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Preface

The 11th Asian Conference on Computer Vision (ACCV 2012) took place in
South Korea in the city of Daejeon, a well-known center of research and high-
tech industry. Following the tradition of previous meetings, ACCV 2012 had a
number of events co-located with the main conference, including nine workshops,
two tutorial sessions, 12 on-site demos featuring a wide range of advanced vision
technology, and a special competition on RGB-D camera applications. In addi-
tion, there were three keynote speakers: Tomaso Poggio (Invariant Recognition
in the Visual Cortex), Du Sik Park (The Color and Image Processing Technology
for CE Device: Current and Future), and Andrew Fitzgibbon (3D Vision in a
Changing World).

The ACCYV Steering Committee, consisting of Katsushi Tkeuchi, Yasushi Yagi,
and Tieniu Tan, provided guidance throughout the organizational process and
we are grateful for their support. We were fortunate to be able to work closely
with the General Chairs, In So Kweon, Chilwoo Lee, and Akihiro Sugimoto,
who arranged the financing and logistics. Thanks to their efforts we were able
to secure the Daejeon Convention Center as an excellent venue for our meeting.
Special thanks go to our Publication Chairs In Kyu Park and Tae-Wuk Bae,
for handling the daunting task of assembling the conference proceedings and
meeting the publication deadlines.

Additional support for ACCV 2012 was provided by our 13 sponsors, who
contributed at four levels: Platinum (Daejeon Metropolitan City, Daejeon In-
ternational Marketing Enterprise, Daejeon Convention Center, Korea Tourism
Organization, DigiCar Center, Mobile Device Interface Research Center, and
Seoul National University), Gold (Samsung AIT and Puloon Technology), Silver
(Mando Corporation, Qualcomm, and 4D View Solutions), and Bronze (NVIDIA
Corporation).

In order to support an on-line review process, we utilized Microsoft’s CMT
system, with special thanks to Yasuyuki Matsushita for managing the CMT
process. Continuing the trend of increasing submissions to ACCV, we received
869 submissions by the deadline of July 1, 2012. This represents an 18% increase
in submissions over 2010. We received submissions from 43 countries, with Asia
(63%), Europe (23%), and North America (12%) making up the bulk of the
submissions by region. Submitted papers that did not conform to the submission
criteria regarding author anonymity, formatting, and length, were desk rejected
and removed from consideration.

The four Program Co-chairs assembled a group of 33 leading vision re-
searchers to serve as Area Chairs (ACs) and conduct the review process. These
Chairs managed a group of 479 reviewers, who provided expert assessment of the
submitted papers. Each paper received a minimum of three reviews, as well as
a consolidation report from the responsible AC, which detailed the outcome of
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the decision process. Review decisions were finalized at the AC meeting, which
was held at Seoul National University during September 17-18, 2012. Special
thanks to Kyoung Mu Lee for handling the arrangements for this meeting. ACs
were organized into triples, so that papers with varying review scores could be
discussed by multiple ACs. The triples in turn were organized into four panels,
which finalized all of the paper decisions. The AC panels were instructed to use
their best judgement in determining which papers to accept. While review scores
were an input to the decision process, these scores alone did not determine the
outcome. The Program Chairs strictly followed the recommendations of the pan-
els with regard to acceptance. We asked for clarification where it was needed,
and requested detailed and clear consolidation reports. Each consolidation report
was checked by at least one Program Chair.

We wish to acknowledge the invaluable help of a number of people in making
this conference possible. The logistical talents of the Organizing Committee made
it possible to conduct a well-run meeting with a diverse set of activities. We
extend our thanks to everyone who was involved in the submission and review
process: the ACs, reviewers, and authors. Without your dedication and hard
work there would be no meeting. We look forward to the continuing evolution
of ACCV as one of the top conferences in the field.

November 2012 Kyoung Mu Lee
Yasuyuki Matsushita

James M. Rehg

Zhanyi Hu
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Abstract. This paper addresses the problem of self-calibration and mo-
tion recovery from a single snapshot obtained under a setting of two mir-
rors. The mirrors are able to show five views of an object in one image.
In this paper, the epipoles of the real and virtual cameras are firstly es-
timated from the intersection of the bitangent lines between correspond-
ing images, from which we can easily derive the horizon of the camera
plane. The imaged circular points and the angle between the mirrors can
then be obtained from equal angles between the bitangent lines, by pla-
nar rectification. The silhouettes produced by reflections can be treated
as a special circular motion sequence. With this observation, technique
developed for calibrating a circular motion sequence can be exploited
to simplify the calibration of a single-view two-mirror system. Different
from the state-of-the-art approaches, only one snapshot is required in
this work for self-calibrating a natural camera and recovering the poses
of the two mirrors. This is more flexible than previous approaches which
require at least two images. When more than a single image is available,
each image can be calibrated independently and the problem of vary-
ing focal length does not complicate the calibration problem. After the
calibration, the visual hull of the objects can be obtained from the sil-
houettes. Experimental results show the feasibility and the preciseness
of the proposed approach.

1 Introduction

Mirrors have been used for generating multiple views of an object, from which
the visual hull can be obtained to recover the object shape and it has may appli-
cations [I8] [14] [19]. The object and its reflections generally provide symmetric
relationships for recovering parameters of the camera and the mirror [24] [5]
(or a pair of mirrors [4]). In [7], Gluckman and Nayar discussed the geometry
and calibration of a two-mirror system using point correspondences. Hu et. al.
[10] later presented an approach for obtaining the camera calibration from the
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constraints imposed by both the silhouette outlines and point correspondences.
Fujiyama et. al. [5] clearly presented the geometry of multiple view using one
mirror. Forbes et. al. [3] introduced an approach based on silhouettes alone.
However, they assumed an orthographic projection model and required a dense
search in the parameter space to determine the initial estimates. Later in [2] they
improved their method by providing closed form solutions for the initial parame-
ter estimates using a perspective camera model. However, at least two snapshots
were required for acquiring the calibration and estimating the motion. Besides,
their method still required the assumption of an orthographic projection in the
process of motion recovery. In another recent work, Huang [I1] proved that the
focal length can be recovered from a single snapshot of the setting, but it was
based on the assumption that the principal point lied on the image center.

By exploring the geometry of two mirrors, this paper relates a two-mirror set-
ting to a circular motion. Many studies have been conducted in circular motion
[17], [, [12], [16], [9]. Traditional method obtained the rotation angles by care-
ful calibration [I7], i.e., the camera internal parameters, rotation angles, camera
orientations, etc are all accurately known. In [I], Fitzgibbon et al. developed a
method to handle the case of uncalibrated camera with unknown rotation angles
based on a projective reconstruction. Their method is based on the projective
geometry of single axis motion, and it involves the computation of both fun-
damental matrices and trifocal tensors from point correspondences. Jiang et al.
[12] further extended this approach by making use of the conic trajectories of
the rotating point features, and developed an algorithm that requires neither
the computation of fundamental matrices nor trifocal tensors. An alternative
approach is to exploit the silhouettes of the object. Mendonga et al. [16] pro-
posed to recover the structure and motion in several steps, each of which only
involves a low dimensional optimization. However, the camera intrinsics are still
required in the procedure for recovering the rotation angles and the subsequent
Euclidean reconstruction. Zhang et al. [20] introduced an approach for uncali-
brated silhouettes based on a new formulation of the circular point, and they
further extended their method by making use of the 1D camera geometry [21].

Inspired by [16] and [20], it is derived in this paper that circular motions of
a pair of symmetric objects can be obtained from the relationships between the
image of the object and its reflections in two mirrors. The silhouettes produced
by reflections can be treated as a special circular motion sequence. With this ob-
servation, technique developed for calibrating a circular motion sequence can be
exploited to simplify the calibration of a single-view two-mirror system. Different
from the state-of-the-art techniques [2] which assume orthogonal projection for
recovering the motion, this work is totally based on perspective projection and
hence it is applicable for any real scenes. More importantly, only one snapshot is
required in this work for calibrating a natural camera (with three unknowns) and
recovering the motion. This is more flexible than the previous approaches which
require at least two images and the problem of varying focal length in multiple
views will not complicate the calibration problem. Experimental results show
the feasibility and the preciseness of the proposed approach.
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The remainder of the paper is organized as follows. Section 2] gives the fun-
damental theories of the two-mirror setup. It also presents the relationship be-
tween the two-mirror setting and the circular motion. Section [B] describes self-
calibration of the camera, with the recovery of image invariants, i.e., the circular
points, the imaged rotation axis, the vanishing point of the x-axis of the real
camera and the mirror angles, etc. Section M introduces implementation details
of the proposed technique. Section [0l presents the experimental results, followed
by discussions and conclusions in Section

2 Two-Mirror Setup and Circular Motion

2.1 Two-Mirror Setup

In this section, we introduce the two-mirror setup in a 3D space. The reflections
shown by mirrors are used to derive vanishing points for parallel tangent lines
and these vanishing points all lie on the vanishing line 1;, of a plane in which the
real and virtual cameras lie.

Let us first consider a camera C' capturing an object O and its reflection O in
a mirror M (see Fig[l(a)). Note that there would be a virtual camera C; which
is the reflection of C' in the mirror M. Consider two planes IIT and IT; passing
through the two cameras C', C; and tangent to both O and O; externally. As
both sides of the mirror are symmetric, the tangent points on O and Oy, i.e., X,
X; and Y, Y, provide two point correspondences with respect to the mirror.
The joint lines XX3, YY; and the line joining the camera centers CCy are
parallel to each other and perpendicular to the mirror plane. Let the images
of XX; and YY; in the real camera C' be 11, 1, , respectively, which are the
bitangents to the silhouettes of O and O;. Their intersection point v; indicates
the vanishing point of the perpendicular direction of the mirror plane.

Now let us consider the two-mirror setup (see Figll(b)) capturing five objects.
The camera C observes the real object O and also its four mirror reflections Oy,
O3, O12 and Os;. The virtual object O, is the reflection of O in the mirror Mj;
05 is the reflection of O in the mirror Ms; Oq2 is the reflection of O; in the
mirror Ms; and Oo; is the reflection of Oy in the mirror M;. Note there are
two virtual mirrors M1, M2 which reflect O; to Oz1, Oz to O13, respectively.
There are also several virtual cameras which are the reflections of the real camera
C, i.e., the virtual cameras Cy, Cy (the reflection of C' in the mirror My, Mo,
respectively), the virtual camera Co; (the reflection of C; in the mirror M,; and
also the reflection of Cy in M), the virtual camera Cia (the reflection of Co in
the mirror M,s and also the reflection of Cy in Ms). Note all the cameras lie
on a common plane IT and the bitangents XX;, YY; in Figll{a) are parallel
to IT, which implies the five (real and virtual) objects lie on a plane parallel to
II. Besides, note that the mirrors My, My, M,1, M,s intersect along a common
line L which is perpendicular to I7.

Let the images of O, Oy, Oz, O21, O12 be o, 01, 02, 021, 012, respectively, and
the vanishing line of IT be 1, (see Figlli(c)). From the mirror reflections, it can
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Fig. 1. Geometry of the mirror(s). (a) One mirror setup. (b) Two mirror setup. (c)
The image of the two-mirror setup.

be seen that the outer bitangents of 0, 01 and that of 02, 021 intersect with the
horizon 1, at the vanishing point v1; the outer bitangents of o, oo and that of
01, 012 intersect with 1 at vo; the outer bitangents of 01, 021 intersect with 1, at
va1; the outer bitangents of 02, 015 intersect with 1, at vio. Hence the horizon
15, can be recovered as a line passing through all the vanishing points vi, va, va1
and vis.

2.2 Relating the Two Mirror Setting to the Circular Motion

We have observed that the silhouettes produced by reflections can be treated
as a special circular motion sequences. In this section, we will illustrate this in
detail. Consider the top view of Figll{b). The real and virtual cameras C, Cf,
C5, Co1, C12 are all on the plane II. Let the real camera C' lie on the negative Z-
axis of the world coordinate system and the mirror intersection line L, coincides
with the Y-axis (see Figl2l(a)).The projection matrix of C' is

Po = KRI[I| - T], (1)

where K is the camera intrinsic matrix, R is the camera initial orientation and
T =1[00 — 1]7 is the camera center. Let the angle between the mirror M; and
the negative Z-axis be o, and the angle between the mirror My and the negative
Z-axis be . Then the angle between M; and M is = o 4 ¢. From the mirror
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reflections, it can be seen that |OC| = |OC4| = |OCs| = |OC41| = |OCs1|, where
|AB| indicates the length of AB. Hence the camera centers C, Cy, Ca, Coy, Cia
lie on a circle (see Figl2la)). Besides, note that the angle between M7 and OC' is
o, and the angle between Ms and OC4 is . Similarly, the other angles between
virtual cameras and mirrors can also be easily derived as shown in Figl{(a).

z

M29

(a)

Fig. 2. Top view of the mirror setup. (a) The camera centers lie on a circle. (b) The
cameras perform circular motion.

Imagine that there is a plane mirror I7; which passes through L and Cy. Let
Cy1 be the reflection of Cy according to II;. The camera projection matrices for
C; and C\1 can be represented by

Pc, = KR[Ry(0) ¥ Ry(~0)| - TJ, (2)
Pc,, = KR[Ry(20)| - TJ,

where > = diag([-111]), Ry (o) indicate rotation around Y-axis by an angle o.
Similarly, let C\2 be the reflection of Cy according to I, where I15 is a virtual
plane mirror passing through L, and C3. We can easily derive the projection
matrices for Cy and Cyo in a similar way.

Now it can be easily observed that Cs; is obtained by rotating C' counter-
clockwise about the point O with an angle 2(¢ + o), i.e., twice of the angle
0 between the mirror M; and Ms. Similarly, C12 is obtained by rotating C'
clockwise about the point O with 26. Cs is obtained by rotating Cy clockwise
about the point O with 260. Therefore, it can be observed that C, Cy1, Cs,
C12, Cyo are the cameras performing a circular motion and the rotation axis is
the Y-axis. Besides, it can also be derived that the angles have the following
constraints

ZCC1021 = ZC1CCQ = ZCCQCU =7 —0. (3)
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Under circular motion, the fundamental matrix relating any two views can be
explicitly parameterized in terms of the image invariants, and is given by [1][15]

(4

o (T +1410), (4)

F(y) = [va]x + K tan
where 9 is the rotation angle between the two views. 15 is the imaged rotation
axis and v, is the vanishing point of X-axis. x is an unknown but fixed scalar
used to account for the different scales used in the homogeneous representations
of the two terms in the summation [22].

3 Self-calibration of Two-Mirror Setting

In this section, a novel approach for self-calibrating the two-mirror setup will be
introduced. The imaged circular points of the horizontal camera plane are firstly
derived by metric rectification of the horizontal plane. The angle between the
mirrors can thus be easily obtained. From the metric rectification, the imaged
rotation axis can be derived. The vanishing point of the X-axis can thus be
obtained by a cross ratio relationship. These image invariants could be used for
a camera self-calibration.

3.1 Recovery of the Circular Point and the Mirror Angle

First, from the horizon 1, = [l; I3 I3]7 estimated in Section B the image in
Fig[l(b) can be rectified to an affine plane using a ‘pure projective’ transforma-
tion [I3], given by
100
P=|010]. (5)
lilals

Let the circular points be [a F 73, 1, 0]7 on the affine plane, the plane can be
further transformed to a metric plane using an affine transformation [I3] given
by
550
A=1010]. (6)
0 01
Note that in equation (@) the angle ZCC1C5 formed by the line log, =
[la1 la2 la3]t and lo,c,, = [lp1 b2 lp3]t, and the angle ZC;CCy formed by
lo,o = [l lp2 Lps])T and loe, = [lg g2 1;3]T are equal unknown angles on
the world plane. Hence the 2D point (a, ) can be shown lying on the cir-

cle with center on the point (cq,cg) = (afg:f;ﬁq,()) and squared radius r? =
ag=bp 2 (a—b)(ab—pg) _ — _laz p— 2 o lp2 — _la2
(a*b*erq) + a—b—p+q ab, where a = la1’ b= lp1’ p= Ip1 and 9= lq1

indicate the directions of each line. Similarly, by making use an additional un-
known equal angle ZCCyC12 in equation (@), (o, 8) can be determined easily.
Hence the pair of circular points in the original image can be recovered, by

i,j=[(axjB)s, I3, —al — o F jBL]"T.
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From i, j, the angle between the two mirrors can thus be directly obtained by
using the Laguerre’s formula

1 ..
0= y log{v1, va;i,j} (7)

where {v1,va;i,j} denotes a cross-ratio, j2 = —1.

3.2 Recovery of the Imaged Rotation Axis

By making use of the projection and affine transformations P and A (see Section
[B1), the imaged circular points i, j are expected to be rectified to their genuine
position I, J =[1 £ j 0]7. However, we still need a rotation R to transform the
imaged circular points to their genuine position. Hence by the same transfor-
mations, the imaged rotation axis 1, can be rectified to a plane [1 0 0] passing
through the camera center and the rotation axis. Thus I can be initialized as

1
1, = (RAP)" |0]. (8)
0

The vanishing point v, of the Z-axis can be obtained as the intersection between
I and 1. The vanishing point v, can also be easily recovered from the cross
ratio

{i,j;VI,VZ}:fl. (9)

The angle o between the mirror M; and the negative Z-axis (see Fig[2(a)) can be
obtained by o = 7/2 —log{v1,v.;1i,j}/(2j) and the angle ¢ between the mirror
M5 and the negative Z-axis can be obtained by ¢ = /2 — log{va, v.;i,j}/(24),
where j2 = —1.

Note the pair of circular points i, j of the circular plane are given by [22]

i,j~veFjrls x1y, (10)

where k is the same scalar in equation {#)). As i, j, v, 15, 15 are known variables,
k can be easily obtained. Hence the epipoles e; (i = 1,2) between a pair of the
images of the circular motion can be obtained from [15]

€e; ~ V, — (—1)iﬁtan ,(éjls X lh. (11)

And the refinement of the imaged rotation axis 1; can be carried out as a two
dimensional optimization problem by minimizing the distance between the trans-
formed epipolar tangents 1; and the silhouette in the second image (see Figl3).
The transformation is defined by a harmonic homology [8][I5] W=7, which is

given by W =1 — 9Vald

vl
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Fig. 3. The overlapping of two silhouettes and their epipolar tangents under the circular
motion. 13,17,1> and 1, are the outer epipolar tangent lines.

3.3 Self-calibration and Motion Recovery

The obtained imaged circular points can be used to find the camera intrinsics
since they lie on the image of the absolute conic (IAC) w. Besides, the imaged
rotation axis 1y and the vanishing point v, define a pole-polar relationship w.r.t.
w [8]. w can then be estimated from the following constraints:

I, = wvy . (12)

{iTwi =0 and jTwj=0,
Since these provide three independent constraints, given only a single image,
a natural camera with zero skew and unit aspect ratio can be calibrated by
Cholesky decomposition [6] of w. For multiple images captured with varying
focal length, each image can be calibrated independently. Hence the problem of
varying focal length does not complicate the calibration problem.

4 Implementation

Here we introduce using one snapshot to calibrate the camera and recover the
motion. Cubic B-spline snakes are used to extract silhouettes from the images
with sub-pixel localization accuracy. The horizon 13 is initially obtained by ro-
bustly fitting a line to the vanishing points constructed from the outer tangents
to the object silhouettes in the image. 15, and the vanishing points are then re-
fined by minimizing the distance between the tangent lines and the corresponding
silhouettes.

The image can then be transformed to an affine plane by equation (&l). Then
the imaged circular points i, j can be obtained by making use equal unknown
angles in the world plane (see Section Bdlin detail). The imaged rotation axis 1,
is then initialized as the rectified Y Z-plane by equation (8) and the vanishing
point v, of X-axis can be recovered by ([@). l; and v, can be refined by the
finding of a line tangent to one silhouette which is transformed by the harmonic
homology W~ to a line tangent to another silhouette under the circular motion
[16]. From the estimated 1, i, j, L, v, the fixed scalar x and the rotation angles
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can be easily derived (see Section for detail). Besides, a natural camera
can be calibrated with the recovered 1y, v, and i, j, by equation ([IZ). The
camera extrinsic parameters can then be estimated by aligning the images of
the horizon and the rotation axis through rectifying each image independently
by a homography induced by a rotation about the camera center such that Lg
coincides with the Y-axis of the world coordinate and the Z-axis of the camera
world coordinate coincides with the Z-axis of the world coordinate.

Besides, if multiple snapshots were taken, we need to specify the five silhou-
ettes from different views in a common reference frame to refine the estimation.
This can be achieved by firstly aligning the world coordinate recovered with
different snapshots and rectifying the five-view silhouette sets with the camera
matrices so that the cameras all point towards the rotation axis Lg. The silhou-
ette sets are then scaled and translated along the rotation axis so that the outer
epipolar tangents coincide with the projected tangents from silhouettes in the
other silhouette set.

Finally, a bundle-adjustment using Levenberg Marquardt minimization is ap-
plied to refine all the parameters. The intrinsics and the angle # between mirrors
M; and M> are then estimated with the optimized entities, followed by a con-
structing the visual hull from silhouettes.

5 Experiments and Results

Real experiments were carried out to test the feasibility of the approach. The
first experiment consisted views of a girl (see the first column Figll). The image
had a resolution of 1296 x 861. Provided with only one single snapshot, the
camera was self-calibrated under the assumption of a natural camera (zero-skew
and unit aspect ratio). Column 2-4 of Table[I[a) compare the estimated camera
matrix and the recovered mirror angle with that of the ground-truth (obtained
with a planar calibration pattern [23]) and the approach introduced in [2]. It can
be seen that the recovered angle 6§ between the mirrors has a high resolution. The
focal length f and the uy coordinate of the principal point were both precisely
estimated while vy was not. This is due to the error in the estimated v,. Column
2-4 of Table[Ii(b) show the experimental results with two snapshots. It can be seen
the calibration results is better with more snapshots involved in estimation. From
the recovered motion, Figld|c) shows the 3D model reconstructed with only one
single snapshot and Fig}(d) shows that with two snapshots. The model becomes
more accurate may due to the reason that more snapshots may provide more
accuracy in the camera calibration and the visual hull.

The second experiment consisted views of a monster (see the second colum of
Figl)). The image had a resolution of 1296 x 861. With only one single snapshot,
column 6-9 of Table[[[a) compare the estimated camera matrix and the mirror
angle with that of the ground-truth (obtained with a planar calibration pattern
[23]) and the approach introduced in [2]. Column 6-9 of Table [{b) show the
result with two snapshots. From the estimated motion, Figlld) shows the 3D
model reconstructed with only one single snapshot and Fig[{(f) shows that with
two snapshots.
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i1
i1

Fig. 4. Real experiment. The 1st column is for the experiments of the girl and the 2nd
column is for that of the little monster. (a)&(b) An image of the two mirror setting.
(c)&(d) The reconstructed 3D models from a snapshot. (e)&(f) The reconstructed 3D
models from 2 snapshots.

6 Conclusions

In this paper, we have presented a practical and efficient approach for self-
calibrating a camera from only a single snapshot obtained under a setting of
two-mirror. We relate it with a circular motion and use image rectification to
find the initial estimation of the imaged rotation axis. Different from the state-
of-the-art approaches, only one snapshot is required in this work for calibrating
a natural camera and recovering the motion. This is more flexible than the previ-
ous approaches which require at least two images. Hence the problem of varying
focal length in multiple images does not complicate the calibration problem. Af-
ter calibration, a visual hull of the object can be obtained from the silhouettes.
Experiments have produced convincing 3D models, demonstrating the practical-
ity of our algorithm.
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Table 1. Comparative results of the intrinsic and the angle between the mirrors.
Column 2-5 show experiments with images of a girl. Column 6-9 show experiments
with images of a monster.(a) From a single snapshot. (b) From two views of the two-
mirror settings.

Girl Monster
- f uo Vo 0 f uo Vo 0
(a) Ground-truth 1178.4 663.78 440.74 74.3° 2971.4 623.89 415.31 74.3°
Method in [2] 1224.5 648 430.5 - 2950.6 648 430.5 -

Proposed method  1196.7 633.43 413.2 74.18° 2958.8 606.05 365.82 74.43°
Percentage error to GT 1.55% 1.73% 2.34% 0.16% 0.42% 0.60% 1.67% 0.17%

Girl Monster
- f (%) Vo 0 f uo Vo 0
(b) Ground-truth 1178.4 663.78 440.74 74.3° 2971.4 623.89 415.31 74.3°
Method in [2] 1173.2 646.9 432.71 -  2959.2 664.32 403.28 -

Proposed method — 1172.7 648.97 426.45 74.35° 2976.9 659.46 375.4 74.21°
Percentage error to GT 0.48% 1.26% 1.21% 0.07% 0.18% 1.20% 1.34% 0.12%
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Stereo Reconstruction and Contrast Restoration
in Daytime Fog
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Abstract. Stereo reconstruction serves many outdoor applications, and
thus sometimes faces foggy weather. The quality of the reconstruction
by state of the art algorithms is then degraded as contrast is reduced
with the distance because of scattering. However, as shown by defogging
algorithms from a single image, fog provides an extra depth cue in the
gray level of far away objects. Our idea is thus to take advantage of
both stereo and atmospheric veil depth cues to achieve better stereo
reconstructions in foggy weather. To our knowledge, this subject has
never been investigated earlier by the computer vision community. We
thus propose a Markov Random Field model of the stereo reconstruction
and defogging problem which can be optimized iteratively using the a-
expansion algorithm. Outputs are a dense disparity map and an image
where contrast is restored. The proposed model is evaluated on synthetic
images. This evaluation shows that the proposed method achieves very
good results on both stereo reconstruction and defogging compared to
standard stereo reconstruction and single image defogging.

1 Introduction

The first dense stereo reconstruction algorithms were proposed forty years ago.
There is now more than one hundred algorithms listed on the Middlebury eval-
uation site. Nevertheless, several new algorithms or improvements are proposed
each year. The reason for this constant interest is the high usefulness of the 3D
reconstruction which serves in many applications such as: driver assistance, au-
tomatic driving, environment simulators, augmented reality, data compression,
3D TV. While the Middlebury database contains only indoor scenes of good
quality, outdoor applications are confronted with more difficult weather condi-
tions such as fog, rain and snow. These weather conditions reduce the quality of
the stereo pairs and introduce artifacts. Reconstruction results are thus usually
degraded.

The principle of stereo reconstruction is to find, for every pixel in the left
image, the pixel in the right image which minimizes a matching cost along the
epipolar line. Depending on the scene, the matching cost can be ambiguous or

* Thanks to the ANR (French National Research Agency) for funding, within the
ICADAC project (6866C0210).

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 13-5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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wrongly minimal. A prior on the disparity map is thus added, for instance to
enforce that close pixels have similar disparity. As a consequence, the stereo
reconstruction is set as the minimization of an energy which derives from a
Markov Random Field (MRF) model, see for instance [II2]. Thanks to recent
advances in numerical analysis, the optimization of this energy can be performed

quickly without being trapped by most of the local minima.

e D

Fig. 1. From left to right: original left image of the stereo pair, disparity maps ob-
tained using a-expansion on MRF [I], Libelas [3], correlation windows and dynamic
programing on each line

We observed that stereo reconstructions are degraded in the presence of fog.
As an illustration, in Fig.[Il we show disparity maps obtained on a foggy stereo
image by four stereo reconstruction algorithms: a-expansion on MRF [I], Li-
belas [3], correlation windows and dynamic programing on each line. Results
are not satisfactory; in the best case, they are correct only up to a critical dis-
tance. Indeed, in a foggy scene, the more distant an object, the whiter its color.
As a consequence, contrast is a decreasing function of distance, which makes
matching all the more difficult to perform. If stereo disparity is important for
3D reconstruction, in foggy scenes, the gray-level of distant objects is also a
depth cue. This depth cue is used in contrast restoration algorithms but had not
been used in 3D reconstruction yet. The defogging problem can also be set as a
MRF problem, see [4]. The atmospheric veil depth cue is particularly interesting
since it is complementary to the stereo depth cue: the former is reliable only
for remote objects, while the latter is reliable only for near by objects. Our idea
is thus to combine a MRF model of both stereo reconstruction and defogging
problems into a unified MRF model to take advantage of both depth cues. As
far as we know, there is no algorithm dedicated to dense stereo reconstruction
in foggy weather conditions.

The article is structured as follows. In Sec. Bl we state the problem, and
explain how fog affects the scene image. The classic dense stereo reconstruction
and image defogging problems are derived from a general formulation. In Sec. [3]
our model of the stereo reconstruction and defogging problem is proposed. At
last, Sec. M is dedicated to an evaluation on synthetic images and tests on camera
images.

2 Problem Statement

The inputs are the left and right images of a stereo pair {I;, Ig}. These images
are observed after perturbation by atmospheric scattering and camera optics.
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The images without all these perturbations are denoted Iy, and Iyg, respectively,
and are of course unknown. Also unknown is the depth map represented by its
disparity map D. Our goal being to fuse depth cues from the stereo and from the
atmospheric veil to achieve better reconstruction, it seems natural to search for
a Bayesian formulation of the problem so that prior knowledge can be included
to remove possible ambiguities. The two unknowns that we want to estimate are
the disparity map D and the clean left image Iyz,. The right one Iyg is not an
unknown since, not considering occluded objects, it is a function of D and Iyr.

The maximum a posteriori principle tells us to maximize the following poste-
rior probability, which can be rewritten using Bayes’ rule as:

p(D, lor|Ir,Ir) o< p(IL, Ir|D, Ior) P(D, Ior) (1)

where p(Iy,, Ig|D, Ioy) is the data likelihood and P(D, Iyy,) is the prior on the
unknowns (D, Iyr). Instead of posterior probability maximization, in practice,
it is its log which is minimized, leading to the following formulation in terms of
energy, or log-likelihood:

E(D,Iop|I1, IR) =§(1L71R|D710L2+§(D710L2 (2)
~ ~

Egata Eprior

The term Egqqq is also known as the data cost or fidelity term, and Epi0r as the
prior or regularization term.

2.1 Dense Stereo Reconstruction without Fog

Without fog, I, and Ir are only affected by the noise of the sensor which is
generally low. Following [2], the Bayesian formulation of the dense stereo re-
construction is approximated by assuming that I, is without noise. In (), the
unknown variable Ip;, can be thus substituted by I; leading to the approximate
but simpler energy minimization:

E(D|r,Ir) = E(Ig|D, 1) + E(D|Ir) (3)
~ ~

Edata stereo Eprior stereo

Data term: FEgutq stereo 1S the error in intensity between a pixel in the left
image and a pixel in the right image given a disparity. It is usually chosen as:

|IL(i7j) - IR(i _D(Z’j)’j)‘
gs

Eiata sterco = Z PS( ) (4)

(hj)eX

where X is the set of image pixels, pg is a function related to the distribution
of the intensity noise with scale og. This intensity noise takes into account the
camera noise, but also the occlusion, and it can be one of the functions used in
robust estimation to remove outliers.
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Prior term: This term enforces the smoothness of the disparity map. Because
of constant intensity objects, the data term can be rather ambiguous. It is thus
necessary to introduce a prior on the disparity map to interpolate the ambiguous
areas correctly. The smoothness prior tells that two close pixels have a greater
chance to be the projection of a same object with the same depth than remote
pixels. This assumption is not always true due to gaps in depth for example. As
a consequence, a robust function pp should be used in this term. The classical
prior term is:

Ep'rior stereo — )\D Z Z WD(VIL(’LL])) PD(‘D(%J) 7D(Z+k>j+l)|) (5)
(i,5)€X (k1)EN

where A\p is a factor weighting the strength of the prior on D, N is the set
of relative positions of pixel neighbors (4, 8 connectivity or other), and Wp is
a monotonically decreasing function of image intensity gradients. The weight
Wp is introduced to smooth low-gradient ambiguous areas more than gradient
edges. Usually Wp is chosen as a decreasing exponential function of the image

gradient: Wp(VI) = e 9 , where g, is a scale parameter. It is even better

to use a function of the image Laplacian in order to avoid sensitivity to linear
lar|

intensity variations: Wp(VI) =e ©9 .

2.2 Effects of Fog

With a linear response camera, assuming an object of intrinsic intensity Iy, the
apparent intensity I in presence of a fog with extinction coefficient £ is modeled
by Koschmieder law:
I=1Tpe PP 4 I,(1 — e PP) (6)
~

~ -
1%

where p is the object depth, and I is the intensity of the sky. From (@), it can
be seen that fog has two effects: first an exponential decay e ~?P of the intrinsic
luminance Iy, and second the addition of the atmospheric veil V' which is an
increasing function of the object distance p. The depth p can be rewritten as
a function of the disparity p = g where ¢ is related to the stereo calibration
parameters. It is important, for the following, to notice that there is one situation
where D can be obtained from a single image using V: when I is close to zero,
i.e when the object is dark. It is also important to notice that when the disparity
D is zero, the intensity Iy cannot be obtained. Moreover, Iy being positive, the
photometric constraint V' < I is deduced from (@).

For road images, several algorithms exist for detecting the fog and estimating
the extinction coefficient 3, see for instance [5]. The parameter § is thus assumed
known in the following, as well as I;.

2.3 Single Image Defogging Knowing the Depth

Before we describe our model for fused stereo reconstruction and defogging,
we focus on the simpler problem of defogging from a single image I given the
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disparity map D. Using the previous notations, only the left image is used in
this section. We thus drop L in the indexes. The unknown I is the image
without fog and noise. Both I and D are assumed known. Even though D or the
depth p is not accurately known, an approximate map is enough. The defogging
problem knowing the disparity D can be set as a particular case of (), i.e the
maximization of the posterior probability:

p(lo| D, I) < p(I|D, 1o)P(Io| D) P(D) (7)
or equivalently as the minimization of the energy:

B(lo|D, T) = BU|D, Io) + E(Iy| D) (®)
~ ~

Egata fog Eprior fog

Data term: The data term is the log-likelihood of the noise probability on the
intensity, taking into account that Iy is observed through the fog, see (@):

Bs B8
‘Io(ivj)e_ b.a) 4 I‘J(l —e P ) - I(Z7])|

op

Edata fog — Z pP(

(i,J)eX

) 9)

where pp is a function related to the intensity noise due to the camera and op
is the scale of this noise. pp and op are thus directly related to the probability
density function (pdf) of the camera noise and can be estimated off-line when
calibrating the camera. It can be noticed for D close to zero that the data term
does not constrain the distribution of Iy which tends to the uniform pdf.

Prior term: We found that the following prior term produces nice restoration
results:

35
Brior fog = A0S S € 00 Wi, (YD, ) pr, (1o ) — Toli + K, 5 + D))
(4,5)EX (k,1)EN
(10)
where Az, is a factor weighting the strength of the prior on Iy. Function Wi, is

the equivalent to Wp in the stereo, only now it is applied on the disparity map
_ |AD|

gradient rather than on image gradient. We use Wy, (VD) =e s , where o,

is a scale parameter. Function py, is a robust function used for similar reasons

as pp. An extra weight e~ () is introduced, and it is a key point, to take into
account that in presence of fog, there is an exponential decay of contrast with
respect to (w.r.t.) depth. This has the effect of giving less and less importance
to the prior as depth increases. This is necessary to be consistent with the fact
that the distribution of Iy is less and less constrained by the data term for large
distances. Without this extra factor, the intensity of close objects may wrongly
diffuse on remote objects.
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2.4 Optimization

While MRF formulations are successful to model image processing and computer
vision problems, it is also necessary to have reliable optimization algorithms to
minimize the derived energies. A large class of useful MRF energies is of the

form:
f(Y) = Z @x(yx) + Z Dy 0 (Yxa Yac') (11)
zeX zeX,x'eX

When the variable Y is binary, it has been shown long ago that for sub-modular
functions &, the global minimum of the previous problem can be obtained in
polynomial time. For non-binary variables, one of the most efficient technique
to optimize (IIJ) approximately is the a-expansion algorithm, which is based
on the decomposition of the problem in successive binary problems. The global
optimum of each binary sub-problem is obtained in polynomial time, when the
prior term is sub-modular.

When the function @ is not sub-modular, other heuristics such as oo — 3 swap,
Belief propagation, TRW, roof duality were proposed which produce interesting
results.

3 Stereo Reconstruction and Defogging

The model we now propose for fused stereo reconstruction and defogging shares
similarities with the single image defogging model presented in [4]. Indeed in [4],
the model is set as a MRF model and both depth p and restored image Iy, are
estimated successively. The main difference is that stereo is used in our approach,
while the approach in [4] is monocular. In particular, this last approach cannot
work with gray-level images, contrary to our stereo approach. Another difference
is that, in [4], Koschmieder’s law () is rewritten, after algebraic manipulations
and use of the log function, in such a way that the depth and intensity appear
as a linear combination of independent functions of each of these two variables.
This rewriting allows a simpler optimization. However, the noise is non linearly
transformed and this is not taken into account. The stereo approach we now
present contains non-linear equations where the image noise is better handled.

3.1 MRF Model

Data term: In stereo with fog, the data term (@) applies on the left image. On
the right, a similar term taking into account the disparity D is also introduced.
This leads to the following log-likelihood of the stereo data in fog:

e ~ps .
[loz (7, j)e Pe:» + Is(1 — et ) — Ir (i, j)

Edata fog stereo — Z pP( )

(i,5)eX ap
P —Bs . LN
+ pp( |IOL(7'3.7)6D(!’J) + IS(]- — eDbl.d) ) - IR(Z - D(Zaj)aj”)
op

(12)
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Notice that when 5 = 0, i.e without fog, the first term in (2] enforces Iy, = I,
and the second term is the stereo log-likelihood Fyutq stereo- 1This shows that D
can be estimated from both log-likelihoods. We thus propose to linearly combine
the two log-likelihoods in the data term:

Eaatar = 0Bqata stereo + (1 - a)Edata fog stereo (13)

with 0 < a < 1. During the estimation of both Iyz, and D, the value of Iy, can be
temporarily far from the true value. The advantage of introducing Fyutq stereo i
the data term is that the minimization of Fyutq stereo provides correct estimates
of D at short distances even if Iy, is badly estimated.

Photometric constraint and assumption on white pixels: As introduced
in Sec.[Z2] the photometric constraint on the atmospheric veil V' must be verified
both on the left and right images of the stereo pair. Due to noise, the photometric
constraint is not very strict but it helps to reduce the search space of Iyy,.

Due to fog, the contrast of remote objects is very low and stereo does not work.
As remote objects are nearly white, we add a zero disparity assumption on those
pixels with an intensity equal to ;. This assumption is of course wrong for white
objects. Taking into account the photometric constraint and the assumption on
white pixels, the data term is:

Eaatar iV (i,5) < Ip(i,5) + 30p
(

and V(4,5) < Ir(i — D(4,j),7) + 30p
Eiota = and I, (i,7) # Is (14)
0 if I.(¢,5) =Is and D(4,5) =0
400 else.

Prior term: In (), the prior probability P(D, Iyr) is related to two variables:
the disparity D and the intensity Iyz,. Unfortunately, this kind of mixed prior
term is actually difficult to optimize. To be consistent with previous stereo and
defogging prior terms, (@) and (I0) respectively, the two variables D and Iy
cannot be assumed independent of one another. We thus propose to write the
prior probability as P(D, Ioz) = P(D|Ior)P(Ior|D), where D and Iy, are fixed
approximations of D and Iy, given as priors. We thus propose the following
prior term for the stereo reconstruction and defogging problem:

— ﬁ(s . . . . . . .
Epior =Y Y Ary € 560 Wi (VD(i, ) pry(or (i, §) — Tor (i + k,j + D))
(i,7)eX (k,1)eEN
+Ap Wn(Vior(i, §)) pp(ID(i, 5) = D(i + k, j +1)])
(15)

The fact that D and Iy, are approximated is not a problem since they appear
only in the weights, such as Wy, and Wp, which are very smooth functions.

Indeed, the weight Wp is set, like in the stereo reconstruction case, to Wp(VI) =
_lar _14D|

e 29 . The weight W7, is set, like in the defogging case, to Wi, (VD) =e 7o .
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Initial D and Iy : Variables D and Iy;, are the approximate disparity and
approximate intensity in Ejp.;or. The atmospheric veil can be approximately
estimated on the left image using a single image defogging algorithm, see for
instance [6l/7]. Here, it is approximated by minimizing the following w.r.t. V:

Yo M) =VENI+A Y [V V(i+kj+1) (16)

(i,9)€X (k,1)eN

using a-expansion. The small features in the image I, are lost in V, but thanks to
the Ly robust terms, large objects with low contrast are kept. This atmospheric
veil V has the important property: it contains object edges. The weights Wp
and Wy, in Epior are introduced to attenuate the regularization through these
edges. By definition from (@), V =1—e~ b (assuming I; = 1 without loss of
generality). As a consequence, D can be obtained from V. This implies that
the factor e -5 in Eprior can be substituted by 1 — V. Another consequence is
that AD in Wi, can be approximated by AV. Rather than search for a close

approximation of Iy, we use 1{‘(-/ as a good approximation of Alyy,.

Complete model: In summary, the stereo reconstruction and defogging prob-
lem is set as the following minimization:

.Eaa Erio’r 1
in Egata + Ep (17)

In practice, the functions pp and py, are chosen as the identity. The noise on the
image being assumed Gaussian, pp is the square function. For those pixels which
verify the photometric constraint and which are not white, the energy which is
minimized is, after introduction of V:

11—« N L] —Bs .
E(D7IOL) = Z { 2 (‘IOL(ZaJ)eD(i'J) +IS(1_€D(1'J)) _IL(ZaJ)‘Q
(ijex © 7P

or (i, j)e 205 + I,(1 = e209) = In(i = D(i, ), )

+a ps( o )

. 1AV o , _
—1—2 (1—a)A\j,(L =V (i,5)e 9 |Iop(i,5) — Lor (i + k,j +1)]
(k,))EN

AV (i,5)]

+Ap e e90-V@ |D(i,5) — D(i+ k,j + l)}}
(18)

As this energy is known up to a scale factor, ([I8]) can be arbitrarily divided by
(1 —a)Ap,. This is used in the next section to estimate op from image residuals.
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3.2 Optimization

In (I8), D and Ip; appear in non-linear unary functions and independently in
binary functions. It is thus possible to optimize ([I8) by means of a two-step
alternate minimization: one step consists in minimizing w.r.t. Ipy, and the other
in minimizing w.r.t. D. The first step is defogging and the second step is stereo
reconstruction. The energies in both steps being sub-modular, a-expansion is
used for the minimization. With the alternate minimization, convergence towards
a local minima is guaranteed. Before the first step, the disparity is initialized by
stereo reconstruction assuming no fog, i.e by minimizing ([I8) with a = 1.

As pointed in [4], the gradient distribution of a hazy image can be very dif-
ferent from that of a foggy image. This implies that after division of ([I8) by
(1 — a)Ap,, the factor opy/Az, must be set differently from one image to an-
other. When this factor is not correctly set, the chance to converge towards
an interesting local minimum decreases. Hopefully, the first term of (I8]) being
quadratic, the factor op \/ A1, can be easily estimated by estimating the standard

—Bs —Bs
deviation of the left intensity residuals Ioy, (4, j)e PG + I3(1 —e PG ) — I (4, j).
In summary, the optimization scheme is:

Compute V' by minimization of ([I6), using a-expansion.
Initialize D by minimizing ([I8)) w.r.t D, with a = 1, using a-expansion.
— Until convergence, iterate:
1. Until convergence, iterate:
(a) Minimization of (I8)) w.r.t Ior, using a-expansion.
(b) Minimization of (I8) w.r.t D, using a-expansion.
2. Update op by computing the standard deviation of the left intensity
residuals.
— op \/)\[O is enforced to value 1 and a last optimization w.r.t. Iy, is performed
to better emphasize the detailed texture.

4 FEvaluation

4.1 Parameters Setting

The proposed MRF model is mainly parametrized by « which is the weight
between the photometric log-likelihood Ephoto fog stereo Of left and right images
and the log-likelihood Eppoto stereo Of the stereo. When « is close to zero, the
obtained disparity map is smooth in homogeneous areas, but the disparity of
close objects may be biased as well as the intensity Ipr,. When « is close to one,
the disparity obtained from the stereo log-likelihood is usually correct for close
objects but the quality of the reconstruction decreases with the contrast and
thus with the depth. Therefore, we recommend to set « close to 0.5 or a little
higher.

Another important parameter is the initial value of op \/ A1,- The choice
of this value can have an effect on the local minima selected at convergence.
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Fig. 2. First column, from top to down: the ground truth disparity map, the image
without fog and the energy decrease with iterations. Second column: the disparity
map, the restored image with op \/ A1, = 1 and the disparity error map obtained with
stereo reconstruction without considering fog. Third column: results of the proposed
method when op \/ A1, = 20 at the initialization. Fourth column: the first iteration.
Last column: after convergence. For comparison purpose, restorations are processed
using the last optimization step to emphasize details.

The bigger op \/ A1, at the initialization, the smoother is the depth map after
convergence. Fig.[2shows several iterations of the algorithms with op \/ A1, = 20.
We can notice that, after one iteration, the large scale of op \/ A1, allows a better
reconstruction and restoration around the closest vehicle. When the number of
iteration increases, the scale op \/)‘Io becomes smaller, and the restoration is
improved step by step for remote objects. Thus, the two far away vehicles appear.
A too large scale can cause wrong stereo matching. However, when « is larger
than 0.5, these wrong matches are unusual.

4.2 Synthetic Images

To evaluate the stereo reconstruction in foggy weather, we rely on synthetic

images due to the difficulty to have the 3D model of a scene and images of this
™
scene with and without fog. We generate synthetic stereo images using SiVIC

software which allows to build physically-based road environments. Uniform fog
is added knowing the depth map, see Fig. Bl To make the image more realistic
and evaluate the ability of the algorithm to manage the noise, we also added a
Gaussian noise on every pixels of left and right images, with standard deviation 1.
This database is named FRIDAS3 and is available online for comparative studied].

We compared the results of three methods: first, the stereo reconstruction
based on the classic MRF model without fog; second, the first iteration of the

! http://perso.lcpc.fr/tarel. jean-philippe/visibility/fogstereo.zip



Stereo Reconstruction and Contrast Restoration in Daytime Fog 23

™
.
. E,

B
it

Fig. 3. Results on three images of the synthetic FRIDA3 stereo image database. First
column: foggy left images. Second column: same scene without fog. Third and fourth
columns: disparity maps obtained using stereo reconstruction without fog and restored
images using these disparity maps. Fifth and sixth columns: disparity maps with the
proposed method and associated restored images.

Table 1. Comparison of the percentage of correct disparities in average on 66 synthetic
stereo pairs using the classic MRF approach without fog (STEREO, see Sec. 21I),
with the photometric constraint and assumption on white pixels added to stereo
(STEREO+PC), at the first iteration (FIRST) and after converging (FINAL). Per-
centages are given for different values of the maximum error err on the disparity (in
pixel).

Algorithm err <1 err<0.66 err<0.33
STEREO 0.776 0.722 0.514
STEREO+PC  0.811 0.764 0.548
FIRST 0.822 0.771 0.552
FINAL 0.828 0.780 0.573

proposed method; third, the proposed method after convergence (with initial
op \/)‘Io = 20 and a = 0.5). Results are shown in Tab. [L2] in average on 66
stereo pairs. This percentage takes into account only the pixels seen in both
images with disparity larger than one, i.e not considering the sky. The stereo
without fog (STEREOQO) achieves 72.2% of correct disparities in the whole im-
age, for a maximum error of 0.66 pixels. When the photometric constraint due
to fog veil is added (STEREO+PC), the percentage of correct disparities is im-
proved to 76.4%. This step STEREO+PC corresponds to the initialization of the
proposed method. The first iteration of the proposed method (FIRST) achieves
77.1%. After convergence (FINAL), this percentage is increased to 78.0%. From
Tab. 2] it is clear that the proposed method outperforms the classic stereo re-
construction which does not take the presence of fog into account. In percentage,
the improvement due to iterations may seem reduced on the whole image, but
these iterations are important to improve correct disparities at long distances.
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This fact is illustrated in Fig. Bl which displays obtained disparity maps and
restored left images on three stereo pairs of the FRIDA3 database.

Fig. 4. First column: foggy stereo pair. Second column: Single image defogging with [6]
and disparity map obtained by stereo reconstruction without fog. Third column: re-
stored left image and disparity map obtained using the proposed method.

4.3 Camera Images

We compared the proposed method to the stereo reconstruction without fog
described in Sec. [ZJ]and image defogging described in [6]. 8 is manually selected.
Results show that both the reconstruction and restoration are of better quality.
In Fig. [ results are compared on urban and country side stereo pairs. One
may note that the obtained stereo reconstruction are dense at both short and
long distances, contrary to stereo reconstruction without taking into account
the fog. The stereo restoration obtained by the proposed method is of good
quality compared to single image defogging results. At close distances, outliers
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are avoided thanks to the photometric constraint and the true intensity of objects
is kept. At a far distances, the contrast is greatly enhanced without amplifying
the noise to much.

5 Conclusion

We proposed a MRF model to solve the stereo reconstruction and image defog-
ging in daytime fog. It is an extension of two sub-models: the classical stereo
reconstruction without fog and newly introduced image restoration when the
depth is known. The proposed model includes the photometric constraint and
priors on white pixels. It leads to the optimization of an energy which can be
solved by an alternate scheme based on the application of successive a-expansion
optimizations. The convergence towards a local minimum is thus guaranteed.
Tests on both synthetic stereo pairs and camera stereo pairs show the relevance
of the model. Thanks to the stereo depth clue, the disparity is correct at short
distances, and thanks to the atmospheric veil depth cue, the disparity is drasti-
cally improved at long distances. The obtained restored results are better than
the ones obtained without stereo thanks to the simultaneous estimation with
the disparity map. Perspectives for future research are to take into account non
constant sky, non Gaussian noise to improve scale estimation, to explicitly take
into account occlusions in the formulation, to speed up the algorithm for real
time applications and to extend the previous model to heterogeneous fog.
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Large-Scale Bundle Adjustment by Parameter
Vector Partition
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Abstract. We propose an efficient parallel bundle adjustment (BA) al-
gorithm to refine 3D reconstruction of the large-scale structure from mo-
tion (SfM) problem, which uses image collections from Internet. Different
from the latest BA techniques that improve efficiency by optimizing the
reprojection error function with Conjugate Gradient (CG) methods, we
employ the parameter vector partition strategy. More specifically, we
partition the whole BA parameter vector into a set of individual sub-
vectors via normalized cut (Ncut). Correspondingly, the solution of the
BA problem can be obtained by minimizing subproblems on these sub-
vector spaces. Our approach is approximately parallel, and there is no
need to solve the large-scale linear equation of the BA problem. Experi-
ments carried out on a low-end computer with 4GB RAM demonstrate
the efficiency and accuracy of the proposed algorithm.

1 Introduction

The large-scale structure from motion (SfM) technique [1I, [2], [3], [4], [5] which
uses image collections from Internet has become a popular topic in recent years,
and attracted more and more attention to the bundle adjustment (BA) tech-
nique. BA, which aims to refine a visual reconstruction to produce jointly opti-
mal 3D structure and camera parameter estimates [0], is used as the last step of
each SfM algorithm. Even though rapid progress [7], [§], [9], [10], [I1] has been
made in this field, the efficiency of BA algorithms is still an open problem due
to the very large number of parameters involved.

Much effort has been spent on traditional BA problems (i.e., source images of
StM come from video sequences and the size of BA is usually small). Shum et al.
[12] introduce an efficient way to reduce the number of parameters by using two
virtual key frames to represent a sequence, and it results in a significant speedup
of the BA algorithm. However, the convergence of the proposed algorithm is still
a pending issue. Instead of iteratively adjusting all the structure and motion
parameters, Steedly and Essa [13] propose an incremental BA algorithm that
only optimizes the parameters of change when adding a new frame. Though
the algorithm converges, and is faster than the original BA, it cannot work in
the case that the data are highly interdependent. The technique in [I4] does not
solve the normal equations directly, instead it permutes the Hessian matrix of the
reprojection error function by spectral partitioning such that the large problem
can be partitioned into several smaller and well-conditioned subproblems. Its

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 26-B9] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Large-Scale Bundle Adjustment by Parameter Vector Partition 27

limitation, however, is that at each iteration, a partition is needed, which might
increase the complexity of the algorithm. The method in [10] executes BA in an
out-of-core manner, which decouples the original problem into several submaps,
so that the problem can be solved in parallel. However, an expensive merging
step is needed to obtain the final complete solution.

Recently, several methods have been presented to address large-scale BA prob-
lems. In [I5], an inexact Newton method which pairs with relatively simple pre-
conditioners is employed to get an approximation solution of the normal equa-
tions at each iteration. The approach in [I6] applies the Conjugate Gradient
Least Square (CGLS) algorithm to BA, which avoids formulating the Hessian
matrix of the reprojection error function, thus saving memory and computing
time. Another work is proposed by Wu et al. [I7], in which they address BA on
a multicore computer to increase efficiency. Although these methods can solve
large-scale optimization problems in theory, their computing cost of the whole
optimization is still huge in practice. There is still a computing power gap be-
tween the computational requirement of BA algorithms and that can be provided
by a normal computer. As claimed in [I5], [17], the authors perform experiments
on a workstation with dual Quad-core CPUS clocked at 2.27Ghz with 48GB
RAM, and another same situation happens in [16]. The latest method [I1] also
cannot fit into a 8GB RAM memory when using the BAL datasets [I5], which
further demonstrates that the state-of-the-art BA algorithms still cannot run on
a low-end computer due to the high consummation of memory.

In this paper, we propose a parameter vector partition bundle adjustment
(VPBA) algorithm by exploiting sparsity of large-scale BA problems. Specifi-
cally, we first use the normalized cut (Ncut) algorithm [I8] to partition the whole
parameter vector into a set of individual sub-vectors, then iteratively solve BA
subproblems on these sub-vector spaces to converge to the optimal solution of
the original BA problem. Our work is similar to methods in [I0] and [I4]. How-
ever, The proposed VPBA algorithm is different from the method in [I0] in that
VPBA does not need any merging step, which is an important and necessary step
in [I0]. This feature makes VPBA more suitable for large-scale BA problems.
Moreover, instead of partitioning the original BA problem into several subprob-
lems at each iteration in [14], our algorithm partitions parameter vector only
once, and is therefore more simple and efficient.

In summary, the proposed VPBA algorithm has the following characteristics:
1) It does not need to compute the Hessian matrix of the reprojection error func-
tion. More importantly, the approach avoids solving large-scale linear systems,
which is often a heavy load for large-scale BA problems. Therefore, a signifi-
cant amount of memory and computation time can be saved. 2) The partition
strategy of VPBA makes the algorithm approximately parallel, and each BA
subproblem can be easily accomplished on a low-end computer. 3) The experi-
mental results (Section M) show that the proposed algorithm is reliable, accurate
and fast in practice, though we currently cannot provide a theoretical proof of
the convergence of VPBA.



28 S. Pang et al.

The rest of the paper is organized as follows: In Section[2] a brief introduction
to the BA problem is provided. The proposed VPBA algorithm is presented in
Section [3l and evaluated in Section El Finally, a conclusion is given in Section [l

2 Revisit Bundle Adjustment

Assume that n 3D points are observed in m views, and let x;; be the projected
measurement of the ith 3D point on image j. BA minimizes the reprojection
error with respect to all 3D points x; (i € 1,...,n) and camera parameters
¢; (j €1,...,m), specifically

min /(8 = min >3 lla(ej,a:) - 3 (1)

i=1 j=1

where || f(S)||? is the sum of squares of reprojection error, and h(c;, z;) is the pre-
dicted projection of 3D point ¢ on image j. For simplicity, we let S = (c1,. .., Cm,
21,...,2,)7 denote all unknown parameters.

The Gauss-Newton algorithm is a standard algorithm for Eq. (). Usually, f
is approximated by a small ||ds]|, i.e,

f(S+ds) = f(S)+ Jds, (2)

where J is the Jacobian matrix of f. At each iteration, minimizing || f(S 4 ds)||
leads to the following normal equations:

(JT D)o = =JTf, 3)

where J7J is an approximation to the Hessian matrix of || f||*>. However, it
is difficult to meet with the requirement of a suitable step control policy to
guarantee convergence of the Gauss-Newton algorithm, especially when J is
rank-deficient, or nearly so. The Levenberg-Marquardt (LM) algorithm avoids
this by adding a damping term Al (A > 0) to J7.J, where ) is referred to as the
damping term. This leads to solve the following damped system:

(JTT+A)oés =—JLf. (4)

LM is still inefficient in solving Eq. {@)) when it is large-scale.

To reduce the size of the large linear system, one well known method, Schur
complement trick, is widely adopted. Specifically, we can partition the Jacobian
matrix into a camera part Jeo and a point part Jp as J = [J¢, Jp] by exploiting
the structure of the BA parameter space. Thus J7.J has the form:

JL C[JEJeJEIp] (U W
|;]g:| [JCaJP] - {J};JC JJT;JP —\wT v | (5)

where U € R™*™¢ ig a block diagonal matrix with m blocks of size ¢x ¢, and ¢ is
the number of the parameters of a single camera; V' € R"*"? ig a block diagonal



Large-Scale Bundle Adjustment by Parameter Vector Partition 29

matrix with n blocks of size p X p, and p is the number of the parameters of
a single 3D point. Applying Gaussian elimination to Eq. ) yields a simplified
system

U = WVv*Whs, = —JLf + WV*LILf, (6)

where * denotes the augmentation of the diagonal elements of U and V. After
we get g, with Eq. (@), we can then get dg, by

V*s, = —Jbf —WTis,. (7)

The Schur complement trick reduces the size of the linear system from (mc +
np) x (me+np) to (me) X (mc). In practical applications, m is often much smaller
than n, so huge amount of memory and computations can be saved.

In the case that there are several hundred cameras, Eq. (@) can be efficiently
handled by many efficient strategies. One of most popular algorithms employing
the Schur complement trick is sparse BA (SBA) [19]. SBA solves Eq. (@]) via the
Cholesky factorization method, and achieves a high performance. As reported
n [15], SBA is successful for small problems. However, for large-scale problems
(m = 10% ~ 10%), SBA may still fail because the cost of cholesky factorization
is prohibitively expensive. In order to solve this challenging problem, Conjugate
Gradient (CG) methods [15], [16], [I7] are used to solve Eq. @) at the cost of
obtaining an approximate solution of Eq. ().

However, all these aforementioned BA algorithms still have to deal with huge
matrix operations and the needs of solving large-scale linear systems, which are
not trivial.

3 The Vector Partition BA Algorithm

In this section, we present the proposed VPBA algorithm. The latest BA al-
gorithms proposed in [I5], [I6] and [I7] try to improve the efficiency of solving
Eq. {@). Being distinct from these approaches, the VPBA contrives to partition
the whole parameter vector into a set of individual sub-vectors, and decomposes
the original optimization problem Eq. (I} into a set of individual subproblems.
After partitioning, each subproblem can be solved by the LM algorithm on a
low-end computer. The final solution of Eq. () is a straightforward combination
of solutions of these subproblems.

3.1 Exploiting Sparsity

BA becomes a large-scale optimization problem when the size of parameter vec-
tor S is large. Fortunately, the large-scale BA problem has useful properties of
structure and sparseness. This motivates us to design an efficient BA algorithm
by exploiting the structure and sparseness of the large-scale problem.

By investigating the reprojection error function Eq. (), we find that each
individual component only depends on two composite parameters ¢; and x;.
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Fig. 1. Illustration of sparsity of BA. 3D points in blue ellipse are mainly reconstructed
by cameras marked in blue, and these 3D points have fewer projections on images
marked in red and green. Cameras marked in red and green photograph different parts
of the scene, and thus no 3D points to connect images in red and green together. Re-
marks: 1) The Venice model with 1778 cameras is optimized by our VPBA algorithm,
and this initial 3D model is released by Agarwal et al [I5]. 2) Only schematic positions
of a few cameras are illustrated.

This means that the reprojection error function is a partial separable func-
tion [20]. This structural property forms a solid basis for our parameter vector
partition, and inspires us to consider the sparseness of the camera parameter
space and 3D point parameter space separately.

Firstly, we consider the sparseness of the camera parameter space. Each cam-
era only photographs a very small portion of landmarks due to its limited view
scope. For example, for the scene containing 4.5 millon points and 13682 cameras
in the BAL datasets [I5], a camera covers at most 20,000 3D points, and most
of cameras can only cover several hundred or thousand points. This means that
if we fix j in Eq. (d), except for a few cameras, components of Eq. (II) related to
camera c; account for a very small part of the overall parameter vector.

Secondly, the sparseness also exists in the 3D points. For a specific scene, only
extremely few points are simultaneously visible in the hundreds of cameras, and
most of points are only observed by dozens of cameras. In other words, when we
fix i in Eq. (), the number of components of Eq. ({l) depended on point z; is
relatively small, too.

For a single image, only a small fraction of the image collection can be matched
with a large number of feature points. With the sparseness of the camera pa-
rameter space, we can conclude that the number of 3D points reconstructed by
these matched images is small compared with the size of the whole 3D point
set. Meanwhile, we can infer these reconstructed 3D points are mainly visible in
these images, and have fewer projections on other images by the sparseness of
3D point parameter space. Fig. [l illustrates this observation.
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Additionally, the sparseness of the parameter space gives rise to another ap-
parent fact: some cameras photograph different parts of a large scene, and they
share no common content. This leads to a situation that we cannot reconstruct
any 3D points from these images. In other words, there are no 3D points to
connect these images together. This is also illustrated in Fig. [l

Based on the aforementioned structural properties, we obtain a parameter
vector partition strategy as follows: 1) partition the camera parameter vector
into individual camera groups, 2) partition the 3D point parameter vector into
point groups according to the partitioned camera groups. Through this partition,
a large-scale BA problem can be decomposed into subproblems accordingly. This
partition strategy makes the VPBA algorithm avoid huge matrix operations,
such as computing and inverting of the full Hessian matrix, and thus results in
speedup, and memory saving.

3.2 Partition Parameter Vector

In this section, we present the parameter vector partition in detail. To do this,
let us first define a partition of vector S € R™ as follows:

Definiton 1 (Partition) For the parameter vector S composed by variables ay,

az, -+, am, where a; € R™ and 1" i), = n. namely, S = (af,al, -, al)T.
if S is partitioned into S = (S1,S2,-++,8,)T, where S; = (ajTl,a};,~~~ ,a};_)
J

and ji(t = 1,2,---,1;) € {1,2,---,m}, then we say these sub-vectors S; form
a partition {S1,---,S} of the original vector S. That is, U?Zl S; = 8 and
S;nS; =0, if i # j. Moreover, §j, which is the complement vector of Sj,
satisfies S; U S; =S and S;NS; =0, Vj € {1,---,q}.

According to this definition, we can decompose any minimization problem
minger g(S) as

9(5) = 9(5;,55) + 9(55), (8)
where g(S;) only depends on the parameters in Sj After getting g(S;), g(S;,S;)
can be computed by g(S;,S;) = g(S) — g(5;).

Now, we state our method to solve the large-scale minimization problem
mingern g(S): first, partition the vector S € R™ into sub-vectors {S1,- -, Sq},
and then decompose the original problem into subproblems defined on these sub-
vector spaces according to Eq. (), and finally, solve the original problem by
iteratively minimizing these ¢ subproblems (we describe details in Subsection[3.3).

Thus, the first step of VPBA becomes clear: to partition the whole parameter
vector S into a partition P. Considering the convergence speed and the size of
subproblems, the partition P should meet two basic requirements: 1) the size of
sub-vectors should be small enough so as to be solved with a normal computer;
2) the number of coupled parameters should be as small as possible.

! We give a simple example to make Eq. () more readable: suppose g(S) = (z1 —z0)%+
(1 —x3)2 + (w2 — x3)?, and S = (w1, 22, 23)7; if we let S1 =1 and S1 = (x2,23)T,
then g(S1,51) = (z1 — 22)? + (z1 — x3)? and ¢(51) = (w2 — 23)%.



32 S. Pang et al.

Fig. 2. Schematic illustration of decomposing all camera and 3D point parameters.
This example assumes that 7 cameras observe 11 points. According to image simi-
larities, we first use Ncut to partition 7 cameras into 3 groups: Ci, C2, Cs, where
Cy ={c1,c2}, Co ={cs,ca,¢5}, C3 = {cs, c7}. Correspondingly, points are partitioned
into 4 groups: X1 = {Il,itz}, X2 = {Jls,itﬁ,it'r}, X3 = {Jllo,itu}, X4 = {LE3,$4,$8,$9}
(see text in detail). Thus, S; = {C;, X;}(i = 1,2, 3) and S4 = X4 constitute a partition.

In order to trade-off between these two requirements, we first divide the cam-
era parameters by Ncut. Other grouping algorithms, such as K-means and Mean
shift, may also be easily adopted in our framework. Specifically, we build an
undirected weighted graph for the image collection, where each node denotes a
single image, and each edge denotes the connection of each pair of images. The
weighted matrix W is built in this way: w;; stands for the number of 3D points
that image 7 and image j share. This implies that if image ¢ and image j are very
similar, w;; is large, and vice versa. Once W is constructed, the Ncut algorithm
can partition the full image set into groups. In order to satisfy requirement (1),
we adopt two-way Ncut repeatedly until every camera group contains a small
number of cameras.

Next, we partition 3D point parameters into groups. Given the K camera
groups (we denote them as C1, - - - , Cx) that we have already obtained by Ncut,
images within a same group are with strong similarities, and jointly represent a
segment of the scene. Different groups share few or no connection, and represent
different segments of the scene. With this observation, we can divide the 3D
point sets into two classes: intra-points, and inter-points. Intra-points are those
observed by cameras within a same group C; (1 <! < K). Inter-points are points
which do not meet with this condition (i.e., they are observed by cameras from
at least two groups). In this way, all these 3D points are divided into K + 1
groups: Xy, -+, Xiy1, where X; (1 <1 < K) is made up by intra-points, and
Xk41 is made up by inter-points, respectively.

Finally, we do a merging step to partition the whole parameter vector into
K + 1 sub-vectors: parameters of both the camera group C; and 3D point group
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X are merged to span a parameter sub-vector S; (1 <! < K). Thus, according to
Definition[Il P = {S1, -+, Sk+1} constitutes a partition, where Sx11 = X 41.
The complete process of parameter vector partition is illustrated in Fig.

Corresponding to partition P, the original BA problem defined on vector space
S is decomposed into K + 1 subproblems defined on vector spaces Si, .., Sg+1-
These subproblems are interacted with each other only by coupled parameters.
As we will see in Subsection B3] all inter-points (i.e., Sk4+1) and cameras related
to them make up coupled parameters. Obviously, coupled parameters are not too
many based on the features of Ncut, and this can be further verified with BAL
datasets [I5] in Subsection [A11

Now, the parameter vector partition algorithm can be summarized as follows:

1. Represent the full image set as a graph and set up the weighted matrix W,
then use Ncut to partition all cameras into K groups: C1, -+ ,Ck.

2. Use camera groups to cut 3D points and get K + 1 groups of points: Xy, - ,
Xk 41, where points in X; (1 <1 < K) are only observed by cameras in Cj.
Points which do not meet this condition form Xg 1.

3. Let S; = {ClaXl} (1 <Il< K) and SK+1 = Xxk+1, then {Sl,~~~ ,SK+1} is
a partition of the parameter vector.

It should be noted that, in order to meet requirement 1), Ncut sometimes pro-
duces a few groups with too small size. However, this is not a problem, since
we can simply merge these small groups into a group. This step is necessary,
because it can reduce the number of coupled parameters, and also can keep a
balance between the largest groups and the smallest ones, which is important to
the parallelization of the VPBA algorithm (see Subsection B.4]).

3.3 [Iterate to Convergence

Given a partition, the corresponding minimization functions have defined ex-
pressions. Let us denote f; as a minimization function corresponding to vector
space ;. According to Eq. @), f; (1 <1 < K) is only dependent on set Cj, X,
and Xg41,, where Xg 11, is a a subset of X, 1, and points in it have image
projections on cameras in Cj. Clearly,

fi= Z Z Hh(cjaxz‘)—xinQ

T, €X] CjGCl

Y D e ) —ay )

2 €XK 41,1 ¢;EC

We fix points in set X1, (i.e., X 11, is the constant parameter) and optimize
every element of S; when minimizing Eq. (@)). This demonstrates that f; has
nothing to do with another minimization function f, (I # ¢), so that they can
be minimized in parallel.

Note that compared with the original BA problem in Eq. (), Eq. (@) only
adds some fixed points. This indicates Eq. (@) and Eq. () have nearly the same
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Fig. 3. The framework of the VPBA algorithm. Note that f1,--- , fx are independent,
so we solve them in parallel. After updating Sk+1, we handle fx41 on M processors
since it is a separable function. Moreover, the number of parameters of fx+1 (see Table
1) is not much, so solving it takes a little time at each iteration.

structure, but Eq. ([@) has much fewer parameters to be optimized, so we can use
previous BA methods with a slight modification. In the experiment, we choose
the SBA algorithm to solve them, since as reported in [I5], SBA has the best
performance in solving these small BA problems.

Similarly, according to Eq. (8)), fx+1 depends on inter-points (i.e., Xx4+1) and
cameras (we call Cx41) which observe inter-points. Its parameters and constant
parameters are X g1 and Ck 11, respectively. Likewise, we state fx 1 as follows:

frri= > > (e m) — . (10)

z;€XK41¢;€ECK 11

When minimizing Eq. (I{), we need to fix camera parameters and optimize inter-
points. Given the camera parameters, each point can be optimized independently
(i.e., fic+1 is a separable function). This means solving fx 1 is much easier than
f1, and its solution can be obtained only by solving | X k41| linear systems with
size 2‘CK+1‘ X 3 [12}.

Finally, we can solve the original BA problem by iteratively solving subprob-
lems as follows:

1. Fix X1, and solve one step of f; (1 <1 < K) simultaneously using any
monotonically descent and convergent algorithm (for example, SBA [19]),
get new Sy,---, Sk.

2. Use the result of step 1 to update Ck 1 into fr 41, then fix Ck 41 and solve
one step of fr 11, get new Xg 11 and in turn update f;.

3. Repeat steps 1 and 2 until convergence.

The algorithm alternates coupled parameters X g1 and Ck 41 between steps 1
and 2, and updates uncoupled parameters X1, -- , Xk only at step 1. Since al-
gorithms employed for solving subproblems are monotonically descent, hence the
total reprojection error is decreased at each iteration. Furthermore, VPBA can
be implemented almost in parallel, and experimental results show its efficiency.
Fig. Blillustrates the entire implementation process of the VPBA algorithm.
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3.4 Parallel Measures

A difficult issue in the implementation of VPBA is that, though we start
f1,+ -+, [k at the same time, they may end at different time due to their different
size. In order to shorten waiting time, we reduce the exchanging frequency of
coupled parameters by two measures. First, at step 1 of the VPBA algorithm,
rather than just running one step of f;, we iterate it several times, and different
subproblems have different iterations (i.e., for larger subproblems, we set fewer
iteration numbers, and vice versa.). This idea ensures the cost time of these
subproblems is roughly the same.

Second, given the updated camera parameters Ck 1, we minimize fx 11 with
respect to X 41 at step 2 of the VPBA algorithm. fx 1 is separable and has
a relatively small number of parameters (see Table [I]) to be optimized. We can
handle fx 11 on multiple processors, thus it only takes a little time in each loop.
These two simple measures make the VPBA algorithm approximately parallel.

4 Experiments and Results

In this section, we evaluate the VPBA algorithm using BAL datasets released
by Agarwal et al. [I5]. The BAL datasets contain five categories of datasets:
Dubrovnik, Final, Ladybug, Trafalgar Square and Venice. Each of them has
dozens of 3D models that are reconstructed with different numbers of cameras.
We choose 24 large models to evaluate the performance of the VPBA algorithm
for large-scale BA problems.

The models initially contain a relatively large number of outliers. Similar to
methods in [I], [L6], [17], we remove outliers as follows: 1) remove 3D points
that are in the back of (or close to) camera planes; 2) reject points with a large
reprojection error; 3) filter out cameras whose calibration information is obvious
wrong, such as focal length is negative.

4.1 Comparison with SBA

In this section, we design experiments to demonstrate whether the parameter
vector partition strategy of VPBA is effective. For this purpose, we implement
both VPBA and SBA using a low-end computer with 4GB RAM. Since the SBA
algorithm does not use our parameter vector partition strategy, thus we can
compare the performance of VPBA with SBA using the same datasets.

In the implementation of the VPBA algorithm, we stop partitioning the pa-
rameter vector until the largest camera group has fewer than 1000 cameras for
each BA problem. Table [ lists the maximum number of cameras including all
the subproblems f; (1 < I < K). Inter-points and cameras related to them
constitute all coupled parameters, and points usually account for most of these
coupled parameters. We also list the number of inter-points for each BA problem
in Table [l It clearly shows that inter-points account for a very small fraction
(0.02 ~ 0.10) of all 3D points in the Venice and Ladybug datasets. It should be
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noted, for the Final dataset, the fraction of inter-points becomes a little larger,
and is about twenty percent of all the 3D points. We think this is probably caused
by two factors: 1) the connectivity graph of cameras is more complex than that
in the Venice and Ladybug datasets, and grouping these cameras leads to more
coupled parameters ; 2) the size of these models is much larger than that in the
Venice and Ladybug datasets. To make it feasible running on a PC, we need
more groups of cameras which inevitably gives rise to more coupled parameters.

For each initial model in the Ladybug and Venice datasets, VPBA and SBA
are stopped by the same criteria: maximum iterations (50) or the relative

Table 1. Comparison results of VPBA and SBA. The first column corresponds to
the name and index in the original datasets: "L” for ”Ladybug”, ”V” for ”Venice”
and ”F” for "Final”. m and n denote the number of cameras and 3D points of the
original problem, respectively. K is the number of camera groups and ms stands for
the maximum number of cameras including all the subproblems f; (1 <1 < K). ny
is the amount of coupled 3D points. We evaluate our algorithm in terms of time (in
minutes) and the final mean squared reprojection error (in pixels). The last column
denotes the speed up ratio of VPBA over SBA. '~ means SBA cannot fit into memory
on our platform (4GB RAM).

VPBA SBA

n N ny/n error time error time 7y
121,633 3,856 0.03 0.86 16 092 157 9.8
121,633 4,681 0.04 0.83 25 0.85 318 12.7
121,633 2,896 0.02 0.78 35 0.81 450 129
127,787 2,953 0.02 0.72 35 0.76 557 159
129,306 3,033 0.02 1.01 38 098 724 19.1
140,029 4,388 0.03 0.83 38 0.81 853 22.5
145,006 4,512 0.03 0.70 43 0.72 1061 24.7
149,121 45593 003 072 47 - - -
149,707 4,598 0.03 0.77 54 - - -
272,523 16,352 0.06 2.51 25 247 63 2.5
475,217 17,234 0.04 2.02 62 1.99 198 3.2
699,114 23,752 0.03 197 66 1.95 573 8.7
743,047 20,405 0.03 1.81 90 1.81 1121 12.5
766,029 26,482 0.03 1.74 68 1.75 1279 18.8
796,053 26,310 0.03 197 62 - — -
802,756 28,153 0.04 1.98 67 - - -
840,442 72,779  0.09 1.94 53 - - -
849,761 86,463 0.10 1.92 54 — - -
418,517 96,572 0.23 1.59 73 1.56 231 3.2
161,069 30,909 0.19 1.68 48 1.70 270 5.6
561,238 150,127 0.27 197 119 -
F-06 3,017 875 252,466 41,268 0.16 1.81 293 - - -
F-07 4,557 922 1,280,289 260,998 0.20 1.53 364 - - -
F-08 13,608 923 17 3,773,337 684,261 0.18 1.78 378 - - —

name m ms
L-17 969 392
L-19 1064 419
L-22 1,197 499
L-24 1,266 503
L-25 1,340 501
L-26 1,469 520
L-27 1,586 545
L-29 1,690 570
L-31 1,712 573
V-04 423 271
V-05 740 412
V-09 1,179 424
V-11 1,281 552
V-12 1,343 514
V-16 1,483 430
V-18 1,537 444
V-26 1,689 439
V-20 1,770 486
F-03 869 494
F-04 961 546
F-05 1,936 599

@@%NN%%%%MMWMN%%%@WMW@MN
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reduction in the magnitude of the reprojection error (10712). VPBA works well
on these two datasets: it’s much faster than SBA (3 times « 24 times speedup),
and can reach the comparable reprojection error (Table [I).

For models F-03 ~ F-08, we run the VPBA algorithm for a maximum 100
iterations (50 iterations for SBA), and can reach the comparable reprojection
error with SBA. The slow convergence on these models is probably caused by
more coupled parameters than those in the Venice and Ladybug datasets. How-
ever, note that BA problems has cubic complexity, it’s worth increasing the
number of iterations because the size of each subproblem is much smaller than
the original problem. More importantly, even with 100 iterations, our algorithm
is much faster than SBA, and it can solve large-scale BA problems on a low-end
computer.

4.2 Comparison with the State-of-the-Art BA Algorithms

In this section, we compare VPBA with the state-of-the-art algorithms presented
in [I5] in terms of speed. It’s difficult for us to compare our VPBA algorithm
with them directly, as they need to perform on a workstation with large memory
and powerful CPU. However, we can compare VPBA with the latest algorithms
indirectly. Specifically, Agarwal et al. [15] propose four new algorithms: explicit-
jacobi, normal-jacobi, implicit-ssor, implicit-jacobi, and they also report the

Table 2. Compare our algorithm with four latest algorithms proposed in [15] in terms
of speed. The first column denotes the test datasets. From the second column to the last
column, each one shows the speed up ratio over SBA. The comparison result of VPBA
with SBA is obtained in a same computing platform. The other four algorithms are
compared with SBA with another computing platform, and their results are reported
n [15]. Since authors of [I5] do not publish their source code, so we use SBA as a basis
to perform the comparison. This indirect way shows that the VPBA algorithm is much
faster than SBA, hence outperforms these four latest algorithms.

name VPBA explicit-jacobi implicit-jacobi implicit-ssor normal-jacobi

L-17 9.8 1.6 5.8 0.5 0.9
L-19 12.7 0.7 6.1 0.2 0.3
L-22 12.9 5.1 10.4 3.4 4.1
L-24 16.9 3.1 10.0 1.0 1.5
L-25 19.1 1.5 11.2 0.7 0.7
L-26 22.5 4.3 11.6 0.7 0.7
L-27 24.7 4.9 7.8 2.3 2.1
V-04 2.5 1.1 0.6 0.7 0.1
V-05 3.2 0.9 2.2 0.5 0.9
V-09 8.7 1.0 0.6 0.1 0.3
V-11 12.5 0.8 1.1 1.1 0.5
V-12 18.8 0.8 1.1 1.1 0.5
F-03 3.2 1.4 0.5 14 2

F-04 5.6 2.6 11.9 6.9 1.4
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comparison results of these four algorithms with SBA. These comparison results
can enable us to compare VPBA with these four algorithms indirectly. Table
lists speed up ratios of these four algorithms over SBA on platform reported in
[15]. It clearly shows that explicit-jacobi, normal-jacobi, and implicit-ssor have
no significant advantage than SBA. However, VPBA is much faster than SBA, so
we can conclude that the VPBA algorithm is faster than these three algorithms.
In addition, VPBA can compare with implicit-jacobi, which is the best of the
four algorithms in [I5]. All of these indicate that our VPBA algorithm is fast.

5 Conclusions

We have presented a new VPBA algorithm to large-scale BA problems that
avoids huge matrix operations by decomposing the original optimization prob-
lem into subproblems. We first partition the large-scale parameter vector into a
set of sub-vectors according to the features of BA problems, then define subprob-
lems on these sub-vectors, and finally solve them iteratively. The structure of
subproblems is similar with the original problem, but have much fewer number
of cameras and points than the original problem, so each of them can be more
efficiently solved. A key contribution of our work is that we can accomplish large-
scale BA problems on a low-end computer. We demonstrate the performance of
the VPBA algorithm in our experiments, and the results are promising, though
we currently can not provide theoretical proof of its convergence.

Our future work includes three aspects. First, the VPBA algorithm has not
reached parallel completely, so how to parallelize the algorithm is a task to
investigate. Second, like other BA algorithms, the proposed algorithm converges
fast during the first few steps, but slows down after dozens of steps. We will
further study how to make the algorithm perform faster. Third, we will prove
the convergence of the VPBA algorithm and apply this result to other large-scale
optimization problems in computer vision.
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Abstract. We present an improved bundle adjustment method based on
the online learned appearance subspaces of 3D points. Our method incor-
porates the additional information from the learned appearance models
into bundle adjustment. Through the online learning of the appearance
models, we are able to include more plausible observations of 2D features
across diverse viewpoints. Bundle adjustment can benefit from such an
increase in the number of observations. Our formulation uses the appear-
ance information to impose additional constraints on the optimization.
The detailed experiments with ground-truth data show that the pro-
posed method is able to enhance the reliability of 2D correspondences,
and more important, can improve the accuracy of camera motion esti-
mation and the overall quality of 3D reconstruction.

1 Introduction

Recent structure from motion (SfM) systems such as [IIBJ6J8IT4] usually build
on two key techniques: one is a distinctive-feature detector for image matching,
e.g. [T0JI7], and the other is an optimization process based on bundle adjust-
ment [I5]. SIFT [10] is arguably the most popular feature-extraction method for
image matching. It has been successfully used in 3D modeling systems [I3I14] to
extract local features for finding 2D correspondences to the same 3D point. The
optimization process in an SfM system is usually based on bundle adjustment.
For example, the handy SfM system Bundler [13[14] uses a modified version of
sparse bundle adjustment package [9] to solve the joint optimization of camera
parameters and 3D point positions. More efficient algorithms on solving bundle
adjustment have also been continually developed [2[4]. The coupling of feature
matching and bundle adjustment enables modern SfM systems like Bundler to
model large-scale 3D structures from unordered image collections.

The sparse bundle adjustment used in Bundler requires good feature-matching
results to provide reliable initial correspondences. However, local features across
wide-baseline views and varied lighting conditions are not easy to be matched due
to the nontrivial transformation of the feature’s appearance. Havlena et al. [6]
use a model-growing scheme to connect images and create new 3D points for the
3D model. More correspondences can thus be included in bundle adjustment.
Our approach shares a similar notion of adding new views as [0], but we explore
the use of online learning mechanisms in SfM. We seek to improve the matching

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 40-F3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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quality by incorporating the online learned appearance models of 3D points into
bundle adjustment. Various learning-based feature descriptors have been devised
to improve image matching, e.g. [I7]. Our goal is different in that we attempt to
build feature representations for structure-from-motion rather than for general-
purpose image matching. We incrementally update the appearance models of 3D
points after each iteration of bundle adjustment, and use the appearance models
to formulate a more robust bundle adjustment process.

Based on the online learning scheme for the appearance models of 3D points,
we present the appearance-based bundle adjustment to solve the SfM problem. A
feature subspace is associated with each 3D point as the appearance model, and
the subspace is incrementally updated when new observations are available after
each iteration of bundle adjustment. Local features in a new view are directly
compared with the appearance model of each 3D point to find correspondences.
Through the online learning of the appearance models, we are able to include
more plausible observations of 2D features across diverse viewpoints. The ex-
periments show that our approach is effective in improving both the visibility
rates and the track lengths of correctly matched features. The appearance-based
bundle adjustment is preferable to the point-based bundle adjustment in terms
of the formulation of optimization problems. Relying on merely the positions
of 2D points to evaluate the reprojection error might either lead to wrong es-
timations or make lots of points be removed as outliers. Our formulation can
use the appearance information to avoid being trapped in poor local minima.
Fig. 0l shows an example of using the appearance-based bundle adjustment to
obtain a more consistent structure. In the experiments shown in Section [, we
use ground-truth data to show that our approach can enhance the reliability of
the reconstructed 3D points, and as a result, can improve the accuracy of camera
motion estimation and the overall quality of 3D reconstruction.

Fig. 1. (a) The PMVS [5] reconstruction based on the result generated by a standard
SfM pipeline with sparse bundle adjustment. Although the sparse bundle adjustment
yields a small reprojection error, the inconsistency in the reconstructed structure is
noticeable at the middle part, corresponding to the boundaries between the two clusters
of views. (b) The PMVS output of our approach. Combining the geometry and the
appearance helps to resolve the problem caused by insufficient matchings between the
two clusters of views.
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2 Learning the Subspace Representations of Local
Features

In SfM, bundle adjustment is performed according to the initial pose estimation
and the correspondences found by image matching. During bundle adjustment,
dubious correspondences might be excluded from the optimization as outliers.
A camera view that does not contain enough inlier corresponding points might
thus be removed and does not contribute to the reconstruction. When more
views are added into bundle adjustment, the increasing amount of information
may help to identify correct matchings. Our approach to adding new views is
to take account of the new information derived from the results of previous
iterations of bundle adjustment. We explore the new view to find feature points
that can actually fit the scene structure. To enable such an adaptive mechanism
for finding 2D correspondences, we propose to learn the subspace representations
for image features. The proposed subspace representations can be plugged in the
appearance-based bundle adjustment optimization, which will be described in
the next section.

The subspace representations are expected to model the variations of local
features exhibited in former observations. We start by using SIFT to detect
keypoints and extract local features. Instead of modeling 2D features image by
image, we build a feature subspace associated with each 3D point. The detected
local features in a new view are compared with the existing subspaces to find
correspondences. The subspace representations are equipped with an incremental
update scheme, such that, after bundle adjustment, local features can be used
to update the subspaces.

We choose to use the Lo, subspace described in [7] as the appearance model.
The L subspace is originally presented for visual tracking. It has been shown
that the £, subspace outperforms the £o (PCA-like) subspace in tracking ob-
jects under lighting changes and geometric transformations. The computation is
also easier for L., subspace since, unlike £y subspace, no eigen-decomposition
is involved.

Consider a set of SIFT feature vectors {vy, ..., v} associated with a 3D point.
Our goal is to learn a subspace L that minimizes an error function given by

Error™ (L, {v1,...,vx}) = max d(L,v), (1)

ted{l,....k}

where the function d(-,-) measures the distance from a vector to a subspace in
a least-squares sense. A subspace spanned by the entire observations of SIFT
feature vectors {v1,...,v;} should minimize the above error function. We can
find one of the subspaces that approximate to the span of {v1,...,vx} by apply-
ing the Gram-Schmidt process to {v1,..., v}, and an orthonormal basis can be
obtained to represent the subspace.

The dimension of L, subspace spanned by {v1,...,v;} will grow as the num-
ber k of data increases. To enable the subspace to be updated under a bounded
dimension, we use a local-means method similar to the ones proposed in [12].
We keep at most s local means {z1,...,2s} to form the subspace. For each
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3D point we learn its Lo subspace using the local means {z1,...,zs} rather
than {wvi,...,v;}. The Gram-Schmidt process is applied to the local means
{#z1,...,2s} and yields an orthonormal basis @ for the L., subspace. The lo-
cal means are incrementally updated through the observations of {v1,...,v;}.

In our SfM method, the orthogonal bases {Q;} of the learned L., subspaces
are used as the appearance models for 3D points {X,}. Each 3D point X; has an
associated orthonormal basis ;. Given a detected 2D point in a new view 4 for
camera C;, we may find its most possible corresponding 3D point by projecting
its SIFT feature vector onto the appearance subspace of each 3D point. We
search for the subspace spanned by basis @);- that has the minimum squared
Euclidean distance from the SIFT feature vector to its orthogonal projection on
the subspace. That 2D point is thus denoted as a 2D correspondence u;;+ of the
3D point X« in view i.

The SIFT feature vector of the 2D point is then used to update the cor-
responding basis Q). We add the SIFT vector into the closest local mean to
update the set of local means. If the maximum number s of local means is not
achieved and the distance from the SIFT vector to the closest mean is larger
than a threshold, we create a new mean and add it into the set of local means.
The updated set of local means is then used to generate a new orthonormal ba-
sis of the subspace by applying the Gram-Schmidt process. The Gram-Schmidt
process is efficient. In our case we choose s = 10 and find that the overhead of
recomputing Gram-Schmidt is negligible.

3 Appearance-Based Bundle Adjustment

Bundle adjustment is formulated as a process of simultaneously refining ‘the
sparse 3D points of the scene structure’ and ‘the parameters of cameras capturing
the images’. The underlying optimization problem often involves minimizing the
reprojection error of 3D points according to their 2D correspondences across
images. Assume that we have m cameras C = (Cy,...,Cy,) observing n points
X = (Xy,...,X,) in 3D space. An observation of 2D point is denoted by u;;,
which is derived from the observation model f(C;, X;) that yields the 2D image
coordinates of the 3D point X; projected into the view of camera C; plus some
unknown noise. The visibility of point X; in the view of camera C; is indicated
by an index set Z, such that (¢, j) € Z if and only if point X; is observed in the
ith image.

We present an appearance-based formulation of bundle adjustment in which
the learned appearance subspaces of 3D points can be used to provide additional
evidence for the measurement of the reprojection error. Instead of estimating the
parameters {C, X} through minimizing the reprojection error of 3D points, we
incorporate the appearance into the optimization problem defined by

{C*. X"} =argmin Y ¢y | £(Ci, X;) — ugg, (2)

CX  (ijez
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where we multiply the reprojection error || f(C;, X;) — u;;||* by an appearance
weight ¢;;. For a camera C; that has been considered in previous bundle adjust-
ment iterations, the appearance weight ¢;; is defined by

d(Qja'Uij) ? }

2
202

¢ij = exp {— (3)
where v;; is the SIFT feature vector for the unknown 2D correspondence u;; of
X, in view 4, and d(Q;,v;;) is the distance from v;; to its matched appearance
subspace spanned by basis Q;.

On the other hand, for a new camera view ¢, we select the 2D correspondence
U5 whose feature 0/ best fits the subspace @, that is, yields the smallest value
d(Qj, 0y;) among the candidates within a radius r from the initial reprojection
coordinates f(Cy, X;) before the current iteration of bundle adjustment, where
Cy and X; are previous estimations. The new view is then associated with an
appearance weight

d(Qj, i) |ty — f( _i’an)HQ}
2 b

202 20

(ﬁilj = exp {— (4)
where we lessen the weight according to how far 4y ; diverges from the initial
reprojection coordinates. We set o5 = 0.4r as a spatial scale factor based on
the radius r. In our experiments we set » = 5.0, o0, = 2.0 and o, = 0.6. Note
that we use the factor of re-projection error in {@)) because we would like to
introduce a soft decision boundary for the inclusion of 4y ;. If we use only the
factor of d(Q;, 0y ;) in (@), we actually adopt a hard boundary to decide whether
we should include 4 ;. Such a hard decision boundary would be more sensitive
to the parameter setting for the search radius r.
The optimization can be expressed in matrix form:

(cr. X"} _ar%fﬁin“@(f(c,X)—ﬁ)“z, (5)

where || - || is the Frobenius norm, @ contains the appearance weights in the
corresponding matrix elements, and U consists of the 2D correspondences. Let
J =[0f/0C 0f/0X]T. By the first order Taylor approximation we may write
the solution as

{AC

AX] SIS REAF 5 )l L AF (fjf f(C,X)) . (6)

3.1 Comparison with the Original Bundle Adjustment [15]

Although we formulate the optimization in a form of weighted least squares as
in [15] so that stable numerical solutions can be more easily obtained, the notion
of our formulation is quite different from [I5], where the weight matrix is just
an inverse covariance matrix modeling the uncertainty. Our formulation includes
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the additional information provided by the learned appearance models, and we
perform the optimization and learning in an EM-like manner that is embedded in
the iterations of bundle adjustment. At each iteration of bundle adjustment we
search among the candidate appearance models to associate individual 2D points
in the new view with the 3D points. After an iteration of bundle adjustment,
we can update the appearance models using the current results of 2D to 3D
correspondences.

Our appearance-based formulation is also different from the intensity-based
model which solves for the transformations between image patches, as is men-
tioned in [I5]. For the problem of SfM, the transformations between image
patches on surfaces are not fully dependent on the parameters of the camera
poses and the scene structures of interest. To include extra parameters of patch
transformations might burden the optimization rather than alleviate the adjust-
ment computation. Our formulation does not include the extra parameters but
make use of the appearance information to avoid infeasible solutions found by
point-based bundle adjustment.

4 Experiments

In the first part of the experiments, we evaluate the performance of learning the
subspace representations for local features. We show that the proposed learning
method can be applied to large datasets and can achieve very good precision-
recall rates, significantly better than the baseline strategy of descriptor aver-
aging. Our learning method performs comparably well as the direct matching
strategy (nearest-neighbor criterion), in which all descriptors are kept for match-
ing without any learning. However, our learning method is much more efficient
than the direct matching, especially for large datasets.

In the second part of the experiments, we evaluate the structure-from-motion
results using the appearance-based bundle adjustment. We use three datasets
that provide calibrated cameras and ground-truth correspondences for evalua-
tion. Our method shows the advantages of increasing the track length and the
number of observations per view. More important, the accuracy of camera mo-
tion estimation and 3D reconstruction is also improved, in comparison with the
point-based sparse bundle adjustment.

4.1 Evaluation of Learning Subspace Representations

We use the datasets provided by Winder and Brown in [I7] to evaluate the
effectiveness of learning the subspace representations. The image data are taken
from photo tourism [13] reconstructions of Trevi Fountain, Notre Dame, and Half
Dome. Each dataset consists of 100, 000 grayscale patches, which are obtained by
projecting 3D points from photo tourism reconstructions back into the original
images. Due to the mechanism of deciding the scales and orientations of the 2D
projected points, many of the correspondences identified in the datasets may not
have been matched using SIFT descriptors. The patches might also have some
local occlusion due to parallax.
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For each dataset, we select the 3D points that have at least twelve 2D cor-
respondences (twelve corresponding patches), since we would like to see how
effectively the subspace representations can perform for modeling longer tracks
of matched 2D correspondences. As a result, the number of selected 3D points
is 852, 515, and 1,071 for Trevi Fountain, Notre Dame, and Half Dome. Totally
there are 15,267, 8,164, and 17,050 patches selected from the three datasets. The
average number of patches of a selected 3D point for Trevi Fountain, Notre Dame,
and Half Dome is 18, 16, and 16, respectively, and the histograms regarding the
number of patches of selected 3D points are shown in Fig. 2l Some of the se-
lected 3D points may have more than 30 corresponding patches. We separate the
patches of each dataset into a training set and a test set, with a ratio of 4 : 1.
The size of a patch is 64 x 64 pixels. We extract the SIFT descriptor from each
patch for subspace learning.

Trevi Fountain Notre Dame Half Dome
140 120 250~

100

80

Fig. 2. The histogram of the number of patches corresponding to the selected 3D points
(> 12 patches) for (a) Trevi Fountain, (b) Notre Dame, and (c) Half Dome datasets. Some
of the selected 3D points may have more than 30 corresponding patches.

Precision-Recall. We apply the proposed learning method to each of the three
training sets and build the feature subspaces for the corresponding 3D points.
The maximum number s of local means is 10, as described in Section[2l For the
test data, the correspondences to the 3D points are decided by finding the clos-
est subspaces. We can verify the ground-truth correspondences to evaluate the
quality of matching results. If we set a threshold for the distance between a test
feature and its closest subspace, we may remove some incorrect correspondences.
By modulating the threshold value, we can derive a precision-recall curve. Pre-
cision is the number of ‘true positives’ divided by the sum of ‘true positives’
and ‘false positives’; recall is the number of ‘true positives’ divided by the sum
of ‘true positives’ and ’false negatives’. If we set a larger threshold value, then
the recall rate will be higher but the precision might decrease. The precision-
recall curves for the three test sets are shown in Fig. Bl The subspace learning
method is compared with two strategies: The first one is to average all the SIFT
descriptors that belong to the same 3D point, and use the mean descriptor as
the feature representation of the 3D point. To find the correspondence for a test
descriptor, we measure the similarity between the test descriptor and each of the
mean descriptors using the Euclidean distance. The second strategy is to keep
all SIFT descriptors of the training data and use the nearest-neighbor criterion
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to find 2D correspondence for the test descriptor, where the Euclidean distance
is also used as the measurement for SIFT descriptors. As shown in Fig. B our
subspace method can achieve comparable performances as the nearest-neighbor
strategy. The averaging strategy does not perform very well because the mean
descriptors might not be distinctive enough for large datasets.

Trevi Fountain Notre Dame Half Dome
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0 02 0 06 08 1 0 02 04 08 1 0 02
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Fig. 3. The precision-recall curves for (a) Trevi Fountain, (b) Notre Dame, and (c) Half
Dome datasets. Our subspace representations can achieve comparable performances
as the nearest-neighbor strategy. The averaging strategy does not perform very well,
probably because the mean descriptors are not distinctive enough for large datasets.

Timing. Learning the subspace representations using our method is very fast.
For example, the subspaces for the 13,640 training descriptors of the Half Dome
data can be learned in less than 2 seconds, in MATLAB on a PC with quad-core
2.8GHz CPU and 12GB memory. The training time for the averaging strategy
is close to our method. The nearest-neighbor strategy does not require training,
and only some overhead processing time is involved. Regarding the matching
between the test data and the training data for finding correspondences, our
method and the averaging strategy are faster. The nearest-neighbor strategy, as
expected, is very slow. The timing results for matching are shown in Table [l

Further Discussions. The evaluation shows that the learned appearance sub-
spaces provide effective representations for finding correspondences to 3D points.
By using the learned subspaces, we can have similar precision-recall rates with-
out keeping all the descriptors of 2D features, and therefore greatly reduce the

Table 1. The timing results of feature matching using different strategies

Timing for matching
# of test # of training Nearest Averaging Subspace
patches patches neighbor
Trevi Fountain 3,053 12,214 729s 46s 51s
Notre Dame 1,632 6,532 252s 17s 18s
Half Dome 3,410 13,640 989s 65s 71s
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time required for matching. Since we set the maximum number s of local means
to be 10, the dimension of a learned subspace is at most 10. We find that the
average dimension of the learned subspaces is 9, 8, and 8 for Trevi Fountain,
Notre Dame, and Half Dome. The distributions of the subspace dimensions are
shown in Fig. @l We may choose a larger value of s to allow higher dimensional
subspaces to be built, particularly when the dataset is very large, but the train-
ing and matching time might also increase. The trade-off of descriptiveness and
efficiency would be dependent on the data. For a dataset with a scale about
1,000 3D points and 15,000 2D features, our current setting seems suitable.
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Fig. 4. The histogram of subspace dimensions for (a) Trevi Fountain, (b) Notre Dame,
and (c) Half Dome datasets

4.2 Evaluation of Appearance-Based Bundle Adjustment Using
Ground-Truth Data

We use the datasets created by Moreels and Perona [11] to evaluate the perfor-
mance of the appearance-based bundle adjustment. The images in the datasets
are captured by a calibrated stereo system with a turntable. The advantage of
using these datasets is that we are able to verify the correctness of correspon-
dences based on the ground-truth geometric constraints. We choose three of
the datasets, BallSander, Standing, and StorageBin, as shown in Figs. Bh—Bk. The
‘ground-truth’ camera poses are shown in Fig. Bd. The world center is set at
(0,0,0), and the average distance between each camera and the world center is
1.0. The proposed appearance-based bundle adjustment is compared with the
sparse bundle adjustment in respect of several evaluation metrics which we will
describe later in this section. For fair comparison, the numbers of initial 2D
features extracted by SIFT are the same for both methods.

Evaluation Metrics. We focus on the comparisons between the point-based
sparse bundle adjustment [9] and our online-learned appearance-based bundle
adjustment. The pipeline of incremental SfM is not taken into consideration for
the evaluation. Several metrics are used to evaluate the performances: i) the
visibility rate, ) the outlier rate, i) the false 3D-point rate, i) the camera
motion estimation error (the average rotation and translation errors), and v)
the average 3D reconstruction error.
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(a) (b)

Fig. 5. Three of the datasets created by Moreels and Perona [11]: (a) the BallSander
dataset, (b) the Standing dataset, and (c) the StorageBin dataset. (d) The camera poses
for those datasets are derived from the calibrated stereo system with a turntable. We
set the world center at (0,0, 0), and the average distance between each camera and the
world center is 1.0. The evaluations of the 3D errors are based on the scale after this
normalization.

The visibility rate is computed by (# of observations)/(# of views x # of 3D
points). By ‘outlier’ we mean that a 2D feature within a track does not satisfy
the ground-truth geometry constraint. The outlier rate is defined by (# of out-
liers)/(# of observations). Furthermore, we can use the ground-truth geometry
constraints to verify the correctness of a reconstructed 3D point. We compute
the false 3D-point rate by (# of false 3D points)/(# of all reconstructed 3D
points).

Incorrect matching results would induce outliers into the minimization of the
reprojection error. Outliers might bias the solution due to overemphasizing the
errors. Equipping the point-based bundle adjustment with an outlier-removal
mechanism might increase the robustness, but would also make bundle adjust-
ment prone to be trapped in trivial local minima. Ideally, the reprojection error
should be minimized under the assumption that all 3D points can be observed in
all views. A higher visibility rate and a lower outlier rate are preferable in a sense
that they imply the ideal case of the original objective of bundle adjustment.

To further evaluate the quality of camera motion estimation and 3D recon-
struction, we use the ground-truth camera poses and geometry constraints de-
rived from the datasets of Moreels and Perona. As mentioned earlier, we measure
the errors of camera motion estimation and 3D reconstruction based on a nor-
malized scale: the average distance between each camera and the world center
(0,0,0) is 1.0. The quality of camera motion estimation is evaluated by the trans-
lation error and the rotation error of camera pose. We align all of the estimated
camera poses to the normalized ground-truth coordinates shown in Fig.[BH. The
translation error is computed as the distance between the estimated camera cen-
ter and the ground-truth camera center. The rotation error is measured by the
geometric mean of the Euler angles of Restht, where R is an estimated ro-
tation matrix and Ry is the ground-truth rotation matrix. To compute the 3D
reconstruction error, we exclude the false 3D points from the reconstructed 3D
points. We then aligned the reconstructed 3D structure with the ground-truth
structure by applying absolute pose estimation [16]. The average 3D reconstruc-
tion error is measured by the average distance from each aligned 3D point to its
corresponding ground-truth 3D point.
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Results. We summarize all of the evaluation results in Tables 2l B & Al The
results show that the appearance-based bundle adjustment achieves better per-
formance than the point-based sparse bundle adjustment on all of the evaluation
metrics. The average track length and the visibility rate of 2D features both sig-
nificantly increase. The improved outlier rate means that the appearance-based
bundle adjustment is capable of removing more incorrect correspondences. The
appearance-based bundle adjustment can also achieve a very low false 3D-point
rate, which means that its reconstruction of 3D points is quite reliable. Most
important, the appearance-based bundle adjustment indeed improves the accu-
racy and quality of camera motion estimation and 3D structure reconstruction,
as explicitly shown in the evaluation results.

Table 2. Evaluations with the BallSander dataset. We compare the proposed
appearance-based bundle adjustment with the sparse bundle adjustment (SBA).

SBA Appearance-based

# of 3D points 943 494
average track length 4.11 9.87
visibility rate (%) 10.81 25.97
outlier rate (%) 1.29 0.72
false 3D-point rate (%) 1.70 0.20
average camera rotation error 2.061 1.793
average camera translation error 0.0073 0.0070
average 3D reconstruction error 0.0074 0.0059

Table 3. Evaluations with the Standing dataset. We compare the proposed appearance-
based bundle adjustment with the sparse bundle adjustment (SBA).

SBA Appearance-based

# of 3D points 1,226 621
average track length 4.86 12.50
visibility rate (%) 12.15 31.25
outlier rate (%) 1.16 0.98
false 3D-point rate (%) 1.47 0.00
average camera rotation error 1.603 1.402
average camera translation error 0.0065 0.0059
average 3D reconstruction error 0.0056 0.0055

Further Discussions. After learning the subspaces and applying the learned
representations to the appearance-based bundle adjustment, we can find more 2D
features that can be modeled by the learned subspaces. From the results shown
in Figs. 6 [7 & B we observe that the online learned appearance representations
can help to increase the track length as well as the number of registered 2D
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Table 4. Evaluations with the StorageBin dataset. We compare the proposed
appearance-based bundle adjustment with the sparse bundle adjustment (SBA).

SBA Appearance-based

# of 3D points 1,741 697
average track length 3.82 10.85
visibility rate (%) 8.88 25.22
outlier rate (%) 5.67 1.48
false 3D-point rate (%) 6.03 0.01
average camera rotation error 1.923 1.646
average camera translation error 0.0100 0.0076
average 3D reconstruction error 0.0108 0.0074
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Fig. 6. The BallSander dataset. (a) The distribution of the track length. (b) The number
of registered 2D points in each view. Blue bars: before subspace learning. Red bars:
after subspace learning.

features in each view. These newly-included 2D correspondences will contribute
to solving the 3D points in later iterations. Overall, the integrated mechanism of
subspace learning and appearance-based bundle adjustment provides a plausible
way of computing structure and motion.

Although the reliability of the 3D points is enhanced, a limitation of our
approach is that it would merge short tracks into longer ones, and as a result,
the number of reconstructed 3D points might greatly decrease. The number of 3D
points reconstructed by our approach is about half of the number of 3D points
obtained by the point-based sparse bundle adjustment, as can be observed in
Tables[2L Bl & Ml This is a trade-off between ensuring a more consistent structure
and reconstructing as more 3D points as possible.

About the time complexity, the additional computational cost of the appear-
ance based bundle adjustment is due to the computation of the appearance-
weight matrix, of which the size is the number of views times the number of
3D points. We also need to compute the appearance weights and multiply the
appearance-weight matrix by the Jacobian matrix, but the computation of Jaco-
bian matrix is efficient owing to the the longer tracks and the reduced number of
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Fig. 7. The Standing dataset. (a) The distribution of the track length. (b) The number
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after subspace learning.
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Fig. 8. The StorageBin dataset. (a) The distribution of the track length. (b) The num-
ber of registered 2D points in each view. Blue bars: before subspace learning. Red bars:
after subspace learning.

redundant points. In practice the computation time of solving the appearance-
based bundle adjustment is close to solving the sparse bundle adjustment if the
optimization involves similar numbers of views and 3D points.

5 Conclusion

We have presented a new bundle adjustment method based on an online-learned
appearance model associated with each 3D point. The proposed appearance-
based bundle adjustment is able to include more 2D observations into the op-
timization. As shown in our experiments, the lengths of most tracks in conven-
tional sparse bundle adjustment are usually quite small. The appearance-based
bundle adjustment is able to achieve a significant increase in the number of
long tracks and the number of correctly matched features. The visibility rates of
2D correspondences and the outlier rates are greatly improved by appearance-
based bundle adjustment. Through the detailed evaluations on the ground-truth



Learning Feature Subspaces for Appearance-Based Bundle Adjustment 53

datasets, we show that our method can improve the accuracy of camera mo-
tion estimation and the quality of 3D reconstruction, in comparison with the
point-based sparse bundle adjustment.
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Abstract. In this paper we propose a novel method for measuring re-
flectance of isotropic materials efficiently by carefully choosing a set
of sampling directions which yields less modeling error. The analysis
is based on the empirical observation that most isotropic BRDFs can
be approximated using 2D bivariate representation. Further a compact
representation in the form of basis is computed for a large database of
densely measured materials. Using these basis and an iterative optimiza-
tion process, an appropriate set of sampling directions necessary for ac-
quiring reflectance of new materials are selected. Finally, the measured
data using selected sampling directions is projected onto the compact
basis to obtain weighting factors for linearly representing new material
as a combination of basis of several previously measured materials. This
compact representation with an appropriate BRDF parameterization al-
lows us to significantly reduce the time and effort required for making
new reflectance measurements of any isotropic material. Experimental re-
sults obtained using few sampling directions on the MERL dataset show
comparative performance to an exhaustively captured set of BRDFs.

1 Introduction

Materials can be classified based on their optical properties as they modulate
light differently depending upon the nature of surface. These properties pro-
vide us with a variety of clues about how a particular material will appear un-
der different illumination conditions. Physically as well as computationally the
optical properties of materials are effectively represented using a Bidirectional
Reflectance Distribution Function (BRDF)[I].

Typically BRDF helps us characterize scene radiance, more formally it is a
function of four variables f(0;, ¢:, 0., o), where 0;, ¢; are polar and azimuthal
angles of the incident light direction and 6,, ¢, of the reflected direction respec-
tively. It tells us how bright a surface patch will appear when viewed from one
direction while light falls from another. There are several advantages of mea-
suring the optical properties of materials in the form of 4D BRDF as it can be
used for photo realistic rendering, preservation of historical heritage, analysis of
remote sensing data, movie production and in computer vision it is often used
for material and object recognition tasks. Moreover measured BRDF data can
be helpful for the development and validation of analytic BRDF models.

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 54-F7] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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This work focuses on an important sub-class of BRDFs called isotropic BRDF's
for which rotations about the surface normal does not need to be considered.
This generalization reduces the BRDF from a function of four variables to three
f(0;,0,,6; — ¢o). Even with this generalization uniform sampling still requires
a huge amount of measurements i.e. suppose with an angular spacing of ¢ the
number of measurements necessary would be approximately 73 /(443)[2].

Many researchers have attempted to make the traditional measurement pro-
cess more efficient by proposing solutions which attempt to measure many dif-
ferent samples at once by using mirrors [6][7] or use spherical samples of the
materials [I0] which requires the material to be homogeneous. However optical
elements usually do not allow measuring reflectance at near grazing angles and
can be a source of indirect illumination resulting in incorrect measurements [3].

To overcome some of these issues, we propose a reflectance measurement pro-
cedure that significantly reduces the number of necessary measurements by care-
fully selecting an optimized set of few sampling directions using compact basis
in this paper. This is achieved by using the observation that most isotropic
BRDFs can be approximately represented by 2D bivariate form and further the
variations in the data can be minimized by representing it in the form of basis.
This appropriate representation significantly reduces the number of unknowns
in the linear system which directly influence the reduction in number of neces-
sary measurements for acquiring BRDFs of isotropic materials. Obtained results
using the proposed method demonstrate that by using such an approach a new
material can be acquired using 100 or fewer measurements with a fair amount
of accuracy.

The proposed method explicitly differs from [3] as it uses 2D bivariate approx-
imation [5] for isotropic BRDFs and further compression using compact basis.
Also few sampling directions are selected robustly using basis representation
by performing iterative optimization in a dimensionally reduced space which is
significantly fast compared to an exhaustive search over all samples. We are mo-
tivated to use bivariate approximation as it reduces the dimensions of isotropic
BRDF from three to two due to generalization of bilateral symmetry and the use
of basis enables us to compactly capture variations present in broad category
of materials which directly contribute towards our goal of reducing sampling
directions.

2 Related Work

Ward [6] did the pioneering work by introducing the use of digital cameras as
part of measurement setup. The key optical instruments of his device were a half
silvered hemisphere and a camera with a fish eye lens. In his arrangement the
light source and the sample holder are movable over all the incident angles and
allows the measurement of anisotropic reflectance for a material sample.
However the first large collection of sparsely sampled BRDF's of 61 materials
originated as part of the CUReT project by the work of Dana et al.[7]. Their sys-
tem was able to measure spatially varying BRDF’s also referred as Bidirectional



56 M.A. Ali et al.

Texture Functions (BTF). They simultaneously measure the BTF and BRDF
of the material at 200 different combinations of viewing and illuminations di-
rections. Later in [8] they introduced a improved version of the BRDF/BTF
measurement device allowing simultaneous measurements of multiple viewing
directions which used curved mirrors to eliminate the need of hemispherical po-
sitioning of camera and illumination device.

Marschner et al.[I0] developed an improved BRDF measurement system using
two cameras, a light source, test sample of known shape and assume known
geometry. Matusik et al.[3] based their BRDF measurement setup on the work
of [I0] for measuring reflectance of about 100 different materials. Marschner et
al.[T0] were not able to take into account the local spectral characteristics of
BRDFs resulting in dense uniform sampling of the acquisition hemisphere. This
was one of the main issue addressed in the work of Matusik [3] to significantly
reduce the time and measurements necessary for acquiring BRDFs. They also
analyzed the local signal variations in the BRDFs using wavelets and showed
that good reconstruction can be performed using 69000 measurements by using
wavelet basis. Further they went on to show that it was possible to represent
reflectance of an arbitrary material as a linear combination of reflectance of
several other material samples using linear representation. They showed that 800
sampling directions are enough to represent new BRDFs using this framework.

Mukaigawa et al.[I1][I2] developed a high speed method for BRDF measure-
ment using ellipsoidal mirrior and projector arrangement without a mechnical
drive for changing incident angles. They can measure reflectance of a material
in about 50 minutes. However the accuracy of the measured BRDFs was not
evaluated and the use of fixed sampling interval without taking into account
characteristics of BRDFs results in increased measurements. Similarly Gosh et
al.[13] described a fast method for acquiring the BRDF directly into basis repre-
sentation which results in capturing reflectance in 1-2 minutes. However obtained
results show that there is still significant need for improvement specially in the
direction of what kind of illumination basis functions can be ideal for the task.

Other existing methods like Lawrence et al.[I4] focus on interactive editing of
materials and introduce the use of inverse shade trees for representing arbitrary
BRDFs non-parametrically using weighted sum of small number of materials.
Similarly, Sato et al.[I5] focus on modeling object appearance analytically and
show that a set of suitable lighting directions for sampling images can be deter-
mined based on objects BRDF.

3 Proposed Technique

We propose the use of 2D bivariate approximation for representing isotropic
materials based on the empirical observation that such materials are bilaterally
symmetrical and further show little change when the light and view directions are
swapped about the half vector thus transforming the dimensions of the isotropic
BRDF from three to two. Besides the variations present in a large database
of such materials are robustly captured using basis and are used for efficiently
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Fig. 1. Three parameterizations of the BRDF. (a) Original 4D BRDF. (b) Rusinkiewicz
parameterization. (¢) 2D Bivariate parameterization.

selecting an optimized set of few sampling directions in an iterative manner
for acquiring new BRDF's of previously unknown materials. Captured materials
using these 100 or fewer selected samples are then linearly represented using the
compact basis for recovering complete BRDF's robustly.

3.1 Overview

In order to achieve the desired goal of reducing the number of necessary measure-
ments, the BRDF is first transformed into an appropriate representation then
all materials are arranged together in a matrix and dimensionality reduction
is performed followed by the selection of suitable sampling directions using an
iterative procedure. Each of these processes are explained in detail in a stepwise
manner in the sections ahead followed by the detailed experimental evaluation
of the proposed framework.

3.2 Data Representation

As this work deals with reducing the acquisition time of isotropic BRDF's of new
materials so we opted to base our analysis on an already measured and well tested
BRDF dataset of Mitsubishi Electric Research Lab (MERL)[]. Acquired by
Matusik [3][4] there are 100 materials in this dataset with BRDF measurements
made for all three color channels i.e. Red, Green and Blue.

These measurements were made using Rusinkiewicz half vector parameter-
ization [9] of the BRDF instead of the original 3D isotropic parameterization
f(0;,0,,0; — &o). They argued that the original representation requires dense
angular sampling over the acquisition hemisphere to accurately measure the
specular peaks otherwise resulting in poor highlight representation in the form
of an ellipse depending upon the orientation of light source.

3.3 Rusinkiewicz BRDF Parameterization

Figure [l shows the original as well as the half vector Rusinkiewicz parameteriza-
tion [9] of BRDFs. In this parameterization four angles are used to describe the
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BRDF namely: theta half (6), theta difference (64), phi difference (¢4) where
as phi half (¢y) is not considered for isotropic BRDFs. The advantages gained
by re-parameterizing the BRDF in this form are significant as the storage re-
quirements are reduced allowing for fewer basis for robust representation besides
important BRDF phenomenon such as specular and retro-reflective peaks are de-
coupled to be a function of one of the parameterized angles and only show weak
dependence on a combination of axis.

In this new parameterization the range of 6,04 is [0,7/2] and that of ¢4 is
[0, 7] due to reciprocity. The three angles 0y, 04, ¢4 are then further discretized
to have 90, 90, 180 bins respectively. Thus for each color channel of a material
sample we have a total of 90 x 90 x 180 = 1458000 BRDF measurements and for
three color channels this amounts to a total of 1458000 x 3 = 4374000 BRDF
measurements. Further the theta half angle 6} is sampled more densely near
the direction of specular reflection and the non-linear angle conversion can be
approximated as 0, = Opindex>/(7/2), where Opindex corresponds to the number
of bins and varies from [0, 7/2]. The mapping from angles to discretized bins
remains linear for 65 and ¢4.

3.4 Bivariate BRDF Representation

In order to further reduce the variations in isotropic BRDFs, its dimensions
are constrained without surrendering the ability to represent important BRDF
phenomenon. Such an approach called Bivariate representation was introduced
by Romerio et al.[5]. It considers an additional projection of Rusinkiewicz BRDF
representation that reduces the dimensions of an isotropic BRDF from three to
two. This projection of isotropic BRDF on a 2D domain is acceptable as long as a
BRDF shows little change for rotation of the input light(+;) and output view (1)
directions as a fixed pair about the half vector. For interpretation Figure
shows the Bivariate representation.

Practically the 2D Bivariate representation is a minimization of the original
Rusinkiewicz representation with a summation defined over ¢4 due to bilateral
symmetry. The formula used for the computation of the bivariate BRDF param-

eterization is:
/2

> £(On,0a, éa) (1)
¢a=0

where f(0h, 04, ¢q) represents the 3D Rusinkeiwicz parameterized BRDF, R is
the number of valid BRDF values in the interval [0, 7/2] for ¢q.

Dimensions of BRDF are significantly reduced in this representation as the two
dimensions of BRDF now only comprise of §;, and 6,. Thus for each color channel
of a material sample we have a total of 90 x 90 = 8100 measurements and for
three color channels this amounts to a total of 8100 x 3 = 24300 measurements.

1

f(On,0q) = R

3.5 Data Organization

Next, we want to construct a matrix H of BRDF data for all materials. In order
to prepare this data for processing later, it is necessary to arrange the BRDF
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Fig. 2. (a) Plot of cumulative sum of Eigen values for the 2D Bivariate data of ma-
trix H. (b) Convergence plot demonstrating the decrease in condition number as row
replacements are performed using the optimization process of section [3.8]

samples of all 100 materials in H such that the correspondence between the
original acquisition angles in bivariate space is preserved. Thus the BRDF data
of each material samples is arranged such that the red channel data goes first in
column of matrix H followed by green channel data and then by blue channel
data. Following this procedure BRDF data corresponding to all material samples
is arranged in this matrix column-wise. The dimensions of matrix H after BRDF
of all materials is arranged in it is M rows by N columns, where M is the number
of sampling directions and N is the number of materials.

Normally BRDF values of specular and matt surfaces are scaled differently
(high dynamic range). This results in large difference in magnitude of values
among various types of materials. If these values are used with original scal-
ing then future numerical analysis will associate more importance to noise in
specular highlight as compared to non-specular components. To address this is-
sue natural logarithm of all BRDF data values in matrix H is computed which
significantly scales down the range of data for further analysis.

3.6 Dimensionality Reduction

The size of matrix H constructed above is still large and for acquiring BRDF's of
new materials efficiently it would be beneficial if the dimensions of matrix H can
be reduced by decorrelating various dependent components using multivariate
analysis. To achieve this Principal Component Analysis (PCA) using covariance
matrix of the form HT H is performed. After analyzing the reconstruction error
using different number of basis vectors it is observed that PCA is able to capture
the correlations among various BRDFs adequately. A plot of cumulative sum
of Eigen values is shown in Figure demonstrating significant reduction in
dimensionality of the data.
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3.7 Basis Projection Framework for Materials

Having performed dimensionality reduction we now set out to compute the pro-
jection of a newly acquired material sample on previously acquired BRDF data
of several materials in matrix H. The objective here is to show that BRDF of a
new material that is not part of H can be well represented by the linear combi-
nation of several other materials. What this means is that the BRDF of a new
material is just a linear combination of BRDF of materials in H with a weighting
factor only. These weighting factors are in fact the coefficients which need to be
estimated as part of the projection. But before moving forward let us represent
this in a form of linear equation:

He=b (2)

where H is the matrix of all BRDFs with dimensions M x N, ¢ represents the
coefficients vector which are to be estimated with dimension N and b corresponds
to the BRDF of a new material which in this case must equal to M.

There are N material in H so at least N coefficients need to be estimated for
each new material b by projecting it on H and then use the calculated coefficient
¢ to reconstruct the new material sample as a linear combination of BRDF's of
existing material using the linear generative model of equation (2)).

However, having seen earlier in section [3.6] that fewer basis can capture major-
ity of the variance in BRDFs of matrix H, so instead of using H for computing
the linear projection, top K Eigen Basis Vx can be used to represent all the
BRDFs. The linear equation with this change can be expressed as:

Vke+m=> (3)

c= (VEVR)'VE(b—m) (4)

where matrix Vi represents the top K Eigen basis of matrix H and m represents
the mean vector of matrix H which must be subtracted from the new material
measurements before computing its projection and then added back after the
reconstruction step.

Moreover the above system of equations is highly over constrained. Suppose
with K = 35, there are 35 unknown coefficients and the number of linear equa-
tions equals M = 24300 for each newly acquired BRDF of which majority are
linearly dependent. This means that the number of necessary BRDF measure-
ments can be significantly reduced for a material by selecting an appropriate
sub-set from this large number of equations which can help us efficiently es-
timate the desired coefficients c. If such a small subset of equations can be
found which can represent a newly acquired BRDF as a weighted combination
of BRDFs of several materials then any new material can be measured by using
the combination of only a few light source and view directions corresponding to
the selected set of equations (sampling directions / rows) in an efficient manner.
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3.8 Selection of Suitable Directions for Acquisition

In order to estimate a subset of rows of Eigen Basis Vi, iterative optimization
needs to be performed which attempts to reduce the condition number of the
linear system of equations described above. The condition number is used here
to find out how inaccurate the solution will be after an approximation using
selected set of rows is obtained.

Normally for well conditioned matrices all the diagonal terms are of same
order and for ordinary matrices the Eigen values will have the same order of
magnitude as the diagonal terms of the original matrix. So the Eigen values will
be close to diagonal terms for a diagonally dominated matrix. This means that
the ratio of the highest to the smallest Eigen value should give a smaller number
if the matrix is well-conditioned, since all the diagonal terms are of the same
order. However if this ratio is large i.e. the order of difference among the diagonal
terms is more, then the matrix is ill-conditioned. Now let us go into the details
of this optimization process in a stepwise manner:

1. Select a subset of L rows from Vi randomly. Let us represent this row subset
with matrix X.

2. Select one row from subset X and one row from outside of set X and swap

them by inserting the row from outside into set X.

Then perform PCA on the covariance matrix X7 X to obtain Eigen values.

4. Calculate the ratio between the highest and the lowest Eigen value (Max /
Min) which approximates the condition number of the system.

5. If new condition number is less than the previous condition number then
keep the newly inserted row in set X otherwise discard the new row and
restore set X to its previous state.

6. This process is repeated iteratively from step 2 to step 5 until no more rows
can be swapped for successive tests of all rows.

7. Repeat procedure from step 1 to step 6 several times and finally select the
solution which has the lowest condition number among all obtained solutions.

w

The iterative procedure described above allows us to obtain an optimal solution
over multiple runs and produces a stable set of rows in set X at the end of
optimization which guarantees the system to be numerically well conditioned.
Figure plots the change in condition number with row replacements for a
sample case. Sampling directions obtained in set X are based on the statistics
of 2D BRDFs of different kinds of materials. These sampling directions are thus
general and can be used for modeling various types of materials without the
need for calculating them for each material.

The obtained set of equations can also be referred to as the most informative
set and are selected irrespective of the red, green and blue channels. However
selecting equations equal to the number of unknowns in our system may not
generalize well over the set of known BRDFs so while performing row reduction
we make sure to select the rows appropriately. Finally having selected a subset
of equations the linear system can be updated to represent this fact as:

c=(XiXK)' X (bx —mx) (5)
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Fig. 3. Experimental results obtained using the proposed method with different com-
binations of basis and sampling directions. Sampling directions vary along the x-axis
and basis vary along the y-axis. Gray color indicates average percentage error.

where X i represents the Eigen Basis with selected set of rows, bx is the acquired
BRDF of a new material using selected sampling directions and mx is the mean
vector of H corresponding to selected directions.

4 Experimental Results

In order to test the effectiveness of the proposed method with few sampling
directions several experiments are conducted using MERL dataset [4] besides
the obtained results are compared with that of Matusik et al.[3] and a randomly
selected set of samples. We compute the percentage error between the actual
measured BRDF of a material and its approximation obtained using very few
selected set of sampling directions suggested by our method for evaluation:

\/J{] EQ;L,Od,qbd (é ER,G,B(pOTg - papprox)Q)
\/11’ Ef’hﬂd,m (é‘ ER,G,B(pOTg)2>

where porg represent the original measured BRDF in logarithm space and papprox
is its approximation using selected sampling directions, C' is the number of color
channels, N is the total number of sampling directions in 3D Rusinkiewicz pa-
rameterized data, while computing the error using 3D data with 2D bivariate
approximation we evaluate approximated data against each ¢4 value for a given
pair of 8, and 0.

First, to find out a suitable combination of basis and samples for representing
arbitrary BRDFs, all possible combinations are densely evaluated. To perform
such experiments the MERL [4] dataset is divided into two groups, a basis set
and a test set of materials. The basis set is used for computing compact basis
whereas the test set contains material from which selected set of samples will be
taken as a representation of actual BRDF acquisition process using the sampling
directions selection process described in section 3.8 Since there are 100 material
in the dataset, we divide them into two sets as: 80 materials for calculating basis

PercentageError = x100  (6)
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Fig. 4. (a) Comparison of the proposed method with Matusik et al.[3] and a randomly
selected set of sampling directions. (b) Plot of selected sampling directions in 4D BRDF
form for 80 Samples 35 Basis (top) and 170 Samples 45 Basis (bottom) visualized as
pairs of light source (red+) and view (blue*) positions across the hemisphere.

and 20 materials for testing and 10 such configurations of 80-20 combinations of
basis and test set are constructed randomly.

Detailed results obtained using the procedure described above are shown in
Figure[l In the figure it can be seen that as we increase the number of basis to 35
and onwards little improvement in reconstruction is observed by increasing the
number of samples beyond a certain level. For 35 basis, only a 0.3% improvement
occurs when number of samples are increased from 80 to 200. Similarly for 40
basis 0.2% improvement occurs as number of samples are increased from 120 to
200. Specially no improvement occurs at all in reconstruction error by increasing
the number after 170 samples for the case of 45 basis. Based on these observation
it seems that as few as 35 basis and 80 samples will be sufficient for capturing the
variations presents in a large class of isotropic BRDFs quite effectively. However
to generalize well we select three combinations of basis and samples for further
analysis and comparisons i.e. 35 basis 80 samples, 40 basis 120 samples, 45
basis 170 samples. Figure visualizes the selected sampling directions for
two combinations. A value of ¢, = 0 and ¢4 = 7/2 is used for the mapping from
2D bivariate to 4D BRDF representation which allows us to compactly display
the sampling directions in the form of pairs across the hemisphere.

Using these three combinations the proposed method is compared with the
work of Matusik et al.[3] using 800 samples and a randomly selected set of sam-
ples. We use our own implementation of their work described in [3]. Figure
shows the comparison using averaged results for all methods. From this compar-
ison it becomes quite evident that by using bivariate representation and basis
approximation significant reduction in the number of necessary sampling direc-
tions is possible for a large variety of materials which show little change for
rotations of the light and view direction about the half vector. Further these
results show that the use of sophisticated sampling method described in section
allows considerable improvement over a randomly selected set with similar
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Fig. 5. Detailed Results of 100 materials from the MERL dataset. Comparison of three
selected sampling directions (80,120,170) using the Linear Basis Representation (LBR)
is shown with all samples and 2D Bivariate BRDF to demonstrate the effectiveness of
the proposed method. (Image embedded at high resolution. Please zoom in.)

basis combination. We also explicitly compare results of four materials with the
method of Matusik et al.[3]. It is important to mention here that their method
uses 3D Rusinkiewicz parameterization [9] of the BRDFs while our proposed
method uses 2D bivariate parameterization and further compression via PCA.
Results format is: Material Name(Results of [3], Proposed method with 170
samples and 45 basis): Dark Red Paint(4.5%, 2.6%), Gold Paint (3.2%, 2.9%),
Aluminum-Bronze(5.7%, 5.2%), Red Plastic (4.9%, 4.5%).

Detailed results of the proposed method on 100 materials from the MERL
BRDF dataset [4] are also shown in Figure [l using the selected combinations.
The reconstruction achieved with fewer samples is also compared with the max-
imum achievable reconstruction using all samples and 45 basis combination to
demonstrate how closely fewer samples compare to an exhaustively selected set
of sampling directions. The results have been obtained by projecting a single
material on basis computed from 99 materials from the dataset. Besides an ex-
plicit comparison of 2D bivariate representation of all materials with original 3D
MERL data is also shown in Figure Bl with an average of 3.36% over the MERL
database it can adequately capture the variations present in different materials.

In order to further demonstrate the effectiveness of reconstructing with fewer
samples a visual comparison of reconstructed BRDF's is shown in Figure [@] for
several materials. Renderings using original ground truth, randomly selected set
of sampling directions and [3] are also included in comparison. Tone mapping
algorithm of [16] is used for these renderings. This visual comparison highlights
the fact that by using very few sampling directions it is possible to recover the
original BRDF of an arbitrary material with a fair amount of accuracy.
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Fig. 6. Visual comparison using several materials between the original renderings and
proposed method. (a) Original Measured Data. (b) Reconstruction with 170 Samples
45 Basis. (c) Reconstruction with 120 Samples 40 Basis. (d) Reconstruction with 80
Samples 35 Basis. (e) Reconstruction with Random 80 Samples 35 Basis. (f) Matusik [3]
800 Samples. Materials (along rows from top) are: gold paint, plastic, yellow phenolic,
red fabric, rubber, maple, green latex, pink fabric.
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5 Conclusion

In this paper we proposed a new method for acquiring BRDFs which signif-
icantly reduces the number of necessary measurements for isotropic materials.
Our method achieves this by exploiting the inherent similarities present in mate-
rials using bivariate parameterization alongside a compact basis representation
of a large database of materials. The detailed experimental results demonstrate
the effectiveness of the proposed method with few measurements against an ex-
haustively captured set for a large set of materials from the MERL database.
In future we plan to extend this framework to anisotropic and spatially varying
BRDFs in an appropriate manner which can enable there acquisition efficiently.
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Shadow-Free TILT for Facade Rectification
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Abstract. In this paper, we propose a shadow-free TILT method to
rectify facade images corrupted by shadows. The proposed method is
deduced from the original TILT, and improve it by introducing a multi-
plicative shadow factor. That is, in our method, the constraint is repre-
sented that the rectified image equals to the low-rank image multiplied
by the shadow image, yet with the additive noise corruption. Moreover,
the objective function is improved by incorporating the smooth shadow
model. Experimental results on both synthetic and real images demon-
strate that our method provides more accurate and stable rectification
results as compared with the original TILT, especially when shadows are
strong in the input images.

1 Introduction

Image-based architecture modeling is a famous application on both computer vi-
sion and computer graphics. Numerous methods have been proposed that can be
mainly classified into two categories, i.e., the multi-image based methods [112]3]
and the single-image based methods [45]. Generally, the multi-image methods
model architectures by using potential information that is obtained from image
matching. Their main limitation is the matching precision. As to the single-image
methods, they utilize only one image as input, and are more convenient than the
multi-image ones. However, the single-image methods often have the viewpoint
problem. Hence, it always needs to rectify the input image before using it. In
this work, we focus on the image rectification problem. The rectified image can
be directly utilized for facades modeling (refer to [617]).

The facades of architectures often have notable geometric structures. Thus,
traditional methods on image rectification rely on the local features, such as
salient points and edges. The famous methods are based on vanishing points
[89], which are obtained from a family of parallel lines or the geometric rela-
tionship between other vanishing points and the optical center. For example, in
[SITOITT], vanishing points are obtained through the Cascaded Hough Transfor-
mation. Unfortunately, the calculation of vanishing points is very sensitive to the
noise, since local features often fail to be detected. Hence, these methods often
fail when the background is in a clutter or the facade is corrupted by occlusions.

* This work was supported in part by the Fundamental Research Funds for the Central
Universities, and the NSFC under Grant 61075016, 61005036.

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 68-[(9] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Since the vanishing point based methods suffer from the noise sensitive prob-
lem, the texture based methods have been proposed. These methods combining
the theoretical framework of low-rank and sparse representation [I2/1314], which
do not detect local geometric features directly, but utilize them holistically. One
popular approach is the transform invariant low-rank textures (TILT) method
proposed in [15]. The TILT assumes that the rectified image is low-rank, since the
facades of man-made architectures have meaningful structures, such as regular
shapes, symmetric structure, and repeated patterns. Compared with vanishing
point based methods, this method does not need to do some pre-processing, e.g.,
feature detection. Moreover, the iterative algorithm in the TILT is inherently ro-
bust to gross errors caused by partial occlusions or corruptions. However, there
are some circumstances that the TILT can not handle well. One is the plane
difficulty, that is, the deformed domain may be in the different planes. Even we
need to connect the conjoint planes in holistic 3D reconstruction. In [I6], it has
solved the plane difficulty by identifying the intersection line via the low-rank
method. The other problem in the TILT is the shadow difficulty, that is, the
facade images may be corrupted by shadows, which are caused by neighboring
high buildings or some self-protruding parts.

In this work, we mainly focus on the shadow difficulty of the original TILT.
We first improve it by introducing a multiplicative shadow factor, and then
propose a new shadow-free TILT model. In our shadow-free TILT model, the
rectified image equals to the low-rank image multiplied by the shadow image,
yet with the additive noise corruption. We proposed a new objective function
which further consider the inside proprieties on these images, for example, the
smoothness of shadow image and the sparseness of noise. Finally, our shadow-free
TILT model is optimized based on the ALM iterative algorithm. Experimental
results demonstrate that our method is better than the original TILT on many
real facade images, especially when images are under shadows.

The remainder of this paper is organized as follows: Section 2] gives the mo-
tivation of improving the original TILT. Section [3]is the sketch of the TILT as
well as gives the constraint and objective function of the original TILT accord-
ing the low-rank textures. Section ] proposes our shadow-free TILT model, and
gives an efficient solution based on the ALM iteration algorithm. In Section [l
some experiments both on synthetic and real facade images are presented by
comparing with TILT model. In Section [6, we give a conclusion of this work,
and discuss the future work.

2 DMotivation

The main problem addressed in this work is to rectify the viewpoint of a facade
image. Generally, the facade has rich geometric structures, which are composed
by all kinds of regular or symmetric texture. To rectify the viewpoint of a facade,
the TILT utilizes regular and symmetric properties of texture by introducing a
low-rank texture representation, that is, the rank of rectified facade image is
lower as compared with the original input image.
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However, in practice, the facade image is often corrupted by shadows, which
may be caused by neighboring high buildings or some self-protruding parts. In
such cases, the rank of rectified facade image may not be lower as compared
with the original input image. Accordingly, the TILT may fail to rectify the
viewpoint of a facade image with shadows. Fortunately, the shadow-free rectified
facade image, in which shadows are removed, is also low-rank. Hence, to solve
the shadow problem, we improve the original TILT by incorporating a shadow
model. More precisely, the rectified facade image is decomposed into two parts,
i.e., a shadow-free rectified facade image and the corresponding shadow image.

3 Overview of TILT

Constraint: Denote the input facade image as a matrix I(x), x € 2, where
(2 is the image domain belonging to R?. The TILT approach assumes that a
transformed facade image I o7 is composed by two components, i.e., a low-rank
texture I° and a corruption E, namely, I° + E = I o 7. Here, 7: R? - R2? is a
transformation that belongs to a certain Lie group.

Objective function: Moreover, the original TILT assumes the error matrix F
is sparse, since the corruptions are mainly caused by some weak noise or partial
occlusions. Accordingly, combining with the low-rank constraint of texture I°,
the objective function can be formulated as rank(I°) + 7| E||o, where v is a
positive parameter that trades off the rank versus the sparsity of the error.

To sum up, the original TILT optimizes Eqn. () to obtain the low-rank
texture I°, given by

min (rank(I°) +~||E|lo), st.I°+FE=1IorT. (1)

I°.E,T

From Eqn. (), the original TILT is reasonable to recover low-rank images, since
real facade images exist regular and near-regular patterns. Moreover, as reported
in [15], it provides excellent experimental results on facade images, especially
when images are taken under consistent illumination conditions. Unfortunately, if
illumination condition varies in facade image domain, e.g., the image is corrupted
by shadows, the original TILT often fails. In Section [, we mainly focus on the
problem brought by shadows, and propose a shadow-free TILT model.

4 The Shadow-Free TILT Model

In this section, the shadow-free TILT model is presented to recover the low-rank
texture as well as the shadow from a corrupted facade image. In the follow-
ing, we first reformulate the constraint and objective function by introducing
shadow model, and summarize the shadow-free TILT model. Then, we present
the solution and corresponding algorithm flowchart.



Shadow-Free TILT for Facade Rectification 71

4.1 Constraint of Shadow-Free TILT

As described in Section Bl the rectified facade image I o 7 is decomposed into a
shadow-free low-rank image I° and a corresponding shadow image S. Generally,
the shadow S can be regarded as the multiplying bias on the original low-rank
image I°, namely, S ® I° =~ I o 7. The operation ® is the Hadamard prod-
uct (element-by-element product). Hence, by incorporating the additive sparse
corruptions F, the constraint can be formulated as follows:

SeI°+E=1IorT. (2)

The constraint presented in Eqn. (Z)) is non-linear because of the transforma-
tion 7 [I5]. A common approach to overcome this difficulty is to linearize the
constraint by the first order Taylor expansion around the current estimated
transformation 7. Hence, the linearized version of Eqn. () becomes

SOI°+E=Io(t+ Ar)=IoT+ VIAT, (3)

where VI is the Jacobian: derivatives of the input image w.r.t the transformation
parameters. And also VI is a h X w X p tensor, where h, w are the height and
width of the input image I, and p is the number of the parameters of 7.

All values in shadow matrix S should be positive. Thereby, Eqn. ([@B]) can be
rewritten as follows (the constraint),

SOI°+E=ITo1+VIAT

1 1
I°+S®E: S@(IoT+V1AT)

I°+E=506Io1+VIA7), (4)

~ 1 ~ 1 ~
where E= S ®F and S = g Without confusion, S is also named as shadows

in the following.

4.2 Objective Function of Shadow-Free TILT

The main goal of this work is to recover the transformation 7 from the constraint
of Eqn. (). Based on the observations on three images, i.e., the low-rank image
1°, the noise image F, and the shadow image .S, the three corresponding objects
are listed as follows:

1. The rank of I° should be low: Similar with the original TILT [15], if without
any corruptions and shadows, the rank of rectified image should be low. That
is, the assumption on I° is formulated as rank(7°).

2. The transformed noise image E should be sparse: The corruption image F is
assumed to be sparse. As described in above subsection, the shadow S can
be regarded as a scaling factor. Thus, F = é ® F is also a sparse matrix.

Thereby, the corruption E is formulated as || E||o.
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3. The shadow image S should be smooth: Practically, the shadow is piece-wise
smooth, which makes the shadow image S is smooth in entire image domain.
Moreover, the values in shadow image should be larger than zero. Thus, it
is reasonable to assume that the shadow image S is also smooth. Here, we
use the Frobenius norm of the gradient of shadow image S to define its
smoothness, namely, ||VS|%.

Combining the above objects, we obtain the following objective function:
F(I°,E, 8) = rank(I°) + 7| Ello + 8] V5|3, (5)

where v and [ are weighting parameters.
Theoretically, the rank of I° equals its number of positive singular values,
that is,

rank(1°) = || Ao, (6)

where A is the singular value matrix of I°. However, 0-norm used in Eqns. (B
and () is difficult to optimize for its non-convexity. Fortunately, breakthroughs
have been made in sparse representation [I4]. We use 1-norm to relax 0-norm:

[Allo = llAll, [1Ello = [1£] (7)
where || - |1 represents the sum of the absolute values. Mathematically, ||A|l1 =
II1°]|«, where || - ||« is the nuclear norm. To sum up, the objective function Eqn.

can be relaxed as follows:
FI°,E,8) = [I°ll« + || Ellx + BIVS|[- 8)

The Shadow-free TILT Model: As presented in above two subsections, Eqns. ()
and (B]) are proposed to describe the constraint and objective function, respec-
tively. The shadow-free TILT model is summarized as follows:

min (HIOH*+7HEH1+5IIV§||%> st. I+ E=80 [ or+ VIAT)(9)
I°.E.S,Ar

We obtain our model by incorporating a shadow model into the original TILT.
Meanwhile, we convert our model to a convex optimization with a linear con-
straint. In the following, we give the optimization algorithm of our method.

4.3 Algorithm Based on Augmented Lagrangian Multiplier Method

To optimize our shadow-free TILT model, firstly given IO,E,g, T, we solve
the optimization problem to get A7. Then, we update the transformation by
T = 7 + A7, and re-substitute 7 into the problem. After several times of it-
eration, this optimization problem converges to a local minima of the original
non-linear problem. This process is listed in Algorithm [ (please refer to the
OUTER LOOP).
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The core part of above process is the updating of A7. Motivated by the pre-
vious works [I7JI8T5] about sparse and low-rank problems, we adopt the Aug-
mented Lagrangian Multiplier (ALM) iteration method to solve it. The ALM
method converts a constrained optimization problem into an unconstrained prob-
lem by introducing the Lagrangian Multiplier and a penalty term. Thus, the
optimization problem of Eqn. (@) can be reformulated as follows:

L, (I°,E,5 ArY) =

: = 5 I
min (1170 + Bl + BIVSI5 + B + HIRIE) . (10)
I°,E,S,At 2

where Y is a Lagrange multiplier matrix of appropriate dimensions, parame-
ter u > 0 is a penalty coefficient to weight the influence caused by infeasible
solutions, and matrix R = R(I°, E, S, AT) satisfies

R(I°,E,S5,Ar) =80 (I o7+ VIAT) —I° — E.

Combining the basic idea of ALM iteration, the problem presented in Eqn. (I0)
can be solved as following two steps:

<I]?+1,Ek+1,§k+1,ATk+1) = argmin/i“k <I£,Ek,§k,ATk,Yk) 5 (11)
Yir1 =Y + pn <§k OToT+VIAT) - I — Ek) . (12)

Here, the parameter p is updated as px4+1 = ppg, where p > 1, o > 0. However,
it is difficult to minimize I, |, Ek+17 §k+1, and Aty simultaneously. Thus, we
adopt an alternating direction method to obtain the objectives. For convenience,
we first introduce the soft-thresholding (shrinkage) operator H.[-:

He[z] = sign(z) - (2] - ¢), (13)

where € is the soft-threshold. According to the well-known shrinkage analysis
proposed in [T9/20], the optlmal solutions of I |, Ek;Jrl, Sk;Jrl, and A7k4q can
be expressed as follows [1:

Iy < UpH 1 [y v.r
E\kJrl — H)\H—l {é\k o My, — IE_H + Yk}
k Mk
§k —¢& (25V2§k + Y, © My — pup My © (E\kJrl + I]?_H))
T+ §pu My © My,

1 ~ Y;
ATgqq \4l (—IOT + . O (Ek+1 —|—I,?+1 - /Lk)) (14)
k k

Skt1

where My = o1+ VIAT, Uy XV, is the SVD of (§k © My — Ex + b ) and

I is an all-ones matrix with the same size of input image, V? is the Laplacian
operator, and the VIt is the Moore-Penrose pseudo-inverse of V1.

! The update of §k+1 is described in the supplementary.
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As shown in the third row of Eqn. ([Id), the semi-implicit method is utilized to
update the shadow S , and the parameter £ is the iteration stepsize. Compared
with the gradient descent method, the semi-implicit is less sensitive to the itera-
tion stepsize. In practical, the shadow image obtained by Eqn. ([Id]) exists noise.
To overcome this limitation, we apply a bilateral-like filtering method, i.e., guide-
filter filter [21], to decrease the noise while preserving edges. The shadow-free
TILT model is summarized in Algorithm [1

Algorithm 1. Shadow-free TILT Algorithm

Input: The initial rectangle, transformation 7, and shadow image S (S is a
matrix with all values are one). Parameters: k =0, Yo = 0, Eo =0,
A79 =0, po = 1.25, p=1.25, £ = 10>, and B =5x10"".
Output: The optimized I°, E S and Art.
1 OUTER LOOP:
2 while not converge do

3 Calculating the normalization of current image, that is, [ o7 = I 1{; 3'7‘-|F;
4 Calculating the normalization of Jacobian VI w.r.t parameters of
. ] vec(IoC) .
deformation 7, namely VI = oc (Hvec(IOC)HF> le=r;
5 INNER LOOP:
6 while not converge do
7 (Uk, Zx, Vi) = SVD (§k@(1w+vmm)fﬁk+3§);
8 Ik+1 UkH —1 [Ek} Vk 5
9 Bt = le [sk ®Tor+VIAm) —I¢,, + }j};];
g 8, —€(28V2S+YOUor+VIAT,) —p (Iom+VIAT)O (B y1+12, 1)) |
10 k+1 = I4+€py (Tor+VIATL)O(Tor+VIAT,) ;
11 Arpyr = VIT (ro T4 O (Ek+1 b0, — f;));
12 Yerr = Yi + e (§k®(107+vmm) .y fEk);
13 Hk+1 = Pplik;
14 end
15 Updating transformation: 7 = 7 + Argy1 ;
16 end

5 Experimental Results

In this section, we present the experiments of our method by comparing with
the original TILT. First, we give both visual and numeric results on a synthetic
data in Subsection 5.l In Subsection 5.2, we evaluate our method on real facade
images from three aspects. The parameters related to shadow are set as follows:
the shadow update stepsize & = 102 and the shadow weight 3 = 5% 1073, Other
parameters are the same with the original TILT (see Algorithm [I).
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5.1 Synthetic Data

In this experiment, we use a synthetic checkerboard image with different shadow
strength to evaluate the tolerance for the shadow of our method, compared with
the original TILT. The test image is synthesized by the following equation:

1
I, (%) L+ m x € shadow region (15)

I, (X) otherwise

where Jp,,(x) is the image without shadows (see Fig. [[(a)); I, (x) is the image
with shadow (see Fig.[[[(b)); and m > 0 is the shadow strength value. Then, the
image is deformed by projective transformation and added by Gaussian noise
(see Fig.[M(c)). Thus, the Fig. [Ml(c) is regarded as the original input image.

Table 1. Comparison of our method with the original TILT on different shadow
strengths (number of success)

Shadow Strength 0.0 0.1 0.3 0.6 1.0 2.0

TILT 10 9 9 7 6 0
Shadow-free TILT 10 10 10 10 10 3

We evaluate different strength of shadows by varying m from 0.0 to 2, and the
comparison results are listed in Table[Il For a fixed shadow strength, we perform
10 experiments with different interactive regions, and the success numbers are
shown in Table[Il For fair comparison, the interactive regions in the original TILT
and our Shadow-free TILT model are the same. In this table, the success number
of original TILT decreases gradually when the shadow strength is increasing.
Surprisingly, our method is stable when shadow strength is not larger than 1.0.
When the shadow strength m = 2.0, the success number of our method become
lower. Fortunately, our method has 3 success times, while the results of original
TILT model are all failed. Fig. [0l gives a visual comparison when m = 1.0. This
experiment indicates that adding a multiplicative factor to weaken the influence
of the shadow is meaningful, especially when shadow strength is large.

-~ Wy
I Nl

Ty Y
(©

(@ (b)

(d) TILT (e) Ours

Fig. 1. The sub-figure (a) is a synthetic image, (b) is the image with shadows, (c) is
the deformed image by projective transformation. The sub-figures (d) and (e) are the
respective results of original TILT and ours. The red window denotes the input and
the green denotes the output. In the following figures, we all use this discretion.
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5.2 Experiments on Real Facade Images

A Detailed Comparison: This experiment presents a detailed comparison on a
image with strong shadows, and the result is illustrated in Fig. Pl As shown in
this figure, our result is almost correct, while the original TILT fails along the
horizontal direction. The main reason is that the strong shadow not only intro-
duces undesired information, but also causes the texture on the wall partitioned
into two regions, i.e., one is under the sunshine and the other is in the shadow.
However, by introducing shadow factor, our model can weaken the disturbance
of shadow (please refer to the shadow-free image Fig. [2(e)).

Moreover, as shown in Fig.[2(e), the shadow region becomes shallow, however,
it is not removed wholly. Hence, the rank of shadow-free image (Fig. Ble)) may
be not lower than the original image with shadow (Fig. 2ld)). Surprisingly, our
method can still work. The main reason is that we use nuclear norm to relax
the rank . When shadows are partially removed, the singular values will become
smaller, even though the number of positive singular values may not become
lower. Hence, the sum of singular values will become lower, correspondingly.

' L ‘ | — —
(a) (b) (c) (d)

irerFe. .
© 0

Fig. 2. A detailed experiment about our model. The sub-figure (a) is the input image,
(b) is the output of the original TILT, (c) is the output of ours, (d) is gray image after
rectification, (e) is the rectified image with shadow removed, and (f) is the correspond-
ing shadow image.

More Comparisons of Our Method with The Original TILT: In this experi-
ment, we present a number of comparisons, and the results are shown in Figs.
and @ The tested images are all corrupted by shadows, and some of them also
have other problems, e.g., the occlusion.

(a) (b) ()

TILT of first initialization Ours of first initialization TILT of second initialization ~ Ours of second initialization

Fig. 3. Compared to the original TILT with two similar initializations. Sub-figures
(a,c) are the original TILT results, and (b,d) are ours.
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(C)

Fig. 4. Comparisons of the original TILT and our method in different difficulties, such
as sunshine and occlusions. For each pair of images, the left one is the TILT result,
and the right one is our result.

Fig. 5. Rectification results in different circumstances of our method. The first and
third rows give the input region (in red) and the output region (in green), and the
second and fourth rows are the corresponding rectified images.
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Fig. Bl gives a comparison result with two different initializations. As shown in
this figure, when shifting the initial region, our model (see Fig.[Bl(b,d)) can get sta-
ble and correct results. However, the results obtained from the original
TILT (see Fig.Bl(a,c)) have errors along the horizontal direction. This experiment
shows that our method is less sensitive to the initialization to some extent.

In Fig. @ we present more comparisons with other difficulties. For example,
in Fig. @(a,b), the input images are corrupted by large occlusions. As shown in
this figure, our model still can handle those conditions. The main reason is that
the sparseness assumption on the noise (or the occlusion) is also well introduced
by our shadow-free TILT model. In Fig. [(c,d), the sunshine is strong. The
comparison results show that our model can handle this difficulty well.

Experiments on ZiibuD Database: We use the ZiibuD database [22] to evaluate
our approach. ZiibuD contains 1005 images of 201 buildings, which are taken
from different illumination conditions and viewpoints. Fig. [}l presents the seven
results with following challenges: different illumination conditions, viewpoints,
occlusions, and building types. The experiment results illustrate that our method
can also tackle these difficulties.

6 Conclusion and Future Work

In this paper, we propose a new shadow-free TILT model to rectify the deformed
images with shadows. The main contribution is that we introduce a multiplicative
and smooth shadow factor to improve the original TILT model on real facade
image rectification problem. Algorithmically, we convert the shadow image into
its reciprocal, which makes the optimization algorithm more convenient and
reasonable. Experiment results show that comparing with the original TILT,
our shadow-free TILT model can handle facade images with notable shadows
better.

The proposed shadow-free TILT model is still rudimentary in handling shadow
problem, especially when shadow is very strong. For example, in the synthetic
experiment, when shadow factor reaches 2, our method may still fail. In the
future, we will add shadow estimation module to improve our shadow-free TILT
model. The estimated shadow not only can be used as initialization, but also
can be regarded as a constraint in the iteration. Moreover, we can also add the
geometric information, such as lines and points, to enhance our model.
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Abstract. Although a lot of research has been performed in the field
of reconstructing 3D shape from the shading in an image, only a small
portion of this work has examined the association of local shading pat-
terns over image patches with the underlying 3D geometry. Such ap-
proaches are a promising way to tackle the ambiguities inherent in the
shape-from-shading (SfS) problem, but issues such as their sensitivity to
non-lambertian reflectance or photometric calibration have reduced their
real-world applicability. In this paper we show how the information in
local shading patterns can be utilized in a practical approach applicable
to real-world images, obtaining results that improve the state of the art
in the SfS problem. Our approach is based on learning a set of geomet-
ric primitives, and the distribution of local shading patterns that each
such primitive may produce under different reflectance parameters. The
resulting dictionary of primitives is used to produce a set of hypotheses
about 3D shape; these hypotheses are combined in a Markov Random
Field (MRF) model to determine the final 3D shape.

1 Introduction

Shape recovery is a classic problem in computer vision and a large body of
prior work exists on the subject, including a variety of shape-from-X techniques.
Shape-from-shading is the instance of the shape recovery problem where shape
is inferred by the variations of shading in the image. The goal of this paper is
to infer the 3D scene structure, in the form of a normal map, from a single 2D
image using the information contained in shading. Although shading is a very
important cue for human perception of shape and depth, shape-from-shading is
a challenging and generally ill-posed problem in computer vision.

A vast amount of prior work exists in the field of shape from shading. Early
work can be found in [I]. A variety of shape-from-shading algorithms are sur-
veyed in [2], and more recently in [3], including approaches based on energy
minimization and partial differential equations [4]. A variety of smoothness and
curvature constraints in energy minimization is examined in [5] to improve the
recovered needle maps. Energy minimization approaches suffer from deep local
minima, as discussed in [6], which proposes a stochastic optimization approach
to avoid them. Heavy shadows further complicate the SfS problem. In [7], shad-
ing is incorporated in the form of additional constraints to a deformable model,

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 80-P4] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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in order to estimate shape under varying reflectances and extended to the case of
unknown illumination. An MRF formulation of the shape from shading problem
is presented in [§], including integrability constraints. While SfS is an ill-posed
problem in the case of orthographic projection under a distant light source, [9]
shows that assuming a more realistic perspective projection and a point light
source, SfS becomes well-posed.

In our approach we are interested in extracting and utilizing information in
larger image regions (image patches) consisting of multiple pixels. Our motiva-
tion comes from the intuition that ambiguities inherent in the problem when
looking at individual pixels are reduced when examining larger neighborhoods.
A data-driven approach could capture the correlations between local image ap-
pearance and geometry, allowing us to perform shape reconstruction based on
a relatively small set of hypotheses about local 3D structure that have been
learned by observing real data, thus making the problem easier.

Some prior work [I0/TT] has examined shading and geometry in small image
regions. [12] examines shading primitives capturing the shading patterns in folds
and grooves of surfaces, including interreflections. A graphical model framework
for incorporating patch-based priors in various computer vision problems is pre-
sented in [I3]. Their results in the SfS problem are however limited to a small
subset of synthetic images. Geometric primitives are also utilized in [I4], to cap-
ture object-specific priors for reconstruction of known object classes, such as
faces. In [15] a set of shading primitives is used to capture the folds in cloth, and
the surface in between folds is interpolated through a two-level MRF model in
order to reconstruct the 3D shape of cloth. Recently, [16] used learned shading
primitives to deform the initially known 3D surface of a locally textured object.
One of the few patch-based approaches for the general shape-from-shading prob-
lem is proposed in [17]. Their method uses a dictionary of spherical primitives
and a variational approach to reconstruct the 3D shape of Lambertian objects.

In this work, we use a learned dictionary of geometric primitives to capture
the relationship between the appearance and geometry of image patches. Each
entry in the dictionary captures the geometry of a small rectangular region
(patch) and a distribution of the possible image intensities associated with this
geometry, as observed in a training set containing images of known geometry.
We choose to describe the 3D geometry by a normal map. We assume that
the scene is illuminated by a single distant point light. We do not assume a
specific type of surface reflectance. In our initial approach to the problem, we
assume that the object surface has uniform albedo, so that an image containing
only shading variations is available. Shading variations in case of variable albedo
could be extracted through other methods [I§]. Furthermore, we do not model
the effects of cast shadows and interreflections. However, since our method relies
more on the higher-frequency components of local appearance, interreflections,
which change relatively smoothly over the surface, will have limited influence on
our method.

To reconstruct the shape of a new image, we first divide the image into patches.
For each image patch, we search the dictionary for patches that have similar
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appearance to the observed one. Patch appearance is described on a wavelet
basis. We define the distance of the image patch to a dictionary patch as the
Mahalanobis distance between the observed appearance and the distribution of
appearances that can be produced by the dictionary patch. That distribution
corresponds to different parameter choices in the Ward reflectance model [19].
Searching the dictionary for matches to an observed image patch produces a
set of hypotheses about the local geometry. Despite the fact that there are in-
finite possible geometric explanations for the appearance of a given patch, our
experiments show that certain explanations are much more probable, making
our approach effective. The problem of inferring the shape of the objects in the
scene becomes that of properly selecting the normal vectors given the set of local
hypotheses obtained by the dictionary.

We combine the local hypotheses into the final 3D shape through a Markov
Random Field (MRF) model. The MRF model contains one node per image
pixel, with pairwise interactions between them, and the node labels indicate the
normal vector at each corresponding pixel. The main contributions of this work
are the following:

1. We propose a new metric to capture the similarity between local shading
patterns and learned patches using a wavelet decomposition and the Ma-
halanobis distance. As a result, our method can reconstruct the shape of
surfaces that significantly deviate from the lambertian model, and handle
images that are not photometrically calibrated. These are both significant
restrictions of previously proposed approaches.

2. We describe an algorithm that effectively combines information across mul-
tiple scales and combines the local geometric hypotheses to reconstruct the
final normal map through an MRF model. Our method achieves state-of-
the-art results in real images.

3. We show how a patch-based SfS approach can be used to refine and fill-in
gaps in the geometry obtained with 3D sensors such as the Microsoft Kinect.

We present results on synthetic and real data. In both cases, our algorithm is
able to recover both the general object shape and finer geometric details. In our
experiments, dictionaries are learned on synthetic data, but we are able to use
them to reliably reconstruct the shape of real photographs. Comparisons with
other approaches [T720/219] on real data show the advantages of our approach.

In the following sections we describe how image patches can be represented
and how a dictionary of patches can be learned from a set of training images and
their corresponding geometry (SecZ]), and how we can reconstruct the normal
map from a test image, using the trained dictionary and formulating the problem
as inference on a Markov Random Field (MRF) model (SecB). In SecHl we
present results on synthetic datasets and real images with our method. Sec[
concludes the paper.
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Fig. 1. The data stored in a learned dictionary. Left: the normal map of sample dic-
tionary patches; Right: the mean appearance of each dictionary patch as reconstructed
from the mean of appearance wavelet coefficients. Red indicates background pixels.

2 Patch Dictionary

We first construct a dictionary of local geometric primitives (patches) from a
set of training images with known geometry. Each patch in the dictionary is a
small normal map of size n x n, representing the local 3D geometry. Along with
the geometry for each patch, we store the distribution of pixel intensities (local
appearances) that can be produced by that geometry under different reflectance
models, given a light source direction. We refer to each of the learned geometric
primitives in the dictionary as a dictionary patch. By patch appearance we refer
to the n x n grid of pixel intensities describing the appearance of an image patch
or dictionary patch. By patch geometry we refer to the n x n grid of normal
vectors representing the patch geometry.

2.1 Patch Representation

We reduce the dimensionality of the normal map representation by applying
PCA to a subset of patches from the training set and keeping the Mg first
eigenvectors. Patch normal maps are therefore projected on the PCA basis and
represented by the Mg resulting coefficients. We choose to represent the patch
appearance using a Haar wavelet basis [22]. We use Haar wavelets of order 2,
using the non-standard construction, resulting in a basis of size M4 = 16 for
appearance patches.

The distribution of appearances that can be produced by the geometry of
a dictionary patch is represented by the mean and variance of the coefficients
of the patch appearance. Furthermore, each dictionary patch contains a mask
that indicates which pixels belong to the foreground and which (if any) to the
background. Therefore, a dictionary patch D; is represented by a quadruplet
{Gi, M, ,uf‘, oiA}, where G are the PCA coefficients describing the patch normal
map, M, is the patch foreground/background mask (an n x n grid of binary
values), and p! and of' are the means and variances of the coefficients of the
appearances that can be produced by the patch geometry.

An example set of patch appearances and geometries from a learned dictionary
is shown in Fig[ll

2.2 Dictionary Construction

Let T = {(T,CG,TéV[,t,%)} be the training set, where each training instance k
consists of a normal map TkG , a foreground /background mask T,iw and a light
source direction ti . We assume that each training instance is illuminated by a
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single distant light source. In order to obtain a good dictionary D from train-
ing set T, we aim to learn a set of geometric primitives that could adequately
describe the objects in the training set. Our approach is to: 1) First examine
only the geometry of the training set, learning a set of dictionary patches that
correspond to distinct local geometric structures in our training set. 2) As a
second step, we examine the local appearance produced by each of the learned
dictionary patches under different reflectances, and store statistics to describe
the distribution of these appearances.

To learn the dictionary patch geometry, we first divide the geometry TkG of
each training instance k into a set P of overlapping patches P; of size n x n.
We then project the normal map PkG of each patch P; onto the PCA basis, so
that PkG is represented by a set of coefficients af. To decide if we should add
this patch to the dictionary D, we compute the distance between Pj and each

dictionary patch D; as:
Mg

(P D) = Y (af (m) —af(m)* +wn 3 [PM(m). DM ()], (1)
p=0

m=1

where the first term is the euclidian distance of the PCA coefficients representing
the geometry and the second term the difference of the foreground/background
masks, weighed by a weight wjs that determines how strictly we want the fore-
ground/background mask to match between the two patches (a large value of
wpr = 100 was used in our experiments).

If the distance to the closest patch already in the dictionary is above a thresh-
old fp, then a new dictionary patch is added to the dictionary, with the geometry
and mask of patch Pj. Therefore, after all patches in the training set have been
examined, a (potentially large) dictionary D has been constructed, containing a
variety of distinct local geometric structures.

The second step is to learn the distribution of appearances that can be
produced by the geometry of each dictionary patch. In order to do that, we
render the normal map of each dictionary patch D; using the Ward [19] re-
flectance model and a set R of different reflectance parameters, which corre-
sponds to surfaces of varying specularity, varying diffuse intensity and varying
anisotropic specular properties. We project the image intensities produced by
each reflectance parameter selection onto the wavelet basis, and we store the
mean ,uf‘ and variance O'ZA for each appearance coefficient across all reflectance
parameters.

Dictionary Light Source Direction. We train the dictionary of patches using
a single, known light source direction. This known light source direction is used
to associate each local geometric primitive in the dictionary with a range of
appearances under different reflectance parameters, removing the dependence of
local appearance on light direction.

When reconstructing a test image, the light source direction used to train the
dictionary has to be the same as the one that corresponds to the test image.
Therefore, we re-compute the distribution of appearances for each dictionary
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patch as a first step every time we are provided with a new image to recon-
struct and the corresponding light source direction. Generating the distribution
of appearances for a dictionary of 30000 patches, such as the one used in our ex-
periments, takes 1-3 minutes. This time is significantly less than the time needed
to reconstruct the image from the dictionary, making this solution feasible.

This way, the dictionary does not have to capture the ambiguities caused by
varying light source directions, which would lead to both an extremely large
dictionary and a very difficult reconstruction problem.

3 Shape Reconstruction

In this section we describe how we reconstruct the geometry when provided with
a new image I and a learned dictionary D. We first divide the input image into
a set of overlapping patches. We then find the dictionary patches in D that are
closest in appearance to the patches extracted from the test image I. Finally,
we reconstruct the 3D shape from the results of the dictionary look-up using a
Markov Random Field (MRF) model.

We divide the image I into a set of overlapping patches. We define an image
patch P; for each image pixel j, so that P; is centered at pixel j and has size
n x n. This way, we extract all possible image patches from the input image I.
For each image patch, we search the dictionary for dictionary patches of similar
appearance. We retrieve the kp dictionary patches that are closest in terms of
appearance to image patch P; (we define the metric to compare patch appear-
ances in the next section, Sec3]). Because we defined image patches centered
at each pixel, a given pixel i is covered by up to n? overlapping image patches.
As a result, there are up to kpn? dictionary matches that include pixel i, with
each dictionary match defining a normal vector for pixel i. Each of these results
is considered a hypothesis about the vector at pixel i.

Because of the dependency of patches on scale, we repeat this search for a set
of different scales S. We use re-scaled versions of the original image, at scales
both coarser and finer. We examine every patch at the coarsest scale. At finer
scales, we only examine those image patches that have image variance above a
given threshold (0.001 in our experiments). Moving to finer scales, the patches
get smaller relative to the image. As a result, the average image variance per
patch reduces, so that only finer details are examined at finer scales (see Fig[2]).
The dictionary matches of size n X n at each scale are then re-scaled to the scale
of the original image. As a result, the final set of dictionary matches contains
patches of varying sizes, corresponding to the different image scales used for the
search.

The above procedure generates up to |S|kpn? normal vector hypotheses for
each image pixel ¢. From this large set of hypotheses, we keep only the k& normal
vectors that correspond to the k dictionary patches with the lowest matching
cost that contain this image pixel. These candidate normal vectors will be sub-
sequently used in the MRF optimization described in section to obtain the
final normal map.
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3.1 Dictionary Search

To determine how well a dictionary patch (consisting of a normal map patch and
a set of appearance statistics) matches an image patch (consisting of a patch of
image intensities) we use the Mahalanobis distance.

Let P; be an image patch consisting of appearance PJA (a m x n patch of
per-pixel intensities) and a foreground/background mask PjM . Projecting the
foreground pixels of appearance PJA onto the appearance wavelet basis, we obtain

a set of coefficients a;‘ that describe the image patch appearance. We compute
the distance between the appearance of P; and that of a dictionary patch D; by

the Mahalanobis distance:

2
Da(D;, P;) = Z “Zi ™) , (2)
oit(m))
where p! and o are the mean and variance of the appearance coeflicients of
the appearances produced by dictionary patch D; under different reflectances,
as computed during training [1.

To compute the quality of the match between dictionary patch D; and image
patch Pj, we also compute the similarity of the foreground/background masks
of the two patches:

DM(DZaP n2 ZZ DM x y PJM(:E’y)] ) (3)

r=1y=1

where [DM(z,y) = PJM(x,y)] = 1 if both masks agree for pixel (z,y) and 0
otherwise.

Finally, we can take into account the similarity of dictionary patch D; to a
rough 3D shape prior. This term allows us to utilize the normal map estimate
from the previous scale while searching for dictionary matches at the next scale,
when examining multiple scales. Similarly, this term can allow the incorporation
of rough geometry knowledge. Such an example is the refinement of 3D shape
captured by a commercial 3D camera, such as a Kinect sensor. The geometry

prior cost is defined as: v

Da(Di, Py) = Y (af(m) —af(m))”, (4)

m=1
where af(m) is the m-th coefficient of the geometry of dictionary patch D,
af(m) is the m-th coefficient of the coarse geometry of the test patch j. As-
suming that the geometry prior is coarse, only the first M geometry coefficients
are taken into account, corresponding to the low-frequency components of the
geometry prior. In our experiments, M = 3.

The final cost of using dictionary patch D; to explain image patch P; is then:
COSt(DZ‘, P]) = Z)A(TDZ'7 Pj) + ’ll)]MD]M(Y)i7 Pj) + wng(Di, P]), (5)

where w); and wg are weight that control the relative strength of match and
geometry prior matching ((war, wg) = (1000,1) in our experiments).

! We have assumed that covariances between appearance coefficients are 0, which lead
to no significant deterioration in results, but significantly faster training and testing.
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Fig. 2. Combining matches over different scales to produce an initial guess about the
normal map. a) original image; b-d) the normal maps produced by averaging dictionary
matches at 3 different scales; e) the combination of all scales to produce an initial guess
about the normal map; f) the final result from our method.

3.2 Combination of Dictionary Matches

Having obtained a set of dictionary matches, we then produce an initial guess
for the normal map. For each pixel i, we have recovered a potentially large
set of normal vectors {n}}, across different scales. We compute the mean n;
of all normals at pixel i. Then, we recompute the mean normals iteratively. At
each iteration, we take the weighted mean of normals {n%} at pixel i, where
each normal is weighed by 1/||n% — n;||2. This allows us to reduce the effect of
outliers to the initial estimate [I7]. The results we obtain at each scale and their
combination to produce the initial guess are shown in Fig[2

We refine this initial guess to produce the final normal map by modeling
the problem as an MRF model. Through the MRF optimization, we estimate a
normal map for the image that is both close to the discovered dictionary matches
and that satisfies anisotropic smoothness constraints.

Our MRF model can be represented by a 4-connected 2D lattice, where each
node corresponds to an image pixel. Each random variable z; at pixel 7 indicates a
normal vector n;. Therefore, the labels z; take values from a continuous domain.
The energy of the MRF model is:

B(x) = di(w) +ws > ty(ws,z;), (6)
€T i,jEN
where T is the set of image pixels, N is the set of neighboring pixels in the
4-connected grid, ¢;(x;) is the singleton potential that associates the labels x;
with the geometry hypotheses recovered from the dictionary D and ;; (s, ;)
is the pairwise potential associating neighboring pixels ¢ and j. The weight wo
was set to 0.1 in our experiments.
The form of the singleton potential is:

bi(x;) = w! i arccos (n(z;) - n(D;)) cost(D;), (7)

j=1

where n(z;) is the normal vector at pixel ¢ as indicated by label x;, D; is the
number of dictionary matches that contain pixel 4, n(D;) is the normal vector at
pixel ¢ as predicted by match D;, and cost(D;) is the cost associated with match
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D;. Furthermore, w! is a weight that corresponds to how reliable we expect the
dictionary matches at pizel i to be.

We express w! based on two observations: dictionary matches are more re-
liable when there is enough local image variability (flat image regions are the
least informative), and dictionary matches are not reliable when the matches in

different scales differ significantly from each other. Therefore, we define w! as:
I i

w; = 1 —&-q(i)’ (8)
where o; is the local image variance at pixel ¢, which is computed as the variance
of the image pixel intensities in a 6 x 6 patch centered at pixel i. The term ¢(7)
represents how much the recovered dictionary patches differ at pixel 4, and is
defined as: ) S|

N s ‘
q(i) = - ; Ej:arccos (n(D5) - ny), (9)
where S is the set of different scales we are examining, D; indicates the j-
th recovered dictionary patch for pixel ¢ using scale s, and n; is the normal
vector at pixel 7 obtained by averaging the normals at pixel ¢ from all recovered
dictionary matches at all scales.
The pairwise potentials 1;;(x;, z;) enforce smoothness between the normals
of neighboring pixels ¢ and j:

i (@i, x;) = wyj arccos (n(z;) - n(z;)), (10)

where w;; is a weight computed as a function of the image gradient between
pixels ¢ and j:
wij =max{0,1 —wyVI;}, (11)

and wy determines how sensitive the smoothing term is to image gradients (we
set wy =4 in our experiments).

We infer the final shape by minimizing the MRF energy over the labels x.We
chose to use the QPBO [23124] and fusion-move [25] algorithms to perform in-
ference. The QPBO algorithm is used to solve a binary MRF labeling problem
between the current set of node labels X and a set of proposed labels x’. The
solution is initialized to our initial guess about the normal map, produced by
keeping the average normal of the finest scale available for each pixel. We per-
form a predefined number of iterations, and at each iteration we generate the set
of proposed normals (indicated by labels x’) by adding a small random offset to
each normal vector in the current solution x.

4 Experimental Evaluation

We evaluated our method on both real (Fighl) and synthetic (FigB) data. For
evaluation on synthetic data, we used a set of 3D models rendered assuming
Lambertian reflectance. The set consisted of 6 models of real objects captured
with a 3D scanner [26/27] and rendered from 142 different viewpoints and a
set of 2.5D range images of 11 different objects [28], captured from 66 different
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Fig. 3. Reconstruction of normal maps of synthetic images. The images are generated
by rendering depth maps of objects collected by 3D scanning [26/27]. We show the
reconstructed normal maps and renderings of the reconstructed shape under different
illuminations.

Fig. 4. Effect of non-lambertian reflectance: a-d) reconstruction using the Mahalanobis
distance metric, e) reconstruction using Euclidian distance. a) Lambertian reflectance;
b) Lambertian reflectance, under-exposed image; c,d,e) Specular reflectance using the
Ward model. Our approach achieves results that are robust to reflectance and photo-
metric calibration, while it is impossible to reconstruct a specular surface using just
the Euclidian distance. Notice also that the surface in (d) is more specular than the
most specular reflectance parameters used while training, showing the ability of our
approach to generalize over reflectance parameters.

viewpoints. We used a subset of the viewpoints available, resulting in a set of
150 images. We used leave-one-out cross-validation to evaluate our algorithm:
we reconstructed the shape from an image of model ¢ using a dictionary trained
on all models other than 4 (excluding multiple views of the same object as well).
We used 4 scales (1/4, 1, 2 and 4 times the size of the original image) to recover
matching patches from the dictionary. The smaller scale better captures the
overall shape of the object, while finer scales can better capture detail. A total
of 5000 iterations was performed during MRF inference. The running time of our
algorithm was 20-40 minutes per image, depending on image size and the size of
the dictionary (running time measured on an Intel Core i5 machine). Training
for a dataset of 150 images takes slightly over an 1hr. We integrated the normal
maps estimated by our method using the M-estimator [29], in order to produce
the final 3D surfaces (Fig[d).
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Fig. 5. Reconstruction from a real photograph. From left to right, original image (from
[9]); the normal map estimated with our method; the normal map after integrating
our estimate using the M-estimator [29]; 3 rendered images with the normal map we
estimated and different light directions.

For our experiments, we used a dictionary of 30000 patches of size 12 x 12
pixels. We used a Haar wavelet basis of size 16 and the first 90 PCA eigen-
vectors for the patch normal maps. We observed that dictionaries of at least
10000 patches were necessary in order to get satisfactory reconstructions, while
having more than 30000 patches (for the selected patch size) was usually only
marginally beneficial to our results. Furthermore, it was apparent from our ex-
periments that the patch size needs to be at least 8 x 8 pixels in order to properly
capture local shape. We can demonstrate this through a custom dictionary con-
taining only patches of spherical surfaces. Reconstructing an image from that
dictionary is significantly more accurate with patch sizes over 8 x 8 pixels, which
would imply that relatively large patch sizes are required to reliably capture
the local curvature of surfaces, since this custom dictionary ignores finer details.
Furthermore, in these experiments, using a 16 x 16 patch size on an image that
has been rescaled to be 4 times larger than the original (without adding any
detail/information) is significantly more accurate than using 4 x 4 patches on
the original image.

In our experiments, our method significantly outperforms previous shape-
from-shading approaches (Fig[Tl]). It is able to reliably capture the general ori-
entation of surfaces and is able to reconstruct much more local detail than other
approaches [20021J9]. This can be attributed to the fact that most shape-from-
shading approaches rely on some kind of smoothness constraint, whereas in our
case such constraints are replaced by the learned primitives. Smoothness needs
to be enforced much more weakly during our MRF inference, allowing the so-
lution to retain a lot of local detail. In our experiments with real data, our
method also outperforms the shape-from-shading approach of [9] that applies to
specific cases of the problem that can be well-posed. The ability of our method to
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Fig. 6. Examples of 3D surfaces reconstructed from the normal maps estimated with
our method, using the M-estimator [29]

Fig. 7. Comparison of our method with other approaches: a) original image; Surface
estimates by: b) [20]; c¢) [21]; d) [9]; e) our approach. Our approach captures both the
overall shape of the object as well as the details better, resulting in a 3D face with
clearly discernible features and a closer resemblance to the original face

handle surfaces that are not lambertian is one extra reason for the improved per-
formance on real images. The use of the Mahalanobis distance further allows us
to cope with images that are not photometrically calibrated (e.g. underexposed
images), which can be challenging when matching the local patch appearance,
since in the set of reflectances used to build the distributions of appearances in
the dictionary we have also included surfaces with lower uniform albedo.

One weakness of our method is that the quality of the results diminishes in
the case of objects with large flat surfaces, indicating that flat patches are signifi-
cantly more ambiguous than patches that contain even slight shading variations.

Refining Coarse Geometry. We can also use our approach to refine a coarse
normal map. We obtain the initial geometry using a Microsoft Kinect (a con-
sumer device that includes a 3D scanner and a camera). The collected data are
an image and a depth map. The depth values in the depth map are reliable but
of low resolution. Therefore, computing the normal vectors from the depth map
leads to unsatisfactory results, even when smoothing is used on the depth values,
as shown in Fig[dl Furthermore, the collected depth map contains a lot of holes,
especially around the occlusion borders of objects. We can use our approach to
refine such results, by including the geometry information captured in Eql
Figll shows the results for an example scene captured using a Kinect. Our
method is able to complete the holes in the collected depth map, and to obtain
a convincing normal map. We show the normal maps we obtain from the Kinect
depth data using various levels of smoothing on the depth values for comparison.
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Fig. 8. Comparison of our method with [I7] on a real image (from [I7]): a) original
image; Surface estimates: b) Result as shown in [I7]; ¢) by our approach. Our method
is able to recover more detail and a more accurate overal shape

Fig. 9. Refinement of geometry captured with a Kinect: a) the image captured by the
Kinect; b) the depth map captured by the Kinect; ¢) normals computed by the depth
map; d) normals computed by the depth map after gaussian smoothing of depth values;
e) normals computed by refining the smoothed normal map (d) using our method. We
have correctly completed all the object edges, as well as increased the detail in the
object while removing noise

5 Conclusions

In this paper we presented a data-driven approach to the problem of shape-
from-shading from a single image. We described how we can build a dictionary
that captures the correlations between different structures in local shading and
geometry. We propose a way to recover hypotheses about the local 3D geometry
from the local appearance in a way that is robust to non-lambertian reflectance
and photometric calibration. We recover the final 3D shape by combining these
hypotheses in an MRF model. The advantages the proposed data-driven ap-
proach are that it removes a lot of typical considerations in SfS algorithms, such
as boundary conditions or the choice of camera model, and enables us to explic-
itly deal with surfaces that deviate from the lambertian reflectance model. The
results with this approach outperform previous shape-from-shading approaches,
even when such approaches make significantly more assumptions than ours. The
versatility of such an approach also allows us to use it in order to refine coarse
geometric data captured from other sources. Future work will incorporation of
priors about albedo in our dictionary representation.
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Abstract. This paper presents a novel iterative feedback framework for
simultaneous estimation of depth map and All-In-Focus (AIF) image,
which benefits each other in each stage to obtain final convergence: For
the recovery of AIF image, sparse prior of natural image is incorporated
to ensure high quality defocus removal even under inaccurate depth esti-
mation. In depth estimation step, we feed back the constraints from the
high quality AIF image and adopt a numerical solution which is robust
to the inaccuracy of AIF recovery to further raise the performance of
DFD algorithm. Compared with traditional DFD methods, another ad-
vantage offered by this iterative framework is that by introducing AIF,
which follows the prior knowledge of natural images to regularize the
depth map estimation, DFD is much more robust to camera parameter
changes. In addition, the proposed approach is a general framework that
can incorporate depth estimation and AIF image recovery algorithms.
The experimental results on both synthetic and real images demonstrate
the effectiveness of the proposed method, especially on the challenging
data sets containing large textureless regions and within a large range of
camera parameters.

1 Introduction

Recovering scene depth has been a hot topic in computer vision and has broad
applications, researchers explored lots of efforts and made large progress in the
past decades. Among the large number of depth estimation approaches (e.g.
multi-view stereo, structure from motion, depth from shading), Depth-From-
Defocus (DFD) and Depth-From-Focus (DFF) are insensitive to occlusion and
registration errors[l]. However, there are two main disadvantages, the accuracy
of depth estimation deteriorates in the textureless regions, and the images cap-
tured in DFD or DFF suffer from defocus blur, from which we cannot obtain
high quality all-focused image of the scene. In this paper, we focus on recov-
ering high quality scene depth and all-focused image simultaneously under a
feedback scheme, which converges by estimating two items iteratively and each
item benefits from the other one within an iterative step.

* This work was supported by the National Basic Research Project No. 2010CB731800
and the Project of NSFC No. 61035002 & 61170194.

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 95-[[09] 2013.
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1.1 Previous Works

Generally, depth estimation approaches using the defocus cues fall into two
streams: DFF needs to capture a series of defocused images by changing the
camera focal setting gradually, and label the local depth to be the focal setting
with the highest focal level. Therefore, the key task is to define the proper focal
criterion. Various methods of DFF are proposed, such as [2],[3],[4], etc. The main
shortcoming of DFF approaches is that a large number of images are required to
ensure that their whole depth of field covers the whole depth range, and the im-
age number increases with the estimation accuracy. DFD measures the amount
of blur to infer the final depth using one or multiple defocused images at differ-
ent focus levels [0][6]. Accuracy of depth estimation from a single image such as
[7[8] is limited due to the intrinsic ambiguity in depth estimation process, thus
lots of DFD algorithms adopt two or more images. DFD algorithm dates back
to Pentland [9] and a large number of variants are proposed in the latter years.

Most DFD approaches model image defocus as a convolution process, the
models can be further divided into spatial [I0][II] and frequency domain repre-
sentation [9][12][L3][I4][I5]. According to the formulation of defocus cues, these
approaches recover scene depth by integrating cues from local regions, while
[5][16] [I7][I8] [19] optimize a function defined over the global image. Compared
to the local algorithms, the global ones can obtain higher accuracy but are more
computationally intensive. The algorithm by Favaro et al.[20] combines benefits
from global blur model and local regularization to recover depth maps contain-
ing thin structures. From the computational perspective, the depth inference
can be performed either in a deterministic manner or under a statistical frame-
work [5][I6][17], which adopt Markov Random Field (MRF) to model both scene
structure and appearance.

Different from the aforementioned methods, some other researchers[17] [21][22]
model defocusing as a diffusion process and represent it mathematically using
the heat equation.

In spite that a large number of DFD algorithms are proposed and can even
deal with some complex cases[1][6], estimation on scene without rich texture
is still quite challenging. Another limitation of the previous work is that most
approaches focus on estimating scene depth but ignore the advantage of the
ATF image, which is of great importance in real world applications. Recently,
some researchers try to obtain both depth and AIF images, such as [16], [7],
[18], etc. However, either prior of AIF image and depth map are not properly
defined[TI6] [18], or two items are computed separately instead of optimizing in
an unified way and thus both accuracy and robust are limited.

1.2 Our Approach

This paper utilizes two defocused images focused at different depth planes to
estimate depth map as well as AIF image under an iterative feedback framework.
This framework incorporates the natural image sparse prior into deblur process
to recover AIF image under a coarse initial depth map, and adds constraints
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from AIF into the depth estimation algorithm to raise the accuracy of depth
map. The experimental results also show that performance of depth estimation
is more robust to camera parameter changes than traditional non-iterative DFD
algorithms[I8][20][2I]. The framework of our approach is illustrated in Figure[I]
including three stages: depth initialization, AIF recovery and Depth refinement.

[ Ty 1
} Depth
[1 | — initialization —
‘ I
I
I
N am, | —
| refinement
I
I

Input
L Defocused images
******** ﬁ Feedback

Fig. 1. Diagram of the proposed iterative feedback framework. Here gray arrows, out-
lined arrows and black arrows denote depth initialization, AIF recovery and depth
refinement respectively.

Depth Initialization. For initial depth estimation, we apply relative blur based
DFD algorithm similar to [20] by eliminating radiance from the convolution im-
age blur model and leaving depth as the only unknown, then estimate initial
scene depth with Total Variation (TV) regularization introduced to favor piece-
wise smooth depth estimation. From the result of running example, we can see
that accuracy deteriorates in the textureless regions, as shown in Figure [I1

ATF Recovery. The spatially variant blur kernels for two defocused images can
be coarsely calculated from the initial depth map, and we employ spatially variant
non-blind deblurring algorithm to obtain the AIF image. Recently, many deblur-
ring algorithms from multiple images have been proposed [23][24] [25], but consid-
ering the promising experiment results obtained in [7] by incorporating || - ||o.s
norm for natural image sparse prior modeling, we extend the spatially invariant
single image deblurring method in [7] to be applicable for multiple input images
and spatially variant blur. Since most of the depth estimation errors appear in the
textureless areas, and we have data constraints from two defocused images along
with the natural image sparse prior, we are able to achieve promising deblurring
result even the initial depth is not perfectly accurate (see Figure[I]).

Depth Refinement. After obtaining AIF, a data term defined between AIF
image and the input defocused images is fed back to refine the depth estimation
step. Benefiting from newly added data term constraint and a numerical solution
robust to outliers in AIF, more accurate depth estimation can be obtained for
textureless regions, as shown in Figure [



98 X. Lin et al.
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Fig. 2. Blur geometry for a thin lens, with the scene point @ focused and point P
having a blur radius b in the image plane

In the rest of this paper, Section 2 firstly explains the imaging model, nota-
tions and adopted depth initialization method, Section 3 focuses on the iterative
optimization of AIF image and depth map. The numerical solution for depth
estimation and experiment validations are given in Section 4 and Section 5 re-
spectively. Section 6 concludes this paper with some discussions.

2 Relative Blur Based Depth Initialization

In this section, we first introduce the adopted imaging model and notations, and
then present the relative blur based depth estimation algorithm. Let I denote
the AIF image, then its blurry version I,(y) focusing at a certain depth plane
can be represented as:

Ii(y) = / ho(y,x)I(x)dx. (1)
xENy
Here x and y represent 2D pixel coordinates, Ny is the pixels in I with their blur
spots contributing to y in I(y), the blur kernel h,(y,x) can be approximated
by following Gaussian convolution model

exp(nyiXH )’ (2)

ho(y, x)= 20%(y)

2mo?(y)
in which o(y) is the amount of depth-related blurring at pixel y
o(y) = rb(y), (3)

with k being the calibration parameter converting world coordinate to image
plane and b being the blur radius at pixel y.
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According to geometrical optics in [6], the blur radius can be calculated by
following equation:

Dv 1 1 1
by) =", \F—U—S(y)\» (4)
and the meaning of each notation is illustrated in Figure 2} D denotes the aper-
ture diameter, s denotes the depth map, v and u denote focus setting and the
distance from focal plane to lens, and the focal length is F.

Given two defocused images I, I> respectively captured at focal setting wv;
and vy but keeping the other camera parameters consistent, we can register them
in a simply way|[6]. From the convolution model in Eq. (), the relative blur based
convolution model between two defocused images is as follows:

1 _lly—x1?

12(Y):/27TA026 2402 [1(x)dx, (5)

where Ac?(y) = 05 — 07 is the square of relative depth-related blurring. In the
case that o (y) > 02 (y), above equation turns into

1B = [ hey (330 00dx % o ag(v) = [ han(y 0B (x)dx (6)
while when o3 (y) < 03(y) we have
L(y) = /hUQ (y,x)[(x)dx = [1 a0 (y) = /hAg(y,x)Il(x)dx. (7)

Similar to [20], the depth initialization from I; and I can be formulated as an
optimization problem:

§=arg msin(ozEd(s) + Em(s)), (8)

where E4(s) and E,,(s) are respectively data term and regularization term, with
« being a weighting factor.
Specifically, the data term can be written as:

Ea(s) =/H(AU(.Y))l\II(Y)—fz,Aa(Y)l\gder/(1—H(AU(Y)))I\12(Y)—f1,Aa(Y)H§dy,

(9)
with H(-) being the step function, and regularization term FE,,(s) is defined as
the isotropic total variation to favor piecewise smooth scene depth

E(s) = / 1Vs(y)]]>dy. (10)

The depth initialization algorithm defines relative blur based data terms to sep-
arate shape from radiance, thus avoids radiance regularization and reduces com-
putational complexity. The total variation regularization term used in the al-
gorithm can preserve the depth edge better and avoid the over-smooth effect.
However, the algorithm does not perform well in the case of textureless scene
and is sensitive to camera parameter changes.
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3 Iterative Optimization of Depth and AIF Image

After the depth initialization in the last section, the framework iterates between
image deblurring and depth estimation until both AIF image and estimated
depth map become stable.

3.1 Deblurring from Multiple Defocused Images

According to Eqn. [2)-@) and initial depth estimation, we can calculate two
spatially varying blur kernel maps h,,,hs, corresponding to defocused images
11,15 respectively. Then the optimization of AIF image can be formulated as a
spatially variant deblurring:

I=arg min(Eq(1) + 7 Em (1)), (11)

where 7y is the coefficient that balances data term E4(I) and regularization term
E(I). The data term is defined as

—H/ o1 (723 (x)dx — L1 (y |\2+\|/ oy, 0 I(x)dx — L. (12)

and for regularization we incorporate the natural image sparse prior:
D= [IV1G)asdy. (13)

To solve the optimization problem in Eq. (1)) numerically, we extend the Itera-

tive Re-weighted Least Squares process (IRLS) used in [7] in two facets: dealing
with spatially variant convolution process and incorporating information from
multiple input images.

With the constraints from multiple defocused images, relationship between
blur kernels and the sparse prior or AIF image, we can get promising deblurring
result even depth is not perfectly accurate. Another reason for robustness of
ATF recovery to depth errors is that, most depth estimation inaccuracies occur
in textureless areas, where the deblur result is quite stable.

3.2 Depth Refinement

After recovering AIF image, an energy term defined over which is fed back to
depth estimation steps for refinement in next iteration:

*H/ o1 (¥, X)[(x)dx — I(y H2+\|/ o (v, X) I (x)dx — L2(y)[[3. (14)
We add the feedback energy term to Eq. (§) and get
§=argmina(Eq(s) + Ef(s)) + Em(s). (15)

The numerical solution of depth refinement defined in Eq. (&) is similar to
the depth initialization algorithm in Section 2. Although using the similar nu-
merical solution, depth refinement step introduces a feedback energy describing
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constraints from recovered high quality AIF, depth tends to be improved com-
pared to initialization results, especially in the textureless regions.

In all, with ATF image acting as a bridge between depth and defocused images,
the proposed framework targets to refine depth and AIF iteratively. In each step,
we adopt an estimation algorithm for one target robust to estimation errors of
the other, and thus two modules of the iterative framework can benefit each
other. Therefore, the proposed iterative refinement goes in the right direction
and obtains promising results for both depth and AIF estimation.

4 Numerical Solutions

The optimization with TV regularization defined in Eq. (8) and Eq. (3] can be
carried out in several ways. Considering both numerical efficiency and stability
(e.g., robustness to outliers, insensitivity to parameters and initialization value),
we modify the Alternating Direction Method (ADM) proposed in [26] to be
applicable for our task.

Taking depth initialization as an example, the augmented Lagrangian function
of Eq. () is as follows:

B

JIwi = Tasll?). (16)

/

La(w,s,3) = aBa(s) + ) ([[Wxll2 = Xe(wx = Toes) +
Here 7xs is the gradient variations at location x in the depth map lattice A,
w is an auxiliary variable, 8 is a weighting factor to ensure that the solution
approximates that of Eq. (§) and numerical solution is of sufficient stability, and
A is the Lagrangian multiplier.

According to [26], the iterative alternating minimization of Eq. (I]) can be
calculated by

wrtl « argmin La(w, s*, \F)
sF1  argmin La(w*t! s, AF) (17)
NFL 3k L gwhtt  pghty,
It can be observed that the minimization of L 4(w,s*, \¥) with respect to w is
equivalent to the following optimization problems

i [lwla - [jwe = (T + AR, Ve A (1s)

and the solution of which can be given explicitly by two-dimensional shrinkage

Tus® + é)\ﬁ
[Tesh + AAE[lo"

1
B

WA — max{|[Tes”® + LAK|[o — ;,0} Vx € A, (19)

where we assume 0 - (0/0) = 0.
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Different from [26], the minimization of L 4 with respect to s cannot be solved
in closed form because of the complexity of the data term. We use the gradient
flow method[21] for depth updation by minimizing

B) = aBu(s) + [ N0 Vstidy+ ) [ 1w ) - Vswlay.  (20)

We introduce a pseudo-time variable 7, and update the depth map via gradient
descending, i.e.,

P = sF 4 gj_ AT, (21)
in which 0s/07 is computed by using variational method to calculate —E’(s):

E'(s) = aM(s)(Ea(s))' = V- A*(y) + V- w"(y) = V- V5" (y). (22)
In the above equation,

= [0t 75 (122009~ nt3) Py (23

T2 20(y)
0s

~ [ 80 P (14,0 - Rly)dy

+ 2H(Ac(y))(T2,00(y) — 11 (y)) dy

811,20 (y)

2(1-H(Ao(y)(T1,80(y) — 2(y)) """

dy,

and M (s) is the preconditioning operation defined in a similar way as in [2I]

911,20 (y)

612,AU(Y)‘ +2(]_ ,H(Ao—(y)))[ﬂ és ‘) (24)

M(s) =1/(1+2H(Ao(y)) |~ "5
The iteration will diverge unless there is severely wrong depth initialization
due to a calibration error or completely wrong camera setting. However, our
approach promises sufficient initial results and gives a better estimation in the
next iterations because most depth estimation errors occur in textureless regions.
We model the mutual relationship between the blur kernels. In addition, our
approach includes sparse priors of both AIF image and its depth map, as well as
the numeric solution is robust to small errors. Therefore, the iterative refinement
goes in the right direction and converges to the right solution, if no severe depth
initialization error presents.
For clarity, we summarize the steps of the numerical solution as follows:
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Algorithm 1. Numerical solution for depth estimation

1: Initialize the depth map as a plane s° = Iffi::f);; and k = 1;
2: Repeat following updating rules

— Update auxiliary variable w from Eq. (@) w**! « argmin L (w, s, A¥);

. k+1 k| Osg.
— Update depth map s using Eq. 1)) s — 5"+ 0t
— Update Lagrange multiplier A according to \*™! < \¥ — g(w™ ! — Ds*F1);

3: Until converge or k attains the predefined maximum iteration number ky,qq-

5 Experiments

In this section, we verify the proposed algorithm on various synthetic and real
data and comparison with state-of-the-arts are also provided.

(a) (b) () @ ()

® ® () () ®

Fig.3. The performance on Ballet dataset. (a) and (f) Ground truth of AIF
image and depth map. (b) and (c) Synthetic defocused images. (d) and (i) AIF image
and depth by our iterative algorithm. (g) Depth estimated by initialization method
in Section 2. (h) Depth estimated by the algorithm proposed in [20]. (e) and (j) AIF
image and depth by the algorithm proposed in [18].

5.1 Synthetic Data

The experiments in this section show the performance of depth estimation and
ATF recovery on challenging synthetic data, and we also analyze the robustness
to camera settings using a series of experiments.

A. Depth and ATIF Estimation on Challenging Cases

One challenging example is the Ballet dataset published in [27], which provides
the AIF images and corresponding high quality depth maps computed by stereo
matching. We download the data from website and down sample them to resolu-
tion 512x384 pixels as the ground truth AIF image and depth, as shown in Fig-
uref(a) and (f) respectively. Empirically, we assume the depth varies from 2.00m
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to 5.00m, the focal length of the virtual camera is 50mm and the f# is 8, calibra-
tion parameter £ = 3e*, then two defocused images focusing at 2.00m and 5.00m
respectively can be synthesized using the convolution model in Eq. (), as shown in
FigureBl(b)(c). In this experiment, considering the computational complexity, the
maximum iteration number is set to 5. We implement our method with Matlab on
a PC with an Intel 3.0G Hz Core2Duo CPU, and compare our performance with a
state-of-the-art approach on the same hardware platform.

The results are as follows: it costs about 8 mins to obtain the initial depth
map using the depth estimation method in Section 2, as shown in FigureB(g); 12
mins is needed for the method proposed in [20], with the result shown in Figure
Bi(h); our iterative framework takes about 20 minutes to get the final ATF image
and depth map, which are shown in Figure B(d) and (i).

From the comparison one can see that, although the computational cost of our
framework is higher, the depth estimate result is apparently more accurate than
the initialization in Section 2 and state-of-the-art non-iterative method proposed
in [20], especially in erroneous textureless regions, such as the regions over the red
dashed line in figure[Bl The non-local mean regularization term introduced in [20]
assumes that pixels with similar colors are more likely to be in the same depth plane
and can preserve the thin structure slightly better than ours, as shown in the blue
marked region in FigureBl However, it also causes estimation errors in some regions,
e.g., the pink rectangle, where there exist abrupt color changes in the same depth
plane, while our approach can overcome this problem well.

We also compare our result with one of the previous work estimating scene
depth and ATF image simultaneously, and is with publicly available source codes.
Quantitatively, the PSNR of recovered AIF image by our algorithm is 39.8dB
while that of method proposed in [I8] is 36.7dB, and visually the results in Figure
Bi(e) and (j) give higher quality image and depth respectively, these both validate
the effectiveness of the proposed approach. The higher performance is mainly
due to the reason that, iterative optimization reduces the number of unknowns
compared to joint optimization, and by incorporating proper energy functions,
the optimization of each target bears some robustness to the errors of the other
one, so the iterative framework converges and outperforms the previous work in
challenging cases, especially textureless regions.

B. Analysis on Sensitivity to Camera Parameters

To demonstrate that our framework is more robust to camera parameter changes
than traditional non-iterative DFDs, we conduct three groups of experiments to
test the effects from three main factors in DFD: f/#, focal length and distance
between two focal planes, results are respectively shown in Figure @{a-c). For
a pure analysis of effects from parameters, all the scene depth ranges in this
subsection are set to be the same as that the Ballet data set, regardless of its
semantic meaning or its true physical depth. Specifically, we change one camera
parameter three times to test its effects on final performance while fixing the
other two ones, and comparison with state-of-the-arts are also performed.



Tterative Depth and Radiance Estimation from Defocused Images 105

Parameter 0:Ground truth Defocused Initial Depth by Depth by our
setting  O:AIF of 3" row images pair depth Favaro approach

focal pi 9
soom |, T

(b)

(©)

Fig. 4. Results at different parameter settings and performance compari-
son with a state-of-the-art algorithm[20]. (a) Result on BookArrival data set at
different f/#s. (b) Result on Barn data set at different focal lengths. (c) Results on
Bowling data set at different focal plane intervals.
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The first group of experiment is conducted on Bookarrival data
set  released by  HHI(http://research.microsoft.com/en-us/um/people/
sbkang/3dvideodownload/), we set the f/# of the camera to be 13, 8
and 5, and the results are shown in three rows of Figure H(a), from top
to down. The second and third groups of experiments are conducted
respectively on Barn and Bowling data set downloaded from Middle-
bury(http://vision.middlebury.edu/stereo/data/). The former experiment
changes focal length three times (39mm, 50mm and 65mm) and shows the
experiment in Figure @(b). The latter experiment sets the interval between
two focal planes differently (2m, 3m and 5m) and the results are shown in
Figure l(c).

Under each parameter setting, we can compute the depth of fields of two
defocused images according to projective geometry and CCD parameters. From
[1], we know that the stability of DFD is closely related with the sampling of the
axial position in DOF intervals. Generally, the robustness to perturbations is
optimal when the focal plane interval equals to the union DOF of two defocused
images and degenerates as their difference increases. From the experiment results
in Figure @ when the ratio between focal plane interval and the union depth of
field of two defocused images within the interval is increasing, such as decreasing
f/# (see Figure @(a)), increasing focal length (see Figure [@{(b)) or increasing

Defocused images pair Depth by [21]  Depth by [20] Ours depth and AIF Image

Fig.5. Results and performance comparison on real captured data. (a) Re-
sults on two publicly available data sets. (b) Results on two image pairs captured using
Canon EOS 5D.
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the interval between two focal planes (see Figure [{c)), the DFD algorithm is
becoming more and more unstable, and this trend validates the conclusions in [I].

However, the results of three groups of experiments consistently reveal that
the depth estimation performance by the proposed iterative framework is more
insensitive to camera settings, compared to the initial depth in this paper and
the algorithm proposed in [20], as shown in Figure [l

5.2 Performance on Real Captured Data

We also test our algorithm on real data that is publicly available in [I5] and [21]
with camera parameters known, as shown in Figure Bf(a).

From the two input images in the leftmost two columns, we display the
depth maps generated by two state-of-the-art approaches proposed by Favaro
et al.[20][21] (see 3rd and 4th column), in parallel with our results in 5th col-
umn. One can observe that the estimated depth results by [21] (3rd column) are
over-smooth, while the results by [20] (4th column) are sharp but suffer from
inaccurate edges. Our approach outputs depth maps of comparable sharpness to
the latter but recovers more accurate edge structure. We also label out several
regions with apparent improvements for better readability. The recovered AIF
image by our algorithm is also provided, as shown in the rightmost column.

The publicly available data sets are all with rich texture, we capture some real
data with more flat regions to test the algorithm performance further. Figure
El(b) displays the results and comparison, with the same sub-figure arrangements
as FigureBla). We obtain two defocused images respectively focusing at 1m and
1.5m using Canon EOS 5D, with focal length being 50mm and f/# being 5.6.
The captured images differentiate slightly in field of view and we adopt affine
transformation referred in [6] for registration. Note that due to the simplicity of
calibration method and the non-planar 3D surface of the scene, alignment is only
reasonable but imperfect. However, our algorithm is of sufficient robustness to
such slight misalignments and obtains promising results in both scenes, as shown
in Figure Bl(b). The comparison with state-of-the-arts gives similar conclusion
as on publicly available data: the proposed approach outperforms or performs
comparably with [2I] and [20] in both scene with abundant texture (Figure
Bi(b) first row) and textureless scene (Figure Bl(b) second row); the advantage is
especially apparent on simple scenes with large flat regions.

6 Conclusions and Future Work

In this paper, an iterative feedback DFD method is presented to obtain all-in-
focus image and more accurate depth simultaneously. The proposed method is
able to achieve highly accurate depth estimation, especially in challenging cases
and is more robust to the changes of camera parameters, at a slight expense
of higher computational complexity than traditional algorithms. The algorithm
can also be easily extended to multiple input images for further performance
improvement and traditional DFD algorithms can be integrated into the flexible
iterative framework.
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The future works mainly focus on designing flexible imaging systems to cap-
ture multiple-focus images in a single exposure and perform depth estimation or
refocusing on dynamic scenes.
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Abstract. Shape-from-Shading and photometric stereo are two funda-
mental problems in Computer Vision aimed at reconstructing surface
depth given either a single image taken under a known light source or
multiple images taken under different illuminations, respectively. Whereas
the former utilizes partial differential equation (PDE) techniques to solve
the image irradiance equation, the latter can be expressed as a linear sys-
tem of equations in surface derivatives when 3 or more images are given.
It therefore seems that current photometric stereo techniques do not
extract all possible depth information from each image by itself. This
paper utilizes PDE techniques for the solution of the combined Shape-
from-Shading and photometric stereo problem when only 2 images are
available. Extending our previous results on this problem, we consider the
more realistic perspective projection of surfaces during the photographic
process. Under these assumptions, there is a unique weak (Lipschitz con-
tinuous) solution to the problem at hand, solving the well known con-
vex/concave ambiguity of the Shape-from-Shading problem. We propose
two approximation schemes for the numerical solution of this problem,
an up-wind finite difference scheme and a Semi-Lagrangian scheme, and
analyze their properties. We show that both schemes converge linearly
and accurately reconstruct the original surfaces. In comparison with a
similar method for the orthographic 2-image photometric stereo, the pro-
posed perspective one outperforms the orthographic one. We also demon-
strate the method on real-life images. Our results thus show that using
methodologies common in the field of Shape-from-Shading it is possible
to recover more depth information for the photometric stereo problem
under the more realistic perspective projection assumption.

1 Introduction

Reconstruction of three dimensional surface shape is one of the most fundamen-
tal problems in Computer Vision. Two reconstruction approaches, both of which
first introduced in the 1970s, are Shape-from-Shading (SfS) [I] and photometric
stereo [23]. Shape-from-Shading is aimed at solving the image irradiance equa-
tion, which relates the reflectance map to image intensity. Photometric stereo is
a monocular 3D shape reconstruction method based on several images of a scene
taken from an identical viewpoint under different illumination conditions. The
most common approach in the field divides the task into two: recovery of surface
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gradients and integration of the resultant gradient field to determine the 3D
surface itself. The goal of the first part is to solve a system of image irradiance
equations. When given 3 or more images, this system becomes linear. As such,
the gradient field can be recovered analytically. For this reason, Shape-from-
Shading and photometric stereo have very diverse methodologies, even though
the latter is a generalization of the former.

A more recent development in the field of Shape-from-Shading is the transition
from the assumption of an orthographic projection of the photographed surface
Perspective Shape-from-Shading algorithms were shown to outperform state-of-
the-art orthographic techniques ([4]) and be applicable to real-life images ([7]).

Photometric stereo research has focused on reconstruction from three or more
images (see [1I] for a review). Conditions on the illumination and surface re-
flectance required to obtain uniqueness of solution for three light source photo-
metric stereo are described by Okatani and Deguchi [12]. Even when the light
source intensity and directions are unknown, Shashua [13] has shown that three
or more images provide enough information to determine the scaled surface nor-
mals of an object up to an unknown linear transformation, which allows the
reconstruction of the surface also under unknown lighting conditions (assuming
distant light sources) [14].

For this reason, only few studies investigated the problem of 2-image pho-
tometric stereo (for example, [I5/I6I17]). A comprehensive work on existence
and uniqueness in 2-image photometric stereo is that of Kozera [I8]. Mecca and
Falcone [16] extended some of the results of Kozera [18] and Onn and Bruck-
stein [I5], proving a uniqueness result for weak (Lipschitz continuous) solutions.
They also proposed two approximation schemes for the numerical solution of this
problem: an up-wind finite difference scheme and a Semi-Lagrangian scheme.

Tankus and Kiryati [I9] changed the common orthographic projection as-
sumption in photometric stereo to a perspective one (similar to Tankus et al. [4]
in Shape-from-Shading), and found an analytic linear solution for the gradient
field of a 3-image perspective photometric stereo problem. Yoon et al. [20] em-
ployed a variational framework in their perspective photometric stereo algorithm,
and demonstrated it using a large sets of input images (> 16).

Whereas 2-image orthographic photometric stereo has been investigated for
extracting more information from each equation using Shape-from-Shading tech-
niques, and 3-image perspective photometric stereo has an analytical solution for
the gradient field, no information is available on the 2-image photometric stereo
problem under the perspective projection model. The goal of this research is thus
to utilize numerical schemes commonly used in the Shape-from-Shading realm
also for 2-image photometric stereo under the perspective projection assump-
tion, thus extracting additional information from each given image. We prove
a uniqueness result for weak (Lipschitz continuous) solutions under the per-
spective projection model, and propose two numerical approxiamtion schemes:
an up-wind finite difference scheme and a Semi-Lagrangian scheme. This paper
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thus extends and combines three research directions, by Mecca and Falcone [16],
Tankus and Kiryati [I9], and Onn and Bruckstein [15].

The paper is organized as follows. Following the description of notations and
assumptions (Sect. [2)), we formulate the new differential model for the photomet-
ric stereo problem (Sect. [B]) and we then prove the uniqueness of weak solution
for the new differential model (Sect. H]). In Section [{ we suggest approximation
schemes for the perspective photometric stereo-Shape-from-Shading problem.
We demonstrate the performance of the suggested schemes by a comparison
with the orthographic schemes [16] (Section [B]). Concluding remarks appear in
Section [7l

2 Notations and Assumptions

Let us fix the main ingredients for the formulation of the model for the Perspec-
tive Shape from Shading (PSfS) presented in [21]:

— the light source is given by a unit vector w = (w1, ws,ws) (with wg < 0);

— the surface in the real world is given by the analytical function h(z,y) =
(x,y,2(z,y)) (where the point (x,y) is in the image domain 2 = 2 U 942,
on the optical plane);

— the associated perspective surface is given by the function k(1) =
(&,m,2(&,m)) (where the point (£,7) is in the perspective image domain
2" = QP U 9N, on the focal plane, parallel to the optical one at a focal
distance f);

— the transformation used to pass from one point in the optical plane (z,y) to
the respective one in the focal plane is £ = — 2(f’y) fin=—- 2(§,y) f- Then we

have: k(&,1) = (&1, 2(&,m) = (= ;L ) [ = sdyy [r (2. 9).

3 The New Photometric Stereo Differential Model

Now, considering the irradiance equation given by the inner product between
the light source w and the normal vector to the surface k(£,n) [21], we have the
following differential problem (non-linear PDE + Dirichlet boundary condition):

(e —2¢(fwr + §ws) — zy(fwz + nws) — 2ws _ 1. ). on 27
VPR 23) 4 (2 + €z + )2 (1)
z(&m) = g(&n) on 0§2P;

which has no unique solution even if the albedo p(£,7) is known.

Let us try to overpass the problem of uniqueness of solution considering the
Photometric Stereo (PS) approach using two light sources defined by the unit
vectors w’ = (w],wh,w}) and W’ = (WY, wf,wy) (with wh, W < 0).

Using the information obtained by both images we can couple the two equa-
tions related to the irradiance equation in (J) obtaining the following system of
non-linear PDE:
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R+ k) — 2 (fuh + k) — 2
P2+ 2) + (2 + € + 22
—ze(fwl +&wy) — 2y (fwy + nwg) — 2wy
P2+ ) + (24 e + 2 )?
z(&m) = g(&m) on H°.

Now, observing that the denominator of both equations is the same (i.e. it does
not depend on the light source) and obviously always different from zero, we can
explicit the non-linearity from the first equation for example

!
p(&,m 8 =1(&mn), on 0P

plE,m) — L), on ;2

IG5+ (4 g ez = ST EA) Z U ) et

11(577]) (3)
and replacing it in the other, we obtain the following linear problem
b(&,m)V2(&n) + s(&m)z(§,m) =0, on £27; @)
z(&,m) = g(&n) on H°.
Where:
b(&,n) = ((fwr + Ews) 2 (&,m) — (fwi + Ews)Ti(€,m), )
(fwy +nws)12(&,m) — (fwy +nw5)I1(€;n))
and

s(€,m) = wila(&,m) — wi 1 (&,n). (6)

It is clear that the albedo function disappears during the substitution of (3.
This means that our new formulation of the PSfS-PS does not depend on the
albedo, rather it is possible to compute it a posteriori.

4 Uniqueness of Weak Solution for the New Differential
Model

With the aim to prove the uniqueness of weak (Lipschitz) solution of the differ-
ential problem (@) we start with the following;:

Lemma 1. If there are not any points (§,n) € o of black shadows for the
image functions (i.e. I1(§,m) # 0 and I2(&,n) # 0), we have that |b(§,n)| # 0
(i.e. the vectorial function does not vanish in £2°).

If we consider as a solution surface 2(x,y) a Lipschitz one, and we con-
sider the points where it is not differentiable as the family of regular curves
(71(¢), ..., v%(t)) where ¢ is the argument of the parametric representation, it
is clear that this curve contains also the points of discontinuity of the image
functions I1(£,n) and I2(€,n). Now, since the functions b(¢,n) and s(&,n) de-
pend directly on I1(£,n) and I»(&,7n), the same family of curve represents the
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discontinuity also for these coefficients of the PDE in (). That is, if we consider
our differential problem like an inverse problem of PSfS with photometric stereo
technique, searching for a weak solution implies a study of the linear partial
differential equation with discontinuous coefficients. Moreover there is a relation
between the set of points of discontinuity of b(£,7n) and s(&,n) and the set of
points where the solution Z(z,y) is not differentiable. In fact they are linked
with a bijective correspondence due to the perspective. Another feature about
the discontinuity type of b(¢,n) and s(&,n) is always related to the fact that
we are considering an inverse problem where it is proposed to find a Lipschitz
solution. This means that it must be a jump discontinuity.

OF

" &
O j 2 Qf’ o
&) &) E
(1)

Fig. 1. All the possibles behaviors of the characteristic field close to the discontinuity
curve y(t). The only admissible cases (that permits to the information to travel along
the characteristic curves) are the first two from the left.

Theorem 2. Let v(t) be a curve of discontinuity for the function b(&,n) (and
f(&m)) and let p = (§,m) be a point of this curve. Let n(£,n) be the outgoing
normal with respect to the set Qf_, than we have

l lim (&, m) - n(¢, n)] l im (&) -n(&n)| =0 (7)
(&m—(&;n) (&m—(&;m)

(&m)ent (&men?

A schematic explanation of the behavior of the vector field b described by this
last theorem is represented in Fig. [l

Theorem 3. Let us consider the problem

{ b(&,n) - Vz(&,m) + s(&m)2(En) =0, a.e. (§,1m) € 2P; ®)
z(&n) = g(&,n) V() € O,

Let us suppose that (y1(t), ..., vk (t)), the family of discontinuity curves for b(&,n)
and s(&,m), are not characteristic curves (with respect to the previous problem,).
Then there exists a unique Lipschitz solution of the problem.

A sketch of the proof of the previous and main theorem can easily obtained look-
ing at Lemma [I] and Theorem [l They can be considered as the main ingredients
which permit to make travel the information stored on the boundary condition
g(&,m) across all the domain 2P. The trajectories followed are defined by the
vector field b(&, n) which has all the good properties to make Theorem [§ proved.
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5 Some Approximation Schemes for the Perspective
SfS-PS Linear Equation

For the numerical schemes we consider the domain 2” = [a?,b?] x [¢?, dP]. The
discretization space steps are A¢ = (b? — aP)/n and A, = (¢? — dP)/m where
n and m are the number of intervals divide the sides of the rectangular domain
(that is § = aP +iAg, nj = P + jA, with ¢ =0,...,nand j =0,...,m). We
will denote by QZ all the points of the lattice belonging to 2", by 27 all the
internal points and by 9424 all the boundary points.

5.1 Finite Difference

Forward Up-Wind Scheme. In order to introduce a finite difference numer-
ical scheme which does not need to consider a particular direction of the vector
field b in order to be well defined, let us consider the following implicit up-wind
scheme:

F F F F
pl Zivrg —Zita + b2 .Zi,j+1 —Zij-1 + s ZF _
Zv 24, v 24, "
F F F F
‘ 1 ‘|Zz+1j 2Z +Z —1,5 —‘r‘b Zi’j+172Zi,j+Zzg 1 (9)
J 2A§ 2A77
fori=1,...,n—1and j =1,...,m — 1. The artificial diffusion introduced in

the right side of (@) allows to follow the vector field b considering the most ap-
propriate discretization for the fist derivative in order to follow the characteristic
lines ([22123]).

The computation of ZF' consists of solve a global linear system where all the
internal point of the grid are included. This means that the dimension of the
system is [(n — 1)(m — 1)] x [(n — 1)(m — 1)]. In order make understandable how
we compute the matrix, we rewrite the (@) as follow:

ZF = bl _ e (b1 Tz (P Jr|2,J|Jr N
L 2A5 ELI 24 A§ A, o

2 2 2
P A Rl A W L L B W
s o4, e\ aa, )T

This numerical scheme works forward with respect to the characteristics direc-
tion. This means that the information propagates starting from the inflow side
of the boundary. In the numerical test are presented also results about the back-
ward up-wind scheme.

(10)

5.2 Semi-lagrangian Discretization

A second numerical approach that permits to the solve equation (8) miming
the propagation of the information along the characteristics is the following
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semi-Lagrangian scheme. We pass then to consider the following equivalent equa-
tion obtained dividing the two sides of () by the norm of b(§,n):

5(&m)

Vo2& F pe )

z(&mn) =0, V(mn) e’ (11)

. b ’
with «(§,n) = \bg,zgl‘

We observe that the division by |b(&,7)| doesn’t involve any kind of difficul-
ties for the numerical scheme (Lemma [Il). Now, considering the definition of
directional derivative, we can write:

z(§+ha1(§v77)vn+ha2(fa7]))_2(5777) + 5(5777)

~ \ P

(12)
Considering a uniform discretization QZ as in the previous section, we can finally
write the semi-Lagrangian schemes:

|bi ;]

‘ | hs
1,7 1,]

21 = 2" (& + haa (§i,m5), my + haa (&, n;))

where 2"(&;,n;) = z}'; and 2"tH(&;,n;) = zZ”]H defined only on the grid nodes.
In order to include the boundary condition on the scheme we assign an initial
function 2, such that z%(&,n;) = g(&,ny) V(&,n;) € 002,

This numerical scheme works backward with respect to the direction of the
characteristics. This means that it will need of the boundary data on the outflow
part of 0f2. Also for this semi-Lagrangian scheme the forward version has been

developed and the results are presented in the next section.

6 Numerical Tests

This section describes the experiments conducted with the proposed numerical
schemes: the Semi-Lagrangian and the up-wind finite difference scheme, each in
its forward and backward formulation.

For the numerical tests we utilized three surfaces (see Fig. [2]), each with a
different geometrical and analytical characteristics.

For each of these surfaces, we computed its perspective image under two
light source directions according to the procedure described by Tankus et al. [4]
(Fig. B). We used a constant focal length f = 1 for all images. In all numerical
tests, the albedo was set to p = 1 in all image domains except for the dark stripe
in each of the images (see Fig. Bl), where it was set to p = 0.5. We repeated the
experiements with images of several sizes: 100 x 100, 200 x 200, 400 x 400, and
800 x 800 pixels.

Reconstruction by the suggested perspective Semi-Lagrangian and up-wind
schemes is highly accurate, as demonstrated in Fig. Bl

We compared the suggested numerical methods for solving the perspective
photometric stereo problem with the ones suggested by Mecca and Falcone [16]
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for solving the equivalent orthographic photometric stereo problem. Whereas
the orthographic methods converge and yield an accurate reconstruction of the
aforementioned surfaces when images were generated by orthographic projec-
tion [I6], the accuracy is compromised when required to reconstruct images gen-
erated by a more realistic photographic process: perspective projection (Fig. ).
The suggested perspective methods, on the other hand, faithfully reconstructed
all surfaces, despite the irregularities (Fig. [Bl).

Three error measures comparing the reconstructed and true surfaces are pro-
vided for each scheme: the L°° norm in the perspective coordinate system
(&,m,2(&,7m)), root mean square error (RMSE) in the perspective coordinate
system (£,7,2(£,n)), and RMSE in real-world coordinate system (z,y, 2(x,y))
(perspective: tables [l and 2} orthographic: table B). The L* norm allows us
to examine the convergence rate of the numerical schemes, showing that both
perspective schemes converges linearly (i.e., with order 1), because doubling the
number of grid nodes halves the error. The orthographic method did not con-
verge on the surfaces examined. The RMSE measure, on the other hand, has the
same units as surface depth, and therefore quantifies the mean error with respect
to the original surface. This measure can be easily compared to the aforemen-
tioned ranges of Z(x,y) values. The RMSE of the perspective reconstruction is
an order of magnitude smaller than that of the orthographic reconstruction (cf.
Tables [l and 2] with Table B]).

éreg(x,y) 2irreg(l’ay) 2”?(3:7:(})

Fig. 2. Set of surfaces used for the numerical tests, each with different geometrical and
analytical characteristics

In addition, we ran the algorithms on real-life images. Two pictures of
Beethoven’s bust were inputs to the backward and forward semi-Lagrangian
schemes (Fig. [)). The backward reconstruction (Fig. [Bk) emphasizes the recon-
structed lips, right eye, hair and scarf, whereas the forward one (Fig. Bd), the
three dimensional reconstructed nose with two distinguishable nostrils, left eye
and shirt. Some inaccurate folds in the reconstructions seem to result from inac-
curate boundary conditions and inaccurate measurement of camera parameters
(focal length), leading to some accumulation of error.
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Zreg(,y) Zirreg(T,Y) Ziip(,y)

Fig. 3. Perspective images of the respective surfaces of Fig. Bl used as inputs to
the algorithms. The light source directions, expressed in spherical coordinates w =
(sin(¢) cos(0), sin(y) sin(0), cos(p)), are ¢1 = 0.1+, 61 = 0.0 for I (in the first row)

and @2 = 0.1+, 62 = °7 for I> (in the second row). The albedo on the dark stripe of

each image is p = 0.5; otherwise, p = 1.

éreg Zirreg Zlip

Fig. 4. Reconstruction by the orthographic backward semi-Lagrangian scheme pre-
sented in [I6/17] using the input images of Fig. 3] (for original surfaces see Fig.[2]). The
reconstruction is inaccurate. We present the backward semi-Lagrangian reconstruction
as it produced the best result among orthographic methods.

Zreg Zirreg Zlip

Fig. 5. Reconstruction by the proposed perspective backward semi-Lagrangian scheme,
using the input images of Fig. Bl The surfaces are flipped compared to the original ones
(Fig. @) because of the perspective projection. The original surfaces were faithfully
recovered.
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Table 1. Convergence and accuracy of the forward numerical schemes for each surface
of Fig. 2 For each surface we examined images of size A x A pixels, and computed
three error measures: the L° norm in the perspective coordinate system, RMSE in
the perspective system, and RMSE in real-world coordinate system. The L°° norm
shows convergence is linear (i.e., order 1). The RMSE measures quantify the accurate
reconstruction with respect to the original surface.

semi-lag Forward up-wind Forward

A L MSE-persp MSE-real L>® MSE-persp MSE-real

o 100 7.582 x 101 0.079965  0.08006 6.780 x 10~ 0.073121  0.073157
¢ 200 3.543 x 101 0.048369  0.04849 3.245 x 10! 0.046625  0.046775
@ 400 1.733 x 10—1  0.027498  0.027577 1.631 x 10—! 0.02839  0.028495
800 8.567 x 1072 0.014932  0.014977 8.121 x 10~2 0.016325 0.016389

& 100 6.726 x 10~1  0.11174 0.10957 4.693 x 10~}  0.11507  0.11299
¢ 200 4.977 x 101 0.067081  0.068095 3.925 x 10—! 0.078578  0.080503
o 400 3.381 x 1071 0.037985  0.039874 2.664 x 10”1 0.051528  0.054701
800 2.174 x 101 0.020888  0.02254 1.590 x 10~ 0.035682  0.038287
100 1.136 x 10~ 0.0037728 0.003863 1.165 X 10—+ 0.0036506 0.0037189

£ 200 5.723 x 1072 0.001627 0.0016577 6.459 x 10~2 0.0016576 0.001682
@400 2.681 x 10~2 0.0010702 0.0011037 3.069 x 10~2 0.0010969 0.0011326
800 1.280 x 10~ 2 0.00048774 0.00049765 1.531 x 10~2 0.00050909 0.00051989

Table 2. Convergence and accuracy of the backward numerical schemes for each surface
of Fig. The table is organized similarly to Table [l The rate of convergence of
the backward algorithm is the same as of the forward schemes (order 1). Accurate
reconstruction is also achieved by the backward schemes.

semi-lag Backward up-wind Backward
A L MSE-persp MSE-real L MSE-persp MSE-real
. 100 7.582 X 10~1  0.024478 0.025474 2.399 X 10_1 0.0094924 0.011658
v 200 1.789 x 1071 0.013978 0.014514 9.918 X 10~ 2 0.0061304 0.007485
a 400 8.494 X 1072 0.007591 0.0078847 4.662 X 1072 0.003698 0.0045026
800 4.113 X 10_2 0.003997 0.0041618 2.279 X 10_2 0.0021912 0.0026803
o 100 2.929 x 10~ 1 0.040556 0.042861 1.673 x 10~ 1 0.029009 0.028976
if 200 2.952 x 1071 0.020974 0.023794 1.025 x 10~ 1 0.019232 0.019162
fN: 400 2.014 X 10~1 o0.012261 0.014336 8.878 X 10_2 0.015983 0.016061
800 1.697 x 10~ 1 0.0072217 0.0086446 8.930 x 10~2 0.014743 0.015029
100 1.136 x 10~ 1 0.014512 0.015132 1.655 X 102 0.014545 0.015172
:? 200 2.533 X 10_2 0.0069519 0.0072408 4.790 X 10_3 0.0069325 0.0072236
N 400 2.681 x 10~2 0.0035051 0.0036479 5.390 x 10~3  0.003477 0.0036198
800 4.600 x 1073 0.0017174 0.0017869 1.720 x 10~ 3 0.0017049 0.0017746

Table 3. Convergence and accuracy of the orthographic semi-Lagrangian scheme [16]
for each surface of Fig.[2l For each surface we examined images of size A x A pixels, and
computed three error measures: the L norm in the perspective coordinate system,
RMSE in the perspective system, and RMSE in real-world coordinate system. The L
norm shows the scheme does not converge. The RMSE is at least an order of magnitude
larger than with the proposed method (cf. Tables. [l and ).

Forward Backward
A > MSE-persp MSE-real L>® MSE-persp MSE-real
5 100 9.718 x 1071 0.13611  0.13944 1.014 0.13751  0.14127
¢ 200 9.712 x 10~} 0.13817  0.14188 1.032 0.14018 0.1441
@ 400 9.674 x 1071 0.13976  0.14366 1.037 0.14209  0.14618
800 9.660 x 10~1  0.14085  0.14485 1.038 0.14334  0.14757
% 100 9.759 x 101 0.192 0.18963 9.585 x 10~1  0.19158  0.19105
g 200 9.772 x 101 0.19725  0.19511 9.386 x 10~} 0.19695  0.19702
& 400 9.761 x 1071 0.20061  0.19862 9.230 x 1071 0.20038  0.20093
800 9.757 x 101 0.20283  0.20091 9.181 x 10~} 0.20267  0.20352
100 5.641 x 10~1  0.2042 0.2091 5.658 x 10~ 1 0.20459  0.20948
£ 200 5.703 x 1072 0.20555  0.21053 5.713 x 1072 0.20544  0.2104
W 400 5.758 x 1072 0.20626  0.21125 5.753 x 1072  0.20594  0.21091
800 5.787 x 1072 0.20661  0.21162 5.792 x 1072  0.20621  0.21119
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Fig. 6. Reconstruction of real-life images of the Beethoven bust (a, b) by the backward
(c) and forward (d) semi-Lagrangian schemes (frontal view of the rendered recon-
structed surfaces). Illumination directions: (a) ¢ = 15.1°,0 = 72.5°, (b) ¢ = 11.5°,0 =
184.9°. Focal length: f = 100.

7 Conclusions

This study utilized numerical schemes commonly used in the Shape-from-
Shading literature also for the 2-image photometric stereo problem under the
perspective projection assumption. We proved the uniqueness of the solution in
the class of Lipschitz continuous surfaces given Dirichlet boundary conditions.
We then extended the two numerical methods of Mecca and Falcone [16], the up-
wind finite difference scheme and the Semi-Lagrangian scheme, for the solution
of the 2-image perspective photometric stereo problem. We compared the sug-
gested method with that of Mecca and Falcone [I6] on synthetic examples, and
showed that the suggested perspective semi-Lagrangian and up-wind schemes
outperformed their method. As the method of Mecca and Falcone [I6/17] can
also reconstruct the albedo in a manner similar to the suggested perspective
one, the inaccurate orthographic reconstruction is not due to the non-constant
albedo, but rather a result of the more realistic set of assumptions of a perspec-
tive projection in the proposed algorithms. We also demonstrated the ability
of the our method to reconstruct real-life images. Our results thus demonstrate
that numerical methods of the type common in the Shape-from-Shading litera-
ture may provide additional information for solving a perspective photometric
stereo problem, as presented here for a 2-image input problem.
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Stable Two View Reconstruction Using
the Six-Point Algorithm
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Abstract. We propose a practical scheme for selecting a pair of images
which can be a good initial seed for incremental SfM to accomplish a
feasible reconstruction from input images with no external camera in-
formation such as EXIF. The key idea is the effective use of the 6-point
algorithm by detecting infeasible pairs of images due to the degener-
ate configurations as well as the other conditions. We deeply analyze all
the degenerate configurations of the 6-point algorithm and derive the
algorithms for detecting image pairs fallen into those degenerate con-
figurations. Further, we implement an efficient pipeline for selecting the
initial pair, which can be easily plugged into the standard incremental
SfM systems. Our experimental results on synthetic and real data show
that our algorithms successfully detect and reject the pairs of images
which are infeasible for 3D reconstruction. Further, we demonstrate 3D
reconstruction by plugging our infeasible pair detection algorithm into
the standard SfM pipeline.

1 Introduction

Incremental Structure-from-Motion (SfM) has achieved great successes for 3D
reconstruction from photo collections [23] as well as sequential images [2], even
for extremely large scale [II7]. The resulted camera poses and scene structures
(sparse 3D point clouds) are used for various applications, e.g. virtual naviga-
tion [I7], camera localization [I6J21], and dense reconstruction [S3].

Since typical incremental SfM computes camera motions and scene structures
by a seed-and-grow manner, it is critical to have an accurate and a stable ini-
tial seed reconstruction from a pair or a tuple of images. The initial seeds are
determined by evaluating several conditions obtained from the results of pair-
wise image matching. For example, the commonly used conditions are quality
of feature correspondences, i.e. number of matched features, and the geometric
relationship among cameras and scene structures [23/10]. In this paper, we focus
on the use of a pair of images as the initial seed of SfM in order to keep the
simplicity and generality of the pipeline in contrast to [12].

For the pair of images selected as the initial seed, two-view reconstruction can
be performed by using the 5-point algorithm [I8] combining with RANSAC [6]
(or its variants [4U19J20]). One of the advantages in this technique is that it has
higher probability to hit a hypothesis not contaminated by outliers, i.e. robust

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 122-[[35] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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against mismatches in feature correspondences, than the 7- or the 8-point algo-
rithm [I1] since it requires fewer samples for computing each hypothesis. Another
advantage is that the 5-point algorithm itself has only one degenerate configu-
ration of cameras, which is pure rotation, thanks to the minimal computation of
the essential matrix that encodes relative rotation and translation only. The nat-
ural drawback of the 5-point algorithm is to require camera intrinsic parameters
by some other methods.

For most of the recent cameras, it is possible to assume zero skew, a known
aspect ratio (set to 1), and a known optical center (center of an image) [25], in
contrast, a focal length widely changes on every image by zooming. In order to
obtain focal lengths, the popular SfM pipelines [22l28] use EXIF tags and camera
manufacture specifications or, if such external information is unavailable, simply
assume a certain preset such as a 60-degree field of view. With this approach,
if the focal lengths are estimated with large errors, the quality of initial 3D
reconstruction is very unpredictable: we cannot predict whether the errors might
be compensated in bundle adjustment or the reconstruction could end up in a
complete failure.

In this work, we choose the 6-point algorithm [24UT5] which can compute the
camera motion (fundamental matrix) and focal length from a six-tuple of cor-
respondences. This is a natural extension of the 5-point algorithm [I8] which
solves minimal problems based on Grobner basis [I8] or polynomial eigenvalue
problem [15]. Even though the 6-point algorithm can give the focal length esti-
mate with only one additional correspondence w.r.t. the 5-point case, it has not
been spotlighted since it requires careful treatments to degenerate configurations
of camera pairs and scenes. All of the image pair becomes degenerated in some
particular cases, i.e. a poster on single planar wall and nothing else is taken
(“planar scene”, described in Section 7)), turntable sequences taken under the
condition that the optical axis is intersected to the rotation axis of the turntable
(“equidistant intersecting optical axes”, Section 23]), video sequences acquired
by a vehicle-mounted camera running with no turn (“parallel axes”, Section 2.4)).
In those cases, stable reconstruction cannot be achieved by starting an initial
reconstruction using the focal length and the relative camera motion obtained by
the 6-point algorithm. Torii et. al. [27] tackled this problem by detecting pairs of
images acquired with degenerate configurations by adopting singular value ratio
test (Section 3).

In this paper, we propose a practical scheme for selecting a pair of images
which can be a good initial seed for incremental SfM to accomplish a feasible
reconstruction from input images with no external camera information. The key
idea is the effective use of the 6-point algorithm which gives camera motion
(fundamental matrix) and focal length by efficiently detecting infeasible pairs
of images due to the degenerate configurations (Section 2) as well as the other
conditions (Section 3). The main contribution w.r.t. the most related work [27] is
that we deeply analyze all the degenerate configurations of the 6-point algorithm,
of which two are not considered in [27], and derive the algorithms for detecting
image pairs fallen into those degenerate configurations. Further, we implement
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an efficient pipeline for selecting the initial pair, which can be easily plugged
into the standard incremental SfM systems.

Related Works: Although most of the related works are already described, we
summarize a few more strongly related works. Kanatani et.al. [13I14] presented
a method for computing focal lengths from a fundamental matrix computed
by the 7- or 8-point algorithm in a closed form [I3] and further extended its
stability including the detection of degeneracy conditions in their case [I4]. The
theory and algorithms presented in [I4] are concrete but unfortunately, it is hard
to assess practical performances in challenging dataset due to the experimental
validations with limited examples.

Gherardi and Fusiello [9] proposed a practical autocalibration approach which
repeats update of an initial guess of intrinsic parameters of an image pair by
searching an inherently bounded parameter space and by scoring likelihood of
the estimated intrinsic parameters using the other cameras. Due to its nature of
estimating all intrinsic parameters, the stable estimation can be achieved with
more than two cameras as they demonstrated in the experiments.

In this paper, we focus on the use of the 6-point algorithm for estimating
focal length from a pair of images according to its efficiency when bundled with
a RANSAC scheme and its simplicity to plug into incremental SfM pipelines.

2 Detection of Degenerated Image Pairs

In this chapter, we describe four types of degeneracy underlying the computation
of a relative camera motion and a focal length from an image pair using the 6-
point algorithm. One is due to the degenerate scene and the others are to the
degenerate camera configurations.

In most of practical situations, it is hard to classify whether the images are
degenerated by using the inlier ratio resulted from RANSAC. This is because
RANSAC returns the best hypothesis arbitrary fitting to an inlier set even for
degenerate configurations according to noisy measurements. Even worse, the
hypothesis with degeneracy often gives high inlier ratio. Therefore, we develop
the algorithms which are optimized for detecting degeneracy.

2.1 Planar Scene

The degenerated scene is “planar scene”; all feature points seen by two cameras
lie on a plane in a 3D space, i.e. coplanar. The 6-point algorithm can neither
obtain a valid fundamental matrix nor a focal length when the six-tuple corre-
sponding is coplanar. Planar scene is also degeneracy for the 7- and the 8-point
algorithms, so that the detection algorithm is well known [5]. We can detect
this degeneracy by explicitly computing a homography from the corresponding
feature points.

As the similar way proposed in DEGENSAC [5], the image pairs degenerated
by planar scene is quickly detected by verifying whether a six-tuple of points used
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for computing the fundamental matrix is related by a homography. In detail, we
compute a homography using a four-tuple out of the six and verify whether
the remaining two fit in the homography. Instead of testing this degeneracy for
samples on each RANSAC loop as [5], we test 15 homographies obtained from
the six-tuple resulted by RANSAC. The important idea in DEGENSAC [§] is to
find the stable hypothesis even from the scene dominated by a plane using the
plane-plus-parallax. In contrast, we simply reject such an image pair by assuming
we have sufficiently large dataset and better seeds exist for the following SfM.

Additionally, we check whether the scene is dominated by a single homography
by using the standard 4-point RANSAC for all of the input correspondences. If
the scene is actually planar, the number of inliers resulted by RANSAC on a
homography hypothesis increase. Therefore, we can detect the degeneracy by
comparing the number of inliers which support the fundamental matrix and the
homography. This is computationally costly but more robust to the noise than
checking six-tuple of correspondences only.

2.2 Pure Rotation

The most simple degenerate camera configuration is “pure rotation”; two cam-
eras are configured without translation. In this case, the 6-point algorithm fails to
estimate both the fundamental matrix and the focal length. This is also detected
by using the same algorithm based on homography as described in Section 211
Note that this is also degeneracy for the 5-point algorithm as well as the 7- and
the 8-point algorithms.

2.3 Equidistant Intersecting Optical Axes

The third degeneracy is that the optical axes of the two cameras intersect and
the two distances between the camera center and the intersection point are the
same. This configuration can be interpreted as cameras lie on a sphere and their
optical axes are oriented to the center of the sphere. This degeneracy often occurs
in practice, for instance, if images taken by a fixed camera while a target object
moved on a turntable and the optical axis intersected to the rotation axis of the
turntable, the configuration falls into this degeneracy.

Further, it is impossible to obtain the correct focal length but the estimated
fundamental matrix is still valid [24] Therefore, we can detect this configuration
by evaluating the projection of the optical axes. The detection is composed by
two steps of evaluating the necessary conditions: (i) detection of coplanar optical
axes; (ii) detection of isosceles triangle composed of the camera centers and the
intersection point.

Stepl: Detecting Coplanar Optical Axes. One of the necessary conditions
of this degeneracy is that the optical axes must lie on the same plane in 3D space.

! This degenerate configuration gives 3D scene reconstruction by arbitrary but com-
mon focal length due to the remaining projective ambiguity.
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Fig. 1. (a), (b): The optical axes are not coplanar or intersect at the difference distance
from the cameras. The 6-point algorithm can estimate the focal length. (c), (d): The
optical axes intersect at the same distance from the cameras or are parallel so that
focal length cannot be recovered.

We consider a pair of cameras; camera 1 and camera 2. On the image plane of
camera 2, we draw the epipolar line corresponding to the image center of camera
1. The epipolar line is represented as:

0
(l’y].)F 0 :F13.’I}—|—F23y—|—F33:0 (1)
1

This line passes through the image center only when the optical axes intersect
or parallel (Fig. [ (b), (c), (d)). It is possible to detect if the image pair has
intersectional or parallel optical axes by measuring the distance d between the
image center and the epipolar line corresponding to the image center of the

other,
| F33]

d—=
\/F%SJFFgS

The epipolar line on the other image is also verified. This detection is similar to
the detection described in [I4].

(2)

Step2: Detecting Isosceles Triangle. There is another necessary condition
for the degeneracy of equidistant intersecting optical axes (Fig. [0l (¢)). If the
optical axes intersect equidistantly, the triangle composed of the camera centers
and the intersection point is isosceles. This degeneracy could be detected by
evaluating whether the triangle is isosceles or not. However, of course, the angles
between the optical axes and the epipole cannot be computed in Euclidean space
because the correct focal lengths are not estimated from the 6-point algorithm
due to the degeneracy.

This degeneracy can be still detected by using the following geometrical rela-
tionships assuming an unknown but a common focal length. Let us consider the
two triangles A(Oq, Cy,e1) and A(Og, Csa,e2), where C; and Cy are the camera
centers, O; and O2 are the image centers, e; and es are the epipoles, respec-
tively. Note that the angles Z(Cq,01,e1) = £(Ca,O2,e2) = 7/2 because they
are the intersection of optical axes and the image planes. Further, the lengths
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0:C; and O5C;y are equal since we assumed a common focal length. Conse-
quently, if the lengths Oje; and Ogey are equal, the two triangles A(Oq,Cy,eq)
and A(Og, Cg, e2) are congruent, and the angles Z(01,Cy,e1) and Z(O3, Ca, e2)
are the same. Thus, the triangle A(P,Cq,Csq) is isosceles. Since the distances
Oje; and Oges can be computed on the image planes, it is possible to use these
distances for detecting equidistant intersecting optical axes.

2.4 Parallel Optical Axes

The last case is when two optical axes are parallel. Unfortunately, this config-
uration also occurs frequently since the camera motion under pure translation
plus rotation around the optical axis is included in this degeneracy.

As in the case of the intersectional and equidistant optical axes, focal length
cannot be recovered; on the other hand, the estimated fundamental matrix is
still valid. When the optical axes are parallel, they are coplanar and the corre-
sponding angles consisted by the two optical axes and the epipole are equivalent
(Fig. M (d)). Note that the parallel optical axes can be considered as intersecting
at the point at infinity. Therefore, we can detect them using the same algorithm
as detecting the intersectional and equidistant optical axes.

3 Detection of Invalid Essential Matrices

For the practical use of the 6-point algorithm with RANSAC, the degenerate
configurations of cameras and scenes are not the only reason for contaminating
the estimation of a relative camera motion and a focal length. The estimation
fails if the measurements of features are too noisy or if some pairs of images with
different focal lengths are included in the image set. Torii et al. [27] found that
the quality of the estimation of the algorithm is correlated with the ratio of the
two non-zero singular values of the essential matrix and thus the ratio can be a
criterion of evaluating the validity of estimation.

Singular Value Test (SVT). The two non-zero singular values of an essential
matrix is ideally equivalent. The 6-point algorithm uses this property as one of
the constraint for minimal solution, so that the ratio of two non-zero singular
values of essential matrix decomposed from the fundamental matrix Fg,: using
the focal length fs,: is always one. Here, if the estimation of a fundamental
matrix and a focal length is successful and the inlier set inlgy¢ supporting them
is geometrically correct, the fundamental matrix F'rs re-estimated from inlgpy
using least squares should be valid. Then, the essential matrix Ej g obtained by
factorizing the fundamental matrix F'1 g using fep+ should have the ratio of two
non-zero singular values s; and ss to be one. We use the singular value ratio
(SVR) 7 = s2/s1, where s1 > s9, of E g for classifying if the estimation is valid.
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Fig. 2. The SVR of essential matrix decomposed from valid fundamental matrix using
various focal lengths. The ground truth is fi1 = 100, fr2 = 50. (a) The camera configu-
ration is non-degenerate. SVR is high only when it is computed with the correct focal
lengths. (b) The optical axes intersect at the same distance from the cameras or are
parallel. SVR can be high when fi : f2 is equivalent to fi1 : fi2. The algorithm de-
scribed in Section 23] can detect this case. (¢) The optical axes intersect at the different
distances from the cameras. SVR can be high even though the focal length estimation
via the 6-point algorithm fails.

Limitation of the SVT. For the scene and the camera configuration with
non-degeneracy, SVR is close to one only if the fundamental matrix is factorized
using correct focal lengths (Fig. [ (a)). Therefore, SVT can detect the invalid
estimation of the 6-point algorithm due to the measurement noise or input of
image pairs with different focal lengths.

Meanwhile, SVT is confused by two conditions: (i) the optical axes of the
cameras are parallel or intersect equidistantly; (ii) the optical axes intersect at
the different distance from the cameras.

In the case of (i), note that this is degenerate condition described in Section 23]
and Section[24] SVR is high when f; : fs is correctly estimated as well as f; and
f2 respectively are (Fig. [2 (b)). When the genuine focal lengths are equivalent
each other, SVT cannot detect the failure of focal length estimation because the
solution of the 6-point algorithm always satisfies f1 : fo = fope : fopr(=1:1) and
the SVR is one. However, this case can be detected by checking the projections of
the optical axes as Section [Z3] because fundamental matrix is estimated correctly
when the images have a common focal length. Besides, if the focal lengths are
different, the solution is always to be fi : fo # fept : fopt, S0 the SVR decrease.

The problematic case is (ii): SVR is high with certain combination of the focal
lengths (Fig. @ (c)). This combination is associated by the focal lengths and
the distances to the intersection point. In this situation, we cannot evaluate the
validity of estimation using SVR. Moreover, the 6-pooint algorithm can estimate
neither the focal length nor the fundamental matrix from the image pair with
various focal lengths. We cannot detect this case by the detectors we described
above without the fundamental matrix and the reliability of SVT, so that we
need another algorithm to detect it.

In order to detect the case (ii), we re-estimate fundamental matrix via linear
8-point algorithm with RANSACing all the tentative matches. All the image
pairs which deteriorate the 8-point algorithm are detected by the detector with
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homography, so that the estimation will be successful. We can detect the case
by checking the co-planarity of the optical axes in Section using the correct
fundamental matrix computed by the 8-point algorithm.

4

The Pipelines of Initial Image Pair Selection

We consider two types of pipelines to select an initial seed for stable initial
reconstruction. The first pipeline assumes the input images have a fixed focal
length. The second one assumes more general situation, i.e. the input images
with various focal lengths. We combine all the detectors described above while
taking into account the efficiency.

4.1 A Fixed Focal Length

1.
2.

~

N> o

13.
14.
15.
16.

17.

18.
19.

Pick a pair of input images.

Estimate the focal length fs and the fundamental matrix Fg using the 6-
point algorithm with RANSAC and obtain the set of inliers inlg which sup-
port F.

. If the number of inliers inlg is less than a threshold (30 in the experiments)

the pair is rejected from initial pair candidate then go to stepl. This is the
detection of image pairs which have no or small common field of view.
Compute a homography Hg from the four-tuple out of the 6 points used for
computing Fg and fs.

If the six-tuple of points is coplanar, then go to stepl.

Re-estimate the fundamental matrix F'pg from inlg using the least squares.
Draw the epipolar line corresponding to the center of the other image.

If the distance is smaller than the threshold (5% of image width in the
experiments), they have coplanar optical axes, move to step9, otherwise move
to stepl.

. Calculate the distances between the image center and the epipole.
10.
11.
12.

If the distances are almost the same, reject the pair and go to stepl.
Compute SVR from the essential matrix E g obtained from F g and fs.
If the SVR is smaller than threshold (0.98 in the experiments) reject the pair
and move to stepl.

Decompose Eg into a rotation matrix and a translation vector using the
result of SVD.

Triangulate all the correspondents which support the estimation.

Compute the dominant apical angle [26] of the reconstruction points.

If the DAA is small (smaller than 0.1 deg), reject the pair and go to stepl.
This is because a point whose apical angle is extremely small tends to mag-
nify the noise.

Run four-point-sampling RANSAC and obtain the likely homography and
the inlier set inly which support them.

If the inly > inlg, reject the pair and move to stepl

If this is the last pair, quit the procedure; if not, move back to stepl
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When all the image pairs have been gone through this procedure, we can start
the initial reconstruction from one of the initial pair candidates. If there is no
pair available for stable reconstruction with the 6-point algorithm, our pipeline
successfully selects “none” as an initial seed and avoids performing meaningless
reconstruction.

4.2 Various Focal Lengths

When we include images taken with different focal lengths, we have to add a few
more steps to the algorithm in Section 4.1 since it is necessary to detect and to
reject the image pairs with different focal lengths.

As we described in Section 3, the image pair with coplanar optical axes must
be simply detected and rejected, thus the step8 on the pipeline is replaced with

8. If the distance is smaller than the threshold, reject the pair and go to stepl.

so the step9 and 10 in the pipeline in Section 1] are skipped.
Finally, we add the following steps,

19. Re-estimate the fundamental matrix F'rg via linear 8-point algorithm with
RANSACing all the tentative matches.

20. Re-execute the step7 and 8 using F'rs

21. Re-execute the stepll and 12 using F'rg

22. If this is the last pair, quit the procedure; if not, move back to stepl

Since the additional process using the 8-point algorithm with RANSAC is costly,
the pipelines are explicitly separated.

5 Experiments

5.1 Synthetic Data

We demonstrate the proposed degeneracy detection on synthetic data. First, we
consider the six different cases, as shown in Fig. Bl There are four degenerated
sets: (a) planar scene, (b) pure rotation, (c) isosceles axes, and (d) parallel optical
axes. The other case is (e) different fs and (f) non-degenerated which is designed
absolutely not to degenerate.

The image size is 2288 x 1520 and Gaussian noise (o = 3) is added on the
images. We reconstructed the scene with the 6-point algorithm and analyzed the
“error”. Here, an “error” is defined for each image pair as the average distance
between the reconstructed point and the ground truth. The distance is normal-
ized by the distance from the camera. For (a)-(e), we applied a detector which
is related to the degeneracy or infeasible condition. For (f), we applied all the
detectors to the non-degenerated dataset. Figure. [l shows that the reconstruc-
tion from all the dataset but the non-degenerated one is unreliable. However, all
the degenerated pairs and most of the different focal lengths pairs are detected.
There are few false positives in well-reconstructed dataset, the non-degenerated
one.
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Fig. 3. The histograms of the average error of the 3D reconstruction using the focal
length estimated with the 6-point algorithm. The error is defined as the distance from
the reconstructed point to the original position divided by the distance from the camera
as normalization. (a) — (e) Each graph represents the 100 image pairs satisfies different
kinds of infeasible condition. (Red) all the image pairs. (Blue) image pairs detected as
infeasible for reconstruction. (f) 400 non-degenerate pairs. (Red) all the image pairs.
(Blue) the image pairs failed at least one examination.

5.2 Real Data

Next, we evaluate the performance of the proposed pipeline on the real pho-
tographs. We make two real image datasets. “Campus” dataset is composed of
200 pictures of a campus building with a fixed focal length, which gives 19900
image pairs. “Trevi” dataset is composed of 46 images available on Flickr, which
gives 1035 pairs. We reject all the image pairs which deteriorating 3D recon-
struction as we described in Section @l

The histograms in Fig. @ (a), (b) show the results of focal length estima-
tion. We define the error as the difference between the estimated focal lengths
and the ones obtained from the EXIF tag (by regarding as the ground truth)
normalized by the ground truth. The errors of estimation from the image pairs
without common field of view are meaningless so that they, few matching pairs,
are rejected from the evaluation. Note that the gray histogram is made up with
the image pairs which are NOT detected. There are a large number of image
pairs that cannot provide the accurate focal lengths with the 6-point algorithm.
Specifically, the focal length estimation from Trevi dataset is very difficult be-
cause most of them are compound different focal lengths pair. We can see that
most of the image pairs which provide large error are detected. Although there
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are some false positives remained, the initial seed selection is not contaminated
combining with the scoring process after the removal of most of the infeasible
image pairs.

We score the image pairs by

H
s _17|m |
m|
S1+s2+s3+s 52:‘m|
1+ 82+ 83+ 54
s= A , where 500175VR (3)
83:17
—0.98
s ~ CH(Cy) + CH(Cy)
* A+ A

First three terms are described on [27]. |m| represents the number of the in-
lier supporting the fundamental matrix. |[m!| denotes the number of the inlier
supporting the homography obtained via RANSAC. SV R of the s3 denotes the
singular value ratio of the obtained essential matrix. s4 refer a part of the score
described in [I0]. CH(:) is the area of the convex hull of a set of points and
C. represents the point that corresponding is confirmed. A. is the area of the
image. Then we make Bundler [22] start initial reconstruction from the pair
with best score using the focal length estimated with the 6-point algorithm. We
qualitatively compare the result with the reconstruction by Bundler with and
without EXIF tag. The reconstructed point clouds are shown in Fig. Bl and the
numerical data are on Table[Il Without EXIF, bundler obtains the focal lengths
of the initial pair supposing the angle of view but sometimes, like these cases,
it does not work well. The reconstruction of campus without EXIF (Fig. [l (¢))
is damaged. On the other hand, the result of Trevi without EXIF (Fig. [l (d))
still keeps a shape of facade but it is skewed and the number of reconstructed
points are much less than the other two (Figs. [ (f), (h)). Using the 6-point
algorithm with our proposed criteria, 3D reconstruction succeeds without any
external information and the output is promising.

1500 150
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0 0

o

100 0

100

0

100

50 50 50
1‘6 Error (%) fept Error (%) f6pt Error (%)
(a) (b) ()

Fig.4. The histogram of the error of focal length estimation which are composed
of the results from (Red) image pairs whose enough numbers of matches are counted.
(Gray) image pairs that pass all the examinations. (a) Campus; fixed focal length. (b)
Trevi; images from Flickr. (c) is a close-up of (b) at lower frequency.



Stable Two View Reconstruction Using the Six-Point Algorithm 133

Table 1. The number of cameras whose pose is estimated, reconstructed points, and
the comparison of (estimated) focal lengths of initial pair and that on the EXIF as
ground truth

Campus Initial f Trevi Initial fs
Cameras Points (f on EXIF) Cameras Points (fs on EXIF)

Bundler 532 (1591)
(without EXIF) 200 31,217 532 (1026) 22 3,077 532 (1818)
Bundler 1591 (1591)
(with EXTF) 200 66,281 1026 (1026) 24 6,149 1818 (1818)
Proposed + Bundler 2013 (1652)
(without EXIF) 200 66,577 1039 (1026) 24 6,227 2013 (1624)

-

(B) (©) (D)

(b) (c) (d)

Fig.5. (A): The picture of the campus building. (a): The picture of Trevi Fountain
downloaded from Flickr. (B),(b): Reconstruction by Bundler without EXIF. (C),(c):
Reconstruction by Bundler using EXIF. (D),(d): Reconstruction by Bundler without
EXIF starting from the image pair and using the focal length which are obtained by
our proposal.
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6 Conclusions

We list up all the conditions deteriorating the 6-point algorithm and proposed
the criteria for detecting the entire image pairs infeasible for it; especially, in
the focal length estimation, the intersection of optical axes is very critical so
we showed how to detect the intersection. We showed the performance of our
tests and that we can start initial reconstruction stably without any ancillary
information or invalid assumptions on angle of view.
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entific Research (21240015) from the Japan Society for the Promotion of Science.
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Abstract. The radial undistortion model proposed by Fitzgibbon and
the radial fundamental matrix were early steps to extend classical epipo-
lar geometry to distorted cameras. Later minimal solvers have been pro-
posed to find relative pose and radial distortion, given point correspon-
dences between images. However, a big drawback of all these approaches
is that they require the distortion center to be exactly known. In this
paper we show how the distortion center can be absorbed into a new
radial fundamental matrix. This new formulation is much more practical
in reality as it allows also digital zoom, cropped images and camera-lens
systems where the distortion center does not exactly coincide with the
image center. In particular we start from the setting where only one of
the two images contains radial distortion, analyze the structure of the
particular radial fundamental matrix and show that the technique also
generalizes to other linear multi-view relationships like trifocal tensor
and homography. For the new radial fundamental matrix we propose
different estimation algorithms from 9,10 and 11 points. We show how
to extract the epipoles and prove the practical applicability on several
epipolar geometry image pairs with strong distortion that - to the best
of our knowledge - no other existing algorithm can handle properly.

1 Introduction

When trying to relate images, the robust estimation of the fundamental matrix
based on local feature correspondences is a very powerful approach. Stochastic
estimation algorithms such as RANSAC can find the correct two-view relation
with high probability and at the same time distinguish inliers and outliers to
the model (i.e. mismatches). However, this approach relies on the appropriate-
ness of the model, i.e. it assumes that the images strictly obey to the pinhole
camera model. In practice however, images can contain significant distortion
induced by the lens (system) of a real camera. Consequently, in the literature
several camera models and techniques have been proposed to model such distor-
tion [AITTTTITRISITONS]. However, for automatic registration of images obtained
from internet sources or archives, an offline camera calibration phase is not fea-
sible. In such cases lens distortion has to be considered directly in the multi-view

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 136-[[Z9] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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geometry estimation stage. This was the idea of the undistortion model proposed
by Fitzgibbon [7] that has been extended to the radial fundamental matrix by
Barreto and Daniilidis [I]. The assumption is that undistortion can be modeled
in a radial fashion with respect to a distortion center. The main drawback in
both formulations is that the distortion center must be known in advance, which
we argue is not practical when images stem from sources like archives or internet
photo collections. Using a wrong distortion center renders the whole concept of
radial distortion meaningless, although assuming the distortion center to be at
the center of the image can sometimes still be a valid approximation. However,
in the case of cropped images or images taken with digital zoom no heuristics
exist where to place the distortion center. Consequently, in this contribution we
generalize the radial fundamental matrix (and all other multilinear multiple view
relations) to unknown distortion centers. This is very analogue to the ideal pin-
hole case where the essential matrix was generalized to the fundamental matrix
[6] that could then account for any principal point. Also in the case of the radial
fundamental the dimensions of the matrix do not change once the distortion
center is considered and linear algorithms require the same number of points for
estimating it.

For clarity of presentation we start from the setting where only one of the
two images contains radial distortion and analyze the structure of the particular
radial fundamental matrix. It will turn out that a change of distortion center acts
linearly on the lifted point representation, allowing to do the same generalization
for other multi-view geometry relations like homograpy, trifocal tensor and so
forth. We then continue to derive different estimation algorithms for our radial
fundamental matrix from 9,10 and 11 points that exploit the specific algebraic
structure and show how to extract the epipoles. Finally, we prove the practical
applicability of the new theory on several epipolar geometry image pairs with
strong distortion that - to the best of our knowledge - no other existing algorithm
can handle properly.

2 Previous Work

For ideal pinhole cameras the essential matrix has been introduced by Longuet-
Higgins [15] and it allowed efficient computation of the relative pose between two
views. However, pre-calibration of these views was mandatory and prevented us-
ing this technique for images with unknown calibration parameters since one
had to know e.g. focal length and principal point of both cameras. Much later,
the introduction of the fundamental matrix [6/16] removed this restriction and
allowed to work with unknown images, zoom cameras and led to a whole theory
of auto-calibration from images and projective reconstruction (cf. to [I1]). Prac-
tically, already the original 8-point algorithm from [I5] could have been applied
to the uncalibrated setting, but due to notation and for historic reasons this was
not clear before the proposal of the fundamental matrix. Nowadays, the core of
Longuet-Higgins algorithm is known as the 8- point algorithm for fundamental
matrix estimation [IT].
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The fundamental matrix applies to ideal pinhole cameras, but real cameras
have lenses that sometimes result in distortion of the image and, due to the
shape of the lens, this distortion is typically radially-symmetric with respect
to a distortion center. Many formulations exist to cope with this problem (e.g.
[AT7TI8BIT0). According to one of the classical distortion models [4] the de-
formation of an undistorted point into a distorted point (as caused by the lens)
is represented by a polynomial equation, but due to the nature of the distortion
function it was not easily possible to estimate the inverse of the distortion di-
rectly from point correspondences. Fitzgibbon[7] has suggested to directly model
the undistortion of a point rather than the distortion and argued that earlier
distortion models were as good or bad empiric approximations to the true lens
behaviour as an undistortion model might be. Having an undistortion model has
the advantage that one can directly work with distorted coordinates, which is
what is measured in an image.

However, similarly as in the derivation of the essential matrix of Longuet-
Higgins, now Fitzgibbon assumed that the distortion center is known beforehand.
Later, his model was reformulated into the radial fundamental matrix by Barreto
and Daniilidis[I]. They proposed a linear 15 point method to estimate the matrix
and recently it has been shown by Kukelova et al. [13] that this view relation
can be estimated actually from only 9 correspondences in a minimal solver. All
of the above mentioned papers kept the strong requirement that the distortion
center needs to be known in advance, which practically prevented the use of
these techniques for unknown, cropped images or in the case of (digital) zoom.
Li et al. [I4] addressed the unknown distortion center problem, but they need
a calibration grid or a very high number of noise-free point correspondences,
among other restrictions.

In this paper we will show that the position of the distortion center can be
absorbed into the radial fundamental matrix in very much the same way as the
principal point is absorbed into the fundamental matrix.

3 The Lifting-Trick for Radial Distortion

3.1 Second-Order Radial Distortion Models

The traditionally used second-order distortion model in computer vision with
unknown center of distortion (d;,d,)” € R? describes the radial distortion as

Tq Ty ~2 L dac
= + A7 — 1
(o) = Co) = (G)- () 2
where (z4,y4)7 € R? and (7,,y,)7 € R? are the distorted and the undis-
torted point, respectively, whereas A € R is the distortion coefficient and 72 =
H(xu,yu)T — (dg, dy)TH2 is the squared Euclidean distance between the center

of distortion and the undistorted point. Eq. [l is a distortion model since it ac-
tually describes the distorted point in explicit form: given the undistorted point
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(Ty,yu)? and the distortion parameters A and (d,,d,)”, the distorted point can
be computed easily by evaluating the right-hand side of Eq. [l

Fitzgibbon [7] has proposed a slightly different model, which he showed to be
equivalently powerful as the model above, i.e. it provides the same approxima-
tion accuracy to the underlying true distortion. However, his model enjoys an
interesting property. Specifically, this radial distortion model can conveniently
be expressed with homogeneous coordinates

e Zd
Pu=|Yu | = Yd y (2)
1 1+ M2

with 72 = 2% + y2 and where 2 denotes equality up to a scalar multiple. In
this paper, we extend his formulation to the case where not only the distortion
coefficient A is unknown, but the center of radial distortion (d,,d,)” as well. In
this case, his model can be extended by starting with

Zq Loy 2 Ty dy

(o) = Go) o (G) - () g
where 7% = ||(za,ya)” — (da, dy)THQ. The only distinction to the model in Eq.[Il
is that the distance is now measured between the distorted point and the center
of radial distortion. In contrast to the distortion model in Eq. [lhowever, Fitzgib-
bon’s model actually is an undistortion model: the right-hand side of Eq. [ is
linear in the undistorted point (z,,%,)? and hence one can compute an explicit
form for this undistorted point given the distorted point (x4, yq) and the distor-
tion parameters A and (d, dy)T. In the following section, we are going to show

how this more complex formulation can be conveniently handled with a lifting
trick.

3.2 Lifting to 4D Space

Lifting is a process in polynomial algebra which embeds a problem with non-
linear polynomial terms in a higher dimensional linear space. In our case, radi-
ally distorted points in the projective 2-plane P? will be mapped to points in
projective 3-space P3. A distorted point with homogeneous coordinates p; =
(%d,yd, 2a)T € P? will be mapped to the point (zqzq,Yazd4, 25, 23 + y3)T € P3.
Hence, the projective 2-plane P? is mapped to a quadric surface in P3 de-
fined through {(z,y, 2z, w) € P?lzw — 2 — y? = O. Interestingly and most im-
portantly, the lifted distorted points can be mapped to the undistorted points
by a fixed linear transformation, as we will derive shortly. Note that the same
lifting scheme has been proposed by Barreto and Daniilidis [I] (see Eq. 7 in their
paper). Their derivation is however closely linked to the fundamental matrix, but
we would like to highlight that this lifting trick can be applied independently

! Points of the form (z4z4,yazd, 24, ¢2 +y3)T fulfill this equation zw — 2% — 4> = 0 as
can easily be verified by setting @ = xazd, ¥ = Yaza, 2 = 23, w = 25 + y3.
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of the type of multiple view constraint, i.e. it applies to homographies, trifocal
tensors, etc as well. Furthermore, Barreto and Daniilidis assumed a known cen-
ter of radial distortion. In the following, we show in detail how the same lifting
scheme can be generalized to the case of unknown distortion center, resulting in
a different linear transformation matrix than the one derived in [I], though.
Let us now present this lifting trick in detail, starting from the distortion
model in Eq. Bl Simple algebraic manipulation of Eq. Bl leads to

(”;Z) + A2 (jz) = (14 x?) (zz) ,

)T

(4)

which shows that the undistorted point (z,,,)7 is a scalar multiple of (x4, ya)* +
N2 (d,, dy)T. The scalar factor can be absorbed with a homogeneous represen-
tation

Ty g+ Ar2d, 1 d; Tqg — dg
Pu=|Yu | =|vat )\TQdy = 1 dy Yd — dy (5)
1 14 A\ 1 1+ M2

For additional generality and in order to stay closer to [I], let us represent the
distorted point pg = (74,94, 24) € P? as an element of projective 2-space. The
previous equation Eq. Bl then becomes

1 d; xdzgl —d;
P | 1dy| | yazyt—dy |, (6)
1 14+ Ar?

with 2 = (xdzgl — dgc)2 + (ydzgl — dy)z. Some further algebraic manipulations
allow us to expose all the components due to the distorted point on the right
hand side

M1 d, xdz;i —dy
P | 1d, Yiza = dy , (7)
i 1 14+ A ((xdzgl — dm) + (ydzgl — dy) )
-1
_ —d,
1 dy M, TR
= | 1d, \d, aza T (8)
1 A _ 2 _ 2
- (wazg" —de)” + (yazg ' —dy)
~ | 1d,d, ’ L ()
11 1 1 25
- A | —2d, —2d, d2 + d; 1| \z2+ 93
- 4

~
—LeR3x4

where in Eq. ]l the lifting trick has been used and Eq. @lis equal to Eq. Blup to a
scale factor of zﬁ which does not matter since p, € P2 is an element of projective
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2-space@. This derivation provides an important insight and leads to one of the
main contributions of this paper. Eq. [ shows that the undistorted homogeneous
coordinates p, can be expressed by a 3 x 4 linear transformation L applied from
the left to the lifted data vector (xdzd, Ydzd, 23,15 + y?l)T € P%. This linear alge-
braic representation has far reaching consequences. All multiple-view geometry
entities, such as homographies or fundamental matrices, act on homogeneous co-
ordinates of undistorted points. Unfortunately, if the input images are radially
distorted, these entities are no longer applicable. However, these entities can be
lifted to a higher dimensional space by multiplying them (either from the left
and/or the right) with the 3-by-4 matrix L thereby acting on radially distorted
lifted coordinates. The matrix L is a function of the radial distortion parameters
and therefore also unknown. However, given sufficiently many distorted image
observations, the lifted multiple view entities can be estimated nonetheless. This
will be demonstrated in the following sections with the fundamental matrix.

4 Single-Sided Radial Fundamental Matrix

The fundamental matrix captures the projective relation between two camera
views [I1]. Given a homogeneous point correspondence p,, and g, between two
images of the same 3D point, the fundamental matrix relates these points by the
constraint ¢! Fp, = 0. The fundamental matrix actually maps a point in one
image to an epipolar line in the other image. Since neither ¢, nor p, can be the
zero vector, F' has a non-trivial left and right nullspace. These nullspaces actually
correspond to the two epipoles. The next section shows how the fundamental
matrix can be extended to handle a radially distorted point measurement pg
instead of an undistorted measurement p,,.

4.1 Derivation of the Single-Sided Radial Fundamental Matrix

Let us now assume that one of the two images is radially distorted, say the one
where feature point p, has been observed. This means that only the radially
distorted point (z4,y4)” is known. Thanks to the derivation in Sec. B2, we
know how to handle this situation. A simple right-multiplication by L lifts the
fundamental matrix (on one side) to a 4D projective space which allows to use
the radially distorted measurements

TdZd TdZd
V4 ~ V4
0=qFp,=qiFL| 50 | =q[F | P50 |, (10)
2 d 2 2 d 2
Tq+Yg Tq+Yg

where the single-sided radial fundamental matriz F = FL € R¥* has been in-
troduced. The decomposition L = [I | 0]+ A (dy, dy, nt (—2dy, —2d,,d2 + di, 1)

2 Of course in practice, the measurement will be normalized such that z4 = 1 and the
formulas simplify slightly. Nevertheless, the more general representation is easier to
interpret in terms of mappings between projective spaces.
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leads to another interesting representation of the single-sided radial fundamental
matrix

d
F=FL=|[F|0]+FX|dy | (-2d, —2d,d2+d>1)]. (11)
1

4.2 Properties of the Single-Sided Radial Fundamental Matrix

Since the single-sided radial fundamental matrix F=FLis given as the product
between the ordinary rank-2 fundamental matrix F' and the matrix L, its rank
equals 2. As a 3 X 4 matrix of rank 2, the single-sided radial fundamental matrix
has 3-242-4—-2-2—1 =9 degrees of freedom (minus one due to the scale
ambiguity)ﬁ.

Unfortunately, the number of parameters we are looking for equals 7 for the
standard fundamental matrix plus 3 for the radial distortion parameters. Hence,
there are 10 parameters but only 9 degrees of freedom in the single-sided ra-
dial fundamental matrix. This implies that there is a one-parametric family of
perfectly valid solutions. Hence, given a single-sided radial fundamental matrix,
it is not possible to uniquely extract the underlying fundamental matrix and
the 3 radial distortion parameters. This is in contrast to previous work [1JI3]
which assumed a known radial distortion center which decreased the number of
parameters by 2. This allowed the unique extraction of all the 8 parameters.
Nevertheless, in the remainder of this section, we will show that the epipoles are
unique and how they can be extracted from the single-sided radial fundamental
matrix even if the radial distortion center is unknown.

The extraction of the left epipole ¢’ from the rank-2 matrix F' is easy: Since
F = FL, both F and F share the same left-nullspace and hence €’ equals
the left nullspace of F. This nullspace can be easily computed e.g. with the
singular-value decomposition of F. The right epipole is more tricky since there
is a two-dimensional right nullspace N = [nj,ng] € R**2 of F e R¥™4 je.
FN = 0 € R3*2, This nullspace can again be computed with the singular-
value decomposition of F'. The lifted coordinates of the distorted right epipole
e € P? must lie in this nullspace since the undistorted epipole lies in the right
nullspace of the standard fundamental matrix F' which is a factor of F =FL.
Hence, due to this fact and since the distorted coordinates are only defined up
to scale, the lifted coordinates of the distorted epipole e(a) = an; + (1 — a)ne
can be parametrized with one parameter a € R. As described at the beginning
of Sec. B2 valid points (z,y, z,w) € P? in the lifted space are restricted to a
quadric surface defined through the equation zw — 22 — 32 = 0. Plugging the
one-parametric representation e(«) into this quadric equation yields a quadratic
equation in a which can be solved easily in closed form. This results in two

3 A matrix A € R™*" of rank r can be factorized A = BC with B € R™*" and
C € R"™™". The matrix factors are unique up to a multiplication with a regular
matrix Q € R™*", i.e. A = BQQ!'C and as such A has mr + rn — r? degrees of
freedom.
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equally valid solutions for the distorted coordinates of the right epipole. Note
that this is an inherent characteristics of the Fitzgibbon distortion model which
always provides two possible distorted points, given the undistorted point and
the radial distortion parameters?.

4.3 Further Examples - Two-Sided Radial Fundamental and
Homographies

As already previously mentioned, the same lifting trick can be applied to other
entities in multiple view geometry in the presence of radial distortion with un-
known center of radial distortion. For example, the two-sided radial fundamen-
tal matrix where both images are radially distorted is given by left- and right-
multiplying the standard fundamental matrix with the transformations mapping
lifted points to undistorted points, i.e.

<x;l, Yl 1,1{12 + y:f) L'TFL (xd, Yds 1,1‘(21 + ys)T =0 (12)

If both images have the same radial distortion, then L = L’. This results in a 4 x4
two-sided radial fundamental matrix which is again of rank 2 and has therefore
4.242-4—-2.2—1=11 degrees of freedom. There are 7+ 3+ 3 = 13 parameters
(7 due to the standard fundamental matrix and twice times 3 parameters for the
two distortion models), and again, there is no unique solution for the parameters.
However, the two epipoles can be extracted analogously to the single-sided radial
fundamental matrix.

Another example is given by a one-sided radial homography. Again multi-
plying the lifted coordinates & of the distorted image from the left by L yields
2’ = HLZ and hence the one-sided radial homography HL is a full rank 3 x 4
matrix. Both the two-sided radial fundamental matrix and the one-sided radial
homography can be estimated with linear methods analogously to the algorithms
presented next for the single-sided radial fundamental matrix.

5 Single-Sided Radial Fundamental Matrix Estimation
The algebraic epipolar constraint
¢ F (za ya 1 25+ yﬁ)T =0 (13)

can be rewritten using kronecker products [8] as

(a4 ya 1 2+ 92 )®qT vec(F) =0 (14)
~ ~ I~ 7
A f

* Solving Eq.[Blfor the distorted coordinates (x4, ya)” given (zu,yu)’, A, and (ds, dy)*
asks for intersecting two conics which in this specific instance can have up to two
solutions.
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From each correspondence, we obtain a different row vector A;. Stacking 11 of
these equations on top of each other we obtain an 11 x 12 matrix and f must lie
in the null space of that matrix, like in the 8-point algorithm for estimating the
fundamental matrix. Similarly, rank two of the resulting matrix can be enforced
via a singular value decomposition afterwards.

The Ten Point Algorithm. In an analogous way to the 7-point-algorithm for
classical fundamental matrix estimation, we use one correspondence less than is
required for the linear solution above and obtain a two-dimensional null-space
spanned by fi; and fs. The true f must thus be a linear combination of both,
where we can fix one of the coefficients, since f is only defined up to scale.

f=afi+f (15)

We now perform the inverse operation to vectorization and reassemble the matrix
F from the vector f, and for convenience of notation, explicitely write down the
columns: . o

F= <F1 By By F4) (16)
We now choose alpha such that

det (Fl 23 Fg) =0 (17)

which is the same step as in the standard seven-point algorithm. Thus, from ten
correspondences and one cubic determinant constraint we estimate the matrix
F'. However, in the presence of noise, it is however not guaranteed that F will
have rank two, since the last column of F' can vary freely. Again, rank two of
the resulting matrix can be enforced via SVD afterwards.

The Nine Point Algorithm. As mentioned above, in the ten-point-algorithm
only the first three columns of F are forced to be in a 2D subspace, however,
the last column could still vary freely in the presence of noise. Consequently,
we might enforce also the last three columns of F' to be linearly dependent. To
start, we can use only nine correspondences and obtain a 3D nullspace

f=afi+Bf2+f3 (18)

We now choose « and (8 such that
det (Fl FQ Fg) =0 A det (FQ Fg F4) =0 (19)

These are two cubic equations in a and § and according to Bezout’s theorem
there cannot be more than nine discrete solutions. The derivation of the exact
solution is out of the scope of this paper, however the interested reader is refered
to Groebner basis methods [12]. As argued before, there are nine degrees of
freedom in F' and so there can be no solution based on less than nine points.
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6 Experiments

In this section we demonstrate the usefulness of the presented formulation and
prove empirically that the new model can cope with arbitrary distortion centers
while earlier methods cannot. We first analyse this using synthetic data and
then with real images. In the experiments, we use image pairs in which one
image has known instrinsics and the other image has unknown focal length,
radial distortion center and radial distortion coefficients. In the experiments
with synthetic data we use random camera configurations, different distortion
centers and different distortion parameters. Due to the lack of earlier methods
for our setting, the results are compared to those obtained with the state of the
art radial distortion solver from Kukelova et al.[I3], although this latter method
assumes the distortion center to be at the center of the image and also estimates
distortion for both cameras. In contrast, in our setting, one of the images in each
image pair has known intrinsics and the distortion center is not at the center
of the image. We then test the algorithms with real world images which were
taken with cameras that exhibit a significant level of distortion. We generated
cropped versions of these images, so that the center of distortion would not lie
at the center of the image.

6.1 Evaluation with Synthetic Data

The first set of tests for the semicalibrated case was performed using synthetic
data. All tests with synthetic data were performed with a set of 100 random 3D
points and 1000 generated random camera poses. The first camera was placed
at the origin, with fixed parameters, pointed towards the set of 3D points. The
1000 random poses were generated for the second camera, by generating random
translations, random rotations and random focal lengths, varying between 1/2
and 2x the focal length of the first camera. For each camera pose we projected
the 3D points on both cameras, distorted the points on the image of the second
camera according to the distortion model in Eq. [ setting the displacement of
the distortion center to vary between 0 and the width/height of the image and
using different values for the distortion coefficient. For each setting we computed
the number of inliers with each algorithm. Results are presented in Fig.[Il We can
see that, as the center of distortion is placed further away from the image center,
the number of identified correspondences is constant for both implementations
of our method, whereas method [I3] increasingly fails to correctly identify the
correspondences, as it does not correctly model the position of the distortion
center.

6.2 Test with Real Images

To test the theory on real images we first matched a set of uncalibrated, distorted,
cropped images to an image with known calibration parameters using different
datasets. The undistorted images were cropped in such a way that the center
of distortion would be located away from the center of the resulting image.
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Semicalibrated, varying distortion center (lambda=0.01) Semicalibrated, varying distortion center (lambda=0.1)
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(a) Distortion parameter of A = 0.1. (b) Distortion parameter of A = 0.01.

Fig. 1. Boxplots of the number of inliers for 1000 randomly generated camera poses
with varying distortion center. Note that our 11- and 10-point algorithms nearly always

find all the 100 inliers.

(a) 146 inliers identified by the method from Kukelova et al. [13]
e p -

(b) 294 inliers identified by our new method.

Fig. 2. Results for dataset 'Shopping’
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(b) dataset 'Church’ (c) dataset *Corner’

Fig. 3. Comparison between our method and [I3]: red are the inliers found by both
methods; green are the extra inliers found by our method; blue are inliers found by the
method from Kukelova et al. not found by our method

To extract features in the images we used SURF[2], and then we computed
a number of putative matches in each image pair by standard feature space
matching. This produced a number of matches for each image pair, not all of
which were correct correspondences. We then ran both the 11 point and 10 point
implementations of our algorithm and [I3], in a RANSAC framework with same
parameters and constructing hypotheses on the same sample sets. In the end
we computed the number of inliers with a threshold of 3 pixels. To obtain the
epipolar error (used for classifying outliers) we computed the distance in pixels
between a point and the epipolar line in the undistorted image. Before applying
the point correspondences to the different algorithms, we normalise the image
measurements similarly to the 8-point algorithm [9]. For the calibrated image
we use the inverse of the camera intrinsics for the normalization, and for the

uncalibrated/distorted /cropped one we use an initial estimate of the focal length,
_ w/2

fguess - tan(fovguess /2) b

priori estimate of the field of view. Furthermore, the image points are normalised

with respect to the center of the image. As the normalisation is only performed

where W is the image width and fovguess = 50° is an a-
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to enhance the conditioning of the system, any similarity transformation is a
valid normalisation in our formulation.

Results for one of the tested datasets are shown in Fig. Plwhere we can see the
inliers identified by method of [I3] and our new method in an image pair where
the image on the left has been previously undistorted with an offline camera
calibration phase and the image on the right has unknown distortion parameters
and was also cropped so that the distortion center is now in the upper part of the
image. One can visualy see that our method is able to identify a higher number of
inliers, especially in areas away from the distortion center. Fig. Bal shows a direct
comparison of which inliers are identified by our new method and [I3]. Again we
can see that both methods identify inliers close to the center of distortion but our
method identifies extra inliers away from the distortion center. Similar results
can be obtained for different datasets in Fig. Bbl and Fig.[Bd For the image pair
in Fig. the distorted image was cropped so that the distortion center was
placed in the bottom right region of the image. For the image pair in Fig. [3d the
distorted image was cropped so that the distortion center was placed in the top
left region of the image. Also for these image pairs, the method from [I3] found
only a spatially confined set of correspondences near the center of distortion,
whereas our method would be able to use more correspondences also far away
from the center of distortion, where radial distortion is more severe. The inliers
found by the method of [I3] must be explained as an algebraic fit to the data,
because the algorithm was not geometrically designed to cope with an unknown
distortion center. To the best of our knowledge, the approach presented in this
paper is the only one designed to handle epipolar geometry problems with fully
unknown radial distortion.

7 Conclusion

We have shown that the lifting of image points into 4-space can consider the
distortion center in a linear way. This allows for instance to generalize the radial
fundamental matrix to the case of unknown distortion centers, facilitating now
practical use of the radial fundamental matrix even with cropped or zoomed
images or more generally with images where the center of distortion is unknown.
We have proven this by devising different algorithms to estimate the matrix from
point correspondences and have shown results on real images that we believe
cannot be obtained with any other existing framework. Furthermore, since a
change of distortion center can be expressed linearly in 4-space, now the radial
distortion model with unknown center can be applied to all multilinear multiple
view relations, such as the trifocal tensor and homographies. Besides this, the
insight about the distortion center might pave the way for a series of new minimal
solvers with unknown distortion center. On top of this we believe that the new
radial fundamental matrix can open the door to a theory of radial distortion
self calibration, i.e. on top of focal length and principal point one could now
look for the distortion coefficient and the distortion center when given multiple
image pairs or image sequences, enforce some constraints (e.g. constant distortion
center throughout a sequence) and so forth.
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Abstract. This paper concerns depth-estimation-free conditions for pro-
jective factorization. We first show that, using an algebraic approach, the
estimation of the projective depth is avoidable if and only if the origins
of all camera coordinate systems are lying on a single plane, and optical
axes of the coordinate systems point the same direction that is perpen-
dicular to the plane. Next, we generalize the result to the case where the
points are possibly restricted on a plane or on a line. The result clearly
reveals the trade-off between the freedom of camera motion and that of
point location. We also give a least-square-based method for Euclidean
reconstruction from the result of the projective reconstruction. The pro-
posed method is evaluated through simulation from the viewpoint of
computational time.

1 Introduction

Since Sturm and Triggs [I] first proposed projective factorization-based approach
to 3D reconstruction, extensive studies have been made for projective factoriza-
tion. In projective factorization, the estimation of the projective depth plays a
central role, and various methods have been proposed such as using epipolar
geometry [I], and using iterative computation [2BJ4I5617]. Now, fundamental
tools for estimating projective depth have been already established.

However, the projective depth should be estimated for all feature points on
all images, it requires large amount of computational loads. Therefore, if the
condition for avoiding projective depth estimation is clarified, we can reduce the
computational costs for 3D reconstruction by satisfying the condition. Concern-
ing the condition for avoiding projective depth estimation, several results have
been presented in a fragmented manner in the existing researches. In [8], Hart-
ley introduces some interesting examples, but a systematic analysis is not made
for clarifying the condition. In [9], Triggs derives several conditions for avoiding
projective depth estimation in projective space using a geometric approach. His
derivation is systematic and elegant, but slightly difficult.

In this paper, we give a comprehensive description of the problem for the
depth-estimation-free condition in Euclidean space, and derive a necessary and
sufficient condition for depth-estimation-free projective factorization using an

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 150-[[62] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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algebraic approach. Since the proof is based on elementary linear algebra, it is
easy to understand. Next, we generalize the result to the case where the points
are possibly restricted on a plane or on a line. The condition obtained clearly
reveals the trade-off between the freedom of camera motion and that of point
location, which is one of the most important contribution of this paper.

Based on the depth-estimation-free condition, we propose a least-square-based
method for Euclidean reconstruction from the result of the projective reconstruc-
tion. The proposed method is evaluated through simulation from the viewpoint
of the computational time.

2 Necessary and Sufficient Condition for
Depth-Estimation-Free Projective Factorization

2.1 Preliminary

Consider the situation that N 3D points are projected on F images. Let X, (j =
1,---,N)andx;; (i=1,---,F;j=1,---,N) be, respectively, the homogeneous
coordinate vector of the j-th 3D point and the homogeneous coordinate vector
of the image point of the j-th 3D point projected on the i-th image, which are
given by
T T
X;=[X;Y 21, xy = [ug i 1] (1)
Let P; (i = 1,---, F) be the image projection matrix associated with the i-th
frame given by

P, =K;P;M,, (2)
where K;, P, and M, are, respectively, the camera calibration matrix, the
perspective projection matrix, and the camera motion matrix associated with
the i-th image, which are given, respectively, by

iy Ky K 1000] oy
0 0 1 0010
Til 7"32 Ti?, 3 t;

Ri= |ry rorig|, ti= [ty = -RT;, T;= |t ], (4)
rhy Ty T 5 &

and R; and T; are, respectively, the rotation matrix representing the orienta-
tion of the camera coordinate system associated with the i-th image, and the
coordinates of the camera center associated with the i-th image in the world
coordinate system. The 3D point X; and its projection onto i-th frame x;; are
related by the following equation:

AijXi; = P X, (5)

where \;; is referred to as the projective depth associated with x;;. By arranging
() into a large matrix W whose i-j component block is A;;x;;, we have

W = MS (6)
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where W € R3FXN M € R3¥F*4 and S € R**VN are given by

A1X11 A12X12 ... MINXIN P,
A21X21 A22X22 ... danXon P,
w=|""" o U M= ] s=[X Xe . Xy]) ()
AF1XF1 AF2XF2 ... AFNXFN Pr
respectively.

Here, we introduce some basic notions for considering conditions for depth-
estimation-free projective factorization.

Definition 1. A matrizr A € RF*N whose i-j entry is a projective depth \;j,
that is,
)\11 )\12 o e )\lN

)\21 )\22 cen )\2]\[

(®)

1s called a projective depth matriz.
It is well-known that A;; can be replaced by «;3;\;; for nonzero o; and 3, because
homogeneous coordinate vectors X; and x;; (and thus, P;) are defined only up
to an arbitrary nonzero scaling. Therefore, if we can make each entry of A equal
to 1 by nonzero multiplications of each row and each column of projective depth
matrix, the estimation of the projective depth is not required at all. As we will
see later, it depends on the camera motion matrices M?, (i = 1,--- , F). We
refer to the set of the camera motion matrices as camera motion and denote it

by M. Summarizing the above, we give the following definition concerning the
depth-estimation-free projective factorization.

Definition 2. If every entry X\i; of a projective depth matriz A can be made
equal to 1 by nonzero multiplications of each row and each column of projective
depth matriz, we say that camera motion M 1is depth-estimation-free. In such
a situation, we refer to the projective factorization as the depth-estimation-free
projective factorization.

In what follows, we proceed our consideration under the following assumptions.

Assumption 1. The camera coordinate system associated with the first image
coincides with the world coordinate system.

It should be noted we can set this assumption without loss of generality. By
this assumption, we can set Ry = I3 and t; = T; = 0 where I,, denotes the
identity matrix of size n. We also make the following assumption, which is usually
introduced when factorization method is considered.

Assumption 2. All 3D points X; (j =1,---,N) are viewed by all cameras.
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@), @), and (@) imply that the optical axis of each camera coincides with Z-axis
of camera coordinate system. Form this, together with Assumptions 1 and 2, we
obtain

)‘ij>O(i:17""F;j:1""7N)’ Zj>0(j:1a"'7N)~ (9)

2.2 Derivation of Depth-Estimation-Free Condition

We begin with the following lemma, which is a direct consequence of Definition 2

Lemma 1. Camera motion M is depth-estimation-free if and only if the pro-
jective depth matriz A is expressed as follows:

aq

(6%)
A= . [B1 B2 ... Bn], (10)

ar
ai#o(izla"'vF)aﬁj#o(j:]-a"'aN)' (11)

Proof of Lemma [l From Definition 2] camera motion M is depth-estimation-

free if and only if there exist nonsingular diagonal matrices A € RE*F and
B € RV*N satisfying the following equation.
1
1
AAB=| | [11...1]. (12)
1

The sufficiency of conditions ([I{0) and (ITJ) is straightforward because if we choose
A =diag[l/aq,1/ag, -+ ,1/ap], B =diag[l/B1,1/B82,---,1/Bn], (13)

condition (I2)) is satisfied, where diag[a, b, ¢] denotes the diagonal matrix whose
diagonal entries are a, b, and ¢ in order. In what follows, we show the necessity
part.

Since A and B in (I2)) are nonsingular, rank (A) = rank (AAB) holds where
rank(A) is the rank of A. Therefore, the rank of A should be one since the rank
of the matrix of the righthand-side of ([I2)) is one. Thus, A must be expressed
as in (I0). In ([ ), if o; = 0 for some %, the i-th row of the projective depth
matrix becomes zero no matter how nonsingular diagonal matrices A and B are

selected. Therefore, a; must be nonzero for ¢ = 1,---, F. In a similar manner,
we have (; must be nonzero for j = 1,---,N. This completes the proof of
Lemma [Tl O

Based on Lemma [I], we derive a necessary and sufficient condition for the depth-
estimation-free projective factorization in Euclidean space.
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Theorem 1. The following three conditions are equivalent.

(i) Camera motion M is depth-estimation-free.
(it) R; and T; (i =1,---,F) have the following structures.

r{l Tiz 0 ti
Ri = ’I";l Téz 0 s r:[‘Z = t;l . (].4)
0 01 0

(iii) Origins of all camera coordinate systems are lying on a single plane, and
optical azxes of the coordinate systems point the same direction that is per-
pendicular to the plane.

Proof of Theorem [Il The implication of condition (ii) is nothing but condition
(iii). Here, we show the equivalence of condition (i) and condition (ii). First, we
show (i) implies (ii).

By [@)-(@), projective depth matrix A is rewritten as

Té1 T§1,2 Tés té X1 Xo... XN
T3 T3p 33 13 Y1V, ... Y]
A=MsXs, Mgy =| . . . |, X = Zi ZZ ZZ (15)

rE rE rE i E 1 1...1

If camera motion M is depth-estimation-free, rank(A) = 1 because A satisfies
condition ([[0) by Lemma [Il In generic situation, points are located arbitrarily
in 3D space. Therefore, X is a row full rank matrix when N is large enough
(N > 4). Therefore, rank (M3s) = rank (M3,X,) = rank (A) holds [I0], and
thus, rank(Ms,) = 1.

Here, note that [r3; 73, rig t3] = [0 0 1 0] because Ry =TI and t; = 0 from
Assumption 1. Therefore, [r§; 74, rig t4] (i =2,--- , F) is a nonzero scalar mul-
tiplication of [r3; ri, ri; ¢3] because rank(Ms,) = 1. Note also that the norm
of the row vector [r§; 74, ris] is equal to one because it is a row vector of a
rotation matrix R;. Therefore, we have

[y 7y 1 £5] = [00£10] (1 =2,--- , F). (16)

From this, we obtain the structures of R, t;, and T;, as

i1 T2 0 th t;
Ri = 7’%1 7’52 0 5 tz = tzl 5 Tz’ = tzy 5 (17)
0 0 +1 0 0
respectively. Here, if r4; = —1, the optical axis of the camera associated with

the first image and that with the i-th image point opposite direction each other.
This contradicts Assumption 2. Thus, ri; = 1 is obtained, and we have shown
that condition (i) implies condition (ii).
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Next, we show (ii) implies (i). From (I5), together with [r3; 73, ris 3] =
[00 1 0], we have \;; = Z;. Note that Z; # 0 because of ([@). This implies that
Ai; satisfies the condition of Lemma [[ (o; = 1, 8; = Z;), and thus, we have
shown that (ii) implies (i). This completes the proof of Theorem [Il O

In [8], it is pointed out that if the points are located at different depths, but each
point remains the same depth from the cameras through the whole sequence,
each depth can be set equal to 1. The condition is nothing but condition (iii) of
Theorem [I} and thus, the description implies that condition (iii) is a sufficient
condition for depth-estimation-free projective factorization. The importance of
Theorem [ is that the condition is not only sufficient but also necessary.

In [9], the notion of pseudo-affine, that is, optical planes of all cameras coin-
cide, is introduced, and it is shown in projective space that pseudo-affine con-
dition is a necessary and sufficient condition for avoiding depth estimation. The
pseudo-affine condition corresponds to condition (iii) of Theorem [Il and there-
fore, Theorem [I] can be regarded as a Euclidean space counterpart of the result
in [9].

Theorem [I] gives a necessary and sufficient condition for depth-estimation-
free projective factorization in generic situation. Next, we consider the case that
points location is possibly restricted to a plane or on a line. In both cases, the
restricted region of the points are described by a set of X satisfying IIX = 0,
that is, a null space of II, where II is a row full rank matrix. By using this
expression for the restricted region, we obtain a necessary and sufficient condition
for depth-estimation-free projective factorization for the case that points location
is possibly restricted.

Theorem 2. Suppose that II € R** is a row full rank matriz, and let pi' =
[Tél rio ria té] and e = [0 01 0]. Also suppose that the points are restricted in
the null space of IL. Then, camera motion M is depth-estimation-free if and only
if there exist a; > 0, b; € R¢ (i = 2,--- , F) satisfying the following conditions.

pi =ase] + b/ II, (18)
i [ Is O]
Here, we introduce the singular value decomposition of IT € R¢** as follows:
vy
II1=U[X O] {VT} (20)
2

where U € R*¢ is an orthogonal matrix, 3 € R¢*¢ is a diagonal matrix con-
sisting of singular values, and O € R¢*(#=¢) is a zero matrix. [Vl Vg] € RAx4
is an orthogonal matrix composed by Vi € R**¢ and Vy € R**(4=9) which
satisfies the following equations.

T

[V1 Vs] Rﬂ =V,V] +V,V] =1, (21)
2

\2 I. O

{Vir] (Vi V] = {OT 14_0] : (22)
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It is noted that the null space of II coincides with the image of V. Therefore,
points X satisfying IIX; = 0 is expressed as X; = VX for some X; € R1¢.
Furthermore, IT is expressed as

Im=Tv/, (23)
where T = UX. From (22), we have ITV, = TV{ V, = O.
Before going to the proof of Theorem Bl we show the following lemma.
Lemma 2. If Assumption 2 is satisfied and I1 is of row full rank, e3 Vo #07.
Proof of Lemma [2l We first show that if Assumption 2 is satisfied and II is of
T T
es €3

II II
full rank, e Vo # 0" holds.

row full rank, is also of row full rank. Next, we show that if [ ] of row

ey
II
combination of row vectors of IT because II is of row-full rank. Therefore, points
X satisfying TIX = 0 also satisfy e X = Z = 0. This implies that points X sat-
isfying IIX = 0 is lying on the plane given by Z = 0. This contradicts condition
@), and thus, Assumption 2 is not satisfied. This implies that Assumption 2 and

T

Now, suppose that { is not of row-full rank. Then, e; is expressed as a linear

LS
row-full rankness of IT yield row-full rankness of {eg } .

I1
el
Next, we show that e Vo = 07 yields contradiction when {ﬁ] is of row-full
T
rank. Since the set of row vectors of [VIT} is a basis for four dimensional space,
2

e; is expressed as a linear combination of the basis. Therefore, e4 is expressed

as e; = k{ V] +1/ V] for some k; € R¢ and 1; € R*~¢. By post-multiplying
Vs, for both sides of this equation, we have

e;,rVQ = II (24)

because of ([Z2)). Therefore, eJ Vo =0 yields1] = 07, and thus, we obtain e; =

T T
k| V. This, together with (23), we obtain ﬁf’[] = [l,{Il‘} V|, which contradicts

-
} because a' = [1 —leTfl] £ 0 yields a’ [?I] =

€3

the row-full rankness of {H

-
0. Thus, we have shown that row-full rankness of ‘i_3[ implies e Vo # 0", and
the proof of Lemma 2] is now completed. O

Now, we are in a position to prove Theorem 2l
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Proof of Theorem [2L Since [Tél i Tég] is a row vector of rotation matrix R;,
its norm must be one, which is equivalent to condition (I9)) of Theorem P2l In
what follows, we show that, under condition (I9), camera motion M is depth-
estimation-free if and only if condition (I8)) is satisfied for some a; > 0 and
b, e R¢ (i =2,---,F).

First, we show the sufficiency part. If there exist a; > 0 and b; € R¢ (i =

2,---, F) satisfying condition ([8]), A is rewritten as
[ eg e
ST TopT
P3 azes; + by II
A=MzX,=| | | [Xi- Xy] = : X - Xn|, (25)
piT are; +biIl
[1
az
1|1z 2w, (26)
_aF

where we use (I5)), and relations e X; = Z; and IIX; = 0. Since Z; > 0
(j=1,---,N) from @), and a; >0 (¢ =2,---, F), A satisfies the condition of
Lemma/[l and thus, camera motion M is depth-estimation-free. This completes
the proof of the sufficiency part.

-
Next, we show the necessity part. Since the set of row vectors of [Xlr} is a
2
basis for four dimensional space, e; and p' (i = 2,---,F) are expressed as
follows with some k; € R¢ and I; € R*=¢ (i =1,--- , F).
e] KT I
ST T T
p3 T k, 1,
.| =KL [Vﬂ, K'=| |, LT=|"|. @
. V2 . :
Py’ kp 1

From (I3) and (22)), together with the fact that point X; satisfying ITX; = 0 is
expressed as X; = VX for some X; € RA=¢, A is rewritten as

A

A=MyX, = |7 | X Xn] = [KTLT] {V;

[Val%i %], 29

=L" [X;-- Xp]. (29)

Here, note that the rank of L™ must be one because rank(A) = 1 from Theorem/[I]
and the matrix [Xl XN] is arbitrary. On the other hand, from (24) and
Lemma [ 1] = e] Vi # 0 from assumptions. This implies that 1, is expressed
as

1! =al] =aiesVy (i=2,--- ,F) (30)

i =
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for some a;. From 1)), 23), [27), and B0), pi’ is rewritten as

Py =k V] +1/Vy =k/ V] +ae5 VoV, (31)
=k{/ V] +aieg(I1-VV])=aie; + (k] —aes VI)V{, (32)
= aje; + (k; —aje; V)T 'II = ae; + b, II, (33)

where we put b} = (k] — a;ed V1)T~! in @3). Thus, we have shown that pi"
is expressed as (I8)). In this case, A is rewritten as (26]). From (20]), it is shown
that a; >0 (i = 2,---, F) because of condition (@). This completes the proof of
the necessity part of Theorem [2 a

As a special case of Theorem [2, we consider the case that points are restricted
on the plane given by z = 10. In this case, we can select IT of IIX = 0 as
II = [001—10]. From condition @) and ([@J), a; + b; = 1, ry;, = 0, 1§, =
0, 74y = 1, and t!. = —t} = 10(1 — a;) are necessary. Therefore, if a; > 0,
conditions of Theorem [2] are satisfied. This implies that camera motion M is
depth-estimation-free provided that optical axes of all cameras are perpendicular
to the plane. Such an example is also shown in [g].

Tt is straightforward to show that the conditions of Theorem 2] are reduced to
those of Theorem [Il when no restriction to the points location exists. Therefore,
Theorem ] can be regarded as a generalization of Theorem [II From condition
(I8) of Theorem 2 we can observe that the freedom of choosing p' increases
as the freedom of point location decreases. Therefore, Theorem [2] describe the
trade-off between the freedom of camera motion and that of point location.

3 Euclidean Reconstruction under Depth-Estimation-Free
Condition

In this section, we give a method for Euclidean reconstruction from the projective
reconstruction under the depth-estimation-free condition. In particular, we give
a method under the following assumption.

Assumption 3. All cameras satisfy condition (i) of Theorem[l. Furthermore,
all camera has the same orientation.

From this assumption, the rotation matrix of each camera becomes identity,
that is, R; = I (¢ = 1,--- , F). However, in this case, it is known that self-
calibration is impossible, that is, we cannot obtain internal camera parameters
K; and external camera parameters M’ in ([)) at the same time [L1]. Therefore,
we assume the following condition.

Assumption 4. Internal parameters K; of all cameras are known.

In what follows, we consider a method for finding nonsingular matrix H € R**4
that attains a Euclidean reconstruction

M=M,H, S=H'S,, (34)
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from a result of a projective reconstruction W’ = M,S,, where

1
X11 X12 ... XiN P,
2
, X921 X929 ... XaN Ps 1 9 N
w=| S M= |, Sy =[XIX2...XD], (35)
F
XF1 X2 ... XEN PS

and P! € R3*4 XJ € R**!. The validity of using W', instead of using W in
(@, will be explained later. Here, we assume that P! is set to be Pl = [Ig 0]
by pre-processing. Let P; and X; be, respectively, the projection matrix of the
camera associated with the i-th image and the homogeneous coordinate vector
of the j-th 3D point after Euclidean reconstruction. Then, from (34]) and (35,
we have

P,=PH, X; =H 'X/. (36)

From (@) and @), and Assumption 1, we have P; = [K; 0]. By this, together
with (B0) and P} = [I3 0], we obtain [K; 0] = [I3 0] H. Thus, we obtain

H = [5% 2} (37)

where v € R? and k is a nonzero constant. Since k is only affect the scale of the
projective reconstruction, we can set kK = 1 without loss of generality. Therefore,
Finding v is equivalent to finding H.

From (@)-@) and Assumption 3, we have P; = K; [I —T;] . By substituting
this and 1) into the first equation of (B]), we obtain

51 K10
K; [I -T;] = [Al Bi] {le 1] : (38)
where [ALB!] = Pi, Al € R33, and B! € R®. From (BY) we obtain the
following equation with respect to v.
K, - AK,=Biv' (i=1,---,F). (39)
Here, we consider v that minimizes the following cost function J;.
F
=5k — ALK, - BivT |, (40)
i=1

where HAH stands for the Frobenius norm of a matrix A. The solution is given

as follows: i

v = (i (K] —K[AI") B’) (ZB’ B’) : (41)

The derivation of ([@Il) is omitted because this is a typical application of the least
square method. Matrix H is obtained by substituting v given by (#]) into (37),
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and thus, Euclidean reconstruction is attained by calculating M and S according
to (34).

Now, we show the validity of the use of W’ instead of W. Under the condition
(iii) of Theorem/I], each A;; does not depend on ¢, and thus, we can set A;; = d;.
Let the matrix D be D = diag[dy, - - - , dn]. In this case, W(= MS) in (7) and W’
are related by W = WD™! = MS’, where S’ = SD~! = [X;/dy, -, Xn/dN]-
Since X;/d; and X; indicate the same 3D point, we do not have to estimate
the exact values of d; and X; (only directions are needed), and thus, we can
set d; = 1 without loss of generality. Therefore, we can use W' instead of W,
provided that depth-estimation-free condition is satisfied.

4 Simulation

In this section, we compare the computational time of our proposed method and
that of an existing method for 3D reconstruction through simulation. We use
three types of simulated image sequences as shown in Fig. [Il where we call them
box, cylinder, and sphere from the top, respectively.

The image sequence called box includes 100 points that are randomly placed
in the cube with edge length 100 centered at (50,50, 150). The image sequence
called cylinder includes 100 points that are placed on the side surface of the
cylinder whose top and bottom surfaces are circle with radius 50 that are placed
on the planes Y = 100 and Y = 0, respectively, and centered at (50, 100, 150) and
(50,0, 150), respectively. The image sequence called sphere includes 100 points
that are placed on the spherical surface with radius 50 centered at (50,50, 150).

We suppose that the internal parameters of the camera for the simulation
are as follows: focal length: 600; image center: (240, 160); skew: 0. We move the
camera from (0,0, 0) to (100,0,0) along X-axis of the world coordinate. During
the movement, the optical axis of the camera always points Z-axis of the world
coordinate so as to satisfy Assumption 4. The number of frames of each image
sequence is 101.

As an existing method, we apply the method proposed in [6], which we think
one of the most efficient method that have ever been proposed. The specifica-
tion of the computer for the simulation is as follows: CPU: Inter(R)Core(TM):
7-2600CPU 3.40GHz; memory size: 3.49GB. For 3D reconstruction, we first find
a projective reconstruction, and then, based on the result, we find a Euclidean
reconstruction.

The results are shown in Table[Il where each computational time is the average
of 100 trials. In Table [T projective r., Euclidean r., and total are, respectively,
the average of the computational time for the projective reconstruction, that for
the Euclidean reconstruction, and sum of them. From Table [l comparing with
the existing method, we observe that the proposed method significantly reduces
the computational time for 3D reconstruction because the camera is moved so
as to satisfy the depth-estimation-free condition.
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Fig. 1. Simulation data (top: box, middle: cylinder, bottom: sphere)

Table 1. Comparison of computational time (sec)

existing method proposed method
projective r. Euclidean r. total projective r. Euclidean r. total

box 3.5402 0.0009  3.5411  0.0104 0.0004  0.0108
cylinder  2.4684 0.0010  2.4694  0.0070 0.0003  0.0073
sphere 2.8033 0.0009 2.8042  0.0081 0.0003  0.0084

5 Conclusion

In this paper, we have given a comprehensive description of the problem for
the depth-estimation-free condition, which had been considered in a fragmented
manner in the existing researches, and have derived a necessary and sufficient
condition for depth-estimation-free projective factorization using an algebraic
approach. In generic situation, the condition is as follows: origins of all camera
coordinate systems are lying on a single plane, and optical axes of the coordi-
nate systems point the same direction that is perpendicular to the plane. This
condition is closely related to the conditions obtained in [8] and [9].

Furthermore, we have extended the condition to the case where points loca-
tion is possibly restricted on a plane or on a line, and have obtained a generalized
version of the above condition. The condition clearly reveals the trade-off be-
tween the freedom of camera motion and that of point location. In deriving the
condition, the idea that restricted area is expressed by the null space of a matrix
plays a crucial role.

Based on the condition, we have given a method for a Euclidean reconstruc-
tion from the result of the projective factorization. Furthermore, we have eval-
uated the proposed method through simulation from the viewpoint of computa-
tional time, and have shown that the proposed method significantly reduces the
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computational time for 3D reconstruction compared with one of the most ef-
ficient existing method. This work is supported in part by a Grant-in-Aid for
scientific research from the Japan Society of the Promotion of Science.
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Abstract. Algorithms for the estimation of epipolar geometry from a
pair of images have been very successful in recent years, being able to
deal with wide baseline images. The algorithms succeed even when the
percentage of correct matches from the initial set of matches is very low.
In this paper the problem of scenes with repeated structures is addressed,
concentrating on the common case of building facades. In these cases a
large number of repeated features is found and can not be matched ini-
tially, causing state-of-the-art algorithms to fail. Our algorithm therefore
clusters similar features in each of the two images and matches clusters
of features. From these cluster pairs, a set of hypothesized homographies
of the building facade are generated and ranked mainly according the
support of matches of non-repeating features. Then in a separate step
the epipole is recovered yielding the fundamental matrix. The algorithm
then decides whether the fundamental matrix has been recovered reli-
ably enough and if not returns only the homography. The algorithm has
been tested successfully on a large number of pairs of images of buildings
from the benchmark ZuBuD database for which several state-of-the-art
algorithms nearly always fail.

1 Introduction

Repeated structures are commonly seen in many types of scenes. They are espe-
cially prevalent in man made scenes such as buildings as can be seen for example
in Fig. [l For reasons which will be explained shortly, algorithms for epipolar
geometry estimation from two images tend to fail on such scenes. The goal of
this paper is to present an algorithm to deal with these cases. In this paper we
will concentrate on building facades which are one of the most common cases of
repeated structures.

In recent years there has been significant progress in developing algorithms for
epipolar geometry estimation for wide baseline image pairs. Generally speaking,
the algorithm is given as input two images. On both images a feature detection
algorithm is run yielding a set of features and their associated descriptors (e.g.,
SIFT [1]). The two feature sets are then matched yielding a set of pairs of
similar features from the two images. On this set of putative matches a robust
algorithm from the RANSAC [2] family is run resulting in a model which in some

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 163-[[76] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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cases is the fundamental matrix or an homography in others. The matches are
also classified as inliers or outliers. On this general framework many advances
have been made. The LO-RANSAC [3] algorithm performs local optimization on
candidate solutions suggested by RANSAC, reducing the number of iterations.
Other algorithms suggest methods to guide the selection of subsets selected by
the RANSAC process [A56[7]. Finally, methods were suggested to reduce the
number of putative matches selected at each iteration resulting in a much faster
algorithm which can deal with a much higher percentage of outliers [SJ9I10].

Fig. 1. Possible cases of images with repeating structures. (a) A building with repeating
elements appearing on the same vertical and horizontal lines. (b) A building with
repeating elements appearing periodically in a grid structure.

As a result of all these advances wide baseline stereo image registration sys-
tems are successful in many hard cases with very low inlier match percentage.
However, for scenes with repeated structures they often fail. The reason for this is
that repeated structures yield similar sets of local features for which humans and
automated systems fail to match correctly. In most cases the algorithm is able
to recognize that there are several very similar matches to such a feature and it
therefore discards the feature altogether. As a result, when the overlap between
the two scenes contains mainly repeated structures, the alignment algorithms
tend to fail.

1.1 Related Work on Repeated Elements

In this work we will be dealing with image registration but repeated elements
have been extensively studied in different contexts such as detection and group-
ing of similar elements [ITJI213], classification and identification [I4], match-
ing [I5JI6], geo-tagging and location recognition [I7JI8[T9] as well as structure
from motion methods [20].

From these works we would like to elaborate on several papers. In [20] the
problem addressed was of recovering the structure from a large number of im-
ages (SfM) when the scene contains multiple instances of the same object. The
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challenge which is addressed in that paper is to eliminate the incorrect funda-
mental matrices from the set of fundamental matrices recovered from matching
all image pairs. This is done using geometric and image-based cues.

Perhaps the papers most closely related to our work, dealing with image
registration and repeated patterns are [TO/TTITIRTI22123124], as they present
different approaches for matching images of building facades, without analyzing
or modeling of the entire structure as in [TIIT2T3].

In [24] a guided RANSAC algorithm is presented. A large number of putative
matches is generated by matching all possible similar points but giving repeated
features low probabilities. Thus, they are not used in the model generation step
but only in the verification step. When the number of correct unique correspon-
dences is small the running time of the algorithm can be long.

In [I6] it is assumed that the objects investigated are comprised of planar
quadrilaterals bounded by straight lines. For each hypothesized match between
a pair of quadrilaterals, the homography between images is calculated. The score
of the homography is given by counting the number of corresponding Harris cor-
ners within the region. It should be noted that there is no descriptor extraction
for the detected Harris points, and that this method results with a projective
homography, that matches two building facades without any estimation of the
epipolar geometry. [19] recovers the position of a mobile robot by matching build-
ing facades. The algorithm exploits the fact that the views were obtained from
similar heights, and thus matches are restricted to a narrow margin surrounding
a 1D scan line. Similarly, in [2I] invalid correspondences are eliminated based
on geometric constraints generated from approximate knowledge of internal and
external camera calibration parameters. [22/23] deal with scenes with multiple
objects using an a-contrario approach. They concentrate on the post-processing
step in which the algorithm has to decide which of the matches belong to the cur-
rent solution. Finally, [I7] extracts calibrated images from an existing database
and matches it to an input image. The transformation supported by the maximal
number of matches is returned. It is therefore possible that a shifted solution
will be returned by the algorithm.

1.2 Our Approach

In this paper we suggest an algorithm to deal with the case of repeated structures
placed on planar or close to planar surfaces. The main application of such an
algorithm is for images containing mainly building facades. Without such an
algorithm, systems with an image registration component will fail from time to
time unexpectedly when the overlap between the images are mainly building
facades.

The algorithm exploits three important characteristics of the scenes that we
are dealing with. First, a large number of repeated structures lie on a planar
surface in an ordered fashion and second that the local feature descriptors de-
tected in the image can be clustered and the clusters between the two images
can be matched without determining initially how the individual members of a
matched cluster are matched. Using the repeated features usually several possible
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solutions are generated with similar support. We therefore extract the small num-
ber of regular unique matches in order to select the correct solution, in contrast
to the methods described above.

The algorithm divides the task of epipolar geometry estimation into two steps.
It first recovers the homography associated with the building’s facade and then
recovers the epipole. Finally it decides whether the fundamental matrix is reliable
and if not returns only the homography.

The paper continues as follows. In the next section we will present our general
approach. In Section [Blwe present experimental results run on challenging image
pairs from the ZuBuD database of images of buildings from Zurich [25] for which
general purpose state of the art algorithms usually fail. We compare our method
to a SIFT [I] matching step followed by a standard RANSAC [2] and to two
state-of-the-art wide baseline registration algorithms BEEM [10] and BLOGS [7].
Conclusions and plans for future work are discussed in Section El

2 The Algorithm

Scenes with repeated structures are very common. In this paper we will con-
centrate on the special case where most of the repeated elements lie on planar
surfaces or close to planar surfaces such as building facades.

In our algorithm we consider two cases. In the first case we only assume that
the repeated objects are partially organized horizontally or vertically (Fig.[I(a)).
In the second case we assume that there exists a grid of repeated objects
(Fig.[M(b)). We will first describe the algorithm which deals with the non-periodic
case and then in Section 24 the modifications required to deal with grids of re-
peated objects will be presented.

When two images containing a planar surface with repeated objects are given,
the first step of the algorithm (described in Section ) is to find for each image
an homography which will transform the image into a fronto parallel view. This
step is performed for two reasons. First, eliminating the projective distortion
makes the descriptors recovered from the repeated features more similar and
thus easier to cluster. Second, when given two fronto-parallel images of a planar
surface, the transformation between them is much simpler. All that has to be
recovered, is the 2D translation and the scale factor.

On each of the rectified images SIFT features are extracted and features with
similar descriptors are clustered. We then match pairs of clusters from the two
images. There are of course features which do not cluster and will be called
non-repeating features.

In Section we generate a set of hypothesized transformations of the plane
appearing in both rectified images. This is done by matching minimal subsets
of features from a cluster generated from the first image to a subset of features
from its corresponding cluster from the second image. The hypothesized trans-
formations are ranked by the number of matched features that satisfy x’ = Hx.

In Section B3] we exploit the fact that the fundamental matrix F' can be
factored into F' = [€']xH. Therefore it can be computed by estimating the
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epipole €’ for a given homography. Once F has been found the algorithm decides
whether there is enough evidence to support it, and if not it returns only H.

2.1 Image Rectification

In our algorithm, we use the Canny edge detector, to detect edges and from them
extract line segments in the image. Then, we apply RANSAC [2] twice to find the
vertical vanishing point V, ~and the horizontal vanishing point Vy,, , although
as will be shown later, our method can handle a swap in those directions.

Under the standard assumptions of square pixels, zero skew, and that the
principal point is at the image center, the internal calibration matrix K and
the rotation matrix R can be recovered [26], Chapter 8]. Consequently, the orig-
inal image is rectified by: H = K RK !, resulting in a fronto-parallel view. An
example of the results of this procedure can be seen in Fig.

(a)

Fig. 2. Image rectification. (a) The original image with detected line segments, that
are consistent with the two vanishing points. (b) Fronto-parallel rectified image.

From the rectified images we extract SIFT features and descriptors (using
the implementation provided by [27]). This step is performed on the rectified
images, since in the case of repeated features, descriptors are more similar due
to elimination of the projective distortion. In general, each SIFT key-point can be
assigned with an orientation, based on the local image gradient direction, which
is the key step in achieving invariance to rotation. In our case, we use upright
SIFT key-points, for which the key-point orientation is set to be vertical. The
single fixed orientation for all features is a natural choice, given that the rotation
is compensated through the rectification. Moreover, it prevents features such as
for example window corners of different orientations to be considered as the same
feature.

We then cluster the SIFT key-points within a single image. Repeating points
are identified and clustered if their appearances are similar, i.e., their normalized
cross correlation is larger than a threshold (in our experiments 0.9). For each
cluster, we select the medoid of the repeating points’ descriptors as the cluster
descriptor. The result of this step is not perfect. Not all clusters represent real
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repeating objects and not all repeating objects are represented by a feature in a
cluster of a repeating feature. Still as can be seen in the supplementary material,
the number of recovered clusters can be used to differentiate between images with
or without repeating structures.

2.2 Planar Homography Estimation

We start the image registration process by searching for a specific transformation
H, induced by the rectified plane with repeating elements on it, that maps one
rectified image to another. For that purpose we assume that repeating key-points,
appear on the same vertical and horizontal lines, without specific requirements
about distances or periodicity. We build a list of candidate transformations.

As a first step, we match key-point clusters from the rectification stage. We
check all possible cluster pairs from two images and compute the Euclidean
distance between the cluster descriptor vectors of each pair. Similar to Lowe’s
approach, we define the best match as the one with minimal distance. We de-
termine the probability that a cluster match is correct, by taking the ratio of
distance from the closest neighbor to the distance of the second closest. Small
clusters (smaller than 5 points), or those that do not have any good match
(distance ratio larger than 0.8) are discarded.

When searching for all possible homographies, we use the rectified images ex-
tracted previously. Due to that, both transformed images are fronto-parallel. As
a result, instead of searching for eight degrees of freedom of a general projective
transformation H, we are left with only three, namely the two coordinates of a
relative translation ¢,t, and the relative scale s

Hyy Hyp Hys 50ty
H = | Hy; Hoy Hog - 0s ty . (1)
Hj3y H3z Hss 001

To detect H candidates, we check all the feature points from two images. For
each point of the first image x. we try to find its approximate vertical x, and
horizontal x;, nearest neighbors within the same cluster if they exist. Such a point
triplet will be denoted 7. We perform an identical procedure on the second image
yielding point triplets, each denoted 7'. We then match pairs of point triplets
from the two rectified images, belonging to matched clusters. Every such matched
triplet MT = {7,7'} is used to compute a transformation H. In general two
feature points from each image would be sufficient for transformation estimation,
but relying on triplets gives rise to less candidates to handle and much more
accurate results. Exploiting the scale constraint, we eliminate transformations
that do not satisfy it. When the triplet strategy fails, we resort to using pairs of
feature points from each image. In general the scale ratio is not always accurately
estimated. In this case there are two scales s, s, instead of one s. We have
implemented both versions dealing with two/one scale and they both always
succeeded.

For each candidate transformation, other feature point pairs from differ-
ent clusters which satisfy the transformation relation are accumulated and are
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considered point matches which support the transformation. Based on them,
we improve the accuracy of H using LO-RANSAC [3] as follows. We iteratively
calculate an homography based on randomly selecting half of supporting point
matches, and compute H using a non-linear method which minimizes Sampson’s
approximation to the geometric re-projection error. As a result we obtain, an
accurate homography, which relies on many points, instead of the single localized
triplet and is immune to the inaccuracies of the rectification procedure and the
proximity between the point triplet. The result of this step is a list of candidate
homographies.

(a)

Fig. 3. Typical results, when building a list of all possible homographies. (a) Blue stars:
An arbitrary point with its vertical and horizontal nearest neighbors within the same
cluster. Red points: Additional points from the same cluster, that support the same
H. (b) Blue stars: correct point match and its nearest neighbors. Green squares: An
alternative point match.

To illustrate the process we present in Fig. [3]a typical result. In both images
two point triplets are marked by blue stars. These two point triplets can be used
to compute the correct H. The red points in Fig.Bl(a) indicate additional points
that support that H. The green squares in Fig. B(b) represent an alternative
point triplet from which an additional H candidate is computed.

Homography Ranking. Once the set of homographies has been generated
the next task is to rank them. In order to better deal with this issue, we assume
that not only repeating elements appear on the plane, but also several unique
key-points, which we plan to exploit to break the symmetry. We therefore match
the SIFT key-points from the two rectified images, by the standard technique,
proposed by Lowe.

We rank each homography from the list, by the number of key-point matches
that are consistent with it. If the homography H is the correct one, it should
return not only repeating key-points from several clusters, but also corresponding
locations of unique SIFT key-points. Therefore, we sort homographies based on
the following score:

Sy = N'r‘ep + OéNnon7T6p7 (2)
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where «a is a weight constant and Ny.¢, and Nyon—rep are the numbers of support-
ing correspondences from repeating and non-repeating key-points respectively.
In our experiments we set o = 100 (the algorithm works for a > 10), to empha-
size that we mostly rely on the small number of matches of unique key-points,
to rank the homographies. When sorted, we iteratively check the homography
with the maximal Sy until no improvement is reached.

One of the advantages of our method is that we can empirically tune this
weight constant a, by changing the preference of one type of key-points over the
other. In [TOJT7IT9], this would be impossible, since only the number of matches
is counted. As a result, for an image pair with partial occlusion of the repeating
elements, the homography H having the maximal overlap would be chosen, as
there are naturally more repeating key-points in the images. In our method on
the other side a few highly weighted non-repeating key-points would be sufficient
to detect the correct H, regardless of occlusion or a partially non-overlapping
scene.

In addition, there always is a possibility that when rectifying one of the images,
horizontal and vertical directions were swapped. This is especially common when
the original images were taken with a roll angle of approximately 90°, as shown
in Fig. 2Ib). We therefore keep the first rectified image unchanged and check
for three possible alignments of the second image: the one obtained from its
rectification and the two rotations by +90°. We also change all the key-point
locations and descriptors respectively. For each one of the three alignments, we
rank the homographies as described above.

2.3 Image Registration

After the homographies have been ranked, for each one of them a RANSAC
process will be run to estimate the epipole €’. Combining it with the homography
H yields F'. When looking for the correct fundamental matrix F', we assume that
the repeating elements are bounded to the underlying plane, and therefore they
are not considered in this step. Matching correspondences of the non-repeating
key-points however, can appear on, as well as off the plane. Thus, we select non-
repeating key-points, that can contribute to the estimation of F'. Those point
pairs {x;, X} must satisfy:

[Hxi = xi]| = lIxi" = xi]| o< |pi| > dproj (3)

where x!/ = Hx;, p; is the projective depth, relative to the underlying plane,
and dp,o; is a constant distance threshold. In our experiments dp,; was set to
five pixels.

In Fig. d|(a) we show non-repeating key-points x; marked by yellow circles and
x}/ by red crosses. The green lines are proportional to the projective depth p; of the
pairs. For most of the in-plane key-points, we can see the yellow circles merge with
the red crosses, which indicates zero projective depth. There are only two mistaken
matched pairs, that are associated with a visible green line, despite being on the
plane. In addition, we can observe for the off-plane points, that the further the
point is from the plane, the longer is the green line associated with it.
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Fig. 4. (a) Matching correspondences of the non-repeating key-points. Original image
with non-repeating key-points x; marked by yellow circles and x; by red crosses. (b)
Wrong matches of non-repeating key-points, that result from repetitive elements. Orig-
inal image with non-repeating key-points x; marked by yellow circles and x; by red
crosses. Green lines are proportional to the projective depth p;.

Another problem demonstrated in Fig. [d(b) is of putative matches, which
are due to incorrect matches between repetitive features that were not detected
as such during the clustering phase. In general RANSAC is able to deal with
outliers. However, when the feature pairs lie on a horizontal or vertical line on the
facade as can be seen in the figure, these incorrect matches will vote together for
an incorrect epipole, the horizontal or vertical vanishing point which in many
cases will produce an incorrect solution. We therefore remove these putative
matches from consideration. These removed matches satisfy (Hx—x') x Vp = 0.

All the remaining matches, termed candidate F' supporters, are used in the
RANSAC step to recover the epipole €. The candidate H and the recovered €’
will then be combined to yield the fundamental matrix F' = [e/]x H. In this step
the putative matches come from two sources: matched features extracted from
the rectified images which mainly come from the parallel planes consisting of
the building’s facade and matched features extracted from the original images.
These matches usually come from off-plane 3D points, since they become too
distorted in the rectification process to be matched using the rectified images.

Once the RANSAC step has been completed all the matches that support the
fundamental matrix F (including the ones that support the homography) are
given to a final RANSAC step which recovers the homography H accurately.

The question that remains is whether the algorithm should return F' or that
there is not enough evidence to support a fundamental matrix (when for example
the overlap between the two images is close to planar) and only H should be
returned. We answer this question by counting the number of matches that
support F' and do not support H. If there are more than a certain number of
supporters (10 in our experiments) F' is returned by the algorithm and if not,
only H is returned.
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2.4 Grid of Repeating Structures

In this section we switch to a more demanding case than discussed earlier, the
case of periodic repeating elements. We describe here the additional steps and
required changes to the full algorithm flow, previously presented.

During the first step of image rectification and key-points extraction, addi-
tional information can be evaluated. Assuming periodicity, we estimate optimal
horizontal and vertical repetition intervals separately for each rectified image.
We define the difference between every pair of intersections, of all the detected
line segments with one of the axes, as a possible horizontal or vertical repetition
interval. In other words, if two intersection points x; and x5 support an interval
I then 1 — x2 = kI for some integer k or mod (z1,]) = mod (zo,I).

Therefore, for every possible interval I, we build a histogram h,, at a resolution
of one pixel, of mod (x;, ). Thus, the number of supporting pairs of lines for

an interval will be
[1-1]

Ny = Z hn —1)/2. (4)

If an interval I is a good candidate, we expect to have sharp peaks in the his-
togram, coming from the unification of repeating lines’ intersection. An example
of such a histogram for a good vs. bad candidate can be seen in Fig. [l However,
for intervals g, é, i .. .}, it is expected to have even sharper histograms.

Thus, the score for interval is set to S; = NI to induce a preference for
I and not for its fractions. The algorithm builds a list of several (three in our
implementation) candidates for I with the maximal scores. The value of St (I mqz)
can be used to detect images with a grid of repeating structures, as can be seen
in the submitted supplementary material.
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Fig. 5. Estimation of optimal I,. Rectified image with all the detected horizontal line
segments and histograms for good (I, = 95.6) and bad (I, = 40) candidates of I,.

It is during the next step, when building a list of all possible transformations
between the two rectified images, we exploit the list of optimal horizontal and
vertical repetition intervals extracted previously. We compute the relative scale
s from Eq. [l by:

§= III?2/II1 5= Iyz/Iyn (5)
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where I, and I,, are the horizontal and vertical repetition intervals in the rec-
tified image respectively. Eq. Blis used to select sets of consistent interval values.
Thus, when estimating the transformation between the two rectified images we
are left with only two out of eight degrees of freedom of a general projective
transformation H: the two coordinates of the relative translation ¢, and ¢,.

In order to detect H candidates, following a similar strategy as in the non-
periodic case, it is required to check all the points from two images belonging
to matched clusters and compute the translation between each pair. Every such
point pair could yield a transformation H. As a result there would be many
more candidates in this case than in the non-periodic case. Therefore, we change
our approach slightly. As we have mentioned earlier, we assume that if the H
is correct, it should be supported not only by repeating key-points, but also
by corresponding locations of unique SIFT key-points. Thus, it is possible to
build H candidate from each non-repeating key-point correspondence. Identically
to the non-periodic case, for each candidate transformation, all feature point
pairs from different clusters which satisfy the transformation relation are found
and are considered point matches which support the homography. Based on
them we compute H using LO-RANSAC [3]. The output of this step is a list of
candidate homographies. The following steps of homography ranking and image
registration are identical to those in the non-periodic case.

3 Experimental Results

We will now present experimental results of our implementation of the algorithm.
We ran experiments with the same settings on all the results included in this
work. We used the publicly available ZubuD database [25] to test our method.
The database contains 1005 color images of 201 buildings (5 images per building)
of scenes in Zurich, taken from different viewpoints and illumination conditions.

As we were interested in the additional value that our method can contribute,
we compared it to the state-of-the-art wide baseline registration algorithms
BLOGS [7] and BEEM [I0], which can estimate the epipolar geometry in many
difficult cases. We first automatically selected all the image pairs, that at least
one of them failed to find a correct fundamental matrix for. We successfully ran
our algorithm on 20 such image pairs of different buildings. Due to the low num-
ber of unique feature points in those images BLOGS succeeded only for 4 image
pairs, whereas BEEM succeeded for 3. We also verified that a SIFT matching
step followed by a standard RANSAC implementation failed on all image pairs.
The results of running our algorithm on all of them, as well a comparison to
other registration algorithms are included in the supplementary material sub-
mitted with this paper. They include the image pairs and a table presenting for
each run numerical results of the various steps of the algorithm.

In Fig. Bl we present four representative results. For each image pair we present
non-repeating key-points that are inliers of a fundamental matrix F. The key-
points, that are also inliers of the homography H are connected with green lines
and, those that were considered as F' supporters are connected with the cyan
lines.
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Fig. 6. Experimental results of our method on object0010, object0033, object0066 and
object0131 from the ZuBuD database
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In Fig.[6(a) we can see an example of a fully planar case, since there is only one
building facade in the left image. As a result, there is an infinite number of funda-
mental matrices that could be chosen, one of which is shown here. In that case, as
discussed earlier, the confidence in ' is low due to a small number of its supporters
(cyan lines) and we report only the recovered H with its inliers (green lines).

Fig. [Bl(b), on the contrary presents both images having two facades. As a
consequence, we obtain a large number of key-points at different depths and
report a fundamental matrix F along with its inliers. We can clearly see a color
differentiation between on-plane and off-plane key-points. Key-points located on
the plane are connected by green lines, whereas off-plane matches are in cyan.

A building with two parallel planes on the same facade is presented in Fig.[6lc).
In this situation, the correct H, maps only one of the planes, whereas the key-
points from the other have different depths and are colored in cyan. In this
example the correct H maps key-points from the inner plane. The matches from
the other plane are used to estimate the fundamental matrix correctly.

Finally, in Fig. [6d) we demonstrate a periodic case. Here there are enough
matches on the second facade to estimate the fundamental matrix correctly.

4 Conclusions and Future Work

In this paper we presented a wide baseline registration algorithm for scenes of
building facades with repeating structures. The algorithm was implemented and
tested successfully on a large number of image pairs for which general state-of-
the-art algorithms usually fail.

Future research will be dedicated to developing an algorithm that can deal also
with scenes of non-planar man-made objects and natural scenes with repeating
objects.
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Non-rigid Self-calibration of a Projective Camera
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Abstract. Rigid structure-from-motion (SfM) usually consists of two
steps: First, a projective reconstruction is computed which is then up-
graded to Euclidean structure and motion in a subsequent step. Reliable
algorithms exist for both problems. In the case of non-rigid SfM, on the
other hand, especially the Euclidean upgrading has turned out to be
difficult. A few algorithms have been proposed for upgrading an affine
reconstruction, and are able to obtain successful 3D-reconstructions. For
upgrading a non-rigid projective reconstruction, however, either simple
sequences are used, or no 3D-reconstructions are shown at all.

In this article, an algorithm is proposed for estimating the self-
calibration of a projectively reconstructed non-rigid scene. In contrast to
other algorithms, neither prior knowledge of the non-rigid deformations
is required, nor a subsequent step to align different motion bases. An
evaluation with synthetic data reveals that the proposed algorithm is ro-
bust to noise and it is able to accurately estimate the 3D-reconstructions
and the intrinsic calibration. Finally, reconstructions of a challenging real
image with strong non-rigid deformation are presented.

1 Introduction

Approaches for rigid structure-from-motion (SfM) usually consist of two steps.
Given 2D-feature correspondences between several images, a projective recon-
struction is estimated which is identical to the true solution up to a projective
transformation. In a second step, usually referred to as self-calibration or auto-
calibration, this projective distortion is removed by imposing a certain structure
on the motion matrices [I]. Assuming the basis model introduced by Bregler et
al. in [2], we consider the problem of computing the self-calibration of a projective
camera which observes a non-rigidly deforming body or scene. We assume that
this camera has an unknown focal length which may vary or be constant, zero
skew and principal point at the origin. Furthermore, the proposed algorithm is
more general than other works as particular non-rigid deformations need not be
known.

Self-calibrating a projective camera can be considered a mature field if the
observed body is rigid [3J4U5106].

In the case of a non-rigid body observed by an affine camera, Xiao et al.
[7] proposed a linear solution. Brand [8] suggested an algorithm in which the
motion constraints are first imposed for a particular, arbitrarily chosen defor-
mation mode, and all other deformation modes are corrected with respect to the

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 177-[[00] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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initially chosen one, an approach which is non-optimal as the error is concen-
trated in all deformation modes but the reference one. Olsen and Bartoli [9] used
a smoothness prior on the camera motion to determine the self-calibration. Tor-
resani et al. [I0] imposed the prior knowledge that the coefficients of non-rigid
deformation satisfy a Gaussian distribution. In a seminal work, Paladini et al.
[11] introduced an iterative projection algorithm which alternates unconstrained
optimization with projection of the motion matrices to the required structure.

To this day, only two algorithms consider the problem of self-calibrating a pro-
jective camera observing a body deforming non-rigidly. Xiao and Kanade [12]
extended their work from [7] to a projective camera with constant focal length.
Hartley and Vidal [13] proposed a method which requires that the intrinsic cam-
era parameters are fixed and known. Similar to [§] they first correct a particular,
arbitrarily chosen deformation mode. Remaining modes are subsequently esti-
mated with respect to the previously corrected ones. While being an elegant,
non-iterative solution, no 3D-reconstructions are shown in this article.

In this article, an algorithm is presented for self-calibration of a projective
camera observing a non-rigidly deforming object. It is assumed that the skew is
zero, the focal length unknown while varying or being constant throughout the
sequence, and the principal point is at the origin. Though seemingly similar to
the requirements in [12], the current work does not demand particular non-rigid
deformation coefficients to be known. Furthermore, the proposed algorithm does
not require a second step (Orthogonal Procrustes Analysis) to enforce identi-
cal rotations. The advantage is that the error should be more fairly distributed
between the bases. To align the bases, additional constraints are necessary. We
therefore generalize the equations introduced by Brand [I4] to the projective
camera model. It is proven that the solution is unique up to a global rotation
and reflection of the world coordinate system and individual scalings of each
basis. The accuracy of the proposed algorithm is evaluated with experiments on
synthetic data. Furthermore, 3D-reconstructions are presented for a challeng-
ing real-image sequence showing a body with strong local and global non-rigid
deformation.

This work is structured as follows: In Section[2 the problem of self-calibrating
a projective camera observing a non-rigidly deforming body or scene is defined.
Constraints by which the problem can be determined are derived in Section[3 It
will be proven that these constraints are necessary and sufficient to obtain the
required structure of the motion matrices. Synthetic and real image experiments
are presented in Section F] before a summary and conclusions in Section [l

Capital letters denote matrices, bold capital letter scalar constants and bold
lower-case letters vectors. Normal lower-case letters denote scalar variables or
counters.

2 Problem Definition

Let there be K 4 x n basis shape matrices Xy, k = 1,...,K, consisting of
n homogeneous 3D-points X7, j = 1,...,N, each, M images with the 3 x 4
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projection matrices P?, i = 1,..., M and mixing coefficients o blending the K
basis shapes

K

k=1

The linear mixing model was introduced by Bregler et al. [2] for an affine camera
model. Here, the scalars \;; are the projective depths necessary for Eq. (1) to
hold true under perspective projection. The projection matrices P consist of
the orientations R?, positions t* and calibrations K* of the camerad]

N

P =K'[R'It'], K'=

o ot

00
Ji 0 (2)
01

with f; being the unknown focal length of the ith camera.

It can be seen that the measurement matrix W consisting of all 2D-features
x;; rescaled with the correct projective depths A;; has rank 3K + 1 if the two
matrices P and X each have rank 3K + 1

, , X

A11X11 0 ApXIN alK'R' - ok K'R' K't! !

W = : : = : . :

: : : : x
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3)
Given all projective depths A;;, for instance by the algorithms proposed in
[15/16], the matrix W can be factorized by singular value decomposition by

Eq. @
W=Uxv", (4)

where U € R3*BK+D) - 57 ¢ REKADXGKAD) and V' e ROK+ADX?  We may
consider U as projectively distorted camera matrices P, and X'V as structure
matrix X perturbed by the inverse distortion.

The problem of non-rigid projective self-calibrating is to determine a (3K +
1) x (3K) matrix A which transforms U such that UA satisfies the required
structure of the first 3K columns of P, i.e. each row triple of UA must consist
of scaled instances of a rotation R’ distorted by some K°.

! With some risk of confusion, we use the symbol K* for the intrinsic camera cal-
ibration in the ith image whereas the bold letter K denotes the number of basis
shapes.
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3 Deriving Constraints on Non-rigid Self-calibration

Let U? denote the ith row triple of U. Straightforwardly applying the derivation
of the dual absolute quadric of rigid scenes to the non-rigid case, we arrive at

200 1 -
w;=K |0 f20| = , UAATU’ (5)
;B
001 i

where w; denotes the dual image of the absolute conic w; = K;K,' at image i,
Bi = ((04)? + -+ + (a’)?), and the scalars ~; account for the perspective projec-
tion in image i. The positive-semidefinite (3K +1) x (3K +1) matrix 2., = AAT
of rank 3K is the extension of the dual absolute quadric to the non-rigid case.

It is obvious that Eq. () is ambiguous: any change in ;, for instance can be
compensated by a scaling of 3;. Similarly, and scaling of all af, i = 1,...,M
requires an inverse scaling on the kth structure basis Xj.

Given w as defined in Eq. (@), we can obtain four equations per image for
determining 2., = AAT

uflTAATu?J =0, (6a)
w ' AATwE —wiAA Ui =0 (6b)

where ui{TII’b}, a # b, denotes the first, second, or third row of U*. Equations (@)
are the so-called orthogonality constraints derived by Xiao et al. for the problem
of self-calibrating an affine [7] or projective camera [12].

While it seems straightforward to determine 2., by solving Eq. (@), it was
shown that even the affine problem is indeterminate [717]. With a slight risk of
confusion, denote by P’ the row triple corresponding to image i of matrix P in
Eq. @). In the case of a projective camera, we obtain for the ambiguity:

Lemma 1. Let there be a 3K x 3K matriz D,

d1101 d1202 d1303
D = do101 d220a dosO3 - -- 7 (7)

where dgp, are scalar factors and the 3x3 matrices O, c = 1,..., K, are arbitrary
elements of the orthogonal group, i.e. 0.0] = 1.

Then, Eqs. (@) are always satisfied for 2., = DD, yet P* and P'D are not
mvariant up to a similarity transformation.

Proof. Assume a general deformation matrix

dinDu - dikDik
D= : : : ; (8)

drx1Dg1 -+ dxxDii
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where the 3x3 matrices Dy;, and the scalars dy;, are arbitrary. Letting S = DD,
Sap 3 X 3 blocks of S, 4, be sums of the d,p, and

S = [(B1 S + -+ UliSk1) + -+ + (Bl Six + -+ + %1% Skk)],  (9)

we obtain the three equations

V2BifE = rqS’ril (10a)
il ol

VBifl =1’y S'r' (10b)

0= riZS'rib, a#b, (10c)

where ri17273 denotes the first, second, or third row vector of R’.

If we take the 3 x 3 matrices Dy = Ok, a = 1,...,K, all the matrices
Sap are scaled identity matrices, Sup = sqpl, for arbitrary scalars sup, hence
Equations ([0 are always satisfied. O

Please notice that the third rows of the rotation matrices are only constrained
by the orthogonality constraint (I0d). Since ri;S’ ris = v2p;, the lengths of the
third rows are arbitrary. As the equations including the focal length depend on
depend on the third row (by 72 and 3;), the focal lengths are also arbitrary,
therefordd.

Furthermore, the Equations ([0) do not define constraints between Ay, and
Ay, k1 # ko) A= [Al e AK]. Brand gave such constraints in [I4] for an affine
camera. Due to the affine model, they only define constraints on the first two
rows, hence the ambiguity between focal lengths and projective depths as well
as non-rigid mixing coefficients remains.

The problem is thus to define constraints between the different Az, and Ag,,
and on the third rows u} T Ayj. We now arrive at the central contribution of this
article, namely additional constraints for constraining the self-calibration matrix
A of a projective camera.

Theorem 1. Given projectively distorted 3 x (3K + 1) matrices U®, a matriz
A=A, - Ak] satisfying Egs. [@) and

il i\ 2 il i il i
(ua A,ﬁA;uJ - (ua AklAglua) . (ua AkQAg,zua) =0 (11a)
T . T .
(uzl Ak1 A;—I uzl) : (uZS AkZA—kFQ ué) -
(uilTAsz—eruO : (ui;AklA—krlu@ =0 (11b)

fora=1{1,2,3} and k1 # ko in the unknown column triples Ay of A transforms
a projectively distorted U to the structure required by Eq. @)). Equations (I
are necessary and sufficient to transform matrices U'A such that the column

2 Such an indeterminacy could be attractive to fit a non-rigid model if some or all
focal lengths are a-priorily known.
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triples U Ay, constitute aligning orthogonal systems, and the lengths of the first
two vectors ui{Tl72}Ak1 of any basis k1 and the lengths of the first two vectors of
any other basis ky are related by multiplication with (of,,)* and (o, )?.

Proof. Necessity: By Eqs. (@), the six vectors uig—l’z’s}Akl and uig—l’z’g}Ak2 form
two systems of orthogonal vectors. Provided sufficiently many images,

T .
uza AklA—krguza — (12)

0y Ak, | - [0 A, |

holds true if and only if each pair of vectors u";—Ak1 and u’;rAk2 points into the

same direction, thus Equation (ITal) imposes that the two systems of orthogonal

vectors align for a = {1,2,3}. Equations (@) and (@) further require that

il i il i
u’y AklA—krlul _ u’y Ak2A—kr2u1 _ (¢2)2 (13)

i T T i i T T i
u'y Ay, Ay uy uly A, Ay ug

for some scalar variables ¢* from which we obtain Eq. (IID).
Sufficiency: If A satisfies the Eqgs. ([II), the matrix U*A has the following struc-
ture

, ¢ 00 , ,
U'A= |0 ¢'0 [oiR’ JfKRZ] (14)
001
for some scalars o*. a

Please notice that Eq. ([Ial) has to be imposed for all three vectors ul, a =
{1,2,3} in order to define a constraint on v?8;.

If the focal length is known to be constant yet unknown, we can impose that
constraint by requiring that ol¢! = - .- = eM@M. In the following, denote by 4,
and 75 two different image numbers.

Corollary 1. The equation
(u“jA;&l{u’f) . (uingkAgu?) —
(uiQITAkA,Iqu) : (u“;AkA—krugl> =0 (15)
for i1 # iy imposes constant focal length throughout the images.

Proof. We must require that any ¢’ equals any other ¢ for i; # s, hence we
obtain from Eq. ([T

i1 | Tyl o | T et

u'ty AgAgult u?y AgApuy (16)
i T Tod1 in | T,.1

utg AgA ugt a2z AgA, ug

from which Eq. (I8 follows directly. a
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The set of Eqs. (@) and () impose the required structure on the matrices U®.
The question is the remaining ambiguity.

Lemma 2. Given a transformation A satisfying the sets of Eqs. (10) and (11)
which brings each U' to the required structure, scalars dy, k = 1,..., K, and
an arbitrary 3 x 3 matriz Oy which is an element of the orthogonal group, i.e.
OgO; =1, then A is ambiguous up to multiplication with a matriz D

d110, d120,
D= d210g d220g e (]_7)

Proof. To satisfies Egs. (10), we may assume that D has the structure as defined
lemma (1). Let Dy denote the kth column triple of D, and let

d3 I dygdopd -~ dypdgrl
Spx = DD} = and (18a)
drrdip] dgpdopl -+ d%, 1
dik, d1k, Or, O, -+ din, dicr, Or, Oy,
Siiks = Dy, Dy, = : (18b)
dick, 1k, Ok, O, -+ diciy dick, O, Oy,
where I denotes the 3 x 3 identity matrix, and Ok, and Oy,, k1 # k2, are 3 x 3
matrices of the orthogonal group.

Let P? denote the row triple of P corresponding to the ith image. Then, we
have

PSSk P = ((0d)2dug, dagy + - .
(k) dirydick,) K'RIOR, OL RTK' and  (19a)
PSPt = ((04)%d%, + ... + (aig)2d%;) KK (19b)
From Eq. ([9a) and Eq. (I1a)), we can see that Ok, and O, must be identical if

there are sufficiently many images. Equation ([ID]) imposes no further constraints
on the structure of D. O

Lemma [2] implies that any matrix A satisfying Eqs. (@) and () is unique up
to a global rotation and reflection of the world coordinate system. Furthermore,
the bases are unique up an individual scaling of each basis.

Minimizing Eqgs. (I0) and (1)) amounts to minimizing the Frobenius-norm

H UiAAT U~ K K”HF. (20)

Since minimizing the Frobenius-norm of A is equivalent to minimizing its singular
Valuesﬁ, it is necessary to prevent a rank-degeneracy of A. We therefore impose

% Since ||A|lr = />, 0(A)? where o(A); is the ith singular value of A.
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the constraint that the smallest singular value of A is larger than 0.1. This
constraint also prevents the trivial solution due to the scalar factors ; and 5;

in Eq. ([@).

4 Experiments

4.1 Synthetic Image Experiments

For synthetic evaluation we created a 25-image sequence consisting of 726 3D-
points of an ellipsoid morphing into a sphere. Six images of this sequence are
shown in Fig. At each image the 3D-shape rotates by 7.2° around the y-axis
while translating in direction of the z-axis.

To measure the influence of noise, we added normally distributed noise with
standard deviation set to 0% to 3.0% in steps of 0.5% of the maximum variation
in x, y and z-direction. For each noise level, we created 10 contaminated data
sets to compute average errors. As error measure, we took the average of the

(a) == e £ St

Fig. 1. (a) Six images of a sequence of 25 images showing an ellipsoid morphing into
a sphere. At each image the 3D-shape rotates by 7.2° around the y-axis (upwards)
and translates in direction of the z-axis. The focal length is constant throughout the
sequence. (b) Same structure and motion while the focal length changes between images
1-12 and 13-25.
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Fig. 2. Example of a 3D-reconstruction if the data is contaminated with normally
distributed noise (blue: reconstructed shape; red: ground truth shape). The standard
deviation was set to 1% of the maximum variation in x, ¥, and z-direction.
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Euclidean distance between the 3D-points of the ground truth shape and the
reconstruction after translating it so that the centroids of both point clouds
coincide since the dual absolute quadric constraint ignores the (3K +1)st column
of matrix P in Eq. (B)). We normalized this number by the Frobenius norm of
the ground truth shape

B 1 ||th 7X68t||p

€
no || X9 g

(21)
Here, X9t denotes the matrix consisting of the ground truth 3D-points (for sim-
plicity we omitted an index denoting the image number), and X ¢ the matrix
consisting of the the estimated 3D-points. The symbol || - || denotes the Frobe-
nius norm.

For optimization, we use semi quadratic programming. Since the algorithm is
susceptible to local minima, we randomly initialize it 40 times and take the best
result.

We reconstructed 3D-shapes using two basis shapes (K = 2). Figure B left
plot, shows a the average error as the noise increases. As can be seen, the pro-
posed method is quite robust with respect to noise. In the right plot of Fig. [3]
we show average errors per image for noise levels 0%, 1% and 2%. The error is
not evenly distributed yet there are no exceptional spikes.

For a second experiment, we used the same structure and motion shown in
Fig. yet changed the focal length between images 1-12 and 13-24. This
sequence is shown in Fig. The left plot of Fig. @ shows the reconstruction
errors. The right plot of this figure shows the reconstruction errors per image.

To evaluate the estimated calibration matrices we computed the following
error metric

1
%-2 Bi
The left plot in Fig. Bl shows the calibration errors for constant focal length
(corresponding to the sequence shown in Fig. , the right plot for varying f
(Fig. Apparently, the proposed algorithm can handle constant and chang-
ing focal lengths well.

The average estimated focal lengths per image are shown in Fig. [0l The left
plot shows the estimations for constant f = 5 whereas the right plot shows them
for f = 4 in images 1 until 12 and f = 6 in images 13 until 25. It can be seen
that under noise, the algorithm deviates more from the true values as each image
induces its own estimate of the focal length.

Figure [2] shows an example of the reconstructed 3D-shape in the first if the
data is perturbed with noise of standard deviation 1%. Blue points denote esti-
mated 3D-points, red points the ground truth. Apparently, the estimated points
and the ground truth points almost coincide.

¢ = ; ‘ UAAT U K KT (22)

F

4.2 Real Image Experiments

Figure[[shows six images of a 25-image sequence. It shows a box whose sides and
top paper deform non-rigidly. Please notice that the top paper exhibits strong
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Fig. 3. Left: Average 3D-errors for increasing levels of noise with constant yet unknown
focal length (corresponding to the sequence shown in Fig. [L(a)). Right: Average 3D-

error per image for noise levels of 0% (solid blue line), 1% (dash-dotted green line) and
2% (dashed red line).
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Fig. 4. Average 3D-errors for a changing focal length and the sequence shown in
Fig. Left: Average 3D-errors for increasing levels of noise. Right: Average 3D-

error per image for noise levels of 0% (solid blue line), 1% (dash-dotted green line) and
2% (dashed red line).

deformations which cannot be explained by a multi-body or articulated chain
model. A total of 375 points were tracked throughout the sequence.

For projective 3D-reconstruction we used the algorithms proposed in [I5/T6]
which amounts to camera resectioning and intersectioning. We assumed two
rigid basis shapes (K = 2) and thus optimized for a rank of 7 of the observation
matrix.

3D-reconstructions of the shapes observed in every fifth image are shown in
Fig. B From left to right are shown the image number, the 3D-reconstruction
corresponds to, the image, a top view of the estimated shape, a side view (from
left), a frontal view, and another side view from the right.

The planar sides of the box show a strong perspective distortion. This is due
to the estimated projective depths. The configuration of the frontal and the



Projective Non-rigid Self-calibration 187

T <4
e o
%08 o
S §3
806 ©
2 22
804 8
2, 2
©0.2 9]
o [
s 0 s 0
1 5 10 15 20 25 1 5 10 15 20 25
image number image number

Fig. 5. Left: Average calibration errors for different levels of noise (blue: no noise,
green: o = 1.0, red: o = 2.0) per image. Left: constant focal length; right: focal length
varies between images 12 and 13.
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Fig. 6. Left: Average focal lengths for different levels of noise (blue: no noise, green:
o = 1.0, red: o = 2.0) per image. Left: constant focal length f = 5; right: focal length
varies: f =4 in images 1 until 12 and f = 6 in images 13 until 25.
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Fig. 7. Six images of a 25-image sequence with 375 trajectories showing a box deform-
ing non-rigidly. The top paper deforms non-rigidly, so a multi-body model would not
be satisfied.

left plane to each other closely reflect the shape of the box in the images. The
non-rigid bending of the 3D-points on the top structure also closely resembles
the shape of the top paper in the images. Overall, the reconstruction looks
reasonable.
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Fig. 8. Six images of a 25-image sequence with 375 trajectories showing a box deform-
ing non-rigidly. The top paper deforms non-rigidly, so a multi-body model would not
be satisfied. Shown from left to right are image number, image, top view, left side view,
frontal view and right side view of the reconstructed 3D-shape corresponding to each
image.
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5 Summary and Conclusions

The contributions made in this article can be summarized as follows: Considering
a pinhole camera with unknown focal length which may be varying or constant,
the problem considered in this work was to determine the Euclidean upgrading
if this camera observes a non-rigidly deforming object or scene. To align all
motion bases simultaneously during optimization, i.e. enforce identical rotations,
constraints were derived which allow joint estimation of all motion bases. In
terms of error distribution such a joint estimation should be more fair with
respect to the different bases.

It was proven that the upgrading transformation is unique up to rotation and
reflection of the world coordinate system and individual scalings of each basis.
By evaluation of synthetic data as well as a 3D-reconstruction of a difficult real
image sequence in which the object exhibits highly non-rigid distortion, it was
shown that the proposed algorithm is indeed quite robust to increasing noise
and able to reconstruct accurate 3D-shapes.

In future works we will focus on generalizing the camera model to a fully
projective model whose intrinsic parameters are all varying and unknown. Fur-
thermore, means of global optimization will be investigated.
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Abstract. This paper presents a multi-view stereo algorithm for piece-
wise planar scene reconstruction and optimization. Our segmentation-
based reconstruction algorithm is iterative to minimize our defined en-
ergy function, consisting of reconstruction, refinement and optimization
steps. The first step is a plane initialization to allow each segment to
have a set of initial plane candidates. Then a plane refinement based
on non-linear optimization improves the accuracy of the segment planes.
Finally a plane optimization with a segment-adjacency graph leads to
optimal segment planes, each of which is chosen among possible plane
candidates by evaluating its relationship with adjacent planes in 3D. This
algorithm yields better accuracy and performance, compared to the pre-
vious algorithms described in this paper. The results show our method
is suitable for outdoor or aerial urban scene reconstruction, especially in
wide baselines and images with textureless regions.

1 Introduction

Our goal is to reconstruct a 3D geometry model from a multi-view image se-
quence of an urban scene from aerial or ground level viewpoints. Since these
scenes consist mostly of a set of man-made planar structures, we use an image
segmentation where each segment can be well approximated by a plane.

Most segmentation-based stereo algorithms begin scene recovery by perform-
ing pixel-by-pixel dense correspondence and triangulation to obtain a set of 3D
points, giving matches for an image pair. Given a segment with its 3D points, a
plane is assigned by plane fitting methods (least-squares or RANSAC). Then the
depth- or disparity- based planes are propagated among neighboring segments to
obtain an optimal plane set [IJ2I3]. These segmentation-based approaches have
been popular due to the reconstruction quality, compared to conventional dense
stereo methods.

In the case of wide baselines or images with textureless regions that we aim
to reconstruct, however, the plane-fitting-based approach becomes poor due to
T-junctions or mismatches in the initial dense correspondence that the fitting
relies on. These algorithms also use a smoothness term in their cost function to
suppress incorrect planes and to give continuity (smoothness) among adjacent
segments. However, an optimal solution to guarantee that many parts (segments)

K.M. Lee et al. (Eds.): ACCV 2012, Part IV, LNCS 7727, pp. 191-B04] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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of the scene are well-connected with their neighbors is still needed for high quality
piecewise planar scene recovery.

In this paper, we propose a robust piecewise planar scene reconstruction and
optimization algorithm for outdoor or aerial imagery. Our iterative reconstruc-
tion consists of plane initialization, photo-consistency refinements, adjacency
optimization, and outlier removal to effectively converge to a local minimum of
the energy function. In particular, the optimization step chooses the best piece-
wise plane so far in terms of continuity among adjacent segments according to
a segment-adjacency graph.

This paper is organized as follows: Section 2 discusses previous work, together
with our contribution. Section 3 gives our algorithm in detail. Section 4 provides
experimental results, followed by the conclusion in Section 5.

2 Related Work and Contribution

Robust Piecewise Planar Scene Reconstruction. Our first contribution
is the robustness of our planar reconstruction, especially for wide baselines and
images with textureless regions. Our iterative framework effectively minimizes
the energy function to obtain an optimal plane set. One related work is the algo-
rithm of Kim et al. [4]. We adopt their direct plane homography estimation in our
plane initialization because their method is appropriate for wide baselines and
textureless regions. However, their approach is computationally expensive, due
to the large number of sample planes that must be evaluated. Their algorithm
also does not include any plane-wise smoothness energy term. We overcome these
problems, as addressed in the following sections.

Another related work is Manhattan World Stereo [5] in which planes are axis-
aligned to a “Manhattan World” urban or indoor scene, given initial 3D points
from PMVS [6]. But we want our algorithm to be more general so that planes
that are not perpendicular to one of the three axes can also be recovered. Multi-
View Superpixel Stereo [7] also recovers a set of planes by restricting the number
of plane orientations to avoid plane ambiguity. Like Manhattan World Stereo,
however, a slanted plane may be suppressed into parts of other planes.

Plane Sweeping [8] is a planar reconstruction algorithm using a set of fea-
ture matches with an intensity-based cost evaluation. Gallup et al. [9] present a
RANSAC-based method to classify a set of initially reconstructed points into pla-
nar or non-planar regions. Iterative Plane Fitting [I0] is a planar reconstruction
that requires manual plane initialization. Again, all these methods rely heavily
on initial pixel-wise matching, which may not be suitable for wide baselines.

Sinha et al. [I1] incorporate a set of initial planes and line segments. Their
smoothness term uses a lower label difference cost for pixels on opposite sides
of a crease edge. In the case that two planes’ normals are similar (but differ
by more than 5 degrees), the intersection line may not give an accurate 2D
edge due to the ambiguity of discretization so that some neighboring pixel pairs
can be located on the same plane. Also, their recovered planes seem too sim-
plified - multiple planes are merged into one plane. Zhang et al. [I12] do bundle
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optimization by non-linearly optimizing planes using approximate derivatives,
similar to our refinement step using analytic derivatives.

Improved Plane Initialization. As discussed earlier, our plane initialization
adopts the algorithm of [4] where a plane for each segment is obtained by taking
equally spaced sample points along camera rays through three corners of the
segment, and then selecting every plane through three such sample points, one
on each ray. Compared to the exhaustive sampling in [4], our plane initialization
is made much faster and more efficient by incorporating an adaptive sampling
scheme with an image pyramid and an image descriptor. When a segment is
relatively large, we use the same region of a lower resolution image because large
segments are less sensitive to noise and the energy cost is more likely to converge
to the minimum. Low resolution images also reduce the number of ray sample
points for plane sampling, which significantly reduces computation time.
Another speedup is achieved by using the DAISY descriptor [I3]. Instead of
using an image descriptor for pixel-by-pixel matching, we utilize it as an assistant
to skip the energy evaluation for a large number of unnecessary candidate planes.
For instance, if none of the three sampled 3D corner points induces a descriptor
vector distance lower than a threshold, we skip the evaluation of that plane.

Plane-Adjacency-Based Optimization. Many Markov Random Field (MRF)
formulations have a smoothness term in the energy function to suppress recon-
struction noise. However, the pixel-wise smoothness that many algorithms use is
not appropriate for planar structure recovery. For instance, the algorithm of [2]
regards all boundary pixels in each segment as adjacent pixels in the smoothness
disparity constraints, which causes an incorrect (too smoothed out) surface in
case of perpendicular segment planes. The algorithm of [14] uses a discontinuity
cost to smooth out depths except at the segment boundary, given a segment-wise
MRF. To find an optimal plane for each segment in the planar scene recovery,
however, we need to know which pixels belong to the connecting region between
an adjacent segment pair.

Our plane-wise smoothness has more sophisticated adjacency information to
locate which pixels are adjacent to a certain segment, resulting in more accurate
planar geometry. In each optimizing iteration, we rebuild the segment-adjacency
graph by checking the likelihood of pixel adjacency and by finding a combination
of two adjacent segment planes that maximizes the likelihood of adjacent pixels
in order to give good connectivity among adjacent planes. A segment edge in
the graph stores not only the connectivity between two adjacent segments, but
also adjacency of each individual boundary pixel of the segment.

3 Algorithm

3.1 Reconstruction Overview

The algorithm starts with the Mean-Shift color segmentation [I5] that many
segmentation-based stereo algorithms use. Given a set of segments in the
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reference image, we do a plane initialization to collect several good plane
candidates for each segment, each of which has an energy cost lower than a
threshold. Then we iterate a photo-consistency-based plane refinement and a
segment-adjacency-based optimization so that the total cost converges to the
minimum of the energy function. From our experiments, two or three iterations
are sufficient. Afterwards, any plane outlier is filtered out. Fig.[Iland Fig. 2 show
the overall process and an example of reconstruction according to the iterative
process.

Plane Refinement |_,| Optimization Outlier
Initialization (Photo-consistency) (Adjacency) Removal

n iterations

Fig. 1. Iterative reconstruction and optimization process

Fig. 2. Reconstruction results according to the iteration. From left to right, plane
initialization, refinement, optimization, and after multiple refinement and optimization
steps.

The goal is to find an optimal plane set X, one plane for each segment, that
minimizes the following three terms in our energy function E. That is, each
segment plane x has good photo-consistency Eppoto in target views in which the
segment plane is visible, good visibility Evsipiity in all target views, and good
3D adjacency Eagjacency to its neighboring segment planes. The energy function
is defined as follows:

E= Z (EPhoto(x) + AIEVisibility (.’E) + )\ZEAdjacency (33)) (]-)

where \; and A\ are adjustable weights. (Defaults are 0.5 and 0.5, respectively.)

Photo Term. The photo term Eppoto(x) measures photo-consistency between a
reference segment plane = and its homography-remapped region in a target image
i in which the segment plane is visible. This term is based on the summed squared
color /intensity differences, which is widely used in other stereo algorithms. Since
we do not apply the boundary matching energy term in [4], we instead use a
dilated segment to force the boundaries to match, and to exclude very slanted
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planes which might otherwise give good color matches in the segment interior.
The photo term is defined as

> Vil@) 22, C(Hi(p){P(p) — R»(Hi(p))f)lﬂ 2)

22 Vi(w) 22, C(Hi(p))

where p is a pixel position within the dilated reference segment region, V;(zx) is
1 if « is visible in target image 7 and 0 otherwise (see next paragraph), C(p) is 1
if p is within the target image region and 0 otherwise, H;(p) is the homography
that the plane x and the camera geometry induce between the reference image
and a target image i, and P(p) and P;(p) return the pixel value of the pixel p
from the reference image and target image i, respectively.

EPhoto (1') - (

Visibility Term. The visibility term indicates whether or not a segment plane
is visible by checking the plane normal and the boundary clipping. When a plane
is too slanted in a target view (i.e., the angle between the plane normal and the
ith camera direction is larger than a threshold), or if too large a proportion of
the homography-mapped segment’s pixels are outside the boundary of target
image 7, the plane is regarded as “not visible”. The visibility term is defined as

Evisiitity () = N- %i/.’ vi@) (3)

where N is the total number of target images.

Adjacency Term. This adjacency term is our smoothness term that not only
suppresses error planes, but also ensures connectivity among adjacent segment
planes. As discussed earlier, many segmentation-based stereo algorithms use a
pixel-wise smoothness term that adds a discontinuity penalty to the given energy
function. However, we believe such a pixel-wise smoothness does not guarantee a
well-reconstructed planar geometry. Therefore we do not measure the minimum
distances of all adjacent point pairs between the current segment and its sur-
rounding segments. Instead, we measure a ratio of the number of adjacent point
pairs in the 3D domain to the number of adjacent pixel pairs in the 2D image
domain for each segment s with a candidate plane . An adjacent point pair is
an adjacent pixel pair in the 2D image domain whose 3D points are within a
distance threshold. Thus

Za A$ (a) (4)
M

where a is an adjacent pixel pair between segment s and one of its 2D adjacent
segments, A, (a) is 1 if the two 3D points of a are within the 3D distance thresh-
old and 0 otherwise, and M is the number of 2D-adjacent pixel pairs of segment
s. The segment-adjacency graph is also adaptively generated, along with mea-
suring the adjacency term. More details on the adjacency-based optimization
are described in Section 3.4.

EAdjacency(Sax) =1-
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3.2 Plane Initialization

In this step, we consider only the first two terms to be minimized since the
adjacency term cannot be measured without a set of segment planes. We perform
this plane initialization to obtain a set of initial segment planes by directly
comparing each homography-remapped reference segment with target images in
which the segment plane is visible.

However, the number of plane samples to be evaluated is extremely large. If
each camera ray is discretized into m samples, m? plane samples need to be
evaluated. The number m of samples on each camera ray varies (from 20 to 500
in our experiments), depending on the input images and the initial 3D bounding
box. The hierarchical refinement in [4] is still computationally expensive because
we need to evaluate in the first pass a large number of sample planes in what may
turn out to be empty space. To overcome this inefficiency, we apply an image
hierarchy starting with an optimal m, and use the DAISY image descriptor.

The idea of an image hierarchy is to reduce m by using a coarse-level image if
a segment is relatively large. Initially, the number mg of ray samples for segment
s is proportional to the maximum pixel distance of the projected points on
the first target view (i.e., a target view closest to the reference view, with the
narrowest-baseline) between the starting and ending points of the segments of
the three camera rays that are within the 3D bounding box of some initial sparse
3D matched points. Thus

ms = aiinf’i)’(g |C()SS,Z‘ - C()ES,Z‘| (5)
where Cj is the camera projection matrix of the first target view, S,; and
E; (i =1,2,3) are starting and ending points along ray 4, obtained from the 3D
bounding box, and « is a parameter, depending on the scene (mostly 2 to 5 from
our experiments). Optionally, we may pick a target view that gives the widest
baseline for more robustness; however, this increases ms and thus the compu-
tation time. Now we want to reduce m, by using an image hierarchy. Given
the number Ny of pixels in a segment s, we compute an initial image hierarchy
level as

Yogy, Ne if Ny > 6
= 2 26 N
Level(s) { 0 otherwise ©)

where ¢ is a threshold (~500 in experiments). If this function returns 0, the
original image set is used. Otherwise, we use a Gaussian down-sampled image
set at level Level(s), and reduce mg by a factor of 1/2L¢v¢(s). For segment
dilation, we dilate the segment region by 2 4+ Level(s)/2 pixels. Once we find
the best plane in the first pass, we hierarchically search for a better plane by
sampling the corner rays in smaller intervals near the corner points of the best
plane so far. Unlike the algorithm of [], our coarse-to-fine search is done with
the pyramid image so that the next pass uses a finer image level. Also, since we
consider the first two terms without the adjacency term in this initialization,
we sometimes fails to converge to a global minimum. We keep all good plane
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candidates (Eppoto () + Evisivitity (€) < 7¥) obtained in every pass, where 7 is a
threshold (0.5 in our experiments), instead of discarding all other planes except
the one best plane so far in the previous pass.

The next enhancement to improve the initialization performance is to use
the DAISY descriptor to skip bad plane samples. Prior to plane sampling and
evaluation, given three corners of a segment and their corner samples along the
rays, we compute the Euclidean distances of DAISY descriptor vectors between
each corner pixel in the reference image and the projected corner samples onto
the first target image (i.e., corner points along the epipolar line in the first target
view), together with the minimum distance. Then every sample in each camera
ray is tagged as 1 if the ratio of the distance to the minimum distance is less
than a threshold (~1.7 from our experiments), and 0 otherwise, as shown in
FiglBl When we do the plane sampling and evaluation, we examine the three tag
values in a given plane sample to determine whether or not the current plane is
likely. If at least two tags are 1, that plane sample is evaluated. Otherwise, that
plane sample is regarded as “unlikely”, and is not evaluated.

Segment with Three Corners Three Epipolar Lines
in Reference Image in 1t Target Image
. @ @ ]
@* ®
. Ol —_—
® k
% Range from 3D Bounding Box ~>‘ l
®
Distance of Minimum
05]02]0.1]007/009 04| 03 0.07
Corner Samples ‘ ‘ l ‘ 00 ‘ & ‘ ‘ | Distance
Tags of

CornerSamp]es‘o‘Ollll‘1‘0|0|

Fig. 3. Plane initialization with an image descriptor along three corner rays

3.3 Refinement

Given a set of initial planes, we refine the plane set by optimizing the four
coefficients for each plane so that the homography minimizes the photo term in
the given energy function, with the L-BFGS non-linear optimization algorithm,
which uses analytic derivatives of a cost function, similar to the photo term, with
respect to the plane coefficients. This derivative-based refinement is much faster
than the sampling method discussed above, but it converges to what may be
only a local minimum, so it must be preceded by a more exhaustive approximate
search.

This refinement step and the following optimization step are iterative, that
is, this refinement can also be done after the optimization. Each refinement
iteration continues until the L-BFGS algorithm converges to the local minimum,
using a sub-segment region in the reference image that excludes occluded pixels
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or pixels out of the target image region. To improve the quality of segment
planes or to quickly converge to a global minimum of the cost function, we do
multiple refinements, each of which re-initializes segment visibility information
(i.e., which pixels are visible in which view).

3.4 Optimization

In this step, we consider the adjacency term, together with the first two terms.
For each segment, we choose the optimal plane that minimizes our energy func-
tion among a set of good plane candidates. The adjacency term is obtained
from the number of adjacent 3D point pairs between the segment plane and the
planes of its 2D adjacent segments. This plane optimization is also iterative,
since choosing the best segment plane given its neighboring segment planes also
affects the adjacency term of the neighboring segment planes.

Adjacent Pixel Pairs
Segmented Image Segment Ids

for Segment 1

1 5 4 3

9 4 3

2 9 8 3

13| 8 3

3 1312 2

18 |17 | 2

Pixel in Current Segment 181231 2

Pixel in Adjacent Segmem‘k&4 23 2
Adjacent Segment Id

Fig. 4. Adjacent pixel pairs between segment 1 and its adjacent segments 2 and 3

Adjacent pixel pairs are a set of pixel pairs, each of which has one pixel in the
segment and the adjacent pixel in another segment, as illustrated in Fig. [l For
each pixel pair, we compute the actual 3D distance between the 3D points found
from intersecting the pixel pair’s viewing rays with their respective candidate
planes, to see if the distance is smaller than a threshold. Since the threshold
depends on the scene, we compute the 3D adjacency threshold (s, z) separately
for each segment s with its best plane so far, plane .

e(s,x) = B|Pl(z,ps) — Pl(z,p,)| (7)

where ( is a constant (3 from our experiments), ps = (pz, py) is the center pixel
in segment s, p, = (pz+1,py+1), and Pl(z,p) gives pixel p’s 3D point on plane
x with respect to the reference camera (i.e., intersection point of the pixel’s
viewing ray and the plane x).

Once we choose the best plane among plane candidates, we also build a seg-
ment adjacency-graph where each segment is a node and a graph edge represents
adjacency between two segments. This reflects actual adjacency in 3D between
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neighboring segments. Initially, we add a graph edge between every pair of seg-
ments that are adjacent in the image domain. Then we update the segment-
adjacency graph, as the optimization iteration goes on. That is, if few of the 2D
adjacent point pairs between two segments are adjacent in 3D, we remove the
graph edge between them. The final graph is used for the next step to get rid of
plane outliers.

3.5 Outlier Removal

Any bad segment plane is filtered out in this step. First, we remove any segment
plane whose total energy function is higher than a threshold, due mostly to
occlusion. We also check if either the photo or adjacency term is higher than a
threshold. We do an additional outlier removal by using the segment-adjacency
graph generated in the plane optimization. If a segment plane has no adjacent
segment plane in the graph, we discard it, similar to the filtering in [4]. If a
segment plane has a number of adjacent segment planes less than a threshold
(e.g., 1 or 2) and is also too slanted with respect to its neighbors (i.e., the angle
difference between the two plane normals is large), then it is also filtered out.

There is a trade-off between the accuracy and the completeness, depending
on the thresholds. Unlike dense stereo algorithms that interpolate disparities of
occluded pixels, such thresholds are inevitable, due to the cases that a segment
is not planar or is occluded from many target views. A discarded non-planar seg-
ment can be reconstructed as individual points using conventional dense stereo
algorithms, as in [4].

4 Experiments and Discussion

To evaluate the effectiveness of our algorithm, we performed a synthetic scene
reconstruction, together with quantitative evaluations such as accuracy and per-
formance. For these experiments, we used a synthetic dataset with known camera
poses and ground-truth data from [16]. We also used two outdoor scene datasets
from [16], and two aerial urban scene datasets from [I7J18]. For the camera poses
of these real datasets, we used Bundler [19].

Fig. 5. Synthetic Scene Reconstruction. One of the input images (left), and a recon-
structed scene (right).
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Table 1. Quantitative evaluations of the synthetic scene reconstruction. top: accuracy
according to reconstruction steps: (1) plane initialization; (2) refinement; (3) opti-
mization; (4) refinement; (5) optimization; (6) outlier removal. bottom: accuracy vs.
completeness measures according to the total energy cost threshold.

(1) (2) 3) (4) (5) (6)
RMS Error 0.00371 0.00291 0.00254 0.00241 0.00242 0.00097
Threshold 0.2 0.3 0.4 0.5 0.6
Completeness (%) 84 88 95 98 99
RMS Error 0.00085 0.00097 0.00110 0.00111 0.00242
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Fig. 6. Quantitative evaluations of the synthetic scene reconstruction. Accuracy of
reconstruction by different methods (left), and initialization performance according to
segment size (right).

4.1 Accuracy

Fig. Bl shows our reconstruction result for the synthetic scene dataset. Table [l
summarizes two quantitative evaluations of the synthetic scene reconstruction.
The RMS error indicates the RMS distance between the reconstructed result and
the ground-truth of the synthetic model. The first evaluation is to compare the
accuracy according to reconstruction steps, as shown in Table [l (top). As the
refinement and optimization iteration went on, the RMS error decreased. Table[d]
(bottom) shows the trade-off between the accuracy and the completeness when
changing the total energy cost, one of the thresholds, in the outlier removal.
We did another quantitative comparison of the accuracy, together with other
algorithms, a