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Abstract. High accurate face recognition is of great importance for real-
world applications such as identity authentication, watch list screening,
and human-computer interaction. Despite tremendous progress made in
the last decades, fully automatic face recognition systems are still far
from the goal of surpassing the human vision system, especially in uncon-
trolled conditions. In this paper, we propose an approach for robust face
recognition by fusing two complementary features: one is the Gabor mag-
nitude of multiple scales and orientations and the other is Fourier phase
encoded by Local Phase Quantization (LPQ). To further reduce the high
dimensionality of both features, patch-wise Fisher Linear Discriminant
Analysis is applied respectively and further combined by score-level fu-
sion. In addition, multi-scale face models are exploited to make use of
more information and improve the robustness of the proposed approach.
Experimental results show that the proposed approach achieves 96.09%,
95.64% and 95.15% verification rates (when FAR=0.1%) on ROC1/2/3
of Face Recognition Grand Challenge (FRGC) version 2 Experiment 4,
impressively surpassing the best known results, i.e. 93.91%, 93.55%, and
93.12%.

1 Introduction

Machine-based face recognition, as one of the most representative technologies of
artificial intelligence, has attracted significant attention over the last decades in
many domains such as entertainment[1] and surveillance[2]. Although numerous
approaches have been proposed for face recognition and tremendous progress has
been made, it is still difficult for machine to recognize human faces efficiently and
accurately under uncontrolled conditions. The main challenges lie in the small
interpersonal difference because of similar facial configurations, as well as the
large intrapersonal variations caused by diverse extrinsic imaging factors such
as pose, expression, aging, and lighting.

To achieve high accurate machine-based face recognition, numerous local de-
scriptors have been proposed to extract effective information, such as Local
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Binary Patterns (LBP)[3] and its variants[4], Gabor wavelet transform based
descriptors[5][6][7] and Local Phase Quantization (LPQ)[8]. As a single descrip-
tor only encodes limited information of the given face, it is reasonable to
combine different descriptors for more effective information. Recently, methods
fusing diverse descriptors have received much attention, such as global and lo-
cal descriptors[9], features extracted on multiple scales[10], different frequency
bands[11], fusion of LBP and Gabor[12] and the enhanced Local Gabor Binary
Patterns (LGBP)[6]. Intuitively, in fusing different features, the complementar-
ity of the descriptors plays an important role, for example, global vs. local,
single band vs. multiple bands. In recent years, the fusion of magnitude and
phase in frequency domain has attracted a lot of attention[5][13]. In this work,
we have made a new attempt to fuse Gabor magnitude and locally quantized
Fourier phase. Specifically, we first extract the Gabor magnitude and Fourier
phase features from a face image by using Gabor wavelet transform and Local
Phase Quantization (LPQ), respectively. Then, to reduce the high dimensionality
and increase the discriminative capability, patch-wise Fisher Linear Discriminant
Analysis (FLDA)[14] is applied to extract the discriminative low dimensional
features for classification. Finally, score level fusion is performed to calculate
the final similarity. To better make use of multi-scale information, a multi-scale
fusion of magnitude and phase is exploited to further improve the robustness.

To demonstrate the strength of the proposed approach, we test it on the large-
scale face verification database, i.e., Face Recognition Grand Challenge (FRGC)
version 2[15], following its standard Exp.4 evaluation protocol. The proposed
approach impressively outperforms the best known counterparts, such as Lo-
cal Binary Patterns (LBP) based methods[12], Gabor wavelet transform based
methods[9][13], enhanced Fisher linear discriminant model[7], local descriptor
fusion based methods[9][12][13][16] and color space based methods[17][18][19].
Experimental results show that the proposed approach achieves 96.09%, 95.64%
and 95.15% verification rates (when FAR=0.1%) on ROC1/2/3 of FRGC v2.0
Exp.4, impressively surpassing the best known results, i.e. 93.91%, 93.55%, and
93.12%[16].

In summary, the main contribution of this paper lies in two aspects: 1) we
show that the fusion of Gabor magnitude and locally quantized phase provides
a complementary description for robust face recognition; 2) The proposed ap-
proach achieves the best known results in face verification under uncontrolled
conditions. Specifically, we achieve about 96% verification rate on FRGC v2.0
Exp.4. In other words, the error rate is reduced by about 30% compared with
the best known results.

The rest of this paper is organized as follows. Section 2 briefly describes the re-
lated work, e.g., Gabor wavelet transform and Local Phase Quantization (LPQ).
The proposed approach is detailed in Section 3. Experimental evaluation of the
proposed approach is presented in Section 4. Finally, we conclude the work in
Section 5.
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2 Background

2.1 Gabor Wavelet Transform

Gabor wavelet transform is similar to Fourier transform in many ways but has a
limited spatial scope. Local face descriptors based on Gabor wavelet have been
proved to be one of the most successful face representation methods in recent
years. The Gabor wavelet representation of an image is defined as the convolution
of the image with Gabor kernels[7], given by

Gu,v(z) = I(z) ∗ ϕu,v(z). (1)

Here, I(z) denotes the input image, and ∗ denotes the convolution operator. z
denotes the pixel coordinate, i.e., z = (x, y), and ϕu,v(·) is the Gabor kernel with
orientation u and scale v, which is defined as follows:

ϕu,v(z) =
‖ku,v‖2

σ2
e(−‖ku,v‖2‖z‖2/2σ2)[eiku,vz − e−σ2/2], (2)

where ‖·‖ denotes the norm operator, and the wave vector ku,v is defined as
follows:

ku,v = kve
iφu , (3)

where kv = kmax/f
v and φu = πu/8; kmax is the maximum frequency, and f is

the spacing between kernels in the frequency domain. For each Gabor kernel, at
every pixel of the image, a complex number can be generated which contains two
Gabor parts (real part Reu,v(z) and imaginary part Imu,v(z)). Based on these
two parts, magnitude information Mu,v(z) can be computed by

Mu,v(z) =
√
Re2u,v(z) + Im2

u,v(z). (4)

2.2 Local Phase Quantization

Local Phase Quantization (LPQ) utilizes the phase information locally extracted
using the Short Term Fourier Transform (STFT) computed over a square M ×
M neighborhood Nx at each pixel position x of the image f(x)[8] defined by

F (u, x) =
∑
y∈Nx

f(x− y)e−j2πuT y = wT
u fx, (5)

where fx is a vector containing all the M2 gray-scale values from Nx, wu is
the basis vector of the STFT at frequency u. Only four complex coefficients are
selected in LPQ, corresponding to 2-D frequencies u1 = [a, 0]T , u2 = [0, a]T ,
u3 = [a, a]T and u4 = [a,−a]T . Let

F c
x = [F (u1, x), F (u2, x), F (u3, x), F (u4, x)], (6)

and
Fx = [Re{F c

x}, Im{F c
x}]T , (7)



604 Y. Li et al.

where Re{·} and Im{·} are real and imaginary parts of a complex number,
respectively. So, the corresponding 8 × M2 transformation matrix is

W = [Re{wu1 , wu2 , wu3 , wu4}, Im{wu1 , wu2 , wu3 , wu4}]T , (8)

so that

Fx = Wfx. (9)

Assuming that f(x) is a result of a first-order Markov process, where the correla-
tion coefficient between adjacent pixel gray-scale values and the variance of each
sample are ρ and σ2 (assuming σ2 = 1 without a loss of generality), respectively.
As a result, the covariance between positions xi and xj can be expressed by

σij = ρ
‖xi−xj‖L2 . (10)

Hence, the covariance matrix of all M samples in Nx can be expressed by

C =

⎡
⎢⎢⎢⎣

1 σ12 · · · σ1M

σ21 1 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · 1

⎤
⎥⎥⎥⎦ . (11)

As a result, the covariance matrix of Fx can be obtained from

D = WCWT . (12)

We can easily notice that the coefficients are correlating, as D is not a diagonal
matrix when ρ > 0. The coefficients should be de-correlated using a whitening
transform before quantization, because it can be shown that if the samples to be
quantized are statistically independent, information can be maximally preserved
in scalar quantization. Whitening transform can be expressed by

Gx = V TFx, (13)

where V is an orthonormal matrix derived from the singular value decomposition
(SVD) of matrix D. Gx is computed for every image position, and the resulting
vectors are quantized by a simple scalar quantizer

qj =

{
1, if gj ≥ 0

0, otherwise
, (14)

where gj is the jth component of Gx. Eventually, the quantized coefficients can
be represented as integer values from 0 to 255 using binary coding

b =

8∑
j=1

qj2
j−1. (15)
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 1. Face images used in the (a) internal, (c) transitional and (e) external models.
The corresponding LPQ features are shown in (b), (d) and (f).

3 The Proposed Approach

3.1 Fusion of Magnitude and Phase Features

Since the pioneering work of Lades et al.[20], Gabor wavelets which have been
widely used in face recognition, possibly due to the fact that they can well ap-
proximate the receptive fields of simple cells in the primary visual cortex of
human vision system. In practice, Gabor wavelets can take a variety of different
forms with different scales and orientations. Gabor wavelet with a certain orien-
tation responds to edges and bars along this direction, and a certain scale Gabor
wavelet extracts the information within the corresponding frequency band. As
a result, Gabor wavelets can be used to extract abundant local structure details
in some important facial areas which are very crucial for efficient face repre-
sentation. Here we utilize the magnitude part acquired from the Gabor wavelet
transform. In the field of local descriptor fusion, the primary factor that we
should take into consideration is the complementarity of the local descriptors
to be fused. In frequency domain, magnitude information can capture the facial
structure and phase information can give a detailed description of facial texture.
In this work, we use Local Phase Quantization (LPQ) to locally encode the
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Fig. 2. The proposed approach which fuses magnitude and phase features. The Gabor
magnitude extraction part is encircled by light blue dotted box and the LPQ phase
extraction part is encircled by dark red dotted box.

Fourier phase information. LPQ is a descriptor first applied to texture identifi-
cation because it is highly insensitive to image blurring caused by motion, out
of focus or atmospheric turbulence[8]. This descriptor utilizes quantized phase
of the 2-D Discrete Fourier Transform (DFT), and the phase information of four
low frequency coefficients are quantized uniformly into an eight-dimensional sub-
space. The resulting decimal code words create a histogram which is finally used
as the feature in texture identification. Fig. 1 shows some examples of LPQ
feature.

The locality information will not be completely utilized, if all the features
are concatenated to a long single vector. To overcome this potential weakness,
features in our approach are spatially grouped into a number of feature vectors
(patch-based representation), by doing this more locality information can be pre-
served. Each patch corresponds to a local area of the image and is of relatively
low dimensionality which means less computing price. In addition, compared to
holistic representation, this patch-based method is much more robust to illumi-
nation variation. The reason is that the illumination variation within the whole
image is much greater than that within each patch.

Fig. 2 shows our approach, where the Gabor magnitude extraction part is
encircled by light blue dotted box and the LPQ phase extraction part is encircled
by dark red dotted box. Each face model will generate two similarity matrices
after feeding into our approach, one is for Gabor magnitude part and one is for
LPQ phase part. Finally, fusion is conducted at the score level by summating
the six matrices.
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3.2 Multi-scale Face Model

Sinha et al.[21] pointed out that the human vision system’s processing to judge
one’s identity is better characterized as “head recognition” rather than “face
recognition”. Apparently, it is difficult for some people to determinate whether
two faces are of the same subject based only on the internal images as shown
in row (a) of Fig. 1. However, one may more easily recognize a face if given the
external image in row (e) of Fig. 1. Behind this interesting phenomenon, the
rationale is that humans tend to rely on the contextual information to recog-
nize faces, such as hair style, head contour and jaw, especially when intrinsic
information is degraded[16]. Thus, it is smart to add a multi-scale face model
which contains not only intrinsic but also holistic contextual information. With
above analysis, in the proposed approach, three normal face templates of differ-
ent scales (i.e., internal face, transitional face and external face) are taken into
account to best imitate human vision system. As can be seen, the internal face
model contains only the internal facial organs, such as eyes, mouth, nose and
eyebrows which are affected only by the factors related to identity. On the con-
trary, the external face model is portrait-like and contains some external facial
elements such as jaw, head contour and hair. The transitional face image can be
regarded as the transition state from internal face model to external face model.

4 Experiment and Analysis

4.1 The FRGC Version 2 Experiment 4

Face Recognition Grand Challenge (FRGC) is a large-scale face recognition eval-
uation system sponsored by the United States government and collected at the
University of Notre Dame. This face database is designed to achieve the goal
that reducing the error rate of face recognition systems by an order of magni-
tude. With above goal, it presents six challenging experiments along with data
corpus of 50,000 recordings divided into training and validation partitions to re-
searchers. The data consists of high resolution still images taken under controlled
and uncontrolled conditions. The controlled images taken in a studio setting (two
or three studio lights) are full frontal facial images with two facial expressions
(neutral and smiling). The uncontrolled images were taken in varying lighting
conditions; e.g., atria, hallways, or outdoors. Each set of uncontrolled images
also contains two expressions, neutral and smiling. As recognizing faces under
uncontrolled conditions which is considered the security requirement for real-
world biometric recognition has numerous applications and is one of the most
challenging problems in the field of face recognition, we choose Experiment 4 to
evaluate our approach. In Experiment 4, training set consists of 12,776 images
of 222 subjects, with 6,388 controlled still images and 6,388 uncontrolled still
images. The target set consists of 16,028 controlled still images, and the query
set consists of 8,014 uncontrolled still images.
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4.2 Technical Details

The input internal, transitional and external face images we use in our approach
are first normalized to 120 × 96 pixels image with the centers of the eyes lo-
cated at (20, 47) and (75, 47), (26, 47) and (69, 47) and (29, 51) and (66, 51),
respectively. Then, we use PP[22] which has been proven a robust illumination
normalization method to further normalize the input images.

In the Gabor magnitude feature extraction process, 40 Gabor wavelets with
5 scales and 8 orientations are utilized, where the Gabor kernel’s size, the max-
imum frequency kmax, the spacing between kernels in the frequency domain f
and the parameter σ are set to 31 × 31, 1.0,

√
2 and 2.0, respectively. 40 Gabor

magnitude images are generated after the convolution with the 40 Gabor kernels,
after that we use a 4 × 4 down sampling to the 40 Gabor magnitude images to
reduce the huge dimensionality of the original feature. As mentioned above, our
approach is based on patches, so we divide every down sampled image into ten
patches (5 rows by 2 columns) and concatenate the features of the same patch
into a single vector which acts as a classifier.

In the LPQ phase feature extraction process, the correlation coefficient ρ, the
sliding window’s size and the frequency parameter a are set to 0.9, 7 × 7 and
1/7, respectively. In this process, we extract LPQ histogram on every 8 × 8
pixels block, and then organize the histograms to form an 18-patch structure (6
rows by 3 columns) as shown in Fig. 2.

To further reduce the patches’ dimensionality, Fisher Linear Discriminative
Analysis (FLDA) is utilized on every patch in our approach. We set the PCA
dimensionality 600 and 500 in the Gabor part and LPQ part, respectively. The
LDA dimensionality is set to 221 that one less than subject amount (222 sub-
jects) of the training set in both parts. After that, we fused the scores (cosine)
using the simple sum rule with equal weights for each feature and each scale.
Note that the score normalization on similarity matrices before the fusion is
helpful, because commensurability of them can be guaranteed by doing this.

4.3 Results and Discussions

The results of the FRGC version 2.0 Exp.4 which measured by a standard pro-
cedure allow for the fair comparison between the proposed system and other
current face recognition systems. Table 1 summarizes the performance of sixteen
state-of-the-art methods that have been proposed since FRGC 2005. Compared
to the other methods, ours (96.09% @ FAR = 0.1%) tremendously boosts the
accuracy of the face verification.

Table 1 also shows the critical role of fusion of local descriptors in uncontrolled
face verification: no single descriptor based method can surpass the verification
rate of 85%. For this reason, we are going to put emphasis on the comparison with
fusion based methods. The result of comparing our approach with Xie et al.[13]’s
which fuses magnitude and phase features both from Gabor wavelet transform
shows that, the complementarity between Gabor magnitude and Gabor phase is
much weaker than that between Gabor magnitude and LPQ based phase. Fig. 3
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(a) (b) (c) 

Gabor Magnitude : Correct 
LPQ Phase : Incorrect 
Proposed Approach : Correct 

Gabor Magnitude : Incorrect 
LPQ Phase : Correct 
Proposed Approach : Correct 

Gabor Magnitude : Incorrect 
LPQ Phase : Incorrect 
Proposed Approach : Correct 

Fig. 3. Complementarity between Gabor magnitude feature and LPQ phase feature.
(a) Pairs which verified correctly by Gabor magnitude feature while incorrectly verified
by LPQ phase feature. (b) Pairs which verified correctly by LPQ phase feature while
incorrectly verified by Gabor magnitude feature. Notice that all the pairs in (a) and (b)
are correctly verified by the proposed approach. (c) Pairs that neither Gabor magnitude
nor LPQ phase feature works on them but verified correctly by the proposed approach.

presents some examples that illustrate the complementarity of Gabor magnitude
and LPQ phase features. Only matched pairs (two faces in the pair are of the
same subject) of ROC I are used here. Column (a) shows pairs which verified
correctly by Gabor magnitude feature while incorrectly verified by LPQ phase
feature, on the contrary, column (b) shows the opposite situation. Notice that all
the pairs in column (a) and (b) are correctly verified by the proposed approach.
Column (c) shows pairs that neither Gabor magnitude nor LPQ phase feature
works on them but verified correctly by the proposed approach. As can be seen,
Gabor magnitude feature captures the structure information of the face, and it
is robust to slight pose variation. LPQ phase feature is more robust to blurred
image by efficiently encoding the facial texture.

The proposed approach which fuses magnitude and phase features can cope
well with uncontrolled condition including pose and illumination variation, oc-
clusion and blur. Multi-scale face model as a best imitation of human being’s
visual system also play an important role in face verification, we can notice that
the highest two results (ours and Deng et al.’s[16]) both utilize multi-scale face
model. We mainly attribute our significant result to the fusion of complemen-
tary three face scales and two features. As shown in Table 1, the verification
rates (VR) on ROC1 of Gabor feature on three scales are 92.17%, 92.10% and
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Table 1. Comparative verification rates at 0.1% FAR of state-of-the-art face recogni-
tion systems for Face Recognition Grand Challenge version 2 Experiment 4.

Method Ref. Feature ROC I ROC II ROC III

BEE Baseline [15] Pixel 0.1336 0.1267 0.1186
KCFA [23] Pixel N/A N/A 0.57
R-WWC [24] Pixel 0.35 0.35 0.35
Extended GCID [25] Pixel 0.7890 0.7866 0.7826
MFM-HFF [11] Fourier 0.7570 0.7506 0.7433
DIF [26] Gabor 0.72 0.74 0.76
YQCr [17] YQCr 0.6447 0.6489 0.6521
HVDA [18] YQCr 0.7865 0.7850 0.7824
LEC [9] Gabor N/A N/A 0.83
KDCV [12] LBP N/A N/A 0.735

LGBP+LGXP [13] LGBP+LGXP 0.836 0.843 0.849
HEC [9] Gabor+Fourier N/A N/A 0.89
KDCV [12] Gabor+LBP N/A N/A 0.836
PSMLPQ+PSMLBP+KDA [27] LBP+LPQ 0.8292 0.8434 0.8572
Hybrid RCrQ [19] Gabor+MLBP+DCT N/A N/A 0.924
RTF+RCF [16] RTF+RCF 0.9391 0.9355 0.9312

Gabor(internal) ours Gabor 0.9217 0.9199 0.9178
Gabor(transitional) ours Gabor 0.9210 0.9140 0.9060
Gabor(external) ours Gabor 0.9243 0.9161 0.9068
LPQ(internal) ours LPQ 0.8244 0.8211 0.8171
LPQ(transitional) ours LPQ 0.8448 0.8328 0.8194
LPQ(external) ours LPQ 0.8380 0.8198 0.7989
Fused System ours Gabor + LPQ 0.9609 0.9564 0.9515

92.43%, respectively (while their fusion result is 94.56%). Similarly, the VRs
of LPQ on three scales are 82.44%, 84.48% and 83.80% respectively (while the
result is impressively improved to 92.06% after fusion). When all the scales of
both features are fused together, the VR is further improved to 96.10% (from
94.56% and 92.06%). These results reveal the complementarity of both different
scales and different features. We also performe face identification on the same
dataset of FRGC v2.0 Exp.4, by using its target set as gallery and query set as
probe, and we achieve an identification rate of 99.70%. It is important to note
that our performance surpasses all the color space based methods, although only
gray-scale images are used in our method.

As multi-scale model is applied, we list the time cost in the following text. The
most time-consuming step in the proposed approach is feature extraction. We
assesse the computation cost of our feature extraction on a PC with Intel Core i5
3.1GHz processor. Without any special optimization or multi-core parallel, the
time for one scale is 40ms for Gabor and 12ms for LPQ. Thus, the time required
for 3 scales is 156ms. If all the features for the gallery set are computed offline,
our system is able to perform identification with about 6 probes per second.
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5 Conclusion

In this paper, by fusing complementary Gabor magnitude and locally quantized
Fourier phase features, we achieved near perfect recognition (≈ 96%) on FRGC
v2.0 Exp.4 at FAR=0.1%. From the good results, we can draw the following
conclusions: 1) Gabor magnitude provides discriminative information for face
recognition; 2) Locally quantized Fourier phase information is very robust to
degraded (especially blurred) face images; 3) Gabor magnitude and Fourier phase
are very complementary in terms of distinguishing faces.

Although impressive results are achieved on FRGC v2.0, we need more efforts
to further study its applicability to other face recognition scenarios. It is also
desirable to try other fusion methods.
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