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Abstract. This paper presents an indoor localization system that is
based on the fusion of two complementary technologies: 1) Inertial
integration and 2) RFID-based trilateration. The Inertial subsystem
uses an IMU (Inertial Measurement Unit) mounted on the foot of the
person. The IMU approach generates a very accurate estimate of the
user’s trajectory shape (limited by the drift in yaw). However, being
a dead-reckoning method, it requires an initialization in position and
orientation to provide absolute positioning. The IMU-based solution
is updated at 100 Hz and is always available. On the other hand,
the RFID-based localization subsystem provides the absolute position
using the Received Signal Strength (RSS) from several long-range active
tags installed in the building. Since the transmitted RF signals are
subject to many propagation artifacts (reflections, absorption,...), we use
a probabilistic RSS-to-Range model and a Kalman filter to estimate
the position. The output of both IMU- and RFID-based subsystems
are fused into one final position estimation by adaptively fitting the
IMU and RFID trajectories. The integrated solution provides: absolute
positioning information, a static accuracy of less than 2.3 m (in 75%
of the cases) for persons at fixed positions, a smooth trajectory for
moving persons with a dynamic positioning accuracy of 1.1 m (75%),
a full 100% availability, and a real-time update rate of up to 100 Hz.
This approach is valid for indoor navigation and particularly for Ambient
Assisted Living (AAL) applications. We presented this system to the 2nd
EvAAL competition (“Evaluating AAL Systems through Competitive
Benchmarking”: http://evaal.aaloa.org/) and our CAR-CSIC system was
awarded with the first prize. A detailed analysis of the experiments
during the competition is presented at the end of this paper.
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1 Introduction

Two main research approaches are used in the indoor positioning problem: 1)
solutions that rely on the existence of a network of receivers or emitters, some of
them placed at known locations (beacon-based solutions), and 2) solutions that
mainly rely on dead-reckoning methods with sensors installed on the person to
be located (beacon-free solutions).

In the first approach (beacon-based), the positions are estimated by trilatera-
tion or triangulation from a set of measured ranges or angles, respectively. These
methods are usually termed as Local Positioning Systems (LPS), or Wireless
Sensor Networks (WSN), depending on the sensor configuration and processing
approach. They use technologies such as ultrasound, short-range radio (WiFi,
UWB, RFID, Zigbee, etc.) or vision [1].

The second approach (beacon-free or dead-reckoning) uses Inertial Measuring
Units (IMU) to estimate the position of persons [2]. These IMU-based
methodologies, often called Pedestrian Dead-Reckoning (PDR) solutions, can
integrate the user step lengths and heading angles at each detected step, to
estimate the user’s position [3,4,5]; or, alternatively, integrate accelerometer and
gyroscope readings of a foot-attached IMU (by strapdown INS mechanization
[6]) to compute the position and attitude of the person [7,8,9].

IMU-based PDR solutions have the inconvenient of accumulating errors that
grow with the path length (drift), while beacon-based solutions have limited
absolute accuracy and coverage. The fusion of IMU-based PDR solutions with
indoor absolute positioning has the potential to provide an accurate drift-free
positioning solution. In this paper we propose an integrated IMU+RFID-based
localization system. Section 2 presents the localization methodology, section 3
its evaluation at our site (CAR-CSIC) , and in section 4 we analyze in detail our
experiences during the EvAAL competition.

2 The Localization System

The block diagram of the proposed indoor localization system is presented
in Fig. 1. Two complementary but independent positioning methods are
implemented: 1) IMU-based Positioning, and 2) RFID-based Positioning. The
outputs of both systems PosIMU and PosRFID, which contains the two-dimensional
positioning coordinates of both approaches, are fused to generate the final
position estimation: PosFused. The next three subsections give details on each
method.

2.1 The IMU-Based Dead-Reckoning Localization Method

Our method assumes that an IMU is installed on the foot of a person (the most
reliable PDRmethod). The IMU contains 3 accelerometers and 3 gyroscopes, and
provides the sensor acceleration (m/s2) and the angular rate (rad/s). An inertial
navigation system (INS) algorithm is executed to integrate the accelerometer
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Fig. 1. Proposed positioning systems with “loose” IMU and RFID integration

K alman F ilter

IMU INS

Velocity
Corrections

IMU on the foot

PosAcc

Gyr

Measurements

Estimated
Errors

S tanc e
Detec tion

Acc  Gyr

Pos,Vel
&

Attitude

IMU

Fig. 2. Block diagram of the IMU-based dead-reckoning PDR method

readings into velocity and then into position, also the gyroscope angular rate
readings are integrated to obtain the attitude of the IMU (i.e. Roll, Pitch and
Yaw). See Fig. 2 for a simplified diagram of this approach.

The output of the INS needs to be corrected periodically or it will diverge
quickly due to sensor drift. A very effective technique is the Zero Velocity
Update (ZUPT), used every time that the foot is motion-less (stance phase), and
consisting in updating the INS-estimated velocity with the “known” velocity of
the foot at stance (zero velocity). This is a very effective way to reset the error
in velocity of the INS.

A complementary Extended Kalman Filter (EKF), working with a 15-element
error state vector [7,9], compensates position, velocity and attitude errors of the
INS solution, as well as the IMU biases. Our methodology is valid for any kind
of motion (forward, lateral or backward walk), and does not require a specific
off-line calibration of the user gait.
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2.2 The RFID RSS-Based Absolute Localization Method

It is assumed that an RFID reader is carried by a person and several active
tags are fixed at known locations in the building. The RFID reader provides the
Received Signal Strength (RSS) of each tag. A RSS-to-range model is used to
estimate the expected range between the reader and a particular tag (also its
uncertainty). Then, an EKF integrates all range measurements into a position
fix (dynamic trilateration). See Fig. 3 for a simplified diagram of the RFID-based
location method.
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Fig. 3. Block diagram of the active RFID-based absolute positioning system

The path-loss model that we use to transform from RSS to distance, d,
(maximum likelihood estimate) is given by

d = d0 · 10
RSS0−RSS

10·p , (1)

where RSS0 is a mean RSS value obtained at a reference distance d0, and p is the
path loss exponent (we experimentally found these values: RSS0 = 60, d0 = 1 m
and p = −2.3).

The standard deviation of the estimated distance, σd, is needed by the Kalman
filter as an indication of the belief we have on the modeled range value. It is

σd = σRSS · ln(10) · d−10 · p , (2)

where σRSS is the RSS standard deviation in dB. This sigma model is
proportional to distance, giving low standard deviation values at short ranges
(low uncertainty) and viceversa.
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The Kalman filter uses a 4-component state vector (X) that contains the 2-D
position and velocity, i.e. X = [PosRFID(x),PosRFID(y),VelRFID(x),VelRFID(y)]. In
order to predict the next state, X−, we use a movement model that relates the
current state with its predicted state as X− = A · X , which uses a constant
velocity model as detailed in matrix A:

A =

[
I2x2 ΔT · I2x2
02x2 I2x2

]
, (3)

being ΔT the sampling interval, I2x2 a 2 by 2 diagonal matrix, and O2x2 a 2 by
2 matrix of zeros.

We use a difference-in-range measurement model to feed our Kalman filter.
This measurement is Δdi = di − d−i , being Δdi the differences between the
measured range, di, to the i-th tag obtained with equation 1, and being d−i the
computed range between the current estimation and the position of i-th tag, i.e.

d−i = [(tagi(x) − Pos−
RFID

(x))2 + (tagi(y)− Pos−
RFID

(y))2]0.5. (4)

After a first order linearization of the measurement equation, we obtain matrix
H ,

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

tag
1
(x)−Pos−RFID(x)

d−
1

tag
1
(y)−Pos−RFID(y)

d−
1

0 0

tag2(x)−Pos
−
RFID(x)

d−
2

tag2(y)−Pos
−
RFID(y)

d−
2

0 0

. . . . . . . . . . . .
tag

N
(x)−Pos−RFID(x)

d−
N

tag
N
(y)−Pos−RFID(y)

d−
N

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (5)

that is used to compute the Kalman gain K = P− · HT · (HP−HT + R), and
this to update the state estimation of the EKF with X = X− +K ·Δdi, being
R the system model covariance matrix and P− the covariance of the predicted
state estimation that is a 4 by 4 matrix. Finally, the covariance of the estimation
after the measurement update is P = (I4x4 −K ·H) · P−.

This subsection has presented a long-range RFID strategy for localization.
Alternatively we could have implemented a passive short-range RFID strategy
based on cell-based or proximity positioning algorithms. However we prefer our
long-range RFID solution since it is a general purpose approach. It can be easily
adapted to provide location-awareness in large buildings simply by putting the
tags apart from each other (lowering the tag density).

In the implementation presented in this paper, we use long-range RFID
technology for a quite small space (approx. 100 m2). Consequently it is expected
that almost all tags will be detectable from any position in the AAL scenario. In
order to obtain enough accuracy a high tag density guaranties that the person
to be located is always close to some of the tags. We use all distances or RSS
data available for positioning, however our algorithm (see eq. 4) weights short
distances (strong RSS) much more than large distances (weak RSS). If the person
is close enough to a tag (less than 1 m), the system performs a kind of cell-based
positioning (the information from 1 tag is predominant over the others). This
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way, the positioning accuracy is expected to be about 1 m, which is better than
the typical accuracy (2-3 meters) using distant or a low density of tags.

2.3 The Integrated IMU+RFID Positioning Method

The fusion method that we propose is based on the superposition of the
smooth but not well-oriented IMU trajectory (PosiIMU) over the noisy but well-
aligned RFID-based trajectory (Posi

RFID
). This superposition is made basically

by iteratively fitting long sections of the IMU trajectory with the same temporal
section of the RFID-based trajectory. The fitting process is stated as a least
square minimization problem (Downhill Simplex method), where 3 variables
are optimized: the offsets along X and Y axis (ΔX , ΔY ), and the orientation
mismatch between the IMU and RFID trajectories (θ). These parameters
represent the misalignment of the IMU trajectory with respect the RFID
trajectory.

Once we have a first estimation of the misalignment between the IMU and
RFID trajectories (ΔX , ΔY , θ), the output of the fused solution is just a
reoriented version, according to the misalignment parameters, of the IMU-based
positioning solution. In this way we can provide a real-time positioning solution
at a rate up to 100 Hz. Since the IMU suffers from drift we can not rely the
fused solution on the initial misalignment parameters, then the fit is repeated
once in a while at a low rate.

The rate at which we update the misalignment parameters (ΔX , ΔY , θ) is
not critical. For example a fit can be performed at a fixed time interval, e.g.
every 60 s, or when enough person’s movement is detected. For example, the
minimum amount of movement required to perform a new fit can be traveling a
distance of at least 4 times the accuracy of the RFID-based positioning system
(we use 10 meters as threshold).

Note that at the very beginning, when no fitting is still done and no
misalignment parameters are known, the fused solution only uses the RFID
data (PosRFID).

3 Evaluation at CAR-CSIC

We have tested the system in an indoor area (Research Lab) of 80 square meters,
at the Center of Automation and Robotics (CAR-CSIC) (see Fig. 4). This area
was selected since it is similar in size to an apartment in Ambient Assisting
Living (AAL) applications.

3.1 Complexity of the Installation

Infrastructure in the Building. The building has to be equipped with
several active RFID tags placed on the walls or the furniture. A total of 24
tags were installed. The installation process is very fast, but the position of the
tags must be annotated in an existing floor plan which provides the coordinate
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Fig. 4. Lab used for tests (CAR-CSIC)

reference frame for the localization. The used tags are model M100 from RFCode
(www.rfcode.com), which are battery-powered RF transmitters operating in the
433 MHz radio band. Every tag broadcasts its unique ID and a status message
at a periodic rate (1 Hz).

Sensors Installed on the Person. The user must carry an IMU on the foot
and an RFID reader on its waist. We use a commercially available IMU, model
MTi from Xsens Technologies (www.xsens.com), which weights 50 grams. It is
configured to provide inertial data at 100 Hz. The RFID reader is model M220
from RFCode, which is a light-weight (160 g) portable battery-powered device.
This RFID reader is able to detect the active tags at long distances; the typical
maximum detection range is about 25 meters, and in our indoor experiments
the reader detects tags at a distance of 12 meters in 75% of the cases.

Computation Platform. We use a netbook computer to execute the location
algorithms and to make a graphical representation in real-time. The computer
in our current prototype is carried by the user, and sensors are connected
to it by USB. In the near future, we plan to use a more wearable platform
(tablet or smartphone) to read the internal sensors (Accelerometers, Gyroscopes
and WiFi) or any additional wireless external sensors (IMU or RFID reader).
The tablet/smartphone could also perform the data processing to estimate the
localization of the person.

3.2 Tracking with the IMU Subsystem

The estimation of the shape of the trajectory with an IMU is very reliable at
short-term and it is always available. It accumulates an error of about 1% of
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the Total Travelled Distance (TTD), i.e. if we start at a given position and end
at the same place after 100 meters of walk, the expected positioning error will
be about 1 m. However, the main inconvenient is that the absolute position
and orientation of the trajectory remain unknown unless they are provided at
initialization. The path at the top of Fig. 5 is a typical IMU-based estimation,
where small dots represent the detected foot stances (notice the error in the
orientation of the trajectory).

3.3 Tracking with the RFID Subsystem

This absolute positioning method has typical positioning errors of about 2.3
m (75th percentile). This limitation, common to most RSS-based positioning
methods (fingerprinting can obtain better results but at a cost of a systematic
calibration), makes difficult to give accurate tracking results at apartment-size
scale. However, the use of a higher density of tags helps in the accuracy that
can be obtained, specially if tags are placed close to the site where the person
is prone to pass by. At shorter reader-to-tag distances the uncertainty on the
range is lower (eq. 4) so position estimations are more accurate. See the middle
trajectory in Fig. 5 to get an idea of the tracking performance obtained.

3.4 Tracking with the Fused IMU-RFID System

The availability of the fused solution is 100% because the IMU is always
providing inertial data and also the RFID system in apartment-size spaces is
always available. The static positioning accuracy for a person at a fixed location
is similar to the RFID alone system (2.3 meters, 75%). However, if the person
moves from time to time to a different area, the generated trajectory and the
fusion process helps to improve the accuracy in positioning (down to 1.1 m, 75%).
The histograms in Fig. 6 show the distribution of the measured positioning errors
for the RFID and fused estimations. This improvement is specially effective with
long paths and diversified routes because in that case the systematic positioning
errors that appear at certain areas with the RSS-based method are averaged.
In the bottom of Fig. 5 it can be seen that the fused trajectory is smooth and
well-positioned over the ground-truth path.

3.5 Regions of Interest Detection

Sometimes symbolic positioning providesmoremeaning than coordinate position-
ing. The detection of particular Regions of Interest (RoI) where the user can be
located is very important inAAL (e.g. to be in theKitchen, bathroomor bedroom).

In our symbolic location tests we use a polygon to define each particular RoI.
Whenever the physical location estimate PosFused is inside the area defined by the
polygon, the system indicates that the person is located in that RoI. We have
defined 6 RoI as depicted in Fig. 7a. The success in the identification of the correct
RoI is shown in Fig. 7b, in which 7 RoI are visited sequentially, stopping 30 s in
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2 meters
Real trajectory

Fused (IMU+RFID)tracking

IMU-based tracking

RFID-based tracking

Fig. 5. Tracking with the IMU-based method (top), with the RFID-based method
(middle), and with the Fused IMU+RFID method (bottom). Red circles represent the
RFID tags positions with their sizes proportional to the RSS received from them at a
given instant. The ground truth is marked in the middle and bottom plot with orange
straight lines.
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Fig. 6. Positioning error Histograms for the RFID and fused estimations

each area, with 10 s transition time employed to move from one RoI to the next.
We did two different tests (plotted in Fig. 7b), and concluded that the system does
not have a perfect detection rate, but detects many of the regions of interests.

The detailed performance statistics indicate that when the user is in any of
the six RoIs, the system estimates the correct region in 65% of the cases. The
system did not generated any region detection, when it actually was in one of
them, in 33.8% of the cases. However only in 1.2% of the cases the systems
indicates a wrong region. On the other hand, when the user was not in any of
the regions of interest, the system correctly detected that state in 44.5% of the
cases, so in 55.5% of the cases a false alarm is generated indicating that the user
is in a region when actually is not.

4 Performance at EvAAL

We presented this system to the 2nd 2012 EvAAL competition (“Evaluating
AAL Systems through Competitive Benchmarking”: http://evaal.aaloa.org/),
which is a competition to test AAL solutions in two different specialities: 1)
tracking a person inside an apartment and 2) doing action recognition. We
participated in the tracking and localization section, which had a total of eight
competitors from countries all around the world.

The evaluation of our system was performed in the morning of the 3th of July
2012, between 8:30 and 11:30, in the Living Lab of the Polytechnic University of
Madrid, Spain. This system was the first one to be evaluated in the localization
track. Next subsections will give some details about this evaluation.
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a)

b)

Fig. 7. RoI detection tests. a) Six selected RoIs, b) Identification results for two
different tests (ground truth in red).

4.1 Installation of RFID Tags and Sensors

We installed 30 RFID tags in the Living Lab. The CAR team had previously
defined where to locate each tag using the map information available for
competitors. One person stuck the 30 tags using BlueTack� sticky gum in 6
minutes and 39 seconds. The distribution of the tags can be seen in figure 8, the
vertical position of all tags was approximately the same (about 1 meter). The
exact position of the tags once installed was not measured by any measuring
device, they were just placed by hand approximately at the locations previously
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defined (red circles in the map in figure 8). A probable positioning error of about
20 cm is not significant neither important for our system’s accuracy.

The installation of the sensors on the actor was simple but somehow tricky.
The RFID reader was placed on the actor’s waist easily, but the IMU sensor
was a bit more complicated since the actor used sandals with a very reduced
surface to attach the sensor. Finally we fixed it with double-side sticky foil and
secured it with some electrical tape. See figure 9 for details. The user has also
to carry with him the netbook computer where the localization algorithms are
executed. In order to facilitate the transportation we initially put the computer
inside a back pack. Finally, in order to avoid a lower processing power mode of
the computer when folded in the bag, the actor carried the computer close to his
hip keeping the arm straight to diminish muscle stress due to computer’s weight.

It is important to mention that after installing the sensors in this Living Lab,
we did not perform any calibration of the RFID subsystem. In principle the
RSS-to-distance model presented in section 2.2 was calibrated for the CAR-CSIC
building, but this model is a general purpose one that should not be significantly
affected by operating in different buildings made using typical construction
methods. We do not need a very precise and particular calibration, as opposite to
other methods such as fingerprinting. So all the test at EvAAL were performed
using the same model as explained in section 2.2 (i.e. RSS0 = 60, d0 = 1 m and
p = −2.3).

4.2 Generated Data

Our localization algorithm generated, as required for the competition, the
position information and the detected areas of interest at a 2 Hz update
frequency. The method used to transfer the information to the EvAAL server
was to create a TCP/IP socket using port 4444 and transmitting the information
to the local IP address ’127.0.0.1’. The computer had installed a socket receiver
(provided by the EvAAL team) that finally retransmits it to the EvAAL server.
The format used to transmit the information consists of a header indicating the
competitors identification name followed by the 2D position, the time stamp and
a variable field with none, one or several areas of interest, i.e.:

<Competitors ID> <X position in meters> <Y position in meters> <Posix
time in milliseconds> <AOI-Areas of Interest (1 o several integers)>.

See Fig. 10 for an example of real data transmitted during the competition.
Note in this example that at the begining the user is close to the lab’s table and
no region of interest (RoI) is transmitted, but after that it detects to be on RoI
31 that is a subregion contained in RoI number 3. In figure 11 it can be seen all
the RoIs that had to be detected, as defined by the EvAAL team.

Apart from the information previously described which is transmitted in
real-time, the CAR system also generates some log files (saved in real-time
during each session test) containing much more data of interest. At the
end of the evaluation we made available to the EvAAL team two files:
’logfile 2012.7.3 11.15.57.511.mat’ and ’logfile 2012.7.3 10.19.25.904.mat’ (*.mat
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Fig. 8. Installation of 30 RFID tags in the Living Lab of the Polytechnic University of
Madrid, Spain
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Fig. 9. Installation of the sensors on the actor. The IMU on one of the sandal’s strips
and the RFID reader on the waist belt.

Fig. 10. Example of data transmitted from the CAR-CSIC system to the EvAAL
server



46 A.R. Jiménez et al.

Fig. 11. Regions of Interes (RoI) defined to be detected al the Living Lab

is a Matlab file format) that can be post processed to evaluate other algorithms
or approaches. These files contain, among other information, the following data:

1. The 3D (X-Y-Z) position coordinates of the fused RFID+IMU estimation.
2. The 3D (X-Y-Z) position coordinates of the IMU alone estimation.
3. The 2D (X-Y) position coordinates of the RFID alone estimation.
4. The Orientation of the person (Yaw angle with respect to the North).
5. Region-of-Interest (RoI) Identity in which the user is believed to be located.
6. User’s foot activity (Walking or Still) and Step length (SL).
7. Raw Sensor data:

– The sensor acceleration (m/s2) provided by the 3 accelerometers.
– The angular rate (rad/s) provided by the 3 gyroscopes.
– Magnetic field (a.u.) provided by 3 magnetometers.
– The Received Signal Strength (RSS) of tags provided by the RFID reader.

4.3 The Different Tests and the Obtained Results

There were three different parts during the evaluation period: 1) System
installation in the Lab, 2) Tracking and Localization tests, and 3) Removing
the installation. For each of the three parts a maximum time-slot of one hour
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was allowed. Our system was installed and uninstalled in just a few minutes
(less than 10 minutes in total), so we obtained the maximum score in the
‘Installation Complexity’ metric. The second part (‘Tracking and Localization
tests’) consisted of three different phases: a) Location of a moving person inside
the lab, b) Similar to the latter but with another disturbing person walking
around, and c) detection of areas of interest. Each of these phases was repeated
twice, and the best of the two tests was used to compute the final score.

The tracking accuracy was measured as the 75% percentile error of the
Euclidean distance between the estimated position and the ground-truth
reference, as computed in section 3. Errors below 0.5 m are scored 10 points;
scores are given between 10 and 4 for errors from 0.5 m to 2 m; and finally scores
goes linearly down from 4 to 0 for errors between 2 and 4 meters. Our system
obtained and average localization accuracy of 7.9 which corresponds with a 75%
error of 1.1 meters. This performance is exactly the same that we obtained in
our own tests at CAR-CSIC Lab as presented before. Some of the estimated
trajectories can be seen in figure 12.

The RoI test obtained a 6.3 score which is again similar to the score we
obtained in our premises.

The total computed metrics are shown in Table 1, where it can be seen that
the availability of the system was 82.1%, the user acceptance received a 6.56
score, and the interoperability of the system obtained a 6.81 score. The total
score of the system was 7.70, which was the maximum of the eight competitors
at EvAAL, so the CAR-CSIC system was the winner of this second EvAAL
competition.

Note that we did not obtain a 100% availability, even when our system is
by definition a 100% available (the IMU always provides data at a 100 Hz rate
and the RFID tags are always visible in this small localization area). After the
competition we analyzed, looking into the log files, any kind of problems during
the data transmission. We verified that we correctly transmitted data packets
every 500 ms (2Hz), although the clock that we used to decide when to transmit
the next package was the IMU clock. The IMU clock accumulated 8.71 seconds
of delay with respect to the PC clock in a test that lasted for 839.7 seconds.
So the IMU’s clock was 1.1% slower than the PC’s clock. Nevertheless this was
not the cause of the 81% availability since a 1.1% slower clock would have cause
a 98.9% availability. We finally found that the wireless transmission from the
CAR PC to the server suffered some random delays that caused some time jitter
(significantly larger than 0.25 s), causing the server to ignore approximately one
data packet of five intents (80%). In figure 13 we can clearly see that instead of
receiving each packet with a 500 ms separation, we get significant undesirable
delays around a mean value of 500 ms.

4.4 Lessons Learned and Future Improvements

Although our system was a research prototype, and we already knew that it
was not very wearable (the need to carry a netbook computer and a tethered
IMU), it did not receive a bad score in user acceptance metric. The reason of
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Fig. 12. Some of the individual path estimations during the tracking tests at the
EvAAL Living Lab. The discontinuous line is the reference and the solid line is our
estimation. A big dot on those trajectories represents the starting point. The scores for
these tests were: 8.9, 8.02, 5.89 and 8.68 from top to bottom, respectively.
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Table 1. Detailed score of CAR system

Metric Weight Score

Accuracy 0.25 7.57
- Tracking Location 8.8
- RoI detection 6.3

Availability 0.2 8.21

Installation Complexity 0.15 10.0

User Acceptance 0.25 6.56

Interoperability 0.15 6.81

Final score 7.70

Fig. 13. Detected jitter at the reception of each data packet. This is the cause of the
81% availability of the system.

this, we believe, is that the localization concept proposed by us is in reality quite
wearable. In fact we plan for a near future to have the system implemented on a
smartphone, making use of its internal sensors (accelerometer and gyroscopes),
as well as, their capacity to read RFID/WiFi/Bluetooth signals. With this
hardware we can create a similar hybrid localization solution (IMU+RF) that
only requires the use of a smartphone carried by a person, and some small
RFID/WiFi/Bluetooth tags stuck on the walls of the smart home. A challenge
will be to process the IMU signals coming from the smartphone, since in that
case a Zero Velocity Update (ZUPT) can not be done.

Our system, as described before, is able to read the Earth magnetic field
since our IMU has three magnetometers. With this information we could have
better estimated the orientation of the person, but we decided not to use that
information because in general magnetic information is not reliable in indoor
environments (due to the presence of metallic objects, magnets, motors, and
some other magnetic field disturbers). So it is commonly admitted that magnetic
information can be beneficial outdoors, but indoors it could be detrimental [10].
When we analyzed, after the competition, the orientation estimated with the
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magnetic compass and compared it to the actual orientation, we saw that the
orientation errors were frequent in the Living Lab, so we took a good decision
not making use of it.

Our system could have also been improved if the map information (position of
doors, walls, and so on) of the living Lab had been used. Map information could
have avoided the generation of localization points outside the living lab space,
and also it would have improved the RoI correct detection rate. Additionally,
our system was able to read the switch messages provided by the building when
the user switch on or off a lamp, but we finally decided not to use it since the
correction methodology was not well studied and debugged at the time of the
competition. So, in conclusion, we get satisfied by the results that we obtained
at this competition, but we think that there is room to improve our results a
little bit more with a future prototype that would use a more wearable device,
as well as the information from a floor map and the user’s actions.

5 Conclusion

We have presented one localization system integrating two independent but
complementary positioning methods: 1) IMU-based Positioning, and 2) RFID-
based Positioning. The output of both systems PosIMU and PosRFID, which
contains the two-dimensional positioning coordinates of both approaches, are
fused to generate the final position estimation, PosFused. This estimate gathers
together the benefits of each individual solution: absolute estimation, quite
smooth tracking, full availability and real-time update rate. A complete
evaluation is performed in two labs: CAR-CSIC and the Living Lab of UPM.
Over an area of 100 square meters we obtained an accuracy of 1.1 m in %75 of
the cases, and a capability to detect RoI of 65%. the system also had excellent
installation times and good user acceptance. The described system was the
winner of the second edition of the 2012 international EvAAL competition.

References

1. Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing.
Computer 34(8), 57–66 (2001)

2. Collin, J.: Investigations of Self-Contained Sensors for Personal Navigation. PhD
thesis (2006)

3. Stirling, R.: Development of a Pedestrian Navigation System Using Shoe Mounted
Sensors. PhD thesis, University of Alberta (2004)

4. Ladetto, Q.: J Van Seeters, S Sokolowski, Z Sagan, and B. Merminod: Digital
Magnetic Compass and Gyroscope for Dismounted Soldier Position and Navigation.
Sensors & Electronics Technology Panel, NATO Research and Technology Agency
Sensors, pp. 1–15 (2002)
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