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Abstract. Shape-from-Shading and photometric stereo are two funda-
mental problems in Computer Vision aimed at reconstructing surface
depth given either a single image taken under a known light source or
multiple images taken under different illuminations, respectively. Whereas
the former utilizes partial differential equation (PDE) techniques to solve
the image irradiance equation, the latter can be expressed as a linear sys-
tem of equations in surface derivatives when 3 or more images are given.
It therefore seems that current photometric stereo techniques do not
extract all possible depth information from each image by itself. This
paper utilizes PDE techniques for the solution of the combined Shape-
from-Shading and photometric stereo problem when only 2 images are
available. Extending our previous results on this problem, we consider the
more realistic perspective projection of surfaces during the photographic
process. Under these assumptions, there is a unique weak (Lipschitz con-
tinuous) solution to the problem at hand, solving the well known con-
vex/concave ambiguity of the Shape-from-Shading problem. We propose
two approximation schemes for the numerical solution of this problem,
an up-wind finite difference scheme and a Semi-Lagrangian scheme, and
analyze their properties. We show that both schemes converge linearly
and accurately reconstruct the original surfaces. In comparison with a
similar method for the orthographic 2-image photometric stereo, the pro-
posed perspective one outperforms the orthographic one. We also demon-
strate the method on real-life images. Our results thus show that using
methodologies common in the field of Shape-from-Shading it is possible
to recover more depth information for the photometric stereo problem
under the more realistic perspective projection assumption.

1 Introduction

Reconstruction of three dimensional surface shape is one of the most fundamen-
tal problems in Computer Vision. Two reconstruction approaches, both of which
first introduced in the 1970s, are Shape-from-Shading (SfS) [1] and photometric
stereo [2,3]. Shape-from-Shading is aimed at solving the image irradiance equa-
tion, which relates the reflectance map to image intensity. Photometric stereo is
a monocular 3D shape reconstruction method based on several images of a scene
taken from an identical viewpoint under different illumination conditions. The
most common approach in the field divides the task into two: recovery of surface
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gradients and integration of the resultant gradient field to determine the 3D
surface itself. The goal of the first part is to solve a system of image irradiance
equations. When given 3 or more images, this system becomes linear. As such,
the gradient field can be recovered analytically. For this reason, Shape-from-
Shading and photometric stereo have very diverse methodologies, even though
the latter is a generalization of the former.

A more recent development in the field of Shape-from-Shading is the transition
from the assumption of an orthographic projection of the photographed surface
onto the image plane to an assumption of perspective projection [4,5,6,7,8,9,10].
Perspective Shape-from-Shading algorithms were shown to outperform state-of-
the-art orthographic techniques ([4]) and be applicable to real-life images ([7]).

Photometric stereo research has focused on reconstruction from three or more
images (see [11] for a review). Conditions on the illumination and surface re-
flectance required to obtain uniqueness of solution for three light source photo-
metric stereo are described by Okatani and Deguchi [12]. Even when the light
source intensity and directions are unknown, Shashua [13] has shown that three
or more images provide enough information to determine the scaled surface nor-
mals of an object up to an unknown linear transformation, which allows the
reconstruction of the surface also under unknown lighting conditions (assuming
distant light sources) [14].

For this reason, only few studies investigated the problem of 2-image pho-
tometric stereo (for example, [15,16,17]). A comprehensive work on existence
and uniqueness in 2-image photometric stereo is that of Kozera [18]. Mecca and
Falcone [16] extended some of the results of Kozera [18] and Onn and Bruck-
stein [15], proving a uniqueness result for weak (Lipschitz continuous) solutions.
They also proposed two approximation schemes for the numerical solution of this
problem: an up-wind finite difference scheme and a Semi-Lagrangian scheme.

Tankus and Kiryati [19] changed the common orthographic projection as-
sumption in photometric stereo to a perspective one (similar to Tankus et al. [4]
in Shape-from-Shading), and found an analytic linear solution for the gradient
field of a 3-image perspective photometric stereo problem. Yoon et al. [20] em-
ployed a variational framework in their perspective photometric stereo algorithm,
and demonstrated it using a large sets of input images (≥ 16).

Whereas 2-image orthographic photometric stereo has been investigated for
extracting more information from each equation using Shape-from-Shading tech-
niques, and 3-image perspective photometric stereo has an analytical solution for
the gradient field, no information is available on the 2-image photometric stereo
problem under the perspective projection model. The goal of this research is thus
to utilize numerical schemes commonly used in the Shape-from-Shading realm
also for 2-image photometric stereo under the perspective projection assump-
tion, thus extracting additional information from each given image. We prove
a uniqueness result for weak (Lipschitz continuous) solutions under the per-
spective projection model, and propose two numerical approxiamtion schemes:
an up-wind finite difference scheme and a Semi-Lagrangian scheme. This paper
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thus extends and combines three research directions, by Mecca and Falcone [16],
Tankus and Kiryati [19], and Onn and Bruckstein [15].

The paper is organized as follows. Following the description of notations and
assumptions (Sect. 2), we formulate the new differential model for the photomet-
ric stereo problem (Sect. 3) and we then prove the uniqueness of weak solution
for the new differential model (Sect. 4). In Section 5 we suggest approximation
schemes for the perspective photometric stereo-Shape-from-Shading problem.
We demonstrate the performance of the suggested schemes by a comparison
with the orthographic schemes [16] (Section 6). Concluding remarks appear in
Section 7.

2 Notations and Assumptions

Let us fix the main ingredients for the formulation of the model for the Perspec-
tive Shape from Shading (PSfS) presented in [21]:

– the light source is given by a unit vector ω = (ω1, ω2, ω3) (with ω3 < 0);
– the surface in the real world is given by the analytical function h(x, y) =

(x, y, ẑ(x, y)) (where the point (x, y) is in the image domain Ω = Ω ∪ ∂Ω,
on the optical plane);

– the associated perspective surface is given by the function k(ξ, η) =
(ξ, η, z(ξ, η)) (where the point (ξ, η) is in the perspective image domain
Ω

p
= Ωp ∪ ∂Ωp, on the focal plane, parallel to the optical one at a focal

distance f);
– the transformation used to pass from one point in the optical plane (x, y) to

the respective one in the focal plane is ξ = − x
ẑ(x,y)f , η = − y

ẑ(x,y)f . Then we

have: k(ξ, η) = (ξ, η, z(ξ, η)) =
(− x

ẑ(x,y)f,− y
ẑ(x,y)f, ẑ(x, y)

)
.

3 The New Photometric Stereo Differential Model

Now, considering the irradiance equation given by the inner product between
the light source ω and the normal vector to the surface k(ξ, η) [21], we have the
following differential problem (non-linear PDE + Dirichlet boundary condition):

⎧
⎪⎨

⎪⎩

ρ(ξ, η)
−zξ(fω1 + ξω3)− zη(fω2 + ηω3)− zω3√

f2(z2ξ + z2η) + (z + ξzξ + ηzη)2
= I(ξ, η), on Ωp;

z(ξ, η) = g(ξ, η) on ∂Ωp;

(1)

which has no unique solution even if the albedo ρ(ξ, η) is known.
Let us try to overpass the problem of uniqueness of solution considering the

Photometric Stereo (PS) approach using two light sources defined by the unit
vectors ω′ = (ω′

1, ω
′
2, ω

′
3) and ω′′ = (ω′′

1 , ω
′′
2 , ω

′′
3 ) (with ω′

3, ω
′′
3 < 0).

Using the information obtained by both images we can couple the two equa-
tions related to the irradiance equation in (1) obtaining the following system of
non-linear PDE:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ(ξ, η)
−zξ(fω

′
1 + ξω′

3)− zη(fω
′
2 + ηω′

3)− zω′
3√

f2(z2ξ + z2η) + (z + ξzξ + ηzη)2
= I1(ξ, η), on Ωp;

ρ(ξ, η)
−zξ(fω

′′
1 + ξω′′

3 )− zη(fω
′′
2 + ηω′′

3 )− zω′′
3√

f2(z2ξ + z2η) + (z + ξzξ + ηzη)2
= I2(ξ, η), on Ωp;

z(ξ, η) = g(ξ, η) on ∂Ωp.

(2)

Now, observing that the denominator of both equations is the same (i.e. it does
not depend on the light source) and obviously always different from zero, we can
explicit the non-linearity from the first equation for example

√
f2(z2ξ + z2η) + (z + ξzξ + ηzη)2 =

−zξ(fω
′
1 + ξω′

3)− zη(fω
′
2 + ηω′

3)− zω′
3

I1(ξ, η)
ρ(ξ, η)

(3)

and replacing it in the other, we obtain the following linear problem

{
b(ξ, η)∇z(ξ, η) + s(ξ, η)z(ξ, η) = 0, on Ωp;
z(ξ, η) = g(ξ, η) on ∂Ωp.

(4)

Where:

b(ξ, η) = ((fω′
1 + ξω′

3)I2(ξ, η)− (fω′′
1 + ξω′′

3 )I1(ξ, η),

(fω′
2 + ηω′

3)I2(ξ, η)− (fω′′
2 + ηω′′

3 )I1(ξ, η))
(5)

and
s(ξ, η) = ω′

3I2(ξ, η) − ω′′
3 I1(ξ, η). (6)

It is clear that the albedo function disappears during the substitution of (3).
This means that our new formulation of the PSfS-PS does not depend on the
albedo, rather it is possible to compute it a posteriori.

4 Uniqueness of Weak Solution for the New Differential
Model

With the aim to prove the uniqueness of weak (Lipschitz) solution of the differ-
ential problem (4) we start with the following:

Lemma 1. If there are not any points (ξ, η) ∈ Ω
p
of black shadows for the

image functions (i.e. I1(ξ, η) �= 0 and I2(ξ, η) �= 0), we have that |b(ξ, η)| �= 0
(i.e. the vectorial function does not vanish in Ω

p
).

If we consider as a solution surface ẑ(x, y) a Lipschitz one, and we con-
sider the points where it is not differentiable as the family of regular curves
(γ1(t), . . . , γk(t)) where t is the argument of the parametric representation, it
is clear that this curve contains also the points of discontinuity of the image
functions I1(ξ, η) and I2(ξ, η). Now, since the functions b(ξ, η) and s(ξ, η) de-
pend directly on I1(ξ, η) and I2(ξ, η), the same family of curve represents the
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discontinuity also for these coefficients of the PDE in (4). That is, if we consider
our differential problem like an inverse problem of PSfS with photometric stereo
technique, searching for a weak solution implies a study of the linear partial
differential equation with discontinuous coefficients. Moreover there is a relation
between the set of points of discontinuity of b(ξ, η) and s(ξ, η) and the set of
points where the solution ẑ(x, y) is not differentiable. In fact they are linked
with a bijective correspondence due to the perspective. Another feature about
the discontinuity type of b(ξ, η) and s(ξ, η) is always related to the fact that
we are considering an inverse problem where it is proposed to find a Lipschitz
solution. This means that it must be a jump discontinuity.

γ(t) γ(t) γ(t) γ(t)

Ωp
+

Ωp
+ Ωp

+ Ωp
+

Ωp
−

Ωp
− Ωp

− Ωp
−

(ξ, η) (ξ, η) (ξ, η) (ξ, η)

Fig. 1. All the possibles behaviors of the characteristic field close to the discontinuity
curve γ(t). The only admissible cases (that permits to the information to travel along
the characteristic curves) are the first two from the left.

Theorem 2. Let γ(t) be a curve of discontinuity for the function b(ξ, η) (and
f(ξ, η)) and let p = (ξ, η) be a point of this curve. Let n(ξ, η) be the outgoing
normal with respect to the set Ωp

+, than we have
[

lim
(ξ,η)→(ξ,η)
(ξ,η)∈Ωp

+

b(ξ, η) · n(ξ, η)
][

lim
(ξ,η)→(ξ,η)
(ξ,η)∈Ωp

−

b(ξ, η) · n(ξ, η)
]

≥ 0 (7)

A schematic explanation of the behavior of the vector field b described by this
last theorem is represented in Fig. 1.

Theorem 3. Let us consider the problem
{
b(ξ, η) · ∇z(ξ, η) + s(ξ, η)z(ξ, η) = 0, a.e. (ξ, η) ∈ Ωp;
z(ξ, η) = g(ξ, η) ∀(ξ, η) ∈ ∂Ωp.

(8)

Let us suppose that (γ1(t), . . . , γk(t)), the family of discontinuity curves for b(ξ, η)
and s(ξ, η), are not characteristic curves (with respect to the previous problem).
Then there exists a unique Lipschitz solution of the problem.

A sketch of the proof of the previous and main theorem can easily obtained look-
ing at Lemma 1 and Theorem 2. They can be considered as the main ingredients
which permit to make travel the information stored on the boundary condition
g(ξ, η) across all the domain Ωp. The trajectories followed are defined by the
vector field b(ξ, η) which has all the good properties to make Theorem 8 proved.
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5 Some Approximation Schemes for the Perspective
SfS-PS Linear Equation

For the numerical schemes we consider the domain Ω
p
= [ap, bp]× [cp, dp]. The

discretization space steps are Δξ = (bp − ap)/n and Δη = (cp − dp)/m where
n and m are the number of intervals divide the sides of the rectangular domain
(that is ξi = ap + iΔξ, ηj = cp + jΔη with i = 0, . . . , n and j = 0, . . . ,m). We

will denote by Ω
p

d all the points of the lattice belonging to Ω
p
, by Ωp

d all the
internal points and by ∂Ωp

d all the boundary points.

5.1 Finite Difference

Forward Up-Wind Scheme. In order to introduce a finite difference numer-
ical scheme which does not need to consider a particular direction of the vector
field b in order to be well defined, let us consider the following implicit up-wind
scheme:

b1i,j
ZF
i+1,j − ZF

i−1,j

2Δξ
+ b2i,j

ZF
i,j+1 − ZF

i,j−1

2Δη
+ si,jZ

F
i,j =

|b1i,j |
ZF
i+1,j − 2ZF

i,j + ZF
i−1,j

2Δξ
+ |b2i,j |

ZF
i,j+1 − 2ZF

i,j + ZF
i,j−1

2Δη
(9)

for i = 1, . . . , n − 1 and j = 1, . . . ,m − 1. The artificial diffusion introduced in
the right side of (9) allows to follow the vector field b considering the most ap-
propriate discretization for the fist derivative in order to follow the characteristic
lines ([22,23]).

The computation of ZF consists of solve a global linear system where all the
internal point of the grid are included. This means that the dimension of the
system is [(n− 1)(m− 1)]× [(n− 1)(m− 1)]. In order make understandable how
we compute the matrix, we rewrite the (9) as follow:

ZF
i+1,j

(
b1i,j − |b1i,j |

2Δξ

)
− ZF

i−1,j

(
b1i,j + |b1i,j |

2Δξ

)
+ ZF

i,j

( |b1i,j |
Δξ

+
|b2i,j|
Δη

+ si,j

)
+

ZF
i,j+1

(
b2i,j − |b2i,j |

2Δη

)
− ZF

i,j−1

(
b2i,j + |b2i,j |

2Δη

)
= 0.

(10)

This numerical scheme works forward with respect to the characteristics direc-
tion. This means that the information propagates starting from the inflow side
of the boundary. In the numerical test are presented also results about the back-
ward up-wind scheme.

5.2 Semi-lagrangian Discretization

A second numerical approach that permits to the solve equation (8) miming
the propagation of the information along the characteristics is the following
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semi-Lagrangian scheme. We pass then to consider the following equivalent equa-
tion obtained dividing the two sides of (8) by the norm of b(ξ, η):

∇αz(ξ, η) +
s(ξ, η)

|b(ξ, η)|z(ξ, η) = 0, ∀(ξ, η) ∈ Ωp (11)

with α(ξ, η) = b(ξ,η)
|b(ξ,η)| .

We observe that the division by |b(ξ, η)| doesn’t involve any kind of difficul-
ties for the numerical scheme (Lemma 1). Now, considering the definition of
directional derivative, we can write:

z(ξ + hα1(ξ, η), η + hα2(ξ, η)) − z(ξ, η)

h
+

s(ξ, η)

|b(ξ, η)|z(ξ, η) � 0, ∀(ξ, η) ∈ Ωp

(12)
Considering a uniform discretization Ω

p

d as in the previous section, we can finally
write the semi-Lagrangian schemes:

zn+1
i,j = zn(ξi + hα1(ξi, ηj), ηj + hα2(ξi, ηj))

|bi,j|
|bi,j | − hsi,j

∀(ξi, ηj) ∈ Ωp
d (13)

where zn(ξi, ηj) = zni,j and zn+1(ξi, ηj) = zn+1
i,j defined only on the grid nodes.

In order to include the boundary condition on the scheme we assign an initial
function z0i,j , such that z0(ξi, ηj) = g(ξi, ηj) ∀(ξi, ηj) ∈ ∂Ωp

d .
This numerical scheme works backward with respect to the direction of the

characteristics. This means that it will need of the boundary data on the outflow
part of ∂Ω. Also for this semi-Lagrangian scheme the forward version has been
developed and the results are presented in the next section.

6 Numerical Tests

This section describes the experiments conducted with the proposed numerical
schemes: the Semi-Lagrangian and the up-wind finite difference scheme, each in
its forward and backward formulation.

For the numerical tests we utilized three surfaces (see Fig. 2), each with a
different geometrical and analytical characteristics.

For each of these surfaces, we computed its perspective image under two
light source directions according to the procedure described by Tankus et al. [4]
(Fig. 3). We used a constant focal length f = 1 for all images. In all numerical
tests, the albedo was set to ρ = 1 in all image domains except for the dark stripe
in each of the images (see Fig. 3), where it was set to ρ = 0.5. We repeated the
experiements with images of several sizes: 100× 100, 200× 200, 400× 400, and
800× 800 pixels.

Reconstruction by the suggested perspective Semi-Lagrangian and up-wind
schemes is highly accurate, as demonstrated in Fig. 5.

We compared the suggested numerical methods for solving the perspective
photometric stereo problem with the ones suggested by Mecca and Falcone [16]
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for solving the equivalent orthographic photometric stereo problem. Whereas
the orthographic methods converge and yield an accurate reconstruction of the
aforementioned surfaces when images were generated by orthographic projec-
tion [16], the accuracy is compromised when required to reconstruct images gen-
erated by a more realistic photographic process: perspective projection (Fig. 4).
The suggested perspective methods, on the other hand, faithfully reconstructed
all surfaces, despite the irregularities (Fig. 5).

Three error measures comparing the reconstructed and true surfaces are pro-
vided for each scheme: the L∞ norm in the perspective coordinate system
(ξ, η, z(ξ, η)), root mean square error (RMSE) in the perspective coordinate
system (ξ, η, z(ξ, η)), and RMSE in real-world coordinate system (x, y, ẑ(x, y))
(perspective: tables 1 and 2; orthographic: table 3). The L∞ norm allows us
to examine the convergence rate of the numerical schemes, showing that both
perspective schemes converges linearly (i.e., with order 1), because doubling the
number of grid nodes halves the error. The orthographic method did not con-
verge on the surfaces examined. The RMSE measure, on the other hand, has the
same units as surface depth, and therefore quantifies the mean error with respect
to the original surface. This measure can be easily compared to the aforemen-
tioned ranges of ẑ(x, y) values. The RMSE of the perspective reconstruction is
an order of magnitude smaller than that of the orthographic reconstruction (cf.
Tables 1 and 2 with Table 3).

ẑreg(x, y) ẑirreg(x, y) ẑlip(x, y)

Fig. 2. Set of surfaces used for the numerical tests, each with different geometrical and
analytical characteristics

In addition, we ran the algorithms on real-life images. Two pictures of
Beethoven’s bust were inputs to the backward and forward semi-Lagrangian
schemes (Fig. 6). The backward reconstruction (Fig. 6c) emphasizes the recon-
structed lips, right eye, hair and scarf, whereas the forward one (Fig. 6d), the
three dimensional reconstructed nose with two distinguishable nostrils, left eye
and shirt. Some inaccurate folds in the reconstructions seem to result from inac-
curate boundary conditions and inaccurate measurement of camera parameters
(focal length), leading to some accumulation of error.
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ẑreg(x, y) ẑirreg(x, y) ẑlip(x, y)

Fig. 3. Perspective images of the respective surfaces of Fig. 2, used as inputs to
the algorithms. The light source directions, expressed in spherical coordinates ω =
(sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)), are ϕ1 = 0.1 + π, θ1 = 0.0 for I1 (in the first row)
and ϕ2 = 0.1+ π, θ2 = 3π

4
for I2 (in the second row). The albedo on the dark stripe of

each image is ρ = 0.5; otherwise, ρ = 1.

ẑreg ẑirreg ẑlip

Fig. 4. Reconstruction by the orthographic backward semi-Lagrangian scheme pre-
sented in [16,17] using the input images of Fig. 3 (for original surfaces see Fig. 2). The
reconstruction is inaccurate. We present the backward semi-Lagrangian reconstruction
as it produced the best result among orthographic methods.

ẑreg ẑirreg ẑlip

Fig. 5. Reconstruction by the proposed perspective backward semi-Lagrangian scheme,
using the input images of Fig. 3. The surfaces are flipped compared to the original ones
(Fig. 2) because of the perspective projection. The original surfaces were faithfully
recovered.
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Table 1. Convergence and accuracy of the forward numerical schemes for each surface
of Fig. 2. For each surface we examined images of size Δ × Δ pixels, and computed
three error measures: the L∞ norm in the perspective coordinate system, RMSE in
the perspective system, and RMSE in real-world coordinate system. The L∞ norm
shows convergence is linear (i.e., order 1). The RMSE measures quantify the accurate
reconstruction with respect to the original surface.

semi-lag Forward up-wind Forward
Δ L∞ MSE-persp MSE-real L∞ MSE-persp MSE-real

ẑ
r
e
g

100 7.582 × 10−1 0.079965 0.08006 6.780 × 10−1 0.073121 0.073157

200 3.543 × 10−1 0.048369 0.04849 3.245 × 10−1 0.046625 0.046775

400 1.733 × 10−1 0.027498 0.027577 1.631 × 10−1 0.02839 0.028495

800 8.567 × 10−2 0.014932 0.014977 8.121 × 10−2 0.016325 0.016389

ẑ
i
r
r
e
g 100 6.726 × 10−1 0.11174 0.10957 4.693 × 10−1 0.11507 0.11299

200 4.977 × 10−1 0.067081 0.068095 3.925 × 10−1 0.078578 0.080503

400 3.381 × 10−1 0.037985 0.039874 2.664 × 10−1 0.051528 0.054701

800 2.174 × 10−1 0.020888 0.02254 1.590 × 10−1 0.035682 0.038287

ẑ
li

p

100 1.136 × 10−1 0.0037728 0.003863 1.165 × 10−1 0.0036506 0.0037189

200 5.723 × 10−2 0.001627 0.0016577 6.459 × 10−2 0.0016576 0.001682

400 2.681 × 10−2 0.0010702 0.0011037 3.069 × 10−2 0.0010969 0.0011326

800 1.280 × 10−2 0.00048774 0.00049765 1.531 × 10−2 0.00050909 0.00051989

Table 2. Convergence and accuracy of the backward numerical schemes for each surface
of Fig. 2. The table is organized similarly to Table 1. The rate of convergence of
the backward algorithm is the same as of the forward schemes (order 1). Accurate
reconstruction is also achieved by the backward schemes.

semi-lag Backward up-wind Backward
Δ L∞ MSE-persp MSE-real L∞ MSE-persp MSE-real

ẑ
r
e
g

100 7.582 × 10−1 0.024478 0.025474 2.399 × 10−1 0.0094924 0.011658

200 1.789 × 10−1 0.013978 0.014514 9.918 × 10−2 0.0061304 0.007485

400 8.494 × 10−2 0.007591 0.0078847 4.662 × 10−2 0.003698 0.0045026

800 4.113 × 10−2 0.003997 0.0041618 2.279 × 10−2 0.0021912 0.0026803

ẑ
i
r
r
e
g 100 2.929 × 10−1 0.040556 0.042861 1.673 × 10−1 0.029009 0.028976

200 2.952 × 10−1 0.020974 0.023794 1.025 × 10−1 0.019232 0.019162

400 2.014 × 10−1 0.012261 0.014336 8.878 × 10−2 0.015983 0.016061

800 1.697 × 10−1 0.0072217 0.0086446 8.930 × 10−2 0.014743 0.015029

ẑ
li

p

100 1.136 × 10−1 0.014512 0.015132 1.655 × 10−2 0.014545 0.015172

200 2.533 × 10−2 0.0069519 0.0072408 4.790 × 10−3 0.0069325 0.0072236

400 2.681 × 10−2 0.0035051 0.0036479 5.390 × 10−3 0.003477 0.0036198

800 4.600 × 10−3 0.0017174 0.0017869 1.720 × 10−3 0.0017049 0.0017746

Table 3. Convergence and accuracy of the orthographic semi-Lagrangian scheme [16]
for each surface of Fig. 2. For each surface we examined images of size Δ×Δ pixels, and
computed three error measures: the L∞ norm in the perspective coordinate system,
RMSE in the perspective system, and RMSE in real-world coordinate system. The L∞

norm shows the scheme does not converge. The RMSE is at least an order of magnitude
larger than with the proposed method (cf. Tables. 1 and 2).

Forward Backward
Δ L∞ MSE-persp MSE-real L∞ MSE-persp MSE-real

ẑ
r
e
g

100 9.718 × 10−1 0.13611 0.13944 1.014 0.13751 0.14127

200 9.712 × 10−1 0.13817 0.14188 1.032 0.14018 0.1441

400 9.674 × 10−1 0.13976 0.14366 1.037 0.14209 0.14618

800 9.660 × 10−1 0.14085 0.14485 1.038 0.14334 0.14757

ẑ
i
r
r
e
g 100 9.759 × 10−1 0.192 0.18963 9.585 × 10−1 0.19158 0.19105

200 9.772 × 10−1 0.19725 0.19511 9.386 × 10−1 0.19695 0.19702

400 9.761 × 10−1 0.20061 0.19862 9.230 × 10−1 0.20038 0.20093

800 9.757 × 10−1 0.20283 0.20091 9.181 × 10−1 0.20267 0.20352

ẑ
li

p

100 5.641 × 10−1 0.2042 0.2091 5.658 × 10−1 0.20459 0.20948

200 5.703 × 10−2 0.20555 0.21053 5.713 × 10−2 0.20544 0.2104

400 5.758 × 10−2 0.20626 0.21125 5.753 × 10−2 0.20594 0.21091

800 5.787 × 10−2 0.20661 0.21162 5.792 × 10−2 0.20621 0.21119
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(a) (b) (c) (d)

Fig. 6. Reconstruction of real-life images of the Beethoven bust (a, b) by the backward
(c) and forward (d) semi-Lagrangian schemes (frontal view of the rendered recon-
structed surfaces). Illumination directions: (a) ϕ = 15.1o , θ = 72.5o, (b) ϕ = 11.5o, θ =
184.9o. Focal length: f = 100.

7 Conclusions

This study utilized numerical schemes commonly used in the Shape-from-
Shading literature also for the 2-image photometric stereo problem under the
perspective projection assumption. We proved the uniqueness of the solution in
the class of Lipschitz continuous surfaces given Dirichlet boundary conditions.
We then extended the two numerical methods of Mecca and Falcone [16], the up-
wind finite difference scheme and the Semi-Lagrangian scheme, for the solution
of the 2-image perspective photometric stereo problem. We compared the sug-
gested method with that of Mecca and Falcone [16] on synthetic examples, and
showed that the suggested perspective semi-Lagrangian and up-wind schemes
outperformed their method. As the method of Mecca and Falcone [16,17] can
also reconstruct the albedo in a manner similar to the suggested perspective
one, the inaccurate orthographic reconstruction is not due to the non-constant
albedo, but rather a result of the more realistic set of assumptions of a perspec-
tive projection in the proposed algorithms. We also demonstrated the ability
of the our method to reconstruct real-life images. Our results thus demonstrate
that numerical methods of the type common in the Shape-from-Shading litera-
ture may provide additional information for solving a perspective photometric
stereo problem, as presented here for a 2-image input problem.
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