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Abstract. In this paper, we propose a new reflectance separation model
to separate the diffuse and specular reflection components. The model is
based on a two-dimensional space called Ch-CV space, which is spanned
by maximum chromaticity (Ch) and the coefficient of variation (CV) of
RGB color. The space exhibits a more direct correspondence to diffuse
and specular reflection components than the RGB color space, as well
as the HSI color space. Under the whitened illumination, the surface
points with the same diffuse chromaticity have the same slope in Ch-
CV space. Based on these properties, we propose a slope-based region
growing method to implement an image segmentation in the specular
regions, and to separate the reflection components for each segmented
region. The comparison experiments with several state-of-the-art algo-
rithms show its superior capability to separate the specular and diffuse
reflection components.

1 Introduction

In recent years, separating the diffuse and specular reflection components in
color images has become an important research topic. Lots of highlight detection
and removal methods have been proposed. In these method, the dichromatic
reflectance model [1] has been widely utilized with the assumption that the
reflected light can be separated into specular and diffuse reflections, respectively.

In terms of the quantity of input data, the reflection component separation
algorithms can be categorized into two groups [2]: multi-image based and single-
image based methods. In the early multi-image based methods, polarization
method was introduced in conjunction with color information [3–5]. Later, Sato
and Ikeuchi [6] introduced a temporal-color space to analyze the diffuse and
specular reflections based on colors and image intensity. Lin and Shum [7, 8]
changed the light source direction to produce two photometric images and used
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linear basis functions to separate the specular components. Based on the ob-
servation that the shift of the highlights in sequential images is generated by
the shift of the light source, Feris et al. [9] proposed a multi-flash method. In
addition, [10] and [11] also use multiple images to separate specular and diffuse
reflection components. However, multiple images are not always available under
many circumstances in practice.

Many reflection separation methods which rely on a single image have been
proposed. Klinker [12] extended the dichromatic model by introducing a T-
shaped color space. In this model, the diffuse component of highlight is estimated
through projecting the highlight limb to the diffuse one. However, this T-shaped
distribution will degrade much in image areas with uniform hue but various sat-
uration. Alternatively, Bajscy et al. [13] proposed a specified three-dimensional
space called S space. However, to construct S0 axis of S space, they must use
a spectro-photometer to measure the scene radiance, which is not practical in
many cases. Different from the previous works, Mallick et al. proposed a data-
driven color space called SUV space [14]. In this space, the specular and diffuse
components are separated into S channel and UV channel, then the highlights
are removed by iteratively eroding the specular channel using either a single im-
age or video sequences [15]. Actually, when the input image is under whitened
illumination, all the analysis in the SUV space can be turned to RGB space.
Therefore, it is also vulnerable to a multi-colored or textured images.

Different from the previous approaches which are based on three-dimensional
space, Tan and Ikeuchi [16] proposed a novel mechanism based on a two-
dimensional MaximumChromaticity-Intensity space. In their method, the diffuse
component is obtained by locally iterative calculation based on a specular-free
(SF) image for each pixel. Unfortunately, though no prior image segmentation is
needed, this method leads to a much higher computational complexity and much
color distortions in image, especially at edge areas. Considering the computa-
tional complexity, Yang et al. [17] exploited a fast bilateral filtering technique.
This method estimates the maximum diffuse chromaticity by directly applying
low-pass filter. However, it results in much more color distortions at edges, as
well as inside the region of uniform color. On the other hand, Yoon et al. [18]
also proposed an iterative framework based on the comparison of local ratios. A
modified specular-free (MSF) image was introduced, the reflection components
were achieved by comparing local ratios between input and MSF images, fol-
lowed by making those ratios equal in an iterative framework. The MSF image
was also exploited in the work of Shen et al. [19, 20]. Unfortunately, the type of
methods based on MSF image may wrongly estimate the reflection components
due to color discontinuities in surface edge regions.

In this paper, we exploit a two-dimensional space called Ch-CV space to sep-
arate the reflection components in a single image, the space which is spanned
by the maximum chromaticity and the coefficient of variation of color inten-
sity. There are three major properties about the proposed space: i) under the
whitened illumination, the Ch-CV space provides a linear description of the spec-
ular and diffuse reflections; ii) the polar coordinate values exhibit a more direct
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relationship to reflection components; iii) there is a one-to-one correspondence
between HSI color values and the polar coordinate values in Ch-CV space: the
surface with identical hue and saturation also has identical characteristics in
Ch-CV space.

As mentioned before, Tan et al. [16] also proposed a two-dimensional space
called Maximum Chromaticity-Intensity space so that the separation can be
described as a closed-from. However, the non-linearity of their space leads to the
necessariness of an iterative algorithm to removal the highlights in an image. In
contrast, the Ch-CV space provide a linear description of the specular and diffuse
reflections, which can avoid the iterative estimation process [16, 18]. Based on
its properties, we propose a region growing method to segment specular regions,
and then obtain the maximum diffuse chromaticity for each segmented region.
In this way, the interferences among neighboring surfaces of various color in the
previous work are avoided in our method. As a result, the separation results are
more reliable and accurate than those in previous works.

2 Surface Reflection Model

Based on the dichromatic reflection model [1], the color intensity of pixels in an
image can be computed by the integration over the light spectrum as follows:

Ic(x) = ωd(x)

∫
τc(λ)Sd(λ, x)E(λ)dλ+ ωs(x)

∫
τc(λ)Ss(λ, x)E(λ)dλ (1)

where Sd(λ, x) and Ss(λ, x) are the spectral distribution function of diffuse re-
flection and specular reflection, respectively; E(λ) is the spectral power distri-
bution of illumination light (assume there is a single light source); τc(λ) is the
transmittance function of the camera sensor, and the subscript c ∈ {r, g, b},
representing three color channels: red, green and blue; ωd(x) and ωs(x) are the
geometric scale factors of diffuse reflection and specular reflection, respectively,
which merely depend on the geometry of a surface point.

We define the diffuse chromaticityΛ = {Λr, Λg, Λb} and specular chromaticity
Γ = {Γr, Γg, Γb} as those in [16]. For each channel, Λc(x) = Jd

c /
∑

c J
d
c , and Γc =

Js
c /

∑
c J

s
c . Here, J

d
c =

∫
τc(λ)Sd(λ, x)E(λ)dλ and Js

c =
∫
τc(λ)Ss(λ, x)E(λ)dλ.

Then the color intensity of pixels for each channel c ∈ {r, g, b} becomes:

Ic(x) = md(x)Λc(x) +ms(x)Γc (2)

As explained in [16], both the sum of diffuse chromaticity vector Λ and that of
specular chromaticity vector Γ are equal to 1, that is,

∑
c Λc =

∑
c Γc = 1. As

a result, the sum of color intensity will be
∑

c Ic(x) = md(x) +ms(x).

3 The Proposed Reflection Separation Model

3.1 Illumination Chromaticity Normalization

In the real world, most illumination light are not pure white because of the non-
uniform spectral distribution of light source and different transmittance function
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of camera sensors. In this paper, we utilize the normalization approach intro-
duced in [21] to obtain a normalized specular-diffuse color image, which is derived
by dividing the estimated illumination chromaticity in both sides of Eq. (2):

I ′c(x) = m′
d(x)Λ

′
c(x) +m′

s(x)Γ
′
c = m′

d(x)Λ
′
c(x) +

m′
s(x)

3
(3)

where m′
d(x) = md(x)

∑
c
Λc(x)
Γ e
c

, m′
s(x) = 3ms(x). Obviously, the sum of Λ′ is

still equal to 1, and the same to Γ ′ = { 1
3 ,

1
3 ,

1
3}. Upon the completion of nor-

malization, the reflection separation can be conducted to achieve the normalized
reflection components, followed by transferring the components to the previous
un-normalized components [16].

3.2 The Illustration of Ch-CV Space

In this part, by comparing the Ch-CV space with the Maximum Chromaticity-
Intensity space [16] and HSI color space [22], we demonstrate the claimed prop-
erties of Ch-CV space. At first, we explain the linearity in Ch-CV space.

Given a normalized input image, the maximum chromaticity is defined as:

σ(x) =
max(I ′r(x), I

′
g(x), I

′
b(x))∑

c I
′
c(x)

(4)

The coefficient of variation (CV), which is defined as the ratio of the standard
deviation to the mean of color intensity I = {I ′r, I ′g, I ′b} in a normalized image,
is with the following formulation:
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Fig. 1. Projections of single-colored image and bi-colored image into the three spaces.
(a) and (e): Synthetic green ball and synthetic blue-green ball. (b) and (f): Projection
of images into Hue-Saturation space. (c) and (g): Projection of images into Maximum
Chromaticity-Intensity space. (d) and (h): Projection of images into Ch-CV space.
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CV (x) =

√
1
3

∑
c(I

′
c(x)− I ′m(x))2

I ′m(x)
(5)

where I ′m(x) is the mean of RGB color. According to Eqs. (3), (4) and (5), all of
the specular only points locate exactly at (1/3, 0) in the Ch-CV space because

their color intensity I ′(x) = {m′
s(x)
3 ,

m′
s(x)
3 ,

m′
s(x)
3 },m′

s(x) �= 0. We regard the
point (1/3, 0) as the origin in the following analysis.

Substituting Eq. (3) into Eq. (5), the CV of surface point x has the following
formulation:

CV (x) =

√
3
∑

c I
′2
c (x)− (

∑
c I

′
c(x))2

m′
d(x)(maxc Λ′

c − 1
3
)

(σ(x)− 1

3
) (6)

In Eq. (6), if the fraction at the right side is a constant, then the CV will
be linear with the maximum chromaticity σ. In other word, the distribution of
transformed RGB image in the Ch-CV space assembles a sector which consists
of a cluster of straight lines with different slopes. In addition, these lines will
exactly intersect at the specular only point (1/3, 0) if ruling out the absolute
black points. In the following analysis, the absolute black surface points are
filtered out.

According to Eq. (6), for each surface point x in a normalized image, its slope
is described as:

k(x) =

√
3
∑

c I
′2
c (x)− (

∑
c I

′
c(x))2

m′
d(x)(maxc Λ′

c − 1
3
)

(7)

Furthermore, based on Eq. (3), the slope of surface point x can be simplified to
be:

k(x) =

√
3
∑

c Λ
′2
c (x)− 1

(maxc Λ′
c(x)− 1

3
)

(8)

Eq. (8) explains that the slopes of surface points in the Ch-CV space are merely
determined by their diffuse chromaticities; therefore, the surface points that
have the same diffuse chromaticity will have identical slope in the Ch-CV space.
Meanwhile, the range of slope is exactly [3

√
2/2, 3

√
2], where 3

√
2/2 and 3

√
2

correspond to the case that one component of Λ′ is equal to 1 and the case that
two components of Λ′ are equal to 0.5, respectively. Clearly, the permutation of
the values of Λ′ among RGB channels will result in the same slope. To avoid the
confusions among three channels, we split the original space into six sub-spaces
according to the relationship of RGB value. From the last column in Fig. 1, we
can find the projection of the normalized green ball in the Ch-CV space composes
a single straight line, and there are two principal lines for the normalized blue-
green ball. It should be noted that we present only one Ch-CV sub-space rather
than all the six ones since there is no overlapped lines in the space.

Another property of Ch-CV space is that there exist one-to-one correspon-
dence between the HSI color values and the polar coordinate values in Ch-CV
space. The surface points with identical hues also have identical slopes in Ch-
CV space, and the saturation corresponds to the horizonal coordinate as well as
polar radius .
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Based on the Eq. (3), the hue of surface point in normalized image is refor-
mulated as:

H(x) = cos−1[
3
√
2

2

Λ′
r(x)− 1

3√
3
∑

c Λ
′2
c (x)− 1

] (9)

Comparing Eq. (8) with Eq. (9), we can find the slope in Ch-CV space corre-
sponds to the hue component of HSI color. Therefore, the surface points with
the same diffuse chromaticity Λ′ have not only the same slope in Ch-CV space,
but also the same hue in HSI space. Comparing the second and forth columns
in Fig. 1, we can see that the surface points with identical hue construct a slant
straight line in the Ch-CV space.

Though the level of specular component is irrelevant to the slope in the Ch-
CV space (or hue in HSI space), it does decide the surface points’ location in a
single line. By constituting Eq. (3) into Eq. (4), the maximum chromaticity for
each surface point can be written as:

σ(x) =
m′

d(x)maxc Λ
′
c(x) +

1
3
m′

s(x)

m′
d(x) +m′

s(x)
(10)

Clearly, σ(x) is equal to 1/3 when m′
d(x) = 0, and it is equal to maxc Λ

′
c(x) when

m′
s(x) = 0. In other word, given a color surface with a certain Λ′, maxc Λ

′
c = σ

for the diffuse only points. More generally, in a homogeneous color surface, the
larger the specular component is, the smaller σ is. Actually, the distribution of a
homogeneous color surface in the Ch-CV space is a segmented line, which starts
from (1/3, 0) and ends at the point (maxcΛ

′
c,
√
3
∑

c Λ
′
c − 1). Consequently, as

for a uniform color image, there is only one segmented line with a certain slope,
whereas for a multi-colored image, there may exist several overlapped segmented
lines with the same slope in the Ch-CV space, and each of them corresponds to
an unique diffuse chromaticity Λ′, in spite of their same slopes.

The above analysis indicates that the maximum chromaticity σ also represents
a characteristic of surface color, which is analogous to the saturation value in
HSI color space. Specifically, the suturation is formulated as follows:

S = 1− (
3

I ′r + I ′g + I ′b
)min

c
I ′c (11)

Substituting I ′c in Eq. (3) into Eq. (11), we have:

S(x) =
m′

d(x)

m′
d(x) +m′

s(x)
(1− 3min

c
Λ′

c(x)) (12)

Meanwhile, the maximum chromaticity for point x can be re-formulated as:

σ(x) =
1

3
+

m′
d(x)

m′
d(x) +m′

s(x)
(max

c
Λ′

c(x)− 1

3
) (13)

According to the last two equations, given a group of surface points with iden-
tical diffuse chromaticity Λ′, both S and σ are maximized by the diffuse only
points (m′

s = 0), and their values are (1− 3minc Λ
′
c) and maxc Λ

′
c, respectively.

Moreover, by combining Eq. (8) and the normalization condition of Λ′, we will
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obtain the unique solution of minc Λ
′
c if given the value of maxc Λ

′, and versa
vice. Therefore, the surface points with the same hue and saturation will also
have the same slope and maximum chromaticity in Ch-CV space. This relation-
ship also holds between saturation and the polar radius in Ch-CV space. The
labeled points in Fig. 1 proves our numerical analysis.

At this point, we have proved the claimed properties of the Ch-CV space.
Though similar to HSI color space, there is a crucial difference between such two
spaces. In HSI space, m′

d, a vital intermediate factor for reflection separation,
cannot be derived from the hue formula given the minc Λ

′
c in Eq. (12), whereas

it is computable in Eq. (7) if the value of maxc Λ
′
c is obtained from Eq. (13).

Another property of the Ch-CV space is that we can achieve maximum diffuse
chromaticity and m′

d(x) directly by making use of the linearity in Ch-CV space.
Therefore, as for the reflection separation task based on dichromatic reflectance
model, the Ch-CV space is superior than the aforementioned spaces, including
S space, Maximum Chromaticity-Intensity space and HSV color space.

4 Specular-Diffuse Reflection Components Separation

This section will focus on how to separate specular and diffuse reflection compo-
nents based on Ch-CV space. According to Eq. (3), given a normalized image,
to separate the reflection components means to decompose the color intensity
into two partitions, m′

d(x)Λ
′
c(x) and

1
3m

′
s(x) for each color channel c ∈ {r, g, b}

in specular regions.
Before the separation, we choose the specularity detection method presented

in [20] to determine the specular surface points in an image. Similarly, we dilate
the original detected specular region into a larger one containing both specu-
lar and diffuse surface points in general case, and we call such regions diffuse-
specular connected regions. To separate the reflection components in the spec-
ular regions, we first transform the normalized image into the Ch-CV space.
According to Eq. (7), m′

d(x) can be written as:

m′
d(x) =

√
3
∑

c I
′2
c (x)− (

∑
c I

′
c(x))2

k(x)(maxc Λ′
c(x)− 1

3
)

(14)

Eq. (14) illustrates that m′
d(x) can be derived for every surface point given its

slope and maximum diffuse chromaticity among thee color channels. Therefore,
the derivation of m′

d can be divided into two stages: a) obtain k(x); b) decide
the maxc Λ

′
c(x) for the surface points.

In a normalized image, the slopes of specular surface points can be calculated
simply by CV (x)/(σ(x) − 1/3). After obtaining the slopes of specular surface
points, we can determine their maximum diffuse chromaticity based on the proof
that it is identical to the maximum chromaticity of the the diffuse only points
with the same hue. However, there may be no diffuse only points for some surfaces
in practice. In such case, we can regard the points with the maximum σ as the
diffuse only ones, which is rational due to the fact that we care more about
removing the highlights in the input image, rather than getting an exactly diffuse
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only image. Unfortunately, there may exist diffuse surfaces with the same hue
yet different saturation in a multi-colored image. In such case, the surface points
having the same slope in a Ch-CV sub-space may correspond to distinctive Λ′.
As a result, we should estimate the corresponding diffuse chromaticity for each
surface with various saturation in each line optimally, rather than assign the
single value of maximum σ to the maxc Λ

′
c of all the surface points in a line.

In this paper, we use a 8-connected region growing method [23] to segment
the specular regions so that surface points in each segmented region have similar
hue. In our algorithm, we define an uniformity parameter η for the segmentation,
and we set it to be a constant value 0.12, which is suitable for most images.
After conducting the algorithm, we can obtain all the connected regions with
similar hue values (or slopes) within the constraint of uniformity parameter.
In each connected region, we assume the surface points share the same diffuse
chromaticity Λ′. Inspired by [20], the smoothness of diffuse reflection component
are considered in our algorithm. In each diffuse-specular connected regions, the
optimal maxc Λ

′
c can be obtained under the condition that the difference between

the mean RGB color intensity diffuse component in the specular region and that
of surrounding diffuse region is minimized. Based on the Least Square Error
(LSE) algorithm, we can obtain the optimal maxc Λ

′
c for each specular surface

point, then m′
d can be calculated by Eq. (14), and m′

s can be calculated for each
surface point by using the equation m′

s(x) =
∑

c I
′
c(x) −m′

d(x). Afterward, the
diffuse component of surface points can be derived according

m′
d(x)Λ

′
c(x) = I ′c(x)− m′

s(x)

3
. (15)

Furthermore, the diffuse chromaticity Λ′ can be obtained by dividing the diffuse
component by m′

d. Fig. 2 shows the derived components of image head.
In practice, it is probably that all of the surface points in a connected region

are specular ones. In this case, we estimate their specular reflection component
directly. Based on the continuity of specularity in an image, we determine m′

s for
each specular surface point by calculating the mean value of specular components
in its surrounding 5× 5 neighborhood.

(a) (b) (c) (d) (e) (f)

Fig. 2. (a) Input image head. (b) Detected specular region. (c) m′
d, (d) m

′
s and (e) Λ′

in the specular region. (f) Diffuse component of head.
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5 Experiments

The proposed method is compared with five previous methods [16–20]. In our
experiments, 13 test images from previous works are used in our experiment, and
two other images are synthesized to give a quantitative comparisons by using
the PBRT v2.0 software [24]. All the experiments are performed on a PC with
Intel Core i5, CPU 2.67 GHz, 2G RAM. Because of the limited space, we only
present the better experimental results from Shen’s two papers [19] and [20].

(a) (b) (c) (d) (e) (f)

Fig. 3. Comparison of diffuse components of synth and lady. Form left to right: (a)
input images. (b) Diffuse components from [16]. (c) Diffuse components from [18].
(d) Diffuse components from [19, 20]. (e) Diffuse components from [17]. (f) Diffuse
components from the proposed method.

In Fig. 3, we first use a synthetic image synth and a real-world image lady to
evaluate the separation performance. Then two real-world images with multicol-
ored and textured surfaces are used to compare the performance of five methods.
Fig. 4 shows the diffuse components of real-world input image fish from five meth-
ods. As we can see, the diffuse component from the proposed method has the least
color distortion, and the highlights in the image are removed effectively as well.
In contrast, the method proposed by Tan et al. [16] fails to find the correct max-
imum diffuse chromaticity at color edges, leading to an obvious color distortions
at edges. Moreover, because of its neighbor-based iteration algorithm, the origi-
nal color distortion at edges spread inside. Though the method in [17] accelerates
the separation process significantly by introducing inter-patch based algorithm
rather than inter-pixel based, the result has much more color distortion than [16]
because more color interferences between surfaces of different diffuse chromatic-
ities are caused by inter-patch algorithm. The methods in [18–20] utilize a new
specularity-invariant color image representation, MSF image. Yoon et al. [18] in-
troduced an iteration scheme for neighboring pixels, which leads to much color
distortions as well. To reduce the distortions, Shen et al. [19, 20] detect the high-
light regions first, and then conduct local least-squares technique for each high-
light region. However, though the results are acceptable in the specular regions of
uniform color, the specular components are wrongly estimated in textured spec-
ular regions, such as the region around the eye of fish in Fig. 4d.

In comparison, the proposed method can obtain accurate and robust separate
reflection components for images with both uniform color and highly textured
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Input image fish. (b) Diffuse component from [16]. (c) Diffuse component
from [18]. (d) Diffuse component from [19, 20]. (e) Diffuse component from [17]. (f)
Diffuse component from the proposed method.

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Input image toys. (b) Diffuse component from [16]. (c) Diffuse component
from [18]. (d) Diffuse component from [19, 20]. (e) Diffuse component from [17]. (f)
Diffuse component from the proposed method.

specular regions. By introducing a reflectance separation model based on the
Ch-CV space and region growing algorithm, we can derive accurate diffuse chro-
maticity for each connected region, and rule out the interferences among regions
of different diffuse chromaticities. The diffuse component of another real world
image toys presented in Fig. 5 also supports to our claim.

We adopt the peak signal-to-noise ratio (PSNR) to evaluate the methods
quantitatively. The experiments are conducted on our self-synthesized images.
As shown in Fig. 6, the proposed method achieves higher PSNR values than the
other methods. Moreover, we compare computational cost of different methods.
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(a) (b) (c)(30.1dB) (d)(38.4dB) (e)(41.4dB) (f)(41.8dB) (g)(43.0dB)

(h) (i) (j)(23.5dB) (k)(31.2dB) (l)(41.8dB) (m)(41.3dB)(n)(45.9dB)

Fig. 6. Form left to right, the images are: input images, ground truth, diffuse compo-
nents from [16], [18], [19,20], [17] and the proposed method. The corresponding PSNR
value are reported below each image.

We compute the average time costs over all the test images: ball-green, ball-blue-
green, synth, head, pear, fish, toys, bear, bear2, red-pear, red-pear2, train, lady
and the other two self-synthesized images. The average time costs for all the
methods are: 37.42s [16], 88.36s [18], 5.82s [19], 0.18s [20], 0.10s [17] and 6.25s
(proposed). Because the proposed algorithm does not involve iterative process,
the time cost is lower than the iterative methods [16, 18]. In our algorithm,
the derivation of diffuse chromaticity should be conducted for each connected
specular region, therefore, the time cost is comparable to [19], and higher than
the methods in [17, 20].

6 Conclusion

In this paper, a new two-dimension space, called Ch-CV space is proposed. In the
space, images are transformed to be a cluster of straight lines intersecting at a sin-
gle point, leading to a fast and accurate derivation of the maximum diffuse chro-
maticity for all specular surfaces with various colors. Compared with the previous
methods, the proposed one exploits a physical description of natural color, which
facilitates the effectiveness of highlight removal in images, especially the multicol-
ored and textured images. The further work will be focused on accelerating the
reflection components separation process without additional color distortions.
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