
An Experimental Comparison of Similarity

Adaptation Approaches

Sebastian Stober and Andreas Nürnberger

Data & Knowledge Engineering Group
Faculty of Computer Science

Otto-von-Guericke-University Magdeburg, D-39106 Magdeburg, Germany
{Sebastian.Stober,Andreas.Nuernberger}@ovgu.de

Abstract. Similarity plays an important role in many multimedia re-
trieval applications. However, it often has many facets and its perception
is highly subjective – very much depending on a person’s background or
retrieval goal. In previous work, we have developed various approaches
for modeling and learning individual distance measures as a weighted
linear combination of multiple facets in different application scenarios.
Based on a generalized view of these approaches as an optimization prob-
lem guided by generic relative distance constraints, we describe ways to
address the problem of constraint violations and finally compare the
different approaches against each other. To this end, a comprehensive
experiment using the Magnatagatune benchmark dataset is conducted.

1 Introduction

Similarity or distance measures are a crucial component in any information re-
trieval system in general. Particularly in multimedia retrieval, the objects of
consideration can often be compared w.r.t. a multitude of facets. For instance,
the distance of two music pieces could be computed based on the rhythm, tempo,
lyrics, melody, harmonics, timbre or even mood. While sophisticated measures
usually exist for each single facet, the question remains how to obtain a suitable
combination of multiple facets that reflects the background and the retrieval goal
of the user. In previous work, we have proposed various approaches for adapting
individual distance measures as a weighted linear combination of multiple facets
and demonstrated how they can be applied in several real-world interactive sce-
narios: organizing and exploring the work of the Beatles with the BeatlesExplorer
user interface by re-arranging songs and correcting rankings [17], learning suit-
able similarity measures for folk song classification from expert annotations [2],
and tagging photographs [18]. Each time, a different learning approach was taken
to obtain the desired adaptation with different application-depending objectives.
However, as described recently [19] and recapitulated in Section 2, there is a gen-
eralized view which is also consistent with various related works (Section 3). This
formalization provides a unified model for our adaptation approaches taken so
far which are briefly outlined in Sections 4.1 to 4.3. Additionally, we address the

M. Detyniecki et al. (Eds.): AMR 2011, LNCS 7836, pp. 96–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Experimental Comparison of Similarity Adaptation Approaches 97

problem of constraint inconsistencies in Section 4.4 and furthermore propose al-
ternative problem formalizations that allow constraint violations in Section 4.5.
As the main contribution of this paper, Section 5 describes the experimental
comparison of the approaches covered by Section 4 using the Magnatagatune
benchmark dataset. Finally, Section 6 concludes this paper.

2 Formalization

To begin with, the concept of facet distances needs to be formalized assuming a
feature-based representation of the objects of interest:

Definition 1. Given a set of features F , let S be the space determined by the
feature values for a set of objects O. A facet f is defined by a facet distance
measure δf on a subspace Sf ⊆ S of the feature space, where δf satisfies the
following conditions for any a, b ∈ O:

– δf (a, b) ≥ 0 and δf (a, b) = 0 if and only if a = b
– δf (a, b) = δf (b, a) (symmetry)

Furthermore, δf is a distance metric if it additionally obeys the triangle inequality
for any a, b, c ∈ O:

– δf (a, c) ≤ δ(a, b) + δ(b, c) (triangle inequality)

In order to avoid a bias when aggregating several facet distance measures, the
values need to be normalized. The following normalization is applied for all
distance values δf (a, b) of a facet f :

δ′f (a, b) =
δf (a, b)

μf
(1)

where μf is the mean facet distance with respect to f :

μf =
1

|{(a, b) ∈ O2}|
∑

(a,b)∈O2

δf (a, b) (2)

As a result, all facet distances have a mean value of 1.0. Special care has to be
taken, if extremely high facet distance values are present that express “infinite
dissimilarity” or “no similarity at all”. Such values introduce a strong bias for the
mean of the facet distance and thus should be ignored during its computation.

The actual distance between objects a, b ∈ O w.r.t. the facets f1, . . . , fl is com-
puted as weighted sum of the individual facet distances δf1(a, b), . . . , δfl(a, b):

d(a, b) =
l∑

i=1

wiδfi(a, b) (3)

This way, facet weights w1, . . . , wl ∈ � are introduced that allow to adapt the
importance of each facet according to user preferences or for a specific retrieval

98 S. Stober and A. Nürnberger

task. These weights obviously have to be non-negative and should also have an
upper bound, thus:

wi ≥ 0 ∀1 ≤ i ≤ l (4)
l∑

i=1

wi = l (5)

They can either be specified manually or learned from preference information. In
the scope of this work, all preference information is reduced to relative distance
constraints.

Definition 2. A relative distance constraint (s, a, b) demands that object a is
closer to the seed object s than object b, i. e.:

d(s, a) < d(s, b) (6)

With Equation 3 this can be rewritten as:

l∑

i=1

wi(δfi(s, b)− δfi(s, a)) =

l∑

i=1

wixi > 0 (7)

substituting xi = δfi(s, b)− δfi(s, a). Such basic constraints can directly be used
to guide an optimization algorithm that aims to identify weights that violate
as few constraints as possible [16]. Alternatively, the positive examples (x,+1)
and the negative examples (−x,−1) can be used to train a binary classifier in
which case the weights w1, . . . , wl define the model (separating hyperplane) of
the classification as pointed in [4]. Furthermore, the relative distance constraints
are still rich enough to cover more complex forms of preference as summarized in
[19]. Also note that such relative statements are usually much easier to formulate
than absolute ones.

3 Relation to Other Approaches

An adaptive structuring technique for text and image collections using Self-
OrganizingMaps (SOMs) is described in [13]. The underlying weighted Euclidean
distance is automatically adapted according to user feedback (changing the lo-
cation of objects in the SOM). For the adaptation, no distance constraints as
described by Equation 6 are used explicitly. Instead, weight update rules are ap-
plied based on the feature differences which correspond to the xi in Equation 7.

Bade [1] applies metric learning for personalized hierarchical structuring of
(text) collections where each document is represented by a vector of term weights
[14]. To this end, structuring preferences are modeled by so-called “must-link-
before constraints” – each referring to a triple (a, b, c) of documents. Such a
constraint expresses a relative relationship according to hierarchy levels, namely
that a and b should be linked on a lower hierarchy level than a and c. In hier-
archical clustering, this means nothing else but that a and b are more similar

An Experimental Comparison of Similarity Adaptation Approaches 99

than a and c. Consequently, must-link-before constraints can be considered as a
domain-specific interpretation of the more generic relative distance constraints
(Equation 6).

Cheng et al. [4] approach the metric learning problem from a case-based rea-
soning perspective and thus call the relative distance constraints “case triples”.
In contrast to the previously outlined works, they address object representations
beyond plain feature vectors: They model similarity as a weighted linear combi-
nation of “local distance measures” which corresponds to the facet concept and
the aggregation function used here. As a major contribution, they also show how
this formulation of the metric learning problem can be interpreted as a binary
classification problem that can be solved by efficient learning algorithms and
furthermore allows non-linear extensions by kernels.

The work of McFee et al. [12,11] on Metric Learning to Rank (MLR) – an ex-
tension of the Structural Support Vector Machine (SVM) approach [8] – is related
in that their learning methods are also guided by relative distance constraints
(which they call “partial order constraints”). They also combine features from
different domains (acoustic, auto-tags and tags given by users) which could be
interpreted as facets with the respective kernels corresponding to facet similarity
measures. However, their approaches differ from the one addressed in this paper
in that they aim to learn an embedding of the features into an Euclidean space
and to this end apply complex non-linear transformations using kernels. Whilst
their techniques are more powerful in the sense that they allow to model complex
correlations, this comes at a high price: The high complexity is problematic when
users want to understand or even manually adapt a learned distance measure.
Here, the simplicity of the linear combination approach is highly beneficial.

Wolff and Weyde [20] also apply MLR for learning a Mahalanobis distance
that reflects a perceived or stated music similarity according to relative similar-
ity ratings by users. Their experiments are based on the Magnatagatune dataset,
which is also used here. However, they additionally incorporate genre tags of the
corresponding albums from Magnatune as features and furthermore take a dif-
ferent approach to derive constraints (referred to as “binary rankings”) from the
similarity judgments (cf. Section 5.2). Therefore, the results cannot be compared
directly. In general, a higher number of satisfiable constraints can be expected
as the Mahalanobis distance has more degrees of freedom for adaptation (a n×n
matrix of covariances as opposed to n facet weights), However, the convergence
behavior of the incremental adaptation remains unclear. For a meaningful com-
parison, both, the features and the evaluation methodology, need to be identical.

Slaney et al. [15] state that they “use labels [artist, label and blog] to tune
the Mahalanobis matrix so that similar songs are likely to be close to each other
in the metric space.” Although this is not explicitly stated in their description,
this also implies either relative distance constraints (as used here) or absolute
constraints of the form “Songs a and b have to be in the same cluster.” However,
using the Mahalanobis distance, they require more restrictive plain vector rep-
resentations as input. Furthermore, the resulting music similarity model – i. e.,

100 S. Stober and A. Nürnberger

the covariance matrix of the Mahalanobis distance – is still harder to interpret
and adapt manually.

Finally, the SoniXplorer [10] is in many aspects similar to the BeatlesEx-
plorer prototype described earlier in [17]: The system covers multiple facets and
uses a weighted linear aggregation for the underlying similarity measure. How-
ever, the adaptation is not guided by relative distance constraints. Instead, the
system allows the users to specify distance information by manipulation of the
terrain, i. e., the formation of new separating hills or their removal respectively.
By numerical integration over the height profile, a target distance matrix for
the learning algorithm is derived that contains absolute (quantitative) distance
information.

4 Optimization Approaches

It is possible to look at the optimization problem introduced in Section 2 from
different perspectives: tolerance w.r.t. constraint inconsistencies, stability, con-
tinuity and responsiveness. The following sections describe three different op-
timization approaches that have been taken in previous work – each one for
a different application: a gradient descent approach (Section 4.1), a Quadratic
Programming (QP) approach (Section 4.2), and a maximum margin approach
(Section 4.3). Furthermore, Section 4.4 describes a generic way of dealing with
constraint inconsistencies and Section 4.5 proposes several alternative QP prob-
lem formulations that allow constraint violations.

4.1 Gradient Descent

In the folk song classification experiments described in [2], weights are learned
by a gradient descent approach similar to the work in [3]. During learning, all
constraint triples (s, a, b) are presented to the algorithm several times until con-
vergence is reached. If a constraint is violated by the current distance measure,
the weighting is updated by trying to maximize

obj (s, a, b) =

l∑

i=1

wi(δfi(s, b)− δfi(s, a)) (8)

which can be directly derived from Equation 7. This leads to the update rule for
the individual weights:

wi = wi + ηΔwi (9)

with Δwi =
∂obj (s, a, b)

∂wi
= δfi(s, b)− δfi(s, a) (10)

where the learning rate η defines the step width of each iteration.1 To enforce
the bounds on wi given by Equation 4 and Equation 5, an additional step is nec-
essary after the update, in which all negative weights are set to 0 and then the

1 Approaching the weight learning problem from the classification perspective using a
perceptron for classification as described in [4] results in the same update rule.

An Experimental Comparison of Similarity Adaptation Approaches 101

weights are normalized to sum up to l. This algorithm can compute a weighting,
even if not all constraints can be satisfied due to inconsistencies. However, no
largest margin is enforced. Using the current weights as initial values in com-
bination with a small learning rate allows for some continuity but there may
still be solutions with less change required. It is possible to limit the number
of iterations to increase responsiveness but this may result in some unsatisfied
constraints.

4.2 Quadratic Programming: Minimizing Weight Change

For maximum continuity which is considered most important in the BeatlesEx-
plorer application described in [17], the weights should change only as little as
necessary to satisfy all constraints. This can directly be modeled as a Quadratic
Programming (QP) problem demanding in the objective function that the sum
over all (quadratic) deviations of the weights from their previous values should
be minimal (with initial values 1):

min
(w1,...,wl)∈�l

l∑

i=1

(
wi − w

(old)
i

)2

(11)

subject to the constraints that enforce the weight bounds (Equation 4 and
Equation 5) and the distance constraints (Equation 7) which can be used di-
rectly. The problem can be solved using the Goldfarb and Idnani dual QP al-
gorithm for convex QP problems subject to general linear equality/inequality
constraints [7]. For this original formalization of the weight learning problem,
there is only a solution if all constraints are consistent. Section 4.5 proposes dif-
ferent ways to integrate slack variables which allow the violation of constraints.

4.3 Maximal Margin Classifier

If stability is more important than continuity, the primary objective is to max-
imize the margin between the separating hyperplane and the positive and neg-
ative training samples (generated from the distance constraints as described in
Equation 7). For the application described in [18] , the linear support vector
machine algorithm as provided by LIBLINEAR [6] is used. However, with this
approach, a valid value range for the weights cannot be enforced. Specifically,
weights can become negative. To reduce the chance of negative weights, artificial
training examples are added that require positive weights (setting a single xi to
1 at a time and the others to 0). These constraints may still be violated in favor
of a larger margin or in case of general constraint inconsistencies.

4.4 Dealing with Inconsistent Constraint Sets

Sometimes the set of constraints to be used for learning may be inconsistent
because there are constraints that contradict each other. Reasons for this may

102 S. Stober and A. Nürnberger

be manifold – e. g., a user may have changed his mind or the constraints may
be from different users or contexts in general. In such case, it is impossible to
learn a facet weighting that satisfies all constraints – irrespective of the learning
algorithm or the facets used. In order to obtain a consistent set of constraints,
the constraint filtering approach described in [12] can be applied as follows:

1. A directed multigraph (i. e., a graph that may have multiple directed edges
between two nodes) is constructed with pairs of objects as nodes and the
distance constraints expressed by directed edges. For instance, for the dis-
tance constraint d(b, c) < d(a, c), a directed edge from the node (b, c) to the
node (a, c) would be inserted.

2. All cycles of length 2 are removed, i. e., all directly contradicting constraints.
(This can be done very efficiently by checking the graph’s adjacency matrix.)

3. The resulting multigraph is further reduced to a Directed Acyclic Graph
(DAG) in a randomized fashion: Starting with an empty DAG, the edges of
the multigraph are added in random order omitting those edges that would
create cycles.

4. The corresponding distance constraints of the remaining edges in the DAG
form a consistent constraints set.

This can be repeated multiple times as the resulting consistent set of constraints
may not be maximal because of the randomized greedy approach taken in step
3. However, finding a maximum acyclic subgraph would be NP-hard.

4.5 Quadratic Programming Approaches with Soft Constraints

The underlying algorithm [7] of the QP solver used for the approach outlined in
Section 4.2 solves convex QP problems of the form

min
x∈�n

aTx+
1

2
xTGx (12)

subject to linear equality and inequality constraints

xTCe = be (13)

xTCi ≥ bi (14)

given the vectors be of dimension me, bi of dimension mi, and a of dimension
n, and the matrices G of of dimension n × n, Ce of dimension me × n, and
Ci of dimension mi × n. The matrix G has to be symmetric positive definite.
In this case, a unique x solves the problem or the constraints are inconsistent.
In the original modeling (Section 4.2), the objective is to minimize the weight

change under some constraints given the previous weights w
(old)
1 , . . . , w

(old)
l . In

particular, this approach can be used to determine facet weights that are closest
to a uniform weighting and feasible under the given constraints by simply setting
all previous weights to 1. Here, the elements of the vector x in the QP problem
description correspond to the facet weights w1, . . . , wl (where l is the number

An Experimental Comparison of Similarity Adaptation Approaches 103

of facets), and therefore n equals l. The objective function given in Equation 11
can be transformed into:

min
(w1,...,wl)∈�l

l∑

i=1

w2
i − 2

l∑

i=1

wiw
(old)
i +

l∑

i=1

w
(old)
i

2
(15)

With respect to Equation 12, the first sum is captured by 1
2x

TGx, the second
sum is expressed by aTx, and the third sum results in a constant value indepen-
dent of the wi and thus can be neglected. A single equality constraint is required
to model the bound on the weight sum (Equation 5) by setting the respective
coefficients in Ce to 1 and the value in be to l. Setting the i-th element of a row
vector of Ci to 1 and the other elements and the corresponding value in bi to
0 enforces the non-negativity of wi. Thus, l inequality constraints are needed to
express Equation 4. Finally, each distance constraint is represented by a single
row vector of Ci where the value ci,j is the xi from Equation 7 for the j-th dis-
tance constraint. The respective value in bi has to be a value ε > 0 because 0
would also allow the equality in Equation 6. Naturally, this value should be as
small as possible w.r.t. machine precision. Greater values increase the stability
of the solution but may also result in an inconsistent system if the solution space
is trimmed too rigorously such that no feasible solution exists anymore.

In order to allow a distance constraint as formulated in Equation 7 to be
violated, a slack variable ξ ≥ 0 needs to be introduced such that:

l∑

i=1

wi(δfi(s, b)− δfi(s, a))+ξ > 0 (16)

This has to be done individually for all k distance constraints of the QP prob-
lem resulting in the respective slack variables ξ1, . . . , ξk. They are modeled as
k additional dimensions of the vector x which is now (w1, . . . , wl, ξ1, . . . , ξk).
(Consequently, the dimensionality of the modified QP problem is l + k and as
the number of distance constraints k can become quite big, this has a significant
impact on the performance of the optimization algorithm.) For the constraints
that ensure the weight bounds and the non-negativity of the weights, the added
matrix columns are filled with zeros. For each of the k distance constraints, only
the value in the column of the respective slack dimension is set to 1 while all
others remain zero. Slack values other than 0 have to result in a penalty. To
this end, the objective function needs to be extended. There are two possibili-
ties to incorporate a slack penalty: either in the linear or the quadratic part of
Equation 12. In the first case, the sum of the slack values is minimized, whereas
in the second case, it is the sum of the squared slack values. In order to allow
a balance between the (initial) objective function and the minimization of the
aggregated slack, the latter is weighted by a constant κ. In case the sum of
the squared slack values is used, both, negative and positive slack values are
penalized. This way, the solver naturally avoids negative slack values. For the
(linear) sum, however, the QP approach does not work if negative slack values
are allowed because this introduces the problem that a single big negative slack

104 S. Stober and A. Nürnberger

value (of a constraint which is not violated) can compensate many small posi-
tive slack values of constraints that are violated. This results in a bias towards
solutions with more violated constraints than necessary. Therefore, k inequality
constraints that explicitly demand non-negative slack values have to be added
to the scheme. Both approaches for incorporating a slack penalty into the ob-
jective function of the QP solver can be combined with the original primary
objectives of minimizing the weight change. Furthermore, it is possible to have
no primary objective and just minimize the slack penalty. The performance of
these combinations is analyzed in the following section.

5 Experimental Comparison

In order to compare the different adaptation approaches covered above in a
fully controlled environment, an experiment has been conducted using the pub-
licly available Magnatagatune benchmark dataset [9]. The setup is explained in
the following including the dataset and its pre-processing (Section 5.1), the con-
straint sets and adaptation algorithms (Section 5.2), and the evaluation method-
ology (Section 5.3). Results are presented and discussed in Section 5.4.

5.1 Dataset and Pre-processing

The Magnatagatune dataset comprises 25863 clips – each one 29 seconds long –
generated from 5405 source MP3s provided by the American independent record
label Magnatune for research purposes. The clips are annotated with a combi-
nation of 188 unique tags that have been collected through the TagATune game
[9]. Additionally, the dataset contains a detailed analysis of each clip computed
using the EchoNest API.2 The features comprise musical events, beats, struc-
ture, harmony, and various global attributes such as key, mode, loudness, tempo
and time signature. Most importantly for the purpose of this evaluation, there
is also a set of music similarity judgments. This information has been collected
by showing a triple of clips and asking the player to choose the most different
one. 533 such triples have been presented to multiple players resulting in 7650
similarity judgments.

In total, 110 facets are used to describe the distances between the clips in the
experiment. An overview with brief explanations is given in Table 1. The facets
comprise seven globally extracted features of which two – dancability and energy
– are not contained in the original clip analysis information of the dataset but
have become available with a newer version of the EchoNest API. Furthermore,
the segment-based features describing pitch (“chroma”) and timbre have been
aggregated (per dimension) resulting in 12-dimensional vectors with the mean
and standard deviation values. This has been done according to the approach
described in [5] for the same dataset. The 188 unique tags used in the manual
annotations have been preprocessed as follows:

2 A detailed description of the extracted features can be found in the documentation
of the EchoNest Track Analyze API under http://developer.echonest.com/

http://developer.echonest.com/

An Experimental Comparison of Similarity Adaptation Approaches 105

Table 1. Facet definition for the Magnatagatune dataset used in the experiment. Top
rows: Globally extracted features. Middle rows: Aggregation of features extracted per
segment. Bottom row: Manual annotations from TagATune game.

feature dim value description distance measure

key 1 0 to 11 (one of the 12 keys) or −1 (none) binary (exact match)
mode 1 0 (minor), 1 (major) or −1 (none) binary (exact match)
loudness 1 overall value in decibel (dB) absolute difference
tempo 1 in beats per minute (bpm) absolute difference

(& tempo doubling)
time signature 1 3 to 7 (3

4
to 7

4
), 1 (complex), or −1 (none) binary; δ(3, 6) = 0.5

danceability 1 between 0 (low) and 1 (high) absolute difference
energy 1 between 0 (low) and 1 (high) absolute difference

pitch mean 12 dimensions correspond to pitch classes Euclidean distance
pitch std. dev. 12 dimensions correspond to pitch classes Euclidean distance
timbre mean 12 normalized timbre PCA coefficients Euclidean distance
timbre std. dev. 12 normalized timbre PCA coefficients Euclidean distance

tags (99 facets) 1 binary, one facet per tag, very sparse binary (exact match)

1. Merging of singular and plural forms (e. g., “guitar” and “guitars”).

2. Spelling correction (e. g., “harpsicord” → “harpsichord”).

3. Combination of semantically identical tags (e. g., “funk” and “funky”).

4. Creation of meta-tags with higher coverage for groups of tags that express
the same concept. (e. g., “instrumental” = “instrumental” or “no vocal(s)”
or “no voice(s)” or “no singer(s)” or “no singing”).

5. Removal of unused tags (w.r.t. the relevant subset of Magnatagatune).

The resulting 99 tags are interpreted as one (binary) facet each.3

5.2 Constraint Sets and Algorithms

Two distance constraints can be derived from a single judgments that clip c
is the most different of a triple (a, b, c), namely d(a, b) < d(a, c) and d(a, b) <
d(b, c). However, the resulting set of constraints is inconsistent because there are
constraints that contradict each other. This is most likely because the similarity
judgments stem from multiple players of the TagATune game. Applying the
filtering technique described in Section 4.4, a constraint graph with 15300 edges
of which 1598 are unique is constructed. After the removal of length 2 cycles,
860 unique edges remain (6898 in total). The randomized filtering finally results
in a DAG with 674 unique edges (6007 in total). Thus, the filtered consistent set

3 Alternatively, it is possible to combine all annotations into a single facet or define
facets for groups of related tags (e. g., all tags related to instrumentation) which
significantly reduces the number of facets. However, this would also drastically reduce
the size of the selected constraints set described in the following.

106 S. Stober and A. Nürnberger

contains 674 constraints of which each is backed by 8.9 judgments on average.
In the following, this set is referred to as all constraints set.

Even for the consistent all constraints set, it is impossible to learn a facet
weighting that violates none of the constraints because the information cap-
tured by the facets is insufficient. I. e., players may have considered aspects in
their judgments that are not covered by the features. From the classification
perspective of Equation 7 this means that there is no hyperplane that clearly
separates the positive from the negative examples. Or from the QP perspective,
the system of equality and inequality constraints is inconsistent – i. e., it has
no solution. Therefore, another set – in the following referred to as selected con-
straints – has been constructed by further filtering the all constraints set. To this
end, the randomized approach of Section 4.4, step 3 has been applied again but
this time constraints are only added to the set if the resulting QP problem has a
solution. The selected constraints set obtained this way contains 521 constraints.

At first sight, the two sets of constraints seem to be quite large. After all,
which user would like to answer several hundred questions of the form “Which
one of these three objects do you think is the most distinct one from the others?”
However, these distance constraints are in fact only the very atomic pieces of
information used to guide the adaptation. As the example applications described
in earlier work show, usually multiple such distance constraints are derived from
a single action like moving an object [17], correcting a ranking [2] or adding a
tag annotation [18].

Table 2 lists the considered algorithms and their parameters. They comprise
the three algorithms used in the applications described in previous work [17,2,18]
and furthermore several variants of the QP approach with added slack dimen-
sions that allow the violation of distance constraints (Section 4.5). As the Grad-
Desc learner may get stuck in a local optimum, the computation is repeated up
to 50 times if no solution could be found that satisfies all training constraints.
Each run uses a different random order of the same training constraints. Finally,
the solution which results in the lowest number of constraint violations is chosen.

5.3 Evaluation Methodology

The evaluation aims to answer the following questions:

– How good is the obtained adaptation (in terms of constraint violations)?
– How fast (with how much user effort) can it be learned?
– How stable is the quality of an adaptation if new constraints are added?

The number of violated distance constraints serves as a measure for how well
the algorithm has adapted to the similarity preferences given some training con-
straints. All algorithms except QPmin(Δw) that cannot deal with inconsistencies
are tested on both sets of constraints described in Section 5.2. For the selected
constraints set, a solution satisfying all constraints is expected. Whereas, for the
all constraints set, the behavior of the algorithms under constraints that can-
not all be satisfied is tested. As the size difference between the two sets is 153,

An Experimental Comparison of Similarity Adaptation Approaches 107

Table 2. Algorithms covered in the comparison. Top: Algorithms used in applica-
tions described in earlier work (Sections 4.1 to 4.3). Bottom: Alternative QP problem
formulations with added slack dimensions (Section 4.5).

abbreviation algorithm parameters

GradDesc Gradient Descent 50 repeats with random permutations
of training samples, dyn. learning rate

QPmin(Δw) Quadratic Programming minimal weight change, no slack
LibLinear Maximal Margin Classifier

(Java LIBLINEAR v1.5)
L2-regularized L2-loss SVC,
C = 107, ε = 10−6, no bias term

QPmin(ξ) Quadratic Programming no primary objective, lin. slack κ = 1
QPmin(ξ2) Quadratic Programming no primary objective, quad. slack κ = 1
QPmin(Δw+ξ) Quadratic Programming min.weight change, lin. slack κ = 1
QPmin(Δw+ξ2) Quadratic Programming min.weight change, quad. slack κ = 1
QPmin(Δw+105ξ2) Quadratic Programming min.weight change, quad. slack κ = 105

the optimal performance value for the all constraints set is expected to be close
to 150 in terms of constraint violations. For each of the two sets, 100 random
permutations of the distance constraints are generated. Each permutation is pre-
sented to the adaptation algorithm – one constraint at a time (i. e., stepwise) –
until all constraints are used for training. After each step, the number of violated
constraints in the whole set is determined. The values are averaged per step over
the 100 permutations to reduce ordering effects.

5.4 Results

Figure 1 shows the detailed performance of all algorithms listed in Table 2. Each
diagram combines the results of a single algorithm on both constraint sets – all
constraints (top, red curve) and selected constraints (bottom, blue curve) – as
these do not overlap. Both colored curves refer to the average of the 100 runs.
Additionally, all performance values obtained for the 100 random permutations
of the constraints are shown as points (in light gray). This gives an impression
of the variance between the different runs. The two gray dotted horizontal lines
indicate the baseline performance value obtained by the uniform facet weighting
on all constraints (upper line) and the subset of selected constraints (lower line).
The scaling of all plots is identical for better comparability. It is also the same
for both axis.

Comparing the algorithms applied in earlier work (top rows of Table 2), the
plots for the selected constraints set, where a weighting can be found that satisfies
all constraints, are almost identical. For LibLinear the mean curve is a bit steeper,
indicating slightly better early solutions. However, a little more variance can be
observed – especially between 50 and 80 training constraints. Furthermore, it has
to be noted that GradDesc and LibLinear converge on a solution that leaves a small
number of constraints violated whereas QPmin(Δw) finds a weighting without
constraint violations. The GradDesc learner still gets stuck in a local optimum

108 S. Stober and A. Nürnberger

Fig. 1. Performance plots for the algorithms listed in Table 2 averaged over 100 ran-
dom permutations of the all constraints set (red curves) and selected constraints set
(blue curves). Baseline values for uniform facet weightings are shown as dotted gray
horizontal lines. The gray point clouds visualize the value distributions within the 100
runs. (*QPmin(Δw) is not applicable on the all constraints set.)

An Experimental Comparison of Similarity Adaptation Approaches 109

possibly close to the global one. The problem of LibLinear is that it favors a
large margin over small constraint violations, e. g., caused by small negative facet
weights. For the larger all constraints set, QPmin(Δw) does not return a solution
because the derived QP system to be solved is inconsistent. Comparing GradDesc
and LibLinear which both can deal with constraint violations, the latter again
shows faster convergence but slightly higher variance. Most notably, LibLinear
leads to a solution that violates approximately 30 constraints less than GradDesc.
The main reason for this is that it trades a few (slightly) violated weight bounds
constraints against a larger number of distance constraints that are not violated.
This results however in an invalid weighting.

Looking at the alternative QP approaches that aim to minimize only the slack
without a primary objective, the plots for the selected constraints set look almost
identical. They do not differ much from QPmin(Δw) even though the objective
is much different here. Therefore, it can be concluded that both approaches work
well if there is a solution that violates no constraints. However, the performance
could not look much more different for the all constraints set: QPmin(ξ), i. e.,
modeling the slack in the linear part of the QP objective function (and leaving
the quadratic part constant), seems not to work at all. There is almost no im-
provement compared to the baseline. At the same time, the variance increases
which is much in contrast to all other approaches. However, QPmin(ξ2), i. e.,
modeling the slack in the quadratic part of the objective function, produces
a better solution than GradDesc. At the beginning, for up to 30 training con-
straints, there is no improvement. In fact both plots look here very much alike.
But then the number of violations drops quickly and for 100 training constraints,
it is already lower than for GradDesc.

For the alternative QP approaches that minimize the change of the facet
weights with soft constraints, QPmin(Δw+ξ), has the best performance on both
sets of constraints. This is surprising considering that QPmin(ξ) does not work
at all for the all constraints set. Much in contrast, minimizing the quadratic
slack penalty works only well without the primary objective (QPmin(ξ2)). For
the combination, QPmin(Δw+ξ2), there seems to be a conflict between both ob-
jectives. This results in an unsatisfactory adaptation for the selected constraints
set with more than 40 constraint remaining violated. The QPmin(Δw+ξ2) plot
for the all constraints set is very remarkable. It can be divided into three sec-
tions: In the first section up to roughly 440 constraints, there is high variance
between the permutations and no significant improvement. Then, however, the
values converge and until about 525 constraints, no variance can be observed.
This point coincides with the size of the selected constraints set which is close
to the maximal number of constraints that can be satisfied. Afterwards, in the
last section, the number of violated constraints quickly decreases to a final value
that is comparable to the other working approaches. This late adaptation sug-
gests that the primary objective (minimizing the weight change) suppresses the
minimization of the slack until the last section. Indeed, the facet weights have
converged to 1 at the beginning of the second section which explains the per-
formance close to the baseline (uniform facet weights). Only afterwards, the

110 S. Stober and A. Nürnberger

importance of the slack gains the upper hand – most likely because of the high
number of slack dimensions caused by the many training constraints in this sec-
tion. Choosing a high slack weight results in an earlier adaptation as shown for
QPmin(Δw+105ξ2) with κ = 105. However, the variance is very high and the
performance is still inferior to QPmin(Δw+ξ). Even higher values of κ result in
no significant improvement.

Finally, Table 3 lists some empirically determined values for the processing
time of the different algorithms. Especially in interactive settings, a short re-
sponse time is important. For GradDesc, the times refer only to a single repe-
tition. Generally, these measurements can only give an impression of the pro-
cessing time for the adaptation as no special preparations of the testing system,
the runtime environment or the compiler have been made. The values are av-
eraged over 100 random permutations and have been measured for 10, 100 and
all available training constraints of the two sets. Values for the all constraints
set are expected to be higher because of the unavoidable constraint violations
that occur here. For GradDesc and LibLinear, this is surprisingly not the case.
Possibly, finding a solution for the selected constraints set is harder for these
algorithms. However, it has to be noted that LibLinear is the only approach that
in the current implementation of the library interface requires slow hard disk
access to read the problem description from a temporary file. The actual pro-
cessing times for LibLinear are therefore much lower. In the adaption experiment
described in [18] with much larger constraint sets, LibLinear has already shown
that its runtime scales well. The QP approaches could run into problems here
– especially QPmin(Δw+ξ) which requires even more constraints for the non-
negativity of the slack variables. In contrast to the other algorithms, GradDesc,
which is rather slow (but also the only algorithm in the evaluation that does not
rely on highly optimized library code) could be interrupted during computation
and still return a satisfying adaptation.

A direct comparison of all tested approaches is shown in Figure 2. For the se-
lected constraints set, all approaches except those using the square slack penalty
work almost equally well. I. e., if a solution exists that satisfies all constraints,
one is found. Only GradDesc gets stuck a little too early and LibLinear favors the
larger margin. Of the approaches with square slack penalty, QPmin(Δw+ξ2) does
not work well leaving roughly 40 unsatisfied constraints and QPmin(Δw+105ξ2)
converges too slowly. For the harder all constraints set, LibLinear can be consid-
ered as the “disqualified winner” of the competition. It shows the overall quickest
convergence requiring less steps then the other approaches for the adaptation
and returns weightings that violate significantly fewer constraints. However, the
latter is only possible because of “cheating” as the weights violate the essen-
tial non-negativity constraint (Equation 4) and thus cannot be interpreted as
intended. Given these results and the good scalability for large problems, an
internal modification of LIBLINEAR that ensures non-negative weights looks
promising. However, this is not a trivial task and intended for future work.
QPmin(Δw+ξ) has the best final performance value for a valid adaptation on all
constraints which is even slightly below 150. However, its adaptation is a bit slow

An Experimental Comparison of Similarity Adaptation Approaches 111

Table 3. Processing times (in seconds) for the adaptation depending on the number
of training constraints measured on both constraint sets. Values averaged over 100
repetitions on a consumer notebook (2.4 GHz Intel Core 2 Duo, 4GB RAM). Algorithms
without satisfying adaptations in the evaluation are in gray.

algorithm selected constraints all constraints
(abbreviation) 10 100 521 10 100 674

GradDesc <0.01 3.34 13.29 <0.01 5.41 8.45
QPmin(Δw) <0.01 0.02 1.08
LibLinear 0.13 1.21 2.54 0.38 0.46 1.19
QPmin(ξ) <0.01 0.06 5.84 <0.01 0.19 19.62
QPmin(ξ2) <0.01 0.03 1.15 <0.01 0.05 5.95
QPmin(Δw+ξ) <0.01 0.06 6.59 <0.01 0.06 27.73
QPmin(Δw+ξ2) <0.01 0.02 0.82 <0.01 0.03 3.05
QPmin(Δw+105ξ2) <0.01 0.02 1.12 <0.01 0.04 4.59

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

vi

ol
at

ed
 c

on
st

ra
in

ts

constraints for learning

GradDesc
LibLinear

*QPmin(Δw)
QPmin(ξ)

QPmin(ξ2)
QPmin(Δw+ξ)

QPmin(Δw+ξ
2)

QPmin(Δw+105
ξ

2)

Fig. 2. Direct comparison of all approaches tested in the experiment. All values are
averaged over 100 random permutations of the constraints. (*QPmin(Δw) is not appli-
cable on all constraints set.)

in the beginning. For the first 70 steps, GradDesc would be a better choice and in
the middle section, QPmin(ξ2) does slightly better. In the end, the performance
difference of these three approaches is only very small. Finally, QPmin(ξ) does
not work at all for all constraints and QPmin(Δw+ξ2) converges only in the end
which is not acceptable either. These combination should therefore not be used.

112 S. Stober and A. Nürnberger

6 Conclusions

Based on a generalized view that brings together our work from recent years in
the field of adaptive similarity and distance measures based on weighted linear
combinations, we have conducted an experimental comparison of the different
approaches. To this end, we have utilized the publicly available Magnatagatune
benchmark dataset. Pre-processing of this dataset comprised the refinement of
the tag annotations, the definition of facets, the generation of distance con-
straints from the similarity judgments, and the filtering of the constraints to
obtain a consistent set. As performance measure, the number of constraint vio-
lations has been plotted against the number of constraints used for training. In
general, the evaluation methodology is not confined to approaches that model
distance as a weighted linear combination of facets. Basically, any algorithm
that uses relative distance constraints can be tested this way. Thus, it is possible
to extend the comparison and also cover approaches that, e. g., use the Ma-
halanobis distance or complex kernel-based models which is planned for future
work.4 Further plans include to modify LIBLINEAR such that weights cannot
become negative.

Acknowledgments. This work was supported in part by the German Na-
tional Merit Foundation and the German Research Foundation (DFG) under
the project AUCOMA.

References

1. Bade, K.: Personalized Hierarchical Structuring. PhD thesis, Otto-von-Guericke-
University Magdeburg (2009)

2. Bade, K., Garbers, J., Stober, S., Wiering, F., Nürnberger, A.: Supporting folk-
song research by automatic metric learning and ranking. In: Proc. of the 10th Int.
Conf. on Music Information Retrieval (ISMIR 2009) (2009)

3. Bade, K., Nürnberger, A.: Creating a cluster hierarchy under constraints of a par-
tially known hierarchy. In: Proc. of the 2008 SIAM Int. Conf. on Data Mining
(2008)

4. Cheng, W., Hüllermeier, E.: Learning similarity functions from qualitative feed-
back. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008.
LNCS (LNAI), vol. 5239, pp. 120–134. Springer, Heidelberg (2008)

5. Donaldson, J., Lamere, P.: Using visualizations for music discovery. In: Tutorial at
the 10th Int. Conf. on Music Information Retrieval (ISMIR 2009) (2009)

6. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear
classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

7. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly
convex quadratic programs. Mathematical Programming 27(1), 1–33 (1983)

8. Joachims, T.: A Support Vector Method for Multivariate Performance Measures.
In: Proc. of the Int. Conf. on Machine Learning (ICML 2005) (2005)

4 The constraint sets derived from the Magnatagatune dataset can be provided upon
request. Please contact sebastian.stober@ovgu.de

mailto:sebastian.stober@ovgu.de

An Experimental Comparison of Similarity Adaptation Approaches 113

9. Law, E., von Ahn, L.: Input-agreement: a new mechanism for collecting data using
human computation games. In: Proc. of the 27th Int. Conf. on Human Factors in
Computing Systems (CHI 2009) (2009)

10. Lübbers, D., Jarke, M.: Adaptive multimodal exploration of music collections. In:
Proc. of the 10th Int. Conf. on Music Information Retrieval (ISMIR 2009) (2009)

11. McFee, B., Barrington, L., Lanckriet, G.: Learning similarity from collaborative
filters. In: Proc. of the 11th Int. Conf. on Music Information Retrieval (ISMIR
2010) (2010)

12. McFee, B., Lanckriet, G.: Heterogeneous embedding for subjective artist similarity.
In: Proc. of the 10th Int. Conf. on Music Information Retrieval (ISMIR 2009) (2009)

13. Nürnberger, A., Klose, A.: Improving clustering and visualization of multimedia
data using interactive user feedback. In: Proc. of the 9th Int. Conf. on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU
2002) (2002)

14. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval.
Information Processing & Management 24(5), 513–523 (1988)

15. Slaney, M., Weinberger, K.Q., White, W.: Learning a metric for music similarity.
In: Proc. of the 9th Int. Conf. on Music Information Retrieval (ISMIR 2008) (2008)

16. Nürnberger, A., Stober, S.: User modelling for interactive user-adaptive collection
structuring. In: Boujemaa, N., Detyniecki, M., Nürnberger, A. (eds.) AMR 2007.
LNCS, vol. 4918, pp. 95–108. Springer, Heidelberg (2008)

17. Stober, S., Nürnberger, A.: Towards user-adaptive structuring and organization of
music collections. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008.
LNCS, vol. 5811, pp. 53–65. Springer, Heidelberg (2010)

18. Stober, S., Nürnberger, A.: Similarity adaptation in an exploratory retrieval sce-
nario. In: Detyniecki, M., Knees, P., Nürnberger, A., Schedl, M., Stober, S. (eds.)
AMR 2010. LNCS, vol. 6817, pp. 144–158. Springer, Heidelberg (2012)

19. Stober, S.: Adaptive distance measures for exploration and structuring of music
collections. In: Proc. of AES 42nd Conf. on Semantic Audio (2011)

20. Wolff, D., Weyde, T.: Combining Sources of Description for Approximating Music
Similarity Ratings. In: Detyniecki, M., Garćıa-Serrano, A., Nürnberger, A., Stober,
S. (eds.) AMR 2011. LNCS, vol. 7836, pp. 114–124. Springer, Heidelberg (2013)

	An Experimental Comparison of SimilarityAdaptation Approaches
	Introduction
	Formalization
	Relation to Other Approaches
	Optimization Approaches
	Gradient Descent
	Quadratic Programming
	Maximal Margin Classifier
	Dealing with Inconsistent Constraint Sets
	Quadratic Programming Approaches with Soft Constraints

	Experimental Comparison
	Dataset and Pre-processing
	Constraint Sets and Algorithms
	Evaluation Methodology
	Results

	Conclusions
	References

