
A Benchmark Dataset for Outdoor

Foreground/Background Extraction

Antoine Vacavant1,2, Thierry Chateau3,
Alexis Wilhelm3, and Laurent Lequièvre3

1 Clermont Université, Université d’Auvergne, ISIT, BP10448, F-63000
Clermont-Ferrand

2 CNRS, UMR6284, BP10448, F-63000 Clermont-Ferrand
3 Pascal Institute, Blaise Pascal University, CNRS, UMR6602, Clermont-Ferrand

Abstract. Most of video-surveillance based applications use a
foreground extraction algorithm to detect interest objects from videos
provided by static cameras. This paper presents a benchmark dataset
and evaluation process built from both synthetic and real videos, used
in the BMC workshop (Background Models Challenge). This dataset fo-
cuses on outdoor situations with weather variations such as wind, sun or
rain. Moreover, we propose some evaluation criteria and an associated
free software to compute them from several challenging testing videos.
The evaluation process has been applied for several state of the art algo-
rithms like gaussian mixture models or codebooks.

1 Introduction

The ability to detect objects in videos is an important issue for a number of
computer vision applications like intrusion detection, object tracking, people
counting, etc. In the case of a static camera, a foreground extraction algorithm
is a popular operation to point out objects of interest in the video sequence.
Although modeling background seems simple, challenging situations occur in
classic outdoor environments such as variation of illumination conditions or local
appearance modifications resulting to wind or rain. In order to handle such
situations, many background/foreground adaptive models have been proposed
in the last fifteen years. An important issue is to provide a way to evaluate and
compare most popular models according to standard criteria.

Although the evaluation of background subtraction algorithms (BSA) is an
important issue, the impact of relevant papers that handle with both benchmarks
and annotated dataset is limited [1,10]. Moreover, many authors that propose
a novel approach use [11] as a gold-standard, but rarely compare their method
with recent related work. This paper proposes a set of both synthetic and real
video and several performance evaluation criteria in order to evaluate and rank
background/foreground algorithms. Popular methods are then evaluated and
ranked according to these criteria.

The next section (Section 2) presents the annotated datasets we have pro-
posed for the BMC (Background Models Challenge), composed of 20 synthetic
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videos and 9 real videos. We also define the quality metrics available in the
benchmark, and computable with a free software (BMCW). In Section 3, we
conduct a complete evaluation of six classic background subtraction algorithms
of the literature, thanks to the benchmark of BMC.

2 Datasets and Evaluation Criteria

2.1 Learning and Evaluation Videos

In the contest BMC (Background Models Challenge) 1, we have proposed a com-
plete benchmark composed of both synthetic and real videos. They are divided
into two distinct sets of sequences: learning and evaluation.

The benchmark is first composed of 20 urban video sequences rendered with
the SiVIC simulator [4]. With this tool, we are also able to render the associate
ground truth, frame by frame, for each video (at 25 fps). Two scenes are used
for the benchmark:

1. a street;
2. a rotary.

For each scene, we propose 5 event types:

1. cloudy, without acquisition noise;
2. cloudy, with noise;
3. sunny, with noise;
4. foggy, with noise;
5. wind, with noise.

For each configuration, we have two possible use-cases:

1. 10 seconds without objects, then moving objects during 50 seconds;
2. 20 seconds without event, then event (e.g. sun uprising or fog) during 20

seconds, finally 20 seconds without event.

The learning set is composed of the 10 synthetic videos representing the use-case
1. Each video is numbered according to presented event type (from 1 to 5), the
scene number (1 or 2), and the use-case (1 or 2). For example, the video 311
of our benchmark describes a sunny street, under the use-case 1 (see Figure 1).
In the learning phase of the BMC contest, authors use these sequences in order
to set the parameters of their BSA, thanks to the ground truth of each image
that is available, and to a software of computation of quality criteria (see next
section).

The Evaluation set first contains the 10 synthetic videos with use-case 2. In
Figure 1, the video 422, presenting a foggy rotary under use-case 2, is depicted.
This set is also composed of real videos acquired from static cameras in video-
surveillance contexts (see Figure 2). This dataset has been built in order test

1 http://bmc.univ-bpclermont.fr

http://bmc.univ-bpclermont.fr
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Fig. 1. Examples of synthetic videos and their associated ground truth in our dataset.
Left: scene 1, configuration 3, use-case 1 (learning phase). Right: scene 2, configuration
4, use-case 2 (evaluation phase)

the algorithms reliability during time and in difficult situations such as outdoor
scenes. So, real long videos (about one hour and up to four hours) are available,
and they may present long time change in luminosity with small density of
objects in time compared to previous synthetic ones. This dataset allows to test
the influence of some difficulties encountered during the object extraction phase.
Those difficulties have been sorted according to:

1. the ground type (bitumen, ballast or ground);
2. the presence of vegetation (trees for instance);
3. casted shadows;
4. the presence of a continuous car flow near to the surveillance zone;
5. the general climatic conditions (sunny, rainy and snowy conditions);
6. fast light changes in the scene;
7. the presence of big objects.

Fig. 2. Examples of real videos and their associated ground truth in our dataset (eval-
uation phase)

For each of these videos have been manually segmented some representative
frames that can be used to evaluate a BSA. In the evaluation phase of the BMC
contest, no ground truth image is available, and authors should test their BSA
with the parameters they have set in the learning phase.

2.2 Quality Assessment of a Background Subtraction Algorithm

In our benchmark, several criteria have been considered, and represents different
kinds of quality of a BSA.



294 A. Vacavant et al.

Static Quality Metrics. Let S be the set of n images computed thanks to a
given BSA, and G be the ground truth video sequence. For a given frame i, we
denote by TPi and FPi the true and false positive detections, and by TNi and
FNi the true and false negative ones. We first propose to compute the F-measure,
defined by:

F =
1

n

n∑

i=1

2
Preci ×Reci
Preci +Reci

, (1)

with

Reci(P ) = TPi/(TPi + FNi) ; Preci(P ) = TPi/(TPi + FPi) (2)

Reci(N) = TNi/(TNi + FPi) ; Preci(N) = TNi/(TNi + FNi) (3)

Reci = (1/2)(Reci(P ) +Reci(P )) ; Preci = (1/2)(Preci(P ) + Preci(P )).(4)

We also compute the PSNR (Peak Signal-Noise Ratio), defined by:

PSNR =
1

n

n∑

i=1

10 log10
m∑m

j=1 ||Si(j)−Gi(j)||2 (5)

where Si(j) is the jth pixel of image i (of size m) in the sequence S (with
length n). These two criteria should permit to compare the raw behavior of each
algorithm for moving object segmentation.

Application Quality Metrics. We also consider the problem of background
subtraction in a visual and perceptual way. To do so, we use the gray-scale
images of the input and ground truth sequences (see Figure 3) to compute the
perceptual measure SSIM (Structural SIMilarity), given by [14]:

SSIM(S,G) =
1

n

n∑

i=1

(2μSiμGi + c1)(2covSiGi + c2)

(μ2
Si

+ μ2
Gi

+ c1)(σ2
Si

+ σ2
Gi

+ c2)
, (6)

where μSi , μGi are the means, σSi , σGi the standard deviations, and covSiGi

the covariance of Si and Gi. In our benchmark, we set c1 = (k1 × L)2 and
c2 = (k2×L)2, where L is the size of the dimension of the signal processed (that
is, L = 255 for gray-scale images), k1 = 0.01 and k2 = 0.03 (which are the most
used values in the literature).

We finally use the D-Score [8], which consists in considering localization of
errors according to real object position. As Baddeleys distance, it is a similarity
measure for binary images based on distance transform. To compute this measure
we only consider mistakes in BSA results. Each error cost depends on the distance
with the nearest corresponding pixel in the ground-truth. As a matter of fact,
for object recognition, short or long range errors in segmentation step are less
important than medium range error, because pixels on medium range impact
greatly on object’s shape. Hence, the penalty applied to medium range errors
is heavier than the one applied to those in a short or large range, as shown on
Figure 4.
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Fig. 3. To compute the SSIM, we need the intensities of pixels, in the ground truth
sequence G (Left), and in the sequence computed by a BSA (Right)

Fig. 4. Examples of computation of the D-Score. From Left to Right: a ground-truth
image; cost map based on a DT; example of long ranges errors, leading to a D-Score
of 0.003; omissions with medium range errors, with D-Score: 0.058

More precisely, the D-Score is computed by using:

D−score(Si(j)) = exp
(
(− log2 (2.DT (Si(j))− 5/2)2

)
(7)

where DT (Si(j)) is given by the minimal distance between the pixel Si(j) and
the nearest reference point (by any distance transformation algorithm). With
such a function, we punish errors with a tolerance of 3 pixels from the ground-
truth, because these local errors do not really affect the recognition process. For
the same reason, we allow the errors that occur at more than a 10 pixels distance.
Details about such metric can be found in [8]. Few local/far errors will produce
a near zero D-Score. On the contrary, medium range errors will produce high
D-Score. A good D-Score has to tend to 0.

3 Results and Analysis

3.1 Material and Methods

In this article, we will present the quality measures presented in the previous sec-
tion for the methods depicted in Table 1. Most of those approaches are available
thanks to the OpenCV library 2. The parameters were tuned with a stochastic
gradient descent to maximize the F-measure for the sequences of the learning
phase.

We present the values of all the quality criteria exposed in the previous section,
for the evaluation set of videos. Criteria are calculated thanks to the BMC

2 http://opencv.org/

http://opencv.org/
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Table 1. The methods tested in this article, with their associated references

Name Description

NA Naive approach, where pixels differing from the first image of the sequence
(under a given threshold) are considered as foreground (threshold = 22).

GMM1 Gaussian mixture models from [5,11], improved by [6] for a faster learning
phase.

GMM2 Gaussian mixture models improved with [12,13] to select the correct number
of components of the GMM (history size = 355, background ratio = 16).

BC Bayesian classification processed on feature statistics [9] (L = 256, N1 =
9, N2 = 15, Lc = 128, Nc

1 = 25, Nc
2 = 25, no holes, 1 morphing step,

α1 = 0.0422409, α2 = 0.0111677, α3 = 0.109716, δ = 1.0068, T = 0.437219,
min area = 5.61266).

CB Codewords and Codebooks framework [7].
VM VuMeter [3], which uses histograms of occurences to model the background

(α = 0.00795629 and threshold = 0.027915).

Wizard (BMCW, see a screenshot in Figure 5), which can be downloaded from
the BMC website 3.

Fig. 5. The BMC Wizard, a free software to compute criteria of our benchmark

3.2 Results

Figures 6 to 10 show the global performance of each method for each evaluated
score. Figure 10 can be consulted in color in the online version.

Tables 1 to 29, from the supplementary material of this article, show the
performance of each method for each sequence:

3 http://bmc.univ-bpclermont.fr/?q=node/7

http://bmc.univ-bpclermont.fr/?q=node/7
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Fig. 6. F-measure for each method
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Fig. 7. D-score for each method
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Fig. 8. PSNR for each method
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Fig. 9. SSIM for each method
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Fig. 10. Precision and Recall for each method

– Learning phase:
• Street: tables 1 to 5;
• Rotary: tables 6 to 10.

– Evaluation phase:
• Street: tables 11 to 15;
• Rotary: tables 16 to 20;
• Real applications: tables 21 to 29.

3.3 Analysis

From a statistical point of view (Figure 6), we can notice that the best method
of our tests is BC, since its F-measure has the shortest range of values, with
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highest values (from 0.65 to 0.93 approximately). The case of the VM method
is interesting because its F-measure is focused around the interval [0.8; 0.85].
These observation can be confirmed by Figure 10, where BC and VM have the
greatest numbers of points coming close the (1, 1) point. GMM1 has also a similar
behaviour, around the 0.75 value, and a very good precision. GMM2 has a point
of focus around the 0.9 value, but has also a wide interval of F-measures. The
CB approach returns a very wide range of values, which could be induced by
the high variability of the parameters of the method. Figure 10 informs us that
the real videos of our benchamrk are not correctly processed by CB, impacting
a global bad results. This phenomenon can also be observed for the NA, in a
more negative way.

As illustrated in Figure 8, the PSNR gives us equivalent general informations
about the tested BSA. We can also notice an increasing feeling of non-control of
the results of CB and NA. Points of focus are also observable for VM ([50; 60])
and GMM1 ([45; 55]).

From a structural point of view, the values of SSIM and D-score lead to
similar conclusions: CB and NA are not constant, and not efficient on the whole
benchmark. Its seems even better to choose NA (SSIM greater than 0.4) instead
of CB (SSIM can be around 0.1 or 0.2).

4 Conclusion

In this article, we have proposed to test the benchmark proposed in the BMC
contest, with six classic background subtraction algorithms of the literature.
Thanks to the measures we have computed, we can determine several qualities
of the tested methods.

We would like to propose an other contest in 2013, with maybe more real
videos, containing complex contexts. The BMC website is an interesting way to
keep our benchmark available to researchers who want to test their algorithm.
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