LNCS 7830

Joerg Doerr
Andreas L. Opdahl (Eds.)

Requirements Engineering:
Foundation for
Software Quality

19th International Working Conference, REFSQ 2013
Essen, Germany, April 2013
Proceedings

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7830

Joerg Doerr Andreas L. Opdahl (Eds.)

Requirements Engineering:
Foundation for

Software Quality

19th International Working Conference, REFSQ 2013

Essen, Germany, April 8-11, 2013
Proceedings

@ Springer

Volume Editors

Joerg Doerr

Fraunhofer IESE

Information Systems Division
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
E-mail: joerg.doerr @iese.fraunhofer.de

Andreas L. Opdahl

University of Bergen

Department of Information Science
and Media Studies
Fosswinckelsgate 7

5020 Bergen, Norway

E-mail: andreas.opdahl @uib.no

ISSN 0302-9743
ISBN 978-3-642-37421-0
DOI 10.1007/978-3-642-37422-7

e-ISSN 1611-3349
e-ISBN 978-3-642-37422-7

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, K.6.3-4, H4, D.3,1.2.7

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Requirements engineering (RE) is a central prerequisite for developing high-
quality software systems and services. The REFSQ — Requirements Engineer-
ing: Foundation for Software Quality — working conference series is well estab-
lished as one of the leading international fora for discussing RE and its many
relations to quality. The first REFSQ took place in 1994 and, since 2010, it has
been organized as a stand-alone event.

REFSQ conferences have a long tradition for being highly structured and in-
teractive. Each session is organized to provoke discussion among the presenters of
papers, pre-assigned discussants, and all the other participants. For each paper,
time is allocated so that the discussion is at least as long as the presentation. The
series also highlights requirements engineering in practice by bringing together
researchers, users, and practitioners in order to develop a better understanding
of the practice of RE, to contribute to improved RE practice, as well as to share
knowledge and experiences.

This LNCS volume contains the papers that were accepted for presentation
at REFSQ 2013 — the 19th International Working Conference on Requirements
Engineering: Foundation for Software Quality — that took place in Essen, Ger-
many, during April 8-11, 2013. For REFSQ 2013, we chose Interdisciplinary RE
as the special theme. In addition to general papers on RE and quality, we encour-
aged submissions that highlighted the interplay of RE with related disciplines
such as software architecture, quality assurance, user interface design, project
management, and agile software development.

The Call for Papers attracted 105 submissions from authors in both industry
and academia in 29 different countries on all six inhabited continents. After elim-
inating bogus and clearly out-of-scope submissions, 82 papers were sent out for
reviewing, of which 35 were marked as belonging to the special theme Interdis-
ciplinary RE. Each of them was evaluated carefully by at least three reviewers,
before the online discussion phase, in which senior Program Committee mem-
bers acted as discussion drivers for the most critical papers. Eleven members
and two co-chairs also attended the Program Committee meeting in Essen on
January 11 to discuss the 45 most promising submissions in even greater de-
tail. The Program Committee selected 28 high-quality papers to be presented at
REFSQ 2013: 23 full papers and five short ones. Among the full papers, there
were three industrial experience reports and 20 regular research papers. Of the
short papers, one was a problem statement and four were research previews. The
acceptance rate was thus 28% for long papers and 34% overall.

The resulting program from REFSQ’2013 was organized in the following
thematic sessions: RE & Architecture, Natural Language Requirements, RE &
Quality, Traceability, RE & Business/Goals, RE & Software Development, RE
in Practice, and Product Lines and Product Management. It thereby reflects

VI Preface

how RE encompasses human and organizational issues in addition to technical
aspects when developing quality software systems and services.

The research program also featured a keynote by Jan Bosch, a professor at
Chalmers University of Technology in Gothenburg, Sweden, with many years’
experience from industry. The theme of his talk was customer experimentation
and its relation to requirements engineering. The conference also followed-up the
positive experiences from earlier REFSQ conferences with a variety of activities
such as a practitioner/industrial track, an empirical track including a live ex-
periment and an empirical fair, a doctoral symposium, and a poster forum with
posters both from the doctoral symposium and presenting other new research.
REFSQ 2013 was also associated with the following three workshops:

CreaRE — the Third Workshop on Creativity in Requirements Engineer-
ing, organized by Maya Daneva, Andrea Herrmann, Anne Hoffmann, and Kurt
Schneider; IWSPM13 — the 7th International Workshop on Software Product
Management, organized by Richard Berntsson Svensson, Inge van de Weerd,
and Krzysztof Wnuk; and RePriCol8 — the jth International Workshop on
Requirements Prioritization and Communication, organized by Benedikt Krams
and Sixten Schockert.

We thank the members of the international Program Committee and their
sub-reviewers for carefully reviewing the submitted papers. We devote special
thanks to those committe members who travelled to attend the Program Com-
mittee meeting in Essen. Your dedicated work was vital for putting together a
high-quality working conference. We also thank the REFSQ Steering Commit-
tee, and the other REFSQ 2013 Chairs (listed on the next page) for all their
useful input to the organization process. We also thank the organizers of the
associated workshops (listed above).

Last, but not least, we would like to thank PALUNO at the University of
Duisbug-Essen for organizing REFSQ 2013, in particular General Chair Klaus
Pohl and Organizers Roxana Klippert and Tobias Kaufmann, who dealt with all
practical matters quickly and efficiently, as well as Vanessa Stricker, who is no
longer formally involved in the organization after several years of service, but
who nevertheless provided prompt and useful advice whenever needed.

Along with the REFSQ 2013 organizers we also want to thank the conference
sponsors, whose logos are shown on a later page!

February 2013 Joerg Doerr
Andreas L. Opdahl

Conference Organization

General Chair

Klaus Pohl University of Duisburg-Essen, Germany

Program Co-chairs

Joerg Doerr Fraunhofer IESE, Germany
Andreas L. Opdahl University of Bergen, Norway

Organizing Team

Tobias Kaufmann University of Duisburg-Essen, Germany
Stella Roxana Klippert University of Duisburg-Essen, Germany

Industry Track Co-chairs

Kai Petersen Blekinge Institute of Technology, Sweden
Thorsten Weyer University of Duisburg-Essen, Germany

Workshop Co-chairs

Raul Mazo University of Paris 1 — Sorbonne, France
Camille Salinesi University of Paris 1 — Sorbonne, France

Doctoral Symposium Co-chairs

Oscar Pastor Polytechnical University of Valencia, Spain
Roel Wieringa University of Twente, The Netherlands

Empirical Track Co-chairs

Daniel M. Berry University of Waterloo, Canada
Norbert Seyff University of Zurich, Switzerland

VIII Conference Organization

Steering Committee

Patrick Heymans (Chair) University of Namur, Belgium
Pete Sawyer (Vice Chair) Lancaster University, UK

Daniel M. Berry
Daniela Damian
Joerg Doerr
Xavier Franch
Martin Glinz
Andreas L. Opdahl
Barbara Paech
Anne Persson
Bjorn Regnell
Camille Salinesi
Inge van de Weerd
Roel Wieringa

Program Committee

Aybuke Aurum
Brian Berenbach
Dan Berry

Sjaak Brinkkemper
David Callele

Jane Cleland-Huang

Eric Dubois
Armin Eberlein
Xavier Franch
Samuel Fricker
Donald Gause
Vincenzo Gervasi
Martin Glinz
Tony Gorschek
Olly Gotel

Paul Gruenbacher
Peter Haumer
Andrea Herrmann
Patrick Heymans
Matthias Jarke
Natalia Juristo
Erik Kamsties

Peter Karpati
Marjo Kauppinen
Eric Knauss

University of Waterloo, Canada

University of Victoria, Canada

Fraunhofer IESE, Germany

University Politecnica de Catalunya, Spain
University of Zurich, Switzerland
University of Bergen, Norway

University of Heidelberg, Germany
University of Skovde, Sweden

Lund University, Sweden

University of Paris 1 — Sorbonne, France
Vrije Universiteit Amsterdam, The Netherlands
University of Twente, The Netherlands

University of New South Wales, Australia

Siemens Corporate Research, USA

University of Waterloo, Canada

Utrecht University, The Netherlands

University of Saskatchewan, Canada

DePaul University, USA

CRP Henri Tudor, Luxembourg

American University of Sharjah, UAE

University Politecnica de Catalunya, Spain

Blekinge Institute of Technology, Sweden

Binghamton University, USA

University of Pisa, Italy

University of Zurich, Switzerland

Blekinge Institute of Technology, Sweden

Independent Researcher, USA

Johannes Kepler University of Linz, Austria

IBM Rational, USA

Free Software Engineering Trainer, Germany

University of Namur, Berlgium

RWTH Aachen University, Germany

University Politécnica de Madrid, Spain

University of Applied Sciences and Arts
Dortmund, Germany

Institute for Energy Technology, Norway

Aalto University, Finland

University of Victoria, Canada

Kim Lauenroth

Soren Lauesen

Pericles Loucopoulos
Nazim Madhavji
Raimundas Matulevicius
Raul Mazo

John Mylopoulos
Cornelius Ncube
Bashar Nuseibeh
Barbara Paech
Oscar Pastor Lopez
Anne Persson

Kai Petersen

Jolita Ralyte

Gil Regev

Bjorn Regnell
Colette Rolland

Camille Salinesi

Kristian Sandahl
Pete Sawyer
Kurt Schneider
Norbert Seyff
Guttorm Sindre

Janis Stirna
Christer Thorn
Inge Van De Weerd
Thorsten Weyer
Roel Wieringa

Eric Yu

Didar Zowghi

Additional Reviewers

Ulrike Abelein
Beatrice Alenljung
Muneera Bano
Elizabeth Bjarnason
Markus Borg

Eya Ben Charrada
Alexander Delater

Conference Organization

adesso AG, Germany

IT University of Copenhagen, Denmark

Loughborough University, UK

University of Western Ontario, Canada

University of Tartu, Estonia

University Paris 1 Panthéon — Sorbonne,
France

University of Trento, Italy

Bournemouth University, UK

Open University, UK

University of Heidelberg, Germany

University Politécnica de Valencia, Spain

University of Skévde, Sweden

Blekinge Institute of Technology, Sweden

University of Geneva, Switzerland

Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Lund University, Sweden

University Paris 1 Panthéon — Sorbonne,
France

University Paris 1 Panthéon — Sorbonne,
France

Link6ping University, Sweden

Lancaster University, UK

Leibniz Universitdt Hannover, Germany

University of Zurich, Switzerland

Norwegian University of Science and
Technology, Norway

Royal Institute of Technology, Sweden

Jonkoping University, Sweden

Vrije Universiteit Amsterdam, The Netherlands

University of Duisburg-Essen, Germany
University of Twente, The Netherlands
University of Toronto, Canada

University of Technology, Sydney, Australia

Pascal Van Eck
Xavier Ferre

Anne Hess
Tom-Michael Hesse
Cédric Jeanneret

IX

Alejandrina Mara Aranda Lépez King

Anne Koziolek

X Conference Organization

Alessio Micheli

Gilles Perrouin

Bastian Tenbergen

Irina Todoran

Michael Unterkalmsteiner

Kevin Vlaanderen
Krzysztof Wnuk
Rosalee Wolfe
Dustin Wiiest
Gabriele Zorn-Pauli

Conference Organization

Sponsors

Platinum Level Sponsors

PARLUJMO

The Ruhr Institute for Software Technology

Gold Level Sponsors

BOSCH

Invented for life

[nternational ¢

]:[Requirements
Engineering
Board

SOPHIST g

Silver Level Sponsors

CaGl

Experience the commitment®

3td

XI

Do as I Say; Not as I Do?
From Requirement Engineering to
Experimenting with Customers
(Keynote)

Jan Bosch

Chalmers University of Technology
Gothenburg, Sweden

Abstract: Asking users what they would like to have built is probably the worst
question in the history of software engineering. Users don’t know what they want
and it’s the engineer’s job to find this out. Answering this question requires a
systematic approach to exploring a broad set of hypotheses about functionality
that might add value for customers at different stages of development. The talk
introduces the notion of Innovation Experiment Systems as a systematic method
for optimizing the user experience of existing features, developing new features
as well as developing new products. The method uses different techniques depen-
dent on the stage of development, including pre-development, development and
commercial deployment. In each stage, frequent customer involvement, both ac-
tive and passive, is used to constantly establish and improve the user experience.
The method is based on data from eight industrial cases and stresses the im-
portance of speed and rapid iterations in development. The talk uses numerous
examples from industry are used to illustrate the concepts.

Short Bio: Jan Bosch is professor of software engineering and director of the
software research center at Chalmers University Technology in Gothenburg, Swe-
den. Earlier, he worked as Vice President Engineering Process at Intuit Inc where
he also lead Intuit’s Open Innovation efforts and headed the central mobile tech-
nologies team. Before Intuit, he was head of the Software and Application Tech-
nologies Laboratory at Nokia Research Center, Finland. Before joining Nokia,
he headed the software engineering research group at the University of Gronin-
gen, The Netherlands, where he holds a professorship in software engineering. He
received a MSc degree from the University of Twente, The Netherlands, and a
PhD degree from Lund University, Sweden. His research activities include open
innovation, innovation experiment systems, compositional software engineering,
software ecosystems, software architecture, software product families and soft-
ware variability management. He is the author of a book “Design and Use of
Software Architectures: Adopting and Evolving a Product Line Approach” pub-
lished by Pearson Education (Addison-Wesley & ACM Press), (co-)editor of
several books and volumes in, among others, the Springer LNCS series and (co-
)Jauthor of a significant number of research articles. He is editor for Science of
Computer Programming, has been guest editor for journal issues, chaired several

XIV J. Bosch

conferences as general and program chair, served on many program committees
and organized numerous workshops.

In the startup space, Jan serves on the advisory board of Assia Inc. in Red-
wood City, CA, as well as the advisory board of Burt, in Gothenburg, Sweden.
He is chairman of the board of Evisto, in Gothenburg, Sweden. Also, he acts
as an external business advisor for the School of Entrepreneurship at Chalmers
University of Technology, Gothenburg, Sweden.

As a consultant, as a professor and as an employee, Jan has worked with and
for many companies on innovation and R&D efficiency including Philips, Thales
Naval Netherlands, Robert Bosch GmbH, Siemens, Nokia, Ericsson, Grundfos,
Tellabs, Avaya, Tieto Enator and Det Norska Veritas. More information about
his background can be found at his website: www.janbosch.com.

When not working, Jan divides his time between his family, a spouse and
three sons, reading science fiction and sports, preferably long distance running,
swimming, biking and horseback riding..

Table of Contents

RE and Architecture

Software Architects’ Experiences of Quality Requirements: What We
Know and What We Do Not Know?
Maya Daneva, Luigi Buglione, and Andrea Herrmann

A Persona-Based Approach for Exploring Architecturally Significant
Requirements in Agile Projects i
Jane Cleland-Huang, Adam Czauderna, and Ed Keenan

Natural Language Requirements

Using Clustering to Improve the Structure of Natural Language
Requirements Documents i
Alessio Ferrari, Stefania Gnesi, and Gabriele Tolomei

Automatic Requirement Categorization of Large Natural Language
Specifications at Mercedes-Benz for Review Improvements.............
Daniel Ott

Requirement Ambiguity Not as Important as Expected — Results of
an Empirical Evaluation
Erik Jan Philippo, Werner Heijstek, Bas Kruiswijk,
Michel R.V. Chaudron, and Daniel M. Berry

The Design of SREE — A Prototype Potential Ambiguity Finder for
Requirements Specifications and Lessons Learned
Sri Fatimah Tjong and Daniel M. Berry

RE and Quality

Factors Influencing User Feedback on Predicted Satisfaction with
Software Systems
Rumyana Proynova and Barbara Paech

reqT.org — Towards a Semi-Formal, Open and Scalable Requirements
Modeling Tool o
Bjorn Regnell

Maps of Lessons Learnt in Requirements Engineering: A Research
Preview. ... e
Ibtehal Noorwali and Nazim H. Madhavji

XVI Table of Contents

Traceability

Requirements Traceability across Organizational Boundaries - A Survey
and Taxonomyt 125
Patrick Rempel, Patrick Mader, Tobias Kuschke, and Ilka Philippow

Regulatory Requirements Traceability and Analysis Using Semi-formal
Specifications 141
Travis D. Breauz and David G. Gordon

A Survey on Usage Scenarios for Requirements Traceability in
Practice 158
Elke Bouillon, Patrick Mdder, and Ilka Philippow

RE and Business/Goals

The Emergence of Mutual and Shared Understanding in the System
Development Process 174
Azxel Hoffmann, Fva Alice Christiane Bittner, and
Jan Marco Leimeister

Highlighting Stakeholder Communities to Support Requirements
Decision-Making 190
Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

Choosing Compliance Solutions through Stakeholder Preferences 206
Silvia Ingolfo, Alberto Siena, Ivan Jureta, Angelo Susi,
Anna Perini, and John Mylopoulos

Supporting Decision-Making for Self-Adaptive Systems: From Goal
Models to Dynamic Decision Networks............., 221
Nelly Bencomo and Amel Belaggoun

Mapping i* within UML for Business Modeling 237
Yves Wautelet and Manuel Kolp

Risk Identification at the Interface between Business Case and
Requirements. 253
David Callele, Birgit Penzenstadler, and Krzysztof Wnuk

RE and Software Development

Analyzing an Industrial Strategic Release Planning Process — A Case

Study at Roche Diagnostics, 269
Gabriele Zorn-Pauli, Barbara Paech, Tobias Beck,
Hannes Karey, and Guenther Ruhe

Table of Contents XVII

Redefinition of the Requirements Engineer Role in Mjglner’s Software
Development Process 285
Anders Bennett-Therkildsen, Jens Bak Jorgensen,
Kim Norskov, and Niels Mark Rubin

Distances between Requirements Engineering and Later Software
Development Activities: A Systematic Map............ 293
Elizabeth Bjarnason

Analyzing the Tracing of Requirements and Source Code during
Software Development i 308
Alexander Delater and Barbara Paech

RE in Practice

Requirements Engineering Meets Physiotherapy An Experience with
Motion-Based Gamesouiniiii e 315
Liliana Pasquale, Paola Spoletini, Dario Pometto,
Francesco Blasi, and Tiziana Redaelli

Use Case and Requirements Analysis in a Remote Rural Context in

Anna Bon, Victor de Boer, Nana Baah Gyan, Chris van Aart,
Pieter De Leenheer, Wendelien Tuyp, Stephane Boyera,

Mazx Froumentin, Aman Grewal, Mary Allen, Amadou Tangara, and
Hans Akkermans

Requirements Engineering in Practice: There Is No Requirements
Engineer Position 347
Andrea Herrmann

Product Lines and Product Management

Effective Requirements Elicitation in Product Line Application
Engineering — An Experiment 362
Sebastian Adam and Klaus Schmid

Monitoring System-of-Systems Requirements in Multi Product Lines ... 379
Thomas Klambauer, Gerald Holl, and Paul Grinbacher

Adjusting to Increasing Product Management Problems: Challenges
and Improvement Proposals in One Software Company 386
Sami Jantunen, Kati Hietaranta, and Donald C. Gause

Author Index 401

1

In the past 15 years, quality requirements (QRs), also referred to as Non-functional
requirements (NFRs), became a key sub-field in the Requirements Engineering (RE)
discipline. Many approaches to QRs have been designed and a large number of
empirical studies has been carried out to evaluate various aspects of these approaches.
However, most of these studies have taken the RE perspective exclusively, be it the

Software Architects’ Experiences of Quality
Requirements: What We Know and What
We Do Not Know?

Maya Daneva', Luigi Buglione?, and Andrea Herrmann®

! University of Twente, The Netherlands
% Engineering IT SpA, Italy
?Hermann & Ehrlich, Germany
m.daneva@utwente.nl, luigi.buglione@eng.it,
herrmann@informatik.uni-heidelberg.de

Abstract. [Context/motivation] Quality requirements (QRs) are a concern of
both requirement engineering (RE) specialists and software architects (SAs).
However, the majority of empirical studies on QRs take the RE
analysts’/clients’ perspectives, and only recently very few included the SAs’
perspective. As a result, (i) relatively little is known about SAs’ involvement in
QRs engineering and their coping strategies, and (ii) whatever is known mostly
comes from small and midsized projects. [Question/problem] The question in
this exploratory study is how SAs cope with QRs in the context of large and
contract-based software system delivery projects. [Principal ideas/results] We
executed an exploratory case study with 20 SAs in the context of interest. The
key results indicate the role SAs play in QRs engineering, the type of
requirements communication processes SAs are involved in, the ways QRs are
discovered, documented, quantified, validated and negotiated. Our most
important findings are that in contract-based contexts: (1) the QRs are
approached with the same due diligence as the functional requirements and the
architecture design demand, (2) the SAs act proactively and embrace
responsibilities over the QRs, (3) willingness to pay and affordability seem as
important QRs prioritization criteria as cost and benefits do, and (4) QRs
engineering is perceived as a social activity and not as much as a tool and
method centric activity. [Contribution] The main contributions of the paper are
(i) the explication of the QRs process from SAs’ perspective, and (ii) the
comparison of our findings with previously published results.

Keywords: Quality requirements, Software architecture design, Exploratory
case study, Contract-based software development, Empirical research method.

Introduction

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 1-7] 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 M. Daneva, L. Buglione, and A. Herrmann

one of RE researchers, of RE practitioners or of business users. Very few studies have
included the perspectives of those stakeholders involved in downstream software
development activities, e.g. software architects (SAs) and developers. Yet, there is a
clear consensus in the RE community that including multiple stakeholders’
perspectives is necessary for the field to advance [1]. In particular, the perspective of
SAs has been deemed one of the most important given the growing popularity of
approaches to joint RE and software architecture [1,2,3,4,5,6,7,8,9]. A 2010
systematic review by Svensson et al [7] identified 229 empirical studies on the
various aspects of QRs engineering. However, its authors found only 18 studies being
well-documented and stating explicitly the perspectives taken in the empirical
research. Moreover, our review of these 18 studies indicated that none of them
considered the SAs’ perspective. More recently (2010-2012), RE research yielded
five publications [6,8,9,10,11] dedicated specifically to the SAs’ perceptions on QRs.
These studies agree that the perspectives of SAs and RE specialists do differ in both
interpreting the role of QRs in downstream software development activities and in
reasoning about how QRs problems and solutions are framed, analysed and resolved.
While these empirical analyses represent an important progress to narrow the gap in
our understanding of how SAs cope with QRs, the experiences these studies report
come mostly from small and midsized projects.

In the present paper, we complement these published results with findings from an
exploratory study with 20 SAs working in large or very large contract-based projects.
The key results of the paper indicate the roles SAs play in QRs engineering, the type
of requirements processes SAs are involved in, the way QRs are discovered,
documented, quantified, validated and negotiated. The results are compared with
findings from prior studies and some implications are drawn for research and practice.
In what follows, Sect. 2 is on background and related work and Sect. 3 — on the case
study research design. Sect. 4 and Sect. 5 present the results and our discussion of
them, respectively. Sect. 6 evaluates validity threats and Sect. 7 concludes.

2 The SAs’ Perspective on QRs: Background and Related
Work

RE research has generated an overwhelming amount of publications explaining why
and how SAs’ perspective on QRs is key to project success, e.g. [2,3,4,5,6,7,8]. QRs
are deemed key to defining architecture design and many large organizations now
organize their work processes on the premise that SAs need to understand the clients’
QRs because only through this they can get fully aware of the consequences of their
design decisions from clients’ perspective (e.g. impacts on total cost of ownership
[12]). A 2010 systematic review [13] on the topic of architectural descriptions found a
range of QRs driving the final architecture descriptions of those systems reported in
published empirical studies. A 2011 SAs’ survey [9] stated that SAs are “the
population to deal with NFR”. These authors went on making the case that shared
knowledge and good practices on how SAs address QRs can potentially benefit IT
organizations in two tangible ways, (1) by giving them a fact-based ground for
improving their SA practices and (2) by helping them devise approaches that make
the chances of success more predictable.

Software Architects” Experiences of Quality Requirements 3

As the Introduction mentioned, the SAs’ perspective on QRs was the explicit focus
of five studies [6,8,9,10,11]. In [9], a survey with one company’s SAs uncovered the
importance of QRs as perceived by SAs, the ways in which they dealt with QRs, and
the impact this had on IT project success. This survey found that projects where
modifiability is perceived to be of low business criticality “lead to consistently high
customer satisfaction” [9]. Also, projects that used QRs verification techniques were
more successful than those that did not. In [11], the authors explain the effect of
contractual client-vendor relationship on the interaction of software architecture and
quantification of QRs. The authors put forward that if information-sharing between
parties is limited, this would significantly impede the quantification of QRs. In [6],
QRs were deemed instrumental for the SA’s reasoning process while ‘architecting’.
Next, a 2010 survey [10] and a follow-up 2012 exploratory interview-based study [8]
with SAs in small and medium size projects in Spain, investigated how SAs dealt with
QRs. In these project contexts, the findings revealed the state of the art practices
regarding QRs elicitation, modelling, and tool support. The study indicated important
gaps between the QRs themes currently researched in the RE community and the
state-of-the art industry needs, which motivated the authors’ call for more empirical
research on QRs from SAs’ perspective.

3 Goal, Research Questions and Empirical Research Design

The goal of this study is to understand how SAs cope with QRs in large and contract-
based software system development projects. Specifically, we wanted to gain insights
and answer the following research questions: (RQ1) How do the SAs understand their
role? (RQ2) Do SAs and RE staff use different terminology for QRs? (RQ3) How do
QRs get elicited? (RQ4) How do QRs get documented? (RQS5) How do QRs get
prioritized? (RQ6) How do QRs get quantified, if at all? (RQ7) How do QRs get
validated? (RQ8) How do QRs get negotiated? (RQ9) What role does the contract
play in the way SAs cope with QRs?

We conducted an exploratory multiple-case study, applying Yin’s guidelines [14]
and using structured open-end in-depth interviews with practitioners from 20 software
project organizations (Table 1). The application domains where the SAs developed
software solutions represent a rich mix of fields, incl. telecom, real estate
management, air transportation, entertainment (online gaming/video streaming)
educational services, hospitality services, and ERP. Our study was performed in four
steps: (1) Compose an interview guide following the guidelines in [15]; (2) Do a pilot
interview to check the applicability of the guide to real-life context; (3) Carry out
interviews with practitioners according to the finalized questionnaire; (4) Sample and
follow-up with those participants that possess deeper knowledge or a specific
perspective. The interview guide is receivable from the authors. Each interview lasted
35 to 45 minutes. Eight interviews took place face-to-face, and 12 on the phone. Each
interviewee was informed on the research purpose and the research process by the
first author, and provided with the list of interview questions at least a week before
the interview date. All interviewees came prepared to the interview, which was
instrumental to the effective use of the interview time slots.

4 M. Daneva, L. Buglione, and A. Herrmann

Choosing the Participants: Our selection criterion for participation in the case study
was the participant’s exposure to the realm of large and contract-based systems
delivery. We included 20 SAs from 14 companies in the Netherlands, Belgium,
Finland, and Germany. At the time of the interviews, the companies were engaged in
large contract-based [1] projects. More in detail, the SAs were selected because they
(1) had professional backgrounds pertaining to our research questions and its context
(i.e. contract-based), and (ii) had the potential to offer information-rich experiences.
Also, they demonstrated an interest in exploring similar questions from their
companies’ perspectives. All 20 SAs had the following backgrounds:

(1) They all worked in large projects that were running in at least three different
development locations in one country, and had clients in more than two countries.

(2) All SAs had at least 10 years of experience in large systems and were familiar
with the interactions that happen between SAs and RE staff.

(3) All SAs worked in contract-based projects where contracts between parties
were established in two steps [1]: first, a contract was agreed upon for the purpose to
get the requirements documented in sufficient detail, so that a SA can use them to
work on architecture design. Then, a second contract dealt with the system delivery
itself. The pricing agreements varied across the participating companies. Some were
fixed-price, others variable, and a third group included a combination between fixed-
price and variable. Four SAs worked in outsourcing contracts, and 16 were employed
on projects where software development sub-contractors were participating. All SAs
deemed their contracts comprehensive and aligned with the spirit of their projects. (In
other words, none suggested their organization had any issue with the contract).They
also said that their projects were considered successful, by both parties in the contract.
The SAs got to know the first author during various business and research
conferences in the period of 2001-2012. Using purposive sampling [15], she chose the
interviewees, based on her knowledge about their typicality. The number of
participants was large enough to provide a broad variety of viewpoints. We planned
the interviews to be ‘structured’ [15] with regard to the questions being asked during
the session. This means, the interviewer was the one to control what topics would be
discussed and in which order.

We note that interview-based exploratory case studies usually are intended to
promote self-disclosure and that is what we were after in this work. We collected data
via one-on-one interactions of a researcher with each of the interviewees that have
various backgrounds but also common professional values and common roles in
which they execute their professional duties. As in [15], interview studies are not used
to provide statistically generalizable results applicable to all people similar to the
practitioners in a specific study. The intention of the exploratory case study is not to
infer, but to understand and not to generalize, but to determine a possible range of
views. Therefore, in this study we will adopt, based on the recommendations in [15],
the criterion of transferability as a useful measure of validity. Transferability asks for
whether the results are presented in a way that allows other researchers and
practitioners to evaluate if the findings apply to their contexts.

Software Architects” Experiences of Quality Requirements 5

Table 1. Case study participants and organizations

ID |Business System description Team | Project
size (# of | duration
people) | (months)
P1. |Large IT Vendor ERP package implementation (Oracle) 35 18
P2. |Large IT Vendor ERP package implementation (SAP) 60 15
P3. [Large IT Vendor ERP package implementation (SAP) 75 18
P4. |Large IT Vendor ERP package implementation (SAP) 41 12
P5. |Large IT Vendor ERP package implementation (SAP) 51 12
P6. |Large IT Vendor ERP package implementation (Oracle) 45 12
P7. |IT Vendor ERP package implementation (SAP) 40 18
P8. [Software Producer Online learning environment 22 12
P9. |Software Producer Sensor system for in-building navigation 35 12
P10. [Software Producer Online ticket booking application 15 12
P11. |Oil & Gas Logistics planning application 21 12
P12. |Insurance Web application for client self-service 61 24
P13. |Insurance Client claim management and reimbursement app 53 16
P14. |Real Estate Web application for rental contract handling 42 18
P15. |Air Carrier Web app for passengers’ feedback processing 11 14
P16. |Video Streaming Viewer recommendation management system 18 18
P17. |Video Streaming Viewer complaint management system 45 9
P18. [Online bookstore Order processing system 15 10
P19. |Online game producer |Gaming system 81 21
P20. |Online travel agency |Room deal identification system 45 12

Data Analysis Strategy: We were guided by the Grounded Theory (GT) method of
Charmaz [16], which is a qualitative approach applied broadly in social sciences to
construct general propositions (called a “theory” in this approach) from verbal data.
GT is exploratory and well-fitting situations where the researcher does not want to use
pre-conceived ideas, and instead is driven by the desire to capture all facets of the
collected data and to allow the propositions to emerge from the data. In essence, this
was a process of making analytic sense of the interview data by means of coding and
constant comparison of pieces of data that were collected in the case study. Constant
comparison means that the data from an interview is constantly compared to the data
already collected from previously held interviews. We first read the interview
transcripts and attached a coding word to a portion of the text — a phrase or a
paragraph. The ‘codes’ were selected to reflect the meaning of the respective portion
of the interview text to a specific research question. This could be a concept
(e.g. ‘willingness to pay’), or an activity (e.g. ‘operationalization’, ‘quantification’).
We clustered all pieces of text that relate to the same code in order to analyze it in a
consistent and systematic way. The results of the data analysis are in Sect. 4 and the
discussion on them — in Sect. 5.

4 Results

Our findings are presented as related to each research question. As it is usual in
qualitative studies, we supplement the observations with interviewees’ quotations.

6 M. Daneva, L. Buglione, and A. Herrmann

4.1 RQ1: How Do the Software Architects Understand Their Role?

All interviewees indicated their companies had SAs’ job descriptions that list their
most important duties, skills competence levels, and job salary scales. As all the
organizations were mature in terms of project management processes and process-
oriented thinking, the roles of the SAs were established and they were clearly
recognizable by their fellow team members. 13 out of the 20 SAs thought of their role
as ‘a bridge’ between QRs and the underlying technology that they were dealing with.

“You’ve got to translate what their clients want in terms of working solutions and
technology choices” (participant P1), “You learn pretty quickly to stretch the
technology so that it works for those who you call ‘requirements engineers’, I mean
here our Business Analysts and their “patrons”, the business unit directors”
(participant P2),

“I have days when I do nothing but ‘translating’ the language of our millions of
players into the features that are technologically implementable in the next release.
All I do is walking through a list of “user experiences” that our requirements folk
want to launch in the market, and I make sure that it all works well at implementation
level, that features build upon each other, so that the overall gaming experience and
enjoyability are never compromised. That’s why I'm coming to work every day”
(participant P19).

Other seven SAs thought of their roles as ‘review gate keepers’ in light of the
active roles in QRs reviews, contract compliance evaluation and sign off:

“If you are sick, on vacation, or on a conference, there is no way this can go
unnoticed; they will need you and if there is no one to tell them that what they are
doing is right [according to contract and project goals], I mean it pure
architecturally; they are going to wait for me so that I give the architecture approval.
Otherwise, we run a risk of screwing up things miserably” (participant P15).

How many SAs are enough for engineering QRs? All SAs experienced one or two
SAs have been involved in their projects. In case of two SAs to be involved, our
interviewees meant one SA from the vendor and the client side, each.

“You may work with many RE people for the different subject areas, but one
architect must be there to aggregate their input and evaluate what it means for the
underlying architecture” (participant P6).

4.2 RQ2: Do SAs and RE Staff Use Different Terminology for QRs?

All SAs considered the process of gaining communication clarity with RE staff a
non-issue. They thought this was due to their long years’ experience in their
respective business sectors (all interviewees had 10+ years of experience as indicated
in Sect 3). Even when working with less experienced RE specialists, they thought that
their domain knowledge has been instrumental to spot missing or incomplete
requirements. For example, a SA who worked on the development of an online
system for processing an air carrier’s clients’ feedback said that in this application
domain scalability is usually regarded as the QR of the highest priority. If a
specification says nothing about it, he considers this a ‘red flag’ and acts accordingly:

Software Architects” Experiences of Quality Requirements 7

“If your RE person says nothing about it, you are absolutely sure there is
something going wrong here. And you better pick up the phone and call them ASAP
because they may be inexperienced and who knows what else could go wrong beyond
this point. Not doing this is just too much risk to bear” (participant P15).

Those SAs working in ISO-certified organizations suggested that the knowledge of
the ISO standards adopted in their company, the mandatory ISO-training that
everyone in the IT department should go through, ‘the habit of looking back to what
the ISO-compliant Quality Manual says’ help tremendously both the SAs and RE-
staff understand each other: “We don’t use the term QRs, not even non-functional
requirements, we call them ISO aspects, because we are ISO-certified and our system
must show compliance to the ISO standards. Also our requirements specialists have in
their template a special section that contains these aspects. We enumerate them one
after another. All relevant aspects must be there, security, maintainability,
performance, you name it. It’s more than 40 aspects [in the company’s Quality
Manual that is consulted on an on-going basis]. They [the RE staff] know them and
we know them [because we went to the same training], so we have a common
ground” (participant P11).

An interesting observation was shared by those SAs delivering large SAP systems.
They indicated, the SAP vendor’s Product Quality Handbook included around 400
QRs which are implemented in the standard software package and which everyone on
the development team is aware of (as these team member learnt about the Product
Quality Handbook in their professional training). If there were QRs specific to the
client and unaddressed in the Handbook, then those should be specified on top of the
400 that come in the SAP’s package. (SAP is ISO 9001-certified).

4.3 RQ3: How Do QRs Get Elicited?

14 SAs used checklists. These were based on a variety of sources: (i) ISO standards
(e.g. 25045-2010, 25010-2011, 25041-2012, 25060-2010), (ii) architecture
frameworks, be they company-specific or sector-specific, (iii) internal standards (e.g.
vendor/client-organization-specific), and (iv) stakeholder engagement standards, e.g.
AA1000SES [17]. Regardless the source, the interviewees agreed that the checklist-
supported process is always iterative, because not all QRs could get 100% clear at the
same time. “You've got to go at least 4-5 times until you get a spec that makes sense
to me and my fellows” (participant P4).

In their views, the fact that most QRs are not global to the system but act on
specific pieces of functionalities, imposes an order in the elicitation activities: SAs do
expect first the functional requirements to be elicited and then to use the resulting
functional requirements specification as the ground for eliciting QRs.

“How otherwise will you know which attribute matters to what piece of
functionality?” (participant P9).

Four SAs argued QRs are never elicited but detected, e.g. one SA was involved in
experimental serious-game-based process specifically designed to “detect” QRs. Two
others shared they had “a bunch of pilot users who volunteer to play the role of
guinea pigs; they are passionate about the system and would love to tell you where it

8 M. Daneva, L. Buglione, and A. Herrmann

fails to deliver up to their expectations in terms of performance, availability, and user
experience” (participant P10). Another SA had been using storytelling techniques to
uncover QRs, together with his RE counterpart and his clients.

44 RQ4: How Do QRs Get Documented?

15 out of the 20 SAs specified QRs by using predefined templates. Some of them
were vendor-specific, e.g. in SAP projects, SAs used SAP’s standard diagram
notation called Technical Architecture Modelling [18], as it has been part of the SAP
Architecture Curriculum [12]. Others were derived based on (i) the ISO standard, (ii)
the House of Quality (HoQ) of the Quality Function Deployment (QFD) methodology
[19], (iii) the Planguage approach [20], and (iv) the INVEST grid approach [21].

The other 5 SAs were using plain natural language text that provides at least the
definition of each QR, plus information on the end user to do the acceptance test on it
and the ways to demonstrate that the system meets it. The amount of detail in these
specifications varied based on what the SAs deemed important to be provided to them
by the RE staff or the users. For example, one SA wanted to hear a story from a user
on “how the user will know the system is slow? A user can tell you “If [manage to get
one of my phone calls done while waiting, this means to me it’s very slow.”
(participant P12). Other SAs said they write their QRs definitions next to the
functional requirements, if these are specified in a process model or a data model.
“This way you will know which smallest pieces of functionality and information
entities are affected by which QR” (participant P1).

4.5 RQ5: How Do QRs Get Prioritized?

All SAs agreed that (i) they make QRs trade-offs as part of their daily job on projects,
and (ii) the project’s business case was the driver behind their trade-off decision
making. The key prioritization criteria for making the QRs trade-offs were cost and
benefits, evaluated mostly in qualitative terms but whenever possible also
quantitatively, e.g. person-months spent to implement specific QRs. Perceived risk
was identified as subsumed in the cost category, as SAs deemed a common practice
the tendency to translate any risks to QRs, into costs to bear in a contractual
agreement. However, next to perceived cost and benefits, 12 SAs put forward two
other QRs prioritization criteria: client’s willingness to pay and affordability. The first
is about the flexibility of the value of a QR to the client. It is expressed as the level of
readiness of client organizations to pay extra charges for some perceived benefit that
could be brought by implementing a specific QR. Six SAs elaborated that this
criterion alone is instrumental to split up the QRs in three groups: (i) essential, which
includes those QRs that directly respond to the reason of why the client commissioned
the system in the first place, e.g. in a hotel reservation system, it’s absolutely essential
that a secure payment processing method is provided; (ii) marginal, which includes
those QRs that are needed yet clients are willing to spend little on them, e.g. a user
interface feature that might be appreciated and would be perceived as a value to pay a
few hundred euro, but not thousands of euro; and (iii) optional, which includes QRs

Software Architects” Experiences of Quality Requirements 9

that clients will find enjoyable to have but would not be willing to pay for, e.g. flashy
animation effects in a game system that are fun, yet not truly a ‘money-maker’.

Next, affordability is about whether or not the cost estimation of a QR is in accord
with (1) the resources specified in the contract and (2) with the long term contract
spendings of the client organization. This criterion determines whether or not a QR is
aligned with (short term) project goals and/or (long-term) organizational goals.

Furthermore, SAs’ experiences differed regarding who ultimately decides on the
QRs priorities. 13 SAs suggested that in their projects the prioritization has been
linked to a business driver or a KPI in the project and it has been the project’s steering
committee to decide on the priorities. They deemed the prioritization process
‘iterative’ and a ‘learning experience’ in which the SAs learn about what QRs the
drivers ‘dictate and how desperately the company needs those QRs’ and the RE
specialists and the business owners learn about the technical and cost limitations.

“It’s through this mutually educational process that you arrive at the priorities.
This takes a few iterations, starting always from the Steering Committee that tells us
what’s most important to them. We tell them what we can do and check against
budget, timelines and people resources. If we cannot do it within our limits, then they
must decide either to pour more money into the project, or to rethink what they could
live without, so that we have a good enough solution for our circumstances”.
(participant P11).

In contrast to these 13 SAs, the other 7 considered themselves as the key decision-
makers in setting the priorities:

“You can stretch a technology to a certain point. No matter what your client wants,
once in a while you’ve got to say ‘no’ and push back decisively” (participant P11).

Concerning the use of requirements prioritization methods, 19 SAs suggested no
explicit use of any specific method other than splitting up QRs in categories of
importance, namely ‘essential’, ‘marginal’, and ‘optional’. SAs named these
categories differently, yet they meant the same three. One SA named EasyWinWin
[23] as the group support tool aiding the requirements prioritization and negotiation
activities in a project. Three out of the 19 shared that nailing down the top 2-3 most
important QR is a non-issue, because of the obviousness of these requirements to the
client, e.g: “If you develop a game, it’s all about scalability and user experience. You
have no way to make your fancy animation work if you cannot get scalable and if you
Jjeopardize user experience” (participant P19).

What is an issue is the prioritization of those QR that take less prominent place
from user’s perspective, e.g. maintainability, evolvability, e.g:

“These requirements matter to you, not to the client. Even you do a brilliant job on
maintainability, nobody will pat you on the back and say thank-you for this. It’s very
difficult, I'd say, almost political, to prioritize this kind of QRs” (participant P13).

4.6 RQ6: How Do QRs Get Quantified, If at All?

All SAs agreed that expressing QRs quantitatively should not happen very early in a
contract-based project. This was important in order to prevent early and not-well-
thought-out commitments. Three SAs said they rarely use quantitative definitions of

10 M. Daneva, L. Buglione, and A. Herrmann

QRs. Instead, they get on board an expert specialised in a specific QR (e.g. usability,
or scalability) and let him/her ‘do the quantification job’ for them. 10 other SAs used
as a starting point the quantitative definitions that were pre-specified in the contract
(e.g. a contract may state explicitly that the system should scale up to serve hundreds
of thousands of subscribers). However, 8 of the 10 warned that more often than not
contracts address design-level requirements [1], including (i) detailed feature
specifications of how QRs are to be achieved (e.g. specifying a proprietary influence
metric to be included in the ranking algorithms of the recommender system that is
part of a larger online video streaming system), or (ii) a particular algorithm rather
than required quality attribute value and criteria for verifying compliance (e.g coding
a very specific search algorithm for finding hotel deals). Confusing QRs with design-
level requirements was deemed a critical issue in industry; it points out to a mismatch
in understanding what is really quantified and by using what kind of measures:
design-level requirements are quantified by using product measures and not project
measures which are those important for contract monitoring purposes. However, more
often than not contracts use product and project measures incorrectly, the final effect
being that a number of project tasks related to implementing QRs don’t get ‘visible’
but ‘implicit’, and therefore no budget is previewed for them and, in turn, the client
would not commit to pay.

Next, 7 SAs worked with a team of systems analysts on operationalizing QRs. In
essence, it meant decomposing them until reaching the level of architecture design
choices or of the smallest pieces of functional requirements. Once at this level, the
practitioners felt comfortable starting quantifying the QRs, e.g. they used the
operationalization specifications as input to a Function Points counting process, in
order to ‘size the QRs’. However, no common quantification method was observed to
be used. Instead, the SA suggested the choice of a method should match the project
goal (i.e. towards what end quantification was needed in the first place). E.g., if
quantification of QRs is to serve project management and contract monitoring
purposes, then it might be well possible that in the future those organizations
experienced in Function-Points-based project estimation, would use the newly
released IFPUG NFR Assessment standard [22], called SNAP (Software Non-
functional Assessment Process).

4.7 RQ7: How Do QRs Get Validated?

All SAs were actively involved in QRs validation, 16 considered it part of their job,
while four said that it’s the job of the RE staff to ensure QRs are validated. These four
SAs used the RE specialists as contact points on clarifying requirements. We make
the note that for the purpose of this research, we call ‘validation’ the process that (a)
ensures that QRs clearly describe the target solution, (b) confirms these QRs are
technically implementable and the resulting architecture design satisfies the business
requirements as per the contractual agreement.

14 SAs participated in requirements walkthroughs with clients led by a RE
specialist where clients confirm the functionalities on which the QRs in question were
supposed to act. The walkthroughs were deemed part of the client expectation

Software Architects” Experiences of Quality Requirements 11

management process that the project manager established. The SAs considered them
as the opportunity to inform the clients about those QRs that could not be
implemented in the system or could not be implemented in the way the client
originally thought: “You’ve got to educate them on what your technology can and
cannot do for them and the walkthroughs is how this happens relatively
easily.” (participant P1).

Three SAs used the HoQ [19] to demonstrate the strength of the relationship
between a QR-statement and its operationalization in terms of either functional
requirements or architecture design choices. Two SAs validated QRs against internal
architecture standards. Should they identify deviations from the standards, they
escalate this to both managers and RE-staff. In extreme cases, when QRs are grossly
misaligned with the architecture standards, this should be brought to the attention of
the steering committee, the program director, and the architecture office manager
responsible for the project. “You have to inform them immediately that things have no
way to work as planned, so they get back to negotiation and revise the concept”
(participant P8§).

RQ8: How Do QRs Get Negotiated?

Ten SAs used their project’s business cases as the vehicle to negotiate requirements.
They considered this a common practice in enterprise systems projects. “You need to
express yourself in money terms, that they [the clients] can understand very well”.
(participant P20).

Three SAs who worked on projects where user experience was the most important
QR, said their goal in QRs negotiation is to prevent the most important QR from
becoming suboptimal, if other QRs take more resources and attention. These SAs did
not use their business cases, but considered effort and budget allocation as important
inputs to negotiation meetings.

Five other SAs thought of themselves as ‘information providers and mentors’ to
the team, but not ‘truly negotiators on QRs’ and that it’s the project manager’s
responsibility to lead in the negotiation:

“It’s his job to sell it to the other parties. I'm just an internal consultant; what they
do with my information is their business” (participant P10).

Other three SAs used the HoQ, EasyWinWin [23], and the Six-Thinking-Hats
method [24] to reason about QRs in negotiation meeting, respectively. We note that
the Six-Thinking-Hats is a general approach to resolving complex issues and
companies use it for any negotiation situation, be it QRs related or not. The approach
was well-received and internalized in the company and people ‘had fun using it as it
takes pressure off them in this kind of difficult conversations’ (participant P16).

RQY: What Role Does the Contract Play in the Way SAs Cope with QRs?

Did SAs have to refer to the contract, enforce it, or use it in any way in their projects
so far? In the SAs’ experiences, there were three ways in which the contract
influenced how they coped with QRs: (1) the contract enforced the cost-consciousness

12 M. Daneva, L. Buglione, and A. Herrmann

of the SAs and was used to evaluate the cost associated with achieving the various
QRs; (2) the contract stipulated QRs levels, e.g. in the Service Level Agreement
(SLA) part, that were targeted and subjected to discussions with the stakeholders; and
(3) the contract in fact pre-defined the priorities for some small but very important set
of QRs. 17 SAs indicated that the contract was used on an on-going basis to stay
focused on what counts most in the project. To these SAs, the contact was the vehicle
to ensure the system indeed includes ‘the right things’, ‘those that they needed in the
first place, and that we are billing them for’.

12 SAs shared that a contract-based context is conductive to understanding QRs as
a way to maintain control. In their views, every comprehensive contract usually
comes with SLA specifications, key performance indicators (KPI) and measurement
plans that address multiple perspectives (clients/vendors), e.g., the Balancing Multiple
Perspectives technique [25] is a way to help all involved parties in understanding and
validating the right amount of things to do in a contract-based project.

In contrast to this, three SAs thought the contract was not that important. They
said, it was just ‘the beginning of their conversation’ on QRs and not as the reference
guide to consult on an on-going basis. They thought it’s the people who make the
contract work. In their view, it has always been the RE-staff and project managers
who work with the contract and who usually communicate to everyone else if the
project efforts get misaligned with the clauses of the contract.

5 Discussion

This section compares and contrasts our finding to those in previously published
studies on QRs from SAs’ perspective. Our discussion is organized according to our
research questions.

RQ1: How do the SAs understand their role? Our results suggest that in contract-
based and large projects, the SAs define their role as “a bridge” that connects clients
QRs to the architecture design. This contrasts to the results in [8] where the SAs had
indicated a broad diversity of roles and tasks they took on (e.g. coding). We think the
contrast is because our SAs came from regulated environments where terminology,
roles and processes are determined, well communicated, and lived up to. Our findings
agree with [11] on the importance that SAs place on gaining as deep as possible
understanding of the QRs and using it to deliver a good quality architecture design.
Regarding how many SAs are enough for engineering QRs, we note that this question
has not been yet researched in RE studies. In our interviewees’ experiences, it’s usually
one or two SAs that operate together in a large contract-based project. This is in line
with Brooks” most recent reasoning on “the design of design” of large systems [26]
where he explains that a 2-person team can be particularly effective where larger teams
are inefficient (other than for design reviews where the participation of a large number
of reviewers is essential).

RQ2: Do SAs and RE staff use different terminology for QRs? Our results did not
indicate this as the issue that preoccupied the SAs. This contrasts [8] where Spanish
SAs collectively indicated a broad terminological gap between SAs and RE staff. The

Software Architects” Experiences of Quality Requirements 13

authors of [8] made observations that the absence of shared glossary of QRs types was
part of the problem. We think the difference between our findings and those in [8] may
well be due to the fact that our case study projects were happening in regulated
organizations where standards defined terminologies that all project team members
adopted (including SAs) and assumed ownership over their use. We found that SAs
implicitly referred to at least two main streams of standards: (i) management systems
as e.g. 9001-27001-20000, and (ii) ‘technical standards’ (as 14143-x, 9126-x, etc.),
where (i) are about ‘requirements’ to be accomplished and (ii) are about processes
and/or solutions about ‘how to’ do things. However, terms from both streams were
used interchangeably and it was not clear which QR followed the terminology of
which stream. This made us think that contract-based development would greatly
benefit if a common and shared glossary of ISO terms existed (and help make explicit
the difference between the two steams of ISO standards).

RQ3: How do QRs get elicited? Our study revealed all SAs were actively involved in
elicitation. This agrees with [9] and is in contrast to [8]. Our assumption is that the
sense of ownership over the QRs that the SAs shared could be the possible reason for
their proactiveness and involvement. Also, we found checklist-based techniques as the
predominant approach in contract-based project context.

RQ4: How do ORs get documented? We found that standardized forms/templates plus
natural language were used most. This is in contrast with [8] where the SAs could not
agree on one specific systematic way to document QRs and natural language was the
only common practice being used. Why this difference occurs? We assume that it’s
because of the regulated nature of the contract-based environments and of the use of
standards. We think it’s realistic to expect that in such contexts, a contract is monitored
on an on-going basis (e.g. all relevant SLAs are well specified and how they would be
measured is explicitly defined) and its use forces IT professionals to adopt a sound
template-based documentation flow throughout the project [27].

RQS5: How do QRs get prioritized? Two ‘new’ prioritization criteria crystalized in this
study: client’s willingness to pay and affordability. These complement the well-known
criteria of cost, benefits and risk (as stated e.g. in [28]). We assume that the choice of
these criteria could be traced back to the contract-based nature of the projects in our
study where both vendors and clients had to get clear as early as possible on, scope,
project duration and the way they organize their work processes and its impact on each
party.

RQ6: How do QORs get quantified, if at all? Our results agree with [11] on the
importance of QRs quantification in practice. However, unlike [4], our SAs did not
indicate that searching for new or better quantification techniques was their prime
concern. Similarly to [11], they warned about the pitfalls of premature quantification,
meaning that early QRs quantification may be based on too many assumptions about
the solution. As in [11], our SAs thought that if those assumptions turn out unrealistic,
a vendor may find itself in the precarious situation of having committed resources to
unachievable QRs. Regarding how quantification happens, the SAs suggest that either
using a standard (e.g. 22]) or engaging an expert in specific type of QRs (e.g. security,
scalability). While the first ensures that all tasks of implementing QRs are explicitly

14 M. Daneva, L. Buglione, and A. Herrmann

accounted for in a project, the second allows for deeper analysis on a single quality
attribute and its interplay with others.

RQ7: How do QRs get validated? No SA witnessed a contract that stated an automated
(model-checking) tool be used for validating QRs. Instead, our results suggest that
common sense practices dominate the state-of-the-art:e.g. using requirements
walkthroughs, documentation reviews, building up communication processes around
the artefact-development activity (e.g. escalation if a QR is not timely clarified) are
simple, yet powerful ways to ensure QRs are aligned with client’s expectations and
SLAs. This contrasts the QRs literature [4,7] where much accent is placed on tools and
methods. One could assume that the active and persuasive behaviour of the SAs
regarding QRs validation could be due to the explicit contractual agreements (e.g.
SLA), controls and project monitoring procedures (e.g. KPI).

RQS8: How do QRs get negotiated? The business case turned out to be the most
important vehicle for SAs to support their negotiation positions in meetings with other
stakeholders. In contrast to RE literature (e.g. [1]) that offers an abundance of
negotiation methods, we found that only one (EasyWinWin) was mentioned (and it’s
by only one SA). SAs hinted to general purpose negotiation techniques, e.g. the Six-
Thinking-Hats method as being sufficient to help with QRs negotiation. This suggests
that it might be worthwhile exploring the kind of support that negotiation methods
from other fields (management science, psychology) can offer to QRs negotiation.

RQ9: What role does the contract play in the way SAs cope with QRs? We found that
the contract reinforced the SA’s role in his/her project organization and redefined the
inclusion of this role in QRs engineering. We observed, the SAs were well aware of the
possible impacts of a contract on their professional behaviour, e.g. SAs assumed
responsibility to clarify QRs priorities and escalated to project managers and/or RE
staff if they suspected project goals threatened or contact clauses being violated.
Because we could find no prior study that looked into how contracts shape the
professional behaviour of RE professionals or of SAs with respect to how QRs are
dealt with, we consider it an interesting line of future research.

6 Validity Threats

Our evaluation of the possible threats to validity of the observations and conclusions in
this research, followed the checklist in [29]. As our research is exploratory, the key
question to address when evaluating the validity of its results, is [15]: to what extent
can the practitioners’ experiences in coping with QRs could be considered
representative for a broader range of projects, companies, application domains? Our
case study projects are not representative for all the possible ways in which
engineering of QRs is performed in large contract-based settings. Following [30], we
think that it could be possible to observe similar experiences in projects and companies
which have contexts similar to those in our study, e.g. where large and contract-based
projects hire experienced SAs in teams with mature process-oriented thinking, and
where standards define the terminology to use for QRs. As the authors of [30] suggest
“if the forces within an organization that drove observed behaviour are likely to exist

Software Architects” Experiences of Quality Requirements 15

in other organizations, it is likely that those other organizations, too, will exhibit
similar behaviour” (p.12). Moreover, we acknowledge that the application domain
may have influenced the ways the SAs coped with QRs. We, therefore, think that more
research is needed to understand the relationship between application domains and the
way in which the QRs processes happen.

We also acknowledge the inherent weaknesses of interview techniques [15]. A
threat is the extent to which the SAs answered our question truthfully. We took two
steps to minimize this threat by (i) recruiting volunteers, under the assumption that if a
practitioner would not be able to be honest, he/she could decline his/her participation at
any stage of the research and (ii) that we ensured no identity-revealing data will be
used in the study. Next, it’s possible that an interviewee has not understood a question.
However, we think that in our study, this threat was reduced, because the interviewer
used follow-up questions, and asked about the same topic in a number of different
ways. Next, we accounted for the possibility that the researcher might instil his/her bias
in the data collection process. We followed Yin’s recommendations [6] in this respect,
by establishing a chain of findings: (i) we included participants with diverse
backgrounds (i.e. industry sector, type of system being delivered), and this allowed the
same phenomenon to be evaluated from diverse perspectives (data triangulation [15]);
(ii) the interview answers were sent to each SA prior to data analysis to confirm the
information he/she provided; and (iii) we had the draft case study report reviewed by
the SAs (some of whom provided feedback, which however did not affect our
conclusions).

7 Conclusion

The number of studies on the involvement of SAs in QRs engineering is growing and
understanding the ways it works would give us a firmer ground for organizing
eventually better RE processes that lead to better definitions of QRs, and in turn,
architecture designs better aligned with them.

Our study clearly indicates that making SAs an integral part of the QRs processes
has been commonplace in the investigated contract-based development contexts.
Unlike prior research [8] that revealed important discrepancy between literature and
practice as part of small and midsized projects, this study shed light into the
perspective of SAs on QRs as treated in large and contract-based projects. Compared
to literature, the overriding messages of this paper are that in contract-based projects:

e the QRs are approached with the same due diligence as the functional
requirements and the architecture design demand,

e the relationship between RE staff/clients and SAs is actively managed whereby
the contract means embracing responsibilities over QRs (and not abdicating
thereof),

e client’s willingness to pay and affordability seem as important prioritization
criteria for QRs as cost and benefits are,

e both the prioritization decisions on QRs and the QRs trade-offs are aligned with
the contract (specifically, with the SLA and KPIs),

16 M. Daneva, L. Buglione, and A. Herrmann

e checklist-based elicitation is the most common technique for eliciting QRs,

e template-based documentation in natural language is most common approach to
documentation,

e quantification of QRs is done with and by experts specialized in a specific QRs
sub-field (e.g. performance, scalability)

e QRs validation and negotiation are considered more organizationally and in terms
of social interactions with RE staff and clients, than in terms of tool-supported
processes.

Our findings have the following implications: To SAs, this study suggests the
conversation on QRs starts with the contract, and specifically with the SLA and the
business case. To RE tool vendors, it suggests they are better off to think about how
RE tools should be better embedded into social processes and broader social
interaction context. To RE researchers, our study suggests that instead of solely
focusing on QRs methods, tools and techniques, it makes good sense to extend
existing research by including analysis of QRs processes as socially constructed ones.
How a contract shapes the behaviour of RE staff and SAs is an interesting question
demanding future research. One could think of borrowing theories from other
disciplines (e.g. behaviour science) to explain why RE staff and SAs engineer QRs
the way they do.

In our immediate future, we plan to use these results in follow-up studies, in other
countries, specifically in USA, Canada, India, Israel, Brazil and Argentina.
Comparing the present results with findings in locations outside Europe would benefit
both outsourcing vendors and clients in informing them on the extent to which
handling QRs depends on country-specific business culture concerning contractual
agreements, industry sector, and levels of maturity.

References

1. Lauesen, S.: Software requirements: Styles and techniques. Addisson-Wesley (2002)

2. Sommerville, L.: Integrated Requirements Engineering. IEEE Software 22(1), 16-23
(2005)

3. Avgeriou, P., Grundy, J., Hall, J.G., Lago, P., Mistrik, I. (eds.): Relating Software
Requirements and Architectures. Springer (2011)

4. Capilla, R., Babar, M.A., Pastor, O.: Quality requirements engineering for systems and
software architecting: methods, approaches, and tools. Requir. Eng. 17(4), 255-258 (2012)

5. Bass, L., et al.: Software Architecture in Practice, 2nd edn. Addison-Wesley (2003)

6. van Heesch, U., Avgeriou, P.: Mature Architecting - A Survey about the Reasoning
Process of Professional Architects. In: 9th WICSA, pp. 260-269

7. Bentsson-Svensson, R., Host, M., Regnell, B.: Managing Quality Requirements: A
Systematic Review. In: EUROMICRO-SEAA 2010, pp. 261-268 (2010)

8. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects consider non-
functional requirements: An exploratory study. In: RE 2012, pp. 41-50 (2012)

9. Poort, E.R., Martens, N., van de Weerd, 1., van Vliet, H.: How Architects See Non-
Functional Requirements: Beware of Modifiability. In: Regnell, B., Damian, D. (eds.)
REFSQ 2011. LNCS, vol. 7195, pp. 37-51. Springer, Heidelberg (2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Software Architects” Experiences of Quality Requirements 17

Ameller, D., Franch, X.: How Do Software Architects Consider Non-Functional
Requirements: A Survey. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS,
vol. 6182, pp. 276-277. Springer, Heidelberg (2010)

Poort, E.R., Key, A., de With, P.H.N., van Vliet, H.: Issues Dealing with Non-Functional
Requirements across the Contractual Divide. In: WICSA/ECSA 2012, pp. 315-319 (2012)
Groene, B., et al.: Educating Architects in Industry - The SAP Architecture Curriculum.
In: 17th IEEE Int. Conf. on Eng. of Computer Based Systems (ECBS), pp. 201-205.
Guessi, M., Nakagawa, E.Y., Oquendo, F., Maldonado, J.C.: Architectural description of
embedded systems: a systematic review. In: ACM SIGSOFT ISARCS 2012, pp. 31-40
(2012)

Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2008)

King, N., Horrock, C.: Interviews in Qualitative Research. Sage, Thousand Oaks (2010)
Charmaz, K.: Constructing Grounded Theory. Sage, Thousand Oaks (2007)

Stakeholder Engagement Standard (AA1000SES), http://goo.gl/fRopv

Groene, B.: TAM — The SAP Way of Combining FCM and UML,
http://goo.gl/FW1IA (last viewed on November 8, 2012)

Gilb, T.: Competitive Engineering: A Handbook For Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage, Butterworth (2005)

Karlsson, J.: Managing software requirements using quality function deployment.
SQJ 6(4), 311-326

Buglione, L.: Improving estimated by a four pieces puzzle, IFPUG Annual Conference
(May 2012), http://g00.gl/bFwRB

IFPUG, Software Non-functional Assessment Process (SNAP) — Assessment Practice
Manual (APM) Release 2.0 (January 22, 2013)

Boehm, B., Grunbacher, P., Briggs, R.O.: EasyWinWin: A Groupware-Supported
Methodology for Requirement Negotiation. In: 9th ACM SIGSOFT FSE, pp. 320-321
(2001)

de Bono, E.: Six Thinking Hats. Little, Brown, & Co., Toronto (1985)

Buglione, L., Abran, A.: Improving Measurement Plans from multiple dimensions:
Exercising with Balancing Multiple Dimensions - BMP. In: 1st Workshop on Methods for
Learning Metrics, METRICS 2005 (2005)

Brooks, F.P.: The Design of Design: Essays from a Computer Scientist. Addison-Wesley
(2010)

Nicholson, B., Sahay, S.: Embedded Knowledge and Offshore Software Development.
Information and Organization 14(4), 329-365 (2004)

Herrmann, A., Daneva, M.: Requirements Prioritization Based on Benefit and Cost
Prediction: An Agenda for Future Research. In: RE 2008, pp. 125-134 (2008)

Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14(2), 131-164 (2009)

Seddon, P., Scheepers, P.: Towards the improved treatment of generalization of knowledge
claims in IS research: drawing general conclusions from samples. EJIS, 1-16 (2011)

A Persona-Based Approach for Exploring
Architecturally Significant Requirements
in Agile Projects

Jane Cleland-Huang, Adam Czauderna, and Ed Keenan

DePaul University, Chicago, IL 60422, USA
jhuang@cs.depaul.edu, aczauderna@gmail.com, ekeenan2@cdm.depaul.edu

Abstract. [Context and motivation] Architecturally significant re-
quirements (ASRs) drive and constrain many aspects of the architec-
ture. It is therefore beneficial to elicit and analyze these requirements in
early phases of a project so that they can be taken into consideration
during the architectural design of the system. Unfortunately failure to
invest upfront effort in exploring stakeholders quality concerns, can lead
to the need for significant refactoring efforts to accommodate emerg-
ing requirements. This problem is particularly evident in agile projects
which are inherently incremental. [Question/Problem] Existing tech-
niques for early discovery of ASRs, such as Win-Win and i*, are typically
rejected by agile development teams as being somewhat heavy-weight.
A light-weight approach is therefore needed to help developers identify
and explore critical architectural concerns early in the project. [Princi-
pal ideas/results| In this paper we present the use of Architecturally-
Savvy Personas (ASP-Lite). The personas are used to emerge and analyze
stakeholders’ quality concerns and to drive and validate the architectural
design. ASP-Lite emerged from our experiences working with the require-
ments and architectural design of the TraceLab project. The approach
proved effective for discovering, analyzing, and managing architecturally
significant requirements, and then for designing a high-level architectural
solution which was designed to satisfy requirements despite significant
interdependencies and tradeoffs. [Contributions] This paper presents
the ASP-Lite approach and describes its support for architectural design
in the US$2 Million TraceLab project.

Keywords: personas, architecture, requirements, architecturally signif-
icant requirements, tradeoffs.

1 Introduction

The overall quality of a software intensive system is measured according to
whether the system meets its functional requirements and addresses the under-
lying quality concerns of its stakeholders. For example, a safety-critical avionics
system must guarantee levels of safety through performance and dependability
requirements, while a mobile phone service must provide reliable hand-over as

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 18-B3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

A Persona-Based Approach for Exploring ASR in Agile Projects 19

a subscriber moves across various towers, deliver high quality voice and data
service, and also provide fast response times for placing calls and sending text
messages [1§].

The quality requirements for a system represent a special subset of Archi-
tecturally Significant Requirements (ASRs) that describe non-behavioral con-
straints on the system. Yu et al., identified over 100 different types of ASRs [9]
including qualities such as reliability, maintainability, safety, usability, portabil-
ity, and security [4, [12]. ASRs are quite varied in their impact on the system
and in the way in which they must be specified. For example, a performance
requirement might describe the response time or throughput requirements of a
system, while an availability requirement might specify the need for a system to
be available 24/7 or to have less than 1 hour of scheduled downtime a week.

ASRs play a strategic role in driving the architectural design of a software
intensive system [5, [15] and are often used as a selection criteria for deciding
between alternate architectural options [16]. Architects must therefore under-
stand the stakeholders’ quality concerns and then utilize technical knowledge to
design an architectural solution which balances the potentially complex interde-
pendencies and tradeoffs of the requirements. Techniques such as Architecture
Driven Design (ADD) [5] assume a starting point of clearly specified quality
concerns documented in the form of Quality Attribute Scenarios, while the Vol-
ere approach presents proactive techniques for eliciting and documenting qual-
ity concerns [24]. Cohen also describes an agile approach for specifying ASRs
(i.e. constraints) in the form of user stories [10]. Despite these techniques many
projects fail to adequately explore quality concerns. For example, Franch et al.
conducted a survey of ASR elicitation techniques in 13 different software projects
[3] and found that in many cases projects did not specify any such requirements.
In one documented case, a customer assumed that a web page would take no
more than two seconds to load but did not specify this as a requirement. Fol-
lowing deployment he complained that the page loaded too slowly. Identifying
ASRs in advance can help to mitigate this type of problem.

1.1 Quality Concerns in Agile Development

The continuous move towards agile development practices highlights the impor-
tance of developing light-weight approaches for handling ASRs. Abrahammson
et al. discuss the role of architecture in the agile process |1]. They conclude that
“a healthy focus on architecture is not antithetic” to agility, and advocate for
finding the architectural sweet spot for a given project so that the emphasis on
architecture is customized to the needs of the particular project. Similarly Beck
asserted that architecture is just as important in XP (eXtreme Programming)
projects as it is in any other project [6]. In an interview conducted for IEEE
Software’s special edition on the Twin Peaks of Requirements and Architecture
[8], Jan Bosch outlines the growing acceptance of designing and constructing a
system incrementally, and allowing both functional and non-functional require-
ments to emerge as the project proceeds. This practice assumes that refactoring
the architecture to accommodate newly discovered NFRs is an acceptable cost

20 J. Cleland-Huang, A. Czauderna, and E. Keenan

of doing business in an agile project, and contrasts with more traditional prac-
tices such as ADD [5] and WinWin [7]. In these approaches ASRs are rigorously
elicited and analyzed in early phases of the project and then used to drive and
evaluate candidate architectural designs. Scott Ambler proposes some kind of
middle ground, in which architectures are sketched in early phases of the project
[2]. Denne and Cleland-Huang describe the incremental funding method (IFM)
in which architectures are planned upfront, but then delivered incrementally as
needed to support the user-required functionality |13]. This approach has been
shown to increase the financial return on investment of the project. Unfortu-
nately the agile mantra of ‘no big upfront design’ is often used to justify a less
than effective exploration of the quality requirements during early phases of the
software development lifecycle, thereby increasing the likelihood of later costly
refactoring efforts.

In this paper we propose a novel approach for capturing and evaluating ar-
chitecturally significant requirements in agile projects, and then using them to
drive and evaluate the architectural design. Our approach, which we call ASP-
Lite (Architecturally Savvy Personas - Lite), utilizes HCI personas to express
quality concerns in the form of user stories, written from the perspective of spe-
cific user groups. While personas have traditionally been used to explore the way
individual user groups will interact with a system, ASP-Lite focuses primarily
on quality concerns and constraints of the system, and is used to design and
evaluate the architectural design. Our approach supports incremental delivery
of the architecture, reducing the risk of designing an architecture which requires
excessive refactoring.

1.2 Our Proposed Approach

ASP-Lite emerged from our own experiences in the TraceLab project |17], a
US$2 Million endeavor funded by the US National Science Foundation and de-
veloped by researchers at DePaul university, the College of William and Mary,
Kent State University, and the University of Kentucky. The core part of the
project involved developing an experimental environment in which researchers
can design experiments using a library of pre-existing and user-defined compo-
nents, execute their experiments, and then comparatively evaluate results against
existing benchmarks.

Early in the project it became apparent that there were some challenging and
conflicting quality goals that would impact both the time-to-market and the long-
term adoption of the system. To fully explore and understand the impact of early
architectural decisions, we developed a set of personas that represented distinct
sets of users’ needs, especially those needs which impacted major architectural
decisions. The personas were initially developed through a series of brainstorming
activities by the core project team. They were presented to collaborators from
all participating universities during an initial project launch meeting and refined
until all meeting participants were satisfied that the personas provided a realistic
and relatively complete representation of TraceLab users’ quality concerns. The

A Persona-Based Approach for Exploring ASR in Agile Projects 21

personas were then used throughout the remainder of the project to guide and
critically evaluate architectural design decisions.

1.3 Paper Structure

Section [of this paper introduces the concept of Architecturally-Savvy personas.
Section Bl describes the overall process model integrated into the SCRUM frame-
work. Section] describes the personas that we created for the TraceLab project,
and then section [l describes the way in which the personas support the archi-
tectural design process. Finally, Section [0l describes the benefits of our approach
and reports on our initial findings.

2 Architecturally-Savvy Personas

HCT personas were first introduced by Cooper as a means for integrating user
goals and perspectives into the design process [11]. A persona provides a realistic
and engaging representation of a specific user group, and is typically depicted
through a picture and personal description that portrays something about the
pysche, background, emotions and attitudes, and personal traits of the fictitious
person [21, [22]. The task of creating a persona usually involves surveying and
interviewing users, identifying optimal ways for slicing users into categories,
collecting data to demonstrate that the proposed slices create distinguishable
user groups, discovering patterns within the user groups, constructing personas
for each group, and then creating scenarios describing how the persona might
interact with the system under development. A project will typically have from
about 5-8 personas.

While personas are typically used for purposes of User-Interaction design,
there are a few examples in which they have been used as part of the require-
ments elicitation process. Dotan et al. evaluated the use of personas to com-
municate users’ goals and preferences to project members as part of a two-day
design workshop for the APOSDLE project [14]. Similarly, Robertson et al. also
discussed the use of personas for gathering requirements when actual stakehold-
ers are not available [24]. In both cases, the focus was on eliciting a general set
of requirements and/or goals.

In contrast, ASP-Lite focuses on architecturally significant requirements. This
emphasis impacts the way we slice (or categorize) groups of users in order to
create a set of personas whose needs represent distinct sets of quality concerns.
In the TraceLab project, many of these competing concerns emerged as a re-
sult of an initial Joint Application Design (JAD) session and a series of subse-
quent brainstorming meetings. As a result, researchers, developers, and archi-
tects worked collaboratively to create a small and distinct set of personas and to
write a series of architecturally significant user stories for each of them. These
user stories focused on qualities such as performance (i.e how fast?), reliability
(i.e. how reliable?), and portability etc.

22 J. Cleland-Huang, A. Czauderna, and E. Keenan

Persona picture,
name tag, and role. Personalized background

\ / details

v

Tom is a long time traceability researcher. He has published
i numerous papers that have focused on tracing from source code to

design and requirements. He has focused on using LDA, LSI, and
various probabilistic approaches. He has also developed algorithms
for visualizing the results of his traces.

Tom: Tom prefers coding in C++ on Linux. He plans to contribute
Age: 59, Professor components to the TRACY project; however he already has an
. . : ;Ia:t‘f;'r?_:esglee‘;e“‘)’i' established traceability research environment and therefore may not
List of quallty/» m Language selection: use all the TRACY features himself.
u Reliability:
concerns B Extensibilty: My user stories:
extracted from L] Eafe f;f component 1. I need to be able to write components in C++ and integrate them easily
all personas. u Eapszaoﬁnstallatian into TraceLab experiments.
o Highlfy intuitive 2. Experiments that | run using TraceLab must not take about the same
. interface il isti i
Each concern is o Extoncive document amount of time to run as my existing z.experlments.
marked to show compatibility 3. I need to be able to run Tracelab on Linux.

I to thi o [B’a‘adc"gﬁdf_””a““/ 4. | need accessibility to benchmarks so | can compare new algorithms and
relevance to 15 road adoption techniques against previous results.

persona. . I need access to datasets with existing trace matrices. \ Persona-related
user stories i.e.

My anti-stories: win scenarios
/ 1. lwon’t use Tracelab if it is buggy and keeps breaking. ‘

o

1

Persona-
related loss-
scenarios

Fig. 1. Light-weight personas used as part of the agile development process to high-
light quality concerns (i.e. Non-functional requirements). Personas are used to drive
architectural design and to evaluate and validate candidate design solutions.

Once ASR-related user stories were identified for each persona in the project,
they were compiled into a project-wide list containing quality concerns from all
the personas, and then summarized in a succinct format as shown in the left
hand side of Figure [[I A simple classification process was then used to mark
each quality concern as high (black), medium (gray), or low (white) importance
to each of the personas.

For example, Fig. [l depicts Tom as a seasoned traceability researcher who
has already established an effective research environment on the Linux/C++
platform. His particular concerns include (1) the ability to create components
in C++ as this is the language of choice in his research group, (2) the need
to run TraceLab on Linux, (3) the need to be able to easily compare results
from existing experiments against benchmarks, (4) the ability to retrieve and
rerun previously conducted experiments, and finally (5) the need for publicly
available data sets. A deeper analysis of his functional requirements leads to the
identification of several quality concerns related to language selection, platform
selection, and ease of sharing experiments and components across research group
boundaries.

3 Architecturally Savvy Personas and SCRUM

ASP-Lite can be used in any development environment; however we describe it
within the context of the SCRUM process framework which was the primary

A Persona-Based Approach for Exploring ASR in Agile Projects 23

project management process adopted in our project [23]. SCRUM is anchored
around the concept of a sprint, which typically represents about 2-4 weeks of
work, and also daily scrum meetings at which team members meet to assess
progress, identify roadblocks, and plan next steps. At the start of each sprint,
a set of features are selected from the prioritized list of features in the prod-
uct backlog and placed into a sprint backlog. Each sprint produces potentially
shippable code. In prior work, Madison [|19] augmented the SCRUM process
by injecting architectural concerns into the backlog so that architectural issues
could be addressed incrementally throughout the development process.

|i| @mﬂ @ © identify preliminary personas
(2]

architectural
components for the team

Backlog tasks
expanded by

Break X

architecture Sprint backlog.

into sprint- @ >
sized

chunks.

D Sprint-sized
architectural chunks
D associated with
specific features.

Elaborate 0
individual Update (6)
personas and personas Evaluate
explore quality solution
concerns with respect
to persona’s
goals.
9 &
Explore architectural Daily scrum
= decisions and trade- meeting
offs
© select features
plus their associated

Construct software, including
architecture, incrementally.

A

Deliver
D Product backlog of potentially
features as prioritized shippable
by customer product.

Fig. 2. Personas capturing role-specific quality concerns are used to augment the basic
SCRUM life-cycle model in agile projects

ASP-Lite also augments the Scrum process in several important ways, de-
picted in the steps of Figure 2l First, ©® a set of personas are identified and @
fleshed out. They are then used to @ drive the architectural design and analysis
process and then ® the produced architecture is broken into sprint-sized chunks
[20]. The product backlog is then populated with both functional features and
architectural elements. ® At the beginning of each sprint, the customer chooses
features to implement, and the developers identify the architectural elements

24 J. Cleland-Huang, A. Czauderna, and E. Keenan

Karly is a new PhD student. She is interested in tracing requirements to
software architecture.

She has contacts with a local company who will allow her to access their data
for her experiments; however this data is proprietary (i.e. protected by a NDA)
and so she cannot share it with anyone else.

She predicts that it will take her about 6 months to set up her traceability
environment, but then she discovers TRACY. Karly is quite a good

Karly . : . .
Age: 26, PhD Student programmer, but is much more interested in the process side of her research.
O Fast trace retrieval: My user stories:
S 'L"a‘f"”" selection: 1. I need to be able to easily combine existing components to create an end-
anguage selection:
O Reliability: to-end tracing environment. The only programming | want to do is GUI
O Extensibility:
O E:;";}C'c'nfponemup,oad programming in order to create new tracing interfaces.
W Ease of installation 2. I need to be able to develop my GUIs in C#
W Highly intuitive interface X) X X
O Extensive document 3. I need the GUIs to display quickly to the user during the experiment.
compatibility . . .
O Data confidentiality 4. | need the installation process to be straight forward.
Broad adoption

Jack is married and has two young children. He has recently been hired by
the TRACY project into the role of Software Architect/Developer. He has 6
years of experience as a software developer and 2 years as a lead architect in
a successful gaming company. He has taken the job on the TRACY project
because he is excited by the challenge of working in a research oriented
project.

Jack 34 Jack is very motivated to build a high quality product. Jack has never worked

Architect in an academic research setting before. He is very collaborative and is looking
O Fast trace retrieval: forward to working with the other developers, academics, and students on
B Platform selection: h .
B Language selection: the proJECt-
O Reliability:)
O Extensibility: My user stories:
D) Fase of component upload 1. | need to develop the Tracelab framework in a language which supports
O Highly intuitive interface rapid prototyping.
O Extensive d t - .
CZ:}ZZL?EH?V“’“E" 2. I need the framework language to easily interface with, and call,
O Data confidentiality components written in other languages.

Broad adoption . .
3. I need the platform to provide natural support for the separation of

model and view components.
4. | need libraries to be available for supporting GUI development.

Fig. 3. Two additional personas identified for the TraceLab project

that are needed to implement them. ® Throughout the sprint, the system under
development is evaluated with respect to the identified personas and when nec-
essary, i.e. if new functionality is introduced, and further clarification is needed,
@ the personas are re-evaluated and modified accordingingly.

4 Persona Creation and Use in the TraceLab Project

We created six personas for the TraceLab project. These included “Tom” previ-
ously presented in Fig. [l and five additional personas discussed below:

e Janet has a PhD in Human Computer Interaction. She is interested in studying
the ways users interact with traceability tools. Her research group develops GUI
prototypes in C#. As Janet does not consider herself a programming whizz,

A Persona-Based Approach for Exploring ASR in Agile Projects 25

she needs to be able to easily replace or modify one or more GUI screens in
an existing tracing workflow so that she can capture user feedback on traces.
Furthermore she is likely to abandon TraceLab if she is not able to download,
install, and use it with minimal effort.

e Karly is a new PhD student. She is interested in tracing requirements to
software architecture. Karly has contacts with a local company who will allow
her to access their data for her experiments; however this data is proprietary (i.e.
protected by a non-disclosure agreement) and so she cannot share it with anyone
else. Maintaining full control and confidentiality over her data is essential, and
so she is only able to use TraceLab if she can keep the data on her own desktop.
Before she discovered TraceLab she had predicted that it would take at least 6
months to set up her traceability environment. Karly is quite a good programmer,
but is much more interested in the process side of her research. Karly is depicted
in Figure[3

e Jack has recently been hired by the TraceLab project into the role of Software
Architect /Developer. He has 6 years of experience as a software developer and 2
years as a lead architect in a successful gaming company. He has taken the job
on the project because he is excited by the challenge of working in a research
oriented project. Jack is very motivated to build a high quality product. It is
critical to Jack that the selected platform and language support rapid prototyp-
ing and that libraries are available for developing GUI elements of the design.
Jack is also depicted in Figure Bl

e Mary is a program director of the funding agency supporting TraceLab. She
wants to see a return-on-investment through broad buy-in of TraceLab from the
traceability community, reduced investment costs for new traceability research,
enabling productivity much earlier in the research cycle, and evidence of broad-
ranging support for the most critical areas of Traceability research.

e Wayne is the technical manager for a large industrial systems engineering
project. He could be described as an early adopter, as he prides himself in keeping
an eye out for good ideas that could help his organization. Wayne is concerned
that current traceability practices in his organization are costly and inefficient.
He has heard about the TraceLab project, and is interested in trying it out, but
is concerned about investing time and effort in what appears to be an academic
project. He has decided to use TraceLab in a small pilot study to see if it can
meet his needs. In particular he needs TraceLab to be installable behind his
firewall, configurable to work with his data, almost entirely bug-free, and to
provide a professional standard GUI that his workers can use intuitively.

While there is no guarantee that these six personas are complete, they represent
a solid starting point for reasoning about the quality concerns of TraceLab’s end
users.

5 From Personas to Architectural Design

An analysis of the personas’ user stories revealed a set of architecturally sig-
nificant requirements (ASRs) and also some potential conflicts. Specific issues

26 J. Cleland-Huang, A. Czauderna, and E. Keenan

Decision: Platform/Language ‘ a

Tom [Janet| Karly | Jack | Mary [Wayne

Pertinent US 1. |The system must run on multiple
user stories: platforms

US 2. |Users must be able to write and
integrate components from multiple [] [] [] []
languages

US 3. |The source language of each
component must be invisible at []
runtime

US 4. |The selected language/platform must
support rapid framework prototyping ®

US 5. |The selected GUI must deliver 'razzle
dazzle'

Architectural [AD 1. [Build framework using Visual Studio.net
Decisions and C#.

AD 2. [Develop the initial Windows-specific
GUlin WPF.

AD 3. |Utilize MVVM (model view view model)
architectural pattern, so that (a) the GUI
View is loosely coupled and can be later| % v v v % 4
implemented using GTK or Windows
Forms and compiled for multiple
platforms, and (b)

the TracelLab engine can be compiled
using Mono for porting to Linux and
Mac environments.

Risks R1. |The Mono library may not support Long running OS project. Initial tests
latest features of C#. Better support |showed adequate support. Mitigate risk
for Linux than Mac. through frequent Mono compiles

throughout the project.
R 2. |Build first for Windows solution may Decision is deferred as to whether the WPF
lead to multiple GUIs to maintain in the|version will be maintained or discarded in

long run. favor of a multi-platform GUI over the long
term.
Personal PI1. |Tom & Mary's needs are partially met through this solution. In the long-term
Impacts researchers will be able to use Tracelab in Linux, but early releases will run on

Windows only.
P12. |All other personas impacted directly by platform/language decisions are positively
impacted by this decision.

Fig. 4. Architecturally significant user stories related to the Platform/Language issue.
Subsequent architectural decisions and their impact upon the personas are shown.

related to platform portability, programming language of the framework and
components, and the plug-and-play ability of TraceLab were identified. In this
section we explore these issues as part of the architectural design process. Our
approach loosely follows SEI’s Attribute Driven Design (ADD) process [5] which
is an incremental scenario-driven approach to design that involves identifying
quality attribute scenarios, and then proposing and evaluating candidate archi-
tectural solutions. ASP-List captures relevant user stories, architectural deci-
sions, specific risks, and the impact of various decisions upon persona roles in an

A Persona-Based Approach for Exploring ASR in Agile Projects 27

WPF Ul Layer TraceLab ULWPF |
,, &]] +ApplicstionViewhodelWrapper
H Views Ul {xaml) - TraceLab ULWPF | | [£ + Component Library View Mods| Wiapper
: - Library Window
' 1| | & +Experiment View
! | TraceLab.uLWPFWorkspacs TraceLab.ULWPF:: TraceLab ULWPF:Experiment TraceLab UL WPF-Other | | e View Model
Window Components Library Window View S e views V| [£ +Experiment View Model

] + Other interactive views

&l +Werkspace View Model Wrapper
&l +Workspace Window

Views Models (WPF) - TraceLab ULVWIPF |

! e e | | TraceLab.ULWFF is the only package that is
! | TraceLab.uL e workspacs TraceLab.ULWPFComponent TraceLab. ULWPF-Experiment e onccic | | | WPF <paifc. Savaral View Noda b nave thae
; B Moce! Whapper ey View: Wodel Wrapper iicw Model s T [| | WPF specific wiappers srcund the sctusl View

| | } 1| | Model ine the TraceLan.Core.

Porting to Linux and

Core View Madels (TraceLab.Core.dll} Mac
B : istensrn To part to Linux and

+ | Tracelab.Core:Workspace Tracelab.Core::Components ' Mac, the WPF Ul Layer
' View Model Library View Model ! will be implemented in

' ' Gt or passibly Windows
- - forms for Linux and Mac

platforms,
Mode!s - (TraceLab_Core.dll)
+ | | The entire coce
1 g] F| 1| |(TreceLa cor ana nen-

Wiorkspace:Workspace TraceLab.Core:Experiment || weE un it e
TrageLab.Core: per ' :
(Shared data repository) o ore: recompiled using MONO:

i oo Component Libragi—, :
i stariose | | componenttiode | | pecisontiose | | 1| |- plstiorm. cpen
: —_— v | [source eT

{from Tracelab.Core) _(from Traceiab Cors) (from Tracelsb. Gore) framework.

Fig. 5. TraceLab high level architectural design using the MV VM architectural pattern.
This architectural diagram captures design decisions related to the platform/language
issues that emerged through analyzing persona needs.

architectural issue template, illustrated in Fig. @l Two examples of architectural
issues are provided in the following discussion.

5.1 Architectural Issue # 1: Platform Language Portability

The personas’ user stories highlighted the need for TraceLab to run on multiple
platforms and to allow components to be developed in a variety of languages and
then incorporated into TraceLab’s plug-and-play environment at runtime. The
following user stories, depicted in Fig. @l were found to be particularly relevant:

1. The system must run on multiple platforms (Tom, Janet, Karly, Mary)

2. Users must be able to integrate components written in a wide variety of
languages (Tom, Janet, Karly, Mary)

3. The source language of each component should be invisible at runtime (Jack)

4. The selected language and platform must support rapid prototyping (Ratio-
nale: As a research project we need the freedom to explore variations and to
backtrack if and when necessary) (Jack)

5. Razzle dazzle (our metaphor for a GUI development environment which
provides a high quality presentation to the user) (Janet,Jack, Wayne)

Team members met over a period of 2-3 weeks to brainstorm potential architec-
tural solutions for addressing these quality concerns. The extended discussion
period was needed to accommodate a series of architectural spikes in which pro-
posed solutions were prototyped and evaluated. Serious consideration was given
to three different framework languages: C++ (as this was the preferred language
of at least one of our developers, Java (which would be intrinsically portable),

28 J. Cleland-Huang, A. Czauderna, and E. Keenan

and C+# (which from the perspective and experience of the overall development
team was the easiest language for development). C++ was discarded due to
the learning curve needed by most of the developers and its anticipated lower
productivity.

A series of architectural spikes were created to test the benefits of using a C#
framework versus a java framework to support the integration of components
from multiple source languages. The results from this phase showed that it was
far simpler to make calls from C# to components written in other languages,
than vice versa, which suggested developing the TraceLab framework in C# and
then later compiling it to Mono so that it could run on other platforms. Future
portability issues were addressed through a series of architectural decisions. For
example, the VisualStudio.net environment provides intrinsic support for the
MVVM (model view view model) architectural pattern and integrates closely
with WPF. WPF supports rapid prototyping of professional GUIs, while the use
of MVVM provides a clear separation between view and model and facilitates
future reimplementation in GTK# or Windows Forms for porting to Linux and
Mac platforms. Our design also separated out the WPF code in the views layer
(which would need to be rewritten for porting purposes) from the non-WPF
code which could be compiled using Mono.

The Architectural Issues Template shown in Fig. [also documents specific
risks and their mitigations. For example, the decision to defer porting to the
Linux/Mac environments is potentially impacted by the ability of Mono to com-
pile framework code correctly. This risk was partially mitigated through testing
Mono on a variety of projects, and through frequent compiles of the growing
TraceLab framework into Mono.

Finally, the proposed architectural decisions were evaluated against the ability
of the delivered architecture to meet each of the persona goals. In this case, four
of the personas would be fully satisfied with the solution, while Tom and Mary
would need to wait until later in the project for the port to Linux and Mac
environments. However, this solution was determined to be an acceptable trade-
off in light of the tight delivery constraints of the project, the need to build rapid
prototypes in order to address the difficulty of potentially changing requirements
in such a novel research instrumentation project, and the ease by which C# code
was able to invoke components written in other languages.

5.2 Architectural Issue #2: Experimental Workflow

A second major architectural decision pertained to the requirements and design
of the TraceLab experiments themselves. These experiments are composed from
a series of pre-defined and/or user defined components, and therefore the Trace-
Lab architecture needs to support communication between components and to
control their execution. Relevant user stories included the following:

1. Experiments that I run using TraceLab must take about the same amount
of time to run as my existing experiments. (Tom, Janet, Karly)

2. The TraceLab environment must incorporate plug-and-play. (Tom, Janet,
Karly, Wayne)

A Persona-Based Approach for Exploring ASR in Agile Projects 29

Decision: Workflow Architecture ‘ a B

Tom [Janet |Karly [Jack |Mary [Wayne

Pertinent US 1.|The TraceLab environment must support plug and play.

N ° ° ° °
user stories:
US 2.|The performance penalty of using TraceLab must be low (i.e |
close to runtime of non-TraceLab experiments). ° ° ° °
US 3.|Components should be reusable across research groups and
] °

experiments.

Architectural JAD 1.|Utilize a blackboard architecture.
Decisions AD 2.|Create standard data types for exchanging data between
components.

AD 3.|Construct the experiment around the concept of a
workflow. % v v v
AD 4.|Support concurrent execution of components.

AD 5.|Trust the Tracelab users to create a viable workflow.
Provide basic type checking only.

Risks R1. [Performance may suffer as data is exchanged between Keep the data cache in the same App space
components via shared memory. as the experiment to avoid excessive data
marshalling . Stream only critical data not
entire data structure class.

R 2. |If Tracelab users proliferate the creation of data types, then|Use community governance to increase the

plug-and-play ability will be lost. likelihood of shared use of data types.
Personal PI 1. |All personas are satisfied with the plug-and-play solution.
Impacts Pl 2. | The performance penalty will be felt more by Tom, as he already has a functioning tracing environment.

For other researchers the benefits of the plug-and-play environment and the use of previously defined
tracing components far outweighs the slight performance penalty.

Fig. 6. A second architecturally significant issue related to the way in which compo-
nents should be built into an experimental workflow

3. Components should be reusable across experiments and research groups.
(Mary, Tom)
4. Components should run concurrently whenever feasible. (Tom)

These user stories and associated architectural decisions are documented in Fig-
ure 6 Three different high-level architectural patterns were considered for con-
necting components in an experiment. A service oriented approach was proposed
by an early consultant to the project based on his industrial experience as a
SOA architect. However, this option was ruled out because we anticipated that
some individual experiments might include over 50 fine-grained components (a
supposition which has since proven to be correct). The overhead of calling so
many services in a SOA environment was deemed to be prohibitively expensive.
The second somewhat intuitive candidate architecture was the pipe-and-filter
architectural pattern [5]. However, while this approach seemed to initially fit the
concept of data flowing through the experiment, an initial analysis demonstrated
that many filters (i.e. components) would in fact be assigned responsibility for
the task of transferring data that they did not actually use. While this problem
could be partially mitigated by having all components accept a composite mes-
sage (containing self-describing datasets), this approach has the known flaw of

30 J. Cleland-Huang, A. Czauderna, and E. Keenan

|
|
} H Runnable Experiment
|
|

g] :
,,,,,,,,,,,,,,,,,,, | 1
T 3

«data bindingsx Execute | .

Execute E:l
gl Run Experiment $] Workflow $:| :I‘ ' User Component 2
1

Experiment View Experiment Executer _©_ Dispatcher

Model

User Component 3

|
I
I 1
M ; :
! A | ———
Adapt : B\ A
Iuﬂu\w
\ Store Load
|
|

Store Load

Add/Creates.
Component

Metadata From
Definition

Componenl@ _©_ Graph Adapter andgl __________ -

Library =~ ~ Validator experiment
" Load workflow
Components. Workspace (Shared data repository)

Fig.7. The Architecture for the TraceLab workflow engine showing the execution
control of components and the exchange of data through the blackboard workspace

creating ambiguous interfaces which cannot be understood without looking at
the inner workings of the code. Furthermore, this approach would pass on the
complexity of handling data typing to the component builders and could result
in relatively large amounts of data being passed from one component to another.
For these reasons, the pipe-and-filter approach was rejected.

The final architectural pattern we considered, and adopted, was the black-
board architecture. In this approach all data is transferred in standard datatypes,
representing domain specific concepts such as trace matrices, artifact collections,
and/or metric containers. Each component retrieves a copy of the data from a
shared memory space (i.e. the blackboard), processes the data, and then returns
the results in standard data formats back to the blackboard for use by other
components. The TraceLab experimental graph represents a precedence graph,
and the blackboard controller is responsible for dispatching components as soon
as their precedence nodes in the graph complete execution. This design sup-
ports parallel computation and therefore also addresses performance concerns.
In fact, once deployed we found that performance was still below expectations,
but were able to modify the data marshaling functions to achieve Tom’s perfor-
mance goals. Some of the architectural decisions that contributed to satisfying
the workflow requirements are shown in Figure [7

6 Effectiveness of Our Approach

The ASR-aware personas we have created, and the supporting process in which
they are deployed, brings several unique contributions to the current state of the
art and practice in handling ASRs in agile projects. First, it has shown how per-
sonas can be used to capture quality concerns from the perspective of different
user groups. Secondly, unlike the previous use of personas which have focused
on interaction design and/or requirements elicitation, our approach is designed
to drive and evaluate architectural design. Third, our approach introduces a
light-weight approach to handling ASRs, which is particularly appropriate in an

A Persona-Based Approach for Exploring ASR in Agile Projects 31

agile development process. Not as time-consuming as existing approaches such
as Win-Win [7], ADD [5], or i* [26] techniques, our use of personas facilitates
a meaningful exploration of the quality concerns of related stakeholder groups.
Finally, the architecture issues template provides a useful means of exploring ar-
chitectural options within the context of persona goals, and then of visualizing
and documenting the extent to which a set of architectural decisions meets the
quality requirements of the system. Like ADD [5], our approach is somewhat
‘greedy’ in nature, as it addresses one set of architectural issues at a time, and
then accepts the constraints of that decision upon future decisions. This greedy
approach is somewhat softened by the ability to backtrack whenever necessary.
This introduces an enormous benefit to the agile process, because it allows back-
tracking to be performed during the design stage instead of relying upon more
expensive backtracking (i.e. refactoring) following deployment.

In comparison to alternate techniques such as Win-Win [7] and i* [26], ASP-
Lite facilitates the careful deliberation of competing quality concerns without
introducing unnecessary upfront modeling activities. Using either win-win or a
modeling approach such as i* would have slowed the project pace in a way that
was unacceptable to the project team. In contrast, ASP-Lite fit seamlessly into
the adopted agile process, and was perceived by all participants to deliver value
to the project.

Formally evaluating a process such as ASP-Lite can be difficult and costly,
and can effectively only be accomplished through examining the impact of the
new process on practice [25]. For example, our approach could be evaluated by
measuring the impact of the process upon the reduction in refactoring costs in a
greenfield or even a long-lived project, and through making statistical compar-
isons between projects that use the approach versus those that do not. However
this is an extensive process which can best be performed once a process is adopted
in an industrial setting.

On the other hand, the purpose of this experience report is to describe a pro-
cess which we found anecdotally to be effective in our own development project.
The architectural decisions in the TraceLab project were made carefully in light
of the persona user stories, and two and a half years into the project, the archi-
tectural decisions have all proven to be basically sound. For example, the decision
to build first for Windows and then later to port to Linux and Mac environments
allowed us to get TraceLab into the hands of our users much faster than would
otherwise have been possible. Furthermore, the architectural decisions that were
made to separate out WPF code are now paying dividends as we have already
compiled TraceLab to run on multiple platforms and are in the process of com-
pleting a new multi-platform GUI in GTK#. Similarly, the decision to adopt
a blackboard architecture has also proven successful, and early adopters have
no problem creating components in multiple languages, integrating them into
TraceLab’s plug-and-play environment, and reusing them across experiments.

To evaluate whether ASP-Lite could be generalized to a broader set of sys-
tems, we also applied it as a reverse-engineering exercise against an enterprise
level Mechatronics traceability project we conducted with a major Systems

32 J. Cleland-Huang, A. Czauderna, and E. Keenan

Engineering Company. Five distinct personas were identified. Related user stories
were written and analyzed which ultimately led to the identification of several
architecturally significant requirements pertinent to the design of the system. In-
terestingly, the ASRs that were identified were significantly different from those
discovered for the TraceLab project and focused more upon access control and
confidentiality of data as well as usability and performance issues, suggesting
that our approach is effective for identifying project-specific quality concerns.
Based on this very initial analysis of our approach across an entirely different
system, we conclude that it is applicable to a range of projects in which quality
concerns need to be explored in a more incremental and agile environment.

7 Conclusions and Future Work

This paper presents an experience report of utilizing architecturally-aware
personas within an agile project environment. As such, it provides a viable
light-weight solution for addressing quality concerns in agile projects and for
potentially reducing the need to refactor later in the project. Based on our ini-
tial experiences with ASP-Lite we are currently developing a tool which will
make the process more accessible to practitioners.

Acknowledgments. This work was supported by National Science Foundation
grants CCF-0959924 and CCF-1265178.

References

1. Abrahamsson, P., Babar, M., Kruchten, P.: Agility and architecture: Can they
coexist? IEEE Software 27(2), 16-22 (2010)
Ambler, S.W.: Agile modeling: A brief overview. In: pUML, pp. 7-11 (2001)

3. Ameller, D., Ayala, C.P., Cabot, J., Franch, X.: How do software architects consider
non-functional requirements: An exploratory study. In: RE, pp. 41-50 (2012)

4. Anton, A.: Goal Identification and Refinement in the Specification of Software-
Based Information Systems. Georgia Institute of Technology, Atlanta (1997)

5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Adison
Wesley (2003)

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)

7. Boehm, B.W., Egyed, A., Port, D., Shah, A., Kwan, J., Madachy, R.J.: A stake-
holder win-win approach to software engineering education. Ann. Software Eng. 6,
295-321 (1998)

8. Bosch, J., Dvorak, D.: Traversing the twin peaks. IEEE Software (2012)

9. Chung, L.: Non-functional Requirements in Software Engineering. Kluwer Aca-
demic Publishers, Norwell (2000)

10. Cohen, M.: Non-functional requirements as user stories. Mountain Goat Software,
mountaingoatsoftware.com

11. Cooper, A.: The inmates are running the asylum. Software-Ergonomie, 17 (1999)

12. Davis, A.: Software Requirements - Objects, Functions, and States. Prentice Hall,
Englewood Cliffs (1993)

o

mountaingoatsoftware.com

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.

25.

26.

A Persona-Based Approach for Exploring ASR in Agile Projects 33

Denne, M., Cleland-Huang, J.: The incremental funding method: Data-driven soft-
ware development. IEEE Software 21(3), 39-47 (2004)

Dotan, A., Maiden, N., Lichtner, V., Germanovich, L.: Designing with only four
people in mind? — a case study of using personas to redesign a work-integrated
learning support system. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L.,
Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727,
pp. 497-509. Springer, Heidelberg (2009)

Jansen, A., Bosch, J.: Software architecture as a set of architectural design de-
cisions. In: Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture, pp. 109-120. IEEE Computer Society Press, Washington, DC (2005)
Kazman, R., Klein, M., Clements, P.: Atam: A method for architecture evaluation.
Software Engineering Institute (2000)

Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J., Shin, Y., Moritz, E.,
Gethers, M., Poshyvanyk, D., Maletic, J.I., Hayes, J.H., Dekhtyar, A., Manukian,
D., Hossein, S., Hearn, D.: Tracelab: An experimental workbench for equipping
researchers to innovate, synthesize, and comparatively evaluate traceability solu-
tions. In: ICSE, pp. 1375-1378 (2012)

Mirakhorli, M., Cleland-Huang, J.: Tracing Non-Functional Requirements. In: Zis-
man, A., Cleland-Huang, J., Gotel, O. (eds.) Software and Systems Traceability.
Springer, Heidelberg (2011)

Madison, J.: Agile architecture interactions. IEEE Software 27(2), 41-48 (2010)
Madison, J.: Agile architecture interactions. IEEE Software 27(2), 41-48 (2010)
Nielsen, L.: Personas - User Focused Design. Human-Computer Interaction Series,
vol. 15. Springer (2013)

Putnam, C., Kolko, B.E., Wood, S.: Communicating about users in ICTD: lever-
aging hci personas. In: ICTD, pp. 338-349 (2012)

Rising, L., Janoff, N.S.: The scrum software development process for small teams.
IEEE Software 17(4), 26-32 (2000)

Robertson, S., Robertson, J.: Mastering the Requirements Process. Adison Wesley
(2006)

Unterkalmsteiner, M., Gorschek, T., Islam, A.K.M.M., Cheng, C.K., Permadi,
R.B., Feldt, R.: Evaluation and measurement of software process improvement - a
systematic literature review. IEEE Trans. Software Eng. 38(2), 398-424 (2012)
Yu, E.S.K.: Social modeling and i*. In: Conceptual Modeling: Foundations and
Applications, pp. 99-121 (2009)

Using Clustering to Improve the Structure
of Natural Language Requirements Documents

Alessio Ferrari!, Stefania Gnesi', and Gabriele Tolomei?

! ISTI-CNR, Pisa, Italy
{alessio.ferrari,stefania.gnesi}@isti.cnr.it
2 DAIS, Universita Ca’ Foscari Venezia, Italy
gabriele.tolomei@unive.it

Abstract. [Context and motivation] System requirements are nor-
mally provided in the form of natural language documents. Such docu-
ments need to be properly structured, in order to ease the overall uptake
of the requirements by the readers of the document. A structure that al-
lows a proper understanding of a requirements document shall satisfy two
main quality attributes: (i) requirements relatedness: each requirement
is conceptually connected with the requirements in the same section; (ii)
sections independence: each section is conceptually separated from the
others. [Question/Problem] Automatically identifying the parts of the
document that lack requirements relatedness and sections independence
may help improve the document structure. [Principal idea/results| To
this end, we define a novel clustering algorithm named Sliding Head-Tail
Component (S-HTC). The algorithm groups together similar require-
ments that are contiguous in the requirements document. We claim that
such algorithm allows discovering the structure of the document in the
way it is perceived by the reader. If the structure originally provided by
the document does not match the structure discovered by the algorithm,
hints are given to identify the parts of the document that lack require-
ments relatedness and sections independence. [Contribution] We eval-
uate the effectiveness of the algorithm with a pilot test on a requirements
standard of the railway domain (583 requirements).

Keywords: Requirements analysis, requirements documents structure,
requirements quality, similarity-based clustering, lexical clustering.

1 Introduction

The quality of a natural language requirements document strongly depends on its
structure [L6JI0]. A proper document structuring enables a better understanding
of the requirements, and eases the modifiability of the overall requirements spec-
ification [20]. Even though many templates and recommendations are available
to guide the structuring of a requirements document [IO/T4Y3], few automatic
approaches exist to evaluate the quality of the document structure after the
document has been written. The current work presents a novel automated anal-
ysis method along this little-explored research path.

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 34-fJ] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Using Clustering to Improve the Structure 35

Several factors affect the structure of a requirements document. The length of
the sections, the number of nested paragraphs in each section, the clarity of the
titles and the number of cross-references are only a limited list of those structural
aspects that can make a requirements document completely clear or completely
unintelligible. In this paper, we focus on two structural quality attributes that
we consider relevant to facilitate the understanding of a requirements document,
namely the requirements relatedness and the sections independence.

A requirements document provides proper requirements relatedness if each
requirement is conceptually connected with the previous and following require-
ments of the same section. Furthermore, a requirements document provides
proper sections independence when each section is conceptually separated from
the others.

In principle, quantitative indexes of the two quality attributes defined above
may be derived from a similarity-based lexical analysis of the document. Require-
ments relatedness could be mapped to an index of cohesion among requirements,
while sections independence could be mapped to an index of separation among
sections [I8]. However, we argue that such indexes might be hardly usable to im-
prove the structure of the document. Indeed, once we know that a requirements
document has a low value of cohesion or separation — even assuming that we are
able to define what is a low/high value for these indexes — we do not have any
guidance to actually enhance the structure of such document.

Therefore, in our approach, we do not associate quantitative indexes to the
quality attributes under analysis. Instead, we define a clustering-based approach
that identifies the structure of the document in the way it might be perceived by
the reader. Intuitively, if a lexical change occurs in the requirements document,
the reader assumes that the discussed concepts are different, and she expects
a new section. The document structure is supposed to reflect such conceptual
changes.

The clustering algorithm employed in our approach, named Sliding Head-Tail
Component (S-HTC), detects the conceptual changes in the requirements, and
identifies the hidden structure of the document in terms of such changes. In the
hidden structure, requirements are grouped according to their lexical relatedness,
and sections are partitioned according to their lexical independence. Therefore,
requirements relatedness and sections independence for the original document
are evaluated in comparison to the hidden structure discovered by the algorithm.
If the structure of the original document does not adhere to the hidden structure,
hints are given to re-arrange the requirements document.

We present the results of a pilot test on the functional requirements docu-
ment of the EIRENE (European Integrated Railway radio Enhanced NEtwork)
system, a digital radio standard for railways [19] (583 requirements in total).

The paper is structured as follows. In Sect. 2] we present the overview of the
method. In Sect. B, we describe the approach in detail. In Sect. @ the pilot test
is discussed. In Sect. Bl we summarize the most relevant related work. In Sect. [
we draw conclusions and we discuss the possible evolution of the approach.

36 A. Ferrari, S. Gnesi, and G. Tolomei

2 Overview of the Method

An overview of the method is presented in Fig[ll The method is based on a
clustering algorithm, named Sliding Head-Tail Component (S-HTC), which is
described in Sect. Bl The input of the algorithm is the ordered list of the re-
quirements (Requirements List) in the Original Document, without any
information about the document structure (i.e., no sections, no indexes).

=

Original
Document Requirements
List Structure
Evaluation

Best
Hidden
Structure
Selection

Clustering

Parameters

Hidden Structure
Candidates —/

Best Hidden
Structure

Original
Document

Fig. 1. Method Overview

The S-HTC algorithm is able to identify possible hidden structures of the
requirements document. A hidden structure is a partitioning of the document
into possible sections of requirements. The partitioning is performed according
to the similarity among neighbouring requirements in the document. The algo-
rithm produces hidden structures where requirements are grouped according to
their lexical relatedness, and sections are partitioned according to their lexical
independence.

The algorithm is executed several times, varying different clustering param-
eters that influence its behaviour. The output of each execution is a Hidden
Structure Candidate. Intuitively, a hidden structure candidate represents the
structure of the document perceived by a possible reader, who reads the doc-
ument without having the original structure information (i.e., the document is
made of a single, long sequence of requirements without sections).

Among the hidden structure candidates, we select the one that more closely
matches the structure originally provided by the document (Best Hidden
Structure Selection). We call this structure candidate the Best Hidden
Structure. Intuitively, the best hidden structure is the structure of the doc-
ument perceived by a reader who is provided with the original structure infor-
mation. The assumption here is that the original structure is reasonable, but
might require some improvements.

Using Clustering to Improve the Structure 37

To this end, we finally observe the differences between the best hidden struc-
ture and the original structure (Structure Evaluation). The detected dif-
ferences allows identifying the defects in the original structure related to: (1)
requirements that are not sufficiently related with the other requirements of the
same section; (2) sections that are not sufficiently independent from the others.

3 Requirements Clustering

The core of our method is the Sliding Head-Tail Component (S-HTC) clustering
algorithm. The algorithm is a variant of the Head-Tail Component (HTC) algo-
rithm defined by the third author for retrieving groups of task-related queries in
Web-search engine query logs [12].

The S-HTC algorithm groups together those requirements that are lexically
related, and that are contiguous in the document. The goal of this clustering
approach is emulating the process of reading a requirements document: if two
contiguous requirements are lexically related, they are likely to speak about the
same content. Therefore, we assume that the reader is likely to interpret them
as part of the same conceptual unit of the document. If there is a change in the
lexical content (i.e., the reader reads a requirement that is not lexically related
to the previous ones), the requirement is likely to speak about other concepts,
and is likely to be part of another conceptual unit.

The S-HTC algorithm is designed to identify such conceptual units. From the
ordered list of requirements in a document, the algorithm derives a sequence of
clusters (i.e., ordered groups of requirements), each one representing a conceptual
unit of the document. We call this sequence of clusters the hidden structure of
the document. More formally, given the list of requirements in a document, i.e.,
D = (Ry, Ra,...,Ry), the hidden structure is a ordered partitioning of D, i.e.,
7(D), into a non-empty disjoint sequence of clusters C? that completely cover
D, namely 7(D) = (C*,C?,...,CI"(D)) 1.

3.1 Requirements Representation

In order for the requirements to be processed by the clustering algorithm, a
proper representation is required that describes the lexical content of the re-
quirement. To this end, we choose a representation of a requirement R; that
takes into account the set of lexical terms, which it is composed of.

In order to focus only on the relevant lexical aspects of a requirement, it is
recommended to remove from its representation all those terms that are common
in the language, which the requirements are written in. These common terms,
such as articles and pronouns, are known as stop-words.

Furthermore, it is useful to reduce the remaining terms to their morphological
root (e.g., the terms “equipment” and “equipped” are both reduced to “equip”).
This procedure is called stemming.

! Tt should be |7(D)| <« m in order for the partitioning to be effective.

38 A. Ferrari, S. Gnesi, and G. Tolomei

More formally, let T = {t1,ta,...,t,} be the set of unique terms in D, i.e.,
the vocabulary of terms. Therefore, R; may be represented as a subset of distinct
terms, i.e., Rj CT.Let T =T\ S, where S is the set of stop-words. Moreover,
let M be the set morphological roots, and let ¢ : T — M be the stemming
function that maps each term into its morphological root. Therefore, R; may be
represented as a set of distinct morphological roots of those terms that are not
stop-words, i.e., R} = {¢(t;) | t; € R;NT}.

Consider, for example, the requirement 5.4.6 extracted from the EIRENE
dataset [19]: R = “The driver shall be able to adjust the contrast of the display”.
Tts lexical representation is the set R’ = {driv, abl, adjust, contrast, display}.

3.2 Similarity Metrics

In order to establish the degree of relationship among requirements, the cluster-
ing algorithm requires the definition of a similarity metric. Since requirements
are natural language sentences, typical string similarity metrics can be used to
establish the degree of relationship between pairs of requirements [IJ.

If we consider the lexical representation described in Sect. B an immediate
way to compute the text similarity between two requirements R;, R; is to con-
sider their corresponding term-set representations, i.e., R, and R;», respectively.
An interesting measure is given by the Jaccard indez, also known as Jaccard
similarity metric, which is defined as follows:

_ RN R

JjaC(Ri’Rj) - |R/ UR/|
? J

(1)

This similarity metric measures the proportion of terms that two text strings
have in common. It assumes that the greater is the number of shared terms the
higher is the chance of the two strings to be similar.

Another popular lexical-based similarity metric is the edit distance, which
counts the number of edit operations required to transform one text string into
another. There are several different ways to define an edit distance, depending on
which edit operations are allowed, e.g., replace, delete, insert, transpose, etc. In
this work, we resort to using one of the most common metric for measuring the
edit distance between two strings, namely the Levenshtein distance [11], which
we properly transform in a similarity metric oy, normalized between 0 and 1.
The Levenshtein distance allows capturing the character-level similarity among
the sentences, while the Jaccard metric captures the term-level similarity.

Finally, we consider another similarity metric, which is obtained by a convex
combination between 0, and e, as follows:

Ojac—lev (Ru R]) =a- Ujac(Ria R]) + ﬁ * Olev (Riv RJ) (2)

In our experiments, which are described in Section E] we set o = 8 = 0.5. This
choice equally balances the impact of the two metrics, namely o;q.(R;, R;) and
Olev(Ri, Rj), in the computation of the final measure.

Using Clustering to Improve the Structure 39

3.3 S-HTC Clustering Algorithm

The S-HTC algorithm comprises two steps. In the first step a preliminary list
of clusters is built. In the second step, similar clusters are merged to create the
hidden structure.

First Step: Preliminary List of Clusters. The first step aims at creating an
approximate fine-grained clustering of the given requirement document D, rep-
resented as a sequence, i.e., D = (R1, Ro, ..., R,,). SSHTC exploits the sequen-
tiality of contract-style requirement lists, and tries to detect sequential clusters
of requirements, denoted with C, namely groups of requirements that occur in a
row in the document. Each requirement in the same sequential cluster is similar
enough to the immediate next one. The behaviour of the algorithm relies on a
threshold parameter 7, which defines how much similar two requirements are
supposed to be, in order to be placed in the same cluster.

Each requirement is compared to the following one through a similarity func-
tion o : D x D +— [0, 1]. The similarity function can be computed in terms of
Ojacy Olev, O Ojac—lev-

The first preliminary cluster C! is initialized with the requirement R;. If
o(R1,R2) > 7, Ry is added to the C! cluster. Otherwise, a new cluster C?
is created, and Ry is added to this cluster. Then, Ry is compared with Rs. If
o0(R2, R3) > 7, Rs is added to the cluster where Ry resides, otherwise a new clus-
ter is created. The algorithm iterates this procedure until no more requirements
are left.

At the end of the first step we have a sequence of preliminary clusters, namely

#D) = (CL... 1D,

Second Step: Hidden Structure. In this step we build the possible conceptual
units of the document as they might be perceived by the reader, i.e., we identify
a possible hidden structure of the document. To this end, we merge together
related preliminary clusters.

The rationale of this step is as follows. In a requirements document, we might
have a requirement that, though not being similar to the exact previous one, is
similar to one of the requirements occurring slightly before in the document. For
example, take the case of the three following requirements for a generic radio
communication system for trains (adtapted from [19]):

— Ry : If the driver receives an incoming call, the system shall enable the loudspeaker.

— Ry : If the driver receives an incoming call, the system shall visualize the identity
of the caller through the driver visual interface.

— Rs3 : If the loudspeaker is enabled, an audible indication shall be provided to the
driver.

A reader would naturally interpret these requirements as part of the same con-
ceptual unit. We notice that R; and Rp are lexically similar. Hence, after the
first step of the algorithm, we expect to have a cluster C' = (R;, Rz). On the

40 A. Ferrari, S. Gnesi, and G. Tolomei

other hand, Ry is not lexically similar to R3. Therefore, we would have a sepa-
rate cluster for Rs, i.e., a cluster C? = (R3). Nevertheless, we notice that Rs is
similar to Ry, and it is natural to interpret R3 in relation to R;. Therefore, in the
final hidden structure we want a cluster to include all the three requirements.

The second step of the algorithm aims at systematically resolving situations
such as the one described above. To this end, clusters are merged if the last
requirements of a cluster (tail) are sufficiently similar to the first requirements
(head) of a following cluster.

More formally, given a window size parameter w € N, we define the head of a
cluster as the set of its first w requirements, while we define the tail of a cluster
as the set of its last w requirements. If a preliminary cluster C' is composed by
|C| requirements Ry . .- Ry, its head is: h(C)={R; € C:0<i<w}, while
its tail is: t(C) = {R; € C: 0 < |C| —w < i < |C] — 1}.

The comparison among two preliminary clusters C?, C7 (with i < j) is per-
formed considering the tail of C* and the head of C7 according to the following
similarity function:

s(C',C9) = max o(R,R").
R/€{t(C1)}
R7e{h(C9)}
Again, 0 may be computed in terms of dj4c, Olev, OF Tjac—icv-

In order to merge preliminary clusters, we compare head and tail of each
cluster C with the following ones, from C*! to Ct!. The parameter | defines
how many subsequent clusters shall be compared with C. We call this parameter
lookahead. Clusters are merged if their similarity is higher than the previously
defined threshold 7 (i.e., if s(C?, C9) > 7).

The goal of this comparison with the [clusters that follow C? — and not
solely with C*t! — is to isolate requirements, or group of requirements, that
are not sufficiently related with the neighbouring ones. Consider for example
the following requirement, R,, : “The system shall support recovery from loss of
communication”.

Let us now consider again the requirements R;, Rz, R3. If we have an original
requirement document such as D = (Ri, Rs, Ry, R3), requirement R, might
look misplaced. Indeed, it is related to the recovery part of the system, while the
other requirements are speaking about procedural aspects. Therefore, we would
like the hidden structure to include a (Ry, Rz, R3) cluster, and isolate R, in a
separate cluster. This goal is addressed by comparing the cluster C* = (R1, R2)
with both the cluster C? = (R,,) and C® = (R3). Since C" is similar to C, these
will be merged, and C? = (R,) will appear as an isolate cluster.

Summarizing, the final hidden structure 7(D) is computed as follows. The
first cluster C! is initialized with the first preliminary cluster C'. Then, C!
is compared with with any other following preliminary cluster C7, with j =
2...1+ 1, by computing the similarity s(C’l,é'j). If S(Cl,éj) > 7, then CV is
merged into C', the head and tail requirements of C'! are updated consequently,
and C7 is removed from the set of preliminary clusters. The algorithm continues
comparing the new cluster C! with the remaining preliminary clusters until

Using Clustering to Improve the Structure 41

j = 1+ 1. When all the remaining preliminary clusters within the lookahead
interval have been considered, the oldest preliminary cluster available is used
to build a new cluster C2. The algorithm iterates this procedure until no more
preliminary clusters are left.

The final output of the algorithm is the sequence of clusters that represents
the hidden structure, namely 7(D) = (C*...CIm(P)y,

3.4 Best Hidden Structure

The output of the algorithm depends on the similarity function o adopted, and
on three parameters, namely, the similarity threshold 7, the window size w, and
the lookahead [. By executing the algorithm with different similarity functions
and different combinations of values for the parameters, different hidden struc-
tures are generated. We call these structures hidden structure candidates. These
structures represent possible partitioning of the document perceived by a reader
who reads the document without having the original structure information. In-
tuitively, the variation of the parameters allows the identification of possible
variants in the interpretation of the document structure.

Given the hidden structure candidates, we select the one that more closely
matches the structure originally provided by the document. We call this candi-
date the best hidden structure. In our view, the best hidden structure represents
the structure that is the closest to the conceptual partitioning that might be
perceived by a reader who is provided with the original structure information.
The reasonable assumption here is that the original structure is not completely
flawed, but has been defined with the purpose of providing a useful guidance for
the reader.

The comparison among the hidden structure candidates and the original struc-
ture is performed according to the three following indexes: (1) number of clus-
ters, (2) average number of requirements per cluster, and (3) standard deviation
of the number of requirements per cluster. This last index is useful to discard
hidden structures that, for example, have regular clusters, while in the original
document the sections largely vary in length.

The hidden structure candidate that more closely matches the original struc-
ture according to these indexes is chosen as the best hidden structure.

Finally, the best hidden structure is analysed and compared with the original
structure by a human operator to assess the differences, and identify parts of the
document that lack requirements relatedness, and sections independence. Possible
cases are the following:

— If there is a section in the document that includes several lexically inde-
pendent sub-parts (i.e., a section corresponds different clusters of the best
hidden structure), there is probably a lack of section independence. Such
section should be probably partitioned into more sections.

— If two separate sections of the document are lexically related (i.e., the sections
appears in a single cluster of the best hidden structure), there is too much
dependency among sections. It should be probably preferable to merge the
two sections into a single one.

42 A. Ferrari, S. Gnesi, and G. Tolomei

— If some requirements are not lexically related to the neighbouring require-
ments, like in the case of R, of the example in Sect. 3.3} there is likely to
be a lack of requirements relatedness. The requirement should be placed in
another section.

4 Pilot Test: EIRENE

We evaluate the effectiveness of our proposed method on a publicly available
requirements document of the railway domain, namely the UIC EIRENE Func-
tional Requirements Specification version 7 [19], issued in 2006. The require-
ments specified by the document refer to the EIRENE (European Integrated
Railway radio Enhanced NEtwork) system, which is the digital radio standard
for the European railways. The standard gives prescriptions concerning the net-
work services that are required to support communications that involve trains,
stations and railway personnel. Furthermore, requirements are given also con-
cerning the interface of the system with the driver of the train.

The document comprises 583 requirements partitioned into 14 sections. The
introductory section of the document is not considered in our dataset. Other
relevant statistics on the document content are reported in Table [Il

Table 1. The EIRENE dataset

Requirements
Number of requirements 583
Total number of distinct terms (stemmed and without stop-words) 879
Average number of terms per requirement 16
Standard deviation of the number of terms per requirement 14
Sections
Number of sections 14
Average number of requirements per section 42
Standard deviation of the number of requirements per section 46

The document has been processed through the S-HTC algorithm to produce
the hidden structure candidates. Each run of the algorithm, and therefore each
produced candidate, depends on the similarity metric adopted, and on the spe-
cific values of 7, w and [l. The similarity metrics are the 0j4c, Tlev and 0joc—ico-
Different combination of values of the parameters 7, w, and [have been used.
In particular, the threshold 7 varies between 0 and 1, with increasing steps of
0.1. For each value of 7, we vary both w and I. The window size is w € {1, 2},
which implies that we consider the head/tail of a preliminary cluster as a single
requirement, or two requirements. The lookahead is [€ {1,2,3}. Therefore, at
most three preliminary clusters are compared each time with the current cluster,
to evaluate possible merge operations in the second step of the S-HTC algorithm.
In the context of the document under analysis, we considered that a maximum
lookahead of three was sufficient to isolate misplaced requirements according to

Using Clustering to Improve the Structure 43

the rationale discussed in Sect. Larger ranges could be used to properly
discover misplaced requirements in documents with different writing styles.

Considering all the combinations of the parameters for each one of the sim-
ilarity metric, we derive 198 hidden structure candidates in total (66 for each
similarity metric). Fig. [gives a comparative view of the number of clusters
produced with the different similarity metrics. In the z axis we order the hidden
structure candidates considering increasing values of 7, and increasing variation
of w and ! within their ranges.

600

500

N
o
S

300

Number of Clusters

N
o
[=]

l)
]]
|7
1 N
N
DS N

0 NS .

0 10 20 30 40 50 60 70
Hidden Structure Candidate

Fig. 2. Number of clusters for each hidden structure candidate

Hidden Structure Candidates. We notice that, regardless of the similarity metric
considered, the number of clusters of the hidden structure candidates rapidly
increases towards values that are not comparable with the number of sections of
the original document. Indeed, already with 7 = 0.3 (hidden structure candidates
from 18 to 23, according to the numbering of the x axis), the minimum number
of clusters is 145, obtained for o = 0yey, 7= 0.3, w = 1,1 = 3.

We also notice that, for values of 7 < 0.3, the number of clusters produced
with the 0j4. similarity metric is always higher than the number of clusters
produced with 0j¢, and 0jgc—iey- In particular, the minimum number of clusters
produced with o, is 28 (obtained for 7 = 0.1, w = 2,] = 3), exactly twice the
number of sections in the original document?. Therefore, we argue that the oj4

2 We do not consider the cases when 7 = 0, for which the algorithm produces always
one cluster, regardless of the similarity metric employed.

44 A. Ferrari, S. Gnesi, and G. Tolomei

similarity metric is basically not representative in the context of the requirements
document under analysis.

According to these observations, the only candidates that can be reason-
ably evaluated to select the best hidden structure are those generated with
0 € {0ievs Tjac—iev }, and 7 € [0,0.2]. Fig Bl reports an excerpt of the previous
plot, centred on these hidden structure candidates.

701
T Ol

" L
3 60| - - O jac—lev
2 50
8 a0tk 7=0 7=0.1
et Best Hidden
£ 30r A Structure
£ 20 3R
P2 R

10 ;

0 / Y L - L L
0 2 4 6 8 10 12 14 16 18

Hidden Structure Candidate
Fig. 3. Number of clusters produced when 7 € [0, 0.2]
Best Hidden Structure. The best hidden structure, highlighted in Fig[3 is found
for 0jac—tev, T = 0.1, w = 1 and [= 2. In Table [2] we list the best candidates,

together with the values for the indexes that have been used to select the best
hidden structure (highlighted in bold).

Table 2. Best hidden structure candidates

o T w l Clusters Average Std Deviation
Ojac—lev 0.1 1 2 14 42 35
Olew 0.1 2 1 12 49 58
Tjac—lev 0.1 2 1 18 32 47
Tlev 0.1 1 1 18 32 37
Expected 14 42 46

In the last row of the table we recall the expected values for such indexes,
namely the number of sections of the original document, and the average and
standard deviation of the number of requirements per section. More accurate ap-
proaches for the evaluation of clusterings could be employed (see, for instance,
the similarity-oriented measures of cluster validity in [18]). However, in the pre-
sented experiment, the indexes adopted resulted sufficient to identify the best
hidden structure.

We evaluate the original structure of the document and we compare it with
the best hidden structure selected. Furthermore, we consider the most recent
version of the requirements document (version 7.3, issued in 2012). The updates
found in such document are used to give hints to evaluate the effectiveness of
the approach.

Using Clustering to Improve the Structure 45

Table 3. Comparison among the original structure and the best hidden structure

Section Title Cluster

2 Network Requirements ct

3 Network Configuration c?

4 Mobile equipment core specification C?

5 Cab radio c3,ct, e’

6 General purpose radio cs,c”

7 Operational radio c®

8 Controller equipment specifications C°

9 Numbering plan c®

10 Subscriber management cto
Functional numbering and location

11 dependent addressing cto

12 Text messaging ctt

13 Railway emergency calls ctt

14 Shunting mode ctt

15 Direct mode ct?

- - Cl3 Cl4

Table [l compares the section of the original document with the clusters of
the best hidden structure. In general, we observe that clusters in the hidden
structure can be mapped to corresponding sections, or groups of sections. The
two clusters that cannot be mapped (C? and C'#) include requirements that are
deleted from the specification, and which, in the original document, are formed
solely by the term “deleted”. These are basically clusters of noisy items.

Let us give a closer look to Table Bl The first section after the introduc-
tion, named “Network Requirements”, has a corresponding cluster in the hidden
structure that includes all its requirements. We conclude that such section is suf-
ficiently independent from the others. The same observation holds for sections
7 and 15, named “Operational Radio” and “Direct Mode”, respectively.

Different conclusion can be drawn from the evaluation of the other clusters.
Most of the requirements of Sections 3 (“Network Configuration”) and 4 (“Mo-
bile equipment core specification”) are included in the same cluster. Looking at
the content, we see that the reason why the two sections are merged into the
same cluster are the last requirements of section 3, namely requirements 3.5.7
and 3.5.8. The requirements are as follows:

— 3.5.7: Cab Radios configured for reception of a call to all drivers in the same area
entering an area where a call to all drivers in the same area is ongoing shall
automatically join this call unless involved in a higher priority call or involved
in a call of the same priority.

— 3.5.8: Requirement 3.5.7 needs further technical specification changes before field
implementation can be achieved.

The first requirement is evidently unreadable, and, most of all, anticipates some
content discussed in section 4. This is the reason why the two sections appear in
the same cluster, and it is an evident lack of sections independence. Instead, the
second requirement is included in another cluster, since it is not lexically related
with the previous one. The relation with the previous requirement is given by

46 A. Ferrari, S. Gnesi, and G. Tolomei

the cross-reference, and our algorithm is not thought to deal with such semantic
issues.

It is worth noticing that, in the most recent version of the specification, both
the requirements have been deleted.

Section 5, named “Cab Radio”, is partitioned into 3 different clusters, which
is an indicator of a lack of section independence. This section is the longest of the
document (188 requirements in total, 32% of the entire document), and could
be rearranged into smaller sections. In particular, there are requirements that
are contiguous in the document, but that are not strictly related (i.e., there is a
lack of requirements relatedness). Consider the following requirements:

5.4.3: All call related functions shall be possible with the handset on or off the hook.
— 5.4.4: Note: there is no requirement for hands free operation.

5.4.5: The driver shall be able to adjust the brightness of buttons, indicator lights
and displays according to the ambient lighting in the cab.

5.4.6: The driver shall be able to adjust the contrast of the display.

In the best hidden structure, requirements 5.4.5 and 5.4.6, which concern the
interface of the system with the driver of the train, are not clustered with re-
quirements 5.4.3 and 5.4.4. Instead, they are clustered with other requirements
that give prescriptions concerning the system-driver interface (5.2.3.18-19). The
re-arrangement suggested by the best hidden structure is as follows:

— 5.2.3.18 It shall be possible for the driver to increase and decrease the loudspeaker
volume within the adjustment range selected.

— 5.2.3.19: When the handset is picked up, the loudspeaker shall continue to operate,
but at a reduced volume level.

— 5.4.5: The driver shall be able to adjust the brightness of buttons, indicator lights
and displays according to the ambient lighting in the cab.

— 5.4.6: The driver shall be able to adjust the contrast of the display.

The best hidden structure suggests to group together requirements related to the
audio interface with those related to the visual interface, which is a reasonable so-
lution. Furthermore, we notice that requirement 5.4.4, which is evidently vague,
has been largely modified in the most recent version of the document. We argue
that such modification is an indicator that the part of the document considered
lacked proper requirements relatedness, as pointed out by our algorithm.

Similar observations can be drawn from the analysis of the rest of the best
hidden structure. We find that section 6 is partitioned into two clusters, revealing
a lack of sections independence. Furthermore, the other remaining sections tend
to be grouped together. In particular, we find three clusters that group sections
8-9, 10-11, and 12-13-14, respectively. This is a witness of dependency among
sections. However, we have noticed that such dependency is not actually evident
while reading the sections grouped in the same clusters. In these cases, the
section partitioning given by the original document is probably preferable to the
one suggested by the best hidden structure.

Using Clustering to Improve the Structure 47

5 Related Work

The structure of the requirements document is considered as a central element to
evaluate the quality of a requirements specification [20/2/8]. Several international
standards provide templates to enforce a proper structuring of the requirements.
The main reference in software engineering is the IEEE Standard 830-1998 [10],
which defines eight possible templates, each one focused on a different approach
for organizing the document (e.g., by functional hierarchy, by feature, etc.). Each
template lists the sections and the content that a software requirements speci-
fication is supposed to provide. A similar approach is adopted in the MIL 498
standard [I4], where the template is tailored for requirements document of the
defense sector. In the railway domain, the CENELEC EN 50128 standard [3]
does not provide a specific template. Instead, guidelines are given to provide a
proper structuring of the requirements document. In this case, companies nor-
mally provide internal templates that are used across different projects.

Several studies exist that are focused on the automatic analysis of the struc-
ture of a generic natural language document. Mao et al. [I3] provides a com-
prehensive survey of the different approaches available in the literature. Most of
the works rely on a set of rules or templates that enable the automatic identifi-
cation of the different logical parts of the document, such as titles, abstract and
sections. To our knowledge, the only work on automatic structure analysis that
is specifically concerned with requirements documents has been recently pro-
posed by Rauf et al. [I7]. In that paper, a framework is presented to retrieve the
logical structure of requirements documents. The logical structure items (e.g.,
functional requirements or use cases) that the framework is supposed to identify
are defined in the form of templates. The framework retrieves instances of such
items from the document according to the templates.

Compared to the other works, the main novelty of the current paper is the auto-
matic evaluation of the structure of a requirements document without a reference
template. On the other hand, the technologies that we have employed, in particular
the text similarity metrics, have been widely used in natural language requirements
analysis. Such related works use technologies similar to ours to achieve different
goals. Besides our previous contribution [7], where a clustering-based approach is
used to identify requirements flaws, it is worth citing the comprehensive study of
Falessi et al. [6]. Here, the authors experiment different similarity metrics to identify
equivalent requirements. Other relevant contribution are those of Natt och Dag et
al. [B], focused on the identification of conceptual links between newly-arrived and
previously stored customer requirements, and Park et al. [I5], where text similarity
metrics are employed to support the requirements analyst in finding inconsistencies
between high-level and low-level requirements.

Textual similarity analysis has been widely used also for automated require-
ments tracing. The main reference works have been published, among others, by
Hayes (see, e.g., [9]) and Cleland-Huang (see, e.g., [4]). However, in the trace-
ability domain, the majority of the works employs information retrieval and
statistical machine learning methods, while, in our work, a clustering-based ap-
proach is adopted.

48 A. Ferrari, S. Gnesi, and G. Tolomei

6 Conclusions

In this paper, a clustering-based approach to evaluate the structure of a natural
language requirements document is presented. We focus on the identification
of those parts of the document that lack proper requirements relatedness and
proper sections independence. The approach identifies the hidden structure of
the document (i.e., the structure possibly perceived by the reader) and compares
it with the original document structure to assess inconsistencies.

The method has been employed to evaluate a requirements document stan-
dard of the railway domain. To fully evaluate the approach, further experiments
on other documents, and with the support of domain experts, are required. Nev-
ertheless, our pilot study has shown that the proposed algorithm is effective in
identifying parts of the documents with poor structuring, sections that shall be
re-arranged, and requirements that are misplaced.

On the other hand, the algorithm behaviour shall be tuned to better deal
with issues related to sections dependency. We have seen that, in some cases, the
algorithm reveals dependency among sections that, from a reader’s perspective,
are not actual conceptual dependencies. We argue that taking into account also
semantic aspects when performing requirements clustering might resolve these
situations. To this end, we plan to explore latent semantic analysis and term
frequency analysis approaches, as well as exploiting external knowledge sources
(e.g., Word—NetE, Wikipediaﬁ) for capturing the semantic relatedness between
requirement pairs.

References

1. Achananuparp, P., Hu, X., Shen, X.: The evaluation of sentence similarity mea-
sures. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182,
pp. 305-316. Springer, Heidelberg (2008)

2. Berry, D.M., Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G.: A new quality
model for natural language requirements specifications. In: Proc. of REFSQ 2006,
pp. 115-128 (2006)

3. CENELEC: EN 50128, Railway applications - Communications, signalling and pro-
cessing systems - Software for railway control and protection systems (2011)

4. Cleland-Huang, J., Czauderna, A., Gibiec, M., Emenecker, J.: A machine learning
approach for tracing regulatory codes to product specific requirements. In: Proc.
of ICSE 2010, vol. 1, pp. 155-164. ACM, New York (2010)

5. Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.: A linguistic-engineering
approach to large-scale requirements management. IEEE Software 22, 32-39 (2005)

6. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case
study in retrieving equivalent requirements via natural language processing tech-
niques. IEEE Transactions on Software Engineering PP(99) (2011)

7. Ferrari, A., Gnesi, S., Tolomei, G.: A clustering-based approach for discovering
flaws in requirements specifications. In: Proceedings of ACM SAC 2012, pp. 1043—
1050 (2012)

3 http://wordnet.princeton.edu/
4 http://www.wikipedia.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Using Clustering to Improve the Structure 49

Gervasi, V., Nuseibeh, B.: Lightweight validation of natural language requirements.
Software: Practice and Experience 32(2), 113-133 (2002)

Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation
for requirements tracing: The study of methods. IEEE Trans. Software Eng. 32(1),
4-19 (2006)

IEEE: Std 830-1998 - Recommended Practice for Software Requirements Specifi-
cations (1998)

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707-710 (1966)

Lucchese, C., Orlando, S., Perego, R., Silvestri, F., Tolomei, G.: Identifying task-
based sessions in search engine query logs. In: Proc. of WSDM 2011, pp. 277-286.
ACM, New York City (2011)

Mao, S., Rosenfeld, A., Kanungo, T.: Document structure analysis algorithms: a
literature survey. In: Proc. of DRR 2003, pp. 197-207 (2003)

MIL: Std 498 - Software Development and Documentation (1994)

Park, S., Kim, H., Ko, Y., Seo, J.: Implementation of an efficient requirements-
analysis supporting system using similarity measure techniques. IST 42, 429-438
(2000)

Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer (2010)

Rauf, R., Antkiewicz, M., Czarnecki, K.: Logical structure extraction from software
requirements documents. In: Proc. of IEEE RE 2011, pp. 101-110. IEEE Computer
Society, Washington, DC (2011)

Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley,
Boston (2005)

UIC - International Union of Railways: EIRENE Functional Requirements Speci-
fication v.7 (2006), http://www.uic.org/IMG/pdf/EIRENE_FRS_v7.pdf

Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement
specifications. In: Proc. of ICSE 1997, pp. 161-171. ACM Press, New York (1997)

http://www.uic.org/IMG/pdf/EIRENE_FRS_v7.pdf

Automatic Requirement Categorization of Large
Natural Language Specifications
at Mercedes-Benz for Review Improvements

Daniel Ott

Research and Development
Daimler AG
P.O. Box 2360, 89013 Ulm, Germany
daniel.ott@daimler.com

Abstract. Context and motivation: Today’s industry specifications,
in particular those of the automotive industry, are complex and volumi-
nous. At Mercedes-Benz, a specification and its referenced documents
often sums up to 3,000 pages. Question/problem: A common way to
ensure the quality in such natural language specifications is technical
review. Given such large specifications, reviewers have major problems
in finding defects, especially consistency or completeness defects, be-
tween requirements with related information, spread over the various
documents. Principal ideas/results: In this paper, we investigate two
specifications from Mercedes-Benz, whether requirements with related
information spread over many sections of many documents can be auto-
matically classified and extracted using text classification algorithms to
support reviewers with their work. We further research enhancements to
improve these classifiers. The results of this work demonstrate that an
automatic classification of requirements for multiple aspects is feasible
with high accuracy. Contribution: In this paper, we show how an au-
tomatic classification of requirements can be used to improve the review
process. We discuss the limitations and potentials of using this approach.

Keywords: experimental software engineering, review, topic, topic land-
scape, classified requirements, inspection.

1 Introduction

Today, requirements of industry specifications need to be categorized based upon
their aspects and stakeholder intent for many reasons.

Song and Hwong [6] state, for example, the need of a categorization of require-
ments for the following purposes: The need to identify requirements of different
kinds (e.g. technical requirements), to have specific guidelines for developing
and analyzing these requirement types. Especially, the identification of non-
functional requirements is important for architectural decisions and to identify
the needed equipment, its quantity and permitted suppliers. Another reason is
the identification of dependencies among requirements, especially to detect risks
and for scheduling needs during the project.

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 50-B4] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Automatic Categorization of Large NL Requirements Specifications 51

Knauss et al.[2] also report the importance for many specifications nowadays,
to classify the security-related requirements early in the project, to prevent sub-
stantial security problems later.

In addition to the above reasons, we at Mercedes-Benz are most interested
in the aspect of categorizing requirements containing related information to im-
prove our review activities in detecting consistency and completeness defects.
Current specifications at Mercedes-Benz, and their referenced supplementary
specifications, often have more than 3,000 pages [I]. Supplementary specifica-
tions can be, for example, internal or external standards. A typical specification
at Mercedes-Benz is written in natural language (NL) and refers to 30-300 of
these documents [1]. The information related to one requirement can be spread
across many documents. This makes it difficult or nearly impossible for a reviewer
to find consistency and completeness defects in the specification and between the
specification and referenced supplementary specifications, as reported in a recent
analysis of the defect distribution in current Mercedes-Benz specifications [4].

Considering the huge amount of requirements, it is obvious that the identifica-
tion of topics and the classification of requirements to these topics must be done
automatically to be of practical use. In this paper, we present a tool-supported
approach to automatically classify and extract requirements with related infor-
mation and to visualize the resulting requirement classes. The categorization is
done by applying text classification algorithms like Multinomial Naive Bayes or
Support Vector Machines, which use experience from previously classified re-
quirement documents. We later evaluate this approach using two German spec-
ifications of Mercedes-Benz and investigate how the results of the classifiers can
be improved with enhancements (for example pre-processing).

Section [2] provides an overview of the approach of collecting requirements
of related information into classes, we call this concept “topic landscape”. We
also present the tool ReCaRe (Review with Categorized Requirements), which
realizes the topic landscape, and its concepts e.g. the classification algorithms.
Section [3] presents the results of the evaluation of ReCaRe on the Mercedes-Benz
specifications. These results are discussed in Section @l In Section Bl we discuss
related work and finally, in Section [flwe conclude with a summary of the contents
of this work and describe our planned next steps.

2 The Topic Landscape Approach

The topic landscape aims at supporting the review process by classifying the
requirements of the inspected specification and its additional documents into
topics. A topic is defined by one or more key words. For instance, the topic
“temperature” is defined by key words like “hot”, “cold”, “heat”, “°C”, “Kelvin”
or the word “temperature” itself.

All requirements classified in a particular topic can be grouped for a spe-
cific review session. Due to this separation of the specification and its additional
documents into smaller parts with content related requirements, a human in-
spector can more easily check these requirements for content quality criteria like
consistency or completeness, without searching every single relevant document.

52 D. Ott

Requirements Additional
Specification Documents

Constraints /

Requirements Requirements

=
N

Topic Land
opic Landscape [Temperature]l [Test]|[Voltage] 3

e |

e ;
Cret] | For Review

Il

Fig. 1. Illustration of the Topic Landscape

Figure [l illustrates the individual steps in order to use the topic landscape:

1. The user/author creates the topic landscape as a container of relevant top-
ics for this particular specification. Each topic is described by one or more
keywords.

2. Each requirement of the specification and the requirements/constraints of
the additional documents are classified into individual topics.

3. The inspector chooses one topic from the topic landscape and checks all
requirements assigned to the chosen topic for defects.

In this work, we research the performance of classifiers to automatically perform
Step 2. Step 1 could also be performed semi-automatically by a sophisticated
algorithm, but this remains future work.

The content of a topic may not be considered disjoint from other topics since
a requirement normally includes information on different topics and thus will be
assigned to several of them. For instance, the requirement “The vehicle doors
must be unlocked when the accident detection system is not available.” highlights
many topics including, but not limited to, accident detection, accident, detection,
availability, locking, vehicle door, door, security, door control, and functionality.

2.1 ReCaRe

The tool ReCaRe (Review with Categorized Requirements) is the realization of
the topic landscape. ReCaRe was implemented by the author based on eclips
with a data connection to IBM Rational DOORSA, because most of the require-
ment specifications at Mercedes Benz are stored there. Since ReCaRe is still

b . eclipse.org
2 yww.ibm.com/software/awdtools/doors/

Automatic Categorization of Large NL Requirements Specifications 53

a prototype, we focused it on the basic use case of classifying text. Currently,
ReCaRe cannot extract information from figures or tables. Our Mercedes-Benz
specifications contain some requirements, which only consist of figures or tables,
so these requirements cannot be classified correctly with the current version of
ReCaRe.

Figure Plshows the individual processing steps of ReCaRe. The pre-processing
and classification steps should be read as parallel alternatives and we will inves-
tigate in later sections, which combination returns the best results.

post-processing

re-processin classification topic
[P g generalization
compound Multinomial ¢
splitting Naive Bayes
Recall+
documents
—_— k-gram Support Vector T
indexing Machines Y
visualization

Fig. 2. Processing Steps in ReCaRe

In ReCaRe we assume that a requirement can be classified to multiple top-
ics. Therefore, we train a binary classifier for each topic, which decides if a
requirement is relevant or not for a certain topic. The classification algorithms
are described in Section and Both classifiers are based on the work
of Witten et al. [7] and more details to the classifiers can be found there. We
choose Support Vector Machines and Multinomial Naive Bayes as classification
algorithms because they are well known in literature (e.g. [7], [I8]) for their ex-
emplary performance in text classification tasks. Furthermore, initial tests with
alternative classification algorithms like decision trees or rule based approaches
returned poor results in comparison.

In Section 2.4 we describe, why we choose the illustrated selection of pre-
processing steps. We also list alternative pre-processing steps and their short
comings there. Finally in Section 224 we explain the unfamiliar post-processing
steps “topic generalization” and “Recall+”.

2.2 Multinomial Naive Bayes (MNB)

In our current work, the Naive Bayesian Classifier computes the probability that
a requirement is relevant to a certain topic with the help of statistic methods.

The probability that a requirement R is relevant to a topic top is calculated
with the Bayesian rule as follows [7], [23]:

P(Wltopr) * P(topr)

P(tops|W) = i

54 D. Ott

W is the set of all words from the training data. For each word w; € W the proba-
bility is calculated that the word is evident for being topic relevant. This is done,
by using the number of topic relevant requirements containing w; normalized
with the total number of topic relevant requirements. To calculate P(W |topr)
the name giving, naive assumption is made that the different words in the re-
quirement are topic-conditional independent. Therefore P(W|topr) can be cal-
culated with the following equation using the training data:

n

P(Wltopr) = [[P(wiltopr)

i=1

The probability P(topr), which defines the probability of encountering topic
relevant requirements in real-world specifications, is assumed to be the same
probability as found in the training data as suggested by Witten et al. [7]. This
probability is called prior probability. The probability P(W) disappears in the
final normalization step, which sums the probabilities of the requirement being
topic relevant or topic irrelevant to 1.

In this work we use a slightly modified form of the Naive Bayes called Multi-
nomial Naive Bayes, which also considers the frequency of the words in a re-
quirement and not only whether the word is appearing in the requirement. The
details of this modification are described by Witten et al. [7].

2.3 Support Vector Machines (SVM)

The support vector machine approach works in ReCaRe as follows (based on
Witten et al. [7] and Han et al. [23]) : A nonlinear mapping is used to transform
the training data into a higher dimension. Within this new dimension, the classi-
fier searches for the optimal separating hyperplane, which separates the class of
topic relevant and topic irrelevant requirements. If a sufficiently high dimension
is used, data from two classes can always be separated by a hyperplane. The
SVM finds the maximum-margin hyperplane using support vectors and mar-
gins. The maximum-margin hyperplane is the one with the greatest separation
between the two classes.
The maximum-margin hyperplane can be written as [7]:

xr=b+ E a; xy; xai) - a
3 is support vector

Here, y; is the class value of training instance a(i), while b and «; are numeric
parameters that have to be determined by the SVM. a(i) and a are vectors. The
vector a represents a test instance, which shall be classified by the SVM.

2.4 Domain and Review Specific Enhancements

As shown in Figure P, we consider the following pre- and post-processing en-
hancements to improve the classification results:

Automatic Categorization of Large NL Requirements Specifications 55

The first part is the text pre-processing before the actual classification. Known
pre-processing steps are removal of stopwords, stemming or lemmatization, de-
composing of compounds, and the more recently used k-gram indexing. These
steps are described in detail, for example, by Hollink et al. [I9]. Because the
Mercedes-Benz specifications are mainly in German, we focus on pre-processing
steps, which have benefits in this language. Besides explaining the processing
steps, Hollink et al. [19] show also that stemming and lemmatization result in
almost no improvements for German texts. Leuser [20] confirms this for a large
Mercedes-Benz specification. Removing stopwords using the well-known stop-
word list from snowball.tartarus.org has only improved the classification speed
but not the results in our initial analyses. On the other hand, Hollink et al. [19]
report that compound splitting and k-gram indexing improved the results for
German texts significantly. Therefore, we analyse the benefits of both in Section
Bl In k-gram indexing, each word of the requirement is separated in each ongoing
combination of k letters and the classifier is then trained with these indexes in-
stead of the whole words. For example, a k-gram indexing with k = 4 separates
the word “require” to “requ”, “equi”, “quir”, “uire”. In compound splitting,
compound words, like the German word “Eisenbahn” (English: railway), can be
split in “Eisen” (English: iron) and “Bahn” (English: train).

The first post-processing step called “topic generalization” takes the structure
of Mercedes-Benz specifications into account. All specifications at our company
are written using a template, which provides a generic structure and general
requirements, and are later filled with system specific contents. Because of this
structure, we assume that if a heading was assigned to a topic, we can also assign
each requirement and subheading under the heading to this topic. Furthermore,
this is the only way, besides the thereafter following “Recall+” approach, to
correctly assign requirements to topics, which only consist of a figure or a table,
because ReCaRe has currently no potential to get information out of figures or
tables.

Finally, there is also a possible review or ReCaRe specific enhancement: Be-
cause of the visualisation of the topics, we need to provide the ReCaRe-user
with the context around of each requirement in each topic, so that the reviewer
understands where in the document the specific requirement comes from. This is
done by linking the requirement of the topic to the full document. So the reader
has an awareness of the surrounding requirements during the review. Because of
this, we assume that, if in a later stage of the analyses an unclassified require-
ment is within a certain structural distance to correctly classified requirements,
we can also count this requirement as classified. We call this assumption “Re-
call+” because it only influences this specific measure later in the evaluation.
Until now, Recall+ is not proven in experiments with ReCaRe-users. But we
still want to share the idea of this concept in this work.

The benefits of all presented enhancements are analysed in Section [Bl

56 D. Ott

3 Evaluation of the Automatic Requirements
Classification

In this section, we automatically classify requirements of two German speci-
fications by Mercedes-Benz to topics. We define our evaluation goals for this
classification in Section Bl Further, we describe specification characteristics
and the general evaluation process in Section Finally, we show the results
of each evaluation goal in the remaining Sections and [3.41

3.1 Evaluation Goals

To evaluate the automatic requirements classification to topics, we define the
following evaluation goals:

(G1) Evaluate accuracy of automatic classifiers at large automotive specifi-
cations.

— (G2) Evaluate improvements of the accuracy of automatic classifiers by do-
main and review specific enhancements.

(G3) Evaluate the transferability of a trained classifier of a specification to
an other specification in the same system domain.

(G4) Evaluate the benefit of the topic landscape by review activities.

At Mercedes-Benz, we are mostly interested in G3 because the main problem
in practical usage of such classifiers is getting the required training data: Our
developers do not have the time to manually classify major parts of the require-
ments. Because of this, we want to use the advantage that most specifications do
not have completely new contents. So, we can take previous specifications from
older car series about the same system or system parts to train the classifiers for
the new specification.

For Goal (G4), a first experiment utilizing the idea of using a categorization
of requirements to topics in order to improve the review process was done in a
previous work [3]. Unfortunately, this previous experiment showed how difficult
it is to simulate reviews with industrial specification in external environments
like universities. But, we cannot risk doing a pilot study with an unproven new
approach at Mercedes-Benz, yet. Thus, the evaluation of (G4) remains future
work. Then, we will do an replication of the mentioned experiment, but this
time with the support of the ReCaRe-Framework.

3.2 Evaluation Strategy

The evaluation of the classifiers’ accuracy is done with two German automotive
specifications. The first specification is a published document [8], which origi-
nates from real specifications of the Mercedes-Benz passenger car development.
It describes similar functionality and interfaces as the original data, but it con-
tains dummy parameters and values, as we were not allowed to use the original

Automatic Categorization of Large NL Requirements Specifications 57

data sets due to confidentiality aspects. This specification describes the func-
tional and non-functional requirements of a Doors Closure Module (DCU). The
second specification is a real Mercedes-Benz specification of an actual DCU. In
the following, we call the first specification “public” and the second “confiden-
tial” DCU.

These specifications were chosen for two reasons: First, we can partly share
the resulting data of our analyses for other research with the public DCU and
still have actual, complex data with the confidential DCU. The second reason
is goal G3. Although, the specifications describe the same content, they are not
really similar: There are different authors, different structures, the public DCU
describes the functional part in more detail whereas the confidential DCU has a
huge testing part, and so on. Besides the first reason, we could also have chosen
two actual DCU specifications from different car series, but they would be far
more similar because they have mainly the same authors. With the public and
confidential DCU, we can instead analyse sort of the worst case for G3 and
therefore can assume better results with more similar specifications about the
same system.

Table[llshows the number of objects in each specification, how many objects of
the documents were manually classified to topics and how many assignments of
objects to topics were done for each specification. An object can be a requirement
or a heading (or sometimes both) and one requirement typically consists of one
to four sentences. The ratio between headings and requirements and the average
word size is also stated in Table [l The manual classification of requirements to
topics was done by separating the data into parts of 150 objects. Each of these
parts was then manually and independently classified by two persons and then
synchronized in a review session using Cohen’s Kappa [2I] as an aid. Cohen’s
Kappa is a statistical measure to calculate the inter-rater agreement between
two raters who each classify n items to x categories. The previous identification
of topics was done the same way in one review session. We identified 141 topics.

The last two lines “figures and tables” and “influenced topic assignments” in
Table [show the number of objects, which only contain figures or tables and
how many assignments of objects to topics are influenced by them. There only
is a chance to classify these objects by the classifiers with Recall+ or topic gen-
eralization, because the basic classifiers in ReCaRe cannot extract information
of figures or tables (see also Section [2).

To measure the quality of the machine learning algorithm we used the k-
fold cross validation, which is a well known validation technique in data mining
research [2], [7], [18], [23]: The specifications are randomly sorted and then split
into k parts of equal size. k-1 of the parts are concatenated and used for training.
The trained classifier is then run on the remaining part for evaluation. This
procedure is carried out iteratively k times with a different part being held
back for classification. Then, this whole process is again repeated k times. The
classification performance averaged over all k parts in k iterations characterizes
the classifier. As shown by Witten et al. [7], using k = 10 is common in research

58 D. Ott

Table 1. Requirements Documents Statistics

document Public DCU Confidential DCU
objects 1223 3004
classified objects 1201 2916

topic assignments 8163 18031
requirements 1087 2385

words / requirement 10.0 14.8
headings 138 618

words / heading 1.9 2.6

figures and tables 29 145
influenced topic assignments 443 1406

about the benefits of machine learning algorithm, so we used this number in the
current work, too.

To measure the performance of the classifiers, we use the standard metrics
from data mining and information retrieval: recall and precision [7], [23], [22]. In
this context, a perfect precision score of 1.0 means that every requirement that
a classifier labeled as belonging to a topic does indeed belong to this topic. A
perfect recall score of 1.0 means that every requirement belonging to a topic was
classified to it.

3.3 Accuracy of Normal and Improved Classifiers: G1, G2

TableRlshows the recall and precision results of Multinomial Naive Bayes (MNB)
and Support Vector Machines (SVM) for the public and confidential DCU spec-
ifications. The first line contains the results of the basic algorithms, followed
by the basic algorithms and splitting of compounds, the basic algorithms and
the use of 4-gram indexing, and the basic algorithms and topic generalization.
Thereafter, we show the results of the combination of the best enhancements
as best practices (BP), namely 4-gram indexing and topic generalization. The
k-gram indexing was tested with a range of numbers for k, but we got the best
results using k = 4 for the two specifications.

Table 2. G1 and G2 Analyses Results

public DCU confidential DCU

SVM MNB SVM MNB
algorithm recall prec. recall prec. recall prec. recall prec.
basic 0.63 0.86 0.56 0.81 0.49 0.82 0.56 0.67
compound split 0.65 0.86 0.63 0.76 0.53 0.82 0.65 0.59

4-gram indexing 0.69 0.85 080 044 0.56 0.80 0.74 0.38
topic generalization 0.73 0.70 0.70 0.64 0.69 0.75 0.80 048
best practices 0.83 0.66 094 0.16 0.80 0.64 0.93 0.17

Automatic Categorization of Large NL Requirements Specifications 59

Public DCU: Recall Improvement by "Recall+" Confidential DCU: Recall Improvement by "Recalk+"
1 — - e 1 — =
09 - 09 —
08 08
o7 07
06 06
05 05
] 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
surrounding Requirements surrounding Requirements
SVM —@—MNB SVM =i—MNB

Fig. 3. Combination of Recall+ and Best Practices

Figure Bl shows the combination of best practices and the Recall+ approach.
The horizontal axis Surrounding requirements gives the number of require-
ments, which are considered around already classified requirements.

We also analysed, whether there are requirements, which are incorrectly clas-
sified in each of the k iterations. For these requirements, we manually checked if
the classifiers are correct and if we have overlooked something during the manual
classification. This way, we improved the manual classification further.

3.4 Transferability of Trained Classifier over Specifications: G3

Table[Blshows the recall and precision results of Multinomial Naive Bayes (MNB)
and Support Vector Machines (SVM) for the confidential DCU specification (C.
DCU), trained by the public DCU specification (P. DCU) and vice versa. In the
first four columns are the results for the basic MNB and SVM showed, followed
up by the results for the classifiers and best practices as introduced in Section[3.3

Table 3. G3 Analyses Results

SVM MNB SVM+BP MNB+BP
training - test recall prec. recall prec. recall prec. recall prec.
P. DCU-C. DCU 0.12 048 0.15 045 041 0.51 0.77 0.13
C. DCU - P. DCU 0.16 0.56 0.23 050 0.48 0.54 0.79 0.16

4 Discussion

In this Section, we interpret the results to G1, G2 and G3 and discuss the
applicability of these results in industrial practice. Thereafter, we investigate
threats to validity in our research.

60 D. Ott

4.1 Interpretation of Results

The results from Section showed that using the in G2 investigated improve-
ments of the classifiers, we can get recommendable results with the well known
validation technique k-fold cross validation with our two large and complex auto-
motive specifications. Especially the results from SVM improved by the presented
best practices with recall over 0.8 and precision over 0.6 are considered as sufficient
in similar research (e.g. Knauss et al. [2]). Considering that the assumption of the
Recall+ enhancement is correct, even if we only take into account a small number
of requirements (see Figure[d)), the SVM classifies almost every requirement to the
right topic. As already stated, exceptions only are the requirements containing just
figures or tables. MNB with best practices reaches even better recall but unfortu-
nately with too much precision loss. We conclude that given enough training data,
a sufficient classification of requirements to topics is possible.

4.2 Applicability in Industrial Practice

The problem in industrial practice is getting sufficient training data: At
Mercedes-Benz, the developer cannot manually classify a great part of each cur-
rent specification to topics. Instead, it would be possible to only classify an older
specification once for a system and use this training data for newer specifica-
tions. Then we would only need to update the training data from time to time
for new functionality in the system. The results in Section 3.4l showed that this
is possible while still leaving room for improvements. Considering the above val-
ues for a sufficient classification, recall over 0.4 is not enough, same goes for a
precision over 0.5. But we are still surprised of this result due to the already
stated distance between the two used specifications. We assume that using two
confidential DCU from different car series would have led to closer results to
a sufficient classification. Because of this, we believe that this approach can be
used in industrial practice under the condition that we can further improve the
process of getting enough training data.

We will research this in future work, for example, under the aspect of using
ontologies to improve the classification process or the idea of Ko et al. [I1], which
is described in detail in the related works.

4.3 Threats to Validity

In this section, the threats to validity are discussed. For that, we use the clas-
sification of validity aspects from Runeson et al. [I2] on construction validity,
internal validity, external validity and reliability.

Construction Validity. One obvious threat is the manual classification. It
is questionable - there is no unique classification and it is reviewer dependent -
which requirements must be considered as belonging to a topic. Another question
is, whether there are no better algorithms for our text classification tasks, but
the results show that we have at least chosen promising candidates.

Internal Validity. In data mining literature (e.g. [7]), stratified k-fold cross val-
idation seems a slightly better validation technique, than the unstratified version

Automatic Categorization of Large NL Requirements Specifications 61

used in this work. That means, instead of a random choice of requirements for
the k parts, the requirements are selected in a way that positive and negative
training examples are stratified in the k-parts. Unfortunately that would only be
possible by using a time consuming evaluation for each individual topic, instead
of evaluating all topics for one set of folds.

External Validity. First, there are limitations in the transferability of our re-
sults on German, natural language specifications drawn from the Mercedes-Benz
passenger car development to specifications from other companies in the automo-
tive industry or even to specifications from other industries because of different
specification structures, the content and complexity of the specifications, and
other company specific factors. Second, because of the German language, we
may have advantages with certain pre-processing steps compared to other lan-
guages. On the other hand, some well known pre-proccessing steps, for example
stemming, do not work on our data sets as shown during this work.

Reliability. The topic landscape and the manual classification is person de-
pendent. But that should not be influencing the evaluation of the classifiers.
Regarding the specifications, unfortunately, we cannot publish the confidential
DCU or the analysis of it, but the analyses results of the public DCU and its
manual classification is available for further research.

5 Related Work

In this section, we discuss research on reviews and approaches to support or
improve the review process. Afterwards, we present existing research on the
classification of requirements and talk about the different use cases and benefits
to do these classifications.

The initial work about reviews was done by Fagan [13]. Since then, there have
been many further developments of the review process. Aurum et al. [I5] give
an overview of the progress in the review process from Fagan’s work until 2002.
Gilb and Graham [14] provide a thorough discussion about reviews, including
case studies from organizations using reviews in practice.

As stated before, the benefit of the review of natural language specifications
becomes limited because of the increasing size and complexity of the documents
to be checked. To overcome these obstacles, a lot of research has been done to
automatically search for special kinds of defects in the natural language specifica-
tion or to support the review process with preliminary analyses. Some examples
are listed below:

The ARM tool by Wilson et al. [I6] automatically measures and analyzes
indicators to predict the quality of the documents. These indicators are separated
in categories for individual specification statements (e.g. imperatives, directives,
weak phrases) and categories for the entire specification (e.g. size, readability,
specification depth).

The tool QUARS by Gnesi et al. [9] automatically detects linguistic defects
like ambiguities, using an initial parsing of the requirements.

62 D. Ott

The tool CARL from Gervasi and Zowghi [I7] automatically identifies and
analyzes inconsistencies of specifications in controlled natural language. This is
done by automatic parsing of natural language sentences into propositional logic
formulae. The approach is limited by the controlled language and the set of
defined consistency rules.

Similar to Gervasi and Zowghi, Moser et al. [I0] automatically inspect re-
quirements with rule-based checks for inconsistencies. Unfortunately, in their
approach the specifications must be written in controlled natural language.

The following research focuses on the classification of requirements for multi-
ple purposes:

Moser et al. [10] are using a classification of requirements as an intermediate
step during the check of requirements with regard to inconsistencies.

Gnesi et al. [9] create a categorization of requirements to topics as a byproduct
during the detection of linguistic defects.

Hussain et al. [5] developed the tool LASR that supports users in annota-
tion tasks. To do this, LASR automatically classifies requirements to certain
annotations and presents the candidates to the user for the final decision.

Knauss et al. [2] automatically classify security relevant requirements in spec-
ifications with Naive Bayesian Classifiers. Compared to our work, they only
classified the requirements to one topic and used small specifications to evaluate
the effectiveness of their approach. Nevertheless, they got similar results: Using
the same specification as training and testing with the x-fold cross validation
leads to satisfying results. The problem is getting sufficient training data for a
new specification from other/older specifications in order to get useful results in
practice.

One probably feasible way to get sufficient training data is the approach of Ko et
al. [IT]. They use Naive Bayesian Classifiers to automatically classify requirements
to topics, but they also automatically create the training data to do that. The idea
is to define each topic with a few keywords and then use a cluster algorithm for each
topic to get resulting requirements, which are then used to train the classifiers. The
evaluation results of this approach are promising, but the evaluation was only done
by small English and Korean specifications (less than 200 sentences).

6 Conclusion and Future Work

In this paper, we addressed the problem that reviewers have major problems
in finding defects, especially consistency or completeness defects, between re-
quirements with related information, spread over various documents. This is a
common case in today’s industry specifications, for example, Mercedes-Benz has
this problem. There, a specification and its referenced documents often sums up
to 3,000 pages.

We presented the concept topic landscape implemented in the tool ReCaRe.
ReCaRe automatically classifies and extracts requirements with related infor-
mation spread over many sections over many documents with text classification
algorithms to support reviewers with their work.

Automatic Categorization of Large NL Requirements Specifications 63

We evaluated two promising text classification algorithms, Multinomial Naive
Bayes (MNB) and Support Vector Machines (SVM), using two automotive spec-
ifications from Mercedes-Benz. We also investigated enhancements, e.g. pre-
processing steps, to further improve the results of these classifiers. The validation
was positive: Especially the SVM reliably identifies the majority of topic rele-
vant requirements (recall > 0.8) with a small enough amount of false positives
(precision > 0.6).

The problem is getting sufficient training data in industrial practice: Further
investigation showed that using training data from old specifications about the
same system to classify the requirements of actual specifications is a promising
solution, but the results are still not good enough. Future work must be done
to enhance the acquisition of enough training data, but we believe that the
approach of classifying information related requirements with text classification
requirements is usable in practice.

This work contributes to the understanding of problems developers have
to face in practice ensuring the quality in natural language specifications and
presents a possible approach to mitigate some of these problems. Additionally,
this work will support researchers and practitioners in software engineering;:

For researchers, this work shows that it is possible to automatically classify
current large and complex industry specifications with up to 3,000 requirements
with positive results. We believe that this approach can be also used for cate-
gorization purposes besides the review improvement, for example, for security
relevant aspects or for project planning as motivated in the introduction.

This work also presents researchers and practitioners a possible approach
to improve a deficit of technical reviews to ensure the quality in industrial
specifications.

Based on our work, there are a few further research directions. First, we
are going to research how to get sufficient training data with minimal manual
work. Another point is the (semi-)automatic identification of the topics itself and
last, but not least, we will investigate the actual benefit of the topic landscape
approach for technical reviews.

References

1. Houdek, F.: Challenges in Automotive Requirements Engineering. In: Industrial
Presentations by Requirements Engineering: Foundation for Software Quality, Es-
sen (2010)

2. Knauss, E., Houmb, S., Schneider, K., Islam, S., Jirjens, J.: Supporting Require-
ments Engineers in Recognising Security Issues. In: Berry, D., Franch, X. (eds.)
REFSQ 2011. LNCS, vol. 6606, pp. 4-18. Springer, Heidelberg (2011)

3. Ott, D., Raschke, A.: Review Improvement by Requirements Classification at
Mercedes-Benz: Limits of Empirical Studies in Educational Environments. In:
International Workshop on Empirical Requirements Engineering (EMPIRE),
Chicago (2012)

4. Ott, D.: Defects in Natural Language Requirement Specifications at Mercedes-
Benz: An Investigation Using a Combination of Legacy Data and Expert Opinion.
In: International Requirements Engineering Conference, Chicago (2012)

64

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D. Ott

. Hussain, I., Ormandjieva, O., Kosseim, L.: LASR: A Tool for Large Scale Annota-
tion of Software Requirements. In: International Workshop on Empirical Require-
ments Engineering (EMPIRE), Chicago (2012)

Song, X., Hwong, B.: Categorizing Requirements for a Contract-Based System In-
tegration Project. In: International Requirements Engineering Conference, Chicago
(2012)

Witten, I.LH., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools
and Techniques: Practical Machine Learning Tools and Techniques. The Morgan
Kaufmann Series in Data Management Systems. Elsevier Science (2011)

Houdek, F., Peach, B.: Das Tuersteuergeract — eine Beispielspezifikation (engl.:
The doors closure module — an example specification), Fraunhofer IESE (2002)
Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F., Fusani, M.: An automatic tool for
the analysis of natural language requirements. International Journal of Computer
Systems Science & Engineering 20, 53-62 (2005)

Moser, T., Winkler, D., Heindl, M., Biffl, S.: Requirements management with se-
mantic technology: An empirical study on automated requirements categorization
and conflict analysis. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 3-17. Springer, Heidelberg (2011)

Ko, Y., Park, S., Seo, J., Choi, S.: Using classification techniques for informal re-
quirements in the requirements analysis-supporting system. Information and Soft-
ware Technology 49, 1128-1140 (2007)

Runeson, P., Hoest, M.: Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Software Engineering 14, 131-164 (2009)
Fagan, M.: Design and code inspections to reduce errors in program development.
IBM Journal of Research and Development 15(3), 182 (1976)

Gilb, T., Graham, D.: Software Inspection. In: Finzi, S. (ed.), Addison-Wesley
(1994)

Aurum, A., Petersson, H., Wohlin, C.: State-of-the-art: Software Inspections after
25 Years. Software Testing, Verification and Reliability 12(3), 133-154 (2002)
Wilson, W., Rosenberg, L., Hyatt, L.: Automated analysis of requirement specifica-
tions. In: Proceedings of the 19th International Conference on Software Engineering
(ICSE 1997), pp. 161-171. IEEE (1997)

Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language re-
quirements. ACM Trans. Softw. Eng. Methodol. 14(3), 277-330 (2005)

Wang, S., Manning, C.D.: Baselines and Bigrams: Simple, Good Sentiment and
Topic Classification. In: ACL vol. (2), pp. 90-94 (2012)

Hollink, V., Kamps, J., Monz, C., De Rijke, M.: Monolingual document retrieval
for European languages. Information retrieval 7(1), 33-52 (2004)

Leuser, J.: Herausforderungen fiir halbautomatische Traceability-Erkennung (Chal-
lenges for Semi-automatic Trace Recovery). In: Systems Engineering Infrastructure
Conference (2009)

Carletta, J.: Squips and Discussions Assessing agreement on classification tasks:
The kappa statistic. Computional Linguistics 22(2), 249-254 (1996)

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
Addison Wesley

Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kaufmann, Waltham (2012)

Requirement Ambiguity Not as Important
as Expected — Results of an Empirical Evaluation

Erik Jan Philippo’, Werner Heijstek'2, Bas Kruiswijk>,
Michel R.V. Chaudron'#, and Daniel M. Berry®

1 Leiden Institute of Advanced Computer Science, Leiden University
P.O. Box 9512, 2300 RA Leiden, The Netherlands
philippo@ejonline.nl
2 Software Improvement Group, P.O. Box 94914
1090 GX Amsterdam, The Netherlands
w.heijstek@sig.eu
3 Twynstra Gudde, P.O. Box 907, 3800 AX Amersfoort, The Netherlands
bkr@tg.nl
4 Joint Computer Science and Engineering Department of Chalmers University of
Technology and University of Gothenburg, SE-412 96 Goteborg, Sweden
chaudron@chalmers.se
5 Cheriton School of Computer Science, University of Waterloo
200 University Ave. West, Waterloo, ON N2L 3G1, Canada
dberry@uwaterloo.ca

Abstract. [Context and motivation] Requirement ambiguity is seen as an im-
portant factor for project success. However, empirical data about this relation
are limited. [Question/problem] We analyze how ambiguous requirements re-
late to the success of software projects. [Principal ideas/results] Three methods
are used to study the relation between requirement ambiguity and project suc-
cess. First, data about requirements and project outcome were collected for 40
industrial projects. We find that, based on a correlation analysis, that the level of
ambiguity in the requirements for a project does not correlate with the project’s
success. Second, using a root-cause analysis, we observe that ambiguity does
not cause more defects during the test phase. Third, expert interviews were con-
ducted to validate these results. This resulted in a framework that outlines fac-
tors influencing requirement-ambiguity risk. [Contribution] Empirical data are
presented about the relationship between requirement ambiguity and project suc-
cess. A framework is created to describe nine factors that increase or mitigate
requirement-ambiguity risk.

Keywords: Requirements engineering, Empirical study, Software project risks,
Requirement ambiguity, Natural language analysis.

1 Introduction

Written requirements are expected to be unambiguous [1]. However, in practice re-
quirements are mostly written in natural language. Therefore, writing unambiguous re-
quirements is practically impossible [2]. Nonetheless, academics and practioners regard

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 65-79] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

66 E.J. Philippo et al.

requirement ambiguity as a serious threat to project success [3-6], especially in global
software development [7]. Nevertheless, evidence about how requirement ambiguity re-
lates to project success is limited. Different techniques exist to minimize the ambiguity
in requirements (e.g. [8-10]). These techniques can be applied during the elicitation,
specification and validation of requirements. However, decreasing the level of ambigu-
ity in requirements is a labor-intensive activity, and it remains unclear whether investing
effort is worthwhile. Recent research indicates that requirement ambiguity might not be
as problematic as previously thought [[11]. As a result, for software project managers it
is unclear when requirement ambiguity becomes a threat for project success and thus,
at which point they should take measures.

In this study, we analyze whether requirement ambiguity is a threat for software
projects and which projects are really in danger. We therefore formulate the following
research question:

How do ambiguous requirements relate to software project success?

In the rest of the paper, Section 2 introduces concepts and definitions. Section 3 de-
scribes the three research methods: interviews, correlation analysis, and root-cause anal-
ysis. Section 4 gives the raw results of the three methods. Section 5 discusses the in-
dividual results and relates the results of the three research methods. Section 6 details
threats to the validity of the results, and Section 7 delivers the final conclusions.

2 Conceptual Framework

We use the IEEE definition of ambiguity: “A [software requirement specification] is
unambiguous if, and only if, every requirement stated therein has only one interpreta-
tion” [L]. Berry et al. [8] divide ambiguity into four categories: lexical ambiguity (sin-
gle word with several meanings), syntactic ambiguity (sentence with several parses),
semantic ambiguity (sentence with several meanings but no lexical or syntactic ambi-
guity) and pragmatic ambiguity (sentence with several context-dependent meanings).
Natural languages are highly flexible, especially in multi-cultural environments. Natu-
ral Language Processing (NLP) tools exist to detect the level of ambiguity in natural
language requirements. Some are specifically focused on software requirement speci-
fication, e.g. QuARS [12] and RequirementsAssistant [13]. RequirementsAssistant is
able to recognize lexical, syntactic, semantic, and pragmatic ambiguity. For all the am-
biguity categories, there are rules defined to detect their instances.

This paper studies the relation between the ambiguity of a project’s requirements and
the project’s success. Various indicators for project success exist. For instance, project
success can be measured by lack of budget overrun, lack of time overrun, complete
requirement coverage, high customer satisfaction, or high system quality. It is often
important that a project stay within budget and that it be delivered on time, because
management is typically rewarded for its good budgetary performance. Also, in many
business domains, time-to-market is an important factor. For our study, we had a prag-
matic constraint in that we are limited by the data that are available per project. There-
fore, the lack of budget overrun was chosen to measure project success. Budget overrun
for a project is defined as the difference between its actual cost and its estimated cost.
This research regarded a project with a zero or negative budget overrun as successful.

Requirement Ambiguity Not as Important as Expected, an Empirical Evaluation 67

Also the level of ambiguity in requirements is hard to measure. A requirement can
contain one or more words that cause ambiguity. For example, the word “all” can cause
ambiguous requirements when “all” is not defined. During any inspection, manual or
automated, of requirements, the inspector, human or software, can be asked to add a re-
mark to any word that the inspector believes might cause ambiguity. A possible measure
of requirement ambiguity of a requirements document is simply the number of remarks
the document earned. However, then the measure is affected inappropriately by the size
of the requirements document. To control the effect of requirements document size,
this study uses the number of remarks per some unit of requirement size as its measure
of the level of ambiguity in a requirements document. In the earlier analyses, the unit
was the individual requirement. However, later, we realized that a long, complicated
requirement counted the same as a short, simple requirement, even though the former
is more likely than the latter to suffer ambiguity. So, in the remaining analyses, the unit
was changed to be the character.

3 Research Design and Environment

This study used three complementary methods to study the main research question. In
the first method, experts from a software project were interviewed to analyze and un-
derstand requirement ambiguity and the associated project risks. In the second method,
we collected requirements text and project information from 40 projects. Based on this
information, we performed a correlation analysis to understand the relation between
requirement ambiguity as measured by inspection remarks per character and project
success as measured by lack of budget overrun. In the third method, a root-cause anal-
ysis was performed on a random selection of a project’s defects to analyze the relation
between the defects and requirement ambiguity. The project for this third study was
different from that of the others and had its own set of requirements. All data were col-
lected from a large financial institution in the Netherlands. Data used for the correlation
analysis were collected from a specific department in the institution. This institution
operates in more than 30 countries and serves millions of customers. In part because
of these characteristics, we believe that this institution is a reliable source for data. For
all the methods, a broad definition of ambiguity was used, including lexical, syntactic,
semantic, and pragmatic ambiguity.

3.1 Interviews — Understanding the Requirement Ambiguity Risk

In order to better understand the ambiguity risk for software projects, we conducted four
semi-structured interviews with experts in which we confronted them with our study.
The roles of the four experts are project portfolio manager, business analyst, require-
ments engineer, and software architect. Except for the software architect, each worked
within the financial institution. The main objective of these interviews was to under-
stand the factors involved in the relation between requirement ambiguity and project
success. The research question was:

Question 1. How does requirement ambiguity influence software projects?

68 E.J. Philippo et al.

All interviewees were asked similar questions. The concept of ambiguity was explained
to the interviewees on a high level. We did not discuss the categories such as lexical
ambiguity or pragmatic ambiguity. Rather, we explained ambiguity through examples.
For each interview, a transcript was generated and then analyzed.

3.2 Correlation Analysis — Requirement Ambiguity and Project Success

The second research method was an analysis of quantitative data gathered from a single
department’s projects. We analyzed whether each project’s requirement ambiguity as
measured by inspection remarks, first, per requirement and later, per character, corre-
lates with the project’s success as measured by lack of budget overrun. The associated
research question was:

Question 2. Do ambiguous requirements have an impact on project budget overrun?

Initially, requirements documents were collected for 112 software projects. These data
were collected from a requirements management tool called Borland Calibetl]. Data to
calculate project success was extracted from the project administration tool CA Clarity@.
The most relevant variables of this dataset for this calculation for a project are: start date,
end date, estimated cost, and actual cost. A project’s requirement data and the project’s
success data were linked by the project’s unique identifier in the Clarity dataset as well
as the name of the project. However, this link could be established for only 40, out of
the 112, projects.

The RequirementsAssistant tool was used to automatically inspect the English natu-
ral language requirements. For any input text, the tool generates remarks which repre-
sent possible problems in the requirements. For example, for the requirement “Appro-
priate system standards shall be used where necessary.” The tool will, e.g., mark the
words “Appropriate” and “where necessary” as possible ambiguities. The number of
remarks found in any run of the tool depends on the current configuration of the tool.
The tool is not able to inpsect diagrams, and thus, diagrams are therefore not part of this
analysis. A manual inspection of the requirements documents showed that none of the
projects was using diagrams.

Three different configurations of RequirementsAssistant were used: (1) one gen-
erating all possible remarks regarding requirement quality; (2) one generating only
those remarks pertaining specifically to requirement ambiguity; and (3) an improved
ambiguity-detecting configuration, created in collaboration with the developer of Re-
quirementsAssistant, that is able to find more ambiguous words. When the first config-
uration was created, the main author was not completely familiar with the tool.

To arrive at a measure of a project’s requirement ambiguity, we divided the total
number of remarks attributed to the project’s requirements, first, by the number of re-
quirements in the project’s requirements specification and later, by the total number of
characters in the project’s requirement specification. These measures allowed compar-
ing the requirement ambiguity of projects whose requirements differ in size.

! http://www.borland.com/products/caliber/
2 http://www.ca.com/us/project-portfolio-management.aspx

Requirement Ambiguity Not as Important as Expected, an Empirical Evaluation 69

The dataset was split into two groups, projects with and projects without budget
overruns. For each group, the average remarks per character was calculated. The Mann-
Whitney-Wilcoxon test was applied to determine whether there is a significant differ-
ence between the two groups.

3.3 Root-Cause Analysis — Defects Caused by Ambiguity

We performed a case study of one software development project and based the study’s
design on that of a very similar study by De Bruijn and Dekkers [11]]. The software
project we studied was to introduce and customize a document management system.
Using the project’s requirements specification, we performed a root-cause analysis of
the defects detected during the project’s testing phase. The research question for root-
case analysis was:

Question 3. Do ambiguous requirements cause defects?

First, the level of ambiguity of the project’s requirements was determined by a run of
RequirementsAssistant on the requirements and by a manual inspection of the same by a
review panel consisting of two persons. The review panel, operating as a unit, analyzed
each of the project’s 205 requirements using the following steps: (1) read the require-
ment, (2) check whether the requirement is understood, (3) discuss the interpretations
and ambiguities found, and (4) provide possible explanations of any found ambiguities.
Second, for each of a randomly selected sample of 100 out of 389 reported defects, we
attempted to trace the cause of the defect back to the requirements. As in De Bruijn and
Dekkers study, the four rules shown in Table [[lwere used to determine whether a defect
was caused by an ambiguity.

Table 1. Root-Cause Conditions

label condition
RCC1 The implementation satisfies the requirement.
RCC2 The test team rejects this because of a different
but also valid interpretation of the requirement.
RCC3 Test team respects the design space of the contractor
RCC4 Disambiguation of the requirement would have prevented

these differences in interpretation

4 Analysis
This section reports the results of each of the three research methods.

4.1 Ambiguous Requirements

This section shows the determination of the level of ambiguity in the requirements.
Both the correlation analysis and the root-cause analysis required determining the level

70 E.J. Philippo et al.
Table 2. Remarks Generated by RequirementsAssistant for the Correlation Analysis

Ambiguity Ambiguity Ambiguity
Config. I Config. 2 Config. 3

Unambiguous reqs. - - 361
Single ambiguity reqs. - - 734
Multiple ambiguity reqs. 61,394 8,422 14,455
Average remarks per req. 12.66 1.73 2.98

Table 3. Remarks for the Root-Cause Analysis

Panel Tool
Unambiguous reqs. 7€ 0
Single ambiguity reqs. 19 51

Multiple ambiguity reqs. 31 45
Average remarks per req. 0.77 1.37

of ambiguity in the requirements using the RequirementsAssistant tool. For the root-
cause analysis, a second method was used, an inspection by a two-student review panel
that tallied the ambiguity remarks per requirement manually.

Tables 2] and [3 show the ambiguities found and the calculated average number of
remarks per requirement. We established the threshold of 0.5 as the minimum average
number of remarks per requirement for a set of requirements to be considered am-
biguous. All methods of generating ambiguity remarks for both the correlation analy-
sis and the root-cause analysis yielded average numbers of remarks per requirements
greater than 0.5. For the root-cause analysis, although the review panel found fewer
remarks than RequirementsAssistant, and the review panel gave no remarks to many
requirements, the review panel concluded that the requirements are ambiguous. Re-
quirementsAssistant found 96 remarks for the requirements of the root-cause analysis,
resulting in 1.37 remarks for each requirement. Since each methods calculated an av-
erage greater than 0.5, the set of requirements collected for this study is considered
ambiguous.

4.2 Interviews — Understanding the Requirement Ambiguity Risk

This section describes the results of the interviews conducted with experts. Four inter-
views were conducted with people in different roles within the software engineering
process, namely a software architect, a requirements engineer, a business analyst, and
a project manager. The requirements engineer is a requirement consultant and is well
read on the subject. This person is clearly an expert, while the business analyst knows
what requirements are, but learned the topic on the job. The requirement engineer has
ten years of experience with requirements engineering.

Requirement Ambiguity Not as Important as Expected, an Empirical Evaluation 71

The duration of each interview was approximately one hour, and it was divided into
two sections. First, we asked the interviewee about his or her experience with require-
ment ambiguity and about the consequences of it. Second, we revealed the results of
the correlation and root-cause analyses and asked for an explanation.

Examination of the interview transcripts led to the identification of four categories
for classifying the sentences: (1) requirements properties, (2) consequences of insuf-
ficient requirements engineering, (3) the influence of requirement ambiguity, and (4)
techniques for preventing ambiguity. Three interviewees explicitly noted that they per-
ceived requirement ambiguity as a problem. The business analyst regarded requirement
ambiguity as a minor issue that can be “circumvented easily”. The interviewees men-
tioned eight quality properties for requirements: consistent, complete, feasible, manage-
able, unambiguous, verifiable, non-volatile, and traceable. These properties are largely
in line with the quality properties defined by the IEEE [1]].

The five consequences of requirement ambiguity mentioned by the experts are (1)
improper solutions, (2) less efficient software development, (3) incorrect estimations,
(4) conflicts between projects and (5) delayed software projects. The consequence of
improper solution was mentioned by two interviewees, the architect and the business
analyst. Each of the other consequences was mentioned by only one interviewee.

4.3 Correlation Analysis Results — Requirement Ambiguity and Project
Success

This section explains the results of the correlation analysis that was done for 40 projects.
As described in Section 3.2, two different datasets were merged into the dataset that
was used for the analysis. By rigorously cleaning the data, we made sure that the com-
bined dataset contains no false positives. Merging the datasets resulted in three subsets
according to the variable or variables (project name, project code, or both) that corre-
spond. Independently, RequirementsAssistant was configured in three different ways.
The three different data subsets and the three configurations of RequirementsAssistant
resulted in nine samples.

For each of the nine samples, the level of ambiguity was determined via the number
of ambiguity remarks per character. In one sample, the projects that were on budget had
0.021 remarks per character, and the projects that were off budget had 0.018 remarks
per character. Thus, projects that were on budget have more ambiguity. This result is
consistent with those of the other eight samples. To see whether a difference exists in
the levels of ambiguity for on-budget and off-budget projects, a Mann-Whitney test was
applied. In a Mann-Whitney test, a P-value above 0.05 means that there is no signifi-
cant difference between the two groups. The computed P-value for the test was 0.331,
which means that there is no significant difference. We, therefore, have to conclude that
projects that are on budget have a higher number of ambiguity remarks per character
and thus have more ambiguous requirements. The results are counter intuitive, since we
expected fewer ambiguous requirements for the on-budget projects.

72 E.J. Philippo et al.

4.4 Root-Cause Analysis Results — Defects Caused by Ambiguity

The project used in the root-cause analysis was to implement a document management
system. The goal of the system was to store customer documents such as agreements
in a reliable manner. During the project, the software was continually tested, and all
defects were logged in a defect management system. The defect information was quite
complete and consistent and included information regarding the reason for the closure
and the cause of each defect. At the end of the project, 389 defects had been logged.
We randomly selected a sample of 100 defects to be analyzed with the method defined
by De Bruijn [[11]. Only three of these 100 defects were determined to be caused by
ambiguity in the requirements.

Table 4] shows the log for one of the defects that was found to have been caused by
an ambiguous requirement. This requirement is about generating PDF files from other
proprietary file formats such as Microsoft Word .DOC files or Microsoft Excel .XLSX
files. In the requirements document, each requirement has a unique code. For this defect,
the related requirement is RDA4, which is part of the group Requirements Document
Archiving. The content of the requirement is: “The system should support the creation
of a searchable rendition (PDF) of a native format.” Using the root-cause conditions
listed in Table[I] we can determine if any defect was caused by ambiguity. The first root-
cause condition, RCC1, is that the implementation satisfies the requirement. This is the
case, since the software is able to create a PDF from a Word file. However, the tester
was expecting that any document would be transformed to a PDF file, another valid
interpretation of the requirement. This is according to RCC2, “The test team rejects
this because of a different but also valid interpretation of the requirement”. RCC3 says
to respect that the decision to support certain files is not part of the design space of
the contractor. RCC4 says that additional information about the supported file formats
should have prevented the defect. Therefore, we conclude that this defect is a direct
result of a requirement ambiguity.

Although the requirements are considered ambiguous, the ambiguities caused only
3 out of 100 defects. Our root-cause analysis leads us to conclude that requirement
ambiguity did not cause a significant number of defects. While the cost of fixing any
defect might be very high, particularly in the later stages of a project, we estimated that
the cost to fix the three defects we did find to be caused by ambiguity is quite small.
This finding is consistent with those of De Bruijn and Dekkers who found only a small
number of defects caused by ambiguity. They had observed that 1 out of 40 defects
were caused by ambiguity.

5 Discussion

This section discusses the results from the previous sections and relates the three study
methods’ results with each other.

5.1 Influence of Requirement Ambiguity on Project Success

In our research, we analyzed the ambiguity of requirements for software development
projects with an automated tool, RequirementsAssistant. A subset of these requirements

Requirement Ambiguity Not as Important as Expected, an Empirical Evaluation 73

Table 4. An Anonymized Example Defect that Was Caused by Ambiguity

variable value
Title No PDF Rendition is made for a native Document
Description Steps:

Import a native document

Actual result:

Document is present, but pdf rendition isn’t created

Expected:

pdf rendition is created automatic during the import proces

Conform RDA4: The system should support the creation

of searchable rendition (PDF) of a native format
Developer comments Eddard Stark, 17/02/2009: PDF is made only for Word

documents (.doc). Excel, Powerpoint or Text documents

are not rendered.

Eddard Stark 31/03/2009: PDF is made for Word, Excel,

Powerpoint. Text or Outlook (.msg) is not rendered

Robert Baratheon 26-5-2009: According to Peter

the manual should be adjusted with the addition: Non-

Office documents will not be rendered.

John Snow 26-8-2009: This has been

incorporated in User manual V1.2

Detected on 16-1-2009
Status Closed
Type Defect
Priority High

was inspected also manually. The RequirementsAssistant tool and the manual inspec-
tion reported many potential ambiguities in the requirements. For each project, at least
50% of the requirements earned ambiguity remarks. For many projects, the percentage
is even higher. We used 50% as the threshold to determine whether the requirements for
a project are ambiguous.

Correlation analysis and root-cause analysis were used to check whether a high level
of requirement ambiguity is visible in project outcomes. The first anlysis showed no cor-
relation between a project’s requirement ambiguity as measured by ambiguity remarks
per requirement or per character and the project’s success as measured by lack of bud-
get overrun. This is not evidence of the absence of any relationship, but we reasoned
that other factors such as project planning, control, and in-project discussions seem
to diminish the influence of any ambiguity. These practices may inhibit requirement
ambiguity from affecting project outcomes.

The root-cause analysis tried to determine the influence of a project’s requirement
ambiguity on the defects of the project. Automated and manual inspection of the re-
quirements of a single project yielded similar conclusions that there was a large amount
of ambiguity in the project’s requirements. A root-cause analysis was performed on
each of a random sample of 100 defects. Only three of these 100 defects were de-
termined to be caused by ambiguous requirements. The three defects appeared to be

74 E.J. Philippo et al.

uncomplicated and not difficult to fix. Thus, the costs of fixing these ambiguous re-
quirements were probably not very high. However, the costs of finding these defects are
difficult to determine in hindsight. A defect that is found after deployment is harder to
fix than a defect that is found during pre-deployment testing. Nevertheless, there is no
particular reason to believe that finding the particular defects was expensive. After all,
since they were logged, they were found. Therefore, we concluded that the ambiguity in
the project’s requirement documents does not did not really affect the project’s defects.
Just as for the correlation analysis, it appears that the presence of many ambiguities in
a project’s requirements has no effect on the outcome of the project.

The relations we studied are depicted in Figure[[l When looking at a standard soft-
ware development process, the following phases are included: requirements engineer-
ing, design, implementation, testing, and maintenance. The upper lines in the figure
represent the relationships between requirement ambiguity on one hand and budget
overrun or defects on the other hand, relationships for which we found no evidence.
From this model, we deduce that somewhere between the requirement engineering and
testing phases, during design and implementation, a majority of the ambiguity problem
is solved. Therefore, even though the requirements may have been full of ambiguities,
the design and implementation end up resolving most of the ambiguities.

Approach 1: Correlation analysis.
/’ Approach 2: Root cause analysis\\

Requirements
engineering

— Design —>| Implementation [|—>»| Testing —» Project closure ——» Maintenance

Ambiguity Defects Budget overrun

Fig. 1. Although the requirements contain many ambiguities, their consequences do not show up
in the testing and project closure phases

5.2 Factors That Influence the Importance of Ambiguity

The reasons that prevent ambiguity from being a serious problem to a project are not
completely clear. They may be different for different projects and dependent, e.g., on
the software development method used in the project and on the balance of custom and
off-the-shelf software used for the project. According to Alexander [14], “[i]nformal
text, scribbled diagrams, conversations, and phone calls are excellent ways of remov-
ing ambiguity.” This indicates that informal contact can solve the problem. Alexander
states only that informal contact can remove ambiguity, but his quote does not neces-
sarily mean that informal contact is the main reason preventing ambiguity from being a
problem in the project we researched.

In order to better understand the reasons behind our findings, we conducted inter-
views with experts within the institution owning the project. The goal of the interviews
was to specifically identify factors that aggravate the risk of requirement ambiguity and
to learn how to solve the ambiguity problem. The interviews exposed different aspects
of projects and institutions that can influence the consequence of ambiguity. These as-
pects are summarized in Figure 2l

Requirement Ambiguity Not as Important as Expected, an Empirical Evaluation 75

Each non-central box is a factor that influences ambiguity risk. Each non-central
box has an labeled arrow that points to the “Software project ambiguity risk” box and
whose label indicates the direction of the box’s factor on software project ambiguity
risk. For example, when there are many locations, the ambiguity-related risk increases.
Also time pressure can increase ambiguity risk. Many feedback loops, such as frequent
meetings, can reduce ambiguity risk. Similarly, skilled teams can neutralize a high level
of ambiguity in requirements documents. Each of remaining paragraphs in this section
discuss one box.

M . D i
ore Skilled teams Feedback loops omain
Locations knowledge
decrease decrease
increase X ¥ increase
. £t ject . .
Formal processes increase— S;)ml‘;\;;xeit}; r(r)i]sels [€—increase Time pressure
increase $ increase
increase

Cultural Number of project -,

X Politics
differences team members

Fig. 2. Framework with Factors that Influence the Ambiguity Risk of Software Projects

The more skills project members have, the smaller the chances for ambiguity, espe-
cially when the skills include techniques to write less ambiguous requirements speci-
fications. When the author of a requirements document understands how to write with
less ambiguity, many ambiguity problems are avoided. For example, if he or she is
aware that the term “all” can cause unclear requirements, he or she can use more pre-
cise terminology.

Frequent feedback loops reduce the risk of ambiguity. A feedback loop is the per-
sonal communication among the developers and the customer. Examples of this com-
munication include informal chit-chat during breaks and small talk in the office. This
communication enables developers and customers to discuss the work, to create a shared
mental model [[15, [16], and to understand the requirements better. When a developer
does not need to move far from his or her desk to ask a question about requirements,
ambiguities get resolved painlessly. When informal communication is not common in
an organization, ambiguity resolution is thwarted.

Deep domain knowledge reduces ambiguity risk. When a software developer does
not understand the organization’s business and does not understand its terminology,
then chances for lexical ambiguity increase. Understanding an organization’s business
is hard and time consuming. The more complicated the domain, the bigger the chances
for ambiguity.

76 E.J. Philippo et al.

Under schedule pressure, priorities change. Predefined processes become less impor-
tant, and employees will start to work around them. The outcome of a project becomes
more important than its process. This effect also influences the requirement-ambiguity
risk. When something is unclear, people will more quickly make assumptions to resolve
incompleteness and ambiguities. When developers do not experience time pressure
and stress, the requirement-ambiguity risk is reduced since they have the time to ask
questions.

Different stakeholders often have different interests, resulting in requirements con-
flicts and negotiations. During a project, different stakeholders begin to develop a pref-
erence for particular decisions, and they start to support them. Often, an ambiguous
requirement can be interpreted to the advantage of one of the stakeholders. This type of
ambiguity is perpetrated on purpose and increases requirement problems.

The number of persons that work on a project influences the risk of ambiguity. When
a single engineer develops an application for another person, the risks for unclear re-
quirements and misunderstandings is relatively low because all converstations about
the project that take place take place between only them. When a project consists of
fifty employees, the ambiguity risk increases, because there are more people who need
to understand the requirements documents, and there are more chances for misunder-
standing. In a large project, not all project members will have read the requirements
documents, and not all project members will speak with each other. The chances of
misunderstanding increase with the number of project members. Larger projects try
to reduce the risk of misunderstanding by, e.g., introducing walkthroughs and peer
reviews.

Requirements depend on their context for their meaning. When a requirement can be
interpreted in different ways due to different contexts, the requirement suffers pragmatic
ambiguity. Culture defines the context for a requirement. The more cultures are involved
in a project, the larger the chances for different interpretations.

The degree of formality in organizations influences the importance of ambiguity as
well. When there is a lot formality, when two parties agree on a certain document, they
stick to it. For example, when an external contractor is hired for software development,
both parties agree on a contract and specifications. Because everything is stored in a
formal document, people start to rely more on it, and the requirement specifications be-
come more important. People communicate via documents and work less together. Due
to the flexibility of the English language, it is virtually impossible to write an unam-
biguous requirements specification. The more people rely on documents, the bigger the
chances that any ambiguity manifests itself. Within an organization, this phenomenon
can happen, because people work within their own department and feel responsible
for only their own jobs. This phenomenon was reported by the requirements engineer
during the interviews.

The more locations involved in a project, the more problems its people face with
communication. Although information technology improves the sharing of information,
having many locations still hinders informal communication and prevents people from
getting to know each other [17].

Requirement Ambiguity Not as Important as Expected, an Empirical Evaluation 77

5.3 Requirement Ambiguity and Scrum

Scrum [[18] is becoming increasingly popular in many organizations, including, to some
extent, the institution providing data for this study. Simply put, Figure [2] shows effec-
tively that many of Scrum’s practices are those that appear to help prevent requirement
ambiguity from becoming a problem. According to the framework, small teams reduce
the requirement-ambiguity risk, and the Scrum method recommends teams with a max-
imum of five to nine members. Frequent feedback loops are encouraged in Scrum’s
so-called daily scrum and its on-site customer. The daily scrum is a ten-minute meet-
ing during which the progress of the project is discussed. Scrum’s allowing a team to
create its own planning and Scrum’s encouragement of realistic schedules reduce the
risks associated with time pressure. The influence of personal preferences is minimized
by having a product backlog, a list of requirements that should be implemented in up-
coming sprints. By defining the backlog, all stakeholders are forced to agree on the
requirements. Team members continue to learn and obtain additional skills by perform-
ing a sprint retrospective. Another recommendation of Scrum is that teams sit together,
thus reducing the location risk. By sitting together, a team learns about different cul-
tures faster, and their context converges faster. The formalities of Scrum processes are
reduced by the team’s collaborating closely with the on-site customer. The only factor
from the framework of Figure 2lthat does not have an associated best practice in Scrum
is domain knowledge.

As Scrum specifically addresses a majority of what appear to be causes of require-
ment ambiguity, we hypothesize that projects that adopt Scrum are less likely to suffer
budget overrun due to requirement ambiguity. This hypothesis should be tested in future
work.

6 Threats to the Validity of the Results

Any research with empirical findings needs be understood bearing in mind the strengths
and limitations of the research method. This section discusses three types of validity:
internal, external and construct.

Internal validity in this study is the extent to which a correlation exists between
requirement ambiguity and project success. A large dataset was available for the root-
cause analysis and the correlation analysis. By rigorously cleaning the data, it was pos-
sible to obtain a clean dataset for analysis.

External validity is the extent to which the findings can be generalized to other orga-
nizations. We believe that dataset we used is representative of many organizations due
to the institution’s use of mostly the waterfall method, its project teams having fewer
than 30 members, and its being a large organization operating worldwide.

Construct validity of a study refers to the extent to which the study’s measures actu-
ally measure what they purport to. For this study, construct validity is that the measures
for requirement ambiguity and project success are correct. The reader is reminded of
the discussion in Section 2 about choosing the measures. For each property measured,
there are clearly factors not captured by the chosen measure, and it measures factors
other than the property as well. Nevertheless, most factors for each property are highly
subjective and are labor-intensive to determine. The chosen measures are at least very

78 E.J. Philippo et al.

objective and are easily calculated from existing project data with the help of existing
software tools. Had we chosen more precise, subjective, and labor-intensive measures,
we would not have been able to compute the correlation for as many projects as we did,
and some statistical strength would be lost. Of course, each reader will have to judge
for him or herself, the validity of the conclusions based on the chosen measures.

RequirementsAssistant is a tool to detect mistakes in requirements. No tool can de-
tect ambiguity perfectly, and this is a limitation of the study. A project can be influ-
enced by ambiguity in two ways: noticed and unnoticed ambiguity. There are proba-
bly many ambiguities that are missed by both RequirementsAssistant and the manual
inspection. However, the inspecting review panel appeared to have overlooked many
ambiguities which RequirementsAssistant did find. Moreover, NASA did a study on
automatic requirement analysis tools and concluded that RequirementsAssistant is the
best tool available for detecting quality issues in requirements [[19]. For this research, a
wide definition of ambiguity was used. The NLP tool will detect vague words like “all”
or “real-time”, but it cannot detect all contextual ambiguities such as those caused by
cultural differences. RequirementsAssistant is able to detect many kinds of ambiguities
in requirement documents, such as at least all of the types defined by Berry [§].

7 Conclusion

This study has addressed the relation between requirement ambiguity and project suc-
cess. We performed a correlation analysis on the requirements of 40 industrial projects
and concluded that a software development project’s requirement ambiguity has no
particular relation to the project’s success. We performed a root-cause analysis of the
defects reported in a single project and confirmed an earlier finding that requirement
ambiguity did not cause many defects, and the few that it did cause were not very se-
rious. Finally, we conducted interviews with project experts to confirm our findings.
From these conclusions, we constructed a framework that explains factors that increase
requirement-ambiguity risks. We ended up concluding that the institution under study
is quite good at dealing with requirement ambiguity.

Generalizing beyond the research environment, this research helps project managers
to decide whether they should invest resources in resolving ambiguous requirements
and to decide when the risk of requirement ambiguity is low. For the RE research com-
munity, the findings from this study both give rise to doubt and put into perspective the
risks that requirement ambiguity carry for the lack of success of software development
projects.

References

1. Tripp, L.: IEEE Recommended Practice for Software Requirements Specifications,
ANSV/IEEE Standard 830-1993. Institute of Electrical and Electronics Engineering, New
York (1993)

2. Berry, D.M.: Ambiguity in natural language requirements documents. In: Martell, C. (ed.)
Monterey Workshop 2007. LNCS, vol. 5320, pp. 1-7. Springer, Heidelberg (2008)

3. Han, WM., Huang, S.J.: An empirical analysis of risk components and performance on soft-
ware projects. Journal of Systems and Software 80(1), 42-50 (2007)

10.

15.

16.

17.

18.

19.

Requirement Ambiguity Not as Important as Expected, an Empirical Evaluation 79

. Keil, M., Cule, PE., Lyytinen, K., Schmidt, R.C.: A framework for identifying software

project risks. Communications of the ACM 41(11), 76-83 (1998)

Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggieri, S.: Achieving quality in natural
language requirements. In: Proceedings of the 11th International Software Quality Week
(1998)

Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer, London (2010)

Cheng, B.H.C., Atlee, J.M.: Current and future research directions in requirements engineer-
ing. In: Lyytinen, K., Loucopoulos, P., Mylopoulos, J., Robinson, B. (eds.) Design Require-
ments Workshop. LNBIP, vol. 14, pp. 11-43. Springer, Heidelberg (2009)

. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software specification:

Linguistic sources of ambiguity. Technical report, University of Waterloo (2003),
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
Gervasi, V., Zowghi, D.: On the role of ambiguity in RE. In: Wieringa, R., Persson, A. (eds.)
REFSQ 2010. LNCS, vol. 6182, pp. 248-254. Springer, Heidelberg (2010)

Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley, Harlow
(2006)

. de Bruijn, F,, Dekkers, H.L.: Ambiguity in natural language software requirements: A case

study. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 233-247.
Springer, Heidelberg (2010)

. Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G., Fantechi, A.: Quars express — a tool

demonstration. In: Proceedings of the 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 473-474 (2008)

. Driessen, H.: Requirements Assistant (2012),

http://www.requirementsassistant.nl/

. Alexander, LF., Stevens, R.: Writing Better Requirements. Pearson Education, Harlow

(2002)

Mathieu, J.E., Heffner, T.S., Goodwin, G.F., Salas, E., Cannon-Bowers, J.A.: The influence
of shared mental models on team process and performance. Journal of Applied Psychol-
ogy 85(2), 273 (2000)

Levesque, L.L., Wilson, J.M., Wholey, D.R.: Cognitive divergence and shared mental models
in software development project teams. Journal of Organizational Behavior 22, 135-144
(2001)

Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An empirical study of global soft-
ware development: Distance and speed. In: Proceedings of the 23rd International Conference
on Software Engineering, pp. 81-90 (2001)

Schwaber, K., Beedle, M.: Agile Software Development with Scrum, 1st edn. Prentice Hall
PTR, Upper Saddle River (2001)

Jones, V., Murray, J.: Evaluation of current requirements analysis tools capabilities for IV&V
in the requirements analysis phase (2007),
http://www.slideserve.com/shlomo/evaluation-of-current-
requirements-analysis-tools-capabilities-for-
ivv-in-the-requirements-analysis-phase

http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://www.requirementsassistant.nl/
http://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase
http://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase
http://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase

The Design of SREE — A Prototype Potential
Ambiguity Finder for Requirements Specifications
and Lessons Learned

Sri Fatimah Tjong! and Daniel M. Berry?

1 University of Nottingham Malaysia Campus
Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
nien34@gmail.com
2 Cheriton School of Computer Science
University of Waterloo
Waterloo, ON, Canada N2L 3G1
dberry@uwaterloo.ca

Abstract. [Context and Motivation] Many a tool for finding ambiguities in nat-
ural language (NL) requirements specifications (RSs) is based on a parser and a
parts-of-speech identifier, which are inherently imperfect on real NL text. There-
fore, any such tool inherently has less than 100% recall. Consequently, running
such a tool on a NL RS for a highly critical system does not eliminate the need
for a complete manual search for ambiguity in the RS. [Question/Problem] Can
an ambiguity-finding tool (AFT) be built that has 100% recall on the types of
ambiguities that are in the AFT’s scope such that a manual search in an RS for
ambiguities outside the AFT’s scope is significantly easier than a manual search
of the RS for all ambiguities? [Principal Ideas/Results] This paper presents the
design of a prototype AFT, SREE (Systemized Requirements Engineering Envi-
ronment), whose goal is achieving a 100% recall rate for the ambiguities in its
scope, even at the cost of a precision rate of less than 100%. The ambiguities that
SREE searches for by lexical analysis are the ones whose keyword indicators are
found in SREE’s ambiguity-indicator corpus that was constructed based on stud-
ies of several industrial strength RSs. SREE was run on two of these industrial
strength RSs, and the time to do a completely manual search of these RSs is com-
pared to the time to reject the false positives in SREE’s output plus the time to do
a manual search of these RSs for only ambiguities not in SREE’s scope. [Contri-
bution] SREE does not achieve its goals. However, the time comparison shows
that the approach to divide ambiguity finding between an AFT with 100% recall
for some types of ambiguity and a manual search for only the other types of am-
biguity is promising enough to justify more work to improve the implementation
of the approach. Some specific improvement suggestions are offered.

1 Introduction

This paper describes the engineering and design of a prototype ambiguity finding tool
(AFT) called SREE for helping mainly requirements analysts (and anyone else with a
stake in avoiding ambiguity) to find ambiguities in natural language (NL) requirements
specifications (RSs). Berry, Gacitua, Sawyer, and Tjong suggest that to be really useful

J. Doerr and A L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 80-p5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Prototype Ambiguity Finder for Requirements Specifications 81

for application to an RS for a critical system, an AFT must have 100% recall even at
the expense of low precision. In order that this high imprecision be manageable, the
AFT must produce output that is significantly smaller than the original RS submitted
to the AFT, so that searching for false positives in the output is significantly easier than
manually searching the whole RS for the same ambiguities [1]. They suggest divid-
ing the process of finding ambiguities in a NL RS into two parts that must be easily
distinguished:

1. the algorithmic part that can be done with 100% recall by a tool, the dumb tool, and
2. the nonalgorithmic part that is smaller than manually searching the entire RS and
which requires the intelligence of a smart human.

As explained in Section 4.1, by “easily distinguished” is meant that for any type of
ambiguity, the user knows for sure, in advance, in which part all of the type’s instances
will be found. While, in the end, SREE did not quite achieve this goal, a description
of SREE’s design and of the process by which it was designed and evaluated against
the goals, are useful for informing any future research done according to Berry et al’s
research agenda.

1.1 Background

Ambiguity in natural language (NL) is a major problem in many scientific disciplines
[2,13], including in requirements engineering (RE) [4] during which requirements speci-
fications (RSs) for computer-based systems (CBSs) are written. Ambiguity in a require-
ment statement (RStat) occurs when the RStat has more than one meaning. The over-
whelming majority of RSs are written in NL [3], although often amplified by informa-
tion in other notations, such as formulae and diagrams. Despite NL’s inherent ambiguity
and informality, NL is still preferred for writing RSs simply because all stakeholders
are able to read it and participate in writing it.

For a summary of the types of ambiguities that appear in requirements documents,
please consult the tutorial titled “Ambiguity in Requirements Specification” [6]. Lin-
guists consider ambiguity, imprecision, indeterminacy, and vagueness to be different
phenomena. Nevertheless, the work described in this paper collapses all of these phe-
nomena into one term “ambiguity”, because all the phenomena have the same effect
on RSs, making them interpretable differently by different developers. An ambiguous
RStat can have hazardous consequences for a software development project as a whole,
in which wrongly implemented requirements cause high costs for rework and delayed
product releases [2-4].

In understanding a RStat, a requirements analyst often is not even aware of any
ambiguity and instinctively employs immediate subconscious disambiguation [4]. In
subconscious disambiguation, the listener or reader of an utterance, not even aware of
the existence of ambiguity in the utterance, accepts as the only meaning of the utterance,
the first meaning he thought of, a meaning that may not be that intended by the speaker
of the utterance.

An AFT’s recall is the percentage of the instances of ambiguity that the AFT actu-
ally finds. The AFT’s precision is the percentage of the ambiguities that the AFT finds
that are truly ambiguous. It is easy to achieve 100% recall if one does not care about

82 S.F. Tjong and D.M. Berry

precision: just identify everything as ambiguous. Conversely, it is easy to achieve 100%
precision if one does not care about recall: just identify nothing as ambiguous. Neither
of these ways of achieving perfection in one goal is useful. Thus, recall and precision
are usually traded off. Nevertheless, in any tradeoff for the design of an AFT, recall is
more important than precision for the AFT, because it is much harder to know what is
missing than to know what is a false positive among the AFT’s output.

1.2 This Paper

This work is derived from Tjong’s Ph.D. thesis [7], and it describes the design and
development of a prototype AFT, SREE (Systemized Requirements Engineering Envi-
ronment), that helps detect the occurrence of instances of ambiguity in RSs. The perfor-
mance goal for SREE, reflected in its design, is that it has 100% recall of the ambiguities
in its scope even at the cost of it having less than 100% precision. For any type of am-
biguity in SREE’s scope, SREE searches in its input for all instances of that type in its
goal of achieving 100% recall, and it reports all instances it finds. If, however, SREE
has less than 100% precision for the type, then among the findings are false positives
that the human user must weed out in a manual examination of the findings. Thus, what
SREE actually finds are potential ambiguities. Therefore, SREE assists and does not
replace an analyst in identifying instances of ambiguity in RSs. A user of SREE must
decide whether or not any potential ambiguity detected by SREE is truly ambiguous.

Section 2 of this paper reviews past work about AFTs and finds all deficient in re-
call. Section 3 explains why 100% recall is essential for an AFT. Section 4 describes the
goals of SREE. Section 5 describes the design and implementation of SREE according
to these goals. Section 6 evaluates SREE with respect to its goals and the user’s perfor-
mance in dealing with imprecision, and it reports lessons learned about the functionality
of AFTs. Section 7 summarizes the paper and suggests future work.

Quoted text from any RStat or other example is typeset in a sans serif typeface, and
this text may end with punctuation, which is to be distinguished from any immediately
following punctuation belonging to the sentence containing the quoted text, which is
typeset in the background serifed typefac.

2 Past Work on Ambiguity Finding Methods and Tools

Research to resolve ambiguity started as early as the late 1980s, at which time ambiguity
was said to be an impediment to elucidating a project’s real design requirements [4]. This
section focuses particularly on tool-assisted ambiguity detection and disambiguation.

Ambriola and Gervasi [8] achieved a high-quality NL RS through successive trans-
formations that are applied to an early NL RS in order to obtain concrete and rendered
views of models extracted from the NL RS. The transformations are automated in a tool
named CIRCE (Cooperative Interactive Requirement-Centric Environment).

Wilson et al. [9] defined general quality criteria for RSs and developed an analysis
tool ARM (Automated Requirements Management) to assess the structure of a given

' A good magnifying glass shows the difference in the typefaces of the two consecutive items
of punctuation! :-).

Prototype Ambiguity Finder for Requirements Specifications 83

RS, the structure of the RS’s RStats, the vocabulary used to write the RS, and thus to
determine if the RS meets the quality criteria.

Fabbrini et al. [10, [11] distinguished between RStat quality and RS quality, and they
identified a number of indicators of each kind of quality. They developed QuARS (Qual-
ity Analyser of Requirements Specifications) that evaluates any given RS against these
indicators of RStat quality and RS quality.

Kasser [[12] developed TIGER Pro, a tool that assists its user in writing a good RS by
pointing out any instances of five types of defects it finds in the input RS. The five types
of defects are 1) multiple requirements in a paragraph, 2) unverifiable requirements,
3) use of will or must instead of shall, 4) use of a wrong word, and 5) use of any
user-defined so-called poor word.

Willis, Chantree, and De Roeck [[13] defined a nocuous ambiguity as ambiguous text
that is interpreted differently by different readers, as opposed to an innocuous ambigu-
ity, which in spite of the ambiguity, is interpreted the same by all readers. Generally,
domain knowledge or context allowing disambiguation of an ambiguity renders an am-
biguity innocuous. Willis ef al. developed and evaluated a tool using a heuristic method
to automatically predict which sentences are likely to be interpreted differently by dif-
ferent readers. After determining which sentences are ambiguous with a parser, the
heuristic, which is trained against a corpus in which all nocuous ambiguities have been
marked, determines which ambiguous sentences are likely to be nocuously ambiguous.

Kiyavitskaya, Zeni, Mich, and Berry [14] did some case studies with prototypes of a
proposed tool for identifying ambiguities in NL RSs in an effort to identify requirements
for such tools. Their approach was to apply ambiguity measures to sentences identified
by a parser based tool to try to increase the precision of the tool with respect to reporting
genuine ambiguities. The measures are based on using lexical and syntactic proxies for
semantic criteria and the WordNet thesaurus [[15]. The case studies found that many of
what the tool thought was ambiguous were not problematic given the normal knowledge
that the analyst user would have about the domain of the specification and that the
tool failed to find many of what one analyst who was particularly attuned to finding
ambiguities found manually.

Gleich, Creighton, and Kof [[16] built an automated AFT that has been measured
to be about four times as effective as an average human analyst in finding genuine
ambiguities. They have designed the AFT to automate the finding of ambiguities in
requirements specifications, to make plausible to the user that the ambiguities it has
found are genuine, and to teach the analyst by explaining the sources of the ambiguities
it has found. The AFT first does part-of-speech (POS) tagging of its input and then uses
a combination of techniques including simple keyword matching, regular expressions,
and regular expressions matching POS tags to find instances of the ambiguities that are
in its domain.

Some of the AFTs focus specifically on coordination ambiguity, that involving the
coordinators, such as and and or. For example, Agarwal and Boggess [[17] developed a
tool that identifies a coordinator by matching the POS and semantic tags of the words
modified by the coordinator. Resnik [[18] proposed a semantic-similarity approach to
disambiguate coordinators that involves nominal compounds. Goldberg [[19] developed

84 S.F. Tjong and D.M. Berry

a tool that applies a co-occurrence-based probabilistic model to determine the attach-
ments of ambiguous coordinators in phrases, using unsupervised learning.

Chantree, Willis, Kilgarriff, and De Roeck [20], in work predating that by Willis et
al., developed a binary classifier for coordination ambiguity. The classifier is based on
a set of ambiguous phrases from a corpus of requirements specifications and a collec-
tion of associated human judgements on their interpretations. The classifier uses word
distribution information obtained from the British National Corpus (BNC).

The common drawback of many of these AFTs is that the recall of each is less
than 100%, even for the ambiguities it claims to be detecting. Certainly, any AFT that
depends on an auxiliary parser to find sentences with multiple parses or that depends on
an auxiliary POS tagger to identify the POS of any word is going to have a recall of less
than 100%, for no other reason than that no version of any of these auxiliary tools is
perfect. Each parser or POS is easily fooled by anomalous sentences and words that can
be in more than one POS, e.g., a word that is both a noun and a verb. The next section
explains why an AFT’s having less than 100% recall is a serious drawback.

On the other hand, each of ARM, QuARS, and TIGER Pro attempts to identify only
specific types, namely those in its published scope. Its scope is designed to be some
classes of ambiguities which can be recognized completely from keywords.

3 Why AFTs Applied to RSs of Critical Systems Need 100 %
Recall

Suppose that the CBS that is being built whose RS is being examined for ambiguities
is a life-, safety-, or security-critical system. Then it is essential to find all ambiguities
in the RS in order to resolve them. An AFT that does not find all ambiguities in the RS,
because of inherent limitations, provides no real benefit to its user who must search the
entire RS manually anyway to find the missing ambiguities. Use of the AFT is then a
waste of time, and it may make the user less diligent in her search.

The fact that an AFT finds, say, even 90% of the ambiguities is of no particular help,
because the user has no idea which 90% the AFT found and cannot just focus on finding
the missing 10%, which are nevertheless critical to find. The missing 10% are not in any
geographically identifiable parts of the RS; the missing 10% are not of any specifically
identifiable types of ambiguity. The missing 10% arise from the fact that the underlying
parser, POS tagger, or both are not perfect in unpredictable ways on actual inpuiﬁ.

It is clear that some types of ambiguities are easier to find algorithmically than others.
For example, a coordination ambiguity can occur only in a sentence with at least two
occurrences of and or or and is thus easier to find than any semantic ambiguity. The
approach taken in the work reported in this paper is to partition ambiguities by type
into those that can be found algorithmically and those that cannot. Then an AFT would

2 Of course, if the AFT is used affer the human has made a serious attempt to find all ambiguities,
then the AFT’s output can be used to complement the human’s findings. However, we would
have to guard against the human’s getting sloppy in her search in anticipation of the AFT’s
later use.

3 Actually, it can be argued that an AFT needs to be only as good as a human ambiguity finder,
who is, in the end, incapable of finding 100% of the ambiguities.

Prototype Ambiguity Finder for Requirements Specifications 85

be built with 100% recall for the algorithmically findable types of ambiguities. In fact,
even coordination ambiguities cannot be found with complete accuracy, i.e., with 100%
recall and 100% precision. Some sentences with at least two occurrences of and or
or are not coordination ambiguous. If the human user can tolerate imprecision, then
identifying coordination ambiguity can be made to have 100% recall by presenting to
the user every sentence with at least two occurrences of and or or. Then the user has
to look at each presented sentence to decide if indeed it is coordination ambiguous or
even ambiguous in some other way. The tradeoffs here are (1) recall versus precision
and (2) imprecision versus burden to the user. The set of ambiguity types found by an
AFT with 100% recall will be selected by careful consideration of these tradeoffs. This
selection is a major focus of the research reported in this paper.

A type of ambiguity is in an AFT’s scope if and only if the AFT can achieve 100%
recall of instances of the type. The user knows that she can focus on finding instances
of only those types of ambiguity outside the AFT’s scope with the full confidence that
the AFT will find and present as a potential ambiguity every instance of each type of
ambiguity in the AFT’s scope. It is, therefore, necessary to determine what types of am-
biguities are detectable with 100% recall and tolerable imprecision and are, therefore,
in the AFT’s scope.

A type of ambiguity depends on a keyword if the keyword must be present in every
instance of the type of ambiguity. For example, every instance of the only ambiguity
must contain the word only. It is possible to have 100% recall of the only ambiguity
simply by identifying every sentence with the word only. Of course, not every sentence
with only is ambiguous. Therefore, simply identifying every sentence with the word
only suffers from less than 100% precision for the only ambiguity. Being more precise
about the only ambiguity requires being able to identify any sentence in which its only
directly precedes the main verb of the sentenced Doing this identification requires being
able to identify the main verb of a sentence, which in turn requires parsing sentences
and tagging each word with its POS. We know that parsing and POS tagging cannot
be done by software with 100% accuracy. Therefore, achieving greater precision in
recognizing instances of the only ambiguity costs a reduction in recall and may still not
achieve 100% precision.

The goal of the research reported in this paper is to design an AFT that has 100%
recall for all ambiguity types selected to be in its scope even if the 100% recall costs
less than 100% precision. The AFT, as software, cannot have the intelligence necessary
to determine if a potential ambiguity is a true ambiguity, but a human user has the
intelligence. Therefore, the determination whether a potential ambiguity is ambiguous
is left to the AFT’s user. This division of labor and relaxation of the goal of 100%
precision means that the AFT can afford to be less than precise in its goal to identify
all possible potential ambiguities. However, if the AFT’s imprecision is too high to the
point that the user feels that using the AFT is burdensome, the AFT may end up not
being used at all.

4 The only ambiguity stems from the English convention of putting a sentence’s only immedi-
ately before the sentence’s main verb, regardless of what word or phrase is limited by the only.
Thus, an only that precedes other than its sentence’s main verb is probably not ambiguous.

86 S.F. Tjong and D.M. Berry

Any AFT needs to be compared in the way it is intended to be used against a fully
manual search for the same ambiguities. That is, if an AFT is intended to be used in
conjunction with some manual work then that manual work must be considered in the
comparison of the AFT with a fully manual search. The recall of the AFT-plus-its-re-
quired-manual work is to be compared with the recall of the fully manual search. The
same must be done for time-required-for-using and for precision.

4 SREE

The main purpose for designing SREE was to experiment with the particular decompo-
sition of the ambiguity identification task that meets the goals described in Section 3 for
an AFT. The version of SREE described in this paper is in fact the third attempt, after
two attempts [21H23] using more traditional parser-based designs failed to produce an
AFT that was significantly better than the existing AFTs.

4.1 Use Lexical Analyzer Instead of Syntactic Analyzer for AFTs

The syntax analyzer that the Tjong developed in her early work [24] achieved only an
80% recall rate of correctly tagged words without any POS tagging algorithm. With
more work, the parser could have been improved with a deep-search-and-match heuris-
tic [25] and with machine learning [26]. However, as mentioned at the end of Section 2,
achieving 100% accuracy in parsing and POS tagging is impossible. A SREE based on
a parser would not be able to achieve 100% recall of any ambiguity whose recognition
depends on having a correct parse or a correct POS assignment.

On the other hand, using a pure lexical (in the sense of compilation) strategy would
allow SREE to achieve 100% recall of any potential ambiguity for which all of its
indicators are specific words, i.e., a type of potential ambiguity that would be in SREE’s
scope.

We decided that SREE would do only lexical searches for potential ambiguities.
Therefore, from a user’s viewpoint, there are two types of potential ambiguities:

1. those in the scope of SREE, because they are lexically identifiable with 100% recall
and

2. those not in the scope of SREE, because they cannot be identified lexically with
100% recall.

As mentioned, the user knows that SREE searches for only potential ambiguities in its
scope. The user knows that she must decide for any potential ambiguity whether it is an
ambiguity. The user knows that she must search manually for any kind of ambiguity not
in SREE’s scope. She can do this search while ignoring those types of ambiguities that
are in SREE’s scope, thus allowing her to focus on what she must find manually. This
ability to focus on fewer types of ambiguities may increase her effectiveness in finding
instances of the types of ambiguities she is focusing on.

Prototype Ambiguity Finder for Requirements Specifications 87

4.2 Research and Design Method

To start the development of SREE in 2007, Tjong gathered a set of industrial-strength
RSs [7]. In these RSs, she found all the instances of ambiguity she could. Each instance
became the indicator of some potential ambiguity for SREE.

The set of RSs consists of the RSs from two case studies [27] and seven industrial
strength RSs [28-34]. Each RS in the set contains both functional RStats and nonfunc-
tional RStats. Tjong then studied each RStat in the RSs and identified all ambiguities
she could find in the RStat. She used the ARM and QuARS indicators to help her find
ambiguities. Each ambiguity was classified by its ambiguity type, such as coordination
ambiguity, weak auxiliary, vagueness, etc.

For each type of potential ambiguity, a list of indicators was built in the hopes of
finding an exhaustive list of indicators for the type. For some types of potential am-
biguities, e.g., coordination and misplaced only, constructing an exhaustive list seems
possible. For others, e.g., plural, it is probably impossible. For each type of potential
ambiguity, part of the research is to determine if the type can be part of the scope of
SREE, i.e., all of its indicators can be found and be used to build a lexical analyzer for
the potential ambiguity with 100% recall. The game to be played is to see if the list of
the indicators for a type of potential ambiguity stabilizes, i.e., no new elements for the
list are found after some reasonable number of uses of SREE in a domain.

5 Architecture and Construction of SREE

This section describes the architecture and construction of SREE, which permit SREE
to be modular, easy to changeﬁ, extensible, and easy to use. Basically, SREE has two
main components, the AIC and the lexical analyzer.

5.1 Ambiguity Indicator Corpus (AIC)

The AIC contains the corpus of indicators of potential ambiguity. Because of the vast
richness of NL, it is simply not possible to have an AIC that contains an indicator of
every possible potential ambiguity. Therefore, SREE allows its user to add new indicators
to its AIC. There are two AICs in SREE, the original indicator corpus (OIC) and the
customized indicator corpus (CIC). The OIC contains ten subcorpora, each in a separate
file, each with its own list of indicators, and each named for the nature of the potential
ambiguities indicated by elements of its contents. The indicators in these subcorpora are:

— Continuance: contains indicators: as follows, below, following, in addition, in particular,
listed, meantime, meanwhile, on one hand, on the other hand, and whereas.

— Coordinator: contains the indicators: and, and/or, and or.

— Directive: contains the indicators: e.g., etc., figure, for example, i.e., note, and table.

— Incomplete: contains the indicators: TBA, TBC, TBD, TBE, TBS, TBR, as a minimum,
as defined, as specified, in addition, is defined, no practical limit, not defined, not
determined, but not limited to, to be advised, to be defined, to be completed, to be
determined, to be resolved, and to be specified.

5 The prototype’s being easy to change is critical when one is continually subjecting the proto-
type to changes as new requirements are discovered.

88 S.F. Tjong and D.M. Berry

Optional: contains the indicators: as desired, at last, either, eventually, if appropriate, if
desired, in case of, if necessary, if needed, neither, nor, optionally, otherwise, possi-
bly, probably, and whether.
Plural: contains a list of 11,287 plural nouns, each ending in “s”. We differentiate the terms
“Pluralnoun” and “plural noun”. The former is what is detected by SREE as a result of its use
of the Plural corpus. The latter is the collection of nouns, which are of plural types. SREE
has 100% recall of Pluralnouns, but not of plural nouns.
Pronoun: contains the indicators: anyone, anybody, anything, everyone, everybody, ev-
erything, he, her, hers, herself, him, himself, his, i, i, its, itself, me, mine, most, my,
myself, nobody, none, no one, nothing, our, ours, ourselves, she, someone, some-
body, something, that, their, theirs, them, themselves, these, they, this, those, us, we,
what, whatever, which, whichever, who, whoever, whom, whomever, whose, who-
sever, you, your, yours, yourself, and yourselves.
Quantifier: contains the indicators: all, any, few, little, many, much, several, and some.
— Vague: contains the indicators: /, < >, (),[1, ,;, ?,!, adaptability, additionally, adequate,
aggregate, also, ancillary, arbitrary, appropriate, as appropriate, available, as far as,
at last, as few as possible, as little as possible, as many as possible, as much as
possible, as required, as well as, bad, both, but, but also, but not limited to, capable
of, capable to, capability of, capability, common, correctly, consistent, contemporary,
convenient, credible, custom, customary, default, definable, easily, easy, effective,
efficient, episodic, equitable, equitably, eventually, exist, exists, expeditiously, fast,
fair, fairly, finally, frequently, full, general, generic, good, high-level, impartially, infre-
quently, insignificant, intermediate, interactive, in terms of, less, lightweight, logical,
low-level, maximum, minimum, more, mutually-agreed, mutually-exclusive, mutually-
inclusive, near, necessary, neutral, not only, only, on the fly, particular, physical, pow-
erful, practical, prompt, provided, quickly, random, recent, regardless of, relevant, re-
spective, robust, routine, sufficiently, sequential, significant, simple, specific, strong,
there, there is, transient, transparent, timely, undefinable, understandable, unless,
unnecessary, useful, various, and varying.
— Weak: contains the indicators: can, could, may, might, ought to, preferred, should, will,
and would.

SREE automatically loads these corpora into the AIC each time a user starts up SREE.
Note that the indicators for the only ambiguity are already listed among the indicators
for vagueness.

The user of SREE is not allowed to modify or delete any of the original corpora in
the OIC. He may add to the CIC any indicator of potential ambiguity that he may find
that is not in the AIC. He may also remove from the CIC indicators that have proved
less than helpful.

5.2 Lexical Analyzer

SREE’s lexical analyzer scans a RS, RStat by RStat, and scans each RStat, token by
token, for any occurrence of any indicator in the AIC. During the scan, the lexical
analyzer of SREE reads tokens from its input RS and compares each token with each
indicator in the AIC. If SREE finds a match, it reports the token and its containing RStat
as a potentially ambiguous Rstat.

Prototype Ambiguity Finder for Requirements Specifications 89

6 Evaluation of Design and Acceptability of Imprecision Amounts

The question that needs to be answered for SREE as an AFT is, “Which costs a user
more, her searching for ambiguities with SREE or her searching for ambiguities totally
manually?” To answer this question, we will need to know

— how much time is spent searching for any ambiguity in a totally manual search,

— the amount of time spent in rejecting a false positive, and

— whether knowing the scope of SREE really allows the user to ignore the types of
ambiguities in SREE’s scope.

This section uses this information to do an estimated evaluation of the times to use the
AFT and to do a manual search to find all ambiguities in the same RS.

The evaluation in this section is not intended to be and is not an empirically sound
validation of the effectiveness of SREE as an AFT. Because of the weaknesses reported
in Section 7, empirically evaluating the reported version of SREE would be a waste
of effort. The sole purpose of the estimation-based evaluation of this section is to de-
termine if it is worth proceeding with the research to design an AFT with the stated
goals.

6.1 Time Comparison

When Tjong was doing the research reported herein, she had to do a completely man-
ual examination of each RS that was used in the research and experiments in order to
determine which of its Rstats were ambiguous according to the list of ambiguity types
that she had built. The New Adelaide Airport RS, with 63 Rstats, required 1.5 hours
for its examination, i.e., about 86 seconds per Rstat to determine which of its Rstats
were ambiguous. The MCSS RS, with 246 Rstats, required 6 hours, in 2 3-hour sit-
tings, i.e., about 88 seconds per Rstat to make the same determination. The average of
these inspection times per Rstat is about 87 seconds.

On the other hand, after she had run SREE on the 22 random Rstats, she spent 3
minutes and 45 seconds or about 10 seconds per Rstat to determine which of the 20 that
were marked as potentially ambiguous were truly ambiguousﬁ. This determination was
essentially instinctive and did not require consulting any lists. That is, without looking
at any lists, she could see very quickly what kind of potential ambiguity was present in
each potentially ambiguous Rstat and was able to quickly decide if the potential ambi-
guity was actual. Of course, from her research, she was attuned to finding ambiguities,
as would be any experienced ambiguity inspector.

When Tjong ran SREE on the 63 Rstats of the New Adelaide Airport RS [7, pp.
A1-A37], SREE marked 42, or 66.66%, of them as potentially ambiguous. When she
ran SREE on the 246 Rstats of the MCSS RS [[Z, pp. A38—A179], SREE marked 201,

® The first author had sent these 22 Rstats to others to have them identify the ambiguities they
found. These included a PhC in knowledge management, two software engineers, and a mar-
keting executive. None of them found anywhere near the number of ambiguities that the author
had found. None of them but the PhC had background in RE and none was a specialist in am-
biguity finding.

90 S.F. Tjong and D.M. Berry

or 81.70% of them as potentially ambiguous. The weighted average fraction of the
RStats that SREE marked as potentially ambiguous was 78.64%. This figure means
that on average at about 80% of the Rstats an RS both lie within SREE’s scope and are
potentially ambiguous. Tjong’s running of SREE against the RSs was about a year and
a half after she had finished the manual examination of the RSs, enough time that she
could not remember the details of what she had done previously, and which sentences
were ambiguous.

Once SREE had produced its output from the RSs, Tjong had to examine each
marked potentially ambiguous Rstat to determine if it is truly ambiguous. The exam-
ination of the 42 marked Rstats of the New Adelaide Airport RS required about 17
minutes, or about 24 seconds per Rstat. The examination of the 201 marked Rstats of
the MCSS RS required about 43 minutes, or about 13 seconds per Rstat. The weighted
average examination per potentially ambiguous Rstat is about 15 seconds.

So, the choices are:

1. Completely Manual Inspection: Manually inspect an entire RS of n Rstats for all
types of ambiguities, having to continually consult a list of the types of ambiguities
to ensure that none are overlooked, spending about 87 seconds per Rstat, for a total
of 87 x n seconds.

2. Using SREE for the Ambiguities in its Scope and Manual Inspection for the
Rest of the Ambiguities: Run SREE on the RS to obtain a list of potentially am-
biguous Rstats, spending about 15 seconds per Rstat to decide which potentially
ambiguous Rstat is truly ambiguous. Then manually inspect the entire RS for only
the types of ambiguities not in SREE’s scope.

If, as estimated, about 80% of the Rstats of a RS both lie within SREE’s scope
and are potentially ambiguous, then SREE will mark .8 x n Rstats as potentially
ambiguous and the user will have to spend about 15 seconds to examine each of
them, for a total of 12 x n seconds. Then, the user will have to examine the full RS
for ambiguities not in SREE’s scope. Since at least 80% of the Rstats lie in SREE’s
scope, a lower bound of the fraction of the Rstats containing potential ambigui-
ties not in SREE’s scope is 20%. Of course, there will probably be some Rstats
that have a potential ambiguity in SREE’s scope and a potential ambiguity not in
SREE’s scope. So the actual fraction of Rstats containing potential ambiguities not
in SREE’s scope is more than 20%. We estimate that at worst, about 50% of the
Rstats have potential ambiguities not in SREE’s scope.

On the assumption that the user of SREE is very familiar, from lots of practice,
with the scope of SREE, we estimate that the examination of the entire RS for
potentially ambiguous Rstats outside of the scope of SREE to be about 1.25 x 87 x
.5 x n = 54.4 x n seconds, with about 25% more time spent per Rstat than in the
normal manual examination of the Rstat to account for having to skip over potential
ambiguities in SREE’s scope.

Which is larger?

- 87 X nor
- 12xn+54.4xn=664xn?

Prototype Ambiguity Finder for Requirements Specifications 91

Clearly, the former is larger, and it is about about 23% higher. Thus, the estimated time
spent for each Rstat in the mixed-SREE-and-manual-inspection choice is about 75% of
the estimated time spent per Rstat in the totally-manual-inspection choice.

As mentioned, this calculated estimated difference depends on the SREE user’s hav-
ing learned to ignore potential ambiguities in SREE’s scope to focus her search on find-
ing ambiguities not in SREE’s scope. From our experience using other tools and having
learned what they do and do not do, we believe that this assumption is reasonable.

The estimated advantage of using SREE in the proper manner over a completely
manual search is not very large. In any case, 50% was used as the estimate of the per-
centage of Rstats that have potential ambiguities not in SREE’s scope in order that the
comparison be pessimistic on SREE’s side. Part of the future work will surely be case
studies with careful measurements of the values required for the comparison. Never-
theless, the estimated values are good enough to justify further research to find a better
decomposition of the ambiguity finding task that allows an AFT that truly meets SREE’s
goals.

6.2 Evaluation of Imprecision

The analysis of the SREE runs on the New Adelaide Airport RS shows that there were
58 false positives among the 180 potential ambiguities that SREE found in the RS, for
a precision of 68%. The analysis of the SREE runs on the MCSS RS shows that there
were 247 false positives among the 723 potential ambiguities that SREE found in the
RS, for a precision of 66%. Neither of these precisions is as close to 100% as we had
hoped. In retrospect, however, when the AFT does no analysis of what it finds, it is to
be expected that a large percentage of what it finds are false positives. Nevertheless,
even with this high imprecision, the mixed-SREE-and-manual-inspection time is less
than the totally-manual-inspection time. So, it is possible that SREE’s imprecision will
not be considered burdensome.

6.3 SREE’s Weaknesses
SREE’s weaknesses that can be observed from our findings are:

— the fact that SREE’s scope includes only Pluralnouns and not plural nouns. As
explained, Pluralnouns are those tokens recognized as potentially ambiguous by
SREE as a result of the Plural corpus, whereas plural nouns is the actual set of
nouns that are plural. SREE has 100% recall of Pluralnouns, but not of plural nouns.
It may be better to report as potentially plural any word that ends in S and to put into
the AIC a list of only irregular plural nouns that do not end in S. A complete enough
list of irregular plural nouns that do not end in S is probably smaller than the current
list of 11,287 Pluralnouns and is probably easier to make complete enough than a
list of all plural nouns. Alternatively, the user is responsible for continuing to add
more and more plural nouns to the list of Pluralnouns in the AIC until Pluralnouns
has converged on all plural nouns that ever show up in the specifications that the
user encounters. This convergence may never really happen due to the inherent and
surprising richness of NL. In the end, if too many plural nouns are outside SREE’s

92 S.F. Tjong and D.M. Berry

scope, then perhaps not even the 11,287 plural nouns in the Plural corpus should be
in SREE’s scope.

— the fact that the AIC is not complete, as evidenced by the continual, relentless
discovery of new indicators to add to the AIC during the research to develop SREE.
An outstanding question is whether this AIC will converge for a language or even
a domain. We do expect that at some point, the rate of addition of new indicators
for other than Pluralnouns will drop considerably, just because we will eventually
begin not to find new types of ambiguities. Thus, this work is complementary to
all other research work cited in Section 2 that attempts to find systematic ways of
detecting or avoiding ambiguities.

— the fact that the SREE’s measured precision rate is lower than the goal of not too
much less than 100%, particularly because a singular verb that happens to look like
an element of Pluralnouns is reported as potentially ambiguous and because a non-
subject plural noun matching an element of Pluralnoun is reported as potentially
ambiguous (Recall that a plural noun is ambiguous only when it is the subject of
a sentence). Despite the low precision, the authors believe that the use of SREE
with its 100% recall of potential ambiguities in its scope is better for the user than
to have to have to find these potential ambiguities manually in close, error-prone
readings of the RS.

7 Conclusion and Future Work

This paper has described the prototyping of SREE, which was designed to be the algo-
rithmic AFT in a decomposition of a process for finding ambiguities in a NL RS into
two easily distinguished parts:

1. the algorithmic part that can be done with 100% recall by a tool, the dumb tool, and
2. the nonalgorithmic part that is smaller than manually searching the entire RS and
which requires the intelligence of a smart human.

While SREE does not meet all of its its goals, we have learned a lot that can be used in
the next attempt to build an AFT according to the suggested decomposition.

The trials showed several weaknesses of SREE and, thus, opportunities for improve-
ment,

— in determining if the list of indicators for the AIC will stabilize for any language or
domain, and
— dealing with plural nouns.

The high number of false positives among the potential ambiguities matching indicators
in the Plural corpus raises concerns about the usefulness of the chosen method to deal
with the plural noun ambiguity. Perhaps, a larger list of plural nouns, including irreg-
ulars is needed in the AIC. Alternatively, it may be even better to have SREE’s lexical
analyzer recognize

1. all words ending in S, s, ae, aux, and other common plural noun endings, and
2. all words in a new Plural corpus consisting of as many irregular plural nouns as
possible as potential plural nouns.

Prototype Ambiguity Finder for Requirements Specifications 93

While this new method will probably find more potentially ambiguous plural nouns
than the current method, the new method will probably have higher imprecision than
the current method. Ultimately, the issue is which is worse: to have to manually search
for plural nouns not currently in SREE’s scope or to have more imprecision?

With this method of dealing with plural nouns, there is yet another tradeoff for an
AFT designed with the goal of 100% recall as suggested by this paper. If the AFT has
a smaller scope then it is easier to reach the goal of 100% recall. However, then the
manual search that accompanies the AFT use would have more to do. So it pays to try
to find a way to include more potential ambiguities in the scope of any AFT.

Finally, if ever a prototype AFT is developed that passes muster in an informal eval-
uation like that described in this paper, the AFT must be subjected to a proper, unbiased
empirical evaluation, with several users using the AFT applied to several industrial-
strength RSs.

Acknowledgements. The authors thank Michael Hartley, Jack, Shindy, and Inn Fang
for their comments on all the research reported in this paper. Daniel Berry’s work was
supported in parts by a Canadian NSERC grant NSERC-RGPIN227055-00 and by a
Canadian NSERC-Scotia Bank Industrial Research Chair NSERC-IRCPJ365473-05.

References

1. Berry, D.M., Gacitua, R., Sawyer, P., Tjong, S.F.: The case for dumb requirements engineer-
ing tools. In: Regnell, B., Damian, D. (eds.) REFSQ 2011. LNCS, vol. 7195, pp. 211-217.
Springer, Heidelberg (2012)

2. van Rossum, W.: The implementation of technologies in intensive care units: Ambiguity, un-
certainty and organizational reactions. Technical Report Research Report 97B51, Research
Institute SOM (Systems, Organisations and Management), University of Groningen (1997),
http://irs.ub.rug.nl/ppn/165660821

3. Sussman, S.W., Guinan, P.J.: Antidotes for high complexity and ambiguity in software de-
velopment. Information and Management 36, 23-35 (1999)

4. Gause, D.C., Weinberg, G.M.: Exploring Requirements: Quality Before Design. Dorset
House, New York (1989)

5. Mich, L., Franch, M., Inverardi, P.N.: Market research for requirements analysis using lin-
guistic tools. Requirements Engineering Journal 9(1), 40-56, 9(2), 15 (2004); has full article
with inverted names, No. 2 has correction of names and reference to full article in No. 1.

6. Berry, D.M., Kamsties, E.: Ambiguity in requirements specification. In: Leite, J., Doorn, J.
(eds.) Perspectives on Requirements Engineering, pp. 7-44. Kluwer, Boston (2004)

7. Tjong, S.F.: Avoiding Ambiguity in Requirements Specifications. PhD thesis, Faculty of
Engineering & Computer Science, University of Nottingham, Malaysia Campus, Semenyih,
Selangor Darul Ehsan, Malaysia (2008),
https://cs.uwaterloo.ca/ “dberry/FTP SITE/
tech.reports/TjongThesis.pdf

8. Ambriola, V., Gervasi, V.: On the systematic analysis of natural language requirements with
CIRCE. Automated Software Engineering 13, 107-167 (2006)

9. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement specifica-
tions. In: Proceedings of the Nineteenth International Conference on Software Engineering
(ICSE 1997), pp. 161-171 (1997)

http://irs.ub.rug.nl/ppn/165660821
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/TjongThesis.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/TjongThesis.pdf

94

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

S.F. Tjong and D.M. Berry

. Fabbrini, F.,, Fusani, M., Gnesi, S., Lami, G.: Quality evaluation of software requirement

specifications. In: Proceedings of the Software and Internet Quality Week 2000 Conference,
pp- 1-18 (2000)

. Fabbrini, F,, Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language

requirements, quality: Benefits of the use of an automatic tool. In: Proceedings of the Twenty-
Sixth Annual IEEE Computer Society — NASA GSFC Software Engineering Workshop,
pp- 97-105 (2001)

Kasser, J.: Tiger pro manual. Technical report, University of South Australia (2006),
http://users.chariot.net.au/~g3zcz/TigerPro/tigerPro.pdf

Willis, A., Chantree, F., de Roeck, A.: Automatic identification of nocuous ambiguity. Re-
search on Language and Computation 6, 355-374 (2008)

Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambiguity
identification and measurement in natural language requirements specifications. Require-
ments Engineering Journal 13, 207-239 (2008)

Miller, G.A., Felbaum, C., et al.: WordNet Web Site. Princeton University, Princeton,
http://wordnet.princeton.edu/|(accessed March 12, 2006)

Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: Towards a tool explaining ambiguity
sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 218-232.
Springer, Heidelberg (2010)

Agarwal, R., Boggess, L.: A simple but useful approach to conjunct identification. In: Pro-
ceedings of the Thirtieth Annual Meeting of the Association for Computational Linguistics
(ACL 1992), pp. 15-21 (1992)

. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its ap-

plication to problems of ambiguity in natural language. Journal of Artificial Intelligence
Research 11, 95-130 (1999)

. Goldberg, M.: An unsupervised model for statistically determining coordinate phrase attach-

ment. In: Proceedings of the Thirty-Seventh Annual Meeting of the Association for Compu-
tational Linguistics on Computational Linguistics (ACL 1999), pp. 610-614 (1999)
Chantree, F., Willis, A., Kilgarriff, A., de Roeck, A.: Detecting dangerous coordination am-
biguities using word distribution. In: Recent Advances in Natural Language Processing: Cur-
rent Issues in Linguistic Theory, vol. 4 (292), pp. 287-296. John Benjamins (2007)

Tjong, S.F., Hallam, N., Hartley, M.: Improving the quality of natural language require-
ments specifications through natural language requirements patterns. In: Proceedings of the
Sixth IEEE International Conference on Computer and Information Technology (CIT 2006),
pp- 199-206 (2006),

https://cs.uwaterloo.ca/ “dberry/FTP SITE/
reprints.journals.conferences/TjongHallamHartley2006A.pdf
Tjong, S.F.: Natural language patterns for requirements specifications. Technical report, Fac-
ulty of Engineering & Computer Science, University of Nottingham, Malaysia Campus
(2006),

https://cs.uwaterloo.ca/ dberry/FTP SITE/
tech.reports/TjongTR-02 2006 .pdf

Tjong, S.F., Hartley, M., Berry, D.M.: Extended disambiguation rules for requirements spec-
ifications. In: Proceedings of the Tenth Workshop on Requirements Engineering a.k.a. Work-
shop em Engenharia de Requisitos (WER 2007), pp. 97-106 (2007),
http://wer.inf.puc-rio.br/WERpapers/

artigos/artigos WER07/Lwer07-tjongl.pdf

Tjong, S.F., Hallam, N., Hartley, M.: An adaptive parsing technique for prorules grammar.
In: Proceedings of the Computer Science and Mathematics Symposium (CSMS) (2006),
https://cs.uwaterloo.ca/ dberry/FTP SITE/
reprints.journals.conferences/TjongHallamHartley2006B.pdf

http://users.chariot.net.au/~g3zcz/TigerPro/tigerPro.pdf
http://wordnet.princeton.edu/
https://cs.uwaterloo.ca/~dberry/FTP_SITE/reprints.journals.conferences/TjongHallamHartley2006A.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/reprints.journals.conferences/TjongHallamHartley2006A.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/TjongTR-02_2006.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/TjongTR-02_2006.pdf
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER07/Lwer07-tjongl.pdf
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER07/Lwer07-tjongl.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/reprints.journals.conferences/TjongHallamHartley2006B.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/reprints.journals.conferences/TjongHallamHartley2006B.pdf

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

Prototype Ambiguity Finder for Requirements Specifications 95

Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. In: Proceedings of the Fortieth Annual Meeting of
the Association for Computational Linguistics (ACL 2002), pp. 263-270 (2002)
Hammerton, J., Osborne, M., Armstrong, S., Daelemans, W.: Introduction to special issue on
machine learning approaches to shallow parsing. Journal of Machine Learning Research 2,
551-558 (2002)

Bray, I.LK.: An Introduction to Requirements Engineering. Addison-Wesley, Harlow (2002)
Eng, C.S.: Batch poster system, detailed business requirements. Technical report, EDS
MySC (2005)

EPRI: Cask loader software, general requirements document draft. Technical Report, Electric
Power Research Institute Inc. (1999),

http://www.epri.com/eprisoftware/
processguide/docs/srdexdoc.doc

Nelbach, F.: Software requirements document for the data cycle system (DCS). Technical
Report, Universities Space Research Association, UCLA (2002),
http://www.astro.ucla.edu/ shuping/

SOFIA/Documents/DCS SRD Revl.pdf

Moeser, R., Perley, P.: Expanded very large array (EVLA) operations interface software
requirements. Technical Report EVLA-SW-003, National Radio Astronomy Observatory
(2003),

http://www.aoc.nrao.edu/evla/techdocs/
computer/workdocs/array-sw-rgmts.pdf

Dubois, R.: Large area telescope (LAT) science analysis software specification. Technical
Report GE-0000X-DO, SLAC National Accelerator Laboratory (2000),
http://www.last.slac.stanford.edu/
IntegrationTest/DataHandling/docs/LA%T-SS-00020-6.pdf

George, S.: PESA high-level trigger selection software requirements. Technical Report, Cen-
tre for Particle Physics at Royal Holloway University (2001),
http://www.pp.rhul.ac.uk/atlas/newsw/requirements/1.0.2/
Stevenson, M., Hartley, M., Iacovou, H., Tan, A., Phan, L.: Software requirements specifica-
tion for sort algorithm demonstration program. Technical report, SDPM (2005)

http://www.epri.com/eprisoftware/processguide/docs/srdexdoc.doc
http://www.epri.com/eprisoftware/processguide/docs/srdexdoc.doc
http://www.astro.ucla.edu/~shuping/SOFIA/Documents/DCS_SRD_Rev1.pdf
http://www.astro.ucla.edu/~shuping/SOFIA/Documents/DCS_SRD_Rev1.pdf
http://www.aoc.nrao.edu/evla/techdocs/computer/workdocs/array-sw-rqmts.pdf
http://www.aoc.nrao.edu/evla/techdocs/computer/workdocs/array-sw-rqmts.pdf
http://www.last.slac.stanford.edu/IntegrationTest/DataHandling/docs/LA%T-SS-00020-6.pdf
http://www.last.slac.stanford.edu/IntegrationTest/DataHandling/docs/LA%T-SS-00020-6.pdf
http://www.pp.rhul.ac.uk/atlas/newsw/requirements/1.0.2/

Factors Influencing User Feedback on Predicted
Satisfaction with Software Systems

Rumyana Proynova and Barbara Paech

Software Engineering Group, Institute for Computer Science,
University of Heidelberg, Germany
{proynova,paech}@informatik.uni-heidelberg.de

Abstract. Requirements engineers need feedback from users on planned
system features. The simplest way is to present feature descriptions to
the users and ask for their opinion. [Problem/question] The feedback
users can give in such a situation is not always accurate. The mecha-
nisms which cause a mismatch between actual and predicted user sat-
isfaction are currently not well understood. [Method/results] We used
the results from a previous study we conducted, together with insights
on consumer satisfaction from marketing, to create a working model of
predicted user satisfaction. We validated the model with a new, more ex-
tensive empirical study. [Contribution] We present a model of predicted
user satisfaction. Unlike the existing models of user satisfaction for soft-
ware systems, it can be used for gathering feedback before a user has
had experience with a software system. Our study shows that measuring
predicted satisfaction can deliver a good approximation of actual satis-
faction, although there is some prediction discrepancy which could be
reduced by choosing the right combination of influence factors.

1 Introduction

It is not feasible to involve users in requirements elicitation in all projects, even
though this could lead to higher quality requirements. Factors like the unavail-
ability of users (for example in global software development projects or off-
the-shelf software products with no designated users) or limited budget and
resources, as well as company culture, can dictate that the requirements for the
software are derived from other sources. In order to ensure that these require-
ments are aligned with the needs of the users, the requirements engineers can
let the users validate the requirements.

The constraints which preclude resource-intensive elicitation techniques are
likely to also preclude similarly resource-intensive validation techniques. A tech-
nique which produces adequate results but requires a comparably low level of
effort can enable early validation in projects where currently users are not in-
volved until the very late stages of the project such as testing or even roll-out of
a completed product. Our research focuses on defining such a technique, based
on a questionnaire which asks the users to indicate their future satisfaction with
a list of software features.

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 96-[[TT] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Factors Influencing User Feedback on Predicted Satisfaction 97

While preparing a study conducted in a medicine information systems con-
text, we designed a simple questionnaire using an ad-hoc approach to measuring
satisfaction: users got a list of features and had to indicate their liking for the
features and evaluate their usefulness. As they did not have experience with the
actual system described, the questionnaire measured not the actual satisfaction,
but rather the users’ prediction of their future satisfaction once they will work
with the system, which we call predicted satisfaction. During the study, we be-
came aware of two difficulties with the ad-hoc approach to measuring predicted
satisfaction:

Misunderstanding of features. We were not sure that the users understood
the feature descriptions well enough to predict their satisfaction. It is possible
that they were not able to form a clear conception of the feature based on
its description only. Alternatively, they could have built a wrong conception
and predicted their satisfaction based on this wrong conception.

Inaccurate prediction. We were not sure that predicted satisfaction will re-
sult in actual satisfaction, and we found no evidence either for or against
this phenomenon in literature.

The current article describes our efforts to create a model of predicted user
satisfaction, which is based on knowledge about individual features, as opposed
to the need for the user to have experience with the entire system. We plan to use
this model to create a questionnaire for measuring predicted satisfaction such
that the discrepancy between actual satisfaction and the satisfaction predicted
with our questionnaire is minimized.

In the next section, we give an overview of existing models for measuring sat-
isfaction and the extent to which they apply to our problem. Section [describes
the method we used to arrive at a working model of predicted user satisfaction.
In Section [we present an empirical study validating our model. After a discus-
sion of our results in Section |3 , we give an outlook of our future research in the
last section.

2 Related Work

2.1 Consumer Satisfaction in Marketing

Our intention is to measure user satisfaction with a software product which does
not yet exist, by asking users to predict their satisfaction based on a require-
ments specification. These methods are common in marketing, where prospec-
tive consumers are asked to predict their satisfaction based on planned product
features.

Overview. Research in marketing and psychology has lead to the creation of
elaborate theoretical models for consumer satisfaction [I5] which can be used
to create better methods for measuring satisfaction in specific contexts. Early
theories assumed that satisfaction is proportional to product performance. Each

98 R. Proynova and B. Paech

product has attributes specific to its product category - for example, a soft drink
has attributes like fizziness and sweetness, and a vehicle has attributes like gas
mileage and number of seats. Performance is measured on appropriate scales, and
it is assumed that high performance on attributes important to the customer
automatically leads to high satisfaction. This model is known as importance-
performance analysis [12]. A more modern model descended from importance-
performance analysis is the Kano model [I8], which can also be used to evaluate
features of software systems [I7]. This type of model can measure either predicted
or actual satisfaction, depending on whether the consumer has experience with
the product or is only presented with a description.

Empirical evidence suggests that direct product performance measurements
are only weakly correlated with satisfaction [I5]. This has led to the develop-
ment of new models of satisfaction, some of which are context specific (e.g.
SERVQUAL [2], which is constrained to services only), while others are univer-
sal. The model which predicts satisfaction best is that of expectation disconfir-
mation [14]. In this model, customers have expectations about the performance
of the product they wish to buy. The expectation itself can be positive or nega-
tive, e.g. a consumer expects good print contrast when buying extra-bright office
paper and bad contrast when buying recycled office paper. There is usually a
discrepancy between expected and actual product performance, which results in
positive or negative disconfirmation (The product turns out to be better/worse
than expected). The combined effects of expectation and disconfirmation create
the final level of satisfaction.

Applicability. The theoretical models of customer satisfaction used in mar-
keting are very elaborate and include many variables not easily measured in a
simple questionnaire. Indeed, we could not find an instrument combining all the
known variables for measuring a single satisfaction score; even popular instru-
ments such as the ACSI (American consumer satisfaction index) [8] only use a
few of these variables. These models do not consider the specific problems which
can occur in the situation of a user having to validate the requirements for a
software product. Therefore, they are useful as a basis for our research, but do
not offer an instrument which can be applied directly for measuring predicted
user satisfaction.

2.2 User Satisfaction with Software Systems

We searched for user satisfaction in software engineering literature and found
that there are several widely used methods for measuring satisfaction with exist-
ing systems, but their theoretical background has not been studied as extensively
as the marketing models. We did not find publications on measuring predicted
satisfaction in a software engineering context.

Overview. We found three approaches for measuring satisfaction with software
systems. Numerous studies use ad-hoc measurements of satisfaction (such as
Likert scales directly labeled with “high” and “low” satisfaction, e.g. in [13]).

Factors Influencing User Feedback on Predicted Satisfaction 99

There is a number of general models for measuring user satisfaction. An early
instrument created by Bailey and Pearson [I] was validated and refined by many
other researchers, finally resulting in the revised model of information system
success by DeLone and McLean [6]. Another model used for measuring user sat-
isfaction is the TAM (Technology Acceptance Model) first published in 1989 [5]
and its descendant UTAUT (Unified theory of acceptance and use of technol-
ogy) [19]. In the field of human-computer interaction, the QUIS instrument [3]
(Questionnaire for user interaction satisfaction) is frequently used.

There are also specialized approaches which work with a very narrow model
of satisfaction limited to a certain domain. Examples are the use of quality
of service parameters as a proxy to user satisfaction (used for example in [9],
[21]) employed when measuring user satisfaction with network products, and the
PARADISE model [20] which is specific for measuring satisfaction with dialogue
systems.

Applicability. The models of user satisfaction listed above are created for eval-
uating implemented systems in their entirety. Not all of the variables measured
can be used on individual features. They also assume that the user has expe-
rience with the system. For example, they include variables for measuring the
frequency of system use, or the quality of user support. Therefore, they can not
be directly used for measuring predicted satisfaction based on a list of features
only. Instead, we can create a model specifically intended for measuring pre-
dicted satisfaction, based on the parts of those models which have relevance for
individual feature descriptions.

3 Towards a Model of Predicted User Satisfaction

Our long-term research goal is to construct an instrument for measuring pre-
dicted satisfaction and confirm that it delivers reliable results not distorted by
misunderstanding of features or inaccurate prediction. In order to create a pre-
liminary model of user satisfaction, we started with a list of variables describing
the two effects mentioned above: perceived understanding and actual understand-
ing, intended to measure the misunderstanding of features, and satisfaction pre-
diction error, intended to measure inaccurate prediction. We also conjectured
that the degree of understanding is influenced by the choice of feature represen-
tation format.

We conducted a first live study investigating the connection between these
variables during RefsQ 2012. We then used our findings to create a more complete
model of user satisfaction which we describe in Section . We validated these
findings in a new study, described in Section [. Raw data from both studies can
be downloaded from www.varemed.org.

100 R. Proynova and B. Paech

3.1 First Empirical Study

A detailed account of this study can be found in an earlier publication [16]. Here,
we summarize those aspects of the design and the findings which are relevant
for the understanding of the rest of the present publication.

Study Design. For the study, we created a requirements specification for a
simple expense management system. The specification consisted of 16 features
and was available in two different formats, as user tasks [I0] and user stories [4].
We also implemented a prototype of the software specified by the features, which
was capable of convincingly simulating the finished software with a prepared
set of test data. We then recorded screen casts demonstrating the use of the
features from the specification, including a narrated explanation of the software
functionality. Each demonstration explained two to five features, resulting in a
total of 5 recordings.

The 56 participants were self-selected requirements specialists playing the
role of users. They were about equally divided between academic and industry
background, with experience in requirements engineering varying from a few
months to several decades. They were randomly assigned to one of two groups
of equal size, the user tasks group and the user stories group. They were given
time to read the requirements specification. Then they were asked to answer
questions about each feature, measuring perceived understanding and predicted
satisfaction. After they had completed this part, they were shown the recorded
demonstrations. After each demonstration, they were asked to answer new ques-
tions about each feature, which measured the actual satisfaction and the actual
understanding with the implemented features. The questionnaire also included
space for free-text descriptions of the difference between the imagined and actual
implementation of each feature, as well as space for suggestions and feedback.
The exact wording of the questions was the same as in the second study, and is
described in more detail in Section 4.

Findings. We evaluated the data from the experiment and found that actual
understanding has a positive correlation with perceived understanding and pre-
dicted satisfaction. The correlation coefficient with actual satisfaction was 0.08
and not significant at a 5% confidence. We also calculated the variable sat-
isfaction prediction discrepancy as the absolute difference between actual and
predicted satisfaction. It had a negative correlation with actual understanding
(r = —0.23, significant at = 0.05), meaning that better understanding results
in more accurate satisfaction prediction. All of these effects appeared indepen-
dently of the feature representation format used.

We were able to gain further insights based on the free-text answers. Partici-
pants suggested that their evaluations of the main variables were influenced by
previous experience with the same feature in the context of a different software
product (such as printing a document), by not being able to imagine a good use
for the feature, and by having no emotional attachment to the software product.

Factors Influencing User Feedback on Predicted Satisfaction 101

Prediction discrepancy is a good way to describe the accuracy of our ques-
tionnaire. In our study, we found that the mean prediction discrepancy was 0.9,
with standard deviation of 1.07 units (measured on a scale from 1 to 5). Based
on these results, we feel that while our questionnaire delivers usable results of
predicted satisfaction, its accuracy can be much improved.

3.2 A Preliminary Model of Predicted User Satisfaction

After our first study, we created a working version of our model of predicted
user satisfaction. Figure [shows a graphical representation of the model. Bub-
bles represent variables, arrows denote influence of one variable on another.
Variables which can only be measured after users have had experience with the
implemented system have a grey background.

- m o m EmEEEE e EEEEEEEEEE--== N
: _S actual predicted !
1 © (_satisfaction v, vy V _satisfaction)|
'® prediction 1
— 32 : :
1 8 discrepancy :
A T oo - =

actual percelved pred|cted familiarity emot|onal
understanding understanding usefulness attachment

Fig. 1. Our working model of user satisfaction

We do not claim this model to be exhaustive. It is possible that there are
more variables influencing predicted satisfaction, or that there are cross-links
between the variables listed here. Our study provides only a first validation of
the model. Still, even in its incomplete form, it can be useful for gaining insight
in user satisfaction.

Actual satisfaction. This is the user’s response to the implemented feature.
It cannot be measured before the implementation exists.

Predicted satisfaction. This is a self-reported forecast of what the future sat-
isfaction with a feature’s implementation will be. Users can make these fore-
casts based on a feature description.

Prediction discrepancy. Predicting satisfaction is a form of affective forecast-
ing [I1]. It can never be completely precise, as humans do not exactly know
what their emotional state will be in the future. We use the term prediction
discrepancy in the context of a single prediction to denote the absolute dif-
ference between predicted and actual satisfaction. Thus, if user X predicted
satisfaction with feature Y as 3, but later evaluated her actual satisfaction
as a 5, the prediction discrepancy will be |5 — 3| = 2.

Our aim is to create an instrument for validating requirements. We are inter-
ested in minimizing the prediction discrepancies in the data gathered with

102 R. Proynova and B. Paech

it, thus obtaining more precise results. Therefore we consider prediction dis-
crepancy to be our main goal variable.

Actual understanding. The users have to create an accurate mental model

of the future implementation of a feature before they can predict their sat-
isfaction. We use the term actual understanding to refer to the accuracy of
the mental model. It can only be measured after users have been confronted
with the implementation.
If the mental model of the user is inaccurate, his or her predicted satisfaction
will not measure the response to the real feature, resulting in a larger pre-
diction error. Therefore, our model contains a negative link between actual
understanding and prediction error.

Perceived understanding. Users can judge the clarity of their mental model

of a feature. If the model is vague, then they are aware that they did not
understand the feature well. If their mental model is clear, they can report
that they have understood the feature. This is not the same as actual un-
derstanding, as the mental model can be clear, but still inaccurate or wrong
(we had examples for this in the first study, where some users answered an
open-ended question with a request to change the feature so that it does
something already shown in the demonstration). We measure this clarity of
the mental model in a separate variable, perceived understanding.
We conjecture that perceived understanding has two major effects on the
satisfaction variables. First, a low perceived understanding will obviously
lead to a larger prediction discrepancy, as a user with hazy understanding
does not have enough information to make a good prediction. Second, users
dislike complexity and feel frustrated by concepts they do not understand,
so perceived understanding should have a positive connection with predicted
satisfaction.

Familiarity. We included this variable based on the feedback from the first
study. While our participants had not used a software product of this type
before, they had encountered some of its functionality in other contexts, and
some of them noted that this had an influence on their answers. This can
be easily explained by the expectation disconfirmation theory of satisfaction
discussed in Section [2.1. Previous experience with a product attribute con-
tributes to the consumer building a strong expectation for this attribute in
other products of its class [I5]. In a software context, previous experience
with a software feature will help the user build a strong expectation of a
feature providing the same functionality in a different product—for example,
if a user has often encountered systems which offer a print preview before
sending a document to the printer, he or she will expect a new software
system to offer a preview too.

One of the likely effects of familiarity is to increase perceived understanding.
Users who have past experience with a feature will use it as an example to
imagine the implementation of the feature in the new system.

The effect of familiarity on the satisfaction variables is hard to predict. Dif-
ferent levels of expectation and disconfirmation can result in either a net

Factors Influencing User Feedback on Predicted Satisfaction 103

positive or a net negative effect. Previous exposure to a well implemented
feature is likely to result in a positive expectation and thus higher predicted
satisfaction, which can then result in an even higher actual satisfaction if
the feature is better than expected (positive disconfirmation), or lower actual
satisfaction if the feature is implemented worse than expected (negative dis-
confirmation). Similarly, exposure to a low-quality implementation is likely
to reduce predicted satisfaction, and the following disconfirmation has an
effect on actual satisfaction. There is also a second-grade effect possible,
where familiarity increases perceived understanding, which in turn increases
predicted satisfaction.

Predicted usefulness. This variable was also included in the model after the
first study. Some form of usefulness or adequacy for the task on hand is
already considered in models for satisfaction with software systems, for ex-
ample the variable perceived usefulness in TAM [5], or the item adequate
power in QUIS [3]. We did not include usefulness in the first questionnaire,
as we felt that it cannot be measured in our experiment setting, where the
users do not try to complete a real task and do not have first-hand experience
of the software. When we evaluated the open-ended questions, we noticed
that usefulness of the features was salient for many users, and they obviously
thought about it before forming a prediction for their satisfaction. Therefore,
we included the variable predicted usefulness in our model. We expect that
it has positive influence on predicted satisfaction.

Emotional attachment. Consumers can sometimes assign emotional value to
a brand or to a specific product, which increases their satisfaction [15]. We
had not planned to include this effect in our model, as we did not think
that we will see a consistent effect of functionality-describing features on
emotions. But the feedback on our first study uncovered that emotion still
has an influence on our measurement approach. A participant who found the
software “boring” wrote that he or she could not give any evaluation on their
future satisfaction, and his or her answers were always the middle choice on
the Likert scale, which was labeled with “indifferent” on the satisfaction
scales. As predicting satisfaction is a form of affective forecasting, we can
expect that users who are indifferent towards the software as a whole may
expect to not have any emotions towards its individual features once it is
implemented, and consistently choose a neutral option for all features. This
will distort the final results. We decided to measure emotional attachment in
our future studies so we can account for this effect. Our assumption is that
positive emotions towards the software will also be correlated with positive
predictions about the individual features and vice versa, hence we included
a positive link between emotional attachment and predicted satisfaction in
our model.

4 Empirical Study

We conducted a second study in May 2012. The general design was the same as
in the previous study. We used the same requirements specification (translated

104 R. Proynova and B. Paech

to German) and software prototype. The demonstrations were re-recorded, this
time with explanations in German. The participants read the feature descriptions
first, answered the questions measuring the pre-exposure variables based on the
descriptions. Then they were shown the recorded demonstrations and answered
the questions measuring the post-exposure variables based on the implementa-
tion. However, the new study differed from the old one in several important
points:

— The old study did not measure all the variables needed for our model. The
new study allows us to make new evaluations and gain information needed
for creating a more precise measuring approach.

— A limitation of the old study was that the participants were requirements
engineers and therefore accustomed to evaluating software features. This
is not a good representation of a population of generic software users. The
participants of the new study were university students, and the demographic
part of the questionnaire revealed that they have varied background, with
their fields spread widely accros different branches of engineering, humanities
and natural science. They constitute a much better, though still imperfect,
representation of the sample population.

— We added a third format of feature representation in the new study, using
sentence templates (" The system shall...”) [I7].

We measured the variables of our model using the questions listed in Table 1. ¢
shows the variable, measuring phase, question text (translated from the original
German) and labeling of the Likert scale. We used five-point scales, but only the
first, third and fifth position were labeled. When calculating the numeric results,
we assigned a 5 to the leftmost point and 1 to the rightmost point, so that for
example a predicted satisfaction of 5 corresponds to the answer “like”.

4.1 Research Goals

The purpose of the study was mainly confirmation of the model we described
in Section 3.9, We also expected to confirm our previous finding that predicted
satisfaction is independent of the format in which the features are presented.
The study also included open-ended questions intended for explorative research.

Model Confirmation. Our model has a compound goal variable consisting of
three satisfaction variables and five independent variables. Based on our model,
we formulated a hypothesis for the effect of each independent variable on one of
the satisfaction variables.

Hypothesis 1. Perceived understanding is positively linked with predicted sat-
isfaction.

Hypothesis 2. Actual understanding is negatively linked with prediction error.

Hypothesis 3. Participants with high familiarity will have different predicted
satisfaction than participants with low familiarity.

Factors Influencing User Feedback on Predicted Satisfaction 105

Table 1. Variables measured in the study. Variables marked with an asterisk were not
measured in the previous study.

Variable Measured Question Scale labels

perceived un- pre- I can imagine what the feature will look clearly — vaguely — not at all

derstanding exposure like in the finished software

predicted sat- pre- When the feature is implemented, I will like — indifferent — dislike

isfaction exposure have the following attitude

predicted use- pre- I can imagine ... why the feature is needed clearly — vaguely — not at all

fulness* exposure and what I will use it for.

actual satis- post- My attitude to the feature as implemented like — indifferent — dislike

faction exposure is ...

actual under- post- The implementation of this feature corre- well — a bit — not at all

standing exposure sponds to my earlier concept

familiarity* post- I have already used a similar feature in a yes, very similar — yes, some-
exposure different software product what similar — not at all

emotional at- post- I found the idea of using this software prod- great — boring — makes no

tachment* exposure uct sense

Hypothesis 4. Emotional attachment is positively linked with predicted satis-
faction.

Hypothesis 5. Predicted usefulness is positively linked with predicted satisfac-
tion.

Feature Representation Format. Our earlier study suggested that the vari-
ables we measured were independent of the format used for representing the fea-
ture descriptions in the requirements specification. To confirm this, we
defined the hypothesis

Hypothesis 6. The answers to the model variables do not differ between par-
ticipants from the user task group, user story group and sentence template

group.

Open-Ended Questions. We did not use statistical evaluation on the answers
to the open-ended questions. We read the answers expecting to find insights
about following topics:

— Are there mentionings of new mechanisms influencing one or more of the
three satisfaction variables?

— How detailed are participants’ mental models of the features, can they tell
the difference between their imagined implementation and the actual imple-
mentation they saw in the recordings?

— Are there any complaints about and/or improvement suggestions for the
questionnaire?

4.2 Results

Before we tested our hypotheses, we ran some descriptive evaluations on the data.
Figure B gives an overview of the absolute frequency distributions of all variables.
It also shows the effect of the non-goal variables on the main goal variable,

106 R. Proynova and B. Paech

prediction discrepancy, expressed with a Spearman correlation coefficient. As we
are not interested in the differences between individual features, the evaluations
were calculated by combining the data over all participants and all features
within a single study. This increases the data points available in each study to
16 per participant, improving the significance of our results. It also lists the same
values for the old study, where available.

perceived understanding | predicted satisfaction predicted usefulness prediction discrepancy
5 q ¥ + +
4 q + a ¥ + ;
g o q+ r, =-0.27 q + + + a+
1| r, =-0.16 :!- + r, =-0.30 q +
0 q +
actual satisfaction actual understanding emotional attachment familiarity
5 q + q + + T
4 & + a + + +
g q9 + r, =-034 + + + + r,=-014
o ¥ ¥ n=-032 |+ r2 =-0.06 +

T T T 1 T T T 1 T T T 1 T T T 1
200 600 1000 200 600 1000 200 600 1000 200 600 1000
{Study1 @ Study2 + |

Fig.2. Absolute frequency distributions for all variables and Spearman correlation
with the variable prediction error for non-goal variables. All correlation coefficients are
significant at o = 0.05.

All measured variables except familiarity exhibit an obvious ceiling effect. All
independent variables have a negative link with prediction discrepancy, which
means that the prediction discrepancy diminishes with higher values of those
variables. The correlation with each individual variable is not very strong, mean-
ing that none of the effects can be used alone to achieve good precision.

Model Confirmation. We were able to confirm all hypotheses evaluated for
this research goal. For hypotheses 1, 2, 4and 5 we calculated a Spearman cor-
relation coefficient between the two variables in the hypothesis, combining the
values over all participants and all features. Our findings are summarized in Ta-
ble[d. All resulting coefficients had the sign our model predicts. The correlation
strength is medium to good, except for emotional attachment. It is possible that
the effect in this case is more complex than a straightforward correlation, for
example there could be a minimal level of emotional attachment which creates
enough motivation for giving differentiated answers, but there is no difference in
answer quality above this level.

For hypothesis 3, we built a list of all data points where a participant had
evaluated his/her familiarity with a feature with a 5, and another list with
familiarity evaluated with a 1. Each of the two resulting smaller data sets still had
a distribution of predicted satisfaction spanning all 5 possible Likert-scale values.
We applied a Kolmogorov-Smirnov test which rejected the hypothesis that both
data sets have the same distribution of predicted satisfaction (significance level

Factors Influencing User Feedback on Predicted Satisfaction 107

Table 2. Hypotheses confirmed by correlation. All correlation coefficients are signifi-
cant for a = 0.05.

Hyp. Variables Cor. co- Result

number efficient

1 Perceived understanding, Predicted satisfaction 0.57 Confirmed

2 Actual understanding, Prediction discrepancy (negative) -0.32 Confirmed

4 Emotional attachment, Predicted satisfaction 0.11 Partly confirmed
5 Predicted usefulness, Predicted satisfaction 0.67 Confirmed

a = 0.05). Our conclusion is that familiarity does have an effect on predicted
satisfaction, and hypothesis 3 is confirmed.

Additionally to testing our hypotheses, we also calculated the correlation co-
efficients between all pairs of dependent variables in order to find out possible
cross-relationships in our model. Beside the pairs mentioned in our hypothe-
ses, we found medium or better correlation between actual understanding and
familiarity (r = 0.36) and perceived understanding and predicted usefulness
(r = 0.64), which was significant for & = 0.05. We plan to work on finding
a theoretical explanation and further confirmation for these effects before we
include them in our model.

Feature Representation Format. For Hypothesis 6, we divided the data
in three sets—the user stories group, the user tasks group, and the sentence
template group—and calculated the arithmetic means of each variable as well
as the Spearman correlation coefficient between each independent variable and
prediction discrepancy. There were no significant differences between the results
from each group and the results of the same calculation when applied to all data.
We conclude that the variables in our model do not depend on the representation
format of features.

Open-Ended Questions. The questionnaire contained three open questions.
1) In the post-exposure part, we asked the users to answer for each feature “My
previous conception differs from the implementation in following ways”. 2) At
the end of the questionnaire, we also asked what the users think could have
improved their understanding of the software. 3) Also at the end, we asked for
feedback about the software itself and the study in general.

Out of the 112 participants, 108 answered at least one of the open quesi-
tons. We read the answers without doing statistical evaluations. We subjectively
judged the importance of the suggestions left by the users. Our criteria included
the frequency with which some variation of a suggestion appeared in the feed-
back, as well as the reach of consequences we think it will have for our model,
future versions of our questionnaires, or for our measuring approach as a whole.
We list the five most important suggestions, as well a comment on how we view
these suggestions.

— Users demanded examples or longer descriptions. They complained that
some features were too abstract to be understood. We feel that including

108 R. Proynova and B. Paech

examples could be helpful for the less clear features, but it would be unnec-
essary overhead for familiar features like printing.

— Users demanded better integration with their existing workflows. Some of
them requested export to common office suite formats. Others asked for the
software to be implemented as a smartphone app.

— Users asked for visual aids in the requirements specification such as screen-
shots or mockups. While we are convinced that this will increase both actual
and perceived understandability, we intend our approach to be used at an
early stage in the development process, when mockups are not yet available.

— Users indicated difficulties with specific terms. Some of these terms were
software engineering related, such as “feature”. Others were abstract terms
used in a very specific way in the context of the system, such as “tag”. We are
considering the inclusion of a short glossary for our measurement approach.

— Users asked for the rationale behind the software, an introduction explaining
why the users need it and who is the target group. We consider adding both
a short description for the whole software and using rationales for the more
difficult features along with or instead of examples as discussed in the first
point.

We also noticed that many participants had been able to construct detailed
mental models based on just the feature descriptions. They were able to not
only articulate what they exactly like or dislike in a feature, but also to offer
alternatives which would presumably lead to higher satisfaction. This type of
feedback is difficult to get even in a richer communication channel such as an
interview [17], and we were glad to find out that a questionnaire with open-
ended questions is sufficient for it. While many suggestions were not desirable or
not possible to implement, others were obviously good ideas which would have
resulted in improved software quality.

5 Discussion

5.1 Intended Use for Our Findings

The results of our study confirmed that our model is a good representation of
some important mechanisms influencing predicted user satisfaction. They also
show that our independent variables all have a medium strong negative link to
prediction discrepancy.

As we intend to create a questionnaire with higher precision, we can use
these findings to improve the questionnaire. For example, enhancing the feature
descriptions with examples or rationale statements [7] could increase perceived
and actual understanding and thus reduce the prediction discrepancy.

We are aware that our model of predicted user satisfaction is not complete,
as there are many additional factors which can influence satisfaction. We are
still searching for new factors which we can change in a questionnaire in order
to improve precision. The open-ended questions gave us some insights about

Factors Influencing User Feedback on Predicted Satisfaction 109

further factors, such as integration. We will examine their possible inclusion in
our model.

Validating requirements with a questionnaire has more problems than just
low precision of the satisfaction predictions. It restricts the communication con-
siderably, especially by limiting the possibilities for users to receive clarifications
from the requirements engineer and to give feedback beyond simple satisfaction
evaluations. The results of our study show that a well-designed questionnaire
still permits this important communication to take place. Users have both the
ability and motivation to give high-quality feedback, including own ideas for
alternative ways to implement a feature. We will consider these findings when
constructing a finalized version of our questionnaire.

5.2 Threats to Validity

Conclusion Validity. We identified two possible threats to conclusion validity.
First, we are not aware of any objective measures for the variables we measured,
so we had to rely on self-reporting. Second, we evaluated several hypotheses on
the same data set. Under some study designs, this can lead to false positives.
This danger is mitigated by two factors. First, some variables were elicited in two
different studies, and the results were very similar. Second, we did not evaluate
all possible connections, picking the significant ones as “confirmed”; rather, we
started the second study from a model which delivers theoretical explanation for
each connection we expected to find.

Internal Validity. The quality of the instruments we used for our experiment
can also have compromised our experiment validity. First, users may have mis-
understood questions due to ambiguity. We tried to counter this by presenting
the questionnaires to coworkers not involved in the project and asking them
whether they understood the questions the way we intended them. Second, we
used screen casts of the software. The users’ true judgement of features may
have been incomplete, because they did not work with the software themselves.
We did not formally evaluate the internal validity of our questionnaire, but as
its two versions delivered very similar results in two separate studies, we take
this as an indication that its internal validity is adequate.

Also, we chose to use five-item scales. While this leads to somewhat reduced
precision in our results, it is sufficient for recognizing trends in distributions and
also places less cognitive burden on the study participants, allowing us to gather
data on more features.

Construct Validity. The questions we asked may not be best suited to measure
the concepts of understanding and liking. We used a bottom-up approach where
we defined the variables used in our model based on empirical data gathered
from the first study. As they are not derived from an existing theory, we could
not use ready-made validated psychometric constructs for measuring them (such
constructs are developed for existing theories). We had to rely on our own con-
structs, and we chose to keep them as simple one-item constructs. Sophisticated

110 R. Proynova and B. Paech

multi-item constructs would have offered more precision, but as each variable
is measured once per feature (as opposed to once per questionnaire), the use of
such constructs would have made the questionnaire prohibitively long. Also, the
development of precise psychometric constructs is not central to our research,
so we could not allocate the resources needed for an undertaking of this size.
The downside of this decision is reduced construct validity due to the simple
approach to variable measuring. We feel that the reduction is acceptable for the
purposes of this study.

External Validity. The situation we used in the experiment was not perfectly
realistic. Our participants were students who volunteered for the study. They had
neither interest in buying a finished version of our software nor the obligation
to use it. Actual users would have a task they intend to solve with the software.

6 Conclusions and Future Work

We are working on a questionnaire suitable for measuring predicted user satisfac-
tion based on feature descriptions. It can be used for validating a requirements
specification with low effort for the requirements specialist. In an earlier study,
we gathered first information on the mechanisms influencing predicted satisfac-
tion. In this paper, we present a working model of predicted user satisfaction.
We conducted an empirical study which confirmed the effects predicted by our
model. Further, it confirmed that the effects occur independently of the format
used for representing the features. It also uncovered other possible mechanisms
for influencing predicted user satisfaction.

In our future work, we plan to use the now confirmed model to decide what
questions must be included in a questionnaire suitable for reliably measuring
future satisfaction. In order to gain higher precision, we also intend to create a
better measuring strategy, for example by discarding the results of participants
whose perceived understanding is at the lowest point. We will also try to confirm
or reject the newly discovered possible links within our model as well as links to
new variables such as workflow integration.

References

1. Bailey, J.E., Pearson, S.W.: Development of a tool for measuring and analyzing
computer user satisfaction. Management Science 29(5), 530-545 (1983)

2. Buttle, F.: SERVQUAL: review, critique, research agenda. European Journal of
Marketing 30(1), 8-32 (1996)

3. Chin, J.P., Diehl, V.A., Norman, K.L.: Development of an instrument measuring
user satisfaction of the human-computer interface. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 213-218 (1988)

4. Cohn, M.: User stories applied. Addison-Wesley Professional (2004)

5. Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of in-
formation technology. MIS Quarterly 13(3), 319-340 (1989)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Factors Influencing User Feedback on Predicted Satisfaction 111

Delone, W., McLean, E.: Information systems success revisited. In: Proceedings
of the 35th Annual Hawaii International Conference on System Sciences, pp. 1-11
(2002)

Dutoit, A., McCall, R., Mistrik, I., Paech, B.: Rationale management in software
engineering, pp. 1-29 (2006)

Fornell, C., Johnson, M., Anderson, E.: The American customer satisfaction index:
nature, purpose, and findings. The Journal of Marketing 60(4), 7-18 (1996)
Joumblatt, D., Teixeira, R.: ConnectionWatch: Passive monitoring of round-trip
times at end-hosts. In: Proceedings of the 2008 ACM CoNEXT Conference, p. 52
(2008)

Lauesen, S.: User Interface Design - A software engineering perspective. Pearson
education limited, Harlow (2005)

Lopez, S.: Encyclopedia of positive psychology. Wiley-Blackwell (2011)

Martilla, J., James, J.: Importance-performance analysis. The Journal of Market-
ing 41(1), 7779 (1977)

Moshkina, L., Endo, Y., Arkin, R.C.: Usability evaluation of an automated mission
repair mechanism for mobile robot mission specification. In: Proceeding of the 1st
ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI 2006, p.
57. ACM Press, New York (2006)

Oliver, R.: A cognitive model of the antecedents and consequences of satisfaction
decisions. Journal of Marketing Research 17(4), 460-469 (1980)

Oliver, R.: Satisfaction: A behavioral perspective on the customer. M.E. Sharpe
(2010)

Proynova, R., Paech, B.: Do Stakeholders Understand Feature Descriptions? A
Live Experiment. In: REFSQ 2012 Workshop Proceedings, pp. 265-280 (2012)
Rupp, C.: Requirements-Engineering und -Management. Hanser (2009)
Sauerwein, E., Bailom, F., Matzler, K., Hinterhuber, H.H.: The Kano model: How
to delight your customers. In: International Working Seminar on Production Eco-
nomics, pp. 313-327 (1996)

Venkatesh, V., Morris, M., Davis, G., Davis, F.: User acceptance of information
technology: Toward a unified view. MIS Quarterly 27(3), 425-478 (2003)

Walker, M.A., Litman, D.J., Kamm, C.A., Abella, A.: PARADISE: A Framework
for Evaluating Spoken Dialogue Agents. In: Proceedings of the Eighth Conference
on European Chapter of the Association for Computational Linguistics, pp. 271—
280 (1997)

Yamazaki, T., Miyoshi, T., Eguchi, M., Yamori, K.: A service quality coordination
model bridging QoS and QoE. In: 2012 IEEE 20th International Workshop on
Quality of Service, pp. 1-4 (2012)

reqT.org — Towards a Semi-Formal, Open and Scalable
Requirements Modeling Tool

Bjorn Regnell

Dept. of Computer Science, Lund University, Sweden
bjorn.regnell@cs.lth.se

Abstract. [Context and motivation] This research preview presents ongoing
work on a free software requirements modeling tool called reqT that is devel-
oped in an educational context. [Question/problem] The work aims to engage
computer science students in Requirements Engineering (RE) through a tool that
captures essential RE concepts in executable code. [Principal ideas] Require-
ments are modeled using an internal DSL in the Scala programming language
that blends natural language strings with a graph-oriented formalism. [Contribu-
tion] The metamodel of reqT and its main features are presented and modeling
examples are provided together with a discussion on initial experiences from stu-
dent projects, limitations and directions of further research.

Keywords: requirements engineering, requirements modeling, software engi-
neering, CASE tool, requirements metamodel, requirements engineering educa-
tion, internal DSL, embedded DSL, Scala programming language.

1 Introduction

There are many challenges in teaching Requirements Engineering (RE) [6,9], includ-
ing conveying requirements modeling skills [1]. Given a wide-spread attention on agile
methods with less emphasis on extra-code artifacts [§]], it may be particularly chal-
lenging to motivate coding-focused engineering students (and software practitioners)
to spend serious effort on requirements modeling. One way to inspire software engi-
neers to learn more about and do more RE may be to offer an interesting software tool.
There are nowadays numerous commercial RE tools available, but many are expensive,
complex and not sufficiently open [2].

This paper presents on-going work on a tool named reqT that aims to provide a
small but scalable, semi-formal and free software package for an educational setting
that (hopefully) can inspire code lovers to learn more about requirements modeling. A
long-term goal of reqT is to offer an open platform for RE research prototypes, e.g. for
feature modeling and release planning research. The tool development started in 2011
at Lund University, where reqT is used in RE teaching at MSc level in the Computer
Science & Engineering program. In 2012 reqT was rebuilt from scratch based on student
feedback. The tool can be downloaded from: http://reqT.org

The paper is organized as follows. Section Dl states the objectives and motivates the
design strategy of reqT. Section [3| presents the metamodel of reqT and some example
reqT models. Section [discusses limitations and some initial experiences from using
reqT in teaching and concludes the paper with a sketch of future research directions.

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 112-[[18] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://reqT.org

reqT.org — Towards a Semi-Formal, Open and Scalable Requirements Modeling Tool 113

2 Goals, Design Strategy and Rationale

The main objective behind reqT is to establish a set of essential RE concepts and cap-
ture them in an expressive, extensible and executable language appealing to computer
science students (and eventually practitioners). This general objective is accompanied
by the following main goals and associated design strategies:

1. Semi-formal. Goal: Provide a semi-formal representation of typical requirements
modeling constructs that can illustrate a flexible combination of expressive natural
language-style requirements with type-safe formalisms allowing static checks. De-
sign: Use graph structures based on typed nodes representing typical requirement
entities and attributes, and typed edges representing typical requirements relations,
and implement the graph as an associative array (map). Why? Graphs are well-
known to many CS students. Maps are efficient from an implementation perspective
and may be less complex to master compared to e.g. SQL databases.

2. Open. Goal: Provide a platform-independent requirements tool that is free of
charge. Design: Use Java Virtual Machine technology and release the code under
an open source license. Use tab-separated, tabular text-files for import and export.
Use HTML for document generation. Why? There are many free libraries available
that runs on a JVM. Tab-sep and HTML support interoperability.

3. Scalable. Goal: Provide an extensible requirements modeling language that can
scale from small, concise models to large families of models with thousands of
requirements entities and relations. Design: Implement reqT as an internal DSL
(Domain-Specific Language) in the Scala programming language [[7]. Use Map
and Set from Scala collections to represent requirements graphs. Why? Scala is
a modern, statically typed language with an efficient collections library. Scala of-
fers scripting abilities that provide general extensibility without re-compilation. In-
tegrated development environments [[11], as well as interactive scripting tools are
available [3].

These goals, design strategies and rationale are directing the on-going work, and it re-
mains to be investigated to what extent the main objective and goals can be met. A
critical issue is how to interpret what are “essential” RE concepts and “typical” model-
ing constructs. The reqT tool is used in a course based on a specific text book [4] and
a specific student project concept [5]], and the concepts of the reqT requirements meta-
model (see Fig. P} reflect that context. However, the reqT architecture is prepared for
extensions of new concepts in the metamodel to cater for different educational contexts.

3 Modeling Requirements with reqT

A reqT model includes sequences of graph parts <Entity><Edge><NodeSet>
separated by comma and wrapped inside a Model () construct. A small reqT Model
with three Feature entities and one Stakeholder entity is shown below:

Model (
Feature("fl") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("fl") requires (Feature("f2"), Feature("f3")),

Stakeholder ("sl") assigns(Prio(l)) to Feature("f2")
)

114 B. Regnell

The corresponding graph implied by the
above model is depicted in Fig.[Il The edges
represent different relations between entities,
in this case the requires and assignsre-
lations. Nodes with outgoing edges are called
sources and nodes with incoming edges are
called destinations. There is a special edge
called has that is used to attach attributes to
entities. The different types of entities, rela-
tions and attributes of the reqT metamodel,
depicted in Fig.[2lcan be combined freely, al-
though a has-edge can only link to attributes,
while a relation can only link to entities. In the metamodel of reqT in Fig. 2] abstract
types are shown in italics and concrete types are shown in bold. All concrete types are
Scala case classes [[7]. All entities have a string-valued id for unique identification. Most
attributes have string values that can be used to combine informal, natural-language ex-
pressions with formal graph-structures. The Status attribute can be associated to en-
tities to reflect their degree of refinement in RE and down-stream processes by different
Level values, as depicted in Fig.[3l

Domain-level task descriptions [4]] can be modeled using the scenario-type require-
ment entity Task, as shown in the model below. This exampl is modified from Laue-
sen [4], p. 93. The special relation owns is used to express hierarchical decomposition
and reqT ensures that an entity only can be owned by one other entity.

requires

Feature
("£3")
Feature
("f2")

assigns(Prio(1))

requires

() has
has.

o [l

Stakeholder
("s1")

Fig. 1. A reqT model depicted as a graph

var m = Model (
Task ("reception work") owns (Task("check in"), Task("booking")),
Task ("check in") has (
Why ("Give guest a room. Mark it as occupied. Start account."),
Trigger ("A guest arrives"),
Frequency ("Average 0.5 check-ins/room/day"),
Critical ("Group tour with 50 guests.")
)
Task ("check in") owns (
Task("find room"), Task("record guest"), Task("deliver key")),
Task ("record guest") has Spec/(
"variants: a) Guest has booked in advance, b) No suitable room"
)
)

There are a number of operators defined for reqT models including the aggregate, re-
strict and exclude operators denoted by double plus ++ and slash / and backslash \
respectively. The expression m1 ++ m2 results in a new aggregated model with m1
and m2 merged, with parts of m2 potentially overwriting overlapping parts of m1. The
restrict and exclude operators produce new submodels including or excluding parts of
aModel based on the right operand argument that can be of different El ement types,
as explained subsequently.

! For more examples on how to combine various entities and relations of reqT into different
requirements modeling styles, see: http://reqgT.org/

http://reqT.org/

reqT.org — Towards a Semi-Formal, Open and Scalable Requirements Modeling Tool 115

| scala.collection.immutable.Map[Key, NodeSet] |

t
subtype
Model
[voce |

Eage Key(Entity, Edge)
; NodeSet(Node, Node, ...) |
— - Attribute[Tj(value: T)
Entity(id: String)

Gist(String) AttributeEdge has

Status(Level

'
I

Goal

Function

Stakeholder| || Example(String)
—|Input(String) |

Label(String)

requires
Why(String)

|

%

Trigger(String) excludes

Class helps

Data
Qualit:
oy | e

Scenario

Precond(String)

Actor hurts

Frequency(String)

j

precedes

Critical(String)
inherit
Problem(String) Inhers

.
Comment(String)

Image(String) assigns(Attribute)

Deprecated(String)

|

|

Fig. 2. The reqT version 2.2 metamodel

The expression m / Task("x")
results in a new submodel that is
restricted to all parts of m with
Task ("x") as source node, while o
the expressionm \ Task results in a
FAILED

new submodel that excludes all Task
down

RELEASED

up

sources. The expression
((m / e) ++ (m \ e) == m)
is always true.

A reqT Model has the methods up
and down that promote or regress all
its Status attributes according to the
state machine in Fig. Bl By using /
and \ for extracting submodels, levels Fig. 3. Refinement levels of the Status attribute
can be selectively promoted, e.g. the
expression
m = (m / Feature("x")).up ++ (m \ Feature("x")) updates m to a
new model where only Feature ("x") is promoted to the next level. Several more
operators and methods for create/read/update/delete of entities using Scala scripts are
available in the Model case class, see further: http://reqT.org/

POSTPONED
SPECIFIED

ELICITED

http://reqT.org/

116 B. Regnell

In our course projects [5] students shall produce requirements documents that can be
validated by laymen. This is supported in reqT by an export operation on models called
toHtm1 that generates files that can be shown in web browsers as illustrated in Fig. [l
The HTML generation is controlled by a DocumentTemplate case class that allows for
specifying title, free form text paragraphs and optional numbers of Chapters containing
optional Sections including specified parts of a reqT model in flexible ways using Scala
function literals that can, e.g., apply restrict and exclude operators to models. In Fig. 4]
the Scala function literalm => m / Context restricts the contents of a chapter to
only Context type source entities. FigHlalso shows toTable export to spreadsheet
programs via tab-separated text files. The code in Fig.[d can be executed e.g. as a script
using the interactive Scala Read-Evaluate-Print-Loop (REPL) from the command line,
or in a scripting environment such as Kojo [3]], or inside the Scala Eclipse IDE [11]].

. Requirements Document - Mozilla Firefox
var m = Model(file Edit View History Bookmarks Tools Help
Product("reqT") has | £ Requirements Document (=]

Gist("A tool for modeling evolving requirements."), * | @ filesmedialsf_bjomrre: 7 v O |j|o1v al &
Release("2.0") has

Gist("Major update based on student feedback."),
Product("reqT") owns Release("2.8") Generated by reqT.org Thu Oct 18 20:58:44 CEST 2012

) Context

Requirements Document

. " " Product reqT: A tool for modeling evolving requirements.
m += Feature("toHtml") has Gist("Generate web document.") L) 9 giEd

Relations Destinations
owns Release 2.0

val myTemplate = DocumentTemplate(
"Requirements Document",
Text("Generated by " +
" reqT.org " + Features
(new java.util.Date)),
Chapter("Context", Text(""), m => m / Context),
Chapter("Features", Text(""), m => m / Feature)

)

Release 2.0: Major update based on student feedback.

Feature toHtml: Generate web document.

9 - o = o Vicrosort Excel e (B

Home Inset Pagelayost Formulas Data Review View Acrobat @@ R

m.toHtml(myTemplate).save("reqT.html") (<82

G4 - Jf= | "Major update based on student feedback."

m.toTable.save("reqT.txt")

A B C D E F G
1 ENTITY ENTITYid LINK LINKattr LINKval NODE NODE val
2 Product "reqT" has Gist "A tool for modeling evolving requirements.”
3 Product ‘"reqT" owns Release "2.0"
4 |Release "2.0" has Gist "Major update based on student feedback.” |
5 Feature "toHtml" has Gist "Generate web document.”

ls

Fig. 4. Example of template-based export to HTML and tab-separated table export

4 Discussion and Conclusion

The results of the on-going work with reqT remains to be further investigated and a
validation of reqT as a RE learning tool and research experimentation platform is sub-
ject to future work. This section discusses some preliminary experiences, limitations,
relation to state-of-the-art and future research directions.

Preliminary Proof-of-concept. The first version of reqT was tried on a voluntary basis
by 12 students working in groups of 6 students each during fall 2011. Statements from
course evaluations indicate that the students found reqT useful in their learning. One

reqT.org — Towards a Semi-Formal, Open and Scalable Requirements Modeling Tool 117

group used a configuration management tool for reqT models to manage their parallel
work, while one group used a cloud service and tab-sep export/import to collaborate
over the Internet. The group with the largest requirements model produced 64 features,
18 tasks, 12 functions, 30 data requirements and 33 quality requirements, in total 157
requirements entities.

Several students appreciated that reqT can mix informal text with a graph-oriented
formalism, but some requested more elaborated functionality for document generation,
as well as linking to external images. Some students also requested more modeling
examples that show how the text book techniques could be transferred to reqT models.

Based on student feedback, reqT was rebuilt from scratch during 2012 with a new
architecture and a new version of the meta model (see Fig. @), as well as a revised
Scala-internal DSL. The template-controlled HTML generation was implemented based
on student suggestions. The teaching material was complemented with more example
models directly related to the textbook. The second version of reqT is currently tested
by students in a new course instance and a post-course evaluation of reqT is planned in
spring 2013.

Our preliminary experiences from applying reqT in teaching suggest that reqT, if
used in a suitable teaching context, may encourage students with a code-focused mind
set to learn and practice RE in the following ways: (1) A free and platform-independent
software tool that is implemented using a modern programming language with interac-
tive scripting facilities can attracts the interest of code-focused students. (2) Require-
ments can be processed, queried, transformed or exported using Scala scripts, and the
open-ended nature of reqT that allows students to code their own scripts to both man-
age requirements models and to adapt reqT to fit their RE needs in the course project
was appreciated by several coding-literate students. (3) By turning requirements models
into executable code, students can use programming tools such as a console command
line interpreter (the Scala REPL) as well as a source code version control system (e.g.
git-scm.com) to branch and merge their collaborative work on requirements in ways
they are used to from their previous collaborative software implementation courses,
including issue tracking systems and code review support.

Relation to State-of-the-Art. To the best of our knowledge there is no other RE tool
that allows semi-formal requirement models to become executable programs through
an internal Scala DSL, and thus letting coding, testing and requirements engineering
share the same media. In the RE tool survey by Carrillo de Gea et al. [2] it is pointed
out that ”“many expensive tools aren’t sufficiently open”. The reqT technology aims to
be completely free and open to facilitate academic usage, collaborative evolution and
incorporation of new RE concepts in different teaching and research contexts. Many of
the existing tools have proprietary representations [2], while users of reqT can extend
the reqT metamodel with new entities and attributes simply by adding case classes
with a few lines of code. However, reqT cannot compete with versatile commercial RE
tools [2] in terms of e.g. features completeness and graphical user interface.

Limitations. In its current version, reqT has a number of limitations: (1) As the user
interface is text based and depends on the command line interface of the Scala REPL
or a script editor environment [3,[11]], students that only are prepared to use graphical

118 B. Regnell

user interfaces may be discouraged. Some of our students preferred to work in a GUI
spreadsheet application using tab-separated exports from reqT that was generated by
other team members assigned by the student group to be reqT experts. (2) It requires
some knowledge of Scala to tailor reqT exports and there is a need for a more com-
prehensive API for adaptable document generation. (3) The embedded DSL requires
some learning efforts and it remains to be investigated if the effort is justified by the
knowledge gained. (4) To support scalability to large families of reqT models there is a
need for modularization concepts and overview visualizations. (5) The explicit typing
of entities with keywords such Feature and Stakeholder can be perceived as verbose
compared to more concise but potentially cryptic abbreviations (e.g. Fe, Sh). This may
be addressed by DSL-specific editor support, such as code-completion, code folding
and code templates.

Future Work. Further directions of research include (1) incorporation of constraints
on models for support of prioritization and release planning [10], (2) more elaborate
semantic checks to better guide requirements modelers, and (3) graphical visualization
of requirements graph models. (4) Natural Language Processing technology including
e.g. ambiguity risk detection may be interesting to combine with reqT. (5) It is also im-
portant to further investigate the pedagogic advantages and limitations of the approach.
A major objective of this research preview paper is to expose the latest version of
reqT to the community of RE scholars and to invite discussions and contributions.

Acknowledgments. This work is partly funded by VINNOVA within the EASE project.

References

1. Callele, D., Makaroff, D.: Teaching requirements engineering to an unsuspecting audience.
In: Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education,
SIGCSE 2006, pp. 433-437 (2006)

2. Carrillo de Gea, J., Nicolas, J., Aleman, J., Toval, A., Ebert, C., Vizcaino, A.: Requirements

engineering tools. IEEE Software 28(4), 86-91 (2011)

. Kogics: Kojo, http://www.kogics.net/kojo (visited November 2012)

. Lauesen, S.: Software Requirements - Styles and Techniques. Addison-Wesley (2002)

. Lund University: http://cs.1lth.se/ets170 (visited November 2012)

. Memon, R.N., Ahmad, R., Salim, S.S.: Problems in requirements engineering education:
a survey. In: Proceedings of the 8th International Conference on Frontiers of Information
Technology, FIT 2010, pp. 5:1-5:6. ACM (2010)

7. Odersky, M.: et al.: An overview of the Scala programming language. Tech. rep (2004),
http://lampwww.epfl.ch/~odersky/papers/ScalaOverview.html

8. Ramesh, B., Lan, C., Baskerville, R.: Agile requirements engineering practices and chal-
lenges: an empirical study. Information Systems Journal 20(5), 449—480 (2010)

9. Regev, G., Gause, D.C., Wegmann, A.: Experiential learning approach for requirements en-
gineering education. Requirements Engineering 14(4), 269-287 (2009)

10. Regnell, B., Kuchcinski, K.: Exploring software product management decision problems
with constraint solving - opportunities for prioritization and release planning. In: 2011 Fifth
International Workshop on Software Product Management, IWSPM, pp. 47-56 (2011)

11. Scala Eclipse IDE: http://scala-ide.org/ (visited November 2012)

(@) JY) I SN ON]

http://www.kogics.net/kojo
http://cs.lth.se/ets170
http://lampwww.epfl.ch/~odersky/papers/ScalaOverview.html
http://scala-ide.org/

Maps of Lessons Learnt in Requirements Engineering:
A Research Preview

Ibtehal Noorwali and Nazim H. Madhavji

University of Western Ontario, London, Canada
inoorwal@uwo.ca, madhavji@gmail.com

Abstract. [Context and Motivation] "Those who cannot remember the past
are condemned to repeat it" -- George Santayana. From the survey we
conducted of requirements engineering (RE) practitioners, over 70% seldom
use RE lessons in the RE process, though 85% of these would use such lessons
if readily available. Our observation, however, is that, RE lessons are scattered,
mainly implicitly, in the literature and practice, which, obviously, does not help
the situation. [Problem/Question] Approximately 90% of the survey
participants stated that not utilising RE lessons has significant negative impact
on product quality, productivity, project delays and cost overruns. [Principal
Ideas] We propose “maps” (or profiles) of RE lessons which, once populated,
would highlight weak (dark) and strong (bright) areas of RE (and hence RE
theories). Such maps would thus be: (a) a driver for research to “light up” the
darker areas of RE and (b) a guide for practice to benefit from the brighter
areas. [Contribution] The key contribution of this work is the concept of
“maps” of RE lessons.

Keywords: requirements engineering, lesson maps, lessons learnt, software
quality, empirical study.

1 Introduction

The importance of learning from past experiences has been stressed upon in the
literature [1, 5]. Yet, in a survey we conducted of 50 RE practitioners [12], 70% of the
respondents indicated that they seldom use RE lessons; 85% of these would use such
lessons if readily available; and 90% of them stated that not utilising RE lessons can
have significant negative impact on product quality, productivity, project delays and
cost overruns. This motivated us to investigate further on the topic of RE lessons.

An important goal of our research is to determine the state of lessons learnt (LL) in
RE. LLs can exist in various sources (e.g. literature, project documents, researchers
and practitioners, etc.). In attempting to achieve the aforementioned goal, we propose,
in this research preview paper, the concept of “lesson maps'” which, when populated

By “map” we mean “a diagram or collection of data showing the spatial arrangement or
distribution of something over an area” (New Oxford American Dictionary). It is not a road
map.

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 119-J124]2013.
© Springer-Verlag Berlin Heidelberg 2013

120 I. Noorwali and N.H. Madhaviji

with lessons elicited from the literature and practice, would expose weaker (darker)
and stronger (brighter) areas of RE. In this paper, we describe the proof of concept of
lesson maps with example lessons identified from published literature. The paper does
not depict fully populated maps, which is part of our ongoing research. The populated
maps are anticipated to promulgate research in the weaker areas and improve practice
in the brighter areas of RE.

Section 2 discusses related work. Section 3 describes the concept of lesson maps in
requirement engineering. Section 4, gives an example of a sample map. Section 5,
discusses the implications of the lesson maps and threats to validity. Section 6
concludes the paper and describes future work.

2 Related Work

Though LL are known in non-software disciplines (such as management [11],
education [4], medicine [13], and others), in this section we first touch upon LL in
software engineering (SE) followed by LL in RE.

The literature on lessons learnt in SE can be roughly categorized into (i)
discovering and sharing lessons learnt and (ii) process and software technologies to
support lessons learnt. Examples of the former category include the experience gained
at NASA’s Software Engineering Laboratory (see Basili et al. [2]) and the experience
described by Boehm [5]. Examples of the latter category include: Abdel-Hamid and
Madnick’s [1] post mortem diagnostic tool to learn from project failures; the
approximate reasoning-based approach [15]; Case-Based Reasoning (CBR) approach
[14]; and the Experience Factory Framework [3]. The process and software
technologies are used in organizational settings.

Unfortunately, in RE not much attention has been paid to lessons learnt. While
some literature discusses lessons learnt explicitly [6, 7], much of it is implicit [8]
making it difficult to utilise lessons in practice.

3 The Concept of a Map of RE Lessons

In an attempt to create a discipline surrounding lessons learnt in RE, we propose the
concept of a map of lessons learnt in RE. With reference to the definition of a map in
section 1, a map of RE lessons is based on two types of elements: (i) the content (i.e.
the lessons) and (ii) the context (i.e. specific attributes selected by the user). Example
context attributes are: RE practice, RE phase, process type, application domain,
project size, rationale, source, and others. In principle, therefore, it is possible to
produce many permutations of lesson maps, e.g.: RE practices; RE practices X RE
phases; RE practices X RE phases X application domains; project size X RE phases X
sources; application domain X process type; etc. The actual rendering of a map in
various permutations is a matter of technological support, which is outside the scope
of this concept paper.

Maps of Lessons Learnt in Requirements Engineering: A Research Preview 121

After populating a map with some lessons learnt, it can be indicative of the ‘state’
of lessons learnt in RE (in a project, organisation, body of knowledge, etc.) identified
by scarce (dark) and abundant (bright) areas of the map (see Table 1).

Table 1. An example map with context attributes X and Y

Let us assume that context attributes X and Y (selected by the user) are process
activities and practices in RE, respectively, where, they are depicted here as a table
but could be depicted in another form (e.g. hierarchically). LL1, LL2, etc., are the
lessons learnt relating to specific process activities and practices. Examples of dark
areas are: X3Y2 and X4Y2 and of bright areas are: X1Y1and X2Y3.

X1 X2 X3 X4
Y1 LL1 LL7 LL13 LL6
LL2 LL8
LL3
Y2 LL16 LL4
LL5
Y3 LL17 LL9 LL14 LL6
LLIS LL10 LL15
LL11 LL6
LL12
4 Example

With reference to Table 2, we can see three lessons spread along RE phases (e.g.
elicitation, analysis, etc.): LL1, LL2, LL3.

LL1 [6]: Lesson: “Systematically validate and verify requirements by documenting
the rationale for requirements.” Related RE phase: Requirements validation. Related
RE practice: documentation. Domain: enterprise resource planning systems.
Expression: explicit. Type: negative. Rationale: Doing so let 39 out of our 67 teams
eliminate as much as 43 percent of the stated requirements.

LL2 [6]: Lesson: “use prototypes for validation only if you also do process walk-
throughs.” Related RE phase: Requirements validation. Related RE practice:
prototyping. Domain: enterprise resource planning systems. Expression: explicit.
Type: negative. Rationale: “In three subprojects, we observed a tendency to rely
exclusively on prototypes to negotiate requirements, which led to prototyping spirals
in which the teams never built the actual solution.”

LL3 [9]: Lesson: “use the adjustable requirements reuse approach where
requirements can be adjusted without independently creating and storing the different
variants of the requirement.” Related RE phase: elicitation. Related RE practice:
reuse. Domain: Fluid control equipment, pump, seal & valve manufacturing.
Expression: implicit. Type: negative. Rationale: “quality and readability of each

122 I. Noorwali and N.H. Madhavji

requirement is improved since it is not split up to a general and a variable part. Since
it is not required to document every variation in a separate node it keeps the structure
of the requirements much more simple.”

With reference to LL1, Lesson denotes the content of the lesson. Context attributes
are such items as: Related RE phase, Related RE practice, Domain, etc. Expression
indicates whether a lesson was explicitly expressed as a lesson learnt in the literature,
or the context and surrounding literature had to be analysed to elicit the lesson. Type
can mean a positive lesson (one learnt from a successful past experience) or a
negative lesson (one learnt from an unsuccessful past experience). There are some
other context attributes not included in the lessons here because these are either not
known to the creator of the lesson or are empty. Examples are: related lessons
involved in solving a particular problem such as hazard analysis in a safety critical
system; contradictory lessons; specialization and generalization relationships, etc.
LL2 and LL3 have similar structure and attributes.

Assuming the user chooses ‘RE phases’ from the full set of context attributes, the
resultant map would be as shown in Figure 1. With the choice of additional context
attributes, the resultant map would contain corresponding entries of lessons. Table 2
shows the map with context attributes ‘RE phases’ and ‘RE practices’.

Upon analysing the map in Table 2, we note that in the elicitation phase, most of the
lessons learnt are positive; whereas, in the validation phase, most of the lessons learnt
are negative. This could be helpful in the practice of RE. Positive experience, for
example, would exude higher confidence in the way elicitation is carried out from
descriptive experiences of the RE community; whereas, negative experience would
suggest caution in the way requirements are validated. Also, if the lessons identified in
the map are found useful in a particular process type (e.g. iterative process), this could
lead to savings in costs, time and product quality in other projects in similar process
contexts. Caution is in order where process contexts differ (e.g. agile process).

Elicitation Analysis Specification Validation
LL3 LL1
LL2

Fig. 1. An example of a map of RE lessons with context attribute ‘RE phases’

Table 2. An example of a map of RE lessons with context attributes ‘RE phases’ and ‘RE
practices’

Elicitation Analysis Specification Validation
Documentation LL1
Prototyping LL2

Using checklists
Reuse LL3

Maps of Lessons Learnt in Requirements Engineering: A Research Preview 123

5 Discussion

Implications of this research are anticipated for both practice and research. In
industry, use of lesson maps could be felt on project costs, time, and quality. In
research, the maps could help in generating new RE theories by identifying weak and
strong areas of LL across RE sub-processes and practices. Because patterns and anti-
patterns are built upon recurring events, situations, problems, etc., they seem to be
good candidates to be associated with lessons learnt in RE.

We identify two threats to validity that may be relevant when building lesson
maps: internal (researcher bias) and external validity. Researcher bias can be present
during elicitation of lessons learnt from archival sources and practice. External
validity can be threatened if the lessons are not generalised enough for use in other
contexts. These threats can be mitigated to some degree by obtaining feedback from
researchers and practitioners to validate the maps and elicited lessons and by
identifying and analyzing the context of each lesson.

6 Conclusion and Future Work

In this research preview, we introduce the concept of maps for lessons learnt in
requirements engineering. A map consists of actual lessons and the context of these
lessons (e.g., RE phases, RE practices, application domains, implicit/explicit lessons,
etc.) — see section 3. In section 4, we give an illustrative example of a map (with
several lessons [6,9]) that is anticipated to be of benefit to both practitioners and
researchers in RE. Based on the concept of the map and the example (described in
sections 3 and 4), we conclude that it is a promising stepping-stone towards defining
the state of lessons learnt in the field of RE. As next steps in this research, we intend
to further explore the concept of the map and subsequently elicit lessons learnt, from
various sources in order to gain an understanding of the state of lessons learnt in RE.
Further, we have begun to build technological support to operationalise lesson maps
for use in RE projects.

References

1. Abdel-Hamid, T.K., Madnick, S.E.: The Elusive Silver Lining: How we Fail to Learn from
Software Development Failures. J. MIT Sloan Management Review 32(1), 39-48 (1990)

2. Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons Learned from 25
Years of Process Improvement: The Rise and Fall of the NASA Software Engineering
Laboratory. In: International Conference on Software Engineering, pp. 69-79. ACM,
Orlando (2002)

3. Basili, V.R., Tesoriero, R., Costa, P., Lindvall, M., Rus, 1., Shull, F., Zelkowitz, M.:
Building an Experience Base for Software Engineering: A report on the first CeBASE
eWorkshop. In: Product-Focused Software Process Improvement, Kaiserslautern,
pp. 110-125 (2001)

124

10.

11.

12.

13.

14.

15.

16.

17.

I. Noorwali and N.H. Madhavji

Bodycott, P., Walker, A.: Teaching Abroad: Lessons Learned about Inter-Cultural
Understanding for Teachers in Higher Education. J. Teaching in Higher Education 5(1),
79-94 (2000)

Boehm, B.: A View of 20th and 21st Century Software Engineering. In: International
Conference on Software Engineering, pp. 12-29. ACM, Shanghai (2006)

Damian, D.: Stakeholders in Global Requirements Engineering: Lessons Learned from
Practice. IEEE Software 24(2), 21-27 (2007)

Daneva, M.: ERP Requirements Engineering Practice: Lessons Learned. IEEE Software
Journal 21(2), 26-33 (2004)

Ebert, C.: Understanding the Product Life Cycle: Four Key Requirements Engineering
Techniques. IEEE Software Journal 23(3), 19-25 (2006)

Hauksdottir, D., Vermehren, A., Savolainen, J.: Requirements Reuse at Danfoss. In: 20th
IEEE Requirements Engineering Conference, pp. 309-314. IEEE, Chicago (2012)
Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. John
Wiley, New York (1998)

Lee, M.: Making Lessons Learned a Worthwhile Investment. J. PM World Today 5(7)
(2008)

Noorwali, 1., Madhavji, N.H.: A Survey of Lessons Learnt in Requirements Engineering.
Technical Report No. 750, Dept. of Computer Science, University of Western Ontario
(2012)

Rogers, D.A., Elstein, A.S., Bordage, G.: Improving Continuing Medical Education for
Surgical Techniques: Applying the Lessons Learned in the First Decade of Minimal
Access Surgery. J. Annals of Surgery 233(2), 159-166 (2001)

Sary, C., Mackey, W.: A Case-Based Reasoning Approach for the Access and Reuse of
Lessons Learned. In: Fifth Annual Symposium of the National Council on Systems
Engineering, St. Louis, pp. 249-256 (1995)

Vandeville, J.V., Shaikh, M.A.: A Structured Approximate Reasoning-Based Approach for
Gathering “Lessons Learned” Information from System Development Projects. J. Systems
Engineering 2(4), 242-247 (1999)

Weber, R., Aha, D.W., Becerra-Fernandez, I.: Intelligent Lessons Learned Systems. J.
Expert Systems with Applications 20(1), 17-34 (2001)

Wellman, J.: Lessons Learned about Lessons Learned. J. Organization Development 25(3),
65-72 (2007)

Requirements Traceability across Organizational
Boundaries - A Survey and Taxonomy

Patrick Rempel, Patrick Mader, Tobias Kuschke, and Ilka Philippow

Department of Software Systems, Ilmenau Technical University
{patrick.rempel,patrick.maeder,tobias.kuschke,
ilka.philippow}@tu-ilmenau.de

Abstract. [Context and motivation] Outsourcing of software devel-
opment is an attractive business model. Companies expect cost reduc-
tion, enhanced efficiency, and exploited external resources. However, this
paradigmatic shift also introduces challenges as stakeholders are spread
across distinct organizations. [Question/problem] Requirements trace-
ability supports stakeholders in satisfying information needs about devel-
opments and could be a viable way of addressing the challenges of inter-
organizational development. While requirements traceability has been
the subject of significant research efforts, its application across organiza-
tional boundaries is a largely unexplored area. [Principal ideas/re-
sults] We followed a qualitative research approach. First, we devel-
oped a taxonomy identifying the needs of inter-organizational traceabil-
ity. Second, we conducted semi-structured interviews with informants
from 17 companies. Eventually, we applied qualitative content analysis to
extract findings that supported and evolved our taxonomy. [Contribu-
tion] Practitioners planning and managing inter-organizational relation-
ships can use our findings as a conceptual baseline to effectively leverage
traceability in those settings. Effective traceability supports projects in
accomplishing their primary goal of maximizing business value.

1 Introduction

Requirements traceability has been commonly recognized by researchers and
practitioners alike as critical element of a rigorous software development pro-
cesdl. Gotel and Finkelstein defined requirements traceability as the ability to
describe and follow the life of requirements, in both a forwards and backwards
direction (i.e., from its origins, through its development and specification, to its
subsequent deployment and use, and through all periods of on-going refinement
and iteration in any of these phases) [I]. Software process initiatives, such as
CMMI, formulated the goal of maintaining bidirectional traceability of require-
ments. Requirements traceability supports a stakeholder in satisfying informa-
tion needs within a software development process. The applicability of this con-
cept has been studied for ordinary software development projects. However, as

! http://www.coest.org/index.php/what-is-traceability (accessed: October,
2012).

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 125-[40] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

126 P. Rempel et al.

software projects become bigger and bigger there is a tendency to outsource
parts of the software development process [2].

In IT outsourcing the software development process is distributed across two
types of actors — clients and suppliers. In a simplified view, a client produces
a requirements specification. A supplier implements the software product ac-
cording to the client’s requirements specification. This form of IT outsourcing
offers advantages like leveraging external I'T assets [3] and capitalizing the global
resource pool [2]. Due to these advantages, outsourcing is a commonly applied
IT strategy pattern. However, beside these advantages the organizational border
between two or more cooperating actors produces a distance. This distance leads
to complexity risks in the software development process that need to be bridged
[4]. Traceability could be viable way of bridging inter-organizational distance.

Only little empirical knowledge is available on the impact of IT outsourc-
ing on requirements traceability. We followed a qualitative research approach to
close that gap. First, we developed a taxonomy to identify actors and their inter-
actions in inter-organizational projects. Second, we conducted semi-structured
interviews with informants from 17 companies to understand the impact of inter-
organizational software projects on requirements traceability. Eventually, we ap-
plied qualitative content analysis to extract findings that supported and evolved
our taxonomy. We discussed needs for requirements traceability from the per-
spectives of actors in inter-organizational projects.

Our paper is organized as follows. Section [2] reviews related work in the area
of requirements traceability and inter-organizational software projects. In Sec-
tion [B] we propose a taxonomy of actors and interactions in inter-organizational
outsourcing projects based on a literature study. This conceptual framework was
used to plan and conduct the interview study, which is described in Sectiondl In
Section [Bl we discuss the results of our study, which we extracted via qualitative
content analysis from the captured interview minutes and field notes. Section
discusses possible threats to the validity of our work and how we mitigated them.
Finally, Section [concludes our work and outlines future research directions.

2 Related Work

Several studies examined the general application of requirements traceability in
software development projects. Gotel and Finkelstein [I] studied requirements
traceability practices and highlighted especially the demand for supporting pre-
requirements traceability. Ramesh and Jarke [5] conducted intensive interview
studies with practitioners. As a conclusion they proposed two traceability ref-
erence models. Arkley and Riddle [6] conducted a survey and explored the so-
called traceability benefit problem. This problem arises as trace recorder and
user are typically different stakeholders. We also conducted a survey on how re-
quirements traceability activities are embedded into company processes [7]. We
identified problems that need to be addressed to make traceability more ben-
eficial for software practitioners. An important finding of that study was that
practitioners struggle to implement inter-organizational traceability workflows.

Requirements Traceability across Organizational Boundaries 127

The interviewed practitioners demanded for guidance on how to enable the us-
age of traceability across organizational boundaries. Similarly to our findings,
other researchers stated that outsourcing complicates requirements traceability
[84]. Although, the problem of inter-organizational traceability was recognized
by these researchers, none of them studied it or provided possible solutions.

Lormans et al. [9] conducted an industrial case study with a single interna-
tional company to understand how requirements traceability is impacted by the
outsourcing context. The authors specified requirements for a requirements man-
agement system in the context of inter-organizational development. They used
these requirements to customize a commercial requirements engineering tool to
the needs of their industrial partner. The proposed approach is valuable for the
studied case. However, the authors did not focus on a more general understand-
ing of inter-organizational projects as well as the application of requirements
traceability in that context. Damian and Chisan [I0] studied inter-organizational
project relationships in general and identified mistrust and power struggles as
critical issues. The authors mentioned requirements traceability as a possible
solution to overcome these issues. Alvare et al. [11] studied factors that shape
client-supplier relationships and their impact on food traceability. Similar to our
approach, the authors propose a conceptual framework of relationships between
actors in a distributed production environment.

As a result of our review of related work we can conclude that IT outsourcing
is a commonly applied strategy pattern and of high relevance to the software in-
dustry. Further, various researchers recognized that inter-organizational specifics
need to be carefully considered when applying requirements traceability in the
outsourcing context. Beside the small case study on requirements traceability
within an international company by Lormans et al. [9], there are no empirical
studies that examined the specific challenges of leverage requirements trace-
ability in inter-organizational projects. To close this gap in this relevant area
of software development, we found that a systematic study of this problem is
necessary.

3 A Taxonomy of Inter-organizational Software Projects

Over the past years, several studies reported a general shift of paradigm from
static functional organizations to organizations composed of rapidly changing
temporary projects, often referred to as ”projectification” [12]. The following ra-
tionales for advancing this paradigmatic change emerged as most important. (I)
Flexible project organizations allow task-specific resource allocation and avoid
long-term resource commitments [13]. (IT) Well informed consumers in globalized
markets are demanding genuinely innovative products with reasonable pricing
and quality that satisfy varying needs [12].

In parallel with projectification, many companies concerned with software de-
velopment followed I'T outsourcing strategies, which we call inter-organizational
projectification. The following rationales for this inter-organizational projectifi-
cation were identified. The fact that well educated people are scarce resources led

128 P. Rempel et al.

to high labor costs or even worse to the inability to develop the software product.
Outsourcing provided the ability to capitalize a globalized resource pool and to
address the scarce resource issue [2]. DiRomualdo and Gurbaxani [3] synthesized
the more general strategic intent of I'T outsourcing to leverage external IT assets
such as applications, operations, infrastructure, and know-how.

We decided to study this problem in more detail due to the practical relevance
of IT outsourcing on the one hand (”inter-organizational projectification”) and
the limited empirical knowledge on how to deal with requirements traceability
in outsourcing scenarios on the other hand. Our research is motivated by the
following research questions:

Q1: Who are key actors in inter-organizational projects?

Q2: How do actors interact in inter-organizational projects?

Q3: What goals do interacting parties have in inter-organizational projects?
Q4: How can traceability be leveraged to accomplish Q3’s objectives?

Guided by our research questions, we developed a taxonomy that conceptualizes
relationships of actors in inter-organizational projects. These actors were char-
acterized by their goals (see Section [B]). Different interactions between these
actors were then described in detail (see Section B.2]).

3.1 Actors and Their Perspectives

According to the definition of Jones and Lichtenstein [I4] inter-organizational
projects involve two or more organizational actors from distinct organizations
working jointly to create a tangible product/service in a limited period of time.
These actors minimally refer to a client and a contractor. Based on this defini-
tion, we identified two types of actors: client and supplier.

Both, client and supplier simultaneously cooperate in temporary projects and
are embedded in their own organizational context [I5] as illustrated in Figure
[[la. That means that every actor in an inter-organizational project has an orga-
nizational and a project perspective. As both perspectives need to be satisfied,
each actor pursue two types of goals, a strategic and a tactical goal. Strategic
goals describe objectives from an organizational perspective. Tactical goals de-
scribe objectives from a project perspective (see Figure [[}b). On the one hand,
this implies that project team members of client and supplier share the common
tactical project goal to develop a certain software product within distinct time
and budget [I5]. On the other hand, client and supplier organizations also have
their individual strategic goals. With strategic goals we mean business goals
such as efficiency, innovation, and risk management [I6] that are pursued by
companies to ensure competitiveness and profitability.

3.2 Interactions

Interactions between client and supplier as well as organization and project are
required to align various goals [17]. Based on these often conflicting goals, actors

Requirements Traceability across Organizational Boundaries 129

(a) Client’s Supplier’s (b) -
Organization Organization 2 W
o’ g)
gf?\ /«;}6 § E Strategic goals
> & % ERR
S % 516 7
2N 2, % Q
N 2 % a .
§ &+ - - G b= o
o Inter-organizational Project N &g
o RN o \\\ o Tactical goals \
N o]
Client’s [Cooperatio Supplier’s > & [o \\
| Project Team [‘{SF]"“" 2y Project Team [y Client Supplier
g g CARR TSI > Actors

Fig. 1. Actors and their perspectives in inter-organizational projects

need to interact inter- and intra-organizationally. Figure [2] summarizes these
interactions as a taxonomy.

Inter-organizational interactions emerge from the cooperation relation be-
tween client and supplier. A client-supplier relationship is grounded on con-
tracts. Contracts between client and supplier define exchanges of service and/or
products, financial matters, service enforcement and monitoring methods, and
communication and/or information exchanges[I7JI8]. Thus, we distinguish four
different inter-organizational interactions (see Figure 2la) within our taxonomy:
(I) transfer product & service, (II) monetary compensation (III) enforce & mon-
itor quality & progress, and (IV) communicate with project partner.

Intra-organizational interactions emerge from the embeddedness of projects
in an organizational context. This embeddedness relation is determined by the
fact that tactical project goals need to be aligned with strategic organizational
goals. The concept of organizational alignment is known as IT governance. As
outlined in Figure Blb, IT governance can be divided into three types of intra-
organizational interactions: (V) compliance verification, (VI) strategic align-
ment, and (VII) operational excellence [19].

In the next section (see Section []), we are using the developed taxonomy as a
framework to conduct an interview study. We interviewed software development
experts from various companies for this study. The findings of our study are then
structured according to the developed taxonomy (see Section [H).

(@) ' (1) I@n\sf\er\p\ro‘duct l&{:;e:vice N (b) / (V) Compliance
N (Ill Mr\)n‘et\ar‘y‘cqmbén‘sa‘tion ////////
| Client (Ill) Enforce & monitor. Supplier Org. (V) Strategic 3“3an Project
[, aualty & progress 50 . S
‘\\ (V) C icate: 'V"\ (VIl) Operational excellence:
N .

Fig. 2. Overview of (a) inter-organizational and (b) intra-organizational interactions
within distributed projects

130 P. Rempel et al.

4 Interview Study

The objective of our study was to gain a better understanding of traceability
workflows across organizational boundaries. Thus, we conducted interviews with
informants from 17 different companies. Every informant was interviewed in an
individual session to prevent that different informant’s opinions interfered with
each other during the interview. We chose this qualitative research approach
for the following reasons. Workflows in inter-organizational projects are complex
and multi-faceted. Thus, it would be difficult to define specific context variables
required for a quantitative research methodology. In addition, our qualitative in-
terview approach ensured that we were close to the studied software projects and
its participants. This proximity helped us to gained an in-depth understanding of
the mechanics behind the observed phenomena and avoided misinterpretations
during the qualitative content analysis.

4.1 Sampling Cases for the Study

We assembled a list of potential companies from the membership list of the
association of friends of the Technical University Ilmenau. This list was extended
by contacts we made at a practitioners forum on requirements engineering. We
considered every company in the resulting list of 85 companies as a potential
case for our study. In order to prioritize this list, we collected general information
about each company and identified contact persons from the internet. We then
developed a case sampling strategy in order to select the most suitable companies
and informants for our study. Following the framework of Curtis et al. [20], we
defined and used the following sampling criteria:

— How relevant are general case characteristics to our taxonomy?

— What potential to generate rich information provides the case?

— How generalizable are findings from this particular case?

— What resources (e.g., money and time) are required to study this case?
— Does any ethical issues force us to exclude this case from our list?

After prioritizing the list of potential cases, the contact persons of highest pri-
oritized cases were contacted in order to arrange an interview. Provided that
the sampled company agreed, we conducted either one or multiple interviews
with key informants of this company. Every informant was interviewed in an
individual interview session to avoid influences between informants.

4.2 Data Collection

We decided to employ a semi-structured interview technique with closed-ended
and open-ended questions. This approach aimed to guarantee that our investi-
gations are guided by theory, while keeping the flexibility to explore unforeseen
information. As described in Section Bl we synthesized our taxonomy from lit-
erature. While developing our interview questionnaire, this taxonomy served us
as theoretical guidance. The questionnaire consisted of three parts:

Requirements Traceability across Organizational Boundaries 131

1. General company and project characteristics: we collected background
information about the key informant and the company. Then we asked the
informant to describe the software development project she or he is currently
involved or has recently finished.

2. Software development process: we asked for important process elements
such as activities, tasks, roles, stakeholders, artifacts, and tools. Thereby, we
aimed to generate a holistic view on the software development process from
the beginning to the end.

3. Inter-organizational traceability workflows: we asked the informant to
provide us with her or his definition of requirements traceability. The an-
swer to that introductory question enabled us to subsequently verify that
informants from different cases shared a common understanding of that con-
cept. We then collected characteristics of requirements traceability work-
flows across organizational boundaries. Hence, we asked for requirements
traceability objectives and challenges.

We applied a two phased approach for conducting the interviews. (I) We selected
a company in close proximity and performed a three hours lasting interview,
which we considered as a pilot run. In result, we produced interview minutes
and field notes. We analyzed the interview minutes in order to reveal and elim-
inate conceptual weaknesses from the questionnaire. We further conducted a
retrospective review of our field notes to improve our interview tactics. Thereby,
we realized the necessity to approach certain topics differently in order to avoid
unwittingly influencing the informant. (IT) The actual interviews were conducted
with 20 informants from 17 different companies. All interviews were recorded in
writing by a designated minute taker.

4.3 Data Analysis

To extract findings from the written interview minutes we applied qualitative
content analysis [2I]. Our taxonomy served as a qualitative description model.
We derived a system of codes from our taxonomy. We classified informant’s
statements of all written interview minutes and field notes using the defined
codes and the qualitative analysis tool MAXQDAldg.

4.4 Data Demographics

In our study a single case referred to a distinct company concerned with soft-
ware development. Table [[l outlines that our study contains small (less than 100
employees), medium (100 to 1,000 employees), large (1,001 to 10,000 employ-
ees), and huge (more than 10,000 employees) companies. It can be seen that
small and medium companies mainly conduct small (less than 5 project mem-
ber) or medium (5 to 9 project member) projects, while large and huge compa-
nies mainly conduct large (10 to 100 project members) or huge (more than 100

2 http://www.maxqda.com

132 P. Rempel et al.

project members) projects. Most companies (15) are headquartered in Germany.
The remaining companies two headquarters are USA and Austria. All projects
were spread across multiple locations, often across multiple countries such as
Germany, USA, India, Bulgaria, Czech Republic, Austria, France, and Croatia.
The studied companies are active in various domains (Avionic, Finance, Insur-
ance, Logistics, Retail, Security, Transportation) and produce different offerings
(Software Product, Hardware Product, Software Development Services). The
captured projects represented various types of software development projects,
namely New-development, Maintenance, and Migration.

TablePloutlines characteristics of the interviewed informants. To provide more
context to the reader, the table relates every informant to the case she/he be-
longs to. The table shows that our data covers both actors (Client and Supplier)
and both perspectives (Project and Organization). Informant’s primary roles are
spread across all phases of the software development process (Project Manage-
ment, Requirements Analysis, Implementation, and Verification).

Table 1. Characteristics of studied companies and their projects

Project size Company size Case Project type Offering Domain
I New-development Service Public service
< 100 IV New-development SW Product Retail
<5

VI Maintenance =~ HW Product Robotic
100..1,000 VIII Maintenance SW Product Finance

II Maintenance Service Insurance
1

<100 XI Maintenance Service Insurance
_- 100..1.000 VII Maintenance Service Finance
v o XIII New-development Service Finance
X New-development Service Insurance

> 10, 000 . . .

XII Maintenance Service Retail

< 100 XVI Maintenance SW Product RE

10..100 1,001..10,000 IX Maintenance ~ SW Product IT Security
> 10,000 XTIV New-development HW Product Avionic
XVII Maintenance HW Product Telecommunic.

100..1,000 \% Maintenance ~ SW Product Retail
> 100 1,001..10,000 111 Migration Service Finance
> 10, 000 XV Migration Service Logistic

5 Study Results

This Section provides insights on the results that we extracted from the interview
minutes and field notes. Following our taxonomy, we present our extracted find-
ings from different viewpoints. We discuss the client’s viewpoint in Section [B.]

Requirements Traceability across Organizational Boundaries 133

Table 2. Inter-organizational perspective and primary role of interviewed informants

Actor Perspective Case Informant Informant’s primary role
111 Inf-T11-1 Project manager
Project .
o XV Inf-XV-1 Business analyst
ent o o X Inf-X-1 Process manager
rganization XII Inf-XTI-1 Portfolio manager
I Inf-1-1 Developer
I Inf-1-2 Project manager
I Inf-I1-1 Project manager
v Inf-IV-1 Development lead
\% Inf-V-1 Development lead
VI Inf-VI-1 Development lead
VII Inf-VII-1 Specification manager
Project .
VIII Inf-VIII-1 Project manager
Supplier
X Inf-IX-1 Development lead
X Inf-X-2 Release & Configuration manager
XI Inf-XI-1 Development lead
XII Inf-XT1I-2 Test manager
XV Inf-XIV-1 Tester
XVI Inf-XVI-1 Development lead
o XIIT Inf-XIII-1 GRC manager
Organization XVII Inf-XVII-1 Process manager

supplier’s viewpoint in Section 5.2, and the organizational viewpoint in Section
(.3l on requirements traceability in inter-organizational outsourcing projects.

5.1 Client’s Viewpoint

In this section we report findings that are specific to the client of an inter-
organizational relationship. These findings are structured according to the inter-
action types of our taxonomy.

Transfer Product and/or Service: The quality of the delivered end-product
was mentioned as most important by all informants. The supplier hands over a
fully verified roll-out baseline to us [Inf-III-1], we insist on a proof of full require-
ments coverage from the supplier [Inf-XV-1]. Due to contractual obligations, the
client demanded a proof of quality via traceability from the supplier that can
be objectively assessed. Especially, clients in strictly regulated environments re-
ferred to requirements traceability as a must. Though, traceability appeared to
be of great support to objectively assess product quality, two main issues were
reported by clients. (I) First, differences in tooling, methodology, and processes

134 P. Rempel et al.

between client and supplier made it difficult to efficiently leverage requirements
traceability. Main reason for this gap is the fact that technology and processes of
each organization were primarily aligned to the organizational goal. That implies
that traceability can typically only be used efficiently if this gap is bridged. (II)
Second, the existence of one common project goal and two independent organiza-
tional goals implied a natural conflict. As a result, traceability information could
not or only partially be used across organizational boundaries as its complete
disclosure would contradict with supplier’s organizational goals.

Monetary Compensation: Change and executive board of the client formally
accept and release the roll-out baseline. The final payment is made when this
critical milestone is reached [Inf-ITI-1]. Clients typically defined quality gates
that needed to be passed before any kind of payment was executed to the sup-
plier. The assessment of whether or not a quality gate had been passed is a very
difficult task for the client. Typically, the client had no direct access to resources
at the supplier’s side that would be able to provide required input for this as-
sessment. In this case, traceability was the only source that could be used by
clients for assessment. Client informants highlighted the issue that traceability
information must be reliable due to its high financial impact.

Enforcement and Monitoring: Traceability is used by the client’s project
managers to control the supplier’s progress and quality [Inf-XV-1, Inf-XII-1]. Pri-
mary task of the client’s project managers was to continuously monitor whether
or not the project can still be finished in time and budget and with the expected
result. As the client’s project managers had typically no direct access to all re-
sources at supplier’s side, they required access to reliable traceability information
that could be used to measure project progress properly. All test cases created
by the supplier must be accepted and released by the client side before any test
execution activity can be started [Inf-III-1]. For a complex scenario with multi-
ple suppliers, the client’s project manager pointed out that all supplier activities
were synchronized with the help of traceability.

Communication: Traceability information prepared by the supplier provides
valuable input for our further release planning [Inf-XV-1]. Due to the fact that
the supplier developed the software, product specific knowledge was generated
by the supplier’s team members. This product specific knowledge provided valu-
able input for the client’s product manager. The limited access to the supplier’s
resources forced the client’s product manager to gain product specific knowledge
indirectly via traceability information. Nevertheless, the supplier’s organizational
goal of keeping technical or functional knowledge confidential often contradicted
the goals of the client’s product manager.

5.2 Supplier’s Viewpoint

In this section we report findings that are specific to the supplier of an inter-
organizational relationship. These findings are structured according to the inter-
action types of our taxonomy.

Requirements Traceability across Organizational Boundaries 135

Transfer Product and/or Service: We use traceability to proof the com-
pleteness of our implementation to the client [Inf-XIV-1]. The supplier needed
to proof the quality and completeness of the implementation in order to avoid
expensive disputes. Client and supplier often contractually agreed upon penal-
ties for the case that the delivery of a product with a certain quality was missed.
Our client issues a bug in the application. In case of a false alarm (no bug
present) we leverage traceability to proof that the system works as specified by
the client [Inf-I-1, Inf-VII-1]. Usually, repairing software defects is covered by
the supplier’s warranty. Many suppliers reported on the common scenario that
a client raised a bug by mistake even though the software was working as spec-
ified by the client. Due to warranty obligations, the supplier had either to proof
that the product is working properly or to fix the bug. Without traceability be-
tween client’s requirements and supplier’s implementation/verification artifacts
the proof of correctness was almost impossible.

Monetary Compensation: When disputing with our clients about product
reliability, we use traceability to proof that we did not act with gross negligence
in order to avoid paying punitive damages [Inf-XVII-1]. Software errors may
have extraordinary impact. In such cases the supplier must be able to proof that
she or he did not act with gross negligence. Otherwise, the client may demand
compensation, which could even threaten the supplier’s existence.

Enforcement and Monitoring: We leverage traceability to monitor our
progress and communicate reliable release dates to our clients [Inf-IX-1]. The
supplier’s project manager used traceability to track the project progress. This
information was important to estimate and communicate reliable release dates.
Additionally, the project could be monitored to predict project delay. We must
have traceability information to successfully pass quality audits, which are peri-
odically operated by our clients [Inf-XVII-1]. Two informants reported on the
fact that they were forced by the client to provide traceability. Otherwise,
the client would not even consider entering into a contractual relationship with
the supplier. The client regularly verified traceability by supplier audits. Espe-
cially, informants working in highly regulated domains highlighted this issue.

Communication: Our product serves the needs of three different client types.
When writing technical product specifications, we typically trace back to the origin
of requirements in order to really understand the specific need [Inf-V-1]. Tech-
nical project team members at the supplier’s side such as designers, architects,
developers, or testers directly or indirectly depended on a proper understanding
what software was supposed to be built. To gain this understanding a direct com-
munication with the client’s requirements engineers was required. Though, direct
communication was limited due to organizational boundaries. Thus, traceability
was used to reduce the necessity for direct communication.

136 P. Rempel et al.

5.3 Organization’s Viewpoint

The following findings were extracted from interviews with informants that rep-
resents the organizational perspective.

Compliance: Internal auditors reproduce executed software development pro-
cesses of critical projects [Inf-XVII-1]. Suppliers that developed software for
regulated markets were obligated by legal regulation. Thus, compliance with le-
gal regulation was a strategic company goal. Retrospective audits of the software
process were supposed to verify whether or not project execution conformed with
regulation. Traceability was required to reproduce the process.

Strategic Alignment: We monitor aggregated traceability information from all
projects across the company to identify bug hot spots [Inf-XIII-1]. The purpose of
identifying bug hot spots with traceability is twofold. First, the risk of delivering
low quality products had to be reduced for the company. Second, bug hot spots
indicated that the used technology or architecture in this area was insufficient.

Operational Excellence: We use requirements traceability information to
establish an early warning system for predicting project crashes [Inf-XVII-1].
Traceability information of running projects could be compared with traceability
information of previous projects. By this comparison, critical project evolution
could be identified and counter-measures were taken.

5.4 A Practicioner’s Checklist

As a conclusion of our previously discussed findings, we derived three success
criteria for requirements traceability in inter-organizational projects. We sub-
stantiated each success criteria with a list of questions that can be used by
practitioners as a checklist.

Criteria I: Ensure availability and reliability of traceability

— What traceability information is required from our project partner?

— Do we rely on traceability information provided by the project partner?
— Is the provision of traceability information contractually specified?

— How can we assess our project partner’s trace recording process?

— What are our traceability information quality gates?

Criteria II: Identify and mitigate conflicting objectives

— Do we understand our project partner’s organization sufficiently to identify
conflicting objectives?

— Are there any conflicting objectives that discourage our project partner from
providing necessary traceability information?

Requirements Traceability across Organizational Boundaries 137

— How to establish trust between client and supplier to mitigate conflicting
goals?

— Do we need measures to mediate conflicting objectives (e.g. signing non-
disclosure agreement)?

Criteria ITI: Bridge the technological gap between client and supplier

— How does our project partner provide traceability information?
— Are we able to effectively use provided traceability information?

While the above checklist provides guidance for practitioners planning inter-
organizational projects towards addressing potential traceability problems, fur-
ther research effort must be devoted to the question how to address each of the
discovered and discussed problems (see Sections Bl B2 and B3). We found
that due to the organizational boundary and often contradicting organizational
strategies, applying requirements traceability becomes more complicated. We
would like to encourage the research community to seek for appropriate trace-
ability solutions for inter-organizational project setups.

6 Threats to Validity

When planning and conducting our study we carefully considered validity con-
cerns. This section discusses how we mitigated threats to the validity.

6.1 External Validity

Due to their nature, interview studies cannot be replicated as identical interview
circumstances cannot be recreated. Qualitative studies are primarily concerned
with describing and understanding existing phenomena. We described such ob-
served phenomena from our interviews. In an attempt to make these findings
usable to other practitioners, we developed a list of critical success factors for
requirements traceability in distributed project (see Section [BA). The fact that
our cases diverge across multiple domains, locations, and sizes contributes to the
applicability of our findings. However, we are aware of the fact that this kind of
study is not generalizable.

6.2 Internal Validity

The instrumentation threat was addressed by applying qualitative content anal-
ysis [21I], which must be guided by theory from the beginning. We derived a
taxonomy from literature as described below. Activities of our study, like cre-
ating the questionnaire, conducting the interviews, and extracting the findings
were all guided by this taxonomy. We mitigated the threat of case selection bias
by defining the selection scheme described in advance (see Section E.2]).

138 P. Rempel et al.

6.3 Construct Validity

Our study is grounded on a taxonomy that conceptualizes inter-organizational
software development projects. Thus, we describe and justify how our taxonomy
was constructed. To determine the number of potentially relevant studies, we
conducted a preliminary search for existing meta-studies on our topic. Then, we
extracted primary (P: inter-organizational) and secondary (S: software project)
search term categories from our research questions. Then, we extracted synonym
keywords for both categories from labels (headlines, captions) of the evaluated
meta-studies as additional search terms (see TableB]). The cross product of both
search term categories (P x S) defines our super set of 16 combined search
terms. Searching with all these 16 terms produced a list of 9157 unique hits. We
narrowed this list to 76 hits by applying the following inclusion criteria: (i) a
publication’s title must contain a primary search term (ii) a publication’s ab-
stract must contain a secondary search term. We carefully read and compared
the abstracts of the remaining publications. Additionally, we studied the ab-
stracts of their referencing and referred publications. Following this procedure,
we found publications that present definitions on inter-organizational projects
as well as typical client/supplier interactions. We then created a taxonomy that
is synthesized from overlapping information across these publications. We con-
sider the created taxonomy a reasonable framework for our study as the process
for selecting publications followed in principle the accepted Kitchenham method
and the publications that we built upon are well referenced by other researchers.

Table 3. Categorized search terms for the literature study

Primary terms (P) Secondary terms (.5)

inter-organizational software project
cross-organizational software development project
outsourcing software process

software development process
software workflow

software development workflow

6.4 Conclusion Validity

As described in Section we employed a preliminary prototypical interview
under realistic conditions to improve our questionnaire and our questioning tech-
nique. Thereby we emphasized on eliminating influencing information from ques-
tions or questioning behavior. All interviews of our study were conducted with
one informant in a single session without break. We offered no room for dis-
tractions and interruptions during the interview in order to avoid influences on
subjects’ answers.

Requirements Traceability across Organizational Boundaries 139

7 Conclusions and Future Work

In this paper we focused on the characteristics of inter-organizational software
development projects. In particular, we were interested in whether requirements
traceability can help to overcome challenges that a distributed development in-
herits. We identified three problem areas as most challenging for practitioners.

Different organizational background from client and supplier pose the
challenge that different technology and methodology is used, e.g., for require-
ments engineering and software development. This gap needs to be bridged in
order to provide sufficient requirements traceability. Although, adapters and tool
chains are implemented to handle that issue, practitioners repeatedly reported
on their struggle with this technological gap. Inter-organizational outsourcing
projects are of temporary nature and client-supplier relationship are manifold.
Thus, requirements traceabiliy must be customized for every project. Require-
ments traceability should therefore be defined as a strategic goal.

Due to organizational boundaries between client and supplier the access
to artifacts created by the project partner is typically restricted. Negotiated
contracts specify artifacts to be delivered either by the client or the supplier.
These deliverables are typically only a very small subset of all artifacts created
during the requirements engineering and software development of a system. This
reduced set of deliverables is often not sufficient to accomplish comprehensive
requirements traceability. That implies that requirements traceability needs to
be planned very carefully in advance and access to the necessary artifacts guar-
anteed via contract.

Conflicting objectives exist in two dimensions. The first dimension of con-
flict is client vs. supplier objectives. The second dimension of conflict is organiza-
tional vs. project objectives. Resolving a conflict in one dimension may negatively
impact the other dimension. Therefore, a traceability strategy should address all
conflicting objectives. If the demand for certain requirements traceability infor-
mation is contradicting an objective then this traceability information will likely
not be provided by the project partner. Eventually, the challenge is to reach a
trade-off mediating all four objectives.

Though, we conducted a broad interview study with cases from various do-
mains, more empirical knowledge is required for a generalizable theory. We plan
to extend our study and to iteratively evolve the provided practitioner guidelines
on requirements traceability in inter-organizational projects. Additionally, fur-
ther research on supporting tools and approaches is required to provide solutions
in the three problem areas identified above.

Acknowledgment. The authors would like to thank all practitioners partici-
pating in the interview study. We are supported by the German Research Foun-
dation (DFG): Ph49/8-1 and the German Ministry of Education and Research
(BMBF): Grant No. 16V0116.

140

P. Rempel et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability
problem. In: IEEE Proc. of the First Int. Conf. on RE, pp. 94-101 (1994)
Herbsleb, J., Moitra, D.: Global software development. IEEE Software 18(2), 16-20
(2001)

DiRomualdo, A., Gurbaxani, V.: Strategic intent for it outsourcing. Sloan Man-
agement Review 39(4), 67-80 (1998)

Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best prac-
tices for automated traceability. Computer 40(6), 27-35 (2007)

Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing requirements
traceability: a case study. In: IEEE 2nd Int. Symposium on RE, pp. 89-95 (1995)
Arkley, P., Riddle, S.: Overcoming the traceability benefit problem. In: Proc. 13th
IEEE Int’l Conf. on Requirements Engineering, pp. 385-389 (2005)

Maéder, P., Gotel, O., Philippow, I.: Motivation matters in the traceability trenches.
In: Proc. of 17th Int’l Requirements Engineering Conference, RE 2009 (2009)
Gotel, O.: Contribution Structures for Requirements Traceability. PhD thesis, Im-
perial Collage of Science, Technology and Medicine, University of London (1995)
Lormans, M., van Dijk, H., Van Deursen, A., Nocker, E., de Zeeuw, A.: Managing
evolving requirements in an outsourcing context: an industrial experience report.
In: 7th Int’l Workshop on Principles of Software Evolution, pp. 149-158 (2004)
Damian, D., Chisan, J.: An empirical study of the complex relationships between
requirements engineering processes and other processes that lead to payoffs in
productivity, quality, and risk management. IEEE TSE 32(7), 433-453 (2006)
Rébade, L., Alfaro, J.: Buyer—supplier relationship’s influence on traceability im-
plementation in the vegetable industry. PSM 12(1), 39-50 (2006)

Midler, C.: “projectification” of the firm: the renault case. Scandinavian Journal
of Management 11(4), 363-375 (1995)

Grabher, G.: Temporary architectures of learning: knowledge governance in project
ecologies. Organization studies 25(9), 1491-1514 (2004)

Jones, C., Lichtenstein, B.: Temporary inter-organizational projects: How temporal
and social embeddedness enhance coordination and manage uncertainty. In: The
Oxford Handbook of Inter-Organizational Relations, pp. 231-255 (2008)

Bakker, R., Knoben, J., De Vries, N., Oerlemans, L.: The nature and prevalence
of inter-organizational project ventures: Evidence from a large scale field study in
the netherlands 2006-2009. ILJPM 29(6), 781-794 (2011)

Von Krogh, G., Nonaka, I.;, Aben, M.: Making the most of your company’s knowl-
edge: a strategic framework. Long Range Planning 34(4), 421-439 (2001)

Kern, T., Willcocks, L.: Exploring information technology outsourcing relation-
ships: theory and practice. JSIS 9(4), 321-350 (2000)

Halvey, J., Melby, B.: Information technology outsourcing transactions: process,
strategies, and contracts. Wiley (2005)

Van Grembergen, W., De Haes, S., Guldentops, E.: Structures, processes and re-
lational mechanisms for it governance. SITG 2004, 1-36 (2004)

Curtis, S., Gesler, W., Smith, G., Washburn, S.: Approaches to sampling and case
selection in qualitative research: examples in the geography of health. Social Science
& Medicine 50(7), 1001-1014 (2000)

Mayring, P.: Qualitative content analysis. In: Forum Qualitative Sozialforschung/-
Forum: Qualitative Social Research, vol. 1 (2000)

Regulatory Requirements Traceability and Analysis
Using Semi-formal Specifications

Travis D. Breaux' and David G. Gordon®

! Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
breaux@cs.cmu.edu
% Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
dggordon@andrew. cmu.edu

Abstract. Information systems are increasingly distributed and pervasive,
enabling organizations to deliver remote services and share personal information,
worldwide. However, developers face significant challenges in managing the
many laws that govern their systems in this multi-jurisdictional environment. In
this paper, we report on a computational requirements document expressible using
a legal requirements specification language (LRSL). The purpose is to make legal
requirements open and available to policy makers, business analysts and software
developers, alike. We show how requirements engineers can codify policy and
law using the LRSL and design, debug, analyze, trace, and visualize relationships
among regulatory requirements. The LRSL provides new constructs for
expressing distributed constraints, making regulatory specification patterns
visually salient, and enabling metrics to quantitatively measure different styles for
writing legal and policy documents. We discovered and validated the LRSL using
thirteen U.S. state data breach notification laws.

Keywords: requirements specification, traceability, domain specific languages,
legal requirements.

1 Introduction

Increasingly, new government laws and regulations are being introduced to address new
challenges posed by emerging information systems (IS). For software developers, this
emergence of IS-related laws places constraints on what systems must do (the matter of
requirements) and whether system requirements documents include all the right
requirements (the matter of validation). In the United States, a prominent example
includes the recent surge in state data breach notification laws, which have been
empirically observed to reduce identity theft [27]. Collectively, these laws combine the
act of notification to various stakeholders with technical security controls (e.g.,
encryption, data destruction, etc.) targeted at different information types, business
practices and consumers. These laws require the development of a new, interstate
information system that most businesses in the U.S. must participate in by modifying
their organizational practices and software systems to account for data breaches and to
deliver notices under specifically governed situations. Many of the legally imposed
security requirements follow conventional security design wisdom; however, the legally

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 141-[57] 2013.
© Springer-Verlag Berlin Heidelberg 2013

142 T.D. Breaux and D.G. Gordon

mandated parameters in these requirements vary across jurisdiction. For example, using
encryption or disposing of unnecessary data is a security best practice; however, the
required type of encryption and length of data retention does vary across state and
national boundaries. The challenge for developers, especially in small businesses, is to
distill these regulations into actionable requirements that are traceable across their
business practices. Simply skimming a regulation for keywords or phrases exposes
software developers and users to the risk of missing subtle constraints and relationships.
Example relationships affect who is covered, under what circumstances, and to what
extent. Finally, a systematic, traceable and comprehensive account of existing legal
requirements can facilitate the integration with industry standards to further articulate
how businesses comply with government laws [28].

We believe existing approaches to governance, which consists of independently
published, paper-based laws and policies, can no longer scale with rate of technology
innovation. Furthermore, if an honest expectation of compliance is to be preserved in
this new environment, regulations must be made accessible to policy makers, business
analysts and software developers, alike. We propose that regulators and industry can
reach a coordinated solution wherein regulations become a computational software
artifact that are dynamically linked across jurisdictions and that enable tool-based
requirements analysis. These computational artifacts can integrate with industry
standards to become more easily comparable and addressable in a manner that reflects
the jurisdiction of the computer’s memory state, users’ location, and the rate of
technological change. To this end, we report our efforts to develop a legal
requirements specification language (LRSL), derived from grounded analysis of
conflicting regulations from multiple jurisdictions. By translating requirements into
the LRSL, document authors can design and debug their requirements documents
using improved tracing, patterns and metrics that we discuss in this paper.

The remainder of the paper is organized as follows: in Section 2, we discuss related
work; in Section 3, we introduce the LRSL by example; in Section 4, we present our
research methodology to discover and validate the LRSL; in Section 5, we summarize
our research findings, including techniques for navigating and cross-linking legal
requirements; and in Section 6, we conclude with our discussion and summary.

2 Related Work

Related work includes research on requirements languages, extract requirements from
laws, prioritize requirements, and model legal documents and their legal effects.
Requirements specification languages (RSLs), including requirements modeling
languages (RMLs), have a rich history in requirements and software engineering [20].
RSLs include informal, natural language descriptions to provide readers with context
and elaboration, and formal descriptions, such as mathematical logic, to test
assumptions across requirements using logical implications [13]. Goal-oriented
languages, such as i* [36] and KAOS [11], and object-oriented notations, such as
ADORA [17], include graphical notations to view relationships between entities, such
as actors, actions and objects. Because of computational intractability and
undecidability of using highly expressive logics [16], RSLs often formalize only a
select class of requirements phenomena, e.g., using description logic [5] and various

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 143

temporal logics, such as interval [26], real-time [11] or linear [14] temporal logic.
Consequently, RSLs and RMLs may struggle with the balance between expressivity
and readability [13]. Unlike i*, KAOS and ADORA, the LRSL proposed herein is
designed for the law and policy domain by integrating formal expressions of
document structure using regular expressions with semi-formal expressions of rights,
permissions and obligations using text-based predicates and annotations. Unlike
frame-based approaches that seek to classify phrases by logical roles [7], our LRSL
simulates how policies are written by formalizing the cross-links among requirements
in ways originally specified by regulators, and preserving traceability to the original
legal document references. The aforementioned notations do not account for this
integration of requirements and original sources in policy and law.

Approaches to formalize laws in requirements engineering have focused on
prescriptions, called rights, permissions and obligations [6], ownership and delegation
[15], and production rule systems [22]. In addition, cross-references within and
among laws have been shown to coordinate definitions, exceptions and refinement
and must be addressed in a comprehensive legal requirements management strategy
[8]. Recent analysis of external cross-references emanating from the Health
Information Portability and Accountability Act (HIPAA) shows the potential for
conflicts between HIPAA and other laws [23]. Recently, Siena et al. describe the
Nomos 2 framework to model norms, which they claim can be used to determine
compliance with law [31]. We believe the LRSL could be combined with the
inference layer provided by Némos 2 to reason about legal requirements coverage.

Research in artificial intelligence (AI) and law has long sought to encode
regulations into formal models. Among many others, this includes work by Biagoli et
al. [2] and Sergot et al. [29] to express statutes as logic programs. Allen and Saxon
describe the A-Hohfeld language [1] based on Hohfeld’s legal concepts [18]. The
language is used to reason about legal powers, rights, and duties. More recently,
Sergot describes a theory of normative positions based on the Kanger-Lindahl theory
[30]. The aim of this work was to develop automated legal reasoning tools. Because
regulatory documents were not intended to be formalized and often contain
ambiguities, our approach has been to develop methods to express a normative semi-
formal semantics [9] that yield “islands of formality” while preserving legal
ambiguity for later analysis by an appropriate legal analyst. Stamper argues this
approach provides an “economy of expression” in regulatory requirements analysis
[32], which is a commonly held view of domain specific languages, in general [25].
Thus, our approach is concerned with repeatable, semi-formalization that strictly
deals with issues of ambiguity and document structure. Approaches to formalize
judicial legal arguments, such as LegalXML, concern a different problem. Judicial
reasoning can be used to refine one’s interpretation of regulations, which aim to
explore in future work.

Within the limited scope of our paper, Bourcier and Mazzega propose a vision to
represent legal documents using networks, wherein legal articles are nodes connected
by edges that represent either “legal influences” or quotations, called “legal selection”
[3]. They advocate for content-based measures that account for legal effects produced
by normative statements [3]. Massey and Antén propose several metrics for
measuring regulation dependency and complexity [21]. Our LRSL addresses these
needs in three respective ways: 1) by codifying legal influences in typed,

144 T.D. Breaux and D.G. Gordon

priority-based relations (including exemptions, pre-emptions and waivers) that cross-
link between portions of regulatory documents; 2) by assigning types to cross-
references between individual requirements (a much finer level of detail than Bourcier
and Mazzega) that encodes certain legal effects, such as refinement, exception and
pre- and post-conditions; and 3) by measuring these relations to quantify complexity
exhibited in legal writing styles.

2.1 Writing Legal Requirements Specifications

The Legal Requirements Specification Language (LRSL) makes several assumptions
about the domain of legal requirements. These assumptions were first observed in our
case study and thus incorporated into the LRSL syntax and semantics described here.
As we discuss later, they support what we believe are good requirements specification
practices. In addition to these assumptions, the analyst who translates a law into the
LRSL uses several techniques that we have previously identified [4, 6]: phrase
heuristics to identify modal verbs corresponding to rights, obligations and
prohibitions; re-topicalization shifts the subject of a requirement to a principal actor;
case-splitting to separate one compound requirement into separate requirements; and
balancing rights and obligations to identify inferred requirements.

In the discussion that follows, we use the following excerpt in Figure 1 that was
acquired from Arkansas Title 4, §110.105 to present the LRSL.

4-110-105. Disclosure of security breaches.

(a)(1) Any person or business that acquires, owns, or licenses computerized data that includes
personal information shall disclose any breach of the security of the system... to any resident
of Arkansas...

(2) The disclosure shall be made in the most expedient time and manner possible and without
unreasonable delay, consistent with the legitimate needs of law enforcement as provided in
subsection (c¢) of this section

Fig. 1. Excerpt from the Arkansas (AR) Title 4, §110.105 of the Personal Information
Protection Act

The analyst converts statements and phrases from the original text into expressions
in the LRSL. Figure 2 shows the excerpt from Figure 1 expressed in the LRSL:
reserved keywords, special operators, and line numbers along the left side appear in
bold. The DOCUMENT keyword (on line 1) assigns a unique index to the specification.
The scHEMA keyword (on line 2) precedes an expression consisting of components in
curly brackets. Each component corresponds to a different reference level within the
document model, beginning with the topmost level, in this case the title and chapter.
References within the specification are parsed by the automated parser using this
schema. Line comments are denoted by the *“//” operator. We use the ellipsis “...” to
denote omissions from the specification to simplify presentation in this paper.

The document model consists of sections and nested paragraphs, expressed in the
LRSL by the secTION and PAR keywords, respectively. These keywords are
followed by a reference and an optional title: line 5 shows the section reference

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 145

4-110-105 followed by the title from Figure 1; sub-paragraphs (a) and (1) follow on
lines 6-7.

Requirements consist of roles, pre-conditions and prescriptive clauses, organized
into first-order logic expressions using operators “I” for logical-or (see line 9, Figure
2), and “&” for logical-and. Roles are noun phrases that describe the actors or objects
to whom the requirements apply. Next follows the clause, preceded by a *“:” and
starting with a verb. Modal verbs indicate requirements, such as “shall” to indicate an
obligation (see lines 13 and 16); otherwise, the clause is a pre-condition that is often
assumed to be an implied permission (see line 10). Finally, analysts can link
categories to requirements using the keyword ANNOTATE (see lines 11 and 17).

1 DOCUMENT US-AR-4-110

2 SCHEMA {title:4}-{chapter:110}-{section:\d+}{par:\([a-z]\)}{par:\(\d+\)} //...

3 TITLE 4-110 Personal Information Protection Act

4

5 SECTION 4-110-105 Disclosure of security breaches

6 PAR (a)

7 PAR (1)

8 person

9 | business

10 : acquires, owns, or licenses computerized data that includes personal
information

11 ANNOTATION implied-permission

12 PRECEDES (a) #2 // comment: a pre-condition

13 : shall disclose a breach of the security of the system to any resident

14 PAR (2)

15 disclosure

16 : shall be made in the most expedient time and manner possible and without
unreasonable delay

17 ANNOTATE timing-requirements

18 REFINES (1) #2

19 EXCEPT (c) (1) #1

Fig. 2. Excerpt from Arkansas 4-110-105 expressed in the LRSL

Cross-references serve to coordinate requirements and constraints expressed in
different regions of a regulatory text. In some regulations, cross-references are coarse-
grained, meaning they refer to whole paragraphs; in which case, the analyst must
determine which specific requirements in that paragraph are intended. The LRSL
allows analysts to express coarse references with the added ability to distinguish
which requirements they deem as applicable; preserving their interpretation for later
review by other analysts and legal counsel.

We discovered three types of cross-references in our case study (see Section 5):

e REFINES, with the inverse relation REFINED-BY, indicates that this requirement is a
sub-process or quality attribute that describes how another requirement is fulfilled.

e EXCEPT, with the inverse relation EXCEPT-TO, indicates that this requirement has an
exception (another requirement). If the pre-conditions of the exception are satisfied,
then this requirement does not apply (it becomes an exclusion, e.g., is not required).

e FOLLOWS, with the inverse PRECEDES, indicates that this requirement is a post-
condition to another requirement, e.g., this requirement is permitted, required, or
prohibited after the other requirement is fulfilled.

In Figure 2, the command keyword REFINES (line 18) establishes a refinement
relation from the preceding requirement (line 16) to the second requirement (line 13)
in paragraph (1). The refinement on line 16 is a quality attribute, because it elaborates

146 T.D. Breaux and D.G. Gordon

when the “disclose” action must occur: “expediently, without delay.” Generally,
quality attributes refine another requirement’s action or object in the LRSL.

Section and paragraph references are either absolute or relative: absolute references
begin from the top-level component in the schema and walk each component to the
paragraph that contains the target requirement; relative references are matched by the
nearest ancestor in the hierarchical schema, beginning with the parent paragraph.
References in the LRSL can be expressed as a single paragraph, such as “(1)” or a
paragraph range, such as “(1)--(3)”. Other operators exist to refer to the last paragraph
and all sub-paragraphs (i.e., the transitive closure). Rule selection is done in three
ways: a) by default, references select all rules within the referenced paragraphs; b)
singular paragraph references followed by the ordinality operator “#” and a number n
will identify the n rule in that paragraph (see lines 12, 18, or 19); and c) references
followed by a comma-separated list of annotations will find rules that share those
annotations (e.g., all “permissions” or all “timing-requirements”). Finally, multiple
references can be joined in logical expressions using simple Boolean logic operators:
“&” for logical-and, and “|” for logical-or, and parentheses for associativity.

Definitions describe the actors and objects in the system. In Figure 3, paragraph
(a) on lines 4-8 contains a definition for data storage device, indicated by the “="
operator. Definitions are expressed using the Boolean logical operators for logical-
and and logical-or, in addition to the inclusion operator “<”, which means
“includes” and precedes examples or sub-classes (see line 7), and the exclusion
operator “~”, which means “excludes” (see line 13). By default, definitions apply to
the paragraph in which they occur, unless instructed otherwise using the INCLUDE
keyword, followed by two references: the source paragraph containing the
definitions, and the target section or paragraph to which the definitions will apply.
The instruction in Figure 3, line 2 tells the parser to apply all the definitions from
paragraph (5) and all sub-paragraphs (indicated by the “+”) to §215. In contrast, the
INCLUDE EXTERNAL instruction on line 15 instructs the parser to lookup the
definition “payment card” by finding a regulatory specification indexed by NV-
205.602, and to apply this definition to §215. This second usage enables reuse of
definitions from and across multiple regulations. In other words, the LRSL supports
tracing dependencies from one or more definitions to other definitions and
requirements across multiple specifications.

PAR 5.
INCLUDE 603A.215.5* 603A.215%*
PAR (a)
data storage device
= device
& stores information or data from any electronic or optical medium
< computers
| cellular telephones
/7 ...
10 PAR (c)
11 facsimile

VoSN WNE

12 = electronic transmission between two dedicated fax machines using Group 3
or Group 4 digital formats...

13 ~ onward transmission to a third device after protocol conversion,
including, but not limited to, any data storage device

14 PAR (d)

15 INCLUDE EXTERNAL NV-205.602 603A.215* "payment card"

Fig. 3. Excerpt from Nevada 603A.215(5)(c) expressed in the LRSL

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 147

2.2 Tool Support and Generated Artifacts

The LRSL is complemented by an automated parsing tool, which checks the language
for syntax errors, such as malformed or unassociated logical expressions, and semantic
errors, such as incorrect references, empty relations that refer to no rules, unreferenced
definitions, and cycles among relations of the same type, e.g., REFINES, EXCEPT,
rorrows. The parser applies Deontic annotations to requirements based on established
phrase heuristics [6], and the model created by the parser can then be used to find
requirements as needed, e.g., find all the obligatory timing requirements. The parser-
constructed model is exportable to other formats, such as the HyperText Markup
Language (HTML), the Graph Markup Language (GraphML), and the eXtensible
Markup Language (XML). Each format offers a different perspective: the HTML allows
users to browse the specification by clicking hyperlinks, viewing definitions and
referenced rules in context of a single rule; the GraphML allows users to visualize
relationships across multiple requirements and identify regulatory patterns, which we
discuss in Section 4.2; and the XML enables data inter-operability, which may
eventually include exporting the model to the Requirements Interchange Format (RIF)
and the User Requirements Notation (URN). Figure 4 shows a graph generated from the
LRSL example in Figure 2: text labels include a unique requirement identifier (e.g., AR-
7), followed by the requirement clause (abbreviated in this figure). Nodes are colored by
whether they are permissions (green), obligations (yellow), and prohibitions (red) based
on annotations generated by the phrase heuristics. Directed edges represent relations and
point to referenced rules as follows: solid edges are ReFINES, dashed edges are EXCEPT,
and dotted edges are rorLows relations. This support addresses previously identified
limitations in analysis tools, including the need to reference requirements at the
statement-level [19, 24] and the need to add types to cross-references [34].

AR-7:SHALL disclose AR-10: MAY delay disclosure
breach (law enforcement)

RN

REFINES (a)(1) —> E)?cLELr?Tv:/cs)(l)

= =

AR-8:SHALLdisclose AR-11:SHALL disclose breach
expediently

Fig. 4. Excerpt from Arkansas §110.105 expressed in GraphML

3 Research Methodology

Our study aims to describe variation in regulations across multiple jurisdictions. In
preparation to achieve this goal, we focus on developing a method to extract and
encode these regulations. We selected a single theme (data breach notification) to
illustrate dependencies between functional system requirements and personnel
responsibilities. In the United States, this theme represents the recent enactment of 46
state and territorial laws from 2002-2011, each governing personal information about
state residents. For distributed and pervasive systems, variations in these laws require

148 T.D. Breaux and D.G. Gordon

businesses to reconcile different legally required practices for customers of different
states. The laws we selected are as follows:

o AK: Personal Information Protection Act, Alaska Chapter 45.48, enacted 2009.

o AR: Personal Information Protection Act, Arkansas Chapter 14.110, enacted 2005.

o CT: Breach of Security Regarding Computerized Data Containing Personal Information,
Connecticut General Statute 36a-701b, enacted 2006.

e MA: Security Breaches, Massachusetts Chapter 93H, enacted 2007.

e MA-S: Standards for the Protection of Personal Information of Residents of the
Commonwealth, Massachusetts Chapter 17, enacted Sep. 19, 2008.

e MD: Personal Information Protection Act, Maryland Subtitle 14-35, enacted 2008.

e MS: (no title given) Mississippi House Bill 583. Enacted 2011.

o NV: Security of Personal Information, Nevada Chapter 603 A, enacted 2006.

e NY: Notification of Unauthorized Acquisition of Personal Information, New York General

Business Law 899-aa, enacted 2005.

OR: Oregon Consumer Identity Theft Protection Act, Oregon Chapter 646A, enacted 2008.

UT: Protection of Personal Information Act, Chapter 44, enacted 2006.

VT: Protection of Personal Information, Vermont Chapter 26, enacted 2007.

WI: Notice of Unauthorized Access to Personal Information, Wisconsin Chapter 134.98,

enacted 2006.

We down-selected from 46 to 13 laws as follows: first, we surveyed legal expert with
seven years of privacy and security law expertise to highlight industrial challenges,
resulting in AR, MA-S, MA, MD, and NV; and second, we selected three laws with
the largest number of pages, resulting in AK, OR, and VT. The remaining laws had
noteworthy, uncharacteristic features: unique (WI) or broad (NY) definitions, the
most recent law to expose evolution (MS), interfaces to external agencies (CT), and
severe penalties (UT). In addition, we constructed document schemas for 49 data
breach laws to validate the construction of SCHEMA expressions across a larger dataset.

Two investigators (the authors) separately translated each statement in each law
using the LRSL. The translation includes a general classification of each statement, as
a definition, requirement, exemption, etc., and writing an expression in the language
to characterize the statement. Definitions were identified by key phrases, such as “x
means y”, where a term x has the logical definition y. Requirements and exemptions
were identified using phrase heuristics identified by Breaux et al. [6]. Comments were
used in the translation to capture questions, issues and other discrepancies. We
maintained a caveats list of translation strategies that reflect unusual cases and how
the parser should treat such cases, and a proposed changes list of requirements with
examples for new language constructs. For each new construct, we reviewed each law
to update the translation to ensure consistency across the entire dataset. Corbin and
Strauss state, “The essential element of theory is that categories are interrelated into a
larger theoretical scheme” and a theory represents an “abstract rendition of that raw
data” [10]. In this regard, the LRSL is an expression of a grounded theory in a
context-free grammar that explains how legal requirements are expressed. The theory
extends prior theoretical findings [8] and consists of concepts (rights, obligations,
permissions, etc.) and cross-reference relationships (refinements, exceptions and pre-
and post-conditions) that link these concepts together and explains how to trace legal
definitions and requirements across a legal text. Our analysis checked for internal
consistency, and if the language covers variations across all cases that we studied.

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 149

Grounded theories are limited to studied cases and new cases may invalidate the
theory.

4 Research Findings

The translation of thirteen laws by two investigators (the authors) yielded 808
statements, required an average of 2.26 minutes per statement with the longest
document consisting of 148 statements and requiring an average of 5.5 hours. Each
investigator spent an average total of 30.5 hours to encode the thirteen laws. Figures 5
and 6 present summary statistics for the units of analysis encoded in the LRSL. Recall
these laws cover the same theme (data breach notification). We observed the number
of definitions did not vary greatly and that the number of exemptions was a matter of
writing style; neither definitions nor exemptions are proportional to the number of
requirements in this dataset.

160 120
140 100
120
100
80
60 40

80

60

40 20
20

(S SR\ SR I - SR\ S SR SR (SR AR\
» 9 NN
*PQ‘QI\@\\"‘%@V@V\QVYLOQ\)‘Q‘\“\ i W7

BRefines (Qualty) ~ WRefines (Sub-process) BExcept BFollows

BExemptions BR equi BDefini

Fig. 5. Summary Units of Analysis— Statements Fig. 6. Summary Units of Analysis —Reference

The references reported in Figure 6 originate from multiple origins, including:
anaphora, which is indicated by determiners (e.g., such) and pronouns (e.g., this);
case-splitting, which is indicated by English conjunctions (and, or) separating verb
clauses that follow a modal phrase (e.g., must, may, shall); and direct references to
sections and paragraph that may be anaphoric (this section, this paragraph) or indexed
by paragraph number, such as “paragraph (a).” Table 1 presents summary statistics
for each of these observed origins. For direct references, we present the number of
corresponding rules identified by the original reference for each regulation, called
direct literal (dL), and the number of corresponding rules indexed by the
operationalized reference using the LRSL language construct, called direct indexed
(dI). Because the operationalized references are more precise, we can calculate the
ambiguity loss, which is the proportion of false positives referenced by an ambiguous
cross-reference and which we express as (dL — dI) / dL. The operationalized
references expressed in the LRSL, which allow analysts to link requirements to only
true positives, reduce reference ambiguity by 50-93%.

150 T.D. Breaux and D.G. Gordon

Table 1. Cross-Reference Origins and Ambiguity

State Case . Direct |Direct Ambigui
Law Anaphora Split Direct Literal | Indexed Reducgtiotl}l,
AR 2 4 5 24 7 0.708
AK 16 19 35 143 36 0.748
CT 8 3 3 14 5 0.642
MA 20 1 3 45 3 0.933
MA-S 4 34 1 2 1 0.500
MD 4 12 21 62 23 0.629
MS 7 4 6 19 6 0.684
NV 7 3 13 83 14 0.831
NY 16 6 8 41 17 0.585
OR 29 15 24 190 24 0.874
UT 3 12 17 136 40 0.706
VT 36 10 25 269 32 0.881
WI 6 0 18 78 20 0.744

We developed metrics to measure stylistic properties that affect the extent to which
an analyst must make inferences to resolve requirements ambiguity. Using the metrics,
we observed the following styles: cascading refinement occurs when sections are
organized around high-level goals in which goal-refinements and post-conditions are
expressed in nested paragraphs; reference uniqueness occurs when cross-references
refer to the fewest number of requirements, ideally one; and block formatting occurs
when the paragraphs contains multiple requirements, but are rarely nested.

We now discuss other observations from this case study.

4.1 Shaping Conditionality and Coverage

Conditionality is the extent to which a legal requirement is conditioned by who
stakeholders are and what events have occurred, which we call pre-conditions.
Definitions and exemptions shape conditionality by relaxing or tightening the meaning
of terms and thus scaling the number of possible situations those terms cover. We
discuss two ways that these effects are observed through the LRSL: (1) cross-linking of
terms-of-art to paragraphs and to pre-conditions, requirement clauses and other
definitions; and (2), cross-linking of exemptions to modify pre-conditions and clauses.

The LRSL parser automatically cross-links definitions to requirements by
matching terms-of-art in definitions with phrases in. Recall from Figure 3 the
definitions for terms data storage device (line 4) and facsimile (line 11) and the
imported term payment card (line 15) from another law, NV §205.602. The
instructions INCLUDE (lines 2 and 15) orchestrate these definitions by applying them
to all sub-paragraphs in §603A.215. This includes linking to other definitions, such as
the phrase on line 13 that excludes “data storage device” from the onward
transmission of a facsimile. Figure 7 illustrates this linking to requirements in
paragraphs §603A.215(1) and (2): the underlined phrases match the terms-of-art from
Figure 3 as determined by the parser. Both when to apply a prescription and the extent
of the prescription can be computationally adjusted by relaxing or tightening
definitions using the includes “<” and excludes “~” operators, respectively.

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 151

1 SECTION 603A.215

2 PAR 1.

3 data collector

4 : does business in this State

5 : accepts a payment card in connection with a sale of goods or services

6 shall comply with the current version of the Payment Card Industry (PCI)
Data Security Standard...

7 FOLLOWS #1 & #2

8 PAR 2.

9 data collector

10 : does business in this State

11 EXCEPT 1.

12 PAR (a)

13 : does not use encryption to ensure the security of electronic transmission

14 : shall not transfer any personal information through an electronic, non-
voice transmission other than a facsimile to a person outside of the
secure system of the data collector

15 FOLLOWS 2. #1 & 2.(a) #1

16 PAR (b)

17 : does not use encryption to ensure the security of the information

18 : shall not move any data storage device containing personal information

beyond the logical or physical controls of the data collector or its data
storage contractor
19 FOLLOWS 2. #1 & 2.(b) #1

Fig. 7. Excerpt from Nevada §603A.215(1) and (2)

For example, if we redefine payment card to exclude gift card, then the scope of
when to apply the requirement to comply with the PCI DSS standard (on line 8,
Figure 10) would be further restricted to omit the case of gift cards. Alternatively, if
data storage device were redefined to include USB drives, then the extent of the
prohibition on moving such devices (on line 18, Figure 7) would be extended to
include this interpretation. The ability to shape when to apply and the extent of
prescriptions using the LRSL can enable regulators and businesses to evolve
conditionality as new technologies emerge over time.

Whereas definitions shape terms used in pre-conditions and requirements clauses,
exemptions fine-tune what is excluded from pre-conditions and clauses. Figure 8
shows a description of the role “telecommunications provider” with a role constraint
on line 4. The EXEMPT keyword instructs the parser to exclude this role and constraint
from all rules in §215 and all sub-paragraphs therein. While such an exemption could
be stated in a definition using the excludes operator “~”, exemptions provide a
mechanism to tighten meanings across a document cross-section, unbounded by a
single term-of-art or definition.

1 PAR 4.

2 PAR (a)

3 telecommunications provider

4 : acts solely in the role of conveying the communications of other persons,
regardless of the mode of conveyance used...

5 EXEMPT 603A.215 *

Fig. 8. Excerpt from Nevada §603A.215(4)(a) expressed in LRSL

Figure 9 illustrates how constraints, expressed as definitions and exemptions, are
traced by the parser through parser instructions. The INCLUDE EXTERNAL instruction
imports (in purple) the payment card definition from another regulation, NV 205.602,
into NV 603A.215(5)(d). The INCLUDE instruction maps (in blue) the definitions
from 603A.215(5), including any imported definitions, onto 603A.215; this mapping
includes the inner link from data storage device to facsimile, and the outer links

152 T.D. Breaux and D.G. Gordon

to requirements in 603A.215(1) and (2). Last, the exemption 603A.215(4)(a) is
mapped (in red) onto requirements 603A.215 to exclude interpretations implied by
definitions.

SECTION 603A215
PAR (1)

Requirement #3 e
PAR (2) INCLUDE
PAR (a) e

Requirement #2
PAR (b)
Requirement #2

PAR (5)
PAR (a)
data storage device

PAR (c)
facsimile
PAR (d)

SECTION 205602
payment card

Fig. 9. Summarizing the Effects of Conditionality

INCLUDE
EXTERNAL

PAR (4)
PAR (a)
Exemption #A

EXEMPT

4.2 Regulatory Specification Patterns

When visualized graphically, the LRSL-encoded regulations reveal several regulatory
specification patterns. Visual specifications have been hypothesized to improve
requirements comprehension [12]. These patterns describe legal mechanisms for
prescribing the behavior of personnel and systems in the environment. In Figure 4, we
presented the first pattern, called a suspension, in which a permission (AR-10) is an
exception to an obligation (AR-7) and satisfying the pre-conditions of the permission
causes the obligation to be suspended. We now discuss three other patterns: system
design alternatives and scaling restrictions; standards and indemnification; and limited
exceptions for legacy systems. We believe these patterns can be re-used in writing new
regulations and standards or for identifying similar dependencies among requirements.

Figure 10 shows three system design options for sending written (MD-15),
electronic (MD-16) and telephonic (MD-17) notices as means for notifying
individuals, data owners and data licensees of a security breach under MD
§14.3504(e); note the arc indicating the “or” relationship between these options
means only one option is necessary to discharge the obligations MD-10 and MD-7.
These alternatives are intended to allow businesses to leverage a diverse set of contact
options based on the level of technological sophistication of the business. In addition,
the exception MD-18 permits a substitute notice via statewide media and other
broadcast mechanisms, when the cost of notification becomes too prohibitive. This
type of scaling mechanism (a permitted exception conditioned on measurable limits of
effect size, in this case a finite number of notices or monetary value) can be used to
control regulatory system costs across an entire industry.

Figure 11 shows the combined uses of deference to external standards with
indemnification from NV §603A.215. The Payment Card Industry Data Security
Standard (PCI-DSS), cited in NV-5, prescribes several technical security requirements
for businesses that handle payment cards. In Figure 11, a business is prohibited (in
red) from transferring data (NV-6) or moving data storage devices (NV-7), excluding
facsimiles. However, complying with the PCI-DSS standard (in yellow, NV-5) is an

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 153

exception that permits transferring data and moving devices. Whether a business
chooses to accept the more prohibitive restrictions or to comply with the exception,
NV §603A.215 prohibits the business from being liable for data breach damages. This
prohibition is an example of a safe harbor, which is a regulatory mechanism designed
to encourage industry to act against uncertainty (the uncertain costs of data breach
damages vs. the more certain and predictable costs of PCI-DSS compliance).

MD-(7,10): SHALL NV-6: SHALL not transfer data NV-8: SHALL not be liable for
notify individual, outside system breach damages
owner and licensee
D) 1 NV-6 F=====x==-= NV-8
1 MD-(15-17):
1 MAY provide
c Mb-16]_|-)[mb-18 J written, :
1 electronic,
1 telephonic notice W= -=== (=7
MD-7
Elj MD-18: MAY provide NV-5: SHALL comply NV-7: SHALL not move data
substitute notice with PCI Data Security Standard storage devices

Fig. 10. System Design Alternatives and Scaling Fig. 11. External Standards and Indemnification
Restrictions

In Figure 12, the State of Vermont describes a set of prohibitions (in red, VT-40
through VT-43) on the use of Social Security Numbers (SSNs) of Vermont residents.
In the United States, SSNs are issued by the government for tracking government-
sponsored pensions, but have over time been used to track individuals for other
purposes, such as health benefits and credit-based services, including cellular
telephones, utilities, loans and credit cards. Because of the prevalent and historic use
of SSNs to authenticate and identify individuals, VT §62.2440(c)(8)(A) includes an
exception, which permits (in green) continuous use of SSNs to accommodate legacy
systems. Continuous use includes the follow-on obligations (in yellow) to notify
residents about such use (VT-48) and provide the option to halt such use (VT-49).
Such exceptions provide businesses with the ability to scale their business practices to
a new standard of care based on individual consumer preferences over time.

VT-(40-45): SHALL not use,
transmit, disclose or require
SSNs

a
1

VT-43 - VT-47: may continue to use the SSN,
if use has been continuous since
January 1, 2007

Fig. 12. Limited Exceptions for Legacy Systems

As technology evolves, we foresee increasingly design-invasive regulations that
can potentially limit the range of solutions available to a designer. Thus, we believe
patterns such as these should be part of the requirements nomenclature, to aid
businesses in understanding the scope and implication of regulations on system
design.

154 T.D. Breaux and D.G. Gordon

5 Threats to Validity

In grounded analysis, multiple analysts derive theoretical constructs from a dataset to
describe or explain the data; these insights only generalize to that dataset [10]. Because
we selected a single theme (data breach notification), our theory may not be externally
valid in other domains, such as medical devices or aviation. However, we did validate
the schema notation and document model by systematically inspecting data breach
notification laws in all 46 U.S. states and territories, two U.S. Federal regulations
(HIPAA Privacy Rule and the Section 508 Access Standards), the European Union
Directive 95/46/EC and a Canadian privacy law (PIPEDA). We found the schema
sufficiently robust to model these documents and their cross-references.

Construct validity is the correctness of operational measures used to collect data,
build theory and report findings [35]. To improve construct validity, we maintained a
caveats list of translation strategies that reflect unusual cases and how the parser
should treat such cases, and a proposed changes list of requirements with examples
for new language constructs. As new constructs were introduced, we reviewed each
previously encoded law to update the translation to reflect the new construct to ensure
consistency across the translated datasets. In addition, we developed analytic tools
using the parser and a research database to collect all the statistics reported, here.

Internal validity is the extent to which measured variables cause observable effects
within the data [35]. Our results show that writing styles can positively or negatively
impact reference ambiguity and ambiguity loss, as measured by our LRSL translation
presented in Table 1. New research is needed to evaluate if these styles affect an
analyst’s ability to resolve cross-references and locate relevant requirements.

External validity describes the extent to which a theory generalizes. While two
investigators have applied the LRSL in 13 cases, further evaluation is needed to know
to what extent others can apply the language with the same effects and to what extent
the language is complete.

Reliability describes the consistency of the theory to describe or explain
environmental phenomena over repeated observations [35]. To improve reliability,
both investigators (the authors) separately translated the datasets into the LRSL and
compared their results to identify alternate modes of expression and language caveats.

6 Discussion and Summary

In this paper, we introduce a legal requirements specification language (LRSL) for
codifying legal requirements with typed cross-references. In Section 4, we show how
the LRSL can be used to shape conditionality of regulatory coverage, which is enabled
by the tool-supported ability to trace definitions across a single regulation, or across
multiple regulations as definitions are shared across laws. Reusing technical
terminology improves requirements engineering practices, as it avoids misconceptions
among stakeholders and competing viewpoints that introduce inconsistency into design
specifications [33]. Zave and Jackson have noted the importance of grounding
terminology in the reality of the environment to which a machine will be built [37].
Increasingly, this includes the legal reality as software systems contribute to social and
environmental hazards and regulators attempt to shape the outcome of automation by

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 155

defining legal boundaries that limit the behavior of information systems and software-
supported practices. By systematically tracing and encoding legal terms, constraints and
requirements, we believe the LRSL can aide engineers at design time to manage this
changing reality, while also supporting users who are responsible for deployment and
maintenance. The work to write better software requirements and realize how software
satisfies a particular legal constraint, however, is still outside our findings.

In addition, we discovered several regulatory requirements patterns that become
visually salient and enable measuring different styles of regulatory document
construction. These patterns, described in Section 4.3, include strategies for pairing
permitted refinements to the obligations that they refine to create design alternatives
that allow organizations to scale their information practices over time. A similar
pattern invokes prohibitions with limited exceptions to accommodate legacy systems:
this pattern effectively expires the legacy system as the exceptions are discharged
over the life of the new system. Finally, a third pattern uses indemnification to
encourage design changes to accommodate increased security. We envision
requirements analysts using these patterns in several ways. First, analysts may be
trained to identify these and similar patterns from the LRSL-generated graph.
Identifying these patterns can help analysts see higher-order constructs, such as
temporary suspensions of duties and legal indemnification. Second, these patterns can
be used to compare and contrast regulatory mechanisms across regulations:
indemnification is an incentive to reduce legal liability, whereas design alternatives
are a legal means to accommodate variation in practices. Because we only observed
these patterns in a few cases, however, further evidence must be collected to
understand the extent to which regulators reproduce these patterns. That said, the
LRSL’s ability to transform the encoded regulatory specifications into corresponding
graphs enables visualizing this higher-order information and provides analysts with
access to this regulatory information described in the regulation.

The LRSL only begins to address a small part of the larger problem, however. Laws
include statutes that govern regulatory agencies, regulations created by those agencies to
govern industry, and informal agency guidance intended to help companies interpret
laws. In addition, court proceedings describe judicial interpretations of regulations.
While the LRSL is not a legal document, it provides an intermediary artifact that legal
and requirements analysts can use to engage in discussing compliance strategies. These
discussions may link legal opinion and context to the LRSL-generated artifacts as a
means to preserve rationale and enable traceability.

We further envision the LRSL capabilities as enabling document authors to design
and debug specifications, to remove ambiguity and organize requirements around
central themes. The LRSL’s ability to reuse and extend definitions and link to
regulatory rules across multiple regulations supports our vision of requirements as
open, dynamically evolving systems, wherein the discovery of conflicts becomes
increasingly critical to creating regulatory harmony. Finally, the LRSL parser
supports several features that can be used to “debug” regulatory specifications, by
identifying cycles in cross-references, definitions for terms not used in the regulation,
and possible conflicts or contradictions through visual inspection of the generated
graphs. We believe these techniques can benefit both regulators who write regulations
as well as requirements engineers and software designers who seek to understand the
regulation and seek guidance from their corporate legal compliance office. We found

156

T.D. Breaux and D.G. Gordon

the time required to translate the regulations into the LRSL well worth the ability to
debug and analyze the relations using the LRSL-generated model.

Acknowledgment. This research was supported by the U.S. Department of Homeland
Security (Award #2006-CS-001-000001), Hewlett-Packard Labs (Award #CW267287)
and ONR Award #N00244-12-1-0014.

References

(1]
(2]
(3]
(4]
[5]

(6]

(7]

(8]

(9]
[10]
(11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

Allen, L.E., Saxon, C.S.: Better language, better thought, better communication: the a-
hohfeld language for legal analysis. In: 5th Int’l Conf. AI & Law, pp. 219-228 (1995)
Biagioli, C., Mariani, P., Tiscornia, D.: ESPLEX: A rule and conceptual model for
representing statutes. In: Proc. 1st Int’l Conf. Al & Law, pp. 240-251 (1987)

Bourcier, D., Mazzega, P.: Toward measures of complexity in legal systems. In: Int’l
Conf. Al & Law, pp. 211-215 (2007)

Breaux, T.D., Antén, A.L: Analyzing Regulatory Rules for Privacy and Security
Requirements. IEEE Transactions on Software Engineering 34(1), 5-20 (2008)

Breaux, T.D., Antén, A.L, Doyle, J.: Semantic parameterization: a process for modeling
domain descriptions. ACM Trans. Soft. Engr. Method. 18(2), 5 (2008)

Breaux, T.D., Vail, M.\W., Antén, A.l: Towards compliance: extracting rights and
obligations to align requirements with regulations. In: 14th IEEE Int’l Req’ts Engr. Conf.,
pp. 49-58 (2006)

Breaux, T.D.: Exercising due diligence in legal requirements acquisition: a tool-
supported, frame-based approach. In: IEEE 17th Int’l Req’ts Engr. Conf., pp. 225-230
(2009)

Breaux, T.D.: Legal requirements acquisition for the specification of legally compliance
informaiton systems, North Carolina State Univ. Ph.D. thesis (2009)

Bench-Capon, T.J.M.: Deep models, normative reasoning and legal expert systems. In:
Proc. 2nd International Conference on Artificial Intelligence and Law, Vancouver, British
Columbia, Canada, pp. 37-45 (1989)

Corbin, J., Strauss, A.: Basics of Qualitative Research, 3rd edn. Sage Pubs (2008)
Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed requirements acquisition.
Sci. Comp. Prog. 20, 3-50 (1993)

Dulac, N., Viguier, T., Leveson, N., Storey, M.-A.: On the use of visualization in formal
requirements specification. In: IEEE Joint Int’l Conf. Req’ts Engr., pp. 71-80 (2002)
Fraser, M.D., Kumar, K., Vaishnavi, V.K.: Informal and formal requirements
specification languages: bridging the gap. IEEE Trans. Soft. Engr. 17(5), 454—466 (1991)
Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying
and analyzing early requirements in Tropos. Req’ts Engr. Journal 9(2), 132-150 (2004)
Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements
through ownership, permissions and delegation. In: IEEE 13th Int’l Req’ts Engr. Conf.,
pp. 167-176 (2005)

Greenspan, S., Mylopoulos, J., Borgida, A.: On Formal Requirements Modeling
Languages: RML Revisited. In: 6th IEEE Int’l Soft. Engr. Conf., pp. 1-13 (1994)

Glinz, M., Berner, S., Joos, S.: Object-oriented modeling with ADORA. Info. Sys. 27,
425-444 (2002)

Hohfeld, W.N.: Some fundamental legal conceptions as applied in judicial reasoning. The
Yale Law Journal 23(1), 16-59 (1913)

Regulatory Requirements Traceability and Analysis Using Semi-formal Specifications 157

[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]
(36]

[37]

Lauritsen, M., Gordon, T.F.: Toward a general theory of document modeling. In: Int’l
Conf. Al & Law, pp. 202-211 (2009)

Levene, A.A., Mullery, G.P.: An investigation of requirement specification languages:
theory and practice. IEEE Computer 15(5), 50-59 (1982)

Massey, A.K., Anton, A.L: Triage for legal requirements. NCSU Technical Report #TR-
2010-22 (October 11, 2010)

Maxwell, J., Anton, A.L: Developing production rule models to aid in acquiring
requirements from legal texts. In: IEEE 17th Int’l Req’ts Engr. Conf., pp. 101-110 (2009)
Maxwell, J., Anton, A.L, Swire, P.: A legal cross-references taxonomy for identifying
conflicting software requirements. In: IEEE 19th Int’l Req’ts Engr. Conf., pp. 197-206
(2011)

Martinek, J., Cybulka, J.: Dynamics of legal provisions and its representation. In: Int’l
Conf. Al & Law, pp. 20-24 (2005)

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316-344 (2005)

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowledge
about information systems. ACM Trans. on Info. Sys. 8(4), 325-362 (1990)

Romanosky, S., Telang, R., Acquisti, A.: Do data breach disclosure laws reduce identity
theft? In: W’shp Econ. of Info. Sec. (WEIS), June 25-28 (2008)

Rubinstein, I.: Privacy and Regulatory Innovation: Moving Beyond Voluntary Codes. I/S:
A Journal of Law and Policy for the Information Society (April 2011) (in press)

Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The
British Nationality Act as a logic program. Communications of the ACM 29(5), 370-386
(1986)

Sergot, M.: A computational theory of normative positions. ACM Transactions of
Computational Logic 2(4), 581-622 (2001)

Siena, A., Jureta, 1., Ingolfo, S., Susi, A., Perini, A., Mylopoulos, J.: Capturing variability
of law with Només 2. In: 31st Int’l Conf. Conc. Mod., pp. 383-396 (2012)

Stamper, R.K.: LEGOL: Modelling legal rules by computer. In: Proc. Advanced
Workshop on Computer Science and Law, pp. 45-71 (September 1979)

Wasson, K.S.: A case study in systematic improvement of language for requirements. In:
Proc. IEEE 14th Int’l Req’ts Engr. Conf., pp. 6—15 (2006)

Winkels, R., Boer, A., de Maat, E., van Engers, T., Breebaart, M., Melger, H.:
Constructing a semantic network for legal content. In: Int’l Conf. Al & Law, pp. 125-132
(2005)

Yin, R.K.: Case study research, 4th edn. Applied Social Research Methods Series, vol. 5.
Sage Publications (2008)

Yu, E.: Modeling organizations for information systems requirements engineering. In:
Int’l Symp. Req’ts Engr., pp. 34-41 (1993)

Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Soft.
Engr. & Method. 6(1), 1-30 (1997)

A Survey on Usage Scenarios for Requirements
Traceability in Practice

Elke Bouillon, Patrick Méder, and Ilka Philippow

Department of Software Systems, [lmenau Technical University
Ilmenau, Germany
{elke.bouillon,patrick.maeder, ilka.philippow}@tu-ilmenau.de

Abstract. [Context and motivation] Requirements traceability is known as an
important part of development projects. Studies showed that traceability is ap-
plied in practice, but insufficient tool- and method-support hinders its practical
use. [Question/problem] We conducted a survey to understand which tracea-
bility usage scenarios are most relevant for practitioners. Gaining this informa-
tion is a required step for providing better traceability support to practitioners.
[Principal ideas/results] We identified a list of 29 regularly cited usage scena-
rios and asked practitioners to assess the frequency of use for each in a typical
development project. Our analysis is restricted to those 56 participants that were
actively using traceability in order to ensure comparable results. Subjects held
various roles in the development and reported about diverse projects. [Contri-
bution] This study provides not only an initial catalog of usage scenarios and
their relevance, but also provides insights on practitioner’s traceability practic-
es. In result, we found all scenarios to be used by practitioners. Participants use
traceability especially for: finding origin and rationale of requirements, docu-
menting a requirement’s history, and tracking requirement or task implementa-
tion state. Furthermore, we highlight topics for ongoing evaluation and better
method and tool support in the area of requirements traceability.

Keywords: requirements traceability, traceability usage, usage scenario.

1 Introduction

Requirements traceability is an important part of a software development process and
defined as the “ability to follow the life of a requirement in both a backward and for-
ward direction” [8]. Traceability influences the quality of software products positive-
ly, supports changes throughout the development life cycle and eases reuse of soft-
ware assets [7, 19, 21]. The importance of traceability is also demonstrated, as it is a
precondition for the development of safety-critical systems in various domains, e.g.,
in aerospace (ISO12207, DO-178B), and in railways (EN50128). In addition, tracea-
bility is required for a certified development process according to process standards
like CMMI, SPICE and the telecom TL9000. Nevertheless, numerous authors also
point out that the practical use of traceability is often hindered by problems in its im-
plementation and application, [2, 8 16, 17]. There are five main problems: (1) high

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 158-173] 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Survey on Usage Scenarios for Requirements Traceability in Practice 159

manual effort for up-to-date traceability links, (2) ad-hoc traceability without strategy,
(3) insufficient tool support, (4) creator and user of links are often not identical, and
(5) distributed development projects require traceability across organizational
boundaries.

The community of traceability researchers agrees on the fact that project-specific
traceability strategies are required for a successful traceability implementation [6, 10,
21]. However, that does not mean that each traceability strategy and their parts are
unique. Our hypothesis is that parts of a strategy are reusable across different projects.

Currently, very little is known about how practitioners use traceability and what
they demand from it [17]. We agree with Winkler and von Pilgrim that it is an impor-
tant research task to study traceability practices in order to propose and develop tra-
ceability support that suits practical needs [21]. With traceability practice, we mean
the way in which traceability is used by practitioners. As a way to overcome this
problem, we propose the identification, the analysis and the definition of practical
usage scenarios for requirements traceability. This paper focuses especially on the
first step, the identification of usage scenarios. By usage scenario, we are referring to
recurring situations in which requirements traceability is used for supporting a devel-
opment activity. Throughout the paper, we are using the terms usage scenario, scena-
rio, and activity interchangeably. We consider the following information relevant for
capturing a traceability usage scenario:

e The development activity that is supported or enabled by the use of traceability

e The goal of traceability in this scenario

e Participating development artifacts

e Required traceability links, their granularity, and their properties

e Stakeholder roles participating in the scenario

e A scenario flow involving links, artifacts, and roles

e A creation and update strategy for required traces

e Relevance and usage intensity of the scenario

While part of that information is invariant across different projects, other parts are
dependent on project specifics like size, domain, or applied development process. The
goal is to abstract from such variations where possible and to capture alternatives
where required. As a result, we propose to create a catalog of traceability usage scena-
rios. That catalog will help users, tool vendors, and researchers to develop better tra-
ceability practices, tailored automations and training material for practitioners. In this
paper, we are reporting about a survey with focus on the identification of scenarios,
their usage intensity, and their relation to characteristics of the project.

This paper is structured as follows. Section 2, summarizes key prior traceability
studies. Section 3 states our research questions, describes the designed survey and
profiles the subjects and projects involved in our study. Our findings are reported in
Section 4. Section 5 discusses the results of the survey and its limitations are
considered in Section 6. We draw conclusions in Section 7 and discuss future
work.

160 E. Bouillon, P. Méder, and I. Philippow

2 Related Work

In the past, two larger traceability studies were conducted, analyzing the use of re-
quirements traceability in practice.

Gotel and Finkelstein [8] reported in 1992 about a study with the aim of finding an
explanation for the weak application of requirements traceability in practice, despite
its numerous scientifically cited benefits. Major findings were that support for pre-
requirements traceability should be improved and that problems existed especially
with the process and its stakeholder. They found multiple perspectives on what tra-
ceability was expected to enable and on the problems experienced, conflicts particu-
larly evident between those parties responsible for establishing traceability and those
parties using it (not always identical people). Further, they found that pre-
requirements traceability, referring back to the origin or the source of a requirement
was in need of more attention, so the need to integrate a wider variety of data in tra-
ceability, such as source material and the people involved in the project.

Ramesh and Jarke [15] carried out a several year study at the end of the 1990s. The
authors investigated especially the impact of individual factors, such as employee
motivation or organizational and technical support on the use of traceability. Within
this study two reference models for requirements traceability were developed. These
models meet the needs of high-end and low-end traceability users at the time of the
study and show the activities that the participants wanted to be supported.

Furthermore, several smaller studies focused on the state of practice in traceability [1,
4, 11, 12]. These studies aimed to identify reasons for rare use of requirements traceabil-
ity in practice and derived relevant research questions. As a result, all studies recognize
a discrepancy between the extensive research in the field and its current practical appli-
cation. However, recent studies confirm that traceability is a topic of large interest in
development projects and that it is implemented in projects to some extend [12]. None-
theless, authors also found that traceability is rarely used. None of the discussed studies
focused on concrete usage scenarios, but instead evaluated traceability in general. We
found across all studies examples of possible traceability usage scenarios and incorpo-
rated them in our survey. Additionally, von Knethen and Paech [20] discuss particular
interests of individual stakeholders in traceability. Spanoudakis and Zisman [19] refer to
a number of possible usage scenarios for traceability. Finally, Winkler and Pilgrim [21]
also collected possible usage scenarios for traceability.

Despite of all these efforts, little is still known about the practical use of traceabili-
ty in development projects [17]. In order to provide better project-specific support for
requirements traceability, we need to answer the following research questions: (RQ1)
What are practical applications of requirements traceability? (RQ2) How important is
each usage scenario and how often is it applied?

3 Set-Up of the Survey

We intended that study to be an initial attempt in identifying traceability usage scena-
rios and in assessing their importance. A number of empirical research methods is

A Survey on Usage Scenarios for Requirements Traceability in Practice 161

suitable for software engineering problems and offers different benefits and draw-
backs [13, 18]. We decided to perform a survey as it facilitates high numbers of par-
ticipants and allows for the recognition of trends [18]. Subjects invest only a limited
amount of time and can schedule the participation according to their needs.

3.1 Objective of the Survey

Our study had the goal of understanding the current state of practice in traceability
usage. Specifically, we were interested in finding relevant usage scenarios and in
quantitative data about how regular scenarios are applied in development projects.

3.2 Collecting Scenario Candidates

In order to create a comprehensive list of usage scenario candidates, we started to
gather information from the three main literature surveys previously conducted on
requirements traceability: Spanoudakis and Zisman [19], von Knethen and Paech
[20], and Winkler and Pilgrim [21]. All provide lists of development activities sup-
ported by traceability (see Section 2). Furthermore, we analyzed a number of publica-
tions on requirements traceability and selected those that referred to applications of
traceability. We found the studies discussed in the related work section very useful
and also the following publications [9, 10]. We also analyzed websites, forums e.g.
[3] and studied tool documentations.

We removed redundancies and consolidated similar activities where appropriate.
Eventually, we identified a list of 29 activities that were mentioned as being sup-
ported by requirements traceability. We grouped these usage scenario candidates into
six groups referring to typical facets of development processes: requirements engi-
neering and management, project management, compliance demonstration, design and
implementation, testing, and maintenance and evolution. We presented grouped sce-
narios together in order to support subjects in understanding the context of scenarios.

1) Requirements Engineering and Management Source
a) Finding origin and rationale of requirements, i.e., pre-requirements traceability to regula- [1,8,9,10, 11,
tory and other source of a requirement 19, 21]
b) Refinement and detailing requirements [10, 11, 15, 19]

¢) Documenting a requirement’s history, i.e., to be able to trace to previous versions of a | [15, 19]
requirement in order to find out about changes

d) Identifying stakeholders for the ongoing development of the requirements [1,8,11,15]

) Quality- and maturity-analysis of requirements [10, 11, 15, 20]

f) Impact analysis, which other stakeholders are important by a change to a requirement [19]

2) Project Management

a) Tracking the state of requirement or task implementation in detail [9, 11, 12, 20, 21]
b) Initial Release planning [10, 21]

c) Progress assessment on project or subproject level for getting an overview of already [9, 10, 20]

implemented requirements
d) Task assignment to stakeholders, e.g., assignment of a requirement to a developer for Tool documenta-

implementation tion

e) Notification of stakeholders about changes, e.g., after a change to a requirement all Tool documenta-
owners of dependent artifacts are automatically informed tion

f) Adjusting project and release plan, e.g., in case of time limit exceeding Suggested by

pretester

162 E. Bouillon, P. Méder, and I. Philippow

3) Compliance Demonstration

members

a) Analyzing requirements coverage in source code, e.g., for the customer [9, 10, 12, 15, 19,
20, 21]

b) Traceability documentation for certification purposes [9, 10, 11, 15, 21]

c) Justification of all written code based on specification for certification purposes [10, 20, 21]

4) Design and Implementation

a) Navigation between specification, design, test, and code via traces [12,21]

b) Navigation within artifacts of the same type, e.g., within source code [12]

c) Design assessment based on traceability metrics, e.g., to find components that contain [19, 21]

too much functionality and should be split

d) Understanding of software artifacts, e.g., project familiarization of development team [15, 20]

5) Testing

a) Development of test cases based on requirements

[1,10, 11, 15, 20,
21]

b) Defect location within the source code for failed test cases

[11,21]

c) Discovering regression tests to be executed after code change

[10, 15, 20]

d) Test coverage analysis of specification and code

[1,10, 11, 15, 21]

e) Stakeholder identification for understanding behavior and solving complicated problems

[21]

6) Maintenance and Evolution

a) Change impact analysis to determine artifacts impacted by a feature extension 9,10, 11,12, 15,
19, 20, 21]

b) Change effort estimation for feature extensions [9, 19, 20, 21]

¢) Feature location and support during change implementation via use of traces [12]

d) Reuse of specification and code components, e.g., a feature with all its implementation [19,21]

e) Knowledge transfer to the maintenance team, e.g., in cases where a team performs [11, 12,15, 21]

maintenance that does not include any of to original team members

3.3 Implementation of the Survey

We aimed to address and attract participants with a variety of different roles and
scopes in a typical development process. Therefore, we focused on a clear structure
and generally understandable language within the questionnaire. The number of ques-
tions was reduced to a minimum in order to not annoy participants. Where appropri-
ate, questions were complemented with a text field for capturing feedback and for
capturing usage scenarios not covered in our list. The survey was implemented with
Unipark EFS Survey. The language of the questionnaire was German [5].

The main part of the questionnaire referred to the 29 identified usage scenario can-
didates and evaluated their frequency of application within the whole project a subject
reported about. Evaluating the concrete frequency in which traceability is used to
support a certain development activity is difficult. Projects, developments procedures
and the perception of participants vary a lot. Activities may be performed daily, others
only when certain milestones are reached. Accordingly, we asked subjects to estimate
the frequency in which a particular scenario is used to support a given development
activity as one of the three categories: regularly, occasionally, or never. We explained
that regularly should be chosen, if traceability is applied more than half of the times
that an activity is performed and occasionally otherwise.

3.4 Pretest

We performed a two-stage pretest to improve questionnaire quality. First, we asked
five colleagues, familiar with the topic, to complete the questionnaire and to give

A Survey on Usage Scenarios for Requirements Traceability in Practice 163

suggestions for improvements. Their feedback helped us in getting a coherent struc-
ture, in correcting errors, and in improving linguistic accuracy. Second, we asked five
members of the target group to complete the questionnaire and to give feedback on
problems they encountered. This feedback was used in creating the final version of
the questionnaire. Pretest data was not used for the actual analysis.

3.5 Participants

We defined our target group as traceability-applying stakeholders of software devel-
opment projects. In order to attract participants, we advertised the study at workshops
and meetings of practitioner communities focused on requirements engineering and
software quality. Moreover, we used social networks and forums to advertise the
study in virtual practitioner groups, relevant to the focus of the study. We asked sub-
jects to only participate, if they had an almost complete overview of the traceability
usage within the project they reported about, ensuring high-quality results. As incen-
tive for participating in the study, we offered a report with the study’s results.

Over a period of 6 weeks (October — December 2011), 369 subjects visited the ini-
tial page of the survey. 117 out of these subjects responded to one or more questions.
We assume that subjects that do not use traceability often just did not respond at all.
Our survey does not allow us to reason about how many participants adopt traceabili-
ty in practice. However, that was not the goal of our study. We decided not to use
partly answered questionnaires in order to ensure high data quality and to be able to
compare usage rates of traceability scenarios between another. The resulting list in-
cludes 56 participants that filled in the questionnaire completely and that also use
traceability in the project they were reporting about.

We asked participants about their role in the project they reported about. We al-
lowed multiple answers as especially in small projects people often work in more than
one role. Our participants covered the following roles: project manager (41%), re-
quirements engineer (39%), quality manager (38%), architect (25%), developer
(25%), test manager (14%), and CEO (11%). This broad range of participants with
different focus on the development process allowed us to capture a variety of posi-
tions and opinions on the usage of requirements traceability.

3.6 Projects

We asked subjects to answer questions with respect to a project they typically work
on and to preferably refer to their current project. Furthermore, we asked them to
classify this project according to three criteria: project size in terms of team members,
project duration and distribution of development sites. 23% of the participants were
reporting about a small-scale project with 1 to 6 team members. 45% of the partici-
pants reported about a medium-scale project with 7 to 50 team members. Finally, 32%
of our subjects were reporting about a large-scale project with more than 50 team
members. Subjects could classify the duration of their project as a short-term project
that runs for less than one year (24%), as a medium-term project that runs for one to
three years (46%), or as a long-term project that runs for more than three years (30%).

164 E. Bouillon, P. Méder, and I. Philippow

One subject told in a verbal comment that her or his current project was under conti-
nuous development for 20 years. Furthermore, we asked subjects whether the project
they were reporting about is being developed at one local site (49%), at multiple na-
tional sites (25%), or at multiple international sites (27%).

4 Results

In the first three parts of this section, we analyze general questions about the tracea-
bility in a subject’s project. The fourth subsection discusses particular usage scenarios
applied in these projects.

4.1 Reasons for Applying Requirements Traceability

We asked subjects about reasons for the application of traceability. Fig. 1 shows the
possible reasons that we offered and the percentages of subjects that selected each.
For space reasons, we cannot show all results in figures, the following text contains
additional results not visualized.

A majority of 80% of the participants applies requirements traceability because of
expected benefits. Given that only 2% of the subjects responded not to know the rea-
sons for applying traceability, there is a remaining group of 18% of the participants
that performs traceability because they are forced to by regulations, management
orders, or the development environment. Only 36% of all participants are applying
traceability purely for expected benefits. Association of given replies with another
shows that around one fifth of the subjects that apply traceability because of regula-
tions (17%), management requests (18%), or development process preconditions
(23%) do not expect benefits.

We associated the reasons for applying traceability in a particular project with the
size of that project and found no considerable differences (85% small-scale, 76%
medium-scale, and 83% large-scale projects). Considerably more subjects reporting
about large-scale projects report to perform traceability because of regulations (15%
small-scale, 12% medium-scale, and 39% large-scale projects). The percentages of
participants that reported to perform traceability because of management requests or
development process preconditions grow with the project size (management request:
15% small-scale, 32% medium-scale projects, and 39% large-scale; development
process preconditions: 23% small-scale, 36% medium-scale, and 56% large-scale).

Exﬁected benefits for develogment activities e‘i., chanie manaiement, ﬁro'ect Elannini, bui searching)
80%

Requested by regulatory code or for certification
T) 39%
Requested by project management or customer
) 30%
Precondition for applied method or tool
T 21%

Unknown reason

3@ 2%

Fig. 1. Overview of replies to the question: “Why is traceability applied in your project?”
(Multiple selections allowed)

A Survey on Usage Scenarios for Requirements Traceability in Practice 165

4.2 General Assessment of Requirements Traceability

We asked participants to rate five statements about requirements traceability as true,
partly true, or false given a subject’s experience of applying traceability in the project
she/he was reporting about. We allowed to rate statements as partly true in order to
get an understanding of how sure subjects were in their responses. Fig. 2 summarizes
responses to those questions. The figure shows that the majority of participants (63%
true, 32% partly true) consider traceability as an important basis for the development
process (see statement a). Also the majority of participants (48% true, 39% partly
true) state that traceability should be used more actively (statement b). Nonetheless,
almost the same percentage of respondents (50% true, 34% partly true) found state-
ment c already true within their projects that the experienced benefits outweigh the
cost of traceability. The cross test (statement e) supports this statement (4% true, 21%
partly true). Statement d aimed to evaluate whether all development team members
are involved in the traceability process, know the objectives of traceability, and also
know their own role in the traceability process. Only 29% of the subjects fully agreed
with that statement, 52% partly agreed. An association of those replies with project
size showed that 44% of the subjects reporting about large-scale projects fully agreed
with that statement, while 39% of those partly agreed. Only 20% of the subjects
working in medium-scale projects fully agree with that statement, 60% partly agree.
Subjects working in small-scale projects fully agree to 23% and partly agreed to 54%.

We also allowed participants to comment and report about issues in their traceabili-
ty practice. More than a quarter of the participants gave such comments. The majority
of those statements refer to benefits and especially costs of requirements traceability.
Several subjects mention positive effects for their work or project due to traceability,
but always in relation to high costs. Other subjects simply complain about too high
costs and that they do not think that traceability can be applied cost efficiently in
small- and medium-scale projects. Other issues that are mentioned multiple times
across these comments are better tooling and better training and motivation of team
members. We knew all these statements from introduction sections of research papers,
but it was very enlightening to see them mentioned by practitioners struggling with
the implementation and application of requirements traceability.

a. Traceability is an important backbone of our development process
.|

b. Traceabilitx has Iarﬁe gotential and should be applied more often . .

c. Benefits of traceability outweigh its costs

d. Traceability is used by all development team members

e. Traceability did not provide the expected benefits
[~ I

0% 20% 40% 60% 80% 100%
Hfully Opartlytrue Dfalse

Fig. 2. Replies to the question: “Which of the following statements do you consider true, partly
true, or false based on the experiences with requirements traceability in your project?”

166 E. Bouillon, P. Méder, and I. Philippow

4.3 Instrumentation of Requirements Traceability

A wide variety of general-purpose and development tools is used to instrument re-
quirements traceability in practice. We asked our respondents about their tooling for
implementing requirements traceability. We found that general-purpose applications
(e.g., office, spreadsheet, and wiki) and configuration management tools were the
most reported tools (both 64%). Almost equally often, subjects report about the use of
integrated development environments (61%) and requirements engineering tools
(57%). Only about one fourth of the subjects (27%) are using project planning and
management tools for implementing traceability (see Fig. 3). A customized tooling
solution is used in 39% of the projects, involving several tools that realize require-
ments traceability in their projects. An interesting observation is that subjects with
customized solution in their project are more often fully agreeing to the statement that
the benefits of traceability supersede its costs (see Fig. 2 statement c).

Configuration management tool

T ——)

General-ﬁurﬁose tool e.i. word SEreadsheet wiki'
64%

Integrated development environment (IDE)
61%
Requirements engineering and management tool
57%
Project management tool
27%
Not all tools are known

| E—— N E

Fig. 3. Replies to the question: "Which tools for implementing and using requirements tracea-
bility are applied in your project?"

4.4 Application of Usage Scenarios

We found that the 56 traceability-using subjects in our study apply 42% of the 29
assessed usage scenarios regularly (standard deviation (sd) 22%). These subjects ap-
ply another 29% of the usage scenarios occasionally (sd 15%). The percentage of
regularly used scenarios is clearly higher in large-scale projects (53%) than in me-
dium-scale projects (36%) and small-scale projects (37%). Occasionally applied
usage scenarios are less dependent on the project size (small-scale project 25%, me-
dium-scale project 31%, and large-scale project 30%).

Table 1 list from top to bottom all 29 usage scenarios that were assessed by the
subjects. The second to fourth column show for each scenario, the percentage of sub-
jects that is performing the scenario regularly (R), occasionally (O), and never (N).
The following four groups of columns evaluate the influence of project size, project
duration and kind of development sites on each usage scenario. Per subgroup (e.g.,
small projects) we computed average usage rates and compared those against a
weighted mean of all subgroups (i.e., small-, medium-, and large-scale projects). We
decided for that way of comparison, as the weighted mean is independent of the num-
ber of samples per subgroup. In order to avoid a large table with figures and in order
to emphasize on the interesting associations, we defined two thresholds for

A Survey on Usage Scenarios for Requirements Traceability in Practice 167

divergences to appear in the table. Major divergences, above 20% and below -20% of
the weighted group mean, are visualized by vertical arrows (g and V), while minor
divergences, in the range (10%, 20%] and (-10%, -20%], are visualized as diagonal
arrows (2 and N). We do not consider differences smaller or equal to 10%. They are
represented as blank cells in the table. For space reasons, we only show differences
for regular and occasional usage per subgroup. Differences in the percentage of sub-
jects that never uses a scenario follow implicitly from differences in the regular and
occasional usage. When reading the table, it is important to focus on the pair of R and
O column per subgroup in relation with each other. For example, the arrows for the
combination: scenario 1.c)-medium project are meaning that this scenario is applied
10-20% less regularly, but 10-20% more occasionally in medium projects than in the
weighted mean of all projects. In the following paragraphs, we are discussing all six
groups of usage scenarios and refer to the introduced percentages and influences.

1. Requirements engineering and management. All usage scenarios in this area are
used in at least 70% of the reported projects either regularly or occasionally. The most
regular used scenarios in this group are “traceability for finding origin and rationale of
requirements” (64%) and “traceability for detailing requirements” (63%), which are
even more often used in larger and longer projects. The use of traceability for “impact
analysis” is with 70% combined regular and occasional usage also well established,
but the low value of 25% regular use raises questions about problems in the applica-
tion of traceability. We identify here a need for further detailed evaluation.

Regarding development sites, we found a high usage of traceability especially in
international distributed projects. The scenarios 1.a) and 1.c) are used in all interna-
tional distributed projects either regularly (67%) or occasionally (33%). We also as-
sociated the use of the scenarios in this group with the application of a specific
requirements management tool. We found that the scenarios 1.a), 1.b), and 1.c) are
used about 20% more regularly, if the subject was reporting that such a tool is used in
the project.

2. Project management. Similar to requirements engineering and management,
project management is also a popular area for the application of requirements tracea-
bility. All assessed scenarios in the group are performed in 72% of the reported
projects, either regularly or occasionally. With 75%, the “tracking of requirements or
task implementation progress” is the most regular performed scenario of all 29 as-
sessed scenarios. The regular usage of traceability for this activity is even higher in
national and international distributed projects.

Four out of the six scenarios in this group are less regularly used in medium-scale
projects. This raises a question about differences in the project management of me-
dium-scale projects with 7 to 50 team members. We will further investigate that issue
in an ongoing study. We could not find any influence of the applied tools on the use
of traceability in this area. We also studied whether participants having a role in the
project management of a project would favor these scenarios over others, but could
not find relevant differences.

168 E. Bouillon, P. Méder, and I. Philippow

Table 1. Average usage of all assessed usage scenarios across the projects that subjects
reported about (R — regularly used, O — occasionally used, N — never used)

Average usage Project size || Project duration Dev. sites
rate [%] SmallMed.|Large||Short/Med.[Long||Local|Nat’1|Int’]
R O N ||[R O|RO|R O||[R O|[R O|R OJ|R O|[R O[RO
1. Requirements Engineering and Management

a) Finding origin and rationale of req”s 64 127 9 7 N 71N

b) Detailing requirements 63 | 18 | 19 N2

c) Documenting a requirement’s history 54 36 | 10 AN ?
d) Identifying stakeholders 46 | 32| 22 a ? N (AN
e) Quality- and maturity-analysis of req’s || 45 | 34 | 21 N2 h]

f) Impact analysis 25 | 45| 30 ?

2. Project Management
a) Tracking requirement/task implementa-|

. 75116 | 9 A N2 A 23N |2
tion state

b) Release planning 63 |20 | 17 N 27N AIE 273N |2
c) Progress assessment on project or 43138 19 NUNEIS N N 2
subproject level

d) Task assignment 43 |29 | 28 V| |2 N 2 (N2
e) Notification of stakeholders about 39 |34 |27 [lwlz Iy NEINEI PIEIS
changes
f) Adjusting project and release plan 34 | 38 | 28 A 2N (2N 7 ?
3. Compliance Demonstration

a) Analyzing requirements coverage in 64125111 Al |n 2 N

source code

b) Pure traceability documentation 43 [13 | 44 ([N (NN N]||N ?
C) Jll‘SIIﬁC"cltIOIl of all written code based on 29 | 27 | 24 N 2 N P
specification

4. Design and Implementation

a) Navigation between specification,

design, test, and code artifacts 43132125 3 2 3 2
?y)pl;lawgatlon within artifacts of the same 25 | 34 | 41 |lw 'y NMREE] a (22l |a
c) D§s1gn assessment based on traceability 14 1 45 | 41 N

metrics

d) Project familiarization of development
team members

S. Testing

?gql?sevelopment of test cases based on 61 |14 125 |lw 2 N alulls

b) Defect location for failed tests 50 | 16 | 34 ||\ () V|2 71N 72 N
c) Discovering regression tests 41129 |30 (W 7 L] AR IE

d) Test coverage analysis of specification 41 | 25 | 34 28 |2 N

and code

e) Stakeholder identification 36 | 36 | 28 ||\] FJIR] 7

6. Maintenance and Evolution

a) Change impact analysis 48 [23] 29 73 2N
b) Change effort estimation 39 [38 | 23 NN N ?
c) Featqre location apd support during 38 130 | 32 MR N N

change implementation

d) Reuse of specification and code compo- 16143 | a1 |ln N N
nents

e) Project familiarization of maintenance 111251 64 2

team members

A Survey on Usage Scenarios for Requirements Traceability in Practice 169

3. Compliance demonstration. Compliance demonstration is not a traditional part
of a development process, but rather a major cited benefit of requirements traceabili-
ty. We decided to create a separate group for scenarios with this purpose. The “dem-
onstration of requirements coverage in code” is among the most used scenarios of all
the 29 assessed. This scenario is regularly applied by 64% of the participants. In total
89% of the participants use this scenario at least occasionally. An interesting observa-
tion is that this scenario is even more regularly applied in small projects (77%).

As expected, we found strong associations between the usages of the scenarios in
this group and whether one reason for applying traceability in the reported project was
certification (see Section 3.1). Interestingly, the scenario focusing on the reverse ac-
tivity “justifying written code based on the specification” seems far less important to
the subjects. In only 29% of the reported projects this scenario is performed regularly
and in another 27% occasionally. Nonetheless, we found a strong association between
the regular use of this scenario and subjects mentioning certification as one reason for
doing traceability in the reported project. Furthermore, we found that subjects per-
forming this scenario also perform a large number of other scenarios in the areas of
requirements engineering and management, compliance demonstration, and testing.

4. Design and Implementation. We asked subjects to assess four scenarios that are
related to design and implementation of a development. These scenarios refer to navi-
gation between artifacts, to evaluating the design of a system based on traceability,
and to familiarizing the development team with the project by using traceability. The
“navigation between different artifacts” is with 43% regular usage the most used sce-
nario of this group (32% occasional usage). Only 25% of the participants use tracea-
bility regularly for navigating between artifacts of the same type (e.g. within code or
within the design). We found that both navigation scenarios are more often used by
larger, longer and more distributed projects. The other two scenarios seem to be less
important to the subjects. Only 14% of the projects use traceability regularly for de-
sign assessment (45% occasionally) and 13% of the projects apply traceability
regularly for familiarizing new team members (36% occasionally).

5. Testing. In our literature study (see Section 2) we found testing regularly cited as
a software development area that is supposed to greatly benefit from established re-
quirements traceability. The “development of test cases based on requirements” is the
most regularly used scenario in this group (61%).

We found that the application of traceability for testing activities is associated with
the size and the duration of the project. Smaller and shorter projects apply all scena-
rios less frequently, while larger and longer project apply them more frequently. A
reason for this finding might be differences in the overall testing procedures in small-
er and shorter projects as compared to larger and longer.

6. Maintenance and evolution. Our participants also had to assess four scenarios
that were considered maintenance and evolution activities. Out of these scenarios,
“change impact analysis” was the most regularly used one (48%). Overall, the three
scenarios (6.a-6.c) that deal with change implementation are used in around 70% of
the reported projects, but their regular usage is behind the popular scenarios support-
ing requirements engineering and management, project management, and compliance
demonstration activities. This finding is interesting, as one should assume that

170 E. Bouillon, P. Méder, and I. Philippow

traceability is especially helpful when it comes to changes and reevaluating decisions
made in the past. The analysis of why practitioners often chose not to apply traceabili-
ty for change related tasks is an issue for our ongoing study.

Additionally proposed scenarios. Participants had the chance to leave comments
about their traceability usage and to propose scenarios that they found not covered in
our list. 13 subjects used this opportunity and left comments about their traceability
usage. Within these comments we found candidates for additional scenarios. Several
comments referred to the application of traceability for demonstration purposes. For
example, subjects want to demonstrate project progress and success to other stake-
holders; they want to give rationale for why certain changes were required; and they
want to demonstrate that the development followed a requested methodology. Other
suggested usage scenarios are the creation of a knowledge database of project-specific
decisions and issues, impact analysis of errors, and the use of traceability during
release planning.

5 Discussion

Regarding our research goal (see Section 3.1), we found that usage scenarios known
from literature are in fact relevant in practice and that practitioners use them. Howev-
er, we also found that on average only a selection of 42% of all scenarios is applied
per project. This selection usually focusses on groups of related scenarios, like
requirements management or test.

Regarding the areas in which requirements traceability is most applied, we found
requirements engineering, project management and compliance demonstration to be
the groups with the heaviest used scenarios. We found that the most common usages
for requirements traceability are: “Finding origin and rationale of requirements” (1.a),
“Documenting a requirement’s history” (1.c), “Tracking requirement or task imple-
mentation state” (2.a), and “Analyzing requirements coverage in source code” (3.a).
These four scenarios are used in around 90% of all projects either regularly or
occasionally.

Traceability is used across all types of projects, but we found that for many scena-
rios its usage increases with project size, project duration, and the distribution of de-
velopment sites. The differences in usage that we observed are not dramatically, but
clearly visible. To identify reasons for this observation, further investigation has to be
done. Even more interesting are the cases, which do not follow this pattern. For ex-
ample, “Analyzing requirements coverage in source code” (3.a) is more regularly
used in short-term than in long-term projects.

Our results show that the usage of requirements traceability is less common in the
areas design and implementation as well as in maintenance and evolution. We identify
two reasons for this situation, which we aim to further explore in ongoing studies.
First, later development stages deal with larger numbers of artifacts and accordingly
with high numbers of traceability links to create and maintain. Second, most of the
scenarios in these areas refer to tool-supported navigation between heterogeneous
artifacts or build upon this ability in order to perform analyses. Our hypothesis is that

A Survey on Usage Scenarios for Requirements Traceability in Practice 171

more efficient and more specific tool support could make requirements traceability
more attractive to stakeholders working in these areas.

The tools most used in the projects of our subjects for implementing requirements
traceability were configuration management tool (64%) and general-purpose tool
(64%). Along with the fact that a large number of verbal comments (50%) given by
participants refer to the bad cost-benefit ratio of traceability in their projects, we hy-
pothesize that tool-support that is better aligned to the actual usage scenarios could
help in reducing cost and raising benefit of traceability. Supporting this hypothesis,
we found that subjects with customized tooling perceive traceability to be more
beneficial (see Section 4.3).

6 Threats to Validity

Construct validity. By conducting a questionnaire-based survey, we tried to eliminate
the influence of the experimenter on the subject as far as possible. We aimed for a
simple and precise language for our questions. We assigned questions assessing the
usage of scenarios randomly, but grouped into phases, removing the order of ques-
tions as possible bias. A two-tier pretest was performed to gain feedback on the un-
derstandability of questions, the structure of the questionnaire, and on ambiguous or
missing information in the questionnaire. The positive feedback from practitioners
doing the pretest and from subjects as part of their comments suggests success in this
regard. Nonetheless, due to the diverse background of our participants we cannot fully
exclude misunderstandings. Our result might be biased (i.e., too positive) as partici-
pants assessed traceability usage on their own project. However, this is a general
problem of online surveys and there was no incentive for them to do so. We explained
in Section 3 that we decided for that research method as it allowed us to reach a larger
number of possible participants.

Internal validity. A problematic issue in performing a survey is finding a repre-
sentative group of participants. In order to mitigate this problem, we decided to per-
form an online survey, which offered the opportunity for a wide population of sub-
jects to easily participate. An often-cited barrier of online surveys, which are said to
favor more technically affine subjects, seems irrelevant for a study focusing on sub-
jects performing software engineering. We advertised our study across newsgroups
and social networks. This form of advertising bared the risk of only inviting subjects
that are very active and interested in the topic of requirements traceability [14]. In
order to at least partly mitigate that threat, we also took great efforts to advertise our
study on workshops, meetings and through personal contacts. Nonetheless, we have to
acknowledge that our study mainly involved subjects that were already interested in
the topic of requirements traceability.

External validity. We had a relatively high number of 117 subjects that at least
partly responded to our questions. Out of those we selected 56 that had fully answered
the questionnaire and that applied traceability in the project they were reporting about.
We were able to attract participants with a large number of roles in a project’s devel-
opment process (see Sections 3.5 and 3.6). This fact suggests that our data covers a

172 E. Bouillon, P. Mider, and I. Philippow

variety of perspectives on the application of requirements traceability in practice.
However, all our subjects were working in German-speaking companies and had
mostly experiences in national and European projects. We understand our results as a
trend showing the application frequency of usage scenarios within our study group. In
order to gain generalizable results, more and larger studies are required.

7 Conclusions and Future Work

In this paper we reported about a survey designed to get information on how practi-
tioners use requirements traceability in development projects. Based on a literature
study, we collected 29 regularly cited usage scenarios of requirements traceability.
We found that those 56 participants of our study that actually applied requirements
traceability in practice use 42% of the 29 scenarios regularly. We analyzed the usage
of all scenarios and found that requirements engineering and management, project
management, and compliance demonstration are the areas in which traceability is
heavily applied. We found that the usage of requirements traceability during design
and implementation as well as during software maintenance and evolution is less
common. In verbal comments, practitioners reported that they struggle with the bad
cost-benefit ratio for their traceability. This problem could be addressed by more inte-
grated method and tool support. Based on these observations, we derive two general
goals for future work in the area of requirements traceability. First, goal-oriented
application of traceability according to required project-specific usage scenarios.
Second, developing traceability methods and tools that are adaptable to usage scena-
rios. For both goals it is important to understand the identified usage scenarios in
more detail. We see an important task in analyzing the discovered traceability usage
scenarios in practical settings in order to find out, which artifacts participate in a sce-
narios and what traces are required to optimally support a scenario. We are currently
working on a study with a selected number of participants from this survey. In this
ongoing work, we are elaborating the major traceability usage scenarios identified in
this study.

Acknowledgements. We thank all participants for their help. We are funded by the
German Research Foundation (DFG): Ph49/8-1.

References

1. Ahmad, A., Ghazali, M.A.: Documenting requirements traceability information for small
projects. In: IEEE International Multitopic Conference, INMIC 2007, pp. 1-5 (2007)

2. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Systems Jounal 45(3), 515-526 (2006)

3. Appleton, B.: The trouble with tracing (2005),
http://www.cmcrossroads.com/agile-scm/
6685-the-trouble-with-tracing-traceability-dissected

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A Survey on Usage Scenarios for Requirements Traceability in Practice 173

Arkley, P., Mason, P., Riddle, S.: Enabling traceability. In: Proceedings of 1st Internation-
al Workshop on Traceability in Emerging Forms of Software Engineering, pp. 61-65
(2002)

Bouillon, E.: Fragebogen: Nutzerszenarien fiir den Einsatz von Traceability,
http://www.tu-ilmenau.de/fileadmin/
media/sspi/Forschung/UmfrageFormatiert.pdf

Cleland-Huang, J.: Just enough requirements traceability. In: Computer Software and Ap-
plications Conference, COMPSAC 2006, vol. 1, pp. 41-42 (2006)

Cleland-Huang, J., Gotel, O., Zisman, A.: Software and Systems Traceability. Springer
(2012)

Gotel, O., Finkelstein, A.C.W.: An analysis of the requirements traceability problem. In:
Proceedings of the First International Conference on Requirements Engineering,
pp- 94-101. IEEE Computer Society Press, Colorado Springs (1994)

Kannenberg, A., Saiedian, H.: Why Software Requirements Traceability Remains a Chal-
lenge. CrossTalk - Journal of Defense Software Engineering, 14—19 (July/August 2009)
Kirova, V., Kirby, N., Kothari, D., Childres, G.: Effective requirements traceability: Mod-
els, tools, and practices. Bell Labs Technical Journal 12(4), 143-157 (2008)

Klimpke, L., Hildenbrand, T.: Towards end-to-end traceability: Insights and implications
from five case studies. In: Fourth International Conference on Software Engineering Ad-
vances, ICSEA 2009, pp. 465-470 (2009)

Mider, P., Gotel, O., Philippow, I.: Motivation matters in the traceability trenches. In: Pro-
ceedings of 17th International Requirements Engineering Conference, pp. 143-148 (2009)
Padberg, F., Tichy, W.F.: Empirische Methodik in der Softwaretechnik im Allgemeinen
und bei der Software-Visualisierung im Besonderen. In: Gesellschaft fiir Informatik, Soft-
ware Engineering 2007 - Beitrdge zu den Workshops, pp. 211-222 (2007)

Punter, T., Ciolkowski, M., Freimut, B., John, I.: Conducting on-line surveys in software
engineering. In: Proceedings of the International Symposium on Empirical Software Engi-
neering, ISESE 2003, pp. 80-88 (2003)

Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Trans. Softw. Eng. 27(1), 58-93 (2001)

Ramesh, B., Stubbs, C., Powers, T., Edwards, M.: Requirements traceability: Theory and
practice. Annals of Software Engineering 3, 397-415 (1997)

Schwarz, H., Ebert, J., Winter, A.: Graph-based traceability: a comprehensive approach.
Software and Systems Modeling 9(4), 473-492 (2009)

Singer, J., Sim, S.E., Lethbridge, T.: Software engineering data collection for field studies.
In: Shull, F., Singer, J., Sjgberg, D. (eds.) Guide to Advanced Empirical Software Engi-
neering, pp. 9-34. Springer, London (2008)

Spanoudakis, G., Zisman, A.: Software traceability: A roadmap. In: Chang, S.K. (ed.)
Handbook of Software Engineering and Knowledge Engineering, vol. III, pp. 395-428.
World Scientific Publishing Co, River Edge (2005)

von Knethen, A., Paech, B.: A survey on tracing approaches in practice and research.
IESE-Report, Fraunhofer Inst. Experimentelle Software Engineering, Kaiserslautern
(2002)

Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and
model-driven development. Software and Systems Modeling 9(4), 529-565 (2010)

The Emergence of Mutual and Shared Understanding
in the System Development Process

Axel Hoffmannl, Eva Alice Christiane Bittnerl, and Jan Marco Leimeister'”

! Information Systems, Kassel University, Pfannkuchstr. 1, 34121 Kassel, Germany
% Insitute of Information Management, University of St. Gallen, Mueller-Friedberg-Strasse 8,
CH-9000 St. Gallen, Switzerland
{axel .hoffmann,eva.bittner, leimeister}@uni-kassel.de

Abstract. [Context and motivation] In interdisciplinary requirements
engineering, stakeholders need to understand how other disciplines think and
work (mutual understanding) and agree on the system they develop (shared
understanding) in order to collaborate effectively. [Question/problem] In this
paper we analyse extent and forms of (lacking) mutual understanding according
to the periods in the process of conceptual change. [Principal ideas/results]
We analyse the communication of a multidisciplinary team while developing a
mobile application. Although the team tried to resolve differences in meaning
early on by applying approaches for clarification, questions for consolidation,
exploration and elaboration occurred at different points in time throughout the
process. Even when artefacts were already agreed upon, the development team
explored lack of mutual understanding to underlying concepts or relationships.
A revised shared understanding led to adjustments of the artefacts and thus
hampered the process. [Contribution] We therefore call for research that
explores ways of systematically building mutual and shared understanding in
the development process.

Keywords: Mutual Understanding, Shared Understanding, Requirements
Engineering, System Development Process.

1 Introduction

It is widely acknowledged that mutual and shared understanding between
stakeholders is important for successful development projects [1]. This is especially
true for the requirement engineering activities [2-4]. Stakeholders need to understand
what other stakeholders are able to understand and work with, and they need to
deliver artefacts that can be used by others [5]. Further, the stakeholders need to agree
on and determine the system that is built in subsequent activities.

When developing socio-technical systems many stakeholders from various
backgrounds are involved in requirement engineering activities. This interdisciplinary
development enhances the importance of a shared understanding of the system and
the requirements. While the stakeholders involved usually do not need to be experts in
all fields tackled by the development project, “they have to be able to integrate their

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 174-189] 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Emergence of Mutual and Shared Understanding in the System 175

knowledge bases in a sensible manner” [6]. Coming from different disciplines, actors
might - without noticing - be using the same words for different concepts or different
words for the same concepts [7]. They might be unaware of unshared individual
knowledge crucial for completing the task successfully (lack of mutual
understanding). Or even if they are aware of differences in knowledge and
understanding, they might not agree on a shared perspective at an early stage (lack of
shared understanding). This can lead to substantial losses in efficiency in
collaboration processes and suboptimal outcomes [8-10]. Necessary late changes to
requirements are likely to be followed by evitable rework and time-consuming
changes to the whole system. Unfortunately, assessing whether a shared
understanding of the system exists is not trivial. Various ideas and views only become
evident in the course of the project, making a potential adjustment of the system and
its requirements necessary.

As we identify shared understanding as a key success factor of interdisciplinary
development projects and as a dynamic state that changes through interaction and
communication, we aim to examine the interactive process of building shared
understanding throughout a real world software development project. This paper
explores in which stages of the development project a lack of mutual or shared
understanding is discovered and how this is resolved. Different sources of
disagreement require different strategies to resolve them [11], and an understanding
of the causes of lacking shared understanding is also necessary. Therefore, we further
investigate which different types of conflicts are discovered at which phases. Thus,
we show particular types of understanding that should be improved by using
additional effort. To achieve this, we examine the evolution of shared understanding
on properties and requirements of a mobile application in an interdisciplinary
development project by focusing on development artefacts and the correlating
communication. We categorise questions and hints that are raised by stakeholders
according to the process of conceptual change. Consolidation and exploration
questions indicate effort to gain mutual understanding. Elaboration questions try to
reconcile different understandings or resolve conflicts.

This paper has been structured in the following manner. First, a short explanation
of what mutual and shared understanding will be presented, as well as how they can
be achieved in development projects. Subsequently, the research design of the case
study will be described, including the team, the development approach, data
collection and data analysis. Further, we report and discuss the results. The paper
closes with limitations and implications for further research.

2 Mutual and Shared Understanding in Development Projects

We define shared understanding as the ability of multiple agents within a group to
coordinate behaviours towards common goals or objectives based on mutual
knowledge, beliefs and assumptions on the task, as well as the group, the process or
the tools and technologies used that may change throughout the course of the group
work process and may impact group work processes and outcomes [12]. This

176 A. Hoffmann, E.A.C. Bittner, and J.M. Leimeister

definition implies a dynamic (process) view of shared understanding. Mohammed et
al. [10] note, that “in order for a team to achieve a shared, organized understanding of
knowledge about key elements in the relevant environment, changes in the knowledge
and/or behavior of team members will most likely occur. Therefore, group learning
plays a significant role in the development, modification, and reinforcement of mental
models” [10]. The definition of shared understanding is furthermore based on a
“meaning in use” point of view, which refers to coordinated action based on some
resource being possessed jointly by several people. This means that it is a necessary
but still insufficient prerequisite for each stakeholder to know how other disciplines
think and work, and recognise where different understanding occurs (mutual
understanding) in order to reach shared understanding.

However, mutual understanding does not yet mean that group members share a
common viewpoint or are able to act in a coordinated manner. As our definition of
shared understanding involves a “meaning in use” aspect, mutual agreement on one
perspective is thus necessary to achieve shared understanding. For example, it is not
enough to have a collection of requirements the different stakeholders hold, since in
the course of development not only differences and conflicts among those
requirements may hinder goal directed action but also different actors may prioritize
and omit different requirements in their activities. The development team needs to
negotiate and agree on a shared and non-conflicting mental model they want to
follow.

Briggs et al. [13,11] and Kolfschoten et al. [11] distinguish between five potential
sources of disagreement in collaborative requirements engineering. Three of these
(differences of meaning, mental models and information) fall into the core of our
concept of shared understanding, as they refer to a lack of mutual knowledge, beliefs
or assumptions. They are mainly related to a certain proposal or proposal-outcome
judgement [13,11]. “Differences of meaning occur when the same words or labels are
used for different concepts or when different words or labels are used for the same
concept” [11]. Differences of mental models occur on the level of cause and effect
chains rather than on individual concepts. Both can be based on knowledge, beliefs
and assumption, whereas differences of information are defined as conflicting
knowledge or knowledge that not all of the stakeholders have.

When these sources of disagreement are revealed through asking clarification
questions and communicating different views, mutual understanding evolves. If
stakeholders agree on a common perspective on meaning, information and mental
models, a shared understanding can be reached. The other two sources of
disagreement are about conflicting goals or taste and might require other consensus
building strategies that focus on negotiation rather than on clarification, as they exist
due to differences in outcome-instrumentality judgments [13,11]. They do not result
from differences in understanding, but mutually exclusive individual goals that hinder
stakeholders from committing to a group goal or action.

A lot of effort has been spent on providing techniques to enhance shared
understanding in the requirements engineering activities (see [14] for a discussion of
the contribution of different representations to the RE activities). For example, goals
[15], application scenarios [16-18] and requirements negotiation with EasyWinWin

The Emergence of Mutual and Shared Understanding in the System 177

[19,20] are proposed to support a shared understanding between stakeholders. We
focus on the effectiveness and results of the combination of these three techniques to
clarify the requirements in a multidisciplinary project team. There is some effort in
the community to categorize and detect clarification events in written communication
about requirements [21]. In our research, we distinguish between different types of
clarification questions to get an idea if, and how, a mutual and shared understanding
is reached, as well as which sources of disagreement are revealed.

3 Research Method

A case study to investigate the emergence of mutual and shared understanding in the
system development process was performed in the research project VENUS. In this
case study, a project was carried out in which a multidisciplinary team developed the
mobile application Meet-U. This is depicted in the next section, followed by a
description of the multidisciplinary project team. The development process including
the approaches to fostering mutual and shared understanding is further shown. After
the description of the case study, we describe the data collection and data analyses.

3.1 The Mobile Application Meet-U

In the case study the development of the mobile application Meet-U was attended.
The idea for Meet-U had already been developed and realised in a technically oriented
prototype [22]. The goal of Meet-U is to support users with regards to organising and
arranging meetings with their own friends. Meet-U assists them in planning meetings
or events on the way to the location or even at an actual meeting or event.

In greater detail, users can register for public events or create private meetings to
which they can invite other people. Further, users can provide personal information
about themselves or their interests in order to receive recommendations for events and
other users with similar interests. If a user would like to attend a public event, Meet-U
creates recommendations using the provided data and interests upon request. When
creating private events, Meet-U recommends contacts upon request that are
determined by using the settings for the event, as well as the personal interests listed
by the users. Depending upon the current location of the users, they are reminded of
the beginning time of the event. In addition, Meet-U provides navigation services.
On-site, the event host can offer services that Meet-U recognises and integrates into
the graphical user interface, such as ticket services or site plans.

3.2 The Multidisciplinary Development Team

For the development of Meet-U, socio-technical concerns and requirements [23]
should be taken into account. They are related to legal conformance, usability and
trust. Legal conformance refers to the inclusion of legal requirements. Usability wants
to ensure that users can handle and interact with the application. Trust refers to the

178 A. Hoffmann, E.A.C. Bittner, and J.M. Leimeister

intention or willingness of users to be vulnerable to important actions of the system
without the ability to monitor or control the system [24].

To consider the socio-technical requirements, a multidisciplinary development
team consisting of four developers and three domain experts was formed; more
precisely, a legal expert, an expert for perceived user trust and user acceptance, and a
usability expert were involved. The most experienced developer was responsible for
the management of the project. The first author functioned as an observer in the
development team and attended the project meetings. The team members had known
each other for at least one year due to the cooperation in the research project.

3.3 Development Approach

The development of Meet-U took place from October 2011 until April 2012 (there
was a four week Christmas break). To assess the socio-technical requirements, the
whole development was carried out by the multidisciplinary team: demand analysis,
requirements engineering, conceptual design, software design, implementation and
evaluation. Figure 1 illustrates the phases that are briefly summarised in the following
sections (see Comes et al. [25] for details and a discussion of the results regarding the
development approach). Due to the fact that the development was integrated in a
research project, the requirements were repeatedly reflected upon and discussed anew
by the development team until September 2012.

Requirements Engineering Software Design / Implementation
Demand Analysis Conceptual Design Evaluation
Requirements
Negotiation . .
Workshop WV Project Meetings
Kickoff
ol Wyl wvv wv
Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12

Fig. 1. Phases of the Development Project

In order to enable the collaboration of stakeholders in the first phase of
development beginning with a kick-off on the 25th of October 2011, the team created
goals [15] and application scenarios [16] to establish an interdisciplinary vision of the
mobile application. Scenarios are a particular kind of design artefact intended to
facilitate shared understanding of the target system, its interaction with users and
subject domain, and its larger context [17]. Goals and scenarios are widely used in
requirements engineering as a common basis for communication, and are well suited
to resolve misunderstandings with stakeholders from different disciplines [26,18].
They also enforce interdisciplinary learning [18]. Therefore, the application goals

The Emergence of Mutual and Shared Understanding in the System 179

were outlined from the perspective of users, after which they were refined for the
application scenarios.

Further, persona were created as archetypical representatives of user groups in
order to make the scenarios as realistic and comprehensible as possible for all
involved stakeholders with specific, future users. In an additional activity, a business
model was developed as an extension to the scenarios in order to assess the
marketability. A validation of the extended scenarios was carried out with potential
users to reveal incorrect assumptions about users and the application. Later, the
scenarios were used as a reference by stakeholders during the development project in
order to retain focus on the goals selected from the user perspective.

In requirements engineering, the stakeholders collected, analysed and documented
the requirements. A computer assisted requirements negotiation workshop following
EasyWinWin [19] was used to agree upon all requirements that were collected in
advance. EasyWinWin “is based on the WinWin requirements negotiation model and
helps a team of stakeholders to gain a better and more thorough understanding of the
problem and supports co-operative learning about other's viewpoints” [20]. The
workshop took place at the 10th and 11th of November 2011.

In a first step, the stakeholders evaluated the comprehensibility of the
requirements, created a glossary of terms and definitions, and adjusted the
requirements. The requirements deemed important by one stakeholder were
transferred to a new list if all stakeholders agreed that they had understood the
requirement (in order to avoid redundancies). In accordance with EasyWinWin, the
requirements were then rated by the stakeholders in terms of importance and ease of
realisation. In the next step, stakeholders could express concerns regarding certain
requirements in the tool. In another round, proposals for solutions for the issues were
collected, before a conjoint agreement was reached by means of a group discussion.
After the requirements negotiation, the requirements were structured and added to the
requirements documentation.

In the concept design, different kinds of design artefacts intended to facilitate
shared understanding were used. First, use cases were developed. The
multidisciplinary team verified the use cases in order to ensure a correct requirement
transformation. In the second step, the data and functional elements of the application
were described. Thus, all information provided for the user and every operation the
user could make were identified. Flowcharts were employed to graphically illustrate
the operation steps and the corresponding data and functional elements. Further, the
structure of the user interface was depicted in a sitemap. The fourth step consisted of
deriving a first graphical design with a functionless prototype of the user interface.
All stakeholders received the produced artefacts and were asked to check if the
requirements had been fulfilled.

The resulting artefacts, agreed upon in an interdisciplinary manner, functioned as a
working basis for the developers in the implementation phase. The application
concept was implemented in an iterative process. Next, the created prototypes were
assessed by experts with regards to whether the previously defined requirements were
taken into account during the realisation. This examination enabled changes to be
made to the application concept that were integrated into the next iteration. In

180 A. Hoffmann, E.A.C. Bittner, and J.M. Leimeister

addition, the component functions developed in the process were evaluated from a
user perspective.

The concluding evaluation of the usage aimed at assessing the functionality as well
as the social compatibility of the system. It was experimentally tested with real users
in as realistic application surroundings as possible in order to see whether the
requirements had been fulfilled. See Sollner et al. [27] for more information
concerning the realisation and selected evaluation results.

3.4 Data Collection

In order to analyse the communication in the development project, quantitative data
collection and evaluation methods were selected. We conducted a document analysis
for the collection of data. The objects of investigation were: the description of the
application scenarios in six versions; the business model in three versions; the list of
requirements in six versions; four versions of the use cases; the workflows and
screens designs in four versions; as well as minutes of the ten project meetings. All
documents as well as complementing communication were exchanged in 611 emails
between members of the development team for the duration of the whole project using
a project specific mailing list. These emails were the data basis for our assessment.
The documents contained, apart from the actual content, distinguished changes of the
pre-version, as well as comments and notes made by the involved stakeholders. The
project language was German. During the collection of data, the first author
functioned as an observer in the meetings of the development team.

3.5 Data Analysis

The evaluation of the documents was accomplished with the aid of a quantitative
content analysis. To reduce the amount of data, the 611 emails were screened through,
and relevant emails with development artefacts or textual contributions were
extracted. The 183 resulting emails and documents were transformed to PDF files and
stored in ATLAS.ti 6.2, providing support for manual qualitative coding. As we were
interested in the emergence of mutual and shared understanding, we conducted the
data analysis in three steps.

In the first step, 330 comments (one or more sentences from emails or annotations
of the documents) were marked that contained questions, raised issues or indicated
different understandings about a requirement. We refer to these comments as
questions in the remainder of the text. One of the authors marked the questions in the
ATLAS.ti by reading all emails twice.

In the second step, we analysed the questions of the team members. To distinguish
the questions, we used the classification that was proposed by Watts et al. [28] to
classify questions of understanding according to the periods in the process of
conceptual change. Conceptual change occurs when participants either consolidate
their current understanding, explore beyond their current knowledge to expand it or
elaborate on it to challenge and test their framework of understanding [28].
Consolidation, exploration and elaboration are all indicative of changes in the current

The Emergence of Mutual and Shared Understanding in the System 181

conceptual thinking of the person asking those questions. For elaboration question
that reconcile different understandings or resolve conflicts, in the third step, we used
subcategories containing the key sources of conflicts proposed by Briggs et al. [13]
and Kolfschoten et al. [11]. The subcategories are differences of meaning, differences
of mental models, differences in information, mutually exclusive individual goals and
differences of taste (Table 1).

Table 1. Categories and subcategories used for coding

Category Subcategory Explanation
Consolidation - Confirm explanations and consolidate new
ideas (mutual understanding)

Exploration - Seek to expand knowledge and test constructs
(mutual understanding)
Elaboration Reconcile different understandings, resolve
conflicts (shared understanding)
Differences of The same words are used for different
meaning concepts or different words are used for the
same concept
Differences of Different understandings of the means for
mental model achieving desired outcomes, or of sequences of
cause and effect
Differences in stakeholders do not have the same information,
information or one stakeholder has information that other

stakeholders do not have
Mutually exclusive Difference of interests or values
individual goals
Differences of taste There is no rational conflict of stakes or
values but rather one of taste

Two graduate students coded the questions according the categories with
ATLAS.ti. They were provided with explanations and examples and received 30
minutes of training. For the coding, one student needed 5 hours and 15 minutes and
the other needed 5 hours and 30 minutes. The students could, and did, ask the first
author if they faced difficulties. Questions that were not assigned to the same category
by both students were discussed and assigned to a category by two of the authors.

4 Results

This section reports the number of questions assigned to the different categories and
subcategories. We divided the development project into three stages that are
important for mutual and shared understanding in requirements engineering: the stage
before the requirement negotiation where the scenario is developed and the
requirements are collected, the requirements negotiation workshop which is designed

182 A. Hoffmann, E.A.C. Bittner, and J.M. Leimeister

to reveal misunderstandings and reach an agreement about the system and its
requirements, and the time after this agreement. In the next section, we first report the
results of the assignment to the categories consolidation, exploration and elaboration.
The elaboration questions are further analysed in the second subsection.

4.1 Questions for Consolidation, Exploration and Elaboration

To analyse the emergence of mutual and shared understanding, we categorised the
questions and pointers in the documents according to the periods in the process of
conceptual change. Questions for consolidation and exploration indicate a lack of
mutual understanding; questions for elaboration indicate a lack of shared
understanding.

Table 2. Questions before, during and after requirements negotiation (RN)

Before RN | During RN | After RN | Total
Consolidation 20 24 74 118
Exploration 16 34 54 104
Elaboration 22 51 35 108
Total 58 109 163 330

Table 2 shows that there are a similar number of questions in each category and
that one third of all questions were raised in the requirements negotiation workshop.
Further, most conflicts could be elaborated upon before the end of the requirements
negotiation, but there were more questions regarding the mutual understanding after
requirements negotiation than there were in the combined before and during the
requirements negotiation.

140
120
100 — ’
60 i
Consolidation
40
Exploration
20 — ,
Elaboration
0o+t

Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12

Fig. 2. Cumulative quantity of questions according to the process of conceptual change
throughout the development project

The Emergence of Mutual and Shared Understanding in the System 183

Figure 2 shows the emergence of questions regarding mutual and shared
understanding. Especially in late November, December and January, after
requirements negotiation (including a four week Christmas break), team members
raised questions for consolidation and exploration almost continuously.

This indicated that the stakeholders had the same goal but understood the
requirement differently. This conflict was assigned to the category difference of
mental model. The incidents of lacking shared understanding/differences in mental
models concerning the requirements were especially critical, as system specification
and development had already been executed at this point in time, based on the
requirements, which had been agreed upon but had obviously not been fully
understood.

4.2 Elaborated Conflicts

To analyse the conflicts that were revealed in the development project, we categorised
the elaboration questions according to their key differences. We found that most
conflicts during the whole development project dealt with different goals of
stakeholders that, in most cases, were connected to their disciplinary background. For
example, the legal expert wanted the user to agree on every function using personal
data. In contrast, the usability expert did not want to interrupt the user while executing
a task with the application. Almost the same quantity could be identified for the
differences of mental models. Fewer conflicts belonged to differences of meaning,
conflicting information and differences of taste (Table 3).

Table 3. Elaborated conflicts before, during and after requirements negotiation (RN)

Before RN | During RN | After RN | Total
Differences of Meaning 5 3 4 12
Difference of Mental Model 12 8 17 37
Conflicting Information 1 5 2 8
Mutually Exclusive Individual Goals 3 33 8 44
Differences of Taste 1 2 4 7
Totals 22 51 35 108

Most conflicts regarding goals were elaborated in the requirements negotiation
workshop, but differences of mental model were mostly revealed later in the project,
which is critical, based on our assumption that revealing conflicts in the proposal-
outcome judgement should be the basis for all further negotiation.

Figure 3 shows that differences of mental models were revealed throughout the
project. Considering the differences of meaning, most conflicts were revealed before
the requirements negotiation workshop; however, similar to the conflicting
information and differences of taste, there were no peaks throughout the development
project. Therefore, the number of conflicts remained at a low level, in contrast to the
differences of mental models and individual goals.

184 A. Hoffmann, E.A.C. Bittner, and J.M. Leimeister

Mutually Exclusive Individual Goals

40 | /
I Differences of Mental Model

-

Differences of Meaning

10 1 _,_/—l Conflicting Information
[,_I Differences of Taste

() P ——— r
Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12

Fig. 3. Cumulative quantity of conflicts revealed throughout the development project

Summarizing, a revised shared understanding evolved late in the development
phases. This led to adjustments of the artefacts and, thus, hampered the development
process.

5 Discussion

The aim of our study was to analyse extent and forms of (lacking) mutual and shared
understanding and how this understanding emerges in the system development
process. Further, we wanted to examine which forms of conflicts occurred and in
which stages of the development process they were revealed. This section discusses
the results and provides suggestions for the improvement of mutual and shared
understanding in development projects.

We first checked the questions according to the process of conceptual change. We
could find an almost equal number of questions regarding consolidation, exploration
and elaboration. As shown in the results section, the mutual and shared understanding
emerged together. There were a lot of elaboration questions among the requirements
negotiation workshop, but questions regarding mutual understanding emerged evenly
distributed in the project. Due to the fact that a lack of shared understandings can only
be detected effectively if a mutual understanding exists, there should be additional
effort made in the beginning of the development project that would foster mutual
understanding of the multidisciplinary team [3]. This could be done, e.g., by enforcing
reflection and actively introducing techniques for construction and co-construction of
meaning [29]. Bittner et al. [12] present a first attempt to develop reusable techniques
for systematically building mutual and shared understanding.

To strengthen this stream of research and enlarge the set of available techniques,
further research into understanding and designing mutual and shared understanding is
thus necessary. In requirements engineering, natural language software requirement
patterns [30-32] could help to foster a mutual understanding by using standardised,

The Emergence of Mutual and Shared Understanding in the System 185

well defined and discipline independent terms and formulations. Further, the
unambiguity could be fostered with a proven template that is provided by the
requirement pattern.

The investigation of the elaboration questions indicated that all five types of
conflicts occurred in the development project. This goes in line with Briggs et al. [13]
and Kolfschoten et al. [11]. Further, we could quantify the different categories. Most
conflicts belonged to the categories’ mutually exclusive individual goals und
difference of mental model. While the requirements negotiation workshop was good
at revealing mutually exclusive individual goals, it was insufficient for revealing
differences of the mental model. Over the time of the project the differences of the
mental model emerged continuously, only fostered by repeated interactions of the
stakeholders. Together with the observation that there was also no concentration of
consolidation and exploration questions in the requirement negotiation workshop, we
assume that EasyWinWin helps to deal with conflicting goals of the stakeholders, but
other approaches are necessary to foster other problems in understanding.

These issues - important to address as artefacts in the development process - are
highly interrelated and build on each other. Late changes of requirements due to
differences in meaning or mental models, which should have been detected and
clarified early in the process, might require new negotiation efforts on goals or taste
when the system has already been agreed on. We assume that in an effective
requirements negotiation process, differences of understanding should be discovered
as early as possible, as mutual understanding is a prerequisite for shared
understanding.

Based on mutual understanding, a shared perspective can be negotiated. Shifts in
this process of detecting and resolving sources of disagreement might require
unnecessary iterative loops and delays. Thus, collaboration techniques should be
applied to shift those attempts from coincidence to a systematic and reusable process.
For this purpose, group model building techniques can be used or analysts should
search for conflicting assumptions behind the conflicting models [11]. A lack of
shared understanding caused by differences of the mental model might also be
addressed with software requirement patterns. Apart from the proven formulation of
the requirement template, they can provide background information that helps other
stakeholders understand the causes and estimate the effects of the requirement.

6 Limitations

This section summarises the threats to the validity of the work.

The internal validity of the case study could be threatened by the fact that we
analysed only the written communication (including the annotated development
artefacts) in the project and minutes that were taken in the meetings. The
requirements negotiation workshops and the meetings were conducted in the presence
of the observer but without recording of the oral communication. In the requirements
negotiation workshop, the stakeholders were encouraged to write down their
questions and issues through the use of the computer-based EasyWinWin. Thus, we

186 A. Hoffmann, E.A.C. Bittner, and J.M. Leimeister

could analyse them in detail. Although we did not prevent oral communication in the
workshop or in other meetings, the focus on the written communication is a limitation
of this study.

Coding the data analysis, the students reached agreement on most questions but
were also faced with difficulties. Especially questions that were asked very politely to
show (in subsequent discussion between the stakeholders) that there might be a
conflict. These were partly assigned to consolidation or exploration. Also, they had
some difficulties with questions that consolidated new ideas. If they read a question
alone they had difficulty deciding if it was just a new idea or a conflict. To clarify
this, the students could consult the first author that observed the development project
and had attended the project meetings. All questions with such uncertainties were
discussed by two of the authors before they were assigned to categories. Therefore,
background knowledge of the development project was partly necessary to assign
some of the questions.

Regarding external validity, the major concern is the generalizability of the results
since we conducted only one case study. The case study with seven people is
embedded in a research project that has distinct features such as the repeated
discussion and reflection about requirements, which might have an impact on the
emergence of the shared understanding. Due to the diversity of the development and
requirement engineering approaches, we cannot claim that the results are
representative for all development projects. Further, the team and stakeholders
involved with their different backgrounds could have had an effect on the emergence
of mutual and shared understanding. This study is a first step to analyse the
emergence of mutual and shared understanding. To strengthen the results, other
development teams with stakeholders from various disciplines should be analysed.

7 Conclusion

In this paper we analysed the emergence of mutual and shared understanding in the
written communication of a multidisciplinary team that developed a mobile
application. The team used application scenarios and an EasyWinWin requirement
negotiation workshop to reveal and overcome a lack of understanding. We showed
that the workshop helped to identify most conflicting goals of the stakeholders, but
differences in the mental model were mostly identified in other stages of the process.
Further, consolidation and elaboration questions belonging to mutual understanding
were equally distributed in the process. Hence, we could not observe an effect by the
requirement negotiation workshop. Even when artefacts were already agreed upon,
the development team explored lack of mutual understanding to underlying concepts
or relationships. If a shared understanding in the development team is important, there
should be additional approaches used in requirement engineering activities.

This paper has several implications for research. We used a classification for
mutual and shared understanding based on the process of conceptual change. This
approach can differentiate the success of clarification techniques based on different
types of understanding and can be used to get a deeper understanding of project

The Emergence of Mutual and Shared Understanding in the System 187

communication. The results show that in our case study the requirements negotiation
workshop worked well for most things but not for the crucial issue of different mental
models. This indicates, on the one hand, the suitability of this requirements
negotiation technique, but, on the other hand, calls for other techniques to build
shared mental models. Future work should examine whether these observations can
also be done in other settings.

In practice requirements, analysts should be aware that a lack of understanding can
have different sources and that RE techniques are more or less suited to address the
different types of mutual and shared understanding. If an agreement by stakeholders
shall be reached, requirement analysts should spend effort to achieve a mutual
understanding of the requirements and a shared mental model of the planned system
before other kinds of conflicts are elaborated upon.

To foster mutual and shared understanding in interdisciplinary projects, we call for
future research to analyse extent and forms of (lacking) mutual understanding in other
development projects consisting of stakeholders from various backgrounds and using
various development approaches. Further, we call for research that explores ways to
systematically build upon this understanding.

References

1. Tan, M.: Establishing mutual understanding in systems design: An empirical study.
Journal of Management Information Systems 10(4), 159-182 (1994)

2. Aranda, G., Vizcaino, A., Piattini, M.: A framework to improve communication during the
requirements elicitation process in GSD projects. Requirements Engineering 15(4),
397-417 (2010), doi:10.1007/s00766-010-0105-9

3. Corvera Charaf, M., Rosenkranz, C., Holten, R.: The emergence of shared understanding:
applying functional pragmatics to study the requirements development process.
Information Systems Journal 23(2), 115-135 (2012), doi:10.1111/j.1365-2575.2012.
00408.x

4. Berkovich, M., Leimeister, J., Hoffmann, A., Krcmar, H.: A requirements data model for
product service systems. Requirements Engineering (online first), 1-26 (2012),
doi:10.1007/s00766-012-0164-1

5. Baxter, G., Sommerville, I.: Socio-technical systems: From design methods to systems
engineering. Interacting with Computers 23(1), 4-17 (2011), doi:10.1016/j.intcom.2010.
07.003

6. Kleinsmann, M., Buijs, J., Valkenburg, R.: Understanding the complexity of knowledge
integration in collaborative new product development teams: A case study. Journal of
Engineering and Technology Management 27(1-2), 20-32 (2010)

7. de Vreede, G.-J., Briggs, R.O., Massey, A.P.: Collaboration Engineering: Foundations and
Opportunities. Journal of the Association of Information Systems 10(3), 121-137 (2009)

8. Valkenburg, R., Dorst, K.: The reflective practice of design teams. Design Studies 19(3),
249-271 (1998), doi:10.1016/s0142-694x(98)00011-8

9. Darch, P., Carusi, A., Jirotka, M.: Shared understanding of end-users’ requirements in e-
Science projects. In: 5th IEEE International Conference on E-Science, pp. 125-128 (2009)

10. Mohammed, S., Dumville, B.C.: Team mental models in a team knowledge framework:
Expanding theory and measurement across disciplinary boundaries. Journal of
Organizational Behavior 22(2), 89—-106 (2001)

188

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

28.

A. Hoffmann, E.A.C. Bittner, and J.M. Leimeister

Kolfschoten, G., Briggs, R.O., de Vreede, G.J.: A Diagnostic to Identify and Resolve
Different Sources of Disagreement in Collaborative Requirements Engineering. In:
International Meeting on Group Decision and Negotiation (GDN), Toronto, Canada (2009)
Bittner, E.A.C., Leimeister, J.M.: Why Shared Understanding Matters - Engineering a
Collaboration Process for Shared Understanding to Improve Collaboration Effectiveness in
Heterogeneous Teams. In: 46th Hawaii International Conference on System Sciences
(HICSS), Maui, Hawaii (2013)

Briggs, R.O., Kolfschoten, G.L., de Vreede, G.J.: Toward a theoretical model of consensus
building. In: Americas Conference on Information Systems (AMCIS), Omaha, Nebraska,
USA, p. 12 (2005)

Sutcliffe, A.: Collaborative Requirements Engineering: Bridging the Gulfs Between
Worlds. In: Nurcan, S., Salinesi, C., Souveyet, C., Ralyté, J. (eds.) Intentional Perspectives
on Information Systems Engineering, vol. 1, pp. 355-376. Springer, Heidelberg (2010)
Dardenne, A., Lamsweerde, A.V., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20(1-2), 3-50 (1993), doi:
http://dx.doi.org/10.1016/0167-6423(93)90021-G

Haumer, P., Pohl, K., Weidenhaupt, K.: Requirements elicitation and validation with real
world scenes. Transactions on Software Engineering 24(12), 1036-1054 (2002)

Jarke, M., Bui, X.T., Carroll, J.M.: Scenario management: An interdisciplinary approach.
Requirements Engineering 3(3), 155-173 (1998)

Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenarios in system development:
current practice. IEEE Software 15(2), 34-35 (1998), doi:10.1109/52.663783

Gruenbacher, P.: Collaborative requirements negotiation with EasyWinWin. In: Database
and Expert Systems Applications, London, pp. 954-958 (2000)

Briggs, R.O., Griinbacher, P.: EasyWinWin: Managing Complexity in Requirements
Negotiation with GSS. In: 35th Hawaii International Conference on System Sciences,
Hawaii (2002)

Knauss, E., Damian, D., Poo-Caamano, G., Cleland-Huang, J.: Detecting and classifying
patterns of requirements clarifications. In: 20th IEEE International Requirements
Engineering Conference (RE), pp. 251-260 (2012), do0i:10.1109/re.2012.6345811

Comes, D., Evers, C., Geihs, K., Saur, D., Witsch, A., Zapf, M.: Adaptive Applications are
Smart Applications. In: International Workshop on Smart Mobile Applications, San
Francisco (2011)

Geihs, K., Leimeister, J.M., Rofnagel, A., Schmidt, L.: On Socio-technical Enablers for
Ubiquitous Computing Applications. In: The 12th IEEE/IPSJ International Symposium on
Applications and the Internet (SAINT), Izmir, Turkey (2012)

Lee, J.D., See, K.A.: Trust in Automation: Designing for Appropriate Reliance. Human
Factors 46(1), 50-80 (2004)

Comes, D.E., Evers, C., Geihs, K., Hoffmann, A., Kniewel, R., Leimeister, J.M.,
Niemczyk, S., RoBnagel, A., Schmidt, L., Schulz, T., S6llner, M., Witsch, A.: Designing
Socio-technical Applications for Ubiquitous Computing - Results from a Multidisciplinary
Case Study. In: Goschka, K.M., Haridi, S. (eds.) DAIS 2012. LNCS, vol. 7272, pp. 194—
201. Springer, Heidelberg (2012)

Pohl, K.: Requirements Engineering. dpunkt-Verls., Heidelberg (2008)

Sollner, M., Hoffmann, A., Hoffmann, H., Wacker, A., Leimeister, J.M.: Understanding
the Formation of Trust in IT Artifacts. In: International Conference on Information
Systems (ICIS), Orlando, Florida, USA (2012)

Watts, M., Gould, G., Alsop, S.: Questions of Understanding: Categorising Pupils’
Questions in Science. School Science Review 79(286), 57-63 (1997)

29.

30.

31.
32.

The Emergence of Mutual and Shared Understanding in the System 189

Van den Bossche, P., Gijselaers, W., Segers, M., Woltjer, G., Kirschner, P.: Team
learning: building shared mental models. Instructional Science 39(3), 283-301 (2011),
doi:10.1007/s11251-010-9128-3

Hoffmann, A., Sollner, M., Hoffmann, H.: Twenty software requirement patterns to
specify recommender systems that users will trust. In: 20th European Conference on
Information Systems (ECIS), Barcelona, Spain (2012), paper 185

Withall, S.: Software Requirement Patterns. Microsoft Press, Redmont (2008)

Renault, S., Mendez-Bonilla, O., Franch, X., Quer, C.: A Pattern-based Method for
building Requirements Documents in Call-for-tender Processes. International Journal of
Computer Science and Applications 6(5), 175-202 (2009)

Highlighting Stakeholder Communities
to Support Requirements Decision-Making*

Zeina Azmeh, Isabelle Mirbel, and Pierre Crescenzo

I3S Laboratory, CNRS UMR 7271
University of Nice Sophia Antipolis, France
{firstname.lastname}@unice. fr

Abstract. [Context & motivation] Stakeholders participation is recognized as
a key issue in the development of useful and usable systems. The Web has given
rise to a growing number of collaborative working tools that facilitated the partic-
ipation of stakeholders (and especially end-users). These tools create new oppor-
tunities of practice regarding requirement elicitation. [Question/problem] Nev-
ertheless, they result in an information overload lacking structure and semantics.
Consequently, requirements analysis and selection becomes more challenging.
[Principal ideas/results] In this paper, we propose an approach based on se-
mantic web languages as well as concept lattices to identify relevant groups of
stakeholders depending on their past participation. [Contribution] These groups
can be used to enable facilitated decision-making and handling of requirements.
We detail the different steps and the possible configurations, using an example
inspired by a collaborative software development environment.

Keywords: Stakeholder communities, concept lattices, requirements elicitation.

1 Introduction

Requirements engineering is an essential process of software engineering, during which,
the complete behavior of a software system can be defined. The success of this process
plays a crucial role in the success of the whole software project. A part of this suc-
cess is achieved by the good selection of pertinent stakeholders, and by the proper un-
derstanding of their particular needs, in a core activity called requirements elicitation.
Stakeholders participation is thus recognized as a key issue in the development of useful
and usable systems, which can be hard to attain efficiently. The Web has given rise to
several platforms serving the purpose of collaborative software development [3]. These
online platforms enable the covering of a larger number of stakeholders that are able to
express their needs freely online. The problem lies in the large number of requirements
that need to be handled. Deciding on these requirements can not be done in a straight-
forward manner, especially with the poor stakeholder profiles that are not helpful for
evaluating neither the stakeholders nor their requirements. This in addition to the fact
that there is an overload of data generated by these stakeholders that is quite hard to
process or to share, since it lacks structure and semantics. There is a need for a mecha-
nism able to facilitate the selection of requirements to be analyzed, by knowing the past
activity of stakeholders who are involved in them. Stakeholders who were previously

* This work was supported by the DreamIT Foundation - University of Nice Sophia Antipolis.

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 190-205] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Highlighting Stakeholder Communities to Support Requirements Decision-Making 191

involved in accepted requirements, must be judged to have a higher priority over other
stakeholders. They are intuitively more important than stakeholders who proposed only
refused requirements, or proposed nothing at all.

We propose an approach for discovering communities of stakeholders to support
requirements management (classification for instance) and decision-making (prioritiza-
tion and potentiality of being accepted for instance). The approach works on deriving
profiles for representing evaluated requirements, according to some values like prior-
ity and status. Then, it clusters stakeholders into communities according to their par-
ticipation in requirements belonging to these profiles. This results in having a better
overview of stakeholders and knowing in what profile of requirements they participated
previously. Consequently, this helps to better evaluate their new requirements. The ap-
proach is based on semantic Web languages and concept lattices. We propose an on-
tology to represent the different actors and activities that are involved in collaborative
software development environments. The objective of using semantic web languages
is to annotate the user-generated data to enable a better understanding and sharing of
knowledge [[13], as well as the ability to reason about the data. Concept lattices are
data structures that reveal the hidden relationships between the different entities of the
contained data. They can be constructed using a method called Formal Concept Anal-
ysis (FCA) [10], which clusters a set of given objects into concepts, according to the
attributes they share. The set of derived concepts are ordered into a lattice afterwards.

We explain our approach using an example inspired by a collaborative software de-
velopment environment. We show how to analyze annotated data using concept lattices
to extract stakeholder communities and we interpret the obtained results.

The paper is organized as follows: in the next section, we give an overview about
concept lattices using Formal and Relational Concept Analysis (FCA, RCA). In Sec-
tion[3] we present our approach and detail its different steps. In Section] we present a
conducted experiment. In Section[3] we discuss the related work. Finally, in Section [6]
we conclude the paper and describe our future work.

2 Background

In this section, we give the basic definitions of Formal and Relational Concept Analysis
(FCA, RCA). We explain their use for the generation of concept lattices along with
simple examples.

2.1 Formal Concept Analysis (FCA)

We base our approach on FCA [10] which is a classification method that permits the
identification of groups of objects having common attributes. It takes a data set repre-
sented as an nxm table (formal context) with objects as rows and attributes as columns.
A cross "x" in this table means that the corresponding object has the correspond-
ing attribute. An example of a formal context is shown in Table [T} for a set of objects
0={1,2,3,4,5,6,7,8,9,10} and a set of attributes A={odd, even, prime,
composite, square}.

192 Z. Azmeh, 1. Mirbel, and P. Crescenzo

From a formal context, FCA extracts the set of all formal concepts. A formal concept
is a maximal set of objects (called extent) sharing a maximal set of attributes (called in-
tent). For example, in Table[l] a=({4,6,8,10},{even, composite}) is a for-
mal concept because the objects 4, 6, 8, and 10 share exactly the attributes even and
composite (and vice-versa). On the other hand, ({6}, {even, composite}) is
not a formal concept because the extent {6} is not maximal: other objects share the
same set of attributes.

Table 1. A formal context for objects O and attributes A

odd even prime composite square

1 x X
2 X X

3 X X

4 X X X
5 X X

6 X X

7 X X

8 X X

9 X X X
10 X X

FCA reveals the inheritance relations (super-concept and sub-concept) between the
extracted concepts and organizes them into a partially ordered structure known as Galois
lattice or concept lattice. The resulting concept lattice is illustrated in Fig.[[(L).

Fig. 1. Formal concept latticeﬂfor the context in Table[T](L); focus on the concept b (R)

This lattice reveals phenomena that may not be recognized intuitively. For example,
in Fig.[I(R) appears the conceptb= ({4}, {composite, even, square}) as a sub-
concept of the concept a. It inherits a’s attributes composite and even, and extends
it by the square.

! Built using the Concept Explorer (ConExp) tool: http://conexp.sourceforge.net/users/index.html
In a lattice, a full node indicates that the concept introduces objects and attributes that weren’t
introduced before; a half-full node introduces either objects when the bottom half is full, or
attributes when the upper half is full; and an empty node represents an intermediary concept,
which does not introduce any objects or attributes.

Highlighting Stakeholder Communities to Support Requirements Decision-Making 193

2.2 Relational Concept Analysis (RCA)

RCA [14]] is an extension of FCA that takes into consideration the relations between
the objects. Thus, it takes as input two types of contexts: (non-relational) ones that
are previously used with FCA to classify objects by attributes, and inter-context (re-
lational) ones that represent the relations between the objects. RCA generates lattices
similar to the ones generated by FCA, but enriched with the information about the rela-
tion between the objects. We take as an example two sets of numbers, {1,2,3,4,5}
and {11,12,13,14,15,16,17,18,19,20}. We build two non-relational con-
texts similar to the one in Table[Il We consider a relation called Divides between the
first and second sets of numbers, and we build the relational context in Table 2]

Table 2. The relational context Divides

Divides 11 12 13 14 15 16 17 18 19 20

1 X X X X X X X X X X
2 X X X X X
3 X X X

4 X X X
5 X X

RCA takes the two non-relational contexts (numbers X attributes), and the relational
context Divides, then generates the two lattices in Fig.

Fig. 2. The enriched lattices generated by RCA

These lattices are similar to FCA lattices, but one of them is enriched with the
relation Divides. For example, by regarding the concept a= ({2}, {prime, even,
Divides:c7,Divides:c3}) in lattice (L), we notice that the numbers in its ex-
tent can divide the numbers in the extents of the concepts 7 and 3 in lattice (R).

194 Z. Azmeh, 1. Mirbel, and P. Crescenzo

3 Highlighting Stakeholder Communities

The objective of our approach is to discover stakeholder communities, according to
the requirements in which they participate. The approach is composed of two main
steps: structuring the data of a project, by semantically annotating the different actors
and artifacts, together with the possible interactions between them; and analyzing this
annotated data, using concept lattices to discover stakeholder communities.

We explain our approach along with an example that is inspired by a collaborative
software development platform, called Launchpad [2]]. In such platforms, stakeholders
are themselves involved in various activities of the software development life-cycle,
which may not be necessarily the case in platforms devoted to requirements elicitation.
The different tasks performed by stakeholders result in rich information that we can
exploit to discover groups of requirements and groups of stakeholders. On the other
hand, requirements captured through this kind of platforms are low level requirements.

Indeed, Launchpad enables stakeholders of proposing blueprints (new functionalities
that they require) and reporting bugs (existing functionalities that need to be enhanced
or repaired). Every project in this platform has a set of artifacts like: blueprints, bugs,
and code branches, as well as a set of stakeholders participating in these artifacts. This
platform provides the ability to track blueprints and bugs, as well as code branches. A
large collection of projects are being managed through this platform, we mention some
featured projects like: MySQL, Ubuntu, Mozilla, etc.

Let us consider the simplified example in Fig. 3l It presents a sample of data that
can be obtained from this platform, involving a set of stakeholders and their different
activities performed on a set of blueprints.

ﬂ

[’
. [] .
%Dawd AV John Kevin

- A
(é\ A ,'71 f / \ proposedBy
/ start\edBy / Mike m

startedBy S Q / P"OPOSGdBV
e = roposedBy Tony
I .‘ proposedBy

approvedB N
‘m / 4 \‘\J\ startedBy p
N \ - Y bp9 f
- DroposedBy — @/ g : ~ /StartedBy
/ ¥ P N
approvedBy bp 7 b p1 - / proposedBy
b

roposedBy
-7 pro osedBy ' - opa /E Robert
s \ blf'g) R @ ™ startedBy
L w% ,bP’i proPosedBy ’ s -
b

Mark ‘r’ proposed By 'l startedBy

Patrick

P dB
| B - roposedBy —————»
- bp13 ,// bp2 A P11 fial Prep g
proposedBy /- ProposedBy { " completedty | ‘
b ,. proposedBy | bp1§ proposedBy 1 :?10 Daniel
& / H | dB
Martin ¥ ! i approvedsy startedBy
| startedBy
“ T 3 B --- hasSubscriber -->
@
Edward ¢
William Joseph Oliver

Fig. 3. An example of stakeholders performing different activities on a set of blueprints

Highlighting Stakeholder Communities to Support Requirements Decision-Making 195

The stakeholders contributing to a project are not necessarily members of this project.
Their profile pages give an overview about their personal information, which is usually
very poor and insufficient for determining stakeholders importance. We can also have
access to the list of artifacts, in which they participate. The artifacts also have profiles,
in which we can find different attributes related to them like: status, importance, .., and
other attributes indicating the involved stakeholders with their different activities.

The problem in this kind of platforms lies in the large number of blueprints and
bugs that we can find for each project. Deciding on these requirements can not be done
in a straightforward manner, especially with the poor stakeholder profiles that are not
helpful for evaluating neither the stakeholders nor their requirements.

We propose to annotate semantically data from such a platform, using an ontology
that we define and explain hereafter. Then we process the annotated data with concept
lattices, to highlight stakeholder communities.

3.1 Ontology for Collaborative Software Development

We propose the ontology in Fig. [for collaborative software development (CSD) [13].
The advantage of annotating data from CSD environments with the help of such an
ontology is embodied in the ability to share data across platforms. This is in addition
to the ability to reason about the data, by exploiting classes and properties at different
levels of granularity.

linkedToBug related ToFAQ

AR

relatedToCode

‘ hasArtifact @
D

‘ partOfProject

hasOwner

completedBy
reportedBy

startedBy hasCommenter

created By,

doap:Project
hasRelated Project

o
v Stakeholder)Jq registeredBy
hasC ibut foaf:Group
" asContributor 47 4 N >
MailingList

hasSubscriber 1
N
— g / hasMember @ subTeamOf
»\ ownedBy hasMailingList

hasAdministrator

proposedBy
draftedBy revisedBy

approvedBy committed By

hasAssignee
askedBy / answeredBy / solvedBy

Fig. 4. An ontology for collaborative software development

In this ontology, we represent the different actors (stakeholders and teams) and their
interactions with the different artifacts of a software project.

196 Z. Azmeh, 1. Mirbel, and P. Crescenzo

This ontology is described using the RDF Schema vocabulary [3]]. It makes use of
several other ontologies like the FOAF vocabulary (Friend of a Friend) to describe
stakeholders and groups [6], and the DOAP vocabulary (Description of a Project) to
describe a software project itself with its various resources [[1]. It is also connected to
an ontology called OFLOSSC [17] that annotates community members and resources
for open source development.

Every software project is annotated by the class doap:Project. It has a set of actors
and a set of artifacts. Actors can either be individuals (stakeholders) or teams of individ-
uals. A stakeholder is annotated by the class foaf: Person, while a team is annotated by
the class foaf:Group. Project artifacts can be blueprints, bugs, code branches, or ques-
tions. We consider blueprints and bugs to be two different kinds of requirements. As
we mentioned before, a blueprint is a proposal of a new functionality, while a bug is a
proposal of enhancement of an existing functionality.

Using this ontology, we can reason about the annotated data. For example, a require-
ment is a coarse-grained artifact that can be replaced by either a blueprint or a bug to
get further relationships.

As the matter of fact, it can be used to annotate data retrieved from almost any col-
laborative software development platform. For example, we developed a crawler that
harvests data from Launchpad pages, and represents them in an RDF graph [16]], con-
forming to the defined ontology.

We explain below the use of concept lattices to analyze the annotated data.

3.2 Using Concept Lattices

We mentioned above in Section[2]that concept lattices are data structures that reveal the
hidden relationships between the different entities of the contained data.

The objective of using concept lattices is to extract hidden profiles for the set of
requirements of a certain project, then to use these profiles for extracting stakeholder
communities. Therefore, we make use of two kinds of information: the set of attributes
defined for each requirement, as well as, the different interactions (participation) be-
tween stakeholders and the considered requirements.

Let us take again the example in Fig. [l In this example, we have profile informa-
tion for each blueprint (requirement), as well as stakeholder participation information.
This different information is retrieved using the Launchpad crawler and is annotated in
an RDF format. We analyze this annotated data according to two steps: blueprints ex-
plicit profile information is used to build a lattice of blueprints, which enable us to dis-
cover implicit blueprint profiles, following their common attributes; then, the identified
blueprint profiles are used to classify the stakeholders according to their participation
in these blueprints.

In Launchpad, an explicit (provided by stakeholders) blueprint profile consists of
several attributes. These attributes can be numerical (like: the number of involved stake-
holders) or nominal (non-numerical). Nominal attributes can further be divided into two
types: ordinal attributes that have sortable enumerated values, and categorical attributes
that have enumerated values with no ordering.

We suppose that a requirement analyst can specify his configurations of the at-
tributes to consider. This includes specifying what attribute values are considered to be

Highlighting Stakeholder Communities to Support Requirements Decision-Making 197

equivalent, for example: a blueprint that has the status "new” or the status “under dis-
cussion” can be considered in the two cases to be ’pending approval”. An expert can
also specify if the values of an attribute are ordinal or not, for example: the priority
values of a blueprint can be specified as “low < medium < high”.

In our running example, we consider values for priority and definition status only, for
simplicity sake. These two attributes have sortable values: priority can take the values
(undefined, low, medium, high), while definition status can take the values (unknown,
approved, started, suspended, completed). In fact, we extract the information we need
to analyze by querying the RDF data using the SPARQL query language [21]].

Let us suppose having the formal context in Table[3] describing the set of blueprints
by their values of priority and status. Since these attributes are ordinal, a blueprint in
this formal context that has a high priority, covers also the other values of priority. This
is also the case for the status values.

Table 3. Blueprints formal context

Priority Status
high medium low undefined completed suspended started approved unknown
bpl X X X X X X X X X
bp2 X X X X X X X X
bp3 X X X X X X X
bp4 X X X X X
bp5 X X X X X
bp6 X X X X X X
bp7 X X X X X X X X
bp8 X X X
bp9 X X X X X
bpl0 X X X X X X
bpll X X X
bpl2 X X X
bpl3 X X X X X X
bpl4 X X
bpl5 X X X
bpl6 X X X X

FCA classifies the set of considered blueprints into the concept lattice in Fig.
This lattice reveals the blueprints that are more important than the others. These are the
blueprints that appear in the lower part of the lattice, because they have more attributes
than the others. This is the case for the blueprint bp3, appearing at the bottom, since it
has the best values for the considered attributes (priority:high and status: completed).

In this lattice, several groups (profiles) of blueprints can be extracted. We consider for
example, the four following profiles (appearing in Fig.[3): blueprints that are approved
regardless of priority (includes all the blueprints except for bpi4, bp8, and bp12); the
ones that are completed regardless of priority (bpl3, bpll, bp7, and bp3); the ones
having medium priority at least and are approved at least (bp5, bp4, bp6, bpl, bp2, bp7,
and bp3); and finally the ones having a high priority and that are started at least (bpl,
bp2, and bp3).

We use these four blueprint profiles to construct a new formal context of stakehold-
ers. We make use of RCA (expressing the relation between objects and the concepts of
another lattice), as we can see in Table 4 In this formal context, we can determine if a
stakeholder has a profile or not by fixing a minimal number of blueprints belonging to

198 Z. Azmeh, 1. Mirbel, and P. Crescenzo

completed

regardless of priority

— —

{

approved
regardless of priority
)

—]

medium priority at least /‘

k"" approved at least }

¢
{
l

——

high priority

{
& started atleast |

S ———

Fig. 5. Blueprints lattice revealing different profiles

this profile, in which the stakeholder participated. In this example, we considered this
number to be one blueprint at least. We also considered stakeholder participation to be
a coarse-grained relation that includes proposing, approving, starting, and completing a
blueprint. This aggregation of relations and getting the corresponding data is obtained
through a direct SPARQL query on the RDF data.

david
john
robert
tony
oliver
mark
Jjoseph
martin
daniel
kevin
mike
william
patrick
edward

Table 4. Stakeholders formal context

completed high priority medium priority at least approved
regardless of priority started at least approved at least regardless of priority

X X
X
X X
X X X
X X X
X
X
X X

X
X X X
X X
X X X

X

Highlighting Stakeholder Communities to Support Requirements Decision-Making 199

The stakeholder lattice that results from the context in Table H] is shown in Fig.[6l In
this lattice, we can notice the formation of four communities of stakeholders. Stakehold-
ers inside each community share the fact that they participated in blueprints belonging
to one of the four chosen profiles. We can notice that the stakeholder called William does
not belong to any community. This is normal since we did not consider the blueprint
profile (low priority and unknown status), in which he participates. We can notice also
that these communities are overlapping. For example, the members of community C4
participate in blueprints of all profiles. While for example, the members of community
C1 participate only in blueprints of a high priority and that are started at least.

Like this, stakeholder profiles can now be enriched with an additional information
concerning their participation, obtained in a collective relative manner.

William

high priority
started at least |

———

[1)) ©
AN £2 A

John 749 Joseph

Mark]

\ medium priority at least |
regardless of priority approved at least !

’
=) oviafl v
{ Mike Martin

Completed

C2

Daniel '“

Edward

Robert

approved
regardless of priority |

—m?ﬁ*
c4 1
Patrick ““ Oliver

Tony Kevin

Fig. 6. Lattice of stakeholder communities

Possible Configurations: FCA and RCA tend to generate fairly large lattices when
dealing with datasets of large sizes. Possible solution to such an issue is to use the notion
of a Galois Sub-Hierarchy [12], which is a compressed representation of the lattice. It
encodes in a non-redundant way all the information that is necessary for the recovery
of the complete lattice [[14]]. Another possibility is to impose constraints on the number
of requirements inside each profile, and the number of requirements a stakeholder must
participate in to have a certain requirement profile.

200 7. Azmeh, 1. Mirbel, and P. Crescenzo

4 Proof of Concept

In this section, we present one of our conducted experiments, the Inkscape projeci@, and
we show the obtained results.

The Inkscape project contains 3840 contributing stakeholders, and 227 blueprints.
We choose to show how the approach processes the blueprints only, because of the
limited paper space. The analyst conﬁgurationsﬁ that we choose for classifying the
blueprints are the following:

definitionState, takes the values: pendingApproval = {new, review, drafting, dis-
cussion}, approved, discarded = {obsolete, superseded};

priority, takes the values: undefined, not, low < medium < high < essential;

relatedToBlueprint, takes the value true if it is related to another blueprint;

relatedToBug, takes the value true if it is related to a bug.

We also specify the relations that we want to take into consideration. We consider
that stakeholders who proposed and subscribed to blueprints, have participatedIn-
Blueprint. Running the approach on this data results in two lattices): a lattice of
blueprints, and a lattice that classifies stakeholders by the extracted blueprint profiles.
The blueprints lattice, shown in Fig.[7 gives us an overview of the blueprints, ac-
cording to the considered attributes. It shows three main profiles: discarded, pendin-
gApproval, and approved blueprints. The approved blueprints profile contains itself
three other main sub profiles. We list these profiles in Table |3 together with the num-
ber of blueprints inside each one of them. Thereafter, we build the stakeholders lattice
using the three main blueprint profiles. This lattice is shown in Fig. [8] it highlights
six communities of stakeholders. The communities 1, 3, and 6 correspond to stake-
holders participating in approved, pendingApproval, and discarded blueprints, respec-
tively. Communityl for example, contains itself two other sub communities, with a
total number of 80 stakeholders (63 of them participated in accepted blueprints only).
Usually, stakeholders appearing closer to the bottom of a lattice tend to have more

Table 5. Extracted blueprint profiles

Blueprint profile Description # blueprints
blueprint-pl discarded 41
blueprint-p2 pendingApproval 161
blueprint-p3 approved 25
blueprint-p3.1 approved-low 4
blueprint-p3.2 approved-medium 12
blueprint-p3.2.1 approved-medium-relatedToBug 10
blueprint-p3.3 approved-high 6
blueprint-p3.3.1 approved-high-relatedToBug 4
blueprint-p3.4 approved-essential 2

2 Data retrieved on September 18, 2012, from https://launchpad.net/inkscape.

3 The attributes and values are provided by Launchpad. We specify the values that we consider
to be equivalent and also specify the ones that should be treated according to some order.

* Here, we show a compact version of the lattices. The complete lattices can be visualized on:
www-Sop.linria.fr/members/Zeina.Azmeh/REFSQ13/

https://launchpad.net/inkscape
www-sop.inria.fr/members/Zeina.Azmeh/REFSQ13/

Highlighting Stakeholder Communities to Support Requirements Decision-Making 201

Cco

|

C3
€ BP-Profile3
low relatedToBug| approved
25 blueprints;
C22
B BP-Profile3.1
medium
(4 blueprints)
c3l
C39 | |BP-Profile3.2
high
(12 blueprints

AR

7 C30
BP-Profile3.3| |BP-Profile3.2.1

(6 blueprints)| [(10 blueprints)|

| <

C36 C41
BP-Profile3.3.1| [BP-Profile3.4
essential
(4 blueprints) | (2 blueprints)

|/

Cl
BP-Profile2
pendingApproval
(161 blueprints)|

C4
Cc40 BP-Profilel
discarded
(1 blueprint) (41 blueprints)

L

Fig.7. The blueprints lattices

profiles. For example, the three stakeholders of Community4 have participated in
blueprints belonging to the three blueprint profiles.

Lattices Utilization: The blueprints lattice gives us a better view on the blueprints
according to their various attributes. It enables us to identify the different profiles, in
addition to exploring a classification of these profiles. This is quite useful because if
we consider for example the case of accepted blueprints, the next activity that may be
applied to them might be selection for processing. Having such a blueprint classification
(embodied in the lattice) enables us to identify the blueprints that have the best values
for the chosen attributes. These blueprints are the ones appearing closer to the bottom
of the lattice (because they cover more attribute values than the others).

Using the stakeholders lattice, we can discover stakeholders having specific profiles.
In this experiment, we considered the main blueprint profiles only, but if we consider
all the profiles in Table [3l we can then discover for example, the stakeholders who

202 7. Azmeh, 1. Mirbel, and P. Crescenzo

co

s

c1 =
Communityl Communitys
participatesinBlueprint:C3 participatesinBlueprint:C1|
Community3
(80 stakeho|de‘r< (163 stakeholders)
Cc2 C5
Community2 Community5

(17 stakeholders)| (15 stakeholders)

\c4

Community4

(3 stakeholders)

Fig. 8. Lattice of stakeholders of the Inkscape project

participated in approved blueprints with high to essential priority values (the profile
blueprint-p3.3). Blueprints that may be proposed in the future by these stakeholders
may have a higher probability of being accepted than the ones potentially proposed
by stakeholders of Community6 (who participated in discarded blueprints only). We
can also decide to prioritize stakeholders having the best blueprint profiles, and conse-
quently prioritize their blueprints.

Threats to Validity: According to the experiments that we conducted, we noticed
some limitations in our proposed approach. These limitations appear in three situations:
when the contributing stakeholders are newbies with no previous participation in any
blueprint or bug, when there is no sufficient number of evaluated blueprints or bugs to
extract stakeholder communities, and when the retrieved dataset is fairly huge (the case
for instance of the Ubuntu project having more than 290,000 bugs).

Since our approach has a learning aspect (evaluating stakeholders according to their
evaluated artifacts), in the first two situations, the approach will fail to produce useful
lattices. In such a case, stakeholders might get grouped into only one community; the
community of stakeholders participating in requirements that are pendingApproval.

Having large datasets will also cause some inefficiency to the approach, regarding
the ability to analyze the resulting lattices due to the added complexity.

Discussion: In this experiment, we considered the stakeholders’ participation in
blueprints only. Considering their participation in other artifacts (bugs or code branches)
gives us more information about them that would help in better evaluating them. The
advantage of using RCA is that we can choose to consider any other artifact to enrich
the stakeholders lattice without affecting the approach. Especially with the use of the
ontology that we are proposing, since we can choose the different levels of granularity
that we wish to consider. Nevertheless, this may add more complexity to the resulting
lattices, regarding their readability and understandability.

Highlighting Stakeholder Communities to Support Requirements Decision-Making 203

What should be noticed is that the approach can be totally configured regarding the
chosen levels of granularity, even when deciding the blueprint profiles to consider. For
example, the stakeholders lattice was generated considering a coarse granularity. Con-
sidering finer granularity would leads us to generate the stakeholders lattice using all of
the extracted blueprint profiles.

5 Related Work

In this section, we list related work of two main categories: works dealing with require-
ments engineering using social network analysis (SNA), and works dealing with com-
munity detection. Social Network Analysis is the application of methods to understand
the relationships among actors and on the patterns and implications of the relationships.
A social network is a structure consisting of actors and the relations defined on them. It
is often depicted as a graph. A community in a social network is a group of people that
are gathered according to their common properties or approximating interests.

Social Network Analysis (SNA): In [15], Lim and Finkelstein propose a tool for the
elicitation of pertinent highly wanted requirements in a software system. It is a semi-
automatic approach that makes use of social network analysis for requirement engineer-
ing. Fitsilis et al. present in [8] the use of SNA for the management and prioritization of
software requirements. In [20]], Pagano lists the challenges, embodied in the fairly huge
amount of unstructured data that may suffer of a low quality and possible conflicts. He
also lists the current techniques aiming at facing each of these challenges, like SNA and
collaborative filtering. In [[18], Mulla and Girase proposed an approach that uses social
networks and collaborative filtering for requirements prioritization.

Community Detection: Community detection and graph partitioning share the goal of
separating a network into groups of nodes having few connections between them [19].
The difference is that in community detection, the objective is to find the naturally
occurring groups regardless of their number or size. Another difference is that in graph
theory, ideal partitioning results in disjointed groups, while in community detection,
groups may be overlapping.

In [24], Veerappa and Letier propose an approach for stakeholders clustering based
on their approximating ratings on requirements. The discovered stakeholders groups
can be used afterwards for requirements decision-making. In [7], Cuvelier and Aufaure
explain the notion of a community in the light of graph theory. They present the princi-
ple graph definitions and the different graph related measures that can be employed for
social network analysis [23]]. They list and detail the existing methods for community
detection, categorized according to the used techniques.

In [25], Wang et al. models the interactions of users and information in a bipar-
tite graph. They propose to manipulate the resulting graph by one-mode projections
to capture the shared interests of users and the information similarity. In [9], Flake et
al. propose an algorithm for detecting communities in graphs of Web pages connected
by hyperlinks. In [4], Blondel et al. present a heuristic method for discovering com-
munities based on modularity optimization. Modularity, which is detailed in [19], is a

204 7. Azmeh, 1. Mirbel, and P. Crescenzo

score for measuring the density of links inside and outside communities that helps in
determining the belonging of a node to a certain community. Other works that we can
find adopt divisive algorithms that work on splitting a network by deleting edges [22].
Additionally, others use agglomerative algorithms that work on adding nodes to groups
until no individual node remains [[11].

Discussion: To our knowledge, current techniques for SNA and community detection
manipulate social graphs according to their topologies only. They do not consider the
semantics conveyed by the network elements. Consequently, a lot of important informa-
tion may get discarded (as we showed in Section d). Moreover, in the presented works,
communities are considered as disjointed groups of nodes that do not overlap. While
using concept lattices, the communities overlap.

An advantage of using FCA and RCA lies in the fact that we can represent any
social network with its complete set of data, without any loss of information. Then
the derived concepts enable us to reveal groups of each type of nodes with inclusion
relations between these groups.

6 Conclusion

In this paper, we presented an approach for discovering communities of stakeholders to
support requirements handling and decision-making. The approach is based on semantic
Web languages and concept lattices. It reveals stakeholder communities by analyzing
their past participation in requirements. We considered as a study context a platform for
collaborative software development, from which we retrieved datasets about projects
and annotated them semantically. The use of concept lattices enabled us to analyze
heterogeneous multi-relational social networks of stakeholders and artifacts.

There are diverse perspectives for this work. On top of these perspectives is to study
the utilization of the approach for the purpose of prioritization as well as recommen-
dation of requirements and/or stakeholders, in addition to introducing the notion of
trust among stakeholder communities. Another point that we would like to work on
is to connect data from several platforms to enrich user profiles. An important issue
to be considered also, is the scalability of the approach, when considering fairly large
datasets. This may imply the dynamic updating of the resulting concept lattices, using
incremental lattice construction algorithms. We may also consider the use of Galois
Sub-Hierarchies (GSH) [12] as compact alternatives for concept lattices.

References

1. DOAP vocabulary (description of a project),
https://github.com/edumbill/doap/wiki

2. Launchpad, https://launchpad.net/

3. Begel, A., Herbsleb, J.D., Storey, M.A.: The future of collaborative software development.
In: Proceedings of CSCW 2012, pp. 17-18. ACM, New York (2012)

4. Blondel, V., Guillaume, J., Lambiotte, R., Mech, E.: Fast unfolding of communities in large
networks. J. Stat. Mech., P10008 (2008)

https://github.com/edumbill/doap/wiki
 https://launchpad.net/

20.

21.

22.

23.

24.

25.

Highlighting Stakeholder Communities to Support Requirements Decision-Making 205

. Brickley, D., Guha, R.V.: Rdf vocabulary description language 1.0: Rdf schema. Tech. rep.

(February 2004),
http://www.w3.0rg/TR/2004/REC-rdf-schema-20040210/

. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.98. Namespace document (August

2010), http://xmlns.com/foaf/spec/

. Cuvelier, E., Aufaure, M.-A.: Graph mining and communities detection. In: Aufaure, M.-A.,

Zimanyi, E. (eds.) eBISS 2011. LNBIP, vol. 96, pp. 117-138. Springer, Heidelberg (2012)

. Fitsilis, P, Gerogiannis, V., Anthopoulos, L., Savvas, [.LK.: Supporting the requirements pri-

oritization process using social network analysis techniques. In: Proceedings of WETICE
2010, pp. 110-115. IEEE CS, Washington, DC (2010)

. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification

of web communities. Computer 35(3), 66-71 (2002)

. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Hei-

delberg (1999)

. Girvan, M., Newman, M.: Community structure in social and biological networks. Proceed-

ings of the National Academy of Sciences 99(12), 7821-7826 (2002)

. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using galois

lattices. SIGPLAN Not. 28(10), 394410 (1993)

. Happel, H.-J., Maalej, W., Seedorf, S.: Applications of ontologies in collaborative software

development. In: Mistrik, 1., Grundy, J., Hoek, A., Whitehead, J. (eds.) Collaborative Soft-
ware Engineering, pp. 109-129. Springer, Heidelberg (2010)

. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery in struc-

tured datasets. Ann. Math. Artif. Intell. 49(1-4), 39-76 (2007)

. Lim, S.L., Finkelstein, A.: Stakerare: Using social networks and collaborative filtering for

large-scale requirements elicitation. IEEE Trans. Softw. Eng. 38(3), 707-735 (2012)

. Manola, F., Miller, E.: RDF primer. W3C Recommendation 10, 1-107 (2004),

http://www.w3.0org/TR/rdf-primer/

. Mirbel, I.: OFLOSSC, an ontology for supporting open source development communities.

In: Cordeiro, J., Filipe, J. (eds.) ICEIS (4), pp. 47-52 (2009)

. Mulla, N., Girase, S.: A new approach to requirement elicitation based on stakeholder rec-

ommendation and collaborative filtering. IISEA 3(3), 51-60 (2012)

. Newman, M.: Modularity and community structure in networks. Proceedings of the National

Academy of Sciences 103(23), 8577-8582 (2006)

Pagano, D.: Towards systematic analysis of continuous user input. In: Proceedings of the 4th
International Workshop, SSE 2011, pp. 6-10. ACM, New York (2011)

Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommenda-
tion 4, 1-106 (2008), http://www.w3 .org/TR/rdf-spargl-query/

Shen, Y., Pei, W., Wang, K., Li, T., Wang, S.: Recursive filtration method for detecting com-
munity structure in networks. Physica A: Statistical Mechanics and its Applications 387(26),
6663-6670 (2008)

Tang, L., Liu, H.: Graph mining applications to social network analysis. In: Aggarwal, C.C.,
Wang, H. (eds.) Managing and Mining Graph Data, Advances in Database Systems, vol. 40,
pp- 487-513. Springer US (2010)

Veerappa, V., Letier, E.: Clustering stakeholders for requirements decision making. In: Berry,
D. (ed.) REFSQ 2011. LNCS, vol. 6606, pp. 202-208. Springer, Heidelberg (2011)

Wang, F., Xu, K., Wang, H.: Discovering shared interests in online social networks. In:
ICDCS Workshops, pp. 163—168. IEEE Computer Society (2012)

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/

Choosing Compliance Solutions through
Stakeholder Preferences

Silvia Ingolfo!, Alberto Sienal, Ivan Jureta?,
Angelo Susi®, Anna Perini®, and John Mylopoulos®

! University of Trento, via Sommarive 14, Trento, Italy
{silvia.ingolfo,a.siena, jm}@unitn.it
2 University of Namur, 8, rempart de la vierge, 5000 Namur, Belgium
ivan. jureta@fundp.ac.be
3 FBK-Irst, via Sommarive 18, Trento, Italy
{susi,perini}@fbk.eu

Abstract. [Context and motivation] Compliance to relevant laws is
increasingly recognized as a critical, but also expensive, quality for soft-
ware requirements. [Question/Problem] Laws contain elements such
as conditions and derogations that generate a space of possible compli-
ance alternatives. During requirements engineering, an analyst has to
select one of these compliance alternatives and ensure that the require-
ments specification she is putting together complies with that alternative.
However, the space of such alternatives is often large. [Principal ideas
and results] This paper extends Nomos2, a modeling framework for
laws, to support modeling of and reasoning with stakeholder preferences
and priorities. The problem of preferred regulatory compliance is then
defined as a problem of finding a compliance alternative that matches
best stakeholder preferences. [Contribution] The paper defines the con-
cept of preference between situations and integrates it with the Nomos 2
modeling language. It also presents a reasoning tool for preferences and
illustrates its use with an extract from a use case concerning the Italian
law on Electronic Health Record.

Keywords: Regulatory compliance, stakeholder preferences, models of
law.

1 Introduction

We have entered an era where software quality is determined not only by the
degree to which a software system meets its requirements (fitness-for-purpose),
but also by the degree to which it complies with relevant norms (fitness-to-
norms) [3]. There is now a rapidly growing number of laws and regulations
world-wide that impacts on software systems, and requirements engineers are
challenged to understand and analyze the various ways their systems can fulfill
their requirements, while complying with all applicable laws.

Fitness-to-norms, or compliance, is usually understood as a binary criterion:
either a system complies with a given law, or it is in violation. However, there can

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 206-20] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Choosing Compliance Solutions through Stakeholder Preferences 207

be (and generally there are) multiple ways to comply with a given law because
of variability elements contained in legal texts, such as conditions, exceptions,
derogations, alternatives, cross-references, etc. Such elements allow alternative
ways to comply, depending on which conditional elements apply for a system
under design. This variability implies that there isn’t a single compliance solu-
tion, but rather a space of compliance alternatives. While alternatives in law
are equal to the legislator, they are not equal to stakeholders: some alternatives
may fit better existing requirements, while others may cost less to comply with.
In other words, if a software system has to comply with a given law, how it
complies also defines how well stakeholder requirements are met. So the problem
of ensuring regulatory compliance of requirements includes a search for the best
way to comply. We define the Preferred Compliance Problem as the problem
of finding the best compliance solution, given a law and a set of stakeholder
preferences.

The main objective of this paper is to formulate and address the Preferred
Compliance Problem. Our solution to the problem is based on the idea that
stakeholder preferences drive the search in a space of compliant alternatives.
Norms are modelled with Nomos 2, a modelling framework tailored to law that
supports reasoning about regulatory compliance of software requirements [22].
In this proposal, our norm models [22] are enriched with preferences between
situations (partial states of the world) entailed by norms. Moreover, stakeholder
assumptions can be expressed and included in the model as hard constraints.
Models built in terms of such concepts are subsequently analyzed to find candi-
date compliance solutions. We acknowledge that the usefulness of the analysis of
these models — like any engineering model — critically depends on its quality.
Our proposal is illustrated through a small part of a real use case involving the
Italian law on Electronic Health Record. A prototype tool is used to analyze
Nomos 2 models using disjunctive logic programming. Details about the tool are
presented in a companion paper [10].

The rest of the paper is organized as follows. Section [recalls basic defini-
tions of the Nomos 2 conceptual modelling framework for laws, founded on the
concepts of norm and situation. Section [B] provides a formulation of the Pre-
ferred Compliance Problem and defines the solution concept to this problem.
An overview of a functioning prototype tool is presented in section [l while sec-
tion [l illustrates our approach and the capabilities of the tool with a use case.
Related work is discussed in section [l while section [[] concludes the paper.

2 Modelling Law with Nomos 2

Nomos 2 is a modeling framework proposed in [22] that aims at capturing the
variability of compliance alternatives for norms. Indeed, legal texts contain el-
ements such as conditions, exceptions or derogations defining the applicability
of alternative norms within a piece of law. In Nomos2 a Nornll is defined as

! “Norm’ refers to the concept, while lowercase ‘norm’ refers to an instance. Similarly
with ‘Situation’/‘situation’.

208 S. Ingolfo et al.

a b-tuple (type, hol, ctrpart, ant, cons), where type is the type of the Norm
(e.g., duty or right); hol is the holder of the Norm, the role having to satisfy the
Norm, if that Norm applies; ctrpart is the counterpart, the role whose interests
are helped if the Norm is satisﬁedg ant is the antecedent, the conditions to sat-
isfy for the Norm to apply; cons is the consequent, the conditions to satisfy for
the Norm to be complied with.

The applicability and satisfaction of a norm depend on situations which are
satisfied, the idea being that if some situations are satisfied, the norm will apply,
and when other situations are satisfied, the norm will be satisfied. Situations
and norms are partial states of the world that we may know to hold (meaning
the situation or norm is satisfied), not hold, or neither (when we can’t conclude
satisfaction or denial).

In our model, situations are linked to norms in terms of four relations: two re-
lations for applicability (activate, block), and two relations for satisfiability (sat,
break). The relation activate (resp. block), from a situation to a norm, means
that if the situation is satisfied the norm is applicable (resp. not applicable).
The relation satisfy (resp. break), from a situation to a norm or another situa-
tion, means that if the situation is satisfied the norm or the other situation is
satisfied (resp. not satisfied). On top of these four basic relations we have three
composite relations for normsf The relation derogate, means that complying
with the first norm makes the second norm not applicable. The relation endorse,
means that complying with the first norm makes the second norm applicable.
The relation imply, means that satisfaction of the first norm entails satisfaction
of the second norm.

Norm models are used to reason about compliance of requirements. Consis-
tent sets of requirements satisfy one or more situations, and according to how
situations are related to norms they make certain norms applicable or satisfied.
Situations are labeled as ST (Satisfiability True) if there is evidence that they
are satisfied; as SF (Satisfiability False) if there is evidence that they are not
satisfied; as SU (Satisfiability Unknown) if there is no evidence or no decision is
made. The relations of our model act as label-propagation channels that propa-
gate labels from their source (situation or norm) to their target. Depending on
the pair of labels associated to a norm (for applicability and satisfiability) the
norm may be compliant, violated, tolerated or inconclusive. Anytime a norm is
not applicable it is ‘tolerated’, when the applicability is not known it is ‘incon-
clusive’. When a norm is applicable it can be either ‘complied with’, ‘violated’
or ‘tolerated’ depending on the satisfiability value and on the type of norm
(duty/right)E

Use of the language. Nomos 2 models allow us to represent fragments of laws
or regulations by representing the different conditions and rules described by

2 In the rest of the paper we use the term ‘legal subject’ to refer to the role holder
and counterpart.

3 These relations, shortcuts in [22], can be defined as a composition of the four basic
relations.

4 For more details see [22].

Choosing Compliance Solutions through Stakeholder Preferences 209

right to return
bought goods

satisfy actlvate satlsfy

e A b

productis VAT tax VAT-claim product is 90 days from product the product

obligato to
pay VAT tax

bought from is payed tax form VAT-free purchase have . is damaged
e Lo form not passed is returned g
LEGEND [~==~=~-==~-~-=--=----=----o-soosoo- relations |
| elements and/or operator fvate it |
! __actvate | applicability !
| block i |
| I>right f \duty /K)\ e L
|
. e . [}
N satisfy satisfiability |
| B : and or .
! D situation break relations |
I

Fig. 1. An example of our modeling language and its graphical syntax

a law or regulation, and the alternative ways to comply with it. For example
when the legal subject ‘customer’ is in the situation ‘product is bought from
seller’, then several legal clauses regarding reimbursement, tax-payment and tax-
declaration apply. We say that a legal subject complies with a clause if that clause
applies to that legal subject and the subject satisfies that clause. If the customer
pays the taxes on the product — i.e., the legal subject is in the situation ‘VAT-
tax on product is paid’ — then the customer is complying with the clause about
paying VAT taxes. Leveraging on applicability and satisfiability of the different
situations that are holding, it is possible to identify how to comply with a law in
different ways (e.g., by paying the VAT tax, by buying a VAT-free product, ...).

In figure [[l we show an example with the graphical syntax of our modeling

language, applied to an hypothetical tax law. This simple example shows how,
activate

when a product is bought from a seller (S; ———— D), the duty to pay taxes is
activated. You comply with this duty either by paying the taxes (S —— satisty, Dy)

or by filling in the VAT-claim tax form (Sg Satisly, D1). This option is repre-
sented by an or-operator that satisfies the duty. VAT-free product are untaxed

by definition, so if the product is VAT-free (i.e. Sy is ST), the duty is no longer

applicable (S4 Dblock, D). For purposes of this example, we consider that most

stores have a return policy for which you have up to 90 days to return the prod-
uct bought in that store. These two situations (S;, S;) activate the right to
return the good, which in turn is complied with (exercised) when the product is

f . .
returned (Sg ——— satisly ——= Ry). However, if the product is damaged, then you can not

exercise the right (S7 Dreak, Ri1).

Notice that this simple model has different compliance solutions (for example,
paying VAT tax, filling in the VAT-claim tax form, buying VAT-free products,

210 S. Ingolfo et al.

etc.). To generalize, since in a norm model situations constitute free variables,
and their possible labels (satisfied, not satisfied, undefined) determine the num-
ber of permutations on the model, the total amount of possible permutations is
3%, where s = number of situations. The total number of compliance solutions
is between 0 and 3%, and depends on the topology of the model. In any case,
since the number of possible permutations grows exponentially, the number of
compliance alternatives also grows quickly. Given a large number of compliance
alternatives, it becomes necessary to compare them, so as to help identify one
that best responds to stakeholder expectations.

3 The Preferred Compliance Problem

This section defines the Preferred Compliance Problem (PCP hereafter), as the
problem of identifying alternative ways to comply with applicable Norms, and
comparing these alternatives on the basis of stakeholder preferences. Since there
can be different criteria for comparison and as their relative importance can vary
across stakeholders and systems engineering projects, PCP does not prescribe a
specific procedure or rule for ranking alternatives.

Compliance can be understood as a relation between a design of a system-to-
be, environment conditions in which the system-to-be will operate, the require-
ments it will satisfy, and a set of applicable Norms. To get to the PCP, we will
start from the known Zave & Jackson [24] (Z&J) requirements problem formu-
lation, which abstracts from the issue of compliance. We will suggest below how
to extend Z&J requirements problem to the Compliance Problem (CP) using
Nomos 2, explain where variability is in the CP, define the preference relation
needed to compare alternatives in the CP, which will finally lead us to state
the PCP.

7&J requirements problem is: Given domain assumptions D and requirements
R, find a design of the system-to-be, such that its specification S is consistent
with D and R, and together with D satisfies R, i.e., DU S R, where I is the
consequence relation of classical (propositional or first-order) logic.

How does Z&6J Relate to Situations and Norms? Applicable Norms, to which a
system-to-be needs to comply, are a function of Situations that will occur in the
environment in which the system-to-be will operate. In other words, which Norms
apply depends on what the system does, and on the environment in which it does
it. Since the system is designed to satisfy requirements within that environment,
it follows that applicable Norms will depend on all three components of the Z&J
requirements problem — the requirements R, the conditions in the environment
D, and the design of the system-to-be S.

Given this dependency, we can write the function Sit(D, R, S) for the set of
Situations that can occur if we choose the design S of the system-to-be, for
the requirements R, and domain assumptions D. If we choose some different
Dj, Rj, S;, then Sit(D, R, S) is not necessarily same as Sit(D;, R;, S;), i.e., dif-
ferent systems, environments, requirements result, quite expectedly, in different
Situations.

Choosing Compliance Solutions through Stakeholder Preferences 211

We know from Nomos 2 that whether a Norm applies depends on the Situation
that occurs. Therefore, the set of applicable Norms, given all potentially applica-
ble Norms N, is returned by App(N, Sit(D, R, S)). Now, we need to distinguish
two kinds of Norms in App(N, Sit(D, R, S)):

— Norms which play a role analogous to domain assumptions in the Z&J re-
quirements problem, in the sense that Situations should be not be in conflict
(i.e., Nomos 2 break or block relations) with these Norms. We denote these
App, (N, Sit(D, R, 5)).

— Norms which have a role analogous to new requirements in the Z&J require-
ments problem, requiring us to ensure that we satisfy Situations in which
these Norms are satisfied. We will denote them App, (N, Sit(D, R, S)).

What is the Compliance Problem? Following the argument above, CP is: Given
domain assumptions D, requirements R, and Norms N, find a design of the
system-to-be, such that its specification S ensures the following conditions are
satisfied:

1. DU App,(N,Sit(D, R, S)) U S is consistent;
2. DU App, (N, Sit(D, R, S)) US F RUApp,(N,Sit(D, R, S)).

Since Situations depend on D, R, and S, we can reformulate the CP as fol-
lows: Given a set of potentially satisfiable Situations S, find a set of Situations
X € p(S), such that X satisfies App, (N, Sit(D, R, S)) U Appy(N, Sit(D, R, S)),
where p(8) is the powerset of Situations.

The limitation of this CP is that, when there are alternative sets of Situations
which satisfy the said conditions, the CP does not compare these alternatives.
This is misleading, as it makes the alternatives, which we call below Candidate
Compliance Solutions, appear equally desirable, yet they are not: some of them
will be produced by systems that satisfy more desirable requirements than others.

What is a Candidate Compliance Solution? It seems, from the CP, that a solu-
tion to the CP is a set of Situations. We prefer, however, to keep also in that
solution, the Norms satisfied by these Situations. This leads us to the following
Candidate Compliance Solution concept: A Candidate Compliance Solution i,
to a CP instance, is a pair (X;, N;), such that:

1. X; € p(S) is a set of Situations,
3. X, satisfies all Norms in NV;.

How to Compare Candidate Compliance Solutions? To capture the informa-
tion that some Candidate Compliance Solutions are more desirable than others,
we add to Nomos 2 a set of binary reflexive, antisymmetric and transitive rela-
tions <g€ S x S, each <¢ defining a partial order on Situations. Informally,
we call these relations preference relations, and we read ¢ <¢ 1 as “¢ is at
least as desirable as ¢ according to criterion C”. We let ¢ =¢ 1 abbreviate

212 S. Ingolfo et al.

“¢ <c 1 and Y <¢ @”, so that ¢ <c ¥ abbreviates “¢ < 1 and not ¢ =¢ ¥”,
and informally reads “i is strictly more desirable than ¢ according to criterion
C”. Each criterion C' defines a partial order over Situations. Note that adding
preference relations to Nomos2 does not influence the satisfaction values, and
other features of that language.

Preference relations allow us to record relative desirability of stakeholders be-
tween Situations, according to different criteria for comparison. Let C denote the
set of all criteria. We can further add relations between criteria, to help com-
parisons. We can define a hierarchy of domain-specific criteria for comparison,
such as, for example: Criterion Cost is an aggregate of criteria Production cost,
Infrastructure cost, Transportation cost, etc. Such a structuring can help define
aggregation functions and/or procedures to automatically rank alternative sets
of Situations.

We do not discuss how preferences are negotiated between stakeholders, since
different stakeholders can have opposing preferences over the same criteria. Both
the definition of aggregation functions of preferences over criteria, and the ne-
gotiation of conflicting preferences are outside the scope of this paper.

What is the Preferred Compliance Problem? The presence of two or more Can-
didate Compliance Solutions, to a given CP, and the availability of preferences
leads to the Preferred Compliance Problem. In contrast to CP, where the aim
is to identify a (or at least one) Candidate Compliance Solution, PCP requires
that preference be used to select one Candidate Compliance Solution, as the
Compliance Solution to the PCP. We state the PCP as follows.

Preferred Compliance Problem: Given a set of potentially satisfiable Sit-
uations S, find a set of Situations X € p(S), such that:

1. X satisfies App, (N, Sit(D, R, S)) U Appy (N, Sit(D, R, S)),

2. there is no set of Situations X’ such that the Candidate Compliance
Solution (X', N) ranks higher than Candidate Compliance Solution
(X, N), according to a given ranking function r, which returns a total
order over all Candidate Compliance Solutions.

Informally, PCP requires us to compare Candidate Compliance Solutions ac-
cording to preferences, and to select one of the Candidate Compliance Solutions.
Above, we assume that there is a ranking function r, which establishes from a
set of preferences over Situations, a total order over all Candidate Compliance
Solutions. Note that r need not be given as a mathematical function, but can be
defined as a process that results in a ranking (for example, the process of asking
stakeholders to vote for Candidate Compliance Solutions).

4 Automated Reasoning

As the size of a reasoning problem grows, it becomes harder for humans to deal
with its complexity. It is therefore important to support automated reasoning of

Choosing Compliance Solutions through Stakeholder Preferences 213

large models in order to check for important and interesting properties, such as
consistency. The overhead of building these kinds of model — which can be re-
duced with the support of automated tools such as [14] — is indeed compensated
by the consistent and completeness of its automated analysis.

In order to support analysts to solve the PCP, we are developing a tool
called NRTool [l It essentially performs bottom-up and and top-down analysis to
search for a Nomos 2 model for Candidate Compliance Solutions, and rank them
according to the preference function r.

The space of situations to be analyzed in a Nomos2 model can become in-
tractable (3°, where s corresponds to the number of situations in the model),
so in our implementation of the problem we give the analyst the possibility to
specify assumptions: strong constraints on the satisfaction value of some specific
situations in the model. The use of assumptions helps the tool cut down the
space of possible solution, and allows the analyst specify known facts that must
hold in every Candidate Compliance Solutions.

The NRTool works by translating the PCP into a disjunctive Datalog [1, [17]
program. Disjunctive Datalog is a declarative logic language and a deductive
system where facts and deduction rules are expressed in the logic language.
Disjunctions may appear in the rule heads to allow multiple alternative conse-
quences to be drawn from a rule. Situations and norms are mapped onto Datalog
facts, while relations are mapped onto deduction rules. NRTool relies on DLV [2]
as Datalog reasoning engine. DLV further extends disjunctive Datalog to also
support weak constraints, priorities for their satisfaction, and costs for their vio-
lation. These extensions allow us to represent the preferences on the satisfaction
value of pairs/group of situations (represented as weak constraints and priori-
ties on them), and to have an evaluation of the costs to be payed for the set
of violated preferences. Concerning the search techniques and heuristics used
by DLV, it implements a back search similar to SAT algorithms and advanced
pruning operators, (look-ahead and look-back techniques) for model generation,
and innovative techniques for answer-set checking.

An important characteristic of DLV is the possibility to obtain the complete
set of solutions (models) produced by a set of predicates and assignments to the
variables or to prune the set of models depending on the preferences specified by
the decision makers. We exploit these features indeed to generate and prune the
alternatives that fits the preferences specified in the input compliance problem.
With the specification of assumptions (fixed assignments to some situations of
the model), we further help this pruning mechanism.

NRTool works as depicted in figure B} using a custom input language, the
analyst provides the description of the PCP to be solved: (i) a set of prefer-
ences between pairs or groups of situations, and (ii) a query about norms to be
complied with. Additionally he can specify the value of some situations that are
known or hypothesized to be true or false (assumptions). A Nomos2 model of
the law is then added to this specification of the PCP problem, and it is then

® The tool is in a prototype development phase and can be made available upon
request. As soon as a stable release will be ready, it will be published online.

214 S. Ingolfo et al.

converted by the tool into Datalogﬁ Finally, the tool parses the output of the
reasoning engine and presents it to the user. The use of preferences is used to
return the best solutions to the problem. In the next section we will see how the
tool can help us find the best Candidate Compliance Solutions.

DLV program and compliance queries
in the form of Disjunctive Logics

@ clauses
NR Tool 0w
Preferences i

Query g@:\ Converts in|
put models
B into Datalog specification

Converts output solutions \
j i «— | in a readable formats @
Analyst ‘\\—(Q;

=

Nomos 2 model

-PCP{

- (Assumptions
DLV framework

Report
Solutions

Fig. 2. NRTool transforms the input provided by the analyst (PCP and assumptions)
into a disjunctive Datalog program, and reports the output of the Datalog engine back
to the analyst

5 Use Case: The CSS Project and the Italian Law on
Electronic Health Record

In a recent industrial case study |11], we have been involved in the analysis of
the Italian law on Electronic Health Record (EHR)E The context of the study
was that of an Italian organization involved in the design and development of a
project called CSS (Cartella Socio Sanitaria — Electronic Social/Health Record)
aimed at monitoring healthcare and social processes in Trentino, a region in
northern Italy. The main goal of the CSS project was to support sharing the
information of the patients among the different health care entities involved in
the project (e.g., hospitals, family doctors, and other agencies for social, mental
health and other medical services). The CSS system needed therefore to be
designed and created in respect of the principles set forth by the Guidelines on
EHR and the Italian Privacy Law.

During our study we have closely analyzed the problem of complying with
section 3.10 and 3.11 of the law. In this section it is explained how a patient
has the the right not to include some information in the EHR system, and also
how the patient has the right to have some information removed from his record
(called ‘blanking’ right). Moreover this section shapes an important duty for the
EHR system which is forbidden to notify the event that some information has
been blanked in a patient’s record. In the context of CSS, the purpose of this
EHR system was indeed to share the patient information among all authorized
entities. To achieve this goal, it was envisaged for the system not to directly share

5 We assume that a Nomos 2 model of the law is given.
" http://www.garanteprivacy.it/garante/doc. jsp?ID=1634116

http://www.garanteprivacy.it/garante/doc.jsp?ID= 1634116

Choosing Compliance Solutions through Stakeholder Preferences 215

right not to right to blank duty not to notify of
include info information blanking activity
endorse\
activate satisfy activate \ . satisfy

S4

the healthcare
professional

treats the patient ~ Consent to Certain items of medical
create EHR is information are not i A EHR i
. P lanked Third parties There is no ccess to 1S
given by the included in the EHR revious b anked h notification of authorized by the

i info are included ~ are authorized >
LEGEND - patent . by the patient blanking events patient
. satisfy to access data i

i !

! satisf 1 satisfy

I elements relations 4y~ 1

! activate | or or

|) _—

\ Dnghl . H

| shortcut 1

! A relation -1dOrse. | G721 Sr22 S75 S76

1 duty = |

! |

| o operators 1 Infois not Info is stored in the DB but Authorized entities are not . o
! D situation AK I entered in not available to anyone in informed automatically of No information is
! nd™>~ 1 the DB the EHR system Yy notified automatically

the blanking circumstance

Fig. 3. Nomos 2 model of section 3.10/3.11 of the Italian Law on EHR

the patient information using a centralized database, but rather to only share
notifications regarding the metadata of the information. This way the original
information would have remained stored in the database of the entity creating
it. The need to comply with sections 3.10/3.11 of the Italian law was therefore
opening the design possibilities.

In figure Bl we have represented the graphical model of sections 3.10/3.11 of
the Italian Law on EHR that we are considering. This Nomos2 model shows

. . activate activate
how the three norms considered are activated (S4 ———— Rq1, S72 ——— Rao,

Ri1 endorse, DQ)E how they can be satisfied through the satisfy relation, and

how the and or-decomposition can help opening the possibilities for complying
with the norms. Each of the 11 situations represented in the model of figure [3]
can have three values (ST, SF, SU): we therefore have a total of 3! = 177147
possible models[] In the following paragraphs we will see how the tool can help
us reduce this space of alternatives and find the best solutions to the PCP.
The main objective of the CSS project was indeed to manage information
sharing among the entities involved. All the healthcare entities involved in the
project provided some medical services to the patients, so one first assumption
was that Sy is satisfied (i.e., sat(S4) = ST). Moreover, all entities responsible
for collecting the patients’ information were assumed to have the proper consent
from the patient to create and access their info in the EHR (sat(Sgs) = sat(S15)
= ST). Given these constraints, we have that one of the input to the tool is the
assumption a; = {sat(S4)=ST, sat(Ses)=ST, sat(S15)=ST}. For example, only
8 The endorse relation (Norm; M Norms) is a shortcut relation meaning that
when the first norm is activated and satisfied, the other one is activated.
9 Depending on the topology of the model, some alternatives are not evaluated by the
reasoner as they are not possible solutions (e.g., S72 is SF, while S721 is ST).

216 S. Ingolfo et al.

Table 1. The 4 Candidate Compliance Solutions solutions to the PCP problem that
rank best for the example in figure Bl In the PCP problem all norms are asked to
be tolerated or complied with, two preferences are expressed (prefi,pref2), and some
assumptions (a1).

S4, Ses, S73, S74, S7s, S15, S722 S76 S721 Rai,Ri2,Do

1: SU SU
2: SU SF
3: ST SF SU com
4: SF SF

with the specification of this assumption and asking the tool to return all possible
model where the assumption holds, the space of alternatives drops to 6194

In this scenario, when we query the model and ask for all three norms to be
complied or at least tolerated (so, both tol and com value are acceptable) we
obtain 25 possible models. In order to further reduce the space of alternatives
and return only the best solutions, we introduce preferences. In the context of
CSS, patient information was maintained in the database of the healthcare entity
creating the data. These entities evaluated that S7o1 (“Information not entered
in the Database”) was a “more expensive” operation than Sro0, as it would have
implied the need of an dedicated operator to add the information in a second
moment. Moreover, the possibility of not-notifying in automatic any information
(S76) was considered as it would have allowed each entity in the system to
autonomously evaluate on a case-by-case basis when/which information to notify.
This option though was also considered to have higher costs as it also would
have relied on an extra-operator in the process, making it a less manageable and
flexible approach. In this context one set of preferences can then be expressed
as prefi = {Sra1 >cost S722} and prefo = {S76 >cost S7s}, indicating the
preferences with respect to the cost criterion.

The specification of these preferences can then be included in the input to the
NRTool together with the assumption (a;) and the query with the compliance
values (all norms tol or com) to reduce the space of alternatives. In table [II
we show the 4 Candidate Compliance Solutions to the PCP problem returned
by the NRTool that rank best with respect to the specified preferences. All
Candidate Compliance Solutions presented in table [rank best among the other
possible solutions to the model: they all have the desired compliance value for
the norms, they rank best with respect to the specified preferences, and they
satisfy the assumption. For example we can see how in the first solution, the
assumption are respected: the healthcare entities provide medical service to the
patient, and the consent to create and access the EHR is given (S4, Sgs, and
S15 are satisfied). To respect the indicated preferences, we have that there is no
automatic notification of a blanking event (sat(S75) = ST), and ‘inaccessible’
information is safely stored in the DB (sat(S7z22) = ST). Thanks to the label
propagation rules encoded in the input to the reasoner, the NRTool can evaluate

10°So in this case the query is for model where the norms can have any value and no
preferences are expressed.

Choosing Compliance Solutions through Stakeholder Preferences 217

that the three norms Ri1,Rq2,Dg are activated and satisfied, ergo, they are
complied with.

What lies behind these four best solutions, is how all the other assignments
to the Nomos 2 model in figure [are either (a) less desirable (w.r.t. pref; and
prefs), or (b) do not satisfy the query (all norms complied with or tolerated),
or (c) they violate the assumption aj. The tool uses this information to indeed
prune and rank the space of alternative solutions to the Nomos 2 model in order
to find the best ones.

For example, a less desirable Candidate Compliance Solution would be one
were the assumption are respected (Sy, Sgs, and Si5 are satisfied), also S72 and
Se77 are satisfied, while all other situations are unknown. The norms respect
the query (they are evaluated as complied with), though the two most desired
situations (S721 and S7g) are not satisfied, therefore making the solution less
desirable.

Similarly there are assignment to the situations of the Nomos 2 model that are
desirable but that violate one of the norms. For example one could consider the
model where the healthcare entities provide medical service to the patient, the
consent to create and access the EHR is given (S4, S¢s, and S;5 are satisfied), the
info is stored in the database but not accessible (Syo2 is satisfied), and authorized
entities are not automatically notified of the blanking right (S722) is satisfied).
However, the patient did not authorize third parties to access the data, therefore
S74 is not satisfied (sat(S74) = SF). In this possible model the preferred situations
hold and the assumption are met, but the model violates the duty Dy.

Lastly, the specification of the assumptions from the analyst allows the tool
to prune the solution space and return only candidate solutions that do not
violate the values expressed in the assumption. For example, consider one of the
four best solutions of table [[l where instead Sy is not satisfied (sat(Ss4) = SF).
This scenario represents an assignment to the model that respects preferences
and queried norm values (Ry; is evaluated to tolerated), but it violates the
assumption that the healthcare treat the patient, therefore making it a useless
solution to the analyst.

We acknowledge as limitation and as part of our future work the challenge to
collect these preferences in a bigger model/scenario. Also, the effectiveness of our
method and its scalability are currently under investigation in our future work.

6 Related Work

In this work we have proposed an extension to the Nomos2 modeling frame-
work [22], where we exploit the notion of stakeholder preference as an heuristic
to select a minimal set of compliance alternatives for the design of a compli-
ant requirement model. In requirement engineering the notion of preference and
preference-based prioritization is generally used to characterize different decision
making processes. In Techne [12] a stakeholder preference over two requirements
is defined as a binary relationship between the two elements representing them.
In this framework, preferences provide criteria for the comparison of candidate

218 S. Ingolfo et al.

solutions to a requirements problem. In [15] the term stakeholder priority is in-
stead used to refer to this notion, while the concept of preference is used to
indicate a “nice-to-have” property. This formulation allows exploiting planning
techniques to build solutions to requirements problems that satisfy mandatory
requirements and the preferences to a different degree. Elicitation of stakeholder
preferences to prioritize set of requirements for the purpose of release planning
is a key issue, as discussed in [19], and calls for specific techniques to keep as
lower as possible the preference elicitation effort by stakeholders, still resulting
in an satisfactorily ranking of the candidate requirements.

The problem of regulatory compliance is being investigated for several years
now in the requirement engineering community. A recent survey review [8] sum-
marizes some of the main proposals concerning methods and techniques to ad-
dress regulatory compliance with goal-oriented frameworks. In this context for
example, Darimont and Lemoine have used KA0S to represent objectives ex-
tracted from regulation texts |6]. Ghanavati et al. |7] use URN (User Require-
ments Notation) to model goals and actions prescribed by laws. Likewise, Rifaut
and Dubois use i* to produce a goal model of the Basel II regulation [20]. Goal-
oriented approaches are useful approaches for modeling norms when their com-
plexity is small enough to be reduced to goal relations. However, when the notion
of applicability is needed or the variability of the law becomes more prominent,
goal-oriented techniques fail in capturing its effects on reasoning about alterna-
tives [21]. Also recently Tawhid et al. [23] have proposed an new approach in
dealing with the problem of compliance by enriching a GRL model of require-
ments with qualitative indicators.

Among the challenging problems these approaches need to cope with are the
complexity, ambiguity, variability and evolvability of the law. In fact, as pointed
out in a recent case study analysis in the transportation domain |18], these issues
can indeed become particularly critical in complex application domains.

Focusing on the problem of complexity and ambiguity of regulatory code,
recent works propose methodologies supporting the understanding of legal doc-
uments for the purpose of software requirements analysis. For instance in [4] it
is described a systematic process called semantic parametrization, which con-
sists of identifying in legal text restricted natural language statements (RNLSs)
and then expressing them as semantic models of rights and obligations (along
with auxiliary concepts such as actors and constraints). Heuristics are created
to systematically convert unstructured legal texts into structured artifacts [14].
Artifacts are then combined into a frame-based method for manually acquiring
legal requirements from regulations. Such approach has been used as a basis for
tool-supporting the identification of requirements in legal documents. [5] focuses
on supporting software developers while analyzing regulatory codes with the aim
of identifying sections that are relevant to contractual and product level require-
ments. This task is formulated in terms of a traceability problem which is ad-
dressed exploiting machine-learning techniques, and combined with web-mining
features to reconstruct the original trace query. The approach is illustrated using
the HIPAA security rule. [13] proposes a framework that supports analyzing the

Choosing Compliance Solutions through Stakeholder Preferences 219

compliance of legacy Information Systems, which rests on the alignment of a
model of the transactions in the legacy system with an ontology of the laws that
regulated the IS domain. This law ontology explicits the organizational roles,
which correspond to the legal subjects of the laws governing the IS domain,
with the domain artifacts and processes under their responsibility. Aligning and
reconciling requirements from multiple jurisdictions is one of the problem that
arises because of the variability of a law from country to country [9]. In this work
the authors propose an approach to identify similarities and differences between
pairs of requirements. This is achieved by comparing variants of norms — en-
coded in a specific legal requirements specification language — with respect to
a suitable set of metrics. Moreover, the problem of regulatory evolution and its
impact on compliance requirements has been recently investigated in [16], where
the authors suggest a taxonomy of legal cross-reference of the HIPAA Privacy
Rule that can be used to identify possibly conflicting requirements. As a result
of the proposed strategies to solve these conflicts, software engineers are guided
to build requirement-models towards the more stable sections of the rule, thus
limiting the impact on the deployed software of possible changes in norms.

7 Conclusions

In this paper we have defined the Preferred Compliance Problem (PCP) for
legal alternatives impacting software requirements. Stakeholder preferences are
used to compare the desirability of possible solutions to a compliance problem.
Apart from defining the problem, our contributions include a prototype tool
for reasoning with preferences, as well as a use case where the tool is applied
to model and analyze an Italian law on Electronic Health Records. Because of
space limitations, only parts of the use case are presented herein. Ongoing work
is devoted to the consolidation of the tool, as well as experimentally evaluating
its scalability and effectiveness on larger models. We’re working towards revising
the requirement process in order to exploit the use of these variability models
(see |11] for some preliminary results in this area).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The dis-

junctive datalog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A.

(eds.) Datalog 2010. LNCS, vol. 6702, pp. 282-301. Springer, Heidelberg (2011)

Bray, I.: An Introduction to Requirements Engineering. Addison-Wesley (2002)

4. Breaux, T., Antén, A.: Analyzing regulatory rules for privacy and security require-
ments. IEEE Trans. Softw. Eng. 34, 5-20 (2008)

5. Cleland-Huang, J., Czauderna, A., Gibiec, M., Emenecker, J.: A machine learning
approach for tracing regulatory codes to product specific requirements. In: Kramer,
J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) ICSE (1), pp. 155-164. ACM (2010)

w

220

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

S. Ingolfo et al.

Darimont, R., Lemoine, M.: Goal-oriented analysis of regulations. In: ReMo2V,
held at CAiSE 2006 (2006)

Ghanavati, S., Amyot, D., Peyton, L.: Towards a framework for tracking legal
compliance in healthcare. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007. LNCS, vol. 4495, pp. 218-232. Springer, Heidelberg (2007)

Ghanavati, S., Amyot, D., Peyton, L.: A systematic review of goal-oriented re-
quirements management frameworks for business process compliance. In: RELAW
2011, pp. 25-34. IEEE (2011)

Gordon, D.G., Breaux, T.D.: Reconciling Multi-jurisdictional Legal Requirements:
A Case Study in Requirements Water Marking. In: RE 2012. IEEE (2012)
Ingolfo, S., Siena, A., Jureta, 1., Susi, A., Perini, A., Mylopoulos, J.: Modeling
and reasoning with stakeholder preferences among legal alternatives. Submitted to
CAISE13 (2012)

Ingolfo, S., Siena, A., Mylopoulos, J., Susi, A., Perini, A.: Arguing regulatory com-
pliance of software requirements. Accepted for publication in Data & Knowledge
Engineering, DKE (2012), http://dx.doi.org/10.1016/j.datak.2012.12.004
Jureta, I., Borgida, A., Ernst, N.A., Mylopoulos, J.: Techne: Towards a new genera-
tion of requirements modeling languages with goals, preferences, and inconsistency
handling. In: RE 2010, pp. 115-124. IEEE Computer Society (2010)

Khadraoui, A., Leonard, M., Thi, T.T.P., Helfert, M.: A Framework for Compli-
ance of Legacy Information Systems with Legal Aspect. In: Gronau, N. (ed.) AIS
Transactions on Enterprise Systems, vol. 1. GITO Publishing GmbH (2009) ISSN
1867-7134

Kiyavitskaya, N., Zeni, N., Breaux, T.D., Antén, A.I., Cordy, J.R., Mich, L., My-
lopoulos, J.: Automating the extraction of rights and obligations for regulatory
compliance. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231, pp. 154-168. Springer, Heidelberg (2008)

Liaskos, S., Mcllraith, S.A., Sohrabi, S., Mylopoulos, J.: Representing and reason-
ing about preferences in requirements engineering. Requir. Eng. 16(3), 227-249
(2011)

Maxwell, J.C., Antén, A.l., Swire, P.: Managing Changing Compliance Require-
ments by Predicting Regulatory Evolution: An Adaptability Framework. In: RE
2012. IEEE (2012)

Minker, J.: Overview of disjunctive logic programming. Ann. Math. Artif. In-
tell. 12(1-2), 1-24 (1994)

Nekvi, M.R.I., Madhavji, N.H., Ferrari, R., Berenbach, B.: Impediments to
requirements-compliance. In: Regnell, B., Damian, D. (eds.) REFSQ 2011. LNCS,
vol. 7195, pp. 30-36. Springer, Heidelberg (2012)

Perini, A., Susi, A., Avesani, P.: A Machine Learning Approach to Software Require-
ments Prioritization. IEEE Transactions on Software Engineering (2012) (to appear)
Rifaut, A., Dubois, E.: Using goal-oriented requirements engineering for improving
the quality of iso/iec 15504 based compliance assessment frameworks. In: RE 2008,
pp. 3342 (2008)

Siena, A., Ingolfo, S., Susi, A., Jureta, I., Perini, A., Mylopoulos, J.: Requirements,
intentions, goals and applicable norms. In: ER Workshops, pp. 195-200 (2012)
Siena, A., Jureta, I., Ingolfo, S., Susi, A., Perini, A., Mylopoulos, J.: Capturing
variability of law with Nomos 2. In: ER 2012 (2012)

Tawhid, R., et al.: Towards outcome-based regulatory compliance in aviation se-
curity. In: RE 2012, pp. 267-272 (2012)

Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1-30 (1997)

http://dx.doi.org/10.1016/j.datak.2012.12.004

Supporting Decision-Making for Self-Adaptive
Systems: From Goal Models to Dynamic
Decision Networks

Nelly Bencomo and Amel Belaggoun

INRIA Paris - Rocquencourt, France
nelly@acm.org, amel.belaggoun@inria.fr

Abstract. [Context/ Motivation| Different modeling techniques have
been used to model requirements and decision-making of self-adaptive
systems (SASs). Specifically, goal models have been prolific in support-
ing decision-making depending on partial and total fulfilment of func-
tional (goals) and non-functional requirements (softgoals). Different goal-
realization strategies can have different effects on softgoals which are
specified with weighted contribution-links. The final decision about what
strategy to use is based, among other reasons, on a utility function that
takes into account the weighted sum of the different effects on softgoals.
[Questions/Problems] One of the main challenges about decision-
making in self-adaptive systems is to deal with uncertainty during run-
time. New techniques are needed to systematically revise the current
model when empirical evidence becomes available from the deployment.
[Principal ideas/results] In this paper we enrich the decision-making
supported by goal models by using Dynamic Decision Networks (DDNs).
Goal realization strategies and their impact on softgoals have a corre-
spondence with decision alternatives and conditional probabilities and
expected utilities in the DDNs respectively. Our novel approach allows
the specification of preferences over the softgoals and supports reasoning
about partial satisfaction of softgoals using probabilities. We report re-
sults of the application of the approach on two different cases. Our early
results suggest the decision-making process of SASs can be improved by
using DDNs.

Keywords: requirements, specification-methodologies, goal models, dy-
namic decision networks, bayesian decision theory.

1 Introduction

Goal models have been used to model requirements and decision-making of self-
adaptive systems [8| I8 [12}, 23]. Goal models support the reasoning about partial
and total fulfillment of functional (or goals) and non-functional requirements (or
softgoals). Measurement of softgoals fulfillment is difficult due to the vague or
fuzzy nature of softgoals satisfaction. Softgoals may not be absolutely fulfilled,
yet they can be labelled as sufficiently satisficed [4]. An area of limited study
has been the use of probability on goal models [I4]. Probability theory can

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 221-P36] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

222 N. Bencomo and A. Belaggoun

also be used to describe the lack of crispness about the satisfiability nature of
softgoals. Given a chosen goal realization strategy a probability of satisfaction
of a softgoal can be associated with it. The higher this probability the better the
satisfaction level associated with the softgoal. Information can be incorporated
as new knowledge is acquired.

In this paper we present a mathematical model supported by Dynamic Deci-
sion Networks (DDNs) [2I] that enriches the decision-making support provided
by the goal-based approach and allows reasoning about partial satisfaction of
softgoals (expressed with probabilities) and expected utilities.With DDNs, pref-
erences among softgoals are specified using expected utilities with reward func-
tions but expected utilities are also associated with penalty functions. In this
paper we explore the usefulness of DDNs to support decision-making for self-
adaptation and we also describe a translation method from goal models to DDNs.
The resulting DDNs can then be used to trigger adaptation and automatically
make the best decision in SASs.

The remainder of this paper is organized as follows: Section 2 presents back-
ground on DDNs and previous work using goal models. Section 3 presents how
the requirements specification of requirements can be performed using DDNs.
Section 4 reports results of experiments. Section 5 described related work. Fi-
nally, Section 6 concludes the paper and overviews future research directions.

2 Background

This section briefly overviews DDNs and goal models explaining their relevance
for decision-making in SASs.

2.1 Dynamic Decision Networks

Dynamic decision networks (DDNs) extend decision networks, which in turn
extend Bayesian networks. Bayesian networks [16] are composed of chance nodes
with their associated conditional probabilities and influence arcs that collectively
form a directed acyclic graph. Decision networks [10] extend Bayesian networks
to provide a mechanism for making rational decisions by combining probability
and utility theory. In decision networks, in addition to chance nodes, utility and
decision nodes are also included. The decision nodes represent the choices of the
decision-maker while utility nodes model the decision-maker’s preferences.

DDNs [21I] provide a principled approach to make rational decisions in the
face of uncertainty within changing environments. To cope with time varying
nodes, DDNs maintain a series of time slices to represent nodes at successive
moments in time. An arc connecting a node in a previous time slice to a node
in a later time slice encodes an influence on the node’s value from the previous
node value. DDNs provide a useful framework for modeling beliefs about the
world, associating preferences with states of the world, and making decisions.
Fig. [shows a DDN with its components and several time slices.

Decision-Making for SASs: From Goal Models to DDNs 223

o\ 7 D Pﬂ N)

=

Fig. 1. The General structure of DDN

Why DDNS to Support Decision-making in Self-adaptive Systems.
Dynamic decision networks address the problem of decision-making with the
following characteristics:

The environment for making decisions changes over time.

Information is available to the DDN (as a decision maker) based on data
provided by monitorables (i.e. entities in the environment and the system
itself that can be monitored) and human-made reports.

The DDN can be prompted to make a decision at specific times (known or
unknown before the DDN is built).

These decisions are best characterized as choices associated with meeting a
goal.

New decision alternatives can arise at unexpected times. Decision alterna-
tives can also disappear (product of earlier decisions or by known/unknown
causes) [5].

Crucially, the above are characteristics exposed by SASs. If we assume that the
DDNs can provide support for decision-making in a SAS, the decision process
of a DDN-based approach must do the following:

Define the uncertainty associated with the current situation.

Balance different conflicting softgoals according to given preferences.
Maintain the definition of uncertainty over time as new information arrives
in a consistent way with the past.

Incorporate risk preferences (i.e., rewards and penalties) that properly ad-
dress the current situation modeled.

The above are the basis of the approach presented in this paper and represent
the assumptions we have used. The rest of the paper shows our ideas on the use
of DDNs for the case of SASs. The incorporation of new decision alternatives
and preferences at runtime are not the focus of this paper, but is discussed as
future work.

224 N. Bencomo and A. Belaggoun

2.2 Goal-Based Models to Support Decision-Making

In [8] and [23] goal-based approaches to reason under uncertainty have been
presented. A goal can be satisfied by different goal realization strategies also
called tasks. The set of alternative realization strategies that describe different
ways how a goal g can be realized is called a variation point associated with
goal g (VPg). Different realization strategies have different effects on softgoals.
Authors of [23] show how the automatic selection of the best strategy is based
on a utility function that sums the possible realization strategies’ impacts on the
softgoals and priorities of goals (see equation (1)).

The determination of the best realization (task) is as follows: Let the function
satisfices represent the contribution value for a task, softgoal:

satisfices : T x SG — C

where T is a set of tasks, SG a set of softgoals and C' is the set of possible
contribution values break, hurt, neutral, help, make. These are interpreted as
corresponding to the range of integer values -2,-1,0,1,2. Moreover ¢ is an index
in the set of tasks that represent alternative realizations of goals g, and t;, is
thus one of these tasks. The task selected as the realization strategy for goal g is
the one with the greatest value of contribution link values for all of the softgoals
it influences as presented in the following objective function:

mazx; Z wsgsatis fices(tig, sg) (1)
sgeSG

Claims [4,[23] has been used to explicitly represent design assumptions made about
the contexts that a system may encounter at runtime, and their affect on the real-
ization of system goals. At runtime, such design assumptions can proof to be wrong
or not valid anymore, i.e., Claims can be seen as markers of uncertainty that can
be solved at runtime when more information in obtained. The authors in [23] have
shown how Claims are useful during execution to maximize the satisficement of a
system’s softgoals by dynamically choosing between alternative goal realizations
after the assumptions have proven to be not valid anymore. The verification of the
validity of a Claim is done based on monitorables. At runtime and when the moni-
toring infrastructure notifies that a Claim does not hold anymore, system adapta-
tions to an alternative goal realization can be triggered. In terms of the variation
points (VPs), it means that a VP will be solved during runtime by the selection of
new alternative configurations that will correspond to the realization strategies.

Example: The Vacuum Cleaner. As an example to show the mapping con-
sider the fragment of a simple i* Strategic Rationale(SR) model of a robot vac-
uum cleaner for a domestic apartment in Fig.2. The vacuum cleaner has a goal
to clean apartment (clean apartment) and two softgoals; to avoid causing dan-
ger to people within the house (avoid tripping hazard) and to be economical to
run (minimize energy costs). The goal clean apartment can be satisfied by two
different realization strategies; Clean at night or Clean when empty. These are rep-
resented by two alternatives tasks connected to clean apartment by means-end
links. The expected effects of the two tasks on the two softgoals are represented
by the contribution links between the tasks and the softgoals clean at night task

Decision-Making for SASs: From Goal Models to DDNs 225

and the avoid tripping hazard softgoal. Cleaning at night partially denies trip-
ping hazard avoidance but completely satisfies energy cost minimization, while
cleaning when empty partially denies energy cost minimization but completely
satisfies tripping hazard avoidance. Therefore, the decision of what is the best
goal operationalization is not clear as the sum of both tasks’ effects on the soft-
goals is the same, hurt + make.

A Claim with the value break is attached to the contribution link with the
value hurt that connects the clean at night task and the avoid tripping haz-
ard softgoal. According to the semantics of Claim propagation [23], this has the
effect of changing the contribution link value to neutral. This in turn has the
effect of favouring the task cleaning at night over the task cleaning when empty
because the former has a more positive net contribution to satisfaction of the
two softgoals; neutral + make > hurt + make. During runtime the goal models
are kept in memory to support reasoning. Let us suppose that during the exe-
cution and when the vacuum cleaner is cleaning the apartment, the monitoring
infrastructure may sense a person is at home. In this case, the Claim No tripping
hazard is falsified and the run-time reasoning engine (supported by the runtime
goal models) is able to evaluate the consequences and order an adaptation from
cleaning at night strategy to cleaning when empty. The focus of this paper is to
evaluate decisions supported by DDNs instead of the goal-based reasoning ca-
pabilities shown above, during both development time and runtime. DDNs are
briefly described in the next section.

avoid tripping

hazard
hurt =

healp

help

clean when
empty

—1= : Mean End Link hurt — —
minimize
2 . Contribution Link
O Task
c:\) © Claim
C:? . Soft Gool
O - Gool

Fig. 2. A robot vacuum cleaner

3 Requirements Specifications of SASs Using Dynamic
Decision Networks

In this section we describe and justify the process to map goal models, as
presented in Section 22 into DDN-based specifications of decision-making for

226 N. Bencomo and A. Belaggoun

self-adaptive systems. A set of mapping rules are described and discussed in the
context of the vacuum cleaner example.

3.1 Mapping from Goal Models into DDNs
To construct a DDN, we need to specify 5 kinds of information:

— Chance nodes (Cy) also called random variables. Each chance node is as-
sociated with a conditional distribution that is indexed by the state of the
parent nodes (i.e., the decision node) [20].

A set of decisions Dy, ..., D,, related to the decision node D;.

— Utility node and its utility function U.

— The evidence node (E;)(also called observation node).

— The dependencies between the different nodes described above.

In the rest of this section we explain the mapping process from the goal model
(GM) to DDNs.

a) DDNs Correspond to Variation Points and their Subgraphs in Goal
Models. We adopt a separate DDN for each goal and its required decision-
making. Specifically, a DDN corresponds to the variation point of a given goal
g and its subgraph (i.e., realization strategies, softgoals, and claims). In the
running example of the vacuum cleaner the VP associated with the goal Clean
apartment and its subgraph is mapped into a DDN (see Fig 3).

b) Decision Nodes and Goal Realization Strategies. Goal-realization
strategies in the goal model represent the set of the possible design alterna-
tives. In the context of DDNs, these strategies correspond to the set of possible
decisions in the DDN. The following is the corresponding mapping rule:

Mapping Rule 1. Each goal-realization strategy Ty € {T1,...,T;} in GM cor-
responds to a Dy € {Dxq, ..., Dy, }, where Dy represents a value of the decision in
the DDN.

c) Chance Nodes and Softgoals. The softgoals represent the non-functional
requirements to be satisficed [4]. Different design decisions may have positive
or negative effects, and in different proportions, towards meeting a softgoal.
Different from goals, softgoals can hardly ever be labelled 100% satisfied or %100
unsatisfied in an unambiguous sense. Satisficement of a softgoal needs a decision-
making strategy that attempts to meet an acceptability threshold rather than an
absolute value [4]. In the case of goal models, like the one in Fig. 2] whether the
softgoals are considered satisficed or not depends on the realization strategies
and their effects on each softgoal (represented by the contribution links).

In the context of DDNs, each softgoal SG; in the goal model is viewed as a
chance node Cj, whose values are dictated by some probability distribution.

Definition 1. The probability distribution represents the probability of being sat-
isficed given a decision (i.e., realization strategy).

Decision-Making for SASs: From Goal Models to DDNs 227

Therefore, each contribution link that departs from a realization strategy to a
SG; in the goal model is translated into a conditional probability distribution
(CPD) associated with each softgoal SG,. Given that the realization strategies
are mutually exclusive, the Bayes theorem can be applied to calculate the prob-
ability of satisficement for each SG;. Table 1 and Table 2 show examples of the
conditional probabilities tables for the example of the vacuum cleaner. Given
the above the following is the corresponding mapping rule:

Mapping Rule 2. Each softgoal SG; € {SG1,...,SGy} in GM corresponds to
a chance node Cj, € {C4,...,Cy,} in the DDN.

Each contribution link [(T, SG;) that describes the effect of a T; on a SGj
corresponds to a conditional probability P(SG;|T;). A simple way to propose
the values of these conditional probabilities is to make a direct map from the
five point range of values {break, hurt, neutral, help, make} to the probability
values {0.0, 0.25, 0.5, 0.75, 1.0}. However, if more information is available a
more sophisticated mapping can be performed.

In the case of the example of the vacuum cleaner, two realization strategies
T;, T2 exist that affect the softgoal SG; (i.e., Avoid tripping hazard)and SG2
(i.e., Minimize energy costs). The conditional probability tables associated to SG;
and SG» are shown in Tables 1 and 2.

Table 1. CPT of the node Avoid Tripping Hazard

Avoid tripping hazard node (SGy)

T; P(SG;=F) P(SG;=T)
Clean when empty 0.45 0.55
Clean at night 0.11 0.89

Table 2. CPT of the node Minimize energy Costs

Minimize energy Costs node (SGz)

T, P(5G; =F) P(5G; =T)
Clean when empty 0.25 0.75
Clean at night 0.1 0.9

d) Preferences in the Utility Node and Softgoal Priorities. In decision
theory, a utility function is a scalar that assigns a cardinal scale to each outcome
and decision indicating its desirability [9].

Softgoals can have an associated priority, that indicates how important it is
to satisfice that particular softgoal. The specification of the weights in the utility
function (utility node in the DDN) can be based on the softgoals priorities.

Table [B] defines the utility table with all the possible combinations of effects
on the softgoals (using the values true T and false F) given a cleaning strategy.

The weights are ranged from 0 until 200 in this case. The following is the
corresponding mapping rule:

228 N. Bencomo and A. Belaggoun

Table 3. Utility table (preferences)

Utility node
Cleaning Strategy Avoid tripping hazard Minimize energy costs Weight

1 Clean When empty F F 0

2 Clean When empty F T 15
3 Clean at night F F 0

4 Clean at night F T 30
5 Clean When empty T F 200
6 Clean When empty T T 90
7 Clean at night T F 150
8 Clean at night T T 90

Mapping Rule 3. For each goal realization T; (i.e., decisions in DDNs) and
each softgoal SG; (i.e., the chance nodes in DDNs) we assign a weight w,; that
expresses the preferences which is set as a function U(SG;|T;).

Wyi: TxSG — U(SGJ‘TZ)

where SG is the set of softgoals, T is the set of goal realizations and wj; repre-
sents the set of the priorities over the goal realizations. The domain expert sets
the weights of the utility table. These weights are known as rewards or penal-
ties. Table 3 shows an example of a possible set of weights that describes the
domain expert preferences. The weight 0 in the 1st and 3rd rows means that
the domain expert penalizes those combinations as they have negative effects
on both softgoals (note the value false F related to both softgoals). Similarly,
the 2nd and 4th row also have low weights (respectively 15 and 30) what means
a low level of preference. The 5th and 7th rows, on the contrary, show high
weights, 150 and 200 respectively. These highest weights mean that these com-
binations are considered by the expert as the most suitable. The domain expert
has a preference on the strategy “Clean when empty” over the strategy “Clean
at night”. Furthermore, both combinations represent positive effects on the soft-
goal “Avoid tripping hazard” and negative effects on “Minimize energy costs”
what means that for the expert it is more important to favor ‘Avoid tripping
hazard” than “Minimize energy costs” (see that 6th and 8th rows have lower
weights, specifically 90).

e) Evidence Node and Claim Monitoring Claim monitoring offers the
appropriate mechanism to support the observation model and provide the ob-
servations required by the DDNss.

An example of an Observation or Evidence can be the fact that a Claim has
been falsified, e.g. the Claim No tripping hazard goes from True to False). This
falsification could trigger the need to make a decision about what adaptation to
realize, if any.

The observation model should include the possibility of failure, i.e., the possibil-
ity that the observation may not be 100% accurate due to problems and failures as-
sociated to monitorables. In terms of the observation of the falsification of a Claim,
this refers to the fact that such a falsification may not be true.

Decision-Making for SASs: From Goal Models to DDNs 229

In the running example, if we have consider an ideal world where failures do
not exist (i.e., the monitorables are 100% reliable) when Evidence is observed
the probability is believed to be P(E) = 1. Otherwise, if the monitorables are
not 100% reliable, P(E) is less than 1. P(Obs | (no shock detected AND light
level constant)) < 1. A graphic showing the mapping is depicted in Fig 3.

hefp

@_ huﬂ‘ avoid tripping
night hazard
bl:'ak
o Mappin
PPing No tripping
* SG Priority hoxorg

Fig. 3. The robot vacuum cleaner system’s i* goal model mapped into a condensed
form of DDN

Lt i Bl

3.2 Evaluating the DDN

A DDN is evaluated in order to make a decision based on the realization strate-
gies with the highest utilities. The DDN is evaluated using the formula (2) for
every realization realization strategy T; to compute the probability-weighted av-
erage utility for that realization strategy, also known as the expected utility. The
set of preferences over every softgoal is represented by U(SG;|T;) and the condi-
tional probability of each softgoal given the available evidence E is represented
by P(SG;|E,T;). The realization strategy with the highest expected utility is
chosen.

UT|E) = 3. P(SG,|E.T,) x U(SG,IT) (2)
J
Next, we present an application of DDNs to decision-making in SASs.

4 Experiments

This section describes experimental results for demonstrating the value of our
approach using DDNs to support decision-making for self-adaptation. Section
4.1 describes the Remote Data Mirroring (RDM) example. Section 4.2 shows the
application of our approach based on DDNs for the case of the RDM application.

230 N. Bencomo and A. Belaggoun

4.1 Remote Data Mirroring

RDM [19] is a classic technique for tolerating failures by keeping copies of impor-
tant data at physically isolated locations to protect data against inaccessibility,
to reliability and provide resistance to data loss. An RDM system can be config-
ured in terms of the topology of the network (e.g. using a minimum spanning tree
algorithm) and also in terms of how data is distributed among data servers. There
are two modes to configure data distribution: synchronous and asynchronous.
The synchronous mode is the only mode in which non-catastrophic multiple fail-
ures will ever provoke the lose of data. In contrast, in the asynchronous remote
mirroring mode, data that hasn’t propagated to other sites can be lost at certain
risk. Each configuration provides different levels of data protection, performance
and costs. For example, the synchronous mode provides better data protection
than the asynchronous mode, but it also incurs a network performance penalty
as every change must be distributed across the network. The asynchronous
mode provides better network performance, however it also provides weaker data
protection.

Fig. @ shows the i* SR goal models for the RDM application. The RDM appli-
cation must achieve functional goals such as constructing a connected network
and distributing data. These functional goals can be achieved through alter-
native goal realization strategies that includes constructing different network
topologies, such as a Minimum Spanning Tree or Redundant Topology and Chang-
ing Propagation Parameters. The application has three softgoals Minimize Oper-
ational Expense, Maximize Data Reliability and Maximize Network Performance.
A Claim Redundancy Prevent Network Partition has been attached to the goal
model [19] to make explicit the uncertainty about the usefulness of the choice of
Redundant Topology at any point at runtime. The Claim can become disproven
at runtime for several reasons, for example it can be provoked due to simultane-
ous failures of two or more links. Monitorables and sensor allow the the system
to check the validity of the Claim at any point during runtime.

4.2 Experiments

Netica [1], a tool for Decision and Bayesian networks, has been used for the
experiments. A DDN to support the decision-making of the best topology to use
has been associated with the the variation point Select Topology (see Fig. []).
The DDN constructed (with three unrolled time slices) is shown in Fig. Bl. D
represents the decision node with two possible decisions DyandD- which corre-
spond with the realization strategies T7:Use MST Topology and 75:Use Redundant
Topology respectively. The DDN also presents a set of three chance nodes M Ry,
MP and MO used to model the softgoals Maximize Reliability, Maximize Per-
formance and Minimize Operational Costs respectively. Notice that M R; comes
from a softgoal with a contribution link with a Claim attached. M R, is therefore
an observable chance node. M P and MO are modeled as static chance nodes.
The evidence node E; represents the event that the Claim Redundancy Prevents
Network Partitions is changes is value True or False at time t.

Decision-Making for SASs: From Goal Models to DDNs 231

—Legend:

O cea
O sk
[] Resource
() sottGoal

ann
v 3 Claim
N

—— Task Decomposition

- & Redundancy ~ S <+ Means-End Link

' Measure Measure
K. Throughput) \ Capacity
N, 0O [a) > Prevents Network ‘)
~

) - «__ _Partiions__ _- < Contribution Link
~) A N R e Wt B -
~. -
Workload |\ = .=
Monitor Link -
Monitor

Asynchronous
Rropagatio

S i A N

Fig.5. DDN for the case of the RDM application (with three time-slices)

In order to evaluate the DDN we have considered the following probabilities:
P(M R;= true|Mst Topology)= 0.3, P(M R;= true|Redundant Topology)= 0.9,
P(MP = true |Mst Topology)= 0.5, P(MP = true|Redundant topology)= 0.5,
P(MO = true |Mst Topology)= 0.75, P(MO = true|Redundant topology)= 0.3.

The weights associated with the possible combination of nodes are given in
Table [Take note that these weights express the preferences that represent the
relative importance of each combination of effects of the topology used on the
softgoals. For example, the 3rd row in Table. @l has the highest weight value (200)
in the utility table what means that the 3rd row is the most favored combination
as it encodes that the cost of using Redundant Topology has a positive effect on
the three softgoals Maximize Reliability, Minimize Operational Costs and Maximize
Performance(see the values T for the three softgoals). Note also the 2nd row has
a weight value that is much lower (i.e., 10) what means that even if we have the
same Redundant topology this time, it is not suitable as it has negative effects
on Maximize Reliability and Minimize Operational costs.

Fig. [6l shows the computation of the expected utility (EU) of the possible
topologies from time ¢ = 0 to t = 7, based on the probability of Maximize
Reliability node, Maximize Performance node, Minimize Operational Costs and

232 N. Bencomo and A. Belaggoun

Table 4. Utility table

Utility node
Topology MR MP MO Weight

1 Use MST Topology F F F 0

2 Use Redundant Topology F T F 10
3 Use Redundant Topology T T T 200
15 Use Redundant Topology T F F 10
16 Use MST Topology T T F 80

utility node predicted by each decision taken at the next time slice (as shown in
Fig. Bl topology decisions have influence on the Maximize Reliability node on the
next time slice).

At development time (i.e. at time slice 0), the designer selects Redundant
Network Topology as the best decision to use with synchronous propagation as the
initial configuration. This configuration is based on the validity of the assumption
Redundancy Prevents Network Partitions that states that a redundant network
topology prevents network link failures from partitioning the network (the reason
why the Claim c1 has been made to explicitly record that assumption). In terms
of a DDN this mean that with no evidence about the fact that Redundancy
Prevent Networks Partitions entered yet in the DDN the most likely decision is to
use Redundant Topology as the expected utility EU(Redundant Topology)>the
expected utility EU(MST Topology).

At some points during runtime (i.e., from time slice 1 to 7 in Fig. [fl), however,
new information is collected that concludes the Claim cI Redundancy Prevent
Networks Partitions is false meaning that according to current environmental
conditions, the Use of redundant Topology decision does not necessarily prevent
network partitions anymore. EU(MST Topology) >EU(Redundant Topology)
and therefore, the decision to use MST Topology is considered by the DDN as
the best one. The DDN triggers an adaptation accordingly. Fig. [0 shows the
case of the monitored falsification of the Claim c1 at slice time 3 and the mon-
itored value True of Claim cI at slice time 6; the DDN has correctly suggested
the adaptations from the original design decision Redundant Topology to MST
Topology after slice time 3 to go back to Redundant Topology after slice time 6.

The results appear to be consistent with the evidence (observations) that
provoked the adaptations and furthermore, they agree with those presented in
[19]. Our approach using DDNs has also been successfully applied on the case
study of the sensor network GridStix [I1] with results also compatible with those
shown in [23]. The results of the evaluation of the DDN to the robot vacuum
cleaner, RDM system, and GridStix, reported in [2], while somewhat preliminary,
are positive as the DDNs allowed both (1) the analyst to make design decisions
during development time and (2) the applications to make decisions to adapt to
new situations at runtime.

Decision-Making for SASs: From Goal Models to DDNs 233

900

850

T
200 -
s - - — sz M5T Topology
; 750)
] -
: / - = == l1ga Redundant
i 700 Topolagy
! © =
- Exidence Claim

8 50 . ___..-r-"" @ monitared as Fales

500

550

500

000 100 2.00 3.00 400 5.00 600 7.00
Time $lices
Fig. 6. Expected utilities during seven time slices

760

740

720

7
5, 28 Use Redundans
gu a0 e Tepology
1 s o UsamsT
1 Tepology
F Evidence Claim

manitored as Falie
620
600 @ Evidence Claim
mariitored as True
580
560

d‘l'lmesinu 3

Fig. 7. Expected Utilities during eight time slices

5 Related Work

The related work described in this section is divided in two categories, work on
uncertainty tackled using goal-based models for the case of SASs and decision-
making using Bayesian theory.

Researchers have tackled uncertainty in SASs in different ways. As discussed
by [3, 3], there is a dearth of applicable techniques for handling uncertainty
in this setting. Welsh et al [23] introduced REAssuRE to use goal models and
Claims for driving self-adaptation. In contrast to REAssuRE, in our case and
when using DDNs, preferences among softgoals are specified using both expected
utilities with reward functions and also penalty functions. Uncertainty in adap-
tive systems has also been tackled by RELAX [22], a requirements language
that explicitly addresses uncertainty inherent in adaptive systems. While RE-
LAX uses fuzzy logic to specify more flexible requirements within a goal model
to handle the uncertainty, we use probabilities. Emmanuel et al. [14] specify
partial degrees of goal satisfaction and quantify the impact of different system
alternatives on high level goals that can be used to guide requirements elabo-
ration and design decision-making. The degree of satisfaction of such goals is

234 N. Bencomo and A. Belaggoun

modeled by objective functions on quality variables. The non-functional goals
are specified formally using a probabilistic model and interpreted in terms of
application specific measures. Their approach is different from ours. They tackle
decision about alternative system designs during requirements and design engi-
neering. In our case we are concerned about decision-making between alternative
decisions to meet a functional goal due to environmental changes what crucially
includes also decision-making at runtime. The work of Giorgini et al. [7] deals
with formal reasoning about goal models. They use a probabilistic model and
label propagation to calculate the evidence for satisfiability and deniability of
goals. Their approach deals with conflicts between softgoals, however, different
from our work, they do not resolve conflicts but just tackle their identification.
Instead of probability they use evidence which can be seen as less precise than
calculating the exact probability. In this paper, we have not taken into account
uncertainties about quality of observations, i.e. we have assumed no errors or
noise introduced by the monitoring infrastructure and therefore we trust 100%
the monitoring infrastructure. Hence, we have assumed the following values for
the evidence node P(Observation|Redundant Prevents Network Partitions =
true)=0.0 and P(Observation|Redundant Prevents Network Partitions =false
)= 1.0. However, different from our earlier research [23], the DDN approach can
take into account those uncertainties what we leave for future work. As in the
case of DDNs, the approach presented in [19] can tackle the uncertainty related
to lack of confidence of sensor’s reports.

Liaskos et al. [I5] present a framework for specifying both mandatory and
optional requirements, along with quantitative preferences over the optional re-
quirements, within the context of a goal model. The goal tree and the specified
preferences are translated into the Hierarchical Task Network (HTN) and Plan-
ning Domain Description Language (PDDL) planning formalisms, respectively;
the HTNPlan-P planning tool is then used to obtain the most preferred design.
Similar to our work, [15] focus on on modeling and reasoning about proper-
ties and alternative solutions and working on preferences-based exploration of
alternatives requirements. However, they do not use probability theory.

Bayesian networks have been used to enable reasoning over probabilistic causal
model and to make predictions about partially satisfied affirmation [6]. However
the Bayesian paradigm does not provide any direct means for modelling dynamic
systems [21]. In contrast to our model in which we combine Bayesian networks
and decision networks to achieve a sophisticated architecture that could be used
as a powerful decision-making tool for solving complex or real-time decision
problems and to model a system that is dynamically changing or evolving over
time such as SASs. A number of interesting and related research approaches
using DDNs can be found in the area of AlI, Portinale and Raiteri [I7] have
proposed a formal model for FDIR(Fault Detection, Identification and Recovery)
analysis in autonomous systems based on a formal Fault Tree modeling language
able to express stochastic dependencies and multi-state components which is
called Extended Dynamic Fault Tree (EDFT). In their approach, a compilation
process producing from EDFT an equivalent DDN on which to exploit standard
DDN algorithms to perform the required FDIR analysis. Their approach is very

Decision-Making for SASs: From Goal Models to DDNs 235

relevant in our case because we are using similar model to trigger the adaptations
needed by the systems however we have different focus.

6 Conclusion and Future Work

In this paper we have argued how decision analysis of a SAS can be defined
as a formal quantitative technique based on Bayesian and decision theory to
guide an informed decision making process under uncertainty. Using our ap-
proach the best choices to meet a goal are identified from a range of alternatives
decisions (i.e., goal realization strategies). Satisficement of softgoals is modeled
using conditional probabilities (probability of satisficement of SGj given that a
goal realization strategy was chosen). Preferences are modeled using weights as-
sociated to pairs of alternative solutions and softgoals. A typical problem arising
during the construction of the DDN model is the choice of this quantitative pa-
rameters (i.e., weights). More experience in this direction is expected in the near
future. Further work is also required towards systematic techniques for studying
the value of the probabilities, and even utility weights, that change over time
(due to the machine learning process) an their impact on the evaluation of the
alternative decisions.

We also want to take advantage of the dynamic structure of the DDNs. We
are studying the suitability of DDNs for domains where requirements, goals,
and their respective expected values change over time (i.e., during execution).
Interesting issues for future research concern the possibility of the utilization of
the model with imprecise evidences (e.g. low level of confidence of sensors) to
study how the quality of the infrastructure monitoring affect the decisions made
by a DDNs. Also the development of new tools to help the requirement engineer
to design a DDNs would be certainly very helpful as the current tool support
imposes limitations; there is not enough software that supports DDNs.

Acknowledgments. We thank Pete Sawyer and Valerie Issarny for their useful
feedback. Also thanks to Andres Ramirez for the support on the use of the
RDM case study. This research is partially supported by Marie Curie Fellowship
“Requirements@run-time”.

References

[1] Norsys software corporation. netica - user guide (1997)

[2] Belaggoun, A.: Exploring the Use of Dynamic Decision Networks for Self-Adaptive
Systems. Master’s thesis, Univ. de Versailles Saint-Quentin-En-Yvelines (2012)

[3] Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software engineer-
ing for self-adaptive systems: A research roadmap. In: Cheng, B.H.C., de Lemos,
R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive
Systems. LNCS, vol. 5525, pp. 1-26. Springer, Heidelberg (2009)

[4] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering, vol. 5. Springer (1999)

236

[5]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

21]

[22]

[23]

N. Bencomo and A. Belaggoun

da Costa, P.C.G.: The Fighter Aircrafts Autodefense Management Problem: A
Dynamic Decision Network Approach. Master’s thesis, School of Information Tech-
nology and Engineering, George Mason University (1999)

Fenton, N.E., Neil, M.: Making decisions: using bayesian nets and mcda. Knowl.-
Based Syst. 14(7), 307-325 (2001)

Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning
techniques for goal models. In: Spaccapietra, S., March, S., Aberer, K. (eds.)
Journal on Data Semantics. LNCS, vol. 2800, pp. 1-20. Springer, Heidelberg (2003)
Goldsby, H.J., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.: Goal-based
modeling of dynamically adaptive system requirements. In: IEEE Int. Conference
on the Engineering of Computer Based Systems, ECBS (2008)

Horvitz, E.J., Breese, J.S., Henrion, M.: Decision theory in expert systems and
artificial intelligence. Int. Journal of Approximate Reasoning 2, 247-302 (1988)
Howard, R., Matheson., J.: Influence diagrams. In: Readings on the Principles
and Readings on the Principles and Applications of Decision Analysis II. Strategic
Decisions Group, Menlo Park (1984)

Hughes, D., Greenwood, P., Coulson, G., Blair, G.: Gridstix: Supporting flood
prediction using embedded hardware and next generation grid middleware. In:
Proceedings of the 2006 International Symposium on on World of Wireless, Mobile
and Multimedia Networks, pp. 621-626. IEEE Computer Society, USA (2006)
Lapouchnian, A.: Exploiting Requirements Variability for Software Customization
and Adaptation. Ph.D. thesis, University of Toronto (2011)

de Lemos, R., Giese, H., Miiller, H., Shaw, M.: Software Engineering for Self-
Adpaptive Systems: A second Research Roadmap. In: Software Engineering for
Self-Adaptive Systems. No. 10431 in Dagstuhl Seminar Proceedings, Schloss
Dagstuhl, Germany (2011)

Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for re-
quirements and design engineering. SIGSOFT Softw. Eng. Notes 26 (2004)
Liaskos, S., Mcllraith, S.A., Sohrabi, S., Mylopoulos, J.: Representing and reason-
ing about preferences in requirements engineering. Requir. Eng. 16(3), 227249
2011

%earl,) J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

Portinale, L., Raiteri, D.C.: Using dynamic decision networks and extended fault
trees for autonomous fdir. In: ICTAI, pp. 480484 (2011)

Qureshi, N.A., Peini, A.: Engineering adaptive requirements. In: Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2009
2009

%{amil)rez, A.J., Cheng, B.H.C., Bencomo, N., Sawyer, P.: Relaxing claims: Cop-
ing with uncertainty while evaluating assumptions at run time. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp.
53-69. Springer, Heidelberg (2012)

Russell, S.J., Norvig, P.: Artificial intelligence - a modern approach: the intelligent
agent book. Prentice Hall series in artificial intelligence. Prentice Hall (1995)
Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach, 2nd edn. Pren-
tice Hall series in artificial intelligence. Prentice Hall (2003)

Sawyer, P., Bencomo, N., Letier, E., Finkelstein, A.: Requirements-aware systems:
A research agenda for re self-adaptive systems. In: Proc. of the 18th IEEE Inter-
national Requirements Engineering Conference, pp. 95-103 (2010)

Welsh, K., Sawyer, P., Bencomo, N.: Towards requirements aware systems: Run-
time resolution of design-time assumptions. In: ASE, pp. 560-563 (2011)

Mapping i* within UML for Business Modeling

Yves Wautelet! and Manuel Kolp?

! Hogeschool-Universiteit Brussel, Belgium
yves.wautelet@hubrussel.be
2 Université catholique de Louvain, Belgium
manuel.kolp@uclouvain.be

Abstract. [Context and Motivation] Business modeling is nowadays
a common approach in huge enterprise software developments. It notably
allows to align business processes and supporting IT solutions at best,
to produce a documentation of the company’s “savoir-faire” and to look
for possible optimizations. The business modeling discipline of the Ra-
tional Unified Process (RUP) has enriched the semantic of the Unified
Modeling Language’s (UML) use case diagrams for the special purpose of
representing the organization’s processes with accurate elements. [Ques-
tion/Problem] RUP/UML business use case scemantics are nevetheless
only intended to further stereotype use case models and not to be used
for reasoning. In parallel and in line with artificial intelligence concepts,
researchers have developed the i* framework enabling the evaluation and
decomposition of multiple design opportunities. RUP/UML business use
case scemantics could be used more efficiently to integrate the latter
benefits. [Principal ideas/results] Through a systematic mapping of
elements from i* on the one side and of the RUP/UML business use
case model on the other, we have set up a RUP/UML graphical notation
for i* elements. Applicability has been shown on an illustrative exam-
ple. [Contribution] The main contribution of the framework is allowing
to model in an i* fashion using CASE-tools meant for RUP/UML and
proposing an interface for forward engineering the produced model in
a classical UML requirements model. Future work is required to fully
validate the proposal, notably to measure the method’s efficacy.

Keywords: i*, RUP/UML Business Use Case Model, Business
Modeling.

1 Introduction

Business modeling provides guidance for the analyst on how to understand and
represent an organization. It has now been recognized as an important analysis
workflow within the information systems engineering process. Frameworks and
models to support this engineering step exist today notably i* [20/I8/19] for
researchers and the RUP/UML business use case model! for practitioners. The

! We do not refer here to the use case model as defined by the OMG in [I1] but
to the refinement proposed in the business modeling discipline from the RUP (see
[IZIRIOITO]). That is why, in this paper, we refer to it as the RUP/UML business use
case model.

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 237-£52] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

238 Y. Wautelet and M. Kolp

latter is indeed an extension of the Unified Modeling Language (UML) [I1] use
case model supported by the Rational Unified Process (RUP) [14J9] methodology
and many case tools. i* is an early requirements framework founded on the
notions of actor, goal and social dependency. It could be considered as an agent-
oriented alternative to the use-case model used as the foundation of the Tropos
agent methodology. Unfortunately, even if i* can provide the business analyst
with richer qualitative semantics and reasoning, it is only supported by a few
modeling prototypes not widely adopted in the industry.

The paper proposes to reinterpret the RUP/UML business-use-case model in
order to fully capture the benefits of i*. In other words, the gain for business
analysts will be to integrate the i* approach when still using RUP /UML business
use case semantics and its associated case tools. Indeed, i* constitutes a more
advanced reasoning technique for organizational modeling than what is simply
proposed within the business modeling discipline of RUP/UML even if, as we
will see later, all the semantical elements are available to do so. The use by
business analysts of semantics they already know and CASE tools they already
use should ease its integration process. We also point to a forward engineering
method to determine software specifications (in the form of classical use case
models). This is a major step for smooth integration.

The research method consisted in comparing each i* element with each UML
business use case model elements as defined by the business modeling discipline
of the RUP. The element with the highest alignment was systematically selected
as counterpart. When multiple elements were possible, we have justified the
choice among candidates. Then, we point to the use of i* tasks (represented
by RUP/UML business use case realizations) for the interfacing with the next
RUP/UML discipline (called requirements). This is in line with current RUP
practice.

The paper is structured as follows. Section [2] summarizes the principles of
the i* modeling framework, Section [studies the research approach, Section [
presents the results of the mapping/matching study, Section [l instantiates the
proposed model onto an illustrative example and Section [flstudies the derivation
of system specifications to align at best with the RUP. Section[doverviews related
work. Finally, Section [§] concludes the paper.

2 Background

In ¢* (which stands for “distributed intentionality”), stakeholders are repre-
sented as (social) actors who depend on each other for goals to be achieved,
tasks to be performed, and resources to be furnished [4]. The framework and its
applications are described in detail in [20/18]; it includes:

— The Strategic Dependency Model (SD) that describes a network of depen-
dency relationships among various actors in an organizational context. Ac-
tors are usually identified within the context of the model. This model shows
who an actor is and who depends on the work of an actor. An SD consists
of a set of nodes and links connecting actors. Nodes represent actors and

Mapping i* within UML for Business Modeling 239

each link represents a dependency between two actors. The depending ac-
tor is called Depender and the actor who is depended upon is called the
Dependee;

— The Strategic Rationale Model (SR) provides an intentional description of
processes in terms of process elements and the rationale behind them. While
the Strategic Dependency (SD) model maintains a level of abstraction by
modeling only the external relationships among actors, the SR model for-
goes that abstraction in order to allow a deeper understanding about strate-
gic actors’ reasoning about processes to be explicitly expressed. The SR
model describes the intentional relationships that are ”internal” to actors,
such as means-ends relationships that relate process elements, providing ex-
plicit representation of “why” and “how” and alternatives. Rationales are
at strategic level, so that the process alternatives being reasoned about are
strategic relationships, i.e., SD configurations. Using knowledge represented
in and organized by these modeling concepts, process alternatives can be sys-
tematically generated and explored to help actors to find new process designs
that better address their interests, needs, and concerns. The SR model is a
graph, with several types of nodes and links that work together to provide
a representational structure for expressing the rationale behind processes.

3 Research Approach

The applied method firstly consisted in distinguishing groups of elements both
within the ones defined by i* and the RUP/UML business use case model. The
i*elements taken into account have been selected on the basis of the meta-models
presented in [15]; further extensions of the framework have not been taken into
account and are left for future work. Similarly, UML elements considered here
are only the ones from the business use case model as defined in the business
modeling discipline of the RUP knowledge base (see [10/9]) and provided into
CASE tools like Rational Rose [12] or Rational Software Architect [13].

As presented in Table [l three categories of elements have been distinguished
within the i* ones: Dependum Elements (DE), Actor Elements (AE) and Links
(iStarLink). Similarly, as presented in Table[2] three categories of elements have
been distinguished within the RUP/UML business use-case model: Inheriting
from Use Case (IUC), Inheriting from the Actor (IA) and Links (UMLLink).

In order to compare i* elements and find best matches with UML ones we
have firstly compared the DE set with the IUC one, such as DE x IUC (i.e, the
carthesian product). However, no satisfying match was found for the Softgoal
element so that we have further compared this element with the set IA. After
having found the best possible matches for each element of the DFE set, we have
proceeded to a comparison of AE with A, such as AE x I A. However, no satis-
fying match was found for the Actor Boundary so that we further compared this
element with the IA set. Finally, when this was achieved and the best possible

2 Except for the plan element called here task according to the original definition given
by [18I19].

240 Y. Wautelet and M. Kolp
Table 1. i* Elements to be Mapped

Dependum Elements (DE) Actor Elements (AE) Links (iStarLink)

(Hard)goal Actor (Strategic) Dependency
Task Position Means-end
Resource Agent Decomposition
Softgoal Role Contribution

Actor boundary Actor association

Table 2. Target UML Elements

Inheriting from Use Case Inheriting from the Links (UMLLink)

(Ive) Actor (IA)
Use Case Actor Unidirectional Association
Business Use Case (BUC) Boundary Dependency or Instanciates
BUC Realization Business Actor Generalization
Use Case Realization Business Entity Association

Business Event Aggregation

Business Goal Include

Business Worker Realize

Control Refine

Domain Extend

Entity Derive

Interface Package

Table

View

match was found for each element in the set IA, we have compared the iStarLink
set with UMLLink like iStarLink x UM LLink. Complete results are presented
in Section [, while the rest of this section discusses choices made.

The reader should notice that matching those elements is often a matter of
(best possible) compromise. Indeed, some elements from those paradigms are
closely related within their definition but seldom entirely define the same reality
since their conceptualization is different. It is thus impossible to find a perfect
match for each i* element and it would also be nonsense since this would mean
that i* and RUP/UML business use case models have exactly the same elements
with another graphical notation and use. If the purpose was to translate a par-
ticular model from i* to the RUP/UML business use case model (or vice-versa),
then some knowledge would typically be lost from the original model and other,
new, knowledge would be required to be defined (manually) in the target model.
This way both models could benefit since traceability between both analysis
models is maintained. Also, additional advantage could come from the represen-
tation of the same problem using different modeling perspective. Nevertheless,
for now our purpose is to directly integrate the i* approach (and thus its bene-
fits) within a RUP /UML context so that the modeler will be provided the ability

Mapping i* within UML for Business Modeling 241

to (and is also expected to) model directly in an i* fashion while relying on the
definition of elements (and their icon) he already knows. Then, he is expected
to forward engineer the produced i* models into software specifications (see
section [B]) following its present habits. Further work is required to analyze the
opportunity of both approaches using a common syntax and, in this perspective,
comparing the elements from both for formalisms using the Unified Enterprise
Modeling Language (UEML) framework [3] could be helpful to go beyond the
purely syntax level and better understand the semantic implications. Beyond
allowing to formally establish the better correspondence of each chosen element
of our mapping model, it should also allow to study the respective benefits of
each of the approaches evoked in this paragraph.

For lack of space and to keep the focus on contributions, the whole process
of comparing i* and RUP/UML business-use-case elements will not be entirely
presented. We only focus here on elements with multiple (or no) matchings and
justify our choices.

3.1 (Hard)Goal

Definition: Following [21], in a goal dependency, the depender depends on the
dependee to bring about a certain state of affairs in the world.

Selected Matching Elements in IUC: Use Case, Business Use Case.
Chosen Element: Business Use Case.

Rationale: The conflict here was that two UML elements could have been apro-
priate. Following the RUP knowledge base, a Business Use Case (class) defines a
set of business use-case instances in which each instance is a sequence of actions
that a business performs that yields an observable result of value to a par-
ticular business actor and a use case defines a set of use-case instances, where
each instance is a sequence of actions a system performs that yields an ob-
servable result of value to a particular actor. The Business Use Case (BUC)
element has been chosen because it is located at business (i.e., organizational)
level such as the i* goal rather than at system level as the traditional use case.

3.2 Task

Definition: Following [21], in a task dependency, the depender depends on the
dependee to carry out an activity. The dependum mnames a task which specifies
how the task is to be performed, but mot why. The depender has already made
decisions about how the task is to be performed.

Selected Matching Elements in IUC: Use Case, Use Case Realization, Busi-
ness Use Case Realization, Business Goal.

242 Y. Wautelet and M. Kolp

Chosen Element: Business Use Case Realization.

Rationale: Following the RUP knowledge base, a Business Use-Case Realization
describes how business workers, business entities, and business events collabo-
rate to perform a particular business use case. This corresponds to the
purpose of the i* Task and is in line with the choice made for the (hard)goal
element since we have selected the BUC at that stage.

3.3 Softgoal

Definition: Following [21], in a softgoal dependency, a depender depends on the
dependee to perform some task that meets a softgoal. A softgoal is similar to
a goal except that the criteria of success are not sharply defined a priori. The
meaning of the softgoal is elaborated in terms of the methods that are chosen in
the course of pursuing the goal.

Selected Matching Element in ITUC: None.
Selected Matching Element in IA: Business Goal.
Chosen Element: Business Goal.

Rationale: Following the RUP knowledge base, a Business Goal is a requirement
that must be satisfied by the business. Business Goals describe the desired value
of a particular measure at some future point in time and can therefore be used
to plan and manage the activities of the business. This definition corresponds to
the purpose of the Softgoal.

3.4 The Actor Boundary

Definintion: Actor boundaries indicate intentional boundaries of a particular
actor.

Selected Matching Element in TA: None.

Selected Matching Element in UMLLink: Package.

Chosen Element: Package.

Rationale: Following the RUP knowledge base, a general purpose mechanism for
organizing elements into groups. Packages may be nested within other packages.

Organizing elements into groups is precisely what we intend to do so we have
selected this element for this purpose.

Mapping i* within UML for Business Modeling 243

4 TUML Profile for i* Modeling

The result of our study is summarized in Table Bl for the elements specific to
the Strategic Dependency Model and Table @l for the elements specific to the
Strategic Rationale Model. Figure [l gives the graphical representation of the i*
elements with the RUP/UML business use case model.

The reader should note that the graphical representation of elements that
we have used is the one from Rational Rose. If some graphical icons are not
available within the particular case tool that the modeler is using, we suggest
to just stereotype the element on its canonical form. For example, if no BUC
realization element is available, it could use a traditional use case element with
the stereotype << Business Use Case Realization>> written between the use-
case icon and the name; the stereotype is written guillemets (i.e., angle brackets).

Table 3. Strategic Dependency Model Mapping

i* element Selected UML “rich” Use-Case
Model Element

Goal Business Use Case

Task Business Use Case Realization

Resource Business Entity

Softgoal Business Goal

Actor Business Actor

Position Control

Agent Actor

Role Business Worker

Actor boundary Package

(Strategic) Dependency Dependency or Instanciates

Actor association Generalization

5 Illustrative Example

This section illustrates the framework of Section @] using the Media Shopﬁ exam-
ple. We nevertheless limit the study to showing the applicability of the framework
on a case study previously modeled using i*. Within the RUP software develop-
ment process flow, the i* analysis should take place within the business modeling
discipline by simply replacing the business use case model (because it now uses
the same semantics but with more powerful analytical abilities). It can easily be
interfaced with the RUP requirements discipline (see Section [G]).

3 This illustrative example as well as the descriptions of the strategic dependancy and
strategic rationale models are taken from [4].

244 Y. Wautelet and M. Kolp

Strategic Dependency Model

. @

’ 24 Goal AN Strategic Rationale Model

Agent e P — B R
N
~ 7% N AN
S=EET N
Task RN
\ BN -7 \ \
Actor 7 Actor Softgoal
L’ Dependee Actor A N
AN . Resource e i \
. \
’ z II \
' \
<<means-eng>> <<means-end>>
II \\
' \
Role
C) sofoee O @
Position Goal Goal
NFR Links
<<-->>
<<decomposition>> <<glecomposition>>
Goal
Softgoal
oftgoal (/ (/
\ / N ,
<<+H+>> A N
Task Task
Softgoal Softgoal
UML Artifacts Used Above
- 2= D,
: /)
N e
UML Business Use Case UML Business Use Case Realization

22 @ e @

UML Business Actor UML Business Worker UML Business Entity - UML Business Goal Control

2 %ﬂ%

UML Dependency or instantiates Relationship UML Generalization Relationship
UML Include Relationship UML Agregation Relationship UML Unidirectional Association Relationship

Fig. 1. UML Graphical Notation for i* Elements

Mapping i* within UML for Business Modeling 245

Table 4. Strategic Rationale Model Mapping

i* element Selected UML Element

Means-end Include

Decomposition Agregation

Contribution Unidirectional Association
5.1 Context

Media Shop is a store selling and shipping different kinds of media items such
as books, newspapers, magazines, audio CDs, videotapes, and the like. Media
Shop customers (on-site or remote) can use a periodically updated catalogue
describing available media items to specify their order. Media Shop is supplied
with the latest releases and in-catalogue items by Media Supplier. To increase
market share, Media Shop has decided to open up a B2C retail sales front on
the internet. With the new setup, a customer can order Media Shop items in
person, by phone, or through the internet. The system has been named Medi@
and is available on the world-wide-web. It also uses financial services supplied
by Bank Cpy, which specializes on on-line transactions.

5.2 Strategic Dependency Diagram

These elements are sufficient for producing a first model of an organizational
environment. For instance, Figure Bl depicts an i* model of our Medi@ example
with the traditional syntax while Figure Blrepresents the same diagram using the
UML profile for i* modeling. The main actors are Customer, MediaShop, Media-
Supplier and MediaProducer. Customer depends on MediaShop to fulfill her goal:
Buy Media Items. Conversely, MediaShop depends on Customer to increase mar-
ket share and make “customers happy”. Since the dependum HappyCustomers
cannot be defined precisely, it is represented as a softgoal. The Customer also de-
pends on MediaShop to consult the catalogue (task dependency). Furthermore,
MediaShop depends on MediaSupplier to supply media items in a continuous
way and get a Media Item (resource dependency) . The items are expected to be
of good quality because, otherwise, the Continuing Business dependency would
not be fulfilled. Finally, MediaProducer is expected to provide MediaSupplier
with Quality Packages.

5.3 Strategic Rationale Diagram

The Strategic Rationale Diagram in Figure @l focuses on one of the (soft)goal
dependency identified for Media Shop, namely Increase Market Share using the
traditional syntax while Figure [l represents the same diagram using the UML
profile for i* modeling.

To achieve that softgoal, the analysis postulates a goal Run Shop that can
be fulfilled by means of a task Run Shop. Tasks are partially ordered sequences

246 Y. Wautelet and M. Kolp

Consult Media Items
Catalogue
‘ Buy Media b Media Continuous Media Quality Media
Jtems Shop Supply Supplier Packages Producer

Continuing

Haj !
Cuspoel}'l,ers Business

Fig. 2. Medi@: Strategic Dependency Diagram

Increase Market Share

S g IN
s N
’ \
(] N
\ - \
~ N <

-"" Media ltems

2D @A K

Consumer RN N Buy Media liems . Media Shop \C\ontlnuous Supp\y//, Media Supplier Quality Packages Media Producer
| \b \
Happy Customers Continuing Business

Fig. 3. Medi@: Strategic Dependency Diagram with RUP/UML Use Case Semantics

of steps intended to accomplish some (soft)goal. Tasks can be decomposed into
goals and/or subtasks, whose collective fulfillment completes the task. In the
figure, Run Shop is decomposed into goals Handle Billing and Handle Customer
Orders, tasks Manage Staff and Manage Inventory, and softgoal Improve Ser-
vice which together accomplish the top-level task. Sub-goals and subtasks can be
specified more precisely through refinement. For instance, the goal Handle Cus-
tomer Orders is fulfilled either through tasks OrderByPhone, OrderInPerson or
OrderBylnternet while the task Manage Staff would be collectively accomplished
by tasks Sell Stock and Enhance Catalogue.

6 Producing System Specifications

Even if the discipline can take various names including business modeling, or-
ganizational modeling, early requirements, ..., modeling company’s processes is

Mapping i* within UML for Business Modeling

Telecom

Bank Cpy Cpy

Increase
Market Share

Buy Media
Iltems

Communication|
Services

Process
Internet
Orders

247

’\

AN
OrderB: R
Handle Phons’ \,
Customer \

Orders \

Improve
Service

Happy
Customers

Continuing

Manage
Staff

\ Staff Manage
\ Training Inventory
‘\ Be Friendly

Orderin
Person

Enhance
e

e
9

\ gatlsfy
. AN ustomer
sﬂggifw . Desires Consult 7

Business

Continuing
Supply

Depender —»— X —— Dependee
Dependency

—
D M ds link

link

Legend

Goal

[]

Ressource Softgoal

)
Task BN

) \
\ J
. y

Actor Boundary

/

/
Determine\ /'
Amount |/ /
%

i
i
i

Fig. 4. Means-Ends Analysis for the Softgoal Increase Market Share

the first stage in software engineering methodologies like the RUP or Tropos.
However, to produce a software architecture and develop an executable release,
one needs a set of explicit requirements depicting how the system should be-
have to satisfy their needs so that the business process model (or organizational
model) needs to be forward engineered to achieve this. Within a traditional
RUP project, once we have build a consistent business use case diagram into the
business modeling discipline, we analyze business use-case realizations to build-
up a system use-case model. The latter documents, in terms of coarse grained
elements, the system to be build. Similarily, when applying the UML profile for
i* modeling, the same business use-case realization elements (corresponding to
* tasks) constitute the functional output of the business analysis. We thus sug-
gest to focus exclusively on the business use case realizations to determine the
system use cases.

In line with this, we propose in Listing 1.1 an algorithm to convert business use
case realizations (BUCReal) into system use cases (UC). As first precondition to
this JAVA method, we need to dispose of an ArrayList containing the business

4 Traditional means a RUP project that does not use the UML profile for i* modeling.

248 Y. Wautelet and M. Kolp

%/ L@ F-@

N Telecom Cpy

Bank Cpy 5 ‘ /1\\ Medi@ 4
d
N g Media Shop ’
\ /
<--4- \ /
P
Increase Market Share ‘\ /\/
.
(// O o o
- S

A Order By Internet e
)
Handle billing <<means-end>>

e S <<meang-end>> (/]
S~ > N 1 X s
- Buy Media Items RN [/ \ i .
Tl N P i <<meansend order By Ph
Ty ~ o S - rder one
\ S ____ A\ " e y
P Run Shop -
Customer
\ .
oo - Handle Customer Orders (’ /)
oo P
-7 g B A s

- L /‘ -
Improve Service A L A <<means-end>> L/
7 s~ Select Items
t\ Manage Staff y

/

) D — ~__ 2~
Happy Customers { /) Manage Inventol
N Y ¥ Y Order In Persont\
Staff Training s
Be Friendly { /)
\ -
= i D 4 > F . Determine Amount
. N s S //
Media Supplier "~ _ o N s h 7

Q<ﬂ>
[N
\
\
N
1
I
1.
VAN
I
-
4
{
!
\
N 7/
TN
N
I
A}

ﬁ‘\ \ Satisfy Customer Desires ,77 Sell Stock
' N P . ~” Enhance Catalogue Consult Catalogue
' A
' \ 7 7

Continuing Supply

Fig. 5. Means-Ends Analysis for the Softgoal Increase Market Share with RUP/UML
Use Case Semantics

use case realizations (BUCReal) resulting from an i* means-ends analysis with
the RUP/UML profile from a particular project. As second precondition the
BUCReal elements are stored in the ArrayList in a sequence corresponding to a
preorder traversal. This ArrayList is used as input and the method is intended
to return an ArrayList containing a set of use cases derived from the set of
BUCReal elements. Indeed, for a given means-ends analysis, we isolate all of the
BUCReal elements (thus corresponding to i* task elements) then evaluate the
need for IT support for each of them. If IT support is required, the BUCReal
element leads to the set up of a use case (UC) element that needs to be further
specified in terms of system behavior (outside the scope of this algorithm). Also,
if within the means-ends analysis a BUCReal element requiring IT support is
the child (i.e. decomposition) of a BUCReal element also requiring IT support,
we track this link within the UC elements using a UML <<eztend>> link from

Mapping i* within UML for Business Modeling 249

the child to the parent UC element. The actor in charge of the UC can also be
identified on the basis of the scope of which actor the BUCReal falls into.

The i* approach is thus no more complementary or parallel to UML analysis
but fully integrated into the RUP. Indeed, deriving UC from BUCReal is a com-
mon technique in RUP projects and once a (system) use case model is available,
the object-oriented software design (i.e. the system behavior) can be set-up.

public static ArrayList<UC>
BUCReal2UC (ArrayList <BUCReal> mySRD)

{
ArrayList<UC> myUCs = new ArrayList<UC>();
for (int 1=0; i<mySRD.size (); i++){
BUCReal thisBUCReal = mySRD. get (i);
if (thisBUCReal.requiresITsupport()) {
UC thisUseCase = new UC(thisBUCReal . getName ());
if (thisBUCReal.hasParent()) {
BUCReal parentBUC = thisBUCReal . getParent ();
String ucName = parentBUC.getName ();
UC parentUC ;
for (int j=0; j<myUCs.size (); j++){
String temp = (myUCs.get (])).getName ();
if (ucName.compareTo (temp)==0)
{
parentUC = myUCs. get (]);
thisUseCase.setExtend (parentUC);
}
}
}
myUCs. add (thisUseCase);
}
}
return myUCs;
}

Listing 1.1. From Business use case realizations to use cases algorithm

7 Related Work

The willingness to integrate both i* abilities within a software development
methodology have firstly arisen into Tropos [4], it however consisted into an
agent-oriented development method and only used a waterfall development life
cycle. To address this last issue, evolutions of the method have been proposed,
notably I-Tropos [I6J17] which adapts the iterative lifecycle of the RUP in an
i*-driven way; nevertheless, it remains an agent-development context.

250 Y. Wautelet and M. Kolp

A few papers address the problem of using i* as a first framework for business
modeling (also called early requirements) into UML-based development:

— [5] proposes a set of traceability relations between i* organizational models
and use-case and class models. They, however, do not furnish a systematic
way of tracing elements but evaluate each of the possible overlaps on a case
by case basis;

— In line with our proposition, [6] proposes to generate use cases from a business
model. Their method is different since they suggest using the system as
an actor and if a goal dependency has not given rise to dependencies with
the system actor, then it represents a manual activity in which there is no
interaction between the user and the software system. This is not the way we
model into the RUP/UML business use model where we represent company’s
processes in an as-is situation. Within our proposal we nevertheless implicitly
suggest to use i* as a framework to represent the business/organization only
and to focus on business use case realizations to generate system use cases
to be in line and integrated at best within the RUP;

— Finally, [1l2] propose to directly pass from i* models to UML design models
(essentially the class diagram). Unfortunately, the proposal is not adapted for
an integration into large scale projects as the ones targeted by RUP/UML.

Finally, the question of an alternative representation of i* elements has been
envisaged in [7]. Their proposal is based on an empirical study of preferred
icons; we point to the use of the ones that are already adopted in the industry
by RUP/UML practitioners.

8 Conclusion

Business modeling as a first discipline in engineering software is a common best
practice of the last fifteen years notably in methodologies based on or derived
from RUP/UML or Tropos. For adequate business modeling, the i* framework
provides reasoning techniques that are not present within the business use case
model introduced within the RUP. The main difference between those two frame-
works does however not lie into their semantics — since we have seen that we can
find a fitting equivalent for each i* concept into RUP/UML business use case
models — but into their use; i* indeed allows reasoning.

The first proposal of the paper has been to study whether the business use
case model provides adequate semantics for modeling in an i* way. We have been
able to find satisfying answers for each of them and we have shown within the
illustrative example that modeling in an i* fashion with the RUP /UML business
use case model semantics is possible. As a second proposal, by distinguishing
a set of business use case realizations elements through the i* analysis we can
study required IT support and generate a use-case diagram to forward engineer
the project within the RUP. We have thus argued that this way of modeling
can be perfectly integrated into RUP/UML projects without requiring changing
habits for the IT professionals using it. They just have to integrate the i* way

Mapping i* within UML for Business Modeling 251

of modeling and can still use their CASE tools and their forward engineering
habits while disposing of reasoning abilities at business level.

Future work include presenting the UML profile for i* modeling to software

modelers familiar with RUP/UML, make them apply it on a case study and
evaluate their opinion on the basis of a qualitative study.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their valuable comments and suggestions to improve the quality of the

paper.

References

10.

11.

12.

13.

14.

. Alencar, F.M.R., Castro, J., Filho, G.A.C., Mylopoulos, J.: From early require-

ments modeled by the i* technique to later requirements modeled in precise uml.
In: WER, pp. 92-108 (2000)

Alencar, F.M.R., Filho, G.A.C., Castro, J.: Support for structuring mechanism
in the integration of organizational requirements and object orien. In: Pastor, O.,
Diaz, J.S. (eds.) WER, pp. 147-161 (2002)

Anaya, V., Berio, G., Harzallah, M., Heymans, P., Matulevicius, R., Opdahl, A.L.,
Panetto, H., Verdecho, M.J.: The unified enterprise modelling language - overview
and further work. Computers in Industry 61(2), 99-111 (2010)

Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the tropos project. Inf. Syst. 27(6), 365-389 (2002)
Cysneiros, G.A.A., Andrea, F.,; Spanoudakis, Z.G.: A traceability approach for
i* and uml models. In: Proceedings of 2nd International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems (SELMAS 2003) (2003)
Estrada, H., Martinez, A., Pastor, O.: Goal-based business modeling oriented to-
wards late requirements generation. In: Song, I1.-Y., Liddle, S'W., Ling, T.-W.,
Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 277-290. Springer, Heidel-
berg (2003)

Genon, N., Caire, P., Toussaint, H., Heymans, P., Moody, D.: Towards a more se-
mantically transparent i* visual syntax. In: Regnell, B., Damian, D. (eds.) REFSQ
2011. LNCS, vol. 7195, pp. 140-146. Springer, Heidelberg (2012)

Dennis Gibbs, R.: Project Management with the IBM®Rational Unified Process®:
Lessons From The Trenches. IBM Press (2006)

Kruchten, P.: The rational unified process: An introduction. Longman (Woking-
ham). Addison-Wesley (December 2003)

Nailburg, E.J., Maksimchuk, R.A.: UML for Database Design. Addison-Wesley
Longman Publishing Co., Inc., Boston (2001)

OMG. Omg unified modeling language (omg uml). version 2.4. Technical report,
Object Management Group (2011)

Quatrani, T.: Visual Modeling with Rational Rose 2002 and UML, 3rd edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

Quatrani, T., Palistrant, J.: Visual Modeling with IBM Rational Software Architect
and UML (The developerWorks Series). IBM Press (2006)

Shuja, A., Krebs, J.: Ibm@®); rational unified process®); reference and certification
guide: solution designer, 1st edn. IBM Press (2007)

252

15.

16.

17.

18.

19.

20.

21.

Y. Wautelet and M. Kolp

Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The tropos metamodel and its
use. Informatica (Slovenia) 29(4), 401-408 (2005)

Wautelet, Y., Kolp, M.: Goal driven iterative software project management. In:
Cuaresma, M.J.E., Shishkov, B., Cordeiro, J. (eds.) ICSOFT (2), pp. 44-53.
SciTePress (2011)

Wautelet, Y., Kolp, M., Poelmans, S.: Requirements-driven iterative project plan-
ning. In: Escalona, M.J., Cordeiro, J., Shishkov, B. (eds.) ICSOFT 2011. CCIS,
vol. 303, pp. 121-135. Springer, Heidelberg (2013)

Yu, E.: Modeling strategic relationships for process reengineering. PhD thesis, Uni-
versity of Toronto, Department of Computer Science, Canada (1995)

Yu, E.: Towards modeling and reasoning support for early-phase requirements en-
gineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering, RE 1997, p. 226 (1997)

Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. MIT Press (2011)

Yu, E.: Agent-oriented modelling: Software versus the world. In: Wooldridge, M.J.,
Weif}, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 206-225. Springer,
Heidelberg (2002)

Risk Identification at the Interface
between Business Case and Requirements

David Callele!, Birgit Penzenstadler?, and Krzysztof Wnuk3

! University of Saskatchewan Saskatoon, Canada
callele@cs.usask.ca
% Software & Systems Engineering
Technische Universitdt Miinchen, Germany
penzenst@in.tum.de
3 Software Engineering, Lund University, Sweden
Krzysztof.Wnuk@cs.lth.se

Abstract. [Motivation:] The requirements engineering (RE) research
community is aware of the importance of performing feasibility stud-
ies before starting requirements elicitation. Unfortunately, projects still
frequently fail to achieve commercial success, responsibility is often un-
known, and requirements engineers may be deemed responsible for mis-
takes made by others. [Problem:] There is neither empirical evidence
available from a post-mortem risk analysis for projects that performed
adequate RE but commercially failed nor guidance for requirements
engineers on validating a business case analysis to mitigate this risk.
[Principal idea:] By performing a post-mortem analysis of software
development projects that failed to achieve commercial success, we in-
vestigate the root causes for the failures and, in most cases, trace the
causes back to business case issues. We identify risk areas and provide
practical due diligence guidance to the practitioner. [Contribution:]
This exploratory case study performs an in-depth review of a detailed
post-mortem analysis of three software development projects performed
over a 2.5 year period. Each of the analyzed projects failed to make the
expected transition to commercialization despite using appropriate RE
techniques and achieving satisfactory deliverables. The analysis identifies
risk factors that the RE practitioner should consider and we provide a
checklist for RE practitioners to use when checking for these risks in an
antecedent business case as part of their due diligence. A low-cost com-
mercial viability assessment technique, employing Fermi approximation,
is provided to equip the RE practitioner with a risk mitigation tool in
the absence of business analyst resources.

Keywords: Risk identification, risk mitigation, commercial risk, due

diligence, commercialization, commercial success, success factors, busi-
ness case, business analyst.

1 Introduction and Motivation

Many new product software development projects fail to achieve commercial suc-
cess despite following established requirements engineering practices and

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 253-E68] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

254 D. Callele, B. Penzenstadler, and K. Wnuk

development methodologies. Unfortunately, iterative refinement (independent of
the methodology) can leave critical requirements unknown at project inception
or even until late in the development cycle. As observed by de Marco [1], this
imperfect knowledge can lead to issues such as inadequate budgets, significant
changes to timelines, missing key skills (personnel mismatch) and, in the worst
case, even project failure. When the unknown requirements are exposed later in
an iterative process it can be challenging to ensure that the requirements are con-
sistent with the antecedent business case, especially if stakeholder engagement
has waned.

Problem: 1t is generally accepted that development risk is inversely correlated
with knowledge. While numerous project risk management techniques exist, to
our knowledge this is the first work focused on identifying risks at the boundary
between the business case and requirements engineering efforts. This work fo-
cuses on the boundary between these efforts because it is at this boundary that
responsibility often passes between different individuals or teams — a transition
that offers increased opportunity for problems to occur.

In this work, we review the results of a major postmortem analysis effort
performed upon a new product development program at an industrial entity
(referred to hereafter as CASECO). The review sought risk factors of potential
concern to RE practitioners, asking the following research questions:

RQ1: What are the risk factors identified in the postmortem analysis effort
that exist at the interface between the business case and the software
requirements? (Section [

RQ2: Are there mitigation techniques already available at CASECO that
could be used to mitigate one or more of the risk factors? (Section [@])

Identifying antecedent business case risks that can pose threats to subsequent
requirements efforts provides the RE practitioner the opportunity to mitigate
these risks in a context-appropriate manner. To a degree, this work builds upon
the work of Boehm [2] wherein he explicitly includes business case analysis as
one of the seven key elements in value-based software engineering and also builds
upon the work of Aurum and Wohlin who promoted better alignment of tech-
nical decisions with business strategy [3]. Our in-depth analysis of the risks at
the interface between BA and RE, supported by significant industry-grounded
empirical evidence, provides evidence-based support of the need for business case
analysis and alignment with business strategy.

Contribution: This work provides three principal contributions toward risk iden-
tification and mitigation in RE practice. First, we contribute a post-mortem
analysis of the CASECO new product development program (composed of three
in-depth reviews with internal and external stakeholders and 10 shallower reviews

Risk Identification at the Interface between Business Case and Requirements 255

engaging internal stakeholders only). We provide evidence for necessitating that
requirements engineers review the antecedent business case analysis upon which
they should, in part, base their work.

Secondly, we provide support for due diligence efforts in the requirements
process, at least in the context of new products and services, in the form of
numerous questions that can be used as a basis for a risk identification checklist.
The risks are grouped into eight categories and these categories have minimal
overlap with those identified by [4], significantly extending the available practical
guidance for risk management.

Thirdly, given that identifying the bounds on the commercial value of a given
project is a critical element of the business opportunity assessment, we pro-
pose the use of Fermil approximation techniques [5] as a low-cost approach to
performing this assessment of commercial viability.

Outline: In Section 2l we discuss related work, in Section Bl we present the study
description and in Section [l the methodology followed. Our analysis and results
are presented in Section [B] and risk mitigation via commercial viability assess-
ment approximation is presented in Section[fl A short discussion is presented in
Section [followed by the conclusions and directions for future work in Section 8l

2 Related Work

Several researchers have stressed the necessity for more interaction between busi-
ness analysis and requirements engineering. Bubenko [0] states that most require-
ments problems can be traced to a lack of appreciation of their importance at
the business management and I'T management levels. Despite this rather early
recognition (1995) of a strong link between requirements engineering and busi-
ness management, the effects of a business casdq on requirements engineering
efforts seems to be under-represented in the literature. Among available studies,
Gulla [§] discussed challenges of business modeling in re-engineering projects
while Farbey [9] proposed a new design for a software supply chain, heavily in-
fluenced by the business perspective. Arao et al. [I0] proposed a process where
business requirements and system of software requirements are integrated in one
information model and thus create a ‘to-be’ process. Lehtola et al. [I1] proposed
using roadmapping to link the business case to requirements engineering efforts
while Monteiro et al. [12] proposed techniques for improved requirements sharing
and requirements engineering collaboration, a possible solution to some of the
communications challenges observed in this work.

! Fermi estimation is used to make high-quality estimations about the order of mag-
nitude of a problem or, in the context of this paper, business opportunity. The
technique enables surprisingly correct estimates, often within an order of magnitude
of the exact answer, even for complex calculations with little available data.

2 A business case captures the reasoning for initiating a project or task and should
show how the decision will alter cash flows over a period of time, and how costs and
revenue will change [7].

256 D. Callele, B. Penzenstadler, and K. Wnuk

Gordijn et al. [13] proposed using goal-oriented requirements engineering meth-
ods to better understand business goals. Wegmann et al. [14] stressed that early
phases of requirements engineering in an IT system should be aligned with the
business imperatives of the organization. Karagiannis et al. [I5] presented a
business-process based solution that assists requirements reporting based on
core business processes supporting our claim for the need for greater collabo-
ration between business analysis and requirements engineering. Finally, Wever
and Maiden [I6] investigated the barriers that business analysts perceive as
hindering effective requirements work in business-oriented projects finding that
there are mismatches and disconnects in training, application and recognition of
the critical nature of the business analysis and requirements efforts from upper
management to the project team.

Ropponen and Lyytinen empirically confirmed that using risk management
methods improves system development performance [I7]. A literature review by
Lyytinen and Hirschheim [I8] derived twelve categories for the reasons for IS
failures. Lyytinen et al. [I9] presented a framework for managing software risks
that combines behavioral and organizational models, suggesting that risk man-
agement should be the responsibility of all team members. Palmer and Evans [20]
proposed a method for quantitative identification and extraction of requirements-
based software risk metrics throughout the requirements engineering life cycle.

Collectively, these works analyze facets of the interaction between the busi-
ness perspective and the production perspective. However, none of them have
analyzed an industrial postmortem review of a significant number of projects
for contributions to requirements engineering practices. Analyzing projects after
they fail is an important contribution, providing evidence that some risk factors
are realized when appropriate counter measures are not taken.

3 Study Context Description

The study was performed at CASECO, a 25-year-old Information and Commu-
nications Technology (ICT) sector company with locations in five different cities
spread across three jurisdictions. Each location has permanent employees, con-
tract employees and interns (both student and professional). The management
structure is hierarchical on the organization chart but is relatively flat in practice
— senior management and junior management interact in an informal manner.
CASECO was chosen for this study because: (1) they were performing their
own in-depth post mortem study, (2) they were involved in a large number of
related projects, undertaken with a diverse set of clients, and (3) the researchers
were granted access to the internal information. The diversity of the clients
improves the probability that the results can be generalized given that this is
not a study of a single commercial entity. While CASECO is a common factor
across all projects, they were a service provider and not the project driver.

Risk Identification at the Interface between Business Case and Requirements 257

Servicg/Fees

CASECO

Goods\and Services Goods ang Services

Customers

Fig. 1. CASECO operating environment

CASECO is a not-for-profit economic development organization whose goal is
to accelerate the technological and business growth of Small and Medium sized
Enterprises (SMEs) throughout the operating region. This growth is achieved
by making in-kind investments of highly skilled manpower on specific projects
done in partnership between CASECO and the client, appearing to a typical ob-
server as some form of consulting service arrangement. Clients are of two types
(see Figure [I). Major Clients pay a significant retainer fee to ensure access to
CASECO services and to have a voice in determining the CASECO operating
mandate. Minor Clients interact with CASECO on a fee-for-service basis wherein
work performed for the Minor Client is subsidized as part of the not-for-profit
economic development mandate. Both Major Clients and Minor Clients can have
customer-client and client-customer relationships. Further, both classes of clients
have customers to whom they provide goods and services in exchange for rev-
enue. However, in the context of the current work the Minor Client can only
access the Customer via the Major Client. Given CASECQ’s economic develop-
ment mandate, each client project is expected to have clear commercialization
objectives, set and controlled by the client, with responsibility and authority
resident within the client organization.

A 2.5-year targeted R&D program was undertaken by CASECO in response
to the complete replacement, with a new technology, of a fundamental platform
used by the Major Clients to provide services to their Customers across a large,
geographically dispersed serving area. During this period, approximately 10
person-years of effort (in total) were invested in three (relatively large) projects
that were taken from product concept to the pre-production prototype stage.
One of the three large projects had both Major Clients and a Minor Client
while the remaining two large projects only had Major Clients. One of the three
large projects was the design and implementation of a multi-jurisdictional de-
velopment environment for the new fundamental platform. The development
environment was commissioned under the assumption that the Minor Clients
would use it to develop products and services that met the wants and needs of
the Customers of the Major Clients. In addition, approximately two more person

258 D. Callele, B. Penzenstadler, and K. Wnuk

years of effort were invested in 10 relatively small projects where a product or
service concept was taken to the early prototype (proof-of-concept) stage. All of
the early prototypes were sufficiently advanced that they could be placed before
the end customer for market-based feedback.

Several RE techniques such as elicitation sessions, triage, prioritization and ne-
gotiation were used to define the functional requirements for each project (large
and small) and every technical deliverable (software or hardware artifact) was
considered successful. However, none of the projects moved beyond the identified
stages and into production or commercialization. As products, every project was
a commercial failure despite meeting the technical requirements for the project
(as prototype or proof-of-concept).

4 Research Methodology

This paper reports on a case study that investigates an authentic [21] and sig-
nificant [22] topic heavily grounded in industrial practice. A case study strategy
is necessary to study phenomena in their natural context such as software en-
gineering processes [22], facilitating our understanding of the complexity of the
analyzed problem rather than abstracting from it [23]. In the paper at hand,
an explanatory, curiosity-driven approach [24] was taken, principally employing
qualitative methods for data gathering, focusing on risk identification (rather
than risk mitigation) under the assumption that mitigation can only follow after
identification and comprehension.

Brainstorming, problem identification, goal and research
PHASE 1 question development
Projects CASECO-internal analysis Postmortem
(no commercial
PHASE 2 success) Interviews Report

External analysis (3 reviewers, 1 internal and 2 external)

Consolidation identification Analysis discussion

Fig. 2. Study Process

The case study was performed in three phases, see Figure[2l In the first phase,
brainstorming and analysis of related work were applied in order to identify
the scope and research focus of the study. Next, 13 projects were selected for
analysis. Based on the results of the analysis, three projects were further analyzed
during phase two interview sessions. In the third phase of the study, the results
from previous steps were analyzed for specific evidence of the practices that RE
practitioners could use to mitigate the observed risks or failures.

Risk Identification at the Interface between Business Case and Requirements 259

4.1 Phase 1: Problem Identification

The first phase of the study was triggered by the following phenomenon: all of the
reviewed projects at CASECO failed to make the transition to commercialization
despite using appropriate RE techniques and providing satisfactory deliverables.
Motivated by this observation, the research team gathered and brainstormed
about possible reasons for the phenomenon generating two research questions:

RQ1: What are the risk factors identified in the postmortem analysis effort
that exist at the interface between the business case and the software
requirements? (Section [

RQ2: Are there mitigation techniques already available at CASECO that
could be used to mitigate one or more of the risk factors? (Section [G])

The research team decided to use multiple sources of evidence during the investi-
gation by using interviews and analysis of work artifacts for data collection [25],
both set within a pragmatic research stance [26].

4.2 Phase 2: Project Analyses

The set of 13 CASECO projects was reviewed by a post-mortem team com-
posed of one executive, two business analysts, one combined business analyst
and requirements engineer, two senior technology staff and one external consul-
tant. The projects were selected for review based on their cost, complexity and
importance to the internal and external stakeholders. Next, we performed both
in-depth reviews within each project followed by a comparative review across
the projects investigated for the post-mortem report to identify the risk factors
to RE practice and their origins.

The review then focused on the three large projects (selected from the set
of 13 projects), performing a series of interviews with developers and customer
representatives. The interviews all followed the same format: a semi-structured
interview consisting of an initial free-form discussion, followed by a structured
interview session in which standardized questions were raised with the partici-
pants. The questions addressed issues of product definition, market requirements
and shifting market forces, stakeholder identification and communication, prod-
uct and project management and general feedback. After the initial responses
were recorded, participants were asked to explicitly identify what went right and
what went wrong in each of the question areas. Scribing services were provided
by CASECO and meeting notes were provided to interviewees for review and
corrections fi

The interview matrix is presented in Table [l Each interview session has a
unique identifier A through K. There are two types of CASECO interviews. The
first set of interviews (G, H, J) were held with the CASECO team members
directly respounsible for the project. The second (shared) letter (K) denotes a

3 The anonymized interview questions are available for download at
http://www4.in.tum.de/~penzenst/sources/caseco-interview.pdf

http://www4.in.tum.de/~penzenst/sources/caseco-interview.pdf

260 D. Callele, B. Penzenstadler, and K. Wnuk

series of group interviews wherein all CASECO team members participated. In
all interviews but (K), the interviewees always had direct experience with the
subject of their specific interview. During the (K) interviews the CASECO team
members were invited to provide feedback on challenges experienced by the 10
proof-of-concept projects — each of the projects had some, but not all, of the
CASECO team members on the development teams. The analysis showed that
the challenges experienced by the proof-of-concept projects were effectively the
same as the challenges in the large projects. If this observation can be generalized
beyond this study by further work then we have identified an important pattern:
If challenges in proof-of-concept projects are highly similar to the challenges if
large-scale projects then consistently performing a proof-of-concept project as a
precursor to a large project could result in significant risk reduction for the large
project. Further, if the business case analysis antecedent requirement generalizes
beyond this study then RE practitioners have another significant risk mitigation
tool available.

Table 1. Interview Matrix

Project 1 Project 2 Project 3
Customer Client Ecosystem
Product Product

Major Client 1 A E

Major Client 2 B E

Major Client 3 D E

Minor Client 1 C

Third Party F

CASECO G H J

Proof-of-concepts K K K

4.3 Phase 3: External Analysis

After the interviews were completed, CASECO stakeholders were asked to for-
mulate business rules and business policy guidance to be used to determine
potentially viable commercialization paths for new products and services. The
business models were generated and evaluated and conclusions presented to man-
agement.

Each of the three authors then independently performed a review of the ma-
terial in the post-mortem report to extract the identified failure modes. These
failure modes were translated into risks and the results are presented in the
next section. In each instance, we can identify risks that occur outside of an RE
practice that is focused on products and/or services — yet have the potential to
have significant negative impacts upon RE and subsequent development efforts.
In most instances, these risks are related to business case elements that should
have been considered, either by the stakeholders or by the RE practitioner(s).

Risk Identification at the Interface between Business Case and Requirements 261

4.4 Pragmatic Reflection on Commercialization Failure

Due to commercial confidentiality constraints, we can only provide a high-level
of our observations of specific details regarding the root causes for commercial-
ization failure. The project proponents, particularly the Major Clients, expected
that the technology platform shift would enable a diverse third-party application
market much like that which has developed around smartphones. Unfortunately,
numerous issues arose. First, the customer willingness to pay was not prop-
erly evaluated; the market segmentation analysis was weak and assumed that
customer behavior on the prior platform would be an adequate predictor of cus-
tomer behavior on the new platform. This issue was compounded by inadequate
analysis of the commercial viability of Minor Clients developing third-party ap-
plications and subsequent analysis showed that the revenue streams for these
applications were inadequate to sustain a commercially viable business in this
market. As a result, those Minor Clients that did succeed in entering the market
place were soon in financial difficulty because the customer uptake was smaller
than anticipated. While all of the products could be interesting incremental rev-
enue streams for an existing player (perhaps acting as market differentiators or
barriers to competitive market entry), none of them were large enough to sustain
a new business venture.

5 Analysis and Results: Identified Risks

We present here the eight identified cross-project risks (R1-R8) together with
short questions formulated based on the reviewed evidence, abstracted to generic
forms. These questions are consistent with those used in business case analy-
sis [27] and can be used as the basis for a risk identification checklist supporting
practitioner due diligence efforts. For example, we ask ‘Is there a product cham-
pion?’ as a succinct alternative to ‘A product champion advocates on behalf of
the project and often assumes the role of the project leader. The lack of a clear
product champion can lead to issues such as...’

To be identified as a risk, the authors had to agree that there was evidence of
that risk in at least two of the projects in the post-mortem report. The categories
for the risks were determined by the authors using an affinity grouping technique
and the fact that the risks are present in all projects may be because all of the
projects were performed with CASECO as part of the team

R1 Motivation: Projects without strong motivation or strong champions have
a significantly greater risk of failure.

Question checklist: Is there a product champion? A pain point that is moti-
vating the stakeholder, e.g., customer dissatisfaction? A pleasure point that is
motivating the stakeholder, e.g. significant revenue? Is the project interesting or
boring to upper management? Is the project a cost center or a revenue center?
Is the motivation for pursuing the project emotional, e.g., positive or negative,
rational, e.g., participate in standards efforts, or business or some combination
thereof?

262 D. Callele, B. Penzenstadler, and K. Wnuk

R2 Time and Schedule: Companies that operate on significantly different
timelines, such as great disparities in the required time to take a product concept
to commercialization, have difficulty working together.

Question checklist: Are all parties, vendor and customer, moving to the same
timelines, toward the same product release schedule? Are the priorities relatively
consistent for all parties? Can the Minor Client survive when working on the
schedule of a Major Client?

R3 Constraints: Business constraints such as supplier qualifications, years in
business, capitalization, etc. are often not apparent to the RE practitioner.
Question checklist: Are the non-functional, non-technical constraints clearly iden-
tified? Have the constraints been thoroughly investigated?

R4 Customer: Many entities, particularly startups, still operate under beliefs
about their customer and target market rather than facts.

Question checklist: Is there evidence of willingness and ability to pay (at a price
point that makes the project ROI attractive)? Can a sale be closed at the concept
stage or does it require a proven product? Is the cost of access to and engagement
with a customer known? Is the cost of sales and distribution known? What is the
total number of possible customers for this project? What share of the market
can this project reasonably acquire?

R5 Stakeholder (management): A strong primary stakeholder who is a firm
supporter of a project (perhaps dominating meetings, etc.) can conceal a lack of
general support from other stakeholders.

Question checklist: What is the confidence level that all significant stakehold-
ers have been identified? Does the project rely upon proxy stakeholders rather
than direct engagement with the real signing authorities? Are the levels of risk
tolerance (or aversion) known for each stakeholder?

R6 Competition: Assessment of threats from alternative technology solutions
that also meet the same market need is often outside of the competency of busi-
ness analysts and is not typically the responsibility of the RE practitioner.
Question checklist: Are the stakeholders potential internal or external competi-
tors? Are there hidden requirements, hidden agendas? (For example, projects
with stakeholders from multiple organizations may not reveal their real require-
ments or may reveal only a subset of their requirements.) Is there a mechanism
to force resolution of outstanding issues? Does the project have the ability (suffi-
cient time and resources) to respond to competitive threats? Is the technology a
commodity or are there non-trivial barriers to market entry? Is there a significant
technology bypass threat?

R7 Value proposition: Scenarios where a Minor Client relies upon a Major
Client to access the customer (i.e. a supply chain) have many potential levels of

Risk Identification at the Interface between Business Case and Requirements 263

indirection. The RE practitioner should ensure these have been identified and
resolved.

Question checklist: Are all stakeholders using consistent revenue, expense, and
ROI models? Have these models been reviewed or validated? Do all sharehold-
ers share (approximately) consistent expectations regarding time-to-market and
time-to-revenue?

R8 Communication: Significant size differences between parties can lead to
communications challenges as they use the same domain specific terminology
but in different contexts.

Question checklist: Do the project participants vary greatly in size? Is negotiation
proceeding smoothly or does every point require significant discussion?

6 Risk Mitigation via Commercial Viability Assessment
Approximation

Given the results of the postmortem review, we believe that there is substan-
tial empirical industrial evidence that new product development efforts should
have, as an antecedent, a sufficiently complete business case analysis before RE
efforts begin. A prudent RE practitioner can mitigate risks by first checking for
the existence of the business case and then performing a critical review of this
information. If the project is an internal development effort that may not have
a formal (or informal) business case, the RE practitioner can check to ensure
that stakeholders, business goals and project authority (to start, stop and deem
complete) have been properly identified. If there are concerns, the practitioner
should be able to turn to the project authority for resolution.

However, appropriate resources may not always be available and the RE prac-
titioner may have to extend themselves toward the role of the business analyst.
We recognize that RE practitioners may not feel comfortable in this role and
we would expect the project leader(s) (if they are not the RE practitioner) to
assume this responsibility when necessary. We propose the use of Fermi approx-
imation techniques [5] as a low-cost risk mitigation technique in this scenario.
The technique can be applied by any team member and CASECO has success-
fully used Fermi estimation techniques in other projects not investigated in this
paper. We demonstrate the application of this technique to commercial viability
assessment in the rest of this section.

Commercial viability assessment is an investigation of project ROI. An esti-
mate for (probable) upper revenue bounds for the initial stages of market intro-
duction (e.g. one to three years) are combined with the estimated cost of market
entry to determine whether the project should be pursued. Fermi approximation
techniques (dimensional analysis — what factors dominate the results, bounds
identification — how large or small can these factors be, and domain appropri-
ate estimates of probable values within the bounds — using results from similar
products) can be used to identify a reasonable upper bound on market value.
If insufficient market value is identified then management can support a project

264 D. Callele, B. Penzenstadler, and K. Wnuk

cancellation order. However, a finding of sufficient market value does not neces-
sarily mean that the project should proceed — further analysis of market share
is required.

To use Fermi approximation techniques to determine commercial viability the
practitioner needs to know (typically readily available) demographic information
to determine the maximum number of possible customers. The total market size
is then discounted to reflect realistic market penetration within the period of in-
terest. The form of the market must then be determined (or assumed) to form the
basis for estimating market share. We estimate the number of competitors in the
market (n) — where the market is one of monopoly (100%), dominant oligopoly
(50% + 50%/n), oligopoly (100%/n, n is small) and commodity (100%/n, n
is large). Then, estimate customer willingness and ability to pay and perform
a comparative analysis with like products to estimate product retail pricing.
Finally, identify the elements of the distribution channel and apply industry
standard margins to estimate gross unit revenues.

Given these estimates, the RE practitioner can calculate the gross revenues
that the project can expect to generate over the first year to three years —
CASECO experience with other projects indicates that the utility of the ap-
proximations is in the range of one to three years. Given that the team is about
to embark upon building the product they should have reasonable quality esti-
mates of the cost of development and the cost of production. (If the team does
not, this is another danger sign with respect to due diligence). Given revenue
and expenditure estimates, estimated ROI can be calculated in a straightforward
manner and management should be able to determine project viability.

7 Discussion

The post-mortem analysis clearly identified the need to modify CASECO busi-
ness processes to ensure the commercial viability of future projects. While it
is easy for RE practitioners to say that the CASECO business process failures
were obvious, and directly led to the project failures, the post mortem report
leads us to ask whether RE practitioners have a responsibility to look beyond
the technology artifact and consider the underlying business case. While we do
not feel it is reasonable for management to hold RE responsible for errors in the
business case perhaps there is a requirement for RE due diligence for validation
of the business case for existence, accuracy and completeness. A due diligence
effort by an RE practitioner (see Section[d) could have caught the business case
issues and driven some form of project redefinition, perhaps even cancellation.
It is possible that greater familiarity with project management [28] and business
analysis [27] practices would provide greater practice scope for RE practitioners
and may even improve practice reliability with knowledge of these domains.
Many of the risks presented in Section [are associated with a lack of valid
information upon which to make an appropriate business decision. Further, these
business decisions are often decisions as to whether to continue or cancel a
project. For example, consider the scenario where the business case contains

Risk Identification at the Interface between Business Case and Requirements 265

an inadequate investigation of the potential size of the market, failing to iden-
tify the portion of the market that the project may be reasonably expected to
capture given the other elements of the business case. A due diligence process
performed by the RE practitioner could include a check that the market inves-
tigation has been performed and that the validity of the market investigation
has been assessed and agreed to by a second (or third) party. This due diligence
effort could be used, for example, to justify stopping a development effort be-
fore significant resources are invested in developing a product for a market that
may or may not exist. In this scenario, the requirements practitioner acts as a
significant crosscheck for business process integrity.

In each project within the program review, this study can identify evidence
that an appropriate commercial viability assessment was not performed. If the
requirements effort had the performance of a commercial viability assessment, as
a necessary precondition, the results might have been very different: the earliest
projects undertaken would have identified the lack of commercial viability and
the entire program might have been canceled much earlier (with the resulting
savings to CASECO). Alternatively, if the RE practitioners had been familiar
with the Fermi techniques described above they may have been able to perform
the commercial viability assessment themselves.

While a rigorous determination of the root causes for the individual project
failures is outside of the scope of this work, we emphasize that we found no evi-
dence that the requirements engineering tasks within the analyzed projects were
not performed as expected. Further work to strictly identify the root cause(s)
for project failure is indicated.

Practitioners must be cognizant of the challenges and risks when performing a
commercial viability bounds assessment on a project. Applying these economic
constraints when exploring business systems, particularly at the early stages,
can lead to projects being unnecessarily terminated if there is too much feed-
forward of existing business constraints. RE practitioners must remember that
a business case is not a guarantee of commercial viability (or vice versa). For
example, commercial viability assessment of dramatic innovations such as the
smartphone is difficult and there may be significant disagreement regarding the
probability of success. A checklist as we have proposed is useful in gathering
evidence but is not a replacement for sound judgment.

Techniques that may be used to mitigate risks identified in this work include
Fermi approximations for commercial viability assessment, more thorough iden-
tification of stakeholders and their roles (e.g. funding, adoption), expanded range
of use-cases and scenarios, and mechanisms to help practitioners decide whether
the RE phase of the project should even be undertaken.

Study Limitations and Threats to Validity: We discuss the limitations of the
study based on the classification proposed by Yin [2I]. To ensure construct
validity, we used multiple sources of evidence while deriving presented risks.
We confirmed subjective judgments from the interviews with the results from
the project material reviews. The semi-structured form of interviews allowed

266 D. Callele, B. Penzenstadler, and K. Wnuk

investigators to ask follow up clarification questions. Finally, observer triangu-
lation was used to minimize transcription and interpretation errors.

The exploratory nature of the study implies that threats to internal validity
associated with causal relationships are not applicable in our case [2I]. Further,
the phenomena were observed in an unobtrusive way. The reviews were done by
an independent, passive observer during the analysis phase. To ensure reliabil-
ity [21] of the study we created a case study protocol and stored all documents
associated with the study in a repository, ensuring that the results can be traced
to the supporting empirical evidence.

With respect to external validity, we are aware that the study involves only
one case company, raising concerns about our ability to generalize the results.
Thus, the results should be interpreted with the case company context in mind.
However, the CASECO company operates somewhat independently in three op-
erating jurisdictions with significant client diversity by region, operations and
size. Moreover, this case study is focusing on explaining or understanding a phe-
nomenon in its natural setting. Thus, the attempt to generalize from the study
is outside of the scope of this work [22].

8 Conclusions and Future Work

This paper provides an analytic review of a post-mortem analysis of the new
product development program at an industrial partner. The post-mortem anal-
ysis was composed of three in-depth reviews with internal and external stake-
holders (including interviews with developers and customer representatives) and
10 shallower reviews engaging internal stakeholders only. The analysis of the
collected empirical evidence identified risks on the interface between RE and
business analysis, particularly commercial viability assessment and competitive
threat assessment.

Both research questions posed herein were answered in the affirmative with the
results presented in SectionBland Sectionfl These results argue for more rigorous
reviews of the business case by the requirements engineers when beginning their
work on a project. The value-neutral perspective of many RE practices [3] can
lead to a solution that meets the requirements but prioritizes aspects other than
those present in the business case — especially if the requirements are derived
without an antecedent business case. We have shown in this work there are many
risks that can result, risks that can lead to commercial project failure. This study
provides a checklist of questions in support of the business case review activities
and we promote Fermi approximation as useful tool in support of these review
activities.

This work demonstrates the need for a future investigation of the overlap be-
tween the role and responsibility of the business analyst and the requirements
engineer, both in theory and in practice, to ensure that boundary risks are min-
imized. Further analysis of the costs of business case analysis compared to the
risks of pursuing projects without due diligence is needed. How much analysis
is “just enough?” We only mention the identification and exploration of poten-
tial business models as part of the post-mortem process. Our observations of

Risk Identification at the Interface between Business Case and Requirements 267

these business models show intriguing results: including the elaboration of the
business models as part of the requirements process could lead to serendipitous
discovery of alternatives. Further investigation is indicated. CASECO will be
revisited to determine whether they have been able to successfully modify their
business processes in response to the postmortem report. If so, what have the
modifications been? If not, what factors kept CASECO from making a successful
transition?

Acknowledgements. The authors would like to thank Daniel Mendez for help-
ful feedback on an earlier version of this paper. This work is partly funded
by the SYNERGIES project, Swedish National Science Foundation, grant
621-2012-5354.

References

1. de Marco, T.: All late projects are the same. IEEE Software, 102-103 (2012)

2. Boehm, B.: Value-based software engineering. ACM Software Engineering Notes 28,
1-12 (2003)

3. Aurum, A., Wohlin, C.: A value-based approach in requirements engineering: Ex-

plaining some of the fundamental concepts. In: Sawyer, P., Heymans, P. (eds.)

REFSQ 2007. LNCS, vol. 4542, pp. 109-115. Springer, Heidelberg (2007)

Hughes, B., Cotterell, M.: Software Project Management. McGraw-Hill (2009)

5. Weinstein, L., Adam, J.A.: Guesstimation: Solving the World’s Problems on the
Back of a Cocktail Napkin. Princeton University Press (2008)

6. Bubenko, J.: Challenges in requirements engineering. In: Proc. Second IEEE Int.
Symposium on Requirements Engineering, pp. 160-165. IEEE Press (1995)

7. WebFinance, Inc.: Definition by Business Dictionary: Business Case (2012)
http://www.businessdictionary.com/definition/business-case.html

8. Atle Gulla, J., Brasethvik, T.: On the challenges of business modeling in large-
scale reengineering projects. In: Proceedings of the 4th International Conference
on Requirements Engineering, pp. 17-26 (2000)

9. Farbey, B., Finkelstein, A.: Software acquisition: a business strategy analysis. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engi-
neering, pp. 76-83 (2001)

10. Arao, T., Goto, E., Nagata, T.: ”business process” oriented requirements engi-
neering process. In: Proceedings of the 13th IEEE International Conference on
Requirements Engineering, pp. 395-399 (2005)

11. Lehtola, L., Kauppinen, M., Kujala, S.: Linking the business view to requirements
engineering: long-term product planning by roadmapping. In: Proceedings of the
13th IEEE Int. Conference on Requirements Engineering, pp. 439-443 (2005)

12. Monteiro, M., Ebert, C., Recknagel, M.: Improving the exchange of requirements
and specifications between business partners. In: 17th IEEE International Confer-
ence on Requirements Engineering, RE 2009, pp. 253-260 (2009)

13. Gordijn, J., Petit, M., Wieringa, R.: Understanding business strategies of net-
worked value constellations using goal- and value modeling. In: 14th IEEE Inter-
national Conference on Requirements Engineering, pp. 129-138 (2006)

14. Wegmann, A., Julia, P., Regev, G., Perroud, O., Rychkova, I.: Early requirements
and business-it alignment with seam for business. In: 15th IEEE International
Conference on Requirements Engineering, RE 2007, pp. 111-114 (2007)

=

http://www.businessdictionary.com/definition/business-case.html

268

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

D. Callele, B. Penzenstadler, and K. Wnuk

Karagiannis, D., Mylopoulos, J., Schwab, M.: Business process-based regulation
compliance: The case of the sarbanes-oxley act. In: 15th IEEE International Con-
ference on Requirements Engineering, RE 2007, pp. 315-321 (2007)

Wever, A., Maiden, N.: What are the day-to-day factors that are preventing busi-
ness analysts from effective business analysis? In: 2011 19th IEEE International
Requirements Engineering Conference (RE), pp. 293-298 (2011)

Ropponen, J., Lyytinen, K.: Can software risk management improve system devel-
opment: an exploratory study. European Journal of Information Systems 6, 41-50
(1997)

Lyytinen, K., Hirschheim, R.: Oxford surveys in information technology,
pp. 257-309. Oxford University Press, Inc., New York (1987)

Lyytinen, K., Mathiassen, L., Ropponen, J.: A framework for software risk man-
agement. Scandinavian Journal of Information Systems 8, 53-68 (1996)

Palmer, J., Evans, R.: Software risk management: requirements-based risk met-
rics. In: 1994 TEEE International Conference on Systems, Man, and Cybernetics,
Humans, Information and Technology, vol. 1, pp. 836-841 (1994)

Yin, R.: Case study research: Design and methods. Sage Publications (2008)
Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley (2012)

Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering 25, 557-572 (1999)

Robson, C.: Real World Research. Blackwell Publishing (2002)

Lethbridge, T., Sim, S., Singer, J.: Studying software engineers: Data collection
techniques for software field studies. Empirical Software Engineering Journal 10,
311-341 (2005)

Easterbrook, S.M., Singer, J., Storey, M., Damian, D.: Selecting Empirical Methods
for Software Engineering Research. In: Guide to Advanced Empirical Software
Engineering, pp. 285-311. Springer (2007)

Brennan, K.: A Guide to the Business Analysis Body of Knowledge (Babok Guide).
International Institute of Business Analysis (2009)

Project Management Institute: A Guide To The Project Management Body Of
Knowledge (PMBOK Guides). Project Management Institute (2008)

Analyzing an Industrial Strategic Release Planning
Process — A Case Study at Roche Diagnostics

Gabriele Zorn-Pauli', Barbara Paech!, Tobias Beck!,
Hannes Karey?, and Guenther Ruhe?

! University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{zorn-pauli,paech}@informatik.uni-heidelberg.de,
tobias.beck@stud.uni-heidelberg.de
2 Roche Diagnostics GmbH, Sandhofer Strasse 116, 68305 Mannheim, Germany
hannes.karey@roche.com
3 University of Calgary, AB T2N 1N4, Canada
ruhe@ucalgary.ca

Abstract. [Context and motivation] Strategic release planning (SRP) for a glob-
ally used information system is a challenging task. Changes to requirements on
different abstraction levels are arriving continuously and have an impact on long-
term selected features. [Question/problem] The major question is how to suc-
cessfully do SRP to create competitive advantage. [Principal ideas/results] An
exploratory case study in an industrial context was conducted (1) to get a deeper
understanding of the as-is SRP process in practice, (2) to evaluate the suitability
of a to-be SRP process, introducing the EVOLVE II method and corresponding
ReleasePlanner tool and (3) to gather additional requirements for the to-be SRP
process, with respect to feature generation and feature selection. [Contribution]
In this paper we describe the case study and present lessons learned to improve
and customize a SRP process in practice. In particular, we propose the Require-
ments Abstraction and Solution Model (RASM) to support feature generation.

Keywords: strategic release planning, product roadmapping, long-term feature
selection, feature generation, requirement abstraction, decision-support.

1 Introduction

Software release planning focusses on the decision which features to assign to which
consecutive future product releases. Strategic release planning (SRP), also called re-
lease roadmapping, is used to link business or organizational strategies and solution
planning to support long-term product feature selection [[I1]. For this, SRP aims at
long-term feature assignment to subsequent releases fulfilling technical, resource, risk
and budget constraints [12]. Compared to SRP, operational release planning focuses
only on the development of the next software release, planning the implementation of
the identified features [[1]].

More and more demanding customer needs in a volatile and globally operating busi-
ness environment require more agility with respect to strategic product planning [19].

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 269-284] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

270 G. Zorn-Pauli et al.

Therefore, to be successful in the future an integrated approach for strategic decision-
making, requirements management, and roadmapping processes is required [14]. SRP
has to cope with unclear or high-level business requirements and continuously arriving
changes to requirements on different abstraction levels that have an impact on existing
release plans. Furthermore, competitive customer needs and varying implicit multiple
feature selection criteria make SRP difficult. Additionally, the need of considering rele-
vant changes faster increases the complexity of the SRP decision-making process. Since
the feature concept is most often used for SRP purpose, the SRP process in practice is
characterized by two major decision-makings: (a) feature generation, means bottom-up
bundling of requirements on a lower abstraction level into features or top-down di-
viding business or organizational strategies into features, (b) feature selection, which
means assigning features to subsequent releases based on multiple selection criteria.

In academia several SRP processes exist, where the planning item (e.g. feature)
generation is neglected and planning item backlogs and corresponding requirement
engineering tasks are taken for granted. Lethola et al. [12] states that the roadmap
preparation process for release roadmaps consists of the following four steps: data col-
lection, feature prioritization, release planning, and release roadmap validation, where
the feature generation task is not addressed. Van de Weerd et al. [21] provide a reference
framework for software product management, where release planning and requirements
engineering are identified as separated key process areas. Therefore, product release
planning starts with requirement prioritization. Svahnberg et al. [20] conducted a sys-
tematic literature review on strategic release planning processes, where all found pro-
cesses focus on the requirement selection task. However, the feature generation task in
practice is an essential part of the SRP process since features are generated in practice
top-down and bottom-up. Further, due to the growing number of requirement changes
and requirement volatility, which is reflected in the increasing adoption of agile software
engineering methods in practice, the problem of overscoping, [4] arises. This requires
the integration of strategic release re-planning decision-support to adequately adapt ex-
isting plans [9]. In particular, relevant changes to requirements on different abstraction
levels have to be identified and aggregated in existing feature structures and validated
against multiple business strategies. Currently, little is known about the application
of SRP processes in practice [19]. Additionally, there is a need for further empirical
validation of existing models in full-scale industry trials.

In this paper we report the results of an exploratory case study in industry and pro-
vide the following contributions: (1) a deeper understanding of the as-is SRP process in
practice, with focus on the feature generation and feature selection decision-makings,
(2) evaluation results on the suitability of a to-be SRP process, introducing the EVOLVE
I method [15]] and corresponding ReleasePlanner tool and (3) additionally gathered re-
quirements for the to-be SRP process with respect to feature generation and feature
selection decision support. The remainder of this paper is structured as follows: Sec-
tion 2 presents related work. Section 3 describes the case study design and how we
proceeded in the case study, while Section 4 presents the case study results. Section 5
discuss the results and presents lessons learned. Section 6 concludes the paper and gives
an outlook on future work.

Analyzing an Industrial Strategic Release Planning Process 271

2 Related Work

The ability to successfully do SRP creates competitive advantage. Selecting a subset
of requirements for realisation in a certain release is as complex as it is important for
the success of a software product [3]]. Suomalainen et al. [[19] provide new empirical
results about product roadmapping in volatile business environments, by defining main
stakeholders and their roles and by proposing a product roadmapping process frame-
work. The identified most problematic phases of the process are prioritizing features,
managing changes and maintaining roadmaps. Through an interview study practition-
ers were asked about their feature capturing methods and sources. Market trends and
standards were stated as the main feature source and the most commonly used method
for capturing features was gathering ideas over time.

Bjarnason et al. [4]] conducted an empirical interview study about the causes and
effects of overscoping, setting a release scope that is too large to deliver in time, in a
large-scale industrial setting. They identified six causes for overscoping, where for in-
stance unclear business strategies for software development and continuously incoming
requirements flow via multiple channels are stated. Danesh et al. [6] also conducted a
qualitative study to increase the understanding of software release planning challenges
in several software companies and states that unclear project objectives and frequent
change of these objectives are key factors for release planning failures. The difficulties
with linking business strategy to solution planning was reported by Komssi et al. [[11]
investigating the roadmapping process of two Finnish software product companies. An
interesting suggestion was a focus shift away from low level software feature priori-
tization to the analysis of high level customers’ business process activities. Komssi et
al. see the benefit of discovering new service business opportunities and competitive
advantage. Similar investigations according to linking product strategies are conducted
by Khurum et al. [[10] who developed a method for alignment evaluation of product
strategies among stakeholders to ensure that strategies are the basis for planning and
development of products.

In literature there are several strategic release planning processes proposed. Svahn-
berg et al. [20] provides a systematic literature review on 24 strategic release planning
processes. The results show that more than 60 % of the presented academic papers be-
long to the EVOLVE family and most of them could be applied for market-driven and
bespoke development. Svahnberg et al. also investigated the state of validation of the
SRP processes and concludes that most of the processes are validated in industry with
limited scale. An additional industrial proven release planning approach, that was not
covered by the systematic literature review, is proposed by Fricker et al. [7]]. The major
idea is to simplify release planning by utilizing feature trees to structure requirements,
instead of using flat requirements lists. The approach was also evaluated in an industrial
case study with respect to feasibility.

3 Case Study Design

In this section we provide information about the two case study objects, describing the
context of the company under consideration, the case project and the ReleasePlanner
tool.

272 G. Zorn-Pauli et al.

3.1 The Case Company

The case study was conducted in the context of a globally operating company in the
health care domain that develops in-house a bespoke and globally used Customer Re-
lationship Management (CRM) system. The case study aims at investigating the SRP
process of a CRM subsystem called Global Deal Calculation (GDC), that implements
parts of the Contract Life Management cycle. Agile software development methodolo-
gies and in particular the Scrum framework is used to incrementally develop the GDC
subsystem by releasing two minor releases and several patches per year and a major
release every three to four years. Due to the adoption of agile development methods
the release cycles are partitioned into several iterations. That facilitates communication
and negotiation possibilities with the stakeholders after every iteration to adapt existing
release plans. An issue tracking system is used to submit requirements, such as bug,
change or features requests to the development team. As the number of iterations is
varying, the release duration also varies. The company is already in a transition to adapt
agile software development practices such as Scrum and not all projects are done in an
agile manner. Project management and release roll-outs are still conducted plan-driven,
which causes a mix of agile and plan-driven elements. Additionally, not every release
version is consumed by all company sites countries, because a roll-out project causes
high testing and training effort.

The GDC system is used by different, geographically distributed company sites and
corresponding country business units. Primarily, GDC is globally developed, providing
standardized functionality, that is used by all countries, but is implemented locally by
providing additionally country specific functionality. Since the number of GDC con-
sumer countries is growing up to 17 countries in the future, the complexity of link-
ing multiple country strategies to system solution planning requires a systematic SRP
method. Some specific challenges of the company, like planning a bespoke and globally
used information system considering multiple business strategies, have already been
presented in [23].

Several stakeholder boards or teams on different management levels involve IT and
business representatives for SRP. The Change Advisory Board (CAB) reviews and pro-
poses the project portfolio and major release changes. CABs are also responsible for
decisions and prioritization of changes that have been escalated by the Change Man-
agement Teams. The Change Management Team (CMT) is the global business process
owner and prioritizes business requirements, reviews projects and budgets, makes trade-
off decisions, discusses strategic and escalated operational issues. The Iteration Review
Group (IRG) is responsible for the operational release planning by reviewing and ap-
proving planned iterations of the current release. The IRG involves also CMT members
and the product owner who is primarily responsible for generating and managing release
plan proposals. In general, strategic release plan relevant changes on corresponding fea-
ture sets are welcome to decrease reaction times on changing business or organizational
needs to benefit from IT-enabled competitive advantages.

Analyzing an Industrial Strategic Release Planning Process 273

3.2 ReleasePlanner Tool

The ReleasePlannetl is a proprietary, web-based process and decision-support tool. We
have chosen the ReleasePlanner, because the tool was proven successfully in about
25 industry and more than 250 academic and student projects (f.i. [[16], [3], [18]]). It
allows prioritizing release objects by multiple stakeholders against multiple criteria and
performing subsequent resource optimization to maximize the overall release value for
arelease period of typically more than just one release. The decision support process is
based on an evolutionary problem solving approach called EVOLVE 1II [15], which is
emphasizing the involvement of human experts. The approach comprises 13 different
process steps, all of them supported by ReleasePlanner. At each iteration, five optimized
and diversified planning alternatives are determined. The final decision is done based on
additional aspects such as resource consumption profiles of the proposed alternatives.
In addition, implicit concerns not being part of the explicitly formulated model are
supposed to be included by the human expert in the selection process.

3.3 Research Methodology

An exploratory case study was planned and conducted based on the guidelines for case
study research in Software Engineering by Runeson et al. [[17]]. The objective of the case
study was threefold. (1) Understanding of the as-is SRP process in practice to identify
problems and improvement capabilities for a to-be SRP process. (2) Providing a to-be
SRP process proposal adopting the EVOLVE II method. (3) Evaluation of the to-be SRP
process applying the ReleasePlanner, that implements EVOLVE II. Therefore, the fol-
lowing research questions are investigated with respect to the conducted industrial case
study. (RQ1) How is strategic release planning done in the company? (RQ2) How does
the EVOLVE Il method and corresponding ReleasePlanner cover/extend the as-is SRP
process of the company? (RQ 3) What are additional requirements for the SRP to-be
process? To answer the research questions the case study provides results on qualitative
and quantitative data. Table [Il shows the data collection strategy by illustrating which
data was collected utilizing the respective data collection method.

3.4 Threats to Validity

Threats to the validity of empirical research have to be examined during all phases of the
case study. To evaluate the validity of this case study, the validity perspectives proposed
by Wohlin et al. [22] were considered and are analyzed in the following. The threats
to construct validity are reduced by a cooperation with the industry partner over more
than a year and by reviewing the research results by the practitioners in a focus group
session and informal discussions to ensure that the studied parameters are relevant to the
research questions. Further, the threats to internal validity are reduced by triangulation
(see Table [I) over multiple empirical data sources and the combination of qualitative
and quantitative data. For instance, reflecting the as-is SRP process by a retrospective
data analysis helped to validate identified implicit feature selection criteria based on

! https://www.expertdecisions.com

274 G. Zorn-Pauli et al.

Table 1. Data source collection strategy

Method Data Source Research
Question
Archival Data Analysis Feature backlogs; meeting notes and re- RQ 1
(July-Aug 2012) lease notes of the last three GDC release
versions
. . RQ1
Observation of a requirements 12 Participants: 9 country business rep- RQ3
refinement and prioritization resentatives, product owner, Observer:
meeting (18.07.2012) first and third author
. . RQ1
Focus Group Session 5 Participants: Product Owner, IT Con- RQ2
(06.09.2012) sultant, IT Project Manager, Moderator: RQ3
first author, Observer: third author
Simulation Retrospective release planning (GDC ~ RQ2
(Aug-Sep 2012) 3.6 and 3.7) simulation using the Re- RQ3
leasePlanner

data analysis against feature selection criteria stated by the practitioners. Additionally,
the data were collected by two researchers, which reduces the risk of being biased by
one person. Finally, the threats to external validity are reduced by conducting the case
study in a real-world industrial setting. However, the external validity might be still
influenced by the studied specific context represented by the mixture of agile and plan-
driven methods.

4 Results

In this section, the results of the case study are presented. First, in Subsection [4.] the
as-is SRP process is described thus to provide a deeper understanding of the as-is SRP
process in practice (RQ1). Thereafter, Subsection[4.2]provides evaluation results on the
suitability of the to-be SRP process, introducing the EVOLVE II and corresponding
ReleasePlanner tool, are presented (RQ2). Additionally gathered requirements for the
to-be SRP process with respect to feature generation and feature selection are described
in Subsection4.3|to answer RQ3. Finally, the developed Requirements Abstraction and
Solution Model (RASM) is introduced in Subsection 4.4

4.1 Understanding the As-Is Strategic Release Planning Process

To describe how SRP is done by the company (RQ1) in general, Figure [[l outlines the
major identified SRP process elements. A heterogenous requirement pool comprises re-
quirements on different abstraction levels, where requirements and changes to require-
ments continuously arrive during the SRP process. This requirement pool is the basis
for feature generation, where this step also comprises the pre-selection of features to
scope the feature backlog. After that, the features contained in the feature backlog are

Analyzing an Industrial Strategic Release Planning Process 275

assigned to subsequent releases based on multiple feature selection criteria. The gen-
erated release roadmap proposals are basis for stakeholder negotiation and have to be
re-planned after every release iteration cycle to accommodate intermediately occurring
changes.

Support

Decision:
Feature
Generation

Heterogeneous
Requirements
Pool

Decision: Release Roadma
Feature Backlog Feature Proposal i
Selection W

seseyd 1sal

Roll-out Projects Re-planning

Fig. 1. Identified as-is strategic release planning process

Feature Generation. As mentioned above, the basis for SRP is a heterogeneous re-
quirements pool that comprises all requirements related information used for release
planning. We have used the Requirements Abstraction Model (RAM) provided by
Gorschek et al. [8] to classify the requirements of the company that are available on
different abstraction levels. The RAM was not used so far by the company for require-
ments engineering or release planning purpose. Table [2 shows sources of requirement
relevant information, provides examples and classifies the requirements according to the
RAM. The CAB is primary source for business and IT strategy concerns represented
in business cases and corresponding IT roadmaps. The CMT assigns main topics to
future releases, where main topics are used to communicate business strategies within
release roadmaps. These main topics could be understood as features and are related to
business case initiatives. The analysis of the archival release planning data showed, see
Table [that release roadmaps for 3.6 comprised only low level requirements, where
3.7 comprised a combination of high level (main topics) and low level business re-
quirements. Starting with 3.8 the feature concept, which groups low level business re-
quirements, was adopted to reduce planning complexity. The requirement abstraction
reduces communication and negotiation necessity, because only feature related changes
were communicated (e.g. recently identified features). The IRG is responsible to review
the release roadmaps after every release iteration duration (7 weeks) to discuss and ne-
gotiate changes. There are three different input channels, as shown in Figure [Il for
requirements on a lower abstraction level. During (i) roll-out projects, (ii) support and
(iii) test phases, requirements are gathered and submitted to the issue tracker system.
Features are generated top-down, derived from business case initiatives and bottom-up
by grouping low level delta requirements. Therefore, top-down features represent busi-
ness strategies, whereas bottom-up features, addressing functionality enhancements, are
bundled with respect to existing solutions.

Feature Selection. As mentioned above features are strongly connected to business
case initiatives, where the initiative priority is based on different criteria, such as reduc-
ing costs, efficiency gains or customer impact. Any changes on these priorities directly
affect existing release plans. The pre-selection criteria for scoping the release back-
log are (a) must (b) nice to have and (c) must not considering business case initiative

276 G. Zorn-Pauli et al.

Table 2. Source and classification of requirement relevant information

Source Information Type Examples RAM [§]

CAB Business Cases, Global Application Organizational Strate-
IT Roadmaps (Business Standardization gies
Case Initiatives) Provide multi-country Product Strategies

system versions

CMT, IRG Release Roadmaps Handle several coun- Product Level (goal)
(main topics) tries in one instance

Roll-out Projects, Business - Feature Level (fea-

Support, Test Requirements tures)

Phases (Bug/Change/ Func- GDC shall enable Function Level (func-
tionality Requests) multi-currency tions/actions)

- Component Level
(details-consists of)

rankings and technical feasibility. Based on qualitative and quantitative data the fol-
lowing explicit and implicit SRP selection criteria were identified. Feature priority and
implementation risk were stated by the practitioners as the determining feature selec-
tion criteria. The analysis of meeting notes, release notes and requirement documents
showed that feature priority comprises additionally the following implicit feature selec-
tion criteria.

Requirement Issuer are those countries that rise a requirement, where countries
have different priority primarily based on the revenue. In many cases requirements
are suitable for all or most of the other countries and are classified as global fea-
tures/requirements. It is a challenging task to decide which requirements are globally
suitable and which of them should be only provided in local implementations.

Release Consumer Order For any new system release a pilot country is chosen to
roll-out the new release as a first release consumer. Therefore, raised requirements of the
pilot countries are preferred, in particular requirements that aim at assuring the roll-out
of the system (e.g. interface or data migration requirements). Additionally, requirements
of consumer countries of the next release are also preferred compared to requirements
raised by countries that would not consume the current release. The results of the data
analysis and observations surfaced the following implicit feature selection criteria:

Effort Estimation There are several stages for effort estimation during release plan-
ning. For SRP purpose in some cases it is required to estimate feature effort before
solution concepts are developed. This is especially the case for top-down generated
features. Assessing the number of touched software areas provides evidence on the
expected implementation effort. If solution concepts are clear, the effort estimation is
based on comparing the effort of one solution relative to that of another. Therefore,
the feature effort includes the sum of all related solution efforts. Additionally, features
with high effort estimations are implemented first, except technical constrains require
another feature implementation order.

Requirement Volatility This selection criteria was primarily identified through the ob-
servation of planning meetings and the analysis of meetings notes. There are several risk
factors for requirement volatility such as the involvement of new technology or unclear

Analyzing an Industrial Strategic Release Planning Process 277

underlying business processes. Features with high volatility and middle business prior-
ity will be postponed, where features with high volatility and high stakeholder priority
are assigned to the subsequent releases or release iterations to be able to accommodate
intermediate requirement changes.

Table 3. Overview GDC Release Planning Data

GDC3.6 GDC3.7 GDC38

planning items 89 51 14
high level req. 0 3 14
low level req. 89 48 0
communicated changes 32 8 6

So far, the ad hoc strategic and operational release planning has worked well. How-
ever, the growing number of involved countries in the future and the demand to react
faster on business change increases the complexity of strategic and operational release
planning, which could not adequately be handled ad hoc any more. There are difficul-
ties of utilizing the feature concept for SRP purpose at the company. A feature should
be suitable to represent both, high level business requirements and software function-
ality abstraction at the same time. For operational release planning purpose low level
requirements are assigned to 38 different software areas. In many cases a specific re-
quirement is related to several areas and therefore these software areas are not suitable
for bottom-up feature generation. Altogether, the GDC development is characterized
both through project initiated requirements engineering (GDC roll-out projects) as well
as through requirements initiated projects (global GDC development). Moreover, it is
noteworthy that all requirements represent delta requirements by specifying enhance-
ment proposals that are only understandable in relation with the existing system, which
causes difficulties in relating them to business strategies.

4.2 Strategic Release Planning To-Be Process Proposal and Tool Evaluation

Along with the investigations of the as-is SRP process several issues and requirements
for a to-be SRP process are gathered. The major improvement possibilities are seen by
the practitioners in a systematic SRP process that integrates decision support for feature
generation and feature selection. For that, the ad hoc as-is SRP process (see Figure[Tl) of
the company was aligned to the 13 steps of the EVOLVE II method, as shown in Figure
2l to provide a SRP to-be process proposal (RQ2). To evaluate the suitability of the
SRP process solution proposal, the ReleasePlanner was introduced at the company by
retrospectively simulating the planning for GDC 3.6 and 3.7. In the following only SRP
to-be process proposal gaps (additional requirements RQ3) are considered, which were
identified and discussed together with the practitioners. These requirements primarily
address decision support needs that are not or not sufficiently supported by the solution
proposal.

278 G. Zorn-Pauli et al.

res

Support

l-:{eterqgeneo:s Feature
equirements Generation
Pool

: Pre,
“Selectjo,
N of f
aty

Feature
Backlog

seseyd 1591

Re-planning Release
Roadmap
Proposal

Roll-out Projects

O mandatory EVOLVE I steps O optional EVOLVE Il steps O ReleasePlanner tool support

Fig. 2. Proposed to-be strategic release planning process

ReleasePlanner Simulation. Applying the tool at the company for release planning
simulation creates some integration effort, where the effort depends strongly on the
quality and availability of required planning data, the current SRP process and the uti-
lized development tools. The most difficult task was to choose the selection criteria
and selection criteria weights. Any adjustments on selection criteria or criteria weights
caused significantly plan changes.

Simulation Setup The setup for the retrospective simulation of the release planning
process for release 3.6 and 3.7 comprised /35 planning items. These items probably
do not represent the actual requirement backlog, because we cannot ensure that we
have replicated the backlog completely. Requirement issuer and requirement volatil-
ity are used as selection criteria to represent stakeholder priority and implementation
risk. To quantify requirements volatility the discrepancy rate of best-case and worst-
case effort estimations are used. The higher the discrepancy the higher the requirement
volatility risk. The selection criteria release consumer was considered by pre-assigning

requirements of the pilot countries to the according release. The resource capacities are
approximated through story points, where 160 story points for release 3.6 and 80 story
points for release 3.7 were assumed.

Simulation Results The tool provides two measures, degree of optimality and stake-
holder feature points, to evaluate the quality of the alternative plans. In Table [five
optimized planning alternatives are compared with a manual baseline plan. Alternative
1 is the best possibility when relying on stakeholder features points, which measures
the stakeholder satisfaction related to a specific plan. Compared to the manual plan it
can be seen, that the tool computes a plan with which the stakeholder would be more

satisfied than with the manual plan. Additionally, alternative 1 provides a plan with a

better degree of optimality with respect to available resources, which could be also seen

in the different number of assigned features. The discussion of the results with the prac-
titioners yields the following conclusions: (a) the proper requirement selection criteria
were identified for release planning, because the calculated plans are very similar to the
manual plan. (b) it is difficult to assess, whether the quality of calculated plans is better
than the manual plan, it depends strongly on the suitability of utilized planning data

such as effort estimations and resource capacities.

Analyzing an Industrial Strategic Release Planning Process 279

Table 4. Comparison of ReleasePlanner computed plans against manual plan

Al A2 A3 A4 AS M.Plan

degree of optimality 99.7% 982% 97.6% 96.7% 95.7% 99.1%
stakeholder feature points (566196) (557325) (553950) (549044) (543505) (562520)
features assigned 3.6 62 62 62 62 61 62

features assigned 3.7 23 23 23 22 24 20

4.3 Additional Identified Strategic Release Planning Process Requirements

Feature Generation. The feature generation task is not addressed by the EVOLVE II
method, because available feature sets are taken for granted. As a result the identified
requirements (FGx) and corresponding rationals related to the feature generation task
are gathered from and discussed with the practitioners.

(FG1) Support top-down and bottom-up feature generation Rationale: Features are
used for strategic planning purpose. They are derived top-down from high level business
strategies (business case initiatives) or they comprise a bundling of low level require-
ments that have arrived via different input channels.

(FG2) Support aggregation of relevant changes into existing release plans Rationale:
Requirement relevant changes continuously arrive on different abstraction levels and
have to be considered during re-planning. These changes for instance comprise priority
change, intermediate identified requirements or changing effort estimations. Especially,
the adaption of resource capacities or effort estimations are stated by the practitioners
as a challenging task.

(FG3) Support delta requirements handling Rationale: Since GDC is developed in-
crementally over several years, the requirements, that are source for SRP, represent delta
requirements. This causes major problems if these delta requirements cannot be linked
to planned (to-be) and existing (as-is) system specifications. Due to the strategic (high
level) planning purpose it is not clear which abstraction level is necessary to represent
the system and how to link it with delta requirements.

FG4) Support feature classification and variability Rationale: Primarily, GDC is de-
veloped globally, developing functionality that is used by all countries. However, in
some case specific functionality is not necessary (optional) since local business process
are different and functionality (features) should be switched on/off for local GDC in-
stances to reduce testing and maintaining costs. Additionally, the local instances of the
GDC system require different configuration settings. Therefore, requirements should be
classifiable into functional or configuration requirements.

Feature Selection. The feature selection task is well guided by the EVOLVE Il method,
and according tool, by supporting multiple selection criteria and comprehensive analy-
sis capabilities. However, additional requirements (FSx) related to feature selection are
identified and described in in the following.

(FS1) Support pre-selection (Scoping) Rationale: Because of continuously arriving
changes overscoping arises. That requires iterative pre-selection and pre- selection sup-
port. This requirement is related to the FG2, because pre-selection is necessary after the
aggregation of changes.

280 G. Zorn-Pauli et al.

(FS2) Support multi-view selection criteria Rationale: The results on investigat-
ing the feature selection criteria of the as-is SRP have shown that implicitly busi-
ness/technical and organizational views are reflected in the selection criteria. Providing
decision-support for feature selection means to support the identification and solution
of conflicts between the three different views, where selection criteria could be assigned
to one of the three views.

(FS3) Support strategic analysis capabilities Rationale: A major challenge of devel-
oping a globally used software system is to balance multiple country specific business
strategies to provide a system that satisfies all stakeholder adequately.

(FS4) Support the modeling of release dependencies Rationale: SRP focusses on
long-term feature selection where features are assigned to subsequent releases. This
rises the need of considering, besides feature dependencies also release dependencies.
(e.g. dependencies to other projects or systems).

4.4 Requirement Abstraction and Solution Model

Based on the insights and requirements on feature generation (FGx) an extension of the
RAM proposed by [I8] was developed to support the mentioned problems and require-
ments. The requirement abstraction and solution model (RASM), illustrated in Figure
[3 represents a preliminary solution proposal to address the elicited requirements. There
are several reasons why the RAM [§]] is not sufficient for the purpose of strategic release
planning for the company. Most of the requirements are delta requirements, aiming at
the change of existing software functionality. RAM provides the possibility of modeling
low level requirements on component level, describing how something should be im-
plemented instead of what. However, to handle delta requirements knowledge about the
existing structure of software functionality is required. Therefore, the RAM is used to
abstract business requirements and is extended by linking product strategies explicitly
with software features. The linking on this specific level is necessary, because during
SRP only high level requirements are available and the refinement of requirements on
functional level happens later on. To overcome the dilemma that a feature should rep-
resent business requirements abstraction and software functionality abstraction at the
same time, the model distinguishes explicitly between these two types of features to
make SRP involved stakeholder also aware of it. We have learned from practice that
features could be generated top-down, derived from business strategies, and bottom-
up by bundling low level requirements. In some cases low level requirements do not
address a specific business strategy, but have a high innovation character. A strictly
business strategy oriented selection of requirements, as provided by Khurum et al. [10],
could hamper innovation by neglecting requirements that provide innovative solution
suggestions.

In the following the RASM elements, illustrated in Figure 3| are explained. A sys-
tem release fulfills business features by implementing new features or by changing
one or many existing software features. A business feature represents the refinement
of business or organizational strategies or the bundling of low level business require-
ments. A constraint that was mentioned by the practitioners was that a business fea-
ture shall be implementable within a specific release and should be explicitly linked
to software features. Business features represent the highest available level of business

Analyzing an Industrial Strategic Release Planning Process 281

Business or
Organizational

Strategies
9 System
Release
relatedto ¢ g implements / changes
Business Feature - explicit link Software Feature
comprises groups

confiprises new / changed
\
comprises new / changed

Requirements on
different abstraction
levels based on RAM mandatory Solution

Fig. 3. Requirement and Solution Abstraction Model (RASM)

requirements according to RAM [§]]. Referred to Table [2] business features could be
mapped onto product strategy or product level and could be refined into one or many
requirements on lower level. Software features represent the abstraction of planned and
existing solutions, where solutions can be classified into optional/mandatory and func-
tional/configurational solutions.

Utilizing RASM for feature generation the above mentioned requirements (FGx) are
addressed as follows:

(FG1-Solution) The top-down feature generation decision is supported by the constrain
of generating business features top-down only in relation to business strategies. Where
as the bottom-up feature generation allows to use business and/or software features to
bundle low level requirements.

(FG2-Solution) RASM enables the identification of release relevant change by bottom-
up and top-down comparison of requirements change at different abstraction level to
business strategies. Therefore, the aggregation of changes to requirements at any re-
quirement abstraction level to business features is also possible.

(FG3-Solution) The linkage between business requirements and software features or
corresponding solutions increase the understanding of delta requirements.
(FG4-Solution) The RASM provides a classification of solutions into optional or
mandatory solutions that enables the modeling of solution variability.

5 Discussion

This section provides interpretations of the results in relation to existing work and a
discussion of limitations. We interpret the SRP process of the company as an important
task and the process has to be understood as a continuing activity. The results indicate

282 G. Zorn-Pauli et al.

that the introduction of the feature concept for SRP can provide two benefits. Firstly,
through grouping of low level requirements into business features it reduces the com-
plexity caused by huge flattened requirements lists. Secondly, the usage of high-level
business features to better link them with business strategies improves the communica-
tion between the system stakeholders. Lethola et al. [12] recognized the latter as well
in the context of market-driven development. Further, the ReleasePlanner evaluation
results indicate that the ad hoc SRP process of the company works reasonably well.
However, the systematic process provided by the tool ensures a sufficient degree of
optimality and stakeholder satisfaction of release plans also when the complexity of
release planning increases due to more involved countries and continuously changing
criteria. Benestad et al. [2] also stated that the concern of evolving feature descriptions
and design specifications are not well accounted for by release planning models and
identified also the lack of handling continuous change. Determining the capabilities of
an organizations release planning process was also addressed by Lindgren et al. [13].
They provide a capability model to identify areas for improvement.

As for every study there are limitations that should be discussed. In Section 3.4 we
describe how we reduced threats to validity of the case study design, while in this sec-
tion we discuss other limitations. There are two specific characteristics of the company
that may have an impact on the SRP process and also influence the external validity of
the results. Mixture of plan-driven and agile software development elements. Despite
the adoption of agile software development methodologies by the company, there are
only a few releases per year that are organized by plan-driven roll-out projects with fixed
deadlines. This is necessary as long several depended projects have to be coordinated. In
this study we have not analyzed which elements of the SRP process are plan-driven and
which one agile or whether these two principles impede each other. To scale agile prac-
tices such as Scrum to larger projects and to coordinate several depended agile project
releases without fixed deadlines is an open issue. Mixture of customer- and market-
driven development. The information system is developed bespoke and used globally,
where the end user and customers are known and provided functionality is strongly
aligned with business processes to enable competitive advantage. However, there are
some similarities to market-driven development, where the market is represented by the
different globally distributed company sites. It is not always clear during planning and
development time, which countries will finally consume which release version. This
depends on whether the current system release provides features that are appropriate
to satisfy country specific business strategies. The major intent of the company is to
standardize the information system functionality to provide a customizable standard
software product to all countries.

6 Conclusion and Future Work

In this paper, we reported on the results of an industrial case study that aims at the
analysis of the SRP process of the company. We have analyzed qualitative and quan-
titative data to identify the as-is SRP process and developed based on the insights and
results a to-be SRP process solution proposal. The major idea of the solution proposal
was twofold. (1) The EVOLVE II method was adopted to the as-is process to provide

Analyzing an Industrial Strategic Release Planning Process 283

a systematic method for release planning and (2) the RASM was developed to support
requirements change on different abstraction level and to handle delta requirements by
explicitly linking business strategies with solution planning and solution development.
Finally, the SRP process solution proposal was evaluated by introducing the Release-
Planner tool to the company. The evaluation results comprise additional requirements
with respect to feature generation and feature selection decision-making support needs,
that are not or not sufficiently supported by the tool.

Future work includes the implementation of the additional identified FGx and FSx
requirements, listed in Section where the RASM already addresses FGx require-
ments. In terms of requirement FG3, it has to be investigated whether a (software)
feature-based representation of an existing system is sufficient to handle delta require-
ments, if solution specifications are rarely available. Moreover, the identified require-
ments FSx for the to-be SRP process can be used for tool functionality improvements.
Finally, there is some effort required to integrate RASM and EVOLVE II to propose a
SRP process that combines feature generation and feature selection.

Acknowledgements. The authors would like to thank Roche Diagnostics GmbH
(Mannheim) for its financial support of this research. Many thanks are also due to the
GDC project team for their participation and valuable discussions of the results.

References

1. Al-Emran, A., Pfahl, D.: Operational planning, re-planning and risk analysis for software
releases. In: Miinch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 315—
329. Springer, Heidelberg (2007)

2. Benestad, H.C., Hannay, J.E.: A comparison of model-based and judgment-based release
planning in incremental software projects. In: Proceeding of the 33rd International Confer-
ence on Software Engineering, ICSE 2011, vol. 1325, pp. 766-775. ACM Press, New York
(2011)

3. Bhawnani, P., Ruhe, G., Kudorfer, F., Meyer, L.: Intelligent decision support for road map-
ping a technology transfer case study with seimens corporate technology. In: Proceedings of
the 2006 International Workshop on Software Technology Transfer in Software Engineering,
TT 2006, pp. 35-40. ACM Press, New York (2006)

4. Bjarnason, E., Wnuk, K., Regnell, B.: Are you biting off more than you can chew? A case
study on causes and effects of overscoping in large-scale software engineering. Information
and Software Technology 54(10), 1107-1124 (2012)

5. Carlshamre, P.: Release Planning in Market-Driven Software Product Development: Provok-
ing an Understanding. Requirements Engineering 7(3), 139-151 (2002)

6. Danesh, A.S., Ahmad, R.: Software release planning challenges in software development:
An empirical study. African Journal of Business Management 6(3), 956-970 (2012)

7. Fricker, S., Schumacher, S.: Release planning with feature trees: Industrial case. In: Regnell,
B., Damian, D. (eds.) REFSQ 2011. LNCS, vol. 7195, pp. 288-305. Springer, Heidelberg
(2012)

8. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements Engineer-
ing 11(1), 79-101 (2005)

9. Jadallah, A., Galster, M., Moussavi, M., Ruhe, G.: Balancing value and modifiability when
planning for the next release. In: 2009 IEEE International Conference on Software Mainte-
nance, pp. 495-498 (September 2009)

284

10.

16.

17.

20.

21.

22.

23.

G. Zorn-Pauli et al.

Khurum, M., Gorschek, T.: A method for alignment evaluation of product strategies among
stakeholders (MASS) in software intensive product development. Journal of Software Main-
tenance and Evolution: Research and Practice 23(7), 494-516 (2011)

. Komssi, M., Kauppinen, M., Tohonen, H., Lehtola, L., Davis, A.M.: Integrating analysis of

customers’ processes into roadmapping: The value-creation perspective. In: 2011 IEEE 19th
International Requirements Engineering Conference, pp. 57-66. IEEE (August 2011)

. Lehtola, L., Kauppinen, M., Kujala, S.: Linking the business view to requirements engineer-

ing: long-term product planning by roadmapping. In: 13th IEEE International Conference on
Requirements Engineering (RE 2005), pp. 439-443. IEEE (2005)

. Lindgren, M., Land, R., Norstrom, C., Wall, A.: Towards a capability model for the software

release planning process — based on a multiple industrial case study. In: Jedlitschka, A.,
Salo, O. (eds.) PROFES 2008. LNCS, vol. 5089, pp. 117-132. Springer, Heidelberg (2008)

. Ngo-The, A., Ruhe, G.: Decision support in requirements engineering. In: Aurum, A.,

Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 267-286. Springer
(2005)

. Ruhe, G.: Product Release Planning: Methods, Tools and Applications. CRC Press, Boca

Raton (2010)

Amandeep, N.F.N.G., Ruhe, G., Stanford, M.: Intelligent support for software release plan-
ning. In: Bomarius, F., lida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 248-262.
Springer, Heidelberg (2004)

Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering.
John Wiley & Sons, Inc., Hoboken (2012)

. Bin Saleem, S., Yu, Y., Nuseibeh, B.: An Empirical Study of Security Requirements in Plan-

ning Bug Fixes for an Open Source Software Project. Tech. rep., Dep. of Computing, Faculty
of Mathematics, Computing and Technology, The Open University (2012)

. Suomalainen, T., Salo, O., Abrahamsson, P., Simil4, J.: Software product roadmapping in a

volatile business environment. Journal of Systems and Software 84(6), 958-975 (2011)
Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A sys-
tematic review on strategic release planning models. Information and Software Technol-
ogy 52(3), 237-248 (2010)

van de Weerd, 1., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards a
Reference Framework for Software Product Management. In: 14th IEEE International Re-
quirements Engineering Conference (RE 2006), pp. 319-322 (September 2006)

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in software engineering: an introduction. Kluwer Academic Publishers, Norwell (2010)
Zorn-Pauli, G., Paech, B., Wittkopf, J.: Strategic Release Planning Challenges for Global In-
formation Systems A Position Paper. In: International Workshop on Software Product Man-
agement (IWSPM), pp. 186—191. ICB-Research Report No. 52 (2012)

1

Mjglner Informatics is a Danish software company, which develops custom-made
software for customers like Terma, Danfoss, Velux, Big Dutchman, and Bankdata.
We are around 80 employees; the majority has a master’s degree in either computer
science or software engineering. Many of our projects run for 6-12 months and have

Redefinition of the Requirements Engineer Role
in Mjglner’s Software Development Process

Anders Bennett-Therkildsen, Jens Bak Jgrgensen, Kim Ngrskov,
and Niels Mark Rubin

Mjglner Informatics A/S Finlandsgade 10, 8200 Aarhus N
{abt, jbj, kno,nmr}@mjolner.dk

Abstract. [Context and motivation] Our company’s software development
process describes seven roles, one of which is the requirements engineer. We
want the work of the requirements engineer to give more benefit in our
development projects than is currently the case.

[Question/problem] The requirements engineer works in an interdisciplinary
setting closely together with the other roles, in particular with the user
experience specialist, the software architect, and the project manager. We have
found that these three roles are performing most of the actual RE work in our
projects. As a consequence, the requirements engineer often only plays a minor
role, which is also explained by the fact that the requirements engineer role is
not given high organisational attention. With a few exceptions, the requirements
engineer is appointed ad hoc, at project level. This poses a potential risk of
neglecting important RE activities. The problem that we address is how to best
distribute responsibilities between the requirements engineer role and the other
roles in our organization.

[Principal ideas/results] We have surveyed a number of recent projects and
have analysed to which extent RE has been carried out, by which roles, and
with which techniques and tools.

[Contribution] Our contribution is to discuss our survey results and on this
basis propose a redefinition of the requirements engineer role that respects that
user experience, software architecture, and project management have a higher
organisational priority.

Keywords: Software development process, requirements engineering in
relation to other roles, relationship between RE theory and RE practice.

Introduction

project teams with 6-10 employees.

Mjdlner has a software development process, which is an iterative process that
comprises seven roles: Architect, Developer, Infrastructure Manager, Project Manager

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 285-291] 2013.
© Springer-Verlag Berlin Heidelberg 2013

286 A. Bennett-Therkildsen et al.

(PM), Requirements Engineer (RE), Test Manager, and User Experience (UX)
Specialist. The roles should ensure a clear distribution of responsibilities during
project execution. This very often works well, but improvements can be made as we
discuss in this paper.

For each of the seven roles, a “process community” exists in our company. The
process communities are the main drivers for the maintenance and improvement of
the development process. Most employees are members of one or two communities.
Focus in the communities is on sharing knowledge, experience and evaluating current
practice to improve the development process and transfer knowledge between
projects. To ensure a coordinated effort between the seven communities, the chairmen
of the communities comprise a SPI coordination committee. For a more detailed
description of our development process and SPI organization, please refer to [1].

Members in the RE process community in Mjglner have investigated how
requirements work is done more specifically in practice in our projects. The overall goal
of the investigation has been to redefine the requirements engineer role
(“RE role”) such that it provides a greater value in our projects. In this paper, we discuss
this investigation. The paper is a Problem Statement in the sense that it describes a
situation that we want to improve — but it also briefly outlines a possible solution.

The paper is structured as follows: In Section 2, we present our RE process, role,
and the RE community at Mjglner. Section 3 describes results from the investigation
of practice. In Section 4, we discuss considerations about a redefinition of the RE role
and in Section 5 we state our proposal. In Section 6 we briefly discuss related work,
and draw some conclusions.

2 RE Process, Role, and Community at Mjglner

The following figure outlines the RE process at Mjglner by describing the activities
that must be carried out by the RE role, as prescribed by the development process.
This description is closely connected to the activities that are on the agenda in
Mjglner’s RE community. However, in this community, the work has mainly focused
on how to improve the elicitation, specification and validation of requirements (the
activities in the “Project startup” in the figure), and to a lesser extent on general
requirement management and the other activities in the “Iterations” in the figure.

wandarory: [
opiona: [Project startup lterations Project Closure
Inception Elaboration Canstruction Transition
! Ly
s

Validale Requirements || || Communicate its |
Requirements

Enginesr [Manage Requirement:]

Fig. 1. Description of the RE role

Redefinition of the Requirements Engineer Role 287

The body of knowledge in Mjglner’s RE community is manifested in a toolbox.
This toolbox consists of a hands-on guide for doing RE, a software requirement
specification template document, which includes many issues to take into account
along with guiding descriptions, and an internal website, which contains
supplementary material, including references to RE literature. We keep ourselves
updated on the RE literature, e.g., by attending conferences such as the RE
conference. As examples, we have read and found inspiration in the following books
[2], [3], and [4]. Our template is to a large extent based on [2].

3 RE Practice at Mjglner

Members in Mjglner’s RE community have interviewed project members from
ongoing and past projects to identify how RE was performed and by whom in practice
in our company. Different topics were covered during the interviews, e.g., the roles in
the project, how requirements were elicited and by whom, the types of requirements,
which methods were used, and how requirements were documented. The interviewers
also asked if and how the knowledge from the RE Mjglner community came into play
in the projects. We report on four projects below. The projects were quite different in
many aspects, including RE. In none of those projects, the RE role was explicitly
appointed to a team member. The interviews were therefore done with either the PM
or the UX specialist.

In the first project, the customer came from the public sector. Requirements were
already elicited by the customer and specified in a one thousand pages document.
Despite the extensive document it was, according to the PM at Mjglner, a rather
incomplete requirement specification and there was estimated only little time during
the project to clarify the requirements and reach a satisfying level of detail.
Requirements were written in use cases and managed by the PM along with a third
party subcontractor. The project team at Mjglner did the design of the GUI as well, so
some of the details of the requirements were brought to development by the UX
specialist through screen mock-ups.

In the second project, Mjglner took over the project from another supplier and,
consequently, inherited a way of cooperating with the customer. No requirement
specification existed. Instead, requirements were inferred from screens of the system,
which came from a third party. Rework became one of the challenges in this project.
All the unknowns were dealt with at weekly meetings with customer stakeholders.

In the third project, the involvement of the team at Mjglner was initially to do the
graphical layout of an already specified system. But as the UX specialist started
asking questions about the system and the underlying requirements, the customer
became convinced to do a complete redesign and let a team at Mjglner do the job. RE
was done entirely by a UX specialist, who used methods and processes from a UX
toolbox (different from the RE toolbox); in this case being flowcharts/sitemaps,
wireframe mockups and scenarios. There is inherently a difference between UX and
RE in process and approach to requirements — epitomised in the role of design [5].

288 A. Bennett-Therkildsen et al.

In the fourth project, requirements were gathered as use cases by an internal
product owner in a Word document and elicited through meetings with a few
customer stakeholders — mainly a single representative. The document was revised,
versioned and read together with a representative from the customer organization. The
main challenge here was to ensure sufficient activity from other important customer
stakeholders. Again, the RE role was not explicitly appointed to a team member, but
was distributed between the product owner and the UX specialist.

4 Basis for Redefinition of the RE Role at Mjglner

In summary, the survey confirmed our conjecture that the RE role, if assigned in a
project, only makes a minor contribution to the requirements management that is
carried out in the project; the majority of the RE work is done by other roles.
Moreover, none of the surveyed projects had benefitted much from artifacts from the
RE body of knowledge in Mjglner. This fact confirmed that there is a gap between the
issues on the agenda in Mjgner’s RE community, and the RE work that is carried out
in practice in the projects at Mjglner.

The conclusion from our survey has motivated us to take a closer look at how the
RE role positions itself against the other roles in the projects at Mjglner.

To do this, and as a help to redefine the RE role, we (the authors) have created the
grid shown in the figure below, which illustrates the RE activities (the horizontal
bars), the education or skills of the project team participants at Mjglner (vertical bars),
and the ellipses show the various roles in a project. It is a rough indication based on
the assignments in several projects at Mjglner, in particular the projects we discussed
in Section 3. Each ellipse illustrates a role and its horizontal extent shows the typical
educational backgrounds of persons assigned to this role. The skills range from
hardware-near computer engineer/technician skills to creative graphical design skills.
The vertical extent of the ellipse shows various requirement activities to be done by
the role - from highly technical requirement handling over interaction designs to more
abstract business goals elicitation.

We plotted the roles in this grid as ellipses to see where the roles overlap each
other. The picture was quite clear. The RE role is “squeezed” both in education/skills
and RE activities in the projects at Mjglner, since a major part of the responsibility of
the RE role is handled by the other roles, mainly the project manager, the architect,
and the UX specialist.

There are a number of reasons for this. First of all, UX as a product is a selling
point for Mjglner (RE is not). In a number of our projects, one or more UX specialists
are allocated — catalyzed by our sales department and by agreement with the customer
— as starting point.

Second, all the UX specialists that are assigned to the UX role are focused on and
skilled in doing requirements elicitation because this is, obviously, necessary to
ensure that the system being developed actually satisfies the needs of the users. The
UX role does studies of users, field studies, and focus groups, often resulting in
personas and scenarios, as well as workshops with stakeholders to elicit and specify
requirements at different levels.

Requiramant
acthvities

Redefinition of the Requirements Engineer Role

Project
Manager

Goal level
raguirem ents

reguiremants

Domain level

interaction

Design artif act

I
I

Graphical user
Interface
raguirem ents

zoft wars

Application
FEQUIFEm 2nts

Embedded
Software
requirements

Reguirements for
software

highly tachnical

User

Experence

Digjtal
Dasigner

Requirement
Engineer

Com puter engnear

Inifiarm ation scientist

Com puter scientist

Graphic designer

Fig. 2. Requirement activities, roles, and education

289

Education

Third, in the initial phases of a project, the requirements specification document is
often drafted and maintained by the project manager. When the implementation starts,
this specification itself tends to become less relevant internally in the project; a
Scrum-style backlog, along with references to deliveries from the architect and the
UX specialist, serve the role as the requirements specification. In general, when the
system is being implemented, often the software architect drives the RE process,
because much requirements work assumes a detailed knowledge of the architectural

details.

290 A. Bennett-Therkildsen et al.

5 A Redefinition of the RE Role at Mjglner

The conclusion after the investigation was that we had the problem to redefine the RE
role. Clearly, the RE role should focus more on activities that are “left” by the other
roles with higher organisational priority. With a more specific focus, the RE role must
make sure that the gaps that might appear between the architect, the UX specialist,
and the project manager, in regard to requirements, are filled. Examples of areas that
need the specific attention of the RE role, we believe, are data requirements, security
requirements, quality requirements, and pure management, e.g. keeping track of
requirements changes throughout a project.

Regarding data requirements, we specifically aim at two activities, which are often
crucial for project success that should be given more attention by the RE role and the
RE community at Mjglner; these activities are (1) development of dictionary or
glossaries defining key domain terms, and (2) development of domain models, e.g.
using ERD or ORM diagrams. This will help to visualise and document concepts of
the domain in a way that our typical UX specialist and architect deliveries do not.

With respect to security requirements, for some of the systems we develop, it is
critical that these are gathered, discussed and understood. This is a type of
requirements that the RE role should be responsible for.

Quality requirements such as performance, reliability, and maintainability are
important for the architect, but needs to be documented as requirements without
getting into solution design - which is a risk if the architect has primary responsibility
of these issues.

The last part that we wish to strengthen as an RE activity is the book-keeping of
managing the requirements in our processes. Making sure that changes that arise
during the project are specified in the right documents, and making sure that the
“why” and “when” for the changes are also documented. This might just be in a
meeting minutes, which the team roles can then discuss after workshops, or other
encounters with the customer. A part of managing is also making sure that the proper
level of traceability can be done. Discussions of the necessity of RE book-keeping
activities are also found in [6].

This last activity of managing requirements is an activity that we expect will only
become more important and bigger as projects done by our company grow in size.
Our company’s mission is to have projects at a larger scale and continuously moving
up the value chain of the customers. This will mean a larger amount of requirements,
but also a larger interface with the costumer, where customer stakeholder
needs different parts of the requirements. Similar communication challenges are
described in [7].

6 Related Work and Conclusions

Our findings and considerations presented above are done for our particular company
and we do not have empirical evidence to make generalisations on a proper scientific
basis. Other authors have done far more extensive investigations of related issues,

Redefinition of the Requirements Engineer Role 291

e.g. [8]. An example of an investigation with similarities to ours is [6]. In both these
cases — and many others that we have seen in the literature — the investigations and
results are reported by researchers, i.e., by people who are external to the particular
organisation being investigated and who, consequently, look at the situation from the
outside. In contrast, we work for the company, whose situation we have discussed and
described. An advantage of this is that it is likely that we have much more detailed
and precise knowledge; a drawback may be that we are more involved and perhaps
not able to be as objective as an outsider would be.

In spite of the remarks above, we believe that the issue that we have discussed in
this paper is an instance of a very general problem: to position RE well in an
interdisciplinary setting, properly coordinated with other roles in a software
development process. We know companies, where (1) the RE role is under pressure,
(2) where the role does not exist explicitly, or (3) where the role is near extinction —
either because the activities, that are carried out by the requirements engineer are
handled by other roles, or, worse, because the activities are not handled at all. In the
latter case, there is a risk of leaving large gaps between, e.g., UX and architecture.

We have proposed a redefinition of the RE role in the software development
process at Mjglner by narrowing its focus to activities not covered by other roles. In
Mjglner’s RE community we will prioritise these issues.

References

1. Jgrgensen, J.B., Kjer, M.Y.: Mjglner’s software process improvement: A discussion and

strengthening using the SPI manifesto. In: Riel, A., O’Connor, R., Tichkiewitch, S.,

Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 222-232. Springer, Heidelberg (2010)

Lauesen, S.: Software Requirements - Styles and Techniques. Addison-Wesley (2004)

Robertson, J., Robertson, S.: Mastering the Requirements Process. Addison-Wesley (2006)

Wieringa, R.J.: Design Methods for Reactive Systems. Morgan-Kaufmann (2003)

Sutcliffe, A.: Requirements Engineering From an HCI Perspective. In: Dam, R., Soegaard,

M. (eds.) The Encyclopedia of Human-Computer Interaction (2011),

http://www.interaction-design.org/encyclopedia/

requirements_engineering.html

6. Sabaliauskaite, G., Loconsole, A., Engstrom, E., Unterkalmsteiner, M., Regnell, B.,
Runeson, P., Gorschek, T., Feldt, R.: Challenges in aligning requirements engineering and
verification in a large-scale industrial context. In: Wieringa, R., Persson, A. (eds.) REFSQ
2010. LNCS, vol. 6182, pp. 128-142. Springer, Heidelberg (2010)

7. Hochmiiller, E.: The Requirements Engineer as a Liaison Officer in Agile Software
Development. In: AREW 201, 1st Workshop on Agile Requirements Engineering, Article
No. 2, New York (2011)

8. Cao, L., Ramesh, B.: Agile Requirements: Engineering Practices: An Empirical Study.
IEEE Software 25(1), 60-67 (2008)

bt N

Distances between Requirements Engineering and Later
Software Development Activities: A Systematic Map

Elizabeth Bjarnason

Department of Computer Science, Lund University SE-221 00 Lund, Sweden
elizabeth.bjarnason@cs.lth.se

Abstract. [Context and Motivation] The main role of requirements engineering
(RE) is to guide development projects towards implementing products that will
appeal to customers. To effectively achieve this RE needs to be coordinated with
and clearly communicated to the later software development activities. [Ques-
tion/Problem] Communication gaps between RE and other development activi-
ties reduce coordination and alignment, and can lead to project delays and failure
to meet customer needs. [Principle ideas/results] The main hypothesis is that co-
ordination is enhanced by proximity to RE roles and artefacts, and that distances
to later activities increase the effort needed to align requirements with other de-
velopment work. Thirteen RE-related distances have been identified through a
systematic map of existing research. [Contribution] Reported distances are
mapped according to research type, RE activity and later software development
activities. The results provide an overview of RE distances and can be used a ba-
sis for defining a theoretical framework.

Keywords: systematic map, distance, requirements, software development.

1 Introduction

Effective requirements engineering (RE) greatly depends upon successful coordina-
tion [12, 16] and communication of requirements with the downstream development
activities [6, 24], e.g. design, implementation, and testing. Merely producing a perfect
requirements specification is not sufficient. Rather it is vital to ensure that the re-
quirements are clearly understood and agreed with implementation-near roles, and
that sufficient requirements information is available for later development activities
[14, 24]. Communication gaps between people may contribute to project delays, soft-
ware quality issues and even failure to meet customer expectations [6].

Within global software development (GSD), project teams and members are glob-
ally distributed. These geographical distances between people have been found to
negatively affect the communication and thereby also the coordination and success of
the distributed development. In addition to geographical distance, socio-cultural and
temporal distances have been found to be in play within GSD [1]. Agerfalk et al. have
defined a theoretical framework of these different types of distances and how they
affect communication, coordination and control [1]. However, coordination and

J. Doerr and A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 292-B07] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Distances between RE and Later Software Development Activities 293

communication is also a challenge within non-distributed development, in particular
for large development organizations and projects [6, 12].

Our main hypothesis is that distance plays an important role in development,
whether distributed or not. In particular, the distances between RE and later software
development activities may impact project effectiveness and efficiency. The system-
atic mapping study reported in this paper provides an overview of existing knowledge
of RE-related distances within software engineering research.

Work related to the targeted area is described in Section 2. Section 3 outlines the
research method while Section 4 presents the results, which are then discussed in
Section 5. Finally, the paper is concluded in Section 6.

2 Software Development and RE

‘Requirements are the basic building blocks gluing together [the] different ... activi-
ties needed to define, develop, implement, build, operate, service, and phase out a
product and its related variants.” [16] However, in general most people focus mainly
on one area of expertise: RE, project management, architecture, implementation, test-
ing etc. Both in practice and in research, there is generally weak insight and knowl-
edge into how to leverage software development by improving on the interaction and
coordination of RE with later activities within software development.

In contrast, concurrent engineering [22] is an approach to product development
where several engineering activities are carried out concurrently (at the same time by
the same project team) with extensive feedback and iteration. The developers are to
consider all aspects of the development cycle from requirements to cost and quality.
Reported gains for this approach include increased efficiency, productivity and quality,
and reduced waste and shortened lead times [22]. A concurrent approach is applied
within agile software development by integrating the activities for requirements, archi-
tecture, implementation and testing, and the claimed gains are similar to those for
concurrent engineering, including increased responsiveness to change.

Damian et al. found that improved RE practices within a more traditional plan-
based development project may have an effect also on later software development
activities. Effective RE can thereby support increased development effectiveness and
augment the efficiency and productivity of the other development activities, and lead
to improvements for a wide range of software development aspects, e.g. project plan-
ning, managing feature creep, testing, defects, rework, and product quality [14]. This
indicates that RE can play a vital role for the total development effort, if RE is
effective and well-coordinated with later development activities.

Requirements and Design Are Interdependent Activities. While design (either by
architecture or directly during implementation) aims to realize the requirements, ar-
chitectural and technical limitations, and new technical possibilities may affect the
requirements and, thus, require requirements changes. For these reasons, it has been
suggested that RE should be intertwined and performed in parallel with design [25,
29]. Nuseibeh et al. have designed a method that does this while still separating be-
tween problem and solution structure. The method is receptive to handling change in

294 E. Bjarnason

an efficient way, allows early exploration of the problem space, and enables engineers
to identify requirements and match them to available components and products [25].
Similarly, Fricker et al. found that aligning requirements and architecture through a
negotiation process between product management and architecture led to identifying
missed requirements, and to a shared requirements understanding that mitigated prob-
lems related to missed requirements and requirements dependencies [17].

Coordination and Alignment of RE and Testing. We have previously reported on
the situation of alignment between RE and testing in industry [5]. Two of the main
challenges were found to be RE quality and the softer aspects of development, i.e.
communication and collaboration [5]. Furthermore, a number of industrial practices
for supporting alignment have been reported both by Bjarnason et al and by Uusitalo
et al. These practices include traceability between requirements and test cases, and
increased communication between roles [5, 31], e.g. by involving testers early in the
project and in requirement reviews, and by establishing communication between test-
ers and requirement owners [31]. Similarly, Marczak et al. found that in requirements-
driven collaboration, close communication between requirements and testing depends
on key roles which when absent cause disruptions within the development team [24].

3 Research Method

The systematic map reported in this paper was performed based on guidelines for
systematic mapping [26] and insights for systematic literature reviews [7]. The steps
taken in designing and performing the study are described below. The study protocol
and full list of papers included in the study can be found on-line [4].

3.1 Research Questions

With the aim of locating research into RE distances within/between RE and later
software development activities, the following research questions were formulated:

RQ1: Which RE-related distances are reported in peer-reviewed literature?

RQ2: To which extent is ‘distance’ used in GSD versus non-GSD papers?

RQ3: For which activities within RE has the concept of distance been researched?
RQ4: Towards which later development activities are RE distances investigated?

3.2 Search Strategy

The defined scope covers RE research and its intersection with later development
activities. Papers focusing on non-RE topics were excluded, while general software
development papers were included. Based on scope and research questions, search
keywords were defined. The initial keywords were searched in well-known databases,
e.g. IEEE Xplore, SciVerse. Based on search results, the keyword, scope and research
questions were refined and search strings reformulated. The set of databases was
expanded and re-searched for relevant papers.

Distances between RE and Later Software Development Activities 295

3.3 Data Sources
Searches into the following databases are included in this mapping study:

1. IEEE Xplore (http://ieeexplore.ieee.org) covers computer science, electrical engi-
neering, and electronic subject areas. Full-text and bibliographic access to almost 3
million of IEEE’s publication including transactions, journals, magazines and con-
ference proceedings published are provided.

2. Elsevier’s SciVerse (http://sciencedirect.com) covers papers from more than 2,500
computer science and engineering journal.

3. ACM Digital Library (http://dl.acm.org) provides access to ACM journals, pro-
ceedings and transaction including ACM computing literature.

4. Inspec and Compendex provide access to huge amounts of scientific literature in
many subjects including information technology, and are accessible via Engineer-
ing village’s unified search interface (http://www.engineeringvillage2.org).

3.4 Data Retrieval

Search strings were constructed by combining the defined scope (software engineer-
ing OR software development OR requirements engineering) with the term ‘distance’.
The searches were limited to peer-reviewed material written in English. Material on
‘distance learning’ was excluded in the search to avoid a large number of irrelevant
hits. The searches were limited to title, abstract and keywords.

3.5 Screening Process

The final searches yielded 2,427 papers (see Table 1). A title scan resulted in 161
relevant papers. The full references, abstract and search source of these papers were
then stored in MS Excel (available on-line [4]). Duplicates were removed; 148 unique
papers. These papers were then included or excluded based on the abstracts. The in-
clusion/exclusion decisions for both title and abstract were cautious, i.e. when in
doubt the paper was included. When an abstract contained insufficient information,
the introduction was reviewed. In total 53 papers were included in the final set.

3.6 Data Extraction, Classification and Synthesis

During data extraction and mapping, a classification scheme was developed according
to guidelines provided by [26]. A set of keyword were identified through exploratory
coding of the abstracts, and then clustered into the categories of the map. In a few
cases, the abstract was insufficient and parts of the full text were reviewed to ensure a
correct understanding. Two sets of categories were identified. One related to context
and focus of the research (main development activity, specific RE activity, and
organisational distribution) and the other related to distance type.

296 E. Bjarnason

The initial set of keywords for distance types was refined through analysing parts
of the full paper text. In some cases, forwards snowballing was applied to locate addi-
tional papers, which were consulted to ensure a correct understanding of the used
terms. The coding of all included papers was then revised to match the final set of
codes. The final coding of the included papers is available on-line [4].

Finally, a synthesis was performed on the included papers for each distance type to
identify how the term is defined and applied, and if any causal relationships are re-
ported for that term. In some cases, additional papers were located through forwards
snowballing. For example, in GSD papers distances would typically be mentioned
with a reference to previous work. In addition, for distances with only a few located
papers supplementary searches on the specific distance type names were performed to
identify additional papers. Parts of the full text was analysed for the synthesis, in par-
ticular introduction and conclusions sections, and all mentions of the term ‘distance’.

Table 1. Number of papers in each step of the screening process

Source Initial selection | Title review Abstract review
SciVerse 51 7 2

IEEE Xplore 79 4 1
ACM Digital Library 1,951 52 33
Inspec 11 0
Compendex 346 74 17
TOTAL 2,427 148 53

4 Results

4.1 Demographics of Retrieved Literature (and RQ2)

The search and selection resulted in 53 individual peer-reviewed papers. The majority
of these (42) were within GSD. The distribution of papers over time, split into GSD /
non-GSD context, is shown in Figure 1. The maximum was in 2009 with 11 papers. It
is worth noting that within GSD a framework for categorizing GSD challenges based
on three types of distances was published in 2005 [1] and that the following 4 years
(2006-2009) have the largest number of papers found in this study.

The research type for each paper was classified according to the scheme suggested
by Wieringa et al. The following categories were considered in this study [33]:

1. Evaluation research investigates a problem or technique in practice and provides
new knowledge of causal or logical relationships.

2. Solution proposals present a solution without a full-blown validation.

3. Validation research presents a solution proposal validated outside of industrial
practice, e.g. experiments, prototyping, theoretical proof etc.

4. Philosophical papers sketch new theories or frameworks.

5. Experience papers describe the author’s personal experience and may contain an-
ecdotal evidence.

Distances between RE and Later Software Development Activities 297

The distribution of the included papers according to research type and distribution
context (GSD or non-GSD) is shown in Figure 2. The numbers indicate that, for the
GSD context, more empirical evaluations and theoretical frameworks on the concept
of distance have been researched than for the non-GSD context. For general develop-
ment (non-GSD), the majority of included papers are in the form of validation
research, indicating that more evaluation research is required into distances in the
general software development context to establish foundations for more mature
knowledge and for establishing theories based on empirical evidence.

12

10

8

6 non-GSD
4 B GSD

2 —

0 N e e

1997199819992000200120022003200420052006200720082009201020112012

Fig. 1. Number of papers per year, categorised according to GSD or non-GSD context

4.2 Type of Distances (RQ1)

This study identifies thirteen distances. Eight of these, are distances between people,
e.g. between roles, teams and organizations, while four address distances between
artefacts. One distance concerns distance between an artefact (e.g. formal model) and
reality. Unsurprisingly (since the majority of included papers address GSD), the most
commonly referred distances are the ones defined within GSD, i.e. geographical,
socio-cultural and temporal distances. Table 2 shows an overview of the number of
papers for each distance. (The distances are described in Section 4.4.)

4.3 RE Activities (RQ3) and Later Software Development Activities (RQ4)

Distances were found in papers related to RE, project management, design, imple-
mentation, tools and processes. More than half of the papers (29 of 53) cover software
development in general, while a third of the papers (17 of 53) cover RE, and a fourth
(8 of 53) cover implementation. The numbers indicate that RE is acknowledged as an
important activity for which distances are relevant to investigate. However, more
research is needed to fully explore the field. In particular, research is needed on how
RE distances relate to testing for which no papers were found, which is surprising
considering that testing verifies that the requirements are fulfilled in the final product.
A map of the number of papers per distance type and software development activity
for which they were mentioned is shown in Table 2.

298 E. Bjarnason

25
2
g- 20
© 15
Q.
Y= 10
[}
g B o
0 — I
Evaluation Experience | Philosophical solution Validation
Proposal
non-GSD (11) 2 1 2 6
W GSD (42) 21 2 10 6 3

Fig. 2. The number of papers per research type and GSD vs. non-GSD context

Table 2. The number of papers per distance type and software development activity. The bar
indicates relative amount. Papers covering several categories are counted for each category.

General RE Impl Tools |Prjmgmt| Design | Process
TOTAL 29 17 8 7 6 1 al
Geographical 41 | 27|E 7| 6|l 6[F 3
Socio-cultural 25 (IR 3B 4l 1(l 2
L, |Temporal 15 (IFE 110f 1[k 2k 1[k 2
= |Power 3 [F 3
g Opinions 2 li 2 I 1
Psychological 2 |i 2
Organisational 1 1
Cognitive 1 1
2 [similarity 3 3 [3
< Semantic 2 |i 1 2
E Syntactic 1 1
< [Impact 1 1 I 1
OTHER |Adherence 2 [i 1 1k 1 I 1

Of the 17 RE-specific papers, 7 address negotiation and 4 cover RE in general,
while for handling changes, elicitation, specification, validation and traceability only
the odd papers was found for each RE activity. 7 of the RE-specific papers purely
address RE, while the others also cover software development in general (3), project
management (3), tools (3) and implementation (1). Table 3 shows a map of RE-
specific papers per development activity and RE activity.

4.4 RE Distances in Context

The systematic map identifies 13 RE distances between people, artefacts, and other
entities. This section describes each distance based on included papers.

Distance between People

Geographical distance denotes ‘a directional measure of the effort required for one
actor to visit another at the latter’s home site [or home work place]” [1]. Even a

Distances between RE and Later Software Development Activities 299

geographical distance of 25 metres, i.e. within the same office building, has been
found to reduce communication between engineers [2]. For off-shored projects where
RE is geographically separated from other software development activities Dibbern et
al. found that this distance can be a significant cost driver [15]. In particular, in cases
where client-specific knowledge was crucial face-to-face collaboration was required
for adequate knowledge transfer of domain knowledge and for requirements analysis
and specification [15]. Tools for enhancing distributed group communication have
been suggested for collaborative RE activities such as requirement negotiation and
requirements traceability towards goals and design artefacts [18]. Calefato et al. found
that computer-based communication provided better support for elicitation than for
negotiation, and suggest that the general preference for face-to-face communication
might be explained by this weakness of computer-based negotiations [9]. In contrast,
Damian found that when using technology for negotiating requirements the group’s
overall performance was not decreased compared to when negotiating face-to-face,
and could even be more effective in integrating multiple stakeholders’ needs [13].
Similarly, Wolf et al. found no significant delays for geographical distance in a case
study. This was believed to be due to practices applied to bridge these distances (col-
laborative tools, and processes and practices adapted to distributed software teams),
but may also be explained by the fact that the delays were quantified as opposed to
qualitatively measured as for most other studies [35].

Table 3. The number of RE-specific papers per RE activity and later activities. The bar
indicates relative amount. Papers covering several categories are counted for each category.

|Negotiation General RE |Specificaton|Analysis Validation |Changes Elicitation |Traceability
TOTAL 7 4 3 3 2 1 1 1
Pure RE 7 [l a4l 1 1l 1 1 I 1 1
General 3 Ii Zli 2(F 1
Project managmt| 3 [i 3
Tools 3 [3
Design i I 1
Implementation | 0
Process 0

Temporal distance denotes ‘a directional measure of the dislocation in time experi-
enced by two actors wishing to interact’ [1] due to different time zone, work shifts
etc. In general, short temporal distances allow for timely synchronization between
team members, while long temporal distances reduced the opportunities for synchro-
nous communication and introduce delayed feedback [1]. Time zones and work shift
schedules may work together to decrease temporal distance by adjusted office hours
or utilized for working around the clock by passing on tasks between teams in differ-
ent time zones [1]. Yousuf et al. suggest that when temporal distance is present cer-
tain requirements validation techniques which do not rely on synchronous
communication are more suitable than others [36].

Socio-cultural distance denotes ‘a directional measure of an actor's understanding of
another actor's values and normative practices’ [1] and includes organisational
and national culture, language, individual motivations, work ethics, and politics.

300 E. Bjarnason

In general, communication is improved by low socio-cultural distance thereby reduc-
ing risk, while long socio-cultural distances increase the risk of misunderstandings
and may make coordination harder [1]. However, long distances also have a potential
for increased learning and access to a richer skill set, and be stimulating for
innovation [1].

In the context of RE for GSD, Dibbern et al. found that cultural distance can be a
significant cost driver for a company with off-shored projects. Increased costs may be
incurred for transfer of knowledge of domain, requirements etc., and additional speci-
fication effort to ensure accurate requirements [15]. Yousuf et al. mention socio-
cultural distance as potentially influencing requirements validation though without
specifically analysing how [36]. Real-time machine translation has been proposed for
requirements negotiation among stakeholders separated by language barriers, and
found to not disrupt real-time interaction in text-based chat [9].

Opinion distance denotes a measure of the difference of opinion on a certain aspect of
an item between two actors. This distance has been investigated between decision
makers and stakeholders in requirements negotiations with the aim of supporting
group decision by measuring the differences in linguistic opinions of alternatives
based on multiple criteria [10]. Chakraborty and Chakraborty propose using a fuzzy
distance measure to measure the distance between fuzzy clusters of the opinions in
order to improve ‘accuracy’ of the decision by identifying dissimilar opinions [10].
Similarly, Zhu and Hipel propose a method for dealing with multi-stage information,
i.e. when information about alternatives evolves over time [38].

Organisational distance denotes a measure of one organisational unit’s understanding
of another unit’s goals and perspectives, e.g. concerning priority of customer re-
quirements relative cost of code design and quality. The organisational distance be-
tween people involved in RE was categorised in a study on pairing on RE tasks as
internal or external depending on if they are part of the development team or not [37].
The study suggests that sharing RE tasks is more effective when there is a shorter
organisational distance due to less delay in the (shorter) communication paths [37].

Psychological distance denotes a measure of the perceived psychological (subjective)
effort of an actor to communicate with another actor [27]. This distance has been
researched for software development in general, though not specifically for RE. Prik-
ladnicki has defined a measurement for the perceived distance between people. This
measurement relates to the social dimension of psychological distance that addresses
the distance of a stimulus (social object or event) from the perceiver’s self, e.g. my
best friend or a person from another culture [23]. The measurement was evaluated in a
project with development distributed between Brazil and India. The study shows that
the psychological distance does not necessarily correspond to the geographical dis-
tance, but to a high degree depends upon trust and communication though the impact
of these factors varied per country and per role [27]. For example, a project engineer
in Brazil perceived the lowest distance while a project manager
(also in Brazil) perceived the highest psychological distance [27].

Distances between RE and Later Software Development Activities 301

Power distance denotes a measure of the degree to which unequal distribution of
power is accepted within a society [19]. This distance has been researched for soft-
ware development in general, though not specifically for RE. This distance is one of
the dimensions of socio-cultural distance and has been found to affect relationships
within distributed development and thereby also the success of distribution [34].
Winkler et al. found that difference in power distances may negatively affect commu-
nication. For example, in a culture with a large power distance saying no or voicing
criticism is avoided, detailed specifications are preferred and instructions are
preferred from superiors rather than from peers. All of these factors pose a risk of
complicating collaboration with team members used to shorter power distances
and more open communication [34]. Wende and Philip found communication via
instant messaging improved communication and, thus, enabled bridging power
distances [32].

Cognitive distance denotes a measure of the difference between two actors’ cognition,
e.g. what they each know and are aware of. Yu and Sharp observed this distance in a
case study on pairing on RE tasks and identified that when one person fills many roles
communication is immediate since the cognitive distance between the roles is zero,
which is beneficial for communication and coordination [37].

Distance between Artefacts

Similarity distance denotes a measure of the similarity between an entity and another
entity of the same type, e.g. project. This distance has been suggested as supporting
the coordination between RE and project management, in particular for cost estima-
tion of requirements. In analogy-based software effort estimation, the concept of simi-
larity distance is used to identify completed projects with similar characteristics by
measuring the Euclidian distance between project features [28], e.g. number of re-
quirements, number of interfaces, project model etc. This approach has been validated
using industrial data sets and the results confirm that this approach outperforms the
usage of algorithmic models for effort estimation [28].

Several different approaches and variations have been proposed for measuring
similarity distance. Chiu and Huang propose adjusting the estimations to take into
account the re-use effect of the project identified as the most similar [11]. Azzeh et al.
propose an approach that supports handling uncertainties and imprecision in project
attributes by the use of fuzzy C-means clustering and fuzzy logic. With this approach,
each attribute is represented with several fuzzy sets instead of by a single value. Fur-
thermore, this approach clusters together the most similar projects and their values are
represented in the same fuzzy set. The similarity between two projects is then meas-
ured by the similarity distance between the two sets to which they mostly belong [3].

Impact distance denotes a measure of the number of steps with which a change in one
entity impacts another entity, e.g. through dependencies. This distance has been pro-
posed by Briand et al. for addressing the issue of impact analysis, e.g. for require-
ments changes, in a UML modelling context. A measurement of the distance between
a changed element and an impacted element is defined as the number of impact

302 E. Bjarnason

analysis rules, or steps, required to identify that the impacted element is affected by
the change [8]. Initial empirical evaluations indicate that impacted elements at dis-
tance one lead to code changes, while those with a greater distance, in most cases, do
not. However, further evaluations are required to determine at which maximum dis-
tance code changes for impacted elements should be considered [8].

Semantic distance denotes a directional measure of the amount of functionality of a
specification that distinguishes it from another related specification. Semantic dis-
tance between requirements specifications and other artefacts may be used for sup-
porting software re-use, e.g. to identify library components with a short semantic
distance to the requirements. Jilani et al. pose a theoretical case that the use of seman-
tic distance is applicable for decisions on black-box re-use and define a number of
metrics for semantic distances. These include metrics for functional deficit that reflect
how much functionality needs to be added to one specification in order to satisfy an-
other, and metrics for functional excess that measure the amount of functional
features of one specification that are irrelevant to another one [21].

Syntactic distance denotes a measure of dissimilarity of the design structure of two
artefacts [21]. Syntactic distance between specifications has been suggested by Jilani
et al. for supporting decisions on white-box reuse (where a component is modified).
While providing theoretical arguments for applicability of this type of distance Jilani
et al. also argues that it is unrealistic to define a measure for syntactic distances since
this requires a uniform representation of specifications irrespective of abstraction
level and a canonical scheme that supports the definition of a unique representation of
specifications. Instead, semantic distances (for which measurements are defined) are
suggested to be used as an approximation of syntactic distances [21].

Distance between Other Entities

Adherence distance denotes the size of the difference between a formal or theoretical
model of a process or a phenomena and the actual enactment of it. Within software
development this distance has been suggested for gauging the degree of adherence for
models. For example, Huo et al. consider the distance between a formal process
model and the actual work practices observed in a project [20], though no measure-
ment of this distance is defined. Furthermore, a measure of the distance between a
theoretical distribution and actual estimates is defined and evaluated by Thelin and
Runeson in the context of assessing the accuracy of remaining faults in an inspected
software artefact [30], which could be applied to validation of requirements
specifications.

4.5 Limitations

Reliability of the results due to the risk of researcher bias in the inclusion process and
the classification process remains an open issue since only one researcher was in-
volved. However, for inclusions/exclusion a generous policy was used, and independ-
ent validation of both inclusion and classification is possible since the full set of

Distances between RE and Later Software Development Activities 303

papers, including the ones excluded through abstract review, is available on-line.
Furthermore, there is a risk of incorrect classification when only performed on an
abstract. This was addressed by reviewing the full text when the abstract was unclear.
However, replication of the study may result in a slightly different set of papers, both
in the initial search and in the inclusion/exclusion step.

Conclusion validity concerning the completeness of the results (e.g. number of
distances) is one of the main limitations of this study. The search string was limited to
‘distance’ and did not include synonyms such as gap, proximity etc. This risk of miss-
ing relevant papers was partly addressed by broad searches for other aspects. For
example, papers were collected from multiple sources incl. IEE and ACM, and wide
search terms (software development, software engineering) were used for the scope
aspect of the search. Furthermore, no limitation was set on publication year or type of
publication (journal, conference etc.). These measures resulted in the study starting
with a large set of papers (more than 2,000). However, extending the search to include
synonyms would produce an even larger set of papers, and may uncover additional
types of distances and applications of these. The main intention of this study was to
act as a starting point and further research is planned to further explore the area.

5 Discussion

RE is a communication intense activity and the identified distances between people
(see overview in Figure 3) may have an impact on the efficiency and effectiveness of
communication and collaboration [1, 2, 13, 34, 35, 37] and can be a significant cost
driver [15]. Within GSD, cases where communication is equally strong, or even im-
proved, compared to co-located development have been reported [13, 35]. For exam-
ple, computer-based group meetings were found to be more effective for requirements
negotiation than face-to-face meetings [13]. Similarly, development environments
with computer-based support for collaborative work in combination with best
practices were found to contribute to reducing communication delays [35].

These contradicting results might be explained by the effect the applied practices
have on the division between formal and informal communication. When (previously)
informal information is re-routed to more formal communication channels the
communication flow may be improved, resulting in reaching a wider audience. This
correlates well with findings by Agerfeldt et al. Distance tends to affect informal
communication in particular and leads to reduced trust, difficulty in conveying vision
and strategy and lack of awareness [1]. Cases where formal communication including
documentation is weak and the informal channels are important (e.g. for agile
development) are likely to be very vulnerable to distances between people.

Some of the distances are subjective (e.g. geographical) while others are objective
and based on people’s perception [27], values and normative practices. The perceived
(objective) distance can vary over team members and over time [27], and research has
shown that quantifying this distance can support management and be beneficial for
GSD practices [27]. All the objective people distances, i.e. organisational, power,
opinions, cognitive and psychological, seem to be covered by the socio-cultural
distance (see Figure 3). More research into these distances specifically for RE and for

304 E. Bjarnason

collocated development could potentially explain issues reported for RE communica-
tion and collaboration [6, 12, 24]. For example, several distances may be at play in
co-located cross-functional teams with a product owner from a different organisa-
tional unit and with an RE background; short geographical, but long organisational
and cognitive distances between the product owner and other team members. Aware-
ness of distance and their impact could support management in optimising organisa-
tions [37], training efforts, and selected methods [36] and tools [9, 13, 18, 32, 35].

Temporal distance affects the possibly of synchronous communication and within
GSD asynchronous communication is common [1, 36]. In addition, subjective dis-
tances caused by differences in culture, language etc. may make people reluctant to
communicate directly, thus resulting in preferring to communicate via e-mail or
through issue management systems. In general, the asynchronous communication that
these distances may incur induce delays and increase lead times of RE and the entire
development effort [36]. This may affect communication intense activities such as
RE, in general, and elicitation and negotiation in particular.

Artefacts play an important role in communicating requirements to st