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Abstract. The calibration of a generic central camera can be described
non-parametrically by a map assigning to each image pixel a 3D projec-
tion ray. We address the determination of this map and the motion of
a camera that performs two infinitesimal rotations about linearly inde-
pendent axes. A complex closed-form solution exists, which in practice
allows to visually identify the geometry of a range of sensors, but it only
works at the center of the image domain and not accurately.

We present a new two-step method to solve the stated self-calibration
problem that overcomes these drawbacks. Firstly, the Gram matrix of
the camera rotation velocities is estimated jointly with the Lie bracket
of the two rotational flows computed from the data images. Secondly, the
knowledge that such Lie bracket is also a rotational flow is exploited to
provide a solution for the calibration map which is defined on the whole
image domain. Both steps are essentially linear, being robust to the noise
inherent to the computation of optical flow from images.

The accuracy of the proposed method is quantitatively demonstrated
for different noise levels, rotation pairs, and imaging geometries. Several
applications are exemplified, and possible extensions and improvements
are also considered.

1 Introduction

There exists a wide variety of central cameras, not limited to systems with
multiple lenses (dioptric), but also comprising combinations of lenses and mirrors
(catadioptric) [1]. Rather than using a specific parametric model for each central
system, we consider the non-parametric generic camera model, which calibration
map associates to each image pixel a projection ray [2,3,4].

Concisely, we address in this paper the self-calibration of this model (esti-
mation of both camera motion and calibration map) using only images acquired
with two infinitesimal rotations of the camera. The considered problem is closely
related to that of recovering a mirror’s shape from rotational specular flows [5].
However, rotational specular flows offer additional cues for self-calibration [6].

In the case of central cameras, the generic calibration problem (finding a
projection direction for each pixel) is equivalent to non-parametric distortion
correction for those cameras with a field of view smaller than 180 degrees; for this
equivalence, it suffices to place an auxiliary plane in front of the camera. Other
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Fig. 1. Left: example image acquired by a central camera with high radial distor-
tion, and superimposed the optical flows computed using two small camera rotations.
Centre: undistortion obtained with the state-of-the-art method in [18]. Right: global
undistortion obtained with our non-parametric linear method; its average global error
is 2 pixels, from which only 0.5 pixels correspond to non-perspective distortion.

applications of camera calibration include motion estimation and mosaicing/3D
reconstruction from images. Examples are shown through the paper.

Several non-parametric solutions exist using a calibration pattern for (generic)
camera calibration [2,4] and distortion correction [7,8]. The self-calibration of
non-parametric distortion models, limited to be radial, has been addressed in
[7,9,10,11]. In contrast, we do not assume any structure on the scene geometry,
and only require the generic calibration map to be smooth.

The metric self-calibration (i.e. up to rotation) of a generic central camera has
been solved, at least at a proof-of-concept level, for particular (non-infinitesimal)
motions [12,13,14]. However, these methods estimate motion flows from image
matches and thus the camera relative rotations can not be general. In contrast,
we use infinitesimal camera rotations with axes being allowed to be general.

Another generic self-calibration method exists that requires a large image
dataset to (inaccurately) estimate a discrete generic calibration map, assumed
to be correlated with dissimilarity measures in the input images [15]. In contrast,
we only require two rotational image sequences to solve a problem equivalent to
theirs in the case of smooth generic central cameras.

In [16], the optical flows produced by three infinitesimal camera rotations are
used for the self-calibration, up to projective transformation, of a smooth generic
central camera. In [17], two rotations are used for the metric self-calibration of
said camera model, the motion estimation depending on second order derivatives
of the data flows, and the calibration map estimation depending rationally on
the flow coordinates. A re-formulation of [17] using the Lie bracket of the flows
is given in [18]; results corresponding to “real” data flows are shown, which are
neither accurate nor defined near the image borders.

The computation of rotational flows compatible with the existence of a com-
mon camera is outlined in [18] as a potential improvement of [17,18]; however,
it is cast as “highly non-linear optimization problems”, which remain unsolved.
It is also shown in [18] that three different rotations may be used to achieve a
global result, more regular, but still inaccurate, even if using exact motions.
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We present a new step-wise linear method for the global self-calibration of a
smooth generic central camera from two rotational flows (see Fig. 1). We show
that the camera motion can be accurately determined by its joint estimation
with the Lie bracket of the two data flows, which in fact corresponds to a third
unobserved rotational flow. This first step represents a workaround solution to
the computation of compatible rotational flows pursued in [18]; moreover, it
requires the use of derivatives of the data flows only up to first order.

We also show that the Lie bracket flow obtained during the motion estimation
step allows an accurate global estimation of the calibration map. This second
computation overcomes the division by the data flow coordinates associated to
the closed-form formulae in [17,18]: the calibration map can be linearly deter-
mined thanks to the previous estimation of the Lie bracket flow.

Next, we introduce the necessary notation and background, concisely stating
the problem; in Section 3, we overview and analize the existing closed-form solu-
tion. We present our two-step method in Section 4. An experimental evaluation
and analyisis of our proposal is performed in Section 5 using simulated image
sequences, and an example with real images is also shown before the Conclusion.

Notation. In order to allow an easy comparison with [18], we adopt their no-
tation conventions. The symbol ∂ will be used for differentiation, a cross symbol
× will denote the cross product operator, and Id2 the identity matrix of size 2.

2 A Generic Self-calibration Problem

2.1 Preliminaries

Following [2,3,4] we consider a generic camera to be a set of image points in
(possibly non-parametric) correspondence with a set of 3D projection rays. We
say that a generic camera is central if all its projection rays intersect in a single
point, called the camera centre [2,3,4]. In this case, we can use the unit sphere S2

to describe the possible projection rays. Accordingly, we define the calibration
map of a generic central camera as a map from U , an open connected subset of
R

2 (image pixels), on the unit sphere S2 (oriented projection directions):

f : U ⊂ R
2 → S2

(u, v) �→ f(u, v) .
(1)

This map sends a planar image to its undistorted version on the sphere. In order
to use optical flow, we assume that the calibration map f is smooth [16,17,18].

In the following, we will use f for theoretical demonstration purposes, with
no further constraint on it that having norm one. In contrast, we will only show
results corresponding to calibration maps with f3 > 0, meaning in practice that
the camera angular field of view is smaller than 180 degrees (for omnidirectional
cameras, the visualization of a calibration map is not straightforward). For this
purpose, we introduce the undistortion map

g = (g1, g2)
T := (f1/f3, f2/f3)

T
. (2)
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In Fig. 1 we show an example of image with high radial distortion, together with
its undistorted version using the map g. By the smoothness assumption on the
calibration map f , the undistortion map g is also smooth, which we will impose
using b-splines (see the Appendix).

We consider the optical flow in a sequence of images to be the velocity field
in the image domain tangent to the image transformation that takes one image
into the next one (not the transformation itself).

2.2 Problem Statement

Assume that we know two point-wise linearly independent optical flows V1, V2

observed on an open subset U of the image, corresponding to rotations of a
generic central camera about two linearly independent axes passing through the
camera centre. The self-calibration problem consists in determining the camera
rotational velocities ω1, ω2 and the calibration map f that are compatible with
these flows, i.e. satisfying the following equations [3,18]:

Df(u, v) · Vi(u, v) = −ωi × f(u, v) . (3)

It is proven in [17] that this problem can be solved up to an orthogonal transfor-
mation. Accordingly, we assume as given an orthonormal basis {u1, u2} so that

(ω1, ω2) = (u1, u2)

(
a b
0 c

)
, (4)

for some unknown scalars a, b, c satisfying a, c > 0. Observe that this introduces
an asymmetry in the problem, since the direction of one of the axis of rotation
is known, whereas the other axis is only constrained to lie on a known two-
dimensional semi-space. A symmetric but less general approach, not followed
here, would be to consider as given the two directions of rotation.

3 Existing Closed-Form Solution and Analysis

The generic self-calibration of a central camera from two rotational flows is solved
in closed-form in [17,18], using two auxiliary functions given by:

Δ1 = −tr(DV2) +
1

det V
DdetV · V2 , (5)

Δ2 = tr(DV1)− 1

det V
DdetV · V1 . (6)

Concisely, the Gram matrix

Gω := (ω1, ω2)
T · (ω1, ω2) (7)

is determined by averaging the following pixel-wise estimators, taking into ac-
count the expected positive definiteness of Gω:

Gω =

(
Δ2

−Δ1

)
· (−Δ2, Δ1) +

(
DΔ2

−DΔ1

)
· V . (8)
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Then, the camera motion is extracted from this Gram matrix using (4) and (7),
and finally the calibration map f is computed as the norm-one map such that

f ∝ (
ω1, ω2, ω1 × ω2

) · (Δ1, Δ2, 1)
T . (9)

Remark 1 (Analysis). By (9), the relation between the undistortion map g, de-
fined by (2), and the functions Δ1, Δ2, defined by (5–6), is rational except when
ω1 and ω2 are orthogonal to the Z axis. For instance, for ω1 = (0, 1, 0)T and
ω2 = (0, 0, 1)T , we have that g1 = 1/Δ2, g2 = Δ1/Δ2; therefore, any error in the
estimation of Δ2 affects severely the estimation of the undistortion map (g1, g2).
In addition, the formulae (5–6) require the first order derivatives of the data
flows, which are later differentiated in (8) to estimate the camera motion. As a
result, the method in [17,18] has trouble to determine the solution close to the
image borders in presence of noise or real flows.

It is shown in [18] that the functions (Δ1, Δ2) defined by (5–6) are in fact (with
reversed sign) the coordinates in the point-wise vector basis V1, V2 of the Lie
bracket vector field:

[V1, V2] := DV2 · V1 −DV1 · V2 . (10)

The geometric interpretation of this Lie bracket is also given: it is the optical flow
of a (non-performed) rotation with angular velocity ω1 × ω2. As a consequence,
Eq. (8) can be written as:

Gω =

(
0 −1
1 0

)
· (V1, V2)

−1 · ([V1, [V1, V2]] [V2, [V1, V2]]) . (11)

In the next section, we exploit these theoretical formulae from [18] to propose a
new global self-calibration method.

4 A Two-Step (Linear) Method

Assume that we are given two optical flows V1, V2 as described in Section 2.2.
These flows can be computed linearly from two initial image sequences by min-
imizing the Linearized Brightness Constancy Constraint [20], which we do in
practice by following [18] with a b-spline model. We denote the coefficients of
the Gram matrix Gω in (7) as Gi,j := ωT

i · ωj.

4.1 Estimation of the Camera Angular Velocities and the Lie
Bracket Flow

Due to noise in V1, V2, a direct computation using (10) of the Lie bracket flow

V3 = [V1, V2] (12)
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is not likely to be compatible with the desired existence of a constant positive
definite 2×2 matrixGω satisfying (11). Since the optical flows V1, V2 are assumed
to be known, such constraint can be written as a differential linear combination
of V3 and Gi,j :

[V1, V3] +G1,1V2 −G1,2V1 = 0 , (13)

[V2, V3] +G1,2V2 −G2,2V1 = 0 . (14)

In summary, denoting by V T
i · ∇ the operator Vi,1∂u + Vi,2∂v, the flow V3 and

the coefficients Gi,j of the Gram matrix satisfy the following 3 vector equations
(i.e. 6 scalar equations) per pixel:

⎛
⎝ Id2 0 0 0
Id2

(
V T
1 · ∇)−DV1 V2 −V1 0

Id2
(
V T
2 · ∇)−DV2 0 V2 −V1

⎞
⎠ ·

⎛
⎜⎜⎝

V3

G1,1

G1,2

G2,2

⎞
⎟⎟⎠ =

⎛
⎝[V1, V2]

0
0

⎞
⎠ . (15)

In practice, we model the smooth optical flow V3 using b-splines, as explained in
the Appendix. The resulting sparse linear system has 2N + 3 unknowns, being
N the size of the b-spline coefficient vector. If we do not impose the positive
definiteness on Gω , it can be solved either using least squares or a more robust
procedure, as detailed in Appendix. Otherwise, the corresponding constrained
problems can be solved using Second Order Cone Programming (SOCP) [19].
Given that the order of the Lie bracket coefficients can be quite dissimilar from
that of the Gram matrix coefficients, we use an initial estimation given by the L2

optimization to normalize the equations and then re-estimate the parameters.

Remark 2 (Potential Use for Parametric Camera Rotational Flows). Equation
(15) does only involve the optical flows and the camera motion: it is independent
of the model used to describe a central camera. Therefore, it can be used in a
(possibly uncalibrated) parametric context as a constraint on rotational flows
and/or on the motion of a rotating camera using those flows for computation
and/or evaluation purposes.

Remark 3 (Computing Optical Flows Compatible with the Rotation of a Com-
mon Camera). A further improvement of the previous motion estimation method
could be achieved by the joint estimation, directly from the rotational image se-
quences, of the two rotational flows, their Lie bracket and the Gram matrix of
the camera motions. The difficulty in such problem lies in the need for using
a robust penalization for the non-linear terms arising from (13),(14) when con-
sidered as a function of V1, V2, V3, Gi,j , and shall be a topic of future research
(experiments using L2 penalization were not successful).

4.2 Linear Estimation of the Global Undistortion Map

After the previous step, we may assume as known both the rotational flows V1,
V2, their Lie bracket V3, and the corresponding camera angular velocities ω1,
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ω2, ω1 × ω2, which can be determined with the Cholesky decomposition of the
Gram matrix Gω using (7).

Observe that now the joint matrix of the three available rotational flows,
(V1, V2, V3), has point-wise rank two (except at most in two isolated image pix-
els). Therefore, we can compute the undistortion map g linearly by adapting the
3-flow methods in [16,18]. Concisely, using that, by (4), we have

(ω1, ω2, ω1 × ω2)
−1 =

1

ac

⎛
⎝cuT

1 − buT
2

auT
2

u1 × u2
T

⎞
⎠ , (16)

the undistortion map (g1, g2) satisfies the following linear constraint:

(
V1, V2, V3

) ·
⎛
⎝cuT

1 − buT
2

auT
2

u1 × uT
2

⎞
⎠ ·

⎛
⎝g1
g2
1

⎞
⎠ = 0 . (17)

In practice, we model the undistortion map g using b-splines, as explained in
the Appendix, and we solve the resulting sparse linear system with either L2 or
robust L1ε penalization, as detailed in that section. Observe that the result (17)
still holds true if we take a general calibration map f instead of (g1, g2, 1)

T , and
therefore it may be used for omnidirectional cameras.

4.3 Summary

We conclude this section by summarizing the proposed self-calibration method,
leaving clear the used parameters and its computational cost. In contrast with
the existing closed-form method [17,18], not only Step 1 but all the computations
required by the algorithm are step-wise linear, excepting a Cholesky decompo-
sition of the Gram matrix Gω in Step 3, and a positive constraint on Gω and
a quadratic formula for [V1, V2] in Step 2. Moreover, with respect to that early
method, the use of flow derivatives has been reduced to first order, and these
are only needed for computing the Lie bracket flow V3 = [V1, V2] in Step 2.

Algorithm 1. Self-calibration from Two Infinitesimal Rotations

Input. Two sequences of rotational images; two orthonormal 3-vectors u1, u2

1. Compute the generic rotational flows V1, V2 from the images
2. Compute V3 = [V1, V2] and Gω by solving (15)
3. Extract the rotation angular velocites ωi from Gω and the ui using (4)
4. Compute g by solving (17)
return ω1, ω2, g

Remark 4 (Number of Parameters). The proposed algorithm only requires as
parameters two orthonormal vectors to avoid the orthogonal ambiguity in the
self-calibration problem (Section 2.2). In practice, we use 2D b-splines in several
estimations: the optical flows V1, V2 in Step 1, their Lie bracket V3 in Step 2,
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and the undistortion map g in Step 4. Since we assume equi-distributed knots
(Appendix), we need three parameters for each b-spline: the number of knots in
each direction, n1, n2, and a smoothing factor λ. We only used the latter when
computing the optical flows in Step 1, where an extra parameter σ is also needed
for pre-smoothing the images.

Remark 5 (Computational Cost). The algorithm requires the resolution of linear
systems of different sizes: n×2N in Step 1, 6n×(2N+3) in Step 2, and 2n×2N
in Step 4, being n the number of image pixels and N the length of each b-spline
coefficient vector. We solve both the L2 minimization (18) and the iteratively re-
weighted L1ε minimization (19) through the computation of the corresponding
normal equations and a Cholesky-based resolution of those equations. When
solving (15), we only impose the positive definiteness on the GrammatrixGω and
solve the constrained least squares problem if the unconstrained linear methods
fail to find a positive definite solution; in practice, this will likely happen with
either high noise or with optical flows (close to) being linearly dependent.

5 Experimental Results

5.1 Error Measures

For simulated image sequences, we will measure the errors in optical flow (us-
ing angular and relative norm errors) and the camera angular velocities (using
relative metric errors) as in [17,18]. In addition, we introduce two measures for
the evaluation of an estimated undistortion map g when its groundtruth ĝ is
known. First, the absolute global error GE (in pixels), defined pixel-wise by
GE = dist(g, ĝ). This serves as an overall error, since the calibration results are
coupled with the motion estimation errors, as it follows from formula (17).

We use as second error measure of an estimated g the error after correcting it
with the “best” homography H approaching g to ĝ, H being computed with the
DLT algorithm. We refer to this as the absolute non-perspective error, NPE (in
pixels), defined at each pixel as NPE = dist(H · g, ĝ). The motivation for this
choice is that the correctly undistorted images should be perspective-like images,
for which the infinitesimal camera rotations induce image homographies.

5.2 An Example with High Radial Distortion

We generated sequences of 500 × 500 images corresponding to rotations about
the Y and Z axes, with angular velocities of norm equal to 0.003, of a camera
with high radial distortion (Fig. 1 left contains an example image). To avoid
“maquillaging” the solution, we fixed beforehand the b-spline parameters n1 =
n2 = 5 and λ = 0 in (19) for the computation of the Lie bracket V3 or the
undistortion map g.

We computed the optical flows V1, V2 corresponding to only the first two
images of each sequence by minimizing the L1ε penalization of the Linearized
Brightness Constancy Constraint [20] with σ = 3.0 for image pre-smoothing, and
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respective thin-plate regularity weights λV1 = 106, λV2 = 1010 (we refer to the
Appendix for this parameter). The groundtruth flows are depicted in Fig. 1; it
can be observed that the flow V1 (horizontal green arrows) has a very changing
scale according to the different resolutions in the image. Due to this fact, in
general the selection of a constant smoothing parameter σ is not optimal, and
we expect bigger errors, specially in the derivatives, for high scale changing flows.
As we show later, image smoothing can be improved after calibration information
is available. The results are summarized in Table 1 (left). We include the errors
for the flow derivatives because they are used for the next motion estimation
step, and they turn out to be much higher than the flow errors for V1.

Table 1. Left: Average and standard deviation of the angular error AE (in degrees)
and relative norm error RNE (%) of the data optical flows and derivatives. Right:
relative metric errors (%) in the estimated camera angular velocities, and errors in the
estimated Lie bracket flow, both being used in the second self-calibration step.

Flow μAE σAE μRNE σRNE

V1 0.18 0.19 0.90 0.59
∂uV1 3.19 3.49 3.29 3.47
∂vV1 2.62 2.57 1.50 1.50

V2 0.13 0.21 0.25 0.31
∂uV2 0.08 0.04 0.04 0.03
∂vV2 0.06 0.03 0.08 0.06

Motion Errors Lie Bracket Errors
Method ‖ω1‖ ‖ω2‖ ω̂1, ω2 μAE σAE μRNE σRNE

Esp07 [17] 4.13 0.14 1.86 1.28 1.91 2.11 2.88
EL2 2.30 0.39 1.82 0.53 0.54 1.78 2.49
EL1ε 0.39 0.02 0.54 0.21 0.20 0.83 0.46

Given the two rotational flows, we computed their Lie bracket and the two
camera angular velocities using the three available methods. First, the closed-
form formulae and the averaging process in [17,18]; second (resp. third), their
joint optimization as described in Section 4.1 with a L2 (resp. L1ε) penalization
for the resulting linear system (15). We see from the results, summarized in
Table 1 (right), that the L1ε method overperforms the other ones: it estimates
the motion with far below a 1% of relative error.

Fig. 2. Left: groundtruth sensor (red lines) and the estimated undistortion map (dashed
blue lines). Centre: original image smoothed using the metric induced by this map.
Right: mosaic performed with the Z rotational sequence of calibrated images.
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We finally computed the calibration map using the L1ε penalization, and ob-
tained results as observed in Fig. 1: the global error had mean and standard devi-
ation values μGE = 2.548, σGE = 0.758 (in pixels), whereas the non-perspective
correction error was μNPE = 0.568, σNPE = 0.595 (in pixels), the error mea-
sures being computed as explained at the beginning of this section. It can be
observed (better zooming in) at Fig. 2 left that, as typical in methods for the
correction of geometric distortion, the calibration errors are mostly concentrated
at the image corners. In comparison with the state of the art in [18], ours is a
more accurate and globally defined solution.

The achieved accuracy allows us to perform typical operations with calibrated
cameras. A first example of application consists in smoothing the original images
taking into account the sensor geometry, i.e. non-uniformly (Fig. 2, centre).
This is done by solving the heat-diffusion equation [21], which we perform via
an iterative evaluation of the Laplace-Beltrami operator and an update of the
smoothed image, as for the parametric spherical camera model in [22].

A second example application, using the obtained undistorted images and
motion estimation, consists in creating a mosaic by reversing the effect of the
estimated rotations to place all such images on a common frame. In Fig. 2 right
we show a 560× 560 mosaic generated in this way using a sequence of 50 images
corresponding to a camera rotation about the Z axis, the first two images being
the ones used for camera calibration.

5.3 Further Evaluation

It seems natural to ask what would have been the ouput in the previous exper-
iment if the noise in the flows had been different from the obtained with the
given images. Moreover, we may wonder whether the two measured flow errors,
namely the angular and relative norm error, affect the results in equal measure
or not; we study these two factors as possible main error sources, although, as
already pointed out, our results depend not only on the optical flow components
but also on their derivatives.

In Fig. 3 we show the average result errors after performing 50 simulations of
noise in the two data flows for each combination of angular and relative norm
errors between 0.2 and 1. We fitted b-splines to the noisy data, again without
tuning the involved parameters, being the actual average noise in the fitted b-
spline flows possibly higher than reported. This simulation must be considered
carefully, taking into account that two rotational flows in general do not have
the same angular and norm noise levels; moreover, it is mostly tentative, since
other factors affect the calibration. In all the tested cases, we outperformed [18]
and obtained the worst results for bigger norm errors in the data flows, being
the motion estimation also affected, in smaller measure, by the angular errors.

We performed a last evaluation experiment by fixing the Y axis and varying
the second rotation axis (Fig. 4). We obtained the best results for the axes
orthogonal to the Y axis. The results are again sensor-dependent (for the used
radial distortion sensor, the Z axis optical flow is quite easy to model), and could
be improved by using the smoothness parameters that we set to zero.
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Fig. 3. Errors corresponding to the method in [18] (top row) and ours (bottom row)
for the Y and Z rotations with different levels of relative norm and angular error in the
two data optical flows. We omitted: the errors in ω̂1, ω2, which were similar to those for
‖ω2‖, and the global errors, which were mostly affected by the bigger errors in ‖ω1‖.

5.4 A Highly Non-linear Sensor

In Fig. 5, we consider a sinusoidal sensor inspired by [16,18], which is maybe
not very realistic, but it shows the power of our non-parametric method to self-
calibrate highly non-linear sensors. Taking only as input two sequences of 10
images (Y and Z axis rotations), our method estimates the camera motion with
relative metric errors below 0.5%. The errors, explained at the beginning of this
section, without imposing regularity are quite good: μGE = 1.24, μNPE = 0.82.

5.5 Real Images

We finally consider the fish-eye image sequences from Section 8.2 in [18].1The
image sequences are particularly cumbersome for optical flow computation, due
to the lack of smoothness or texture in certain image regions; our results, shown
in Fig. 6, are clearly worst in those regions. The mean error between the corners
of the undistorted checkerboard pattern and the projection of an ideal pattern
under a best least-squares fitting homography is the 17.1% of the average length
of an undistorted square side (standard deviation equal to 9.8). A further bundle
adjustment process is currently under study. The interested reader may compare
our results with those in Fig. 10 in [18] to assess the improvement in the area of
image that we calibrate (improvement already outlined in Fig. 1).

1 Images available at
http://atlas.mat.ub.es/personals/fespuny/Research.html#CGRF

http://atlas.mat.ub.es/personals/fespuny/Research.html#CGRF
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Fig. 4. Average errors obtained with AE=0.15 degs, RNE=0.5% in two flows corre-
sponding to the Y axis and different linearly independent second axes; we use polar
representation in the (x,z) coordinates of the second axis, e.g. angle 0 and norm 1 means
the X axis, and angle 90 and norm 0.6 represents the axis of direction (0, 0.8, 0.6).

Fig. 5. Left: example image with sinusoidal distortion. Centre: estimated undistortion
map (dashed blue lines). Right: undistorted image using b-spline regularity (λ = 103).

Fig. 6. Top: original images from [18]. Bottom: global undistortion results.
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6 Conclusion

We have presented a new method for the global self-calibration of central cameras
using the optical flows produced by two infinitesimal camera rotations. Despite
a positive definiteness constraint on the Gram matrix of the rotation angular
velocities, all the involved steps are linear, being the method quite robust and
accurate, specially for orthogonal rotation axes. As discussed in the paper, the
results can be applied both in parametric and non-parametric settings.

In fact, we have shown that any two optical flows covering an image region
give enough information for self-calibrating that region. Therefore, when having
more than two rotations, the resulting optical flows are no longer required to be
dense for self-calibrating the camera, as far as they locally overlap pair-wise on
the whole image. In conclusion, the simplicity of our proposal may conduct to
a highly dynamical and accurate non-parametric method for the self-calibration
of central cameras with multiple infinitesimal rotations.
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Appendix. Using B-Splines for Smooth 2D Functions

We are interested in the estimation of several two-dimensional smooth functions
F = F (u, v) = (F1, F2)

T defined on the image, e.g. the undistortion map in
(2). We will model each component Fi as a tensor b-spline surface with a grid
of n1 × n2 equi-distributed knots (see e.g. [23]): Fi(u, v) = w(u, v)T · ki, where
w(u, v) is an N -dimensional vector of weights, N = (n1+3)(n2+3), and ki is an
N -dimensional vector of coefficients corresponding to Fi, i = 1, 2. The b-spline
regularity can be imposed with a discrete version of its thin-plate energy ETP .

The linear systems proposed in Section 4 are over-determined, their first 2N
unknowns being the coefficients of the two coordinates of the B-spline approx-
imation of a smooth 2D function. They can be expressed in matrix form as
A ·X = B. As a first option, we may take as solution the least squares minimum
of:

EL2(X) = ‖A ·X −B‖2 + λ ETP (k
1, k2) , (18)

for some constant λ ≥ 0 (in practice only used for optical flow computation).
In order to make the estimation less sensitive to outliers, and to possibly big
(non-Gaussian) errors, we can use a smoothed L1 penalization for the errors:

EL1ε(X) =

n∑
i=1

√
(Ai ·X −Bi)2 + ε2 + λ ETP (k

1, k2) , (19)

where Ai is the i-th row of A, Bi is the i-th component of B, and ε > 0 is a
small constant (in practice, ε = 10−3). We can minimize EL1ε via iteratively re-
weighted least squares. The SOCP problems arising when imposing the positive
definiteness on Gω in (15) can be solved using branch and bound [19].
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