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Abstract. Dynamic textures are image sequences recording texture in
motion. Given a sample video, the goal of synthesis is to create a new se-
quence enlarged in spatial and/or temporal domain, which looks percep-
tually similar to the input. Most synthesis methods are mainly focused
on extending sequences only in the temporal domain. In this paper, we
propose a dynamic texture synthesis approach for spatial domain, where
we aim to enlarge the frame size while preserving the aspect and motion
of the original video. For this purpose, we use a patch-based synthesis
method based on LBP-TOP features. In our approach, 3D patch regions
from the input are selected and copied to an output sequence. Usually,
in other patch-based approaches, the selection of the patches is based
only in the color, which cannot capture the spatial and temporal infor-
mation, causing an unnatural look in the output. In contrast, we propose
to use the LBP-TOP operator, which implicitly represents information
about appearance, dynamics and correlation between frames. The exper-
iments show that the use of the LBP-TOP improves the performance of
other methods giving a good description of the structure and motion of
dynamic textures without generating visible discontinuities or artifacts.

1 Introduction

Texture synthesis (TSyn) has generated considerable research interest in recent
years, since it is an essential element in many computer graphics applications.
Given a sample texture, the goal is to synthesize a new texture that looks per-
ceptually similar to the input, with an arbitrary size specified by the user. TSyn
is a practical alternative way to create textures for a given surface, instead of the
more traditional ways like hand drawing or scanning pictures [13]. One primary
advantage of TSyn lies on the storage requirements, because it only needs to
store a small sample of the texture, regardless of the size of the surface to cover.

Dynamic textures (DTs) are video sequences that are spatially repetitive and
temporally stationary [5]. Basically, DTs are textures in motion. Analogously to
the definition of TSyn, dynamic texture synthesis (DTSyn) consists in creating
an infinite sequence, either in space or time domains, using a video exemplar
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as input. The time domain comprises the duration of the video, while the spa-
tial domain consists of enlarging the image size. Both domains must preserve a
natural appearance and motion in the outputs.

Different methods for DT synthesis have been proposed. These approaches can
be separated into two categories: parametric and non-parametric. Parametric
methods are applied to model the behavior of a given phenomenon as a linear
dynamic system [3,4,8,15], and typically, they are focused on the two domains at
the same time. Even though these methods are able to obtain an output similar
to the input, the visual quality is not realistic enough. On the other hand, non-
parametric, or exemplar-based, methods are based on taking small parts from
an input sample as elements to build the output. Results of non-parametric
methods look more natural and realistic than the parametric methods, in view
of that these approaches reuse the information of the input.

Non-parametric approaches have been used to synthesize dynamic textures in
both time and space domains. Considerable work has been developed for DTSyn
along the time domain, for example, in [6,11,7]. The idea behind these tech-
niques for extending the duration of the video, is to find sets of matching frames
in the input video and then, jump between these frames during playback. On
the other hand, in order to enlarge the frame size, but keeping the duration of
the video with non-parametric methods, two main approaches have been fol-
lowed: pixel-based and patch-based methods. The essential difference between
these two methods is in how the information is transferred to the output. As
their name says, the pixel-based methods transfer one pixel at a time. The value
of each pixel in the output is determined by comparing its spatial neighbor-
hood with all neighborhoods in the input texture. Some pixel based techniques
that have been applied for DTSyn are those introduced by Bar-Joseph et al. [1]
and Wei and Levoy [14]. By contrast, patch-based techniques select and copy
whole neighborhoods each time to the output. With these methods, the speed
and quality of synthesis can be improved. However, the problem of how to avoid
mismatches between adjacent patches arises. The patch is pasted on the output
with a portion of overlapped volume with the already synthesized portion. The
patch can be just blended, or an optimal cut can be found for seaming the two
patches. In these methods, each patch must be carefully selected depending on
a given visual feature. Typically, only the color of the pixels is considered. A sig-
nificant number of patch-based approaches for static texture synthesis has been
proposed, while dynamic textures synthesis has not received the same attention.
One representative method for DTSyn in space is the proposed by Kwatra et
al. [7], using dynamic programming to find an optimal path to cut through the
overlapped regions considering only the color of pixels. Even though pixel-based
and patch-based approaches have obtained good results, the influence of the vi-
sual features used for DT description for DTSyn remains unexplored. According
to Chetverikov and Péteri [2], fundamental issues regarding the DT description
include the combination of appearance with motion features. This issue cannot
be achieved by only using the intensity of pixels and must be considered for
DTSyn implementations.
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In this paper, we propose the use of local binary patterns from three orthog-
onal planes [16] as a reference feature in a non-parametric patch-based method
for DTSyn in space. This operator can capture the structure of local brightness
variations in three orthogonal planes, and therefore, describe appearance and
motion based on the local spatial and temporal patterns. The use of this op-
erator gives to our approach an advantage in comparison to those based only
on the color. In addition, it is not intricate since we do not need an optimiza-
tion of the boundary zone between adjacent patches. Experiments carried out
on different dynamic textures show that the use of LBP-TOP features allows
a better description of DT patches and preserves the structure and dynamics
without generating visible discontinuities between regions. It is also shown that
our method can achieve better or at least similar performance to previously
proposed methods.

This paper is organized as follows: in Section 2, the LBP-TOP operator and
the synthesis algorithm are presented. Experiments and results are presented in
Section 3, and concluding remarks are given in Section 4.

2 Dynamic Texture Synthesis in Space Using LBP-TOP
Features

The proposed method for DTSyn in spatial domain is carried out by using a
spatio-temporal descriptor as visual feature, which allows a better perceptual
representation of DT. Details of the implementation are given below.

2.1 Spatio-Temporal Descriptor

The local binary pattern from three orthogonal planes (LBP-TOP) [16], is a
spatio-temporal descriptor for dynamic textures. The LBP-TOP considers the
co-occurrences in three planes XY, XT and YT, capturing information about
the space-time transitions, as shown in Fig. 1.

Fig. 1. The LBP-TOP feature is obtained by extracting the LBPs from three orthog-
onal planes
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The LBP-TOP is an extension of the Local Binary Patterns (LBP) presented
by Ojala et al. [9]. As it is known, the LBP is a theoretically simple, yet efficient
approach, to characterize the spatial structure of local texture. Basically, the
operator labels a given pixel of an image by thresholding its neighbors in function
of the pixel intensity and summing the thresholded values weighted by powers
of two. According to Ojala, a static texture T in a local neighborhood of a
monochrome texture image is defined as the joint distribution of the gray levels
of P (P > 1) image pixels T = t(gc, g0, . . . , gP−1), where gc is the gray value
of the center pixel and gp(p = 0, 1, . . . , P − 1) are the gray values of P equally
spaced pixels on a circle radius R(R > 0), that form a circularly symmetric
neighbor set. If the coordinates of gc are (xc, yc), then the coordinates of gp are
(xc−R sin(2πp/P ), yc+R cos(2πp/P )). The LBP code for the pixel gc is defined
as

LBPP,R(gc) =

P−1∑

p=0

s(gp − gc)2
p (1)

where the thresholding function s(·) is defined in equation 2. More details can
be further consulted in [9].

s(t) =

{
1, t ≥ 0
0, otherwise

(2)

For the spatio-temporal extension of the LBP, named as LBP-TOP, the local
patterns are extracted from the XY, XT and YT planes. Each code is denoted
as XY-LBP for the space domain, and XT-LBP and YT-LBP for space-time
transitions [16]. In the LBP-TOP approach, the three planes intersect in the
center pixel and three different patterns are extracted in function of that central
pixel. The local pattern of a pixel from XY plane, contains information about
the appearance and, in the local patterns from XT and YT planes, statistics
of motion in horizontal and vertical directions are included. In this case, the
radii in axes X,Y and T are RX , RY and RT respectively and the number of
neighboring points in each plane are defined as PXY , PXT , PY T . Supposing
that the coordinates of the center pixel gtc,c are (xc, yc, tc), the coordinates of
the neighbors gXY,p in the plane XY are given by (xc −RX sin(2πp/PXY ), yc +
RY cos(2πp/PXY , tc). Analogously, the coordinates of gXT,p in the plane XT
are (xc − RX sin(2πp/PXT ), yc, tc − RT cos(2πp/PXT ), and the coordinates of
gY T,p on the plane YT are (xc, yc − RY cos(2πp/PY T ), tc − RT sin(2πp/PY T ).
Consequently, every pixel in the input video is represented by 3 codes, one for
each orthogonal plane.

For the implementation proposed in this paper, each pixel of the input se-
quence Vin is analyzed with the LBP-TOP operator, in such a way that we
obtain an LBP-TOP-coded sequence VLBP−TOP . Each pixel in the VLBP−TOP

sequence is coded by three values, comprising each of the space-time patterns of
the local neighborhood, as can be seen in Fig. 2. As we said before, in patch-
based methods each patch must be carefully selected depending on a given visual
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feature, then, the patch is positioned with some overlapped area with the already
synthesized portion. To accomplish this task, we use VLBP−TOP as a temporary
sequence for the patch description in the selection process.

Fig. 2. Each pixel in the corresponding LBP-TOP sequence is obtained by extracting
the LBPs from the three orthogonal planes in the input sequence

2.2 Dynamic Texture Synthesis in Space Domain

In this paper, we propose the use of LBP-TOP features [16] in a non-parametric
patch-based method for DTSyn in space. As mentioned, non-parametric algo-
rithms basically select patches, or blocks from the input as elements to build
an output. The use of LBP-TOP features, allows us to consider the spatial and
temporal relations among pixels and, therefore, obtain more information about
a given block and its possible neighbor blocks.

Our method is cyclical, in each step we select a block Bk from the input
sample video Vin and copy it to the output video Vout. To avoid discontinuities or
artifacts between blocks, we must carefully select Bk based on the blocks already
pasted {B0, . . . , Bk−1} in Vout. At the beginning, a block B0, of Wx ×Wy ×Wt

pixels size, is randomly selected from the input Vin, and copied to the upper left
corner of the output Vout. The following blocks needed to fulfill the output, are
positioned in raster scan order in such a way that they are partially overlapped
with previously pasted blocks. The overlapped volume between two blocks is of
size Ox × Oy × Ot pixels. In Fig. 3 an example of a video block, the boundary
zone where two blocks should match and an example of the overlapped volume
between two blocks are illustrated. In Figure 3(b), the selected block Bk has a
boundary zone EBk

and the previously pasted volume in Vout has a boundary
zone Eout. According to our method and in order to avoid discontinuities, EBk

and Eout should match.
The appropriate description and selection of each block becomes a key issue

in our method. In the block selection step, we consider the similarity of the
spatio-temporal features on the boundary zones. For this, we first build a set of
candidate blocks AB of Vin, which are considered to match with the previously
pasted volumes in Vout. Then we select one block randomly from the set. The
random selection is performed to keep a good diversity on the blocks selected.
Two blocks are considered to match if the distance in the corresponding over-
lapping volume is lower than a distance tolerance, specified by the user. We
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(a) (b) (c)

Fig. 3. Examples of (a) a video block, (b) the boundary zone of two different blocks
and (c) the overlapped volume between two video blocks. The boundary zones should
match.

construct a set of all the potential blocks B(x,y,t) to be considered to match with
Eout. Let B(x,y,t) be the block whose upper left corner is at (x, y, t) in Vin. We
construct

AB = {B(x,y,t)|d(EB(x,y,t), Eout) < dmax, B(x,y,t)∈Vin
} (3)

where EB(x,y,t)
is the boundary zone of B(x,y,t) and dmax is the distance tolerance

between two boundary zones. Details on how to compute d(·) are given later.
When we have determined all the potential blocks, we pick one randomly from
AB to be the kth block Bk to be pasted on Vout. The size of AB depends on how
many blocks satisfy the similarity constraints. With a high value of dmax the
output will have a better quality but, few blocks would be considered to be part
of AB. By contrast, with a low tolerance a big number of blocks will be part of
the set and there will be more options to select, but the quality of the output
will be compromised. For a given dmax, the set AB could be empty. In such case,
we choose Bk to be the block B(x,y,t) in Vin with the smallest distance to the
boundary zone of the output Eout. In Fig. 4 the three possible configurations of
the overlapping zones between the already pasted zones Eout and the new patch
Bk are shown. The first possibility, shown in Fig. 4(a), is when Bk is on the first
row and goes after B0. The second is when Bk is the first block in the second or
subsequent rows (Fig. 4(b)). The third is when Bk is not the first on the second
or subsequent rows as shown in Fig. 4(c), here the total distance is the addition
of the above and left boundaries distances.

The algorithm to pursue for synthesizing dynamic texture in space can be
described as follows:

1. Let Vin be an input DT sample of Vx × Vy × Vt pixels size. Set the synthesis block
size as Wx×Wy×Wt, and the size of the overlapped volume of two adjacent blocks
as Ox ×Oy ×Ot. Consider Vt = Wt = Ot.

2. Obtain the VLBP−TOP sequence of Vin.

3. Transfer the first block B0 from Vin to the upper left corner of the output Vout by
random selection. Set k = 1.

4. Synthesize next block in raster scan order:
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(a) (b) (c)

Fig. 4. Three possible overlapping zones between the output Eout and the new block
Ek. (a) Bk is in the first row, but after B0. (b) Bk is the first block in the second or
subsequent rows and (c) Bk is not the first on the second or subsequent rows.

a) Select a set of candidate blocks AB from Vin, such that for each block in AB,
the boundary zone satisfies the overlap constraints (above and left) with the
previously pasted blocks, with certain tolerance distance between the blocks,
computed using the LBP-TOP features.

b) Pick one block randomly from AB to be Bk and paste it from Vin to Vout. Set
k = k + 1. Perform blending in the boundary zones.

c) Repeat until Vout is completely synthesized.

On the overlapped volume, in order to obtain smooth transitions and minimize
artifacts between two adjacent blocks, we blend the volumes using a feathering
algorithm [12]. This algorithm set weights to the pixels for attenuating the in-
tensity around the blocks’ boundaries using a ramp style transition. As a result,
the possible discontinuities are avoided, and uniform transitions are achieved.

The sizes of a given block and the overlapped volume are dependent on the
properties of a particular DT, hence, in our algorithm they can be adjusted by
the user. This characteristic makes our algorithm flexible and controllable. The
boundary zone should be large enough to avoid mismatching features across the
borders but at the same time, it should be small to be tolerant to the border
constraints. Usually, the overlap volume is a small fraction of the block size, 1/6
of the total volume in our experiments.

In this approach, the overlap distance between the boundary zones of a given
block EB(x,y,t)

and the output Eout is estimated by using the L2 norm among
the LBP values of each orthogonal plane. This error is defined as:

d(EB(x,y,t)
, Eout) =

1

V

V∑

i=1

3∑

j=1

[
pjB(x,y,t)

(i)− pjout(i)
]2

(4)

where V is the number of pixels in the overlapped volume. pjBk
(i) and pjout(i)

represent the LBP values of the ith pixel in the overlapping zones on the jth

orthogonal plane, respectively. For color DTs, we compute the LBP-TOP code
for each color channel. In this paper, we use the RGB color space, the final
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overlapping distance is the sum of the errors in each color component. The
matching estimation between two blocks is computed based on their LBP values
from the VLBP−TOP sequence. As a result, spatial and temporal features are
considered simultaneously for the block description.

3 Experiments and Results

In this section, we present two series of tests that have been accomplished in
order to evaluate the performance of our method. At first, a visual evaluation of
performance is made on a variety of dynamic textures. Afterwards, comparisons
between the proposed approach with other state-of-the-art methods are made
to validate the application of it. All the resulting videos are available on the
website: dl.dropbox.com/u/13100121/LBP2012Results.zip

3.1 Performance on a Variety of DTs

In the first experiment, a set of videos was selected for evaluating our approach
performance on different types of dynamic textures. The videos were selected
from the DynTex database [10], which provides a comprehensive range of high-
quality DTs and can be used for various research purposes. In Figs. 5(a)-(f), a
frame (176×120 pixels size) taken from the original videos is shown. The selected
sequences correspond to videos that show: spatio-temporal stationarity (a-c), a
scene with a variety of textures and colors with different kind of dynamics (d)
and a scene composed by structured objects (e-f).

In Figs. 5(g)-(l), the results of the synthesized outputs enlarged to 200× 200
pixels size are presented. Spatial dimensions of the block Wx × Wy used for
synthesis are shown below each image. As we said before, the size of the block is
a user-specifiable parameter and should be proportional to the size of the spatial
or temporal texture patterns. Here, the size of the overlapped volume Ox × Oy

is 1/6 of Wx × Wy. As we can observe in Figs. 5(g)-(i), our method preserves
the spatio-temporal stationarity of the input and the borders between blocks are
almost invisible. It is worth mentioning that in our method, we do not need to do
an additional optimal seam on the borders to achieve smooth transitions, such as
the graph cut used in [7]. This soft transition is achieved because of the selection
of the blocks, based on the LBP-TOP features. The corresponding output for
the video shown in Fig. 5(d) is presented in Fig. 5(j), where the same variety of
colors and the diversity of surfaces is maintained. In this video, the transitions
between blocks are also invisible. Sequences shown in Figs. 5(e)-(f) are different
in the sense that they are composed of structured objects. Therefore, it is crucial
that the structure of these objects can be maintained in the output, where we
aim to generate an array of these objects. The synthesized results, seen in Figs.
5 (k)-(l), exhibit such arrangement showing that our method can keep the shape
and structure of the given object without adding any discontinuity.
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(a) (b) (c) (d) (e) (f)

(g) 20× 20 (h) 30× 30 (i) 55× 55 (j) 20× 20 (k) 60× 60 (l) 90× 90

Fig. 5. Results of spatial synthesis. (a-f) A frame taken from the original sequence.
(g-l) the corresponding synthesis result with the video block size used. The block size
is proportional to the size of the spatial or temporal patterns.

3.2 Performance Comparison

The second experiment consist of a comparison with other state-of-the-art meth-
ods. We have compared our approach with the methods proposed by Wei and
Levoy [14], Bar-Joseph et al. [1] and Kwatra et al. [7]. The firsts two are pixel-
based approaches, while the third is a patch-based method.

We have borrowed the sequences named OCEAN and SMOKE (frame of
150 × 112 pixels size) used by Wei and Levoy in their experiments and made
a comparison of the quality of the results. In Fig. 6 a frame extracted from the
original sample, from the result of Wei and Levoy and from our result are pre-
sented. Here, it is observed that the videos obtained by Wei and Levoy (frame
of 150× 112 pixels size) are blurred, while the videos generated by our method
(frame of 170 × 170 pixels size) keeps a natural appearance and motion of the
two phenomena.

A second comparison is made with the results obtained by Bar-Joseph et al.
[1]. We have used the sequences named as CROWD and JELLY FISH (frame
of 256 × 256 pixels size). In Fig. 7, a frame from each resulting sequence is
presented. Here, it is observed that the videos obtained by Bar-Joseph (frame
of 256 × 256 pixels size) have some artifacts, blurred spots and discontinuities,
while the videos generated by our method (frame of 280× 280 pixels size) keep
a natural look.

In a third comparison, we synthesized the sequence named RIVER (frame of
176 × 112 pixels size), provided by Kwatra et al. [7] for spatial extension. As
it can be seen from both results (frame of 200 × 150 pixels size) shown in Fig.
8, Kwatra has generated good results of DT synthesis, which can be taken as
the baseline to compare with. From the experimental results, we found that our
method also achieves a good performance. It is observed that the appearance
and dynamics of the water are preserved.

We have found that our method obtains very good results with sequences that
present some spatial homogeneity, however we have detected limitations of our
method on a very specific type of dynamic textures. Our approach does not work
very well when a moving object occupies a big portion of the scene and thus,



Dynamic Texture Synthesis in Space with a Spatial-temporal Descriptor 47

Ocean
Wei and Levoy

Our Result

Smoke
Wei and Levoy

Our Result

Fig. 6. Comparisons between the proposed approach and the method proposed by Wei
and Levoy [14]

Crowd Bar-Joseph
Our Result

Jelly Fish Bar-Joseph
Our Result

Fig. 7. Comparison between the proposed approach and the method proposed by Bar-
Joseph et al. [1]
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River Kwatra Our Result

Fig. 8. Comparison between the proposed approach and the method proposed by Kwa-
tra et al. [7]

there is not enough diversity to choose the blocks to be pasted on the output.
Examples of this, using sequences form the DynTex database are shown in Fig.
9 where there is certain repeatability between the selected blocks, leading to
discontinuities on the resulting videos.

Original

Synthesized

Original

Synthesized

Fig. 9. Two examples where our method did not achieve good results as in the general
case

4 Conclusions

In this paper, the use of spatio-temporal features for dynamic textures synthesis
in space has been considered. The proposed approach is centered on synthesis
in the spatial domain, unlike previous work that is mostly focused on temporal
domain. This method explores a 3D patch-based synthesis, where the patch
selection is accomplished by taking LBP-TOP features, instead of just making
use of the intensity of pixels. LBP-TOP features can enhance the capability of
describing the appearance and dynamics of DTs due to the local spatio-temporal
patterns extracted. The main advantage of the presented approach is that it
preserves on the output the visual similarity, dynamics and continuity of the
input. Furthermore, no additional seam optimization is needed to achieve smooth
transitions between blocks. From experimental results, the proposed method
produces very good results on a variety of DTs. The performance of the proposed
method has shown to be better than, or at least equal to other methods. In future
work, the inclusion of a temporal domain synthesis approach will be considered.
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