region SR0, and its center cj = (xj , yj)
as the base point c0. Let the line from ci to c0 is the base line, denoted as L0.

Step 4. Let ci be the origin, L0 be the 1st quadrant angular bisector, then-
coordinates divides the image to 4 quadrants: QRn, n = 1, 2, 3, 4.

Step 5. If cj is in QRn, check if there already exists feature components of
QRn, if not, calculate following 3 components: sn = rj/ri, hn = Hj/Hi, dn =
Dist (SRj, SRi) /ri = Dij/ri and make sn, hn, dn as the feature components of
QRn. If components of all the four QR exist, go to Step 6 ; else let o = o + 1,
j = rank−1 (o), repeat Step 5.

Step 6. Combine components of all theQR to a 12-dimensional LIFBS feature
vector for SRi:

−→
fvi = (s1, h1, d1, s2, h2, d2, s3, h3, d3, s4, h4, d4)

Step 7. Let FV =
{−→
fv1,

−→
fv2, . . .

−→
fvN

}
and return.

4 Similarity Measurement

Similarity measurement compares content features between the sample query im-
age and images in lunar image gallery. The k most similar images are outputted
as results. The visual features of a lunar image are defined as 3 types: a global
feature vector, mid-level local features and low-level local features. we propose
a compound feature model based similarity measurement, which consists of a
filtering phase and a refining phase. That is:

S (Fq,Fi) =

{
Sfilter (Fq,Fi) ,Filtering
Srefine (Fq,Fi) ,Refining, Ii ∈ Ic

(3)

Sfilter (Fq,Fi) denotes the filtering phase similarity measurement by the sum of
weighted global feature and mid-level local features.

Srefine (Fq,Fi) denotes the refining phase similarity measurement. The low-
level local features between query image and each one in Ic will be used for
calculation and sorted to get the final query result. The similarity measurement
is calculated on weighted global, mid-level and low-level features.



Content Based Retrieval for Lunar Exploration Image Databases 263

5 Retrieval Algorithm

5.1 Algorithm Description

Based on compound feature model and similarity measurement, a content based
lunar image retrieval algorithm is proposed. The input of the algorithm is a
query lunar image Iq, output is the resulting set of images Iresult = {Ii| i =
1, 2, . . . k, Ii ∈ I} . The algorithm consists of three phases: preprocessing, filter-
ing, and refining. In preprocessing phase, HU moments, Tamura texture feasure,
SURF descriptors and LIFBS descriptors are extracted to construct the com-
pound feature model; In filtering phase, according to filtering similarity measure-
ment, global and middle-level local similarity are calculated. In refining phase,
the refining similarity measurement is calculated based on all these types of
feasues including the low-level. The detailed algorithm is as follows.

Algorithm 1. Relevant Retrieval

Input:
Iq: Query Sample Image, k: Number of Results, kc: Number of Candidates;

Output:
Iresult: Set of Result Images.

1 let set of candidates Ic ← ∅;
2 let set of results Iresult ← ∅;
3Cal HU (Iq) ,Cal Tamura (Iq)
4 let set of detected SURF points: {SURF} ← Detect SURF Points (Iq)
5Cal LIFBS (Iq);
6Cal SURF Descriptors ({SURF});
7 for each Ii ∈ I do
8 Simiq ← Sfilter (Fq,Fi);
9end for
10SortDescend (Sim1q , Sim2q , . . . SimNq);
11for the top kc Simiq do]
12 Ic ← Ic ∪ Ii;
13end for
14for each Ii ∈ Ic do
15 Simiq ← Srefine (Fq,Fi);
16end for
17SortDescend (Sim1q , Sim2q , . . . Simkcq);
18for the top k Simiq do]
19 Iresult ← Iresult ∪ Ii;
20end for
21return Iresult;

6 Experimental Results

In this Section, the proposedmethod is evaluated by experiments upon 2 datasets.
One is 11591 remote sensing lunar images and their transformations from
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Chang’e-2 and CLEMENTINE databases; another is the primitive 1960 images
that are divided fromChang’e-2 entire lunar remote sensingmap.The environment
for evaluation is: Intel Core i3, 2.93 GHz, 4-core processor, 2GB RAM, Microsoft
Visual C++ 2008 Compiler, OpenCV 2.0 Image Processing Library.

First of all, we tested the LIBFS feature with three sample lunar images
(shown in Figure 2). (a) is a Chang’e lunar image containing 6 salient regions,
(b) is an image of the same area from CLEMENTINE dataset, (c) is another
Chang’e image also containing 6 salient regions used for comparison.

(a) (b) (c)

Fig. 2. Lunar image samples: the circles indicate the salient regions and the number
in a circle is region ID

Figure 3 shows the extracted LIFBS of the sample images in Figure 2. The
x-axis in Figure 3 denotes the 12-dimensional feature descriptor and the y-axis is
the value. The matching results tell that all the six feature vectors are matched
between (a) and (b), but only one match between (a)-(c) and (b)-(c). From
experimental results, the LIFBS we proposed is able to distinguish the images
that contain the similar objects and with similar distribution.

Fig. 3. The illustration of LIFBS

Then we test the retrieval results of our content-based lunar remote sens-
ing images retrieval algorithm. Firstly, query images, which are processed by
transforms of rotation, moving, scaling, brightness, contrast, noise, fuzzy trans-
formations (see Figure 4 for an example), are tested on the first dataset. Here, we
use Precision−Recall curves for evaluation of query results, defined as follows,

Precision =
|Isimilar | ∩ |Iresult|

|Iresult|
, Recall =

|Isimilar | ∩ |Iresult|
|Isimilar |

(4)
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Fig. 4. Transform of Lunar image: (a) original image (b) scaling (c) moved (d) rotation
(e) brightness (f) contrast (g) noise (h) fuzzy.

Figure 5 shows the comparisons of filtering phase results(average value of 100
different queries). final query results of our method using global features (HU
moment + Tamura texture), and LIBFS feature. From the figure, the final query
result of our method is the best in all conditions, its Precision− Recall curve
is closer to the ideal curve that recall is always 1.0.

Fig. 5. Precision-Recall curves of query results: (a) original image (b) scaling (c) moved
(d) rotation (e) brightness (f) contrast (g) noise (h) fuzzy.

To conclude, our retrieval algorithm based on the compound feature model
and different content features can find out lunar remote sensing images from
the gallery which are visually similar with the query sample. Facing various
transformations, our approach maintains good precision and recall.

7 Conclusion

In this paper, a method has been proposed for retrieving the relevant images in
lunar remote sensing image databases. Unlike the existing methods, our method
takes the domain knowledge into consideration and our research covers most
key points of content-based lunar image retrieval including the feature extrac-
tion, similarity measurement and the retrieval algorithm. The method is based
on LIFBS feature descriptor proposed according to the distribution of salient
craters and a compound feature model. The similarity measurement and re-
trieval algorithm are described in detail. Experiments show that our method is
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able to find out relevant images from different data sources and by the compound
feature model it can get better retrieval results in lunar image databases than
using simple combination of shape and texture features. For better performance,
our future work will be emphasized on implementing our method to distributed
parallel computing platforms.
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Abstract. People often meet trouble in searching a desktop file when
they can not remember exact words of its filename. In this paper, we
firstly propose an algorithm to generate access logs by monitoring desk-
top operations and implement a prototype. By running it in several com-
puters of selected participants we collected a data set of access logs. Then
we propose a graph model to represent personal desktop files and their re-
lationships, and highlight two file relationships(content relationship and
time relationship) to help users search desktop files. Based on the graph
model, we propose a desktop search method, and the experimental results
show the feasibility and effectiveness of our methods.

1 Introduction

When people want to re-find a desktop file and can not remember its loca-
tion, they often choose desktop search tools to do it. Because most desktop
search tools are based on keyword search technology, people often meet trouble
in searching a desktop file when forgetting exact words of the filename. Because
of the limitation of human memory, it is unreasonable to ask each person to
exactly remember words of every filename of desktop. For example, if a user
wants to search the file “An draft on dataspace framework.pdf” with existing
desktop search tools, he/she has to remember one or some words of set {“draft”,
“dataspace”, “framework”}. Because most existing desktop search tools do not
distinct accessed files from a great number of system files, they often work at
low performance. This paper focuses on helping people efficiently search desktop
file when they lose memory about exact file information.

1.1 Related Work

Chirita and Nejdl [1] proposed to connect semantically related desktop items
by exploiting analysis information about sequences of accesses. Peery et al. [2]
presented a multi-dimension query method in personal dataspace, which individ-
ually grades each dimension(content, structure and metadata), then combines
the three dimension scores into a meaningful unified score. All the works above
do not refer to how to get the access logs and how to search desktop files based
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on them. In [3], an idea about identifying personal tasks based on user’s op-
erations was proposed and demonstrated. In [4], a method on querying per-
sonal file based on user’s working context was proposed. Some researchers of
database area studied about managing personal data set, and the work involves
personal dataspace model [5,6], pay-as-you-go integration [7,8], index [9] and
query. Some interesting prototypes were developed like iMemes [10], Semex [7],
MyLifeBit [11], HyStack [12] and so on. The works listed above didn’t efficiently
solve the problem on how to search desktop file based on access logs.

1.2 Contribution Summary

The contributions of this paper can be summarized as below:(1) Propose an
algorithm to generate access logs by monitoring user’s operations on desktop and
implement a prototype system, and by running it on several computers of selected
participants we collect a data set of access logs from eight persons.(2)Propose
a graph model to represent personal desktop files and their relationships, and
highlight two file relationships(content relationship and time relationship) to
help users re-find personal desktop files, furthermore propose a desktop search
method based on the graph model.

The rest is organized as follows: In section 2, we describe our desktop search
method. Section 3 is about experiments. Section 4 concludes this paper.

2 Searching Methods Based on Access Logs

As most accesses to desktop files are re-finding [13], we propose that (1)it should
be enough for desktop search to scan only the accessed files, (2)the accessed files
can be identified by monitoring desktop operations and (3)the access logs can
provide additional methods about desktop search.

2.1 Generating Access Logs

We propose to generate user access logs bymonitoring the recently-accessed folder
of operating system likeWindowsXP, and take a 3-ary tuple {OperationTime, Op-
eratedFileName, OperatedDirectory}to represent the schema. The steps include:
(1) If a change of the latest accessed desktop file is detected, a new access record
will be generated, and the attributes OperationTime, OperatedFileName andOp-
eratedDirectory can be identified through APIs provided by operating system; (2)
If the latest accessed file is not involved in the log table, it means the user is access-
ing a new file. By this method we developed a prototype and collected logs of eight
persons about one year.

Table 1 shows a part of an author’s access logs, which includes 8 records and
refers to 5 different desktop files. Except “A proposal for applying an award.doc”,
all the files are related to the activity “submitting to DASFAA 2013”, although
some filenames are not similar, like “figure1.vsd” and “submission to DASFAA
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2012”. When the user wants to re-find “figure1.vsd” and only remembers it re-
lates to the activity “submitting to DASFAA 2013”, instead of remembering
the filename “figure1.vsd”, it will be difficult for user to do by existing desktop
search tools. But if the time relation between the two files is highlighted, which
will provide the user additional ways for searching “figure1.vsd”. Therefore be-
sides content similarity, we propose to highlight time relationship to help users
search desktop files more efficiently.

Table 1. Overview of a part of a user’s access logs

No User File name Access time

1 U1 Submission to DASFAA 2012.tex 2012-10-01 14:00

2 U1 figure1.vsd 2012-10-01 14:02

3 U1 Experimental data for DASFAA submission.xls 2012-10-01 14:05

4 U1 Comments from a Coauthor.doc 2012-10-01 14:20

5 U1 A proposal for applying an award.doc 2012-10-01 14:30

6 U1 Submission to DASFAA 2012.tex 2012-10-01 14:35

7 U1 figure1.vsd 2012-10-01 15:30

8 U1 Experimental data for DASFAA submission.xls 2012-10-01 15:40

2.2 Desktop File Graph Model and Construction

We propose a graph model to describe desktop files and their relationships, and
name it DFG(Desktop File Graph). A DFG is described as G(F,R,n), where F is
a set of desktop files accessed by user, n is the number of files in F , and R is a set
of file relationships. Based on the observations mentioned in section 2.1, we take
the following two relationships into consideration: content similarity(Co) and
time relationship(Ti), where Co means the similarity of two files in content, and
Ti means the possibility that two files are accessed together. The DFG model
provides an additional method for users to search desktop files. How to identify
the relationships is the key problem. In this section, we propose methods to
identify the two relationships.

As to content relationship, we propose to take filename similarity to approx-
imately represent the content relationship of two files. For each file, we take a
set of tokens included in the filename to denote its content. By computing the
similarity of token sets of two files, we can work out the content similarity of
them. In our work we take the formula 1 to compute Jaccard similarity [14] of
the two token sets of the files Fi and Fj , and regard it as the content relationship
of the two files.

Co(Fi, Fj) =
|Fi.Stoken ∩ Fj .Stoken|
|Fi.Stoken ∪ Fj .Stoken|

(1)

In formula 1, Fi.Stoken means the token set of file Fi, and Fj .Stoken means the
token set of file Fj . If Sim(Fi, Fj) is bigger than 0, we add an edge between Fi
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and Fj in the graph to denote the content relationship, and the weight of the
edge (Fi,Fj) equals to the value of Co(Fi, Fj).

As to the time relationship, Our algorithm is based on the position below: If
two files are often accessed at the same time, we think they have time relation.
The hard problem is how to decide “at the same time”. In this work we propose
to take “accessed sequentially” to approximately evaluate “accessed at the same
time”. For example, let A and B be two files, the more times they are accessed
sequentially, the closer time relationship they have.

How to compute the time relationship is a challenging problem. Firstly, to
two given files, the times they are accessed sequentially is dynamic; Secondly,
it needs a method to increasingly update the time relation value based on its
existing value. We propose a simple method to compute it as formula 2.

T in(Fi, Fj) =
T in−1(Fi, Fj)+1

2
(2)

In formula 2, T in−1(Fi, Fj) means the existing time relation value between the
two files denoted by Fi and Fj , and the initial value T i0(Fi, Fj) is 0. When a new
sequential access to Fi and Fj is found during monitoring user accesses, their
time relation will be updated based on formula 2. The new value will be bigger
than the old one, and its maximum value will not exceed 1. For example, when
their first sequential access is found, T i1(Fi, Fj) = (0+1)/2 =0.5, and when the
second sequential access is found, T i2(Fi, Fj) = (0.5+1)/2 =0.75.

Algorithm 1 shows the process of constructing desktop file graph. It supposes
there exists a desktop file graph Gs, and shows how the file set and the two file
relationship sets will be updated when a new access to a desktop file is found.

2.3 Searching Method

we propose a simple interface to perform the graph-based search, whose format is
“keyword1, keyword2, ..., keywordn\[C|T ]”, where keywordi is a keyword user
input, C and T are options which are set by users when they plan to search
desktop files, where C means searching based on content relationship and T
means searching based on time relationship. For example, “database, index \ C”
means searching the files including keywords “database” and “index” based on
content relationship, “database, index \ T” means searching the files whose
filename includes keywords “database” and “index” based on time relation-
ship. Based on the input keywords, we take Jaccard [14] method to compute
the similarity between the input keywords(In.Skeywords) and each file’s token
set(Fi.Stoken, 1 ≤ i ≤ n) by formula 3, and get a n-ary vector Vs as the primary
results, which is taken to generate final results based on the desktop file graph.

Vs(i) =
|Fi.Stoken ∩ In.Skeywords|
|Fi.Stoken ∪ In.Skeywords|

. (3)

Assume the desktop file space is a graph G(F,Co, T i, n), where F is the set of
desktop files accessed by user, n is the number of files in F , Co is the edge set
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Algorithm 1. Constructing desktop file graph

Input: A new accessed file f and a graph Gs(F,Co, T i,m, n), where F is a set of files,
Co is the content relation set, Ti is the time relation set, n is the total number of files,
and m is the ID number of the file accessed last time.
Output: An updated graph Gs(F,Co, T i,m, n).

1: procedure Constructing Desktop F ile Graph(f,Gs(F,Co, T i,m, n))
2: if f ∈ F then
3: find the ID number of f in Gs.F and store it into k
4: else
5: add a new file Gs.Fn+1

6: n = n + 1, k = n
7: for (int i = 1, i ≤ n, i++) do
8: Sco = |Gs.Fi.T okens

⋂
Gs.Fk.T okens| / |Gs.Fi.T okens

⋃
Gs.Fk.T okens|

9: if Sco > 0 then
10: Co(Gs.Fi, Gs.Fk) = Sco

11: end if
12: end for
13: end if
14: T i(Gs.Fm, Gs.Fk) = (T i(Gs.Fm, Gs.Fk) + 1)/2
15: end procedure

of content relationship, T i is the edge set of time relationship. In our method,
we imagine G(F,Co, T i, n) as two virtual graphs Gc(F,Co, n) and Gt(F, T i, n),
and take two n× n adjacency matrixes to present them, where the nondiagonal
element aij is the weight of the edge from vertex i to vertex j, and the diagonal
element aii is set 1 here. Let M be the adjacency matrixes of selected graph view
(Gc(F,Co, n) or Gt(F, T i, n)), based on Vs we can compute the result file set by
the formula Vr = Vs ×M , and the result Vr is a n-ary vector. Based on Vr, we
can compute the final result Rs by the formula Rs = {Fi|Vr(i) 
= 0, 0 ≤ i ≤ n}.
Naturally, based on the values of Vr, the searching results can be ranked easily.

3 Experiments

Table 2 shows the participants’ attributes(age, sex and position) and data sets.
The parameters of data set include time length of data collection(Time), ac-
cess times, accessed files, re-access times, and the ratio of re-access times to
access times(Re-accessRatio). From the table we can discover most operations
of desktop are re-accesses.

3.1 Experimental Design

We create a benchmark with the help of the participants. To the best of our
knowledge there is no existing benchmark on evaluating desktop re-finding meth-
ods. Based on the number of the files a user wants to search, we classify the
searching cases into two categories: single file search and multiple file search.



272 Y. Li et al.

Table 2. Overview the statistics on access log collection

User Age Sex Position Time Access Accessed Re-access Re-accessRatio
(day) Times Files Times (%)

U1 26 Female Master 351 9514 1836 7678 80.70

U2 25 Male Master 351 5994 2291 3703 61.78

U3 27 Female Master 223 1005 393 612 60.90

U4 36 Male PhD 355 7320 1894 5426 74.13

U5 25 Male Master 354 15040 3829 11211 74.54

U6 29 Male PhD 183 3021 813 2208 73.09

U7 22 Female Undergraduate 213 6064 1522 4542 74.90

U8 23 Female Undergraduate 233 6587 1755 4832 73.36

Single file search means relocating a specific file, and multiple file search means
searching multiple files. We ask each participant to design some searching cases
according to their searching experience, and give the correct answer for each
search based on what they want to find. We let each user Ui design 10 search
samples respectively for single file search and multiple file search, and ask them
to give a file or a file set to every search sample as right answer.

We take the popular measures recall,precision and F-score [15] to evaluate
our methods. Because we have not found existing work about helping users
search desktop files based on monitoring user access logs, and desktop search
tools are popular ways for users to re-find desktop files, we select two popular
desktop tools MS desktop search and Google desktop search engine as baseline to
evaluate our method. To each search, we perform it with different methods and
take top-k files returned as the final results, and set k = 30 in our experiments.
By comparing the final results with the benchmark for each search sample, we
can compute the recall, precision and F-score of each search, then we can work
out the average value of recall, precision and F-score of each method.

3.2 Experimental Results

Figure 1 illustrates the advantages of our method: (1)Either to single file search
or to multiple file search, our access log-based method’s F-score is the best; (2)
The recall of our method equals to 1 approximately, which is much better than
other tools; (3) Precisions of all methods are not high, which is in accord with
our expects because there exist some unrelated files whose names share some
same words. Totally our method has better precision than other desktop search
tools.

Like desktop search engine, our method also has two types of cost: off-line cost
and online cost. (1)As to online cost, MS desktop search tool shows the lowest
performance, it always takes several minutes to handle a search and returns
a great number of files which often include many system files. Our log-based
method and Google Desktop search engine show a better online performance,
especially the log-based method’s average response time is less than one second,
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Comparison of three methods (Single File Search)
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Fig. 1. Comparison of log-based method, Google desktop and MS desktop

which can satisfy most users’ needs. (2)As to off-line cost, the cost of our method
is much lower than the selected desktop search tools. Take google desktop search
for example, it always takes several hours to build the initial index in some cases,
and the update of index is also delayed much more, which sometimes results in
search failure. To MS desktop search, it has little additional cost for updating.
Totally, our access log-based method’s performance is comprehensively better
than other desktop search tools, and can satisfy users’ requirements.

We also have the following observations in experiments. (1)Sometimes users do
not name a desktop file according to its content for some reasons like “download
it from a web site and keep its original filename”, “get it from other persons”, and
so on; (2)People archive personal desktop files with folders according to different
rules. For example, some folders are created based on user activities, like “Sub-
mission to DASFAA 2013”, which includes the files related to the submission to
DASFAA 2013, and sometimes based on the file categories, like “dataspace pa-
per”, which includes the papers related to dataspace topic.(3)Access logs provide
users additional facets to search desktop files like access frequency, access time,
operation types and so on. The observations discover some interesting research
topics and we will study them in the future.

4 Conclusions

In this paper, we firstly propose a method to generate access logs by monitor-
ing users’ operations on desktop and build a data set of access logs of eight
persons. Then we propose a desktop search method based on access logs. The
experimental results show the effectiveness of our method.
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to Query Processing for Aspect-Oriented Data
Management
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Abstract. Under the paradigm of aspect-oriented data management
(AODM), cross-cutting concerns in the data model – like multi-language
support or functional versioning – are to be encapsulated and separated
from the core aspect data. At runtime, a re-weaving of data influenced
by different aspects has to be done. Previous research demonstrated that
running queries directly against the referential model of AODM for re-
lational databases via SQL is slow and inefficient. This paper presents
an approach to accelerate queries by using a native storage model for
aspect specific data and a specialized in-memory as well as a GPGPU
query method.

1 Introduction

The aspect-oriented programming paradigm [10] was introduced to address the
problem of cross-cutting concerns in object-oriented or procedural programming.
But not only code is vulnerable to tangling of different aspects, similar problems
occur in data modeling. In [11] a paradigm for aspect-oriented data management
(AODM) in relational databases has been proposed, as a generalized solution
for integrating the business object perspective with additional aspects such as
multi-language or versioning requirements. It focuses on the modularization of
aspects, separating data of different aspects in the data model. However, at data
retrieval, aspect data reintegration (weaving) is required. The multi-dimensional
nature of aspect integration is a major challenge to the relational model. Spe-
cific structures suffer from high redundancy, generic structures induce complex
and often slow operations, especially for data retrieval. This paper presents an
approach to circumvent overly complex querying against the relational data
by using specialized in-memory structures (kept up-to-date concurrently to a
referential database) that support aspect aware mass data retrieval. Speed-up
potential is demonstrated by a basic performance test of CPU and GPGPU
proof-of-concept implementations.
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Fig. 1. AODM Referential Model (adapted from [12])

2 Related Work

2.1 Aspect-Oriented Data Management

In [12], a referential model for aspect meta data and aspect specific data under
the AODM paradigm was proposed. Its relational schemata are displayed in
Figure 1, a fixed set of schemata containing all structural meta data and aspect
specific attributes, despite supporting any number of business tables, achieved
by using an entity-attribute-value pattern (EAV/CR) [14]. This concept avoids
redundancy and explosion of additional aspect tables for every functional table.
However, querying EAV data in relational databases requires a transformation
back to a one-column-per-attribute format via a “pivot” operation. Pivoting via
multiple self-joins is not performing well in general [3]. To retrieve aspect specific
data relations from the referential model, two cascading pivot operations have
to be applied. As shown in [13], static SQL does not perform very well.

As a usable and efficient alternative, an API for AODM was proposed and
implemented as an database-external query accelerator [16]. For query purposes,
a filter language based on predicate logic was introduced. Aspect filter (AF)
expressions are used as constraints for the contexts of aspect specific data. E.g.

Language = ’en’ OR CurrencyArea IN (’USD’, ’GBP’)

limits the visibility of attribute values – for attributes depending on the aspects
Language and/or Currency Area – to those in the specified subspaces.

2.2 General-Purpose Computing on GPUs

Early general-purpose computing on graphics processing units (GPGPU)
approaches were limited to “single instruction, multiple data” (SIMD) [4] vector-
based GPU parallel processing, due to hardware limitations of graphics devices
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at that time. GPGPU first found its way into number crunching problem solving,
exploiting the pure FLOPS power of graphics processing units. Much more elabo-
rate instruction sets, control flowflexibility andmemorymanagementmade graph-
ics devices attractive for other fields of research and application. The availability
of simultaneous random memory look-ups and multiple flow paths as opposed to
classic SIMDmade the NVIDIA company coin the term “single instruction, multi-
ple threads” (SIMT) for contemporary GPGPU device architecture. GPGPU lan-
guages such as OpenCL or CUDA are still developing dynamically.

In database research, GPGPU became popular for specialized sub-tasks in
query processing like sorting [5], join acceleration [7,17], or OLAP processing
[9,18]. In recent years, more effort went into a broader integration of GPGPU
approaches into relational DBMS (RDBMS), e.g. as full fledged co-processors
[6], or as a partial implementation of a DBMS’ command processor [1].

3 Implementation

In support of the referential RDBMS, a co-processor is designed and implemented
to deal with data retrieval by using a redundant in-memory set of aspect-specific
data.

An attribute value under the AODM paradigm may be aspect-dependent and
thus not necessarily a single value. Instead, it may be considered as a (possibly
sparse) multi-dimensional grid of values, the grid dimension determined by the
number of aspects influencing that attribute. Different attributes in a relational
schema may depend on different aspects – e.g. a name might depend on a Lan-

guage aspect, while price depends on a Currency aspect, hence attributes
with common aspect dependencies are grouped into sub-relations and provide
the base for querying aspect-specific data in memory.

3.1 Grid-File Index

To access aspect-specific tuples in a sub-relation, an index structure based on
grid files (GF) [15,8] is used. This GF index needs one dimension per aspect, plus
one additional dimension to account for the assignment to the business entity.
The tuple data is stored in fixed-sized buckets referenced by the index structure.
The index is used for “point” and special partial match queries, especially for
inserting, updating and deleting individual aspect-specific tuples. However, when
using AF expressions in a mass query, after an initial interval-based evaluation,
all remaining buckets must be evaluated per tuple. This can be done in parallel,
of course, either by multiple CPU nodes or on a GPGPU device (after transfering
the ncessary data).

3.2 GPGPU Approach

For GPGPU, bucket design was adapted to better fit CUDA requirements for
data retrieval. Within a warp (32 simultaneous threads), coalesced memory ac-
cess is encouraged to reduce device memory IO. For better support of this access
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pattern, buckets for CUDA kernel processing are column-based instead of row-
based, where each column consists of one key dimension of the aspect-specific
tuples. Data manipulation is still done by the CPU and is slowed down due to
worse cache coherency, but OLTP through-put is limited by the ACID compliant
RDBMS performance on the referential data anyway.

There are two natural approaches for AF evaluating: abstract syntax tree
(AST) traversal or stack machine (SM) execution. For AST traversal, the AST
of an AF expression has to be transfered to the device and recursively evaluated
for each tuple. Recursion is a relatively new feature for CUDA devices, available
since Fermi. The construction of pointer-rich structures in device memory is
still relatively complex. Evaluation by use of a SM seems to be more suited for
CUDA. The translation of an AF expression into a SM instruction sequence
can be done by the CPU in a single traversal. The instruction sequence can
be encoded as a pointer-free array that is straight-forward transferable to device
global memory. On the CUDA device, the instruction sequence can be interpreted
in a simple intra-thread loop. The interpretation of each instruction cannot be
done without code branches for different opcodes, but all threads evaluating a
line under a common AF expression always choose the same branch at run-time,
not creating any flow divergence between those threads.

The pseudo-code procedure StackMachineParallel illustrates a SIMT-
parallel interpretation of an AF expression for a tuple list. Each thread uses its
own local bit-stack for the evaluation, the stack machine instruction sequence
(instr list) is stored in device constant memory as an array. Each tuple in tu-
ple list (transfered to device global memory) is evaluated in its own thread and
the result written to result bitvector.

procedure StackMachineFilterParallel (in tuple list, in instr list, out result bitvector)
for each tuple t in tuple list in parallel

if t is not empty then
for each instruction i in instr list

if i.type == AND then
pop i.op num bits from stack
if all bits are set then push 1 else push 0

else if i.type == OR then
pop i.op num bits from stack
if no bits are set then push 0 else push 1

else if i.type == NOT then
temp ← pop
push (invert temp)

else if i.type == PRED then
if i.val == t.keyV al[i.key] then push 1 else push 0

result bitvector[t’th bit] ← pop

The result bit-vector resides in device global memory. For queries with few
matching tuples, the bit vector creates significant memory overhead inevitable
due the SIMT principle. The bit vector is reduced to the actual set of match-
ing tuples by the use of stream compaction [2]. Finally the result list has to be
transfered back to the system memory.
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4 Performance

Performance results were gathered on an AMD Athlon64 X2 at 2.6GHz, 8GB
RAM, an NVidia GeForce 450GTS (4 multiprocessors à 48 CUDA cores), con-
nected via 16 PCI-E lanes (2.5 GT/s each), operated by a 3.3 Linux kernel. A
DB2 9.7 and a PostgreSQL 9.0.6 instance were used as RDBMS.

4.1 Data Set

A single “business” data table Module was used and four additional aspects were
created – Language, Region, Version and Pricegrade – and “activated”
for the respective attributes listed below, e.g., norm depends on Language,
Region and Version, price depends on Region, Version and Pricegrade.

CREATE TABLE Module (id VARCHAR(100) NOT NULL PRIMARY KEY,
name VARCHAR(70) NOT NULL,
variant VARCHAR(70) NOT NULL,
price NUMERIC(8,2) NOT NULL,
norm VARCHAR(70),
material VARCHAR(70),
rowid INTEGER NOT NULL UNIQUE);

Two data sets were created: Small (2000 entities with ≈100,000 aspect specific
tuples) and Large (38000 entities with ≈1,100,000 tuples). The data was loaded
into relational tables conforming to the AODM referential model, and concur-
rently loaded into the in-memory grid-file structure described in the previous
section.

In addition to bulk load, in an OLTP test a set of transactions deleting and in-
serting aspect specific tuples was run through an intermediate software layer that
(a) forwarded tuple manipulations to the relational database and (b) recorded
tuple manipulations and applied them to the in-memory structure when a trans-
action commit was acknowledged by the relational database. That way, the in-
memory structure can be used for accelerating queries issued by read-only trans-
actions in a consistent way. The purpose of this OLTP test was to measure the
additional computational load by the in-memory module during aspect specific
data manipulation.

4.2 Test Conditions

Retrieval of selected aspect specific information has to take two different kinds of
filters into account: Firstly, for selection of entity-sets, a high selective (HS) and
a low selective (LS) filter for Module entities in both data sets were constructed.
Secondly, as constraints for the aspect context, a highly selective and compact
AF expression was used

F1 = Language IN (’en’, ’en US’) AND Version = ’7’

as well as a more complex and less selective filter

F2 = (Language = ’fr’ AND Version IN (’8’, ’9’)) OR
(Language IN (’en’, ’en US’, ’en UK’, ’zh’, ’zh CN’, ’zh HK’)
AND Version IN (’1’, ’2’, ’3’, ’4’, ’5’)) OR

(Language IN (’po’, ’it’, de’) AND Version <> ’11’)
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Table 1. Query times (in ms)

Data En- Asp. DB2 PostgreSQL In-Memory

Set tity Filter view view mat. CPU GPU

Large HS F1 >21,600,000 231,000 308 13.1 3.47

F2 >21,600,000 242,000 640 14.8 5.51

LS F1 >21,600,000 235,000 334 19.3 4.17

F2 >21,600,000 248,000 1,180 28.7 6.66

Small HS F1 >21,600,000 38,500 138 1.19 0.535

F2 >21,600,000 40,100 144 1.35 0.735

LS F1 >21,600,000 39,600 159 1.74 0.541

F2 >21,600,000 40,200 211 2.71 0.834

The combination of two data sets, two entity filters and two AF expressions
resulted in eight test queries. These were run against the relational database
view and materialized views as well as the in-memory system with and without
GPGPU usage. Query results were written into a null stream for precision con-
siderations. RDBMS measurements where run with buffer pool capacities high
enough to keep all relevant data in RAM and warm caches.

4.3 Results

On DB2, initial generation of materialized query tables (MQT) had to be can-
celled after a run-time of more than 24 hours for Small. Consequently no MQTs
were used on DB2. On PostgreSQL, rebuilding the materialized views for Small
took 46 seconds and 213 seconds for Large. The in-memory data structures are
currently not made persistent in a fully ACID complaint way, they have to be
restored from the relational schemas during recovery. Loading data from the
database into an empty in-memory structure took 4 seconds (Small), 34 seconds
(Large) respectively. This is almost exclusively the time needed by the RDBMS
to do table scans and copy the data to the in-memory process. During the OLTP
test, two different conditions were used: OLTP transactions were solely forwarded
to the RDBMS as well as additionally run against the in-memory structure as
described in section 4.1. No significant difference in transaction throughput was
found.

The central performance results of this paper are shown in Table 1, query
times (in ms, rounded to 3 decimal figures) for all eight queries are listed for both
RDBMS (baseline) and both the CPU and GPGPU in-memory approaches. As
mentioned above, MQTs were not available on DB2, and unfortunately, queries
against non-materialized views had to be cancelled after a run-time of 6 hours.
On PostgreSQL, queries against views were slow, around 40 seconds for Small
and 4 minutes for Large. However, when materialized views (“mat.” condition)
were used, query times expectably improved by orders of magnitude.

Figure 2 graphically shows the query times for the in-memory and GPGPU
conditions. The left and middle bar in each chart displays the run-time for
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Fig. 2. Time to calculate query results (in ms)

in-memory query processing in a single thread or two threads respectively. The
right bar for GPGPU query processing is segmented into portions representing
transfer between host and device memory, stream compaction of the result vec-
tor, and the core GPGPU filtering and memory management activity (pooled as
“gpu processing” in the figure). Results for the in-memory approach are in line
with the expectations. Multi-threading yields a better speed-up for Large and
more complex filtering, as the overhead for thread management and synchronisa-
tion for merging results is less important. Note that the CUDA approach results
are not directly comparable to the CPU condition, as the absolute numbers are
highly dependent on the selection of specific hardware.

5 Conclusion

For applications using the AODM referential model with mostly read-only aspect
data, materialized views are a comfortable and fast enough solution. However,
neither materialized nor ordinary views can deal with more dynamic data. This
paper presented an in-memory approach promising to speed up aspect data
queries significantly (by five orders of magnitude compared to static SQL in
the very basic tests used in this paper), and at the same time does not impair
data manipulating workloads. This proof-of-concept query co-processing system
however is not yet fully integrated into a RDBMS. As an auxillary in-memory
technique, it does not provide ACID compliant persistence and has only limited



282 B. Pietsch

support for concurrency and transactional consistency on its own, it relies on
the referential data managed by the RDBMS instead. Additionally, performance
of real life complexity queries (including joins, aggregations and write-after-read
statements) has to be tested.

Although performing better on the specific test platform than its CPU/in-
memory counterpart, the GPGPU approach buys its speed-up with considerable
drawbacks like limited concurrency, as CUDA devices are not able to serve more
than one CPU thread at a time. Data transfer between host and device itself is
another major obstacle. As visible in the results, for some test queries, transfer
dominates the query times. To tackle these issues, intelligent scheduling, light
weight compression and transfering concurrently with CUDA kernel execution
has to be considered. Apart from technical obstacles, GPGPU devices are not
yet established as features of typical database or application server hardware.
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Abstract. Graphs have a wide range of applications in many domains.
The graph substructure selection problem is to find all subgraph isomor-
phic mappings of a query from multi-attributed graphs, such that each
pair of matching vertices satisfy a set of selection conditions, each against
an equality, range, or set containment operator on a vertex attribute.
Existing techniques for single-labeled graphs are developed under the as-
sumption of identical label matching, and thus, cannot handle the general
case in substructure selections. To this end, this paper proposes a two-tier
index to support general selections via judiciously materializing certain
mappings. Moreover, we propose efficient dynamic query processing and
index construction algorithms. Comprehensive experiments demonstrate
the effectiveness and efficiency of our approach.

1 Introduction

Recent decades have witnessed an explosion of structured data, which strongly de-
mands effective management solutions. Graphs are widely used to model complex
structured data in many applications, including bioinformatics, pattern recogni-
tion, etc. Hence, graph management attracts great interest from academia and
industry.

Given a graphdatabase and a query graph, subgraph containment search returns
graphs containing the query, and has beenwell addressed [3, 8, 11]. In some applica-
tions, it is desirable to discover all occurrences of the query in one large graph. This
problem is named subgraph all-matching, and has been studied in [13–15]. Contain-
ment search tells if there is a mapping of the query, while all-matching retrieves all
of them.

In subgraph containment search and all-matching, current techniques work on
single-labeled graphs for efficiently answering queries with equality conditions on
vertex labels. That is, every vertex has a single label, and twomatching vertices are
required to have an identical label. However, inmany applications, structured data
is modeled withmulti-attributed graphs, exhibiting multiple attributes on vertices,
each with a corresponding value. In this sense, an aforementioned label in previous
work refer a value. Consequently, more powerful operators on vertices become de-
sirable to handle such graphs. For example, in Fig. 1(1) are two data graphs, each
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(2) Query Graph

Fig. 1. Substructure Selection

depicting a protein-protein interaction network. Every vertex has several heteroge-
neous attributes with its own value domain. A biologist may want to find all four-
protein interactions, with requirements modeled in Fig. 1(2), where ‘*’ denotes a
wildcard – arbitrary value in the domain. The query graph advises (1) the four pro-
teins have a chain interaction; and (2) each protein possesses specific attributes;
e.g., the first protein is of class ‘Globular’, takes an arbitrary role, and has no less
than 10 amino acids. The query is issued to the database to retrieve the mappings
satisfying all the requirements. We call this type of queries substructure selection.

In substructure selections, we have comparatively large graphs [9] in the
database, and every data graph possesses multiple attributes on vertices. A query
is a graph where each vertex comprises a set of selection conditions in conjunc-
tive normal form such that each selection condition is against an equality, range,
or set containment operator on one attribute. The problem aims to find all sub-
graph isomorphic mappings from the query to every data graph such that the at-
tributes at each pair of matching vertices meet the selection conditions. Note the
vertex attributes are not necessarily to be identical; in fact, they are different in
most real applications. For instance, consider the database in Fig. 1(1) and the
query in Fig. 1(2). In graph (a), the vertexwith PID 1 possesses attributes Classes,
Role and Amino Acids, whereas the vertex with PID 3 does not have Role but
Function. Substructure selection returns three answers: ((a), {1, 3, 6, 7}), ((b),
{1, 2, 4, 5}), ((b), {1, 2, 4, 6}), where, for each mapping result, the first element is
the provenance graph ID, and the second is the set of matching vertices.

While substructure selection is fundamental to structure oriented analysis,
little has been done due to intrinsic challenges. Techniques for subgraph contain-
ment query [3, 8, 11] adopt the exclusion logic to prune false positives. Nonetheless,
they do not provide sufficient support to find all subgraph isomorphic
mappings. Subgraph all-matching algorithms [13–15] are designed for efficiently
locating subgraph isomorphicmappings, and are yet not able to handle the general
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selection conditions over multi-attributed graphs. In particular, the more general
requirements, e.g., multi-attributes, range selection, impose unseen challenges to
the mapping computation. Individually,NOVA [15] and SPath [14] are solely based
on vertex labels, and hence, the multi-attributes render them infeasible under our
scenario. The distance-based pruning of GADDI [13] becomes weak due to more
candidates in general selection. DELTA [12] imposes the rigid constraint of fixed
attributes on vertices with identical values; i.e., all vertices have the same set of at-
tributes. Thus, this model does not lend itself to the majority of real applications.
By relaxing subgraph isomorphism, graph simulation based pattern query [4] in-
corporates range conditions on the single labels at vertices. Either, it does not solve
our problem. We address the above challenges in this paper.

To the best of our knowledge, this is among the first attempts to study the sub-
structure selection problem. In summary, we make the following contributions:

– We propose a new type of fundamental queries – substructure selection that
handles general selections on multi-attributed graphs;

– We design a novel structure SS-index to speed up the online computation via
judiciously materializing partial embeddings;

– We devise an efficient method to dynamically compose effective query execu-
tion plans to reduce the overall search cost; and

– We propose SS-search algorithm employing effective plans, as well as a scalable
index construction algorithm for SS-index utilizing query logs.

In addition, extensive experiments demonstrate the effectiveness and efficiency of
the proposed techniques, which significantly outperform other alternatives.

Organization. The paper is organized as follows: Section 2 states preliminaries
and the problem. Section 3 presents a depth-first search (DFS) paradigm, and then
introduces the design of SS-index. Leveraging the index, we propose SS-search for
query processing in Section 4, and postpone the discussion on index construction
in Section 5. Section 6 reports the experimental study, followed by conclusion in
Section 7.

Related Work. Research on graph databases is a well-established activity,
especially in pharmaceutical and chemical industries. This paper focuses on ex-
act structural mappings. Techniques for containment queries are categorized as
(1) feature-based, such as gIndex [11], cIndex [2], FG-index [3], etc; and (2) non-
featured-based, represented by gString [5], GCoding [16], etc. CT-index [7] takes an
initial step to support wildcard on vertices by leaving those vertices to the verifi-
cation phrase. CP-index [9] employs embeddings to speed up containment search
over large graphs. GBLENDER [6] presents the first visual paradigm blending sub-
graph query formulation and processing. These methods without exception are de-
signed for single-labeled graphs under the assumption of single vertex label with
string value, which are hence intrinsically incapable of general selections. Finding
all matches of a query is also studied [13–15]. To handle multi-labeled graphs with
the constraint of fixed attributes on vertices, DELTA transforms it into a spatial
indexing problem. Due to the same reason, it is difficult to extend the approach
to general structural analysis. In addition, it utilizes equality conditions on those
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specified attributes. Either, it cannot handle substructure selections with various
vertex attributes taking abundant selection conditions. Among others, graph sim-
ulation based pattern query incorporating range conditions on the single vertex la-
bels are also investigated [4]. As a result, it substantially differs from the subgraph
isomorphism based mappings studied in this paper.

2 Preliminaries

This paper focuses onundirected simple graphs; i.e., self-loops ormultiple edges are
not allowed. A data graph is a multi-attributed graph, denoted by r = (Vr , Er, lr),
where Vr is the vertex set, Er ⊆ Vr × Vr is the edge set, and lr is an attribute func-
tion. v ∈ Vr has an attribute setAv, and each attribute av ∈ Av is assigned a value
lr(av). Equivalently, a vertex v has a value lr(av) for attribute av. Nevertheless, v
may not have a particular attribute av, in which case lr(av) = nil. Besides, |Vr |
and |Er| denote the numbers of graph vertices and edges, respectively.

A query graph is denoted by s = (Vs, Es, ϕs), where Vs is the vertex set, Es ⊆
Vs × Vs is the edge set, and ϕs is an attribute selection function. Es enforces the
connection constraints, whileϕs exerts the attribute constraints. v ∈ Vs also has an
attribute set Av such that av ∈ Av is assigned a selection condition ϕs(av). That
is, ϕs imposes a condition ϕs(av) on attribute av, against an equality, range, or set
containment operator.

Given vertices u ∈ Vr , v ∈ Vs, u satisfies v on attribute a, provided

– lr(a) = ϕs(a), if ϕs(a) defines an equality condition; or

– lr(a) ∈ ϕs(a), if ϕs(a) defines a range condition; or

– lr(a) ⊆ ϕs(a), if ϕs(a) defines a set containment condition; or

– arbitrary value in the domain, if ϕs(a) is a wildcard.

umatches v, if u’s attribute values satisfies v’s corresponding constraints conjunc-
tively.

Example 1. Consider in Fig. 1(1) graph (a) as r, the vertex with PID 1 as u; the
graph in Fig. 1(2) as s, the upmost vertex as v. u has a value ‘Enzymes’ on at-
tribute Role. Av = {Classes, Function, Amino Acids}. Range condition
ϕs(Amino Acids) = ‘≥ 10’ requires a value no less than 10 on attribute Amino

Acids. u matches v.

A data graph r′ is a subgraph of r (denoted r′ � r), if there is an injection f : Vr′ →
Vr such that (1) ∀v ∈ Vr′ , f(v) ∈ Vr, all attribute values at f(v) are retained at v by
lr′ ; and (2) ∀e = (u, v) ∈ Er′ , (f(u), f(v)) ∈ Er. Similarly, the subgraph relation
between query graphs s′ and s (denoted s′ � s) is an injection from Vs′ to Vs that
retains the attribute constraints ϕs on corresponding vertices.

Definition 1 (SubstructureMapping).Given adata graph r anda query graph
s, a substructure mapping is an injection f : Vs → Vr such that (1) ∀v ∈ Vs,
f(v) ∈ Vr, f(v) matches v; and (2) ∀(u, v) ∈ Es, (f(u), f(v)) ∈ Er.
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ProblemStatement.Given a set of data graph as databaseR and a query graph
s, the problem of substructure selection finds all substructure mappings from the
query graph s to each data graph r in R.

Example 2. Consider the graphs in Fig. 1(1) as R, the graph in Fig. 1(2) as s. The
vertices with PID 1, 3, 6, 7 form a substructure mapping from s to graph (a). Sub-
structure selection is to retrieve all the three of suchmappings in graphs (a) and (b).

3 Substructure Selection

In this section, we first present a DFS paradigm for substructure selection, and
then propose a novel index structure to support and boost the computation.

3.1 Algorithm Framework

We illustrate the DFS paradigm for processing query s against graph r in Algo-
rithm 1. Assuming vertices are sorted in a given/arbitrary order, we use s[m] to
denote them-th vertex in Vs, and s[1 . .m] to denote the subgraph induced by the
first m vertices. In each iteration, we match the available vertices in r with s[m].
Current partial mapping f is extended, if u satisfies (1) the attribute constraints
on s[m]; and (2) all connection constraints between s[m] and s[1 . .m− 1] (Line 5).
Hence, f is fed to next recursion iteratively (Line 7). A substructure mapping is
found when Vs are fully matched (Lines 1 – 3). The algorithm terminates after all
possibilities are explored, and all valid mappings are found.

To process query s against a databaseR, we iterate Algorithm 1 over each graph
r of R. Henceforth, the analysis will focus on processing s against a single data
graph r, since the cost of processing R simply adds a constant factor.

It can be immediately verified that all substructure mappings from s to r can
be found by Algorithm 1, with each vertex in the subgraph satisfying all the con-
straints on itsmatching vertex.We observe that themost costly step inAlgorithm1
is the iterative extension of partialmappings.While there exist an exponential num-
ber of possible extensions,many of them fail halfway. If we can render the extension

Algorithm 1. SelectSubstructure(s, r, m, f)

Input :s is query; r is data graph; m is depth; f is mapping.
Output :F is a set of substructure mappings, initialized as ∅

1 if m > |Vs| then
2 F ← F ∪ f ; /* found a mapping */

3 return

4 for each unmapped vertex u in r do
5 if u satisfies

attribute constraints of s[m]∧ connection constraints with s[1 . .m− 1] then
6 f ′ ← f, f ′[m]← u ; /* extend the mapping */

7 SelectSubstructure (s, r, m+ 1, f ′);
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in a faster and more informative manner, we are expected to discover valid map-
pings and suspend invalid ones more efficiently. Following presents an observation
that enable us to develop effective indexing and query algorithms based on those
qualified partial mappings. Let Fs(r) = {fr(s)} denote all substructure mappings
from s to r.

We prove that every full substructure mapping is always grown from certain
partial mappings. As a consequence, if we can leverage the pre-computation of par-
tial mappings, we may start growing full mappings based on the partial mappings.
Furthermore, chances are we can take a leap during the growth by jointing other
partial mappings. In another word, we start with a subgraph, expand it by vertex
extension, and leap with the aid of other subgraphs when possible. Thus, full map-
pings are to be found faster, reducing the overall response time. To this end, we
will present shortly an index structure to effectively organize such partial mapping
information.

Theorem 1. If s′ � s, Fr(s
′|s) ⊆ Fr(s

′), where Fr(s
′|s) = {fr(s′)|f(s′) � f(s)}.

3.2 Index Structure

We propose a two-tier index structure called SS-index (Substructure Selection-
index).The upper tier is a set of template graphs organized in aprefix tree; the lower
tier stores mappings in the database subsumed by the corresponding templates.

First, we introduce template graph, denoted by t = (Vt, Et, φt), where Vt is the
vertex set, Et ⊆ Vt ×Vt is the edge set, and φt is a function assigning attributes to
Vt. Intuitively, template graph removes attribute values (resp. selection conditions)
from data (resp. query) graph such that each vertex comprises attributes only. A
template t′ is a subgraph of t (denoted t′ � t), if there is an injection f : Vt′ → Vt

such that (1) ∀v ∈ Vt′ , f(v) ∈ Vt ∧ φt′(v) ⊆ φt(f(v)); and (2) ∀e = (u, v) ∈ Et′ ,
(f(u), f(v)) ∈ Et. Furthermore, a data graph r is subsumed by a template t (de-
noted r � t), if there is a bijection f : Vr → Vt such that (1) ∀v ∈ Vr , f(v) ∈ Vt

∧ Av ⊆ φt(f(v)); and (2) ∀e = (u, v) ∈ Er, (f(u), f(v)) ∈ Et. We also say r is an
embedding of t. Similarly, subsumption relation between a query s and a template
t is a bijection s � t.

Example 3. Consider Fig. 1, and template graph t in Fig. 2. The subgraph of graph
(b) induced by verticeswith PID 1, 2, 4 and 6 is subsumed by t; and t also subsumes s.

SS-index consists of selected template graphs in a prefix tree, as well as correspond-
ing embeddings. In particular, the selected templates utilize a prefix-sharing strat-
egy for both compact storage and efficient access. Every leaf node of the prefix tree
corresponds to a distinct template (the upper-tier), and it links to a subindex in
the lower-tier comprising all the embeddings in the database subsumed by the tem-
plate. These embeddings are recorded and sorted by combined search keys. Partic-
ularly, for eachmapping, we keep, as an entry, its values of the indexed attributes as
in the template, provenance graph ID and vertex ID’s. In a subindex, nonetheless,
multiple entries may have identical values for certain indexed attributes. Under
this scenario, the embeddings having the same search key are folded into a single
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Fig. 3. Example of SS-index

entry, in order to reduce thememory footprint of the index, while provenance graph
ID’s and vertex ID’s are recorded separately.

Example 4. Consider the SS-index in Fig. 3. The circles under the prefix tree in-
dicate leaf nodes, representing two template graphs. Ia and Ib are subindices for
the two templates, respectively. Entries in Ib are sorted in ascending order of their
search keys – ‘Function-Category’.There are five embedding entries with two dis-
tinct values ‘Protective, Integral’ and ‘Protective, Peripheral’ in Ib.

4 Query Processing

This section introduces the design of SS-search (Substructure Selection-search) al-
gorithm.We first give an overview of SS-search and emphasize the importance of a
good query execution plan , then investigate the primitive operations involved in
execution plans, and finally conceive an algorithm to generate effective plans.

4.1 Algorithm Overview

We summarize SS-search algorithm into three phases: (1) index probing, (2) query
plan generation, and (3) mapping discovery.

In index probing, all indexed templates subsuming a subgraph of the query
(a.k.a., partial query) are obtained. Under an ideal scenario, a template subsum-
ing the query is indexed, and hence, all substructure mappings are collected from
the subindex of that template the embeddings satisfying the attribute constraints,
where connection constraints are naturally preserved. Following discusses the solu-
tion to general cases, which first generates a query execution plan and then searches
for full mappings.
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An embedding r′ of template t′ is qualified with respect to partial query s′, if r′

satisfies all the constraints of s′, where s′ � t′. Given an indexed template t′ sub-
suming a partial query s′, qualified partial mappings of s′ can be obtained from
the subindex of t′. Thus, we save the online cost of computing these partial map-
pings, and grow them to full mappings thereafter. Note these partial mappings are
inevitably explored by Algorithm 1. Moreover, we quest if the cost can be further
saved during the extension process.We argue this is achievable provided there is a
“wise” query execution plan that instructs how to search for full mappings. Let us
take the following example.

Example 5. Consider in Fig. 4 two executions for the query in the upper right. Two
partial queries are subsumed by indexed templates (see Fig. 3). To expand themap-
pings in Ia, Plan (A) joins themwith those from Ib; Plan (B) scans the adjacency list
of the second vertex (bounded by dashed line), in order to match the third vertex.

In fact, Plan (B) outperforms Plan (A). The performance gap arises from that join-
ing results from subindices is more expensive than scanning adjacency list for ex-
tension in this case. Nevertheless, it remains unclear if join always performs worse
for all cases. In addition, we observe the number of partial mappings during the
extension also greatly influence the performance. More partial mapping implies
larger input to be processed subsequently. With regards to memory consumption
and runtime performance, we seek an appropriate plan to reduce partial mappings
during the execution.

To this end, we propose an algorithm that first chooses an indexed template as
seed, and then extends to a complete plan with minimum cost. Prior to the algo-
rithm details, we look into the primitive operations constituting execution plans.
The runtime cost and number of intermediate results of each operation are ana-
lyzed, so as to evaluate different plans. In the sequel, “partial mapping” is also
referred as “intermediate result”, since a partial mapping is an intermediate result
potentially for a full mapping.
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4.2 Primitive Operations

It is sufficient to consider the following six operations, as summarized in Table 1.
Presumably, all single attributes (templates of single vertex with one attribute)

are included in SS-index. Hence, the vertices satisfying attribute constraint c are
retrieved by accessing the subindex under the template corresponding to the at-
tribute of c. Let nc denote the number of entries satisfying c therein. For ease of
exposition, we introduce ρ(C) �

∏
c

nc∑
r |Vr | , where c ∈ C, C is a set of attribute

constraints, and r ∈ R.

Index Retrieval IR(It).Given a subindex It under template t, it return the par-
tial mappings indexed by It. Denote the total number of entries under It as nt.
Straightforwardly, it outputs nt intermediate results, and hence, consumes O(nt)
time.

Graph Scan GS(C).Given a set of attribute constraintsC, it retrieves the vertices
satisfyingC by scanning the database. Trivially, the estimated number of interme-
diate results is

∑
r |Vr | · ρ(C), and it takes O(

∑
r |Vr|) time, r ∈ R.

Attribute Validation AV(Fs′ , v, C). Consider partial mappings Fs′ , a vertex v ∈
Vs′ , s

′ � s, and a set of attribute constraints C. For each fs′ ∈ Fs′ , it verifies
whether fs′(v) satisfies C, and retains all the qualified ones. The validation cost is
O(|C| · |Fs′ |), while the number of intermediate results is |Fs′ | · ρ(C).

Connection Validation CV(Fs′ , u, v). Consider partial mappings Fs′ , and edge
(u, v) ∈ Es′ , s

′ � s. For each fs′ ∈ Fs′ , it verifies if (fs′(u), fs′(v)) ∈ fs′ , and retains
those having passed the validation. The possibility of an edge in a graph is p(e) =∑

r pr(e)

|R| , where pr(e) =
2|Er|

|Vr |(|Vr|−1) , r ∈ R. Thus, it produces |Fs′ | · p(e) intermedi-

ate results, and runs in O(θ · |Fs′ |) time, where θ is the average vertex degree ofR.

Mapping Extension ME(Fs′ , v, C). Consider partial mappings Fs′ , a vertex v ∈
Vs′ and a set of attribute constraints C. For each fs′ ∈ Fs′ , it explores vertices u
such that u satisfies C and connects to at least one vertex of fs′ . For each valid
extension, we have a new partial mapping fs′ ∪ {u} with v mapped to u. Thus, it
costs O(θ · |C| · |Fs′ |) time, where θ is the average vertex degree in the database.
Hence, the number of intermediate results is approximated as θ · |Fs′ | · ρ(C).

Mapping Join MJ(Fs′ , Fs′′). A mapping join operation connects two sets of par-
tial mappings Fs′ and Fs′′ , where s

′, s′′ � s. Denote as V̂ = Vs′ ∩Vs′′ the set of join

Table 1. Summary of Primitive Operations

Operation Intermediate Result Number Runtime Cost

IR(It) nt O(nt)

GS(C)
∑

r |Vr| · ρ(C) O(
∑

r |Vr|)
AV(Fs′ , v, C) |Fs′ | · ρ(C) O(|C| · |Fs′ |)
CV(Fs′ , u, v) |Fs′ | · p(e) O(θ · |Fs′ |)
ME(Fs′ , v, C) θ · |Fs′ | · ρ(C) O(θ · |C| · |Fs′ |)
MJ(Fs′ , Fs′′)

∑
v∈V̂ nv

s′ · nv
s′′ O(|Fs′ | · |Fs′′ | · |Ê|)



On Efficient Graph Substructure Selection 293

��

ME(C = {Role = ∗, Amino Acid = ∗})

AV(Ia.v1, Amino Acid ≥ 10))
AV(Ib.v1, Amino Acid = ∗)

AV(Ib.v2, Amino Acid = ∗)

IR(Ia) IR(Ib)

(1) Plan (A)

ME(C = {Category = ∗, Amino Acid = ∗})

ME(C = {Role = ∗, Amino Acid = ∗})

AV(Ia.v1, Amino Acid ≥ 10)

IR(Ia)

(2) Plan (B)

Fig. 5. Query Execution Plans

keys, and Ê ⊆ Es the set of connection constraints on the join results. The join
results are the combinations of fs′ and fs′′ , such that (1) ∀v ∈ V̂ , fs′(v) = fs′′(v),
and (2) ∀(u, v) ∈ Ê, (fs′(u), fs′′(v)) ∈ Es, u ∈ Vs′ , v ∈ Vs′′ . The cost is in O(|Fs′ | ·
|Fs′′ | · |Ê|). The number of intermediate results is estimated as

∑
v∈V̂ nv

s′ · nv
s′′ ,

wherenv
s′ (resp.n

v
s′′) is the numbers ofmappings such that∃u ∈ Vs′ (resp.u ∈ Vs′′ ),

fs′(v) = u (resp. fs′′(v) = u).
GS and IR are the two primitive operations not requiring partial mappings as in-

put. A complete query execution plan can be considered as a tree with every node
representing a primitive operation. For example, two sample plans are depicted in
Fig. 5 regarding Example 5. The overall cost of a query execution plan is given by
summing up the costs of all nodes, where the cost of internal nodes are also depen-
dent on the intermediate results of the antecedent operation.We compare different
query execution plans in terms of their overall cost. Immediate is there exist an ex-
ponential number of plans.

Next we prove that computing the query execution plan with minimum cost is
difficult, and hence, most online applications cannot afford the cost. Following sub-
section proposes as a remedy a practical algorithm to find effective plans efficiently.

Theorem 2. Given a substructure selection problem, finding the query execution
plan with minimum cost is NP-hard.

4.3 Query Plan Generation

We first lay down four heuristics for composing effective query execution plans.

– Aproper execution order reduces the overall processing cost.We gen-
erate tree-structured plans to reduce the search space. It differs from the left-
deep tree in relational database in that the internal nodes are the operations
requiring partial mappings as input – AV, CV, ME and MJ. The rationales behind
are it (1) avoids materializing partial mappings of each operations; and (2) sig-
nificantly reduces the search space of plan composition.

– Joiningoverlappedmapping reduces intermediate results.Supposewe
have two sets of partial mappings Fs′ and Fs′′ for partial queries s

′, s′′ � s, re-
spectively. We exert MJ only when Fs′ and Fs′′ overlap, i.e., have at least one
common vertex and/or edge; otherwise, the intermediate results of join are ex-
actly the Cartesian product of Fs′ and Fs′′ . As a consequence, we prioritize ME,
and postpone MJ till the partial queries overlap.
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– Eager constraints validation reduces intermediate results.Weallocate
constraints validation as early as possible in the plan so as to reduce the input
size of subsequent operations. Specifically, we insert CV immediately after IR
and ME to check the inner connection constraints. Similarly, we allocate AV once
there are attribute constraints on extending vertices.

– Early validationof selective constraints reduces intermediate results.
In particular, given a set of constraints, we order them in descending order
of selectivity so that the partial mappings in subsequent steps are reduced.
When there is a tie, we further differentiate them by selection ranges of the
constraints; i.e., constraints with smaller selection ranges are ordered ahead.

Algorithm 2. GeneratePlan(s, I)

Input : s is a query; I is SS-index.
Output :P is the execution plan, initialized as ∅.

1 open ← Vs, closed ← ∅;
2 cand ← {t|s′ � t ∧ s′ � s such that t is indexed by I};
3 remove non-maximal templates from cand;
4 t ← PickSeed(cand), cand ← cand \ {t};
5 open ← open \ Vt, closed ← closed ∪ Vt;
6 P ← P ∪ IR ; /* append validations when possible */

7 while open �= ∅ do
8 ME ← PickExtension(open), add extension vertex into closed;
9 P ′ ← P,P ← P ∪ ME ; /* append validations when possible */

10 for each t ∈ cand do
11 if Vt ∩ closed �= ∅ then

12 P ′ ← P ′ ∪ MJ;
13 if EstimateOutput(P ′) < EstimateOutput(P ) then
14 P ← P ′ ; /* replace the existing plan */

15 open ← open \ Vt, closed ← closed ∪ Vt;

16 cand ← cand \ {t};

17 return P

Hence, we compile the guidelines intoAlgorithm2 for efficiently composing a query
execution plan, which consists of two stages: (1) seed selection, and (2) plan growth.

The algorithm starts by retrieving as set cand all indexed templates subsuming
a partial query, and then removing non-maximal template graphs (subgraphs of
others in cand, Lines 2 – 3). The template t, having the least partial mappings sat-
isfying all the constraints under consideration, is adopted as the plan seed (Line 4).
Afterwards, the algorithmutilizes two exclusive sets – open and closed – to indicate
the status of every query vertex. Vertices in open has been considered in the plan,
and closed implies a vertex is not considered yet. After including Vt into closed, we
put index retrieval as the first operation (Line 6), and begin to grow the seed to a
complete plan.

In the second stage, we iteratively insert mapping extension operations into the
current plan. In each iteration, all required attribute and connection validations are
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exploited, and then all possible mapping extensions of the current plan are identi-
fied. Among all the extensions, the one with minimum estimated cost is chosen via
calling PickExtension (Line 8). Note only the vertices in open are considered. Each
mapping extension introduces a new vertex to the plan, which is put into closed
thereafter. Additionally, if there exists a candidate template ofVt subsuming a sub-
graph ofVs′ � closed, we create an alternative planby replacing themapping exten-
sions of Vs′ in that specific template with a mapping join of Vt. If this alternative is
estimated by EstimateOutput to have less intermediate results, we adopt the alter-
native plan (Lines 11 – 14). The process repeats till all query vertices are in closed.

SS-search employs the resulting query execution plan to discover the entiremap-
ping set eventually.We remark the cost of the first stage consists of (1) subgraph iso-
morphic tests for identifying indexed templates; and (2) removals of non-maximal
templates.Onemaynote theworst case complexities of bothpartsareNP-complete,
whereas they are not significantly large in practice, as the indexed templates are
normally small.

5 Index Construction

This section discusses the construction of SS-index. We judiciously index effective
template graphs to strike a balance between index quality and cost. An effective
template is both sufficiently frequent and sufficiently discriminative. Additionally,
our algorithm considers to utilize query logs to pick selective templates.

Frequency of a template graph t is defined as freq(t) = |{r|r′�t}|
|R| , and discrim-

ination ratio as disc(t) = |{r|r′�t}|
|{r|r′�t′}| , where r′ � r, r ∈ R, and t′ � t. Follow-

ing [8, 11], we choose the template graphs conforming to freq(t) ≥ α and disc(t) ≤
1− β, where α and β are frequency and discrimination thresholds, respectively.

When query logs are available, we use average number of partial mappings that
can be retrieved by the historical queries to estimate the selectivity of the tem-

plates. Therefore, selectivity is defined as sele(t) =
∑

s′�t |FVt |
|{s|s′�t}| , where FVt is the

set of embeddings of t, s′ � s, s is an individual from historical queries S. If there
exist more than one embedding of t in s, we choose the one with minimum |FVt |.
Given a selectivity threshold γ, a template graph is selective, if sele(t) ≤ γ.

An issue brought to attention is the exponential number of possible template
graphs; i.e., we need to test all possible combinations of attributes at each vertex
for all graph structures. This is computationally prohibitive when there are larger
number of attributes and/or structures. To resolve the issue, we make the observa-
tions: (1) a common combination of attribute is comparable to the “frequent item-
set” in a transactional database; and (2) an embedding of template t′ is subsumed
by another t if t′ � t; we put the attribute values of an embedding of t, which
are missing from t′, as nil. This enables us to employ only the maximal frequent
attribute sets as the attributes for indexing discriminative structures, while allevi-
ating the exponential growth issue.

Particularly, we treat the set of attributes at a vertex as one transaction, |R| ·
|Vr| transactions in total. Maximal frequent attribute sets [1] are derived from the
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“transactional database”; i.e., frequent attribute sets all whose immediate super-
sets are infrequent. These attribute sets, denoted by A, constitute the domain of
attributes carried by template vertices; i.e., a template is extended with vertex v,
only if Av ⊆ A ∈ A.

Algorithm 3. IndexTemplate(D, L, α, β, [S, γ])

Input :R is database; L is maximum template size; α is frequency threshold;
β is discrimination threshold; S is query set; γ is selectivity threshold.

Output : I is SS-index, initialized as ∅.
1 A ← compute maximal frequent attribute sets;
2 for each distinct single attribute att do
3 t is a template of att;
4 I ← I ∪ {t} ; /* include in the upper-tier */

5 for each template t discovered by gSpan-like procedure using A do
6 if CheckThreshold (t, α, δ, [S, ε]) then
7 I ← I ∪ {t} ; /* include in the upper-tier */

8 for each template t ∈ I do
9 I ← I ∪ ConstructSubindex(t) ; /* include in the lower-tier */

10 return I

We propose an apriori-based template indexing algorithm (Algorithm 3). Line 1
computes the maximal frequent attribute sets A. Then in Lines 2 – 4, we index
templates for single attributes. These individual attributes avoid expensive graph
scans in query processing. In Lines 5 – 7, we follow the procedure of gSpan [10] to
generate template structures, and it only extend a template to a new vertex whose
attribute set is a subset of an element inA. CheckThreshold tests whether the tem-
plate satisfies both frequency and discrimination thresholds; additionally, the se-
lectivity threshold is verifiedwhen query logs are available.Meeting the thresholds
qualifies a template to be organized in a prefix tree in SS-index (upper-tier). Finally,
Lines 8 – 9 construct the subindices for all templates in the upper-tier by calling
ConstructSubindex.

6 Experiments

The following algorithms are involved in the experimental evaluation:

– SS-search is the proposed algorithm for substructure selection using SS-index.

– QuickSI is a state-of-the-art subgraph containment search algorithm [8]. We
received the source code from the authors, and modified it to support finding
all substructure mappings. Essentially, the adapted QuickSI realized our Al-
gorithm 1 following the DFS paradigm. Treating data graph templates with
the first attribute on vertices (disregarding the remaining attributes) as single-
labeled graphs, we mined discriminative tree features and built index for
pruning.
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– GADDI is a state-of-the-art subgraph all-matching algorithm [13]. It was
reengineered to handle general selection conditions, and built index with dis-
criminative subgraphs for every data graph using the templates as QuickSI.

All algorithmswere implemented in C++, and compiled usingGCC 4.4.3 with -O3
flag. Experiments were run on amachine of Intel Xeon 2.40GHz dual CPUwith 4G
memory running Debian Linux. We used the following default settings for all algo-
rithms – frequency threshold α = 0.1 and discrimination threshold β = 0.1.

We conducted experiments onboth real and synthetic datasets. In the interest of
space, we only show the results on real dataset AIDS. AIDS is an antivirus screen
compound dataset at NCI/NIH, containing 43, 905 molecules. On average, each
graph has 25.4 vertices and 27.3 edges. Each vertex represents an atom with a 3-
dimensional coordinate, and edges depict the chemical bonds between atoms. For
every vertex, we used the name as an attribute with the first dimensional coordi-
nate as value. In total, there are 62 distinct first attributes, valued in [-47.3, 63.4].
Additionally, we used ‘coordinate’ as the other attribute with the second dimen-
sional coordinate as value. Since coordinate is continuous in the value domain, we
tested range conditions on AIDS.

Five sets of 1000 query graphs were used (denoted Q8, Q12, Q16, Q20 andQ24),
average number of edges being 8, 12, 16, 20 and 24, respectively. For each query,
30% vertices have non-trivial attribute constraints with average selection range of
0.1. Q16 was used by default, if not otherwise specified. We report the average re-
sults per query.

Index Construction. We first evaluate the indexing performance of SS-index
using different structural features.We enforcedAlgorithm 3 to growpath, tree and
subgraph templates, respectively, and show the results in Table 2(1). Three result-
ing algorithms are shortened as Path-SS, Tree-SS and Subgraph-SS, respectively. It
is clear Path-SS consumes the most space, since the number of path templates is
much more than the others. Tree-SS takes the second place regarding both space
and indexing time, while Subgraph-SS has the smallest index size but largest run-
time due to expensive subgraph isomorphic tests. Further, Fig. 6(1) reflects the
effect of various features on runtime. Subgraph-SS has a greater starting point, but
decreases faster thanPath-SS, as subgraphs aremore selective in larger graphs than
paths. Tree-SS provides the greatest performance upgrade for all query sets. Sub-
sequently, we chose trees as index features in the remaining experiments to strike a
balance between space costup and runtime speedup. Also, we suggest, if memory is
not critical, one may also include subgraph features to gain further speedup when
data graphs a large.

The comparison of indexing performance involving three algorithms are pre-
sented in Table 2(2). GADDI spends the greatest space and runtime on indexing
due to the lack of optimization pertinent to the problem. SS-index andQuickSI have
comparative indexing performance. Specifically, SS-index needs to manage the se-
lected embeddings, and thus, has slightly larger size and greater runtime, though
SS-index and QuickSI both utilizes tree features. We will see shortly this offline ef-
fort is rewarding.
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Table 2. Experiment Results-I

(1) Comparison of Features

SS-index Size (kB) Time (s)

Path-SS 4867.9 175.6

Tree-SS 1249.8 367.4

Subgraph-SS 657.1 581.9

(2) Indexing Performance

AIDS Size (kB) Time (s)

QuickSI 876.5 225.6

GADDI 4834.3 3198.2

SS-index 1249.8 367.4

Query Processing. We experimentally compare the efficiency of the three algo-
rithms against varying query size, and the results are shown in Fig. 6(2). The query
processing of SS-search is up to three orders of magnitude faster thanQuickSI, and
five orders of magnitude faster than GADDI. The response time of SS-search dras-
tically decreases as query size increases, whereas the response time of QuickSI only
decrease slightly; on the contrary, the response time of GADDI increase slightly as
query graph size increases. This phenomenon is more significant on large queries.
We argue that as SS-search leverages the embeddings indexed by SS-index, the cost
greatly depends on the selectivity of the chosen plan seeds. As query size increases,
it ismore likely to contain larger indexed templates subsuming somepartial queries,
which are more selective in general; however, this does not benefit QuickSI and
GADDI.

Evaluating Constraints.The effect of varying constraint coverage is studied, as
shown inFig. 6(3). Thex-axis is the percentage of query verticeswith attribute con-
straints.We varied the percentage from 10% to 50%.With expectation, the results
indicate GADDI and QuickSI are merely affected, since they do not take into con-
sideration the selectivity of constraints. Contrarily, the response time of SS-search
drastically reduces with the increasing percentage. The reason behind is that the
more constraints there are in queries, the more selective the chosen indexed tem-
plates are. Consequently, it is likely we can obtain a small number of partial map-
pings at start-off, and effective mapping joins with indexed templates result in re-
ductions on intermediate results. We also observe the performance of SS-search is
slightly worse than QuickSI when only 10% of the queries have constraints. As the
graphs in the default query set contains 16 edges on average, there are only ap-
proximately one or two constraints in each query. Therefore, it is less likely to find
indexed templates with few mappings; however, SS-search is only slightly slower
than QuickSI even in this extreme case. This also advises that existing subgraph
search techniques do not handle substructure selections effectively.

We also study the effect of range size on response time, and report the results in
Fig. 6(4). Range size is the average range of selections exerted by the range condi-
tions. We varied the range size from 0.1 to 10. Intuitively, constraints with smaller
range size are more selective. As expected, the response time decreases gradually
as range size decreases. However, the impact of range size is comparatively insignif-
icant under the given setting; i.e., similar value domains and small number of at-
tributes. This implies the selectivity of a query is more dependent on the number
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Fig. 6. Experiment Results-II

of constraints than the selectivity of each constraint, which can be used to further
strengthen the index construction. From another angle, this also corresponds to
the argument that substructure-based filtering is more effective than vertex/edge-
based filtering techniques [11].

Evaluating Scalability. We evaluate the scalability of three techniques against
varying graph database size. We sampled five graph databases by randomly choos-
ing 1k, 2k, 5k, 10k and 20k graphs from the original dataset, so that the data dis-
tribution remains approximately the same. The results are plotted in Fig. 6(5). It
suggests SS-search is expected to be more scalable than others, although all algo-
rithms grows steadily towards larger database size. In addition, SS-search outper-
forms others with substantial gaps under all given database size settings.

The scalability of index construction is studied in Fig. 6(6). All three algorithms
are scalable in terms of indexing time. SS-index showcases the smallest growth rate
among the three, and the maximal frequent attribute sets based mining approach
lends itself well to large graph databases. We note the performance of QuickSI is
faster than the others. This is attributed to thatQuickSImines features from a por-
tion of the database [8], which can be regarded as trading index quality for runtime
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performance. Similar concepts are applicable to SS-index for mining attribute sets
and structural features. These are beyond the scope of this paper, and hence, left
for future study.

7 Conclusion

In this paper, we have studied substructure selections in multi-attributed graph
databases.We devise SS-index to provide effective support. On top of it, SS-search
is proposed leveraging dynamical query execution plans. The effective index and ef-
ficient processing algorithms render our solution attractive in terms of performance
and scalability.
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Abstract. Counting the number of triangles in a graph is significant
for complex network analysis. However, with the rapid growth of graph
size, the classical centralized algorithms can not process triangle count-
ing efficiently. Though some researches have proposed parallel triangle
counting implementations on Hadoop, the performance enhancement re-
mains a challenging task. To efficiently solve the parallel triangle counting
problem, we put forward a hybrid parallel triangle counting algorithm
with efficient pruning methods. In addition, we propose a parallel sample
algorithm which can avoid repeated edge sampling and produce high-
precision results. We implement our patterns based on bulk synchronous
parallel framework. Compared with the Hadoop-based implementation,
2 to 13 times gains can be obtained in terms of executing time.

1 Introduction

The triangle counting over various graph data is a basic problem to support many
important high-level applications, which has attracted more and more attention
in both academical and industrial communities, such as [1, 2].

With the rapid growth of graph data, counting and listing triangles in such
large graphs will cause serious performance concerns. Faced with such massive
data, parallelization and sampling become two potential solutions. Some re-
searchers attempt to extend and implement triangle counting algorithms based
on Hadoop platform [3, 4]. However, some important issues such as communi-
cation optimization have not been sufficiently addressed. Besides, Hadoop may
suffer performance problems when multiple-step map-reduce execution processes
are needed. In addition, as a most prominent alternative, effective sampling can
remarkably reduce the data volume and consequently improve the evaluation
efficiency. While, how to gain high-precision results becomes quite challenging.
Doulion is a typical representative which can guarantee the precision [4]. Unfor-
tunately, the available sampling algorithms can not be easily executed in parallel
due to the “repeated edge sampling” problem.

Our major contributions are twofold. First, we step forward to explore some
essential optimization techniques to improve the efficiency of parallel triangle
counting and listing in terms of local computation and across-node communica-
tion costs. The proposed optimization methods can be easily implemented uti-
lizing more fundamental frameworks such as bulk synchronous parallel to avoid
the limitation of Hadoop-like systems. Second, we attempt to crack the nut of in-
jecting sampling techniques into our parallel framework while guaranteeing quite

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 301–308, 2013.
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high-precision analysis results, and hence further enhance the system capability
in face of massive graph data. Specifically, (1) To tackle the problem of the over-
head of communication and local computing, we propose a hybrid algorithm and
a cut pruning technique. The hybrid algorithm combines the advantage of two
available solutions namely NodeIterator and EdgeIterator [5]. And we propose
the cut pruning to avoid repeated counting and reduce the message scale. (2)
To solve the repeated edge sampling problem, we propose a partial-sampling
method which can be embedded into our parallel framework.

The remaining sections are structured as follows. Section 2 reviews the related
work. Section 3 proposes our optimization techniques and sampling algorithms.
The experimental evaluation on various data sets is given in section 4 and we
conclude in section 5.

2 Related Work

The centralized triangle counting and listing algorithms over graphs have been
extensively studied. NodeIterator and EdgeIterator are two typical representa-
tives [5]. NodeIterator is a vertex-centric algorithm which traverses every vertex
and then checks the existence of an edge composed by any pair of the vertex’s
neighbors. While, EdgeIterator is an edge-centric algorithm, in which the source
vertex and the destination vertex of every edge will be abstracted. Consequently,
triangles can be found by searching common neighbors of these two vertices. In
addition, some improved algorithms are proposed [6–8] which can gain better
performance, but they are not suitable for parallel implementations as massive
messages will be incurred. Some other works on graph data management can also
indirectly offer the triangle counting function by issuing special queries. For ex-
ample, R. Giugno et al. [9] propose a technique to count the three-node complete
subgraph which composes a triangle actually. In [10], triangles can be counted
as three-step-neighbors when the source vertex is assigned as the destination
vertex.

With the rapid growth of graph data, some researchers are devoted to im-
plementing classical centralized algorithms on parallel frameworks. S. Suri et al.
[3] propose a parallel solution, NodeIterator++, by improving NodeIterator, and
implement it on Hadoop. Although NodeIterator++ counts the same triangle for
several times repeatedly, the final result can be guaranteed to be correct due to
designing different weights for edges.

Sampling techniques are regarded as feasible solutions on large data sets. Typ-
ically, C. E. Tsourakakis et al. [4] propose Doulion algorithm by using random
sampling to process each edge, and NodeIterator to count triangles. Also, Ras-
mus Pagh et al. [11] introduce a new randomized algorithm for counting triangles
in graphs. In the algorithm, one edge of a triangle is always sampled, if the other
two have been sampled. However, these sampling algorithms can not be correctly
executed in parallel because of the repeated edge sampling problem.
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3 Optimization Policies and the Sampling Algorithm

3.1 SEN-Iterator

The definitions of symbols throughout the paper are given in Table 1.

Table 1. Symbols and Definitions

Sym Definition Sym Definition

G undirected graph(no self-edges) V vertex set of G
E edge set of G Dv the degree of vertex v
D(v) neighbor set of vertex v P (i) vertex set in Node i
Node i a physical machine named i N the calculated number of triangles
M the exact number of triangles

Assume a triangle 〈u, v, w〉 exists and u ∈ P (i), v ∈ P (j), w ∈ P (k), then
triangles can be divided into three types: 1. Local-triangles, i = j = k. 2. Two-
one-triangles, i = j 
= k or i = k 
= j or k = j 
= i. 3. Dis-triangles, i 
= j 
= k.
Combining the partial-sampling algorithm (see section 3.2), EdgeIterator and
NodeIterator [5], we propose a SEN-Iterator algorithm which has three phases.
First, we generate a sampled graph G

′
by sampling edges which meet our policy

with successful probability p (see section 3.2). Then local-triangles and two-one
triangles in G

′
are counted by utilizing EdgeIterator, and we handle messages by

using the concept of NodeIterator and cut pruning (see section 3.3). The third
phase is to count the dis-triangles.

3.2 Partial-Sampling Algorithm

Assume an edge 〈u, v〉 ∈ E, u ∈ P (i), v ∈ P (j), i 
= j. For existing sampling algo-
rithms, in parallel environments, 〈u, v〉 will be processed on both Node i andNode
j, which will be sampled twice. Therefore, for the parallel sampling process, How
to avoid sampling an edge repeatedly is a critical problem. We propose a partial-
sampling algorithm to overcome this issue. In the partial-sampling algorithm, the
cross-Node edges are sampled with the successful probability 1. While, the edges
in the same Node are sampled with the successful probability p.

Theorem 1. The expected number of triangles in the sampled graph G′ is equal
to the actual number of triangles in G i.e. E(N) = M .

Proof. For G
′
, we assume that N1 is the number of local-triangles, N2 is the

exact number of two-one-triangles and N3 is the exact number of dis-triangles.
For G, let M1 denote the existing local triangles, M2 be the number of two-one-
triangles and M3 be the number of dis-triangles. For each existing triangle with
a specified ID i in G, εi is defined as a flag. Therefore, εi = 0 if triangle i does
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not exist in G′, otherwise, εi = 1. According to the partial-sampling algorithm,
the expected values of N1, N2, N3 are:

E(N1) = E

M1∑
i=1

(
1

p3
× εi) =

1

p3
×

M1∑
i=1

p3 = M1 (1)

E(N2) = E

M2∑
i=1

(
1

p
× εi) =

1

p
×

M2∑
i=1

p = M2 (2)

E(N3) = E

M3∑
i=1

εi =

M3∑
i=1

E(1) = M3 (3)

By above formulas, we can conclude that:

E(N) = E(N1) + E(N2) + E(N3) = M1 +M2 +M3 = M (4)

Furthermore, we analyze the variance of N in Theorem 2.

Theorem 2. Let M be the exact number of triangles in graph G. The variance
of N is:

V ar(N) =
M × (p3 − p6) + 2k × (p5 − p6)

p6
+Δ× p× (1 − p) (5)

where, k is the number of triangles which share an edge with other triangles.

Proof. The deviation mainly comes from three parts: overall triangles’ deviation,
edge-shared triangles’ deviation and local-triangles’ deviation. In [4], the author
gives the variance estimate of the overall triangles’ deviation and edge-shared
triangles’ deviation as follows:

V ar(N ′) =
M × (p3 − p6) + 2k × (p5 − p6)

p6
(6)

Here, we will derive the deviation of the third case. First, we assume that Δ is
the number of two-one-triangles. With the partial-sampling algorithm, only one
edge will be sampled. The variance of the third case is:

V ar(N ′′) = Δ× p× (1− p) (7)

Finally, we get the variance estimate:

V ar(N) =
M × (p3 − p6) + 2k × (p5 − p6)

p6
+Δ× p× (1 − p) (8)

Using Theorem 2, we can get the following theorem to evaluate the stability of
the expected number of triangles.
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Theorem 3.

Pr(|X −M | � ε) ≥ 1− M × (p3 − p6) + 2k × (p5 − p6)

P 6 × ε2

−Δ× p× (1− p)

ε2

(9)

Proof. By using the Chebyshev’s inequality, we have:

Pr(|X −M | � ε) ≥ 1− V ar(X)

ε2
(10)

and by substituting the Formula 8, we can analyze the bound.

This theorem gives an evaluation about the performance of our partial-sampling.
The accuracy of the approximate value is affected by the number of triangles in
the graph, the structure of the graph and the value of p. The larger the number
of triangles in the graph, the more the probability to obtain a good approximate
value is. Also, the fewer edge-shared triangles which exist in the graph, the better
the approximate value is.

3.3 Cut Pruning for Messages

In parallel environments, messages are used to confirm the existence of dis-
triangles. And in EdgeIterator or NodeIterator [5], the content of messages gen-
erated by vertex u is D(u). If messages are generated on Node i and sent to
the same Node, we define them as self − messages, while others are called
normal − messages. For EdgeIterator or NodeIterator [5], to confirm the ex-
istence of a dis-triangle 〈u, v, w〉, where u ∈ P (i), v ∈ P (j), w ∈ P (k) and
i < j < k, there are six kinds of normal − messages: Node i to Node j, Node
i to Node k, Node j to Node k, Node j to Node i, Node k to Node i and Node
k to Node j. In fact, only one message is necessary to confirm the existence of
dis-triangles. Therefore, we design an optimization policy to reduce the message
scale in SEN-Iterator: First, Node i only generates messages whose destination
Node ID is larger than i. Second, for a message sent to vertex u, its content only
includes neighbors whose ID is larger than that of u. Then, only one message
will be sent from Node i to Node j to confirm whether triangle 〈u, v, w〉 exists.

We analyze the effect of the policy. Assume Dl(v, u) =
{w | w ∈ V,w ∈ D(v), w > u} and the length of one message is measured
by the number of neighbors included in its content. For v, z ∈ V,D(v) =
{y1, y2, y3...yk−1, z, yk+1...yn}, where y1 < y2 < y3 < ...yk−1 < z < yk+1... < yn,
v ∈ P (i), z ∈ P (j), i < j, Node i will send a message to Node j according to our
policy. Then we can compute the total length of messages sent by Node i as:

rLen(v) = (n−k+1)+(n−k)+(n−k−1)+...+1 =
1

2
×(n−k+2)×(n−k+1) (11)

The length of messages based on EdgeIterator or NodeIterator is computed as:

Len(v) = n+ n+ n+ ...+ n = n2 (12)
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Let f(n, k) = Len(v)− rLen(v), we get:

f(n, k) =
1

2
× n2 + n× k − 1

2
× k2 − 3

2
× n+

3

2
× k − 1 (13)

Then we evaluate the derivative functions of f(n, j):

∂f

∂n
= n+ k − 3

2
(14)

∂f

∂k
= n− k +

3

2
(15)

By analyzing the Formula 14 and Formula 15, we can infer the following prop-
erties: (1) A larger n will enhance the effect of the policy, in other words, it will
have better performance for dense-graphs. (2) A larger k will enhance the effect
of the policy. It means each vertex has fewer neighbors. Considering the number
of edges is fixed, we can infer that this policy is more suitable for the scenario
where the number of every vertex’s neighbors is nearly equivalent.

4 Experiment

We implement the SEN-Iterator algorithm on the bulk synchronous parallel
model and compare the performance with NI-Hadoop. NI-Hadoop is imple-
mented on Hadoop by using the similar idea proposed by [3]. All of the datasets
we used are publicly available [12] and described in Table 2. Self-loops and the
direction of edges are removed. Our cluster is composed of 21 nodes. Every
node contains 2 hyperthreaded 2.00GHz CPUs, 8GB RAM and a Hitachi disk
drive with 500GB capacity and 7,200 RPM. All nodes are connected by gigabit
Ethernet to an Ethernet switch.

Table 2. Characteristics of data sets

Data Set Vertices Edges Triangles Data Set Vertices Edges Triangles

Ast 18,772 396,160 1,351,441 Web 875,713 5,105,039 13,391,903
Soc 131,828 841,372 4,910,076 Am2 262,111 1,234,877 717,719
Hep 12,008 237,010 3,358,449 Am5 410,236 3,356,824 3,951,063

4.1 Performance Analysis and Scalability of SEN-Iterator

We evaluate the SEN-Iterator algorithm over a large amount of real graphs. As
shown in Fig 1(a), the overall gain of SEN-Iterator is tremendous. Exemplified
by Web, the speedup of SEN-Iterator compared to NI-Hadoop is a factor of up to
13. Fig 1(b) demonstrates the scalability of SEN-Iterator. For the data set Am2,
when the number of Nodes increases from 12 to 20, the running time reduces
from 15s to 10s.
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Fig. 1. Overall performance and scalability of SEN-Iterator

4.2 Analysis of Cut Pruning

The cut pruning policy improves the performance by reducing the number of
messages. This suit of experiments is used to analyze the effect of the cut pruning
policy by comparing SEN-Iterator with None-Iterator. The latter does not adopt
the pruning policy. The message scale of None-Iterator is 2 times more than that
of SEN-Iterator. For Web, SEN-Iterator only has 3845986 messages, while None-
Iterator has 8644102 messages.

4.3 Accuracy Analysis for Partial-Sampling Algorithm

We run SEN-Iterator by five different values of p which ranges from 0.01 to 0.2.
The examination is evaluated on real graphs. We define Accuarcy = N

M , where
N is the calculated value of triangles and M is the exact value. Fig 2 shows the
experimental results. We notice that the accuracy is always greater than 99%,
when p = 0.1 or 0.15.
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Fig. 2. The accuracy for different p in sampling

4.4 Performance Analysis of Partial-Sampling Algorithm

We analyze the gain of sampling by comparing SEN-Iterator and EN-Iterator
without sampling. They are run on 12 Nodes with p = 0.1. We define the speedup
as Acc = R

B , where R is the running time of EN-Iterator without cut pruning
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and B represents the running time of SEN-Iterator without cut pruning. The
Acc is more than 200% for all data sets. What’s more, the Acc of Web is 297%,
which is the largest.

5 Conclusions

In this paper, we propose a new solution to efficiently solve the parallel triangle
counting problem. A cut pruning policy is designed to optimize the overhead of
communication, and we propose a partial-sampling method to avoid the repeated
sampling in parallel environments. It can be embedded into our framework and
improve the performance.

Acknowledgments. This research is supported by the National Natural Sci-
ence Foundation of China (61272179, 61003058) and the Fundamental Research
Funds for the Central Universities (N110404006, N100704001).
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Abstract. Automatic document summarization is always attractive to
computer science researchers. A novel approach is proposed to address
this topic and mainly focuses on the summarization of plain documents.
Conventional summarization methods do not fully use the inter-sentence
relevance that is not preserved during the processing. In contrast, to
tackle the problem and incorporate the latent relations among sentences,
our approach constructs relevance structures at sentence-level for plain
documents and each sentence is scored with a significance value. Ac-
cordingly, important sentences “present” themselves automatically, and
the summary paragraph is then generated by selecting top-k scored sen-
tences. Convergence of the algorithm is proved, and experiment, which
is conducted on two data sets (DUC 2006 and DUC 2007), shows that
the proposed model gives convincing results.

Keywords: Sentence relevance, Summarization.

1 Introduction

With the development of Internet, online textual information has been growing
tremendously in recent years. Confronting with such a big volume of documents,
people need a way of fast exploration and indexing. Despite summary quality,
such as anaphoric references, grammar etc., computer-aided summarization has
much faster speed. More and more computer-generated summaries have become
beneficial for both users’ exploration and search engines’ indexing.

Computer-aided summarization approaches could be generally categorized as
abstract -based and extract -based. Abstract -based approaches are more similar
to rewriting of document(s) by human beings. Extract -based approaches, which
mainly focus on the statistical information about terms’ occurrences, extract
sentences from the original document(s) by scoring the sentences. Approaches
in this category could be originated from Luhn [9]. Vector Space Model (VSM),
which is a commonly adopted model, has been playing an important role [16].
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However, while documents are divided into pieces of terms for analysis, sentence
is no longer the smallest analyzing unit, and sentence relevance structure hid-
den in documents which presents latent relationship between sentences is not
preserved during the processing. We think that the structure information is also
critical to information processing and the relative importance order of sentences
could be captured if the structure can be modeled and generated automatically.

Self-Present Sentence Relevance (SPSR) model proposed in this paper con-
siders sentences as nodes and the relationship between sentences as the edges.
Relevance values between sentences are calculated and taken as weights of the
edges. Sentences’ importance (significance) values are then scored interactively
by measuring their contributions to the relevance values. Assumption here is
that the more contributions one sentence makes, the more important the sen-
tence is. Latent key sentences gain higher scores than the others and therefore
“emphasize” themselves automatically.

Our approach lines up with the category of cluster-based and graph-based
summarization. The main distinguishing points are: 1) SPSR does not need to
determine the number of clusters. Cluster-based approaches implicitly or ex-
plicitly need to determine the number of clusters. Our method does not have
an explicit cluster concept, where sentences are scored and summarization is
generated from a sorted sentence list. The number of sentences in summary is
determined by the requirement of summary length but not the clusters; 2) SPSR
considers summarization’s diversity in building algorithm and does not need to
adopt Maximal Marginal Relevance (MMR) [1] for further processing, where
MMR chooses sentence that is most relevant to document(s) but dissimilar to
the sentences that have already been selected. Graph-based models, which takes
sentences as individual entities and let them mutual vote each other, usually
do not take into account summarization diversity during model building. They
would employ MMR algorithm to refine sentence scores during sentence selec-
tion stage. In contrast, our approach uses local-normalization to make sentences’
significance value be normalized in a local sub-graph, and local representative
sentence will step out and compete with other local representatives for a position
in the final summary.

The rest parts of this paper are organized as follows. A brief review of sum-
marization approaches is provided in Section 2. In Section 3, SPSR model is
formulated and the construction steps are illustrated by a running example.
Details about experiment are reported in Section 4. In Section 5, conclusion is
drawn.

2 Related Work

The main approaches of summarization could be visualized as a tree shown in
Figure 1. As illustrated in Figure 1, summarization approaches could first be
divided into two categories: abstract -based and extract -based. Extract -based ap-
proaches can be further categorized as supervised and unsupervised approaches.
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Extract Abstract

Supervised Unsupervised Manmade

Sentence
Classification 

Sentence
Ranking

SVM
HMM
CRF

Cluster-based 
Graph-based

Summary

Fig. 1. Summarization approach categories

Supervised approaches take the summarization as a binary classification prob-
lem in which sentences are either classified as in-summary or not-in-summary. A
fundamental assumption of these approaches is that sentences are independent
from each other, however, this assumption ignores the relationship (or relevance)
between sentences. Hidden Markov Model (HMM) [2] and Conditional Random
Field (CRF) [3] based approaches are then proposed to relax that assumption.

Cluster-based approaches use clustering techniques to cluster sentences into
several groups and select the most representative ones in each group to form the
summary. Cluster-based approaches [22] usually have three steps: 1) partition
sentences into n groups; 2) in each cluster, score sentences and sort them ac-
cording to their scores; and 3) top scored sentences are selected as the summary.
Radev et al. [15] think it better to leverage the cluster centroids. MEAD, a repre-
sentative centroid-based approach, scores sentences based on the features of sen-
tence, e.g. tf · idf value, cluster centroids, position, etc. Symmetric Non-negative
Matrix Factorization (SNMF) is used in summarization by Wang et al. [19].
Latent Semantic Analysis (LSA), which helps add and analyze hidden topic fea-
tures, is employed by Gong and Liu’s work [5]. Graph-based model [11,4,17,18] is
another category of unsupervised extract -based summarization approach. Wan
and Yang [18] (ClusterHITS) improve Markov Random Walk model by inte-
grating cluster information. Instead of using the score of centroids, Erkan and
Radev (LexPageRank) [4] use PageRank-like method to let sentences “vote”
and “recommend” each other. Yin et al. [21] consider the sentence ranking in a
query-extraction scenario, where queries features provide extra information and
improve the summarization quality when well incorporated.

The evaluation of summary is another important issue. Jones [7] start his
survey paper by discussing many evaluation aspects. Also, Mani et al. [12] discuss
this issue and thinks that the quality of the summary could be evaluated intrinsic
and extrinsic. The main properties that people concerned about summary could
be listed as follows:

– Readability. The sentences in the summary should be well-formed, well-
connected and grammar-correct.

– Relevance. A good summary should contain sentences that are most rele-
vant to the main concepts and topics of the original documents.
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– Diversity. The sentences in the summary should be non-redundant.
– Coverage. A good summary should cover as many concepts and topics of

the original documents as possible.
– Distortion. This is borrowed from information theory and first applied to

summary evaluation by Ma and Wan [10]. They consider the summariza-
tion process as a data transmission system and think that minimizing the
distortion should achieve better results.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) package [8], which
is adopted as “measures that count the number of overlapping units such as n-
gram, word sequences, and word pairs between the computer-generated summary
to be evaluated and the ideal summaries created by humans”, is widely used
together with DUC data sets nowadays. In our experiment, we also use ROUGE
to evaluate summarization quality on DUC 2006 and DUC 2007 data sets.

3 Motivation and Formulation

The main purpose of SPSR model is to construct the latent relevance structure
among sentences, and let key sentences gain higher scores for further summa-
rization. Given n sentences, we treat each sentence as a node with the same
significance value (for example, 1/n) at beginning. Relevance between each pair
of nodes is calculated as the weight of edges. We then divide each edge’s weight
value into two parts by measuring the contributions made by two nodes that
the edge connects. Formulae of relevance and contribution measurement are de-
fined as abstract function in our model, where concrete version could be user
defined for specific cases. Based on the rule of “more contribution more gain”,
bigger parts of weight will be added to the significance value of sentence that
contributes more to the relevance weight. After iterations, the significance values
of important sentences will become higher than the others.

3.1 Model Formulation

Self-Present Sentence Relevance (SPSR) model is defined as a tuple of six ele-
ments 〈T, V, F, E, W, S 〉:

– T={ti|ti is a term in the corpus}. T is the term space which contains all
the terms (words) in the corpus without duplicates. Due to the existence
of synonyms, documents may be written with different words but similar
meanings. Therefore, comparing terms bit-by-bit could not fully represent
the information of sentences. WordNet, built by Princeton, could measure the
semantic distance between two words. Semantically close words are grouped
together in one synonym set. Each set is indexed with a unique code. Without
loss of generality, we use ti to represent the set of synonyms.

– V={vj|vj={tk}, tk ∈ T}. Each sentence in the document is represented by
a node vj , which is a set of constituting terms in the sentence.
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– F={fij|fij is the number of occurrences of ti in vj , ti ∈ T, vj ∈ V}. ‖vj‖ is

defined as normalized sentence length, i.e. ‖vj‖ =
√∑

ti∈vj
f2
ij .

– E={eij |eij is an edge between nodes vi and vj , vi ∈ V, vj ∈ V}. As it is an
undirected graph, eij = eji.

– W={wij |wij is the relevance weight of edge eij , eij ∈ E}. Relevance weight,
in another word inverse distance, could be measured in different ways, such
as Manhattan distance and Euclidean distance etc. In our modeling, the
measurement is declared as an abstract function which could be concretely
defined by users. As commonly used in Information Retrieval, sentence rel-
evance wij in vector space could be measured by cosine similarity, then

wij =
vi · vj

‖vi‖ · ‖vj‖
=

∑
tk∈vi∩vj

fki × fkj√∑
tp∈vi

f2
pi ·

√∑
tq∈vj

f2
qj

(1)

Formula (1) defines one kind of similarity between vi and vj , where the
maximum value is one, or zero if there is no common term between two
nodes. As it is an undirected graph, wij = wji.

– S={si|si is the significance value of node vi, vi ∈ V}. Significance value is
the sum of how much contribution the node vi contributes to the weight of all
the edges connected to it. The more weight vi contributes, the higher value
si will have, and therefore, sentence i is considered to be more important. As
illustrated in Figure 2, significance value for node vi is generated iteratively
by: 1) splitting the weight of the edge eij which is connecting nodes vi and vj ;
2) summing up all the fractions of weights gained from the edges connecting
to vi.
Between each pair of nodes, contribution ci of node vi is also declared as an
abstract function. User could replace this function with what function they
think is reasonable.

vi

vj

wij

vi

wi1

wi2

...... 
win

Fig. 2. Sentence vi’s significance: 1) split the weight wij and 2) sum up all the fractions
of weights of wi∗.

The formula of calculating si iteratively is defined in Formula (2)1.

sn+1
i = sni + ci (2)

1 sn+1
i is not normalized in Equation.
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where n indicates the number of iteration and s0i is initialized with 1/|V |,
which means all sentences are equally weighted at the beginning and have
the same significance value. ci is the contribution value of node vi to all the
edges connecting to it.

Equation 3 defines a trivial example of how we split edges’ weights and
generate sentences’ contributions value.

ci =
∑
i
=j

( ∑
tk∈vi∩vj

fki∑
tk∈vi∩vj

(fki + fkj)
· wij

)
(3)

If sentence vi and vj have common term tk, which means that wij is not

zero, we will divide wij and let fki

fki+fkj
· wij to vi. The greater fki is, which

means tk appears more often in vi, the bigger part of wij that vi will get.
We also define σ(sni ) in Equation (4), which is to normalize the signifi-

cance value of vi in each iteration. 1{wij 
= 0} is used to ensure that the
normalization is localized, which means si is normalized only by nodes that
have non-zero-weight edge connected to it.

sn+1
i = σ(sni ) =

sni + ci
sni + ci +

∑
i
=j(s

n
j + cj) · 1{wij 
= 0} (4)

Also, the normalization could be done globally, which is to remove the “con-
nectivity” requirement in Equation (5). Thus, the formula for global normal-
ization becomes:

sn+1
i = σ(sni ) =

sni + ci∑
k(s

n
k + ck)

(5)

where k is the index of all the nodes.

3.2 Algorithm

The detailed algorithm for model building is presented in Algorithm (1). The
input of algorithm is the collection of document(s) which have been preprocessed
(i.e. tokenized, stop word filtering, stemmed, synonyms grouped). The output is
a vector that contains the significance values of each sentences accordingly.

The theoretical convergence of this algorithm is proved in Section 3.3, and
iteration number N is determined specifically to different corpus. In our experi-
ment, N is set to 50 which ensures that |sn+1

i − sni | < 0.00001.
After generating sentences’ significance values, program could derive the final

summary by selecting the top-k highest scored sentences, where k is the floor
of the length requirement of summary paragraph divided by the average length
of selected sentences. From this point of view, SPSR is more convenient than
clustering based algorithm.
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Algorithm 1. Algorithm of building SPSR model

1: for all fij , si, wij do
2: fij ← 0
3: s0i ← 1/|V |
4: wij ← 0
5: end for
6: for all vj do
7: if ti ∈ vj then
8: fij ← fij + 1
9: end if
10: end for
11: for all eij do
12: wij ← relevance(vi, vj)
13: end for
14: for n = 1 to N do
15: ci ← contribution(vi)
16: sn+1

i ← σ(sni )
17: end for

– Some clustering or centroid based approaches need people to decide the num-
ber of clusters (although sometimes heuristic helps decide cluster number,
it is a still time-consuming work); SPSR does not need to know the cluster
hierarchy of data set. Model quantifies the importance of the sentences and
let higher ranked sentences “float to the front”.

– After generating clusters, clustering based approach still need to decide the
importance of sentences within each cluster. SPSR quantitatively measures
sentence importance and order their significance scores in one shot.

3.3 Convergence

The meaning of convergence of SPSR building algorithm has two folds here: 1)
each sentence’s significance value converges; and 2) the order of all sentences’
significance values converge.

Lemma 1. ∀vi ∈ V , sni converges.

Proof. Without loss of generality, assume vi is connected with m other nodes.
For the sake of simple notation, denote the m nodes as v1, v2, . . . , vm and
i /∈ [1,m].

To prove the converge of sni is the same as to prove 1) sni monotonically either
increases or decreases and 2) sni is upper or lower bounded, respectively.

sn+1
i − sni

=
sni + ci

sni + ci +
∑

j(s
n
j + cj)

− sni

=
sni + ci

(sni +
∑

j s
n
j ) + (ci +

∑
j cj)

− sni

(6)
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Since sn is normalized and summed to one, sni +
∑

j s
n
j = 1. ∀i, ci is constant

and does not change along the iteration. Thus, ci +
∑

j cj is a constant too, and
equals the sum of weights of all edges, denoted as C. Therefore,

sn+1
i − sni

=
sni + ci
1 + C

− sni

=
sni + ci − sni − C · sni

1 + C

=
ci
C − sni
1 + 1

C

(7)

Since s0 is the same for all the nodes, for specific node vi, the comparison be-
tween ci

C and sni is only related to the comparison between ci
C and s0i . When

node gains more from the weight than the average gain of the other nodes, its
significance value will monotonically increase until ci

C = sni , and vice versa. From
Equation (7), we could summarize the scenario as:

– if ci
C −s0i > 0, sni is a sequence that monotonically increases until ci

C −sni = 0.
– if ci

C −s0i < 0, sni is a sequence that monotonically decreases until ci
C −sni = 0.

– if ci
C = s0i , s

n
i is a constant sequence that reaches equilibrium.

Also since

sn+1
i = σ(sni ) =

sni + ci
1 + C

(8)

where
sni +ci
1+C is obviously upper bounded by 1+ci

1+C (for monotonically increase
case), and lower bounded by ci

1+C (for monotonically decrease case), thus ∀vi ∈
V , sni converges.

Lemma 2. The relative order 〈s′
1, s

′
2, . . . , s

′
m+1〉 converges.

Proof. To prove that the convergence of 〈s′
1, s

′
2, . . . , s

′
m+1〉 is based on the con-

vergence of each si. Since each si converges to s∗i along with iteration, the final
order which is sorted by sentences’ significance will converge.

3.4 Example

1. [v1]: Watching the new movie, “Imagine: John Lennon,” was very painful
for the late Beatles wife, Yoko Ono.

2. [v2]: “The only reason why I did watch it to the end is because I’m
responsible for it, even though somebody else made it,” she said.

3. [v3]: Cassettes, film footage and other elements of the acclaimed movie
were collected by Ono.

4. [v4]: She also took cassettes of interviews by Lennon, which were edited
in such a way that he narrates the picture.

5. [v5]: Andrew Solt (“This Is Elvis”) directed, Solt and David L. Wolper
produced and Solt and Sam Egan wrote it.

6. [v6]: “I think this is really the definitive documentary of John Lennon’s
life,” Ono said in an interview.
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Paragraph in the above text frame is a running example used by Mihalcea
and Tarau [13]. We use the same example to illustrate the construction of our
SPSR model. After removing the stop words, we measure the distance of words
in WordNet using the Path database and group synonyms (distance value is less
than 3 which is empirically set) into the same set. Then, we assign each set with
a unique ID to index that set of synonyms. For example, synonym set 0 of the
sample paragraph contains words { “think”, “reason”, “why”} which are related
to “reasoning”, and set 4 contains {“ono”, “andrew”, “david”, “lennon”} which
are all human names.

Each sentence is translated into a vector which is the term frequency of terms
in that sentence. We use Equation (1) to calculate the similarity between each
pair of sentences to generate the weights of edges, which is

W =

⎡⎢⎢⎢⎢⎢⎢⎣
0.00 0.15 0.33 0.30 0.34 0.58
0.15 0.00 0.00 0.27 0.10 0.22
0.33 0.00 0.00 0.20 0.14 0.19
0.30 0.27 0.20 0.00 0.13 0.35
0.34 0.10 0.14 0.13 0.00 0.25
0.58 0.22 0.19 0.35 0.25 0.00

⎤⎥⎥⎥⎥⎥⎥⎦
Equation (3) is used to calculate the contribution of each sentence to the weights
of connecting edges, which is

C =

⎡⎢⎢⎢⎢⎢⎢⎣
0.00 0.17 0.71 0.71 0.67 0.60
0.83 0.00 0.00 0.75 0.75 0.83
0.29 0.00 0.00 0.50 0.33 0.33
0.29 0.25 0.50 0.00 0.33 0.43
0.33 0.25 0.67 0.67 0.00 0.50
0.40 0.17 0.67 0.57 0.50 0.00

⎤⎥⎥⎥⎥⎥⎥⎦
Each node’s significance value after one iteration can be then calculated using
Equation (2). After normalization, the significance values are s11 = 0.2640, s12 =
0.1908, s13 = 0.1324, s14 = 0.1329, s15 = 0.1317 and s16 = 0.1916. We could
illustrate changes of sentence significance in Figure 3. On the upper side is the
initial status, all the nodes are treated with equal importance. While on the
bottom part, paragraph structure is constructed.

It could be seen that initially all the nodes are with the same weights, and
after one iteration nodes v1 and v6 gain higher scores than the other nodes.
Comparing to the results of Mihalcea and Tarau (which is s1 = 1.34, s2 = 0.70,
s3 = 0.74, s4 = 0.52, s5 = 0.91 and s6 = 1.75), both of us identify the important
sentences 1 and 6 in the paragraph (the ranking results are listed in Table 1).
However, the order of 1 and 6 are different: SPSR model gives sentence 1 the
top score while benchmark approach tops sentence 6. It is hard to say which
ordering is correct, but from position-wise assessment, the leading sentence of
this news-like article would be more important.
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Fig. 3. Paragraph structure: 1) upper one is the initial status; 2) bottom one is the
paragraph structure after one iteration. Circles in gray color indicate the higher ranked
sentences. Not all the edges are drawn and dotted link means that the weight of edge
is zero.

Table 1. The scoring result of benchmark approach and SPSR

Rank Benchmark SPSR

1 s6=1.7500 s1=0.2640
2 s1=1.3400 s6=0.1916
3 s5=0.9100 s2=0.1908
4 s2=0.7000 s5=0.1317
5 s3=0.7400 s3=0.1324
6 s4=0.5200 s4=0.1329

4 Experiment and Findings

4.1 Data Sets

Experiments are conducted on two data sets - DUC 2006 and DUC 2007 data
sets2, which are commonly used in text summarization evaluation. DUC 2006 has
50 topics and each topic has 25 documents. Ten NIST assessors write summaries
for the 50 DUC 2006 topics. Each topic has 4 human summaries. Similar to
DUC 2006, DUC 2007 has 45 topics and each topic has 25 documents. Ten
NIST assessors wrote summaries for the 45 topics in the DUC 2007 main task.
Each topic has 4 human summaries.

He et al. [6] implemented two basic benchmarks, which are

– Random: selects sentences randomly for each document set.
– Lead (Wasson 1998): for each document set, orders the documents chrono-

logically and takes the leading sentences one by one. [20].

and also three other state-of-art summarization algorithms, which are

– LSA (Gong and Liu 2001): applies the singular value decomposition (SVD)
on the terms by sentences matrix to select the highest ranked sentences. [5]

2 http://duc.nist.gov/

http://duc.nist.gov/


Document Summarization via SPSR Model 319

– ClusterHITS (Wan and Yang 2008): considers the topic clusters as hubs
and the sentences as authorities, then ranks the sentences with the authorities
scores. Finally, the highest ranked sentences are chosen to constitute the
summary. [18]

– SNMF (Wang et al. 2008): uses symmetric non-negative matrix factoriza-
tion(SNMF) to cluster sentences into groups and select sentences from each
group for summarization. [19]

They also report algorithms’ results on DUC 2006 and DUC 2007 in their
AAAI’12 paper. We compare our model with those benchmark algorithms, and
thus we have in total five benchmark models.

4.2 Evaluation Metric

For DUC 2006 and DUC 2007, ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) [8] is adopted in our experiment for evaluation. ROUGE-N (n-gram
co-occurrence statistics) is defined as

ROUGE-N =

∑
S∈RS

∑
gramn∈S Countmatch(gramn)∑

S∈RS

∑
gramn∈S Count(gramn)

(9)

where RS is the Reference Summaries. For multi-document summarization,

ROUGE-Nmulti = argmaxiROUGE-N(ri, s) (10)

Stop words are filtered out and other words are stemmed using Porter’s rules [14].
SPSR model is built on each topic, and summaries are then constructed within
250 words. Average F1-measure results are calculated for ROUGE-1, ROUGE-
2, ROUGE-3, ROUGE-4, ROUGE-L and ROUGE-W for both the benchmarks
and SPSR model, where ROUGE-L is the Longest Common Subsequence and
ROUGE-W is Weighted Longest Common Subsequence. We employ WordNet
2.1 in our programme, and as the aforementioned example, we use Path database
and empirically set synonym threshold (distance upper-bound) as 3.

4.3 SPSR v.s. Baselines

The F1 results over topics of DUC 2006 and DUC 2007 are listed in Table 2 and
Table 3 respectively. The best score for one metric is marked in bold font, and
the second best score for one metric is underlined. ROUGE-4 and ROUGE-W
scores are not available for benchmarks, which are denoted with “N/A” in the
tables.

From the results, we can see that SPSR (both local-normalized and global-
normalized, denoted as L-SPSR and G-SPSR respectively) have better perfor-
mance than benchmarks on F1-measure, where in DUC 2006 SPSRs achieve six
best scores and six second best scores and in DUC 2007 SPSRs achieve five best
scores and five second best scores. Despite the average F1-measure scores, we
also follow the method of He et al. which plots the performance comparison of
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Table 2. DUC 2006 results. SPSR v.s. Benchmarks

Algorithm ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 ROUGE-L ROUGE-W

Random 0.28507 0.04291 0.01023 N/A 0.25926 N/A
Lead 0.27449 0.04721 0.01181 N/A 0.23225 N/A
LSA 0.25782 0.03707 0.00867 N/A 0.23264 N/A
ClusterHITS 0.28752 0.05167 0.01282 N/A 0.25715 N/A
SNMF 0.25453 0.03815 0.00815 N/A 0.22530 N/A
L-SPSR 0.35383 0.05922 0.01555 0.00746 0.31354 0.11920
G-SPSR 0.35376 0.05906 0.01557 0.00745 0.31307 0.11917

Table 3. DUC 2007 results. SPSR v.s. Benchmarks

Algorithm ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 ROUGE-L ROUGE-W

Random 0.32028 0.05432 0.01310 N/A 0.29127 N/A
Lead 0.31446 0.06151 0.01830 N/A 0.26575 N/A
LSA 0.25947 0.03641 0.00854 N/A 0.22751 N/A
ClusterHITS 0.32873 0.06625 0.01927 N/A 0.29578 N/A
SNMF 0.28651 0.04232 0.00890 N/A 0.25502 N/A
L-SPSR 0.37070 0.06716 0.01844 0.00845 0.32704 0.12348
G-SPSR 0.36595 0.06541 0.01811 0.00845 0.32286 0.12202

0.2 0.3 0.4 0.5 0.6
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

ROUGE−1 value of Baseline

R
O

U
G

E
−1

 v
al

ue
 o

f S
P

S
R

 (L
oc

al
)

(a) ROUGE−1 value of DUC 2006 Topics. SPSR v.s. Baseline

SPSR
Baseline

0.2 0.3 0.4 0.5 0.6
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

ROUGE−1 value of Baseline

R
O

U
G

E
−1

 v
al

ue
 o

f S
P

S
R

 (L
oc

al
)

(b) ROUGE−1 value of DUC 2007 Topics. SPSR v.s. Baseline

SPSR
Baseline

Fig. 4. Topic-to-topic ROUGE-1 value comparison of DUC 2006 and DUC 2007. The
black ’+’ denotes local-normalized SPSR has a higher score while the red ’o’ denotes
otherwise.

each individual topic. In Figure 4 and Figure 5, we illustrate the topic-to-topic
ROUGE-1 score comparison for L-SPSR and G-SPSR respectively. In penal (a),
topics from DUC 2006 are depicted, and topics from DUC 2007 are depicted in
penal (b). If SPSR outperforms baseline on that topic in terms of ROUGE-1,
the point is above the blue dotted line and denoted with black ’+’; on the other
hand, point is below blue dotted line and denoted with red ’o’. It could be ob-
served that ’+’s are much more than ’o’s, which means on topic-to-topic level,
SPSR also outperforms baseline in majority of topics.
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Fig. 5. Topic-to-topic ROUGE-1 value comparison of DUC 2006 and DUC 2007. The
black ’+’ denotes global-normalized SPSR has a higher score while the red ’o’ denotes
otherwise.

5 Conclusion and Future Work

Summarization over textual documents, although it has a long history, still re-
mains one of the hardest and yet not well solved problem in text mining area.
In this paper, Sentence Self-Present Relevance model was proposed to address
traditional document summarization problem by mining latent document im-
plicit relevance structure. Different from reviewed approaches, SPSR constructs
sentence-level structure on plain documents and iteratively generates the signif-
icance value for each sentence. SPSR building algorithm is proved to converge,
and this approach tries to keep the generated summary as diverse as possible.
Experiments are conducted on two data sets (DUC 2006 and DUC 2007 data
sets). Comparing with other five benchmarks, SPSR gives convincing results.
Different from G-SPSR, L-SPSR, which normalizes sentence’s significance value
in a local context, is proposed and analyzed. In the comparison between L-SPSR
and G-SPSR, L-SPSR has better performance than G-SPSR.

For future exploration on this direction, we think of the following two points:

– Sentence grammar structure analysis. Grammar structure analysis could pro-
vide sentence microstructure information. While constructing SPSR, one key
step is to setup and determine the relevance between sentences. In the pro-
posed algorithm, it still considers words within one sentence as a “bag of
words”, and grammar structure within one sentence is broken. Bringing in
sentence grammar structure may give SPSR a more accurate view of each
sentence.

– Different concrete versions of similarity and split functions in the model.
In our experiment, traditional cosine similarity and frequency based split
function is used to generate the weights of edges and contribution values.
For further exploration, different functions could be employed and analyzed.

Acknowledgement. This work is supported by the National Science Founda-
tion of China (Grant Nos. 61173011 and 60903076).
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Abstract. Community detection is the fundamental problem in the
analysis and understanding of complex networks, which has attracted
a lot of attention in the last decade. Active learning aims to achieve
high accuracy using as few labeled data as possible. However, so far as
we know, active learning has not been applied to detect community to
improve the performance of discovering community structure of com-
plex networks. In this paper, we propose a community detection algo-
rithm called active semi-supervised community detection algorithm with
label propagation. Firstly, we transform a given complex network into
a weighted network, select some informative nodes using the weighted
shortest path method, and label those nodes for community detection.
Secondly, we utilize the labeled nodes to expand the labeled nodes set
by propagating the labels of the labeled nodes according to an adaptive
threshold. Thirdly, we deal with the rest of unlabeled nodes. Finally,
we demonstrate our community detection algorithm with three real net-
works and one synthetic network. Experimental results show that our
active semi-supervised method achieves a better performance compared
with some other community detection algorithms.

Keywords: Social Networks, community detection, active learning,
semi-supervised learning, label propagation.

1 Introduction

A community in a network is a group of nodes that are similar to each other and
dissimilar from the rest of the network[7]. It is also thought of as a group where
nodes are densely inter-connected and sparsely connected to other parts of the
network[1]. Community detection in complex networks is very important for us
to understand the network structure and analyze the networks characters. Many
community detection algorithms have been proposed, and they can be divided
into four categories: divisive algorithm [1, 2], agglomerative algorithms [3, 4],
optimisation algorithms [5, 6], and label propagation algorithms [7–12].
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Raghavan et al.[7] proposed a label propagation algorithm(LPA) for detecting
network communities, which updates the labels of nodes by choosing the label
that is the most frequent among its neighbors, and repeats the updating pro-
cess till some terminate condition is reached. Several variations of LP algorithm
have been proposed since 2007 [8–12]. Liu et al. updated all labels of the nodes
simultaneously [8]. Barber and Liu et al modified the label updating rule so that
modularity can be maximized [9, 10]. Xie et al. improved the computational effi-
ciency by reducing the times of iteration and utilized the neighborhood strength
to improve the quality of communities[11]. Šubelj updated the label of nodes by
using two unique strategies of community formation, defensive preservation and
offensive expansion of communities[12].

However, most of these label propagation algorithms are not stable, and some-
times the results of community detection are unsatisfied, especially for com-
plex networks that the difference between community densities is large. Adding
prior knowledge to the process of detecting community may be the most effi-
cient method for improving the performance of community detection, and using
the semi-supervised clustering method to guide the process of detecting should
achieve better results. [13, 14] utilized the prior knowledge to improve the perfor-
mances of the community detection algorithms. [13] proposed a SNMF − based
semi-supervised clustering algorithm for community detection based on pairwise
constrains (cannot-link and must-link). [14] adapted the modularity method to
the context of semi-supervised learning in the merging process based on the la-
beled nodes. Although [13, 14] introduced the semi-supervised method into the
community detection, they did not mention how to get these prior knowledge.

Active learning technique aims to achieve high accuracy using as few labeled
data as possible. It minimizes the cost of obtaining labeled data greatly without
compromising the performance of community detection, and this is very attrac-
tive and valuable in real-world applications. Most of the existing active learning
algorithms are pool-based [15, 16] or stream-based [17], and they are mainly
applied in supervised learning. In recent years, active learning is introduced into
clustering [18–24]. Different clustering algorithm exploits different active learn-
ing approaches. Nguyen et al. selected the most representative samples to avoid
repeatedly labeling samples in the same cluster [18]. Vu et al. selected useful
examples according to a Min-Max approach to determine the set of labeled data
[19]. Zhao et al. selected informative document pairs for obtaining user feedback
by using active learning approach, and incorporated instance-level constraints
to guide the clustering process in DBSCAN [20]. Grira et al. defined an active
mechanism for the selection of candidate constraints to minimize the amount of
constraints required [21]. Wang et al. presented an active query strategy based
on maximum expected error reduction and a constrained spectral clustering al-
gorithm that can handle both hard and soft constraints [22]. Mallapragada et al.
selected constraints through using a min-max criterion to improve the perfor-
mance of semi-supervised clustering algorithms [23]. Huang et al. conducted a
preliminary clustering process to estimate the true clustering assignments, and
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then chose informative document pairs by means of learning the intermediate
cluster structure [24].

As far as we know, active learning has not been applied to community de-
tection to improve the performance of the community detection algorithms, and
we introduce active learning to community detection in this paper. Although
most of the active learning algorithms select the node that is most uncertain
to be labeled, the most uncertain node lies on the community boundary, and is
not representative of other nodes in the same community. So knowing its label
is unlikely to improve performance of the community detection as a whole. In
this paper, we propose an active community detection algorithm, called active
semi-supervised community detection with label propagation. Firstly, we calcu-
late the density of each node and the weight of each edge based on the common
neighbors of nodes, and find out all core nodes(the definition of core nodes is
given in section 2). Secondly, we actively select a few core nodes based on the
weighted shortest path method. Our algorithm tries to enable that the selected
core nodes can cover as many communities as possible in a given complex net-
work. These selected nodes are labeled by domain experts, and are to be viewed
as the initial set of labeled nodes in the process of community detection. Thirdly,
we expand the labeled nodes set by propagating label. The propagating process
labels neighbors of the labeled nodes according to similarity threshold which is
obtained automatically based on the characters of networks. Fourthly, the rest of
unlabeled nodes according are assigned with the most frequent label among their
neighbors. Our community detection algorithm has the following advantages.

• Our community detection algorithm translates a given unweighted network
into a weighted network based on the similarities between nodes, then utilizes
the weighted shortest path methods based on core nodes to find a few core nodes
actively, and enables the selected core nodes can cover as many communities in
a given complex network as possible.

• Our community detection algorithm finds out communities in complex net-
works by expanding the labeled nodes according to the similarities of nodes, and
the expanding process gives priority to the nodes with maximum density.

The rest of the paper is organized as follows. Section 2 gives our community
detection algorithm in detail. In section 3, we demonstrate our algorithm with
standard network datasets, and compare it with some other community detection
algorithm. We summarize our work in section 4.

2 Active Semi-supervised Community Detection with
Label Propagation

In this section, we propose an active semi-supervised community detection al-
gorithm with label propagation, which introduces active learning and semi-
supervised learning into the label propagation algorithm for community detec-
tion. Degree of node is a very important character in networks, but it is not
sufficient to measure the importance of a node only considering its degree. In
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this paper, we use density of node to measure the importance of it. Manual
labeling nodes in complex networks is expensive, especially in large complex
networks. Our method does not select nodes from the whole network, but from
the important nodes set: core nodes set. We firstly delete nearly 25 percent of
the nodes of lower density, and the rest of nodes is called core nodes. Some
definitions is given below.

Definition 1 density(i). Given one complex network G, the density of a node
i is defined as following,

density(i) =

∑
j∈N(i)

nij

2 ∗ ki
(1)

where ki is the degree of node i, and nij is defined as,

nij = |N(i) ∩N(j)| (2)

N(i) is the neighbors of node i, and let density(G) denote the set of all densities
of nodes in complex network G.

Definition 2 25th percentile(S), given a set S, 25th percentile(S) is the value
that there are 25 percent elements in S whose values are less than or equal to
it, and there are 75 percent elements in S whose values are larger than it.

Definition 3 core node. Given one complex network G, i is a node in G, i is
core node if and only if density(i) is larger than or equal to 25th percentile
(density(G)).

Definition 4 sim(i, j). Given one complex network G, i and j are two nodes in
G, the similarity between i and j is defined as,

sim(i, j) =
nij

(ki + kj)
(3)

where the meaning of nij is the same as definition 1, ki, kj are the degree of
node i and node j respectively.

Definition 5 sim(i, S). Given one complex network G, i is a node in G, S is a
nodes set and S ⊆ G, the similarity between i and S is defined as,

sim(i, S) =

∑
j∈N(i)∩S

nij

ki
(4)

where the meaning of nij is the same as definition 1, ki is the degree of node i.

2.1 Active Nodes Selection

This subsection presents the idea of selecting nodes and and gives the details of
algorithm for selecting nodes actively. Labeling nodes in complex network is very
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expensive, so in this paper, we want to select as few nodes as possible to achieve the
best detecting results. We select nodes from the core nodes set using the weighted
shortest pathmethod. Selecting nodes from core nodes set is based on the following
facts. Firstly, labeling a node in complex network is a difficult work, core nodes
are more important ones in network, and they are the better representatives of
communities, so core nodes are easy to be labeled compared with nodes lying in
the boundary of the communities. Labeling core nodes can reduce efforts of domain
experts, and we can get a higher quality of labeled nodes set. Secondly, core nodes
can give more information, our semi-supervised community detection algorithm
obtains a better community structure when giving small size of labeled core nodes.
the shortest path method is used to selected core nodes can enables the selected
nodes intersperse among as many communities as possible. The details of selecting
core nodes are shown in algorithm 1.

Algorithm 1. SelectNodes(G,k)

1. let NodesSet denotes the nodes set in complex network G, and NodesSet =
{1, 2, 3, . . . , n}
2. calculate density(G)
3. calculate the 25th percentile(density(G))
4. the nodes whose densities are not less than 25th percentile(density(G)) are viewed
as CoreNodes
5. if there exists one edge eij between node i and node j, then the weight wij of eij
is (1− sim(i, j)).
6. SelectedNodes=φ
7. u, v ← arg max

i,j∈CoreNodes
{ShortestPathLength(i, j)}

8. find out the node u′ with the max degree in nodes set N(u)∪{u}, SelectedNodes=
SelectedNodes

⋃ {u′}.
9. find out the node v′ with the max degree in nodes set N(v)∪{v}, SelectedNodes=
SelectedNodes

⋃ {v′}.
10. CoreNodes= CoreNodes\{u′ , v′}
11. while|SelectedNodes| < k
12. u← arg max

i∈CoreNodes
min

j∈SelectedNodes
{ShortestPathLength(i, j)}

13. find out the node u′ with the max degree in nodes set {N(u) ∪
{u}}\SelectedNodes.
14. SelectedNodes= SelectedNodes

⋃ {u′}.
15. CoreNodes= CoreNodes\{u′}
16. end while
17. return SelectedNodes

Algorithm 1 can be divided into two stages. The first stage of algorithm 1 is to
find out CoreNodes based on the node density, and in the second stage, it selects
k nodes from CoreNodes. Node density is proposed to measure the strongness of
relation between its neighbors, the more edges between its neighbors, the larger
density it has. In social networks, one people is presented as one node in the
network, if two people are in contact with each other at least once, there exists
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one edge. If density of a node is large, its neighbors are in contact with each
other frequently. In order to select more important nodes in complex network
G, we select the nodes from CoreNodes. core node is proposed to represent the
important nodes in complex networks.

The second stage is the core of algorithm 1, it starts at line 5 and ends at
line 17. Since nodes labeling is time-consuming and costly, algorithm 1 aims to
achieve better performance using as few labeled nodes as possible. In order to
avoid selecting the nodes which lie in the boundary between communities, we
select nodes from the core nodes. In order to measure the shortest path from one
node to the other more effectively, we adopt the weighted shortest path. Since
most of the complex networks are unweighted, we must translate a unweighted
network into a weighted one. We assign a weight for each edge based on the
dissimilarity between its two end nodes(line 5). Firstly, we select two nodes(u
and v) with the max value of the shortest path, and then find out the node u′

with max degree in the nodes set N(u) ∪ {u} as the first selected node, find
out the node v′ with max degree in the nodes set N(v) ∪ {v} as the second
selected node. Both u’ amd v’ are added into SelectedNodes. Secondly, we select
the node(u) from the CoreNodes which is most dissimilar with the selected
nodes(line 12), then we find out the node u′ with max degree in the nodes set
N(u) ∪ {u}, and add u′ to SelectedNodes, we deploit the same method repeatly
until the size of SelectedNodes is k . Finally, the k selected core nodes are viewed
as the final result of algorithm 1.

2.2 Semi-supervised Community Detection with Label Propagation

In this subsection, the core nodes selected by algorithm 1 are labeled as the
labeled core nodes. As the prior knowledge of the complex network, these labeled
core nodes are used to detect community structure with label propagation. The
details of community detection is depicted in algorithm 2.

Algorithm 2 can be divided into three stages: labeling the selected core nodes
(lines 2 and 3), expanding the labeled core nodes with label propagation(lines
from 4 to 13), and labeling the rest of the unlabeled nodes(lines from 14 to 20).
The first stage actively obtains the labeled core nodes, and those labeled core
nodes are viewed as the representatives of the initial communities of a complex
network. If one or more communities have no node to be selected, the nodes in
these communities will be assigned to other communities forcibly, and thus leads
to worse performance of community detection. In this paper, we use the weighted
shortest path method to select nodes from the core nodes set, and we try to
enable the selected core nodes can cover as many communities in a given network
as possible. The second stage propagates the label of the labeled node one by one
based on a threshold which is determined by the characters of the network. If
the similarity between a labeled node u and its neighbor is larger than or equal
to the threshold, we assign the neighbor with the label of u, thus there would be
some nodes which can not be assigned to any community when the second stage
ends. The third stage deals with the rest of the unlabeled nodes according to
the similarity between the unlabeled node and the communities. Suppose that
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Algorithm 2. CommunityDetection(G)

1. let NodesSet denotes the nodes set in complex network G, and NodesSet =
{1, 2, 3, . . . , n}
2. UnusedLabeledNodes=SelectNodes(G,k), and label UnusedLabeledNodes by domain
experts.
3. suppose u ∈ UnusedLabeledNodes, let lu denote the number of the community
which u belongs to.
4. sort UnusedSelectedNodes in descending order according to their density.
5. UsedLabeledNodes = ∅
6. while UnusedLabeledNodes is not null
7. take the first node from UnusedLabeledNodes, and let u denote this node.
8. for v in N(u)
9. if v is unlabeled and nuv >= (degree(v)− 1)/2
10. lv ←− lu,and insert v at the head of UnusedLabeledNodes.
11. end if
12. end for
13. remove node u from UnusedLabeledNodes, and add it to UsedLabeledNodes.

14. end while
15. UnlabeledNodes = NodesSet\UsedLabeledNodes.
16. while UnlabeledNodes is not null

17. p ←− argmax
v∈UnlabeledNodes

{max
l

∑

u∈N(v)∩UsedLabeledNodes

[lu==l]

kv
}.

18. lp ← argmax
l

∑

u∈N(p)∩UsedLabeledNodes

[lu==l]

kp

19 remove node pfrom UnLabeledNodes, and add it to UsedLabeledNodes.
20. end while
21. return UsedLabeledNodes

the number of the communities is num, we calculate sim(v, Ci)(1 ≤ i ≤ num)
for each unlabeled node v, where Ci is one of the existing communities, the
node v is assigned to the community with the max value in sim(v, Ci)(1 ≤ i ≤
num), and v and its label information will be added into UsedLabeledNodes.
UsedLabeledNodes saves the community structure of the complex network G.

2.3 Time Complexity Analysis

Algorithm 1 needs O(m + n) time in lines 1-6, where m is the total number of
edges in network G. A shortest path using Dijkstra’s algorithm needs O(m +
nlogn) time in the graph from a fixed node. So Line 7 needs O(cm + cnlogn)
time, where c is a constant means the number of CoreNodes. In order to avoid
that each community has more than one core node, c is larger than n/2 in most
case, so Line 7 needs O(nm+ n2logn) time. Lines 8-10 needs O(�) time, where
� is the network average degree. Let k be the number of iterations and the
number of nodes we want to select. It needs O(kns(m + nlogn)/2 + k) time in
lines 11-16, where s is the number of SelectedNodes which equals k in the worst
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case. Taken together with the complexity of Algorithm 1, the total worst-case
complexity is O(k2nm) + O(k2n2logn). Algorithm 2 needs O(k) time in lines
1-5, where k is the number of selected nodes. lines 6-14 need O(k�) time. Lines
15-21 needs O(u�) time, where u is the number of UnlabeledNodes. The total
worst-case complexity of Algorithm 2 is O(n). So the time complexity of our
community detection method is O(k2nm) +O(k2n2logn) in total.

3 Experimental Results

In this section, in order to demonstrate our community detection algorithm
with visual method better, we use three small networks and one larger artifi-
cial network to test it. Our proposed community detection algorithm is applied
to several well-known networks, including three real-world networks and one
Benchmark of Girvan and Newman [1]. In order to show the effectiveness of the
our method, we compare our community detection algorithm with several exist-
ing community detection algorithms, EBC(hierarchical method)[2], LPAm(Label
propagation method)[10] and semi-supervised learning method(SSLM) [14]. In
the experiment, we suppose that the labeled nodes used in SSLM are obtained
as follows [14]. In each complex network, we select one node as labeled node
from each community randomly, and the rest of labeled nodes are selected from
the whole network randomly. In this section, modularity and the number of
nodes which are wrongly assigned to communities are use to demonstrate the
performance of our method.

3.1 Evaluation with Number of Nodes Wrongly Assigned to
Communities

In this subsection, we run EBC, LPAm, SSLM and our method on Karate
network, Risk Map network, Collaboration network and one artificial network.
Since the community detection results of EBC and LPAm do not change greatly,
we give one running result for each of them. SSLM and our method are semi-
supervised method, the results of them change with the increasing number of
labeled nodes. So we do 10 experiments, each experiment use the same method
to select different numbers of labeled nodes, and we run our method and SSML
10 times respectively in each experiment.

3.1.1 Zachary’s Network of Karate Club Members
Zachary’s network of karate club members [25] is a well-known graph, regularly
used as a benchmark to test community detection algorithms (Section 15.1). It
consists of 34 vertices, the members of a karate club in the United States, who
were observed during a period of three years. Edges connect individuals who
were observed to interact outside the activities of the club. At some point, a
conflict between the club president and the instructor led to the fission of the
club into two separate groups. Indeed, by looking at Fig.1, one can distinguish
two aggregations, one around vertices 33 and 34 (34 is the president), the other
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Fig. 1. Community structure in Karate Club network

around vertex 1 (the instructor). One can also identify several vertices lying
between the two main structures, like 3, 9, 10; such vertices are often misclassi-
fied by community detection methods. Fig.1 shows community structure of the
network.

EBC and LPAm wrongly assign the node ’3’ to a community, and the detected
community results are the same in different running times. Since the method of
selecting nodes is random, the experiments may be different in different running
times on the same complex network. We adopt the intermediate result as the
result of community detection for SSML on each experiment, and give the worst
result on each experiment. Since we use the weighted shortest path to select the
labeled nodes, the results of 10 times on each experiment are the same, and they
are shown in the Fig.2.
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Fig. 2. Results of Our method and SSML on Karate Club network

Our method reaches a stable state when the number of labeled nodes is larger
than 3, and it can rightly divide all the nodes into communities. Although all the
nodes can be rightly assigned to communities in the best result of SSML in each
experiment, the results of SSML is unstable. Even the numbers of nodes which
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Fig. 3. Community structure in Risk Map network

are wrongly assigned to a community are the same, these nodes are different in
different running times, and the performance is not improved with the increasing
number of the labeled nodes. SSML Max Error in Fig.2 denotes the worst results
of 10 running times on each experiment.

3.1.2 Risk Map Network
Risk Map Network was invented by French film director Albert Lamorisse, and
was originally released in 1957 in France. Risk is a turn-based game for two to
six players. The standard version is played on a board depicting a political map
of the Earth, divided into forty-two territories, and these territories are grouped
into six continents. The primary object of the game is ”world domination,” or
”to occupy every territory on the board, and in so doing, to eliminate all other
players.” Players control armies with which they attempt to capture territo-
ries from other players, with results determined by dice rolls. The community
structure is shown in Fig.3.

EBC has a better result on Risk Map network compared with LPAm, it
wrongly assigns only the nodes ’22’, ’26’ to communities, but LPAm divides
this network into 7 communities and wrongly assigns 14 nodes to communities.
The experimental results of our method and SSML are shown in the Fig.4.

SSML can rightly assign each node to community in the best results when the
number of labeled nodes is larger than 7. In this subsection, the intermediate re-
sult is viewed as the result of community detection for SSML on each experiment,
and the worst results on the 10 experiments are denoted by SSML Max Error
in Fig.4. Although the number of the nodes which are wrongly assigned to com-
munities in the detected results of SSML is less than that of our method in some
experiments, the worst results of SSML in 10 experiments are all worse than
that of our method. At the same time, the community detection results of our
method are all the same in 10 running times of each experiment, this shows that
the experimental results of our method is more stable than that of SSML.
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Fig. 4. Results of Our method and SSML on Risk Map Network

3.1.3 Collaboration Network
Collaboration network displays the largest connected component of a network
depicting collaborations of scientists working at the Santa Fe Institute (SFI).
There are 118 vertices, representing resident scientists at SFI and their collab-
orators. Edges associate with scientists that have published at least one paper
together. The visualization layout allows to distinguish disciplinary groups. In
this network one observes many cliques, as authors of the same paper are all
linked to each other. There are but a few connections between most groups,
collaboration network can be divided into 4 communities, and the community
structure is shown in the Fig.5.
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Fig. 5. Community structure in Collaboration network

EBC wrongly assigns 32 nodes to a community on collaboration network, this
result can not be accepted. The community structure of collaboration network
detected by LPAm is worse than that of EBC, LPAm divides collaboration net-
work into 21 communities. The detecting results of our method and SSML are
shown in Fig.6.

Our method can reach a stable state when the number of labeled nodes is
larger than 19, and it wrongly assigns only one node to a community. Although
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Fig. 6. Results of Our method and SSML on Collaboration network

the best results of SSML has no nodes be wrongly assigned to communities when
the number of labeled nodes is larger than 17, the worst result in each experi-
ment has too many nodes to be wrongly assigned to communities compared with
our method. SSML wrongly assigns more than 15 nodes to communities in more
than 6 experiments. In a large complex network, its information of community
structure is unknown, we almost have no way to determine which community
detection result is better than the rest of results. So in the real application, a sta-
ble community detection algorithm should be chosen to detecting the community
structure of the large complex networks.

3.1.4 LFR Benchmark Network
LFR benchmark networks [27] are popular used in testing the performance of
community detection algorithm. We generate a networks with 1000 nodes. The
minimum community has 43 nodes, and the maximum community contains 214
nodes. We run our community detection algorithms, EBC, LPAm and SSML
many times. Since the community structure of this network is clear, EBC and
LPAm rightly assign all nodes to communities. Our method also can assigns all
nodes to right communities when the number of selected nodes is larger than
10. Since SSML adopts random method to select nodes as labeled nodes, if some
communities has no nodes to be selected, then the nodes in these communities
will be assigned to other communities. Although SSML can assign all nodes to
right communities in the best experimental results, the numbers of the nodes
which are assigned to wrong communities in the worst result on each experiment
are 113, 45, 180, 119, 77, 44, 48, 48, 108, 120 when the numbers of selected nodes
are 30, 35, 40, 45, 50, 55, 60, 65,70, 75. These experiments show also show that
SSML is an unstable algorithm.

3.2 Evaluation with Modularity

The modularity greedy algorithm, originally is described by Newman [27], ranges
from 0 to 1. The modularity is viewed as a index to quantify how good a particu-
lar division of a network is, a larger value of modularity implies a better division
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of a complex network. Let eij be one-half of the fraction of edges in the network
that connect vertices in group i to those in group j. eii, which are equal to the
fraction of edges that fall within group i. The modularity is is described as,

Q =
∑
i

(eii − a2i ) (5)

where ai is the fraction of all ends of edges that are attached to vertices in group
i, and ai =

∑
j eij . Since the performances of ECB and PLAm on Karate, Risk

Map and Collaboration network are worse than that of SSML and our method,
and ECB, LPAm and our algorithm rightly assigned all the nodes to communities
on the artificial network, we only compare our method with SSML on Karate,
Risk Map and Collaboration network. The modularity information of our method
and SSML on 10 experiments are shown in table 1. nw1 is Zacharys Network of
Karate Club Members, nw2 is Risk Map network, nw3 is Collaboration and A1
is our community detection algorithm in Table 1.

Table 1. The modularity information of our method and SSML on 10 experiments

data Algor exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8 exp9 exp10

nw1
A1 0.133 0.355 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372

SSML 0.294 0.303 0.298 0.352 0.355 0.358 0.345 0.360 0.372 0.358

nw2
A1 0.596 0.610 0.610 0.610 0.610 0.610 0.622 0.622 0.622 0.622

SSML 0.628 0.631 0.617 0.587 0.629 0.608 0.621 0.621 0.623 0.610

nw3
A1 0.676 0.676 0.676 0.676 0.677 0.677 0.677 0.677 0.677 0.677

SSML 0.666 0.678 0.678 0.677 0.677 0.677 0.677 0.677 0.677 0.677

Table 1 shows that the modularities of our method are larger than that of
SSML on the three networks in most of the experiments, and the number of
nodes which are wrongly assigned to communities by running our method is less
than that of SSML in most of the experiments, and this is also shown in Fig
2. SSML has different modularities which are shown with bold in table 1 when
the number of nodes wrongly assigned to communities is the same in different
experiments, and this shows that the nodes wrongly assigned to communities are
different even the number of them are the same. Although our method wrongly
assigns ’26’, ’33’, ’34’ to communities since the seventh experiment on Risk Map
network, the node ’26’ can be assigned to any one of three communities based
on the ties in Fig 3, and thus the nodes ’33’ and ’34’ are wrongly assigned to
communities because of the same reason, and this leads that the modularities
are larger than that of the first six experiments. The modularity of our method
will not change when our algorithm achieves its stable state, but the modularity
of SSML has not any stable value.

4 Conclusion and Future Work

In this paper, we introduce active learning method into community detection,
and present an algorithm, named active semi-supervised community detection
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algorithm with label propagation. We select nodes from the core nodes actively
using the weighted shortest path and view them as labeled nodes, and exper-
imential results show that the nodes selected by using this method can cover
as many communities as possible, and thus we can obtain a stable community
detection algorithm. Our community detection algorithm expands the labeled
nodes by labeling the neighbors of labeled nodes with a threshold which is ob-
tained automatically based on the characters of the networks. We demonstrate
our algorithm with three real networks and one artificial network with well-
known community structures. Althogh our algorithm has a better performance
and more stable results compared with SSML, the time complexity is high, es-
pecially for the selecting method, algorithm 1. We will research on method of
selecting nodes with lower time complexity in the future.
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Abstract. The explosive growth of Data is bringing more and more
challenges and opportunities to data mining. In data mining, learning
decision tree is a common method, in which determining split points
is the key problem. Existing methods of calculating split points in the
distributed setting on large data either (1) cause high communication
overhead or (2) are not universal for different levels of skewness of data
distribution. In this paper, we study the properties of Gini impurity,
which is a measure for determining split points, and design new algo-
rithms for calculating split points in MapReduce. Empirical evaluation
demonstrates that our method outperforms existing state-of-the-art tech-
niques on communication cost and universality.

Keywords: Decision tree, split point, MapReduce.

1 Introduction

Large data have now become a trend, which has attracted lots of concerns from
the academia and industry, and various models and systems are proposed [1–3],
among which MapReduce [4, 5] is one of the most popular models because of
its simplicity and scalability. Relevant developments for a wide range of data
analysis are active, e.g., EARL [6], Cohadoop [7], MapReduce Online [8], Restore
[9], Hive [12], Pig [10,11] and others. Decision tree construction is an important
method in data mining, and it has been extensively studied [13–16]. Nowadays
the data are explosively growing, and they contain more useful information, from
which the decision tree can be learned to facilitate a broad range of applications,
such as predicting consumer preference, predicting topical events, classifying
patients. However, it is a big challenge to efficiently learn decision tree from
large data, which has received considerable attention [17–21]. In this work, we
study how to efficiently compute optimal split points in MapReduce, which is
the key problem in constructing decision tree. During computation, data are
emitted with probability, that is, more useful data are more likely transmitted, so
the communication cost becomes small while the performance hardly degrades.
Note that when running only one analysis task, the communication cost may
be not significant, but in a busy data cluster where thousands of tasks may be
simultaneously running, the network bandwidth is relatively precious. We have
implemented our ideas in hadoop cluster and demonstrated in hadoop cluster
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and the experimental results show traditional methods are not efficient for large
data or not universal for different data distribution.

Contribution. Novel exact and approximation algorithms tailored to calculat-
ing optimal split points and the MapRedcue framework are proposed, which
outperform existing methods by at least four fold in performance. Specifically,
the contributions of this paper can be summarized below:

- An optimization for computing split points is presented and proved.
- A novel exact method to compute optimal split points, which can be effi-
ciently instantiated in MapReduce, is proposed.

- We theoretically analyze the communication cost and standard deviation of
a simple sample-based approximation method. And a new approximation
method is showed and analyzed.

- Extensive experiments are conducted in a Hadoop cluster, the experimental
results demonstrate efficiency and adaptability of our methods.

Note that the work focuses on Gini index and MapReduce model, however it is
straightforward to extend the ideas to other impurity measures and master-slave
models. Numerical attributes are considered in this work, and as for categorical at-
tributes, conventional methods [17] can be used. The rest of the paper is organized
as follows. Section 2 describes necessary background on CART(Classification and
RegressionTree) andMapReduce. In Section 3, the new exact algorithm is showed.
In Section 4, the novel approximation algorithm is presented. Section 5 describes
our experiments and demonstrates the superiority of our methods. Section 6 re-
views the related work and Section 7 concludes the paper.

2 Preliminaries

2.1 Classification and Regression Tree

Let x1, . . . , xm, c be random variables. Dom(xi) is the value domain of xi, and
similarly Dom(c) is the value domain of random variable c, called class variable.
We call x1, . . . , xm attribute variables, where m is the number of such attribute
variables. We denote l as the number of the classes. A classification tree is essen-
tially a function f : Dom(X1) × . . .× Dom(xm) → Dom(c). As a kind of classi-
fication tree, Classification and Regression Tree(CART) is wildly used, because
it is inherently non-parametric and relatively simple for non-experts to under-
stand. Typically CART is built in two phases. In the first phase which is called
growing phase, CART iteratively finds optimal split points. To compute optimal
split points, each attribte variable should be combined with the class variable to
form the attribute list [17]. In the attribute list, every tuple is the candidate split
point. Hence, in this paper, if the context is clear, we use tuple to denote the can-
didate split point. For choosing optimal split points, CART seeks to maximize
the average “purity” of the two children, and a number of “splitting functions”
for measuring the “purity” can be chosen. One of the most common measures is
Gini index. For a Set A, Gini impurity is Gini(A)=1−

∑l
k=1 p

2
k, where pk is the
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probability of class k in A. Given a split point (value) vij of attribute variable
xi, and A is divided into two subset A1 and A2, setting p1 and p2 be percentage
of A1 and A2 in A, N1, N2 the number of records in A1, A2, respectively. The re-
duction in impurity is: ΔGini(A, xij) = Gini(A)−p1 ·Gini(A1)−p2 ·Gini(A2) =

Gini(A)− N1

N · (1−
∑l

k=1(
fck
N1

)2)− N2

N · (1−
∑l

k=1(
Nck

−fck
N2

)2), where fck(Nck) is
the number of records belonging to class ck in A1(A), and N is the total number
of records. CART iteratively conducts exhaustive searches to find optimal splits
point in which each iteration makes ΔGini take the maximum value.

Let

G(vij) = 1− N1

N
· (1 −

l∑
k=1

(
fck
N1

)2)− N2

N
· (1−

l∑
k=1

(
Nck − fck

N2
)2)

=
N1

N
·

l∑
k=1

(
fck
N1

)2 +
N2

N
·

l∑
k=1

(
Nck − fck

N2
)2 , (1)

then, ΔGini(A, xij) = Gini(A)+G(vij)−1. Gini(A) is always the same for any
attribute xj and any value vij of the attribute, so if G(vij) takes the maximum
value, ΔGini(A, xij) takes the maximum value.

Hence the main task is to find the vij which make G(vij) take the maximum
value. It is worth to note that each iteration in the phase are similar for every
attribute variable, so we use one iteration and one attribte to illustrate our meth-
ods. The second phase is pruning phase. In this phase, the big tree is pruned to
become simple and avoid “overfit” the information contained within the learning
dataset, because the noise may be learned as well. Our paper focuses on the first
phase, because it is much more complicated and time-consuming than the other.

2.2 MapReduce Framework

MapReduce [4] is a programming model that enables easy development of scal-
able parallel applications to process vast amounts of data on large clusters of
commodity machines. A popular implementation of MapReduce is Hadoop [5].
Hadoop’s default file system is HDFS, which MapReduce is based on. A HDFS
cluster consists of a NameNode for maintaining all file meta-data, and multiple
DataNodes that store the actual data. A file in HDFS is split into data blocks,
64M in size by default, which are allocated to DataNodes by the NameNode [22].
MapReduce primarily consists of a JobTracker task and many TaskTracker tasks.
In Hadoop, typically Jobtracker and NameNode are configured to the same ma-
chine, called master, while TaskTrackers and DataNodes are deployed on other
machines, called slaves.

Typically, one MapReduce job consists of three phases: Map, Shuffle-Sort,
Reduce. Communication cost is mainly generated in Shuffle-Sort phase, and
computation cost is primarily produced in Map and Reduce phases. Users can
specify m, the number of Mappers and r, the number of Reducers. In Map phase,
the JobTracker assigns each Mapper(TaskTracker) different portions of a file, and
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typically each Mapper is assigned locally stored data. Then every Mapper maps
the key-value pairs(k1, v1) from its data to intermediate key-value pairs (k2, v2),
which are sored on the local disk. When completing the task, the TaskTracker
notifies the JobTracker. In Shuffle-Sort phase, each Reducer copies all value pairs
that it is responsible for from DataNode, and sort them. In Reduce phase, the
Reduce function processes pairs with the same key and produces final key-value
pairs (k3, v3).

3 Exact Computation

Before our algorithm is presented, a theorem for computing optimal split points
is given.

Theorem 1. The optimal split point can not be chosen among adjacent tuples
belonging to the same class.

Proof. Without loss of generalization, we assume there are two classes: H and
L, and several continuous tuples belong to class H.

Equation 1 can be written as: g = 1
N · [ f

2
H+f2

L

fH+fL
+ (NL−fL)2+(NH−fH )2

N−fH−fL
], where

NH(NL) is the total record number of class H(L). We need prove that g can only
have minimum value for varying fH .

g′fH = − 2
N · [ f2

L

(fH+fL)2 − (NL−fL)2

(NL+NH−fH−fL)2 ]

Letting g′fH = 0, we have fH = fL·NH

NL
. When fH < fL·NH

NL
, g′fH < 0. When

fH > fL·NH

NL
, g′fH > 0. So g can only have minimum value for varying fH in any

open interval and only two end points need to be checked to get the maximum.
��

A simple example is shown in Figure 1.

Value 21 24 35 42 50 54 55 62
Class H L L H L L L H
Value 21 24 35 42 50 54 55 62
Class H L L H L L L H

Fig. 1. Candidate split points belonging to shaded region need not to be computed,
because they can’t be optimal

According to the theorem 1, only points between tuples belonging to different
classes need be chosen as the candidate split points, which can save lots of com-
putation resources. Hereafter, this optimization is used for computing optimal
split points.

For the exact method [17], to obtain the optimal split point, firstly the data
should be sorted globally, and then the values of Gini impurity for all candidate
split points are calculated, at last the optimal split point is chosen. During the
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process, sorting incurs high communication cost and calculating for all candidate
split points wastes computation resources. Motivated by this, we present a new
distributed algorithm which can get the optimal split point but doesn’t need to
sort the data. Our algorithm requires three rounds.

Round 1: Estimate the quantiles for balancing the workload of analysis. Let r
denote the number of Reducers in round 2. And i

r−quantile should be estimated,
where i ∈ (1, r−1). In this round, typically one Reducer(coordinator) is enough,
and other nodes emit local histogram [27] to the coordinator. Remember that N
is the number of records. It is well known to approximate a distributed quantile
with a standard deviation of εN , the communication cost is O(mε ), where m is
the number of Mappers.

Round 2: Quantiles obtained in round 1 divide the data into r equal parts. In
this round, each node(mapper) assigns the same key to each record belonging
to the same part. The Reducers after receiving the records, compute the local
optimal split point among the received records in the help of the meta informa-
tion(containing the record number of each class, which is trivial to maintain. We
assume it is ready to be used). The communication cost is O(N).

Round 3 : All the local optimal split points computed in round 2 are collected
to get the global optimal split point. The communication cost is O(r).

Typically, m
ε � N and r � N , so the main communication cost is O(n) in

round 2.

4 Approximate Computation

Obviously, the exact computation of split points is expensive. Although our
algorithm avoids sorting the data before computation, it is still expensive due to
the following: (1) the algorithm causes a lot of communication when it sends all
data to Reducers; and (2) it has multiple rounds of MapReduce, which involves
lots of overhead. Hence, an approximate method, which may not compute the
optimal split point but can approximate it reasonably well, is needed.

It is difficult to directly estimate the value of Gini index for the candidate
split point, so we approximate it by predicting fck shown in equation 1. As fck
for different ck are mutual independent, hereafter we focus on one class and
denote fck as f for convenience. To avoid the two problems mentioned above,
only one Reducer(coordinator) can be used and at most one round of MapReduce
are required. A natural attempt is random sample. More precisely, the Mappers
sample the tuples with the probability p = 1

ε2N from the local data and send
them to the Reducer. And then Reducer estimates the f . The communication
cost is p ·N = 1

ε2 , and the standard deviation is εN [22].
Next, we detail a new algorithm, probability dispatch(PD), which produces a

unbiased estimator f̂ of f with standard deviation O(εN), which is strictly better

than random sample, improving communication cost to (
√
m
ε )·logN , as generally

1
ε <

√
m · logN . The idea is to emit the tuples with high probability, which are

more possible to be the optimal split point. And the Reducer estimates the f
using the received data, and then computes the Gini impurity, at last selects the
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approximate split point. Specifically, in the Map phase, as shown in algorithm 1
, two boundary values are put into the dispatch set S, Gini impurity is locally
computed, by which the tuples are sorted in descending order as a list L(line
1-3). In sequential order, each tuple li (li ∈ L) is emitted (put into the dispatch
set) with probability

p = min(1, dij ·
√
m

εN
) , (2)

where dij is the distance from the tuple li to the nearest tuples lj in S. Note
that if p = 1, we call the tuple li as determinate tuple, and put (li, fli) in S,
where fli is the f corresponding to li; Otherwise the tuple is called probability
tuple. If p < 1 and li is emitted, (li, li → lj) is put in S.

Algorithm 1. Mapper

1: put the maximum and minimum value into the dispatch set S
2: locally compute the Gini impurity Gi for each tuple i
3: sort the tuples by Gi in ascending order as a List L
4: for li ∈ L do
5: tj is the closet tuple in S to li
6: use equation 2 to compute the sending probability p
7: put the tuple into S with probability p
8: end for
9: emit all the tuples in S to Reducer

In the Reduce phase, an unbiased estimator f̂ of f is constructed. Let fi be
the part of f in Mapper i and v be the candidate split point. For a value v, to
estimate its fi(v), we find the nearest tuple tn from Mapper i, if tn is a probability
tuple, we find the path of tn to a determinate tuple td, and f for td is denoted as
fd. If the context is clear, we simplify fi(v) as fi. For example, in Figure 2, for
v, the nearest tuple is l4, the path is (v → l4), (l4 → l2), (l2 → l1). We denote C
as the length of the path, which is calculated by cr − cl, where cr(cl) is the step
number of moving right(left). If tn is a determinate tuple, C = 0. In Figure 2,
C = 2 for v. Then fi is estimated by

f̂i(v) = fd + C · εN√
m

. (3)

Then we estimate f as

f̂(v) =

m∑
i=1

f̂i(v) . (4)

The process is detailed in algorithm 2.
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Algorithm 2. Reducer

1: receive tuples from Mappers
2: use equation 4 to estimate f for each tuple
3: compute the ΔGini for each tuple using equation 1
4: choose the minimum as the approximate split point

An simple example is shown in Figure 2. Assuming L={l1, l2, l3, l4}, first, l1
is fetched, it is near to the minimal. By equation 2, p = 1, so l1 is a determinate
tuple and (l1, fl1) is put in S. And then, l2 is read, and it is near to l1. after
computation, p < 1, assuming it is emitted, so (l2, l2 → l1) is put in S. It is
similar to l3 and l4.

� � �� �� ��� �

d > εN√
m
, p = 1︷ ︸︸ ︷

︸ ︷︷ ︸︸ ︷︷ ︸
d < εN√

m
, p = d ·

√
m

εN

︷ ︸︸ ︷
l1 l2 l3l4v

Min Max

Fig. 2. An example of PD

Theorem 2. f̂ is an unbiased estimator of f with standard deviation at most
(εN).

Proof. Assume the step number is k for the candidate split point v, among which
there are l leftward steps and r rightward steps, and the correspondingdeterminate
tuple is td.WriteC as

∑
i∈r Yi−

∑
i∈l Yi, where Yi = 1 if the corresponding tuple is

emitted in the path otherwise Yi = 0. Each Yi is an independent Bernoulli trail (In
this setting, all tuples are ordered and each tuple is only checked once, assumingA is
before B, then p(AB)=p(A(B|A)). And because p(B|A)p(A)=p(AB)=p(A(B|A),
event (B|A) and event A are independent). Recall that dij is defined in equation 2.
Hence, the expected value of Yi is

E[Yi] = dij ·
√
m

εN
,

and the variance is

Var[Yi] = p(1− p) ≤ p = dij ·
√
m

εN
. (5)

So, E[C] = dd ·
√
m

εN , where dd is the distance from v to td. Note that C is negative
if v is less than td otherwise it is positive, and combining equation 3 and 4, we
get f̂ = f , namely f̂ is unbiased.
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From (5), and because p < 1,
∑

dij < εN√
m
, we have Var[C] < 1. Hence from

(3) we get

Var[f̂i] <
(εN)2

m
.

Because f̂i are mutual independent, Var(f̂) = m · f̂i ≤ (εN)2 and its standard
deviation is at most εN . ��

Theorem 3. the expected communication cost of our algorithm is O(
√
m
ε ·logN).

Proof. Because for p = 1, dij ≥ εN√
m
, the number of determinate tuples is at

most
√
m
ε . As for probabilistic tuple in each interval, the worst case is that

the middle tuple is chosen, so the probabilistic tuples can be organized as a
complete binary tree and each level has the equal expected number of emitted
tuples, which is 1

2 . Because the number of levels of the tree is log( εN√
m
), so the

expected communication cost is O(
√
m
ε · log(N)). ��

5 Experiment

In this section we demonstrate the performance of our algorithms in both com-
munication cost and running time. For the exact methods, we denote our method
as No-Sorting, which is compared with PLANET [19] in the experiments. For the
approximation methods, We denote random sample method as RS, and our prob-
ability dispatch algorithm as PD. We use two state-of-the-art approximate dis-
tributed methods for constructing decision tree, COMBINE [21] and SPDT [25],
to compare with our method. As COMBINE computes optimal split points lo-
cally, and then sends the result to the coordinator, finally the coordinator handles
the conflicts. As a result, when the distribution is highly skewed, its performance
is too bad. So we slightly changed it by sending candidate split point iteratively
until there are no conflicts or no available candidate split points.

Setup and Datasets. All experiments are implemented in Hadoop v0.20.2.
The Hadoop cluster consists of 20 machines with three different configurations
: (1) 5 machines with Intel(R) Core(TM) i7 Quad 870 @2.93GHz CPU and 8
GB RAM, (2) 5 machines with Intel(R) Core(TM) i7-2600 CPU@3.40GHz CPU
and 8 GB RAM, (3) 10 machines with Intel Core2 @2.8GHz and 2 GB RAM. A
machine with configuration (2) is selected as the master, and another with the
same configuration is selected as the (only) Reducer for PD algorithm.

In our experiments, a real-life dataset and several synthetic datasets are used.
The real-life dataset is micro-blog dataset obtained from WISE 2012 Challenge,
which is originally crawled from Sina Weibo [29]. Its total size is 74.7G and it
contains two tables: user table and message table. We join the two tables together
to form one big table, which approximately has 618 million records. Each record
consists of 3 numeric attributes including time, following number and followed
number(follower count), and 1 class attributes(event). Obviously the volume of
the dataset is so large that it is difficult to be processed by centralized system.
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The synthetic datasets built by the method proposed in [23] have 6 numeric
attributes. Records of each synthetic dataset are divided into different classes
by the classification functions. To model the behavior of a broad range of real
datasets, the synthetic datasets are distributed with various degrees of skewness
α and size n. Generally speaking, the more orderly the data blocks are, the higher
the level of skewness is(the mean of each data block is more different from the
population mean).

For all experiments, we vary one parameter while keeping the others fixed at
their default values. The parameters and its values used in our experiments are
listed in table 1. Unless otherwise specified, we use the default values.

Table 1. Experimental parameters

Parameter Range Default Value

ε 10−6 ∼ 10−2 10−4

dataset size 20G ∼ 100G 60G
α 0.5, 1.1, 1.4 0.5
split size 64M ∼ 512M 128M

To ensure the quality of the approximation methods, we should compare its
results with optimal split points calculated by exact method. We denote the
number of records between the approximate value and the optimal value as
absolute error(AE).

Effect of Parameter ε. We first study the impact of ε on our methods, by
varying it from 10−6 to 10−2 in Figure 3, Figure 4 and Figure 5. In all cases,
PD outperforms RS by four fold in accuracy. Both methods have larger AEs
when ε increases. Figure 4 and 5 show that both methods have higher cost with
ε decreasing. In all cases, PD has significantly lower communication cost as well
as shorter running time compared to RS.

Comparing AE. As shown in Figure 6 and 7, we analyze the communication
cost and running time of all the approximation methods with AE varying. Fig-
ure 6 indicates that the communication cost decreases as AE increases for all
methods. PD communicates one order of magnitude less than RS and SPDT
and two orders of magnitude less than COMBINE. Obviously PD gets the best
communication cost to AE. Figure 7 shows that PD is the most efficient method
in terms of running time.

In the following experiments, we omit the results on AEs, because the relative
trends on AEs for all methods are similar to the results shown in Figure 6 and 7.

Effect of Split Size. The default split size is 64M. Figure 8 and 9 shows
the impact of varying the split size from 64M to 512M. As the dataset size
remains the same, the number of splits m grows with the split size increasing.
Because the performance of PD and COMBINE is related to m, in Figure 8
their communication cost drops with a larger split size while RS’s and SPDT’s
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performance hardly change. The running time for all methods reduce slightly for
larger split size, but when the split size exceed 256M, the speedup are near to
zero, justifying our default split size, because the concurrency capability reduces
and the overhead of failure recovery increases.

Effect of Dataset Size. Figure 10 and 11 show the effect of varying dataset
size. We can see that the performance for all methods degrade with the workload
grows. No-Sorting outperforms PLANET by one order of magnitude in terms of
communication cost. As analyzed above, the communication cost of PD is sub-
linearly proportional toN , which is strictly less than other methods. The running
time mainly consists of access time and computation time, which linearly depend
on dataset size. Overall, No-Sorting and PD are the best exact and approximate
algorithm, respectively.
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Effect of Degrees of Skewness. As shown in Figure 12 and 13, we study the
effect of skewness α , with α as 0.5, 1.1 and 1.4. when data is highly skewed,
the communication cost of COMBINE increases obviously, and results of PD
and SPDT are slightly impacted. The running time of all methods have little
changes. Overall, PD consistently performs the best.

Micro-blog Dataset. Finally, we study the performance of all methods on
Micro-Blog with default values, and the results are shown in Figure 14 and 15.
The performance of each method is similar to previous results, and PD outper-
forms other methods by at least one order of magnitude indicating our method
is effective on large real-life datasets. Figure 16 shows that our approximate
method improves the performance, not at the cost of quality.
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6 Related Work

Since its introduction [13], CART has quickly emerged as a widely used tool
in data mining. Lots of its variants are proposed, e.g., RainForest [16], SLIQ
[15], Boat [14], and so on. However, they are centralized model and don’t have
scalability. As the management of large data is a pressing need, distributed and
parallel methods emerge. SPRINT [17] is an exact method, and it eschews the
need for any centralized, memory-resident data structures, memory-resident data
structures, and can be easily and efficiently parallelizable. However, SPRINT
needs to sort the data for construct the decision tree. SPIES [24], which is based
on RainForest, needs to construct AVC group in memory and can not adapt to
large data. As for approximation methods, VFDT is tailored to streaming data,
and SPDT uses histograms to construct the decision tree. If the data distribution
is not skewed, these methods can be sufficiently accurate.
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WhenMapReduce becomes the trend, severalmethods [19,26] that useMapRe-
duce to construct the decision tree are proposed, however, they focus on parallel
execution rather than communication cost which is of great importance in cluster.

To some extend, our work is related to quantile estimation. [27, 28] can effi-
ciently track quantiles with relatively low communication cost. However, if they
are straightforwardly applied to construct the decision tree, their performance
is not so good as the performance of our algorithm, because they don’t consider
the characteristic of decision tree and transmit lots of unnecessary information.

The work that is most related to ours is PLANET [19]. It is the first to use
MapReduce framework to construct the decision tree. However it is focus on the
parallelism, our work mainly concentrates on communication cost.
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7 Conclusion and Future Work

This paper studies how to efficiently compute optimal split points for constructing
decision tree. We present both exact and approximation methods in MapReduce,
which significantly outperform existingmethods. To the best of our knowledge, our
approximationmethod is the firstmethod that use probabilitymethod to compute
split points for constructing decision tree, and its communication cost is relatively
low for the same accuracy and it is unaffected byhigh skewness of data distribution.
And our approximationmethod has only one round, making it easy and appealing
in practice.

Data mining have lots of important tools for data analysis. Decision tree is
only one representative, and there are many other techniques we may consider
in cloud, such as EM-algorithm, k-means clustering, support vector machine,
outlier detection, and so on. Data mining and analysis on large data are still
intellectually challenging problems, requiring lots of work on theory and practice.
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Abstract. Ranking documents in terms of their relevance to a given
query is fundamental to many real-life applications such as document
retrieval and recommendation systems. Extensive studies in this area
have focused on developing efficient ranking models. While ranking mod-
els are usually trained based on given training datasets, besides model
training algorithms, the quality of the document features selected for
model training also plays a very important aspect on the model per-
formance. The main objective of this paper is to present an approach
to discover “significant” document features for learning to rank (LTR)
problem. We conduct a systematic exploration of frequent pattern-based
ranking. First, we formally analyze the effectiveness of frequent patterns
for ranking. Combined features, which constitute a large portion of fre-
quent patterns, perform better than single features in terms of capturing
rich underlying semantics of the documents and hence provide good fea-
ture candidates for ranking. Based on our analysis, we propose a new
ranking approach called FP-Rank. Essentially, FP-Rank adopts frequent
pattern mining algorithms to mine frequent patterns, and then a new
pattern selection algorithm is adopted to select a set of patterns with
high overall significance and low redundancy. Our experiments on the
real datasets confirm that, by incorporating effective frequent patterns
to train a ranking model, such as RankSVM, the performance of the
ranking model can be substantially improved.

Keywords: Learning to rank, frequent pattern, combined features, fea-
ture selection, ranking performance.

1 Introduction

Ranking is a well-recognized problem in the areas of knowledge management and
information retrieval, since it is an integral part of many data-intensive applica-
tions such as advertising, documents retrieval, recommender systems, and many
others. For example, given a query, in a document retrieval system, an effective
ranking algorithm is essential to estimate the relevance of each document with
respect to this query, so that users can easily find the most relevant documents.

A high-quality ranking method is vital to guarantee the retrieval qualities.
The problem of finding effective ranking (or the ranking problem) has attracted
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a lot of researchers’ attention in recent years. Many empirical ranking models,
like the boolean model, the vector space model, and the probabilistic model, were
then adopted to solve the ranking problem [2]. However these methods usually
suffer high cost for parameter tuning. Later, machine learning approaches, such
as RankSVM[15], RankNet[3], SoftRank[25], CRR[24], etc. have been derived to
automatically learn ranking functions, and they are collectively regarded as the
learning to rank (LTR) methods. By representing the documents with a large
amount of features and making use of advanced machine learning techniques,
most existing LTR methods give rise to very effective ranking functions.

While the majority of the research focuses on the design of more effective
ranking models, limited studies are carried out to improve the quality of the
document features used in LTR approach. In fact, besides the ranking model
training algorithms, the performance of a ranking model is also highly related
to the choice of the features used for ranking. In this paper, we systematically
investigate the possibility of frequent pattern-based ranking approach, where a
ranking model is built in terms of single features as well as significant frequent
patterns. We propose a new ranking approach, FP-Rank, which optimizes the
set of features used in LTR to improve the accuracy of ranking methods.

Combined features, which constitute a large portion of frequent patterns, are
proved to be effective to capture underlying semantics of datasets [6] [7]. For
ranking problem, a good example is that in order to extract features to repre-
sent documents, compared to single words (single feature), phrases (combined
features) can better deliver the semantics of the documents. In this paper, we
first formally analyze the ranking effectiveness of frequent patterns. In particu-
lar, we adopt a well-acknowledged criterion called pattern significance to measure
the ranking capability of a pattern. Then, we show combined patterns, which
consist a large portion of frequent patterns tend to have higher significance than
single patterns. Furthermore, we prove the significance of low frequency patterns
is limited due to their small coverage in the dataset. This work provides us a
theoretical support to use frequent patterns as feature candidates for ranking
problem and to filter the infrequent patterns when mining frequent patterns.

Our important observation is that not every frequent pattern is equally help-
ful for ranking. A good example is stop words which appear frequently in the
documents but tends to be useless in differentiating the documents. In addition,
due to large amount of possible frequent patterns, including all patterns in the
extended feature space not only increases model training time, but also dete-
riorates the ranking accuracy due to problem of over-fitting the model. These
conclusions provide us the necessity to do further feature selection on frequent
pattern set after mining frequent patterns. Therefore, we propose a new algo-
rithm to further select a pattern subset with high overall significance and low
redundancy after frequent pattern mining.

We now highlight all the components of our ranking approach called FP-Rank,
as shown in Figure 1(b), which consists of the following three phases: (1) frequent
pattern mining, (2) pattern selection, and (3) model training. In this paper, we
employ FP-Close [13] as the frequent pattern mining method, which is shown
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(a) Usual LTR Approach (b) FP-Rank Approach

Fig. 1. Traditional LTR Approach vs. Our Proposed FP-Rank Approach

to be effective to mine closed frequent itemsets. Then, by adopting the pattern
significance criterion, our proposed pattern selection method does the further
pattern selection. Finally, the selected patterns are used to extend the original
feature space of training dataset, and the extended dataset is used to train the
ranking model.

In summary, the major contributions are fourfold:

– We formally justify that frequent patterns are important in ranking. By
incorporating frequent patterns, the quality of training datasets can be im-
proved, and eventually the performance of ranking methods can be boosted.

– We propose a novel pattern selection algorithm to select a pattern set with
high overall significance and low redundancy. The pattern set is proved to
be effective for ranking.

– We present a new ranking approach called FP-Rank. In our proposed ap-
proach, the ranking models are built in terms of single features as well as
significant frequent patterns.

– We provide experimental evaluation of our proposed algorithm on real
datasets. By incorporating the selected patterns as new features for rank-
ing, the ranking performance of current widely-used LTR model such as
RankSVM has been greatly improved.

The rest of this paper is organized as follows. The notations and basic con-
cepts are introduced in Section 2. The related work is discussed in Section 3. In
Section 4, the details of the frequent pattern-based ranking approach and the
FP-Rank approach are presented. Extensive experiments on real datasets have
been conducted in Section 5. Finally Section 6 concludes the paper.

2 Preliminaries

We introduce notations and basic concepts that are used throughout the paper.
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Documents and the Training Dataset. We denote by A the set of m attributes
that are used to represent documents, and the domain of each attribute ai ∈ A is
either a range [li, ui] or a discrete value set Ri. The training dataset is denoted
by D, and each record in D is in the form of 〈q,ddd, y〉, where q is a query, ddd
is a document, and y is the relevance score of the document ddd with respect to
the query q. A document ddd is a set of attribute-value pairs, denoted as ddd =
{〈a1, v1〉, . . . , 〈am, vm〉}, where vi is the value of attribute ai for 1 ≤ i ≤ m. The
relevance score y of a document is a value in the range [0,K], where 0 means
no relevance between the query and the document and the (maximum) value K
means a “perfect” relevance.

Patterns (Features), single patterns and combined patterns. A pattern is a set
of attribute-value pairs, and we denote it as α = {〈ai1 , vi1 〉, . . . , 〈aik , vik〉}. We
call the set of attributes contained in a pattern α the associated attribute set of
α and denote it as Aα. Aα is a subset of A, i.e., Aα ⊆ A. Given a pattern, if the
size of its associated attribute set is 1, we call this pattern a single pattern; if the
size of its associated attribute set is larger than 1, we call it a combined pattern.
Since the patterns are used as features in FP-Rank, we use interchangeably the
concepts patterns and features, single patterns and single features, combined
patterns and combined features, when no ambiguity arises.

Frequent patterns. Given a pattern α, we denote by Dα the set of records
〈qi, dididi, yi〉 in D such that, dididi contains pattern α. For example, suppose we have
a record 〈q, {〈a1, v1〉, 〈a2, v2〉, 〈a3, v3〉}, y〉, the record is said to belong to Dα

with the pattern α = {〈a1, v1〉, 〈a3, v3〉}. Given a threshold θ0, a pattern α is

said to be a frequent pattern if P (α) = |Dα|
|D| ≥ θ0. We use F to denote a set of

frequent patterns.
Learning to rank problem. The LTR approach solves the ranking problem in

the following way. First, it takes a training dataset D as the input, and a ranking
model is then constructed on D. The testing dataset T contains the records in
the form of 〈q,ddd, ȳ〉 and ȳ is the relevance score to be estimated. Then, the
ranking model is applied on T to estimate ȳ of each record in it. Finally, records
in T are given in the form of a list sorted in term of their estimated relevance
scores. The LTR approach is shown on Figure 1(a).

MAP and NDCG. MAP and NDCG are two criteria to evaluate the perfor-
mance of the ranking model. The details can be found in [12].

3 Related Works

Frequent Pattern Mining Based Classification. Frequent pattern mining
has been a focused theme in data mining research, which gives rise to a large num-
ber of scalable methods. A comprehensive survey can be found in [14]. Besides
traditional techniques of deterministic frequent pattern mining, mining frequent
itemsets over uncertain databases has also attracted much attention recently.
For example, Tong et al. [26] [27] compare eight representative approaches of
uncertain frequent itemset mining and develop a comparable software platform.

The frequent pattern-based classification is inherently related to associative
classification. In associative classification, a classifier is built upon high quality
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rules, such as the ones with high-confidence and high-support. The association
between frequent patterns and class labels is then used for prediction. The work
related to this area includes: CBA[19], CMAR[18], CPAR[34] etc. These methods
differ in their rule selection criteria (confidence, support, etc), number of rules
they select (dataset coverage, top N, etc), and prediction result combination
methodology. Cheng [6] provides a theoretically analysis about why frequent
patterns are helpful for classification and bridges the gap between pattern’s
support with its information gain. Recent work in this area focuses on how
to mine the discriminative pattern efficiently. For example, Cheng [6] provides a
pattern selection method MMRFS to select frequent patterns from the candidate
pattern set. HARMONY [32] adopts an instance-centric rule generation approach
and achieves high accuracy and efficiency. DDP-Mine [7] provides a more effective
pruning technique and directly mines out informative patterns for classification.

Learning to Rank. Ranking is a fundamental problem in many application
areas such as recommendation systems, document retrieval and advertising etc.
Previous work such as boolean models, vector models and probabilistic models
[2] usually suffers high cost of parameter tuning since we usually consider a large
number of relevant features for documents and queries.

Machine learning techniques provide many feasible solutions, since they can
automatically learn parameters and make use of a large part of features in the
model learning process, and this approach is referred Learning to rank (LTR)
approach. According to [4], [5], current LTR methods can be classified into three
categories: (i) Pointwise approach, (ii) Pairwise approach and (iii) Listwise ap-
proaches. In pointwise approach, each training example is treated as an inde-
pendent instance and a model is trained to map each document’s features to
its relevance score which could be based on regression [9] or classification [20]
[17]. The pairwise approach train ranking function to minimize a loss function
which is based on pair-wise preferences. The ranking problem is then trans-
formed into binary classification problem. Typical examples of such models in-
cludes RankSVM [15], RankNet [3], FRank [28], MHR [23], RankBoost[11], and
CRR[24]. etc. In listwise approach, the models consider the whole document list
instead of document pairs by either directly optimizing the IR measures, or indi-
rectly optimizing the IR measures by employing a loss function correlated to IR
measures. Directly optimizing the IR measures is difficult since they depend on
the rank and are not differentiable. Example methods include [8], SVMmap [35],
AdaRank [33], Boltzrank [31], NDCG-Boost [29], and [16]. Indirectly optimizing
the IR measures includes RankCosine [21], and ListNet [5].

Beside the above approaches, association rules have also been applied to solve
the LTR problem by Veloso [30]. When predicting the orders, several high con-
fidence rules are used and the final relevance score is computed by weighted
combination of the relevance score of all these selected rules. Our approach is in-
spired by the success of existing frequent pattern based classification approaches,
however, we differ from these approaches in the following three aspects: (1) We
use frequent patterns to extend the feature space instead of only using association
rules [30]. (2) Rather than only considering confidence or support of patterns or
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association rules, we consider the characteristic of ranking problem and provide
pattern selection method to select high significance, low redundancy pattern set
for effective ranking. (3) Our approach is compatible with most of current LTR
algorithms and it demonstrates significant ranking improvement.

4 Frequent Pattern-Based Ranking Approach

In this section, we present the frequent pattern based-ranking approach FP-
Rank, which carries out ranking by the following phases: (1) frequent pattern
mining, (2) pattern selection, and (3) model training. We first prove the effec-
tiveness of frequent patterns for ranking, and adopt the frequent pattern mining
methods such as FP-Close [13] to mine frequent patterns. By adopting the pat-
tern significance criterion, a greedy method is developed to select the pattern
set with high overall significance and low redundancy. Finally, the selected pat-
terns are used to extend the original feature space of training dataset, and the
extended dataset is used to train the ranking model.

4.1 The Effectiveness of Frequent Pattern for Ranking

Frequent patterns have two essential properties: combined patterns and high
frequency. We analyze how these properties contribute to the ranking problem.

The Significance of Combined Patterns. A large portion of frequent pat-
terns are combined patterns. Compared with single patterns, combined patterns
are better at capturing the underlying semantics of the documents, and thus
they can be more effective for producing more accurate ranking.

In order to formally analyze ranking capability of frequent patterns, we adopt
a well-acknowledged criterion called pattern significance for ranking.

Pattern significance. Given a pattern α, pattern significance S(α) measures
the correlation between α w.r.t relevance score. For the ranking problem, MAP
and NDCG are used to evaluate the effectiveness of a feature, which are proved
to be helpful in [12]. Here we adopt the same methodology and define pattern sig-
nificance be a pattern’s MAP or NDCG, denoted as MAP (α) and NDCG(α),
and they can be computed by MAP and NDCG of the ranking model trained
solely based on this pattern (using RankSVM, RankNet, etc.).

We utilize the Microsoft LETOR MQ2008 and OHSUMED datasets [22], and
plot the MAP and NDCG of single patterns as well as combined patterns. We
can see that the combined patterns tend to have higher significance, e.g. Figures
2(a) and 2(b).

Pattern Significance vs. Pattern Frequency. We now study the relation-
ship between the significance of a frequent pattern and its frequency, and demon-
strate that the significance of patterns with low frequency is limited. In addition,
patterns with low frequency may lower the ranking accuracy due to model over-
fitting. We provide the following lemma for detailed illustration.
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(a) MQ2008 Fold3 MAP (b) OHSUMED Fold5 NDCG

Fig. 2. Pattern Significance vs. Pattern Length on LETOR dataset

Lemma 1. Given dataset D and pattern α, suppose pattern frequency P (α) =
|Dα|
|D| = θ. To simplify our analysis, we further assume relevance score y ∈ {0, 1},
the percentage of relevant documents P (y = 1) =

|Dy=1|
|D| = p, the possible signif-

icance upper bound of α, denoted as S(α)ub, is monotonically increasing with θ,
when θ is small. i.e., 0 ≤ θ < min{1− p, p}.

In order to prove Lemma 1, we now cast ranking problem into a multiple clas-
sification problem by treating relevance scores as class labels, since perfect clas-
sifications lead to perfect DCG scores according to the definition of DCG in
Section 2. This view connects two intrinsically different problems of ranking and
classification. In addition, Li et al.[17] further proved that a model’s DCG error
is bounded by the converted classification error by Lemma 2.

Lemma 2. Suppose there are n documents {d1, d2, . . . , dn}. Given a query q,
the ground truth ranked list of documents is G, which is produced by ranking
documents in terms of their true relevance scores. Suppose a classifier estimates
the relevance score ȳi of document di to be an integer in [0,K], for 1 ≤ i ≤ n.
Then the documents are sorted in terms of their estimated relevance scores to
produce the estimated ranked list R. The corresponding DCG error of R with
respect to G is bounded by the square root of the classification error, that is,

DCGG −DCGR �
(
2K − 1

)(
n∑

i=1

c2[i] − n

n∏
i=1

c
2/n

[i]

)1/2 ( n∑
i=1

1yi �=ȳi

)1/2

. (1)

Based on Lemma 2, we now prove that the significance of patterns with low
frequency is limited. To simplify our analysis, we further assume relevance score

y ∈ {0, 1}. Given a dataset D, let P (α) = |Dα|
|D| = θ, P (y = 1) =

|Dy=1|
|D| = p,

where Dy=1 is the set of documents with relevance score y = 1, and P (y =

1|α) = |Dα∩Dy=1|
|Dα| = q. Then

1− S(α) = 1− DCG(α)

DCGG
≤ λ ∗

(∑n
i=1 1yi �=ȳi

|D|
)1/2

, (2)
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where
∑n

i=1 1yi �=ȳi

|D| is the relevant classification error of the classifier built solely

on α, denoted as E(α), and

λ =

(
2K − 1

) (∑n
i=1 c

2
[i] − n

∏n
i=1 c

2/n
[i]

)1/2

∗ |D|1/2
DCGG

(3)

is a constant for a given dataset.
From the above assumption, we deduce that P (α, y = 1) = qθ, P (ᾱ, y = 1) =

p− qθ, P (α, y = 0) = θ − qθ and P (ᾱ, y = 0) = 1 − p − θ + qθ. So the error of
the classifier built on α is given by:

E(α) = min {θ + p− 2θq, 1− (θ + p− 2θq)} . (4)

For fixed p and θ, E(α) varies with q, and reaches the lower bound at the following
conditions. When p ≤ 0.5,

E(α)lb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p− θ, for q = 1, 0 ≤ θ < p

θ − p, for q = p
θ
, p ≤ θ < 0.5

1− θ − p, for q = 0, 0.5 ≤ θ < 1− p

θ + p− 1, for q = 1− 1−p
θ

, 1− p ≤ θ ≤ 1

, (5)

and when p > 0.5,

E(α)lb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− θ − p, for q = 0, 0 ≤ θ < 1− p

θ + p− 1, for q = 1− 1−p
θ

, 1− p ≤ θ < 0.5

p− θ, for q = 1, 0.5 ≤ θ < p

θ − p, for q = p
θ
, p ≤ θ ≤ 1

. (6)

We take one case of E(α)lb as an example, i.e., p ≤ 0.5 and 0 ≤ θ < p. E(α) gets
its lower bound when q = 1. The partial derivative of E(α)lb|q=1 w.r.t.θ is

∂E(α)lb|q=1

∂θ
= −1 < 0. (7)

The above analysis demonstrates that when p ≤ 0.5, E(α)lb is a function of the
pattern frequency θ. When θ is small, i.e., 0 ≤ θ < p, E(α)lb|q=1 is monotonically
decreasing with θ, i.e., the smaller θ is, the larger E(α)lb|q=1 is, and according
pattern significance S(α) is likely to be smaller as well. The conclusion is the
same for the cases with p > 0.5. When θ is small, i.e., 0 ≤ θ < 1− p, E(α)lb|q=0

is monotonically decreasing with θ. Therefore, the significance of patterns with
low frequency is bounded by a small value.

We have discussed the effectiveness of combined patterns for ranking in Sec-
tion 4.1. One possible way to generate combined patterns from the original
dataset is to enumerate all the combinations of the single features. This naive
method suffers from the high cost due to large number of combinations (O(2n)).
The formal analysis in this section indicates that we can use frequent patterns
with frequency large than some threshold min sup instead of all the single pat-
tern combinations without suffering too much performance loss, since significance
of patterns with low frequency is limited.
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4.2 Pattern Selection

Although frequent patterns are useful for improving accuracy of ranking, it does
not mean that every frequent pattern is equally helpful. A good example is stop
words which appear quite a lot in most of the documents, but almost useless

Algorithm 1. FP-Rank Feature Selection

Input: Frequent pattern set F ; Training dataset D; Pattern Number N ;
Output: Pattern set Fs;
1: Fs = Φ;
2: while (|Fs| < N) do
3: α = argmaxα∈F−Fs Φ(α);
4: if α can correctly cover at lease one instance in D then
5: Fs = Fs ∪ {α};
6: end if
7: F = F − {α};
8: if F = Φ then
9: break;
10: end if
11: end while
12: return Fs

in differentiating documents. Since frequent patterns are generated by only con-
sidering frequency, the mined frequent patterns may contain a large portion of
insignificant patterns. Including insignificant patterns for model training does
not only increase the model training time, but also leads to the reduction of the
ranking performance due to model overfitting. The objective of pattern selection
is to find a pattern set from all the mined frequent patterns, such that the overall
pattern significance is high, while the redundancy among the patterns in the set
is low. This problem is known to be NP-hard [12]. Since the number of mined
frequent patterns is usually extremely large, we therefore need to devise an ef-
ficient pattern selection method, which searches for the pattern set in a greedy
way. We have defined pattern significance in Section 4.1, and the redundancy
criterion is defined as follows.

Redundancy between two patterns. Given two patterns α and β, redundancy
R(α, β) measures the correlation between these two patterns. Particularly, we
consider the redundancy between two patterns based on the prediction results
given by the models solely built on each of them. Many methods have been
proposed to measure the distance between two ranked lists, such as Sperman’s
footrule, Kendall’s tau distance, etc [12]. We choose the Kendall’s tau distance,
which has been proved to be effective in measuring distance of ranked lists [12],
and thus the R(α, β) is defined as follows:

R(α, β) = τ (α,β) ×min(S(α), S(β)), with τ (α, β) =

∑
q∈Q τq(α, β)

|Q| . (8)

τq(α, β) is the Kendall’s tau value between two rankings respectively generated
based on two patterns for query q, which is defined as follows:
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τq(α, β) =
| {(di, dj) ∈ Dq} |di ≺α dj and di ≺β dj |

| {(di, dj) ∈ Dq} | , (9)

where Dq denotes the set of documents given by query q. τ(α, β) is the average
Kendall’s tau value over all the queries in set Q.

We define a score for a pattern α, denoted as Φ(α), as follows:

Φ(α) = S(α)−maxβ∈FsR(α, β). (10)

The greedy pattern selection algorithm is presented in Algorithm 1. It searches
over all the mined frequent patterns in F and find the one with maximal Φ
value (Line 3), and if this pattern can correctly cover at least one instance in
the training dataset, we include it to the selected pattern set Fs (Lines 4-5). We
keep searching the mined frequent pattern set until N patterns are found (Line
2) or set F is empty (Lines 8-10).

4.3 FP-Rank Approach

We present the two algorithms in our FP-Rank Approach: FP-Rank Training
(Algorithm 2) and FP-Rank Predicting (Algorithm 3). In the training part, after
we preprocess the dataset (Line 1), the frequent pattern mining algorithm, such
as FP-Close [13], is adopted for mining frequent patterns (Line 2). Our proposed
pattern selection algorithm 1 is used to select a set of patterns Fs (Line 3). The
selected patterns are used to extend the original feature space of the dataset (Line
4), and extended dataset is used to train a ranking model M , using RankSVM,
RankNet, and etc (Line 5). In the prediction part, we use the pattern set Fs

to extend the feature space of the testing instances (Line 1), and then ranking
model M is used to predict the relevance scores of testing instances (Line 2).

Algorithm 2. FP-Rank Training

Input: Training dataset D;
Output: Ranking model M . Pattern set Fs

1: D′ =Preprocessing(D). //data discretization etc.
2: F =FP-Close(D′). //closed frequent pattern mining.
3: Fs =FeatureSelection(F ). //pattern selection (Algorithm 1).
4: D′′ =FeatureSpaceExtension(Fs, D). //feature space extension using Fs and D.
5: M =ModelTraning(D′′) //model training based on extended dataset.
6: return Fs and M

Algorithm 3. FP-Rank Predicting

Input: Pattern set Fs, Ranking model M , Testing instance t
Output: Predicted relevance score y for t
1: t′ =FeatureSpaceExtension(Fs, t) //feature space extension for t using Fs.
2: y =Prediction(M, t′) //relevance score prediction for t′ using model M
3: return y
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5 Experiments

In this section, we evaluate the effectiveness of FP-Rank framework. We intro-
duce the datasets and the relevant setup algorithms used in the experiments in
Section 5.1. Then, we evaluate the ranking performance in Section 5.2.

5.1 Experimental Setup

Dataset. In our experiments, the Microsoft’s LETOR benchmark [22] is used.
LETOR is a benchmark for research on LTR, which composes of several data
subsets, evaluation tools, and baseline evaluation results (such as RankSVM,
RankBoost, etc) for ranking performance evaluation. Each data subset contains
a set of queries, a set of features for query document pairs, and a set of corre-
sponding relevance scores for the evaluation. We choose the LETOR4.0 MQ2008
dataset, the statistics of which is listed in Table 1. For each fold, the training
set is first used to learn a ranking model. The validation set is used for model
parameters tuning, and the ranking model is then used on testing set. The es-
timated relevance scores on the testing set are employed to derive the standard
NDCG@n, P@n, and MAP measures in the ranking evaluation.

Table 1. Statistics of the MQ2008 dataset

No. of Features No. of Queries No. of Query-Document No. of Document

46 784 15211 14384

Ranking Model. In our experiments, RankSVM is employed to derive the
ranking model. It utilizes instance pairs and their preference labels in the train-
ing. The optimization formulation of RankSVM is given by:

min
1

2
wTw + C

∑
i,j,q

εi,j,q

s.t.∀ (di, dj) ∈ r∗q : ωø (q, di) ≥ ωø (q, dj) + 1− εi,j,q.

We employ RankSVMStruct [15] in the FP-Rank framework. RankSVMStruct is
the most up-to-data implementation with optimized speed and performance, and
previous studies [15] have already shown the effectiveness of RankSVMStruct.

Data Preprocessing. Most pattern mining algorithms, such as Apriori [1],
FP-Close [13], can only handle discrete attributes. However, since the attributes
of most of the ranking datasets (e.g, Microsoft’s LETOR datasets, Yahoo’s LTR
competition1 datasets) are continuous, data discretization should be performed
before frequent pattern mining. Naive discretization methods such as binary dis-
cretization or n-equal-width bins discretization suffers from two major problems:
1) information loss, which decreases the significance of frequent patterns, and 2)

1 http://learningtorankchallenge.yahoo.com/datasets.php

http://learningtorankchallenge.yahoo.com/datasets.php
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useless patterns, which are patterns that have limited effect for ranking but make
mining and pattern selection more expensive. Since if the discretization is not
fine enough, it assigns many different values into the same bins, and thus gen-
erating useless patterns with information loss. In our experiment we compared
several discretization methods, and we use MDL methods [10], which gives the
best results due to the minimal information loss.

Frequent Pattern Mining Algorithm. Frequent pattern mining is a well-
studied theme with various available algorithms and software tools. Based on
the redundancy definition in section 4.2, instead of frequent patterns, we use
closed frequent patterns as features in our framework, since a closed pattern is
a concise representation of all its redundant non-closed sub-patterns. We choose
FP-Close [13] to mine closed frequent patterns in our experiment. To maximize
the number of significant patterns, we divide each dataset into several partitions
according to the relevance scores. We first mine the frequent patterns in each
partition. The mined patterns are merged together, and pattern selection is then
applied on the merged pattern set to find the pattern subset.

To compare different pattern selection criteria, we also adopt information gain,
which is a widely-used feature quality measurement for classification, to measure
significance of a pattern, and adopt an extension based on Jaccard distance for
measuring the redundancy. This criterion is effective for classification according
to [6].

5.2 Ranking

Accuracy. The ranking results in terms ofMAP andNDCG@n for the MQ2008
dataset are presented in Figures 3 and Table 2. From the results, we observe that
the newly added frequent patterns can significantly improve the ranking perfor-
mance. Both the two feature selection criteria (i.e.,IG+Jaccard, MAP+KenTau)
achieve much better results compared to the baseline method (RankSVM with
no pattern added). This aligns with our claim in Section 4.1 that ranking per-
formance can be improved by including selected frequent patterns subset.

Table 2. Summary of Ranking Improvement on MQ2008 dataset

MAP NDCG

Fold Baseline FP-Rank Improv. Baseline FP-Rank Improv.

F1 0.4502 0.4672 3.78% 0.4577 0.4784 4.52%

F2 0.4213 0.4377 3.89% 0.4296 0.4378 1.91%

F3 0.4529 0.4529 0% 0.4686 0.4686 0%

F4 0.5284 0.5472 3.56% 0.5442 0.5604 2.98%

F5 0.495 0.5059 2.20% 0.5159 0.5232 1.42%

Ave. 0.46956 0.48172 2.69% 0.4832 0.4931 2.17%
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(a) MQ2008-Fold1 (b) MQ2008-Fold2

(c) MQ2008-Fold3 (d) MQ2008-Fold4

(e) MQ2008-Fold5

Fig. 3. Detailed Ranking Improvement on LETOR MQ2008 dataset

We find that our proposed MAP significance with Kendall tau redundancy
criterion in FP-Rank achieve better results compared to IG with Jaccrad meth-
ods, showing that our proposed ranking pattern selection method is more ef-
fective comparing to methods (e.g., IG and Jaccrad) for classification (Figure
3). We observe that our method significantly improves the ranking performance
(Maximum: 4.52% and Average: 2.17% in terms of NDCG@n; Maximum 3.89%
and Average: 2.69% in terms ofMAP ) compared to the baseline RankSVMStruct

method (Table 2).
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(a) MQ2008-Fold1-MAP (b) MQ2008-Fold4-MAP

(c) MQ2008-Fold1-NDCG (d) MQ2008-Fold4-NDCG

Fig. 4. Ranking Performance Improvement vs. Pattern Number N

The Effect of Pattern Set Size N . In our pattern selection algorithm, pa-
rameter N denotes the subset size of the selected pattern. In our experiment,
we try different N to train the model with training set, and the models with the
best performance on the validation set are used. As N varies, the ranking results
in terms of MAP and NDCG@n for the MQ2008 dataset are presented in Fig-
ure 4. Besides confirming the effectiveness of the new added patterns and our
pattern selection algorithm, we conclude that the subset size N of the new added
pattern is small (less than 20), which makes the model training time similar as
the baseline RankSVMStruct method.

6 Conclusions

In this paper, we propose a new approach FP-Rank that aims to achieve a
more effective learning to rank approach by using frequent patterns. Our study
confirms that frequent patterns offer high quality features that can be used to
improve the performance of a ranking model. Compared with commonly used
feature selection approaches, our ranking feature selection method is able to
find a pattern subset that is specific for a ranking problem. The improvement
is clearly evidenced by the ranking accuracy measured by MAP and NDCG in
FP-Rank in a spectrum of experiments.
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Abstract. The explosive growth of products in both variety and
quantity is an obvious evidence for the booming of C2C (Customer-
to-Customer) E-commerce. Product normalization, which determines
whether products are referring to the same underlying entity, is a fun-
damental task of data management in C2C market. However, product
normalization in C2C market is challenging because the data is noisy and
lacks a uniform schema. In this paper, we propose a hybrid framework,
which achieves product normalization by the schema integration and
data cleaning. In the framework, a graph-based method was proposed to
integrate the schema. The missing data was filled and the incorrect data
was repaired by using the evidence extracted from surrounding informa-
tion, such as the title and textual description. We distinguish products
by clustering on the product similarity matrix which is learned through
logistic regression. We conduct experiments on the real-world data and
the experimental results confirm the effectiveness of our design by com-
paring with the existing methods.

1 Introduction

Online retailing has been rapidly developed in the past decades, especially on the
C2C(Customer-to-Customer) sites.AtBingShopping (www.bing.com/shopping),
there are over 5 million products offered by 10 thousand sellers. At Taobao site
(www.taobao.com), the biggest C2C site in China, there are over 800million prod-
ucts and over 370 million registered users.

However, the huge amount of products in both variety and quantity on C2C
sites poses great challenge to effective and efficient data management mecha-
nisms. One important task in data management is to determine whether prod-
ucts are referring to the same underlying entity, namely Product normalization.
Product normalization is important in improving user experience due to the
following reasons.

– Easing Browsing. Customers usually feel bored of too many instances of
the same product in the search result list. Search diversification technique
that leverages product similarity based on product normalization rather than
string similarity will have stronger robustness to the data description noise
so as to help to improve the user experience.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 370–384, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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– Facilitating Comparison. Customer usually wants to see a list of the same
to make comparison. However the search results contain too many different
items to check, which is caused by the noisy information in item description
So product normalization is on demand to facilitate the comparison.

– Improving Recommendation. Product recommendation takes customer-
product purchase matrix as input for collaborative filtering. Usually this
matrix is very sparse, which leads to inaccurate model prediction. With the
help of product normalization, the purchase matrix can be nicely compressed
by merging the similar products.

On the other hand, product normalization is a challenging job in that

– Lack of a uniform schema. Generally, each product has a structured
attribute table which consists of attribute-value pairs as shown in Tab.1.
The table provides detailed and rich information and is critical to product
normalization. But the lack of a uniform schema (e.g., attribute “product
model” was named as “model” or “product number” in different product
description) has severely reduced its contribution to product normalization.

– Noisy data. As shown in Tab.1, product description is very noisy (For
example, for the title of the second product model identity “TL-WR703N”
are missing and “iPad3” and “iPhone5” is misleading. In attribute table
field, the value of “Brand” in the first product is missing and the value of
“Product Model” in the third product is incorrect). The noise causes great
troubles in product normalization.

In this paper, we present a general hybrid framework for product normaliza-
tion, which accomplishes product normalization by schema integration and data
cleaning. Schema Integration aims to provide a uniform and meaningful repre-
sentation of the products. Then we conduct data cleaning to provide a precise
and comprehensive description for each product, which includes missing value
filling, incorrect value detection and value confirmation. In our work, schema in-
tegration and data cleaning reinforce each other and are the critical process for
the remaining work. Finally, we employ a logistic regression model to train the
similarity between products and cluster products based on the trained similarity
to achieve product normalization.

The rest of the paper is organized as follows. Section 2 discusses related work.
The motivation of this work was presented in Section 3. Section 4 shows the
framework of our approach. Section 5 describes data preprocessing. Section 6
introduces product normalization. Section 7 presents the experimental results
and analysis. We conclude our work in Section 8.

2 Related Work

Product normalization is a variant of Entity Resolution which tries to identify in-
stances of the same real-world entity. Entity resolution was first proposed in [13].

The traditional approach to entity resolution considers similarity of text.
There has been extensive work on approximate string similarity measures [11][12],
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used in unsupervised entity resolution. Machine learning approaches are intro-
duced to learn string similarity measures from labeled data [3][15][1]. There have
been some techniques that enhance the traditional techniques by utilizing certain
types of context entity reference to improve the quality [1][6].

The groundwork for posing entity resolution as a probabilistic classification
problem was done by Fellegi and Sunter [7]. There are some following works,
such as [14][17]. Some recent works leverage knowledge acquired from external
sources, such as Wikipedia and WorldNet, for domain-independent entity resolu-
tion [5][4]. Some works employ negative evidence for entity resolution [6][16][9],
which do not need that every entities have corresponding external resource. In
the e-commerce domain, [2] and [8] proposed methods for clustering merchant
offers, which is similar to our work. However, their work didn’t take noise into
consideration and the similarity measures they used are sensitive to noise. As a
result, the accuracy and recall of this method is low when the data is noisy.

3 Motivation

To reduce the side effort of too many same products, C2C sites developed various
methods for product normalization, which are either based on Universal Product
Codes (UPCs) or keywords. However, the data in C2C markets is very noisy and
UPC is usually not available, so these methods are either inaccurate or has
extremely low recall.

Having carefully checked the dataset, we have the following observations which
inspire the idea of our work.

– Identical attribute expressions usually have many same values (e.g. attribute
“Product Model” and “Product Number” will have many same values). So
we can integrate schema by value statistics. The details see Section 5.1.

– The missing value and incorrect value in attribute table can be replaced
by the correct one predicted from surrounding information and other prod-
ucts (e.g., for the second product in Tab.1, the value of “Product Model”
is missing. We found that that “TL-WR703N” is a candidate value for the

Table 1. Example of products’ descriptions

Title Price Attribute table Textual description

3G TAX FREE
150M portable Wi-Fi
Wireless Router TP-
LINK TL-WR703N

$29.99 Brand: null
Model number:TL-WR703N
Type: Wireless router
Ports number: 4 ports

With a compact form factor,
the TP-Link TL-WR703N
150 Mbps Wi-Fi router pro-
vides 3G wireless...

TP-LINK 150M Mini
wireless router 300M
speed iPad3 iPhone5

$31.99 Brand: TP-Link
Max.Rate:150Mbps
Product Model: null

TL-WR703N is small
enough to put into your
pocket and...

TL-WR703N Mini
Wi-Fi wireless router
300M speed

$31.99 Max.Rate:150Mbps
Product Model: TL-MR3220

TP-link TL-WR703N is a
truly plug and play wireless
router...
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attribute in the first product, and “TL-WR703N” appears in the second
product’s textual description, so we can deduce that the missing value is
“TL-WR703N”). See Section 5.2 for the details.

– Attributes, such as title, product number in Tab.1, have different discrim-
ination ability (e.g., the attribute “Product Model” is more discriminative
than title and the attribute of “Brand”). In our method, we automatically
weight the features according to their discriminative ability, the detail will
be given in Section 6.2.

4 Framework Overview

To resolve problems mentioned above, we propose a hybrid framework for prod-
uct normalization as shown in Fig.1. The process consists of two parts:

Product Normalization

Schema Integration

Similarity Learning

Clustering

Data preprocessing

Date Cleaning

Feature Selection

Fig. 1. Framework of our approach

– Data Preprocessing: This part first integrates schema by merging different
schemas to a global schema. Then it conducts schema fusion to resolve the
heterogeneity problems such as synonyms, abbreviation and so on. After
that, we address the missing and incorrect data issue. See Section 5 for the
details.

– Product Normalization: After data preprocessing, we pick features for
the products and employ logistic regression to learn the product similarity.
Finally, products are clustered based on the learned similarity to achieve
product normalization. The details will be given in Section 6.

5 Data Preprocessing

5.1 Schema Integration

The usefulness of the attribute table to product normalization will be nega-
tively affected by lacking of uniform schema. So we first integrate the schema,
e.g.,unifying synonyms and abbreviation. The naive strategy is to merge the
strings with high string similarity. This method is not effective, because identi-
cal strings may be quite different in the form(e.g., “RAM” and “Random Access
Memory”) while strings that are not identical may be quite similar(e.g.,“Cores
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Number” and “Model Number”). Our method needs to consider not only string
similarity but also the neighbor information.

To facilitate the remaining work, we first combine attribute tables from all
products into a global schema graph G =< A, V,E > as shown in Fig.2(a),
where A is the node set of attributes, V is the node set of values, and E is edge
set. For nodes a ∈ A and v ∈ V , edge (a,v) with weight k exists in G if and only
if attribute-value pair (a,v) appears in k products’ attribute tables. The weight
of edge (a, v) is represented by w(a, v).

Value merging Attribute merging

Attribute
node Value node

(a) (b) (c)

Attribute
super-node

Value
super-node

Fig. 2. Process of Schema Integration

Before grouping the similar attribute, we need to merge the identical val-
ues(e.g., merge “TL-WR703N” and “WR703N”). Either Edit Distance [10] or
N-gram can be used as the similarity/dissimilarity measures. We denote the
string similarity as SimStr(·). If two value nodes (value super-nodes) have a
higher similarity than a predefined threshold δ(0 ≤ δ ≤ 1), then we combine
them into a super-node. The similarity between a value node a and a super-node
vsup is the average similarity between a and nodes in vsup. After merging, G is
converted into G

′
=< A, V sup, E

′
> as shown in Fig.2(b), where V sup represents

the set of the generated super-nodes and E
′
represents the set of super-edges.

The weight of a super-edge between an attribute a and a value super-node vsup

is defined as: w(a, vsup) =
∑

v∈vsup w(a, v).
For any value v ∈ V , sup(v) denotes the super-node in V sup which contains

v. From any super-node vsup ∈ V sup, we choose the node the most frequently in
the data as the representative, denoted by vsup.rep . denotes the representative
node in vsup, which is the value in vsup that appears more frequently in the data
than any other value in vsup.

Now we start to merge the identical attributes. As discussed previously, at-
tribute similarity is measured by the string similarity and the neighbor similarity.
The similarity of two attributes ai, aj ∈ A is defined as:

Satt(ai, aj) = λSimStr(ai, aj) + (1− λ)Sneighbor(ai, aj)

Sneighbor(ai, aj) =

∑
v∈V (ai)∩V (aj)

Min(w(ai, v), w(aj , v))∑
v∈V (ai)∪V (aj)

Max(w(ai, v), w(aj , v))
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Satt(·) is the weighted sum of string similarity and neighbor similarity. In our
experiments, we set λ = 0.3. For any a ∈ A, V (a) denotes the set of sup-nodes in
V sup which are adjacent to a. Neighbor similarity is the global ratio of common
values the two attribute ai and aj have. Using Satt(·) and a given threshold θ,
we merge the attributes according the same strategy as merging values. After
the attribute merging, we get G∗ =< Asup, V sup, E∗ > as shown in Fig.2(c).
For any sup-node asup ∈ Asup, asup.rep denotes the representative node in asup,
which is the attribute in asup that appears the most frequently in the data.

Now, the integrated schema is stored in G∗, where different attributes (values)
within a super-node are considered identical. Then we can use graphG∗ to convert
all products into a uniform data schema. The converting process is below: for each
attribute-value pair (a,v) of product p, there will be two sup-nodes asup ∈ Asup

and vsup ∈ V sup in graph G∗ containing a and v respectively. We convert (a,v)
to (asup.rep,vsup.rep). After the conversion, all the products are in a unified data
schema, so a more accurate comparison based on attribute table can be achieved.

5.2 Data Filling and Cleaning

As described in Section 3, the missing and incorrect values greatly deteriorate the
performance for product normalization. This subsection introduces the details
in data filling and cleaning.

a1

a2

a3

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

(a) (b) (c) (d)

Missing value
filling

Incorrect value 
detection

Value
confirmation

Attribute Node Value Node

Fig. 3. Process of Data Cleaning

As shown in Fig.3(a), we use a bipartite graph g(p) =< A(p), V (p), E(p) > to
model the attribute table of product p, where A(p) is the set of attributes, V (p)

is the set of values, an edge in E(p) represents an attribute-value pair in p (the
original weight for each edge is 1). And we use tit(p) and des(p) to denote title
and textual description for product p, respectively.

Missing Value Filling. There are two types of missing values:(i)Value-level
missing: In value-level missing, an attribute’s corresponding value is “null”. E.g.,
in Fig.3(a) a3 is the value-level missing;(ii)Schema-level missing: Schema-level
missing occurs when a product do not have an attribute it should have. E.g.
the third product in Tab.1 does not have the attribute “brand” owned by other
similar products.



376 L. Wang et al.

Algorithm 1. Missing Data Filling

Input: G∗ =< Asup, V sup, E∗ >, tit(p), des(p),
g(p) =< A(p), V (p), E(p) >

Output: g
′(p)

1: Vmiss = ∅, g′(p) = g(p)

2: for each ai ∈ Asup do
3: if ai.rep /∈ A(p) or (ai.rep, null) ∈ E(p) then
4: Amiss ← ai.rep
5: end if
6: end for
7: for each ai ∈ Amiss do
8: for each v ∈ ⋃

a∈ai
V (a) do

9: if v appears in tit(p) or des(p) then
10: if (ai, sup(v).rep) ∈ E(p) then
11: w(ai, sup(v).rep) = w(ai, sup(v).rep) + 1
12: else
13: E

′(p) ← (ai, sup(v).rep)
14: w(ai, sup(v).rep) = 1
15: end if
16: end if
17: end for
18: end for
19: return g

′(p)

For any product p, the process of filling the missing value is described in Algo-
rithm1.Thefirst step is to locate those attributes that are either value-levelmissing
or schema-level missing, and store them into Amiss. Note that only the represen-
tative attribute are stored into Amiss to avoid the redundancy. For each attribute
ai in Amiss, we scan tit(p) and des(p) for any sub-string which is equal to any el-
ement v ∈

⋃
a∈ai

V (a). If any sub-string is equal to v, then it is considered as the

candidate value for ai. So we create a new edge (ai, v) into g
′(p) with weight 1, if the

edge already exists, we plus 1 to the weight. Based on the result of algorithm 1, we
get a new bipartite graph g

′(p) =< A
′(p), V

′(p), E
′(p) >, which has some new nodes

and new edges compared with g(p), as shown in Fig.3(b). New attribute nodes in
A

′(g) are evidences found for schema-levelmissing, and newvalue nodes in V
′(p) are

candidates found for value-level missing. The weights of new edges inE
′(p) are the

support degree of evidences found from tit(p) and des(p). For any new attribute
nodes in g

′(p) which connect to two ormore nodes such as a3 in Fig.3(b), we need to
determine which value node is the right one. The determining process is described
in section 5.2.

Incorrect Value Detection. For product p, the incorrect value can be de-
duced from tit(p) or des(p). E.g. for the third product in Tab.1, the title and
textual description imply that the true value for “Product Model” should be
“TL-WR703N”.
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Algorithm 2. Incorrect Value Detection

Input: G∗ =< Asup, V sup, E∗ >, tit(p), des(p),

g
′(p) =< A

′(p), V
′(p), E

′(p) >,A(p)

Output: g
′(p)

1: for each ai ∈ A(p) do
2: for each v ∈ ∪a∈aiV (a) do
3: if v appears in tit(p) or des(p) then

4: if < ai, sup(v).rep >∈ E
′(p) then

5: w(ai, sup(v).rep) = w(ai, sup(v).rep) + 1
6: else
7: g

′(p) ← (ai, sup(v).rep)
8: w(ai, sup(v).rep) = 1
9: end if
10: end if
11: end for
12: end for
13: return g

′(p)

Algorithm 2 shows the process for incorrect value detection. For each attribute
ai ∈ A(p), we check whether there is any sub-string in tit(p) or des(p) which
suggests that the current value for ai may be improper. If there is such a sub-
string, we add a new edge with weight 1 into g

′(p). And if the edge is already
in g

′(p), we increase the weight. After the process, evidences which support that
the current value may be incorrect, will have a corresponding edge with some
weight in g

′
, as shown in Fig.3(c).

Value Confirmation. After missing value filling and incorrect value detection,
the graph g

′(p) for product p may contains some multi-valued attributes which
connect to more than one values, such as a1 and a3 in Fig.3(c). We should decide
which value is the right one.

For any ai ∈ A
′(p), we denote V

′(p)(ai) to be the set of value nodes that
connect to ai .

For each attribute node ai ∈ A
′(p) that connects to two or more value nodes,

we choose one from all the value nodes connected to ai according to the following
two criteria:

1. v = argmaxv∈V ′(p)(a) w(ai, v)

2. v =

{
original value if maxw(ai,v)∑

v∈V
′(p)(a)

w(ai,v)
< γ

argmaxv∈V ′(p)(a) w(ai, v) otherwise

The first criterion is straightforward, which selects the value with the maximum
weight. The second criterion is more passive. It chooses the value with the maxi-
mum weight only if the maximum weight exceeds a percentage(a threshold γ) of
total weights. Otherwise we keep the original value to avoid incorrect “repair” of
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the right value. γ is between [0,1]. The greater γ is, the more easily the original
value was changed.

After removing the contradicted values in g
′(p), we obtain a new graph as

shown in Fig.3(d), where the missing data is filled and the incorrect value is
repaired.

6 Product Normalization

After the data preprocessing was done by unifying attribute table from the view
of schema and value, we now use the integrated data for product normalization.

6.1 Product Feature Selection

We pick the features and define the similarity measurement for each feature.
Attribute table contains the strongest features for product distinguishing

because it is detailed, especially after schema integration and data cleaning. We
use every attribute node in G∗ as a feature, and we get |Asup| features. The
similarity between two product on the ith feature is defined as:

si(valuek, valuej) =

{
1 if valuek = valuej

0 otherwise

Title is another important feature. Sellers often add popular but irrelevant key-
words to titles as discussed in Section 3. We use word segmentation tools to
partition ti and tj into two sets of words w(ti) and w(tj), and use tf -idf to give
a less weight to these irrelative words, then the similarity between two titles is:

Simtitle(ti, tj) =

∑
w∈w(ti)∩w(tj)

tf(w)× idf(w)∑
w∈w(ti)∪w(tj)

tf(w)× idf(w)

Price is important feature for product normalization, because a considerable
differ in price between two products may give evidence that they refer to two
different entities. The price similarity is defined as:

Simprice(pricei, pricej) = 1− |pricei − pricej |
max (pricei, pricej)

Online Review is also an important feature. We observe that reviews for the
similar products are always involved in many common aspects.

To extract feature from reviews, we use word segmentation and POS tagging
tool [18] to partition sentences in reviews into words and pos tags, and extract
nouns as aspect words. Many aspect words such as “quality” and “shipping”
are not discriminative since they appear frequently in many products. So we
use tf -idf to score every aspect word and pick the top k aspect words. We
use Asp(p) = {w1, ..., wk} to denote the top k aspect words of product p. The
similarity of two products on the feature of reviews is:

Simreviews(pi, pj) =
|Asp(pi) ∩ Asp(pj)|
|Asp(pi) ∪ Asp(pj)|
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6.2 Model Training

Now for any product, we have k = |Asup+3| features (|Asup| features in attribute
table, and 3 features in title, price and reviews). Using the predefined similarity
functions, we can obtain a similarity vector s(pi, pj) =< s1, ..., sk > for prod-
ucts pi and pj . We convert the problem of whether two products are matching,
to be two-class classification problem, and use linear logistic regression model
for classification. The reason of using two-classification instead of multi-class
classification is twofold: (i)The number of parameters for two-classification is
much smaller than multi-class classification, especially when the entity number
is large.(ii)In multi-class classification, the training set must covers all classes,
which is difficult because entity number is usually either too large or not known.

We set C0 to be matching and C1 to be mismatching. The posterior probability
of class C0 can be modeled as logistic sigmoid acting on a linear function of the
feature vector s so that:

p(C0|s) = y(s) =
1

1 + e−wT s
=

1

1 + e−(wT s+w0)

In P (C0|s), w = [w0,w], where w0 is a bias and w is the weight vector for
features, and s = [1, s

¯
]. We use training data to train w so that wT s

¯
> 0 is for

matching and wT s < 0 is for mismatching. After the training, the k-th value in
w
¯
indicates the importance of the k-th feature in the discriminative function.

6.3 Product Normalization via Clustering

After we trained a model for the probability of two products’ matching. We need
to convert pair-wise matching into partitions so that products in each partition
refer to a unique underlying entity.

The naive way is to generate a graph where nodes represent products and
there is an edge between two nodes if and only if the probability of two products’
matching is more than 0.5. However, this method will cause low precision since
an incorrect prediction of matching will mistakenly merge two partitions.

Our solution is to treat the probability of two products’ matching as similarity,
then apply clustering algorithm to partition. This solution is effective since clus-
tering makes global decision rather than local decision. For n products, we can
get a similarity matrix Mn∗n where mij is the similarity (estimated probability
of matching) between product i and j. We use existing cluster algorithm such
as the hierarchical Aggregation Cluster (HAC) or k-means to partition products
into clusters. The number of clusters is determined in the process of clustering
according to the purity or diameter. When n is large, the cost for both storage
and computation is very large. Our solution is to use taxonomy information to
divide the n products into several disjoin subsets so that each subset is a separate
category with smaller number of products.
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7 Experiment and Evaluation

7.1 Dataset

The dataset is crawled from Taobao, the largest e-commerce site. The data set
covers 168 categories, over 1,400,000 products, 500,000 sellers, and 78,000,000
reviews. We choose 12 representative categories, and randomly sample 15% prod-
ucts for experiments as shown in Tab.2.

Table 2. The categories of our dataset

Categories #.of products #.of entities Categories #.of products #.of entities

Phone 5,345 98 Wallet & purse 2,090 108

Camera 8,980 89 Jacket 3,334 79

Notebook 5,879 168 perfume 1,090 67

Network devices 12,324 127 Shampoo 2,073 103

T-shirt 8,977 333 Women’s shoes 3,909 159

Jeans 9,006 206 Sport shoes 6,348 298

7.2 Data Noise Statistics

Noise in Titles. We denote the noise by the percentage of irrelevant words in
titles. Word that cannot indicate what entity the product refers to is called a
irrelevant word(e.g., advertising words such as “excellent”, “free Tax”,etc. and
misleading words such as “iPad3” for a router).

Irrelevant words are noise for product normalization. We randomly choose
1,000 products from our dataset and manually label irrelevant words in their
titles. Fig.4 shows the percentage of irrelevant words (items are ranked in de-
scending order of the percentage). It’s surprising that over 30% titles have at
least 30% irrelevant words, and over 80% titles have at least 15% irrelevant
words. Due to the noise, the performance of product normalization that only
uses title is extremely low as shown in Fig.6

Noise in Attribute Table. To evaluate the noise in attribute table, we ran-
domly sample 1,000 products and manually label missing and incorrect values,
then calculate the number of null values and incorrect values respectively for
each product. The result is shown in Fig.5 (Products are ranked in descend or-
der according to the percentage respectively). The surprising result shows that
90% products have data quality problems in their attribute tables, and data
quality is severely low for 50% products.

7.3 Evaluation on Data Cleaning

We use our data cleaning algorithm to fill the missing values and repair the in-
correct values on the 1,000 products we have labeled with the prudent parameter
γ to be 0, 0.2, and 0.4 respectively, then evaluate the accuracy and recall. The
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Fig. 4. Percentage of non-relative
words in titles

Fig. 5. Percentage of missing and in-
correct values in attribute table

results are shown in Tab.3. The results show that our data cleaning algorithm
wins a high precision and recall, especially when γ = 0.2 (the rest of our ex-
periments use this setting). Note that the precision is more important than the
recall in our scenario, because a mistaken value filling(repair) is serious while
leaving some missing(incorrect) values unfilled(unrepaired) is acceptable.

Table 3. The Precision and Recall of data cleaning(the best results are in bold)

�
��

Missing values filling Incorrect values repair
Precision Recall Precision Recall

γ = 0 0.85 0.78 0.72 0.75

γ = 0.2 0.95 0.75 0.92 0.65

γ = 0.4 0.98 0.43 0.93 0.25

7.4 Evaluation on Product Normalization

This subsection will compare the effectiveness of our framework with three Base-
lines:

– Baseline#1 (String similarity between titles) This method just uses String
similarity on titles. Two products are considered to be matching if the sim-
ilarity is over The threshold η.

– Baseline#2 (Weighted String similarity between titles) This method is a
melioration for Baseline#1 by giving a tf-idf weight for each word.

– Baseline#3 (Adaptive Product Normalization) This method is based on
[2], which uses title, price and textual description for features, and employs
averaged perceptron to train the weight for each feature. In our experiment,
we take attribute table and reviews as additional features for Baseline#3

Evaluation Metrics. We use Precision, Recall, and F-measure to evaluate the
performance of product normalization:

Prec =
|TP |

|TP |+ |FP | , Rec =
|TP |

|TP |+ |FN | , F =
Prec×Rec× 2

Prec+Rec
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Where|TP |, |FP |, and |FN | are the number of true positive, false positive and
false negative respectively.

Results and Discussion. We ran the three Baseline approaches and our ap-
proach on the 12 categories respectively. For Baseline#1 and Baseline#2, there
is no model needed to train. The threshold η is the tradeoff parameter for Pre-
cision and Recall. For Baseline#3 and our approach, we use 5-cross validation
and the balance between precision and recall can be controlled by the bias w0.

Fig. 6. Performance comparison
between the baselines and ours

Fig. 7. The performance of the
three variant approaches

Fig.6 shows the average Precision, Recall and F-measure score of the 12 cat-
egories. It’s clear that the performance of Baseline#1 and Baseline#2 are very
low. We found that the Recall value is almost 0 when the Precision is high.
That’s because when we set the threshold η too high, Baseline#1 and Base-
line#2 will only predict products with the same titles to be matching. Note that
the Precision drops significantly when we increase the recall requirement. It is
because the titles of many different products are similar due to the high rate of
irrelevant words. Baseline#2 is better than Baseline#1, because we give a less
weight to irrelevant words. However, due to the existence of noise in titles, the
performance of these approaches are very low.

Baseline#3 is much better than the two approaches. That’s because Base-
line#3 uses more features and employ a machine learning method to train the
weight for each feature. Compared with Baseline#3, our approach is better. The
reason is twofold: (i)We integrate schema so that the attribute table can be used
much more efficiently, since the identical attributes with different expressions
can be traded as the same one. (ii)We fill the missing values and repair the
incorrect values.

To show the importance of our schema integration and data cleaning for prod-
uct normalization, we defined the following variants of our approach:
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1. Complete approach
2. Without data cleaning
3. Neither schema integration nor data cleaning

We ran experiments on these three kinds of settings in each category respec-
tively. Fig.7 shows the F-measure scores. It shows that with the help of schema
integration, the performance is improved in all categories, which validates the
role of Schema Integration. After data cleaning, the F-measure is improved sig-
nificantly in all categories, which validates the need of data cleaning for product
normalization in C2C sites and the effectiveness of our data cleaning method.

8 Conclusions

With the development of C2C e-commerce, the large scale of products increases
the demand for product normalization. However, product normalization is
difficult because of the serious noise in product description. In this paper, we
proposed a hybrid framework, which realized product normalization by data
preprocessing. The experimental results on a real-world data validate the effec-
tiveness of our approach. There are some parameters to tune in the process of
Schema integration and Data cleaning, which is left for the future work.
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Abstract. We consider the team formation problem in open collabora-
tive projects existing in large community setting such as the Open Source
Software (OSS) community. Given a query specifying a set of required
skills for an open project and an upper bound of team size, the goal is
to find a team that maximizes the Degree of Acquaintance (DoA) and
covers all the required skills in the query. We define the DoA in terms of
the team graph connectivity and edge weights, corresponding to the local
Clustering Coefficient for each team member and the strength of social
ties between the team members, respectively. We perform a statistical
analysis on historical data to show the importance of the connectivity
and social tie strength to the overall productivity of the teams in open
projects. We show that the problem defined is NP-hard and present three
algorithms, namely, PSTA, STA and NFA, to solve the problem. We ex-
periment the algorithms on a dataset from the OSS community. The
results show the effectiveness of the proposed algorithms to find a well
acquainted teams satisfying a given query.

1 Introduction

Motivation. Large collaborative online communities have become a phenomena
in the presence of Web 2.0 technology, witnessed by the massive success of Open
Source Software (OSS) projects such as the Apache projects and GNU/Linux.
As members of OSS projects are usually volunteers [12], they usually work out
of personal goals/interests, e.g., practicing existing skills and gaining experience,
following fellow peers, networking with the OSS community members, or simply
supporting free open software projects [7]. Consequently, the amount of partici-
pation and commitment by the volunteering developers are crucial factors in the
cause of OSS projects success [13].

Research on software engineering reveals a number of factors that assist in
increasing the developers participation in OSS projects, including the computer
language required, the operating system used, or the type of license for open
software [14,4]. For example, in [14], it is observed that OSS projects requiring
popular computer languages (e.g., Java and C variants) attract more participants
since many developers are experienced in these languages. This finding suggests
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that developers tend to participate in a project if they possess the skill(s) re-
quired for that project. Recently, the importance of social factors, such as for a
participant to join fellow peers or build a professional network with fellow de-
velopers in the community, for a project to ensure the rapport between group
members, are noticed. Backstrom et al. [1] study the group formation and the
membership growth in large open communities and find that the probability of
an individual joining a community group increases as the number of friends in-
side the community and the internal connectedness of friends in the community
increase. Hinds et al. [8] suggest that, when forming a new team, people tend
to join others whom they have established work ties before. Moreover, Hahn et
al. [6] point out that existing ties and relationships in OSS communities affect
the formation of new project teams. It has been pointed out that prior collab-
orative ties among developers increases the probability of developers to join a
new project where prior ties with the initiators exist. These studies suggest that
existing ties (acquaintances) between individuals in open collaborative commu-
nities are crucial for those individuals to connect and join a new emerging project
to form a team with rapport. These findings give a new insight to the effective
factors in forming a successful team in open collaborative projects, which is our
motivation to conduct this work. In this paper, we study the problem of team
formation in the volunteer-based community of open collaborative projects.

������

2 1

3 4

1

2

3 4

1

2

3 4

���

Fig. 1. Different graph shapes: (a) line, (b) star,
(c) full graph

Related Works. There ex-
ist several works that address
the team formation problem
in literature. However, they
are not suitable for the open
source projects that are based
on volunteers. An early work
by Barreto et al. [2] defines the
staffing of software projects as
a constraints satisfaction prob-
lem. The work considers only skills matching but does not consider the social ties
between members. Other recent works optimize the team utility in terms of the
team communication cost, which is mostly measured by different graph distance
measures in a connected graph. The first work involving the communication cost
is the work of Lappas et al. [10], where they use the diameter and the spanning
tree of the team graph to measure the team communication cost. Li et al. [11]
enhance the Steiner Tree algorithm used in [10] to solve a generalized team for-
mation problem that assigns different number of experts for each required skill
as a constraint. Both [10] and [11] tend to add mediator members, i.e., members
that do not possess the skills required, to the team in order to minimize the
communication cost. Nevertheless, it is worth noting that mediator members,
in most cases, are not involved in OSS projects because these mediators will
not feel the obligation to participate in open projects if they do not possess the
required skills [14]. Another issue is that OSS projects usually consist of volun-
teers that sometimes form several subgraphs or even individual members that
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work on their own [3]. Therefore, it is difficult to optimize the communication
cost in OSS projects. Recently, Gajewar et al. [5] introduce a measure of team
communication quality based on a graph density which is claimed to be more
robust than the diameter and the spanning tree measure, and thus more suitable
for modular graph structures. However, the density measure ignores the aspect
of graph structure and connectivity between the team members. Recall that a
graph density is the total edges weights divided by the total number of vertices
in a graph. In Figure 1, assuming all edge weights in graphs (a), (b) and (c)
equal one. The density of graphs (a) and (b) is 0.75, regardless of their different
graph structures. However, in terms of social ties, each vertex has different tie
structure, e.g., vertex 1 is connected to one vertex in graph (a), however, it is
connected to all the vertices in graph (b) which indicates a different social influ-
ence for vertex 1 in the two graphs, (a) and (b). Moreover, when considering the
diameter measure, both graphs (b) and (c) have diameter 2, while it is obvious
that graph (c) is more socially tight than graph (b). In Section 3, we show a
statistical evidence that each team member’s connectivity and tie strength are
important in increasing the team productivity. Therefore, we need a more fine-
grained measure to find a well socially tight team with high participation and
productivity outcome.

Our Contributions. In light of the above observations, this paper proposes a
novel concept, which is called the Degree of Acquaintance (DoA), which seam-
less integrates the connectivity, measured using the local Clustering Coefficient
for each member, and the strength of ties specified by the frequency of co-
participation. Thus, given an emerging OSS project that requires members with
certain skills, our goal is to create a team that covers all the required skills and
maximizes the two social factors which are defined by the DoA of the team. In
this paper, we have made a number of contributions in achieving our goal:

– Our key contribution is to account for the connectivity (local clustering coef-
ficient) and ties strength for users (in a social network) in the team formation
problem. This is fundamentally different than the other approaches that uses
aggregated graph metrics such as graph Diameter or graph Density .

– Through a statistical analysis, we demonstrate that the two social factors
(connectivity and ties strength) play crucial role in the contributors’ produc-
tivity and commitment in open projects (refer to Section 2.2). Therefore, we
define the Degree of Acquaintance (DoA) based on these two factors.

– We formulate the problem of team formation based on DoA and prove that
it is NP-hard and hard to approximate problem (refer to Section 3).

– We propose three new algorithms to solve the DoA team formation prob-
lem. The first one, Partial Selective Tree search Algorithm (PSTA), and the
second one, Selective Tree search Algorithm (STA), are based on a BFS tree
search, where PSTA produces the optimal solution but is less scalable while
STA is more scalable but does not guarantee optimality. The third algo-
rithm, Neighbor-First search Algorithm (NFA), is an efficient and scalable
greedy approach (refer to Section 4).
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– We evaluate the scalability and performance of the proposed algorithms and
two existing approaches (i.e., Diameter and Density based) using real data
from ohloh.net that includes hundreds of thousands of developers and over
a million relationships. Experimental results show that the proposed algo-
rithms can find the teams with high DoA in much higher magnitude than
the existing approaches (refer to Section 5).

The rest of the paper is organized as follows. The following section defines the
DoA and gives statistical analysis on the DoA factors. Section 3 defines the DoA
based team formation problem and discusses the DoA properties used in our
algorithms. Section 4 discusses in details the proposed algorithms, and Section
5 evaluates the proposed algorithms. Finally, Section 6 concludes the paper.

2 The Degree of Acquaintance

The social network of an OSS community is modeled as an undirected graph
G(X,E), where X = {x1, ..., xn} is the set of n vertices that represent all the
active developers in the community, and E is the set of weighted edges that
represent the relationships between developers. We use an n × n matrix M to
present the social network. Also, let wij in M denotes the edge weight between
individuals xi and xj .

1

Let S = {s1, ..., sm} be a universe of m skills. We define an n×m developer-
skill matrix A, where the rows consist of n developers and the columns consist
of m skills. Each element of A, denoted as ai,j , is a binary value, where ai,j = 1
indicates that developer xi possesses skill sj; and ai,j = 0, otherwise. Each row
i in A, denoted by xi, is a vector of skills possessed by developer xi. Also, each
column j in A, denoted by sj , is a vector of developers who possess skill sj . We
refer to xi as the developer profile of xi and sj the skill profile of sj .

Next, we define the Degree of Acquaintance (DoA) and then demonstrate, by
statistical analysis, that the DoA factors are crucial for team overall productivity
in OSS projects.

2.1 Definition of DoA

Let G be a collaborative community. The Degree of Acquaintance (DoA) for an
individual xi in a team T , where T ⊆ G, consists of two factors: (i) the total
weights of edges incident to xi, and (ii) the connectivity among xi’s neighbors.
While the first factor is easy to understand, we exploit the local Clustering Co-
efficient (CC) of vertex xi in graph T , defined in Eq. (1), to capture the second
factor.

CCT (xi) =
2(kNi)

|Ni|(|Ni| − 1)
(1)

whereNi is the set of xi’s neighbors in T , and kNi is the number of edges connect-
ing the vertices in Ni. Formally, let wi,j denote the edge weight between vertex

1 In this paper, wij is the collaboration counts between individuals xi and xj normal-
ized by dividing by the maximum weight in G.
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xi and xj , the DoA for an individual xi in a team T is the linear combination
of the total weights and the CC factors as defined in Eq. (2).

DoAT (xi) = α

⎛⎝ ∑
∀j∈Ni

wij

⎞⎠+ (1− α)CC(xi) (2)

where α = [0, 1] is a control parameter to balance the two factors. A proper value
for α would depend on the nature of the team desired in terms of connectedness
or ties strength. In our experiment, we set α = 0.5. The DoA is a team structure-
dependent metric which does change when adding or removing vertices from T .

The DoA of a team T is defined as the summation of DoAT (xi) for every
vertex xi ∈ T as in Eq. (3).

DoA(T ) =
∑

∀xi∈T

DoAT (xi) (3)

To eliminate the naming confusion between Eq. (2) and Eq. (3), we refer to Eq.
(2) as the Individual DoA (IDoA), and Eq. (3) as the Team DoA (TDoA). In the
next section, we present a statistical evidence to demonstrate the importance of
the two DoA factors on the contribution and commitment exerted by developers
in the OSS projects.

2.2 Statistical Analysis on the DoA Factors

We conducted a statistical analysis on more than 1300 OSS projects of multiple
team sizes and topics (see Section 5.1 for detail description of the dataset). Our
main goal is to investigate the correlation between the two DoA social factors
(connectivity and ties strength) and the amount of contribution and commit-
ment observed in OSS projects. The amount of contribution for a developer
in a project is measured by the average number of commits made per month
(denoted as commits/month). In OSS projects, a commit is an update that a
developer submits to a project. The commitment by a developer to a project
is measured by the number of active months where a developer submitted at
least one commit (denoted by months-work). The amount of contribution shows
the average amount of work produced by a developer per month whereas the
commitment shows the period of time that a developer stayed committed and
active in a project. Moreover, to observe the effects of social factors on various
sizes of projects, we group projects in our dataset into the following team size
ranges: [5,10), [10,25), [25,50), [50,75), [75,100) and [100 and above].

Effect of Connectivity. First, we study the effect of connectivity on the
amount of contribution and commitment, under different team size ranges. To
proceed, we classify contributors as (i) Highly Connected (HC), (ii) Lowly Con-
nected (LC); and (iii) Non-Connected (NC). The HC contributors are those
with CC > 0, forming one or several cliques pattern. The LC contributors are
those with CC = 0, forming a star, line or circle shape patterns. Finally, the
NC contributors are those with no acquaintances. Figure 2(a) shows that the
average commits per month is larger for HC contributors than those LC ones
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in most team sizes. Similarly, Figure 2(b) shows that the average months-work
is larger for HC contributors than those LC ones in most team sizes. Moreover,
both figures show that the NC contributors make the lowest contribution and
commitment. These results show a strong statistical evidence that, in general,
HC contributors contribute more and are more committed to open projects than
LC contributors.
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Fig. 2. Effect of connectivity on (a) Ave. Commits/Month and (b) Ave. Months-Work
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Fig. 3. Effect of tie strength on (a) Ave. Commits/Month and (b) Ave. Months-Work

Effect of Ties Strength. Next, we study the effect of tie strength on the
amount of contribution and commitment, under different team size ranges. We
measure the strength of a tie between two contributors by the frequency of their
co-participations in projects (i.e., one co-participation is counted as one unit
of link weight between two developers). Accordingly, we consider a contributor
belonging to the Weak Tie set if she has no more than two units of link weights.
Contributors with more than two units of link weights are in the Strong Tie set.
Finally, contributors with no acquaintances are in the No Tie set. To proceed,
we select the projects that show all the three types of tie weights (Strong, Weak
and No Ties) in order to conduct the comparison. Figure 3(a) shows that the
average commits per month is larger for the Strong Ties contributors than those
Weak Ties ones in most team sizes. Also, Figure 3(b) shows that the average
months-work is larger for the Strong Ties contributors than those Weak Ties
ones in all team sizes. These results show a strong statistical evidence that, in
general, contributors connected with Strong Ties make more contribution and
commitment to open projects than the Weak Ties and No Ties contributors.
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In both Figure 2 and Figure 3, very large teams (those with one hundred and
above members) demonstrate different trends. We believe that, in these large
teams, contributors with strong social ties may have more administrative and
controlling roles. On the other hand, contributors with weaker social ties may
commit more time to contribute to the project since they may join big projects
to gain experience and form connections with reputable developers.

In summary, these statistical results show an obvious effect of connectivity and
ties strength between developers on the amount of contribution and commitment
in OSS projects. Therefore, taking into account these two factors in the Team
DoA would improve the teams’ productivity. Accordingly, we formulate the team
formation problem and define a query in the next section.

3 The DoA Based Team Formation Problem

In this section, we formulate the team formation problem based on the notion
of DoA, and present several properties useful to our proposed algorithms.

3.1 Problem Formulation

Definition. Degree of Acquaintance Based Team Formation (DoA-TF):
Given a social graph G(X,E) and a developer-skill matrix A, a DoA based team
formation query Q = {Sq, τ}, where Sq is a set of skills required (|Sq| = l) and τ
is the maximum number of developers allowed in a team, finds the set of devel-
opers to form a team T that covers all the skills required by Q such that |T | ≤ τ
and that DoA(T ) is maximized.

Proposition 1. The DoA-TF problem is NP-complete.

Proof. We consider a special case of the DoA-TF problem, where α = 0 and
every vertex in GF covers all required skills. In this case, only the Clustering
Coefficient is considered. Then we prove the proposition by a reduction from
the k-clique problem, a well known NP-complete problem. An instance of the k-
clique problem consists of a graph Ĝ(X̂, Ê) and k, where X̂ is the set of vertices
in Ĝ, Ê is the set of edges in Ĝ, and k is a positive integer. A decision problem
version of the k-clique asks whether there exists a clique of size k in Ĝ or not.

We transform an instance of the k-clique problem to an instance of the DoA-
TF special case problem by a direct mapping from Ĝ(X̂, Ê) to GF (XF , EF ).
Having τ = k, the solution for DoA-TF is a clique of size τ in GF . Therefore,
solving the DoA-TF special case problem instance can obtain the solution to the
k-clique instance. The proposition follows. �

Note that finding the maximum clique problem is both NP-hard and hard to
approximate (not approximable within |X |(1−ε) for any ε > 0) [9]. Consequently,
the general DoA-TF problem is NP-hard and hard to approximate, which makes
the problem very challenging.
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3.2 DoA Properties
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Fig. 4. Example of CC property

We aim to have, the Team DoA serving as
the objective function for team formation.
One may think that adding more members to
a team would increase the objective function.
However, Eq. (2) is not monotonic because
the CC is not monotonic. As illustrated in
Figure 4(a), CC(x3) = 1. By adding x4 and
e3,4 (see Figure 4(b)), CC for x3 decreases
since not all of its neighbors are connected.
Nevertheless, the first term in Eq. (2),

∑
∀j∈Ni

wij , is monotonic. Therefore, if
the second term in Eq. (2), CC(xi), does not decrease when adding candidate
members to T during query processing, we can ensure the monotonicity of Eq.
(2). Consequently, Eq. (3) becomes monotonic as well.

As monotonicity is important to assure the optimization of the objective
function in any optimization algorithm, we introduce two cases where adding
acquainted members does not change the clustering coefficient of the members
in the team. In Case (1), assume all members in some team know each other,
i.e., their CC equals 1. If a new member joins the team, where everyone in the
team knows the new member, their clustering coefficient remains 1.

In Case (2), assume each member in some team knows at least one member
in the team, but there is no mutual acquaintance among the members (i.e.,
their CC equals 0). If a new member joins the team, and the new member is
acquainted to only one member in the team, then the CC remains 0 for each
member in the team.

Our strategy to process the DoA-TF query, in Section 4, is to carefully ex-
amine the structure of the community graph in order to select individuals and
construct a team subgraph in consecutive steps. As a result, when we add a ver-
tex x to T , where x is part of a full-clustering structure (Case (1)), the objective
function increases. Likewise, when we add a vertex x to T , where x is part of a
zero-clustering structure (Case (2)), the objective function increases as well.

For a graphG(X,E) with undirected weighted edges and a subgraph T (X̂, Ê),
where T ⊆ G, such that X̂ ⊆ X and Ê ⊆ E, suppose we want to add a vertex
xi ∈ X to T with k existing vertices in T that are neighbors to xi, where k ≤ |Ni|
(Ni is the set of neighboring vertices to xi in G). When adding xi to T , edges
ei,j1 , ei,j2 , · · · , ei,jk are included in Ê, then the objective function for T must be
increased according to the following two lemmas:

Lemma 1. If CCG(xi) = 1 and CCG(xj) = 1, ∀xj ∈ Ni, then adding xi to T
increases the Individual DoA values for xi and its k neighboring vertices in T ,
and as a result increases the objective function value.

Proof. Since CC = 1 for xi and ∀xj ∈ Ni, then edges ei,j1,...,k ∈ Ê are part of a
full-clustering subgraph. Therefore, when adding xi to T , only the edge weights
dominate the objective function monotonically. �
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Lemma 2. If CCG(xi) = 0 and CCG(xj) = 0, ∀xj ∈ Ni, then adding xi to T
increases the Individual DoA values for xi and its k neighboring vertices in T ,
and as a result increases the objective function value.

Proof. Since CC = 0 for xi and ∀xj ∈ Ni, then edges ei,j1,...,k ∈ Ê are part of a
zero-clustering subgraph. Therefore, when adding xi to T , only the edge weights
dominate the objective function monotonically. �

4 Team Formation Algorithms

A straightforward approach to solve the DoA-TF problem is to find every team
following the constraints and select the one with the maximum TDoA value.
Nevertheless, this approach is computation intensive and requires O(2n) time
to find the optimal solution. With a vast OSS community, with over a million
developer, this straightforward approach is not efficient. To address this issue,
we propose three algorithms for DoA-TF.

4.1 Partial-Selective Tree Search Algorithm

The Partial-Selective Tree search Algorithm (PSTA) takes a tree-search approach
to find the optimal team. The algorithm starts with developers with a required
skill as seeds to grow search trees of team solutions. Therefore, the whole search
space have multiple trees. Notice that a tree grows into lower level branches
by adding a candidate team member one at a time. Thus, each node on a tree
contains a partial team solution, denoted by Td,b ⊆ GF , where d is the depth level
of the node, b is the branch count in level d and GF ⊆ G is the feasible graph
containing every developer possessing the required skills in Q.2 As mentioned,
PSTA adds one vertex to each node (i.e., team) in the current level to create
the child nodes in the next level. Therefore, the number of vertices in a node at
level d equals d, |Td,b| = d. In other words, the maximum level of each search
tree is τ . PSTA algorithm is shown in Alg. 1.

First, lines 1-2 find GF and calculates the IDoA value for each vertex in GF .
Then, line 3 finds the rarest skill profile, srare, in Sq, i.e., the rarest skill has
the lowest number of developers possessing that skill. We choose the seeds from
srare to start the tree search in order to minimize the number of search trees.

At each node, there exist a set of candidate developers/vertices, Xc. If the
vertices in Td,b do not cover the query skills, i.e., Td,b is not a solution, then
Xc contains the vertices possessing the uncovered skills. The crux of PSTA is
to divide the vertices in Xc into monotonic and non-monotonic candidate sets.
In details, Xc is divided into N and H sets, where N is the set of neighboring
vertices to Td,b and H is the set of non-neighboring vertices. Moreover, N is
divided into N1, N0 and Np, where CCGF (xi) = 1 for ∀xi ∈ N1, CCGF (xi) = 0
for ∀xi ∈ N0, and 0 < CCGF (xi) < 1 for ∀xi ∈ Np. Vertices in N1 follow Case (1)
and vertices in N0 follow Case (2) and thus are monotonic, while vertices in Np

2 In this paper, a node is related to a tree, while a vertex is related to a network graph.
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Algorithm 1. The Partial-Selective Tree Search Algorithm

Input : G(X,E); matrix A; query Q; α.
Output: T ∗ ⊆ G; DoA(T ∗).

1 Init.: GF (XF , EF )← ⋃
∀j∈Sq

sj ; T
∗ = Φ;

2 ∀xi∈GF DoAGF (xi) ; // Calculate IDoA
3 srare ← argminj∈Sq |sj |;
4 seeds0, seeds1 and seedsp ← srare;
5 Td,b++ ← seeds0, seeds1, seedsp;

6 for d = 1; d ≤ τ ;d++ do
7 for b = 1; b ≤ BreadthSize; b++ do
8 Get T ∗, DoA(T ∗) and Xc for Td,b ;
9 N1, N0, Np, H ← Xc ;

10 if N1 �= Φ then
11 xselected ← argmax∀i∈N1,∀j∈Td,b

wi,j ;

12 Td+1,bc++ ← Td,b ∪ xselected;

13 if N0 �= Φ then
14 xselected ← argmax∀i∈N0,∀j∈Td,b

wi,j ;

15 Td+1,bc++ ← Td,b ∪ xselected;

16 if H �= Φ then
17 seeds0, seeds1 and seedsp ← H ;
18 Td+1,bc++ ← seeds0, seeds1, seedsp;

19 if Np �= Φ then
20 foreach xi ∈ Np do Td+1,bc++ ← Td,b ∪ xi ;

are not. Therefore, selecting vertices from N1 and N0 monotonically guarantees
to optimize the solution and otherwise for Np. PSTA selects the vertex with the
highest total link wight from N1 and N0 (lines 11 and 14). This forward-pruning
process reduces the search space tremendously. On the other hand, a selection
from Np does not guarantee to optimize the next level solution, therefore, PSTA
creates a child solution from each vertex in Np (line 20).3

We actually adopt the same idea in seeds selection, i.e., srare is divided into
three sets (line 4), i.e., seeds1, seeds0 and seedsp, corresponding to N1, N0 and
Np respectively. However, PSTA selects the vertex with the highest IDoA in GF

from seeds1 and seeds0 if τ ≥ |Nxselected
| to guarantee that IDoA is obtainable

after τ steps. Otherwise, each vertex in seeds1 and seeds0 grows as a separate
search tree. Finally, vertices in set H are treated as seed sets since they are not
connected to the current solution. The algorithm stops after processing all the
nodes at level τ and the solution would be the team that satisfies the constraints
and having the maximum TDoA.

3 In lines11, 14 and 20, the index bc represents the branch count of the child nodes.
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Proposition 2. The PSTA algorithm finds the optimal solution for a given
query Q.

Proof. According to Lemma 1, we conclude that any selected vertex x ∈ N1

added to solution T does optimize the objective function of T∪x. Also, according
to Lemma 2, we conclude that any selected vertex from set x ∈ N0 added to
solution T does optimize the objective function of T ∪ x. Since the selection
process is monotonic and each vertex from set Np is added to solution T , the
PSTA algorithm assures finding the optimal solution. �

In the above proof, the set H is ignored in the argument because it creates a
subgraph that follows the same procedure of creating solutions for the whole
graph. The time complexity of PSTA is O(nτ ). The complexity comes close to
the upper bound if at each node the candidate vertices are in set Np. However,
in reality the time complexity is much smaller than the upper bound. Yet, PSTA
is not scalable to large graphs. Therefore, we developed the complete Selective
Tree search Algorithm (STA) to mitigate the scalability issue and bring it to a
practical level.

4.2 Selective Tree Search Algorithm

The Selective Tree search Algorithm (STA) is the same as the PSTA algorithm
except that it uses the forward-pruning on each selection set at each node. The
seed selection is as follows. For sets seeds0, seeds1 and seedsp, STA always
selects the vertex with the maximum IDoA from each set. Hence, the maximum
fan-out of the root is three. At each node, from level one to level τ − 1, STA
selects the vertex with the maximum IDoA from sets Np and H . The selection
heuristic for N0 and N1 is the same as in PSTA. Thus, the tree fan-out is re-
duced tremendously. STA is scalable but does not guarantee an optimal solution.
STA may still not scale to large graphs and queries with large team size upper
bounds. To further address the scalability issue, we introduce a polynomial-time
algorithm in the following section.

4.3 Neighbor-First Search Algorithm

We developed a greedy algorithm, called Neighbor-First search Algorithm (NFA),
which uses IDoA as a heuristic for vertex selection. The NFA algorithm, shown
in Algorithm 2, starts by finding the feasible graph GF . Then it selects a seed
vertex from GF with the maximum IDoA and adds the seed vertex into the team
solution set Tt (lines 2-3), where Tt is the team set at step t. With T1 containing
the seed vertex, the algorithm proceeds by entering a while loop. At the start
of each iteration (line 5), NFA finds the candidates set Xct , which contains the
developers possessing the uncovered skills and GF − Tt if all skills are covered
by Tt. Moreover, it calculates the objective function if Tt is valid.

Having Xct , NFA proceeds by finding the set of vertices neighboring to the
vertices in Tt (line 6), denoted by Nt ⊆ Xct . Afterwards, if Nt is not empty,
NFA selects the vertex with maximum IDoA from Nt to the current solution
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Algorithm 2. The Neighbor-First Algorithm

Input : G(X,E); matrix A; query Q; α.
Output: T ∗ ⊆ G; DoA(T ∗).

1 Init.: GF (XF , EF )← ⋃
∀j∈Sq

sj ; T1 ← Φ; t = 1;

2 xseed ← argmaxi∈XF DoAGF (i);
3 T1 ← xseed;
4 while |Tt| ≤ τ do
5 Get T ∗, DoA(T ∗) and Xct for Tt ;

6 Nt ← {i|i ∈ Xct ∧ ei,j∈Tt �= Φ};
7 if Nt �= Φ then
8 xselected ← argmaxi∈Nt DoAGF (i);

9 else
10 xselected ← argmaxi∈Xct

DoAGF (i);

11 Tt+1 ← Tt ∪ xselected;

Tt. On the other hand, if there are no vertices neighboring to Tt, then the algo-
rithm selects the vertex with the maximum IDoA from Xct to Tt (lines 7-11).
The algorithm stops when the team size reaches τ , and the result is the team
formation T ∗ with the maximum TDoA obtained. Again the team solution may
not be necessary of τ members as τ is only the upper bound of team size. The

time complexity of NFA is O(τ(n
2

4 ) + nl) or simply O(n2).

5 Performance Evaluation

In this section we evaluate the proposed algorithms NFA, PSTA, and STA in
addition to the Brute-Force Approach (BFA). Also, we compare the proposed al-
gorithms with two existing approaches that form teams based on graph Diameter
[10] and Density [5].

5.1 Dataset

The real dataset, in this paper, is collected from Oholoh.net, a fast growing OSS
social site. It is an online community web service that provides a platform for
developers and users to interact. There are over 600,000 developers in Ohloh.net
with over 1,096,000 relationships and 83 different skills, mainly related to com-
puter languages. Ohloh.net is unique because, first, it hosts OSS projects from
multiple version control repositories (e.g. Subversion, CVS, Git, Mercurial, etc.)
which increases the number of OSS projects hosted and includes various software
topics. Second, and more importantly, it provides social ties information for the
developers, such as the recognition and approval network, where developers are
allowed to explicitly express approval and recognition to each other based on
previous collaboration. In the dataset, we only consider the developers who have
announced the skills they possess and contributed to OSS projects. Finally, we
realize that many previous work use the DPLB dataset but we opted not to use
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it since it does not represent the sentiment of open projects environment which
is the focus of this paper.

5.2 Scalability and Accuracy Evaluation

Scalability Evaluation. First, we evaluate the scalability of the proposed al-
gorithms in terms of the number of Execution Runs (ER) and the Execution
Time (ET) with different τ and GF sizes, i.e., τ = [3, 20] and |GF | = [26, 7748],
respectively. The size of GF depends on the number of skills specified in a query,
thus the increment of the graph size is not equally distanced in the experiment.
The ER represents the number of iterations for BFA and NFA, while it is the
number of nodes in the search tree for the PSTA and STA. Figure 5(a) shows
the ER scalability as GF increases. BFA and PSTA ER increase exponentially,
however, PSTA ER is smaller than BFA. NFA ER is constant since it, always,
iterates τ times. STA ER is higher than NFA but does not increase exponen-
tially. Figure 5(b) shows the ET as GF increases. Again the BFA and PSTA ET
increase exponentially, while the STA and NFA ET scale well on large graphs.
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Fig. 5. Scalability Performance: (a) Execution Runs vs. Graph Size. (b) Execution
Time vs. Graph Size. (c) Execution Runs vs. τ . (d) Execution Time vs. τ . (log scale).

Furthermore, we evaluates the scalability when τ increases. Figure 5(c) shows
how the ER scales as τ increases. PSTA and STA converge as τ increases because
as the tree search explores more levels, the choices become limited and fewer
nodes (runs) are created. BFA ER increases exponentially, and NFA ER increases
linearly. Figure 5(d) shows how the ET scales as τ increases. Again it follows
the same trend as the ER.
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Fig. 6. Accuracy: (a) TDoA vs. Graph Size (log scale on x-axis). (d) TDoA vs. τ .

Accuracy Evaluation. Figure 6 evaluates the accuracy, which is the difference
between the Team DoA value and the optimal one for different graph sizes and τ .
Figure 6(a) plots the TDoA value for each algorithm with differentGF sizes. BFA
and PSTA TDoA results are identical since they output the optimal solution.
The first seven runs compare the STA and NFA results to the optimal solution;
beyond run seven the computation becomes excessive for BFA and PSTA while
the graph size increases. Meanwhile, the other runs only compare the difference
between STA and NFA, where higher TDoA value is preferred. Figure 6(b) shows
the TDoA value for each algorithm as τ increases. From Figure 6(b), the BFA
and PSTA TDoA results are identical since they output the optimal solution.
We calculate the Mean Absolute Error (MAE) for both STA and NFA, where
STA algorithm’s MAE equals 0.0797, and NFA algorithm’s MAE equals 0.1506.

5.3 Comparison with the Graph Diameter and Density Approaches

We compare the proposed algorithms in terms of Team DoA with two promi-
nent team formation approaches of different objectives. The first approach finds
the team with the smallest graph diameter in an effort to minimize the com-
munication cost in a team. This approach is implemented by the RarestFirst
algorithm in [10] denoted by Diameter. The second approach finds the team
with the maximum density in [5] and denoted by Density.

Experiment Setup. The Diameter approach is a minimization problem, where
it treats edge weights as distances, i.e., the higher the weight is the farther the
distance is, and vise versa. In order to apply the Diameter approach on our
dataset, we take the reciprocal of each edge weight, thus, a high edge weight
indicates a closer distance, and vise versa. Also, we assign a high weight between
not connected vertices as a penalty. On the other hand, the Density approach is
a maximization problem, thus, we can apply it directly on our dataset.

Since the RarestFirst algorithm iterates every skill set and selects one member
from each set that minimizes the diameter, the algorithm often results in a team
cardinality identical to the number of required skills. In contrast, our proposed
algorithms have an upper bound for the team size. Therefore, if τ > l, the
solution of the RarestFirst algorithm will always have fewer members than our
algorithms. Also, if τ < l, the solution of the RarestFirst algorithm will always
have more members than our algorithms. Therefore, on each experiment we
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assign τ = l as in Figure 7(a). On the other hand, the Density approach does
not have this restriction.

Results. Figure 7(a) compares TDoA results for STA, NFA and Diameter as l
and τ increase. It shows that Diameter outperforms NFA in small teams with
τ ≤ 4 but its performance starts degrading tremendously on finding larger teams.
Similarly, Figure 7(b) shows TDoA results for STA, NFA and Density as τ in-
creases for each l. It shows that Density performs similar to NFA in small teams
(τ = 5), but its performance starts degrading tremendously on finding larger
teams. Moreover, Figure 7(c) shows TDoA results for STA, NFA and Density
as l increases for each τ . Figure 7(c) shows that STA and NFA, consistently,
outperform Density. These results show that our proposed approaches outper-
form the Diameter and Density approaches in finding a well acquainted team
members with high connectivity and tie weights.
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Fig. 7. The Team DoA comparison for STA, NFA, Diameter in (a), Density with
changing τ in (b), and Density with changing l in (c)

6 Conclusion

In this paper, we defined a new DoA based team formation problem and proved
that it is NP-hard. We proposed three algorithms, namely PSTA, STA and
NFA, to address the problem. We evaluated the proposed algorithms on a real
dataset collected from OSS community that consist of over 600,000 developer
and over 1,096,000 relationships. The PSTA is proved to find the optimal solu-
tion, and STA and NFA demonstrated scalable performance. Also, the proposed
algorithms outperform the Density and Diameter approaches in maximizing the
Team DoA. Furthermore, we presented a statistical analysis to demonstrate the
influence of the DoA factors on OSS teams’ overall productivity and found a
strong influence.
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Abstract. WuXianGouXiang is an O2O(offline to online and vice
versa)-based mobile application that recommends the nearby coupons
and deals for users, by which users can also follow the shops they are
interested in. If the potential followers of a shop can be discovered, the
merchant’s targeted advertising can be more effective and the recom-
mendations for users will also be improved. In this paper, we propose to
predict the link relations between users and shops based on the following
behavior. In order to better model the characteristics of the shops, we
first adopt Topic Modeling to analyze the semantics of their descriptions
and then propose a novel approach, named INtent Induced Topic Search
(INITS) to update the hidden topics of the shops with and without a de-
scription. In addition, we leverage the user logs and search engine results
to get the similarity between users and shops. Then we adopt the latent
factor model to calculate the similarity between users and shops, in which
we use the multiple information sources to regularize the factorization.
The experimental results demonstrate that the proposed approach is ef-
fective for detecting followers of the shops and the INITS model is useful
for shop topic inference.

Keywords: User Behavior, Location Based Services, Matrix
Factorization.

1 Introduction

The growth of intelligent mobile devices like smart phones and tablets have con-
tributed to the popularity of location-based services. The convenience of mobile
devices with GPS and wireless technologies has now enabled the linking between
offline physical location and online access. A hot business model for mobile ser-
vice providers to create profit is O2O(offline to online and vice versa) commerce,
which helps the shops to find new customers by guiding the online users to the
real stores in the physical world.
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In this paper, we aim to predict the follow relationship between users and
shops, which can be formalized as a relational prediction task. However, in real
applications there exists many difficulties for modeling the relationships due to
the following reasons: 1)Heavily-tailed distribution: The distribution of the rela-
tionships between users and shops are heavy-tailed. 2)Sparsity: The relationships
between users and shops are sparse. 3)Incompleteness : The information of the
merchants is incomplete. The descriptions and even the names for many shops
are lost. A basic intuition to tackle these problems is to use some complementary
data. Thus, we propose to exploit some useful information sources from multi-
ple heterogeneous domains. In addition, based on the link analysis algorithm
Hyperlink-Induced Topic Search (HITS) [4], we propose a novel approach called
INtent Induced Topic Search (INITS), which exploits the user intent to predict
the hidden topics of a shop by analyzing the contextual information. The con-
tributions of this paper lie in four aspects: 1)Based on our mobile application
WuXianGouXiang, we put forward a new problem for discovering the followers
of a shop, by which we can offer the better recommendations for users and help
merchants improve the effectiveness of targeted advertising. 2)We design a novel
approach called INITS to predict the hidden semantics of the shops. By analyz-
ing the contextual information of user behaviors, the correlations between the
topics and each of the shops are discovered to tackle the incompleteness of shop
description and reveal the in-depth topic distribution of shops. 3)We exploit
several useful auxiliary data to tackle the problems of sparsity and cold-start
and matrix factorization is adopted to combine the heterogeneous information
sources in a unified manner to solve the optimization problem in global scale.
4)We evaluate our method using real-world data collected by WuXianGouXiang.

The remaining sections of the paper are organized as follows: In Section 2, we
present some related work. Section 3 describes the application, the motivations
and the architecture of our proposed approach. The shop topic modeling and the
INITS algorithm are discussed in Section 4 and Section 5. In Section 6, we present
the proposed algorithm to predict the followers of a shop. The experiments are
shown in Section 7. Section 8 concludes the paper.

2 Related Work

In this section,wewill describe some relatedwork on the location-based recommen-
dation, the link prediction in social networks and the collective link prediction.

Location-Based Recommendation: As the mobile applications become popular
among users, more information like the location, time and the user behaviors
can be collected from the intelligent devices. The recommender system on mobile
devices can now provide help based on the contextual information. In [16,17],
Zheng et al. propose novel approaches to model the user trajectories and the
locations, they recommend the locations and the travel package based on the
users’ GPS logs. Park et al. propose to recommend the restaurants by taking
the user preferences and the location contexts[19]. Bayesian learning is incorpo-
rated to compute a score for each shop thus providing recommendations.
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Link Prediction in Social Networks: When a user follows a shop, the user can
be regarded as a follower or a fan of the shop, which is very similar to the social
network like Facebook and Twitter. So there exist many related work which also
focus on link prediction in social networks. In [1], Backstrom et al. leverage the
training data and the random walk model to predict the relational links. The
polarity of the relational link is also considered in [5], where a logistic regression
model is used to predict the sign of the edge based on the social sciences. More
approaches can be found in [13,8,10] and a survey [7] reviews some of them.
Different from these methods, our model is designed for recommending the shop
following behavior. Since our problem is obtained from a real world application,
the information is very sparse and incomplete, so we leverage other data sources
to tackle this while the methods mentioned above model the relationship between
the user and the item individually.

Collective Link Prediction: In this paper, we leverage several useful information
sources to solve the problem of sparsity, cold-start and data incompleteness.
Thus, our work is similar to the multi-relational learning problem. In [11], Singh
et al. propose a framework to collectively factorize the matrices, where the same
entities in different relationships share the same coordinates in latent spaces.
In [14], Xu et al. extend such collective matrix factorization models to a Gaus-
sian processes-based nonparametric Bayesian framework. In [15,18], the tensor
is composed to provide both the location recommendation and the activity rec-
ommendation simultaneously. Unlike the approaches which tackle multiple tasks
at the same time, our approach factors only one matrix, the user-shop matrix,
i.e., we only predict the links between users and shops. Another similar work
is [6] where Li et al. propose to improve One-Class Collaborative Filtering by
exploiting the rich user information. However, the difference in our approach is
that besides the user information, we also use the shop information from the
search engine, the topic model and the INITS model.

3 Overview

In this section, we present a brief introduction of our mobile application WuXi-
anGouXiang and the architecture of the proposed approach.

3.1 WuXianGouXiang

Nokia Research Center developed a mobile application called WuXianGouXiang
in April 2011, which is an O2O-based mobile application, with over 20,000 reg-
istered users as of April, 2012. The application can guide the online users to
the real shops by offering users the deals and coupons of nearby merchants. The
users can download the coupons they like and follow the shops to know their
latest deals. WuXianGouXiang has several versions including Java, Symbian and
Android, and can be downloaded from http://www.gouxiang.com.



404 L. Wu et al.

3.2 System Architecture

Figure 1 illustrates the framework of our proposed approach. In order to solve
the cold-start and sparsity problems, we propose to leverage heterogeneous in-
formation sources from other domains. Firstly, we extract the data of the most
frequent behaviors, including downloading coupons and clicking products, from
the user logs archived in the application server to measure the user-user similar-
ity. Secondly, we used the shop names as queries and use the aggregated search
results to compute the shop-shop similarity. Thirdly, we adopt the topic modeling
technique to mine the topics of the shops. To alleviate the data incompleteness,
we propose the INITS algorithm to estimate the topic distribution of the shops.
The proposed model incorporates the user’s intents into the HITS link analysis
algorithm, and infers the topics by analyzing the contextual information. Based
on the useful information sources, Matrix Factorization is used to decompose
them and predict the relational link between the shops and the users. All the
above steps will be introduced in the following sections.

Fig. 1. The framework of the proposed approach on relational link prediction

4 Shop Topic Modeling

When using WuXianGouXiang, the merchants can write a description for their
shops. The descriptions contain rich information about the services they provide.
The features of the shops are characterized by the words of the descriptions and
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also by the hidden topics underlying the bag of words. Thus, we adopt the Latent
Dirichlet Allocation (LDA)[3] to discover the hidden topics of the descriptions to
better model the shops, which is a probabilistic topic model that has been proven
to be useful for extracting the latent semantics of documents. Table 1 depicts
the high weighted words of some topics. Here we set the number of latent topics
k as 10 based on experiments, since some redundant and meaningless topics may
be produced given a larger k and some important topics may be neglected when
k becomes smaller.

Table 1. The examples of topic-word distribution of experimental results from shop
descriptions

Topic 1 ice cream queen dairy instant

Topic 2 italian spa luxury vip

Topic 3 mcdonald subway american hamburger

5 Intent Induced Topic Search

As discussed in Section 4, LDA can discover the topics of the shops by analyzing
their descriptions. Since the descriptions are generated by the merchants, there
exist many difficulties when analyzing the user generated contents. A major
difficulty is that we cannot judge the correctness and quality of the descriptions,
many of the merchants even refuse to write one for their shops. If the contents
are directly used for the shops’ topic inference, noises may be brought in and
the features of a shop will be characterized by the shop owner, rather than the
customers. Therefore, to circumvent this problem, we propose a novel approach,
INtent Induced Topic Search (INITS) to estimate the topic distributions of shops.

Since simply relying on the merchants’ descriptions alone will bring in un-
avoidable bias, we aim to exploit the user ratings to alleviate it. Though there are
no explicit ratings between users and shops, the user behaviors can be regarded
as implicit feedbacks. In particular, if a shop is visited by many experienced
users online, it is highly possible to be a good shop; on the other hand, if a user
visits many good shops, she is very likely to be a shopping expert, i.e., there is
a mutual enforcement relation between the users and shops. This indicates that
the Web page ranking algorithm (HITS) [4] is applicable here. To better study
the relationship between users and shops, we construct a bipartite graph, where
the users and shops are the two sets of vertices and a directed link is built if a
user visits the deals of a shop. As all the edges are pointing from the users to the
shops, every shop will get an authority score after applying the HITS algorithm.

Based on the authority scores, we can get the overall popularity of each shop.
To further discover the authority scores of each topic of a shop, we propose a
novel approach, named INtent Induced Topic Search (INITS) algorithm based
on the user contexts. The basic intuitions are as follows: When a user visits
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a shop online (e.g., downloading the coupons of a shop), she may be interested
in a hidden topic the shop bears and the timestamp when the user visits the
shop can represent the user’s intent, for instance, if a user viewed McDonalds
at 11:00 and visited KFC at 11:20, the intents of the user for viewing them are
probably the same, which most likely is the user wants to find something to eat.
If McDonalds has a latent topic which is ”fast food”, but KFC does not, then
we can possibly infer that KFC is also fast food based on the view and visit.

Theoretically, each shop has k hidden topics. The INITS model assigns the
shop’s authority score to the hidden topics based on the user’s intent. In
the HITS algorithm, a shop’s authority score is the sum of the hub scores of
all the users which have visited it. Given that a user visited a shop h times, then
we say the user contributes 1

h of its hub score to the shop for each visit. The
INITS algorithm assigns the authority score of the shop to each of the shop’s
latent topic according to the following intuitions: 1): Given a user’s log data,
when a user visits from one shop to another, if the Δtime is within a certain
threshold, we say that the intents of the user do not change, and the similar
topics of the two shops gain a larger share of the 1

h of the hub score, e.g., if a
user visits McDonalds and KFC successively, and the topic value of ”fast food”
is similar for both the shops, then the topic of ”fast food” of the KFC store will
get a higher authority score. 2): If the intents of the user change, i.e., the user
may seek for different topics, therefore, the different topics should get a larger
share. 3): The topic with a richer value should get a higher authority score, e.g.,
if a store is famous for the fast food, the user should be more interested in the
fast food of it.

We show an example of the INITS model below:

Given that a user first visits shop shopi and then visits shop shopj , the example
shows how much authority score a hidden topic p ∈ {1, . . . , k} of shop shopj
gains for this visit.

Notations :
k: The number of latent topics.
Sp: The share of the authority score that topic p gets. If the topic is to get

a larger share of the authority score, it should have a larger Sp.
Sp

∑|k|
q=1 Sq

is the

ratio of the authority score the topic gets.
cpi : The correlations between shopi and the hidden topic p. For the shops

which have no descriptions, each topic will be assigned with a default value
of 1

k .
Ti: The time when the user visits shop shopi.
Tthrd: The time threshold. If the time between the two visits exceeds the

threshold, we say the user’s intent changes.
Ti.hour: The hour of Ti, e.g., if Ti is 13:00, Ti.hour equals 13.
hub: The hub score of the user.
AuthorityGainp

j : The gain of the authority score of shopj ’s topic p.
Nj : The number of times that the user visits shopj .
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Equation 1 computes the dissimilarity of the authority score of topic p between
the two shops. For some shops which have a same value of a topic, the dissimi-
larity will be 0, which will cause the division by 0 in equation 4. Thus, μ is used
to avoid this. On the other hand, the Sp cannot be larger than 1, so the μ should
be small enough. In this paper, we fix it as 0.01 for simplicity.

Sp = |cpi − cpj |+ μ (1)

Equation 2 calculates the time interval between the two visits.

ΔT = Tj − Ti (2)

ind =

{
1, ΔT > Tthrd AND Ti.Hour 
= Tj.Hour

−1, ΔT < Tthrd OR Ti.Hour = Tj.Hour

(3)

In Equation 3, the indicator ind indicates whether the user intent has changed,
that is, if the time span between two visits is within the time threshold, it is
highly probable that the user intents are similar. For some users who do not use
the application frequently, they may visit one shop and then another shop after
one or several days, though the time span exceeds the threshold, their intents
may hold. Thus, if the hour of day of the two visits are the same, we say the
intents do not change.

S
′
p = (Sp)

ind × cpj (4)

AuthorityGainp
j =

1

Nj
× hub×

S
′
p∑|k|

q=1 S
′
q

(5)

Equation 5 computes the authority score that is assigned to the topic p, where

S
′
p is the ratio the topic occupies and

∑|k|
q=1 S

′
q is the sum of all the topics’ share.

Equation 4 computes the share of the topic p. ind is used for implementing the
second intuition: if the user’s intent changes, ind will make the share of the
more different topics bigger, and vice versa. cpj is used to implement Intuition
III, which makes the share of the topics with a larger value bigger.

Based on the INITS model, the correlations between the hidden topics and
the shops which have no descriptions and low-quality descriptions can also be
estimated. In addition, the topics of the shops with descriptions will also be
updated based on user’s intents. Thus, after updated by INITS, the problems of
sparsity and incompleteness are relieved.

6 Followers Discovery

In this section, we will introduce the proposed approach for predicting the fol-
lowers of shops, which leverages several auxiliary information sources to help the
prediction.
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6.1 User Information Extraction

As introduced in Section 3.1, the users can download and use the digital coupons
in offline shops, view the deals and the shops when using WuXianGouXiang. The
behaviors of the users can reflect their habits and preferences. If the users have
similar preferences, then they tend to follow similar shops. We extract several
common online actions to model the user behaviors, including downloading deals,
coupons, get the latest deals and expiring deals. The downloaded information
like the price, discount, description, the unique ID of the products, deals and
the corresponding shops, are obtained from the logs.

Since we have thousands of deals and coupons in WuXianGouXiang, the
Cartesian product of the actions and the deals is very huge, which makes the
action vectors of users sparse. Thus, we replace the deals and coupons with their
shops. Then we build a vector for each of the users as follows:

useri =< #action1(useri), . . . ,#actionn(useri) > (6)

where #actionj(useri) is the number of the actionj performed by the useri. An
action contains a behavior and the object(shop) of the behavior. The similarity
of any two users is calculated by cosine measure:

CosSim(useri,userj) =
useri · userj

||useri|| · ||userj||
(7)

6.2 Shop Information Extraction

The users will follow the shops which can meet their needs and preferences. So
the correlations between the shops are useful for predicting the missing values
based on the training data. A direct way to measure the similarity between
the shops is to use the description information. The descriptions, however, are
sparse and incomplete as discussed above. One possible solution is to exploit the
external data source. Fortunately, the information from the World Wide Web
can be used to measure the similarity, which is similar to the approach in [18].

Fig. 2. The results returned by Baidu by using MeiLianMei supermarket and WuMei
supermarket as queries
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We use the name of the shops as queries and the Chinese search engine Baidu
is adopted in this work. The results returned by the search engine are very useful
for measuring the similarity. Figure 2 on the previous page illustrates the results
when we use the names of two supermarkets as queries. As displayed in the figure,
the search results are semi-structured for similar searched entities. That is, for
similar kinds of merchants, the search engine has a semi-structured template
to display the returned items. The semi-structured results are not proper for
modeling the semantics of the shops, but are useful to compute the similarity
between shops.

We extract the words of the search results on the first page of each query. The
words are then used to describe the shops in a vector space as follows, where
#wordj(shopi) denotes the word count of #wordj that appears in (shopi)’s
search results.

shopi =< #word1(shopi), . . . ,#wordn(shopi) > (8)

To filter out the noises from the sponsored advertising, the weighting scheme TF-
IDF [2] is adopted to generate a weight for the words of each of the shops. The
weighting scheme can avoid the computation to be dominated by the common
words.

IDF (wordj ) = log
D

|d ∈ D : wordj ∈ d|
Weighti,j = #wordj(shopi)× IDF (wordj) (9)

Equation 9 calculates the weight of shopi’s wordj and we get the weight vector
of the shops.

shop
′
i =< #weight1(shopi), . . . ,#weightn(shopi) > (10)

Cosine similarity is adopted here and the similarity between two shops is calcu-
lated as follows:

CosSim(shop
′
i, shop

′
j) =

shop
′
i · shop

′
j

||shop′
i|| · ||shop

′
j ||

(11)

The shop-shop similarity and user-user similarity information are then leveraged
to help the prediction task, which will be introduced in Section 6.3.

6.3 Link Relation Prediction

In order to solve the problems of sparsity, cold-start and data incompleteness,
we propose to leverage the useful complementary information sources. As these
external sources are all heterogeneous, which cannot be exploited directly, we use
matrix factorization to borrow the knowledge by using them as the regularizer.
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Definitions:

Fm×n: The relationship matrix of the users and the shops, where each entry
represents whether the shop is followed by the user. m is the number of users
and n is the number of shops.

Um×k: The low rank factor of the users, where k is the number of hidden
topics and k < n.

Vn×k: The low rank factor of the shops.
Cm×m: The user-user similarity matrix, which is obtained from the user logs

and described in Section 6.1.
IC : The indicator matrix of Cm×m, IC,ij = 1 if Ci,j is not null.
Mn×n: The shop-shop similarity matrix, which is based on the search results

and described in Section 6.2.
IM : The indicator matrix of Mm×m, IM,ij = 1 if Ci,j is not null.
Tn×k: The shop-topic matrix based on the descriptions and the INITS model.
λ1, λ2, λ3, λ4: The first three parameters are used to control the influence of

the complementary information sources and the last controls the regularization
over the factorized matrices so as to avoid over-fitting.

The basic intuition of the proposed model is, the users with similar behaviors
tend to follow similar shops and the shops with similar topics tend to be followed
by similar users. As illustrated in Figure 1, given the relational links Fm×n, we
decompose it as a product of Um×k and Vn×k. The factorization leverages the
auxiliary data sources by sharing the user-topic matrix Um×k with the user-user
matrix Cm×m, the shop-topic matrix Vn×k with the shop-shop similarity Mn×n

and the shop-topic correlation Tn×k. Hence, the objective function is:

L(U, V ) =
1

2
||F − UV ||2F +

λ1

2
||IC ◦ (C − UUT )||2F +

λ2

2
||IM ◦ (M − V V T )||2F +

λ3

2
||V − T ||2F + (12)

λ4

2
(||U ||2F + ||V ||2F )

where || · ||F is the Frobenius norm and the operator ◦ denotes the entry-wise
product. The objective function is a non-convex optimization problem. There-
fore, we use stochastic gradient descent(SGD) to get the local optimal solution.
The gradients (denoted as �) for U and V are as follows:

�UL = (UV T − F )V + 2λ1[IC ◦ (UUT − C)]U + λ4U

�V L = (UV T − F )TU + 2λ2[IM ◦ (V V T −M)]V + (13)

λ3(V − T ) + λ4V
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7 Experiments

7.1 Dataset

We conducted experiments with the user logs of WuXianGouXiang from Septem-
ber 2011 to March 2012. We obtained a dataset from the server which contains
998 shops and 681 users.

7.2 Evaluation

In order to measure the accuracy of the prediction, we use two methods to eval-
uate the recommendation performances. The first one is Mean Absolute Error
(MAE):

MAE =

∑m
i=1

∑n
j=1 |fi,j − fp

i,j |
m× n

(14)

where m and n are the number of the users and the shops, fi,j is the ground
truth of whether user i follows shop j and fp

i,j is the predicted result. Noticeably,
for the predicted results we transform the values which are larger than one as one
and transform the values which are less than zero as zero, since the correlations
between the users and the shops cannot be negative and will be one at most.
Thus, a smaller MAE score means better prediction performance.

Another measure method we employ is the normalized discounted cumula-
tive gain(nDCG)[9]. This measure is useful for computing the quality of search
engines as it considers both the returned contents and the rank of the results.
To evaluate the quality of ranking list, we rank the shops for each of the users
based on the online visit behavior to get the ground truth. That is, given a shop
and a user, if the shop is followed by the user, the shop is relevant for the user.
The more times the user visits the shop online, the higher the shop ranks for the
user. When testing our proposed approach, we generate the recommended list
for each user based on the correlations between the user and the shops in UV T .
A higher nDCG represents a better ranking result.

7.3 Settings

In order to investigate the effectiveness of the auxiliary information sources, we
experiment on the following methods:

1)IM : The proposed integration method which is based on the INITS model.
2)WU, WS, WT : The methods that use all the information sources except

the user-user similarity(WU), the shop-shop similarity(WS) or the shop-topic
information(WT).

3)CF : The Collaborative Filtering method which only uses the training data
to predict the missing values. Low-rank matrix factorization [12] is adopted to
act as the baseline.
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To test the impact of the INITS model, we perform another experiment using
the following methods:

1)INITS : The integrating method which uses the INITS model to generate
the shop-topic information

2)HITS : The integrating method which uses the HITS model to generate the
shop-topic information, where the HITS model computes an authority score for
each of the shops. For the shops without a proper description, the authority
score is divided equally.

For each experiment, we repeat five rounds by randomly choosing different en-
tries of matrix F as the training data and the rest as the testing data. The
average value of MAE and nDCG are used to measure the performance.

7.4 Experimental Results

Figure 3 illustrates the experimental results of the different methods introduced
above based on Mean Absolute Error(MAE). It can be observed that the best
performance is achieved by our proposed approach. Thus, we can say that the
model which combines the useful auxiliary information sources performs better.
When we use the WS model which ignores the shop-shop similarity, the exper-
imental result is closest to the best performance, which means the shop-shop
similarity contributes the least to the prediction task. This may be caused by
the poor quality of the search results: 1) The search results often contain adver-
tisements of the merchants’ competitors, which may bring in some noise when
compared with other shops and 2) for the shops which are not so famous, the
search engine returns very few results. This makes the feature vector of the shop
very sparse and the shops which are not famous and are quite different will be
judged to be similar. Though some noises may be taken from the search results,
it is still proven to be helpful (about 0.04% improvement). When we use the
WU model which ignores user-user similarity and the WT model which ignores
shop-topic information, the Mean Absolute Error increases significantly. Based
on this we can say that: 1) The users who view the similar deals, download the

Fig. 3. The overall experimental results on the complementary information sources
based on Mean Absolute Error
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similar coupons, and will follow similar shops online, and 2) the shops which
own similar topics and are viewed at similar times will be followed by the sim-
ilar group of users, as the INITS model is based on the contextual information
of the users.

Table 2. The overall experimental results on the complementary information sources
based on normalized discounted cumulative gain

nDCG[5] Ratio

IM 0.6261 0.0%

WU 0.5828 7.43%

WS 0.5957 5.10%

WT 0.5607 11.66%

CF 0.5484 14.17%

Table 2 illustrates the experimental results of different methods based on
nDCG[5], i.e. we measure the system performance based on the top five recom-
mended shops. The third column denotes the improvement ratio of the proposed
method. The integrating method that uses all the information sources achieves
the best result. Similarly, the second best result is achieved when ignoring the
shop-shop similarity. An interesting difference between the experimental results
of MAE and nDCG[5] is that the shop-topic information is most important for
the ranking quality among all the auxiliary data. The result indicates that the
users will visit the shops more frequently if the topics of the shops can match
the users’ needs.

Table 3. The influence of the INITS model on different shops

no description description

HITS 0.01297 0.01336

INITS 0.01240 0.01304

Ratio 4.40% 2.40%

Table 3 shows the experimental results in terms of MAE on the shops which
have a description and the shops without a description. The first model (HITS)
is the integration model which uses the HITS algorithm to update the user-topic
information, and the second model uses the INITS algorithm. The ratio is the
improvement ratio. We can observe that on both datasets, the INITS model
outperforms the baseline. Another observation is that, the INITS model has a
higher ratio of improvement on the shops without descriptions than the shops
with a description, which proves that the INITS model is useful for inferring
the hidden topics and is effective for assigning the score to the sub-topics of an
authority. Notice that the shops without descriptions have a lower error rate on
average, for they are followed by less users and the relationships are more sparse,
which lead to less prediction errors but a low recall.
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Figure 4 illustrates the performances of our approach varying the parameters,
where λ1 controls the influence of user-user similarity, λ2 controls the contri-
bution of the shop-shop similarity to the objective function, λ3 controls the
information source of shop-topic, λ4 is used to avoid over-fitting. Mean Abso-
lute Error is adopted to measure the error rate. The four parameters are tested
individually. When testing one of the parameters, the other three are fixed to
be 0.1. The results show that the error rate increases when the parameters are
either too large or small.

Fig. 4. The impact on Mean Absolute Error of different parameters

8 Conclusion and Future Work

In this paper, we propose a novel approach to predict the link relations between
users and shops based on a real world application. The contributions of our
work are the following. By surveying the application and analyzing the user
logs, we put forward a new problem of discovering the potential followers of a
shop. In order to better model the characteristics of the shops, LDA is adopted
to process the descriptions offered by the merchants to recover the latent topics
underlying the texts. We propose to use several useful auxiliary data sources
to tackle the sparsity problem. A novel approach, namely INtent Induced Topic
Search (INITS) is introduced to revise the coordinates of the merchants in the
latent semantic space. In the future, we will validate our method with other
datasets to see and improve the effectiveness of our approach.
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Abstract. Snapshot isolation (SI) is a widely studied concurrency control ap-
proach, with great impact in practice within platforms such as Oracle or SQL
Server. Berenson et al. showed though that SI does not guarantee serializable
execution; in certain situations, data consistency can be violated through concur-
rency between correct applications. Recently, variants of SI have been proposed,
that keep the key properties such as (often) allowing concurrency between reads
and updates, and that also guarantee that every execution will be serializable.
We have had the opportunity to use three implementations of two different al-
gorithms of this type, all based on the InnoDB open source infrastructure. We
measure the performance attained by these implementations, on high-end hard-
ware with a substantial number of cores. We explore the impact of the differences
in algorithm, and also of the low-level implementation decisions.

1 Introduction

At the core of a database engine is the concurrency control component that provides
isolation of concurrently running transactions (the ’I’ in ACID). For many years, strict
two-phase locking with refinements for indices and counters was seen as a good all-
round choice, and concurrency control was often considered a solved problem, one of
those where further work would just be “polishing the round ball” [1].

In 1995, a new approach was described [2], and deployed in Oracle DB [3], and
thereafter in other platforms like PostgreSQL and Microsoft SQL Server. Called Snap-
shot Isolation (SI), this multiversion concurrency control mechanism has attractive fea-
tures. Among these are that “readers never block” and that each transaction observes
the database in a transaction-consistent state (it sees all or none of the changes of each
other transaction). But for some transactions, SI allows executions that do not meet the
definition of serializability. For example, a “write skew” can occur [2], and in produc-
tion code, this has led to data corruption where the final state of the data does not satisfy
an integrity property that would be maintained by each program running alone [4].

Recently, several new mechanisms were published that are minor variants of SI (and
thus allow concurrent reading and writing in many cases), with the extra property that

� Work done while at Seoul National University.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 416–430, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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they do enforce that every execution will be serializable. Cahill et al. introduced this
idea in SIGMOD’08 [5], and the definitive account of Serializable Snapshot Isola-
tion (SSI) was published in TODS [6]. The key feature is that one uses the normal
SI mechanism, but also tracks information about read-write conflicts (without blocking
any of these). When a particular pattern of conflicts occurs, one of the transactions in-
volved must abort. The theory of [7] implies that any non-serializable execution will
display a conflict fitting this pattern; thus SSI prevents any non-serializable execution.
In ICDE’11, Revilak et al. [8] gave another proposal called Precise Serializable Snap-
shot Isolation (PSSI), which aims to eliminate any cases of unnecessary aborts (the
“false positive” cases described in [6]). In essence, PSSI does serialization graph test-
ing [9] on top of SI.

In this paper, we are interested in the performance and scalability of these algorithms
on modern multicore servers, and how much overhead they introduce as compared to
a standard SI approach. In doing so, we seek to gain an understanding of the impact
of essential algorithmic design decisions on the performance on multicore servers. In
particular, we are interested in which factors are intrinsic to multi version concurrency
control, and which are not.

Our experiments are conducted on a high-end server with 24 cores across 4 chips.
This type of multicore environment is becoming increasingly common, though it is
known that many software systems do not perform well in such a setting [10,11]. Re-
cent research has proposed some special techniques to improve locking-based DBMS
operation on multicore hardware [12,13]; similar work for SI-based systems is beyond
the scope of this paper, where we take the code used in published papers, and measure
how well each performs “as is”.

2 SSI Implementations

We consider three implementations of serializable snapshot isolation: SSI is the im-
plementation by Cahill [6]; ESSI is Revilak’s implementation of the same algorithmic
concept; and PSSI is Revilak’s proposal that detects cycles in a dependency graph.

Cahill’s original SSI was implemented by Cahill as an experimental prototype as
modifications to Berkeley DB and InnoDB, and it has been deployed recently in Post-
greSQL [14]. Revilak implemented PSSI as an experimental prototype modifying Inn-
oDB, and for comparison, he also implemented SSI; for clarity we follow [8] and refer
to this implementation as ESSI. In this paper, we take advantage of the presence of three
implementations that all are done in the context of InnoDB: Cahill’s SSI, Revilak’s
ESSI, and Revilak’s PSSI. As a baseline, we use an implementation of the standard,
not-always-serializable SI algorithm, done by Cahill for [6], that is very straightfor-
ward given the existing code of InnoDB for version and lock management. We measure
the performance of these four systems, which share a common code structure.

The open-source InnoDB system keeps multiple versions of each record, and a ver-
sion is tagged with the id of the transaction that produced it. These versions are not
used by transactions running InnoDB’s SERIALIZABLE isolation level, but the code
exists to read a version with a given timestamp (by converting from transaction ids to
the commit time of the transaction) - this code is used in InnoDB for lower isolation
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levels, and has been called by the modified functions in SI, SSI, ESSI and PSSI. Inn-
oDB also has a fairly standard lock manager (supporting a form of range locking to
prevent phantoms). SI, SSI, ESSI and PSSI all use this lock manager. All the systems
take write locks when updating, to implement the “First Updater Wins” principle of SI,
preventing concurrent transactions from modifying the same item. SSI, ESSI and PSSI
also take read-like locks that do not cause blocking, but instead allow one to detect that
read-write conflicts have occurred during execution. Using these observed conflicts, one
can form the serialization graph for an execution as it happens.

In ESSI and PSSI, the needed subset of the serialization graph is actually built as
a data structure, called the CTG (Cycle Testing Graph); in SSI it is implicit, with the
essential information stored in two flags associated with each transaction (and kept in
the transaction list data structure). In SSI, a variable T.in records whether there is some
edge of the graph leading to T, and T.out records whether some edge starts at T. Fur-
thermore, when there is only one edge in (or out) we also note as part of the transaction
information the identity of the transaction at the other end; but when there are multi-
ple incoming (or outgoing edges) SSI does not track them individually, but just notes
the existence of more than one. In SSI, the information about conflict edges is updated
in each read or write operation; in ESSI and PSSI it is during commit processing for
transaction T that the CTG is updated by adding edges incident on T. ESSI and PSSI
also remove edges involving T if T aborts; SSI in contrast may keep flags set in other
transactions, showing conflict edges that involved T and hence are no longer valid.

In PSSI, the main algorithmic idea of the concurrency control is that when a trans-
action T tries to commit, the system will add the appropriate edges to the CTG, do a
search from T to find if the new node lies in a cycle; if so, T is aborted instead.

In both SSI and ESSI, the essential step is to abort a transaction if one finds what is
called a “dangerous structure”: both an incoming edge and an outgoing edge involving
concurrent transactions, occurring at a single transaction (which is often but not always
the one that is aborted). Certain extra conditions are applied, involving the ordering
between commit time of the transactions involved among the two edges; these extra
conditions reduce the frequency of unnecessary aborts (called “false positives” in [6]).
In fact, aborting the cases that are done in SSI and ESSI is enough to guarantee that all
executions will be serializable; this is shown in [6] using the proof details of the main
theorem from [7].

In InnoDB, all the internal data structures of the system itself are protected from race
conditions by a single, shared kernel mutex. In all its modifications that we consider,
this same mutex is used to cover any access to any shared data structures introduced in
the modification, such as the serialization graph.

3 Experimental Environment

We have conducted an extensive performance evaluation of four SI-based concurrency
control implementations on a state-of-the-art multicore environment: SI and SSI from
Cahill et al. [6], and ESSI and PSSI from Revilak et al. [8]. With the exception of SI,
all three SSI variants ensure serializable execution.
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System Setup. We have deployed all four implementations into a MySQL 5.1.31 in-
stance. The experiments are conducted on a 24-core Intel Xeon server under Linux
3.1.5 that has a total of four 1.86 GHz Intel Xeon MP Processor 8000 series dies (or
chips) (each die with 6 cores). Each core has access to 48 KB private L1 cache and
256 KB private L2 cache; all 6 cores on each die share one 18 MB L3 cache. To make
the database run on the actual cores, we disabled Intel Hyper-Threading throughout all
experiments. The server is further equipped with a 500 GB 7200 RPM SATA II hard
disk and 512 GB of RAM.

In all experiments, there is a single MySQL instance running on the database server,
whereas a varying number of clients is emulated on a separate client computer (1.9
GHz Opteron, 128 GB of RAM, running Linux 3.0.0). Client and server machines are
connected with a 1 Gbps Ethernet network.

The Benchmark. Our benchmark uses three tables called ssibench-{1, 2, 3}
with two non-null integer and ten variable sized character columns (b value-{1,
2, ..., 10}); one of integer value columns (b int key) is a primary key. Each
table is populated with randomly chosen 100K items. For this study, we use two types
of transactions: query transactions (read-only) and update-after-read transactions (read-
update).

The read-only transaction consists of a single Select-From-Where query:

SELECT sum(b int value) FROM ssibench-i
WHERE b int key > :id and b int key <= :id+100

Note that through this query the DBMS scans 100 rows in the table and aggregates
their integer column, so that the final result is small (minimized network cost).

The read-update transaction is designed to create conflict cycles: it first reads 100
rows from ssibench-i and updates 20 rows from ssibench-((i+1)%3). The
reading part of this transaction uses the same range query as the read-only transaction,
and the update part consists of just a single SQL statement (to minimize network cost):

UPDATE ssibench-((i+1)%3) SET b value-k = :rand str
WHERE b int key = :id1

OR b int key = :id2
OR ... b int key = :id20

In our experiments, we vary the multiprogramming level (MPL) from 1 to 30, with all
clients trying to execute transactions as fast as possible without think time in between.
Each experiment was repeated five times, with each run consisting of 1 minute ramp-up
period and 1 minute measurement period. All plotted points in the figures of Section 4
are the average of these 5 test runs, and confidence intervals are shown.

To evaluate the impact of various CPU configurations, we use the CPU hotplug fea-
ture of modern CPU architectures to make CPUs (or cores) available (/unavailable)
to the Linux kernel, be setting the /sys/devices/system/cpu/cpuX/online
values to 0 or 1, where X is the corresponding core number to enable, respectively dis-
able. We used OProfile to profile various system activities, a system-wide, statistical,
continuous profiler for Linux systems. For brevity, we classify all profiled system func-
tions into three categories: ‘Kernel’ for Linux kernel functions, ‘MySQL’ for non-mutex
related MySQL functions, and ‘Mutex’ for all mutex related functions in MySQL.
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4 Evaluation Results

4.1 SI Performance on a Multicore Server

In our first experiment, we are interested in the general efficiency of the different SI-
based concurrency control algorithms when running on a state-of-the-art multicore
server. To this end, we measured the throughput of plain SI and the three variants of
the SSI approach with different multiprogramming levels and all 24 cores of our server
being enabled. The workload consisted of 75% of read-only transactions (RO) and 25%
read-updater transactions (RU). The data accesses are uniformly distributed across the
tables. The performance results and runtime analysis are shown in Figures 1 to 3.
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Fig. 2. Response times of SI, ESSI, SSI, and PSSI on 24 cores, under 75%RO-25%RU workload

In general, all four SI and SSI implementations show the same overall performance
curve: initially, the throughput increases with increasing MPL up-to a peak performance
point after which the throughput starts degrading (cf. Figure 1). The major difference
between plain SI and the three SSI variants is when and how this performance degrada-
tion occurs. In this initial setting, SI’s throughput scales well up to MPL 20, reaching a
peak throughput of over 550,000 tpm, before its throughput starts gradually decreasing.
In contrast, the performance of the three SSI implementations peaks already between
MPL 10 and 15, and then degrades drastically. At MPL 30, the throughput of all SSI
variants has collapsed to basically the same level as with that of MPL 1. Among the
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Fig. 3. Abort ratio and profiled execution times on 24 cores, under 75%RO-25%RU workload

three SSI implementations, Cahill’s SSI shows the highest peak performance with just
under 400,000 tpm, and a slightly better resistance to the performance degradation,
though the overall throughput collapse is experienced too. What is the cause of these
major scalability problems of all current SSI implementations?

In Figure 3(a), we compare the abort ratios (the ratio of the number of aborted trans-
actions over the total number of committed transactions) of the implementations. Plain
SI shows a stable abort ratio at around 2% of committed transactions for all MPL. The
three SSI variants show similar abort ratios around 2% for most MPL levels, with the
exception of two peaks of higher abort ratios at MPL 5 and MPL 30. However, these
peaks for aborted transactions under the SSI variants do not align with the measured
performance behaviour, which indicates that the poor scalability of the SSI variants is
not due to an increase in concurrency conflicts.

Next, we have a look at the transaction runtimes. As shown in Figure 2, the higher
the parallelism is (level of MPL), the longer the runtimes of both read-only and read-
update transactions become. Especially update transactions experience massive delays
with high MPL, and for the SSI variants even read-only transactions run much longer.
This clearly contradicts the usual rule-of-thumb that “readers don’t wait” under SI.

To further explore this phenomenon, we executed the workload again with profiling
of all system activities, including the Linux kernel, switched on. Figure 3(b) gives the
breakdown of the profiled execution times for all approaches with increasing MPL.
These results show a very clear and sudden increase of the ‘Mutex’ portion (black bars)
in all SSI implementations after MPL passes a certain point. Apparently, as MPL grows
a significant portion of time is spent on spin waiting for the crucial kernel mutex. This
in turn causes the transaction runtimes to steeply increase with higher MPL, which in
consequence leads to a collapse of the transaction throughput under all SSI variants.

The excessive waiting for the shared kernel mutex to synchronise access to the in-
ternal data structures leads to a reduction of useful work done in the database system,
which is similar to the performance effect of lock thrashing. Conventional wisdom says
that a lock thrashing problem usually arises in locking-based concurrency control algo-
rithms and under update-heavy workloads. Our result here has a particular importance
because this type of performance collapse happened even with a read-mostly workload
and under all SSI implementations. When MPL is over 20, SSI spends 70% of its exe-
cution time spin waiting whereas ESSI (and PSSI) spend 65% on mutex waiting. This
mutex waiting increases transaction runtimes as compared to MPL 1 by factor 30.
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Fig. 4. Multicore experiment: throughput and abort rates of SI, ESSI, SSI, and PSSI with varying
number of cores, under a 75%RO(Read-Only)-25%RU(Read-Update) workload

4.2 Varying the CPU Configuration

Next, we strive to gain a better understanding of the influence of the number of cores on
the performance behaviours of the different concurrency control implementations. To
do so, we varied the number of cores visible to the Linux operating system by using the
aforementioned CPU hotplug feature of the Linux kernel. This runtime configuration
gave us control of making a particular set of cores visible to the Linux kernel, so that
the operating system (and thus the DBMS) use only a well-defined set of cores. We
describe a configuration as n/m representing n physical cores arranged among m chips.
Thus the full hardware is 24/4; we also report on measurements at 4/1, 6/1 and 12/1.

Scalability with Varying Number of Cores. Figure 4 shows the performance results
of all implementations with various core settings, from 4 core to 12 cores. In a single
core configuration (not shown in the figure), the throughput with all implementations
is very similar, reaching about 80,000 tpm very early at MPL 5, and all concurrency
control approaches can also sustain their peak performance as MPL increases. There is
no overhead noticeable for SSI in a single core environment.

As we increase the number of cores to 4, the peak throughput of all implementations
improves: The peak throughput of SI on 4 cores is 3.5× higher, the peak values of
the SSI implementations are about 3× higher than that on a single core. On this 4
core configuration, we start to see the overhead incurred by all SSI implementations; in
particular, the abort ratio of SSI implementations increases more steeply than with SI,
resulting in less throughput. However, we can hardly observe any performance collapse
even up to our maximum of MPL 30.

With a 6 core configuration, the peak throughputs increase further, while at the same
time performance gap among the different implementations widens. The overhead of
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Fig. 5. Throughput and abort ratios of SI, ESSI, SSI, and PSSI with varying number of cores
under a 75%RO-25%RU workload at MPL 10

SSI implementations in this setting becomes more prominent than before: ESSI (and
PSSI) show now early performance drop-offs from MPL=10, whereas SSI drops off
later from MPL=30. When we look at the abort ratio of ESSI, its abort ratio abruptly
increases from MPL 10 on, while SSI matches it only at MPL 30.

Finally with a 12 core configuration, we see quite different performance behaviours
from each implementation. SI keeps increasing its peak throughput up to 1.37X higher
than that on 6 cores, and it does not show any performance drop-off. In contrast, all SSI
implementations show severe performance drop-offs after their peak throughput, even
though the abort ratio of all three is only slightly increased than before. As we have
seen in the previous setting with 6 cores, the performance drop-off of SSI is a bit later
point than ESSI (or PSSI), due to the different data structures and algorithms used.

Profiling MPL 10 vs MPL 30. For a more detailed analysis of the performance sit-
uation with different CPU configurations, we ran another set of varying-core exper-
iments with system-level profiling turned on. We focus on two interesting levels of
MPL: Firstly we fix to MPL 10 as a proxy for “peak throughput” – because in basically
all measurements, the different algorithms achieved close to their highest throughput at
this level. Secondly, we also chose MPL 30 as the measurement points with the most
extreme system load. In the following, we hence fix the workload to one of these two
MPL values, and then vary the number of cores from a single core up-to the full 24
cores of our server.

The results are summarised in Figure 5 (MPL 10) and Figure 6 (MPL 30). In the (a)
subgraphs of each of these figures, we show the performance and abort ratios for each
implementation with varying number of cores; this is followed in the subgraphs (b) by
an analysis of the profiling information for the varying CPU configurations.



424 H. Jung et al.

0

100

200

300

400

500

600

1 4/1 6/1 12/2 24/4

T
xn

s/
m

in
 (

X
10

00
)

# of cores

SI ESSI SSI PSSI

0

0.05

0.1

0.15

0.2

0.25

1 4/1 6/1 12/2 24/4

A
bo

rt
 r

at
io

# of cores

SI ESSI SSI PSSI

(a) Throughput and Abort Ratio (MPL=30)

0%

20%

40%

60%

80%

100%

1 4/1 6/1 12/2 24/4 1 4/1 6/1 12/2 24/4 1 4/1 6/1 12/2 24/4 1 4/1 6/1 12/2 24/4

SI ESSI SSI PSSI

# of cores

MySQL Mutex Kernel

(b) Breakdown of Profiled Execution Times (MPL=30)
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With MPL 10, the throughput for all implementations basically increases linearly
with the number of cores, without showing a steep increase of the abort ratio (cf. Fig-
ure 5(a)). All schemes achieve their highest throughput on a 24 core setting. At MPL 10
the mutex contention is still low, so that the Mutex regions (black bars) in Figure 5(b) do
not show any sudden increase. It shows that all SSI implementations have a general low
runtime overhead above that of SI. Indeed, Figure 5(a) is a typical performance graph
as it was found in prior SSI studies. These performance results seem to be promising,
as they would enable all schemes to perform well with increasing number of cores.

With MPL 30 the situation looks quite different (Figure 6). When measuring the
workload at MPL 30, the synchronisation cost between concurrent transactions be-
comes more expensive and all SSI implementations experience the performance col-
lapse shown before. In the system community, this type of performance collapse is
referred to as the scalability collapse problem, which has been addressed well in prior
studies [10,11] for Linux operating systems. The large mutex waiting portion elongates
transaction lifetimes enormously and increases the abort ratio (up to 10X higher), lead-
ing to a performance collapse. In particular, the throughput of all three SSI implemen-
tations on 24 cores is lower than on just a single core. We do not claim that SI is free
from any performance collapse, but at least in this experiment its overall performance
only gradually degrades after its peak.

Effect of Separate L3 Caches. The final experiment in this section is to measure the
effect of an enlarged L3 cache on the performance. We investigate two scenarios: 4
cores on 4 separate dies (4/4) as compare to all four on just one die, and 12 cores on
4 dies (12/4; each die shared by three cores) compared to be on just 2 dies (6 cores
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Fig. 7. Throughput with different core/die configurations under 75%RO-25%RU workload

sharing same die). Spreading cores across multiple dies has the advantage of expanding
the amount of available L3 cache. The potential disadvantage is a decrease in cache
locality among cores due to the distant cache locations. Figure 7 shows the normalized
throughput – we show the ratio of values for 4/4 to the corresponding values for 4/1
configuration, and we plot the ratio of 12/4 to the previously shown 12/2. Between the
two configurations, the 4/4 setting gives a better increase effect than the 12/4 setting:
While the 4/4 setting has a 4X larger L3 cache than under a 4/1 setting, the 12/4 setting
augments only a twice as large cache than under its comparison point 12/2. As shown in
Figure 7(a), SI and SSI always benefit from an enlarged L3 cache; the throughput of SI
increases up to 13%, while SSI gains up to 8%. However, the throughput of ESSI and
PSSI initially degrades by 3% when at MPL=1, before they both enhance up to 15%.

In Figure 7(b), the performance of all schemes shows larger variations, compared
to Figure 7(a). Although we increase L3 cache twice as much than before, the com-
bined effect of an enlarged cache while maintaining reasonable locality between cores
sometimes leads to greater impact on performance, either positively or negatively. For
example, PSSI increases its throughput up to 55% with MPL=15 than that with a 12/2
setting, while its throughput decreases by 5% at MPL=1. The unexpected improvement
at MPL=15 may be because the cycle testing graph (CTG) structure could have fitted
better on the enlarged L3 cache, and 4 cores on each die exploit cache locality much
better than with other MPL conditions. Measuring such fine-grained cache hits/misses,
induced penalty cycles, and delays is however beyond the scope of this paper.

4.3 Varying the Read/Update Ratio

The final set of experiments investigates the effect of varying the‘ ratio between
read-only transactions and updater transactions. In Figures 8 to 10, we compare the per-
formance of each implementation with different reader/updater ratios, from an update-
only workload (0% read-only / 100% read-update) over an update heavy workload (25%
read-only / 75% read-update) and a mixed workload (50% read-only / 50% read-update)
to finally the read-only case (100% read-only transactions). Note that the vertical scales
on the graphs are not the same. In all cases our server has all available 24 cores enabled.

In general, the performance graphs show the same overall shape as we initially mea-
sured in Section 4.1. The notable exception is when the update rate is very high. With
75% of transactions being updaters (Figure 8(b)), we see the throughput collapse with
growing MPL for SSI a bit delayed, though throughput has clearly dropped at MPL=20,
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Fig. 8. Throughput on 24 cores, with varying the portion of RO (Read-Only) transactions
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Fig. 9. Abort rates on 24 cores, with varying the portion of RO (Read-Only) transactions

and collapsed by MPL=30. In all cases, there exists a crossover that ESSI initially per-
forms better than SSI, but becomes inferior to SSI later, or vice versa. This suggests that
different data structures and associated algorithms used in these SSI variants show their
merits and demerits in different workload conditions; there seems to be no universal
solution to implement serializability that always performs better.

Figure 8(a) shows the update-only scenario with 100% read-update transactions. At
MPL=5, the average throughput of the SSI schemes seems to be even higher than SI, but
please note that the throughput deviation is quite large and that the confidence intervals
overlap. Hence our results out of just 5 runs are not be stable enough to draw this
conclusion. Once MPL increases beyond 5, SI always achieves higher throughputs than
all others. In this update-intensive setting, the abort ratio of SI reaches 2 (i.e., aborting
twice as many transactions than committed ones) at MPL=5. Other SSI variants also
have high abort ratio ( 1.1). The irregular behavior of having high abort ratio at MPL=5
continues in all scenarios, except the 100% read-only workload. In Figures 8(b) and
8(c), the pattern is similar in that the throughput of SI drops off gradually, whereas SSI
shows its performance collapse between MPL 20 and 30.

The most interesting phenomenon shows in the read-only case (Figure 10): We now
run 100% read-only transactions, each of which just read 100 rows, and so SI alone gives
serializable executions — there are no rw conflict edges, and the SSI variants should
need to abort nothing. However, the throughput of the SSI variants still collapses with
higher MPL: In Figure 10, the throughput of SI is well maintained while the through-
put with the remaining three approaches collapses to about the level as with MPL=1.
At MPL 30, SI achieves a ten-times higher throughput than SSI (or ESSI). This phe-
nomenon has not previously been reported, and it contradicts our intuitive expectations
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that SSI implementations would behave well at least under read-mostly workloads, re-
gardless of MPL or the number of cores. We discuses the possible causes in Section 5.

In terms of peak throughput, we can say that all schemes perform well at lower
MPL. This is shown in Figure 11, which compares the throughputs at fixed MPL 10
and plotted against the ratio of read-only transactions. But at our highest MPL of 30, the
situation looks much more dire, with the throughput values of the SSI variants degrading
to almost the level of MPL 1 for read-only workloads. To summarize, even though we
vary the reader/updater ratio, the performance collapse can still be observed throughout
the experiments. The only difference from the previous experiments is the higher abort
ratio (or lower throughput) due to the increased contention with an higher update ratio.

5 Discussion

5.1 False Positive Aborts

The design objective of PSSI is to be precise: aborting a transaction only when the
abort is necessary to prevent non-serializable execution. ESSI and SSI, in contrast, use
a simpler test, that does not require tracing out whole cycles, but rather looks just at
two adjacent edges in the serialization graph. The simplicity of the test means that ESSI
and SSI will sometimes abort a transaction that could have been allowed to commit,
because the edges do not lie within a cycle. Between ESSI and SSI there are also some
differences in precision, because ESSI uses the CTG, a graph where some edges have
been pruned away, such as those passing through aborted transactions. SSI may keep
the impact of those “dangling” edges in transaction flags, because it does not spend
the effort to clear flags that reflected an edge involving a transaction that subsequently
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aborted. Thus one might expect the lowest abort rate in SI (which aborts transactions
only for ww-conflicts, that also lead to aborts in the other systems too); followed by
PSSI, ESSI and then SSI should have the highest abort rate.

In the experiments, we did not find a reliable pattern though. The abort rates and
throughputs of SSI, ESSI and PSSI remained quite comparable in all the experiments
where we tested the different hardware configurations. The tradeoff against precision
comes from the added overhead of carefully tracking the edges, and pruning them ag-
gressively. When there are many conflict edges for each transaction, this becomes im-
portant. We did hence run some additional experiments where we varied the size of the
transactional hotspots and the transactions lengths [15]. For space reasons, we cannot
include a detailed discussion here; but we can report that in experiments with 500 or
5000 rows selected per transaction (rather than the 200 in our evaluation in the previous
Section), we see that SSI gets better throughput than ESSI or PSSI, as long as MPL is
low enough to avoid the performance collapse from competition over the kernel mutex.
For more details please see our corresponding technical report [15].

We conclude that precision, whether from careful cycle detection or from cleaning
up dangling edges in the serialization graph, is worth the effort when contention in
concurrency control is dominant; in many conditions its impact is unclear.

5.2 Shared System Data Structures

The implementations of PSSI and ESSI track conflicts between transactions in a data
structure, the CTG, that is shared between all transactions, and thus between all threads
in the server. In contrast, SSI tries to keep additional data structures local to each trans-
action and thread, so there is no need to synchronize the access to these data structures.
SSI adds two bookkeeping variables to each transaction block.

One might expect the reduction in shared structures to make SSI much more scalable
than PSSI or ESSI, and while we do see that SSI throughput does not degrade quite as
drastically with slightly increased MPL, it still shows a performance collapse under
high MPL, and once MPL is 30, all three implementations are performing as badly as
when single threaded, under a broad range of workloads. To explain this, we look in
more detail at the code paths of the three systems.

In ESSI and PSSI, the work is concentrated in the commit step; reading or writing
involves no more than setting a lock and accessing the appropriate version. The commit
step is slow. As shown in Figure 12(a), ESSI first holds a kernel mutex before it
proceeds to update a CTG, then it starts checking concurrent rw-edges by traversing its
read records (or updated records). This is done inside the trx do cycle test(),
and this cycle testing function has a branch towards either precise cycle testing (for
PSSI) or checking pairs of edges (for ESSI). The bad situation is when transactions
have a large number of incident edges. A higher degree of concurrency induced by
many cores can increase the chance of having incident rw-edges. This explains the
early throughput collapse of ESSI or PSSI in many experiments.

In SSI, the data variables that record conflicts are transaction-specific, trying to re-
duce the coverage of the kernel mutex. The code updates them in every read and write
step as soon as a conflict first occurs. Although this frequent checking makes certifi-
cation at commit very easy, we find that it incurs remarkable overhead as parallelism
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Time Begin Txn

Commit Txn

mutex_enter(&kernel_mutex);
trx_commit_off_kernel(trx);
mutex_exit(&kernel_mutex);

ulint trx_commit_off_kernel(trx_t* trx) {

if (trx->isolation_level == TRX_ISO_SERIALIZABLE) {
ulint err = trx_do_cycle_test(trx);

}

}

storage/innobase/trx/trx0trx.c

(a) Mutex contention of ESSI and PSSI

Time Begin Txn

Commit Txn

if (view->serializable_si) {
mutex_enter(&kernel_mutex);
wtrx = trx_get_on_id(trx_id);
if (!wtrx)

wtrx = trx_get_ssi_on_id(trx_id);
mutex_exit(&kernel_mutex);
if (wtrx)

trx_readwrite_conflict(rtrx, wtrx);

}

storage/innobase/row/row0vers.c

(b) Mutex contention of SSI

Fig. 12. Mutex contentions with the serialisable SI implementations

grows. See Figure 12(b). The routine is to check presence of a rw-edge when it detects
concurrent access to the same version of data by an updater and a reader. When retriev-
ing data structures for a reader and an updater (by trx get on id()), SSI scans a
globally maintained list structure, each node of which points to metadata for an active
(running) transaction. This necessitates the use of a kernel mutex to guarantee mutual
exclusion to avoid data race on the list; and accessing the list by trx get on id() is
protected by a big kernel mutex. Since this routine is executed for every record a trans-
action reads (i.e., a small dark gray region in Figure 12(b)), the routine could increase
mutex contention enormously as the degree of concurrency increases. For instance, if
we employ more cores with higher MPL, the length of the shared transaction list is sub-
stantially increased; and the time to find a target transaction from this list also grows
linearly; then mutex contentions and associated spin-waiting would become worse.

As we have seen from many figures showing profiled executions with a large por-
tion of time spent in the Mutex region, employing more cores increases the degree of
concurrency; then it leads to higher contention on the mutex, and longer waiting. If we
increase the number of read records, this also introduces more chances of conflicting ac-
cesses to kernel mutex. In SSI, the critical region is always executed for all records
accessed by a transaction, so that read-only transactions can not escape from this lock
trashing in the worst case. This is how we could observe the undesirable throughput
collapse phenomenon in 100% read-only workloads in SSI.

6 Conclusions

To the best of our knowledge, this is the first extensive performance evaluation of snap-
shot isolation concurrency control on multicore servers. Our results show that while
forms of serializable snapshot isolation (SSI) can be implemented with a low runtime
overhead for the actual algorithm, the synchronisation overhead for some central shared
data structures starts dominating the costs for highly parallel configurations. We evalu-
ated three different existing implementations of these ideas in InnoDB, for a variety of
effects from varying hardware and workload configurations.

We found the performance of all three SSI variants to be very similar, with the orig-
inal SSI from [6] showing a slightly more robust performance in some settings, and
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with PSSI from [8] showing benefits of precision in some cases when the concur-
rency control itself becomes the bottleneck. But compared to plain SI, all three SSI
approaches showed a rapid performance degradation on a 24 core machine once MPL
reached around level 20 when implemented in InnoDB. Even worse, this effect occurs
for pure read-only workloads, contradicting the common belief that under SI variants
‘readers never wait’. When analysing the underlying cause, we identified a few synchro-
nisation points in these algorithms, where some internal shared data structures of their
serializability check are protected by a shared kernel mutex against race conditions.
This finding mirrors similar findings from the systems community. The elimination of
these synchronisation points will be important future work leveraging the benefits of
SSI into the world of modern multicore servers.

Acknowledgments. This research was supported by the Australian Research Council
grant DP0987800.
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Abstract. Relational similarity measurement between word-pairs is im-
portant in many natural language processing tasks such as information
extraction and information retrieval. The paper proposes a hybrid ap-
proach for relational similarity measurement based on various aspects
including term co-occurrence, lexicon-syntactic patterns, as well as their
combinations. In this approach, we first extract two relation-term sets
from sentences of Wikipedia documents in which two words coincide,
and compute the semantic relatedness score of each word-pair in the
two relation-term sets. Second, we model the semantic relatedness value
of two words together with their frequencies as a point in the three-
dimensional space. Afterward, we apply DBSCAN - the classic density-
based spatial clustering algorithm to group these 3D points. We finally
calculate the similarity based on the clusters. We evaluate this hybrid
approach using the well-known 374 SAT analogy questions. The experi-
mental results show that our approach can significantly reduce compu-
tational time for measuring relational similarity with a relatively higher
score of 52.9% compared to the state-of-the-art.

Keywords: Relational similarity, Semantic relatedness, Density-based
clustering algorithm, WordNet.

1 Introduction

Relational similarity measurement can be applied widely in numerous natural
language processing tasks such as detecting word analogies, classifying semantic
relations, information extraction, and information retrieval [1,7]. Latent Rela-
tion Search (LRS) is recently proposed as a query-by-example technique for
solving queries in which the user specifies a triplet of terms q=(A,B,C ) and
seeks from a search engine a fourth term D such that the (C,D) relation is anal-
ogous to the (A,B) relation [16,17]. For example, we know Obama is the presi-
dent of U.S., if we want to know who is the president of France, we can query
q=(Obama,U.S.,France) to seek the term Hollande as the answer. This requires
the LRS search engine to correctly measure the similarities between two relations
hold by two words in two word-pairs, (Obama,U.S.) and (Hollande,France).

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 431–445, 2013.
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In general, there are two kinds of similarity, i.e., attributional similarity and
relational similarity. Attributional similarity is a correspondence between at-
tributes of two words. A measure of attributional similarity (sima) is a function
that maps two words, wa and wb to a real number. The higher correspondence
there is between the properties of wa and wb, the greater value their attribu-
tional similarity has. For example, dog and wolf have a relatively high degree of
attributional similarity.

Relational similarity refers to the similarity of semantic relations between
pairs of words [1]. The relational similarity between two word-pairs, (wa,wb)
and (wc,wd), is defined as the correspondence between semantic relations that
exist between the two words in each word-pair. For instance, the two word-
pairs, (ostrich,bird) and (lion,cat), are considered relationally similar because
the relation X is larger than Y holds between the two words X and Y, in each
of two word-pairs. Here we use X to replace ostrich and lion, while use Y to
replace bird and cat. A measure of relational similarity simr is the function
that maps two word-pairs, (wa,wb) and (wc,wd), to a real number. The more
correspondence there is between the relations of (wa,wb) and that of (wc,wd),
the greater their relational similarity is.

Many algorithms have been proposed for measuring attributional similarity
between two words [9], while measurements of relational similarity are not well
studied [1]. Existing relational similarity measurements can be broadly divided
into two categories: lexicon-based methods and corpus-based methods.

The lexicon-based methods are built on the basis of a hypothesis, the amount
of relational similarity between two word-pairs, (wa,wb) and (wc,wd), depends
on the degree of correspondence between the relations between wa and wb and
the relations between wc and wd [1]. Veale [2] proposed a relational similarity
measure algorithm based on WordNet. This approach was tested using a set of
374 SAT (Scholastic Aptitude Test) analogy questions, achieving a score of 47%.

Existing lexical-based approaches have two major limits: (1) They depend on
the relations between two concepts described in the lexical resources, where there
are limited relations supported by a lexical resource. (2) The part of speech in
a semantic dictionary is also limited, e.g., Wordnet only contains nouns, verbs,
adjectives and adverbs, it does not supply some proper nouns (e.g. XML), prepo-
sitions (e.g. for and into), personal pronouns (e.g. him, her and himself ) and
combinations of words. These characteristics restrict the use of these approaches.
For these reasons, the corpus-based methods attract more focus.

The corpus-based approaches are built on the basis of a hypothesis, two words
have a certain degree of semantic similarity if and only if they appear in the same
context. This method views the probability distribution of context information
as the reference of lexical semantics. The basic idea of these approaches is to
calculate the relational similarity between word-pairs using the co-occurrence
context information of a word-pair from large corpus (e.g., Wikipedia or by a
search engine like Google) [15,16].

The VSM (Vector Space Model) approach is introduced which adopts 128
manually patterns and counts the hit frequency [1]. Later, Turney [18] provides
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the LRA (Latent Relational Analysis) method. LRA automatically derives the
patterns from the corpus and uses synonyms to explore reformulations of word-
pairs. However, LRA is computationally intensive. It cost 8 days to process the
374 analogy questions. Bollegala et al. [4,5] proposed another relational similar-
ity algorithm which adopts web text snippets. Later, Bollegala et al. [11] de-
scribe eight different types of relational symmetries that are frequently observed
in proportional analogies and use those symmetries to robustly and accurately
estimate the relational similarity between two given word-pairs. The existing
approaches are mostly based on extracting semantic features as feature matrixes
from large-scale corpus. The extracted semantic features are loosely distributed,
which cause the sparseness of feature matrixes. MTLRel compresses the feature
matrix into a feature vector using a multi-task lasso method, then measures re-
lational similarity between two word-pairs by the cosine of the angle between
two feature vectors [12].

These corpus-based methods build the matrixes that heavily depend on sta-
tistical calculations. They calculate the relational similarities by the cosine or
the Mahalaobis distance. For the VSM method, users need to manually cre-
ate the 128 patterns, which is a huge workload. In LRA, the matrix is high
dimensional and sparse, which typically brings time-consuming process. These
methods use lexicon pattern frequency as the feature vector for a word-pair.
They mainly depend on statistical data and cannot mine the implicit semantic
relations. Other approaches [11,12] use snippets. However snippets just summa-
rize the main points of the text and the extracted patterns from them are not
enough to represent the semantic relations hidden in word-pairs.

To tackle the problem of mining the semantic relations among words for
corpus-based methods, we proposed an approach by combining Wordnet3.0 and
the Wikipedia [3]. Experimental evaluation based on the same 374 SAT analogy
questions, the score of the approach is 43.9%, which is higher than the approach
suggested by Bollegala [4]. And the computation time is 3.x days which is less
than that of LRA (8 days). During our experiments, we noticed that these se-
mantic relatedness are scattered, which is one main reason of a relatively lower
score compare with that of LRA.

In this paper, we propose an extended approach from the following three
aspects: (1) We design a method to represent relations of a word-pair using
relation-terms extracted from the corpus (e.g., Wikipedia). Both relation-terms
and their corresponding frequencies are viewed as attributions of relations. The
relation-terms can be nouns, verbs, adjectives and prepositions. (2) The seman-
tic relatedness score of two words extracted from the relation-term sets respec-
tively is computed by Gloss Vector. A three-dimension model is created using
two frequencies of the two words and their semantic relatedness score. Further-
more to cluster these points, a Density-based clustering algorithm (DBSCAN)
is employed. (3) The relational similarity between two word-pairs is conducted
by these clustered semantic relatedness scores. Experimental results conducted
on the 374 SAT analogy questions show that the proposed method attains a
relatively higher accuracy score of 52.9% with relatively lower time cost.
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In summary, the main contributions of this paper include:

– We propose a novel hybrid model that integrates three components to mea-
sure relational similarity, i.e., term concurrence, syntactic patterns, and a
clustering algorithm.

– We extensively validate the approach using the well-known SAT 374 analogy
questions dataset.

The rest of this paper is organized as follows: Problem statement is introduced
in Section 2. The details of the suggested approach are presented in Section 3.
Section 4 shows the evaluation and its performance. Section 5 describes related
work. Finally, we conclude this paper in Section 6.

2 Problem Statement

Our problem can be summarized as follows: Let R1 and R2 be the semantic
relations between a word-pair (wa,wb) and another word-pair (wc,wd). Our aim
is to measure the similarity between the two relations R1 and R2.

To completely describe the latent semantic relations between a word-pair, in
this paper, we represent the relations between a word-pair using bag-of-words
model. That is, R1(wa,wb) and R2(wc,wd) are represented by two sets of terms
T1(wa,wb)={ t1,t2,...,ti,...tm} and T2(wc,wd)= { t

′
1,t

′
2,...,t

′
j ,...,t

′
n} respectively.

Two terms ti and t
′
j are viewed as relation-terms of R1(wa,wb) and R2(wc,wd)

respectively. The frequency of the term ti is fi and the frequency of t
′
j is fj

′.

There are F1(wa,wb)={f1,f2,...,fi,...,fm} and F2(wc,wd)={f ′
1,f

′
2,...,f

′
j ,...,f

′
n}.

For two relations, R1(wa,wb) and R2(wc,wd), we view the two relation-term
sets T1(wa,wb) and T2(wc,wd), together with their frequencies F1(wa,wb) and
F2(wc,wd) as the attributes of the two relations respectively. Originate from the
definition of attributional similarity, that is, the attributional similarity between
two words is a correspondence between attributes of the two words, we give two
hypotheses about the relational similarity between two word-pairs in this paper:

Hypothesis 1: for two word-pairs, their relational similarity is a correspon-
dence between the attributes of two relations.

In this paper, we model the features of a relation between two words using
a relation-term set and the frequency of each term. Thus we can give another
hypothesis.

Hypothesis 2: the relational similarity between two word-pairs depends on
the attributional similarity of two terms extracted from two relation-term sets
respectively together with their frequencies.

For two word-pairs, (wa,wb) and (wc,wd), existing related works reduce rela-
tional similarity to attributional similarity based on a hypothesis, that there is a
high degree of relational similarity between (wa,wb) and (wc,wd), if there is also
a high degree of attributional similarity between (wa,wc), and between (wb,wd).
The algorithm proposed by Veale [2] uses the depth of the relation between wa

and wc, the depth of the relation between wb and wd, and the common adjective
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words in the two glosses of each two words (wa and wc,wb and wd) in Wordnet.
The quality measure was based on the similarity between the (wa,wc) paths and
the (wb,wd) paths.

Different from Veale’s approach, we measure relational similarity by measuring
attributional similarity between two relations R1 and R2. Since we model the two
relations using relation-terms and their frequencies, we measure the relational
similarity of two word-pairs by measuring their relation-terms. Symbols used in
the following sections are summarized in Table 1.

Table 1. Table of symbols

Symbol Meaning

w A word in a word-pair

X, Y A word used to replace the first word or the second word in a word-pair

R The relations two words in a word-pair hold

t, t
′

A relation-term a word-pair holds

T The relation-term set of a word-pair

f, f
′

The frequency of a relation-term

F The frequency set of a word-pair

Doc Collected web documents

Sk A sentence

S A set of sentences

sima Attributional similarity

simr Relational similarity

rel Semantic relatedness value

clu A cluster

weight The weight of a cluster

rel The arithmetic mean of all semantic relatedness values in a cluster

MinPts The minimum number of objects

p, q, o A data object

ω The subsequence threshold

ε A given radius

Ph The set of all subsequences

3 Our Approach

For two word-pairs (wa,wb) and (wc,wd), since two relations R1(wa,wb) and
R2(wc,wd) are not given, our task is (1) inferring these hidden (latent) rela-
tions and expressing the relations using bag-of-words model, (2) computing se-
mantic relatedness values of any two relation-terms from two relation-term sets,
and (3) computing the relational similarity value for the two relations. For the
convenience of discussion, we take two word-pairs (museum,exhibit) and (the-
ater,performance) as an example. The outline of the suggested approach is shown
in Fig.1.
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Relation-terms
Extractor

Semantic relatedness 
ComputationClustering

Wikipedia Relation-term sets
T(museum, exhitib)

T(theater, performance)

(museum, exhibit)
(theater, performance)

Semantic 
relatedness Values 
and two frequency 

Sets

Compute 
similarityResult

Fig. 1. Outline of the suggested approach

3.1 Extracting Relation-Terms

To identify the implicit relations for two word-pairs (wa,wb) and (wc,wd), both
two word-pairs are input into the search engine of Wikipedia. In this paper, we
choose Wikipedia as the corpus, since it is currently the largest knowledge repos-
itory on the Web with over 3.4 million articles in English now. Web pages that
contain both terms wa and wb or both terms wc and wd are gathered as the text
corpus for the two word-pairs. We represent all collected pages as Doc(wa∧wb)
and Doc(wc∧wd) respectively. Note that, we do not know the relations in ad-
vance. We extract all pairs that might hold some relations and then use several
filters to obtain informative pairs as describe late.

All text documents in both Doc(wa∧wb) and Doc(wc∧wd) are fed to the Ex-
tractor, which extracts subsequences containing both wa and wb or both wc and
wd in the same sentences. The lengths of the extracted subsequences are not
longer than a subsequence threshold ω (We will discuss the determination of ω
in Section 4). For example, given a word-pair (wa,wb), we extract subsequences
that might represent semantic relations between two words wa and wb in a sen-
tence Sk. S is the set of sentences containing both wa and wb, there is Sk∈S. We
consider the gaps between wa and wb (or wb and wa) of the sentence Sk .

We then generate all subsequences from the above sentences. These subse-
quences start with the first word wa (and its other formats) and end at the
second word wb (and its other formats), or in turn.

For all subsequences, we change them into the form Xv1...vi...vkY. The set of
all subsequences is denoted as Ph(wa,wb) in which the word-pair (wa,wb) appear.
For example, for the word-pair (museum,exhibit), the extractor would extract all
subsequences that represent the semantic relations between museum and exhibit
or their other forms. We replace museum and its other formats with X, while
replace exhibit and its other formats (such as exhibits, exhibited, exhibiting) with
Y. We also count the frequency of each subsequence.
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Choosing Relation-Terms
To eliminate the differences between inflected forms of a word, all words in all
subsequences between X and Y are stemmed and POS (Part-of-Speech) Tag-
ging. In this paper, we use the Part-of-Speech Tagger developed by Natural
Language Processing Research Group of Stanford University [14]. We consider
nouns, verbs, adjectives and prepositions for the following reasons: (1) Article
and interjection have less effect on expressing semantic relations between two
words; (2) Prepositions can be used to express time, position and reason; (3)
Wordnet is a lexical dictionary which contains nouns, verbs, adjectives and ad-
verbs, where adverbs generally are used to decorate adjectives and verbs.

For the relation-terms extracted in the previous step, all nouns, verbs, adjec-
tives and prepositions in subsequences are remained. These terms are viewed as
the relation-terms. Through this way, for the word-pair(wa,wb), we can get its
relation-terms T1(wa,wb)={t1,t2,...,ti,...,tm}. We denote the frequencies of the
relation-terms as F1(wa,wb)={f1,f2,...,fi,...,fm}. Similarly, for another word-pair
(wc,wd), we can get the relation-terms T2(wc,wd)={t′1,t

′
2,...,t

′
j ,...,t

′
n} and their

frequencies for F2(wc,wd)={f ′
1,f

′
2,...,f

′
j ,...,f

′
n}.

Compared to the relation presentation algorithms in previous researches, our
approach is adapted to improve the recall of relation presentation between two
words: (1) We eliminate the differences between inflected forms of a word by
using various forms of two words, and by stemming the subsequences between
two words. (2) We use X and Y to replace the two words respectively. For
example, consider the two sentences: Obama is the 45th and current president of
the U.S and Hollande is the current president of France. We generate the terms
between Obama and U.S as X president of Y then we have a common terms
between two word-pairs (Obama,U.S ) and (Hollande,France).

3.2 Semantic Relatedness Computation

Two words are semantically related if they have any kind of semantic relation [8].
They are semantically related to the degree that they share attributes. Examples
are synonyms (bank and trust company), meronyms (car and wheel), antonyms
(hot and cold), and words that are functionally related or frequently associated
(pencil and paper) [1]. Attributional similarity in cognitive science corresponds
to the term semantic relatedness in computational linguistics [1]. We do not
distinguish semantic relatedness and attributional similarity in this paper.

Gloss Vectors is a popular algorithm based on WordNet to measure seman-
tic relatedness between two words by combining the structure and content of
WordNet with co-occurrence information derived from raw text [9]. In our
approach, we use Gloss Vectors to measure semantic relatedness value (rel)
between any two terms extracted from two relation-term sets. For the relation-
term set T1(wa,wb) of the word-pair (wa,wb) and the relation-term set T2(wc,wd)
of the word-pair (wc,wd), we compute the semantic relatedness value relij be-

tween a word ti in T1(wa,wb) and a word t
′
j in T2(wc,wd). The number of all

semantic relatedness values is m ∗ n. For example, for two word-pairs, (mu-
seum,exhibit) and (theater,performance), the samples of T (museum,exhibit) and
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Table 2. Semantic relatedness measurement between two terms

ti t
′
j Semantic relatedness values

be be 1

build outdoor 0.466874489

display tour 0.798024459

feature group 0.800974744

with and 0

contain have 0.933292187

house school 0.811479648

several many 0.898463388

provide host 0.883077082

... ... ...

T (theater,performance) are shown in the first two columns of Table 2. The sam-
ples of semantic relatedness values between one term of T (museum,exhibit) and
one term of T (theater,performance) are shown in the third column of Table 2.

3.3 Semantic Relatedness Clustering

As mentioned above, frequencies of terms in a relation-term set are attributions
of a word-pair also. We organize the frequency fi of the term ti, the frequency
f

′
j of the term t

′
j and their semantic relatedness value relij as a point with a

coordinate (fi,f
′
j,relij) in the 3D space. For instance, the coordinates of two

word-pairs, (museum,exhibit) and (theater,performance), are shown in Fig.2. In
Fig.2, x–axis and y–axis represents the frequencies of the terms in T(museum,
exhibit) or T(theater,performance) respectively, z -axis represents the semantic
relatedness values between any two terms in two relation-term sets.

From Fig.2, we observe that, most of the points are intensive, while some of
the points are discrete without fixed shape. The concentrated points indicate that
their relations are similar, while individual points mean that they are noise or
their relations are different. Considering these features of points, it is better to
use a density-based clustering method to cluster these points. The main ideas of
the density-based clustering are: looking for the higher-density areas separated by
the lower-density areas from the data set, and view each individual higher-density
area as a cluster. DBSCAN (Density Based Spatial Clustering of Applicationswith
Noise) is one of the most popular clustering algorithm [6]. DBSCAN defines that:
for each object in a cluster, there is at least the minimum number (MinPts) of
objects which are the neighbors of the object within a given radius (ξ).

It is necessary to organize the data set before we use the DBSCAN algorithm.
Our method is summarized here: the frequency fi of the term ti is marked as
the x -dimension, the frequency f

′
j of the term t

′
j is marked as the y-dimension,

and the semantic relatedness value relij between two terms ti(i = 1, 2, ...,m) and

t
′
j(j = 1, 2, ..., n) is marked as the z -dimension. For any two terms of the two
relation-term sets, all these points are represented as {p1,p2,...,pk}. We use the
DBSCAN algorithm to cluster these points.
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Fig. 2. The points in 3D for two word-pairs (museum,exhibit) and (the-
ater,performance)

The DBSCAN algorithm begins from a starting object o which is not accessed.
The algorithm searches all ξ-neighborhoods of the object o with the distance
ξ. If there is | Nξ(p) |≥ MinPts, thus a cluster is created (which means the
point o is a core object). After that, the algorithm clusters all objects which
are density-reachable from the core object. Then, a new never accessed point is
used to explore a fresh cluster. Both ξ and MinPts are global variables. Their
determinations will be discussed in Section 4.

After using the DBSCAN algorithm, all points are clustered into (k) clusters
(clu), here clui= {rel i1,...,rel ij ,...,rel ip}. The number of points contained in i-th
cluster (clui) is viewed as the size of the cluster. Furthermore, we view the size
of a cluster as the weight (weight i) of the cluster.

To indicate the central tendency of the collection of all semantic relatedness
values in a cluster, we compute the arithmetic mean (rel) of the cluster. That
is, for a cluster (clui), its semantic relatedness score is,

reli =
1

weighti

weighti∑
j=1

reli,j (1)

3.4 Relational Similarity Computing

For the two word-pairs, (wa,wb) and (wc,wd), we have extracted their relation-
terms above. Considering that some relation-terms contribute more than others,
we use the weighted mean of these clustered relatedness values to compute the
relational similarity (simr) between the two word-pairs. The relational similar-
ity (simr) is the weighted mean of a data set, {rel1,...,reli,...,relk}, with their
weights, {weight1,...,weight i,...,weightk}, that is,

simr(wa, wb :: wc, wd) =

∑k
i=1 weightireli∑k

i=1 weighti
(2)

Therefore the cluster with a higher weight contributes more to the weighted
mean than that of the element with a lower weight.
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4 Experimental Evaluations

We evaluate the proposed approach on the 374 SAT analogy questions. The task
of the 374 SAT analogy questions is to find out the solution from the five choices
which is the most analogous to the stem. The performance of our approach
is measured by Precision (Accuracy or Score), Recall and F-measure (F). The
correct choice is called the solution, and the incorrect choices are distracters [1].
Table 3 shows one of 374 analogy questions, along with the relational similarity
values between the stem and each choice, using the proposed approach. The
choice with the highest relational similarity values is viewed as the answer.

Table 3. A sample of SAT analogy question with their relational similarity values

Stem ostrich, bird Relational similarity values

Choices (a) cub, bear 0.074

(b) ewe, sheep 0.063

(c) goose, flock 0

(d) lion, cat 0.12

(e) primate, monkey 0.083

4.1 Thresholds Determination

There are three thresholds in the proposed approach, the subsequence threshold
ω, the distance threshold ξ and the minimum number threshold MinPts. In our
experiments, we determine the values of the three thresholds as follows: (1) For
the subsequence threshold ω, we set ω=5 for the reason that LRA uses the value
5 which is discussed in [18]. (2) The other two thresholds ξ and MinPts, are
related to the DBSCAN algorithm. There have been a lot of works on the two
thresholds. However certain rules are not getting yet. In our approach, the two
threshold are empirically determined. Our empirical results show that the ranges
of ξ and MinPts are 0 < ξ ≤4 and 3 ≤ MinPts ≤ 7 respectively. We show the
corresponding experimental results in Fig.3.

In Fig.3, the accuracies represent the scores of the 374 SAT questions using
the proposed approach. We notice that our approach gets the highest accuracy
rate 52.9% while ξ=3.25 and MinPts=5.
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Fig. 3. The accuracies of the 374 SAT questions under various ξ and MinPts
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4.2 Experiment Analysis

We show the various comparisons between our approach with other existing
methods in Table 4. All values of existing methods (VSM-AV, VSM-WMTS and
LRA) are reported in [18]. The time costs of three main steps of the proposed
approach are shown in Table 5.

Table 4. Comparison among various relational similarity measurements

VSM-AV VSM-WMTS LRA Our approach

Correct questions 176 144 210 190

Wrong questions 193 196 160 169

Skipped questions 5 34 4 15

Precision 47.7 42.4 56.8 52.9

Recall 47.1 38.5 56.1 50.8

F 47.4 40.3 56.5 51.8

Time
(Day:Hour:Min)

17:00:00 1:00:00 8:17:49 2:05:18

Table 4 shows that the precision rate 52.9% of the proposed approach is
slightly lower than 56% of LRA, while the time cost 2.x days of our approach is
far less than 8 days of LRA. Two main factors of these experimental results are:
(1) the size of documents which are entered into Extractor, and (2) 15 skipped
questions are skipped.

Table 5. Three main steps used in the proposed approach

Main steps Time cost
(Hour:Min:Sec)

Hardware

Extracting relation-terms 4:25:08 1CPU

Computing semantic relatedness values 48:50:00 1CPU

Clustering and computing relational similarity 0:03:00 1CPU

All time cost 53:18:08

For the first factor, the size of documents, in our experiments, we summarize
the relation between the size of documents and the accuracy, and the relation
of time cost and the accuracy in Fig.4 and Table 6 respectively. The larger the
number of documents is, the higher the accuracy is, while the time cost is ever
greater. In this paper, considering the tradeoff between accuracy and time cost,
we limit the number of documents to be 100. There are more corpora in LRA
(nearly all pages returned)than that in the proposed approach (the top 100 pages
returned), while the time cost of LRA is much higher.
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Fig. 4. Accuricies with the number of documents entered into Extractor

For the second factor, the 15 questions are skipped for the following two
reasons: (1) There are no terms left after POS tagging. For example, all middle
words of the stem (amplifier,ear) are removed for there are not nouns, verbs,
adjectives and prepositions. (2) If all semantic relatedness values are zero for
two word-pairs, thus the question is skipped.

Table 6. Time cost with the number of documents entered into extractor

Number of documents 20 50 70 100 200

Time cost(Day:Hour:Min) 0:05:08 1:01:00 1:15:14 2:04:05 5:02:16

One main feature of the proposed approach is the usage of the DBSCAN algo-
rithm to cluster points. Without clustering, all points are used in the relational
similarity measurement. After clustering, the points are clustered and the noise
points are removed. We show the experimental results of employing DBSCAN
and that of excluding DBSCAN in Table 7.

Table 7. Comparison between Excluding clustering and employing clustering

Excluding DBSCAN Employing DBSCAN

Time cost(Day:Hour:Min) 2:04:05 2:05:18

Correct questions 137 190

Wrong questions 161 169

Skipped questions 76 15

Accuracy 46% 52.90%

As shown in Table 7, by employing the DBSCAN clustering, the number of
correct questions increases significantly, from 137 to 190, the number of skipped
questions reduces greatly also, from 76 to 15, and the number of wrong questions
increased slightly. The experimental accuracy rate of employing clustering is
larger than that of excluding clustering around 7 percent. The main reason is
related to the 15 skipped questions. The points of the word-pairs corresponding
to these 15 questions are more concentrated and there are no noise. Consequently,
the clustering procedure has no effect.
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5 Related Work

For relational similarity measurement, characterizing semantic relations between
two words are important. Generally, there are two ways to characterize semantic
relations between two words, lexical patterns and bag-of-words model.

Lexical patterns are used to represent semantic relations between two words
of a word-pair that appear in the same sentence [1,11]. The relation between
two words in a word-pair is therefore represented by a vector of lexical pattern
frequencies.

In the VSM approach, a vector is first created for a word-pair (wa,wb) by
counting the frequencies of various lexical patterns in which slot markers X and
Y are substituted respectively by wa and wb[1]. They used 128 manually created
patterns such as X of Y, Y of X, X to Y, and Y to X in their experiments.
The numbers of hits for respective queries are used as elements in a vector the
represent the word pair. The VSM approach achieves a score of 47% on the
374 SAT questions. LRA extends the VSM approach in three ways [1]: (1) The
connecting patterns are derived automatically from the corpus, instead of using
a fixed set of patterns. (2) The Singular Value Decomposition (SVD) is used to
smooth the frequency data. (3) LRA considers transformations of the word-pair,
generated by replacing one of the words by synonyms. LRA achieves a score
of 56% on the same dataset. LRA is time consuming for it adopts synonymous
variants of the given word-pair and needs a large number of search engine queries.
The formed matrix in the algorithm is so large and sparse that the cost is heavy
to reduce the noise. LRA takes over 8 days to process the 374 SAT analogy
questions, which can be problematic in many Web mining related tasks.

Bollegala et al. [5] proposed a method which adopted web text snippets to
automatically extract lexical patterns. The characteristics of the method are: (1)
Support Vector Machine is trained to recognize word pairs with similar semantic
relations. (2) It applies the Mahalanobis distance to calculate the vector similar-
ity. Bollegala’s method achieves the SAT score of 51.1%. The reason of a lower
score is that the method use snippets as their corpus: (1) Which cause some
wrong relations extracted by their method. And (2) the information carried by
snippets is lower than the information carried by web documents returned by a
web search engine.

Another way to characterize semantic relations is retrieving terms in specific
relation and model these terms as bag-of-words model. For relational similarity of
two word-pairs, in bag-of-words model, a relation is represented as a collection of
words. Church and Hanks [9] measured semantic relatedness between two words
with mutual information. Turney [1], Baroni and Bisi [13] proposed methods
that calculate the level of synonyms for two words by using the number of Web
documents returned by search engines. Their methods use the concurrences of
words and mutual information. Kato et al. [11] represent the relations between
two words by bag-of-words, that is, the extracted words from the sentences con-
taining two words. Their assumption is that, the relations between two words
are better expressed by the sentences which frequently appear in the documents
containing both the two words.
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In our approach, we model semantic relations between two words by retrieving
terms in specific relation which satisfy special lexical patterns, and we model the
relations between a word-pair using bag-of-words.

6 Conclusion and Future Work

Relational similarity measurement attracts great interest in natural language
processing. In the paper, we proposed a hybrid approach for relational similarity
measurement, which integrates WordNet and Wikipedia to measure relational
similarity between two word-pairs. The main features of the proposed approach
are: (1) We use relation-terms to represent relations, and both relation-terms and
their frequencies are viewed as attributions for measuring the two word-pairs, in
order to represent latent relations between two word-pairs. Furthermore, we mea-
sure relational similarity between two word-pairs using attributional similarity
measurement. (2) In this approach, Gloss Vectors are used to measure seman-
tic relatedness between word-pairs. (3) The DBSCAN algorithm is adopted to
cluster the points. Experiments show that the similarity measuring accuracy is
improved using the clustering algorithm.

In the future, the following aspects will be further conducted: (1) Gloss Vec-
tors has show their higher performance in semantic relatedness measurement
between two words. However it is computationally intensive. To reduce time
cost, we will introduce other semantic relatedness measurements with higher
accuracy with less time cost. (2) Other clustering algorithms will be evaluated
in our approach to validate the performance. (3) We further evaluate our ap-
proach in other works such as Latent Relational Search and web entity similarity
measurement.

Acknowledgement. This work is sponsored by the grant from the Shanghai
Science and Technology Foundation (No. 11511504000 and No.11511502203).
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Abstract. Most available static data are becoming more and more high-
dimensional. Therefore, subspace clustering, which aims at finding clus-
ters not only within the full dimension but also within subgroups of
dimensions, has gained a significant importance. Recently, OpenSubspace
framework was proposed to evaluate and explorate subspace clustering
algorithms in WEKA with a rich body of most state of the art sub-
space clustering algorithms and measures. Parallel to it, MOA (Massive
Online Analysis) framework was developed also above WEKA to pro-
vide algorithms and evaluation methods for mining tasks on evolving
data streams over the full space only.

Similar to static data, most streaming data sources are becoming high-
dimensional, and tracking their evolving clusters is also becoming im-
portant and challenging. In this demonstrator, we present, to the best of
our knowledge, the first subspace clustering evaluation framework over
data streams called Subspace MOA. Our demonstrator follows the online-
offline model which is used in most data stream clustering algorithms.
In the online phase, users have the possibility to select one of three most
famous summarization techniques to form the microclusters. In the of-
fline phase, one of five subspace clustering algorithms can be selected.
The framework is supported with a subspace stream generator, a visual-
ization interface to present the evolving clusters over different subspaces,
and various subspace clustering evaluation measures.

1 Introduction

Clustering on the high-dimensional data becomes more and more important as
modern databases tend to be huge. Due to the curse of dimensionality, excessive
number of attributes makes data points unique, and the distances between the
points become more alike as the dimensionality grows in high-dimensional space
[3]. For such kinds of data with higher dimensions, distances grow more and
more alike (cf. the toy example in Figure 1(a)). Applying traditional clustering
algorithms (called in this context: full-space clustering algorithms) over such data
objects will lead to useless clustering results. In Figure 1(a), the majority of the
black objects will be grouped in a single-object cluster (outliers) when using
a full-space clustering algorithm, since they are all dissimilar, but apparently
they are not as dissimilar as the gray objects. The latter fact motivated the
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Fig. 1. (a) A Toy Example of a Subspace Clustering Output, (b) A Screen Shot of
OpenSubspace Framework

research in the domain of subspace and projected clustering in the last decade
which resulted in an established research area for static data.

OpenSubspace framework [8] was proposed to evaluate and explorate sub-
space clustering algorithms in WEKA with a rich body of most state of the art
subspace/projected clustering algorithms and measures (cf. Figure 1(b)).

In this research, these algorithms are applied to the streaming cases. Other
than static data that do not vary over time, stream data are given in different
rate and pattern changing dynamically, which makes it challenging to analyze
its evolving structure and behavior. In streaming scenarios, we also often face
limitations on processing time and storage, since a vast amount of continuous
data are coming rapidly.

Data stream mining has been an emerging research topic in the previous
decade and a rich body of stream mining algorithms has been created. MOA
(Massive Online Analysis) framework [7] was built on experience with both
WEKA and VFML (Very Fast Machine Learning) toolkit [6] to support the
research in the stream mining area with generators, visualization methods, and
interesting evaluation measures. Similar to static data, evolving data streams
are also becoming naturally high-dimensional with their existence in multiple
applications with many attributes. However, different to subspace clustering al-
gorithms over static data, only few subspace stream clustering algorithms has
been developed recently (HPStream [2] and PreDeConStream [5]. Such kinds of
algorithms are a bit tricky since they have to track the all changes of evolving
clusters over the streams (splitting, merging, appearance, decaying, moving, ...
etc.), by considering the fact the these clusters might exist in all possible sub-
spaces and not only in the full-space. In Subspace MOA, users can select any of
ten subspace clustering algorithms to be the offline part of subspace clustering
algorithm, where one of seven summarization methods for the online part can
be also selected.
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2 The Subspace MOA Framework

1. Under the Setup Tab: (cf. Figure 2(a)), the selection of the data stream
input, Subspace MOA offers the possibility of reading external ARFF files, a
synthetic random RBF generator, and a synthetic random RBF subspace gener-
ator with the possibility of varying the subspace event. The online-offline model
is followed by most stream clustering algorithms (cf. [1], [4], [5]). In the online
phase, a summarization of the data stream points is performed and the resulting
microclusters is given by sets of cluster features CFi = (N,LSi, SSi) which rep-
resent the number of points within that microcluster, their linear sum and their
squared sum, respectively. Subspace MOA offers three algorithms to form these
microclusters and continuously maintain them. These are the main ones sup-
ported by MOA: ClusterGenerator, CluStream, and DenStream . In the offline
phase, the clustering features are used to reconstruct an approximation to the
original N points using Gaussian functions to reconstruct spherical microclus-

ters centered at ci =
LSi

N with a radius: r =
√

SS
N − (LS

N )2 (SS = 1
d

∑d
i=1 SSi

and LS = 1
d

∑d
i=1 LSi). The generated N points are forwarded to one of the

five most famous subspace clustering algorithms that are supported by Open-
Subspace: SubClu, ProClus, P3C, FIRES and CLIQUE. Up to eight evaluation
measures (such as CE, CMM, SubCMM, Entropy, F1, RNIA) (cf. Figure 2(a))
can be used to reflect the quality of the clustering directly after processing each
horizon. These values are printed gradually in the output panel under the Setup
tab as the stream evolves.
2. Under the Visualization Tab: (cf. Figure 2(b)), the evolving of the final
clustering of the selected subspace clustering algorithms as well as the evolving
of the ground truth stream is visualized in a two dimensional representation.
Users can select any pair of dimensions to visualize the evolving ground truth

(a) (b)

Fig. 2. Subspace MOA Screen Shots of (a) The Setup Tab, (b) The Visualization Tab
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as well as the resulted clustering. Different to MOA, Subspace MOA is able to
visualize and get the quality measures of arbitrarily shaped clusters.

3 Website, Demo Plan and Conclusion

Subspace MOA can be found at http://dme.rwth-aachen.de/en/subspacemoa.
In the demonstrator, we want to explain the main idea of two subspace clustering
algorithms as well the online-offline model, with the motivation for getting the
final subspace stream clustering algorithms. The framework will offer researchers
the possibilities to detect weak and strong points of different subspace clustering
algorithms when applied in the streaming scenario, as well as the suitable on-
line/offline combination for a certain dataset. This is all done in a user friendly
interface that is in line with the MOA framework style.

Acknowledgments. This work has been supported by the UMIC Research
Centre, RWTH Aachen University, Germany.
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Abstract. In this paper, we introduce a novel data model for represent-
ing symbolic trajectories along with a pattern language enabling both the
matching and the rewriting of trajectories. We illustrate in particular the
trajectory data type and two operations for querying symbolic trajecto-
ries inside the database system Secondo. As an important application
of our theory, the classification and depiction of a set of real trajectories
according to several criteria is demonstrated.

1 Introduction

Recently, pattern matching with movement history has been studied extensively
[1,2]. Since raw GPS records are inconvenient for most matching applications,
[3,4,5] and especially [6] focus on trajectories containing semantic information.

A symbolic trajectory is a sequence of temporally annotated labels each of
which is a semantically meaningful description, e.g., a street or city name, an
activity, or a means of transportation. Inside our database system Secondo [7,8],
a symbolic trajectory is called a moving label, since similar data types (moving
point, moving real, etc.) are supported. Secondo converts GPS data into a
moving label by matching the segments onto a map and storing the according
street names from OpenStreetMap [9]. For ease of exposition, we provide a short
movement history of a person inside the city of Dortmund in nested list syntax:

((("2012-03-31-13:17:01" "2012-03-31-13:18:21" TRUE FALSE) "Hansastr.")

(("2012-03-31-13:18:21" "2012-03-31-13:20:37" TRUE FALSE) "Kampstr.")

(("2012-03-31-13:20:37" "2012-03-31-13:21:07" TRUE FALSE) "Brueckstr.")

(("2012-03-31-13:21:07" "2012-03-31-13:21:47" TRUE FALSE) "Hohe Luft")

(("2012-03-31-13:21:47" "2012-03-31-13:21:57" TRUE FALSE) "Bissenkamp"))

Each line of the quoted moving label corresponds to a so-called unit label, i.e.,
a combination of a time interval and a description. The boolean expressions
indicate whether the start and end instant belong to the interval, respectively.

We created and implemented the operators matches and rewrite, the former
for matching and the latter for rewriting a symbolic trajectory, both available
in Secondo. For using the first one, the user has to provide a mobility pattern,
arbitrarily many additional conditions, and a symbolic trajectory. The result is
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true if and only if the specified pattern matches the trajectory, thus the operator
yields a boolean value and may be applied as a selection criterion for filtering
trajectories fulfilling a specific pattern – and related conditions, if specified –
from a large database relation. For example, from all the trips of a person during
the last 12 months, we may obtain exactly the paths from home to work.

The second operator requires the same input as matches, extended by a rewrite
part consisting of result variables and optional assignments. Again, a matching
decision is computed, but rewrite focuses on the fact that there may be numerous
matching possibilities (e.g., if a place is visited repeatedly inside a trajectory).
Its result is a set of moving labels, more exactly, according to the selection of
the user, a specific part of the trajectory is returned, and due to the possible
matching ambiguity, there may be several results. In addition, these results can
be rewritten in order to enrich them with further knowledge.

The main contributions of our research, compared to the abovementioned
related work, are the expressiveness of our pattern language allowing the use of
Secondo database queries for filtering moving labels as well as the ability to
rewrite parts of the moving label. The latter enables the user to classify large
sets of symbolic trajectories concerning business trips to particular customers,
migration behaviors of different bird species, positions of components for an
automatic manufacturing process, or private journeys to special destinations. A
comprehensive example is presented below.

In Section 2, we introduce the pattern language for matching and rewriting a
symbolic trajectory. The demonstration is reported in Section 3.

2 Pattern Language

This section is dedicated to the language for specifying a matches or rewrite

query in Secondo. As mentioned above, we distinguish four parts of the input.
This and the next section refer to the following example:

X (_ "Alte Teichstr.") Y * Z (_ "Alte Teichstr.") // get_duration(X.time)

+ get_duration(Y.time) + get_duration(Z.time) < (duration (0 1200000))

=> A // A.label := "short walk", A.start := X.start, A.end := Z.end

Unit Patterns. We consider the first query line until // containing a sequence
of unit patterns, each of which may be assigned a variable by prepending it.
For both operators, this part is crucial for the matching decision and thus
mandatory. Each unit pattern has one of the forms (t l), ((t l)), +, or ∗, where
t is a time interval either in semantic or in numerical form (e.g., afternoon,
2012-05-12~2012-05-13-23:45:00) and l is a label.1 A simple pattern (t l) matches
a unit label (tu lu) if and only if tu ⊂ t and l = lu. An underscore acts as a
wildcard, i.e., guarantees a time or label match, respectively. The second form
has the same matching criteria but refers to one or more unit labels, as long as
a matching is possible. The two remaining alternatives match any sequence of
unit labels and differ insofar as ∗ may also match no unit label at all.

The values of the assigned variables are accessed in the following parts.

1 The user may specify sets of time intervals resp. labels instead of single ones.
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Conditions. Subsequent to the unit patterns, the user may append conditions
(until =>) obeying the following two rules: Each condition has to be evaluable
into a boolean result by Secondo and to contain at least one expression of the
form v.attr, where v is one of the variables from the previous part, and attr is
one of the attributes label, time, start, end, card (the latter denotes the number
of unit labels matched by the respective unit pattern) of this variable determined
by the matching. Notably, several unit patterns may be linked in one condition.

Results. In this required part, ranging from => to //, the user controls the rewrite
operator’s result by specifying the output variables, either known from the unit
patterns section or new. The latter must be enriched with information in the
following part. For every matching possibility (if any), the unit labels assigned
to the output variables are merged into a moving label which is returned.

Assignments. Finally (fourth line after //), the user may rewrite the result by
assigning new values (either by referring to values from other variables or by
typing them in Secondo syntax) to certain result unit labels. Left from the
assignment symbol :=, a v.attr expression (as explained in the conditions part,
although the use of card is not allowed here) is required. The assigned value has
to be a Secondo-evaluable expression of the respective data type.

3 Demonstration

In the following, we demonstrate the functionality of the operators. The used
relation contains 169 moving labels of different lengths from one person, covered
by car, train, bike, or foot, including trips from home to work or leisure walks.
Our objective is to extract all walks starting and ending in "Alte Teichstr." (1)
of less than 20 minutes (2) from the relation and to rewrite the resulting moving
labels, in order to have only one unit per walk (3) containing the respective time
interval and the label "short walk" (4). This is obtained by executing rewrite

with the pattern from section 2 in Secondo. For the sake of brevity, only the
query parts related to our operators are discussed. Initially, the operator converts
the unit pattern sequence into an NFA whose states represent the unit patterns,
except for the accepting state which is active only in case of a complete match
with the moving label. This automaton performs filter step (1), after which
the variable bindings are stored. Subsequently, the v.attr parts of the condition
(note that 20 minutes are entered as 0 days and 1,200,000 ms) are replaced by
the respective values, such that the expression can be evaluated by Secondo,
excluding too long walks (2). The result part contains one new variable, hence
each resulting moving label consists of one unit label (3). Since the variable
A is not attached to a unit pattern, the assignment section has to provide its
components with data that are either user-typed ("short walk") or dependent
on the trajectory and on the variable bindings (X.start, Z.end) (4). We present
one of the resulting moving labels:

((("2012-04-02-08:10:05" "2012-04-02-08:26:27" TRUE TRUE) "short walk"))



Symbolic Trajectories in SECONDO: Pattern Matching and Rewriting 453

The runtime of this query amounts to 0.047 sec on an AMD Phenom II X6 3.3
GHz running openSUSE 11.4, with 8 GBytes of memory. The walks remaining
after the selections (1) and (2) are depicted in Figure 1.

Fig. 1. A screenshot of the filtered walks from the Secondo GUI

Note that Secondo is freely available and may be downloaded from [8].
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Abstract. Retweeting is one of the most commonly used tools on Twit-
ter. It offers an easy yet powerful way to propagate interesting tweets one
has read to his/her followers without auditing. Understanding and pre-
dicting tweets’ retweeting extents is valuable and important for a number
of tasks such as hot topic detection, personalized message recommenda-
tion, fake information prevention, etc. Through the analysis of similarity
and difference between epidemic spread and tweets spread, we extend
the traditional Susceptible-Infected-Susceptible (SIS) epidemic model as
a model of tweets spread, and build a system called ReTweetp to pre-
dict tweets’ future retweeting trends based on the model. Experiments
on Chinese micro-blog Tencent show that the proposed model is superior
compared to the traditional prediction methods.

1 Introduction

A tweet is a post, limited to 140 characters, on the micro-blog service - Twit-
ter. When a micro-blog user composes a tweet, his/her direct followers will see
it instantly. If these followers want to share it with respective followers, they
can just simply forward the tweet with/without comments by simply pressing
the retweeting button. The message will spread extensively after several rounds
of retweeting. As each micro-blog user can easily post, comment, and forward
tweets without original author’s permission, information dissemination among
micro-blog users is much faster and wider than that on any traditional medium.
Studying the characteristics of such tweets retweeting is thus important for a
number of tasks, such as hot topic detection, personalized message recommen-
dation, fake information prevention, etc.

In the literature, [2,4,5] applied the classificationapproaches topredict the range
of propagation of a tweet. TheReTweetp system to be demonstrated in this paper,
however, aims topredict the exact retweetingnumber rather thana scope. It ismore
challenging, given the fact that a large span of retweeting amounts different tweets
have inTwitter. Interestingly, tweets spreadbears some similarity to infectious dis-
eases spread. A classic epidemic model for the spread of infectious diseases is the
Susceptible-Infected-Susceptible (SIS) model [1, 3]. It classifies individuals as oc-
cupying two categories, namely, susceptiblemeaning they do not have the disease,
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and infectedmeaning that they do have the disease. The disease can be transmit-
ted to a susceptible person when they come into contact with an infected person.
An infected person may recover from the disease to re-enter an susceptible state.

This is similar to tweets spread among micro-blog users. A tweet firstly prop-
agates to the direct followers of the tweet’s author. Some of these followers will
retweet the tweet to their respective followers by pressing a retweeting button,
who may then choose to retweet the same message again or not to their followers.
For consistency, the propagation of the tweet from its author to the author’s fol-
lowers can also be viewed as a retweeting action by the author. In the paper, we
call a user who posts or a retweets a tweet message a retweeter of the message.
An analogy between epidemic spread and tweets spread is illustrated in Table 1.

Table 1. Analogy between epidemic spread and tweets spread

Epidemic Spread Tweets Spread

infectious disease tweet message

infect retweet

infected individual retweeter of a tweet message

susceptible individual direct follower of a retweeter

We draw inspirations from the dynamic epidemic spread and simulate the
dissemination of tweets by the extension of the classic SIS model to tailor to
some specific features of tweets spread. A retweeting prediction system called
ReTweetp is built to predict tweets’ retweeting extents at a future time point.
Our experiments on Chinese micro-blog Tencent demonstrate the effectiveness
of the approach compared to other traditional prediction methods.

2 Modeling and Predicting Tweets Spread on Micro-Blog

In the standard SIS model, the total amount of individuals at either state
susceptible or infected is fixed without considering individuals birth. Such a
fixed population is not valid when modeling tweets spread due to the open-
ness of micro-blog, where external users may spontaneously read and retweet a
message on their own initiative, without following any retweeting user. This is
different from the SIS model where the infection must only come from an in-
fected person. Besides, a retweeting user may retweet the same message several
times with no following relationship to any retweeting user.

To address the differences, we add a state external whereby an external visitor
spontaneously retweets a tweet at a rate γ, without following any retweeting
(infected) users. Also, an retweeting (infected) user may retweet again the same
message at his/her own will. A diagrammatic representation of the extended SIS
model, which we call SISe, is shown in Fig. 1. There are four processes by which
a user’s state may change. 1) A message retweeter transmits a tweet (disease) to
his/her direct followers (susceptible users) with rate β, part of whom will press
the retweeting button to become retweeters. 2) After retweeting, the retweeter
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Retweeting State Following State External State

followers infection
(retweeting)

multiple infection
(multi-retweeting)

external infection
(spontaneous  retweeting)

change to followers
who may retweet later

Fig. 1. The tweets retweeting spread model

user returns to the follower state if s/he is a direct follower of a certain current
retweeter at rate α, or 3) it remains as a retweeter by retweeting the same tweet
multiple times at rate η. 4) An external visitor spontaneously retweets the tweet
at rate γ without following any retweeter.

Formally, given a tweet message, at time t, let function I(t), S(t), E(t) return
the number of message retweeters, number of direct followers of retweeters at t,
and number of external spontaneous visitors, respectively. Upon the birth of a
tweet message where t = t0, I(t0) = 1, E(t0) = 0, and S(t0) is the number of
direct followers of the tweet’s author.

S(t+ 1) − S(t) =− βI(t)S(t) + αI(t)

I(t+ 1)− I(t) = βI(t)S(t) + ηI(t) + γE(t)− αI(t)

E(t+ 1)− E(t) = ωI(t)

(1)

where β is the retweeting transmission rate, α is the retweeter-to-follower change
rate, η is the multi-retweeting rate, γ is the externally spontaneous retweeting
rate, and ω is the proportion of external spontaneous visitor with respect to the
current retweeters. According to Formula 1, we build a system called ReTweetp

which can predict a tweet’s retweeting amount at a future time point.

3 System Implementation and Demonstration

The ReTweetp system consists of three modules. 1) Data Preparation, involv-
ing seed data collection and initial rates training, 2) retweeting prediction, and
3) user interaction. We collect 1200 tweets on the self-cultivation topic from
the Chinese Tencent micro-blog from September 1, 2012 to November 11, 2012,
where each tweet was retweeted over 1500 times, with 6871 as the largest retweet-
ing amount. We capture the initial rates of β, α, η, and γ in Formula 1 from the
seed tweets, and adjust the values dynamically along with the time.

Fig. 2 is the system screenshot, divided into four parts. Panel 1 shows the
user-requested tweet whose retweeting amount is to be predicted. Panel 2 al-
lows the user to indicate the prediction time span and frequency. Requirements of
retweeters (direct followers or spontaneous visitors) and retweeting with/without
comments can also be imposed upon prediction. Panel 3 shows the tweets hier-
archical spread as water waves. A circle represents a direct retweeting follower,
and the size of the circle indicates his/her total amount of direct followers. A
square denotes an external spontaneous visitor, and the size of the square in-
dicates the total number of direct followers of this visitor. The line between a
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Fig. 2. ReTweetp screenshot Fig. 3. Performance com-
parison

circle/square and a circle is the direct following relationship, while the line be-
tween a circle and a square shows the spontaneous tweet reading relationship.
Panel 4 is the retweeting amount prediction result, with the real value in dark
color as a reference. A comparison of six different predictive methods (includ-
ing ReTweetp, Linear Regression LR, Support vector regression SVR, Gaussian
processes regression GPR, and Markov) in terms of the mean prediction error
and running time is also available when the user clicks the compare result button
in Panel 4, as shown in Fig. 3. For the user-entered prediction request shown in
Fig. 2, the ReTweetp system leads to the least prediction error. This is because
it learns and uses the most parameters than the rest and thus takes the most
time for high-quality prediction.
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Abstract. As a micro-blogging service, Twitter differs from other so-
cial network services in two ways: 1) the absence of mutual consent in
establishing follow links and 2) being a mixture of news media and so-
cial network. A key question to ask in better understanding Twitter user
behavior is which part of a user’s Twitter network reflects one’s real-life
social network. TwiCube is an online tool that employs a novel algo-
rithm capable of identifying a user’s real-life social community, which we
call the user’s off-line community, purely from examining the link struc-
ture among the user’s followers and followees. Based on the identified
off-line community, TwiCube provides a summary of the user’s interests,
tweeting habits and neighborhood popularity analysis. Evaluations from
real Twitter users demonstrate that our off-line community detection
approach achieves high precision and recall in most cases.

1 Introduction

Twitter distinguishes itself from other SNS like Facebook with two unique char-
acteristics [3]: 1) Twitter functions as a mixture of news media and social network
combining features from both; and 2) mutual consent is not required to estab-
lish a follow link. And thus, even if two users follow each other, can we conclude
that they are friends in person? For example, does the US President Barack
Obama personally know all the 670,000 users that he follows? The eluding social
characteristics of Twitter network have so far fogged answers to these important
questions. Despite the increasingly rich study on Twitter, few have explored the
relationship between a user’s online and off-line social network, which, on the
other hand, has been adequately investigated in standard SNS like Facebook.
Indeed some works probing this territory, such as [1, 2]. However, they either
used a fairly weak definition of “friend” which refers to anyone to whom the user
has directed at least two tweets or they cannot identify whether groups formed
by clustering algorithms are actually traces of online or off-line social networks.

TwiCube1 is an online tool to identify the portion of a user’s Twitter follow
network that maps to his or her off-line social life, which we call the user’s off-line
community and the user being studied is then called the target user. The iden-
tification of a users off-line community is important in characterizing different

1 http://twitterbud2011.appspot.com/
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users and understanding their behavior on Twitter. For example, to build a bet-
ter model for user interest profiling, on one hand, online friends like medias and
celebrities are more informative of the user’s interests, hobbies, etc. On the other
hand, the close off-line friends are more similar in interests as well. Therefore,
what these close friends follow online could complement and reinforce those one
follows. For instance, a music-lover may follow three music-related Twitter users,
while his or her close friends in the off-line community may altogether follow an-
other twenty music-related ones, giving strong evidence on the users interest
in music. By an aggregated analysis on the interests of the off-line community
members, we are able to build a more robust and accurate interest profile for the
target user. In this paper we give an overview of the architecture of TwiCube
and its major modules including a briefing on the algorithms in Section 2. We
then demonstrate a case in Section 3.

2 Overview and Architecture

TwiCube is an online tool for off-line community analysis. As Figure 1 shows, an
execution loop of TwiCube is triggered by a query for a certain target user and
culminates the visualization of the off-line friends network and related statistics.
It utilizes two external resources: Twitter and FreeBase. The process of retrieving
the network structure from Twitter and computing the off-line community is on-
the-fly so that it provides the real-time version and avoid the expenses on storage.
The phase of employing FreeBase is off-line since these data are regarded as a
dictionary for profiling. Given these raw data, we calculate the closeness score
for each pair of nodes and generate the community, along with its corresponding
statistics. For efficiency purpose, we cache the query result for further search.

Fig. 1. System overview Fig. 2. An example of a user’s off-line commu-
nity

2.1 Data Collection

Category Extractor. Category extractor performs the off-line task of crawling
data from knowledge base such as Freebase2 via FreeBase API. We collected in-
formation of two types of entities, persons and organizations, for which a number

2 http://www.freebase.com

http://www.freebase.com
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of attributes like Twitter account and field are then extracted. The attributes
of these persons and organizations are further categorized manually. For exam-
ple, the profession “Novelist” belongs to the category Writer, while the sector
“Libertarian Party of San Francisco” is categorized as Politics. For those per-
sons and organizations whose Twitter accounts are not available in FreeBase,
we used their names as queries in Bing search API to look for their correspond-
ing Twitter home page. Combining our results from the Bing search API and
those already obtained in FreeBase, we were able to gather 100 million persons’
and organizations’ Twitter accounts along with their corresponding categories.
Data collected by category extractor are stored in database for generating target
user’s interest profile.

Twitter Real-Time Follow Network. The online retrieving data source,
Twitter, provides a lot of useful APIs to access its user data. We fetch these
data by specifying the target user in real-time manner. These data includes the
network structure and the target user’s recent tweets.

2.2 Data Processing

Off-Line Community Identification. Data obtained from the Twitter real-
time follow network is fed to this module to detect the off-line community of
a user. In order to accomplish this task, we employ an algorithm in [4]. On a
high level, the algorithm works in iterations as follows. Given a target user u,
we computed the closeness score between u and all the other users as well as
v̂, where v̂ represents a connection to u almost as weak as any off-line real-life
friend should be. A ranking list of all the users together with v̂ in decreasing
order of the closeness score is thus generated. All the users ranked before v̂ are
identified as off-line community members, which ends the current iteration. In the
next iteration, the key point is that we now treat the whole off-line community
identified so far as one virtual user node ũ. Instead of computing the closeness
score between u and all the rest users, this time we compute the closeness score
between ũ and every other user. From the ranking list thus generated, if any
user jumps ahead of v̂ in this iteration, the user will be added to the off-line
community of u, which ends this iteration. So on and so forth. For the details,
please refer to [4].

User Analysis. By utilizing the off-line community produced for a user, we are
able to do some analysis for the target user that is unattainable before.

User Interest Category. The category of user interest is based on the observation
on his online community, which usually includes medias, celebrities, etc. There-
fore, a target user’s interests are built according to one’s following celebrities’
categories, which are stored in a database by category extractor.

Popularity Score. We analyzed all the members’ popularity in both online and
off-line communities of a target user. The popularity score is calculated by the
number of followers one owns in the target user’s off-line community. The lead-
ing users in online community indicates the common interests from the off-line
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(a) Interest category (b) Tweeting habit (c) Network’s popularity

Fig. 3. Case demonstration for a certain user’s off-line community analysis

friends’ view. And the leading one in off-line community represents the active
users.

Tweeting Habit. We also present the user’s tweeting time distribution and the
retweet number of his tweets, from which to learn the user’s tweeting behavior.

3 Demonstration Cases

In this section, we demonstrated a case for analyzing off-line friends network of
a query user. We randomly picked up a user from Twitter who has 36 followees
and 35 followers. By employing the algorithm to compute the closeness score,
we generated the off-line community with 25 users shown as Figure 2. Consid-
ering his online community, his interests are mainly about News, Politics and
Technology as Figure 3(a) shows. This guy usually publishes tweets during 07:00
to 08:00 in Greenwich Mean time as Figure 3(b) indicates. In addition, among
his recent tweets, there are only one which has been highly retweeted as the red
one, indicating that he is not active in Twitter. Furthermore, we also present the
popularity score for each user on his off-line community’s level as Figure 3(c).
For more cases, readers could search from our TwiCube search interface.

4 Conclusions

TwiCube is an online tool to detect a Twitter user’s off-line social network.
Manual evaluations from real Twitter users have demonstrated its high precision
and recall. The demo not only finds a target user’s off-line community in a real-
time manner, but also provides further analysis of the user’s off-line community.

Acknowledgments. This project is supported by the Singapore National Re-
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Initiative and administered by the IDM Programme Office.
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Abstract. While conventional search engines demonstrate the power of
delivering information to ones’ fingertips, the complexity of enterprise
information raises a number of challenges to enterprise search engines in
the nature of unstructured contents, task-relevance, result presentation
and multiple languages. We show how we tackle the challenges in aviation
field through the development of an enterprise search engine for English-
Chinese MRO (Maintenance, Repair and Overhaul) task cards, called
TaskCardF inder. It enables technicians and planners to quickly find
out bilingual task cards related to a specific service request coming from
airlines. Several context-awareness features is demonstrated, including
context-aware preference search and recommendation, recall search by
context, keywords suggestion, navigational and analysis-oriented search,
bilingual search support and dynamic result presentation. A user study is
done at an international aviation MRO company. The system is demon-
strated in the video, www.youtube.com/watch?v=vj7u_VfRFZw.

1 Introduction

Enterprise search is an essential part of business intelligence [4]. However, the
complexity of enterprise information raises many challenges. [3,2] discussed the
differences between enterprise search engines and conventional ones in the na-
ture of target content, user behavior and economic motivations, summarized as
follows. First, the majority of enterprise information is unstructured and possi-
bly in multi-languages. Second, enterprise search is highly task-relevant, where
search context (like user role, activity, company’s regulation, etc.) should be
considered. Third, domain-specific guided navigation and search refinement are
desirable. Fourth, users may have previously seen the wanted information, where
searching is recall-based. Fifth, result presentation should include summary, cat-
egory and aggregate information to enhance the usability. These challenges have
led to a formidable problem but also mean enormous potential benefit.

Each year aviation industry spends a whopping amount on MRO services,
and second on fuel. In 2007, it reached US $45 billion, and is expected to be US
$61 billion by 2017. As per industry projections, the size of the worldwide air
transport fleet will expand by nearly 50 percent to 2017, and consequently spur
rapid growth of the MRO business [1]. So suppliers of MRO services are under
pressure to improve competitive international productivity and cut costs. One
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particular problem for them is to support quick turn-around time and improve
accuracy for cost estimation and airplane maintenance schedule making.

MRO services are performed under the instructions of MRO task cards. For
each activity involved, a task card is generated and followed. It is a directive file in
MS Word format, including information like aircraft type, airline, main fault, op-
eration procedure, equipment needed, serviceman, etc. One task card may have a
few to hundreds of pages in bilingual or multiple languages, containing texts, ta-
bles and images. To achieve high-quality cost estimation and service scheduling,
leveraging existing task cards is a must. However, managing the large volume of
task cards manually is impossible, so TaskCardF inder, is built to retrieve bilin-
gual MRO task cards automatically. It resolves the above-mentioned challenges
well and aims to provide MRO service planners and technicians with the right
information under the right task orders with a high degree of task-relevancy.
With several context-awareness features, TaskCardF inder has received good
feedback and evaluation from a demonstration to an aviation MRO company.

2 System Overview

The framework of TaskCardF inder is illustrated in Fig.1.

– Part I (Storage of Task Cards) prepares for searching by parsing, extract-
ing, indexing and storing task cards into a relational DB. Some aggregation
analysis results are also computed and stored in the database.

– Part II (Search over Task Cards) is for performing keyword-based or struc-
tured search requests with access context. Recall-based search based on users’
previous search and viewing history is also provided.

– Part III (User Interaction) facilitates users’ easy and simple interaction with
the system by means of keywords suggestion, bilingual search support, nav-
igational search and structural view of search result presentation.

Extraction, Segmentation and Indexing. Differently-structured MRO task
cards are used by different airline companies and MRO services. To resolve the

Bilingual
Job Cards
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Fig. 1. Framework of TaskCardF inder
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heterogeneity problem, XML is utilized to extract items from the task card. Ev-
ery type of task card corresponds to an XML mapping file, characterizing content
position, storage property, index strategy (e.g., term vector, analysis and stor-
age method), and other attributes of the task cards. To support keyword-based
full-text retrieval, we adopt a Hidden Markov-based Chinese word segmentation
open tool ICTCLAS1 and build fine-grained index for all attributes.

Context-Aware Preference Search and Recommendation. Awareness of
user context could enhance the relevancy of search results remarkably and rec-
ommend potentially useful task cards. TaskCardF inder considers five aspects
of aviation context: 1) search user -centric; 2) aviation service company-centric;
3) airline customer -centric; 4) aviation service-centric; and 5) environment-
centric. An aviation service company provides MRO services to different airline
customers. Search users work on different services for the company in a specific
physical and social environment. To reflect users’ different preferences under dif-
ferent contexts, we build a context-aware preference model [5], where a context-
aware preference is viewed as a 3-tuple (Context, Preference, Weight). Both
context and preference are uniformly described in the form of (Subject, Prop-
erty, Object) via the ontology Protégé OWL tool. Weight in [0,1] specifies the
holding degree of the context-aware preference.

For example, a context-aware search preference like “If the search user be-
longs to the engine team in some MRO services, preferably the work content of
the service involved in the returned MRO task cards is related to engine” can be
expressed as follows.

Subject Property Object

Context: SearchUser belongToTeam “engine team” AND
SearchUser involvedIn MROService

Preference: MROService hasWorkContent “engine”
Weight: 1.0

Recall-Based Search by Context. Recall-based search is a common activity
in enterprise search, as the users are normally involved in regular and repeti-
tive duties and need to consult similar task cards frequently. Complementary to
keyword-based/structured search, TaskCardF inder records user’s historic ac-
cess context for latter re-finding, including search keywords, viewed documents
and access date and time.

Keywords Suggestion and Bilingual Search Support. Relevant keywords
are suggested based on the current keyword and the aviation MRO ontology .
The system first locates the input keyword on the ontology tree, and then decides
the association direction such as upward to recommend some high-level technical
terms, downward for a few detailed ones or just at the same level. The keyword
suggestion could help users refine queries and improve the user experience.

To support bilingual search functionality, TaskCardFinder is equipped with
a well-built Chinese-English aviation dictionary containing 153,627 translation

1 http://www.ictclas.org/index.html

http://www.ictclas.org/index.html
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pairs, and incrementally populated by more complicated technical terms through
dynamically crawling the online translation from the Blue Sky Aviation Lexi-
con2, which could be witnessed by the highlighted matched keywords in Fig.3.

Result Presentation and Search Assistance. The search result allows online
preview and structural view (Fig.3) which can help quickly judge if the task card
is what is really sought. Navigation according to different MRO topics (e.g., A/C
type, main fault and work content) is provided (Fig.2). Under each topic, some
statistic results (like the number of relevant task cards, total and average man
hours)are presented for cost estimation and schedule planning.

Fig. 2. Main search interface Fig. 3. Search result

3 User Study

We demonstrate TaskCardF inder to the staff from engineering, operation, qual-
ity, continuous improvement and R&D departments of an aviation MRO com-
pany and receive positive feedback and constructive comments. First, context-
aware preference functionality is very desirable, as different airline customers
usually have different MRO demands in terms of work content, timeline and
cost; e.g., the MRO request of a coastal airline is different from the one on
the highland. Besides users also play different roles in MRO services and there-
fore have different search focuses. Second, version management of task cards is
expected. Third, the bilingual issue in bilingual task cards’ generation and re-
viewing remains as a difficulty for the company staff. The system is expected to
provide more assistance in these aspects in the future.
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Abstract. Dirty data exist in many systems. Efficient and effective
management of dirty data is in demand. Since data cleaning may re-
sult in the the loss of useful data and new dirty data, we attempt to
manage dirty data without cleaning and retrieve query result according
to the quality requirement of users. Since entity is the unit for under-
standing objects in the world and many dirty data are led by different
descriptions of the same real-world entity, we propose EntityManager, a
dirty data management system with entity as the basic unit and keep
conflicts in data as uncertain attributes. Even though the query language
is SQL , the query in our system has different semantics on dirty data.
In the demonstration, we will show a new philosophy for managing dirty
data around entities. We will present our prototype allowing load dirty
data and query dirty data according to the requirement of users.

1 Introduction

In many systems, dirty data exist because of many reasons. Dirty data will do
harm to the applications. Currently, the major method to deal with dirty data
is data cleaning. Even though data cleaning could handle dirty data in many
cases, such methods have the shortcoming that the repairing in data cleaning
may lead to new dirty data and the deletion during data cleaning will result in
the loss of data. Without extra information, it is difficult to discover true value
of data. Therefore, we attempt to keep dirty data and perform query on dirty
data to obtain relative clean results.

Since entity is the basic unit for understanding objects in real world, our
idea is to organize tuples according to referred real-world entities. Keeping dirty
data, it may occur that an attribute of an entity may have multiple values.
Such data could be considered as uncertain data. Even though many uncertain
data management systems have been proposed, they are not designed to manage
uncertain data generated from entity resolution. They are based on the concept
of “possible world”, which is difficult to define on dirty data.

Without using the concept of possible world, by managing the data with entity
as the basic unit, we develop EntityManager. In our system, entity resolution
is performed on the data sets and the tuples corresponding to the same real-
world entity are merged as an uncertain tuple which stores different values of an
attribute as an uncertain attribute in the relation.

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 468–471, 2013.
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With the consideration of the uncertainty in the attributes and possible errors
in the constraint in the query, the queries in our system have different seman-
tics with traditional databases. For the ease of usage, EntityMangager accepts
common SQL statements and returns results with possibilities representing the
degree that this entity matching the query. With such possibilities, users could
judge whether the results should be accepted.

In this demo, the audience has the ability to interact with the system through
a graphical interface that allows them to load dirty data, input SQL statements
and view results with the uncertainties. Users may input dirty data with various
sizes, dirty degrees, attribute numbers and attribute widths. Users are able to
change these parameters and observe the impact on performance.

The remaining parts of this paper are organized as follows. Section 2 provides
the data model in our system. The query processing methods are discussed briefly
in Section 3. In Section 4, the demo scenario is proposed.

2 Data Model

In this section, we introduce the data model in our system as well as the seman-
tics of the queries. In the data model of our system, the definitions of database
and relation are the similar with those in traditional database [1], while the
definitions of attribute and tuple are different.

With data model different from traditional relational model, the query in our
system has different semantics. With the consideration of multiple values of an
attribute in the relation, the constraints in the query should take the uncertainty
in attributes and constraint into consideration in two aspects. On one hand, the
comparison between the value of attributes should consider the uncertainty in
the values. On the other hand, since the values in attributes and constraints
may contain errors, the comparison between the attributes and the values in the
constraints are approximate. The details of the constraints are shown in [8].

As the queries have different semantics, the definitions of some data operators
are redefined in our system. The projection operator is the same, but the selection
and join operators are different.

3 Query Processing

The framework of query processing in EntityManager is the same as that of tra-
ditional relational databases [2]. With different semantics in the query language,
we develop following three new techniques for efficiently query processing on the
uncertain databases organized according to entities.

1. Similarity-based Operators : With the definitions of selection and join op-
erators different from traditional relational database, we develop similarity
search algorithm [6,7] and similarity join algorithm [4] for the entities.
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2. Indices : To process similarity selection and join efficiently, we designed novel
index structures. To handle the special operators in our system, the in-
dex considers not only more efficient string similarity search on string at-
tributes [6], but also the similarity search of the combination of numerous
and string attributes [7], which can be used for the similarity search on
weighted strings.

3. Query Optimization: With new operators in our system, for the query op-
timization, even though the query plan selection algorithms [2] in classical
relational databases could be applied in our system, the new estimation tech-
niques for the operators should be developed. Thus we design novel result
estimation algorithms for the selection and join operators in [9] and [10],
respectively. Additionally, since the selectivity of join on multiple dirty rela-
tions is difficult to estimate, we propose a random algorithm for selectivity
estimation and join order selection algorithm based the selectivity[5].

4 Demonstration

To demonstrate the features of our system, we load some data of books, paper
authors crawled from multiple databases on the web. Since data sources may
contain errors or inconsistency, the names or prices of the same book may be
different. We apply the entity resolution algorithm in [3] to cluster the relation
into entities. For the convenience of users, our system provides the same inter-
face as traditional relational databases including query processing and database
maintenance. The uncertainties of the values of attributes are computed by the
voting. We attempt to demonstrate our system in following steps.

1. Data Load : After the relations in the database are created, the data in format
of flat text could be loaded in EntityManager. During data loading, entity
resolution is performed and the data is stored in the database in form of
entities.

Fig. 1. Query Processing Interfaces of EntityManager
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2. Data Browsing After the data is loaded into the database, user could browse
the results of entity resolution with selecting all data in the relation.

3. Query Proxcessing As the basic function of a database system, users input
the common SQL query and review query results. As shown in Figure 1,
the query processing interface is the same as traditional databases. And the
query results can be reviewed in detail. To filter the query results according
to the probabilities, users could input the threshold or the number of results
with the highest possibilities to be selected.
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Abstract. Numerous services (email, motion sensor, etc.) emerge and tend to
function more comprehensively. What comes with this is the increasing atten-
tion to collaboration between them. For example, IFTTT1 (IF This Then That)
enables people to set triggering relationships between various services to be au-
tomatically implemented in the cloud. RelRec is an triggering object relationship
recommender system, building a bipartite graph representing the relationships be-
tween services. We propose an algorithm to rate relationships by similarity, and
diversify the results by a modified classic method from graph theory.

1 Introduction

Recommender system is one of the most popular and profitable applications using state-
of-art knowledge over the past decades. Many companies have developed systems to
provide meaningful recomendations to users. Amazon2 developed commodity recom-
mender services by learning user activities. In the back-end, a number of approaches
are devised. Collaborative Filtering is one of the classical ways that cluster either simi-
larity by their preferences to the same products or items by their features. Control theory
is also employed by monitoring feedbacks from recommendation performance and ap-
plying control model on input data [1]. In addition, Graph is often used to design and
verify recommender systems [2].

Currently, existing recommender systems are mainly focusing on objects themselves.
However, some services about relationships between these objects spring out. IFTTT is
an online service that automatically executes user-defined triggering relationships be-
tween different services. It uses channel as the representative of service, like email,
motion sensor, or light switch. Every channel provides some functionalities and events,
called as actions and triggers respectively. Moreover, the triggering relationship be-
tween a trigger and an action is recipe. According to the recipes set by the user, IFTTT
automatically executes corresponding action when a trigger happens. The huge poten-
tial of linking services in this way could port enormous automation and intelligence
to daily lives from the cloud, especially after connecting physical world to the virtual
world using sensor technologies. Nevertheless, IFTTT employes a recommender mech-
anism that merely displays the most popular recipes, which may be either irrelevant

1 http://ifttt.com/
2 http://www.amazon.com/
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or homogeneous because of Matthew Effect regarding the usage or the convergence of
recipes with similar popular features.

In this paper, we introduce a novel triggering relationship recommender system -
RelRec, which recommends recipes rather than conventional objects to IFTTT users.
RelRec takes both ratings and diversity into consideration for recommendation. Our
primitive experiments show that usage data is sufficient to rate recipes and diversifica-
tion is feasible on graph.

2 Recommendation Mechanism

2.1 Bipartite Graph Model

We implemented RelRec using public data from IFTTT. Intuitively, the dichotomous
feature of recipes (i.e. triggers and actions) is modeled as a complete bipartite graph,
with edge weights indicating usage frequencies of corresponding recipes. In particular,
we denote Ci (i = 1, 2, . . . , N) one of N channels, and T j

i (i = 1, 2, . . . , N ; j =
1, 2, . . . , Pi) and Ak

i (i = 1, 2, . . . , N ; k = 1, 2, . . . , Qi) as triggers and actions of the
i-th channel. A recipe between trigger T j

u and action Ak
v is denoted as Rj,k

u,v. Moreover,
the set of all channels, triggers, actions, or recipes, are denoted as C, T, A, R, respec-
tively. Similarly, C+, T+, A+, R+ denote the corresponding items that only exist in the
dataset. In addition, we define the usage density of a recipe Rj,k

u,v as the usage number
over a unit time after the trigger is created, so

Denj,k
u,v =

Usage Count of Rj,k
u,v

Existing Time of Rj,k
u,v

, if Rj,k
u,v ∈ R+, otherwise 0 (1)

where Denj,k
u,v is the usage density. “Usage Count of Rj,k

u,v” is stored in our dataset and
updated regularly. And “Existing Time of Rj,k

u,v” is calculated using difference between
created and current time-stamp, and is updated in timely manner as well.

Fig. 1. Complete Bipartite Graph of All Triggers and Actions

Now we are able to build a weighted complete bipartite graph G = (T +A,R) (c.f.
Figure 1), where T and A denote the set of nodes representing all triggers and actions
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respectively, and R denotes the set of edges representing all recipes.3 The weight of
every edge is assigned as the usage density of the recipe, hence

W j,k
u,v = Denj,k

u,v (2)

2.2 Rate Recipes

We assume user firstly choose channel Cr as her interest, so we get a set of triggers Tr

and a set of actions Ar from Cr. For every trigger in Tr, we rate all actions in A, and
choose top-k results from them that are mostly recommended to be connected to this
trigger. We also rate all triggers in T using Ar symmetrically.

The first step is to compute similarity between any one trigger in T and any one
trigger in Tr based on the usage densities calculated in Section 2.1. Specifically, we
denote the usage density between trigger T and action A as UT,A, and the average
usage density of recipes with action A as UA. For one trigger T k

r ∈ Tr, and one trigger
T j
i ∈ T, we use Adjusted Cosine Similarity theory [3] to compute their similarity.

Simk,j
r,i =

∑
Res[(UTk

r ,A − UA) · (UT j
i ,A

− UA)]√∑
Res(UTk

r ,A − UA)2 ·
√∑

Res(UT j
i ,A

− UA)2
(3)

where Res is the set of restrictions for each term that is accumulated. Res includes
A ∈ A, UTk

r ,A 
= 0, and UT j
i ,A


= 0.

Given any one trigger T k
r , the recommendation rate of action A regarding T k

r is

RateA,Tk
r
=
∑
T j
i ∈T

Simk,j
r,i · UT j

i ,A
(4)

in which Simk,j
r,i is calculate by Equation 3. Thereby, we select top-k actions, and

choose corresponding edges for subgraph. After doing these for all Pr triggers in Tr,
we will get a bipartite subgraph G∗ with k × Pr edges. The value of k × Pr is decided
by RelRec to make sure there are enough recipes to show, unless the maximum value
cannot reach the amount of expected recommendations.

2.3 Guarantee Diversity

Diversity is playing a relevant role in recommender systems [2]. Multiple identical trig-
gers or actions are superfluous to inspire users to make the most of IFTTT services.
By noticing one recommended recipe, user could come up with similar functionalities
by herself. For example, if RelRec recommends her to update Twitter4 profile picture
when Facebook5 profile picture is changed, she can definitely think about updating her
Google+6 profile picture without any external hint.

3 For ease of discussion, nodes and corresponding triggers/actions are used interchangeably in
this paper, so as edges and corresponding recipes.

4 http://twitter.com/
5 http://www.facebook.com/
6 https://plus.google.com/

http://twitter.com/
http://www.facebook.com/
https://plus.google.com/
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According to the subgraphG∗ generated in Section 2.2, we can refine the results with
respect to diversity in a novel and specific way for relationship recommendations. Di-
versity is regarded as the large number of kinds of triggers or actions in recommended
recipes. So we can formulate our problem as finding most nodes with least edges (i.e.
largest node#

edge# ) in bipartite graph, which is almost equivalent to the Maximum Cardinal-
ity Bipartite Matching problem.

To solve our problem, we employ a modified algorithm based on Hungarian Method.
The basic idea of Hungarian Method is to increase matching size by reversing selections
of edges on Augment Path. However, after we get the Maximum Cardinality Bipartite
Matching, if there are not enough recipes to show, we just simply pick one action linked
to left-out triggers in the channel. We re-do this method among unchosen edges until
we get enough recipes to show or every recipe in G∗ is recommended.

3 Demonstration Scenarios

In this demonstration, RelRec will be presented in two phases to show its relevance and
diversity features comparing to build-in recommendation services of IFTTT. We will
first set up the back-end components with latest data, and make it update in a timely
manner. Figure 2 illustrates the User Interface, which will be showed in a browser dur-
ing demonstration. What shown on the top of the interface are IFTTT tabs. A scrollable
horizontal list of available channels is under it. After user selects a channel that she is
interested in, recommended recipes will show up in the lower pannel as RelRec com-
putes. Currently, we display 6 recipes per recommendation. User can choose one recipe
button to get into the IFTTT to start these services.

Fig. 2. RelRec User interface and results, including results after rating channels (top), and results
after considering diversity (bottom)
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Abstract. Managing moving objects in indoor space has been a research focus 
in recent years, as most people live and work in indoor space, e.g. working in 
office, living in apartment, etc. In this paper, we present an extension of Oracle 
named IndoorDB to support indoor moving objects management in a practical 
way. The extension is developed as a PL/SQL package and can be integrated 
into Oracle to offer new data types and operations for indoor location-based 
queries such as indoor navigation, hot spots detection, KNN, range queries, and 
so on. After an overview of the general features of IndoorDB, we discuss the 
architecture and implementation of IndoorDB. And finally, a case study of 
IndoorDB’s demonstration is presented. 

1 Introduction 

Recently, wireless positioning techniques like RFID, Wifi and Bluetooth offer 
opportunities for us to track indoor moving objects [1]. Indoor space has some unique 
features, compared with outdoor space. Firstly, the moving of objects is constrained 
by rooms and doors. Secondly, the distance measurement is different from that in 
outdoor space. The latter usually employs the Euclidean distance. However, this is not 
applicable in indoor space, due to the existence of doors and rooms. Finally, the 
positioning ways in indoor space usually use sensors like RFID and Bluetooth, which 
are differing from the GPS receiver in outdoor environment.  

Previous research on indoor moving objects management were mainly focused on 
data models [2], indexes [3], and specific indoor query processing [4], whereas little 
work has been done in the implementation of real database management systems for 
indoor moving objects. To our best knowledge, there are no real systems built so far.  

Aiming at providing practical support of indoor moving objects management for 
various indoor LBS applications, we present an extension of Oracle named IndoorDB 
in this paper. IndoorDB is developed using the cartridge technology provided by 
Oracle. The unique features of IndoorDB can be summarized as follows: 

(1) IndoorDB is SQL-compatible and built on a widely-used commercial RDBMS, i.e. 
Oracle. Thus it can be easily used in real database applications and provides a practical 
solution for indoor moving objects management under current database architecture.  

(2) IndoorDB supports various moving objects types specially designed for indoor 
LBS applications, such as indoor position, indoor space, and indoor moving object. 
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Combined with ten types of extended spatiotemporal operations, various indoor LBS 
queries can be supported by IndoorDB, such as indoor navigation, indoor KNN, 
trajectory queries, etc. 

2 Implementation of IndoorDB 

2.1 Architecture of IndoorDB 

IndoorDB is implemented as a data cartridge in Oracle using the object-relational 
database technologies [5, 6]. The detailed implemental architecture of IndoorDB is 
shown in Fig.1. The PL/SQL specification provides the signature definition and 
implementation of all the extended data types and functions in the LayeredModel [7]. 
The IndoorDB cartridge is the component that actually brings indoor moving objects 
support into Oracle. Once installed, it becomes an integral part of Oracle, and no 
external modules are necessary. When IndoorDB is installed into Oracle, users can 
use standard SQL to store and query indoor moving objects in Oracle. No external 
work imposes on users. 
 

 

Fig. 1. Architecture of IndoorDB 

2.2 Type System of IndoorDB 

IndoorDB extends three categories of new data types into Oracle, namely temporal 
data types, spatial data types, and moving objects types (as shown in Fig.2). The 
moving objects types contain moving base types and an indoor moving object type. 
The former refers to the numeric, Boolean, or string values changing with time, 
whereas the latter refers to the indoor moving objects as well as their trajectories. All 
the new data types are implemented by PL/SQL using the CREATE TYPE statement. 
Fig.3 shows an example of indoor moving objects and the definition of indoor moving 
object type in IndoorDB. 
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Fig. 2. Type System of IndoorDB 

 

(a) Indoor Moving Object (b) Defining Indoor Moving Object Type using PL/SQL 

Fig. 3. Defining the Indoor Moving Object Type in IndoorDB 

2.3 Data Operations in IndoorDB 

IndoorDB implements ten types of spatiotemporal operations, which are (1) object 
data management operations, (2) object attribute operations, (3) temporal dimension 
project operations, (4) value dimension project operations, (5) temporal selection 
operations, (6) quantification operations, (7) moving Boolean operations, (8) temporal 
relation operations, (9) object relation operations, and (10) distance operations. All 
the operations are implemented by PL/SQL and as member functions of extended data 
types, as shown in Fig.2. For the space limitation, we will not discuss the details about 
each data operation. However, in the demonstration process, we will show how to use 
those operations to answer different spatiotemporal queries. 
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3 Demonstration 

We will first use IndoorSTG [8] to generate simulated indoor space and trajectory 
data, which simulates a 6-floor building consisting of 61 rooms, 7 pass ways, 2 
elevators, 74 doors. 95 RFID readers are deployed in the building. We will generate 
the trajectories of 100 moving objects in one day and then transform them into the 
database using PL/SQL. After that, we will show how IndoorDB answers different 
types of indoor LBS queries. All the queries are conducted through a Web-based 
client interface (see Fig.4).   

 

Fig. 4. Client Interface of IndoorDB Demonstration 
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Abstract. Data quality is essential in many applications. To reduce the
harm of the data in low quality, data cleaning is one of effective solutions.
However, existing data clean systems can clean data in some special
aspect and require relative complex input. To clean data with complex
quality problem for various kinds of users, we develop HITCleaner as a
light weight online data cleaning system which could handle various types
of data quality problem. HITCleaner provides users an elegant interface
to upload dirty data and download cleaned data. It also permits users
to clean data with various parameters and components flexibly. In this
demonstration, we present a tour of HITCleaner, highlighting a few of
its key features. We will demonstrate examples for data cleaning. In
particular, we will show the flexibility of HITCleaner for cleaning data.

1 Introduction

Data quality plays an important role in information systems. In many appli-
cations, dirty data cause serious problems. Studies in Merrill Lynch [6] report
that the 30%-80% time and budget are used in data cleaning instead of system
development. Experts estimated that data quality increase 10%-20% costs for
each enterprises in average [5].

Because of its importance, data quality draws attentions of the literatures
of research and industry. Many systems have been proposed, such as Potter’s
Wheel [4], AJAX [2]. However, each of current systems focuses on one aspect
of data quality problem. Data quality problems have many aspects such as du-
plication, inaccuracy, inconsistency and incompleteness. Additionally, current
systems require users to write statements such as conversion rules or declara-
tive language[4,2]. With the consideration that all users are not experts who
even do not know SQL, the data cleaning systems should provide a simple and
user-friendly interface.

To make data cleaning effective and easy, we develop HITCleaner at Harbin
Institute of Technology, a light-weight online data cleaning system. Comparing
with current systems, our system has following benefits.

– Flexibility. Since different users may have different requirements for the data
cleaning, in this system, we develop data quality detection and cleaning

W. Meng et al. (Eds.): DASFAA 2013, Part II, LNCS 7826, pp. 481–484, 2013.
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algorithms for multiple types of data quality problems, including duplication,
error, inconsistency and incompleteness.

– Friendly user interface. In HITCleaner, users could upload the dirty data file
to the system and provide the requirements for data cleaning through web
interface. Data cleaning is performed online and user can download clean
data file from a web page.

– High Efficiency. Since the data in our system require multi-step cleaning, our
system applies simple and efficient algorithms for data cleaning. As a result,
our system could accomplish the data cleaning task on 1M data within 30
seconds.

– Light Weight. Since our system is setup on a server without large disk, the
algorithms embedded in our system are all light-weighted. It means that
our system does not require a large storage space. It only requires users to
upload a file and does not require large support files.

The remaining parts of this paper are organized as followings. Section 2 proposes
the architecture of our system. The algorithms used in HITClener are described
in Section 3. Section 4 introduces demo scenarios.

2 System Architecture

In this section, we discuss the architecture of our system. To support various
types of data quality problems, we design a flexible architecture. The architec-
ture is shown in Figure 1. In our system, each type of data quality problem is
handled with one or multiple modules. In the architecture, the interaction mod-
ula provides an input interface for the files to clean and the requirements of data
cleaning. The result display modula provides a download link for the clean data
and a comparison of original data with dirty data.

The modules of entity resolution and truth discovery are used for dedupli-
cation, where entity resolution is used to cluster the tuples according to the
referred real-world entity and truth discovery determines the true value when
conflict occurs. Inconsistency resolution module discovers the part of the data
violating dependency rules and correct the data to satisfy the rules. Data impu-
tation module discovers the incomplete parts of data and impute them.

A user could select proper modules meeting the requirements of quality prob-
lem of the data. If a user does not know the quality problem of the data. The
default processing step is shown as the arrow in the figure. It is because that the
complete data will help the entity resolution and inconsistency resolution. And
the resolution of conflict data will help the correcting of inconsistency data.

3 Data Cleaning Methods

In this system, different methods are designed for detection and cleaning different
types of quality problem. In this section, we will discuss these algorithm briefly.
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Interaction Result Display

dirty data clean requrements Clean Data

Entity Resolution

Truth Discovery

Inconsistency resolution
Data Imputation

Fig. 1. System Architecture

– Incompleteness Detection and Data Imputation According to the type of
missing attribute, our system applies two major imputing method, classifi-
cation and regression. For classification, we use Naive Bayesian classification
to deal with the case that both imputed attribute and conditional attributes
are classifiable. For regression, we use principle regression to deal with con-
dition where imputed attribute is continuous numeric type.

– Entity Resolution We apply a two-phrase entity resolution method. The first
focuses on processing the relations and generates similar entity pairs with
inverted index on attributes. The second phrase represents the similar pairs
generated in the first step as a graph, scan and partition on this graph, each
of which represents an entity in the result [3].

– Truth Discovery To discover truth for conflict values, we apply an iteration
method. We give each value an accuracy and confidence according to the
entity resolution results. By weighted voting, based on the accuracy and
confidence, the truth could be selected as the value with the max weight. If
the confidence and dependency between values are predefined, the context
could be used to boost the learning strategy.

– Inconsistency Discovery and Resolution Functional dependencies (FD) and
Conditional functional dependencies (CFD) are applied to perform the in-
consistency discovery and resolution [1]. During inconsistency discovery, a
score is assigned to each tuple according to the degree that it violate the
rule. During the repairing, we pick the tuple with the smallest score to re-
pair.

4 Demonstration

We plan to demonstrate features of HITCleaner in following 4 parts.

– Basic Concepts We demonstrate the basic concept of data cleaning in HIT-
Cleaner with a poster, where the system architecture and the flow of algo-
rithms are shown.

– Standard Data Cleaning Our system provides non-expert users a default
interface for data cleaning. As shown in Figure 2(a), HITCleaner provides
a simple interface to upload the file to clean. After cleaning, the user could
download the clean results as a flat file.
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(a) Data Upload Interface

(b) Result Review Interface

Fig. 2. Interfaces of HITCleaner

– Flexible Data Cleaning Our system provides friendly interface for users to
organize the cleaning components and input the parameters of these com-
ponents for flexible data cleaning.

– Data Cleaning Result Review As the interface shown in Figure 2(b), HIT-
Cleaner provides an interface for the comparison between the cleaning results
and original data. Such that users can tune the input parameters with the
cleaning results.
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