
J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 141–157, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Regulatory Requirements Traceability and Analysis
Using Semi-formal Specifications

Travis D. Breaux1 and David G. Gordon2

1 Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
breaux@cs.cmu.edu

2 Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
dggordon@andrew.cmu.edu

Abstract. Information systems are increasingly distributed and pervasive,
enabling organizations to deliver remote services and share personal information,
worldwide. However, developers face significant challenges in managing the
many laws that govern their systems in this multi-jurisdictional environment. In
this paper, we report on a computational requirements document expressible using
a legal requirements specification language (LRSL). The purpose is to make legal
requirements open and available to policy makers, business analysts and software
developers, alike. We show how requirements engineers can codify policy and
law using the LRSL and design, debug, analyze, trace, and visualize relationships
among regulatory requirements. The LRSL provides new constructs for
expressing distributed constraints, making regulatory specification patterns
visually salient, and enabling metrics to quantitatively measure different styles for
writing legal and policy documents. We discovered and validated the LRSL using
thirteen U.S. state data breach notification laws.

Keywords: requirements specification, traceability, domain specific languages,
legal requirements.

1 Introduction

Increasingly, new government laws and regulations are being introduced to address new
challenges posed by emerging information systems (IS). For software developers, this
emergence of IS-related laws places constraints on what systems must do (the matter of
requirements) and whether system requirements documents include all the right
requirements (the matter of validation). In the United States, a prominent example
includes the recent surge in state data breach notification laws, which have been
empirically observed to reduce identity theft [27]. Collectively, these laws combine the
act of notification to various stakeholders with technical security controls (e.g.,
encryption, data destruction, etc.) targeted at different information types, business
practices and consumers. These laws require the development of a new, interstate
information system that most businesses in the U.S. must participate in by modifying
their organizational practices and software systems to account for data breaches and to
deliver notices under specifically governed situations. Many of the legally imposed
security requirements follow conventional security design wisdom; however, the legally

142 T.D. Breaux and D.G. Gordon

mandated parameters in these requirements vary across jurisdiction. For example, using
encryption or disposing of unnecessary data is a security best practice; however, the
required type of encryption and length of data retention does vary across state and
national boundaries. The challenge for developers, especially in small businesses, is to
distill these regulations into actionable requirements that are traceable across their
business practices. Simply skimming a regulation for keywords or phrases exposes
software developers and users to the risk of missing subtle constraints and relationships.
Example relationships affect who is covered, under what circumstances, and to what
extent. Finally, a systematic, traceable and comprehensive account of existing legal
requirements can facilitate the integration with industry standards to further articulate
how businesses comply with government laws [28].

We believe existing approaches to governance, which consists of independently
published, paper-based laws and policies, can no longer scale with rate of technology
innovation. Furthermore, if an honest expectation of compliance is to be preserved in
this new environment, regulations must be made accessible to policy makers, business
analysts and software developers, alike. We propose that regulators and industry can
reach a coordinated solution wherein regulations become a computational software
artifact that are dynamically linked across jurisdictions and that enable tool-based
requirements analysis. These computational artifacts can integrate with industry
standards to become more easily comparable and addressable in a manner that reflects
the jurisdiction of the computer’s memory state, users’ location, and the rate of
technological change. To this end, we report our efforts to develop a legal
requirements specification language (LRSL), derived from grounded analysis of
conflicting regulations from multiple jurisdictions. By translating requirements into
the LRSL, document authors can design and debug their requirements documents
using improved tracing, patterns and metrics that we discuss in this paper.

The remainder of the paper is organized as follows: in Section 2, we discuss related
work; in Section 3, we introduce the LRSL by example; in Section 4, we present our
research methodology to discover and validate the LRSL; in Section 5, we summarize
our research findings, including techniques for navigating and cross-linking legal
requirements; and in Section 6, we conclude with our discussion and summary.

2 Related Work

Related work includes research on requirements languages, extract requirements from
laws, prioritize requirements, and model legal documents and their legal effects.

Requirements specification languages (RSLs), including requirements modeling
languages (RMLs), have a rich history in requirements and software engineering [20].
RSLs include informal, natural language descriptions to provide readers with context
and elaboration, and formal descriptions, such as mathematical logic, to test
assumptions across requirements using logical implications [13]. Goal-oriented
languages, such as i* [36] and KAOS [11], and object-oriented notations, such as
ADORA [17], include graphical notations to view relationships between entities, such
as actors, actions and objects. Because of computational intractability and
undecidability of using highly expressive logics [16], RSLs often formalize only a
select class of requirements phenomena, e.g., using description logic [5] and various

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 143

temporal logics, such as interval [26], real-time [11] or linear [14] temporal logic.
Consequently, RSLs and RMLs may struggle with the balance between expressivity
and readability [13]. Unlike i*, KAOS and ADORA, the LRSL proposed herein is
designed for the law and policy domain by integrating formal expressions of
document structure using regular expressions with semi-formal expressions of rights,
permissions and obligations using text-based predicates and annotations. Unlike
frame-based approaches that seek to classify phrases by logical roles [7], our LRSL
simulates how policies are written by formalizing the cross-links among requirements
in ways originally specified by regulators, and preserving traceability to the original
legal document references. The aforementioned notations do not account for this
integration of requirements and original sources in policy and law.

Approaches to formalize laws in requirements engineering have focused on
prescriptions, called rights, permissions and obligations [6], ownership and delegation
[15], and production rule systems [22]. In addition, cross-references within and
among laws have been shown to coordinate definitions, exceptions and refinement
and must be addressed in a comprehensive legal requirements management strategy
[8]. Recent analysis of external cross-references emanating from the Health
Information Portability and Accountability Act (HIPAA) shows the potential for
conflicts between HIPAA and other laws [23]. Recently, Siena et al. describe the
Nómos 2 framework to model norms, which they claim can be used to determine
compliance with law [31]. We believe the LRSL could be combined with the
inference layer provided by Nómos 2 to reason about legal requirements coverage.

Research in artificial intelligence (AI) and law has long sought to encode
regulations into formal models. Among many others, this includes work by Biagoli et
al. [2] and Sergot et al. [29] to express statutes as logic programs. Allen and Saxon
describe the A-Hohfeld language [1] based on Hohfeld’s legal concepts [18]. The
language is used to reason about legal powers, rights, and duties. More recently,
Sergot describes a theory of normative positions based on the Kanger-Lindahl theory
[30]. The aim of this work was to develop automated legal reasoning tools. Because
regulatory documents were not intended to be formalized and often contain
ambiguities, our approach has been to develop methods to express a normative semi-
formal semantics [9] that yield “islands of formality” while preserving legal
ambiguity for later analysis by an appropriate legal analyst. Stamper argues this
approach provides an “economy of expression” in regulatory requirements analysis
[32], which is a commonly held view of domain specific languages, in general [25].
Thus, our approach is concerned with repeatable, semi-formalization that strictly
deals with issues of ambiguity and document structure. Approaches to formalize
judicial legal arguments, such as LegalXML, concern a different problem. Judicial
reasoning can be used to refine one’s interpretation of regulations, which aim to
explore in future work.

Within the limited scope of our paper, Bourcier and Mazzega propose a vision to
represent legal documents using networks, wherein legal articles are nodes connected
by edges that represent either “legal influences” or quotations, called “legal selection”
[3]. They advocate for content-based measures that account for legal effects produced
by normative statements [3]. Massey and Antón propose several metrics for
measuring regulation dependency and complexity [21]. Our LRSL addresses these
needs in three respective ways: 1) by codifying legal influences in typed,

144 T.D. Breaux and D.G. Gordon

priority-based relations (including exemptions, pre-emptions and waivers) that cross-
link between portions of regulatory documents; 2) by assigning types to cross-
references between individual requirements (a much finer level of detail than Bourcier
and Mazzega) that encodes certain legal effects, such as refinement, exception and
pre- and post-conditions; and 3) by measuring these relations to quantify complexity
exhibited in legal writing styles.

2.1 Writing Legal Requirements Specifications

The Legal Requirements Specification Language (LRSL) makes several assumptions
about the domain of legal requirements. These assumptions were first observed in our
case study and thus incorporated into the LRSL syntax and semantics described here.
As we discuss later, they support what we believe are good requirements specification
practices. In addition to these assumptions, the analyst who translates a law into the
LRSL uses several techniques that we have previously identified [4, 6]: phrase
heuristics to identify modal verbs corresponding to rights, obligations and
prohibitions; re-topicalization shifts the subject of a requirement to a principal actor;
case-splitting to separate one compound requirement into separate requirements; and
balancing rights and obligations to identify inferred requirements.

In the discussion that follows, we use the following excerpt in Figure 1 that was
acquired from Arkansas Title 4, §110.105 to present the LRSL.

Fig. 1. Excerpt from the Arkansas (AR) Title 4, §110.105 of the Personal Information
Protection Act

The analyst converts statements and phrases from the original text into expressions
in the LRSL. Figure 2 shows the excerpt from Figure 1 expressed in the LRSL:
reserved keywords, special operators, and line numbers along the left side appear in
bold. The DOCUMENT keyword (on line 1) assigns a unique index to the specification.
The SCHEMA keyword (on line 2) precedes an expression consisting of components in
curly brackets. Each component corresponds to a different reference level within the
document model, beginning with the topmost level, in this case the title and chapter.
References within the specification are parsed by the automated parser using this
schema. Line comments are denoted by the “//” operator. We use the ellipsis “…” to
denote omissions from the specification to simplify presentation in this paper.

The document model consists of sections and nested paragraphs, expressed in the
LRSL by the SECTION and PAR keywords, respectively. These keywords are
followed by a reference and an optional title: line 5 shows the section reference

4-110-105. Disclosure of security breaches.
(a)(1) Any person or business that acquires, owns, or licenses computerized data that includes

personal information shall disclose any breach of the security of the system… to any resident
of Arkansas…

(2) The disclosure shall be made in the most expedient time and manner possible and without
unreasonable delay, consistent with the legitimate needs of law enforcement as provided in
subsection (c) of this section

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 145

4-110-105 followed by the title from Figure 1; sub-paragraphs (a) and (1) follow on
lines 6-7.

Requirements consist of roles, pre-conditions and prescriptive clauses, organized
into first-order logic expressions using operators “|” for logical-or (see line 9, Figure
2), and “&” for logical-and. Roles are noun phrases that describe the actors or objects
to whom the requirements apply. Next follows the clause, preceded by a “:” and
starting with a verb. Modal verbs indicate requirements, such as “shall” to indicate an
obligation (see lines 13 and 16); otherwise, the clause is a pre-condition that is often
assumed to be an implied permission (see line 10). Finally, analysts can link
categories to requirements using the keyword ANNOTATE (see lines 11 and 17).

1 DOCUMENT US-AR-4-110
2 SCHEMA {title:4}-{chapter:110}-{section:\d+}{par:\([a-z]\)}{par:\(\d+\)} //...
3 TITLE 4-110 Personal Information Protection Act
4
5 SECTION 4-110-105 Disclosure of security breaches
6 PAR (a)
7 PAR (1)
8 person
9 | business
10 : acquires, owns, or licenses computerized data that includes personal

information
11 ANNOTATION implied-permission
12 PRECEDES (a) #2 // comment: a pre-condition
13 : shall disclose a breach of the security of the system to any resident
14 PAR (2)
15 disclosure
16 : shall be made in the most expedient time and manner possible and without

unreasonable delay
17 ANNOTATE timing-requirements
18 REFINES (1) #2
19 EXCEPT (c)(1) #1

Fig. 2. Excerpt from Arkansas 4-110-105 expressed in the LRSL

Cross-references serve to coordinate requirements and constraints expressed in
different regions of a regulatory text. In some regulations, cross-references are coarse-
grained, meaning they refer to whole paragraphs; in which case, the analyst must
determine which specific requirements in that paragraph are intended. The LRSL
allows analysts to express coarse references with the added ability to distinguish
which requirements they deem as applicable; preserving their interpretation for later
review by other analysts and legal counsel.

We discovered three types of cross-references in our case study (see Section 5):

• REFINES, with the inverse relation REFINED-BY, indicates that this requirement is a
sub-process or quality attribute that describes how another requirement is fulfilled.

• EXCEPT, with the inverse relation EXCEPT-TO, indicates that this requirement has an
exception (another requirement). If the pre-conditions of the exception are satisfied,
then this requirement does not apply (it becomes an exclusion, e.g., is not required).

• FOLLOWS, with the inverse PRECEDES, indicates that this requirement is a post-
condition to another requirement, e.g., this requirement is permitted, required, or
prohibited after the other requirement is fulfilled.

In Figure 2, the command keyword REFINES (line 18) establishes a refinement
relation from the preceding requirement (line 16) to the second requirement (line 13)
in paragraph (1). The refinement on line 16 is a quality attribute, because it elaborates

146 T.D. Breaux and D.G. Gordon

when the “disclose” action must occur: “expediently, without delay.” Generally,
quality attributes refine another requirement’s action or object in the LRSL.

Section and paragraph references are either absolute or relative: absolute references
begin from the top-level component in the schema and walk each component to the
paragraph that contains the target requirement; relative references are matched by the
nearest ancestor in the hierarchical schema, beginning with the parent paragraph.
References in the LRSL can be expressed as a single paragraph, such as “(1)” or a
paragraph range, such as “(1)--(3)”. Other operators exist to refer to the last paragraph
and all sub-paragraphs (i.e., the transitive closure). Rule selection is done in three
ways: a) by default, references select all rules within the referenced paragraphs; b)
singular paragraph references followed by the ordinality operator “#” and a number n
will identify the nth rule in that paragraph (see lines 12, 18, or 19); and c) references
followed by a comma-separated list of annotations will find rules that share those
annotations (e.g., all “permissions” or all “timing-requirements”). Finally, multiple
references can be joined in logical expressions using simple Boolean logic operators:
“&” for logical-and, and “|” for logical-or, and parentheses for associativity.

Definitions describe the actors and objects in the system. In Figure 3, paragraph
(a) on lines 4-8 contains a definition for data storage device, indicated by the “=”
operator. Definitions are expressed using the Boolean logical operators for logical-
and and logical-or, in addition to the inclusion operator “<”, which means
“includes” and precedes examples or sub-classes (see line 7), and the exclusion
operator “~”, which means “excludes” (see line 13). By default, definitions apply to
the paragraph in which they occur, unless instructed otherwise using the INCLUDE
keyword, followed by two references: the source paragraph containing the
definitions, and the target section or paragraph to which the definitions will apply.
The instruction in Figure 3, line 2 tells the parser to apply all the definitions from
paragraph (5) and all sub-paragraphs (indicated by the “*”) to §215. In contrast, the
INCLUDE EXTERNAL instruction on line 15 instructs the parser to lookup the
definition “payment card” by finding a regulatory specification indexed by NV-
205.602, and to apply this definition to §215. This second usage enables reuse of
definitions from and across multiple regulations. In other words, the LRSL supports
tracing dependencies from one or more definitions to other definitions and
requirements across multiple specifications.

1 PAR 5.
2 INCLUDE 603A.215.5* 603A.215*
3 PAR (a)
4 data storage device
5 = device
6 & stores information or data from any electronic or optical medium
7 < computers
8 | cellular telephones
9 // ...
10 PAR (c)
11 facsimile
12 = electronic transmission between two dedicated fax machines using Group 3

or Group 4 digital formats...
13 ~ onward transmission to a third device after protocol conversion,

including, but not limited to, any data storage device
14 PAR (d)
15 INCLUDE EXTERNAL NV-205.602 603A.215* "payment card"

Fig. 3. Excerpt from Nevada 603A.215(5)(c) expressed in the LRSL

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 147

2.2 Tool Support and Generated Artifacts

The LRSL is complemented by an automated parsing tool, which checks the language
for syntax errors, such as malformed or unassociated logical expressions, and semantic
errors, such as incorrect references, empty relations that refer to no rules, unreferenced
definitions, and cycles among relations of the same type, e.g., REFINES, EXCEPT,
FOLLOWS. The parser applies Deontic annotations to requirements based on established
phrase heuristics [6], and the model created by the parser can then be used to find
requirements as needed, e.g., find all the obligatory timing requirements. The parser-
constructed model is exportable to other formats, such as the HyperText Markup
Language (HTML), the Graph Markup Language (GraphML), and the eXtensible
Markup Language (XML). Each format offers a different perspective: the HTML allows
users to browse the specification by clicking hyperlinks, viewing definitions and
referenced rules in context of a single rule; the GraphML allows users to visualize
relationships across multiple requirements and identify regulatory patterns, which we
discuss in Section 4.2; and the XML enables data inter-operability, which may
eventually include exporting the model to the Requirements Interchange Format (RIF)
and the User Requirements Notation (URN). Figure 4 shows a graph generated from the
LRSL example in Figure 2: text labels include a unique requirement identifier (e.g., AR-
7), followed by the requirement clause (abbreviated in this figure). Nodes are colored by
whether they are permissions (green), obligations (yellow), and prohibitions (red) based
on annotations generated by the phrase heuristics. Directed edges represent relations and
point to referenced rules as follows: solid edges are REFINES, dashed edges are EXCEPT,
and dotted edges are FOLLOWS relations. This support addresses previously identified
limitations in analysis tools, including the need to reference requirements at the
statement-level [19, 24] and the need to add types to cross-references [34].

Fig. 4. Excerpt from Arkansas §110.105 expressed in GraphML

3 Research Methodology

Our study aims to describe variation in regulations across multiple jurisdictions. In
preparation to achieve this goal, we focus on developing a method to extract and
encode these regulations. We selected a single theme (data breach notification) to
illustrate dependencies between functional system requirements and personnel
responsibilities. In the United States, this theme represents the recent enactment of 46
state and territorial laws from 2002-2011, each governing personal information about
state residents. For distributed and pervasive systems, variations in these laws require

AR-7: SHALL disclose
breach

AR-8: SHALL disclose
expediently

AR-10: MAY delay disclosure
(law enforcement)

AR-11: SHALL disclose breach

FOLLOWSREFINES (a)(1)

AR-10AR-10

AR-8 AR-11

EXCEPT (c)(1)

148 T.D. Breaux and D.G. Gordon

businesses to reconcile different legally required practices for customers of different
states. The laws we selected are as follows:

• AK: Personal Information Protection Act, Alaska Chapter 45.48, enacted 2009.
• AR: Personal Information Protection Act, Arkansas Chapter 14.110, enacted 2005.
• CT: Breach of Security Regarding Computerized Data Containing Personal Information,

Connecticut General Statute 36a-701b, enacted 2006.
• MA: Security Breaches, Massachusetts Chapter 93H, enacted 2007.
• MA-S: Standards for the Protection of Personal Information of Residents of the

Commonwealth, Massachusetts Chapter 17, enacted Sep. 19, 2008.
• MD: Personal Information Protection Act, Maryland Subtitle 14-35, enacted 2008.
• MS: (no title given) Mississippi House Bill 583. Enacted 2011.
• NV: Security of Personal Information, Nevada Chapter 603A, enacted 2006.
• NY: Notification of Unauthorized Acquisition of Personal Information, New York General

Business Law 899-aa, enacted 2005.
• OR: Oregon Consumer Identity Theft Protection Act, Oregon Chapter 646A, enacted 2008.
• UT: Protection of Personal Information Act, Chapter 44, enacted 2006.
• VT: Protection of Personal Information, Vermont Chapter 26, enacted 2007.
• WI: Notice of Unauthorized Access to Personal Information, Wisconsin Chapter 134.98,

enacted 2006.

We down-selected from 46 to 13 laws as follows: first, we surveyed legal expert with
seven years of privacy and security law expertise to highlight industrial challenges,
resulting in AR, MA-S, MA, MD, and NV; and second, we selected three laws with
the largest number of pages, resulting in AK, OR, and VT. The remaining laws had
noteworthy, uncharacteristic features: unique (WI) or broad (NY) definitions, the
most recent law to expose evolution (MS), interfaces to external agencies (CT), and
severe penalties (UT). In addition, we constructed document schemas for 49 data
breach laws to validate the construction of SCHEMA expressions across a larger dataset.

Two investigators (the authors) separately translated each statement in each law
using the LRSL. The translation includes a general classification of each statement, as
a definition, requirement, exemption, etc., and writing an expression in the language
to characterize the statement. Definitions were identified by key phrases, such as “x
means y”, where a term x has the logical definition y. Requirements and exemptions
were identified using phrase heuristics identified by Breaux et al. [6]. Comments were
used in the translation to capture questions, issues and other discrepancies. We
maintained a caveats list of translation strategies that reflect unusual cases and how
the parser should treat such cases, and a proposed changes list of requirements with
examples for new language constructs. For each new construct, we reviewed each law
to update the translation to ensure consistency across the entire dataset. Corbin and
Strauss state, “The essential element of theory is that categories are interrelated into a
larger theoretical scheme” and a theory represents an “abstract rendition of that raw
data” [10]. In this regard, the LRSL is an expression of a grounded theory in a
context-free grammar that explains how legal requirements are expressed. The theory
extends prior theoretical findings [8] and consists of concepts (rights, obligations,
permissions, etc.) and cross-reference relationships (refinements, exceptions and pre-
and post-conditions) that link these concepts together and explains how to trace legal
definitions and requirements across a legal text. Our analysis checked for internal
consistency, and if the language covers variations across all cases that we studied.

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 149

Grounded theories are limited to studied cases and new cases may invalidate the
theory.

4 Research Findings

The translation of thirteen laws by two investigators (the authors) yielded 808
statements, required an average of 2.26 minutes per statement with the longest
document consisting of 148 statements and requiring an average of 5.5 hours. Each
investigator spent an average total of 30.5 hours to encode the thirteen laws. Figures 5
and 6 present summary statistics for the units of analysis encoded in the LRSL. Recall
these laws cover the same theme (data breach notification). We observed the number
of definitions did not vary greatly and that the number of exemptions was a matter of
writing style; neither definitions nor exemptions are proportional to the number of
requirements in this dataset.

Fig. 5. Summary Units of Analysis– Statements

Fig. 6. Summary Units of Analysis – Reference

The references reported in Figure 6 originate from multiple origins, including:

anaphora, which is indicated by determiners (e.g., such) and pronouns (e.g., this);
case-splitting, which is indicated by English conjunctions (and, or) separating verb
clauses that follow a modal phrase (e.g., must, may, shall); and direct references to
sections and paragraph that may be anaphoric (this section, this paragraph) or indexed
by paragraph number, such as “paragraph (a).” Table 1 presents summary statistics
for each of these observed origins. For direct references, we present the number of
corresponding rules identified by the original reference for each regulation, called
direct literal (dL), and the number of corresponding rules indexed by the
operationalized reference using the LRSL language construct, called direct indexed
(dI). Because the operationalized references are more precise, we can calculate the
ambiguity loss, which is the proportion of false positives referenced by an ambiguous
cross-reference and which we express as (dL – dI) / dL. The operationalized
references expressed in the LRSL, which allow analysts to link requirements to only
true positives, reduce reference ambiguity by 50-93%.

0

20

40

60

80

100

120

Refines (Quality) Refines (Sub-process) Except Follows

150 T.D. Breaux and D.G. Gordon

Table 1. Cross-Reference Origins and Ambiguity

State
Law

Anaphora Case
Split Direct Direct

Literal
Direct
Indexed

Ambiguity
Reduction AR 2 4 5 24 7 0.708 AK 16 19 35 143 36 0.748 CT 8 3 3 14 5 0.642 MA 20 1 3 45 3 0.933 MA-S 4 34 1 2 1 0.500 MD 4 12 21 62 23 0.629 MS 7 4 6 19 6 0.684 NV 7 3 13 83 14 0.831 NY 16 6 8 41 17 0.585 OR 29 15 24 190 24 0.874 UT 3 12 17 136 40 0.706 VT 36 10 25 269 32 0.881 WI 6 0 18 78 20 0.744

We developed metrics to measure stylistic properties that affect the extent to which

an analyst must make inferences to resolve requirements ambiguity. Using the metrics,
we observed the following styles: cascading refinement occurs when sections are
organized around high-level goals in which goal-refinements and post-conditions are
expressed in nested paragraphs; reference uniqueness occurs when cross-references
refer to the fewest number of requirements, ideally one; and block formatting occurs
when the paragraphs contains multiple requirements, but are rarely nested.

We now discuss other observations from this case study.

4.1 Shaping Conditionality and Coverage

Conditionality is the extent to which a legal requirement is conditioned by who
stakeholders are and what events have occurred, which we call pre-conditions.
Definitions and exemptions shape conditionality by relaxing or tightening the meaning
of terms and thus scaling the number of possible situations those terms cover. We
discuss two ways that these effects are observed through the LRSL: (1) cross-linking of
terms-of-art to paragraphs and to pre-conditions, requirement clauses and other
definitions; and (2), cross-linking of exemptions to modify pre-conditions and clauses.

The LRSL parser automatically cross-links definitions to requirements by
matching terms-of-art in definitions with phrases in. Recall from Figure 3 the
definitions for terms data storage device (line 4) and facsimile (line 11) and the
imported term payment card (line 15) from another law, NV §205.602. The
instructions INCLUDE (lines 2 and 15) orchestrate these definitions by applying them
to all sub-paragraphs in §603A.215. This includes linking to other definitions, such as
the phrase on line 13 that excludes “data storage device” from the onward
transmission of a facsimile. Figure 7 illustrates this linking to requirements in
paragraphs §603A.215(1) and (2): the underlined phrases match the terms-of-art from
Figure 3 as determined by the parser. Both when to apply a prescription and the extent
of the prescription can be computationally adjusted by relaxing or tightening
definitions using the includes “<” and excludes “~” operators, respectively.

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 151

1 SECTION 603A.215
2 PAR 1.
3 data collector
4 : does business in this State
5 : accepts a payment card in connection with a sale of goods or services
6 : shall comply with the current version of the Payment Card Industry (PCI)

Data Security Standard...
7 FOLLOWS #1 & #2
8 PAR 2.
9 data collector
10 : does business in this State
11 EXCEPT 1.
12 PAR (a)
13 : does not use encryption to ensure the security of electronic transmission
14 : shall not transfer any personal information through an electronic, non-

voice transmission other than a facsimile to a person outside of the
secure system of the data collector

15 FOLLOWS 2. #1 & 2.(a) #1
16 PAR (b)
17 : does not use encryption to ensure the security of the information
18 : shall not move any data storage device containing personal information

beyond the logical or physical controls of the data collector or its data
storage contractor

19 FOLLOWS 2. #1 & 2.(b) #1

Fig. 7. Excerpt from Nevada §603A.215(1) and (2)

For example, if we redefine payment card to exclude gift card, then the scope of
when to apply the requirement to comply with the PCI DSS standard (on line 8,
Figure 10) would be further restricted to omit the case of gift cards. Alternatively, if
data storage device were redefined to include USB drives, then the extent of the
prohibition on moving such devices (on line 18, Figure 7) would be extended to
include this interpretation. The ability to shape when to apply and the extent of
prescriptions using the LRSL can enable regulators and businesses to evolve
conditionality as new technologies emerge over time.

Whereas definitions shape terms used in pre-conditions and requirements clauses,
exemptions fine-tune what is excluded from pre-conditions and clauses. Figure 8
shows a description of the role “telecommunications provider” with a role constraint
on line 4. The EXEMPT keyword instructs the parser to exclude this role and constraint
from all rules in §215 and all sub-paragraphs therein. While such an exemption could
be stated in a definition using the excludes operator “~”, exemptions provide a
mechanism to tighten meanings across a document cross-section, unbounded by a
single term-of-art or definition.

1 PAR 4.
2 PAR (a)
3 telecommunications provider
4 : acts solely in the role of conveying the communications of other persons,

regardless of the mode of conveyance used...
5 EXEMPT 603A.215 *

Fig. 8. Excerpt from Nevada §603A.215(4)(a) expressed in LRSL

Figure 9 illustrates how constraints, expressed as definitions and exemptions, are
traced by the parser through parser instructions. The INCLUDE EXTERNAL instruction
imports (in purple) the payment card definition from another regulation, NV 205.602,
into NV 603A.215(5)(d). The INCLUDE instruction maps (in blue) the definitions
from 603A.215(5), including any imported definitions, onto 603A.215; this mapping
includes the inner link from data storage device to facsimile, and the outer links

152 T.D. Breaux and D.G. Gordon

to requirements in 603A.215(1) and (2). Last, the exemption 603A.215(4)(a) is
mapped (in red) onto requirements 603A.215 to exclude interpretations implied by
definitions.

Fig. 9. Summarizing the Effects of Conditionality

4.2 Regulatory Specification Patterns

When visualized graphically, the LRSL-encoded regulations reveal several regulatory
specification patterns. Visual specifications have been hypothesized to improve
requirements comprehension [12]. These patterns describe legal mechanisms for
prescribing the behavior of personnel and systems in the environment. In Figure 4, we
presented the first pattern, called a suspension, in which a permission (AR-10) is an
exception to an obligation (AR-7) and satisfying the pre-conditions of the permission
causes the obligation to be suspended. We now discuss three other patterns: system
design alternatives and scaling restrictions; standards and indemnification; and limited
exceptions for legacy systems. We believe these patterns can be re-used in writing new
regulations and standards or for identifying similar dependencies among requirements.

Figure 10 shows three system design options for sending written (MD-15),
electronic (MD-16) and telephonic (MD-17) notices as means for notifying
individuals, data owners and data licensees of a security breach under MD
§14.3504(e); note the arc indicating the “or” relationship between these options
means only one option is necessary to discharge the obligations MD-10 and MD-7.
These alternatives are intended to allow businesses to leverage a diverse set of contact
options based on the level of technological sophistication of the business. In addition,
the exception MD-18 permits a substitute notice via statewide media and other
broadcast mechanisms, when the cost of notification becomes too prohibitive. This
type of scaling mechanism (a permitted exception conditioned on measurable limits of
effect size, in this case a finite number of notices or monetary value) can be used to
control regulatory system costs across an entire industry.

Figure 11 shows the combined uses of deference to external standards with
indemnification from NV §603A.215. The Payment Card Industry Data Security
Standard (PCI-DSS), cited in NV-5, prescribes several technical security requirements
for businesses that handle payment cards. In Figure 11, a business is prohibited (in
red) from transferring data (NV-6) or moving data storage devices (NV-7), excluding
facsimiles. However, complying with the PCI-DSS standard (in yellow, NV-5) is an

SECTION 603A.215
PAR (1)
Requirement #3
PAR (2)

PAR (a)
Requirement #2
PAR (b)
Requirement #2

PAR (5)
PAR (a)
data storage device
…
PAR (c)
facsimile
PAR (d)

SECTION 205.602
payment card

1

PAR (4)
PAR (a)
Exemption #A

INCLUDE
EXTERNAL

INCLUDE

EXEMPT

2

3

1

2

3

A

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 153

exception that permits transferring data and moving devices. Whether a business
chooses to accept the more prohibitive restrictions or to comply with the exception,
NV §603A.215 prohibits the business from being liable for data breach damages. This
prohibition is an example of a safe harbor, which is a regulatory mechanism designed
to encourage industry to act against uncertainty (the uncertain costs of data breach
damages vs. the more certain and predictable costs of PCI-DSS compliance).

Fig. 10. System Design Alternatives and Scaling
Restrictions

Fig. 11. External Standards and Indemnification

In Figure 12, the State of Vermont describes a set of prohibitions (in red, VT-40
through VT-43) on the use of Social Security Numbers (SSNs) of Vermont residents.
In the United States, SSNs are issued by the government for tracking government-
sponsored pensions, but have over time been used to track individuals for other
purposes, such as health benefits and credit-based services, including cellular
telephones, utilities, loans and credit cards. Because of the prevalent and historic use
of SSNs to authenticate and identify individuals, VT §62.2440(c)(8)(A) includes an
exception, which permits (in green) continuous use of SSNs to accommodate legacy
systems. Continuous use includes the follow-on obligations (in yellow) to notify
residents about such use (VT-48) and provide the option to halt such use (VT-49).
Such exceptions provide businesses with the ability to scale their business practices to
a new standard of care based on individual consumer preferences over time.

Fig. 12. Limited Exceptions for Legacy Systems

As technology evolves, we foresee increasingly design-invasive regulations that
can potentially limit the range of solutions available to a designer. Thus, we believe
patterns such as these should be part of the requirements nomenclature, to aid
businesses in understanding the scope and implication of regulations on system
design.

MD-7

MD-15

MD-17

MD-16 MD-18

MD-10

MD-(7,10): SHALL
notify individual,
owner and licensee

MD-(15-17):
MAY provide
written,
electronic,
telephonic notice

MD-18: MAY provide
substitute notice

NV-7

NV-6 NV-8

NV-5

NV-5: SHALL comply
with PCI Data Security Standard

NV-7: SHALL not move data
storage devices

NV-8: SHALL not be liable for
breach damages

NV-6: SHALL not transfer data
outside system

VT-47: may continue to use the SSN,
if use has been continuous since

January 1, 2007

VT-(40-45): SHALL not use,
transmit, disclose or require
SSNs

VT-48

VT-49

VT-43

VT-42

VT-41

VT-40

VT-47

154 T.D. Breaux and D.G. Gordon

5 Threats to Validity

In grounded analysis, multiple analysts derive theoretical constructs from a dataset to
describe or explain the data; these insights only generalize to that dataset [10]. Because
we selected a single theme (data breach notification), our theory may not be externally
valid in other domains, such as medical devices or aviation. However, we did validate
the schema notation and document model by systematically inspecting data breach
notification laws in all 46 U.S. states and territories, two U.S. Federal regulations
(HIPAA Privacy Rule and the Section 508 Access Standards), the European Union
Directive 95/46/EC and a Canadian privacy law (PIPEDA). We found the schema
sufficiently robust to model these documents and their cross-references.

Construct validity is the correctness of operational measures used to collect data,
build theory and report findings [35]. To improve construct validity, we maintained a
caveats list of translation strategies that reflect unusual cases and how the parser
should treat such cases, and a proposed changes list of requirements with examples
for new language constructs. As new constructs were introduced, we reviewed each
previously encoded law to update the translation to reflect the new construct to ensure
consistency across the translated datasets. In addition, we developed analytic tools
using the parser and a research database to collect all the statistics reported, here.

Internal validity is the extent to which measured variables cause observable effects
within the data [35]. Our results show that writing styles can positively or negatively
impact reference ambiguity and ambiguity loss, as measured by our LRSL translation
presented in Table 1. New research is needed to evaluate if these styles affect an
analyst’s ability to resolve cross-references and locate relevant requirements.

External validity describes the extent to which a theory generalizes. While two
investigators have applied the LRSL in 13 cases, further evaluation is needed to know
to what extent others can apply the language with the same effects and to what extent
the language is complete.

Reliability describes the consistency of the theory to describe or explain
environmental phenomena over repeated observations [35]. To improve reliability,
both investigators (the authors) separately translated the datasets into the LRSL and
compared their results to identify alternate modes of expression and language caveats.

6 Discussion and Summary

In this paper, we introduce a legal requirements specification language (LRSL) for
codifying legal requirements with typed cross-references. In Section 4, we show how
the LRSL can be used to shape conditionality of regulatory coverage, which is enabled
by the tool-supported ability to trace definitions across a single regulation, or across
multiple regulations as definitions are shared across laws. Reusing technical
terminology improves requirements engineering practices, as it avoids misconceptions
among stakeholders and competing viewpoints that introduce inconsistency into design
specifications [33]. Zave and Jackson have noted the importance of grounding
terminology in the reality of the environment to which a machine will be built [37].
Increasingly, this includes the legal reality as software systems contribute to social and
environmental hazards and regulators attempt to shape the outcome of automation by

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 155

defining legal boundaries that limit the behavior of information systems and software-
supported practices. By systematically tracing and encoding legal terms, constraints and
requirements, we believe the LRSL can aide engineers at design time to manage this
changing reality, while also supporting users who are responsible for deployment and
maintenance. The work to write better software requirements and realize how software
satisfies a particular legal constraint, however, is still outside our findings.

In addition, we discovered several regulatory requirements patterns that become
visually salient and enable measuring different styles of regulatory document
construction. These patterns, described in Section 4.3, include strategies for pairing
permitted refinements to the obligations that they refine to create design alternatives
that allow organizations to scale their information practices over time. A similar
pattern invokes prohibitions with limited exceptions to accommodate legacy systems:
this pattern effectively expires the legacy system as the exceptions are discharged
over the life of the new system. Finally, a third pattern uses indemnification to
encourage design changes to accommodate increased security. We envision
requirements analysts using these patterns in several ways. First, analysts may be
trained to identify these and similar patterns from the LRSL-generated graph.
Identifying these patterns can help analysts see higher-order constructs, such as
temporary suspensions of duties and legal indemnification. Second, these patterns can
be used to compare and contrast regulatory mechanisms across regulations:
indemnification is an incentive to reduce legal liability, whereas design alternatives
are a legal means to accommodate variation in practices. Because we only observed
these patterns in a few cases, however, further evidence must be collected to
understand the extent to which regulators reproduce these patterns. That said, the
LRSL’s ability to transform the encoded regulatory specifications into corresponding
graphs enables visualizing this higher-order information and provides analysts with
access to this regulatory information described in the regulation.

The LRSL only begins to address a small part of the larger problem, however. Laws
include statutes that govern regulatory agencies, regulations created by those agencies to
govern industry, and informal agency guidance intended to help companies interpret
laws. In addition, court proceedings describe judicial interpretations of regulations.
While the LRSL is not a legal document, it provides an intermediary artifact that legal
and requirements analysts can use to engage in discussing compliance strategies. These
discussions may link legal opinion and context to the LRSL-generated artifacts as a
means to preserve rationale and enable traceability.

We further envision the LRSL capabilities as enabling document authors to design
and debug specifications, to remove ambiguity and organize requirements around
central themes. The LRSL’s ability to reuse and extend definitions and link to
regulatory rules across multiple regulations supports our vision of requirements as
open, dynamically evolving systems, wherein the discovery of conflicts becomes
increasingly critical to creating regulatory harmony. Finally, the LRSL parser
supports several features that can be used to “debug” regulatory specifications, by
identifying cycles in cross-references, definitions for terms not used in the regulation,
and possible conflicts or contradictions through visual inspection of the generated
graphs. We believe these techniques can benefit both regulators who write regulations
as well as requirements engineers and software designers who seek to understand the
regulation and seek guidance from their corporate legal compliance office. We found

156 T.D. Breaux and D.G. Gordon

the time required to translate the regulations into the LRSL well worth the ability to
debug and analyze the relations using the LRSL-generated model.

Acknowledgment. This research was supported by the U.S. Department of Homeland
Security (Award #2006-CS-001-000001), Hewlett-Packard Labs (Award #CW267287)
and ONR Award #N00244-12-1-0014.

References

[1] Allen, L.E., Saxon, C.S.: Better language, better thought, better communication: the a-
hohfeld language for legal analysis. In: 5th Int’l Conf. AI & Law, pp. 219–228 (1995)

[2] Biagioli, C., Mariani, P., Tiscornia, D.: ESPLEX: A rule and conceptual model for
representing statutes. In: Proc. 1st Int’l Conf. AI & Law, pp. 240–251 (1987)

[3] Bourcier, D., Mazzega, P.: Toward measures of complexity in legal systems. In: Int’l
Conf. AI & Law, pp. 211–215 (2007)

[4] Breaux, T.D., Antón, A.I.: Analyzing Regulatory Rules for Privacy and Security
Requirements. IEEE Transactions on Software Engineering 34(1), 5–20 (2008)

[5] Breaux, T.D., Antón, A.I., Doyle, J.: Semantic parameterization: a process for modeling
domain descriptions. ACM Trans. Soft. Engr. Method. 18(2), 5 (2008)

[6] Breaux, T.D., Vail, M.W., Antón, A.I.: Towards compliance: extracting rights and
obligations to align requirements with regulations. In: 14th IEEE Int’l Req’ts Engr. Conf.,
pp. 49–58 (2006)

[7] Breaux, T.D.: Exercising due diligence in legal requirements acquisition: a tool-
supported, frame-based approach. In: IEEE 17th Int’l Req’ts Engr. Conf., pp. 225–230
(2009)

[8] Breaux, T.D.: Legal requirements acquisition for the specification of legally compliance
informaiton systems, North Carolina State Univ. Ph.D. thesis (2009)

[9] Bench-Capon, T.J.M.: Deep models, normative reasoning and legal expert systems. In:
Proc. 2nd International Conference on Artificial Intelligence and Law, Vancouver, British
Columbia, Canada, pp. 37–45 (1989)

[10] Corbin, J., Strauss, A.: Basics of Qualitative Research, 3rd edn. Sage Pubs (2008)
[11] Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal–directed requirements acquisition.

Sci. Comp. Prog. 20, 3–50 (1993)
[12] Dulac, N., Viguier, T., Leveson, N., Storey, M.-A.: On the use of visualization in formal

requirements specification. In: IEEE Joint Int’l Conf. Req’ts Engr., pp. 71–80 (2002)
[13] Fraser, M.D., Kumar, K., Vaishnavi, V.K.: Informal and formal requirements

specification languages: bridging the gap. IEEE Trans. Soft. Engr. 17(5), 454–466 (1991)
[14] Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying

and analyzing early requirements in Tropos. Req’ts Engr. Journal 9(2), 132–150 (2004)
[15] Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements

through ownership, permissions and delegation. In: IEEE 13th Int’l Req’ts Engr. Conf.,
pp. 167–176 (2005)

[16] Greenspan, S., Mylopoulos, J., Borgida, A.: On Formal Requirements Modeling
Languages: RML Revisited. In: 6th IEEE Int’l Soft. Engr. Conf., pp. 1–13 (1994)

[17] Glinz, M., Berner, S., Joos, S.: Object-oriented modeling with ADORA. Info. Sys. 27,
425–444 (2002)

[18] Hohfeld, W.N.: Some fundamental legal conceptions as applied in judicial reasoning. The
Yale Law Journal 23(1), 16–59 (1913)

 Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 157

[19] Lauritsen, M., Gordon, T.F.: Toward a general theory of document modeling. In: Int’l
Conf. AI & Law, pp. 202–211 (2009)

[20] Levene, A.A., Mullery, G.P.: An investigation of requirement specification languages:
theory and practice. IEEE Computer 15(5), 50–59 (1982)

[21] Massey, A.K., Anton, A.I.: Triage for legal requirements. NCSU Technical Report #TR-
2010-22 (October 11, 2010)

[22] Maxwell, J., Anton, A.I.: Developing production rule models to aid in acquiring
requirements from legal texts. In: IEEE 17th Int’l Req’ts Engr. Conf., pp. 101–110 (2009)

[23] Maxwell, J., Anton, A.I., Swire, P.: A legal cross-references taxonomy for identifying
conflicting software requirements. In: IEEE 19th Int’l Req’ts Engr. Conf., pp. 197–206
(2011)

[24] Martinek, J., Cybulka, J.: Dynamics of legal provisions and its representation. In: Int’l
Conf. AI & Law, pp. 20–24 (2005)

[25] Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

[26] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowledge
about information systems. ACM Trans. on Info. Sys. 8(4), 325–362 (1990)

[27] Romanosky, S., Telang, R., Acquisti, A.: Do data breach disclosure laws reduce identity
theft? In: W’shp Econ. of Info. Sec. (WEIS), June 25-28 (2008)

[28] Rubinstein, I.: Privacy and Regulatory Innovation: Moving Beyond Voluntary Codes. I/S:
A Journal of Law and Policy for the Information Society (April 2011) (in press)

[29] Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The
British Nationality Act as a logic program. Communications of the ACM 29(5), 370–386
(1986)

[30] Sergot, M.: A computational theory of normative positions. ACM Transactions of
Computational Logic 2(4), 581–622 (2001)

[31] Siena, A., Jureta, I., Ingolfo, S., Susi, A., Perini, A., Mylopoulos, J.: Capturing variability
of law with Nomós 2. In: 31st Int’l Conf. Conc. Mod., pp. 383–396 (2012)

[32] Stamper, R.K.: LEGOL: Modelling legal rules by computer. In: Proc. Advanced
Workshop on Computer Science and Law, pp. 45–71 (September 1979)

[33] Wasson, K.S.: A case study in systematic improvement of language for requirements. In:
Proc. IEEE 14th Int’l Req’ts Engr. Conf., pp. 6–15 (2006)

[34] Winkels, R., Boer, A., de Maat, E., van Engers, T., Breebaart, M., Melger, H.:
Constructing a semantic network for legal content. In: Int’l Conf. AI & Law, pp. 125–132
(2005)

[35] Yin, R.K.: Case study research, 4th edn. Applied Social Research Methods Series, vol. 5.
Sage Publications (2008)

[36] Yu, E.: Modeling organizations for information systems requirements engineering. In:
Int’l Symp. Req’ts Engr., pp. 34–41 (1993)

[37] Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Soft.
Engr. & Method. 6(1), 1–30 (1997)

	Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications
	Introduction
	Related Work
	Writing Legal Requirements Specifications
	Tool Support and Generated Artifacts

	Research Methodology
	Research Findings
	Shaping Conditionality and Coverage
	Regulatory Specification Patterns

	Threats to Validity
	Discussion and Summary
	References

