
Efficient GPU Implementation

of the Integral Histogram

Mahdieh Poostchi, Kannappan Palaniappan, Filiz Bunyak,
Michela Becchi, and Guna Seetharaman

Dept. of Computer Science, University of Missouri-Columbia, Columbia, Missouri
Air Force Research Laboratory, Rome, NY 13441, USA

Abstract. The integral histogram for images is an efficient preprocess-
ing method for speeding up diverse computer vision algorithms including
object detection, appearance-based tracking, recognition and segmenta-
tion. Our proposed Graphics Processing Unit (GPU) implementation
uses parallel prefix sums on row and column histograms in a cross-weave
scan with high GPU utilization and communication-aware data transfer
between CPU and GPU memories. Two different data structures and
communication models were evaluated. A 3-D array to store binned his-
tograms for each pixel and an equivalent linearized 1-D array, each with
distinctive data movement patterns. Using the 3-D array with many ker-
nel invocations and low workload per kernel was inefficient, highlighting
the necessity for careful mapping of sequential algorithms onto the GPU.
The reorganized 1-D array with a single data transfer to the GPU with
high GPU utilization, was 60 times faster than the CPU version for a
1K × 1K image reaching 49 fr/sec and 21 times faster for 512 × 512
images reaching 194 fr/sec. The integral histogram module is applied
as part of the likelihood of features tracking (LOFT) system for video
object tracking using fusion of multiple cues.

1 Introduction

The integral histogram extends the integral image method for scalar sums to
vector (i.e. histogram) sums and enables multiscale histogram-based search and
analysis in constant time after a linear time preprocessing stage [1, 2]. The inte-
gral histogram is a popular method to speed up computer vision tasks, especially
sliding window based methods for object detection, tracking, recognition and
segmentation [1–12]. Histogram-based features are widely used in image analy-
sis and computer vision due to their simplicity and robustness. Histogram is a
discretized probability distribution where each bin represents the frequency or
probability of observing a specific range of feature values for a given descriptor
such as intensity, color, edginess, texture, shape, motion, etc. Robustness to geo-
metric deformations makes histogram-based feature representation appealing for
many applications. One major drawback of sliding window histograms is their
high computational cost, limiting their use for large scale applications such as
content-based image retrieval with databases consisting of millions of images or

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 266–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficient GPU Implementation of the Integral Histogram 267

 Vs : Vertical Cumulative Sum
 Hs : Horizontal Cumulative Sum

(x, y)

),(cr

R

),(cr

),(cr),(cr

Fig. 1. (a) Computation of the histogram up to location (x, y) using a cross-weave
horizontal and vertical scan on the image. (b) Computation of the histogram for an
arbitrary rectangular region R (origin is the upper-left corner with y-axis horizontal.)

full motion video archives with billions of frames. Any improvement that leads
to a speed-up in integral histogram calculation is imperative especially due to
fast trend towards extreme-scale and high-throughput data analysis. Mapping
image analysis and computer vision algorithms onto many-core and multicore
architectures has benefits ranging from faster processing, deeper search, greater
scalability, and better performance especially for recognition, retrieval and re-
construction tasks [13–19]

As far as we know this is the first detailed description and performance charac-
terization of a parallel implementation of the integral histogram for GPU archi-
tectures. Previously, a parallelization of the integral histogram for the eight-core
IBM Cell/B.E. processor was described in [20] and the scalar integral image
computation was parallelized for the GPU [21]. Although both the integral im-
age and integral histogram follow the same strategy, the integral histogram uses
high memory since the histogram needs to be maintained for every pixel and
leads to a 3D array data structure that is difficult to manage on small 48KB on-
chip shared memory per stream multiprocessor available on GPUs. This paper
presents two parallel implementations of the integral histogram computation,
that we have developed, for many-core GPU architectures, using the CUDA
programming model [13, 22, 23]. Both methods, GPU Integral Histogram using
Multiple Scan-Transpose-Scan (GIH-Multi-STS) and GPU Integral Histogram
using Single Scan-Transpose-Scan (GIH-Single-STS) use CUDA SDKs for par-
allel cumulative sums of rows and columns (prescan) based on a cross-weave
scanning mode, 2-D or 3-D transpose kernels and communication-aware data
management.

The contributions of this work are designing the best data structure and its
layout in GPU memory, finding the kernel configuration that maximizes the re-
source utilization of the GPUs and minimizes the data movement. Section 2
presents a short review of the integral histogram algorithm. Section 3 explores
our parallel integral histogram implementations on GPUs, followed by experi-
mental results including application to tracking and conclusions.

2 Integral Histogram Description

The integral histogram is a recursive propagation preprocessing method used to
compute local histograms over arbitrary rectangular regions in constant time [1].

268 M. Poostchi et al.

Algorithm 1. Sequential Integral Histogram

Input : Image I of size h× w
Output : Integral histogram tensor H of size h× w × b
1: Initial H:

H← 0
2: for z=1:b do
3: for x=1:w do
4: for y=1:h do
5: H(x, y, z)← H(x− 1, y, z) +H(x, y − 1, z)

−H(x− 1, y − 1, z) +Q(I(x, y), z)
6: end for
7: end for
8: end for

The efficiency of the integral histogram approach enables real-time histogram-
based exhaustive search in vision tasks such as object recognition and tracking.
The integral histogram is extensible to higher dimensions and different bin struc-
tures. The integral histogram at position (x, y) in the image holds the histogram
for all the pixels contained in the rectangular region defined by the top-left corner
of the image and the point (x, y) as shown in Figure 1. The integral histogram for
the region defined by the spatial coordinate (x, y) and bin variable b is defined
as:

H(x, y, b) =

x∑

r=0

y∑

c=0

Q(I(r, c), b) (1)

where Q(I(r, c), b) is the binning function that evaluates to 1 if I(r, c) ∈ bin b,
and evaluates to zero otherwise. Sequential computation of integral histograms is
described in Algorithm 1. Given the image integral histogram H, computation of
the histogram for any test region R delimited by points
{(r−, c−), (r−, c+), (r+, c+), (r+, c−)} reduces to the combination of four inte-
gral histograms:

h(R, b) = H(r+, c+, b)−H(r−, c+, b)−H(r+, c−, b) +H(r−, c−, b) (2)

Figure 1 illustrates the notation and accumulation of integral histograms using
vertical and horizontal cumulative sums (prescan), which is used to compute
regional histograms.

3 Parallelization Using Parallel Prefix-Sum (Exclusive
Scan)

One basic pattern in parallel computing is the use of independent concurrently
executing tasks. The recursive sequential Algorithm 1 is a poor approach to
parallelize since row (r+1) cannot be executed until row r is completed, with only
intra-row parallelization. The cross-weave scan mode (Fig. 1), enables cumulative
sum tasks over rows (or columns) to be scheduled and executed independently
allowing for inter-row and column parallelization. The GPU Integral Histogram
using Multiple Scan-Transpose-Scan (GIH-Multi-STS) is shown in Algorithm 2.

Efficient GPU Implementation of the Integral Histogram 269

Algorithm 2. GIH-Multi-STS: GPU Integral Histogram using Multiple Scan-
Transpose-Scan

Input : Image I of size h× w
Output : Integral histogram tensor IH of size b× h× w
1: Initialize IH

IH← 0
IH(I(w,h),w,h)← 1

2: for z=1 to b do
3: for x=1 to h do
4: //horizontal cumulative sums (prescan, size of rows)

IH(x, y, z)← IH(x, y, z) + IH(x, y − 1, z)
5: end for
6: end for
7: for z=1 to b do
8: //transpose the bin-specific integral histogram

IHT (z)← 2-D Transpose(IH(z))
9: end for
10: for z=1 to b do
11: for y=1 to w do
12: //vertical cumulative sums (prescan, size of columns)

IH(x, y, z)← IHT (y, x, z) + IHT (y, x− 1, z)
13: end for
14: end for

This approach combines cross-weave scan mode with an efficient parallel prefix
sum operation and an efficient 2-D transpose kernel. The SDK implementation
of all-prefix-sums operation using the CUDA programming model is described
by Harris, et al. [24]. We apply prefix-sums to the rows of the histogram bins
(horizontal cumulative sums or prescan), then transpose the array and reapply
the prescan to the rows to obtain the integral histograms at each pixel.

3.1 Parallel Prefix Sum Operation on the GPU

The core of the parallel integral histogram algorithm for GPUs is the parallel
prefix sum algorithm [24]. The all-prefix-sums operation (also refered as a scan)
applied to an array generates a new array where each element k is the sum of
all values preceding k in the scan order. Given an array [a0, a1, ..., an−1] the
prefix-sum operation returns,

[0, a0, (a0 + a1), ..., (a0 + a1 + ...+ an−2)] (3)

The parallel prefix sum operation on the GPU consists of two phases: an up-
sweep (or reduce) phase and a down-sweep phase (see Fig. 2). Up-sweep phase
builds a balanced binary tree on the input data and performs one addition per
node. Scanning is done from the leaves to the root. In the down-sweep phase
the tree is traversed from root to the leaves and partial sums from the up-
sweep phase are aggregated to obtain the final scanned (prefix summed) array.
Prescan requires only O(n) operations: 2 ∗ (n− 1) additions and (n− 1) swaps.

270 M. Poostchi et al.

X0 (X0+ X1) X2 X4 X6 (X0+ …+X3) (X0+ …+X7) (X4+ X5)

X0 (X0+ X1) X2 X4 X6 (X0+ …+X3) (X4+ …+X7) (X4+ X5)

X0 (X0+ X1) X2 X4 X6 (X2+X3) (X6+X7) (X4+ X5)

X0 X1 X2 X4 X6 X3 X7 X5

+

+ +

+ + + +

X0 (X0+ X1) X2 X4 X6 (X0+ …+X3) (X0+ …+X7) (X4+ X5)

X0 (X0+ X1) X2 X4 X6 (X0+ …+X3) 0 (X4+ X5)

X0 0 X2 X4 X6 (X0+X1) (X0+…+X5) (X0+…+ X3)

0 X0

(X0+X1)

(X0+…+ X3)

(X0+…+ X5)

(X0+…+ X2)

(X0+…+ X6)

(X0+…+ X4)

X0 (X0+ X1) X2 X4 X6 0 (X0+…+X3) (X4+ X5)

+

+ + +

+ +

+

Fig. 2. Parallel prefix sum operation, commonly known as exclusive scan or prescan
[24]. Top: Up-sweep or reduce phase applied to an 8-element array. Bot: Down sweep
phase.

The GPU-based prefix sum (prescan) operation moves data from CPU memory
to off-chip global GPU memory then exploits the on-chip shared memory for
each row operation [24].

3.2 GPU-Based Transpose Kernel

The integral histogram computation requires two prescans over the data. First, a
horizontal prescan that computes cumulative sums over rows of the data, followed
by a second vertical prescan that computes cumulative sums over the columns
of the first scan output. Taking the transpose of the horizontally prescanned
image histogram, enables us to reapply the same (horizontal) prescan algorithm
effectively on the columns of the data. We used the optimized transpose kernel
described in [25] that uses zero bank conflict shared memory and guaranties
that global reads and writes are coalesced. Figure 3 shows the data flow in the
transpose kernel. A tile of size BLOCK DIM ∗ BLOCK DIM is written to the
GPU shared memory into an array of size BLOCK DIM ∗ (BLOCK DIM + 1).
This pads each row of the 2-D block in shared memory so that bank conflicts do
not occur when threads address the array column-wise. Each transposed tile is
written back to the GPU global memory to construct the full histogram trans-
pose. The SDK 2-D transpose kernel needs to be launched from the host b times
in order to transpose the integral histogram tensor. In order to allow a single
transpose operation, we transform the existing 2-D transpose kernel into a 3-D
transpose kernel by using the bin offset in the indexing. The 3-D transpose kernel

Efficient GPU Implementation of the Integral Histogram 271

222

GPU Global Memory

GPU Shared Memory

GPU Global Memory

Tile

222

idata (Image)

odata (Transposed Image)

BLOCK_DIM

BLOCK_DIM+1

BLO
CK_DIM

BLO
CK_DIM

BLOCK_DIM

BLO
CK_DIM

1

2

3

1 2 3

1

2

3

1

2

3

Fig. 3. Data flow between GPU global memory and shared memory while computing
the coalesced transpose kernel; stage 1 in red, stage 2 blue, reads are dashed lines,
writes are solid lines.

is launched using a 3-D grid of dimension (b, w/BLOCK DIM, h/BLOCK DIM),
where BLOCK DIM is the maximum number of banks in shared memory (32
for all graphics card used).

3.3 Data Structure and Implementation Strategy

An image with dimensions h × w produces an integral histogram tensor of di-
mensions h×w× b, where b is the number of bins in the histogram. This tensor
can be represented as a 3-D array which in turn can be mapped to an 1-D row
major ordered array for efficient access as shown in Figure 4. Both implementa-
tions, GIH-Multi-STS and the improved GPU Integral Histogram using Single
Scan-Transpose-Scan (GIH-Single-STS), start by prescanning each row. Since
the maximum number of threads per block is 1024 and each thread processes
two elements, each row can be divided into segments up to 2048 pixels. If the
size of row is smaller than 2048 then the size of the thread block will be reduced
to the w/2. The GIH-Multi-STS implementation uses the 3-D data structure.
Exclusive prefix sum (prescan) kernel (see Section 3.1) is applied to the data one
row at a time. This approach suffers from many kernel invocations in the hori-
zontal/vertical scan and 2-D transpose phases, from little work per kernel and
eventually GPU under-utilization (Algorithm 2). To reduce the total number of
kernels invocations from (w+ h)b+ b to only 3 invocations, the GIH-Single-STS
implementation uses a 1-D row ordered format array and launches the prescan
kernel once using a 1-D grid of size (b∗h∗w)/(2∗Num Threads). Padding is ap-
plied to shared memory addresses to avoid bank conflicts by adding an offset of
32 to each shared memory index. After prescanning each row (horizontal scan),

…

…

…

…

b

w

h
b0 b1 bn-1

row0 rowh-1

w

… …

w*h

Fig. 4. Integral histogram tensor represented as 3-D array data structure (left), and
equivalent 1-D array mapping (right)

272 M. Poostchi et al.

Algorithm 3. GIH-Single-STS: GPU Integral Histogram using Single Scan-
Transpose-Scan

Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor IH of size b× h× w
1: Initialize IH

IH← 0
IH(I(w,h),w,h)← 1

2: for all b× h blocks in parallel do
3: //horizontal cumulative sums
4: Prescan(IH)
5: end for
6: //transpose the histogram tensor

IHT ← 3D Transpose(IH)
7: for all b× w blocks in parallel do
8: //vertical cumulative sums
9: Prescan(IHT)
10: end for

the prescanned array is transposed to compute (column) cumulative sums in the
second pass using a 3-D transpose kernel (Algorithm 3). We implemented and
evaluated two parallel GPU integral histogram computation approaches: parallel
GIH-Multi-STS, and parallel GIH-Single-STS and compared them to a sequen-
tial CPU-only implementation. Our experiments were conducted on a 2.0 GHz
Quad Core Intel CPU (Core i7-2630QM) and two GPU cards: an NVIDIA Tesla
C2070 and an NVIDIA GeForce GTX 460. The former is equipped with fourteen
32-core SMs and has about 5GB of global memory, 48KB shared memory with
compute capability 2.0. The latter consists of seven 48-core SM and is equipped
with 1GB global memory, 48KB shared memory with compute capability 2.1.

The parallel GIH-Multi-STS implementation exploits the work efficient pres-
can operation to calculate for each bin the cumulative sums of rows, one row at
a time. Therefore, the scan kernel is launched b × h times for horizontal scan
and b×w times for vertical scan. The efficient 2-D transpose kernel is launched
b times to transpose the integral histogram tensor after horizontal scan. The
GIH-Multi-STS is based on many kernel invocations, each of them performing
a small amount of work and therefore greatly under-utilizing the many-cores on
the GPU. In addition, the all-prefix-sum kernel works very well only on very
large array consisting of millions of elements. Therefore, we proposed the GIH-
Single-STS to increase the amount of work performed by each kernel invocation
and reduce the number of scan kernel invocations by a factor of (h+ w)b. This
can be easily achieved by modifying the kernel configuration without rewriting
the kernel code (array indices are derived from block and thread indices). Since
the maximum number of threads per block is 1024 and each thread processes
two elements, each row can be divided into segments up to 2048 pixels. If the
size of row is smaller than 2048 then the size of the thread block will be reduced
to the w/2 for horizontal scan and h/2 for vertical scan as well. Therefore, the
number of blocks for horizontal scan will be ((b × h × w)/(2 × threadblock)).

Efficient GPU Implementation of the Integral Histogram 273

GIH−Multi−STS GIH−Single−STS1 GIH−Single−STS GIH−Multi−STS GIH−Single−STS1 GIH−Single−STS GIH−Multi−STS GIH−Single−STS1 GIH−Single−STS
10

0

10
1

512x512x16 1024x1024x16 2048x2048x16

Implementations

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Kernel Execution Time
Data Transfer Time

Fig. 5. Kernel execution time versus data transfer time for different image sizes

GIH-Single-STS also benefits from the modified 2-D transpose kernel which per-
forms a single 3-D transpose operation by using the bin offset in the indexing.
GIH-Single-STS is divided into three phases: a single horizontal scan, a 3-D
transpose, and a vertical scan.

The initial implementation of GIH-Single-STS had several unnecessary data
transfer between host and device after each phase. In the first implementation,
the integral histogram tensor was being transferred to the GPU before invoking
the kernel and then sent back to the CPU before launching the next kernel;
these extra data transfers lead to reduced performance (referred to as GIH-
Single-STS1). However, the GPU is specialized for compute-intensive, highly
parallel computation and the overhead of communication between host and de-
vice cannot be hidden or double-buffered by non data-intensive kernels. In the
improved GIH-Single-STS implementation, the integral histogram computations
start after transferring the image to the GPU, complete the calculation of the
integral histogram on the GPU then transfer the final integral histogram tensor
back to the CPU, removing the extra communication overhead. In addition, the
number of threads is automatically determined based on the image size to ensure
maximum occupancy per kernel.

Figure 5 shows the kernel execution time versus data transfer time for GIH-
Multi-STS, GIH-Single-STS1 (implementation with extra data transfers) and
GIH-Single-STS for different image sizes. We see that the GIH-Multi-STS is
compute bound (that is, the kernel execution time is larger than the CPU to
GPU data transfer time), this method under utilizes the GPU, whereas the GIH-
Single-STS1 is data-transfer-bound. The results show that the data transfer time
for GIH-Single-STS1 is on average five times worse than GIH-Single-STS. The
final GIH-Single-STS implementation shows a balance between data transfer and
kernel execution time (Fig. 5).

274 M. Poostchi et al.

128x128 256x256 512x512 1024x10242048x2048

10
0

10
1

10
2

Image Sizes (16 bins)

fr
/s

ec
 (

G
IH

−M
u

lt
i−

S
T

S
),

 lo
g

10
TeslaC2070(448 cores)
Geforce GTX−460(336 cores)
CPU−Only

16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

Different Number of Bins

fr
/s

ec
 (

G
IH

−M
u

lt
i−

S
T

S
)

TeslaC2070(448 cores)
Geforce GTX−460(336 cores)
CPU−Only

128x128 256x256 512x512 1024x10242048x2048

10
0

10
1

10
2

10
3

Image Sizes (16 bins)

fr
/s

ec
 (

G
IH

−S
in

g
le

−S
T

S
),

 lo
g

10

TeslaC2070(448 cores)
Geforce GTX−460(336 cores)
CPU−Only

16 32 64 128 256
0

20

40

60

80

100

120

140

160

180

200

Different Number of Bins

fr
/s

ec
 (

G
IH

−S
in

g
le

−S
T

S
)

TeslaC2070(448 cores)
Geforce GTX−460(336 cores)
CPU−Only

Fig. 6. Frame rate of GIH-Multi-STS, GIH-Single-STS and CPU-only integral his-
togram implementations: (UL) GIH-Multi-STS frame rate for different image sizes,
(UR) GIH-Multi-STS frame rate for different number of bins, (LL) GIH-Single-STS
frame rate for different image sizes, (LR) GIH-Single-STS frame rate for different num-
ber of bins for 512x512 image size.

Figure 6 summarizes the frame rate performance of the two GPU implemen-
tations compared to the sequential CPU-only implementation. The frame rate is
defined as the maximum number of images processed per second. Since we use
double buffering, the frame rate equals 1/(kernel execution time) for compute-
bound cases, or 1/(data transfer time) for data-transfer-bound cases. Consider-
ing double buffering timing, our GIH-Single-STS achieves 194 fr/sec to compute
16-bin integral histograms for a 512 × 512 image and 94 fr/sec for 1K × 1K
image using the NVIDA Tesla C2070 GPU.

Figure 7 reports the speedup of our GPU implementations of the integral
histogram compared to a sequential CPU implementation. The speedup takes
into consideration the overlapping of computation and communication used by
double buffering. The speedup of the improved GIH-Single-STS for a 16-bin
integral histogram for a 1K × 1K image is 60 times on an NVIDIA Tesla C2070
GPU and varies between 15 times to 25 times for a 512× 512 image depending
on the number of bins and the type of GPU.

Figures 8 shows feature maps for the target and search window with corre-
sponding likelihood maps produced by the integral histogram-based likelihood

Efficient GPU Implementation of the Integral Histogram 275

128x128 256x256 512x512 1024x10242048x2048
0

1

2

3

4

5

6

Image Sizes (16 bins)

S
p

ee
d

u
p

 (
G

IH
−M

u
lt

i−
S

T
S

)

CPU/TeslaC2070(448 cores)
CPU/Geforce GTX−460(336 cores)

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Different Number of Bins

S
p

ee
d

u
p

 (
G

IH
−M

u
lt

i−
S

T
S

)

CPU/TeslaC2070(448 cores)
CPU/Geforce GTX−460(336 cores)

128x128 256x256 512x512 1024x10242048x2048
0

10

20

30

40

50

60

70

80

Image Sizes (16 bins)

S
p

ee
d

u
p

 (
G

IH
−S

in
g

le
−S

T
S

)

CPU/TeslaC2070(448 cores)
CPU/Geforce GTX−460(336 cores)

16 32 64 128 256
0

5

10

15

20

25

30

Different Number of Bins

S
p

ee
d

u
p

 (
G

IH
−S

in
g

le
−S

T
S

)

CPU/TeslaC2070(448 cores)
CPU/Geforce GTX−460(336 cores)

Fig. 7. Speedup of the two GPU designs over CPU on two NVIDA graphic cards: (UL)
Speedup of GIH-Multi-STS (with respect to CPU-only) with different image sizes, (UR)
Speedup of GIH-Multi-STS with varying number of bins, (LL) Speedup of GIH-Single-
STS for different image sizes, (LR) Speedup of GIH-Single-STS with varying number
of bins for 512x512 image size.

estimation approach. Figure 9 shows sample tracking results and fused likelihood
maps for sample frames from an aerial wide area image sequence.

4 Conclusions

We have presented two parallel implementations of the integral histogram using
the cross-weave scanning approach for GPU architectures, utilizing the CUDA
programming model. The poor performance of the GIH-Multi-STS (prescan)
implementation which was slower than the sequential version and the first imple-
mentation of GIH-Single-STS, clearly demonstrates that in parallelizing sequen-
tial image analysis algorithms on the GPU, data structures, GPU utilization and
communication patterns need careful consideration. The GIH-Single-STS (effi-
cient communication) implementation reduced the severe communication over-
head bottleneck, by transferring an image size 1-D array instead of an integral
histogram 3-D array and increased the GPU utilization. The GIH-Single-STS
exploits an efficient prescan and 3-D transpose operation with maximum occu-
pancy per kernel. It achieved frame rate of 185 for standard images 640 × 480
for 16 bins integral histogram computations which outperforms results presented

276 M. Poostchi et al.

Fig. 8. Top row shows the car template and associated raw target features for intensity,
gradient magnitude, Hessian shape index, normalized curvature index, Hessian eigen-
vector orientations, and oriented gradient angles. Row 2 shows the predicted search
window and associated raw features. Row 3 shows the corresponding likelihood maps
combining target template with the associated search window features using integral
histogram.

Fig. 9. LOFT tracking results are shown for the first five frames for car C4 1 0 from
CLIF aerial wide-area motion imagery [26]. Top row shows the tracked car locations
and the bottom row shows the fused likelihood maps used by LOFT [8] to determine
the best target location in each corresponding frame.

for 8 SPEs (120 fr/sec for cross-weave scan and 172 for wavefront scan mode)
in [20]. However, in most cases our performance is data-transfer-bound. One
approach to further improve the time and memory efficiency of the GPU-based
integral histogram method is to develop our custom parallel scan kernel for the
horizontal and vertical cumulative sum computations without transpose phase
for each tile of integral histogram tensor.

Efficient GPU Implementation of the Integral Histogram 277

Acknowledgement. This research was partially supported by U.S. Air Force
Research Laboratory (AFRL) under agreement AFRL FA8750-11-1-0073. Ap-
proved for public release (case 88ABW-2012-1016). The views and conclusions
contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of AFRL
or the U.S. Govt. The U.S. Government is authorized to reproduce and distribute
reprints for Govt. purposes notwithstanding any copyright notation thereon.

References

1. Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces.
In: IEEE CVPR, vol. (1), pp. 829–836 (2005)

2. Sizintsev, M., Derpanis, K.G., Hogue, A.: Histogram-based search: A comparative
study. In: IEEE CVPR, pp. 1–8 (2008)

3. Viola, P., Jones, M.J.: Robust real-time face detectin. Int. J. Computer Vision 57,
137–154 (2004)

4. Wei, Y., Tao, L.: Efficient histogram-based sliding window. In: IEEE CVPR, pp.
3003–3010 (2010)

5. Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade
of histograms of oriented gradients. In: IEEE CVPR, vol. (2), pp. 1491–1498 (2006)

6. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the
integral histogram. In: IEEE CVPR, pp. 798–805 (2006)

7. Palaniappan, K., et al.: Efficient Feature extraction and likelihood fusion for vehicle
tracking in low frame rate airborne video. In: 13th Conf. Information Fusion, pp.
1–8 (2010)

8. Pelapur, R., Candemir, S., Bunyak, F., Poostchi, M., Seetharaman, G., Palaniap-
pan, K.: Persistent target tracking using likelihood fusion in wide-area and full
motion video sequences. In: 15th Int. Conf. Information Fusion, pp. 2420–2427
(2012)

9. Erdem, E., Dubuisson, S., Bloch, I.: Fragments Based Tracking with Adaptive Cue
Integration. Computer Vision and Image Understanding (7), 827–841 (2012)

10. Mosig, A., Jaeger, S., Chaofeng, W., Ersoy, I., Nath, S.K., Palaniappan, K., Chen,
S.S.: Tracking cells in live cell imaging videos using topological alignments. Algo-
rithms in Molecular Biology (4), 10 (2009)

11. Kolekar, M.H., Palaniappan, K., Sengupta, S., Seetharaman, G.: Semantic concept
mining based on hierarchical event detection for soccer video indexing. Special Issue
on Multimodal Information Retrieval (4), 298–312 (2009)

12. Palaniappan, K., Rao, R., Seetharaman, G.: Wide-area persistent airborne video:
Architecture and challenges. In: Distributed Video Sensor Networks: Research
Challenges and Future Directions, pp. 349–371 (2011)

13. Park, I.K., et al.: Design and performance evaluation of image processing algo-
rithms on GPUs. IEEE Parallel and Distributed Systems 22(1), 91–104 (2011)

14. Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.: GPU implementation of be-
lief propagation using CUDA for cloud tracking and reconstruction. In: 5th IAPR
Workshop on Pattern Recognition in Remote Sensing (ICPR), pp. 1–4 (2008)

15. Palaniappan, K., et al.: Parallel flux tensor analysis for efficient moving object
detection. In: Int. Conf. Information Fusion, pp. 1–8 (2011)

16. Palaniappan, K., Bunyak, F., Nath, S.K., Goffeney, J.: Parallel Processing Strate-
gies for Cell Motility and Shape Analysis. In: High-Throughput Image Reconstruc-
tion and Analysis, vol. (3), pp. 39–87 (2009)

278 M. Poostchi et al.

17. Kumar, P., Palaniappan, K., Mittal, A., Seetharaman, G.: Parallel Blob Extraction
Using the Multi-core Cell Processor. In: Blanc-Talon, J., Philips, W., Popescu,
D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 320–332. Springer,
Heidelberg (2009)

18. Palaniappan, K., Vass, J., Zhuang, X.: Parallel robust relaxation algorithm for
automatic stereo analysis. In: SPIE Proc. Parallel and Distributed Methods for
Image Processing II, vol. (3452), pp. 958–962 (1998)

19. Palaniappan, K., Faisal, M., Kambhamettu, C., Hasler, A.F.: Implementation of an
automatic semi-fluid motion analysis algorithm on a massively parallel computer.
In: 10th IEEE Int. Parallel Processing Symp., pp. 864–872 (1996)

20. Bellens, P., Palaniappan, K., Badia, R.M., Seetharaman, G., Labarta, J.: Paral-
lel Implementation of the Integral Histogram. In: Blanc-Talon, J., Kleihorst, R.,
Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp.
586–598. Springer, Heidelberg (2011)

21. Bilgic, B., Horn, B.K.P., Masaki, I.: Efficient integral image computation on the
GPU. In: IEEE Intelligent Vehicles Symposium (IV), pp. 528–5338 (2010)

22. Kirk, D.: Nvidia CUDA software and GPU parallel computing architecture. In:
ACM Proc. 6th Int. Symp. Memory Management (ISMM), pp. 103–104 (2007)

23. Nvidia Corp.: CUDA C Programming Guide 4.0 (2011)
24. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDAGPU.

In: Gems, vol. 3, ch. 39, pp. 851–876 (2007)
25. Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA Nvidia CUDA

SDK Application Note (2009)
26. Air Force Research Laboratory: Columbus Large Image Format (CLIF) dataset

over Ohio State University (2007)

	Efficient GPU Implementationof the Integral Histogram
	Introduction
	Integral Histogram Description
	Parallelization Using Parallel Prefix-Sum (Exclusive Scan)
	Parallel Prefix Sum Operation on the GPU
	GPU-Based Transpose Kernel
	Data Structure and Implementation Strategy

	Conclusions
	References

