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Abstract. This paper proposes an optimization-based blind image de-
convolution method. The proposed method relies on imposing a discrete
MRF prior on the deconvolved image. The use of such a prior leads to a
very efficient and powerful deconvolution algorithm that carefully com-
bines advanced optimization techniques. We demonstrate the extreme
effectiveness of our method1 by applying it on a wide variety of very
challenging cases that involve the inference of large and complicated
blur kernels.

1 Introduction

Blind image deconvolution is a fundamental but very challenging problem, which
has a long history in the image and signal processing literature [1]. Perhaps
its most well known use is for removing the blur from consumer photographs
(e.g., due to camera shake), but it also has important applications in areas
such as computational photography and astronomical imaging. The input to
this problem consists of a degraded image I that equals the convolution of a true
image x with a kernel k plus some noise n, or

I = x⊗ k+ n, (1)

where ⊗ denotes the convolution operator. Given only the image I as input, the
goal of blind image deconvolution is to inverse the above process and to recover
both x and k, which are assumed to be the unknowns in this case.

Over the past years, the problem of blind image deconvolution has attracted
a significant amount of attention from the computer vision and image processing
community, and thus a variety of algorithms [2–7] have been proposed that try
to contribute to the state of the art in various ways. Obviously, one of the main
difficulties of blind deconvolution relates to the fact that there can be exponen-
tially many images x and kernels k that satisfy equation (1), which, in other
words, means that inverting the above equation is a severely ill-posed problem
[8]. As a result, a number of different strategies have been employed in order
to deal with this issue. For instance, a variety of regularization based methods

1 To encourage others to experiment with our algorithm, a Matlab implementation will
become publicly available from http://imagine.enpc.fr/~komodakn/deblurring
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[2–4, 9–11] have been presented recently, which try to make use of statistical
priors of natural images in order to narrow down the set of possible solutions
to eq. (1). A characteristic example of such a prior relates to the well known
property of natural images that its gradient follows a heavy tailed distribution,
which naturally leads to imposing a sparsity constraint on the gradient of image
x. Methods of this type have recently been able to show impressive deconvolu-
tion results. On the other hand, many of these approaches rely on sophisticated
energy minimization methods [2], [3], and as a result they can often carry a high
computational cost. Another approach to handle the ill-posedness of eq. (1) is to
employ a marginalization method (instead of a MAP estimation algorithm) for
integrating out the unknown kernel k. Such a method has recently been proposed
by Levin et al. in [12], [13].

Besides all the single-image based approaches mentioned above, another strand
of deconvolution methods relies instead on making use of multiple images (possi-
bly of different modalities) and/or specific hardware during image capturing [14–
17]. A characteristic example of this trend is the so-called epsilon-photography
[18] techniques (which have also been applied to the image deconvolution prob-
lem), in which case multiple images of the scene are captured by an epsilon
variation on the settings of the camera. All these approaches make it much eas-
ier to infer the blur kernel k and thus have been shown to yield greatly improved
results. On the other hand, due to the additional input and/or specific hardware
requirements of these methods, their applicability is more limited compared to
approaches that rely on single images. Also, it is important to note that over
the last years a number of works have appeared that study the quite challenging
problem of image deconvolution with spatially-varying blur (caused e.g., due to
camera rotation) [19–25]. Furthermore, besides blind image deconvolution, there
has also been a considerable amount of work on the problem of non-blind de-
convolution [26]. This is, of course, an easier task given that the blur kernel is
known in advance. Yet, very impressive results have recently been demonstrated
on this problem for the quite challenging case of blur kernels with very large
spatial support [27].

Our Apporach: The core difficulty of blind image deconvolution stems from
the fact that the kernel k is unknown. This leads to the number of measure-
ments being much lower than the number of unknowns, thus contributing to the
ill-posedness of the problem and also severely complicating the deconvolution
process. To deal with this problem, one therefore needs to impose additional
constraints on the structure of the deconvolved image. To illustrate what kind of
constraints are going to be imposed by our method and to also motivate our ap-
proach, we will use the example presented in Fig. 1. We there show two images,
x and x̄, where x̄ is essentially a quantized version of image x (the total number
of distinct colors in x̄ is not more than 15). Yet, notice that the convolution of
these two images with the same kernel k generates the blurred images I and Ī
respectively, which are also shown in Fig. 1. As can be seen, despite the fact that
x̄ is a vastly simpler image than x, the corresponding blurred images I and Ī
are visually quite similar. Our approach will try to exploit this fact in order to
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Fig. 1. The blurred images generated from image x and its quantized version x̄ are
visually quite similar

implicitly reduce the ill-posedness of blind deconvolution. To this end, it proceeds
by trying to concurrently estimate the unknown kernel k and a deconvolved im-
age. However, instead of aiming to directly compute a deconvolved image that
coincides with the complex natural image x, our approach focuses on estimating
the much simpler deconvolved image x̄. The latter image is supposed to provide
a coarse approximation to image x but at the same time it has a much simpler
structure as it is assumed to satisfy the following constraints: (i) it contains only
a limited number of colors, (ii) and is a piecewise constant image.

Intuitively, the role of x̄ is two-fold: on the one hand, by making use of a
deconvolved image x̄ that has such a simple structure, what we are effectively
doing is to significantly reduce the number of unknowns in our problem, which
in turn helps us to reduce the ill-posedness of deconvolution and to accurately
estimate the unknown kernel k, which is a key issue in image deconvolution.
Essentially, x̄ is able to provide a segmentation of the deconvolved image x, thus
revealing its structure, which is known to be crucial for the successful estimation
of k. At the same time, as will become clear shortly, the quantized deconvolved
image x̄ can also helps us to estimate the true deconvolved image x.

We conclude this introduction by summarizing the main contributions of this
work, which are the following: (i) We propose a novel discrete MRF-based prior
for image deconvolution, whose role is to impose the above mentioned simple
structure on image x̄. (ii) Furthermore, based on this, we develop a very effi-
cient and easily implementable algorithmic scheme for blind deconvolution that
carefully combines advanced optimization techniques such as fast inference for
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discrete MRFs and the alternating direction method of multipliers . (iii) Last,
despite the computational efficiency of our proposed scheme, we can use it to
easily handle very challenging deblurring problems that involve even large and
complicated blur kernels.

2 Blind Image Deconvolution Scheme

In this section, we proceed to describe our blind deconvolution algorithm in
detail. At a high level, our method uses an iterative optimization scheme that
alternates between the following two main steps:

– Step 1: estimating a quantized image x̄ that obeys a discrete MRF prior
given the blur kernel k (section 2.1). During this step, we are also able to
compute an estimation of the deconvolved and non-quantized image x.

– Step 2: estimating the kernel k given a quantized deconvolved image x̄
(section 2.2),

Based on the above, the following variables are maintained during the execution
of our algorithm: k, x̄, and the auxiliary variable x. Furthermore, in order to
accelerate the convergence of our iterative scheme and to cope with the case of
large blur kernels k, we apply our algorithm in a multiresolution fashion (section
2.3).

It is important to note at this point that the estimation of image x̄ plays an
absolutely crucial role in the whole process. On the one hand, it is exactly due to
x̄ and its constrained image structure that we are able to compute a blur kernel
k that converges to the correct kernel during step 2. If instead we choose to use
the non-quantized image x during that step, the whole process breaks down and
leads to computing the trivial no-blur solution (i.e., to the identity kernel). On
the other hand, x̄ also helps us to correctly estimate the non-quantized image x
during step 1 of our method. In the following we describe the main steps of our
deconvolution scheme in more detail.

2.1 Estimating Quantized Image x̄ Given the Kernel k

Given a fixed kernel k, to estimate the quantized image x̄ we solve the following
optimization problem

min
x̄∈Ln,x

‖k⊗ x− I‖2 + λ‖∇x‖2 + μ‖x̄− x‖2 +
∑

pq∈E
wpq [x̄p �= x̄q] (2)

In the above formula, the symbol ⊗ denotes the convolution operator, Ln denotes
the set of quantized images that contain at most n different colors/intensities,
E denotes the set of pairs of neighboring2 pixels of image x̄, and

[·] equals 1 if
the expression inside the brackets is true and zero otherwise. At a high level,

2 Here we assume 4-connectivity, but in general any higher-connectivity can be used
as well.
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the above functional has the following interpretation: On the one hand, the first
two terms express the fact that x must be a natural image corresponding to
the deconvolution of image I with respect to blur kernel k. On the other hand,
the last two terms (along with the constraint x̄ ∈ Ln) express the fact that x̄
should correspond to a piecewise-constant quantization of the aforementioned
deconvolved image x (the latter is achieved through constraining the structure
of image x̄ by imposing a discrete MRF prior on it).

More specifically, the terms in (2) have the following meaning:

– The data term ‖k⊗ x−I‖2 expresses the fact that the convolution of x with
k should be close to the observed image I. This corresponds to a typical
negative log-likelihood term under the assumption of an additive Gaussian
noise on I.

– The term λ‖∇x‖2 corresponds to a standard gradient-based regularizer for
natural images.

– The term μ‖x̄−x‖2 along with the constraint x̄ ∈ Ln expresses the fact that
x̄ should form a quantization of image x with at most n colors.

– Last, the term
∑

pq∈E wpq[x̄p �= x̄q] corresponds to a Markov Random Field
(MRF) prior imposed on x̄ in the form of a weighted Potts model, which is
used for ensuring the piecewise constancy assumption on x̄. Regarding the
weights {wpq}, they can be adjusted based on the gradient of the continuous
image x (i.e., a standard contrast sensitive weight term can be used) so that
the color changes in x̄ can be better aligned with the edges of image x.

To solve optimization problem (2), we apply alternating minimization between
x̄ and x as follows.

(a) Solving for x̄: For fixed x, the minimization of (2) over x̄ reduces to

min
x̄∈Ln

μ‖x̄− x‖2 +
∑

pq∈E
wpq [x̄p �= x̄q] . (3)

Since image x̄ should approximate image x, to determine the set of n possible
colors/intensities for x̄ we apply k-means clustering (with k = n) to the col-
ors/intensities of the current image x, and denote the resulting set of cluster
centers by Lx. Optimization problem (3) is then equivalent to minimizing the
energy of a discrete MRF with unary potentials Vp(x̄p) = μ‖x̄p − xp‖2, pair-
wise potentials Vpq(x̄p, x̄q) = wpq[x̄p �= x̄q], and label set Lx. To optimize this
MRF, we use the FastPD3 algorithm [28]. Due to the very high efficiency of
that method, optimization of (3) proceeds extremely fast, while the estimated
solution x̄ is guaranteed to be almost optimal. Intuitively, the update of x̄ via
this MRF optimization step can be roughly viewed as some sort of smooth quan-
tization of the continuous image x.

(b) Solving for x: For fixed x̄, minimization of (2) over x reduces to the
following continuous optimization problem

min
x

‖k⊗ x− I‖2 + λ‖∇x‖2 + μ‖x− x̄‖2. (4)

3 Publicly available implementation from http://www.csd.uoc.gr/~komod/FastPD

http://www.csd.uoc.gr/~komod/FastPD
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The above functional can be rewritten as

min
x

‖Mkx− I‖2+λ(‖Mgh
x‖2+‖Mgvx‖2)+μ‖x− x̄‖2 ,

where Mk, Mgh
, Mgv denote respectively the convolution matrices for the filter

k, the horizontal derivative filter gh and the vertical derivative filter gv (note that
in the above formula x, x̄, and I are assumed to represent vectorized images).

This, in turn, leads to having to solve the following linear system of equations

(
MT

kMk + λ(MT
gh
Mgh

+MT
gv
Mgv) + μ

)
x=MT

k I+ μx̄ ,

which can be done very efficiently by using the Fast Fourier Transform and
working directly in the frequency domain as follows

x = F−1
( F(k) ◦ F(I) + μF(x̄)

|F(k)|2+λ(|F(gh)|2+|F(gv)|2)+μ

)
. (5)

In the above formula F−1 and F denote the inverse and forward DFT opera-
tor respectively. It should be noted that solving the above linear system using
formula (5) is very fast but can sometimes introduce ringing artifacts (due to
boundary effects). Alternatively, one can solve the above system in the spatial
domain through a preconditioned conjugate gradient algorithm in order to avoid
such artifacts (at the expense of an increased computational cost).

To summarize, one round of updates of (x̄,x) for minimizing (2) reduces to
the following operation

update of (x̄,x) :=

{
optimize MRF energy (3) ,

apply formula (5) .
(6)

2.2 Estimating the Kernel k Given the Quantized Image x̄

To update the blur kernel k given the current image x̄, we solve the following
convex optimization problem

min
k

‖x̄⊗ k− I‖2 + τ‖k‖1 . (7)

The first term in (7) expresses the fact that the convolution of the quantized
image x̄ with k should be close to the observed image I. The second term in
(7) is an �1-norm penalty term, which corresponds to a Laplacian prior used
for imposing sparsity on the unknown convolution kernel k. The sparsity of k
is a reasonable assumption, since, in practice, the most common and challeng-
ing cases for image deconvolution are due to camera motion, where the kernel
essentially coincides with the camera path.

Before proceeding, we want to emphasize at this point the importance of using
the quantized image x̄ during this step. The fact that image x̄ is required to have
a simple structure (through imposing the aforementioned discrete MRF prior
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on it) regularizes the whole process and plays a crucial role for estimating the
correct k. Essentially, as will also become clear from the experimental results, x̄
manages to reveal the structure of the unknown deconvolved image by providing
a segmentation of it, which is known to play a crucial role in image deconvolution.
For instance, if we were to use image x (instead of x̄) in (7), the resulting overall
iterative scheme would typically converge to the trivial no-blur solution [12].

If we let Mx̄ denote the convolution matrix for x̄ (i.e., Mx̄k = x̄ ⊗ k), then
problem (7) can be rewritten as follows

min
k

‖Mx̄k− I‖2 + τ‖k‖1 . (8)

Although (8) can be solved via an interior point method, this leads to an algo-
rithm with very high computational cost given that problem (8) must be solved
multiple times during deconvolution. Instead, we apply the well known Alter-
nating Direction Method of Multipliers (ADMM) [29–31], which allows us to
decouple problem (8) to a series of highly efficient optimization tasks through
the introduction of an auxiliary replicating variable k′ as described next.

Alternating Direction Method of Multipliers (ADMM). By using such
a variable k′, problem (8) can be rewritten as

min
k′,k

g1(k
′) + g2(k) (9)

s.t. k′ = k , (10)

where g1(k
′) = ‖Mx̄k

′ − I‖2, g2(k) = τ‖k‖1. ADMM is essentially a variant of
the Augmented Lagrangian method. The latter provably solves problems like (9)
via an iterative scheme that is equivalent to

(k′
i+1,ki+1)∈argmin

k′,k
g1(k

′)+g2(k)+
b

2
‖k′ − k− ai‖2 (11)

ai+1 = ai − (k′
i+1 − ki+1) , (12)

where a corresponds to a transformed vector of Lagrange multipliers, and b is a
fixed penalty parameter.

An efficient solution to (11) is hard due to the non-separable quadratic term.
To overcome this, ADMM applies to (11) a single step of alternating minimiza-
tion between k′ and k, which allows a nice decoupling of the problem into

k′
i+1 ∈ argmin

k′
g1(k

′)+
b

2
‖k′ − ki − ai‖2 (13)

ki+1 ∈ argmin
k

g2(k)+
b

2
‖k′

i+1 − k− ai‖2 (14)

ai+1 = ai − (k′
i+1 − ki+1) . (15)

Notice now that, due to equality g2(k) = τ‖k‖1, a solution to (14) is easily
recognized to be ki+1 = softτ/b(k

′
i+1 − ai), where softt(x)i ≡max(|xi| − t, 0) ·

sign(xi) denotes an efficient soft thresholding/shrinkage operator.



368 N. Komodakis and N. Paragios

Furthermore, due to equality g1(k
′) = ‖Mx̄k

′ − I‖2, problem (13) reduces to
the linear system

(MT
x̄Mx̄ +

b

2
)k′

i+1=MT
x̄ I+

b

2
(ki + ai) , (16)

which can be solved numerically very efficiently via a conjugate gradient (CG)
method (the most expensive part of each CG iteration is the calculation (MT

x̄Mx̄+
b
2 )k

′
i+1, which requires just 3 FFTs, i.e., 2 forward and 1 inverse).
To summarize, a round of updates for minimizing (8) thus consists of the

following operations

k′
i+1 = solution of linear system (16)

ki+1 = softτ/b(k
′
i+1 − ai)

ai+1 = ai − (k′
i+1 − ki+1) .

(17)

Input: images {Ii}, where Ii = image I resized by factor si

(x,k) = (I0,delta kernel) // use trivial initialization

for i ∈ {0, 1, . . . ,#scales − 1} do // outer loop

for j∈{0, 1, . . . ,#inner iterations−1} // inner loop

// Update (x̄,x)
Apply m(m≥1) rounds of updates (6)

// Update k
Apply m(m≥1) rounds of updates (17)

end for
Upsample images x̄, x, k

end for

Fig. 2. Pseudocode of the blind deconvolution algorithm

2.3 Multiresolution Deconvolution Scheme

The iterative deconvolution algorithm described in sections 2.1 and 2.2 is used
within the context of a multiresolution scheme. This essentially means that this
algorithm is applied successively for deconvolving a series of resized images {Ii},
where Ii represents image I resized by a factor si ≤ 1 (we start from a low
resolution image I0 and proceed with images of finer resolution until we reach
the last image in the series that coincides with the input image I). As explained
in sections 2.1 and 2.2, to solve the problem at the i-th level we alternate a few
times between updates (6) of (x̄,x) and updates (17) of k. The final images x̄,
x, and k estimated by the algorithm at level i are then upsampled and used as
initialization for the problem at the next finer level i+1. This process leads to a
gradual refinement of the variables x̄, x, k (see Fig. 4) and allows the algorithm
to deal even with large blur kernels k. It also leads to a much faster convergence
of the deconvolution process, which thus requires only a very small number of
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iterations per level. At the first level, x is always initialized as the coarse image
I0, and k is initialized to the delta kernel. Also, the resize image factor s0 at the
first level is always chosen small enough so that the size of the corresponding
kernel k is small as well (typically 3 × 3). We show the overall structure of the
resulting algorithm in Fig. 2.

3 Experimental Results

We next proceed to present some experimental results of our deconvolution
method. Regarding the choice of the parameters of our algorithm, the following
values have been used in all of the experiments: λ=μ=0.4 · 10−3 and τ=10−3.
Also, with regard to the number of colors n of the quantized image x̄, we found
that a value of n=10 was typically enough. We should note at this point that
our method has been quite robust with respect to the choice of all of these
parameters.

We display in Fig. 3 deconvolution results computed by our method for some
quite challenging cases, where very large and complicated blur kernels need to
be inferred. Notice, for instance, that the recovered images x are very sharp and
contain all the fine details of the objects appearing in them.

To better illustrate how our algorithm works, we also provide more detailed
results in Fig. 4. That figure shows (for 2 cases) how the kernel k, and the im-
ages x̄, x vary during the course of the algorithm. Notice, for instance, how the
estimated quantized image x̄ manages to gradually conform to the underlying
structure of the true deblurred image, thus essentially providing a rough segmen-
tation of the latter and also helping x to converge to the correct solution. This
is achieved in a robust and completely automatic manner that is driven entirely
by our iterative optimization scheme. The role of the automatically quantized
image x̄ is crucial in this regard. On the one hand, it prevents the estimated
blur kernel k from converging to an incorrect result such as the trivial solution
corresponding to the identity kernel. On the other hand, it also helps x to avoid
drifting to the wrong image structure during our deconvolution scheme. The ro-
bustness of our algorithm is also evidenced from the fact that it does not require
from the user to manually select an image patch that will then be used as input
for the blind deconvolution process, as done in [2]. Instead, our method simply
uses as input the whole blurred image.

Fig. 4 also includes energy plots that show how the objective function (7) (which
measures the dissimilarity between the convolution x̄⊗ k and the input image I)
varies during the course of our algorithm. Notice how quickly this function de-
creases, thus also verifying the effectiveness of our deconvolution procedure. We
should also mention that no special initialization for k is required by our method,
which, as already explained, always uses the delta kernel as initial kernel.

Further Results and Comparisons. Fig. 5 shows more results of our
method on 3 other challenging examples from [2], [3] and [27]. As can be seen,
they all require estimating very large blur kernels. In fact, as has been shown in
[27], examples such as the last one in Fig. 5 (that involves a 50× 50 kernel) can
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Fig. 3. Left: input images. Right: kernels k and deconvolved images x as computed
by our method. The size (in pixels) of kernel k was, from top to bottom: 40×40, 29×38,
35×35, 30×37.



MRF-Based Blind Image Deconvolution 371

k

x

x
5 10 15 20 25 30

2

3

4

5

6

7

8
x 10

7

 

 

energy

k

x

x 10 20 30 40 50 60 70

0.5

1

1.5

2

2.5

3

3.5

x 10
7

 

 

energy

Fig. 4. We show for the first two examples from Fig. 3 a few snapshots of k, x̄ and
x as estimated during the course of our deconvolution algorithm. We also show corre-
sponding energy plots (where red dashed lines indicate a change in resolution).

Fig. 5. Left: input images. Right: kernels k and images x as estimated by our method.
The following sizes were used in our method for kernel k, from top to bottom: 50×50,
30×20, 50×50.
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Fig. 6. Estimated kernels by our method, and the methods of [3], [2] for input images
from the dataset in [12]
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prove to be quite challenging even for some non-blind deconvolution algorithms,
i.e., when the blur kernel is known in advance. Note that, as mentioned earlier
in section 2.1, one could further improve our deconvolution results in this case
by solving (4) in the spatial domain (in order to suppress any ringing artifacts
due to boundary effects from the use of large kernels). Moreover, to avoid all
ringing artifacts that appear in the case of large blur kernels one can apply an
advanced non-blind deconvolution method such as [27].

Finally, we compare our method with the algorithms of Fergus et al. [2] and
Shan et al. [3] on the established benchmark dataset introduced by [12] (in this
case the results shown for the algorithms [2] and [3] were taken from [12]). We
show in Fig. 6 results for some challenging cases from that dataset (for the full
set of results please check the supplemental material). Compared to the other
methods, the kernels recovered by our algorithm resemble the ground truth more
closely. Moreover, compared to those methods, our algorithm is significantly less
computationally intensive. For instance, although the MATLAB implementation
of our algorithm has not been fully optimized, its running times for the exam-
ples of Fig. 6 were only 6.8 seconds, 7.2 seconds, 7.7 seconds, and 7.5 seconds
respectively. The kernel sizes (in pixels) that were used for these examples were
30×30, 34×34, 38×38, and 34×34, while the input images in Fig. 6 had size
255×255.

4 Conclusions

In this paper we presented a powerful MRF-based blind deconvolution algorithm.
It relies crucially on estimating (along with the kernel k) a deconvolved image x̄,
which is quantized and piecewise smooth, and thus has a much simpler structure.
We have shown experimentally that our method is able to produce state of the
art deconvolution results and can successfully handle very challenging cases with
large and complicated blur kernels. At the same time we have shown that it is
very fast since it relies on a highly efficient optimization-based deconvolution
scheme that we derived.
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