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Abstract. Multi-view head-pose estimation in low-resolution, dynamic
scenes is difficult due to blurred facial appearance and perspective
changes as targets move around freely in the environment. Under these
conditions, acquiring sufficient training examples to learn the dynamic
relationship between position, face appearance and head-pose can be very
expensive. Instead, a transfer learning approach is proposed in this
work. Upon learning a weighted-distance function from many examples
where the target position is fixed, we adapt these weights to the scenario
where target positions are varying. The adaptation framework incorpo-
rates reliability of the different face regions for pose estimation under
positional variation, by transforming the target appearance to a canoni-
cal appearance corresponding to a reference scene location. Experimental
results confirm effectiveness of the proposed approach, which outper-
forms state-of-the-art by 9.5% under relevant conditions. To aid further
research on this topic, we also make DPOSE- a dynamic, multi-view
head-pose dataset with ground-truth publicly available with this paper.

1 Introduction

The ability to determine a person’s head-pose is critical for video surveillance
and human-behavior understanding (HBU). Extensive research has been devoted
to head-pose estimation for over a decade [1], and recent research has focused
on estimating head-pose from surveillance data [2–6], where faces are captured
at low resolution. Employing a single camera view is often insufficient for study-
ing people’s behavior in large environments and multi-view images have been
exploited to achieve robust pose estimation in [3, 7]. However, most of these
methods are designed to work in settings where the target’s position is fixed.
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Fig. 1. We deal with scenario (b), where the target is free to move around. For two
target positions, the four camera views are shown two-by-two, and facial appearance in
these views are shown on the bottom-right. We learn from many labeled examples in
(a) where the target’s position is fixed, and transfer this knowledge to (b) for enhanced
pose classification. (a),(b) are exemplars from the CLEAR [8] and DPOSE datasets.

The objective of this work is to determine the coarse head-orientation1 from
multiple, low-resolution views captured by large field-of-view surveillance cam-
eras, as the target moves around freely in the environment. The challenging
nature of this scenario can be perceived from Fig.1(b). Even as the target’s
absolute 3D head orientation is identical for the two instances shown, there are
many face appearance differences in the four camera views (bottom-right) due to
change in perspective. This phenomenon can severely affect pose classification.

Table 1 presents the effect of appearance variation on pose classification.While
the state-of-the-art ARCO algorithm [2] performs very well on CLEAR [8], where
target position is fixed , its performance dips sharply on the DPOSE dataset with
moving targets. Learning position-induced appearance variation from examples
acquired at multiple locations is a solution. However, acquiring sufficient training
data over all scene locations is highly expensive. Therefore, we adopt a transfer
learning approach.

When the training (source) and test (target) data have different attributes,
knowledge can be transferred from source to target [9, 10] upon incorporating ad-
ditional knowledge from a few labeled target examples. This obviates the need to
compile a large number of target samples, and re-synthesize a target -specificmodel.
For determining head-pose under positional variation, we first learn a weighted-
distance function on the source which has many training examples corresponding
to a fixed position. The weighted-distance function assigns weights to face patches,
and the patch weight is indicative of its saliency for pose classification. We then
adapt these weights to the target data with moving persons. The source and target
data used in our experiments are CLEAR and DPOSE respectively, which differ
with respect to (i) scene dimensions, (ii) relative camera configurations (iii) illumi-
nation conditions and (iv) target motion (Fig.1).

To compensate for the appearance variation with motion in DPOSE, we warp
all target face appearances to a canonical appearance, which would be the face

1 We are mainly interested in determining the absolute 3D head-pan (horizontal ro-
tation) into one of eight classes, each denoting a quantized 45o (360/8) pan.
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Table 1. Head-pose classification accuracy obtained with ARCO algorithm [2] for
different training/test datasets. Task is to classify head-pan to one of eight classes.

Train # samples Test # samples Accuracy

CLEAR 7490 CLEAR 7485 91.8%

CLEAR 7490 DPOSE 11789 46.2%

appearance if the target was positioned at a reference location. Only those face
patches still visible at the reference location are reliable for classification. To this
end, we assign a reliability score for each patch as we transform the target
appearance to the canonical form. The adaptation framework incorporates this
patch reliability information while learning a weighted-distance function on the
target to achieve enhanced classification. In summary, we make the following
contributions:
(i) This is one of the first works to explore multi-view head-pose estimation under
positional variation, which is an important problem that needs to be addressed
for effective surveillance/HBU in natural settings.
(ii) We compiled a large multi-view dataset with pose ground-truth for dynamic
targets known as DPOSE, which we make publicly available with this paper.
(iii) This is also the first work to employ transfer learning for multi-view head-
pose estimation in dynamic settings. Transfer learning is an attractive alternative
to the highly expensive procedure of compiling training samples at multiple scene
locations to learn appearance variation with position.

2 Related Work

To put our contributions in perspective, we review past work in the areas of (a)
head-pose estimation from surveillance data, (b) multi-view head-pose estima-
tion and (c) transfer learning in this section.

Many works have addressed the problem of head pose estimation from low
resolution images [2, 4–6]. In [4], a Kullback-Leibler (KL) distance-based facial
appearance descriptor is found to be effective for pose classification on the i-
LIDS dataset [11]. In [2], the array-of-covariance (ARCO) descriptors are shown
to be very robust to scale/lighting variations as well as occlusions, and produce
11% better classification on i-LIDS as compared to [4]. In [5], an unsupervised,
scene-specific gaze estimator is proposed, while [6] proposes a coupled adaptation
framework for joint body and head pose estimation. However, all these works
perform head-pose estimation in a single camera set-up.

Among multi-view pose estimation works, a particle filter is combined with
two neural networks for head pan and tilt classification in [7]. Also a HOG-based
confidence measure is used to determine the relevant views for classification.
In [12], multi-class SVMs are employed to compute a probability distribution
for head-pose in each view, to produce a more precise estimate upon fusion.
Nevertheless, both works attempt to determine head-orientation as a person
rotates in place, and position-induced appearance variations are not considered.
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Fig. 2. Overview of the proposed method

One multi-view approach robust to positional variations is discussed in [3],
where face texture is mapped on to a spherical head model, and head-pose
is determined from the face location on the unfolded spherical texture map.
Functionally, [3] is the work closest to ours, but there is a crucial difference
between the two. More cameras are needed to produce an accurate texture map
([3] uses eight cameras), while we use only four cameras located at the room
corners. As synthesizing a textured 3D model using only four low-resolution
views is difficult, we use an image-based approach for classifying head-pose.

Transfer learning approaches have become very popular in computer vision
recently [13–15]. However, we are not aware of any these approaches used for
multi-view head pose estimation. Our transfer learning framework is inspired
by previous works [16, 17], where an effective regularization term for learning
relationships between source and target distributions is proposed. However, our
approach is specifically tailored for head-pose classification with positional varia-
tion as we integrate information about the patch reliability score into the learning
process. Moreover the proposed max-margin learning problem is different from
the one considered in [17]. Distance learning methods for head-pose estimation
have been previously proposed in [18, 19]. We adopt the method proposed in [19]
for learning on the source, and extend the same to a transfer learning setting.

3 Head Pose Estimation under Positional Variation

An overview of the proposed method is presented in Fig.2. The proposed system
consists of main components: (i) pre-processing-which involves tracking of the
moving target(s) and head localization (ii) transfer learning for target model
creation, where the weights of face patches are learnt to classify pose for the target
data and (iii) target classification. For the target data during training/testing,
once the four-view target’s face appearances are obtained, they are warped to
the canonical form, and the visibility of each face patch at a reference position
is computed for learning/classification. The detailed description is as follows.
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(a) (b) (c)

Fig. 3. (a) Head-localization procedure: color-based particle filter output (top). Pro-
jection of spherical head model used for shape-likelihood estimation. Projected circle in
red (bottom). (b) Overview of the perspective warping process. (c) Original 4-view face
crops (top), warped crops (middle) and patch visibility at reference location (bottom).

3.1 Pre-processing and Perspective Warping

A multi-view, color-based particle filter [20] is used to compute the 3D body-
centroid of target(s). Once the target’s body centroid and height are estimated
by the tracker (Fig.3(a)), we sample a new set of particles around the estimated
3D head-position using a Gaussian with variance σx = σy = 30cm, σz = 10cm2.
Assuming a spherical head model, a head-shape likelihood is computed for each
particle by projecting a 3D sphere onto each view employing camera calibration
information (Fig.3(a)). Finally, the sample with the highest likelihood sum is
determined as the head location. This procedure integrates information from
multiple views using a unique 3D geometrical head/body-model with occlusion
handling and can be used to jointly locate heads of multiple persons.

As the target data contains motion, we always warp the target (or original)
face appearance to a canonical appearance corresponding to a reference position
in the environment that best matches with the source imaging conditions3. This
warping allows for compensation of perspective-based appearance variations and
enables effective learning even when only few target images are available. The
perspective warping procedure is outlined in Fig.3(b). To reconstruct the canon-
ical appearance, each pixel corresponding to the canonical appearance is first
back-projected onto a sphere, virtually placed at the reference position, to ob-
tain the corresponding 3D surface point. This point is then translated to the
target sphere (sphere located at target position), and its image projection is
mapped to the originating pixel. During this process, visual information may be
lost due to self-occlusions, and pixels could be merged or dilated (due to multi-
ple correspondences between canonical and target pixels). To account for these

2 These values account for the tracker’s variance, the horizontal and vertical offsets of
the head from the body centroid due to head pan, tilt and roll.

3 This procedure is also applicable in the case where the number of cameras/views for
the source and target are different.
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inconsistencies, we assign a pixel reliability score, rp ∈ [0, 1] to each canonical
pixel. The weight is calculated as the ratio (upper-bounded to 1) of areas of the
target and canonical surface patch projections.

Fig.3(c) presents an example of the original and warped appearances along
with the computed reliability masks. Significant pose difference induced by the
target’s displacement from the reference position can be observed for the first
and last views. Also, large changes between the original and canonical views are
noticeable around the periphery, while central regions are more similar. This is
because, when the displacement between the target and canonical positions is
large, reliable correspondences can only be computed in the canonical image for
target pixels around the center, while multiple peripheral target pixels tend to
correspond to the same canonical pixel. Therefore, canonical pixels that arise
from peripheral regions in the target image are assigned lower rp’s (occluded
pixels indeed have rp = 0), while rp’s for central pixels are closer to 1. Again,
as the rp’s will vary depending on the target position, we divide the space into
distinct regions and compute the expected rp for each region from the target
training set to learn the region-wise target patch weights. Finally, the 4-view
original/canonical appearances for the source/target are resized to 20 × 80 res-
olution (each view is 20 × 20) prior to feature extraction for transfer learning.
From the 4-view appearance image, features are computed for overlapping 8× 8
patches (with step size of 4). Next, we describe the transfer learning procedure
adopted for learning target patch weights.

3.2 Learning a Distance Function under Positional Variation

When the source and target data have different attributes, so that a model
trained on source will not usually work well on the target, the adaptation frame-
work transfers knowledge learnt from (source) to the target. For our problem
scenario, the source (CLEAR) has many exemplars for subjects standing at a
fixed position, while the target (DPOSE) has subjects imaged as they are mov-
ing . Formally, from the large source set Ts = {(x1, l1), (x2, l2), . . . , (xNs , lNs)},
we seek to transfer knowledge to the target incorporating additional information
from a small number of target samples Tt = {(x1, l1), (x2, l2), . . . , (xNt , lNt)}.
Here, xi/xi and li/li respectively denote source/target image features and as-
sociated class labels.

Overview. The proposed transfer learning framework is a two-step process.
First, a discriminative distance function is learned on the source. Given that
each image consists of Q patches, we learn a weighted-distance on the source,
DW s

(xi,xj) as a parameterized linear function, i.e. DW s
(xi,xj) = W T

s dij ,
where dij is the distance (we use euclidean distance) between corresponding
patches in images. W s is the source patch weight vector, which encodes the
saliency of each face patch for pose classification.

We propose to learn DW s(xi,xj) by imposing that a pair of images xi and
xj corresponding to the same pose should be more similar than two images
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xi and xk corresponding to different poses. Formally, the following quadratic
programming problem is considered [19]:

minW s,ξi≥0
λ

2
||W s||2 +

1

Ns

Ns∑

i=1

ξi (1)

s.t. min
li �=lk

W T
s dik −max

li=lj
W T

s dij ≥ 1− ξi

The constraints W s ≥ 0 are introduced to impose that the learned distance
function is always positive. To solve this optimization problem, we adopt an
efficient iterative algorithm based on stochastic gradient descent (Algorithm 2).

Learning Distance Function on the Target. In the second step, a distance
function DW t

(·) is learned on target data Tt. W s is used in this phase, in order
to transfer the source knowledge onto the target. The reliability score for each
target patch as computed from the canonical transformation (Fig.3(c)) is also
considered.

We first discuss the adaptation of the source weights to the target, assum-
ing that all target images correspond to a specific position (for simplicity, we
can assume the reference position associated to the canonical image here). We
formulate the adaptation problem as:

minW t≥0, ξi≥0, Σ�0 λ1||W t||2 + λ2tr(W
TΣ−1W ) +

1

Nt

Nt∑

i=1

ξi (2)

s.t. min
li �=lk

W T
t dik − max

li �=lj
W T

t dij ≥ 1− ξi

tr(Σ) = 1

where tr(·) denotes trace of matrix, W = [W s W t]
T and Σ ∈ IR2×2 is

a symmetric adaptation matrix defining the dependencies between the source
and the target weight vectors. The transfer learning is realized by the term
tr(W TΣ−1W ), and specifically by learning the source-target dependency ma-
trix Σ. This adaptation term, previously proposed in [16], allows for both neg-
ative and positive transfer, and, being a convex function on the optimization
parameters, makes our approach convex. Defining Σ = [α β;β 1−α]4, (2) can
be rewritten as follows:

minW t,α,β γ1(α, β)||W t||2 − γ2(α, β)W
T
s W t − γ3(α, β)||W s||2 +

1

Nt

Nt∑

i=1

ξi (3)

s.t. min
li �=lk

W T
t dik − max

li=lj
W T

t dij ≥ 1− ξi,

W t ≥ 0, ξi ≥ 0, α(1 − α)− β2 > 0

where we define Δ(α, β) = α(1 − α)− β2,

γ1(α, β) = λ1 +
λ2α

Δ(α, β)
, γ2(α, β) =

2λ2β

Δ(α, β)
, γ3(α, β) =

λ2(1− α)

Δ(α, β)
(4)

4 Σ is chosen in this form in order to be positive semi-definite and have a trace equal
to 1 as proposed in [15].
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Finally, we integrate information regarding appearance variation in the multiple
views due to position changes. As previously stated, when the target appearance
is transformed to the canonical form, the reliability of a face patch for pose clas-
sification depends on the target position. We assume that the room is divided
into R distinctive regions, and to effectively learn appearance variation with po-
sition, we have Kr target training samples for each region r ∈ R. The patch
reliability score vector, ρ̂ = [ρq], q = 1..Q, is determined from the mean reliabil-

ity score of the P patch pixels, i.e. ρq = 1
P

∑P
p=1 rp and the expected patch

reliability for region r, r = 1..R, is computed as ρ̂r = 1
Kr

∑Kr

i=1 ρ̂i. Given ρ̂r,

a diagonal matrix B ∈ IRQ×Q for region r is defined such that Bpq = e−(1− η
ρ̂r

)

if p = q, while Bpq = 0 otherwise. Then the optimization problem (3) can be
reformulated accounting for patch reliability as follows:

minW t,ξi,α,β γ1(α, β)||BW t||2 − γ2(α, β)W
T
s W t − γ3(α, β)||W s||2 +

1

Nt

Nt∑

i=1

ξi (5)

s.t. min
li �=lk

W T
t dik − max

li=lj
W T

t dij ≥ 1− ξi

W t ≥ 0, ξi ≥ 0, α(1− α) − β2 > 0

Solving the Transfer Learning Optimization Problem. To solve (5), we

consider the auxiliary vector, Ŵ t = BW t and re-define accordingly Ŵ s =

B−1W s and d̂
B

ik = B−1dik. We adopt an efficient alternate optimization ap-
proach. In particular, we first solve with respect to Ŵ t with α, β fixed, and then,
given a certain distance function we compute the optimal adaptation weights
α, β. The optimization problems to be solved are:

minŴ t,ξi≥0 γ1(α, β)||Ŵ t||2 − γ2(α, β)Ŵ
T

s Ŵ t +
1

Nt

Nt∑

i=1

ξi (6)

s.t. min
li=lk

Ŵ
T

t d̂
B

ik − max
li �=lj

Ŵ
T

t d̂
B

ij ≥ 1− ξi

and:

minθ aTθ (7)

s.t. θT Iθ − eTθ ≤ 0

where θ = [α β]T , e = [1 0]T , a = [Ŵ
T

t Ŵ t − Ŵ
T

s Ŵ s − 2Ŵ
T

s Ŵ t].
To solve (6), we adopt an efficient online learning approach. The objective

function of the quadratic program (6) is a sum of two terms: a strongly con-
vex function, i.e. the square norm of the weights, and a convex function which
is represented by the sum of the differences of the similarity scores and the
contribution of source weights. For solving this, we again employ Algorithm 2.
Problem in (7) can be reduced to a Second Order Cone Programming (SOCP)
problem and it is solved efficiently using SEDUMI5. The overall alternate opti-
mization approach terminates upon convergence and the learned target weights
are W t = B−1Ŵ t. The entire process is outlined in Algorithm 1.

5 http://sedumi.ie.lehigh.edu/

http://sedumi.ie.lehigh.edu/
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4 Experimental Results

This section presents a brief description of the CLEAR [8] and DPOSE datasets,
followed by a detailed discussion of the experiments and results.

Algorithm 1. Algorithm for Learning a Transfer Distance Function

Input: The source and target training data Ts, Tt.
Learning on Source Data

Set λ1 to a fixed value (λ1 = 1 in our experiments).
W s=ComputeDistance(Ts, λ1, 0, 0̄, I);

Learning on Target Data
Compute patch reliability matrix B.
Set λ1 and λ2 to fixed values (λ1 = 100, λ2 = 10 in our experiments).
Set Ŵ s = B−1W s.
repeat until convergence

Compute γ1(α, β), γ2(α, β) with (4).
Ŵ t=ComputeDistance(Tt, γ1, γ2, Ŵ s, B);
Given Ŵ s, Ŵ t compute α, β solving (7).

end
Compute W t = B−1Ŵ t.

Output: W t

Datasets: The CLEAR dataset [8], is a popular multi-view dataset used for
evaluating multi-view pose estimation algorithms. Acquired from 15 targets ro-
tating in-place in the middle of a room, the dataset comprises over 30000 syn-
chronously acquired images from four cameras with head-pose measurements.
Another publicly multi-view dataset, with moving targets, is provided by [3].
However, this dataset only contains ground-truth measurements for a man-
nequin’s head mounted on a tripod, as against human subjects. So, for the
purpose of studying the head-pose estimation problem with moving targets, we
compiled the DPOSE (dynamic, multi-view head-pose) dataset.

The DPOSE dataset contains sequences acquired from 16 targets, where the
target is either (i) rotating in-place at the room center, or (ii) moving around
freely in a room, and moving their head in all possible directions. The dataset
consists of over 50000 images. Head pan, tilt and roll measurements for various
poses are recorded using an accelerometer, gyro, magnetometer platform (vis-
ible in Fig.3(c)) strapped onto the head using an elastic band running down
from the back of the head to the chin. As mentioned earlier, the CLEAR and
DPOSE datasets differ with respect to (i) scene dimensions, (ii) relative camera
configurations (iii) illumination conditions and (iv) moving targets.

To demonstrate the validity of the proposed adaptation framework, the per-
formance of our algorithm is evaluated on the DPOSE data when (i) the target
rotates in-place and (ii) when the target freely moves around. We will discuss
the experimental results for these scenarios as follows:
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Algorithm 2. Online algorithm to solve (1) and (6)

w=ComputeDistance(T , θ1, θ2, wo, M)
{

Set the number of iteration T and the sample size k.
w = 0.
for t = 1, . . . , T do
Choose Tk ⊆ T s.t. |T | = k

Set T + = {(xi, li) ∈ Tk : maxli �=lk,li=lj

[
1−wT d̂

M

ij +wT d̂
M

ik

]
≥ 0}

∀ (xi, li) ∈ T + compute constraints violators

{(x̂j , lj), (x̂k, lk) ∈ T : x̂k, x̂j := argmaxli �=lk,li=lj ,

[
1−wT d̂

M

ij +wT d̂
M

ik

]
}

wt+ 1
3 =

(
1− 1

t

)
wt + 1

kθ1t

∑
(xi,li)∈T +

[
d̂
M
(xi, x̂k)− d̂

M
(xi, x̂j)

]
− θ2

θ1t
wo

wt+ 2
3 = max{0,wt+ 1

3 }
wt+1 = min{1, 1

√
θ1‖w

t+2
3 ‖

}wt+ 2
3

endfor
}

Transfer Learning for Stationary Target- We compare our results with
those obtained with two recent state-of-the-art methods for head-pose classifica-
tion from low-resolution images: array of covariance (ARCO) descriptors [2], and
the multi-camera head-pose estimation framework proposed in [12]. ARCO is a
powerful framework for pose classification from low-resolution images which em-
ploys covariance descriptors, and has been shown to be robust to scale/lighting
variations and occlusions. Also, since ARCO is inherently not a transfer learning
approach, we adapted boosting-based transfer learning [10], which adapts to the
target upon re-creation of the source+target model, from many source and few
target samples. We term this algorithm as ARCO-Xboost.

In this first series of experiments, we assume that the target is rotating in-
place in the target dataset, and we consider the cases where the learning model
are trained with CLEAR data and tested on DPOSE images. Upon dividing the
(original/canonical) four-view appearance image into a number of overlapping
patches (we use 8 × 8 patches in our experiments and a patch step-size of 4
pixels), we computed the patch descriptors employing the following features:

1) 7D covariance descriptorsφ= R,G,B,Gabor{0,π/6,π/3,4π/3}, comprising pixel
colors andGabor coefficients uponfiltering at the specifiedorientations (termed
Cov(d = 7)).

2) 12D covariance descriptors φ = [x, y,R,G,B, Ix, Iy , Gabor{0,π/6,π/3,4π/3},
KL], which additionally include the pixel positions (x, y), image gradients
(Ix, Iy) and the KL divergence descriptor proposed in [4] (termed Cov (d =
12)).

3) HOG [21] and LBP [22] descriptors, which are also popular for low-resolution
head-pose estimation. 64 bin histograms are used as LBP/HOG descriptors
in our experiments.
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Table 2 presents the pose classification accuracies with the different features
for the stationery target scenario. 10 target samples/class are used in addition
to 300 source samples/class for model creation. Here, ARCOs denotes an ARCO
model trained only with source data, ARCO-Xboost(s+t) denotes boosting-based
adaptation with ARCO, NWDs denotes a single nearest neighbor (NN) classifier
where the test image is assigned the label of the nearest source sample based
on (unweighted) Euclidean distance, and WDt denotes our adaptation frame-
work, where patch weights are learnt for the target, and based on the learnt
weighted-distance measure, the test sample is assigned the class of the nearest
target sample. ARCOs and NWDs denote baselines, as they correspond to the
classification performance when a model trained purely on the source is tested
on the target. To verify if multi-view pose classification performance is better
than using only one view, we also computed the accuracies using the 4-view
appearance image and the individual images for the 4-views. The average ac-
curacy of 4-views, measured independently, is reported in the single-view case.
Each result reported is the mean of 4 independent trials where each trial uses
a randomly selected target training set. From the table, we make the following
observations:

– Per feature, the 4-view accuracies are much higher than the mean single view
accuracies, which confirms that pose classification utilization from multiple
views is more powerful and robust.

– Also, employing 1-view/4-views, higher accuracies are obtained with 12D
Cov as compared to 7D Cov. This implies that as more and more image
statistics are employed for computing covariance features, the pose classifi-
cation performance improves.

– Accuracies with the weighted distance measure are much higher for LBP,
as compared to HOG. Therefore, LBP appears a more suitable feature for
pose-classification from surveillance data, as compared to HOG.

– Even as similar accuracies are obtained ARCO-Xboost and WD, there ex-
ists one important difference between the two approaches. ARCO-Xboost
requires model synthesis from both (large number of) source and (few) tar-
get samples- when target attributes change, re-training a model can be highly
expensive. In contrast, our approach requires the source model to be trained
exactly once and adapts to the target through online learning, which is
much faster.

Transfer Learning for Moving Target- Now, we analyze pose classification
results for the case where the target is moving. In this scenario, it is highly ex-
pensive to acquire many labeled target samples at multiple locations for learning
the appearance variation for the same pose with position. To tackle this problem,
we divide the space (room) into a finite number of non-overlapping regions and
learn the target patch weights for each region as detailed in Section 3.2. In this
work, we divide the room into four quadrants, denoted as R1-R4 in anti-cyclic
order, and assume that 5 target training samples are available per pose-class per
region. This amounts to a total of 5×4×8 = 160 target training samples. Again,
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experiments are performed upon learning from a source training set with 300
samples/class.

Mean reliability masks computed from 40 target training samples acquired for
each of the quadrants R1-R4 are presented in Fig.4. These masks demonstrate
why we opt for region-based target patch weight learning. Notice that the masks
for diagonally opposite regions R1, R3 and R2,R4 are antisymmetric, i.e. darker
regions in the R1 mask are brighter for the R3 mask and vice-versa. This is again
due to the perspective problem- as the target position varies, the face patches
visible in the canonical view also vary, and patch visibility modulates its saliency
for pose-classification.

Table 3 presents the region-wise classification accuracies obtained with the
various methods and features for the moving target scenario. An identical pro-
cedure as for the stationary target case was employed to compute the results.
For brevity, we only compare the performance of transfer learning approaches
(WD, ARCO-Xboost), with the baselines indicated in braces. From Table 3, we
again make the following observations:

– For the same feature, WD performs better than ARCO for the moving tar-
get case. In fact, the difference in performance is higher for weaker features
(Cov(d = 7)), as compared to stronger features (Cov(d = 12)). Therefore,
our transfer learning framework appears to be more effective when the rep-
resentational features are less robust.

– For ARCO, the best performance is achieved with (Cov(d = 12)), while
LBP produces the best results with WD. Comparing these best results, WD
produces a 9.5% increase (70.93 vs 64.75) in classification performance as
compared to ARCO.

– The accuracies obtained with the multi-view SVM [12] are much lower. Even
though this method uses multi-view fusion to compute pose, the low accu-
racies may be attributed to (a) weak features (only gradient features are
used in this work) and (b) non-consideration of the dynamic target position
scenario.

– It needs to be noted that our approach explicitly considers the variation ap-
pearance due to target dynamics. which is not the case with ARCO-Xboost.
However, if target motion only affected the appearance of a few face patches,
ARCO should still be effective as it learns a classifier per patch. The fact that
this is not the case reinforces our claim that head-pose computation in dy-
namic settings is a non-trivial and important research problem.

Qualitative Results. We also show some qualitative results obtained with our
approach in Fig.5. Fig.5(a,b) correspond to a single moving target, while Fig.5(c)
shows computed pose labels for 2 of 6 moving targets (as in a real party, which is
our application scenario). Fig.5(a) corresponds to a correct result, while Fig.5(b)
shows an incorrect result, because the face localization and ensuing face crops (on
the top-right) are erroneous. Fig.5(c) demonstrates that the proposed approach
can work well even with multiple targets. However, no pose ground-truth was
available for this sequence, but the computed pose labels can be observed to be
correct from visual inspection (videos provided in supplementary material).
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Table 2. Performance comparison assuming stationary target. {# Train
(source)=2400 (300 samples/class), (target)= 80 (10 samples/class)}, {# test (target)
= 12406.}

Cov Cov HOG LBP Cov Cov HOG LBP
(d = 7) (d = 12) (d = 7) (d = 12)
(1-view) (1-view) (1-view) (1-view) (4-views) (4-views) (4-views) (4-views)

ARCO(s) 21.2 35 - - 31.3 58.5 - -

NWDs 19 20.6 22.2 39.5 47.7 61.3 32.3 75.1

ARCO-Xboost(s+t) 41.8 62.2 - - 68.8 85.4 - -

WDt 57.7 59.9 32 63.3 78.3 83.3 52.1 85.6

Fig. 4. The mean reliability masks computed from 40 target training samples for R1-
R4, which are respectively the room quadrants traced in anti-cyclic order beginning
from top-left.

Table 3. Performance comparison for the moving target scenario. The room is divided
into 4 quadrants (regions R1-R4). {# Train (source)=2400 (300 samples/class), (tar-
get)= 160 (5 samples/class/region)}, {# Test (target) = 2399 (R1), 3185 (R2), 3048
(R3), 2996 (R4).} Baseline (ARCO, NWD) accuracies are within braces. Only 4-view
accuracies are reported.

ARCO-Xboost ARCO-Xboost WD WD WD Multi-view
Cov (d = 7) Cov (d = 12) Cov (d = 7) Cov (d = 12) LBP SVM

R1 41.1 (27.2) 66.1 (45.4) 65.8 (33.1)) 69.8 (45) 74.7 (60.9) 47.6

R2 43.6 (28.3) 67.6 (45.5) 67.4 (41.5) 72.4 (51.6) 77.6 (61.3) 51.3

R3 45.9 (29.3) 66.2 (44.4) 59.6 (51.2) 63 (59.6) 66.9 (58.7) 41

R4 41.7 (28.1) 59.1 (41) 60.6 (37.8) 62.4 (42.3) 64.5 (58.3) 41.6

(a) (b) (c)

Fig. 5. Head pose estimation results with target moving (a,b). Green cone indicates
accurate pan estimation while the red cone denotes wrongly predicted pose label. (c)
Results with the proposed approach for a party scenario involving multiple targets.
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5 Conclusion and Future Work

We introduce a transfer learning framework for multi-view head-pose classifi-
cation when the target is moving. Experimental results confirm effectiveness of
the proposed approach. We also make the multi-view image dataset with pose
ground-truth publicly available for further research on this topic. In our experi-
ments we consider a four camera set-up but we want to stress that our method
is general and can be applied also to different scenarios (e.g. different number
of cameras/views in source and target). Future work involves development of a
single transfer function for the environment, instead of the current region-based
learning method, integrating information from multiple sources.
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