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Abstract. The term “Smart Home” refers to a home equipped with sensors, 
which observe the environment and the actions of its occupants, and actuators, 
which automatically control the home ambience and devices. A Smart Home 
can provide a variety of services to its occupants, based on information gleaned 
from the data recorded by the sensors and using the automation afforded by the 
actuators. Our work in the Smart-Condo™ project has been motivated by 
healthcare concerns: we aim to support people with chronic conditions to live 
independently longer. To that end, our first objective has been to develop an 
accurate location- and activity-recognition method. In this paper, we describe 
the Smart-Condo™ middleware architecture, focusing on its occupant-
localization feature. We report on simulation experiments with three sensor 
placements, one of which was deployed at a recent indoor localization 
competition. Finally, we draw a comparison between the simulated and real-
world results, showing the potential practical significance of our methodology. 
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1 Introduction 

The term “Smart Home” [5] refers to a home embedded with sensors, to observe the 
environment and its occupants’ activities, and actuators, to automatically control the 
home ambience and devices in a way that improves the occupants’ experience. 
Sensor-based systems are being studied as a means of non-intrusively monitoring a 
person’s activity and providing this person, and his formal and informal caregivers, 
with information, useful for making decisions regarding his care [6][8][9][14]. In our 
work on the Smart-Condo™ project [3][4][15][16][17] we have been developing a 
comprehensive platform for addressing exactly this research problem.  

The first version of the Smart-Condo™ platform was deployed in 2009 in an office 
reconceived (and sparsely refurnished) as the home of a three-person family. This 
deployment included only motion sensors, pressure sensors and switches, and served 
simply as a feasibility exercise.  

In the summer of 2011, the platform was deployed in the Independent Living Suite 
(ILS) of the Glenrose Rehabilitation Hospital, in Edmonton, Alberta, Canada [1] [17]. 
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The deployment was used to support discharge planning: patients, about to be 
discharged, stay in the ILS for several days, in order for the discharge team to 
determine whether they are ready to be discharged and live on their own, or whether 
they need to remain at the hospital longer. Typically, while patients stay in the ILS, 
nurses have to periodically check on them for the sake of their safety and wellbeing, 
which contradicts the purpose of the stay, namely for the patients to demonstrate their 
ability to live autonomously. The Glenrose clinicians have considered using video 
cameras to observe the patients’ stay, however, some patients are unwilling to accept 
this technology out of privacy concerns. We deployed our platform and analyzed data 
recorded during the stay of two patients in the ILS. This deployment included a 
variety of sensors, through which we monitored movement, opening and closing of 
doors/drawers/kitchen cabinets, usage of electrical appliances, usage of furniture, bed 
occupancy, usage of the bathroom, and medication adherence. The collected data 
were used to generate reports and visualizations for the discharge team.  

Between the two deployments, we have focused on two specific research problems, 
which have driven the evolution of our platform. First, we are concerned with 
extensibility of the platform, both in terms of the sensors that may be integrated in a 
home (including home-environment sensors, activity sensors and personal home-care 
devices), and in terms of the services that the platform may be required to support 
(including localization, activity recognition, alarm generation etc). In principle, 
standardization is required at (a) the sensor level, and at (b) the service-interface level. 
The former requirement is motivated by the need to seamlessly integrate new sensors, 
as they become available. When a new type of sensor reading and/or protocol is 
introduced to the system, the system must be able to use it and synthesize it with other 
pre-existing sensor data. The latter requirement captures the need for general-purpose 
platforms that can integrate a variety of services of differing computational 
complexity, as mentioned above. Second, we recognize that a major factor 
influencing the adoption of such technologies is the deployment and operational costs 
involved. To enable informed decision making on the part of potential adopters, we 
have developed a systematic process for simulating and evaluating the performance of 
the system under particular deployment conditions. Through this process, we can 
explore, in the pre-deployment phase, how we may reduce the number of sensors and 
yet be able to attain a certain performance level. To demonstrate the validity of our 
approach and compare the pre-deployment evaluation results with empirical results, 
we participated in the “Evaluating AAL Systems through Competitive 
Benchmarking” (EvAAL, http://evaal.aaloa.org/) competition in July 2012. The 
competition deployment became the third milestone for the Smart-Condo™ project; 
this paper highlights lessons learned while preparing for and during the competition. 

In this paper, we discuss the high-level software architecture of the Smart-Condo™ 
platform (Section 2); we describe its support for simulation-based deployment 
configuration planning (Section 3); we explain its location-recognition algorithm 
(Section 4); we report on our experimental evaluation (Section 5); we review the most 
recent developments in the field of indoor localization (Section 6); and we conclude 
with a summary of our experience to date and some plans for future work (Section 7). 
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2 System Architecture 

The high-level architecture of the Smart-Condo™ platform (shown in Figure 1) 
consists of three layers. The first layer corresponds to the sensor network, in the case 
of an actual deployment, or the sensor-network simulator, in the case of simulations 
for pre-deployment configuration planning. The sensor-network bridge component 
feeds the collected (or simulator-generated) data to the middle data-storage layer, 
using the MQTT1 protocol. The top layer includes a variety of analyses and 
visualization tools for the purpose of extracting and communicating useful 
information to clinicians. These tools may rely on the archived data, accessed through 
a set of APIs supported by the data-storage layer, or on the run-time data accessed 
through a special-purpose client listening to the MQTT stream.  

 

Fig. 1. The Smart-Condo™ Architecture 

With the Smart-Condo™ architecture we provide two layers of abstraction to (i) 
flexibly integrate multiple (types of) sensors as necessary and (ii) to provide a range 
of services for health-care purposes. First, we have adopted a special-purpose bridge 
component, which already supports various adapters for collecting readings from 
different sensor protocols and produces as output an MQTT stream. Thus, the 
introduction of a new type of sensor involves the development of an intermediary 
software component that can read the sensor readings and communicate them in 

                                                           
1 A lightweight publish/subscribe protocol, http://mqtt.org 
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MQTT. Second, we have developed a layer of REST APIs2 through which the sensor 
data is accessed by our analyses and visualization tools. In addition to a typical web-
based 2D visualization component, our toolkit includes a 3D virtual world, OpenSim3, 
where an avatar driven by the activity information inferred by the sensor data can 
“replay” the occupant’s activities in the real world. In the following subsections we 
discuss the crucial elements of the architecture in more detail. 

2.1 The Sensor Network 

The Smart-Condo™ platform currently uses (a) passive infrared motion sensors, (b) 
magnetic reed switches, (c) electrical-current sensors, (d) light, temperature and 
humidity sensors, (e) bed/chair occupancy pressure sensors, (f) medication-dispensing 
devices (introduced for the purposes of clinical study at the Glenrose), and is being 
augmented with (g) RFID readers. Its architecture is not limited to these sensors, but 
we have been able to produce reasonable results with just the sensors listed here.  

The existing variety of sensors can be classified according to the principles of data 
transmission and available power sources into three categories: (a) wireless nodes 
with autonomous power supply (e.g., motion sensors); (b) devices wirelessly 
transmitting their data, but powered from the power line (e.g., electrical-current 
sensors); and (c) devices that require wiring for both power supply and data delivery 
(e.g., medication adherence device). If a quick, low-labor deployment is necessary (as 
stipulated by the EvAAL competition rules) the sensors most favored are primarily 
motion sensors due to their independence of the apartment infrastructure. Other 
sensor types (reed switches, pressure sensors, RFID readers, etc.), although they may 
not need much cabling, tend to be more labor intensive because they require careful 
placement and embedding in the available furniture. Having chosen the motion 
sensors as the bare hardware minimum for a new deployment, we confine the 
discussion to a sensor network of wireless nodes only. 

Each wireless node consists of a low-end microcontroller, a low-power radio 
transceiver, a battery and one or more sensors. In case of long-term deployment, the 
requirement to minimize energy consumption of the wireless nodes becomes crucial. 
For this purpose, wireless nodes buffer their readings until either a certain amount of 
time has passed since the last transmission or until the buffer is full (whichever occurs 
first). Buffering, as opposed to immediately transmitting sensed data, reduces the 
node’s energy consumption, because every data transmission incurs the costs of (a) 
waking up the radio and preparing it for transmission, and (b) transmitting not only 
the actual sensed data and its timestamp but also a set of necessary packet headers. 
However, buffering complicates the processing of the readings since observations that 
were made at the same time by different nodes may be transmitted at different times, 
resulting in observations arriving out of order.  

                                                           
2 The REST architectural style for web-based applications is described in Roy Fielding’s 2000 

thesis, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 
3  http://opensimulator.org 



 The Smart-Condo™ Infrastructure and Experience 67 

2.2 Bridge Component and Sensor-Readings Processor 

The bridge is a hardware/software component with a variety of adaptors, through 
which data from different types of sensors and protocols can be collected. It enables 
us to integrate standard sensing devices, e.g., electrical-current ZigBee-compliant 
sensors, along with custom-made and specifically programmed nodes running PicOS 
[2], for which we have developed our own PicOS-to-bridge adapter. A diverse 
landscape of other standard lower-layer protocols, e.g., Bluetooth, ANT+, Z-Wave, as 
well as various proprietary protocols, can be equally easily integrated. The bridge’s 
additional functionality is to provide a layer of data-storage redundancy, i.e., an extra 
lightweight database in which all the raw sensor readings are stored prior to filtering 
and processing. This data storage constitutes an intermediate data format which can 
be used for tracing and debugging errors that may occur at different levels of the 
system architecture during execution.  

To address the out-of order observations introduced earlier, the bridge uses a 
sliding-window buffer to (re)order raw sensor readings by their reported timestamps. 
Every t seconds (t is configurable), all readings in the buffer with a timestamp up to t 
seconds earlier than the current (wall clock) time are published to the MQTT broker.  

The broker acts as a message queuing and filtering mechanism for clients that 
either (a) publish information updates under certain topics, or (b) subscribe to receive 
updates on topics of interest. Having decoupled producers and consumers of data, the 
MQTT-based middleware allows for greater modularity and heterogeneity to the 
extent that various devices with TCP/IP networking functionality4 can be plugged into 
the system at the MQTT broker level, bypassing the bridge. In the current 
infrastructure, however, the bridge is an MQTT gateway for all the wireless devices. 
It publishes sensor readings under a pre-determined topic, and a special data-
importing module, subscribed to that topic, gets notified and feeds the acquired data 
into a back-end implemented on top of WebSphere Sensor Events5.  

Readings imported into Sensor-Events are being processed by a set of database 
triggers and stored procedures, which are activated whenever a new entry is created in 
the raw sensor readings table. The triggers perform noise filtering and call stored 
procedures implementing activity-recognition logic. More specifically, in this paper 
we focus on “location and movement recognition”, i.e., determining the occupant’s 
location, based on motion-sensor readings mainly. The Sensor-Events platform (with 
the underlying DB2 server) brings a benefit of implementing stored procedures in 
procedural SQL or Java, the latter being our language of choice for creating 
procedures of unconstrained flexibility and complexity. 

The inferences generated as the application of location- and activity-recognition 
logic to the collected data through the triggers are stored in a separate database table, 
in a clear, client-independent format. These parsed readings are currently being used 
by a visualization client, implemented in the OpenSim virtual world, but they may be 
accessed by any type of a client via a call to an intermediary REST web service.  
                                                           
4 Due to the fact that the MQTT is implemented on top of TCP/IP stack.  
5
.WebSphere Sensor Events (http://www.ibm.com/software/integration/ 
sensor-events) provides the core platform for developing, deploying, and managing end-
to-end solutions that exploit the new real-world information available from networked 
sensors. 
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2.3 Virtual World Visualization 

The virtual-world animation of the patient’s activities has been developed as one of 
the visual-analysis tools of the Smart-Condo™ platform and addresses privacy issues 
associated with video surveillance. The generated animations provide sufficient level 
of detail comparable with video recording, yet have lower fidelity and are intrinsically 
non-personified. They are viewable both in real-time, i.e., caregivers may monitor the 
avatar’s actions and thus implicitly monitor the patient’s actions as they occur, or off-
line, i.e., the caregivers can request a playback of a period in a patient’s day based on 
the data stored in the Sensor-Events database. Figure 2 shows two alternative views of 
the 3D model of the apartment and the avatar (views are fully customizable).  

 

Fig. 2. Alternative views in the virtual world 

The real-time virtual-world simulation of the patient’s activities is generated as 
follows: when new sensor readings arrive to the Sensor-Events database, a special-
purpose service is triggered to push specifically preformatted commands to the 
OpenSim server. The server parses the commands and updates the states and/or 
positions of the patient’s avatar and the virtual objects corresponding to the furniture 
and appliances in the patient’s real environment accordingly. The playback mode has 
to be initiated by the user who can select a desired time span and speed of replay; 
after the user request is issued, the rest of the procedure follows the same execution 
path as in the real-time mode. 

3 The Smart-Condo™ Simulation Platform 

Originally we conceived the virtual world as an environment for mirroring real-world 
activities. However, we have since expanded its functionality towards a simulation-
based testing methodology, to support the planning of new potential deployments of 
the Smart-Condo™ platform. This became possible once we had developed virtual 
models of the real sensors. This functionality is especially important for accurate 
representation of motion sensors. The detection range of each motion sensor has a 
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complex volumetric shape; as such, estimating the detection capability of a sensor at a 
given position and orientation using 2D placement tools is a challenge. 

Overall, our simulation methodology involves the following sequence of steps.  

1. We build a model of the deployment space in the virtual world based on CAD 
drawings and any additional information about furnishings, appliances, etc.  

2. Next, we place virtual sensors in this model, following the same principles and 
practices that one would adopt to place the real sensors in the real world.  

3. At (simulation) run time, these virtual sensors are triggered by the avatar. This 
interaction is tracked by in-world tools and converted into artificial sensor events.  

In this procedure, the virtual world is used to generate realistic action traces and 
corresponding sensor data. Through the virtual-world client, the avatar can be 
controlled by a user to perform a sequence of activities. The avatar is equipped with 
an “action-tracking” device, which records movement, sitting/standing posture, and 
interaction with other virtual objects (opening/closing doors, switching on/off light 
switches, etc.) as a sequence of <time, action, location> tuples. The generated action 
log is used as the ground truth trace at the evaluation stage. At the same time, the 
virtual sensors generate their own events as they are programmed to mimic the real 
sensors behavior. For example, the virtual motion sensors sense collision events when 
a moving object penetrates the corresponding 3D shapes; the virtual RFID reader is 
able to identify different avatars located within the reader’s range as if they were 
wearing RFID tags. All the virtual sensor readings are collected in a separate log as 
<time, sensorID, sensorReading> tuples. These sensor readings are further propagated 
through the sensor-network simulator, which helps to more accurately model the 
operating environment.  

3.1 Wireless Sensor Network Simulator 

Using PicOS substantially simplifies the software development for the low-end 
hardware used in wireless sensor networks through the use of its source-level 
simulator, Virtual Underlay Emulation Engine (VUE2) [4]. VUE2 implements the 
PicOS API and simulates many of the hardware components. It takes into account 
location and movement of nodes (if applicable), simulates wireless propagation 
characteristics and noise, and thereby makes it possible to determine data loss and 
delays rates anticipated in the real environment. The development of the PicOS-to-
bridge adapter enabled us to integrate VUE2 with the Smart-Condo™ system and, 
therefore, to easily experiment with new deployments in simulation mode.  

Whenever any of the simulated sensors are triggered, a command specifying that 
event is sent to the VUE2 simulator, which, in turn, invokes the event handler in the 
PicOS application for the particular sensor. From that point the simulated node 
registers the observation and eventually sends it to the bridge. As long as the wireless 
nodes used are running PicOS, this model follows closely the operation of the real 
sensor network, since the same code runs in the VUE2 simulator and on the actual 
nodes. After the sensor reading has reached the bridge component, it is processed 
exactly the same way real readings are processed, including being published to the 
MQTT broker and eventually reaching the Sensor-Events database.  
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3.2 Closing the Loop via the Virtual World 

The location estimates generated by the localization component (and activity 
inferences produced by activity-recognition components) are stored in a separate 
database table. Through an API, the virtual-world client can access them and convert 
them into a corresponding set of movements and actions for the avatar. That is, the 
virtual-world controller extracts and processes the readings, and then sends 
commands to relevant in-world objects to represent each action. Effectively, this 
procedure constitutes the playback visualization mode (subsection 2.3). Through this 
simulation path, we can directly compare the original avatar trace from the ground 
truth log to the trace replayed by the virtual world. Based on their differences, we can 
assess the accuracy of our monitoring infrastructure. 

Given the negligible cost of placing virtual sensors in the virtual world, a variety of 
alternative placements can be experimented with; by comparing their relative 
location-recognition accuracy, the configuration with the most accurate anticipated 
location recognition may be selected for deployment. 

This closed-loop development and refinement process enables us to perform 
experiments that systematically evaluate the accuracy of the inhabitant’s activity 
record captured by the architecture and the capabilities of the assumed sensors, before 
the actual deployment. Experiments that involve trial runs with participation of 
human subjects are cumbersome to organize and difficult to assess. The virtualized 
alternative allows for arbitrary experiments prior to deployment (to reach a desired 
level of precision) and allows insights into alternative deployment strategies or 
alternative sensor technologies that best capture the needs of the client. 

4 Location Recognition 

Once the system hardware is deployed, the location of the condo occupant is inferred 
from the readings of motion sensors, light switches, reed switches on the 
doors/cabinets, and pressure sensors in the bed or chairs if the occupant is interacting 
with the respective elements of the furniture during movement. Location recognition 
can be improved with RFID readers, if the occupant wears an RFID tag. If the 
installation time is limited and it is preferable that furniture is kept intact (as was the 
case with the EvAAL competition), motion sensors become the minimal set of 
devices necessary for localization.  

Motion sensors incorporated in our platform are commercially available passive 
infrared sensors chosen for their miniature size, fairly wide area of detection and low 
energy consumption [13]. Being passive, they do not emit infrared light but rather 
collect incident infrared radiation from within the coverage area. Thus when a moving 
object with temperature higher than that of the background enters this area, the sensor 
will detect an increase in the amount of radiation. The output of these sensors is 
therefore mapped to binary: 0 for no motion, and 1 for motion detected anywhere 
within the detection area; as a result, given a single sensor, the position of the moving 
object cannot be discerned with any higher precision than the “radius” of the sensor 
footprint.  
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If the localization accuracy is of crucial importance for the deployment, we opt for 
the sensors with the smallest available detection area. Besides minimizing this 
parameter, another way to improve localization granularity is to have the sensor 
footprints overlap. In this case, the floor space is segmented in a number of polygons 
each one annotated by a bit vector, a 0/1 in the nth position of this vector signifies that 
the nth motion sensor covers/does not cover the polygon. Hence, the bit vector is a 
“signature” of the motion-sensor readings that are expected to occur if a person steps 
in the corresponding polygon. Accordingly, the sensor placement that yields no 
overlap becomes a particular case of this assignment since each sensor covers a single 
polygon and thus at any given time of trace execution a signature of readings can 
contain at most a single 1 and the rest 0’s unless the sensors are malfunctioning. 

Apart from better localization granularity, the strategy of overlapping sensor 
footprints introduces synchronization issues. Ideally, to properly fuse the data from 
two sensors triggered by the same motion event, they must (a) arrive at the bridge at 
the same time and (b) be associated with identical timestamps. As discussed in section 
2.1, buffering on the nodes causes the readings to arrive out of time order. This 
problem is alleviated by the sliding time window during which the readings are 
properly reordered and the expired readings are discarded. However, using buffering 
and a sliding window is acceptable only if the location estimates are not required 
immediately. When real-time performance of the system is important and energy 
conservation can be sacrificed (both are the case for the EvAAL competition which 
lasts only 3 hours for each competitor), the platform can be configured to deliver the 
sensor readings “instantaneously”, i.e., there is no buffering on the nodes and the only 
added time is for wireless transmission of the packets to the sink.  

Having excluded buffering, we still have to work around the second requirement 
since there is no global synchronization across all nodes. Each node has its own 
internal clock, and the global timestamps at the bridge are inferred from the time of 
packet arrival and two timestamps reported: local time on the node when the packet 
was built and local time when the event was registered. If the first-time delivery of the 
packet was unsuccessful, the node will retransmit the same packet with an updated 
timestamp of its generation, accounting for the round-trip retransmission delays. 
However, there is no account for the usually unpredictable (due to medium access 
protocol behavior) one-way transmission time and extra processing times at the 
bridge: if two simultaneously issued packets travel in a crowded wireless environment 
or arrive at the bridge when it is under high load, they may end up with quite different 
global timestamps.  

To better understand the trade-off of improved localization granularity vs. 
complications in data fusion and find the best suited for real-time deployment, we 
apply the closed-loop testing methodology to both overlapping and non-overlapping 
schemes of sensor placement. 

5 Experiments 

In preparation for the EVAAL competition, we systematically evaluated the 
localization accuracy of the Smart-Condo™ system through simulation. For each 
<time, action, location> tuple, as logged by the action-tracking device collecting the 
avatar traces, the error is defined as the distance, in meters, between the avatar’s 
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position, and the position of the corresponding action inferred by the localization 
component for the given timestamp (interpolated, if timestamps do not match). For 
the experiment as a whole, we consider the average error, as well as other descriptive 
statistics, such as standard deviation and error distribution. Assuming the sensors are 
all functioning properly, these metrics can give us an idea of the accuracy of the 
processed avatar locations, with respect to the original sensor readings. If a sensor is 
misbehaving, on the other hand, these readings can help us identify the 
malfunctioning sensor by returning a larger-than-expected error value for that sensor. 

5.1 Simulation Results  

During setup, the Smart-Condo™ localization component relies on knowledge of (a) 
the architectural diagram of the deployment space, (b) volumetric coverage models of 
the motion sensors, and (c) the coordinates and mounting angle of where the motion 
sensors have been placed to construct a special-purpose map of the space.  

In preparation for the competition, we used the architectural diagram of the Living 
Lab6 located in Madrid, Spain. From the four available types of passive infrared 
sensors varying in coverage area, we chose the one with the smallest detection range, 
that is, the spot type with footprint of 2x1.4m in cross-section at 2m away from the 
sensor. The more detailed inspection of the sensors datasheet revealed that the 
detection area of a sensor represents a grid of tiny detection zones and non-sensing 
strips. The spot type has the most regular and dense pattern of detection zones of all 
the sensors considered for deployment.  Its coverage is well approximated by a 
rectangular-based pyramid; this pyramid is the geometric representation used by both 
the simulations in the virtual world and our localization component.  

Due to installation time constraints in the competition, we narrowed down the 
variety of mounting techniques and opted for the mounting on the ceiling with sensors 
facing the floor in a way that the pyramid base is parallel to the floor plane. 
Therefore, the 2D sensor coverage map of the space becomes a grid of rectangles that 
may vary in orientation. Note that this type of mounting is not always possible or 
preferable. E.g., in previous deployments we have attached the sensors to the walls, 
hence, the projections of the pyramids on the floor are complex polygons (trapezoids 
in most generic cases) and the sensor map as a whole is highly irregular. This is when 
the virtual-world-based planning of deployment becomes an invaluable tool in terms 
of ease of operation, expressiveness and automation of otherwise manual tasks. 

The next stage of simulation is the generation of alternative deployments. As we 
mentioned before, we focus on the two most important scenarios: overlapping and 
non-overlapping placements. In both cases, the objective is to minimize the number of 
sensors while still fully covering the space. Another alternative placement we would 
like to consider arises as we relax the latter requirement and cap the number of 
sensors at the fairly small but still reasonable number that covers at least 50% of the 
space. By this additional placement we would like to test (i) whether there exists a 
monotonic relation between the localization accuracy and the density of the deployed 

                                                           
6 The floor-plan of the Living Lab  
   http://evaal.aaloa.org/images/LL-coordinates.jpg 
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sensors, and (ii) whether the less crowded wireless environment will have noticeable 
effect on the accuracy. This third alternative deployment is also important if we 
consider the case when some number of the sensors prepared for the competition 
cannot properly function and there are no extra devices for a backup. 

Therefore, we consider three placements (a) overlapping with 30 sensors, (b) dense 
non-overlapping with 22 sensors, and (c) non-overlapping with significant gaps in 
coverage with 13 sensors, shown in Figure 3. 

  
a) overlapping placement, 30 sensors  b) non-overlapping placement, 22 sensors 

  

c) non-overlapping placement, 13 sensors 

Fig. 3. Three alternative placements; an example of artificially generated trace execution 

As our methodology suggests, we generated a number of artificial traces; each of 
them has been tested against all three placements under identical conditions; the 
results of our simulations are presented in Table 1. Figure 4 displays the error 
distribution for each of the tested placements. 



74 I. Vlasenko et al. 

Table 1. Descriptive statistics for three types of sensor placement 

Description # of sensors Average error, m Standard deviation, m 

Overlapping, full coverage 30 0.5286 0.3155 
Non-overlapping, full coverage 22 0.6127 0.3269 
Non-overlapping, partial coverage 13 1.1619 0.9232 

 

Fig. 4. Error distribution for three types of placements used in simulations 

Overall we observe that the overlapping placement shows better results, as 
expected. However, it is worth noting that despite of our best effort to realistically 
model all non-software aspects of the system operation (e.g., signal propagation in a 
wireless environment), certain issues intrinsic to overlapping sensor placement have 
not been properly addressed and only became evident during real-world tests.  

More specifically, we noted two problems in the way that sensors get triggered: (i) 
the sensor will output 0 even if the person is within the coverage area but is 
completely still; (ii) the signal is rapidly oscillating between 1 and 0 (as fast as 10Hz) 
during continuous motion within a single sensor coverage area. These problems were 
not addressed in the simulations due to the basic assumption that as long as the 
avatar’s location lies within the covered area, the sensor outputs 1 regardless whether 
the avatar is moving or not. The first type of idiosyncrasy is easily addressed by 
checking whether the avatar’s location is not changing (the person is still), and the 
appropriate model of sensor behavior has been promptly applied. Unfortunately, 
signal oscillations have proved more intricate to model. Moreover, this behavior 
significantly undermined our data fusion mechanism, eventually forcing us to 
abandon the overlapping strategy of deployment. 

Another important factor that influenced our sensor-placement decision was the 
number of sensors that needed to be transported to the remote location, reinforced by 
the limited time for their installation. In addition, the competition benchmarking tests 
included trials with two people when only one had to be localized. Considering that 
our system does not stipulate any wearable equipment (RFID readers have been left 
out during the initial phase of competition planning), non-overlapping placement 
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becomes the most appealing strategy due to its ability to distinguish between adjacent 
sensor footprints and to fairly easily detect anomalies in sensor readings signatures. 

On the software side, these simulations proved essential for debugging our 
localization algorithm. The algorithm’s initial coarse estimate is the center of mass of 
the polygon corresponding to the overlap of the most recently triggered sensors. 
Subsequent estimates are generated along a physically plausible trajectory until 
reaching the center of mass of the next adjacent “triggered” area. Figure 3 depicts 
both the original trace and the results of our localization component calculations.  

Closer inspection of Figure 3 suggests possible improvement both in terms of 
sensor placement and tweaking the algorithm. Note Figure 3a: besides rectangles of 
various sizes it has a number of polygons with slim protruding parts (as some at the 
very bottom of the map). The center of mass of such an oddly shaped polygon usually 
lies in its bigger section causing erroneous estimates when the sensor is triggered 
from the polygon’s “slim” part. On the contrary, Figure 3b shows a generally 
smoother calculated trajectory (although with a bigger average error) which is, 
perhaps, due to regularity of the sensor coverage grid. This type of analysis prompts 
us to continue experimenting with both strategies of sensor placement. 

As anticipated, the non-overlapping placement with 13 sensors is roughly twice as 
bad as the placement with 22 sensors. However, it can also be seen that the coverage 
grid is not regular and can be much improved even with the given number of sensors. 
One glaring issue in Figure 3c is that the localization algorithm is not taking into 
consideration the walls and doors (based on trace transitions from the living room to 
the porch or the bathroom). We are currently working to address this issue. 

From the simulations, we learned that the most reliable placement should be the 
second type with 22 sensors and assured ourselves that even if a fairly big number of 
sensors are not working, our system will still be able to generate good results.  

5.2 Experiment Results 

The actual competition deployment was identical to the third placement considered in 
the previous section. According to the competition protocol, there were 8 tests overall, 
4 with one person, 4 with two persons, and 2 more with one person which, however, 
assessed the ability of our system to detect the presence of the person in a number of 
predefined areas of interest (AoI). In this paper, we discuss the results of the tests 
with one person only since the other type of tests (with two people) was our first 
attempt to perform this sort of task and was neither thoroughly tested in the 
simulations nor was it our priority in this competition. Therefore, we considered 6 
trials (“one person” and “AoI detection”) for which we are reporting the average error 
and standard deviation in Table 2. 

Note one clear outlier in this table, which is deemed to occur during a period of our 
system hardware malfunction. That is, trial “path2-1” has an average error of 3.4m 
whereas all other errors lie between 1.59 and 2.12m. This fact prompted us to exclude 
this trial from further consideration for reporting our results in this paper. For a total 
of 1321 location estimates from 5 valid traces, the overall average error is 1.9257m 
and standard deviation is 1.2423m. Figure 5 depicts the error distribution; 85% of all 
location estimates generated by our system lie within 3m-error range. 
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Table 2. Descriptive statistics for individual trials, one-person localization 

Name of a trial Average error, m Standard deviation, m 

path1-2 1.8470 1.1372 
path1-3 1.5906 1.0486 
path2-1 3.3999 1.6688 
path2-3 2.1267 1.3809 
pathRs-1 
pathRs-2 

1.9004 
1.9663 

1.1210 
1.3406 

Overall 1.9257 1.2423 

 

Fig. 5. Number of location estimates (%) vs. error range for the competition results 

It is worth noting that the average error of experimental results exceeds the average 
error of simulations with identical placement by 66%. There are at least three factors 
that could have influenced the experimental results that we are aware of, and two of 
them had significant deteriorating effects: (i) imperfections in sensor installation and 
(ii) unanticipated delays in generation of location estimates by our system. 

With regard to the sensor installation there was a problem with adhesive materials 
that we used for attaching sensors to the boxes with wireless nodes. These devices are 
assembled independently so that the sensors or the nodes are easily replaceable. The 
final custom device consists of a plastic box enclosing a node, and a sensor sitting 
outside of the box, attached to the node with a wire. When the deployment 
configuration is known, the sensor has to be firmly attached to the box with adhesive 
materials. During the competition, one sensor unglued from the box and freely hung 
on the ceiling causing a lot of misfiring. Figure 6 illustrates how in one of the trials 
this problem caused confusion of our localization component specifically at this 
sensor’s location. This image was generated during trial “path2-3”, and in comparison 
with images from other trials it clearly shows the effect of this mechanical failure on 
the operation of the localization component. To support this claim, trial “path2-3” has 
the largest average error and standard deviation of the five trials (without one outlier) 
considered for this paper. 
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Fig. 6. Anomaly in predicting location estimates due to the detached sensor (image generated 
and provided by the competition organizers) 

Another problem that negatively impacted our results is both hardware-related and 
a matter of the error measure used. Due to the competition requirement for the 
competing systems to provide real-time updates of data, we chose not to use buffering 
on the nodes as explained in section 4. Therefore, this functionality was disabled 
during the simulations and real-world trials that we ran in preparation for the 
competition. The delays between the moment when a particular reading is registered 
on the node and when the location estimate is generated consists of the time needed 
for the packet delivery to the sink, and times for parsing the packet and calculating a 
new estimate, which all together sum up to 2s in the worst case (based on our real-
world experiments). During the competition, however, we encountered certain 
hardware difficulties, which urged us to use the buffering period of 2s in order to 
reduce the number of packets being simultaneously transmitted. That is, the 
discrepancy between the timestamps of corresponding location estimates reported by 
our system and the timestamps when they were registered by the EvAAL server was 
about 4s. Unfortunately, the error computation stipulated by the competition implied 
that the reported location estimates should be associated with the EvAAL-registered 
timestamps, which also were used as the reference for comparing to the ground truth. 
The same error computation is used for the results shown above. In order to better 
understand our results, we also implemented an alternative error computation in 
which every timestamp reported by our system is matched against the ground truth 
data, if the exactly matching timestamp is not found, the estimate of the ground truth 
position is calculated as interpolation of two data points with the closest timestamps. 
Results of this alternative error computation are presented in Table 3.  

Figure 7 compares the error distributions of the simulation experiment and the 
competition tests with identical sensor placements after applying the alternative error 
calculation scheme. These results bear more resemblance between each other, 
therefore, to certain extent proving the value of our methodology.  
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Table 3. Descriptive statistics based on matching reported timestamps 

Name of a trial Average error, m Standard deviation, m 

path1-2 1.0701 0.8726 
path1-3 0.9147 0.5932 
path2-3 1.2576 1.0323 
pathRs-1 1.2079 0.9127 
pathRs-2 1.4650 1.1727

overall 1.2704 1.0193 

 

Fig. 7. Error distribution for identical placements in simulation and competition 

There is one more factor that has affected these results but in a favorable way. One 
of the competition requirements was for each competitor to interface their system 
with the benchmarking system. This included optional integration with the contextual 
events created by sensors already installed in the Living Lab. The flexibility of our 
system architecture made this part fairly straightforward. We described the provided 
devices (light switches and a bicycle) in terms of our platform’s sensor-specification 
language. Since other similar devices have already been successfully incorporated in 
our system (various switches, pressure sensors, etc.), there was no need to modify the 
localization component in order to use the information gleaned from the Living Lab 
devices. The integration went smoothly, was completely transparent to our system, 
and eventually paid off by improving our localization results. We cannot 
quantitatively estimate the effect of integration since, to our knowledge, every 
benchmark test contained a number of contextual events. Also, in our simulations we 
did not include devices unambiguously specifying action location (switches, etc.), 
since we focused primarily on the use of motion sensors. Therefore, it is not possible 
yet to draw any conclusive comparisons between simulations and experiments, but we 
tend to believe that our testing methodology, enhanced with additional models of 
hardware behavior and ability to detect various anomalies (even mechanical ones), 
will eventually eliminate costly real-world trials prior to final deployment. 
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6 Related Work 

Having reviewed the crucial elements of the Smart-Condo™ platform and its location 
recognition feature, let us review parallel developments in the EvAAL community 
dedicated specifically to localization techniques.  

The tendency to avoid optical tracking techniques is evident throughout recent 
work on localization, perhaps, due to similar privacy concerns that motivated our own 
system development. Thus, two major groups of techniques are (i) localization with 
wearable equipment, and (ii) ambient localization (i.e., similar to our system). The 
majority of competitors, however, belong to the first group, and only one other 
competitor presented a device-free localization system [11]. 

Localization techniques that rely on wearable equipment most often consist of a 
network of transceivers (short-range radio signals, ultrasound, etc.) and a device 
installed on a moving target. A rather popular approach in such systems is received 
signal strength (RSS) fingerprinting, which was used by three competitors. Grupo 
TAIS from the University of Seville, Spain, develops a fingerprint-based system 
comprised of ZigBee devices. Similarly, the LOCOSmotion project from the 
University of Duisburg-Essen, Germany, relies on fingerprinting collected from Wi-Fi 
access points and uses a smartphone as a wearable device. Additional information is 
obtained from an accelerometer embedded in the smartphone. Although such systems 
are usually easy to deploy or can even exploit the existing infrastructure (most indoor 
environments already have multiple Wi-Fi access points), the fingerprinting phase can 
be rather tedious since a database of signal fingerprints for all possible mobile device 
locations has to be collected prior to localization tests. In addition, this approach is 
sensitive to any changes in the environment, thus, the created fingerprint database 
requires continuous maintenance. In order to overcome this limitation, the OwlPS 
system [7], has an auto-calibration mechanism, which eliminates manual fingerprint 
collection phase and continuously updates its fingerprint database during execution. 
The OwlPS deployment is one of the quickest in the competition, comprising of four 
Wi-Fi access points installed in the corners of the Living Lab. However, with respect 
to localization quality, the three fingerprint-based systems presented in the 
competition achieved the lowest accuracy scores among all teams.  

The iLocPlus system [12] is an ultrasonic time-of-flight measurement system that 
comprises of reference nodes and an electronic badge/transmitter worn by the tracked 
person. Successful localization relies on the line-of-sight between the receiver nodes 
and the transmitter, therefore, the body of the badge wearer may cause deterioration 
of localization quality in certain positions. Overall, the accuracy score is better than of 
our system, however, installation is more time-consuming due to a large number of 
reference nodes required to overcome (i) the obstruction effects of the body and (ii) 
ultrasound interference caused by background noise. 

The localization system developed by the Centre for Automation and Robotics 
(CAR), Spain [10], combines dead-reckoning with absolute-position estimation 
obtained from ambient infrastructure. That is, the wearable unit generates inertial data 
that translates into position estimates characterized by a distinctively smooth 
trajectory on one hand, and accumulated drift on the other. To minimize drift effects, 
the system is enhanced with RFID infrastructure that provides absolute position 
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references. More specifically, a portable RFID reader is installed on the tracked 
person and active RFID tags are deployed in the space. This system requires 
minimum installation effort and has one of the best accuracy scores. However, as in 
the case with all the systems using wearable devices, it is arguable whether such a 
solution will become acceptable for everyday use in a typical AAL environment. 

Particular to the Smart-Condo™ project is our motivation to keep the system 
minimally invasive, and therefore we avoid technologies that involve bulky wearable 
devices. For example, we are currently augmenting our system with the RFID 
technology; in our setup the readers are embedded in the ambient infrastructure, and 
the RFID tags are attached to the moving objects (as opposed to the CAR deployment 
with a portable reader). The tags are lightweight and cheap and can be easily 
incorporated into a variety of objects, e.g., clothes, a wheelchair, a walker. The main 
purpose of integrating the RFID technology is to distinguish between the patient and 
all other people located in the condo. In a clinically-motivated scenario, the patient 
staying in the condo is visited by a nurse who has her own RFID tag (perhaps, sewn 
into the uniform). Therefore, we are able to distinguish between the object of 
localization interest (the patient) and the “disturber” (the nurse) while the patient 
remains unaware of the surrounding RFID infrastructure. 

In this competition, only one other competitor was driven by a similar motivation. 
The RSS-based device-free localization system from the CPS Group of the University 
of Utah [11] consists of static nodes deployed along the inside perimeter of an 
apartment generating an interconnected graph of wireless links. When the person 
crosses the line-of-sight between any of the links, their baseline RSS values start 
fluctuating thus indicating a particular location upon fusion of the data from all the 
links. This system overcomes the typical for RSS-based approaches issues with 
dynamically changing environments thanks to continuous online self-recalibration. 
The localization accuracy of this system is among the best in the competition. There 
are a few shortcomings: a fairly big number of nodes required for high accuracy 
results (e.g., 33 nodes in 58m2), they are powered from the wall outlets which 
involves extra cabling, and they have to be installed along the walls on a fixed height 
not exceeding the tracked person height. The latter can be impossible due to existing 
furniture. On the contrary, our motion sensors can be installed on the ceiling, 
anywhere on the walls or even underneath a table/desk if we want to detect that 
specific location. They require no cabling. If a sensor needs to be moved, we only 
need to change the configuration file since our localization component by default 
takes into account every possible location and orientation of a sensor in 3D space. 

We would like to note that even though our system did not prove to have the best 
localization accuracy, we managed to showcase the flexibility and interoperability of 
our architecture. Our system was the only deployment that was successfully 
integrated with the sensors pre-installed in the Living Lab. It is also worth noting that 
our system was conceived differently from the competing systems, in that localization 
is not its sole purpose but merely one of the features supported by the platform. Our 
work aims to develop a flexible architecture for supporting ambient-assisted living, on 
one hand, and experimentation with sensor development and sensor-network 
deployment, on the other. In this architecture, if we replace our existing motion sensor 
technology, the change will be transparent to the rest of the system. 



 The Smart-Condo™ Infrastructure and Experience 81 

7 Conclusions 

The Smart-Condo™ project aims to support people with chronic conditions to live 
independently longer by developing a platform for unobtrusively observing the 
activities of a home’s occupant (with a variety of sensors) and automatically 
controlling the home ambience and devices to improve the occupant’s experience.  

The Smart-Condo™ platform is architected in three layers. The sensor layer is 
responsible for collecting sensor readings, whether from a sensor-network actually 
deployed in a home or from a simulator. The middle layer analyzes the collected sensor 
data to infer the occupant’s location and activities. The interactive-visualization layer 
communicates these inferences in a graphical manner and as avatar-based animations in 
a virtual-world model of the occupant’s home. An important feature of the Smart-
Condo™ platform is its support for simulating and evaluating a particular sensor 
deployment with respect to its inference accuracy. Through this feature, we are able to 
explore alternative deployments and their relative deployment-cost vs. inference 
accuracy trade-offs. To this end, the avenues for future work include (i) incorporating 
improved models for simulating the physical sensor behavior, (ii) overcoming the global 
synchronization issues for overlapping sensor footprints, and (iii) implementing 
detection of anomalies in sensor readings of various nature. 

To date, the Smart-Condo™ platform has been deployed and evaluated three times 
in three different spaces. The results from the first two deployments were qualitative, 
because the experiment design did not allow knowledge of the ground truth of the 
occupant’s activities. In the context of the EvAAL competition, we were able to 
precisely evaluate the utility and effectiveness of the simulation-based deployment-
planning feature of our platform. Furthermore, the experiments demonstrated (a) the 
ease-of-deployment of our platform, (b) its flexibility and extensibility, as it was  
the single competitor able to integrate pre-existing sensors in the space, and (c) its 
high-quality (although not optimal) location-recognition accuracy. 
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