
Multiple Target Tracking Using Frame Triplets

Asad A. Butt and Robert T. Collins

Dept. of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA. 16802

{asad,rcollins}@cse.psu.edu

Abstract. This paper addresses the problem of multi-frame, multi-
target video tracking. Unlike recent approaches that use only unary and
pairwise costs, we propose a solution based on three-frame tracklets to
leverage constant-velocity motion constraints while keeping computa-
tion time low. Tracklets are solved for within a sliding window of frame
triplets, each having a two frame overlap with neighboring triplets. Any
inconsistencies in these local tracklet solutions are resolved by consid-
ering a larger temporal window, and the remaining tracklets are then
merged globally using a min-cost network flow formulation. The result
is a set of high-quality trajectories capable of spanning gaps caused by
missed detections and long-term occlusions. Our experimental results
show good performance in complex scenes.

1 Introduction

We address the problem of tracking multiple targets through a video sequence.
The problem is significantly harder than single target tracking for many reasons,
including matching ambiguity between similar nearby targets, and the potential
for interaction and occlusions between targets. Recent detect-then-track methods
divide multi-target tracking into two separate subproblems [1]:

1. Detect all the objects of interest within each frame. It is acceptable if this
detection step produces false positives.

2. Perform data association to assign a unique label to all observations in dif-
ferent frames that correspond to the same object of interest, thus identifying
individual object trajectories.

In this paper we focus on the second, data association step. Early methods
for multi-frame data association took a greedy approach, solving a series of bi-
partite assignment problems to match an evolving set of trajectories to target
observations in each new frame [3]. This greedy approach does not work well for
closely-spaced, interacting targets [4]. Recent methods have attempted to bring
more global information to bear by creating a graph of all the observations within
a sequence [5–7], or by using a hierarchical solution method [8]. However, these
graph-based methods only consider pairwise connections between observations,
and thus are not able to capture higher-order constraints such as constant ve-
locity that describe object motion across three or more frames. Unfortunately,

K.M. Lee et al. (Eds.): ACCV 2012, Part III, LNCS 7726, pp. 163–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

164 A.A. Butt and R.T. Collins

Fig. 1. Result of our algorithm shown on frames from the TUD crossing sequence [2].
From left to right, the person labeled 2 is completely occluded by 1, but the track is
recovered.

graph methods using higher-order cliques generally fall victim to exponential
increase in size of the search space as the number of frames increases.

In this paper, we seek a tradeoff between using higher-order cliques and main-
taining computational efficiency. Specifically, we solve the data association prob-
lem over three frames at a time to obtain tracklets, which are fragments of com-
plete trajectories. The three frame problem keeps the size of the search space in
check while allowing us to use higher-order motion constraints such as constant
velocity. Such motion constraints greatly aid tracking during periods when ob-
jects disappear for a short time due to missed detections or occlusion (Fig. 1).
It is important to note that our constant velocity measure is applied over a
sliding window of three frames, and hence, can be described as piece-wise con-
stant velocity — targets do not have to move in a straight line with constant
speed through the entire sequence, and can slow down, speed up, stop, or change
direction. Our approach starts by finding tracklets within a sliding window of
frame triplets, where each triplet has a two frame overlap with the preceding
and following triplets (Fig. 2). This overlap allows us to detect and correct con-
flicts arising between local independent tracklet solutions. Tracklets are then
merged globally using a min-cost flow approach. Although our solution provides
a framework where both appearance and motion constraints can be combined
for data association, our three-frame motion constraints are powerful enough to
work well by themselves when appearance information is not available or is not
discriminative.

Fig. 2. Overview of our algorithm.
Tracklets are extracted within a
sliding window of three frames. Incon-
sistencies between overlapping tracklets
are resolved by increasing the size of
the window to four frames. Tracklets
are then linked using min-cost flow to
recover complete trajectories.

Multiple Target Tracking Using Frame Triplets 165

2 Related Work

Recursive filtering approaches for single target tracking, such as the Kalman filter
or particle filter, are well-studied in the tracking literature[9] but do not perform
well in multi-target settings. Such trackers have a tendency to “jump” between
similar targets that pass near each other, leading to identity swap errors. In Khan
et al. [10], multiple independent single target trackers are temporarily coupled
together with links in a graphical model as targets come close to each other.
The joint probabilistic data association filter (JPDAF) attempts to bypass the
problem entirely, extending trajectories based on weighted averages of nearby
target observations in new frames [9].

Data association refers to the problem of making explicit assignments between
observations in two or more frames. Because data association methods represent
and reason over the combinatorial space of assignments, they fall squarely in the
realm of discrete combinatorial optimization problems. Considering that there
are NF different trajectories passing through N points observed over F frames,
it is easy to see that multi-frame data association is NP-hard due to the combi-
natorial explosion in size of the solution space as problem sizes grow. Although
enumeration-based methods such as multi-hypothesis tracking (MHT) attempt
to limit this growth by heuristic pruning, they remain cumbersome. Approximate
solution methods include greedy bipartite data association on a frame-by-frame
basis [3]. The two-frame bipartite assignment problem (aka linear assignment
problem) can be solved exactly in polynomial time, leading to fast algorithms.
However, greedy two-frame solutions do not work well for cases with target in-
teraction or occlusion [4].

Many approaches progressively associate tracklets to obtain the final trajec-
tories. Li et al. [11] use ranking and classification algorithms to learn parameters
for tracklet association. Yang et al. [12] create a CRF of the tracklets, and use
the RankBoost algorithm to select features for the cost. In contrast, Song et al.
[13] combine tracklets using a graph evolution scheme, where the features along
association paths are used to stochastically adapt the affinities.

Recent approaches formulate the multi-frame data association problem glob-
ally as a polynomial-time network flow problem [5, 6, 14]. Zhang et al. [5] create a
network with two nodes for each detection, a link between these nodes weighted
by the probability that the detection is part of the solution, a link between de-
tections in adjacent frames weighted by the cost of them being part of the same
track, and a flow conservation constraint to ensure that no two trajectories share
any observation. The best solution for K trajectories is found using a min-cost
flow algorithm, while an outer loop searches for the optimal value K of number
of objects. Berclaz et al. [14] and Pirsiavash et al. [6] show that the best set of
paths and number of paths K in a min-cost flow network can be computed effi-
ciently using a successive shortest paths algorithm, yielding the same solution as
[5] but much more quickly. Although these approaches address the multi-frame
data association problem in polynomial time, they do so by restricting the form
of cost functions used to measure the quality of a trajectory to be a summation
over only unary and pairwise edge weights. This limits the terms that can be

166 A.A. Butt and R.T. Collins

incorporated into the cost function to information that can be computed be-
tween pairs of observations in adjacent frames, such as distance. Higher-order
constraints such as constant velocity cannot be represented.

A recent paper by Collins [15] formulates multi-frame data association as an
NP-hard integer linear program and presents an ICM-like approximate algo-
rithm for iteratively improving an initial feasible solution. Although the method
can handle arbitrary higher-order cost functions, it is unclear how to simplify
the approach to take advantage of cost functions with bounded order, such as
constant velocity constraints computed over cliques of size three. Another recent
paper by Brendel et al. [8] formulates multi-target data association as an integer
quadratic program, specifically as a maximum weight independent set (MWIS)
problem, and presents a polynomial time approximate solution method. The
method starts by solving for two-frame tracklets independently, then linking
these using a learned distance measure. Long term occlusions are handled by
using MWIS hierarchically to merge smaller tracklets into longer ones.

3 Tracklet Generation

At the heart of our approach lies a method for generating good tracklets over
observations in a small window of frames. Our algorithm uses sliding windows
of three frames, i.e. frame triplets, however the approach can be generalized
to handle larger sets of frames. The main tasks include constructing tracklet
candidates (Section 3.1), defining a utility function to measure quality of each
tracklet (Section 3.2), and solving for the set of candidate tracklets that yields
the best total utility score (Section 3.3). Following independent tracklet gener-
ation in overlapping subwindows throughout the sequence, compatible overlap-
ping tracklets are merged and any local incompatibilities between tracklets are
resolved (Section 4.1). Tracklets are then linked in a global optimization phase
based on min-cost network flow (Section 4.2).

3.1 Problem Formulation

Fig. 3 shows an illustrative example of three frames, with two observations in
each frame. The goal is to link these observations into a set of tracklets subject
to one-to-one matching constraints that disallow using any observation more
than once. As shown in the figure, the problem is formulated as a tripartite
multigraph, with candidate tracklets represented by hyperedges connecting one
observation in each frame. Note the difference between this formulation and a
typical network flow graph – here, edges connecting A and A′ are different for the
tracklets (A,A′, A′′) and (A,A′, B′′). A utility function defined over hyperedges
measures the quality of each tracklet, and by extension, the quality of a set of
tracklets. The goal is to choose a set of tracklets that maximizes sum of utility
scores subject to the one-to-one matching constraints. Of the eight candidate
hyperedges (tracklets) in this example, at most two can be selected without
violating the matching constraints.

Multiple Target Tracking Using Frame Triplets 167

Fig. 3. A three frame multigraph. Each frame
has two observations corresponding to two differ-
ent targets. If all possible matches are potential
correspondences there are eight possible tracklets,
each shown in a different color.

More formally, let observations zi = {z1(i), z2(i), ..., zk(i)} be all detections in
frame i. An ordered triplet of frames starting at time i thus contains the set of
hyperedges Γi = {zi×zi+1×zi+2}. A tracklet τjkl ∈ Γi is a 3-tuple

(
zj(i), zk(i+

1), zl(i + 2)
)
such that observations in the tuple potentially represent the same

target in all three frames. It is possible that not all hyperedges in Γi represent
valid tracklets, e.g. due to violations of distance-based gating thresholds. Let the
set of valid tracklets in Γi be Ωi = {τa, τb, ...τk}. Since most tracklets will share
observations with other tracklets, only certain subsets of Ωi represent feasible
combinations of tracklets in a given frame triplet.

To reason about candidate tracklets in Γi and their feasible sets, we create a
new graphG = (V,E), where each v ∈ V is a tracklet from Ωi, and E contains an
edge between vertices vj and vk if the corresponding tracklets share observations
and thus cannot both be present together in a feasible solution. Each vertex
vj ∈ V is assigned a weight Uj , a utility value measuring quality of that tracklet,
as described in the next section. Subsets of tracklets in V are represented by an
indicator vector of binary decision variables, x = (xj) ∈ {0, 1}n, where xj = 1
when tracklet j is in the subset, and 0 otherwise.

The optimal set of tracklets in Ωi is one that maximizes the sum of util-
ity scores while maintaining feasibility with regard to the one-to-one matching
constraints. This optimal set is the binary solution vector x∗ given by

x∗ = argmax
x

xTMx, (1)

s.t. ∀j ∈ V, xj ∈ {0, 1}, and (2)

∀(j, k) ∈ E, xj · xk = 0 (3)

where M is an N ×N utility matrix defined over N = ‖V ‖ candidate tracklets.
There are a finite number of feasible solutions to problem Eq. 1. Although we
could solve this as a quadratic integer program, we use a more efficient approx-
imate solution method, described in Section 3.3.

3.2 Utility Matrix

Quality of each tracklet τ is measured by a utility score U(τ) that is a function of
the three observations forming the tracklet. This function can take into account
the detector confidence score of each observation, similarity of the appearance
of the observations, and geometric compatibility of the locations of the observa-
tions. In this section we focus on a geometric utility score that prefers targets
that move with constant velocity across the three frames.

168 A.A. Butt and R.T. Collins

We calculate an error term d for each tracklet τ based on a constant velocity
motion model. Using the Taylor series approximation, we know that

F ′′(x) =
F (x− h)− 2F (x) + F (x+ h)

h2
+O(h2) . (4)

For the constant velocity (zero acceleration) model, F ′′(x) = 0. Hence, for a
tracklet τ containing observations {zj(i), zk(i + 1), zl(i + 2)}, each of which is
defined by a 2× 1 location vector, the error measure will be

d(τ) = |zj(i)− 2zk(i+ 1) + zl(i + 2)|. (5)

To reward tracklets moving with constant velocity, we want a utility score that
increases as the error measure in Eq. 5 decreases. We set

U(τ) = β exp−αd(τ) (6)

where α = 0.01 and β is set to the number N of potential tracklets.
The utility matrix M(G) of graph G for use in Eq. 1 is a variant of the

adjacency matrix of G, with diagonal values being utility scores U(τj), for j=1
to N , and off-diagonal entry (i, j) set to 0 if (τi, τj) is an infeasible pair of
tracklets, and set to 1 if they can both exist in a feasible solution. Table (1)
shows an example utility matrix M(G) for the three-frame example shown in
Fig. 3, where tuples (i, j, k) represent the eight candidate tracklets.

Table 1. Utility matrix M(G) for Fig. 3. The diagonal values give the utility values
for each tracklet. The 0’s indicate infeasible pairs of tracklets that share some obser-
vation(s). The 1’s represent pairs of tracklets that can co-exist.

(A,A’,A”) (A,A’,B”) (A,B’,A”) (A,B’,B”) (B,A’,A”) (B,A’,B”) (B,B’,A”) (B,B’,B”)

(A,A’,A”) UAA′A′′ 0 0 0 0 0 0 1

(A,A’,B”) 0 UAA′B′′ 0 0 0 0 1 0

(A,B’,A”) 0 0 UAB′A′′ 0 0 1 0 0

(A,B’,B”) 0 0 0 UAB′B′′ 1 0 0 0

(B,A’,A”) 0 0 0 1 UBA′A′′ 0 0 0

(B,A’,B”) 0 0 1 0 0 UBA′B′′ 0 0

(B,B’,A”) 0 1 0 0 0 0 UBB′A′′ 0

(B,B’,B”) 1 0 0 0 0 0 0 UBB′B′′

As in the quadratic MWIS formulation of [8], our algorithm also has the
advantage of being able to easily incorporate other pairwise soft constraints
directly into the problem formulation. For example, instead of setting M(i, j)
to 1 for feasible pairs of tracklets, we could set M(i, j) = r, where r ∈ [0, 1] is
a measure of the similarity in the velocity of tracklets τi and τj . In this way we
could encourage solutions where nearby targets move in the same direction [8].

3.3 An Approximate Spectral Solution

We would like to solve Eq. 1 to find the set of tracklets having highest total utility
while not violating any one-to-one matching constraints. As currently written,

Multiple Target Tracking Using Frame Triplets 169

this integer quadratic program is NP-hard. Instead of solving it directly, we use
a spectral technique to solve a relaxed version of the problem more efficiently
[16]. We relax the integrality constraint in Eq. 2 and denote the relaxed version
of vector x by y. We also relax the one-to-one matching constraints in Eq. 3.
Note, however, that we have encoded a soft version of the matching constraints
in the off-diagonal terms of M , which helps to encourage feasible solutions to
form, even in the relaxed problem. By Raleigh’s ratio theorem, the vector y∗ that
maximizes yTMy is the principal eigenvector of M . By the Perron-Frobenius
theorem, 0 ≤ y∗i ≤ 1, for i = 1, ..., N . To recover a binary feasible solution we
perform a greedy rounding step while strictly enforcing the one-to-one matching
constraints, similar to [16]. While there are better methods of discretizing the
relaxed solution, such as the integer projected fixed point method of [17], our
solution does not rely heavily on the discretization step.

3.4 Handling Missed Detections and Tracklet Birth/Death

Fig. 4. Dummy observations are added to each
frame to handle missed detections and target
birth/death. These observations are connected to
all real observations in the previous and next
frames. For clarity, links between real observa-
tions are not shown.

A practical tracking algorithm must handle missed detections, short term occlu-
sions, and variable numbers of targets entering or exiting each frame. For each
frame in triplet Γi we add a virtual dummy observation, with a link to each
real observation in the next frame (if it exists), and with each observation in
the previous frame (if it exists), as shown in Fig. 4. These virtual nodes ex-
pand the number of potential tracklets included in our three-frame multigraph.
The utility values of partial tracklets containing two real observations are calcu-
lated based on Euclidean distance between the observations in a way that favors
shorter distances traveled. Utility scores for tracklets that contain only one real
observation are computed by taking the minimum score from candidate tracklets
that contain that observation, or 0.001 if there are no other such tracklets. The
reasoning behind this is that we still would like a one-observation tracklet to be
selected if there are no better alternatives, but having a very low score, almost
any reasonable alternative is better.

4 Tracklet Linking

Tracklets obtained independently for each sliding window of three frames must
be linked to obtain a complete set of trajectories over the entire sequence. We
perform this task in two steps.

170 A.A. Butt and R.T. Collins

1. In a single pass through the sequence, conflicts between overlapping tracklets
are resolved, while compatible tracklets representing unambiguous continu-
ations are merged (Section 4.1). This pass through the data yields tracklets
of variable length, but trajectories may still be fragmented due to occlusions
that persist for several frames.

2. A global merging of the remaining fragmented trajectories is performed using
a min-cost network flow formulation with tracklets as nodes (Section 4.2).
An appearance-based similarity measure is used for encouraging linking of
tracklets through occlusions.

These two steps are described in more detail below.

4.1 Merging and Conflict Resolution

As discussed in the last section, we solve for tracklets within overlapping slid-
ing windows of three frames. Solutions for adjacent frame triplets Γi and Γi+1,
for example, will have frames i+1 and i+2 in common. Two trackets τi ∈
{zi × zi+1 × zi+2} and τi+1 ∈ {zi+1 × zi+2 × zi+3} may thus share two observa-
tions, one observation, or no observations. Pairs of tracklets with no observations
in common are unrelated, and of no interest here. Tracklets with one or two ob-
servations in common are candidates for either linking, or conflict resolution, as
illustrated in Fig. 2 and described below.

(a) No ambiguity (b) Conflict occurs

Fig. 5. Possible scenarios when linking tracklets from consecutive triplets. Linking is
easy in (a), because the tracklets agree on the shared observations. However, due to
a conflict between the two tracklets in (b), there is ambiguity as to which observation
should follow the second observation in triplet 1.

Let τi = (a, b, c) and τi+1 = (b′, c′, d′) and consider the following scenarios:

1. If both (b=b′) and (c=c′), the two trackets τi and τi+1 agree on their two
shared observations, and we have the case shown in Fig. 5a. The two tracklets
can be immediately linked since the overlapping windows agree on which
observations belong to this partial trajectory.

2. If (b=b′) but (c �= c′), or if (b �= b′) but (c=c′), we have a conflict, one
example of which is illustrated in Fig. 5b. For whatever reason – noise,
occlusion, entry and exit, or proximity of targets – the two tracklets τi and
τi+1 disagree on the continuation of the trajectory, causing a conflict that
must be resolved before linking can occur.

Multiple Target Tracking Using Frame Triplets 171

Conflicts between tracklets in adjacent frame triplets Γi and Γi+1 are resolved
by expanding the tracklet generation procedure in Section 3 to operate over 4
frames, i to i+3, using only the observations from tracklets that have conflicts.
Because the observations from compatible tracklets that have already been linked
are no longer considered, the number of observations in this expanded 4-frame
assignment problem is typically quite small, and thus the combinatorics involved
in expanding from three frames to four is kept in check. The error measure (and
thus utility) is based on constant acceleration computed over a 4 tuple τjklm

d(τ) = |zj(i+ 3)− 3zk(i+ 2) + 3zl(i+ 1)− zm(i)| . (7)

The complete procedure for linking compatible overlapping tracklets and resolv-
ing local conflicts is performed as a single pass through the ordered sequence of
frame triplet solutions. This process maintains a gradually growing set of tracks
T . We initialize the set of tracks T as the tracklets from the first frame triplet
Γ1 of the sequence. Let Γi be the frame triplet at the next time instance i, with
i initialized as 2. Proceed as follows through the sequence of frame triplets:

1. For each tracklet τ =
(
z(i), z(i+1), z(i+2)

)
in Γi, find a track Tj such that

Tj(i) = z(i) or Tj(i+ 1) = z(i+ 1).
2. If Tj exists, and Tj(i + 1) = z(i + 1), then extend track Tj by making the

assignment Tj(i+ 2) = z(i+ 2).
3. If Tj exists, but Tj(i) �= z(i) or Tj(i+ 1) �= z(i+ 1), add {z(k), Tj(k)} to C,

where k = (i− 1), ..., (i+ 2).
4. If no such Tj exists, use the triplet τ to initialize a new track in T .
5. Repeat Step 1 until all tracklets in Γi have been visited.
6. For all conflicting observations in C, solve for the optimal four tuple tracklets

in frames i through (i+ 3), and use these to update tracks in T .
7. If the end of the sequence has been reached, return T . Else set i = i+1 and

repeat Step 1.

4.2 Min-cost Flow for Occlusion Handling

The linking step above results in a feasible (no conflicts) set of variable-length
tracklets. However, there still remains the problem of recovering full trajectories
in scenes with longer term occlusions. For this purpose we use the min-cost
network flow formulation of [5] to link tracklets across occlusion gaps. A flow
network is constructed with tracklets as nodes and with a directed edge placed
from node Ti to node Tj when tracklet Tj begins after Ti has ended, as shown
in Fig. 6. The velocity of Ti and the number of frames in the gap between the
two tracklets is used to estimate a search region around the last observation of
Ti such that the first observation of Tj lies within it. A source node s and a
sink node t are also added, with an edge from s to each of the tracklet nodes,
to handle object entry into the scene at any time, as well as an edge from each
tracklet to t, to handle object exit. Fig. 6a shows an example with four tracklets,
and Fig. 6b shows the corresponding flow network. Since T 1 does not overlap any
other tracklet, it has a transition edge to each of the other nodes. On the other

172 A.A. Butt and R.T. Collins

(a) (b)

Fig. 6. Tracklets are merged to recover complete trajectories spanning occlusions. (a)
An illustrative example consisting of four trajectory fragments. (b) The corresponding
min-cost flow network.

hand, T2 overlaps T3, so the only tracklet following T 2 is T 4. If fs,i is the flow
from s to i and fi,t is the flow from i to t, then the flow conservation constraint∑

i

fsi =
∑

i

fit ensures that each tracklet can only be linked to one preceding

and one following tracklet. The costs on arcs from s are set to a small positive
number γ. The costs on arcs to t are set to −γ − ε. This is done so that some
flow always passes through the tracklet nodes. The costs on the arcs between
the other nodes are based on the appearance similarity φ of the tracklet targets,
as measured by similarity of their color histograms. A threshold value θ is used
such that θ − φ is positive for low similarity value, and θ − φ is negative when
the tracklets are more similar. The push-relabel method proposed by Goldberg
[18] is used to solve the resulting min-cost flow problem.

5 Computational Complexity

Given on average n observations in each frame, the worst case scenario would be
the formation of n3 potential tracklets for a frame triplet. In most cases, however,
an observation in one frame may only be matched to k observations in the next,
where k << n. The number of tracklets in a triplet of frames is then nk2. The
spectral method of [16] has complexity of O(m3/2), where m is the number of
tracklets. Hence, it takes O((nk2)3/2) to generate tracklets in each frame triplet.
In a sequence of F frames there are F − 2 overlapping triplets. It thus takes
O((Fnk2)3/2) time to generate all three-frame tracklets in the sequence. The
global merging step using min-cost flow has a complexity of O(v2u log v), where
v is the total number of tracklets, and u is the number of arcs in the flow network
(arcs connecting each tracklet to later tracklets that could be continuations).

6 Experiments

6.1 Importance of Constant Velocity

To show the utility of constant velocity, we use two groundtruthed datasets
of trajectories from pedestrians walking in a student union building [15]. One

Multiple Target Tracking Using Frame Triplets 173

sequence is relatively “sparse”, with an average of 5 observed people per frame,
while the other sequence is more densely populated with roughly 20 people
observed per frame. Each sequence is 15 minutes long, and human coders have
annotated the data to generate ground truth trajectories for all pedestrians.

As a baseline method, we implemented a greedy Hungarian algorithm that
gradually extends a set of trajectories by incrementally associating them to ob-
servations in each new frame. We used two versions of this algorithm - using
constant velocity to predict an object’s position in the next frame, and using
the current position as the prediction. Results from a sample sparse sequence
are shown in Fig. 7. We calculate the mismatches [19] that occur in the esti-
mated trajectories and sum them over 31 sequences. The number of mismatches
for the Hungarian algorithm without constant velocity prediction is 53, for the
Hungarian algorithm with constant velocity is 14, and for our approach is 11.
These results clearly show the advantage of using constant velocity, and that our
approach is superior to the greedy Hungarian baseline.

Fig. 7. A sample sequence. Dots associated with the same ground truth trajectory
have the same color. (a) Result of the Hungarian method without motion prediction.
(b) Hungarian method using constant velocity prediction. (c) Results of our method.

6.2 Comparison on Public Datasets

We also ran our algorithm on the publicly available TUD Crossing sequence [1]
and ETHMS dataset [2]. We use the same ETHMS sequence as [5] with 999
frames. The results are compared with the dynamic programming (DP) solution
in [6] and the successive shortest path (SSP) - or the equivalent push-relabel
algorithm - described in [5, 6]. We use the implementation of the authors of
[6] for the DP algorithm, and the push-relabel code by Goldberg [18]. We use
an “out-of-the-box” pre-trained pedestrian detector described in [20]. The cost
functions used for DP and SSP are based on the detector confidence score, as in
[6]. For our algorithm we use the constant velocity measure described by Eq. 5.
For these experiments we do not do the appearance-based min-cost flow post
processing. Our implementation of the frame-triplet code is in MATLAB, and
takes 2.03 seconds to run on the 201 frames of the TUD sequence.

The DP algorithm handles k-frame occlusions by creating links between de-
tections that are k frames apart. Fig. 8 shows the DP implementation with k = 2
for comparison with our algorithm where dummy observations handle short-term
occlusions. The detection rate is plotted against false positives per frame for the

174 A.A. Butt and R.T. Collins

two sequences. The goal is to keep the false positives to a minimum while the
detection rate is increased. For the TUD sequence, our algorithm outperforms
DP. The graph for ETHMS shows that SSP outperforms the other algorithms
initially. However, it only has a maximum detection rate of slightly over 50%.
While the DP algorithm performs a little better than ours on this sequence, our
algorithm’s performance remains competitive with regards to this measure.

Fig. 8. Detection rate versus FPPI on the TUD sequence [1] (left) and ETHMS dataset
[2] (right). DP performs slightly better on the ETHMS dataset, whereas our method
performs better on the TUD sequence for this metric.

The strength of our algorithm becomes clear when comparing the number of
mismatches (Table 2). A mismatch can occur when objects that are close to
each other swap track labels, or when a track is lost and reinitialized with a
different label. We count the number of mismatches as described in [19]. Our
algorithm easily outperforms DP with k = 1 and k = 2 for both sequences. The
low number of mismatches for SSP is deceptive since this happens because it
fails to detect people in cluttered areas, resulting in much fewer detections than
the other algorithms.

Table 2. The numbers reported here are (Number of mismatches/Total number of
detections). The results are shown for the TUD sequence, and the first 350 frames of
the ETHMS sequence. DP was run along with non-maximum suppression (NMS).

Sequence DP (k=1) DP (k=2) Our Algo SSP

ETHMS 37/1387 39/1427 14/1496 11/1057

TUD 32/768 29/782 23/800 -

A visual comparison of our algorithm and DP is shown in Fig. 9. By inspecting
the ID labels of various people we see that our algorithm does a better job of
maintaining consistent long-term labels.

Multiple Target Tracking Using Frame Triplets 175

Fig. 9. The top row shows the result of running the DP (with NMS) tracker of [6] on
part of the ETHMS sequence. The bottom row shows our result. Our algorithm does
a better job at maintaining ID labels over time.

7 Conclusion

We have proposed a multi-frame, multi-target tracking approach based on com-
puting three-frame tracklets subsequently linking them. Our algorithm focuses
on geometric relationships between observations, and does not require a strong
appearance model. Within a sliding window of frame triplets, we form all po-
tential 3-tuples of tracklets and compute a utility value for each tracklet based
on its conformance to a constant velocity motion model. The optimal set of dis-
joint tracklets is solved for using a spectral method. The linking stage of our
algorithm allows us to correct any tracklet conflicts by solving over a larger
number of frames while merging compatible tracklets representing unambiguous
continuations. This pass through the data yields tracklets of variable length,
but trajectories may still be fragmented due to occlusions that persist for sev-
eral frames. A final stage applies the min-cost network flow formulation to link
tracklets across long-term occlusion gaps, guided by target appearance informa-
tion. We compared our results with algorithms from [5, 6], and showed that our
algorithm outperforms them with respect to track label mismatches, while being
competitive with respect to detection rate and false positives.

Acknowledgements. This workwas partially funded by NSF grant IIS-1218729.

References

1. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-
detection-by-tracking. In: IEEE Conf. on Computer Vision and Pattern Recognition
(2008)

176 A.A. Butt and R.T. Collins

2. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for ro-
bust multi-person tracking. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2008). IEEE Press (2008)

3. Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence
for densely moving points. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23, 54–72 (2001)

4. Wu, B., Nevatia, R.: Tracking of multiple, partially occluded humans based on
static body part detection. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1, pp. 951–958 (2006)

5. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking
using network flows. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2008, pp. 1–8 (2008)

6. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms
for tracking a variable number of objects. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR (2011)

7. Shafique, K., Shah, M.: A noniterative greedy algorithm for multiframe point cor-
respondence. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 51–65
(2005)

8. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight in-
dependent set. In: 2011 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR, pp. 1273–1280 (2011)

9. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Sys. Artech
House, Norwood (1999)

10. Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a vari-
able number of interacting targets. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27, 1805–1819 (2005)

11. Li, Y., Huang, C., Nevatia, R.: Learning to associate: Hybridboosted multi-target
tracker for crowded scene. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2009, pp. 2953–2960 (2009)

12. Yang, B., Huang, C., Nevatia, R.: Learning affinities and dependencies for multi-
target tracking using a crf model. In: 2011 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, pp. 1233–1240 (2011)

13. Song, B., Jeng, T., Staudt, E., Roy-Chowdhury, A.: A Stochastic Graph Evolution
Framework for Robust Multi-Target Tracking (2010)

14. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-
shortest paths optimization. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1806–1819 (2011)

15. Collins, R.: Multitarget data association with higher-order motion models. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012. IEEE
Press (2012)

16. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using
pairwise constraints. In: International Conference on Computer Vision (2005)

17. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point
method for graph matching and map inference. In: Proceedings Neural Information
Processing Systems. Springer (2009)

18. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. Journal of Algorithms 22, 1–29 (1992)

19. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance:
the clear mot metrics. J. Image Video Process. 2008, 1:1–1:10 (2008)

20. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32, 1627–1645 (2010)

	Multiple Target Tracking Using Frame Triplets
	Introduction
	Related Work
	Tracklet Generation
	Problem Formulation
	Utility Matrix
	An Approximate Spectral Solution
	Handling Missed Detections and Tracklet Birth/Death

	Tracklet Linking
	Merging and Conflict Resolution
	Min-cost Flow for Occlusion Handling

	Computational Complexity
	Experiments
	Importance of Constant Velocity
	Comparison on Public Datasets

	Conclusion
	References

