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Preface

The 11th Asian Conference on Computer Vision (ACCV), held in Daejeon, South
Korea, during November 5–9, 2012, was accompanied by a series of nine high-
quality workshops covering the full range of state-of-the-art research topics in
computer vision.

The workshops consisted of six full-day workshops and three half-day work-
shops. Their topics diversely ranged from traditional issues to novel current
trends. On November 5, four workshops took place: the Workshop on Computer
Vision with Local Binary Pattern Variants and the Workshop on Computational
Photography and Low-Level Vision (both full-day workshops), and the Work-
shop on Developer-Centered Computer Vision and the Workshop on Background
Models Challenge (both half-day workshops). The remaining five workshops were
held on November 6: the Workshop on e-Heritage (Electronic Cultural Heritage),
the Workshop on Color Depth Fusion in Computer Vision, the Workshop on Face
Analysis: The Intersection of Computer Vision and Human Perception, and the
Workshop on Detection and Tracking in Challenging Environments (all full-day
workshops), and the Workshop on Intelligent Mobile Vision (a half-day work-
shop).

This year, the workshops received 310 paper submissions, and 78 presenta-
tions were selected by the individual workshop committees, yielding an overall
acceptance rate of 25%. All contributions to each workshop are published in the
two-volume ACCV workshop proceedings. We thank everyone involved in the re-
markable programs, committees, reviewers, and authors, for their contributions.

We hope that you enjoy reading these proceedings, which may inspire you to
further research.

November 2012 Jong-Il Park
Junmo Kim



International Workshop on Computer Vision

with Local Binary Pattern Variants

Local Binary Pattern (LBP) is a simple and efficient texture operator, unifying
statistical and structural approaches in texture analysis. It is a powerful gray-
scale invariant measure, derived from a general definition of texture in a local
neighborhood. Due to its discriminative power and computational simplicity,
the LBP operator has become a highly popular approach in various computer
vision applications, including facial image analysis, visual inspection, image re-
trieval, remote sensing, biomedical image analysis, biometrics, motion analysis,
environment modelling, and outdoor scene analysis. Especially the use of LBP in
biomedical applications and biometric recognition systems has grown rapidly in
recent years. LBP has been highly successful in numerous applications around
the world and has inspired plenty of new research on related methods. Since
the introduction of the basic LBP operator, several variants have been proposed
to improve the discriminative power and robustness of the operator. The re-
cent emergence of LBP has also led to significant progress in applying texture
methods to various computer vision problems and applications.

This workshop provided a clear summary of the state of the art and discussed
the most recent developments on the use of Local Binary Patterns and their
variants in different computer vision applications.

The workshop received 45 submissions (16 through direct submission and 29
via dual submission with the ACCV 2012 main conference). Based on the thor-
ough reviews by the program committee, 13 papers were finally selected. Besides
the 13 interesting oral presentations, the workshop also included a keynote speech
from a pioneer of LBP (Prof. Matti Pietikäinen from the University of Oulu)
and a best paper award sponsored by KeyLemon – a leading face recognition
software company.

The workshop organizers would like to thank all the participants of this work-
shop. Many thanks go also to the Program Committee for their efforts during
the reviewing process and to the ACCV 2012 workshop chairs and publication
chairs who dealt with the organizational aspects of this workshop.

November 2012 Abdenour Hadid
Sebastien Marcel

Jean-Luc Dugelay
Matti Pietikäinen

Mohammad Ghahramani
Stan Z. Li
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Workshop on Computational Photography and

Low-Level Vision

Computational Photography is an exciting new field at the intersection of com-
puter vision, computer graphics, and photography. The goal of computational
photography is to enhance or extend the capabilities of digital photography to
produce new photographs that could not have been taken by a traditional cam-
era. Fundamental low-level computer vision techniques will be particularly useful
to this end.

The goal of this workshop is to provide a platform for researchers in com-
putational photography and computer vision to meet and share their ideas on
recent trends and research in the two areas.

We received 17 papers and selected 8 papers for publication based on the
reviews by the Program Committee. All submissions were reviewed in a double-
blind fashion by at least three experts in the area. We thank all the authors who
submitted their work. Topics of accepted papers spanned a wide range of areas
from camera calibration to vehicle localization. Other topics represented were
segmentation and colorimetric correction. We were pleased to have Michael
S. Brown (National University of Singapore) as the keynote speaker and also the
advisory chair at the workshop. We would also like to express our appreciation
to the members of the Program Committee for their remarkable efforts and the
quality of the reviews.

November 2012 Jinwei Gu
Yu-Wing Tai

Ping Tan
Sai-Kit Yeung



Preface IX

Program Committee

Oliver Cossairt Columbia University, USA
Tian Fang Hong Kong University of Science and

Technology, Hong Kong
Jinwei Gu Rochester Institute of Technology, USA
Mohit Gupta Columbia University, USA
Hon Pong Ho Intel Corporation, USA
Sanjeev J. Koppal Harvard University, USA
Max Wai-Kong Law University of Western Ontario and GE

Healthcare, Canada
Xu Li Chinese University of Hong Kong, Hong Kong
Zheng Lu University of Texas, Austin, USA
Yu-Wing Tai KAIST, South Korea
Ping Tan National University of Singapore, Singapore
Gordon Wetzstein Massachusetts Institute of Technology, USA
Sai-Kit Yeung Singapore University of Technology Design,

Singapore
Lap-Fai Yu University of California, Los Angeles, USA
Lu Yuan Microsoft Research Asia, China
Honghui Zhang Hong Kong University of Science and

Technology, Hong Kong



Workshop on Developer-Centered Computer

Vision

The majority of research in computer vision is focused on technology and systems
that advance the state of the art. However, there is very little focus on how we
can make the state of the art useable by the majority of people. Recently there
has been an increased interest in “Vision for HCI” and how we use computer
vision to interact with the world. We proposed a parallel theme of “HCI for
Vision” for this workshop, looking at how to provide accessible computer vision
targeted towards mainstream software developers. We aimed to explore ideas
that take existing vision methods and present them in a manner that enables
users with varying degrees of vision knowledge to use them.

There has been a relatively recent surge in the number of developer inter-
faces to computer vision becoming available: OpenCV has become much more
popular, Mathworks have released a Matlab Computer Vision Toolbox, visual
interfaces such as Vision-on-Tap are available online and specific targets such
as tracking (OpenTL) and GPU (Cuda, OpenVIDIA) have working implemen-
tations. Additionally, last year, Khronos (the not-for-profit industry consortium
that creates and maintains open standards) formed a working group to discuss
the creation of a computer vision hardware abstraction layer (tentatively titled
CV HAL).

Developing methods to make computer vision accessible poses many inter-
esting questions and will require novel approaches to the problems. DCCV is
a half-day workshop aiming to bring together researchers from academia and
industry in the fields of vision and HCI to discuss the direction of research into
developer-centred computer vision. The workshop included an introductory talk
by the organisers followed by presentations of the five accepted papers (24%
acceptance), covering mainstream-developer targeted topics as well as more ad-
vanced concepts such as algorithm efficiency.

The DCCV organisers would like to thank the ACCV Workshop and Pub-
lication Chairs, in particular Junmo Kim and In Kyu Park, for their help and
support throughout the workshop organisation process.

November 2012 Gregor Miller
Sidney Fels
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Workshop on Background Models Challenge

The detection of moving objects in video sequence is an important task in many
video-surveillance systems. As a matter of fact, the output of this very first stage,
named background modeling or background subtraction, determines the quality
of the rest of the pipelines developed for the detection, identification, or tracking
of persons, objects, etc. Background modeling is sometimes considered either as
a trivial operation, carried out by computing a simple difference between the
current frame and a single background image (or with the previous frame, etc.),
or a mastered technique that does not need any improvement or development
nowadays. In the latter case, very famous methods, such as the Gaussian Mixture
Models introduced by Stauffer and Grimson in 1999, are cited, and this is con-
sidered sufficient. Unfortunately, these kinds of algorithms are limited in outdoor
environments, when used in long-term surveillance applications, because of vari-
ous unpredictable circumstances such as global variation of luminance, shadows
of objects, bad weather, camera tilts, etc.

Since this is a key-point of video-surveillance applications, background sub-
traction has become a popular topic, and many techniques have been proposed
since the 1990s. For the BMC (Background Models Challenge), we proposed
a new benchmark composed of almost 30 synthetic and real video sequences.
Thanks to these data-sets, we were able to propose very complex situations, in
various surveillance contexts (human activities or traffic, for example). We also
developed a free software (BMC Wizard) to compute relevant criteria for the
evaluation of statistical, signal, and structural information from a background
subtraction algorithm.

For the BMC, six papers were accepted for publication, and an invited
speaker, Thierry Bouwmans, gave a talk on the state of the art of the domain
and recent advances in his personal research. We hope that our benchmark will
be used as a reference for further research in background modeling. The data-sets
and the BMC Wizard will remain available on the BMC website http://bmc.univ-
bpclermont.fr. Finally, we would like to thank the Program Committee of ACCV
for their support in organizing this event.

November 2012 Antoine Vacavant
Laure Tougne

Lionel Robinault
Thierry Chateau
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Workshop on e-Heritage

Digitally archived world heritage sites are broadening their value for preservation
and access. Many valuable objects have been decayed by time due to weathering,
natural disasters, even man-made disasters such as the Taliban destruction of the
great Buddhas in Afghanistan, or the recent destruction by fire of the 600-year-
old Great South Gate in Seoul. Cultural heritage also includes music, language,
dance, and customs that are fast becoming extinct as the world moves toward a
global village. Furthermore, most of the sites still face a problem of accessibility.
Digital access projects are necessary to overcome those problems.

Computer vision research and practices have played, and will continue to play,
a central role in such cultural heritage preservation efforts. The Workshop on
e-Heritage and Digital Art Preservation aimed to bring together computer vision
researchers, as well as interdisciplinary researchers, working in areas related to
computer vision, in particular computer graphics, image and audio research,
image and haptic (touch) research, as well as presentation of visual content over
the Web, and education.

In this workshop, eight contributions to the field of e-heritage were pre-
sented, covering the areas of automatic character recognition, classification based
on shape and image analysis, image enhancement, virtual-reality applications,
three-dimensional modeling, and reconstruction. All submissions were double-
blind reviewed by at least two experts. We thank all the authors who submitted
their work. It was a special honor to have Martial Hebert (Carnegie Mellon
University, USA), and Jean Ponce (Ecole Normale Supérieure, France) as the
invited speakers at the workshop. We are especially grateful to the members
of the Program Committee for their remarkable efforts and the quality of the
reviews.

November 2012 Hongbin Zha
Takeshi Oishi

Rei Kawakami
Yunsu Bok

Katsushi Ikeuchi
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Workshop on Color Depth Fusion in Computer

Vision

The ambition of this workshop was to provide an opportunity to disseminate re-
cent theories, methods, and practical algorithms that explicitly exploit the enor-
mous potential of combining low-resolution depth cameras with high-resolution
color cameras for a wide variety of computer vision tasks. The workshop brought
together researchers and practitioners from various fields of study: computer vi-
sion, robotics, computer graphics, image processing, and sensor architecture.

We received 44 submissions and 12 papers were accepted for single-track oral
presentation. We also had an invited demonstration on single-sensor color and
depth capturing sensor and applications.

November 2012 Seungkyu Lee
Hyunjung Shim

Ouk Choi
Seung-Won Jung

Radu B. Rusu
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Workshop on Face Analysis: The Intersection of

Computer Vision and Human Perception

The analysis of faces is a very active research area within both the computer
vision and the human perception communities, and there is a large array of po-
tential applications and research topics. The two communities have traditionally
worked separately, but there are clear benefits to closer collaboration. For in-
stance, humans develop extensive experience in the processing of face identity,
age, gender, and non-verbal communication signals such as facial expressions.
Thus, tapping into existing knowledge from human facial perception research
can enable the targeted design of computer vision facial analysis and synthesis
systems with more realistic behavioural facial models and performance. More-
over, computer vision systems can provide many useful tools for research into the
human perception of faces such as the generation of photo-realistic and control-
lable stimuli for perceptual experiments, which enables more subtle manipulation
of facial appearance and dynamics than would be possible using natural video
capture.

The current state of the art in facial analysis within both disciplines is now
quite evolved. To go to the next level, the disciplines need to strengthen their
collaboration even further. This workshop provided the forum to enable this
step. Its goal was to examine existing work that straddles the border of these
communities, and to map out future steps for integrative research.

We received 37 full-paper submissions which underwent a double-blind re-
view. The multi-disciplinary nature of the workshop meant that making deci-
sions regarding papers was more difficult than usual, and so up to 7 reviewers
per paper were used (with a minimum of 3 reviewers/paper) to ensure that a bal-
anced assessment was made. A total of 9 papers were selected for the workshop,
and are collected in these proceedings.

We were fortunate to have three invited speakers at the workshop, who have
all worked extensively at the intersection of computer vision and human per-
ception: Heinrich H. Bülthoff (Max Planck Institute for Biological Cybernetics),
Alan Johnston (University College of London) and Darren Cosker (University of
Bath). We would like to thank the invited speakers as well as all the members of
the Programme Committee for their help in organising and running this event.

November 2012 Paul L. Rosin
David Marshall

Christian Wallraven
Douglas W. Cunningham



Preface XIX

Program Committee

Andrew Aubrey Cardiff University, UK
Heinrich Bülthoff Max Planck Institute, Germany
Darren Cosker University of Bath, UK
Nicholas Costen Manchester Metropolitan University, UK
Hui Fang Swansea University, UK
Roland Goecke Australian National University, Australia
Hatice Gunes Queen Mary University of London, UK
Qiang Ji Rensselaer Polytechnic Institute, USA
Arvid Kappas Jacobs University, Germany
Eva Krumhuber Jacobs University, Germany
Michael Lewis Cardiff University, UK
Aleix Martinez Ohio State University, USA
Louis-Philippe Morency University of Southern California, USA
Marcello Mortillaro University of Geneva, Switzerland
Alice O’Toole University of Texas at Dallas, USA
Jason Saragih CSIRO, Australia
Björn Schuller Joanneum Research, Austria
Philip Schyns University of Glasgow, UK
Terence Sim National University of Singapore, Singapore
Rainer Stiefelhagen Karlsruhe Institute of Technology, Germany
Barry John Theobald University of East Anglia, UK
Ian Thornton Swansea University, UK
Bernie Tiddeman Aberystwyth University, UK
Massimo Tistarelli University of Sassari, Italy
Michel Valstar University of Nottingham, UK
Job Van Der Schalk Cardiff University, UK
Stefanos Zafeiriou Imperial College London, UK



Workshop on Detection and Tracking in

Challenging Environments (DTCE)

Recent progress in computer vision has opened new possibilities in robust visual
tracking and in human and object detection. Although these have a wide range
of practical applications, there are still many challenges when applying such al-
gorithms to real-world data. These include: complex crowded environments with
many activities, challenging lighting, and frequent occlusions; large variations of
pose, motion, and appearance; limited computational resources; and the need for
training from large datasets. DTCE 2012 brought together researchers working
on these challenging real-world problems to present their recent achievements
and provided a place to share their experiences and visions with others.

We received 89 submissions jointly with ACCV and 9 independent submis-
sions; and we selected 15 papers for publication. The review process was double-
blind. The independently submitted papers were reviewed by two to three mem-
bers of the workshop Program Committee, while most of the joint submissions
received one independent review from this committee in addition to their three
reviews and area chair summary from ACCV. We would like to thank the Pro-
gram Committee members for their effort in reviewing the papers.

The workshop featured a keynote address by Ming-hsuan Yang of the Uni-
versity of California, Merced, as well as oral presentations of 8 of the accepted
papers, and poster presentations of all 15 of the accepted papers.

November 2012 Bohyung Han
Jongwoo Lim

Bill Triggs
Ahmed Elgammal

Jason Corso
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International Workshop on Intelligent Mobile

Vision (IMV)

With the fast growth of hand-held computing platforms such as smart phones
and tablet PCs, computer vision on mobile computing devices has become an
important research area. There is tremendous potential for developing computer
vision techniques and applications on mobile camera computing devices. In par-
ticular, more and more mobile vision applications rely on object and scene recog-
nition or understanding techniques. It is observable that advances in mobile
visual-information analyses are closely related to cutting-edge applications in
robotics, human-computer interaction, smart sensors, and ubiquitous comput-
ing.

The main goal of this workshop was to identify state-of-the-art mobile vision
algorithms, systems, and frameworks that are particularly suitable for intelligent
visual information processing based on mobile camera computing platforms. In
addition to visual information, the integration of vision with additional sensors,
such as GPS, accelerometer or gyroscope, or information retrieval transmitted
through communication networks, helps to develop an even more intelligent mo-
bile vision application. The associated methodologies and applications are ex-
pected to be able to demonstrate the advantages of advanced computer vision
techniques based on mobile camera computing devices.

November 2012 Shang-Hong Lai
Chu-Song Chen
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Oscar Garćıa-Olalla, Enrique Alegre, Laura Fernández-Robles, and
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Abstract. Gradient calculation and edge detection are well-known prob-
lems in image processing and the fundament for many approaches for line
detection, segmentation, contour extraction, or model fitting. A large
variety of algorithms for edge detection already exists but strong image
noise is still a challenge. Especially in automatic surveillance and re-
connaissance applications with visual-optical, infrared, or SAR imagery,
high distance to objects and weak signal-to-noise-ratio are difficult tasks
to handle. In this paper, a new approach using Local Binary Patterns
(LBPs) is presented, which is a crossover between texture analysis and
edge detection. It shows similar results as the Canny edge detector under
normal conditions but performs better in presence of noise. This char-
acteristic is evaluated quantitatively with different artificially generated
types and levels of noise in synthetic and natural images.

1 Introduction

Gradient calculation and edge detection are topics still worth to discuss as many
image processing applications have to deal with input images affected by noise
or weak signal-to-noise-ratio (SNR). In automatic surveillance and reconnais-
sance, difficult environmental conditions, high object distance, moving sensors,
and sensor-specific noise lead to images, which are challenging to process. The
quality of such image data can vary strongly even for the same sensor over time.
Being an important step for applications such as object and image segmentation,
line detection, texture analysis, contour extraction, or model fitting, edge detec-
tion has to be precise but at the same time robust against noise. The Canny
algorithm [1] is a good choice to handle this problem, but it also reaches its
limits when the noise level is getting high or alternates. We want to show, that
in such cases, our proposed approach can outperform Canny and other tested
methods. The original Canny processing chain consists of Gaussian smoothing,
gradient calculation, directional non-maximum-suppression for gradient magni-
tudes and hysteresis thresholding to determine edge pixels. In this work, this
chain is taken as a template and its modules are modified using Local Binary
Patterns (LBPs). The main innovation is the filtering and gradient calculation
strategy. The decrease of edge detection performance with increasing level of
noise is slowed down compared to original Canny, while still providing a similar
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performance in case of low noise level. Experiments with standard evaluation
methods on synthetic and natural image data support this observation.

The presentation and discussion of related work is focused on other approaches
towards noise resistant edge detection. Many authors altered the original Canny
processing chain modifying mainly the smoothing or gradient calculation strat-
egy or both, while adopting the idea of non-maximum-suppression and subse-
quent thresholding. Korn [2] combines smoothing and gradient calculation in
only one convolution matrix which is an approximation of the first normalized
Gaussian derivatives. Different scales are applied and the best one chosen auto-
matically. Evaluation is performed visually on natural image data. Kitanovski et
al. [3] use multi-scale undecimated Haar wavelet transform to emphasize edges.
Their approach tracks for edges existing at several scales favoring edges at larger
scale. Thus, robustness against noise is achieved but detailed edge structure may
get lost. Agaian and Almuntashri [4] aim to segment MRI brain images. The typ-
ical Canny filter matrices for smoothing and gradient calculation are replaced
to better deal with the impulsive noise of MRI images. This seems to work at
least as well as normal Canny but no quantitative evaluation is given. Sun and
Sun [5] consider two windows around each image pixel. In these windows, gray-
value mean and variance are calculated and a difference measure determines
the pixel’s edge strength. The edge direction is derived from the four different
possible window arrangements which describe rotations in steps of 45◦. Only a
visual evaluation is given. Panetta et al. [6] introduce an adaptive switching func-
tion choosing the appropriate smoothing filter (Gaussian, Median, etc.) based
on some performance evaluations. Then, a shape-dependent convolution is pro-
posed using kernels of different size and shape (circle, ellipse, hexagon, diamond,
etc.) for joint gradient magnitude calculation. Standard Canny and Sobel are
outperformed on synthetic images with respect to Abdou and Pratt’s figure of
merit [7]. For natural images slightly better performance than Canny is visible
in presence of noise.

Some authors developed a new edge detection processing chain independent
of the Canny algorithm. Chen and Das [8] aim to detect edges and corners
in noisy images. A pattern classification algorithm automatically identifies the
noise type and chooses the right image restoration technique. After gradient
calculation, fuzzy k-means based adaptive thresholding determines the edge or
corner pixels. No quantitative evaluation is given but the results on natural data
look convincing. Hou and Wei [9] use discrete singular convolution (DSC) to
generate different filters for multi-scale edge detection in noisy images. With
various levels of Gaussian noise the figure of merit [7] is taken as evaluation
on a synthetic image. The performance is very similar to Canny. Chang [10]
proposes contextual Hopfield neural networks (CHNNs) for edge detection. For
segmentation of MRI images, CHNNs are able to perform better than various
other approaches such as Canny or Wavelets in presence of strong salt-and-
pepper noise.

In this paper, the focus lies on processing data as it appears in surveil-
lance applications. Strong noise of unclear type, and small objects, which may
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Fig. 1. Calculation and interpretation of Local Binary Patterns (LBPs) [17]

disappear after smoothing characterize the images and, thus, an approach is
presented dealing with noise but keeping sophisticated edge structure. The re-
mainder of the paper is organized as follows: the theory of LBPs and the edge
detection approach using LBPs are introduced in Section 2. A description of the
experimental setup as well as a demonstration of the results and some exam-
ples for processing natural image data are given in Section 3. Conclusions are
presented in Section 4.

2 The Proposed Approach

The application of LBPs is widely spread in image processing research. Some
examples are texture classification [11,12], face detection [13], background mod-
eling [14], structure emphasizing filter [15], or setting up a SIFT descriptor [16].
After a short introduction to the theory of LBP, the modifications and their
applicability for edge detection are presented.

2.1 Theory of LBP

LBPs describe a unique encoding for local pixel neighborhood. They are easy
to implement, fast to compute, and characterized to be high-performance and
robust features in the abovementioned approaches. In the following, we refer
to the work of Mäenpää [17] and Ojala et al. [11] for the theory of LBP. In
Fig. 1 (a), the typical way of LBP computation is shown. The gray-value of the
central pixel is compared to each of the eight neighbors. In case of a higher or
equal gray-value, its position will be highlighted with a 1 and, thus, considered for
the LBP computation. LBP encoding is calculated by multiplying all highlighted
positions with their related weights and summing them up afterwards. The result
is a value between 0 and 255 describing a specific neighbor constellation. There
are two basic design parameters: number of neighbors P and radius R, since
neighbors are ordered circularly around the central position c. This leads to the
equation:

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p, where s(x) =

{
1, x ≥ 0

0, x < 0.
(1)
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A specialization of LBPs, which will be important for edge detection, is the set
of rotation-invariant, uniform LBPs:

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc), if U(LBPP,R) ≤ 2

P + 1, else.
(2)

LBP riu2
P,R can be interpreted as texture primitives [17] as seen in Fig. 1 (b).

Description riu2 stands for rotation-invariance and uniformity measure U of 2
or less. U returns the number of bitwise 0/1 and 1/0 transitions in a LBP [11].
With P = 8 and U ≤ 2, only the 58 texture primitives among the 256 LBPs are
considered. Rotation-invariance is achieved by assigning all potential rotations of
an uniform LBP to the same equivalence class, for example edge, bright corner,
or dark corner. As seen in Fig. 2 (top left), there are nine equivalence classes
and eight LBPs in each class, each LBP corresponding to a rotation in steps of
45◦. An exception is given by the classes bright spot and dark spot with only one
representative each.

LBPs are gray-scale invariant [11] as only the sign of the gray-value difference
is considered. However, further information is available in the neighbor’s gray-
values. To extract this information, the rotation-invariant variance measure VAR
is introduced:

V ARP,R =
1

P

P−1∑
p=0

(gp − μ)2, where μ =
1

P

P−1∑
p=0

gp. (3)

Ojala et al. [11] point out that the combination of LBP and V AR turned out
to be a powerful feature for texture classification.

2.2 Gradient Calculation and Edge Detection with LBPs

The first question is, why LBPs should be suitable for gradient calculation or
edge detection? The answer is given in Fig. 2. For some example images, the
LBPs are calculated for three different radii r ∈ {1.0, 2.0, 3.0} and accumulated
in LBP histograms. Each histogram has ten bins: nine for the different LBP riu2

P,R

equivalence classes, which are displayed in Fig. 2 (top left), and one for all other
LBPs. Since the accumulation values were highly varying along the bins, the
vertical axis is visualized in logarithmic scale. In a first experiment, all pixels
of a synthetic image are set to value 127. There are no edges in this image.
Four different kinds of artificially generated noise are added subsequently, but
not mixed, to find out which LBP distribution appears for which kind of noise.
It is obvious that for salt-and-pepper noise mostly spot-like LBPs (classes 0, 1,
8) appear, while the accumulation of class 3 is a result of bilinear interpolation
during LBP calculation. The other kinds of noise mainly produce LBPs of classes
0, 1, and 9. If pixel positions of such LBPs are not considered for gradient
calculation, noise can be suppressed. For the second experiment, a synthetic
image with various edges and well-known natural image Lena are considered.
The LBPs are calculated for each original image as well as for each image with
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Fig. 2. LBP distributions for an edge-less image with different kinds of noise (top
right) and the comparison of LBP distributions for a noise-free and noisy synthetic
image with edges (bottom left) and Lena (bottom right)

added combination of noise (Gaussian, speckle, and salt-and-pepper). Class 0
appears most often as it stands for flat, homogeneous image areas. But it also
can be seen that classes 3 and 4 mainly represent edges while classes 7 and 8
represent noise.

The basic idea in using LBPs for gradient calculation is to generate a fil-
ter rejecting pixel positions of LBPs which are likely to be produced by noise.
Thereafter, gradient magnitudes are calculated at the accepted pixel positions
using the local variance V ARP,R. For easy embedding and testing, the Canny
edge detection processing chain is taken as template and modified. The aim of
each component is kept, but solved in a different way using LBP. The original
Canny algorithm [1] consists of:

1. Noise suppression by smoothing with Gaussian kernel.
2. Calculation of gradient magnitude and direction for each pixel by convolution

with a filter matrix.
3. Non-maximum-suppression of the gradient magnitudes in dominant gradient

direction.
4. Determination of edge pixels using hysteresis-thresholding.

In the following, the modifications to gain more robustness towards noise are
presented step by step.
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Noise Suppression: Not only Gaussian noise is the target of noise suppression
here, but also salt-and-pepper, uniform additive, and speckle noise. Salt-and-
pepper is likely to occur in infrared, while speckle noise is symptomatic for
SAR imagery. Especially in applications using such data, another important
parameter is used to enhance the robustness of standard LBPs in flat image
regions and for edge detection in noisy images: the gray-value threshold T , which
was introduced and also used in [14]. Eq. 1 is adapted as follows:

LBPP,R,T =

P−1∑
p=0

s(gp − gc − T )2p. (4)

With this modification, a binary decision function f is defined and applied pix-
elwise to all image pixel positions c = (x, y). f accepts only pixels with related
LBPs, which fulfill three criteria:

U(LBPP,R,T ) = 2 (5)

LBPP,R,T �= 2p, p ∈ P = {0, . . . , P − 1} (6)

LBPP,R,T �= 2P − 1− 2p, p ∈ P (7)

This means, only uniform LBPs are allowed, which are not spots (5) or spot-
like (6), (7). The assumption is that all non-uniform LBPs and all uniform LBPs
violating one of the three criteria are the result of noise. Thus, they should be
suppressed before gradients are calculated. This leads to the following formula-
tion of f for each pixel position c:

f(c) =

{
1, if (5) and (6) and (7)

0, else.
(8)

Only pixel positions with f(c) = 1 will be considered for the next step.

Gradient Magnitude and Direction: Convolution with Sobel, Prewitt or
other filters is an approximation of partial derivatives. Here, the gradients are
calculated using V ARP,R,T and LBPP,R,T . The gradient magnitudes G(c) for
each pixel position c are computed using the equation:

G(c) =

{√
V ARP,R,T , if f(c) = 1

0, else.
(9)

Variance tends to focus too much on bright objects. So, standard-deviation is
used instead of variance as it produces more homogeneous edge images. The
robustness against noise can be increased significantly using multi-resolution
LBPs [11]. In the literature, they are also known as multi-scale LBPs. For the
same pixel position c, several LBPs are calculated varying the parameters P and
R. In this work, only variations of radius R are considered and P is fixed to
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Fig. 3. Set D0
LBP with LBPs of orientation 0◦

P = 8. For each LBP accepted by f , V ARP,R,T is calculated and summed up
for the gradient magnitude:

G(c) =

{∑Rn

r=R1

√
V ARP,r,T , if f(c) = 1

0, else.
(10)

For each texture primitive in Fig. 1 (b), which is not a spot, eight different
rotations are possible. Hence, gradient directions are already available by storing
the not rotation-invariant LBPu2

P,R,T at every pixel position c with f(c) = 1.

Non-Maximum-Suppression: In Canny algorithm, the atan2-function is used
to calculate gradient directions. These directions are rounded off to only four
discretization steps: 0◦, 45◦, 90◦, and 135◦. For each pixel’s gradient magnitude,
a directed non-maximum-suppression is applied in its gradient direction. The
remaining maxima describe a skeleton of gradient magnitudes, from which the
edge pixels can be determined by hysteresis-thresholding. In this work, the non-
maximum-suppression is performed in exactly the same way, but the direction
discretization is already given. All uniform LBPs accepted by f are assigned to
one of the four direction sets D0

LBP , D
45
LBP , D

90
LBP , or D135

LBP . LBPs with an
even number of 0s and 1s are ambiguous and, thus, assigned to two sets. The set
D0

LBP is shown in Fig. 3. To find out about its direction, the currently considered
LBP just has to be re-found in one of the sets.

Determination of Edge Pixels: The last step is to generate a binary edge
pixel image B. Therefore, hysteresis-thresholding is used. Two thresholds t1 and
t2 are determined with t1 < t2. If a gradient magnitude G(c) exceeds t2, it
is accepted as edge pixel. Then, all pixels are considered, which are connected
to this edge pixel, and also accepted if their gradient value is greater than t1.
This approach was adopted with a minor change: a minimum threshold for edge
length was introduced. B is the final result of the edge detection approach.

3 Experiments and Evaluation

In this section, the performance of gradient calculation and edge detection with
LBPs is evaluated. Before presenting the results, first the experimental setup
and the evaluation approach are described and discussed. Finally, the processing
of some natural example images coming from standard datasets as well as special
surveillance applications is demonstrated.
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Fig. 4. Evaluation images with reference edge pixel images

3.1 Experimental Setup

Four parts are needed for the experimental setup: a test image database, a syn-
thetic noise generator with measured signal-to-noise-ratio (SNR), a figure of
merit to evaluate the performance, and other edge detection algorithms as com-
petitors. To guarantee repeatability of these experiments, standard approaches
have been chosen for each part.

Two test images are used: a synthetic one and Lena. There is a ground-
truth edge pixel image for the synthetic image and a sensed-truth for Lena.
Sensed-truth means that a humanly sensed good result of Canny edge detection
was manually corrected and amended by straightening the typical sinuous lines
produced by Canny in case of blurred edges. This is the only way to lay a
foundation for a quantitative evaluation on a natural image, which is publicly
accessible. The four images have a resolution of 512 × 512 and are shown in
Fig. 4.

A random noise generator was implemented to manipulate the original image
with salt-and-pepper, uniform additive, Gaussian additive, or speckle (multi-
plicative) noise. The level of noise was varied and measured by applying two
different methods: peak-signal-to-noise-ratio (PSNR) and structural similarity
(SSIM). PSNR is widely used to calculate the difference between original and
noisy image in decibel (dB) for evaluating noise resistant edge detectors [9,3].
Structural similarity [18] is a rather new approach much more related to the
human noise sensing. It is a value between 1 (no noise) and 0 (strong noise)
and not depending on the image peak which is a disadvantage of PSNR. Thus,
it was decided to present the results using SSIM, although both methods have
been applied. However, the results to be shown later were clearly noticeable with
both PSNR and SSIM.

As figure of merit F , the proposal of Abdou and Pratt [7] was chosen:

F =
1

max (II , IA)

IA∑
i=1

1

1 + αd2i
, (11)

where II and IA is the number of edge pixels in the ideal and the actually
detected edge image, di denotes the distance between a detected edge pixel and
the nearest edge pixel in the ideal image, and α the penalty constant set to 1

9 as
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proposed in [7]. The result is a value between 1 for perfect detection and 0 for
poor detection.

The proposed LBP edge detector was compared to three other approaches: two
variations of the original Canny algorithm as it is implemented in OpenCV [19]
and the edge detector proposed by Korn [2]. Canny in OpenCV doesn’t include
any smoothing, so two different smoothing strategies are tested with Gaussian
and Median filter. Gaussian filter is well-known to be powerful against additive
noise, while Median filter is useful against salt-and-pepper and speckle. The
Korn edge detector is similar to Canny but using a normalized filter matrix for
smoothing and gradient calculation with automatically determined size which is
slightly adaptive to varying noise levels.

3.2 Results

Before generating the results, an automatic parameter optimization was applied
for each tested algorithm using images with different kinds and levels of noise.
It is possible to adjust the parameters for each noise level, of course, but this
was not considered since it is not suitable for a real surveillance application.

The OpenCV Canny algorithm has four parameters: size of the smoothing
filter, size of the Sobel filter, and the two hysteresis thresholds. For Korn edge
detection, filter size factor σ, gradient threshold t, and the two hysteresis pa-
rameters have to be set. The LBP edge detector has four parameters as well:
LBP radius R, gray-value threshold T , and the two hysteresis thresholds. For
all studies in this paper, the number of LBP neighbors was fixed to P = 8.
Optimization was performed by maximizing the mean figure of merit across the
original synthetic and Lena image as well as all different noise level images.

With the best set of parameters, the evaluation was run and its results are
shown in Fig. 5. The noise-related plots of F against SSIM show the decreas-
ing performance of edge detection with increasing noise level. G-Canny denotes
Canny with Gaussian, and M-Canny with Median smoothing. M-Canny has its
advantages only for salt-and-pepper noise. In all other cases, the LBP edge de-
tector is performing similar to the three other approaches for weak noise but
better than them for stronger noise starting at a SSIM value of about 0.9. The
convergence of Canny and Korn to F = 0.4 when processing the Lena image
is a weakness of the figure of merit F . Canny and Korn tend to produce false
positive edge pixels in case of strong noise, while the LBP edge detector gener-
ates false negatives. Since the reference edge pixel image for Lena contains many
edge pixels in general, many false positives cause a better result of F than many
false negatives in this situation. Without artificial noise, the figure of merit was
nearly the same for all four approaches with about 0.95 for the synthetic image
and 0.9 for Lena.

It should be mentioned, that no smoothing was necessary for LBP edge detec-
tion. This is an advantage as edge detection normally deals with the problem that
smoothing with big filter size can suppress desired sophisticated edge structure
but small filter size might not be sufficient enough to suppress strong noise.
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Fig. 5. Evaluation results: figure of merit F plotted against SSIM for synthetic image
and Lena with different types and levels of noise

3.3 Examples

For a visual impression of the results, some standard images such as the cam-
eraman or the golf cart have been chosen along with some images from real
surveillance applications. They are processed using the LBP approach, OpenCV
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Fig. 6. Example for optional Gaussian smoothing in combination with LBP edge
detection

Canny with Gaussian smoothing, and the Korn approach. The parameters were
adopted from the automatic parameter optimization applied in Section 3.2 with
one minor change: since high smoothing parameters were chosen for Canny and
Korn, only Canny parameter with a 7× 7 filter matrix was directly adopted and
σ for Korn filter matrix was lowered to σ = 1.5 for a better comparison of strong
smoothing effects. The examples are visualized in Fig. 7. In the most left column,
the original images are located followed by the edge detection results of LBP,
Canny, and Korn. In the first row, the original cameraman image is processed.
All edge detection results are similar, but due to strong smoothing, some details
are lost in the Canny image such as the tower in the background. A combination
of Gaussian, speckle, and salt-and-pepper noise is added with a SSIM of 0.75 to
the original image and visualized in the second row. The tendency to produce
false negative edge pixels rather than false positives is clearly visible in the LBP
edge image especially in comparison to the Korn result, which is strongly affected
by noise. The Canny edge image is better due to strong Gaussian smoothing. A
potential drawback of the LBP approach is shown in the third row. The noisy
golf cart has a SSIM of 0.68 to the original image. Nearly all of the edge pixels
found by the LBP approach are correct but due to the high false negatives rate,
the Canny result visually looks better although it is also affected by noise. If
a subsequent algorithm such as line detection with Hough transform is able to
handle false negatives better than false positives, this can be an advantage for
the LBP approach.

However, it is possible to support the LBP approach with smoothing, too.
This is an application dependent alternative method to the proposed one. An
example is visualized in Fig. 6. The same noisy golf cart as in Fig. 7 is shown
on the left position. The edge detection result of Canny algorithm applied to
the original image (without additional noise) and to the noisy image is displayed
in the second and third column. Finally, the right image is the result of the
LBP approach with previous 5× 5 Gaussian smoothing. Visually, the results of
Canny and LBP look similar. But when calculating Abdou and Pratt’s figure of
merit with the Canny result of the original image as reference, the LBP approach
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Fig. 7. Examples for real data processing: original images and edge detection using
LBPs, Canny, and Korn (from left to right column)
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performs consistently better with a figure of merit difference between 0.05 and
0.1 along various test images. This result is achieved with a smaller smoothing
filter matrix than for Canny and with a Canny result (for original image) as
reference for comparison.

The last three examples in Fig. 7 originate from real surveillance applications
and were our motivation to develop the proposed approach. The upper one is
an image coming from a visual-optical camera mounted on an unmanned aerial
vehicle (UAV). In the mid row a ship in a thermal infrared image originating from
a buoy camera is shown. Finally, in the lower row a Synthetic Aperture Radar
(SAR) image coming from TerraSAR-X satellite with an observed oil tanker is
displayed. The vertical smearing effect is typical SAR noise besides the strong
speckle. These images are the result of different sensors with different view angles,
have different content, different gray-value distribution, as well as different types
and levels of noise. LBP edge detection provides the best edge completeness and
noise suppression, while both Canny and Korn produce more false negatives in
the infrared image and more false positives in the SAR image. This effect was
observed in many more example images from different surveillance sensors. Of
course, it is possible to find different sets of parameters for Canny and Korn
to produce good edge detection results for each of the original images in Fig. 7
separately, but with these examples the robustness of LBP edge detection is
demonstrated.

4 Conclusion

A novel approach for gradient calculation and edge detection is presented using
Local Binary Patterns (LBPs). The main innovation is the way of noise suppres-
sion with a binary decision function f , which only accepts a special subset of
LBPs, namely texture primitives, assuming, that all other LBPs are affected by
noise. Gradient magnitude is calculated at pixel positions accepted by f with the
gray-value variance of LBP neighbors and robustness is achieved by using multi-
scale LBPs. For a good testing environment, the LBP approach is embedded to
the Canny processing chain consisting of smoothing, gradient calculation, direc-
tional non-maximum-suppression, and hysteresis-thresholding. The structure of
the processing chain is adopted but implemented using Local Binary Patterns
(LBP) instead of Gaussian smoothing and Sobel filter. The evaluation is per-
formed using one synthetic and one natural image with added artificial noise
of different types and levels. With increasing noise level, LBP edge detection
outperforms the approaches of Canny and Korn concerning Abdou and Pratt’s
figure of merit. This effect is visually demonstrated with different natural image
examples.

In general, inaccuracies occurring at an early stage of a processing chain can
significantly affect the performance of all subsequent modules as well as the
overall performance. The assumption is, that with higher robustness against
noise, not only edge detection but also other algorithms, which rely on gradients
instead of edges, can be improved.
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Abstract. In this paper, we propose a new type of local binary pattern
(LBP)-based feature, called Rotation Invariant Co-occurrence among ad-
jacent LBPs (RIC-LBP), which simultaneously has characteristics of ro-
tation invariance and a high descriptive ability. LBP was originally de-
signed as a texture description for a local region, called a micropattern,
and has been extended to various types of LBP-based features. In this
paper, we focus on Co-occurrence among Adjacent LBPs (CoALBP).
Our proposed feature is enabled by introducing the concept of rotation
equivalence class to CoALBP. The validity of the proposed feature is
clearly demonstrated through comparisons with various state-of-the-art
LBP-based features in experiments using two public datasets, namely,
the HEp-2 cell dataset and the UIUC texture database.

1 Introduction

The Local Binary Pattern (LBP) histogram has recently attracted much atten-
tion in the area of image recognition. The basic idea behind the LBP histogram
is to represent an entire image as a histogram of numerous LBPs, with each LBP
extracted from a local region of the image. Many types of LBP-based features
[1–5] have been proposed as extensions of the original LBP.

In this paper, we propose a new type of LBP-based feature, which is invari-
ant to rotation of an input image. The proposed feature is an extension of Co-
occurrence among Adjacent LBPs (CoALBP) [6], which is an LBP-based feature
with a higher descriptive ability than the original LBP. LBP was originally de-
signed as a texture description for a local region, called a micropattern, which con-
sists of binary patterns that represent the magnitude relation between the center
pixel of a local region and its neighboring pixels. LBP is obtained by threshold-
ing the image intensity of the surrounding pixels with that of the center pixel. To
obtain an LBP histogram feature for use in classification, the binary patterns are
converted to decimal numbers as labels, and then a histogram is generated from
the labels of all the local regions of an entire image. The main advantage of LBP is
its invariance to uniform changes in image intensity over an entire image, making
it robust against changes in illumination. This is because LBP considers only the
magnitude relation between the center and neighboring pixel intensities. Owing
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θ = 0 θ = π/4 θ = π/2 θ = 3π/4

Fig. 1. Example of rotation equivalence class of LBP pairs. In this figure, each circle
indicates one LBP.

to this characteristic, LBP has become a standard feature for texture recognition,
face recognition, and facial expression analysis [1, 5].

To enhance the descriptive ability of LBP, the feature has been extended to
CoALBP by introducing the concept of co-occurrence among LBPs so as to ex-
tract information related to the more global structures of the input image [6].
However, the CoALBP feature can vary significantly depending on the orienta-
tion of the target object. When, for instance, classifying several types of cells
with complicated textures, rotation invariance is essential. This is because the
orientation of each cell is not relevant to its classification. One could address
this problem by preparing all possible LBPs in advance. However, this solution
would entail a large memory requirement (to hold the reference patterns) high
computational cost.

Several LBP-based features with rotation invariance have already been pro-
posed. They are categorized into two types. The first type focuses on invariance
to local rotation of an input image. For example, LBPri and LBPriu2 [4] obtain
invariance to local rotation by introducing the concept of rotation equivalence
class. The second type focuses on invariance to global rotation. The LBP-HF
feature is included in this type. It attains global rotation invariance by applying
the discrete Fourier transform to a feature vector of an LBP histogram [7]. Both
types can extract distinctive features from an image with rotations. However,
these rotation invariant features lack descriptive ability, because they are basi-
cally the local features extracted from only micro patterns, without consideration
of the relations among micropatterns.

To overcome the problem of low descriptive ability of conventional rotation
invariant LBPs, we incorporate the concept of rotation equivalence class into
CoALBP. Fig.1 shows an example of the rotation equivalence class of CoALBPs.
In this case, we consider that all CoALBPs corresponding to a different angle θ
have the same value. Nevertheless, finding such LBP pairs is difficult since the
number of possible LBP combinations is huge. To solve this problem, we auto-
matically detect pairs with the same CoALBP value by using a computational
algorithm. We call this feature Rotation Invariant Co-occurrence among adja-
cent LBPs (RIC-LBP). RIC-LBP can simultaneously provide a high descriptive
ability and invariance to image rotation. The core idea of RIC-LBP is simple
yet effective. The validity of RIC-LBP is demonstrated by comparing various
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LBP(r) 
    = (0011)2     
    =  3 

Threshold 

Fig. 2. Flow to obtain LBP from a local region. In this example, the intensity of the
center pixel is 5 and those of its neighboring pixels are 2, 4, 7 and 9. Thus, the binary
pattern is “0011” and LBP (r) = 3.

state-of-the-art LBP-based features through the experiments using two public
datasets, the HEp-2 cell dataset and the UIUC texture database.

The remainder of this paper is organized as follows. In Section 2, we briefly
review LBP and co-occurrence among adjacent LBPs. In Section 3, we describe
how to impart rotation invariance to CoALBPs. We also explain the RIC-LBP
process. In Section 4, we demonstrate the validity of the proposed feature by
examining the results of experiments in cell classification and texture recognition
using public databases. In the final section, we present our conclusions.

2 LBP and Co-occurrence of Adjacent LBPs

2.1 LBP

LBP[3] is an operator that describes a local region as a binary pattern obtained
by thresholding the difference between a center pixel and its neighboring pixels
in a local region, as shown in Fig.2. The binary pattern in LBP represents the
magnitude relation of intensities, a quantity which is invariant amid uniform
changes of image intensity over an entire image. Therefore, LBP is robust against
changes in illumination among image patterns, a difficulty commonly found in
face and texture images.

Let I be an image intensity and r = (x, y) be a position vector in I. LBP at
r is defined as follows:

LBP (r) =

N−1∑
i=0

sgn(I(r+Δsi)− I(r))2i, (1)

sgn(x) =

{
1, if x ≥ 0
0, otherwise

, (2)

where N is the number of neighbor pixels. Δsi is displacement vector from the
center pixel to neighboring pixels given by Δsi = (s cos(θi), s sin(θi)), where
θi =

2π
N i and s is a scale parameter of LBP.

2.2 Co-occurrence among Adjacent LBPs

The original LBP does not preserve structural information among binary pat-
terns, even though such information may be characteristic of an image. In order
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θ = 0 θ = π/4 θ = π/2 θ = 3π/4

Fig. 3. Configurations of an LBP pair

to keep such structural information, we utilize the CoALBP as represented by
LBP pair [6]. The set of CoALBPs over a whole image is converted to a CoALBP
histogram feature. CoALBP (LBP pair) at r is written as follows:

P (r, Δr) = (LBP (r), LBP (r+Δr)), (3)

where Δr = (r cos θ, r sin θ) is a displacement vector between an LBP pair. The
value of r is an interval between an LBP pair, and θ = 0, π/4, π/2, 3π/4. Fig.3
illustrates the configurations of an LBP pair.

While the LBP produces 2N (= NP ) different output values, the number of
possible combination patterns of an LBP pair N2

P ×4 is significantly greater than
that of the LBP itself. That is, an LBP pair can represent a far greater variety of
image patterns than an LBP. The histogram feature generated from these LBP
pairs contains information on the structure of the image, since it describes the
frequency of LBP pairs that are located near each other.

3 Rotation Invariant Co-occurrence among Adjacent
LBPs

3.1 Rotation Equivalence Class of LBP Pair

To simultaneously achieve a high descriptive ability and rotation invariance, we
incorporate rotation invariance into CoALBP as represented by an LBP pair.
The simplest way to embed rotation invariance is to attach a rotation invariant
label to each LBP pair. For example, in Fig.4 there are two types of LBP pairs,
each having four configurations. The same label is attached to each of these eight
LBP pairs because each LBP pair is equal to the others in terms of rotation. This
relation among LBP pairs is called rotation equivalence; and a set of rotation
equivalent LBP pairs is called a rotation equivalence class of LBP pairs. Thus,
the LBP pairs in Fig.4 constitute one rotation equivalence class.

As shown in Fig.4, the upper LBP pairs are equivalent to LBP pairs that have
been rotated 180 degrees from the lower LBP pairs. Therefore, for finding the
rotation equivalent LBP pairs, it is necessary to consider only two cases: (i) a
case in which LBP pairs of θ = 0, π/4, π/2, 3π/4 have rotation equivalence and
(ii) a case in which LBP pairs that are rotated by 180 degrees have rotation
equivalence.
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θ = 0 θ = π/4 θ = π/2 θ = 3π/4
Pθ(r,Δrθ) = ((0101)2, (0110)2)

θ = 0 θ = π/4 θ = π/2 θ = 3π/4
Pθ(r,Δrθ) = ((1001)2, (0101)2)

Fig. 4. An example of the rotation equivalence class. The same label is attached to
these LBP pairs.

First, in order to consider case (i), we modify the definition of LBP pair. The
modified LBP pair is written as follows:

Pθ(r, Δrθ) = (LBPθ(r), LBPθ(r+Δrθ)), (4)

LBPθ(r) =

N−1∑
i=0

sgn(I(r+Δsi,θ)− I(r))2i, (5)

Δsi,θ = (s cos(θi + θ), s sin(θi + θ)), (6)

where θ serves as the bias of the rotation angle in LBP. Based on the new
definition above, the LBP pair of each configuration has the same value in terms
of rotation.

Next, we consider case (ii). In this case, we use a rule that an LBP pair that is
rotated 180 degrees from Pθ(r, Δrθ) is equal to (LBPθ+π(r+Δrθ), LBPθ+π(r)).
According to this rule, we can consider that these LBP pairs have rotation
equivalence. We implement this rule by a mapping table M that has a label for
each LBP pair. The mapping table M is generated by using Algorithm 1. In
Algorithm 1, “�” is a circular shift ; also, “i′ = i � N/2” means to rotate LBP
i by 180 degree (e.g., i = (1000)2 becomes i′ = (0010)2).

By using mapping table M , we define a rotation invariant label for an LBP
pair at r (i.e., RIC-LBP) as follows:

PRI
θ (r) = M(Pθ(r, Δrθ)). (7)

Finally, an RIC-LBP histogram is generated from PRI
θ (r) for the entire image.

Since the number of the rotation equivalence classes for the LBP pairs deter-
mines the dimension of the RIC-LBP histogram vector, we describe this in more
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Algorithm 1. Calculate a mapping table M

Input: N // number of neighbor pixels.
Output: M // mapping table (NP ×NP matrix)

id ⇐ 1, NP ⇐ 2N

for i = 0, · · · , NP − 1 do
for j = 0, · · · , NP − 1 do

if M(i, j) = null then
i′ ⇐ i � N/2, j′ ⇐ j � N/2
M(i, j) ⇐ id, M(j′, i′) ⇐ id
id ⇐ id+ 1

end if
end for

end for

Fig. 5. Examples of symmetric LBP pair

detail as follows. The number of possible LBP pairs is N2
P × 4. By considering

case (i), the number of possible patterns becomes N2
P . Moreover, by considering

case (ii), the number of possible patterns is halved. Here, we consider a sym-
metric LBP pair as shown in Fig.5; the number of symmetric LBP pairs is NP .
Therefore, the number of rotation equivalence classes is NP (NP + 1)/2.

3.2 Process Flow of Generating RIC-LBP Histogram from an
Image

We explain how to generate the RIC-LBP histogram from an input image with
Eq.(4) and mapping table M .

First, we explain how Eq.(4) and mapping table M work using Fig.6. The ex-
ample image has four LBPs (Fig.6(a)). The image is decomposed into six LBP
pairs (Fig.6(b)). We then have two sets of LBP pairs that have rotation equiva-
lence as indicated by arrows in Fig.6(b). By Eq.(4), the effect of configurations
is removed from these LBP pairs, as shown in Fig.6(c). By utilizing mapping
table M , these pairs are arranged as shown in Fig.6(d). As we can see, LBP
pairs in Fig.6(d) are clearly rotation invariant. By such a process, we obtain an
RIC-LBP histogram of the example image, as shown in Fig.6(e).

Next, we explain the overall process flow to obtain a RIC-LBP histogram of an
image using Fig.7. Firstly, compute LBPθ(r) at every pixel r throughout the en-
tire input image (Fig.7(a)). Next, compute a histogram of Pθ(r, Δrθ) (Fig.7(b)).
Finally, combine the histogram using mapping table M and obtain a histogram



Rotation Invariant Co-occurrence among Adjacent LBPs 21

(b)(a)

Rotation equivalent

Rotation 
equivalent

 2     2 

(c) (e)(d)

 1      1

Fig. 6. An example of generating RIC-LBP. (a) Example image. (b) LBP pairs of the
example image. (c) Labeling of each LBP pair using Eq.(4). (d) Re-labeling of each
LBP pair by applying the mapping table M . (e) RIC-LBP histogram.

(a) (b) (c)

…… …

Fig. 7. Process flow of RIC-LBP. (a) Input LBP image. (b) Histogram of Pθ(r, Δrθ).
(c) Histogram of PRI

θ (r).

of PRI
θ (r) (Fig.7(c)). Mapping table M is calculated offline. The final histogram

is NP (NP + 1)/2 dimensional vector and is applied to a classifier.

4 Experiments

To evaluate the effectiveness of RIC-LBP, we conducted two types of experi-
ments. The first experiment is for HEp-2 cells classification, an important task
to support autoimmune disease diagnosis. Experimental conditions and results
are presented in Section 4.1. The second experiment is to apply RIC-LBP to
compare its performance relative to other LBP features in general texture recog-
nition, which is described in Section 4.2.

4.1 HEp-2 Cells Classification

Setup. In this experiment, we used the HEp-2 cell dataset from the classifica-
tion contest at ICPR 2012 [8]. The dataset contains six kinds of antinuclear an-
tibody (ANA) patterns of HEp-2 cell images: homogeneous, fine speckled, coarse
speckled, centromere, cytoplasmatic, and nucleolar, as shown in Fig.8. The total
number of images in the dataset is 648. The images are of various sizes.
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homogeneous
#=150, size=71×92

fine speckled
#=94, size=90×112

coarse speckled
#=109, size=83×76

centromere
#=102, size=69×74

cytoplasmatic
#=58, size=132×155

nucleolar
#=208, size=96×72

Fig. 8. Example images in Hep-2 cell dataset. # is the number of images of each
class.“size” is the size of the displayed image; other images not displayed have different
sizes.
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Fig. 9. Performance results. (a) LBP histogram, (b) rotation invariant LBP histogram,
(c) LBP pair histogram (CoALBP), (d) rotation invariant LBP pair histogram (RIC-
LBP, proposed).

We employed the leave-one-out protocol for evaluation; the correct rate is
reported as our experimental result. The parameters of RIC-LBP were set as
follows. The radius of LBP was set to s = 1, 2, 4 pixels and the intervals of
LBP pairs were set to r = 2, 4, 8 pixels. Then, the features extracted by each
parameter were combined into a final proposed feature vector with dimension
of 408 (=136 × 3). The parameters of other methods were also set to produce
optimal performance. For classification, the linear SVM was used [9].

Result. First, we show the effectiveness of the proposed feature comparing with
various conventional LBP histograms. The baseline result for the original LBP
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Table 1. Performance results in HEp-2 cells classification

Method Correct Rate(%)

LBPri [4] 96.26
LBPriu2[4] 76.67
LBP-HF [7] 97.23

RIC-LBP (Proposed) 98.20

histogram was 92.93% (Fig.9(a)). When we applied the method with rotation
invariance, the correct rate rose to 96.26% (Fig.9(b)). The co-occurrence of adja-
cent LBPs (i.e. CoALBP) achieved a performance of 96.53% (Fig.9(c)). When we
used the proposed RIC-LBP, the performance was further improved to 98.20%
(Fig.9(d)). Finally, the proposed method significantly improved the performance
of the original LBP by more than 5%. This result demonstrates the effectiveness
of both the high descriptive ability of the CoALBPs and the rotation invariance
in cell classification.

Next, we compare the results of RIC-LBP with those of other rotation in-
variant LBP features, as shown in Table 1. As apparent with the experimental
results, RIC-LBP outperforms the other methods. These results confirm the
significant advantage of RIC-LBP over the conventional methods, especially be-
cause the proposed method has not only rotation invariance, but also a high
descriptive ability due to CoALBPs.

4.2 Texture Recognition

Setup. We evaluated RIC-LBP for texture recognition using the UIUC texture
database [10]. The database contains texture images of 25 classes. Each class
consists of 40 images of size 640× 480 pixels. Some examples of texture images
are shown in Fig.10. The images of each class were randomly split into training
and testing sets. This division was repeated 20 times to produce 20 evaluation
sets. The average of all correct rates over 20 iterations was defined as the final
rate. To increase the difficulty of recognition, we also rotated the texture images
by various angles. The parameters of the LBP features were set to the same
setting as in the above mentioned experiment.

Results. Experimental results are shown in Table 2. The performance of RIC-
LBP was better than that of almost all the other conventional LBP methods,
such as LBPri and LBPriu2. However, the LBP-HF method, which utilizes the
discrete Fourier transform, achieved better performance than RIC-LBP. This is
because RIC-LBP considers rotation at local regions, whereas LBP-HF considers
rotation of the entire image. LBP-HF is thus better suited for this type of texture
dataset, which contains global rotation equivalence images. This experimental
result indicates that the performance of RIC-LBP for the texture dataset may
be further improved by also considering rotation of the entire image by using a
method such as the discrete Fourier transform.
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bark1 floor1 nkit

wall water wood1

Fig. 10. Example images in UIUC texture database

Table 2. Performance results in texture recognition

Method Correct Rate(%)

LBP[3] 82.55
LBPri [4] 83.51
LBPriu2[4] 57.33
CoALBP [6] 81.49
LBP-HF [7] 93.60

RIC-LBP (Proposed) 88.27

5 Conclusion

In this paper, we proposed RIC-LBP, a new type of LBP-based feature that si-
multaneously has the characteristics of rotation invariance and high descriptive
ability. Conventional rotation invariant LBP-based features lack descriptive abil-
ity. To solve this problem, we focused on CoALBP, which is one effective exten-
sion of LBP. Compared with the original LBP, CoALBP has higher descriptive
ability since it considers the global relation among LBPs. The proposed RIC-
LBP obtained rotation invariance by introducing rotation equivalence class to
the CoALBP. The validity of RIC-LBP, in particular, its robustness against local
rotations due to transformations of target objects, was confirmed through classi-
fication experiments with cells and textures using public databases, specifically
the HEp-2 cell dataset and the UIUC texture database.
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Abstract. Local binary patterns [LBP] [1] are popular texture descrip-
tors in many image analysis tasks. One of the important aspects of this
texture descriptor is their rotational invariance. Most work in LBP has
focused on 2D images. Here, we present a three dimensional LBP with a
rotational invariant operator using spherical harmonics. Unlike Fehr and
Burkhardt [2], the invariance is constructed implicitly, without consid-
ering all possible combinations of the pattern. We demonstrate the 3D
LBP on phantom data and a clinical CTA dataset.

1 Introduction

Visual tasks such as detection, localization, categorization, and recognition are
important subjects of study in computer vision and image analysis. These tasks
are often difficult due to apparent within-class inhomogeneity or variability. Part
of this within-class variability may be due to the image formation process. In-
variant image descriptors extract information from images which is invariant
to the variability introduced due to the imaging process, such as noise, distor-
tions, illumination, scale changes, occlusion, etc. One class of such descriptors
is texture patterns. Texture have received considerable attention [3] [4] [5] with
application in areas of medical imaging [6] [7], image retrieval, remote sensing
and object recognition [8]. The local binary patterns [LBP], introduced by Ojala
et al. [9], is an efficient method for texture description in 2D. The aim of our
work is to extend the conventional LBP and its rotational invariant property
mentioned in [1], to a 3D paradigm.

LBP - LBP is a simple and computationally efficient way to describe local
image content, with impressive texture discriminative properties. Applications
of LBP descriptors are evident in texture classification and face analysis [10].
Though it encapsulates textural information, the conventional LBP operator
has a number of limitations which are discussed by Liu et al. [11]. The promi-
nent disadvantages are: weak spatial support and sensitivity to noise. Ojala et
al. [1] addressed the first issue by introducing a multi-resolution framework. The
sensitivity to noise was addressed by grouping the noisy patterns into one bin
and defining the remainder of the patterns as “uniform”, corresponding to bi-
nary label sequence that has no more than two transitions between “0” and “1”

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 26–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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among all pairs of the adjacent binary labels. However, in practice this is an
oversimplifying assumption. The uniform LBPs extracted from texture images
having more complicated shapes may not necessarily be the patterns dominat-
ing the texture. Liao et al. [12] proposed a method that makes use of the most
frequently occurring patterns to capture textural information. The frequently
occurring or dominant patterns are estimated from training examples. An adap-
tive framework was proposed by Guo et al. [13] to obtain most discriminative
patterns.

Complementary measures - To boost the descriptive power of LBP, several
complementary measures were proposed. Ojala et al. [1] included local contrast.
Guo et al. [14] and Liu et al. [11] incorporated intensity information, considering
the intensities of the center pixel and those of its neighbors. Orientation infor-
mation was incorporated by Chen et al. [15]. Nanni et al. [6] considered different
shapes for neighborhood calculations.

Rotational Invariance - Rotational invariance was originally described by
Ojala et al. [1], where the pixel pattern is circularly bit-wise right shifted and the
unique identifier is minimum of the generated patterns. Guo et al. [13] consider
a rotation-invariant strategy from nonrotation-invariant histograms of LBPs.
The method keeps the original rotation-variant features but finds a matching
strategy to deal with the rotation. Invariance is globally constructed in Zhao et
al. [16] for the whole region by histogramming noninvariant LBPs. Unlike Ojala
et al. [1], they achieve rotational invariance implicitly in the Fourier domain,
without considering all possible combinations of the patterns. Their frequency
domain representation of LBP histograms is a band-limited representation which
ignores higher frequencies. This is shown to be robust to other histogram-based
invariant texture descriptors, which normalize rotation locally. However, smaller
footprints or regions would lead to sparse histograms. Fourier representation of
sparse signals is not conducive to similarity measures.

3D LBP - Recently there has been interest in dynamic texture analysis. LBP
descriptors were proposed to deal with rotations and view variations in video.
They essentially analyze dynamic texture in 2D time series. Zhao et al. [16]
have designed invariance for 2D images and extended to 2D time series using
bi-planes. Extending LBP to full 3D volume presents few challenges. A circle in
2D would translate to a sphere in 3D. Equidistant sampling on a sphere is not as
trivial as on a circle. The notion of ordering is lost in 3D because of the dimen-
sionality, which was an essential step in calculating rotational invariance in 2D.
Fehr and Burkhardt [2] proposed a rotationally invariant LBP on volume data.
For each LBP computation, correlation between the gray values of all points on
the neighborhood sphere with radius R and the weight factor which is a volume
representation in an arbitrary but fixed order binomial factors {20, . . . , 2P−1},
is performed in the spherical harmonic domain. Similar to Ojala et al. [1], ro-
tational invariance is achieved from the computation of the minimum over all
angles.

Our method - In this work, we present a rotationally invariant 3D LBP,
where unlike Fehr and Burkhardt [2], the invariance is constructed implicitly,
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Fig. 1. Icosahedron Spherical Sampling. Left Fig.: 42 Sample points (P1), Right Fig.:
162 Sample points (P2).

without considering all possible combinations of the pattern. Spherical harmonics
is the mathematical foundation behind our computation [17]. The theory of
spherical harmonics states that any rotation of a spherical function does not
change its L2-norm [18]. These features capture invariance to rotation, however
with some ambiguity. There will be different signals having similar L2-norm [19].
The ambiguity is due to loss of phase information. Fehr [19] additionally used
bispectrum to address the issue. We choose a simple statistical measure, which
encodes the phase angle of a signal. Gluckman [20] has shown that the phase
information in an image has relationship with the non-Gaussian statistics, such
as kurtosis.

Similar to the Fourier representation of Zhao et al. [16], our harmonic rep-
resentation of LBP, increases spatial support. However, unlike Zhao et al. [16],
where invariance is calculated globally, our method estimates it locally. This is
useful in describing regions with small footprints. Our method is a complete
three dimensional rotationally invariant modeling of LBP.

2 Method

We present a method for rotationally invariant description of landmarks or re-
gions in 3D using LBP. The LBP in 3D requires a spherical sampling, which
is represented in a spherical harmonics framework [17]. The framework helps
in obtaining rotation invariant representation. Further, the region information
is collected to a set of histograms that are invariant to rotation. The similar-
ity between any two regions can be computed using the Chi-square distance
measure [21] between the corresponding set of histograms.

2.1 Spherical Harmonics

Spherical harmonics (SH) is a mathematical framework, generally used to de-
scribe a function on a sphere [17]. They are essentially a spherical analog to the
Fourier basis. Spherical harmonic functions are defined on imaginary numbers.
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We are interested in approximating real functions over the sphere, so we will
use the real basis of spherical harmonics. The real spherical harmonic function
Y m
� (θ, φ) of degree � and order m is given by

Y m
� (θ, φ) =

⎧⎨⎩
√
2Km

� cos(mφ)Pm
� (cos θ) m > 0√

2Km
� sin(−mφ)P−m

� (cos θ) m < 0
K0

�P
0
� (cos θ) m = 0

(1)

where θ, φ are polar, azimuthal angles respectively. P is the Associated Legendre

polynomials and Km
� =

√
(2�+1)

4π
(�−|m|)!
(�+|m|)! .

Projecting spherical harmonic functions into spherical harmonic coefficients
is straight forward. To calculate a coefficient cm� with degree � and order m, we
integrate the product of the function f and the spherical harmonic function Y m

� ,
in effect projecting how much the function is like the basis function:

cm� =

∮
f(θ, φ)Y m

� (θ, φ)dΩ

where Ω represents the sphere and (θ, φ) ∈ Ω.
The function can be reconstructed to a band-limited approximation (n bands),

by reversing the above step, i.e. f̃(θ, φ) =
∑n−1

�=0

∑m=�
m=−� c

m
� Y m

� (θ, φ).

2.2 Three Dimensional Rotational Invariant LBP

For convenience we use the similar notation as used by Ojala et al. [1]. Texture
representation fT in a local neighborhood of a monochrome volume is defined
as the joint distribution of the binary values of P voxels:

fT ≈ t(s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc))

where

s(x) =

{
1 if x � 0,
0 if x < 0.

and gray value gc corresponds to the gray value of the center voxel of the local
neighborhood and gp(p = 0, . . . , P−1) correspond to the gray values of P equally
spaced sample points on a sphere of radius R, around the center voxel.

Spherical harmonics can be used to obtain a rotation invariant representa-
tions [18] in 3D. As any rotation of a spherical function does not change the
L2-norm, a set of equally spaced pixels on a sphere of radius R can be repre-
sented using an index invariant to rotation.

We define the rotationally invariant local binary pattern per voxel as

LBP ri3D
P,R = {‖f0‖, ‖f1‖, . . . , ‖f(n−1)‖} (2)

where f� are the frequency components [18] of a function fT , given by f�(θ, φ) =∑m=�
m=−� c

m
� Y m

� (θ, φ) and ‖f�‖ =
(∑

θ

∑
φ |f�(θ, φ)|2

)1/2
, where (θ, φ) is an ele-

ment of the spherical sampling scheme ΩS .
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However, as mentioned by Fehr [19], the power spectrum features are ambigu-
ous, i.e. two different signals may have the same power spectrum. The ambiguity
is due to loss of phase information. Variance cannot be used for discrimination,
as same power spectrum shares the same variance. We propose the use of kurto-
sis to address the ambiguity. Gluckman [20] in his work has reported relationship
between the phase angle of a signal and the non-Gaussian statistics, kurtosis. It
is shown that both local and global correlations in the phase angle lead to many
of the statistical regularities, such as kurtosis.

Kurtosis measures how sharply peaked a distribution is, relative to its width,
and is defined as κ = ((μ4/μ2

2) − 3), where μi denotes the ith central moment
and in particular, μ2 is the variance. The kurtosis is normalized to zero for a
Gaussian distribution.

The 3D rotationally invariant texture feature per voxel is then described as

κLBP ri3D
P,R = {LBP ri3D

P,R , κ}. (3)

Note that the spherical harmonics are performed on the binary texture pattern
fT and kurtosis κ is estimated over the gray level intensity distribution obtained
from the spherical sampling.

2.3 Spherical Sampling in 3D

Three dimensional LBP construction requires sampling over a sphere of radius R.
It is non-trivial to have an equidistant sampling over a sphere. To approximate
this we use the icosahedron. Icosahedron structure is used to sample the surface
of the sphere. To make an icosahedron approximate a sphere more closely, the
triangles making up the icosahedron can intuitively be subdivided by splitting
the edges of the triangle and then making the new split edges into more trian-
gles [22]. The frequency component f represents how many times the struts of
the base icosahedron have been subdivided. Icosahedrons of frequency 2 and 4
as shown in Figure 1 have 10f2 + 2 number of vertices, i.e. 42 and 162 sample
points, respectively. In the voxel grid, trilinear interpolation is used to estimate
the gray value at the vertices of the icosahedron.

2.4 Histogram Matching

The 3D rotationally invariant texture feature is a set of variables (see Equation 3)
per voxel, where the number of variables is equivalent to the number of spher-
ical harmonic bands n plus one. The additional term is due to the inclusion of
kurtosis. One histogram from each of the variables can be built to represent the
texture region. Each histogram consisting of a set of bins measuring the count
of an event falling into a given range of a variable. The minimum and maxi-
mum values of a variable, required for histogram normalization is empirically
estimated. Similarity/dissimilarity between two regions can be estimated using
the distance measure between the histograms. The Bhattacharyya measure (or
coefficient) and Chi-square measure [21] are two popular measures of similarity
between two distributions. The final matching score is derived by adding scores
from all the histogram pairs.
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(a) (b) (c) (d) (e)

Fig. 2. Surface rendered images of 3D vessel-like structures - (a) All angles are 120◦, (b)
One of the angle is 60◦, other angles are 150◦ each, (c) All angles are 90◦, (d) Straight
and (e) Angle is 90◦. The volume has binary intensity values. The vessel shapes have
voxel intensity 1 and the rest of region in the volume have voxel intensity 0. The shapes
are constructed out of cylindrical branches with diameter D each. Shapes in (a), (b)
and (c) are made of three cylindrical arms, shape in (d) is made of one cylindrical arm
and shape in (e) is made of two cylindrical arms.

3 Experiments and Results

We investigated the properties of both the rotationally invariant features and
their application in histogram-based region descriptors, using phantom data.
Additionally, we demonstrate the application of our method to the localization
of landmarks in medical imaging data.

3.1 Evaluation of Rotational Invariant Features

Purpose of the first experiment is to investigate to what extent our proposed fea-
tures are indeed rotationally invariant, and can be used to discriminate between
various 3D patterns. To this end, we compute the correlation of the rotationally
invariant features (Equation 3) on several rotated versions of phantom volumes
with different embedded vessel-like structures (see Figure 2).

Phantom volumes with different embedded vessel-like structures - The images
shown in Figure 2 are the surface rendered images of five cubic digital phantoms
with different embedded vessel-like structures. Vessels shown in Figure 2 consti-
tute foreground while the rest is background. The volumes have binary intensity
levels, with foreground and background intensity levels as 1 and 0, respectively.
The centroids of the different shapes are located at (63, 63, 63), in their respec-
tive volumes of size [128× 128× 128]. The vessel-like structures are constructed
from cylindrical branches with diameter D each.

In Figure 2(a) all angles between the vessel branches are 120◦. In Figure 2(b)
one of the angle is 60◦, other angles are 150◦ each. In Figure 2(c) all angles
between the vessel branches are 90◦. Figure 2(d) vessel structure has no branches
and is linearly oriented. Figure 2(e) the vessel structure is bent at 90◦. Shapes
in Figures 2(a), 2(b) and 2(c) are made of three cylindrical arms, shape in
Figure 2(d) is made of one cylindrical arm and shape in Figure 2(e) is made
of two cylindrical arms.
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Table 1. Rotation Matrix

Rotation Matrix Center Axis (x, y, z) Angle (in radians)

MA (63.5, 63.5, 63.5) - -
MB (63.5, 63.5, 63.5) (0, 0, 1) π/2
MC (63.5, 63.5, 63.5) (1, 1, 1) π/3

(a) MA vs MB , R = 7 (b) MB vs MC , R = 7

(c) MA vs MB , R = 9 (d) MB vs MC , R = 9

Fig. 3. Voxel level texture feature correlation between different vessel-like structures in
Figure 2, and their rotated versions. In the X and Y axis we have the vessel-like struc-
tures and the correlation scores, respectively. Parameters - Diameter of the cylindrical
arms D = 11 (in Figure 2); P2 = 162 sample points; Sampling Radius R.

Rotation matrix - The rotation matrices used to rotate the phantoms shown
in Figure 2 are described in Table 1. The rotation center coincides with the
center of the vessel structure. Rotation matrix MA denotes no rotation. Matrix
MB represents rotation along z-axis by π/2 radian angles. Matrix MC represents
rotation along (1, 1, 1) axis by π/3 radian angles. The rotation matrices when
applied to the five volumes shown in Figure 2, rotate the shapes around the
center of the vessel structure. The voxel location and the rotation center in our
evaluation are (63, 63, 63) and (63.5, 63.5, 63.5), respectively.

We evaluate the rotational invariant property of the texture feature (see Equa-
tion 3), evaluating it per voxel location. Various intensity patterns can be ob-
tained by sampling around any given voxel from the different volumes in Figure 2.
For evaluation purpose we choose the centroids of the vessel structures appearing
in these volumes. The results are shown in Figure 3 and Figure 4. They show
the correlation between the κLBP index per voxel location obtained from the
five different volumes in Figure 2, and their rotated versions. Various intensity
patterns can be generated from Figure 2 by varying the sampling radius R or the
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(a) MA vs MB , R = 9 (b) MB vs MC , R = 9

(c) MA vs MB , R = 13 (d) MB vs MC , R = 13

Fig. 4. Voxel level texture feature correlation between different vessel-like structures in
Figure 2, and their rotated versions. In the X and Y axis we have the vessel-like struc-
tures and the correlation scores, respectively. Parameters - Diameter of the cylindrical
arms D = 15 (in Figure 2); P2 = 162 sample points; Sampling Radius R.

diameter D of the cylindrical arms of the vessel-like structures. In Figure 3 we
use a sampling radius R of 7 and 9, keeping the diameter D at 11. In Figure 4 we
use a sampling radius R of 9 and 13, changing the diameter D to 15. To ensure
different intensity patterns with each sampling, the sampling radius is chosen
greater than the radius of the cylindrical arms in Figure 2. In Figure 3 and
Figure 4 the κLPB feature of a voxel from the volumes in Figure 2, correlates
very well with its rotated version. Correlation ranges from −1.00 to +1.00. A
correlation of 1.00, is a perfect correlation, while a correlation of 0 means there’s
no relationship between the two variables.

3.2 Evaluation of Region Descriptors

In the next experiment, we investigate the rotationally invariant property of the
histogram-based region descriptors. To evaluate the rotational invariance prop-
erty of the histogram-based region descriptors, the region ought to be spherical.
The radius of spherical region is the descriptor radius K. We select one spheri-
cal region from each of the five volumes in Figure 2. The center of the regions
coincides with the centroid of the vessel-like structures. Since the rotationally
invariant texture feature (see Equation 3) is a set of variables, the region de-
scription is accumulated to multiple histograms, each histogram corresponding
to one of the texture variables. In Figure 5(a) and Figure 5(b) the number of
sample points P are 42 and 162, respectively. The descriptor radius K is set to 5.
Increase in sampling rate, improves the spherical function approximation, which
translates to improved discriminative ability of the descriptor (see Figure 5). We
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(a) P1 = 42 sample points. (b) P2 = 162 sample points.

Fig. 5. Chi-square distance measure between five regions from Figure 2, and their
rotated versions (Rotation Matrix MC). In the X and Y axis we have the vessel-like
structures and the Chi-square distances, respectively. Parameters - Diameter of the
cylindrical arms D (in Figure 2) = 11; Sampling Radius R = 9; Descriptor Radius
K = 5; 20 Bins per histogram.

use the Chi-square distance [21] to measure the difference between regions from
all the volumes and their rotated version, as shown in Figure 5. The lower the
Chi-square score, the more similar are the histograms. Figure 5 shows that the
regions correlate very well with its rotated version, and weekly correlates with
other regions.

3.3 Clinical Examples / Evaluation

To investigate the use of LBP as a 3D texture descriptor in medical image anal-
ysis (e.g. [6], [7]), we test our approach to describe a region or landmark in liver
CTA volume. The liver CTA volume shown in Figure 6(a), is rotated on axis
(0, 0, 1) by π/3 angle to obtain the new volume, shown in Figure 6(b). The pa-
rameters, sampling radius is set to R = 5; descriptor radius is set to K = 5; and
sample points is set to P1 = 42. A landmark location is selected in the left-hand
side volume in Figure 6(a). The same landmark is then searched in the rotated
volume, and as shows in the Figure 6(b) we are able to retrieve back the land-
mark location. The Chi-square distance map for the axial, sagittal and coronal
planes are shown in Figure 6(c), Figure 6(d) and Figure 6(e), respectively. The
distance maps have a peak at the selected landmark location. Figure 7 show
the histograms of the descriptor at various locations in the liver CTA volume
like thin vessel structure, large vessel structure, liver tissue and liver boundary.
The histograms show the first three elements of the rotationally invariant fea-
ture from the Equation 2. The histogram-based region descriptor has different
signature for different structural location in the liver CTA volumes, which show
its discriminative ability in visual classification tasks.

4 Discussion and Conclusion

Volumetric data, like their 2D counterpart have an inherent textural property.
The textural property of a 3D region can aid in its region description. LBP
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(a) Volume A. (b) Volume B. (c) Axial Dist Map.

(d) Sagittal Dist Map. (e) Coronal Dist Map.

Fig. 6. Liver CTA volume: A landmark location is selected in Volume A. The same
landmark location is then searched in the Volume B; a) Volume A, b) Volume B:
Obtained by rotating Volume A on axis (0, 0, 1) by π

3
radians, c) The axial Chi-square

distance map, d) The sagittal Chi-square distance map and e) The coronal Chi-square
distance map. Parameters - Sampling Radius R = 5; Descriptor Radius K = 5; Sample
points P1 = 42; 10 Bins per histogram.

which was conventionally designed for image texture description is extended in
this work to region description of volumetric data. The rotational invariance
property helps in view invariant region detection. We show the application of
our histogram-based region descriptors in distinguishing various vessel-like struc-
tures in phantom data and landmark detection in medical imaging data.

The method presented has several parameters that need to be determined
appropriately. The LBP parameters, spherical sample points P and sampling
radius R are related as the spherical neighborhood corresponding to a given
R contains a limited number of non-redundant sample points. To capture the
vessel-like structures well (Figure 2) in the phantom experiments, the sampling
radius R is chosen greater than the radius of the cylindrical arms. The 3D
region descriptor covers a spherical region of radius K and is described in terms
of multiple histograms. Histogram bins provide an estimate of the number of
corresponding texture patterns. It is relevant to choose the appropriate number
of bins and their range that appear in the histogram carefully, as they directly
affect the distance measure. If we use too few bins, the histogram doesn’t really
portray the data very well. If we have too many bins, we get a broken comb
look, which also doesn’t give a sense of the distribution. Care should be taken
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1)Thin liver vessel 2)Large liver vessel

3)Liver tissue 4)Liver boundary

Fig. 7. Histogram descriptors of various locations in liver CTA volume. Histograms
show the first three features from the Equation 2. Parameters - Sampling Radius R = 5;
Descriptor Radius K = 5; Sample points P1 = 42; 10 Bins per histogram.

so that there are enough bins and are utilized well. In our phantom experiments
histograms with 20 bins were used. The number of bins is directly related to
the size of the spherical descriptor region. A descriptor radius K of 5 is used in
most of our experiments, which corresponds to 515 entries in the histogram, i.e.
approximately 27 entries per bin. The number of histograms is determined by
the number of feature variables in Equation 3. As we work with a band limited
approximation of a spherical function, the spherical harmonics of bands n equal
to 6 in Equation 2 was empirically decided. Hence, the number of histograms
per descriptor is (n + 1) equal to 7. The additional histogram is representative
of the kurtosis term in the formulation.

To measure the similarity between two regions we use the Chi-square his-
togram distance metric, since it is popular in previous works [16] [13]. During
experimentations we considered the Bhattacharya distance; however from our
pilot experiments we found Chi-square metric to be more discriminative.

In our work we focus on a rotationally invariant representation of the 3D LBP.
Many of the proposed complementary measures [14] [11] [15] are independent of
the LBP representation, and thus could easily be integrated in our 3D approach.

Concluding, we presented a method for rotationally invariant 3D LBP, using
spherical harmonic decomposition. We applied the method on vessel-like phan-
tom data and a clinical dataset, with encouraging results. More in-depth analysis
and integration of complementary measures is part of future work.
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Abstract. Dynamic textures are image sequences recording texture in
motion. Given a sample video, the goal of synthesis is to create a new se-
quence enlarged in spatial and/or temporal domain, which looks percep-
tually similar to the input. Most synthesis methods are mainly focused
on extending sequences only in the temporal domain. In this paper, we
propose a dynamic texture synthesis approach for spatial domain, where
we aim to enlarge the frame size while preserving the aspect and motion
of the original video. For this purpose, we use a patch-based synthesis
method based on LBP-TOP features. In our approach, 3D patch regions
from the input are selected and copied to an output sequence. Usually,
in other patch-based approaches, the selection of the patches is based
only in the color, which cannot capture the spatial and temporal infor-
mation, causing an unnatural look in the output. In contrast, we propose
to use the LBP-TOP operator, which implicitly represents information
about appearance, dynamics and correlation between frames. The exper-
iments show that the use of the LBP-TOP improves the performance of
other methods giving a good description of the structure and motion of
dynamic textures without generating visible discontinuities or artifacts.

1 Introduction

Texture synthesis (TSyn) has generated considerable research interest in recent
years, since it is an essential element in many computer graphics applications.
Given a sample texture, the goal is to synthesize a new texture that looks per-
ceptually similar to the input, with an arbitrary size specified by the user. TSyn
is a practical alternative way to create textures for a given surface, instead of the
more traditional ways like hand drawing or scanning pictures [13]. One primary
advantage of TSyn lies on the storage requirements, because it only needs to
store a small sample of the texture, regardless of the size of the surface to cover.

Dynamic textures (DTs) are video sequences that are spatially repetitive and
temporally stationary [5]. Basically, DTs are textures in motion. Analogously to
the definition of TSyn, dynamic texture synthesis (DTSyn) consists in creating
an infinite sequence, either in space or time domains, using a video exemplar
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as input. The time domain comprises the duration of the video, while the spa-
tial domain consists of enlarging the image size. Both domains must preserve a
natural appearance and motion in the outputs.

Different methods for DT synthesis have been proposed. These approaches can
be separated into two categories: parametric and non-parametric. Parametric
methods are applied to model the behavior of a given phenomenon as a linear
dynamic system [3,4,8,15], and typically, they are focused on the two domains at
the same time. Even though these methods are able to obtain an output similar
to the input, the visual quality is not realistic enough. On the other hand, non-
parametric, or exemplar-based, methods are based on taking small parts from
an input sample as elements to build the output. Results of non-parametric
methods look more natural and realistic than the parametric methods, in view
of that these approaches reuse the information of the input.

Non-parametric approaches have been used to synthesize dynamic textures in
both time and space domains. Considerable work has been developed for DTSyn
along the time domain, for example, in [6,11,7]. The idea behind these tech-
niques for extending the duration of the video, is to find sets of matching frames
in the input video and then, jump between these frames during playback. On
the other hand, in order to enlarge the frame size, but keeping the duration of
the video with non-parametric methods, two main approaches have been fol-
lowed: pixel-based and patch-based methods. The essential difference between
these two methods is in how the information is transferred to the output. As
their name says, the pixel-based methods transfer one pixel at a time. The value
of each pixel in the output is determined by comparing its spatial neighbor-
hood with all neighborhoods in the input texture. Some pixel based techniques
that have been applied for DTSyn are those introduced by Bar-Joseph et al. [1]
and Wei and Levoy [14]. By contrast, patch-based techniques select and copy
whole neighborhoods each time to the output. With these methods, the speed
and quality of synthesis can be improved. However, the problem of how to avoid
mismatches between adjacent patches arises. The patch is pasted on the output
with a portion of overlapped volume with the already synthesized portion. The
patch can be just blended, or an optimal cut can be found for seaming the two
patches. In these methods, each patch must be carefully selected depending on
a given visual feature. Typically, only the color of the pixels is considered. A sig-
nificant number of patch-based approaches for static texture synthesis has been
proposed, while dynamic textures synthesis has not received the same attention.
One representative method for DTSyn in space is the proposed by Kwatra et
al. [7], using dynamic programming to find an optimal path to cut through the
overlapped regions considering only the color of pixels. Even though pixel-based
and patch-based approaches have obtained good results, the influence of the vi-
sual features used for DT description for DTSyn remains unexplored. According
to Chetverikov and Péteri [2], fundamental issues regarding the DT description
include the combination of appearance with motion features. This issue cannot
be achieved by only using the intensity of pixels and must be considered for
DTSyn implementations.
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In this paper, we propose the use of local binary patterns from three orthog-
onal planes [16] as a reference feature in a non-parametric patch-based method
for DTSyn in space. This operator can capture the structure of local brightness
variations in three orthogonal planes, and therefore, describe appearance and
motion based on the local spatial and temporal patterns. The use of this op-
erator gives to our approach an advantage in comparison to those based only
on the color. In addition, it is not intricate since we do not need an optimiza-
tion of the boundary zone between adjacent patches. Experiments carried out
on different dynamic textures show that the use of LBP-TOP features allows
a better description of DT patches and preserves the structure and dynamics
without generating visible discontinuities between regions. It is also shown that
our method can achieve better or at least similar performance to previously
proposed methods.

This paper is organized as follows: in Section 2, the LBP-TOP operator and
the synthesis algorithm are presented. Experiments and results are presented in
Section 3, and concluding remarks are given in Section 4.

2 Dynamic Texture Synthesis in Space Using LBP-TOP
Features

The proposed method for DTSyn in spatial domain is carried out by using a
spatio-temporal descriptor as visual feature, which allows a better perceptual
representation of DT. Details of the implementation are given below.

2.1 Spatio-Temporal Descriptor

The local binary pattern from three orthogonal planes (LBP-TOP) [16], is a
spatio-temporal descriptor for dynamic textures. The LBP-TOP considers the
co-occurrences in three planes XY, XT and YT, capturing information about
the space-time transitions, as shown in Fig. 1.

Fig. 1. The LBP-TOP feature is obtained by extracting the LBPs from three orthog-
onal planes
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The LBP-TOP is an extension of the Local Binary Patterns (LBP) presented
by Ojala et al. [9]. As it is known, the LBP is a theoretically simple, yet efficient
approach, to characterize the spatial structure of local texture. Basically, the
operator labels a given pixel of an image by thresholding its neighbors in function
of the pixel intensity and summing the thresholded values weighted by powers
of two. According to Ojala, a static texture T in a local neighborhood of a
monochrome texture image is defined as the joint distribution of the gray levels
of P (P > 1) image pixels T = t(gc, g0, . . . , gP−1), where gc is the gray value
of the center pixel and gp(p = 0, 1, . . . , P − 1) are the gray values of P equally
spaced pixels on a circle radius R(R > 0), that form a circularly symmetric
neighbor set. If the coordinates of gc are (xc, yc), then the coordinates of gp are
(xc−R sin(2πp/P ), yc+R cos(2πp/P )). The LBP code for the pixel gc is defined
as

LBPP,R(gc) =

P−1∑
p=0

s(gp − gc)2
p (1)

where the thresholding function s(·) is defined in equation 2. More details can
be further consulted in [9].

s(t) =

{
1, t ≥ 0
0, otherwise

(2)

For the spatio-temporal extension of the LBP, named as LBP-TOP, the local
patterns are extracted from the XY, XT and YT planes. Each code is denoted
as XY-LBP for the space domain, and XT-LBP and YT-LBP for space-time
transitions [16]. In the LBP-TOP approach, the three planes intersect in the
center pixel and three different patterns are extracted in function of that central
pixel. The local pattern of a pixel from XY plane, contains information about
the appearance and, in the local patterns from XT and YT planes, statistics
of motion in horizontal and vertical directions are included. In this case, the
radii in axes X,Y and T are RX , RY and RT respectively and the number of
neighboring points in each plane are defined as PXY , PXT , PY T . Supposing
that the coordinates of the center pixel gtc,c are (xc, yc, tc), the coordinates of
the neighbors gXY,p in the plane XY are given by (xc −RX sin(2πp/PXY ), yc +
RY cos(2πp/PXY , tc). Analogously, the coordinates of gXT,p in the plane XT
are (xc − RX sin(2πp/PXT ), yc, tc − RT cos(2πp/PXT ), and the coordinates of
gY T,p on the plane YT are (xc, yc − RY cos(2πp/PY T ), tc − RT sin(2πp/PY T ).
Consequently, every pixel in the input video is represented by 3 codes, one for
each orthogonal plane.

For the implementation proposed in this paper, each pixel of the input se-
quence Vin is analyzed with the LBP-TOP operator, in such a way that we
obtain an LBP-TOP-coded sequence VLBP−TOP . Each pixel in the VLBP−TOP

sequence is coded by three values, comprising each of the space-time patterns of
the local neighborhood, as can be seen in Fig. 2. As we said before, in patch-
based methods each patch must be carefully selected depending on a given visual
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feature, then, the patch is positioned with some overlapped area with the already
synthesized portion. To accomplish this task, we use VLBP−TOP as a temporary
sequence for the patch description in the selection process.

Fig. 2. Each pixel in the corresponding LBP-TOP sequence is obtained by extracting
the LBPs from the three orthogonal planes in the input sequence

2.2 Dynamic Texture Synthesis in Space Domain

In this paper, we propose the use of LBP-TOP features [16] in a non-parametric
patch-based method for DTSyn in space. As mentioned, non-parametric algo-
rithms basically select patches, or blocks from the input as elements to build
an output. The use of LBP-TOP features, allows us to consider the spatial and
temporal relations among pixels and, therefore, obtain more information about
a given block and its possible neighbor blocks.

Our method is cyclical, in each step we select a block Bk from the input
sample video Vin and copy it to the output video Vout. To avoid discontinuities or
artifacts between blocks, we must carefully select Bk based on the blocks already
pasted {B0, . . . , Bk−1} in Vout. At the beginning, a block B0, of Wx ×Wy ×Wt

pixels size, is randomly selected from the input Vin, and copied to the upper left
corner of the output Vout. The following blocks needed to fulfill the output, are
positioned in raster scan order in such a way that they are partially overlapped
with previously pasted blocks. The overlapped volume between two blocks is of
size Ox × Oy × Ot pixels. In Fig. 3 an example of a video block, the boundary
zone where two blocks should match and an example of the overlapped volume
between two blocks are illustrated. In Figure 3(b), the selected block Bk has a
boundary zone EBk

and the previously pasted volume in Vout has a boundary
zone Eout. According to our method and in order to avoid discontinuities, EBk

and Eout should match.
The appropriate description and selection of each block becomes a key issue

in our method. In the block selection step, we consider the similarity of the
spatio-temporal features on the boundary zones. For this, we first build a set of
candidate blocks AB of Vin, which are considered to match with the previously
pasted volumes in Vout. Then we select one block randomly from the set. The
random selection is performed to keep a good diversity on the blocks selected.
Two blocks are considered to match if the distance in the corresponding over-
lapping volume is lower than a distance tolerance, specified by the user. We
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(a) (b) (c)

Fig. 3. Examples of (a) a video block, (b) the boundary zone of two different blocks
and (c) the overlapped volume between two video blocks. The boundary zones should
match.

construct a set of all the potential blocks B(x,y,t) to be considered to match with
Eout. Let B(x,y,t) be the block whose upper left corner is at (x, y, t) in Vin. We
construct

AB = {B(x,y,t)|d(EB(x,y,t), Eout) < dmax, B(x,y,t)∈Vin
} (3)

where EB(x,y,t)
is the boundary zone of B(x,y,t) and dmax is the distance tolerance

between two boundary zones. Details on how to compute d(·) are given later.
When we have determined all the potential blocks, we pick one randomly from
AB to be the kth block Bk to be pasted on Vout. The size of AB depends on how
many blocks satisfy the similarity constraints. With a high value of dmax the
output will have a better quality but, few blocks would be considered to be part
of AB. By contrast, with a low tolerance a big number of blocks will be part of
the set and there will be more options to select, but the quality of the output
will be compromised. For a given dmax, the set AB could be empty. In such case,
we choose Bk to be the block B(x,y,t) in Vin with the smallest distance to the
boundary zone of the output Eout. In Fig. 4 the three possible configurations of
the overlapping zones between the already pasted zones Eout and the new patch
Bk are shown. The first possibility, shown in Fig. 4(a), is when Bk is on the first
row and goes after B0. The second is when Bk is the first block in the second or
subsequent rows (Fig. 4(b)). The third is when Bk is not the first on the second
or subsequent rows as shown in Fig. 4(c), here the total distance is the addition
of the above and left boundaries distances.

The algorithm to pursue for synthesizing dynamic texture in space can be
described as follows:

1. Let Vin be an input DT sample of Vx × Vy × Vt pixels size. Set the synthesis block
size as Wx×Wy×Wt, and the size of the overlapped volume of two adjacent blocks
as Ox ×Oy ×Ot. Consider Vt = Wt = Ot.

2. Obtain the VLBP−TOP sequence of Vin.

3. Transfer the first block B0 from Vin to the upper left corner of the output Vout by
random selection. Set k = 1.

4. Synthesize next block in raster scan order:
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(a) (b) (c)

Fig. 4. Three possible overlapping zones between the output Eout and the new block
Ek. (a) Bk is in the first row, but after B0. (b) Bk is the first block in the second or
subsequent rows and (c) Bk is not the first on the second or subsequent rows.

a) Select a set of candidate blocks AB from Vin, such that for each block in AB,
the boundary zone satisfies the overlap constraints (above and left) with the
previously pasted blocks, with certain tolerance distance between the blocks,
computed using the LBP-TOP features.

b) Pick one block randomly from AB to be Bk and paste it from Vin to Vout. Set
k = k + 1. Perform blending in the boundary zones.

c) Repeat until Vout is completely synthesized.

On the overlapped volume, in order to obtain smooth transitions and minimize
artifacts between two adjacent blocks, we blend the volumes using a feathering
algorithm [12]. This algorithm set weights to the pixels for attenuating the in-
tensity around the blocks’ boundaries using a ramp style transition. As a result,
the possible discontinuities are avoided, and uniform transitions are achieved.

The sizes of a given block and the overlapped volume are dependent on the
properties of a particular DT, hence, in our algorithm they can be adjusted by
the user. This characteristic makes our algorithm flexible and controllable. The
boundary zone should be large enough to avoid mismatching features across the
borders but at the same time, it should be small to be tolerant to the border
constraints. Usually, the overlap volume is a small fraction of the block size, 1/6
of the total volume in our experiments.

In this approach, the overlap distance between the boundary zones of a given
block EB(x,y,t)

and the output Eout is estimated by using the L2 norm among
the LBP values of each orthogonal plane. This error is defined as:

d(EB(x,y,t)
, Eout) =

1

V

V∑
i=1

3∑
j=1

[
pjB(x,y,t)

(i)− pjout(i)
]2

(4)

where V is the number of pixels in the overlapped volume. pjBk
(i) and pjout(i)

represent the LBP values of the ith pixel in the overlapping zones on the jth

orthogonal plane, respectively. For color DTs, we compute the LBP-TOP code
for each color channel. In this paper, we use the RGB color space, the final
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overlapping distance is the sum of the errors in each color component. The
matching estimation between two blocks is computed based on their LBP values
from the VLBP−TOP sequence. As a result, spatial and temporal features are
considered simultaneously for the block description.

3 Experiments and Results

In this section, we present two series of tests that have been accomplished in
order to evaluate the performance of our method. At first, a visual evaluation of
performance is made on a variety of dynamic textures. Afterwards, comparisons
between the proposed approach with other state-of-the-art methods are made
to validate the application of it. All the resulting videos are available on the
website: dl.dropbox.com/u/13100121/LBP2012Results.zip

3.1 Performance on a Variety of DTs

In the first experiment, a set of videos was selected for evaluating our approach
performance on different types of dynamic textures. The videos were selected
from the DynTex database [10], which provides a comprehensive range of high-
quality DTs and can be used for various research purposes. In Figs. 5(a)-(f), a
frame (176×120 pixels size) taken from the original videos is shown. The selected
sequences correspond to videos that show: spatio-temporal stationarity (a-c), a
scene with a variety of textures and colors with different kind of dynamics (d)
and a scene composed by structured objects (e-f).

In Figs. 5(g)-(l), the results of the synthesized outputs enlarged to 200× 200
pixels size are presented. Spatial dimensions of the block Wx × Wy used for
synthesis are shown below each image. As we said before, the size of the block is
a user-specifiable parameter and should be proportional to the size of the spatial
or temporal texture patterns. Here, the size of the overlapped volume Ox × Oy

is 1/6 of Wx × Wy. As we can observe in Figs. 5(g)-(i), our method preserves
the spatio-temporal stationarity of the input and the borders between blocks are
almost invisible. It is worth mentioning that in our method, we do not need to do
an additional optimal seam on the borders to achieve smooth transitions, such as
the graph cut used in [7]. This soft transition is achieved because of the selection
of the blocks, based on the LBP-TOP features. The corresponding output for
the video shown in Fig. 5(d) is presented in Fig. 5(j), where the same variety of
colors and the diversity of surfaces is maintained. In this video, the transitions
between blocks are also invisible. Sequences shown in Figs. 5(e)-(f) are different
in the sense that they are composed of structured objects. Therefore, it is crucial
that the structure of these objects can be maintained in the output, where we
aim to generate an array of these objects. The synthesized results, seen in Figs.
5 (k)-(l), exhibit such arrangement showing that our method can keep the shape
and structure of the given object without adding any discontinuity.
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(a) (b) (c) (d) (e) (f)

(g) 20× 20 (h) 30× 30 (i) 55× 55 (j) 20× 20 (k) 60× 60 (l) 90× 90

Fig. 5. Results of spatial synthesis. (a-f) A frame taken from the original sequence.
(g-l) the corresponding synthesis result with the video block size used. The block size
is proportional to the size of the spatial or temporal patterns.

3.2 Performance Comparison

The second experiment consist of a comparison with other state-of-the-art meth-
ods. We have compared our approach with the methods proposed by Wei and
Levoy [14], Bar-Joseph et al. [1] and Kwatra et al. [7]. The firsts two are pixel-
based approaches, while the third is a patch-based method.

We have borrowed the sequences named OCEAN and SMOKE (frame of
150 × 112 pixels size) used by Wei and Levoy in their experiments and made
a comparison of the quality of the results. In Fig. 6 a frame extracted from the
original sample, from the result of Wei and Levoy and from our result are pre-
sented. Here, it is observed that the videos obtained by Wei and Levoy (frame
of 150× 112 pixels size) are blurred, while the videos generated by our method
(frame of 170 × 170 pixels size) keeps a natural appearance and motion of the
two phenomena.

A second comparison is made with the results obtained by Bar-Joseph et al.
[1]. We have used the sequences named as CROWD and JELLY FISH (frame
of 256 × 256 pixels size). In Fig. 7, a frame from each resulting sequence is
presented. Here, it is observed that the videos obtained by Bar-Joseph (frame
of 256 × 256 pixels size) have some artifacts, blurred spots and discontinuities,
while the videos generated by our method (frame of 280× 280 pixels size) keep
a natural look.

In a third comparison, we synthesized the sequence named RIVER (frame of
176 × 112 pixels size), provided by Kwatra et al. [7] for spatial extension. As
it can be seen from both results (frame of 200 × 150 pixels size) shown in Fig.
8, Kwatra has generated good results of DT synthesis, which can be taken as
the baseline to compare with. From the experimental results, we found that our
method also achieves a good performance. It is observed that the appearance
and dynamics of the water are preserved.

We have found that our method obtains very good results with sequences that
present some spatial homogeneity, however we have detected limitations of our
method on a very specific type of dynamic textures. Our approach does not work
very well when a moving object occupies a big portion of the scene and thus,
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Ocean
Wei and Levoy

Our Result

Smoke
Wei and Levoy

Our Result

Fig. 6. Comparisons between the proposed approach and the method proposed by Wei
and Levoy [14]

Crowd Bar-Joseph
Our Result

Jelly Fish Bar-Joseph
Our Result

Fig. 7. Comparison between the proposed approach and the method proposed by Bar-
Joseph et al. [1]
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River Kwatra Our Result

Fig. 8. Comparison between the proposed approach and the method proposed by Kwa-
tra et al. [7]

there is not enough diversity to choose the blocks to be pasted on the output.
Examples of this, using sequences form the DynTex database are shown in Fig.
9 where there is certain repeatability between the selected blocks, leading to
discontinuities on the resulting videos.

Original

Synthesized

Original

Synthesized

Fig. 9. Two examples where our method did not achieve good results as in the general
case

4 Conclusions

In this paper, the use of spatio-temporal features for dynamic textures synthesis
in space has been considered. The proposed approach is centered on synthesis
in the spatial domain, unlike previous work that is mostly focused on temporal
domain. This method explores a 3D patch-based synthesis, where the patch
selection is accomplished by taking LBP-TOP features, instead of just making
use of the intensity of pixels. LBP-TOP features can enhance the capability of
describing the appearance and dynamics of DTs due to the local spatio-temporal
patterns extracted. The main advantage of the presented approach is that it
preserves on the output the visual similarity, dynamics and continuity of the
input. Furthermore, no additional seam optimization is needed to achieve smooth
transitions between blocks. From experimental results, the proposed method
produces very good results on a variety of DTs. The performance of the proposed
method has shown to be better than, or at least equal to other methods. In future
work, the inclusion of a temporal domain synthesis approach will be considered.

Acknowledgement. The authors would like to thank the Academy of Finland,
the Finnish CIMO and the Universidad de Guanajuato for the financial support.
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Adaptive Kernel Size Selection for Correntropy

Based Metric

Ying Tan, Yuchun Fang, Yang Li, and Wang Dai

School of Computer Engineering and Science, Shanghai University, Shanghai, China

Abstract. The correntropy is originally proposed to measure the sim-
ilarity between two random variables and developed as a novel metrics
for feature matching. As a kernel method, the parameter of kernel func-
tion is very important for correntropy metrics. In this paper, we propose
an adaptive parameter selection strategy for correntropy metrics and de-
duce a close-form solution based on the Maximum Correntropy Criterion
(MCC). Moreover, considering the correlation of localized features, we
modify the classic correntropy into a block-wise metrics. We verify the
proposed metrics in face recognition applications taking Local Binary
Pattern (LBP) features. Combined with the proposed adaptive parame-
ter selection strategy, the modified block-wise correntropy metrics could
result in much better performance in the experiments.

1 Introduction

Inmany researchfields such as pattern recognition, datamining andmachine learn-
ing, metrics plays an essentials role in applications such as image retrieval, object
recognition and clustering. Metrics has significant influence to the performance of
many classic algorithms such as K-means and nearest-neighbor classifier.

Previous research on metrics cares about the performance of metrics for spe-
cific applications. Rubner et al. [1] made a comparison of nine general image
measurements based on many computational experiments and classified them
into four categories: heuristic histogram distances, non-parametric test statistics,
information-theoretic divergences and ground distance measures. Others learned
metrics based on models such as hidden markov models [2] or information bot-
tleneck theory [3]. Normally, the selection of metrics is decided by the specific
problems. According to the image representation with two dimensional princi-
pal component analysis (2D-PCA), Zuo et al. [4] proposed assembled matrix
distance metric. Under specific assumptions, Liu [5] proposed two new metrics
- Probability Reasoning Model Whitened Cosine (PWC) metric and Within-
Class Whitened Cosine (WWC) metric according to combining Bayes decision
rule with whitened cosine similarity. Zhu et al. [6] proposed the Rank-Order Dis-
tance to deal with the situation of incomplete distribution of samples in feature
space for face tagging.

Among the research topics on metrics, metric learning has become a hot topic
recently. Xing et al. [7] used a Mahalanobis learning distance with side informa-
tion in clustering. Jain et al. [8] learned the parameterization of Mahalanobis
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metric and encoded the learned information into randomized hash functions for
image retrieval. The motivation of metric learning is to achieve an appropriate
distance from training examples to accurately reflect the underlying relationships
among components of features.

Stimulated by the idea of metric learning, we propose a learning method to
adaptively select parameters for correntropy metrics. The concept of corren-
tropy was introduced firstly for blind deconvolution [9] and later on developed
into a kernel metrics [10]. Similar to other kernel methods, the kernel parame-
ter is crucial for correntropy metrics. However, there is no available solution for
this problem. In this paper, we propose a learning method and deduce a close-
form solution to obtain kernel parameters for correntropy metrics based on the
Maximum Correntropy Criterion (MCC). Moreover, considering the correlation
among features, we propose a modified correntropy metrics. We verify the pro-
posed metrics in face recognition applications taking use of Local Binary Pattern
(LBP) features. Combined with the adaptive parameter selection method, the
proposed modified block-wise correntropy results in prominently improved per-
formance compared with other popular block-wise metrics for LBP features in
face recognition.

The paper is structured as follows. Section 2 presents a review about cor-
rentropy. In Section 3, we show the basic theory about MCC and describe the
close-form solution to calculate the kernel size. A modified correntropy is pro-
posed as a block-wise metrics in Section 4. Section 5 shows comparison of our
method with the general metrics in face recognition experiment. Section 6 draws
the conclusions.

2 Correntropy

As a novel metrics, correntropy originates from the framework of Information
Theoretic Learning (ITL). Combining the Renýıs quadratic entropy with the
Parzen estimation[10], the correntropy metrics is defined in Eqn.(1).

Vσ = E(κσ(X − Y )) (1)

where X and Y are two random variables, κσ(·) is a kernel function, and E(·)
denotes the expectation operator. The basic idea of correntropy is to measure
the similarity of two random variables with the expectation of the diversity from
couples of samples.

In practice, it is hard to learn the joint PDF between X and Y . Liu et al.[10]
estimate the correntropy with a finite number of samples according to Eqn.(2).

∼
V σ (X,Y ) =

1

N

N∑
i=1

κσ(Xi − Yi) (2)

where Xi and Yi are the i-th sample of X and Y respectively. The Gaussian
kernel is usually adopted in calculation of correntropy as shown in Eqn.(3).
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κσ(x) =
1√
2πσ

exp(− x2

2σ2
) (3)

where σ is the size of kernel.
Further, Liu et al. [11] advance it to measure the distance of two discrete

vectors on the dimension level. Namely it is correntropy induced metric (CIM).
And we can learn it following the Eqn.(4):

CIM(A,B) =

√√√√κσ(0)− 1

N

N∑
i=1

κσ(ai − bi) (4)

where A and B are discrete vectorsA = (a1, a2, . . . , aN ) and B = (b1, b2, . . . , bN),
κσ(x) is the Gaussian kernel with kernel size σ.

For a given kernel size σ, κσ(0) is constant. So we use an equivalent form for
Eqn.(4) in this paper and name it as correntropy for dimension (CD):

Ddim(A,B) =
1

N

N∑
i=1

κσ(ai − bi) (5)

Apparently, the kernel size is a variable and important parameter for correntropy
based metrics. However, there is no general solution to the selection of σ, which
is the first problem we concentrate on in this paper.

3 Adaptive Kernel Size Seletion with MCC

3.1 The Contribution of Kernel Size to CD

Let Xf = (x1, x2, . . . , xn) and Yf = (y1, y2, . . . , yn) be the feature vectors of two
samples. For each dimension of the feature vector, we define:

Di = |xi − yi| i = 1, 2, . . . , n (6)

Taking face recognition as example, we adopt the classic Uniform Local Binary
Pattern (ULBP) feature [12] and build histogram of Di, i = 1, 2, . . . , n to esti-
mate the distribution of genuine and imposter as shown in Fig.1 (a).

From Fig.1 (a), we can learn that the proportion of genuine is higher than
imposter in the interval [0,3]. Based on such observation, we increase the weight
of the dimensions with smaller distance to enhance the separability between
genuine and imposter. Such idea can be realized to use the CD metrics with a
appropriate parameter σ as shown in Eqn.(7).

Ddim(Xf , Yf ) =
1

n

n∑
i=1

κσ(xi − yi) (7)
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Fig. 1. (a) The distribution of Di from genuine and imposter. (b) The distribution
of DBj from genuine and imposter. The horizontal axis of two sub-figure denote the
variation of Di, DBj respectively. The vertical axis denotes the percentage of genuine
and imposter.

In the ideal case, it only has one point of intersection between histograms. Actually,
it will appear multi-points in the practical application. More detailed discussion in
Section 3.3.

3.2 Maximum Correntropy Criterion

To solve the problem of kernel size selection especially, we employ MMC to deal
with it. In this section, we will have a review about MMC.

MCC is a cost function defined to estimate parameters [11]. For different
problems, the physical meaning and number of parameter are different. For our
problem, there is one parameter kernel size needs to be estimated as formulated
in Eqn.(8):

θ̂ = max
θ

1

N

N∑
i=1

κσ(ei) (8)

where κσ(·) is a Gaussian kernel, σ is the kernel size and ei denotes the error of
the i-th components of the feature vector.

It can be learned that MCC maximizes the weighting factor of the smaller
error components and weakens the weighting factor of the larger error compo-
nents. Since the the kernel size σ denotes the scale of error of the components.
Hence, in feature matching, it has a prominent influence to the final distance.

3.3 Close-Form Solution for Kernel Size Selection

In Eqn.(7), the kernel size actually decides the weight of each dimension. Based
on MCC, we propose a learning method of kernel size. The two histograms of
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genuine and imposter in Fig.1.(a) are denoted respectively as hs, hd . h(i) means
the value of i-th bin in the histogram h and B is the bin number of histogram.
It follows the properties below:

B∑
i=0

hs(i) = 1
B∑
i=0

hd(i) = 1 (9)

∃0 < t < B, st

{
hs(x) > hd(x) x ≤ t

hs(x) < hd(x) x > t
(10)

When there is one point of intersection between histograms e.g. Fig.1 (a), it is
fairly straightforward to learn t. However, histograms cross each other at two or
more points in fact. In the case of multiple points of intersection, we acquire the
approximate effect with calculating t by Eqn.(11):

t = argmax
m

(

m∑
i=0

(hs(i)− hd(i))) 0 < m < B (11)

Applying the idea of MMC for this problem, we can obtain an objective function
as follow:

F = max
σ

B∑
i=0

(hs(i)− hd(i))κσ(i) (12)

In Eqn(12), based the basic point that the smaller error term owns the larger
weight factor, we set a gaussian kernel to ensure it. According to maximizing
the score of positive samples, it will be beneficial for our task.

Selecting the kernel size is equivalent to selecting the bandwidth. In such case,
σ plays a role of low pass filter to preserve the main energy. Moreover, with i
increasing, the value of κσ(i) will decreases much faster. So it dose not matter
to remove the second part in Eqn.(13).

B∑
i=0

(hs(i)− hd(i))κσ(i)

=

t∑
i=0

(hs(i)− hd(i))κσ(i)−
B∑

j=t+1

(hd(i)− hs(i))κσ(i) (13)

Thus the objective function is reformed as

F̃ = max
σ

t∑
i=0

(hs(i)− hd(i))κσ(i) (14)

On one hand, there is no the analytical solution for the object function in
Eqn.(14). On the other hand, the enumeration method is time consuming and
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impractical to solve this problem. Hence, we approximate the objective function
by the following form to obtain an acceptable solution.

F̃ = max
σ

t∑
i=0

ln((hs(i)− hd(i))κσ(i)) (15)

This sub-optimal solution can simplify the solving process and prevent overfit-
ting. Another advantage of this solution is that it can be easily applied in the
incremental learning and real-time identification.

The solving process is as follows:

t∑
i=0

ln((hs(i)− hd(i))κσ(i))

=

t∑
i=0

ln((hs(i)− hd(i)) · 1√
2π

) +

t∑
i=0

ln
1

σ
+

t∑
i=0

− i2

2σ2
(16)

Due to
∑t

i=0 ln((hs(i)− hd(i)) · 1√
2π

) is constant, Eqn.(16) derivation of σ :

∂

∂σ
(

t∑
i=0

(ln(hs(i)− hd(i))κσ(i)))

=

t∑
i=0

− 1

σ
+

t∑
i=0

i2

σ3

=− t+ 1

σ
+

t(t+ 1)(2t+ 1)

6σ3
(17)

So it takes the maximum with σ =
√

t(2t+1)
6

4 Modified Correntropy

Though in orthogonal spaces the components of feature are supposed to be inde-
pendent, there are more features whose components are correlated in practical
applications such as images and video analysis etc. Hence, there exist such sub-
sets of components of the feature that there is correlation inside the subset but
no correlation among subsets. It is possible that the distance on the level of
subsets is more powerful. Based on the above analysis, we develop the classic
correntropy into a modified block-wise metrics.

Assume that the feature is divided into M unoverlapped subsets or
blocks R1, R2, . . . , RM and Oi denotes the dimension number of the i-
th block. So the feature subset correspond to the i-th block is denoted
as Ri = (xi,1, xi,2, . . . , xi,Oi). Let RX

i = (xi,1, xi,2, . . . , xi,Oi) and RY
i =

(yi,1, yi,2, . . . , yi,Oi) denote the feature subset of the i-th block from two samples
Xs and Ys.
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We define the distance of the i-th block from two samplesXs and Ys as follows:

D(RX
i , RY

i ) =

Oi∑
j=1

|xi,j − yi,j| j = 1, 2, . . . ,M (18)

Let Xf = (x1, x2, . . . , xn) and Yf = (y1, y2, . . . , yn) be features of two images.
Suppose the feature contains M blocks. n is the dimension of image feature. The
dimension of the j-th block is Oj . The distance of the j-th block is defined as

DBj =

Oj∑
i=1

|xAj−1+1 − yAj−1+1| j = 1, 2, . . . ,M (19)

where Aj−1 =
∑j−1

i=1 Oi.
The block-wise correntropy (BC) is defined as

Dblock(Xf , Yf ) =
1

M

M∑
i=1

κσ(DBj ) (20)

Like in Section 3.1, we build a block-wise histogram to learn the distribution of
DBj , j = 1, 2, . . . ,M . An example with the ULBP feature is shown in Fig.1
(b). For ULBP feature, the blocks are just the histogram of the local region
of images. Fig.1.(b) shows that the block-wise separability is more prominent
than that of the dimension level. Hence, the block-wise metrics with adaptive
kernel size will be more powerful.

Setting weights for every local region to improve the performance is very
popular. Ahonen et al.[12] adopt the weighted distance to measure LBP and
different weights are set to every block. The weights are assigned based on the
recognition rate of the blocks. So the weight is obtained in the local level. The
block-wise correntropy metrics can also be regarded as learning adaptive weights
for every blocks. However, the proposed metrics works on a global level, in the
sense that the kernel size is the same to all blocks.

5 Experimental Analysis

5.1 Experimental Settings

To validate the proposed metrics, we perform face recognition experiments with
the LBP features. The LBP features are sequences of histograms of LBP of
blocked face regions. Hence, it is very suitable for verifying the block-wised met-
rics. We adopt two most popular and successful LBP features, i.e. the ULBP and
the Local Gabor Binary Pattern (LGBP) feature. The latter is the benchmark
feature in face recognition [13].

The tests are performed on frontal facial subsets of two benchmark face
databases, i.e. the Facial Recognition Technology (FERET) and the Face Recog-
nition Grand Challenge (FRGC 2.0) as listed in Table 1. We take 4 images per
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subject from FERET and 6 images per subject from FRGC so that half of the
samples can be used to learn the parameters. From both databases, the number
of subjects is the maximum with available 4 or 6 frontal face images. Face images
of the two subsets contains different expressions and illumination variations. All
the face images have been registered and preprocessed to the size of 140*160.
Some examples of the two subsets are shown as in Fig.2.

Table 1. Face Databases

Subject Image/ Size of Size of
Number Subject Training Set Testing Set

FERET 256 4 2 2
FRGC 459 6 2 4

(a)Examples of FERET subset

(b)Examples of FRGC subset

Fig. 2. Examples of Experimental Data

5.2 Comparative Results

We compare the proposed metrics with several most frequently adopted distances
for LBP feature including L1 distance, χ2 distance, Cosine distance. For LBP
features, the results of block-wise L1 , χ2 distance are the same as the non-block
version. For cross validation, we select 10 groups of training set and testing set
randomly and calculate the average recognition rate with the Nearest Neighbor
classifier. For both ULBP and LGBP, we take the LBP histogram obtained from
the same sub-image as the blocks for BC. The results are summarized in Table
2 and Table 3. The recognition rate in Table 2 and Table 3 demonstrates the
effectiveness of both BC and CD.
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Table 2. The comparison of different metrics on FERET

Type of Metric Metric ULBP2,8(7 ∗ 8) ULBP2,8(14 ∗ 16) LGBP

Accordance
L1 0.8765 0.8982 0.8988
χ2 0.8716 0.8943 0.8947

Normal
Cosine 0.8168 0.84102 0.8891
CD 0.8869 0.8554 0.8943

block-wise
Cosine-block 0.8589 0.8822 0.8949

BC 0.9044 0.9146 0.9136

Table 3. The comparison of different metrics on FRGC

Type of Metric Metric ULBP2,8(7 ∗ 8) ULBP2,8(14 ∗ 16) LGBP

Accordance
L1 0.6057 0.6486 0.6704
χ2 0.6075 0.6467 0.6825

Normal
Cosine 0.56879 0.6192 0.6663
CD 0.6126 0.6242 0.6748

block-wise
Cosine-block 0.5882 0.6352 0.6816

BC 0.6259 0.6662 0.6922

ULBPR,P (m ∗ n) denotes ULBP feature with sampling radius R , sampling density P
and m∗n sub-images, and Cosine-block denotes calculating the Cosine distance on the
level of block.

The CD performs better than the other normal metrics with the low dimen-
sional features ULBP2,8(7 ∗ 8). For the high-dimensional features ULBP2,8(14 ∗
16) , LGBP , such advantage exists but not as prominent as in the case of low
dimensional features. This is due to the separability of distance of each dimen-
sion is not so significant for higher dimensional features as to lower dimensional
feature. Especially for LBP features, since each dimension is a the bin value of a
histogram. The higher the dimension, the lower the variance in each dimension
for images with the same blocking strategy and resolution. Hence, the MCC
based kernel size selection is sensitive to the disparity between positive samples
and negative samples. Another reason for the phenomenon is that the higher
dimensional feature contains much noise, which will deteriorate the reliability of
metric learning. After all, the size of training sets is not enlarged with respect
to the dimension.

However, the recognition rate of the proposed BC is the highest for all three
different features and two face image sets. It achieves much higher accuracy com-
pared with all the other normal metrics and block-wise metrics. Moreover, the
proposed BC metrics is robust in the case of higher dimensional features. Such
prominent advantage shows that adopting block distance discards the influence
of noise and enhances the separability between genuine and imposter.

As to the computation cost, the proposed metrics need an off-line stage to
obtain the kernel size. In on-line usage, according to Eqn.(7), we need to calculate
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N times Gaussian kernels for the CD metrics. However, with BC metrics, only
M Gaussian kernels need to be calculated as shown in Eqn.(20). In fact, since
M � N , the computation cost drops vastly. Comparing to the simple metrics
such L1, BC and CD may need more extra computation. But compared with
the other metrics, the computation complexity of BC is the same or even lower.
After all, the BC metrics outperforms the other metrics nearly 2% in accuracy
in each group of tests.

6 Conclusion

In this paper, we propose an adaptive kernel-size selection solution and a modi-
fied correntropy metrics for feature matching. Through optimizing the objective
function based on MCC, we derive a close-form solution of the kernel size based
on learning the separability of subsets of feature components. We extend the
correntropy into a block-wise metrics BC, which takes advantage of block dis-
tance to decrease the influence of noise. The proposed metrics is tested in LBP
feature spaces of face recognition experiments. Comparison with the other most
frequently adopted metrics demonstrates the advantages of the proposed block-
wise correntropy metrics. The experimental results also validates the proposed
kernel size selection. The proposed metrics and kernel-size selection strategy can
also be applied in other computer vision tasks such as image retrieval and object
recognition.
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Abstract. A new method to describe sperm vitality using a hybrid com-
bination of local and global texture descriptors is proposed in this paper.
In this regard, a new adaptive local binary pattern (ALBP) descriptor
is presented in order to carry out the local description. It is built by
adding oriented standard deviation information to an ALBP descriptor
in order to achieve a more complete representation of the images and
hence it has been called ALBPS. Regarding semen vitality assessment,
ALBPS outperformed previous literature works with an 81.88% of ac-
curacy and it also yielded higher hit rates than the LBP and ALBP
base-line methods. Concerning the global description of sperm heads,
several classical texture algorithms were tested and a descriptor based
on Wavelet transform and Haralick feature extraction (WCF13) obtained
the best results. Both local and global descriptors were combined and the
classification was carried out with a Support Vector Machine. Therefore,
our proposal is novel in three ways. First, a new local feature extraction
method ALBPS is introduced. Second, a hybrid method combining the
proposed local ALBPS and a global descriptor is presented outperform-
ing our first approach and all other methods evaluated for this problem.
Third, vitality classification accuracy is greatly improved with the two
former texture descriptors presented. F-Score and accuracy values were
computed in order to measure the performance. The best overall result
was yielded by combining ALBPS with WCF13 reaching a F-Score equals
to 0.886 and an accuracy of 85.63%.

1 Introduction

Sperm assessment is an essential task for porcine industry. The huge demand of
alimentary products based on pork meat has resulted in lots of companies around
the world trying to obtain high quality goods at the lower price available. In most
cases, artificial insemination is used for creating new litter of pigs and, for this
reason, the semen used must have a quality as higher as possible. Assessing the
semen and checking that a sample has a high proportion of alive spermatozoa is
a routine procedure in almost every single Semen Production Center. Nowadays,
the automatic vitality assessment is carried out using fluorescent stains what it
is time consuming and expensive due to the required equipments. In this paper
we present a method that allows to assess the semen vitality using phase contrast
images, without fluorescence, with very promising results.

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 61–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Several works have addressed some of the problems related to the semen
analysis using digital image processing. Most of them uses CASA (Computer-
Assisted Semen Analysis) systems for evaluating the sperm motility [1] or for
studying motility patterns among sperm cell, morphology and boar fertility [2,3].
Other research lines are focused on implementing algorithms to characterize the
spermatozoa shape by using spectral approaches [4,5], or they have been looking
for subpopulations using shape descriptors over the head of the spermatozoa [6].
But there are not CASA systems which deal with vitality assessment using only
phase contrast images.

Texture analysis and a number of classificationmethods have been used success-
fully in the literature applied to a wide range of fields but there are few
computer vision works which deal with boar sperm analysis. In general, computer-
based systems designed for semen analysis tasks should reliably segment the heads
of the spermatozoa [7], extract the patterns which characterise them and finally
classify those patterns in order to estimate howmanydead spermatozoa are present
in the sample. There are some works using texture or shape analysis to classify
the spermatozoon acrosome as intact or damaged. Those approaches evaluate the
acrosome integrity in different ways, sometimes using complex descriptors such as
the Curvelet transform [8] and, other times, evaluating a broad range of texture
and based-moments descriptors [9]. As the final goal is not to correctly classify
each espermatozoon but to know the right proportions of both classes, some au-
thors have proposed new methods for estimating class proportions in boar semen
analysis using the Hellinger Distance [10] and even they have applied the former
methods to more general problems [11].

But there are few works that have evaluated the vitality of a sample classifying
the spermatozoa heads as dead or alive. The more recent works are the ones
proposed by Alegre et al. [12,13] that obtained a 76.80% of hit rate using texture
descriptors when testing images captured at 100× and, more recently, Garca-
Olalla et al. in [14] achieved a 78,67% of hit rate combining LBP and NCSR (n
concentric squares resized).

In this paper we proposed a new algorithm called ALBPS based on the Adap-
tive Local binary pattern combined with the oriented standard deviation vector.
These algorithm has been evaluated using a sperm head database obtaining the
best results ever achieved.

The rest of the paper is organized as follows: Section 2 describes the followed
methodology. The selected dataset, experiment setup and results achieved with
the different descriptors are presented in section 3. Finally, section 4 shows our
conclusions.

2 Methodology

2.1 Global Texture Descriptors

In a first approach the used dataset, composed of images showing boar sperma-
tozoa heads, has been characterized by several global texture descriptors.
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Seven classical texture descriptors have been computed for each spermatozoa
head. The first one, was a features vector made up of four statistical measures of
texture taken from the gray scale original image. This vector contains the average
gray level, the average contrast, a measure of uniformity and the image entropy.
Other descriptors gathered the image texture information using normalize or
affine moments. Specifically, the seven Hu’s moments [15] and the six invariant
affine moments proposed by Flusser have been obtained [16]. Furthermore, two
more features vectors based on moments have been used. The first one contains
nine values coming from the Legendre polynomials corresponding with the five
first moments from order 0 to 2 and the third last are moments of order third and
fourth. The fifth features vector for global texture is a twenty seven dimensional
descriptor, made up of the Zernike orthogonal moments [17] up to fourth order,
what makes nine features, and including the real, imaginary and absolute values,
it sums up to 27 values.

With a different focus, the two last global texture descriptors evaluated use
Haralick’s features [18] obtained from the GLCMs (Grey Level Co-occurrence
Matrix) that is computed on the original image and also on the first level decom-
position of the wavelet transform with a Haar mother function. Using the five
matrices, the original image and the four coefficients matrices from the wavelet
decomposition, the two last features vectors have been computed. Therefore,
the sixth global descriptor is a 65 dimensional vector which contains 13 out of
the 14 features proposed by Haralick, leaving out just the maximal correlation
coefficient. The last global texture description has been carried out computing
just four Haralick features, such as the Energy, Contrast, Correlation and the
Inverse Different Moment on the original gray scale image and the first wavelet
decomposition, yielding a twenty dimensional features vector.

2.2 Local Binary Pattern

Local Binary Pattern (LBP) [19] is a gray-scale texture descriptor that extracts
the local spatial structure of an image. Given a pixel, a pattern code is computed
by comparing this pixel with the value of its neighbours:

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p , s(x) =

{
1 if x ≥ 0
0 if x < 0

(1)

where gc is the value of the central pixel, gp is the value of its neighbour p, P
are the number of neighbours and R is the radius of the neighbourhood.

After LBP is obtained for each pixel, in this work, a histogram is built in
order to describe the whole image using P + 2 bins, yielding the features vector
of the image. The pattern extraction process for one pixel is shown in Figure 1.

2.3 Adaptive Local Binary Pattern

In [20], Guo et al. proposed an adaptive descriptor based on Local Binary Pat-
tern motivated by the lack of information about the orientation in the local
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Fig. 1. Local Binary Pattern process over one gray scale pixel with P=8 and R=1.
LBP code assigned to the central pixel is calculated by multiplying the output of the
threshold function by the term 2p for each neighbour pixel and then summing all those
values.

binary pattern approach. Their method takes into account the oriented mean
and standard deviation of the local absolute difference in order to make the
matching more robust against local spatial structure changes. To minimize the
variations of the mean and standard deviation of the directional differences, Guo
et al. proposed a scheme that minimizes the directional difference |gc − wp ∗ gp|
along different orientations adding the parameter w.

The objective function is defined as follows:

wp = argw min

⎧⎨⎩
N∑
i=1

M∑
j=1

|gc(i, j)− w · gp(i, j)|2
⎫⎬⎭ (2)

where wp is the weight element used to minimize the directional difference and
N and M are the number of rows and columns in the image respectively. Each
weight wp is estimated along one orientation 2pπ/P for the whole image.

To solve this, Guo et al. used LSE (Least Squared Estimation) technique to
optimize the w weight parameter vector.

Finally, ALBP method is:

LBPP,R =

P−1∑
p=0

s(gp − wp · gc)2p , s(x) =

{
1 if x ≥ 0
0 if x < 0

(3)

2.4 Proposed Method: ALBPS

In [20], the oriented mean and standard deviation were used in the matching al-
gorithm to improve the classification performance. However, the ALBP method
proposed by Guo et al. does not take into account these statistical values to
compute the image descriptor, instead they were only applied to minimize the
directional difference along the different orientations using the weight param-
eter wp. Our proposal includes the standard deviation information not in the
matching method but in the descriptor algorithm and it is called ALBPS on



Adaptive LBP Based on Oriented Deviation 65

that account. In addition, whereas a 1 by 1 matching technique was proposed
by Guo et al., our scheme uses a Support Vector Machine algorithm in order
to classify a descriptor. This is a huge advantage in most cases because, in this
way, it is possible to use a fast and powerful classifier that will perform very well
when the training set is big enough.

The standard deviation vector σ is obtained using the equation 4.

σp =

√√√√ N∑
i=1

M∑
j=1

(gc(i, j)− gp(i, j)− μp)
2/(M ·N) (4)

where N and M are the numbers of rows and columns respectively, gc(i, j) is
the center pixel at position (i, j), gc(i, j) is neighbourhood of gc(i, j) lying along
orientation 2pπ/P with radius R and μp the oriented mean obtained using:

μp =

N∑
i=1

M∑
j=1

|gc(i, j)− gp(i, j)|/(M ·N) (5)

Our proposed descriptor is obtained by concatenating the P + 2 bins histogram
values of LBP approach together with the P-dimensional standard deviation vec-
tor, yielding a descriptor of 2P+2 features with P the size of the neighbourhood.

We have selected the standard deviation because this statistic can reflect the
high difference of homogeneity seen in the dead heads (heterogeneous texture) in
contrast with the alive ones (homogeneous texture). We preferred this statistic
rather than the mean because sometimes dead heads present black and white
dots that can be counteracted when calculating the mean value. Go to the first
row of figure 3 to see examples of dead and alive spermatozoa heads.

3 Experiments

3.1 Dataset

The lack of publicly available databases of dead and alive boar sperm images
forced us to collect an image dataset. This set of images has been captured in
CENTROTEC, an Artificial Insemination Center that is a University of Leon
spin-off. The sperm was obtained from boars of three different races: Piyorker,
Large White and Landrace. 450 pairs of images have been captured using a
Nikon Eclipse microscope and a Baster A312f camera of progressive scan. Each
of these pairs contains an image in positive phase contrast and a fluorescent
image obtained using two different stains: propidium iodide (PI) that dyes dead
spermatozoa as red and dichlorofluorescein (DCF) for turning green the alive
spermatozoa. We encourage the reader to see more about the sample prepara-
tion in [21]. We have captured the phase contrast images for developing and
testing the texture descriptors evaluated on the proposed method. The fluores-
cent images were used to obtain the ground truth in order to label all the heads
in the data set. Examples of this captures can be shown in figure 2.
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Fig. 2. Two pairs of images captured. In the left of each pair the gray scale images and
in the right the fluorescent ones.

After labelling all the images, each head has been automatically registered
in order to assure scale and rotation invariance. First of all, the heads have
been rotated to its vertical position. This is performed by relating an sperm
head with an ellipse and correcting the orientation of the major axis to achieve
verticality. Then, the image has been right and left cropped leaving head’s pixels
untouched. Afterwards, the tail coordinates has been detected. Evaluating if the
tail is placed in the bottom half or in the top half of the image will let us know
if the spermatozoon has its head up or down respectively. In the second case,
the image has been flipped, leading to equal orientations. Then, the image has
been up and down cropped leaving head’s pixels intact.

Finally, a 3× 3 texture range filter has been applied over the whole dataset in
order to reduce the non-informative areas and therefore facilitate the subsequent
dataset description and classification. Figure 3 shows gray scale dead and alive
heads and their filtered outputs.

Fig. 3. The first row shows registered gray scale heads and the second row their range
filtered outputs. The first four images are examples of alive heads and the last four of
dead ones.

3.2 Experimental Setup

Once the 450 images are range filtered and the ground truth vector is obtained
using the fluorescent images, a cross validation algorithm has been implemented
in order to avoid biased results. First of all, a 20% random subset of the total
number of images is kept back in order to get the test results. With the rest
of the images, a 10-fold crossvalidation has been carried out. Classification was
accomplished using Support Vector Machine (SVM) with Least Squares (LS)
training algorithm.
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Since this dataset is skewed due to the high number of alive heads in contrast
with the low number of dead ones, F-Score has been used as one of the quality
metrics, and it was applied over the skewed class, in this case, the dead images
subset.

F-Score has been computed as F−Score = 2·Precision·Recall/(Precision+
Recall), where Precision has been computed as Precision = TP/(TP + FP )
and Recall as Recall = TP/(TP + FN), being TP the number of true positives
in the classification, TN the number of true negatives and, FP and FN the
false positives and false negatives respectively. Note that the positive class is
the one with less elements in the training set, in this instance the positive class
corresponds to the dead heads.

F-Score results are in the range [0, 1] where values near 0 indicate a poor
classification and values close to 1 show a good performance.

As the process of selecting the training and cross validation subsets is a ran-
dom one, sometimes the number of images in each class could be quite balanced.
For this reason, the accuracy measure has been taken into account, and com-
puted as Accuracy = (TP + TN)/(TP + FP + TN + FN)

Therefore, we obtained F-Score and accuracy measures for all 10-folds combi-
nations of training and cross validation datasets. Afterwards, the classifier which
outperformed the others both in terms of accuracy and F-Score has been selected
as the best classifier and its parameters were used to classify the test set in order
to get a more reliable performance. By using a cross validation set instead of di-
rectly a test set we avoid that the decision about the best classifier is influenced
by the random cross validation set and the classifier cannot generalize well to
future test samples.

In figure 4 a scheme of this process is showed step by step.

3.3 Experimental Results

In this subsection, we show the performance evaluation results on the pro-
posed description method in terms of the F-Score and accuracy using our own
dataset. All experiments are carried out using Support Vector Machine with
Least Squares and a linear kernel. Experiments using different kernels have been
performed obtaining worse results than with the linear one.

Performance Evaluation Using Global Texture Descriptors
As it was explained in section 2.1, in our first approach several well-known global
texture descriptors have been evaluated. In table 1 (left) it is possible to see the
F-Score, Precision, Recall and Accuracy achieved with these descriptors whereas
in figure 5 (left) F-Score and accuracy results and how they are directly related
are shown graphically.

As it can be noticed, using WCF13 the performance improved compared to
the rest of global descriptors, yielding both the best F-Score value and the best
accuracy. In contrast, values from Hu, Zernike and Flusser moments are quite
low, Hu just obtained a 65% of accuracy which is an unacceptable result for this
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Fig. 4. Scheme of the experimental setup

Table 1. Performance of global (left) and local (right) texture descriptors LBP and
ALBP using R = 1, P = 8 and R = 2, P = 16 as neighbourhoods

WCF13 WCF4 Statistical Legendre Flusser Zernike Hu ALBP2,16 ALBP1,8 LBP1,8 LBP2,16

F-Score 0.800 0.795 0.783 0.780 0.739 0.736 0.720 0.737 0.683 0.674 0.603
Precision(%) 80.43 79.54 78.72 71.00 75.58 71.38 66.24 73.26 67.47 67.05 60.00
Recall(%) 79.57 79.54 78.10 86.59 72.65 76.29 78.76 74.12 69.14 67.82 60.67
Accuracy(%) 76.88 76.75 75.69 75.00 70.88 70.19 65.44 71.88 67.50 64.38 55.63

problem. Therefore, we can conclude that global texture descriptors offer poor
results for assessing the vitality of boar semen samples.

Performance Evaluation Using Local Texture Descriptors
In this experiment, we used the local texture descriptors LBP and the adaptive
version ALBP proposed by Guo et al. [20].

Two different neighbourhoods, R = 1, P = 8 and R = 2, P = 16 have been
used, to measure F-Score and accuracy in both cases. Their performance can be
seen in table 1 (right) and figure 5 (right).

ALBP behaves better than LBP in all cases. ALBP2,16 obtains similar results
to global descriptors, with a F-Score equals to 0.737 and an accuracy of 71.88%,
outperforming in more than a 15% the accuracy of the classical LBP2,16. Nev-
ertheless, global WCF13 descriptor outperforms ALBP approach.

ALBPS Compared with Previous Local Texture Descriptors
In this experiment, the performance using our proposed method, ALBPS, which
includes oriented standard deviation information for the images description has
been assessed. To measure the performance of our proposal, we compared it with
LBP and ALBP methods. Results when concatenating LBP histogram from the
original LBP method with oriented standard deviation vector (LBPS) have also
been obtained.
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Fig. 5. Performance of different global texture descriptors (left) and performance of
local texture descriptors LBP and ALBP using R = 1, P = 8 and R = 2, P = 16
as neighbourhoods (right). The F-Score is extended to the range [0-100] in order to
preserve the legibility of the graphic.

In table 2 and figure 6 (left), a comparison between ALBP2,16 that is the best
previous local texture descriptor and our proposed descriptors is shown. Adding
oriented standard deviation to local texture descriptors, LBPS and ALBPS, im-
proves both original LBP and ALBP methods which verifies the effectiveness
of our proposal. The best overall result is achieved with ALBPS with R = 2,
P = 16 (ALBPS2,16) yielding a F-Score equals to 0.842 and a 81.88% of ac-
curacy which means an improvement of 14.25% in F-Score and of 13.91% in
accuracy over the base method, ALBP2,16. Moreover, we would like to highlight
that ALBPS2,16 also outperforms global texture description, specifically, by a
5.25% in F-Score and by a 6.5% in accuracy with regard to WCF13. It is also
noticeble that ALBPS2,16 also outperforms the previous related works found in
the literature since the best approach [14] obtained a hit rate of just 78.67%.
Therefore, in the carried out experiments is clear that our proposed method out-
performs global traditional descriptors, previous local texture descriptors based
on LBP and previous related works.

A New Improvement: Combining Global and Local Features
Our last experiment consisted of combining the analysed local descriptors with
the best outperforming global features into a new hybrid features vector. We in-
tended to introduce global context to resolve ambiguities that can occur locally
when an image has multiple similar regions. Consequently, WCF13 and WCF4
were merged with the studied local descriptors yielding the results shown in ta-
ble 3 and figure 6 (right). The best overall result was achieved when combining
WCF13 and ALBPS2,16 reaching a F-Score of 0.886 and a 85.63% of accuracy
outperforming the results obtained with local and global texture separately. Par-
ticularly, WCF13+ALBPS2,16 improves F-Score value in a 5.23% and accuracy
in a 4.58% with regard to our individual local descriptor ALBPS2,16.

It is important to note the high value of recall (89%) obtained, which means
that the algorithm detects a high percentage of dead heads. Specifically, it only
misclassifies a 11% of them as alive ones. Since there are many more images of
alive heads than dead ones in our dataset, predicting that a new test image is
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Table 2. Performance of our proposed texture descriptors compared with the best of
previous local texture descriptors ALBP2,16

F-Score Precision (%) Recall (%) Accuracy (%)
ALBPS2,16 0.842 83.70 84.62 81.88
ALBPS1,8 0.753 76.50 74.27 72.13
LBPS2,16 0.747 73.61 76.17 70.50
ALBP2,16 0.737 73.26 74.12 71.88
LBPS1,8 0.710 71.07 71.10 69.25

Fig. 6. Performance of our proposed texture descriptors and the best of previous
local texture descriptors ALBP2,16 (dotted bar) (left) and performance of hybrid
global+local texture descriptors (right). The F-Score is extended to the range [0-100]
in order to preserve the legibility of the graphic.

Table 3. Performance of hybrid global+local texture descriptors

F-Score Precision (%) Recall (%) Accuracy (%)
WCF13+ALBPS2,16 0.886 88.12 89.00 85.63
WCF13+LBPS1,8 0.867 89.77 84.04 85.00
WCF13+LBP1,8 0.865 93.67 80.43 85.63
WCF4+LBPS2,16 0.865 87.50 85.56 85.00
WCF13+ALBPS1,8 0.860 84.21 87.91 83.75
WCF13+LBPS2,16 0.857 80.41 91.76 83.75
WCF13+ALBP2,16 0.854 86.42 84.34 85.00
WCF4+ALBPS1,8 0.852 87.80 82.76 84.38
WCF13+ALBP1,8 0.850 85.87 84.04 82.50
WCF4+LBP1,8 0.847 86.02 83.33 81.88
WCF13+LBP2,16 0.845 82.83 86.32 81.25
WCF4+ALBPS2,16 0.843 84.27 84.27 82.50
WCF4+LBPS1,8 0.832 81.19 85.42 79.38
WCF4+ALBP2,16 0.825 82.02 82.95 80.63
WCF4+ALBP1,8 0.818 76.29 88.10 79.38
WCF4+LBP2,16 0.806 79.80 81.44 76.25

alive has a higher probability of chance than otherwise. A value of recall equals
to zero would imply that the algorithm is just classifying all images as alive (no
skewed class) and therefore it is obtaining a high accuracy next to 100% without
being useful for the goal of our task. As a consequence, our approach is correctly
classifying the database even though the existence of a skewed class.

Besides, we want to highlight that this hybrid WCF13+ALBPS2,16 descriptor
classified with SVM obtains better results than the previous works found in the
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literature. In section 1, we found hit rates of 76.80% in [12,13] and 78.67% in
[14]. Therefore, the approach presented in this paper obtains about a 8.85% of
improvement over previous works.

4 Conclusions

In this paper, we proposed a new local texture descriptor ALBPS by adding an
oriented standard deviation term to the ALBP descriptor. It also has been proved
that adding this new term to the classical LBP its performance also increases. In
addition, we have combined the local proposed descriptor, ALBPS2,16 with the
global WCF13 descriptor obtaining a features vector which contains local and
global information. The experimental results showed that the hybrid features
extracted by the proposed method provide a better performance than previous
works when using a robust SVM classification. Also, we were able to ascertain
that the skewed class, the dead one, was successfully classified reaching a recall
of 89%. A F-Score equals to 0.886 and an accuracy of 85.63% were yielded by
WCF13+ALBPS2,16 which is a very interesting result for classifying the vitality
of boar spermatozoa heads as dead or alive.
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Based on Multi-channel SILTP
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Abstract. Background subtraction is the first step in many video
surveillance systems, its performance has a decisive influence on the
result of the post-processing. An effective background subtraction al-
gorithm should distinguish foreground from the background sensitively,
and adapt to the variation of background scenes robustly, such as illumi-
nation changes or dynamic scenes. In this paper, a novel pixel-wise back-
ground subtraction algorithm is introduced. First, we propose a novel
texture descriptor named Multi-Channel Scale Invariant Local Ternary
Pattern(MC-SILTP). The pattern is cross-calculated in RGB color chan-
nels with the Scale Invariant Local Ternary Pattern operator. This de-
scriptor does not only show an excellent performance in abundant texture
regions, but also in flat regions. Secondly, we model each background
pixel with a codebook rather than estimating the probability density
functions. The codebook is consisted of many MC-SILTP samples actu-
ally observed in the past. A lot of experiments have been done over the
proposed approach, results indicates that this approach is well balanced
in sensitivity and robustness. It can handle the tricky problem of illu-
mination changes robustly while detecting complete objects in flat areas
sensitively. Comparison between the proposed one and several popular
background subtraction algorithms demonstrates that it outperforms the
state-of-the-art.

1 Introduction

Detecting foreground in video sequences captured by a stationary camera is a
fundamental processing in video surveillance systems, whose output will be the
groundwork of the higher-level process, such as object tracking or counting. A
popular approach to discriminate foreground objects in the scenes is background
subtraction. The basic idea of background subtraction is to build an appropriate
distribution of the features extracted from images to represent the background,
and then compare each new observation with the distribution to classify it to
the background or not.

The comprehensive application of background subtraction in diverse scenes
makes it a hot topic in computer vision. The most popular background subtrac-
tion is Mixture of Gaussians [1], it adopts more than one Gaussian distributions
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to represent the intensity value of a background pixel. This approach can adapt
to dynamic scenes with repetitive moving background, but it does not work
very well in complex situations, such as the illumination changes gradually or
suddenly, cast shadows moving along with objects, dynamic background moving
with different frequency.

To deal with the tricky problems in complex scenes, a lot of effort on back-
ground subtraction has been done over the last decades. Generally speaking,
improvement mainly manifests in two aspects. The first one is to introduce
advanced probabilistic models to represent the background, such as the non-
parametric kernel density estimation approach proposed in [2], joint
domain-range density estimation in [3]. The other line is to employ a better
feature representation by discovering a new robust feature descriptor [4,5,6,7] or
combining two different features together [8,9,10]. The background subtraction
presented in this paper belongs to the second line.

The common used features in background subtraction are intensity value [1]
and RGB values [11],they are both the direct reflection of the visual information in
the scenes. But there is a common drawback of them that they are too sensitive to
adapt to illumination changes, and cause a lot of misclassification. To tackle this
problem, some robust texture features are discovered [4,6,7]. In [4], discrimina-
tive texture feature LBP is first proposed to background subtraction, each pixel is
modeled as a group of LBP histograms calculated over the neighborhoods around.
This method pioneers the use of texture descriptor to handle illumination varia-
tion problems in feature level, and it is more computational efficient than [12] that
employs a special algorithm to detect moving shadows. εLBP [6] and SILTP [7] are
the texture features recently developed from LBPused in background subtraction,
they exceed LBP in computational efficiency and tolerance to noises. Despite that
both of them are very robust to illumination variations, they perform poorly in
flat areas and results in some ”holes” in objects. Some authors combine different
features to benefit from both. For example, color and edge information is used to
model the background in [13]. Authors utilize shape and color information in [8],
and a multi-layer background subtraction based on color and texture described by
LBP is proposed in [9]. The idea of employing a fusion of two features can be useful
to a limited extent. They can not always be mutually complementary, sometimes
they conflict, and shortcomings of the two features still have an influence on the
background subtraction.

In this paper, we introduce a newly discovered feature called Multi-Channel
Scale Invariant Local Ternary Pattern(MC-SILTP) to the background subtrac-
tion algorithm, where the scale means color scale pixel value. MC-SILTP is
improved from SILTP [7] proposed by S. Liao with the idea to combine texture
descriptor with color information, and it extends from spatial space to spatial
and feature spaces. MC-SILTP cross-calculates the RGB SILTPs of each chan-
nel to get a more precise description of the texture. Experiments demonstrate
that MC-SILTP shows all the great properties that SILTP owns, and it can do
a great job especially in flat areas. As to the background modeling procedure, a
quantization/clustering technique is employed, we model the background pixel
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with a codebook consisted of real MC-SILTP samples observed, it can deal with
dynamic scenes and outperform the state-of-the-art.

The paper presents the background subtraction algorithm in the following
order. In section 2, we give a detail introduction about Multi-Channel Scale
Invariant Local Ternary Pattern, and compare the performance of MC-SILTP
and SILTP in some situations. In Section 3, the framework for the proposed
background subtraction algorithm is discussed. And section 4 shows the experi-
mental results, and a comprehensive comparison between the proposed approach
and several other background subtraction algorithms is done. We end up with a
conclusion in section 5.

2 Texture Description with Multi-channel SILTP

Scale Invariant Local Ternary Pattern is a gray scale invariant texture primitive
statistic, and it is a newly developed texture descriptor used in background
subtraction [7]. It converts the pixels of an image into the form of binary by
thresholding the gray value of the center pixel with its neighborhoods. Given a
pixel located at (Xc, Yc) , the SILTP calculates as follows:

SILTP τ
N,R(xc, yc) =

N−1⊕
k=0

Sτ (Ic, Ik), Sτ =

⎧⎨⎩
01, Ik > (1 + τ)Ic
10, Ik < (1− τ)Ic
00, otherwise

. (1)

where Ic and {Ik}k=0...N−1 correspond to the gray intensity values of the center
pixel and its N neighborhood pixels. The sign ⊕ indicates concatenation operator
of binary strings. τ is a scale factor affecting the tolerant range. The most impor-
tant properties of SILTP are its computational efficiency, its tolerance against
illumination changes and local image noises within a range. However, there is a
common drawback of SILTP that it does not work very robustly on flat image
areas, where the gray values of pixels are similar, and it is hard to describe the
texture only in spatial space.

In this paper, we propose a novel texture descriptor called Multi-Channel Scale
Invariant Local Ternary Pattern, which extends to feature space,and operates on
the three channels of RGB images rather than the only channel of gray images
to get the texture patterns, given by:

SILTP τ
R (xc, yc) = ⊕N−1

k=0 Sτ (IR, IB,k)

SILTP τ
G (xc, yc) = ⊕N−1

k=0 Sτ (IG, IR,k) Sτ =

⎧⎨⎩
01, Ik > (1 + τ)Ic
10, Ik < (1− τ)Ic
00, otherwise

SILTP τ
B (xc, yc) = ⊕N−1

k=0 Sτ (IB , IG,k)

. (2)

where IR, IG and IB correspond to the RGB values of the center pixel, respec-
tively; IR,K , IG,K and IB,K correspond to the RGB values of the neighborhoods.
The thresholding method of MC-SILTP is as same as the original SILTP, but
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MC-SILTP cross-computes the RGB SILTPs, and thresholds a pixel’s color value
of one color channel with the other color channel of its neighborhood pixels. In
this way, it can really make great progress with SILTP. Firstly, MC-SILTP ex-
tends to feature space to make full use of color information and gets a more
precise texture description. Especially in flat areas where the gray values are
similar, and the gray values of spatial neighborhoods can not supply enough
information. It is significant to introduce feature space to calculate the texture.
Secondly, MC-SILTP enhances the relevance of each channel and gets a pattern
which makes every channel closely linked to each other. This pattern can give a
better reflection of the visual information. See Fig.1 for a detail illustration of
the MC-SILTP operator.
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Fig. 1. Calculating the binary patterns

Take real videos ”Lobby” and ”ShoppingMall” from the open data set I2R [14],
and apply SILTP and MC-SILTP on them to do some research and comparison.
As shown in Fig.2, there are three fixed pixel positions labeled out in the scenes in
the first column. Among them, the blue one is a pixel changing from background
to foreground, the red one is a background pixel with illumination changes, and
the green one is a background pixel with moving shadows sometimes. To the
convenience of statement in illustration, We apply ⊕ on SILTP-R, SILTP-G and
SILTP-B to get a combined MC-SILTP based on Equ.3.

SILTP τ
RGB (xc, yc) = SILTP τ

R (xc, yc)⊕ SILTP τ
G (xc, yc)⊕ SILTP τ

B (xc, yc) .
(3)

Both of the operators take 8 neighborhoods of the center pixel into account, so
there are 16 bits in SILTP and 48 bits in MC-SILTP. We calculate the distance of
two patterns by summing up the number of bits they differ from each other. For
example, there are two SILTPs: 01000110 00101010 and 00010110 10101010, the
distance between them is 3. An effective way to get the distance of two patterns
is to make use of XOR operator.
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Observe the distribution curves of SILTP and MC-SILTP of the three posi-
tions throughout the videos, we can figure out that MC-SILTP has the advan-
tage of SILTP in the complex scenes with moving cast shadows and illumination
changes, as the red and blue curves show in Fig.2 The small scaling threshold
factor in SILTP can handle some illumination problems in abundant texture re-
gions. In flat areas, the gray values decrease and become more and more similar
as the shadows cast or light dims, it tenders to result in zero SILTP consisted of
all zero bits. This zero pattern cannot describe the texture well and differs from
the original pattern. This explains for the reason why the red and blue distribu-
tion curves of SILTP are up-and-down during the experiment. As to MC-SITLP
cross-calculated on the RGB channels, although the values of the same channel
approximate to each other in these situations as the gray values do, but the
difference between two channels still keeps, so MC-SITLP can stay invariant by
threshoding the values from different channels, and perform excellently in flat
areas as the curves in Fig.2 show. Besides, MC-SITLP encodes the pattern by the
same thresholding method of SILTP with an adaptive tolerative range, it shows
all the great properties that SILTP owns, such as computational efficiency and
robustness to local image noises.

Fig. 2. Comparison of SILTP and MC-SILTP operators on three different pixels. First
column: the real scenes chosen for experiments. Second column: the distribution curves
of the pixels labeled out in the scenes on the first column along with time.(x axis is the
frame number, y axis is the distance between the new patterns and the pattern got at
frame 0).
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3 Background Subtraction Based on MC-SILTP

In this section, we employ MC-SILTP to the statistical model of background in
pixel-wise manner, and give a detail description of the framework for background
subtraction algorithm, including background model construction and foreground
detection.

Most of the mainstream background subtraction algorithms rely on prob-
ability density functions(pdfs)[1] or statistical parameters[2,3]. The innovative
mechanism presented in ViBe[15] indicates that already observed samples would
have a higher probability to appear again, and it makes more sense to model the
background pixel with a group of already observed values than an explicit pixel
distribution such as pdfs. So we construct the background model for each pixel
with a codebook consisting of MC-SILTPs already being observed.

3.1 Background Model Construction

Given a color video sequence, apply MC-SILTP operator on it to get the pixel
process [1] of a single pixel during the training period T, which can be defined
as {p1, p2, ...pT}. Let Mt= {cb1, cb2,...cbL} be the codebook representing the
background pixel at time t. Each pixel has a different codebook size accord-
ing to the variations of the samples and the longest length is set to be LMax

. cbi(i=1...L) = {pi, ci} is the codeword, in which pi is consisted of three RGB

SILTPs pi = {pri , pgi , pbi } , and ci is the weighting coefficient reflecting the con-
tribution that the pattern has made to the background.

In the initial period, the codebook is empty, and add the observed patterns
to the codebook with a small weighting coefficient ω0. ω0 is a constant for ini-
tialization, and it is set to be 1/T .

In the train period, calculate the distance between the pattern observed pnew
and the codewords in the codebook, then decide which codeword does the pattern
match to(if there is one) .The distance of two MC-SILTPs is calculated as Equ.4

d(pi, pj) = d(pri, p
r
j) + d(pgi , p

g
j ) + d(.pbi , p

b
j ) . (4)

Where d(pi, pj)is define as the number of different bits between the two local
patterns pi and pj.

A match is found if the distance between the new observation pnew and a
pattern of the codeword is zero, and then adjust the weighting coefficients of the
codewords as follows:

ck,t = ck,t−1 +Mω0 . (5)

Where M is 1 for the codeword matched,and 0 for the remaining codewords in
the codebook.

If no match is found, add a new codeword cbL+1 to the codebook, and cbL+1 =
{pL+1 = pnew, cL+1 = w0}. To improve the speed of the algorithm, we relocate
the codewords by the weighting coefficients in descending order.



Background Subtraction Based on Multi-channel SILTP 79

3.2 Foreground Detection

In foreground detection procedure, first determine the number of background
codewords by Equ.6

M = argmin
r

(
r∑

i=1

ci > Tb) . (6)

Where Tb is a sampling threshold deciding how many codewords may be regarded
as background. A bigger value for Tb can make the model contain more repetitive
background patterns. A small value for Tb may make the most frequency pattern
to represent the background.

Afterwards, compute the distances between the new pattern pnew and the
background codewords, and then choose the smallest one ds to be the distance of
the pattern and background model. Then the pattern is classified to background
or foreground by thresholding the distance ds with the detection parameter Ts.
The value of Ts can be got by experiments.

Then update the background model to keep it up with the changes in the
dynamic scenes. Compare the new pattern pnew to all the codewords in the
codebook, and get the nearest one cbk and the distance dk between them, the
subscript k is the index number of the corresponding codeword. Compare the
distance dk with the match threshold parameter Tm and update the codebook
in the following way.

If dk is equal to 0. A same pattern is found and update the matched code-
word cbk by increasing its coefficient as Equ.7 shows, and decreasing the other
codewords’ coefficients by Equ.8 to make sure that the sum of all the codewords’
coefficients in a codebook approximate 1.

ck,t = (1 − α)ck,t−1 + α . (7)

ci,t = (1− α)ci,t−1, i = 1...L, i! = k . (8)

Where α is a learning rate. Then if dk is between zero and Tm, the new pattern
is supposed to be similar to the background. Create a new codeword cbL+1 =
{pL+1 = pnew, cL+1 = ω1} and add it to the codebook. Otherwise, add a new
codeword cbL+1 = {pL+1 = pnew , cL+1 = w0} to the codebook. ω0 is a low initial
weight and ω1 is a higher initial weight. Since if the new comer is similar to one
of the codeword, we believe that it has a higher probability to be background,
so initialize it with a higher weight ω1.

4 Experimental Results

Four common videos for background subtraction algorithms from I2R [14] are
employed to evaluate the performance of the proposed approach. These videos
nearly cover all the challenges in background subtraction, such as dynamic
scenes, illumination changes and moving cast shadows.
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The proposed method is compared to four typical background subtraction
algorithms, the classical background model based on the mixture of Gaussians
[1],the recently developed PKDEω=1

siltp and PKDEω=1+2+3
mb−siltp in [7], the background

model based on hybrid feature space called VKS-lab+siltp [10]. In the exper-
iments, the scale factor τ is set to be 0.06 and choose 8 pixels from the 3*3
neighborhood region to get the MC-SILTPs. For every codebook Lmax = 24,
training number T = 50, initial weighting coefficient w0 = 1/T = 0.02. The
updating parameters are set as: Tb = 0.7, Ts = 12, Tm = 6, w1 = 0.05, α = 0.02.
We utilize a filter to clear up the small noises less than 15 pixels in foreground
mask just as the other methods have done in [7,10].

Fig.3 shows the foreground detection results of all these approaches in four
representative videos, which are also used by Liao et al.[7] and Narayana et
al.[10]. In the first scene AirPort, there are moving cast shadows along with
pedestrians. All the methods using texture features can deal with this problem,
except for MOG who is based on the gray value. Because the gray characteristics
of the background completely change as soft shadow casts on the floor, and differ
from the Gaussian distributions. Texture descriptors can keep invariant in such
circumstances, since they are based on the gray differences between the center
pixel and its neighborhoods. These differences do not vary, as the gray values of
a soft shadow region change to a certain extent simultaneously.

As for the second scene Lobby, PKDEω=1+2+3
mb−siltp and MC-SILTP do a better

job than the others. Although MOG can adapt to the illumination changes after
a long time of learning, it results in a very bad performance during the learning
time, and a large part of the background is misclassified as foreground. PKDEω=1

siltp

and VKS-lab+siltp misclassify some background pixels as foreground, because
SILTP can not work robustly in the flat and dark areas. The gray values of
pixels in such areas are small and similar, so SILTP is very variable and even
results in a bad description of the texture with zero patterns. PKDEω=1+2+3

mb−siltp

can fix this problem by taking a fusion of three different scale SILTP operators
to capture more structure information. MC-SILTP adapts to this situation in
feature level without any complicated background model strategy. This operator
extends from spatial space to feature space, and compares the differences between
different color channels. So it can work robustly in flat and dark areas, where
the differences in feature space are more reliable than that in spatial space.

In the third and forth columns of Fig.3, they are dynamic scenes indoor and
outdoor. Except that MOG misclassifies the sky and part of white board, all of
these methods do well with the dynamic scenes. This results demonstrate that
the proposed framework for background subtraction is performing well, it can
deal with dynamic scenes with a group of codewords.

According to the visual results in Fig.3, PKDEω=1+2+3
mb−siltp and MC-SILTP out-

perform the others and they are equally matched. A statistical comparison of
them is done by F-measure [7], which can measure the accuracy of foreground
segmentation, and it is defined as:

F =
2∗TP

2 ∗ TP + FN + FP
. (9)
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Frame

                       AirPort   Lobby    Curtain      WaterSurface

GroundTruth

MoG

=1
siltpPKDE

=1+2+3
mb-siltpPKDE

VKS-lab+siltp

MC-SILTP

Fig. 3. Detection results on four videos

where TP is true positives in the video sequence, FN is false negatives, FP is false
positives. The F-measure of these background subtraction algorithm is given by
Table 1, it indicates that MC-SILTP can do better in some situations. Fig.4 gives
a more detail illustration of PKDEω=1+2+3

mb−siltp and MC-SILTP.

Fig.4 shows the comparison of PKDEω=1+2+3
mb−siltp and MC-SILTP, in which

PKDEω=1+2+3
mb−siltp represents the highest level of the background subtraction
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Table 1. F-measure scores of five background subtraction algorithms on the four
videos

Video MoG PKDEω=1
siltp PKDEω=1+2+3

mb−siltp VKS-lab+siltp MC-SILTP

AirportHall 57.86 68.14 68.02 71.28 70.68
Curtain 50.53 91.16 92.40 94.07 94.43
Lobby 68.42 78.80 79.21 60.82 83.54

WaterSurface 63.52 74.30 83.15 92.16 75.72

algorithms recently. In the experiments, video ”Lobby” and ”Curtain” are chosen
to do the research, and there are a lot of objects with textureless parts in these
scenes. We can conclude from the results that MC-SILTP provides a much better
performance than PKDEω=1+2+3

mb−siltp .PKDEω=1+2+3
mb−siltp often loses parts of the people

and results in some big holes in the objects. In the contrast, MC-SILTP changes
from spatial space to feature space. So it can not be bound by the spatial non-
saliency, and still keep sensitive in textureless areas. MC-SILTP detects the entire
objects.

Frame

=1+2+3
mb-siltpPKDE

MC-SILTP

Fig. 4. Detection results of PKDEω=1+2+3
mb−siltp and MC-SILTP

5 Conclusion

In this paper, we propose a pixelwise background subtraction algorithm based
on a novel texture feature descriptor. The feature is extracted with an opera-
tor called MC-SILTP, which is developed from a powerful local image descrip-
tor demonstrated in [7] recently. MC-SILTP is proved to be better than SILTP
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by experiments, and it can work robustly on both the areas with abundant
texture information and textureless areas. Then we introduce MC-SILTP to
background subtraction, and propose to model the background with a group
of real observed MC-SILTP samples. Qualitative and quantitative comparisons
have been done between the proposed method with four other popular methods,
results demonstrate that our approach outperform the state-of-the-art. Besides,
this approach is very fast, because it mainly computes the distance of binary
pattern and does not include much floating point operation, except for updating
weighting coefficients.

In the future, we hope to do some research on the background subtraction
framework, and introduce fuse multiscale spatial information to get a better
performance. Furthermore, we believe that the proposed operator can be used
in face recognition.
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Elliptical Local Binary Patterns for Face Recognition
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Abstract. In this paper, we propose a novel variant of Local Binary Patterns
(LBP) so-called Elliptical Local Binary Patterns (ELBP) for face recognition. In
ELBP, we use horizontal and vertical ellipse patterns to capture micro facial fea-
ture of face images in both horizontal and vertical directions. ELBP is applied in
face recognition with dimension reduction step by Whitened Principal Compo-
nent Analysis (WPCA). Our experiment results upon AR, FERET and Surveil-
lance Cameras Face (SCface) databases prove the advantages of ELBP over LBP
for face recognition under different conditions and with ELBP WPCA we can get
very remarkable results.

1 Introduction

Face recognition is an interesting research study with many researchers from computer
vision and biometrics fields. In a face recognition system, feature extraction and dimen-
sion reduction are the most important phases. LBP [1] and Gabor wavelets based are
the most widely used methods for feature extraction. LBP label of each pixel of face
image is derived by comparing its gray value with neighboring pixels that lie on a cir-
cle whose center is the pixel itself. The LBP image obtained by LBP operator is then
divided into WxH (3 ≤ W,H ≤ 9) non-overlapped rectangular subregions to calcu-
late theirs histograms. The LBP feature vector of face image is built by concatenating
those histogram sequences. In order to reduce the LBP feature vectors’ size, uniform
patterns [1] are used. It is surprised that the first purpose of LBP was not for face recog-
nition but texture analysis [2]. Ahonen et al. [1] used LBP to extract micro feature of
facial images and then used template matching for classification and got very promis-
ing results. Other applications of LBP (related to face recognition) includes face detec-
tion [1], facial expression recognition [3], age estimation [4], gender classification [5],
etc. But after all, LBP method was most successfully applied to face recognition. In
comparison with Gabor wavelets based methods, LBP has some advantages: simple,
low computation cost, robust to illumination variations.

From the original LBP [1], numerous variants were proposed for face recognition in
recent years. In [6], Multi-scale Block LBP (MB-LBP) is formed by using block regions
instead of single pixel from input images. LBP can be considered as a special case
of MB-LBP when block region is one pixel. MB-LBP encodes both microstructures
and macrostructures of face image and provides a better presentation for face images.
Improved LBP (ILBP) is proposed in [7], the authors thresholding surrounding pixels
of each pixels with theirs mean gray values. ILBP is proved more effective than LBP in
face detection. In [8], Heikkil et al. compared center symmetric pairs of pixels to form
Center Symmetric LBP (CS-LBP). CS-LBP captures both micro feature and gradient
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feature of face images. CS-LBP feature vector’size is half of LBP feature vector’size
using the same circular pattern.

Besides the appearance of LBP variants, many researchers combined LBP with other
feature extraction methods for better performance. Zhang et al. [9] adopted the same
technique of using LBP as in [1] was adopted by on 40 Gabor Magnitude Pictures
(GMPs) to generate Local Gabor Binary Pattern Histogram Sequence (LGBPHS) fea-
ture vectors and performed template matching with histogram intersection distance
function for classification. The idea of applying LBP directly on Gabor Magnitude
Images (GMI) was also introduced by Nguyen et al. [10], but this time the authors
exploited WPCA for dimension reduction with cosine distance for recognition phase
and archived better performance. The LGBP feature vectors’ length is 40 times longer
than LBP but the recognition rates (in both [9] and [10]) were still very modest. Zhang
et al. [11] applied LBP operator on 90 Gabor Phase images (10 global real and imagine
images, 80 local real and imagine images) to form the Histogram of Gabor Phase Pat-
terns (HGPP) feature vector. The HGPP vector’s length is much longer than LGBP but
the performance of HGPP is even worse than LGBP [10] (see table 2 for more details).
Tan et al. [12] used feature fusion method to exploit both Gabor wavelets and LBP fea-
ture extraction methods. After building Gabor wavelets (at 5 scales and 8 orientations)
and LBP feature vectors, PCA was applied to reduce vectors’ length, the resulted vec-
tors were normalized by z-core normalization procedure. Finally, classification step was
proceeded with Kernel Discriminative Common Vectors (KDCV). This fusing method
gained higher recognition rates than LGBP and HGPP, but it did not solve the essential
drawback of Gabor wavelets based methods: heavy computation cost.

The purpose of feature extraction step in face recognition is to capture the most in-
trinsic and discriminative facial features of face images. The most important facial parts
of the human face are these eyes and the mouth. The natural shapes of human eyes and
mouth are ellipses. Furthermore, horizontal information play a very important role in
face recognition and the recognition performance is improved when we combines hor-
izontal with vertical information [13]. In this work, we propose a novel variant of LBP
so-called Elliptical LBP (ELBP) which use horizontal and vertical ellipse patterns to
form the ELBP feature presentation for face recognition. The concept of applying el-
liptical patterns in LBP was also used by S. Liao and A.C.S Chung [14] to build the
Elongated LBP. The authors used weighted factors for six regions of the face image
and four different elliptical patterns (in four directions) to encode the anisotropic infor-
mation of the image. In our ELBP, we use only one horizontal ellipse and one vertical
ellipse for capturing the micro facial features of face image. Weighted factors are not
used in producing the histogram sequence of ELBP images. In applying ELBP for face
recognition, we use the template matching method (the same as Ahonen et al. [1]) and
advanced method that uses cosine distance function for classification and WPCA for di-
mension reduction. The recognition results on AR, FERET and SCface database show
that the using of ELBP can get very good performance in different conditions. The rest
of this paper is organized as follow. In section 2 we present the details of ELBP for face
recognition. Experiment results, discussion on ELBP parameters and running time of
ELBP WPCA are given in Section 3. Section 4 is the conclusion.
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2 ELBP for Face Recognition

2.1 Feature Extraction by ELBP

Local Binary Pattern Overview: At each pixel (xc, yc) of input image with gray value
gc, its LBP label is calculated by comparing gc with gray values of its P surrounding
pixels at R distance (these pixels are located on a circle of radius R-see Fig. 1 (a-b) for
more details) as:

LBPP,R(xc, yc) =

P∑
i=1

s(gP,R
i − gc)2

i−1 (1)

where s(x) is defined as:

s(x) =

{
1 if x ≥ 0;
0 if x < 0.

(2)

In Fig. 3 one can see an image and its LBP 8,1 version.

Elliptical Local Binary Pattern (ELBP): In ELBP, at each pixel (xc, yc), we consider
its neighboring pixels that lie on an ellipse (see Fig. 1 (c-d)) with (xc, yc) is the center.
ELBP of (xc, yc) with P surrounding pixels at (R1, R2) distances is computed as:

ELBPP,R1,R2(xc, yc) =
P∑
i=1

s(gP,R1,R2
i − gc)2

i−1 (3)

S(x) function is defined as Eq. (2).

(a) (b) (c) (d)

Fig. 1. LBP8,1, LBP8,2, ELBP8,2,1 and ELBP8,1,2 patterns

In details, coordinate of the ith neighboring pixel of (xc, yc) is calculated using the
formulas:

angle step = 2 ∗ π/P (4)

xi = xc +R1 ∗ cos((i − 1) ∗ angle step)) (5)

yi = yc −R2 ∗ sin((i− 1) ∗ angle step)) (6)

Illustration of ELBP calculation for one pixel can be seen in Fig. 2.
In [15], authors indicated that eyes and mouth are the most important facial features

in face recognition. The natural shapes of human eyes and mouth are ellipses. So hor-
izontal ELBP is more suitable and more efficient than LBP in features extraction for
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Fig. 2. Compute ELBP label of one pixel using ELBP8,2,1

(a) (b) (c) (d)

Fig. 3. An image (a) and its LBP8,1 (b), ELBP8,3,1 (c), ELBP8,4,3 (d)

face recognition. When R1 = R2, ELBP is LBP, when R1 < R2 we have vertical
ellipse and if R1 > R2 we have horizontal ellipse, which matches most for human eyes
and mouth. In this work we use both horizontal and vertical ELBP to encode the mi-
cro facial feature in both directions because the combination of horizontal and vertical
information of the face image gives the best recognition performance [13].

Building ELBP Feature Vector: For building the ELBP feature vector of input face
images, we use ELBP operator to generate ELBP image (in Fig. 3 one can see an image
and its ELBP images) and apply the similar methods as Ahonen et al. [1]. When only
horizontal ELBP is used, we firstly generate the ELBP image for the input image, then
the ELBP image is divided into sub non-overlapped rectangular regions. In the next
step, histogram sequences of sub regions are calculated and then concatenated to form
the ELBP feature vector, uniform patterns [1] are employed in this step to reduce the
vector’s length. In the case of using both horizontal and vertical ELBP, we apply two
symmetric ELBP operators ELBPP,R1,R2 and ELBPP,R2,R1 to produce two ELBP
images. Then each ELBP feature vector corresponding to ELBP image is computed.
After that the two vectors are concatenated to form the complete horizontal and vertical
ELBP feature vector for the given face image. All these steps are illustrated in Fig. 4.

The ELBP image is divided into WxH sub regions to build feature vector. So nor-
mally, with (8, R1, R2) neighborhood patterns the horizontal ELBP feature vector
length is W*H*256 and the complete (both horizontal and vertical) ELBP feature vec-
tor length is 2*W*H*256. A LBP value is called uniform pattern [1] if its binary rep-
resentation has no more than two bitwise transitions from 0 to 1 and vice versa. When
uniform patterns are applied, the ELBP feature vector length is reduced about 4 times
(from W*H*256 down to W*H*59 and from 2*W*H*256 down to 2*W*H*59). In this
paper, we use uniform patterns to speed up the ELBP calculations and to save required
memory for storing ELBP feature vectors.
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(a)

Fig. 4. Steps for ELBP feature vector computation

2.2 ELBP Template Matching for Face Recognition

Ahonen et al. [1] used template matching method with k-Nearest Neighbor (kNN) and
Chi Square distance functions (non-weighted and weighted) for classification. Our tests
in this work use non-weighted Chi Square distance. The Chi Square distance between
two vectors X = [x1x2...xM ] and Y = [y1y2...yM ] is:

distchi(X,Y ) =

M∑
i=0

(xi − yi)
2

xi + yi
(7)

2.3 ELBP WPCA Face Recognition

PCA is the most popular method used in dimension reduction step of single image
per person face recognition systems. WPCA is PCA with an extra step: whitening the
eigenvectors by eigenvalues. PCA has two shortcomings: the performance of PCA is de-
graded when using its leading eigenvalues and the weak discriminating in its eigenvec-
tors. The whitening step is simple but very effective, it helps to rectify the shortcomings
of PCA and thus makes the face recognition systems get better performance.

Whitened PCA: From N input face images, we produce N feature vectors Xi by
applying ELBP operator. Then these vectors are mean-subtracted: Φi = Xi − X̄,

X̄ = 1
N

N∑
i=1

Xi. After that, we compute the covariance matrix C: C = ATA,

A = [Φ1Φ2...ΦN ], Cij = ΦT
i Φj . N eigenvectors vi corresponding to N principal eigen-

values λi are calculated by eigenvalue decomposition of matrix C and the projection
matrix UPCA is generated: UPCA = [u1u2...uN ], ui = Avi/

√
λi. That is the standard

PCA algorithm [16], in WPCA, the eigenvectors are normalized by whitening factor
1/

√
λi as: UWPCA = [u1u2...uN ], ui = Avi/λi.

In the classification step, we use cosine distance function to classify the face images.
The cosine distance between two vectors X and Y is calculated as:

distcos(X,Y ) = − XTY

||X ||||Y || (8)
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3 Experiment Results

For evaluating ELBP in face recognition, we proceeded experiments on AR, FERET
and SCface face databases and compared the recognition rates with other methods. The
template matching method was used on AR database for testing the facial expression
changes and occlusion circumstances. The WPCA based and template matching meth-
ods performed on FERET database to evaluate the performance of ELBP in a large scale
face database. Experiments on SCface database was conducted to prove the effective-
ness of ELBP in video surveillance context. We used notation “ELBP (h)” to indicate
that experiment use only horizontal ELBP descriptor and “ELBP (h+v)” for the case of
using both horizontal and vertical ELBP descriptors to build the feature vector. We also
made some benchmark tests to evaluate running time of ELBP WPCA. All of our ex-
periments in this paper were conducted on a Dell Precision T3400 desktop (Intel Core
2 Duo E8400 @ 3.00 Ghz, 3.2 Gb RAM) with Windows XP SP3, the programming
environment is Matlab 2010b.

3.1 Results on AR Database

(a) (b) (c) (d) (e) (f)

Fig. 5. Sample images from AR database

The AR face database [17] has about 4000 color face images of 134 people (75 men and
59 women). These images were taken under two sessions with similar conditions. We
proceed three experiments: experiment 1 uses images from session 1, experiment 2 uses
images from session 2 and experiment 3 uses images from both sessions. Experiment
1 and experiments 2 use the first images (neutral expression - see Fig. 5 (a)) of each
session for gallery set and all others images from the same session with different facial
expression variations and occlusions: smile, anger, scream, sun-glasses (Glasses), and
scarf (see Fig. 5 (b-f)) are used for probe sets. Experiment 3 is formed by choosing
first images of session 1 for the gallery and images of session 2 for probe sets. We
cropped the images down to 128x128 resolution and then preprocessed them by retinal
processing [18] for illumination normalization.

From table 1 we can conclude that horizontal ELBP is more powerful than LBP in
encoding face micro features in facial expressions (especially in Scream expression in
session 1 test) and occlusions (Glasses and Scarf). Our results with horizontal ELBP are
even more better than other state-of-the-art methods: S-LNMF [19] and method in [20].
Another observation from table 1 is that the fusion of horizontal and vertical ELBP in
feature extraction gives better performance than using single horizontal pattern. The
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Table 1. Rank-1 RRs (%) comparison with other modern systems on AR database using the same
evaluation method

Method Smile Anger Scream Glasses Scarf
Experiment 1

S-LNMF [19] 96.0 N/A1 49.0 84.0 87.0
LGBPHS [9] N/A1 80.0 98.0
LBP

100
74.4 76.9 98.5

ELBP (h) 79.7 85.1 98.5
ELBP (h+v) 81.2 91.0 99.3

Experiment 2
S-LNMF [19] 96.0 N/A1 54.0 66.0 89.0
LGBPHS [9] N/A1 62.0 96.0
LBP

100
74.8 81.5 97.5

ELBP (h) 75.6 84.9 98.3
ELBP (h+v) 79.0 87.4 98.3

Experiment 3
S-LNMF [19] 62.0 N/A1 27.0 49.0 55.0
Results of [20] N/A1 52.3 54.2 81.3
LBP 95.0 96.6 56.3 57.2 95.0
ELBP (h) 95.0 98.3 57.2 57.2 95.0
ELBP (h+v) 96.6 98.3 62.2 65.6 95.8

1 N/A: Not available result

recognition rates with scream image sets are lowest because the shapes of human eyes
and mouth change most when they scream. The recognition rates on scarf probe sets
are higher than on sun-glasses probe sets because with glasses the most important facial
feature for face recognition, the eyes, are hidden. The combination of high and stable
results on scarf sets (the minimum is 95%) and corresponding rates upon glasses probe
sets points out that the upper part (above the mouth) of the face is much more important
than the lower part in face recognition. The results of experiment 3 show that aging
condition can degrade face recognition performance dramatically.

3.2 Results on FERET Database

The FERET face database is one of the most widely databases used for evaluating the
performance of face recognition systems. In this paper, we used the same protocol as

(a) Fa (b) Fb (c) Fc (d) Dup1 (e) Dup2

Fig. 6. Sample images from FERET database
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in [21]. FERET contains five frontal image sets named Fa (1196 images of 1196 sub-
jects), Fb (1195 images of 1195 subjects with different facial expressions), Fc (194
images of 194 subjects under varying illumination conditions), Dup 1 (722 images of
722 subjects) and Dup 2 (234 images of 234 subjects) (see Fig. 6 (a-e)). The images in
Dup 1 and Dup 2 sets are taken within one year and two years time span after those in
Fa set. Fa set is used for gallery set. Fb, Fc, Dup 1 and Dup 2 sets are used for probe
sets in Fb, Fc, Dup 1, Dup 2 tests respectively. All the images were cropped to 128x128
pixels resolution and then preprocessed by the retinal model [18] for reducing the effect
of the illumination variations.

Table 2. Rank-1 RRs (%) comparison with other state-of-the-art results on FERET database using
the standard evaluation protocol [21]

Method Fb Fc Dup 1 Dup 2 Average
LBP 96.2 92.3 70.4 68.4 85.2
ELBP(h) 96.7 94.9 71.3 70.1 86.1
ELBP(h+v) 97.0 95.4 72.0 71.0 86.6
LGBPHS [9] 98.0 97.0 74.0 71.0 87.8
HGPP [11] 97.6 89.9 77.3 76.1 88.7
LGBP [10] 98.1 98.9 83.8 81.6 92.1
LBP WPCA 98.7 99.0 83.9 78.2 92.1
ELBP(h) WPCA 99.3 99.0 87.7 83.8 94.2
FGLBP [12] 98.0 98.0 90.0 85.0 94.2
ELBP(h+v) WPCA 99.4 100 89.1 86.8 95.0

The result of [14] was not included in this table be-
cause: the authors only provided the average RR
(93.2%) and they did not follow the standard pro-
tocol [21] (They used a small subset of FERET
database).

The comparison results in table 2 confirm that horizontal ELBP is more robust than
LBP in micro facial features extraction (in both template matching and WPCA meth-
ods), especially in Dup 2 case. It is obvious that the using of horizontal and vertical
ELBP gives very impressive improvement recognition rates in comparison with origi-
nal LBP and single horizontal ELBP (the most significant improvement cases are in the
aging condition: Dup 1 and Dup 2 experiments). The perfect recognition rate (100%)
upon Fc probe set of ELBP(h+v) WPCA illustrates the effectiveness of ELBP under
illumination variations.

3.3 Results on SCface Database

The SCface [22] database is a real video surveillance face database for face recognition.
Until now, there has not been many face recognition systems evaluating on SCface due
to its challenging real-world conditions. The database contains images of 130 subjects
taken from five cameras in daylight time, two cameras in night mode and one camera in
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(a) Frontal mugshots (b) Cam1 3 (c) Cam3 3

Fig. 7. Sample images from SCface database

IR mode at three different distances. In this work, we follow the same proposed test pro-
tocols as in [22] to proceed two experiments: DayTime and NightTime. Frontal facial
mugshot images (Figs. 7 (a) show examples) were used for gallery set and other images
(see Figs. 7 (b-c) for some examples) were used for probe sets. In DayTime experiment
we have 15 probe sets containing images from 5 cameras at 3 distances under day time
condition. NightTime test has 6 probe sets that include images from 2 cameras working
in nigh time at 3 distances. In total, we use 130 images for training (also for the Gallery
set), 1950 probe images in DayTime test and 900 probe images in NightTime protocol.
All experiment images were cropped to 48x48 pixels resolution (using the eyes’ coor-
dinates from the database) and then preprocessed by standard histogram equalization
for illumination normalization.

Table 3. Rank-1 RRs (%) comparison with other state-of-the-art results on SCface database using
the DayTime protocol [22]

Camera/Distance PCA[22] DSR[23] LBP WPCA ELBP(h) WPCA ELBP(h+v) WPCA
cam1 1 2.3

N/A

43.1 43.1 43.1
cam1 2 7.7 50.0 51.5 56.2
cam1 3 5.4 41.5 41.5 45.4
cam2 1 3.1 31.5 36.2 36.9
cam2 2 7.7 44.6 48.5 50.8
cam2 3 3.9 34.6 35.4 42.3
cam3 1 1.5 20.8 25.4 34.6
cam3 2 3.9 38.5 37.7 46.9
cam3 3 7.7 49.2 49.2 51.5
cam4 1 0.7 30.0 32.3 32.3
cam4 2 3.9 50.0 50.0 50.0
cam4 3 8.5 44.6 46.2 50.8
cam5 1 1.5 28.5 31.5 36.2
cam5 2 7.7 26.9 30.8 32.3
cam5 3 5.4 23.9 29.2 31.5
Average 4.7 20.2 37.2 39.2 42.7

1 N/A: Not available result.

The results from table 3 and table 4 show that our ELBP WPCA method outperforms
other state of the art systems, especially when compared to the baseline PCA [22] (our
average result in DayTime experiment is about nine times higher than in [22]). These
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Table 4. Rank-1 RRs (%) comparison with other state-of-the-art results on SCface database using
the NightTime protocol [22]

Camera/Distance PCA[22] LBP WPCA ELBP(h) WPCA ELBP(h+v) WPCA
cam6 1 1.5 6.9 9.2 9.2
cam6 2 3.1 13.9 14.6 15.4
cam6 3 3.9 19.2 19.2 25.4
cam7 1 0.7 10.0 10.8 13.1
cam7 2 5.4 11.5 10.8 13.1
cam7 3 4.6 9.2 13.9 13.9
Average 3.2 11.8 13.1 15.0

results (table 3 and table 4) also prove that horizontal ELBP descriptor is more robust
than LBP in micro facial features extraction (under both day time and night time con-
ditions at three distances) and again (as evaluations on AR and FERRET databases),
the combination of horizontal and vertical ELBP brings the best performance. To the
best of our knowledge, our results on SCface database are the first complete and highest
results reported in the literature so far.

It is clear that the results on SCface database are much lower than the recognition
rates on AR database (table 1) and on FERET database (table 2). The very low reso-
lution (small in size and very poor quality) of probe images in SCface database is the
cause of those results.

3.4 ELBP Parameters

The original LBP [1] for face recognition used LBP 8,1 and LBP 8,2 operators on 7x7
sub regions of input images (128x128 resolution) to get the best performance. Our best
results on AR database use LBP 8,5 (9x9 sub regions), ELBP 8,5,3 and ELBP 8,3,5

(9x9 sub regions). The LBP 8,5 (9x9 sub regions), ELBP 8,5,3 and ELBP 8,3,5 (9x9
sub regions) are used with FERET database. On SCface database, the LBP 8,3 (6x6 sub
regions), ELBP 8,3,5 and ELBP 8,5,3 (6x6 sub regions) give the highest recognition
rates. All this information about ELBP’s parameters indicates that the best ratio between
horizontal radius and vertical radius of ELBP is 1.67(5/3).

3.5 ELBP WPCA Running Time

One of the most important aspect of applying a face recognition system in real life
is the computation cost, particularly under real-time applications like camera surveil-
lance. For estimating computational cost of ELBP WPCA, we compare its running time
(the total time for feature extraction, dimension reduction and classification phases)
on FERET and SCface databases with required time for generating Gabor wavelets
representations (at 5 scales and 8 orientations) of 1196 Fa set’s images from FERET
database. We use 80x88 resolution images for doing Gabor wavelets like in [9] for a
fair comparison. Each benchmark is run for 10 times and the average results are re-
ported in table 5.



Elliptical Local Binary Patterns for Face Recognition 95

Table 5. Running time (s) of ELBP WPCA in comparison with Gabor wavelets calculation

Database Train/test images Sub regions Image size ELBP(h) WPCA ELBP(h+v) WPCA
FERET 1196-2345 9x9 128x128 50.4 94.3
SCface 130-2730 6x6 48x48 16.4 32.1
Gabor wavelets on Fa set of FERET 80x88 108.1

It can be seen from table 5 that ELBP WPCA is very fast, horizontal ELBP WPCA
even finishes recognition all four probe sets of FERET within a minute (just 50.4 secs).
In addition, ELBP (h+v) WPCA is faster than generating Gabor wavelets output for
1196 images of Fa set (although the image size in Gabor wavelets calculation is much
smaller then in ELBP). We also notice that ELBP feature extraction process only uses
one CPU core while Gabor wavelets uses both 2 CPU cores on our machine. On SCface
database, ELBP WPCA is super fast because the image size is quite small.

4 Conclusion

This work introduces a novel variant of LBP operator so-called ELBP for face recogni-
tion. We use a horizontal and a vertical ellipse patterns to form the ELBP face descriptor
for feature extraction. Then ELBP images are divided into sub rectangular regions to
build their ELBP histogram sequences. The ELBP feature vector is generated by con-
catenating sub regions’ histogram sequences. In dimension reduction phase, we use
WPCA for better recognition performance. The experimental evaluations on AR, and
FERET databases show that, ELBP is more efficient than LBP in encoding micro facial
features and ELBP can work well under various conditions such as partial occlusion,
expression variations and aging. Additionally, the recognition performance on SCface
database proves the effectiveness of ELBP for the problem of face recognition in video
surveillance context. The original LBP is popular for its robustness to rotation because it
uses circular patterns. While our results in this paper demonstrate advantages of ELBP
over LBP for face recognition, we do not suggest that ELBP is robust against rotation.
We strongly believe that ELBP can archive better results in the research fields related
to face recognition, where LBP was applied.
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Abstract. A local matching approach, known as Electoral College,
where each block contributes one single vote to the final decision, which
is generated by a simply majority voting from all local binary decisions,
has been proved to be stable for political elections as well as general pat-
tern recognition. Given the registration difficulties caused by the non-
rigidity of human face images, block LBP displacement is introduced
so that an Electoral College, where a local decision is made on LBP
statistics for each block, can be applied to face recognition problems.
Extensive experiments are carried out and have demonstrated the out-
standing performances of the block LBP displacement based Electoral
College in comparison with the original LBP approach. It is expected
and shown by experiments that the approach also applies to descriptor
approaches other than LBP.

1 Introduction

As known as the two most famous voting schemes in political election, national
voting, also known as direct popular voting, gets its name by directly appoint-
ing the final winner the one who gets most votes, where each voter of the nation
contributes one vote to the final decision in a single winner election case; while in
regional voting, or Electoral College, a direct popular voting is firstly performed
within each region to generate the vote of this region on a winner-take-all basis,
and then a second stage of popular voting by the regions takes place over the nation
to finally select the winner. It has been proved that Electoral College is more stable
than the national voting in political elections as well as in pattern recognition [1,2].
If we can take each pixel of an image as one voter of a nation, the above mentioned
two voting schemes can be applied to patten recognition problems where the an-
swer to “do the two images belong to the same category” counts on the voting from
the pixels of the two images. Due to the fact that direct pixel to pixel comparison
does not make sense in pattern recognition, the decision making process in popu-
lar voting and the local decisionmaking process in each region in Electoral College
usually perform in the form of feature or descriptor matching, where features or
descriptors are extracted from an entire image or each region of an image.

Face recognition is a special pattern recognition. Subspace approaches consti-
tute a traditional category of approaches for face recognition. It has been shown
[3,4] that the performance of a subspace approach can be improved when it
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is embedded into Electoral College. Descriptor based approaches are now very
popular in face recognition research. A key step of a “sucessful” descriptor based
approach always is finding a “better” descriptor for the face images, on which
the similarity calculations are based. Though finding a “better” descriptor is an
open issue 1, in recent years, descriptor approaches gained great interests, with
LBP (local binary patterns) [5] as one of the most known well performing texture
descriptors. In LBP approach, pixels over a face image is codified into an LBP
map using the LBP operators, the LBP map is then divided into windows, where
histograms of pixel LBP codes are obtained, and the concatenation of window
level histograms are used as the descriptor of the face image. We can see that,
LBP approach presents three levels of locality [5]: pixel level LBP code for each
pixel, regional level statistics for each window and a global level descriptor of an
entire face image.

Considering Electoral College and LBP descriptor, the former aiming at a
more stable final decision given a certain description of the images and the latter
offering an effective descriptor for the face image represented by pixel values, this
paper aims to adopt LBP in Electoral College scheme in face recognition. That
is, we first divide a face image into blocks, apply LBP approach to every block
to generate a local decision for this block, and then use Electoral College to
make the final decision from all decisions of the blocks. A similar approach has
been introduced by Ji etal. [6], where Borda count is used instead of Electoral
College. However, it is easy to see that the performance of such an integration
works are seriously depends on whether the corresponding blocks of face images
are corresponding to same face areas. That is to say, alignment difficulties should
be taken into consideration. As we know that human faces are never rigid: people
have face expressions showing their feelings, they gain or lose weight on the faces
and they grow older2. When it is reflected on the pictures, more factors come into
affection: angle of the picture taken, accessories such as glasses and earrings, etc..
This all lead to the fact that there is no exactly precise alignment of face images
manually or automatically, even if the images are from the same person. Though
we are aiming at an impossible ideal alignment, there are always approaches that
lead us close. Considering the biological feather of human faces, we should admit
the fact that faces are “regionally variable, globally stable”, that is, when we try
to align two images from the same person, there would always be a kind of
“upper” limit of the offset.

Based on this fact, we adopt the idea of displacement into our algorithm.
Specifically, when we calculate the similarity of two corresponding blocks of
images, aiming at approaching the better alignment, we try to shift one or both
of the blocks within a broader area so as to cover all possible positions that a
precise alignment would be, given a certain upper bound of the offset.

Based on discussion above, we apply LBP approach as descriptor of two
face images to be compared with in the Electoral College Framework, which
we name as LBP Displacement Local Matching Approach (LBP-DLMA). In

1 Indeed there is no definition of “better”.
2 Or, age backwards as Benjamin Button did.
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this approach, to simulate a relatively precise alignment, the idea of shifting is
adopted.

Since the LBP-DLMA retains its advantage of both LBP descriptor and Elec-
toral College, a better performance over original LBP approach can be expected.
We can also expect that this approach will still work if LBP is replaced with
other descriptors.

The remaining of the paper is organized as follows: The concepts and the
approach are given in Section 2; the experimental results are presented in Section
3; we further demonstrate the extensibility of our approach to other descriptors in
Section 4; the discussions and conclusion remarks shall be discussed in Section 5.

2 LBP Displacement and LBP-DLMA

2.1 LBP Displacement Concepts

Assume that we have an (m+2s)×(n+2s) LBP map of a face image. By removing
i, j, k, l pixels from top, bottom, leftmost and rightmost margins (i, j, k, l ≥ 0,
i + j = 2s, k + l = 2s), we obtain (2s + 1)2 slightly smaller LBP maps of size
m × n. For each of these m × n LBP maps, we partition it into K × L blocks
(K blocks per column, and L blocks per row), The set of corresponding blocks
of all these m× n maps are called a pile of LBP displacement blocks, or a LBP
displacement pile.

Note that, there is a concept window in LBP approach, where the statistic of
LBP labels is obtained. The concept “window” still exists in LBP displacement:
in each block, there are one or more windows where the statistics of LBP labels
are obtained. The concatenation of the statistics of all windows in a block is
called a block level LBP description.

The set of all the piles of LBP displacement blocks for a face image is called
the LBP displacement description of the face image.

As an example, Figure 1(a) is a 17 × 22 LBP map of a face image, we let
s = 1. By removing 2 pixels from top, one pixel each from leftmost and rightmost
margins, a smaller 15× 20 sized LBP map can be obtained as shown in Figure
1(b). We partition this map into 12 blocks, each of size 5× 5. There are a total
of 9 such 15× 20 sized LBP maps corresponding to different values of i, j, k and
l, each of which can be partitioned into 12 blocks. A pile of LBP displacement
blocks, consisting the blocks of all these partitioned 15 × 20 sized LBP maps
corresponding to the green colored block of Figure 1(b), are shown in Figures
2(a) - 2(i). Note that the 8th block, Figure 2(h), in the pile is the green colored
block of the 15× 20 sized LBP map of Figure 1(b). We shall have 12 such LBP
displacement piles – the set of all these 12 LBP displacement piles is the LBP
displacement description of the face image.

2.2 LBP Displacement Based Local Matching Approach

A descriptor approach for pattern recognition is always associated with a simi-
larity metric. A typical LBP approach works as follows: first the LBP maps of
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38 38 39 39 32 39 58 58 57 57 58 58 19 18 18 25 53
58 38 39 58 6 6 1 0 58 58 4 0 13 26 26 25 58
58 58 58 6 58 6 0 58 58 58 0 4 13 13 13 12 25
38 0 16 15 15 10 10 9 10 14 15 15 58 7 0 11 25
22 16 20 21 21 10 33 33 58 58 20 14 15 34 33 8 7
0 58 19 13 14 57 35 33 58 58 20 57 57 10 33 58 7
17 19 27 57 57 46 46 39 22 22 27 57 57 46 32 32 4
26 26 57 57 58 43 57 45 0 23 55 53 58 50 57 46 4
54 55 54 42 48 48 49 44 22 58 51 52 48 42 45 57 58
51 51 47 48 48 58 44 38 4 23 51 51 48 48 43 44 58
52 52 0 16 17 58 58 31 4 0 58 58 30 58 48 23 16
58 17 0 11 11 35 58 3 4 0 58 58 30 29 0 17 17
58 58 58 13 28 15 3 6 5 8 58 15 34 1 0 0 19
58 20 14 41 27 58 57 57 9 40 57 58 46 6 4 8 58
19 20 57 58 58 56 57 56 58 57 57 58 46 57 6 8 58
19 57 28 0 0 11 11 58 58 1 0 0 58 57 57 33 33
19 26 58 28 1 0 0 58 58 0 58 11 11 58 41 58 33
26 18 58 56 56 57 57 58 58 57 57 46 46 58 58 32 39
26 18 58 58 58 58 58 58 58 56 57 57 46 58 58 32 41
26 19 58 58 0 0 58 11 0 58 11 0 58 58 58 40 38
25 28 35 46 58 0 21 15 58 58 0 0 58 35 34 40 38
18 54 57 56 58 56 56 57 57 46 46 58 58 57 57 38 38

(a) Original LBP Map of Size 17× 22

58 58 6 58 6 0 58 58 58 0 4 13 13 13 12
0 16 15 15 10 10 9 10 14 15 15 58 7 0 11
16 20 21 21 10 33 33 58 58 20 14 15 34 33 8
58 19 13 14 57 35 33 58 58 20 57 57 10 33 58
19 27 57 57 46 46 39 22 22 27 57 57 46 32 32
26 57 57 58 43 57 45 0 23 55 53 58 50 57 46
55 54 42 48 48 49 44 22 58 51 52 48 42 45 57
51 47 48 48 58 44 38 4 23 51 51 48 48 43 44
52 0 16 17 58 58 31 4 0 58 58 30 58 48 23
17 0 11 11 35 58 3 4 0 58 58 30 29 0 17
58 58 13 28 15 3 6 5 8 58 15 34 1 0 0
20 14 41 27 58 57 57 9 40 57 58 46 6 4 8
20 57 58 58 56 57 56 58 57 57 58 46 57 6 8
57 28 0 0 11 11 58 58 1 0 0 58 57 57 33
26 58 28 1 0 0 58 58 0 58 11 11 58 41 58
18 58 56 56 57 57 58 58 57 57 46 46 58 58 32
18 58 58 58 58 58 58 58 56 57 57 46 58 58 32
19 58 58 0 0 58 11 0 58 11 0 58 58 58 40
28 35 46 58 0 21 15 58 58 0 0 58 35 34 40
54 57 56 58 56 56 57 57 46 46 58 58 57 57 38

(b) 15× 20 Sized LBP Map From (a)

Fig. 1. LBP Map

39 58 58 57 57
6 1 0 58 58
6 0 58 58 58
10 10 9 10 14
10 33 33 58 58

(a) Block 1

58 58 57 57 58
1 0 58 58 4
0 58 58 58 0
10 9 10 14 15
33 33 58 58 20

(b) Block 2

58 57 57 58 58
0 58 58 4 0
58 58 58 0 4
9 10 14 15 15
33 58 58 20 14

(c) Block 3

6 1 0 58 58
6 0 58 58 58
10 10 9 10 14
10 33 33 58 58
57 35 33 58 58

(d) Block 4

1 0 58 58 4
0 58 58 58 0
10 9 10 14 15
33 33 58 58 20
35 33 58 58 20

(e) Block 5

0 58 58 4 0
58 58 58 0 4
9 10 14 15 15
33 58 58 20 14
33 58 58 20 57

(f) Block 6

6 0 58 58 58
10 10 9 10 14
10 33 33 58 58
57 35 33 58 58
46 46 39 22 22

(g) Block 7

0 58 58 58 0
10 9 10 14 15
33 33 58 58 20
35 33 58 58 20
46 39 22 22 27

(h) Block 8

58 58 58 0 4
9 10 14 15 15
33 58 58 20 14
33 58 58 20 57
39 22 22 27 57

(i) Block 9

Fig. 2. A Pile of LBP Displacement Blocks of the LBP Map in Figure 1(a)

images are generated and divided into windows where statistics of LBP labels
are obtained; the window statistics of all windows in each LBP map are concate-
nated into a global LBP description; finally the similarities among these global
LBP descriptions are calculated in order to make recognition decisions.

The typical metrics for calculation the similarities between two global LBP
descriptions (of two images, of course) are Euclidean Distance, Histogram In-
tersection and Chi square statistic [5]. We adopt them to the calculation of the
similarities between the block level LBP descriptions of two LBP blocks. Note
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that in each block, there are one or more windows; the block level LBP descrip-
tion is the concatenation of window level LBP statistics.

Assuming that the similarity between two LBP blocks b1 and b2 is defined by
Sim(b1, b2), we define the similaity between two piles P1 and P2 to be

Sim(P1, P2) = min
b1∈P1,b2∈P2

Sim(b1, b2). (1)

The purpose of the introducing block LBP displacement is to conquer the (local)
registration difficulties. We can understand that, when comparing a probe with a
gallery, since “shifting” the position of a block in the probe is “almost” equivalent
to “shifting” the position of the corresponding block in the gallery. Therefore,
to reduce the time complexity, we always let s = 0 for a probe image, that is,
we let each LBP block pile in a probe consist of only one LBP block.

Assume that we want to match a probe P against a gallery set of T images,
the LBP Displacement based Local Matching Approach is shown in Table 1.

3 Experiments

Our experiments are carried on FERET [7], “Faces in the Wild” (LFW) [17] and
FRGC [8]. LBP descriptor involves a few parameters. In all our experiments, as
suggested in [5], we choose the circle of radius to be 2 and the number of sampling
points distributed a circle of radius 2 to be 8. In all our experiments, we divide
images into 5× 5 blocks, each with 7× 7 windows. For the parameter s, we use
s = 3. That is, in the first step of generating the smaller LBP map (see Item
2.1.1 of Section A in Table 1), we allow the removal of i and 6 − i pixels from
the top and the bottom margins respectively, j and 6 − j pixels from the left
and the right margins respectively, where 0 ≤ i, j ≤ 6. To further reduce the
number of LBP displacement blocks in each pile, we restrict the relative offset by
restricting |3− i|+ |3−j| ≤ 4. It is understandable that, we may further improve
the accuracies if we further adjust these parameters on a “trial and error” base.
But we trust that such adjustment in an academic paper does not have much
academic values.3

3.1 FERET

FERET database [7], the datebase we carry our experiments on, consists of 14051
gray-scale images from 1199 individuals. The images vary in lighting conditions,
facial expressions, poses, etc. Following most of the protocols of the experiments
on FERET (eg. [5]), five sets of FERET are used: Fa gallery set that contains
images of 1196 subjects, one image for each subject; Fb probe set that contains
1195 face images of the subjects in Fa but with alternative facial expressions;
Fc probe set that contains 194 face images taken under different illumination
conditions on the same day as the corresponding image in Fa was taken; Dup1

3 “If you torture the data long enough, it will confess.”—Ronald Coase.



102 L. Chen and L. Yan

Table 1. LBP Displacement based Local Matching Approach

Perimeters Chosen: Number of Piles in Each Image c × l (c piles per column, l
piles per row), Shifting Value s, Number of Windows per Block wc × wl (wc piles per
column, wl piles per row).
A. Off-Line Gallary Image LBP Displacement Discription Construction:
Require: G, a gallery of m× n sized face images; the size of the gallery is T .
For each image in G
1. Obtain the pixel label map by calculating the LBP pattern of each pixel (Note:

The label map is slight smaller than m×n since the pixels on the boundaries may
not have a label.)

2. For i = 0 to 2s
2.1. For j = 0 to 2s

2.1.1. Remove i, 2s− i, j and 2s−j pixels from the leftmost, rightmost, topmost
and bottommost boundaries of the label map. (Note: as a total, there are
(2s+ 1)2 label maps.)

2.1.2. Partition the label map into c× l blocks; partition each block into wc ×wl

windows, where we obtain the LBP label statistics (histogram of pixel
labels); then concatenate the LBP label statistics of all windows in each
block into a block level LBP description.

3. obtain the LBP displacement description of the galary image by piling up the
corresponding block level LBP descriptions into each pile.

B. On-Line Face Recognition:
Require: P is an m× n sized probe image.

1. Obtain the LBP displacement description for P as follows:
1.1. Obtain the pixel label map by calculating the LBP pattern of each pixel.
1.2. Remove s pixels from all four sides of the label map.
1.3. Partition the label map into c× l blocks.
1.4. Partition each block into wc ×wl windows, where we obtain window level LBP

statistics, then concatenate the window level LBP statistics into a block level
LBP description; each block LBP description constructs a LBP displacement
pile; the set of all LBP piles is the LBP displacement description.

2. Do classification as follows:
2.1 Set vote counters Vt = 0 for all t ∈ {1, 2, · · · , T}.
2.2 For each pile Pi of the LBP displacement description of the probe image, do

followings:
2.2.1 For the corresponding LBP displacment pile Gti of each gallery image gt

(where t ∈ {1, 2, · · · , T})
2.2.1.1 Calculate Sim(Pi, Gti), according to Equation (1).

2.2.2 Find image index I = argmaxt∈{1,2,··· ,T} Sim(Pi, Gti).
2.2.3 Increase VI by 1.

2.3 Classify the image as the identity of image gJ in the gallery set, where J =
argmax t∈{1,2,··· ,T}V t.
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probe set that contains 722 face images taken anywhere between one minute and
1031 days after the corresponding image in Fa was taken; Dup2 probe set being
a subset of dup1 that contains 234 face images taken at least 18 months after
the Fa image was taken.

All faces are first normalized into a standard size 150× 130 pixels (150 pixels
per column, 130 pixels per row), where the distance between the centers of the
two eyes is 56 pixels and the line between two eyes lies on the 53rd pixel below
the top boundary. The standard 150 by 130 elliptical mask from FERET data
collection is used to exclude non-face areas from the LBP maps, a few pixels are
removed from each side of the mask since the LBP map of an image is always
smaller than the image.

Following [5], permutation test with 95% confidence level is also carried out
using the image list, list640.srt, in the CSU face identification evaluation system
package [9]. list640.srt contains 4 images each for 160 subjects. 10000 permuta-
tions are tested, with each containing one image per subject in the gallery set
and another in the probe set.

It was explained in [10] that a preprocessing stage can significantly improve
the performance of LBP approach. Therefore, we also do the experiments with
the preprocessing as suggested in [10].

The results are shown in Table 2. The results of a few famous approaches are
also shown in the Table in order to meet the requirements of certain readers’ /
reviewers’ interests.

We can easily conclude that LBP-DLMA not only improves LBP approach,
but also achieves the results at least comparable to the state of the art results.

Table 2. The recognition rates of original LBP and weighted LBP, the LBP-DLMA,
and LBP-DLMA boosted by PreProcessing for the FERET probe sets, the mean recog-
nition rate of the Fb+Fc+Dup1, and results of permutation test with a 95% confidence
level

Fb Fc Dup1 Dup2
Fb,Fc Permutation Test

Method & Dup1 lower mean upper

LBP, no weight [11] 93% 51% 61% 50% 78.20% 71% 76% 81%
LBP, weighted [11] 97% 79% 66% 64% 84.74% 76% 81% 85%

LBP Euclidean Distance 99.37% 93.60% 79.66% 75.56% 92.10% 84.92% 89.24% 93.31%

DLMA
Histogram intersection 99.39% 96.16% 82.52% 80.31% 93.32% 87.21% 91.22% 95.09%
Chi square statistic 99.31% 96.20% 82.23% 80.53% 93.18% 87.34% 91.33% 95.18%

Preproceed LBP Euclidean Distance 99.29% 98.97% 85.37% 82.29% 94.50% 88.86% 92.77% 96.41%

DLMA
Histogram intersection 99.37% 99.48% 88.40% 85.89% 95.63% 91.43% 94.92% 98.12%
Chi square statistic 99.37% 99.25% 88.71% 86.89% 95.71% 91.51% 94.95% 98.12%

LGBPHS[12] 98% 97% 74 % 71% 89.70% / / /
HGPP[13] 97.6% 98.9% 77.7 % 76.1% 90.91% / / /
SIS [14] 91% 90% 68 % 68% 83.04% / / /

Schwartz [15] 95.7% 99.0% 80.3 % 80.3% 90.74% / / /
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Table 3. Recognition rates of LBP-DLMA approaches on FRGC Experiment 104

LBP[16]
LBP DLMA

Euclidean Histogram intersection Chi square statistics

28.1% 34.38% 32.17% 33.23%
LBP LBP DLMA with Preprocessing

with Preprocessing[16] Euclidean Histogram intersection Chi square statistics
58.1% 58.31% 67.47% 67.20%

3.2 FRGC 104

FRGC experiment 104 [8] is generally considered the most challenging in this
FRGC V1 dataset. It is required to recognize 608 uncontrolled faces from 152
controlled gallery faces. We normalize the face images into size 150× 130 as we
did for FERET experiments. The results are shown in Figure 3. We also include
the resutls of LBP-DLMA with a “preprocessing” stage, as suggested by Tan et
al [10]. We can see that LBP DLMA with and without preprocessing improve
LBP with and without preprocessing significantly.

We should emphasize here that, our intension is to improve LBP approaches
by using local displacement based local matching scheme. It is not our intension
to show that our approach is better than all possible approaches in all datasets.
We understand some other approaches, such as [15], get better results for this
experiment; we should add that those approaches actually use the settings more
flexible than ours – they uses a training approach while we do not use.

3.3 LFW

We have also carried experiments on “Labeled Faces in the Wild” (LFW)4 [17].
We test the performance of our approach on the 10 folds of view 2. All the
face images were taken in unconstrained environments, exhibiting “ ‘natural’
variability in pose, lighting, focus, resolution, facial expression, age, gender, race,
accessories, make-up, occlusions, background, and photographic quality” [17]. In
this task, given two face images, the goal is to decide whether two images are
of the same person. This is a binary classification problem, with two possible
outcomes: “same” or “different”. LFW view 2 provides 10 folds of face sets where
the sets of people in different folds are disjoint; when testing on one fold, the
other nine folds can be used for training. Results of various approaches have
been reported at LFW official site. 5

We use LFW-a version of images (the images aligned using a commercial face
alignment software) [18]. The images are of size 250 × 250. We first crop them
into images of size 90 × 78 (by removing 88 pixel margins from top, 72 from

4 The set is available via LFW official site
http://vis-www.cs.umass.edu/lfw/results.html

5 Note that most of the approaches reported were developed only for the specific binary
classification task; our approach was not intended to be applicable only to this kind
of tasks.

http://vis-www.cs.umass.edu/lfw/results.html
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bottom, and 86 pixel margins from both left and right sides). Note that, there
were errors in the alignment of many images; we just keep them as they were
(so some of the final cropped faces indeed are not correctly aligned).

Since a “voting” is required in each pile, we need a few “reference faces” to find
relative values. Here, our “reference faces” use a dummy set: for the experiments
in the i-th fold, we use the first images (named “***..-0001.jpg”) of the first 10
individuals in the (i − 1)th fold (when i − 1 = 0, we use the 10th fold) as the
dummy set.

For a pair of images x and y, for each pile, we first obtain the similarity array
between x and the set consists of y and dummy set, then obtain the similarity
array between y and the set consists of x and the dummy set; the average to
these two arrays are taken so as to make local decision according the this array.

Our results are shown in Figure 3 and Table 4.
Due to the nature that our LBP DLMA does not have a training process,

Our approach should be compared to other no-training approaches as suggested
in LFW site; we also include the ROCs of all these no-training approaches SD-
MATCHES (L & R system with SIFT descriptors and MATCHES flavour),
H-XS-40 (Histogram of LBP features with Chi Square similarity measure and
40 windows), GJD-BC-100 (Gabor Jets Descriptors with Borda Count measure
and 100 reference images) and LARK representation without supervision [19],
which are available in both LFW site and [20], in Figure 3 and Table 4. We
can see that the LBP DLMA, regardless the similarity metrics that it uses, is
significantly better than all other approaches.

Table 4. The accuracies of LBP DLMA and a few no-training approaches for LFW

Approach Accuracy

SD-MATCHES 0.6410 ± 0.0062

H-XS-40 0.6945 ± 0.0048

GJD-BC-100 0.6847 ± 0.0065

LARK unsupervised 0.7223 ± 0.0049

LBP DLMA
Euclidean 0.7517 ± 0.0122

Histogram intersection 0.7648 ± 0.0186
Chi square statistic 0.7622 ± 0.0206

4 Extensionablity

We expect that our approach can be applied for other descriptor approaches.
– Just replacing LBP in Table 1 by any descriptor approach A, we should be
able to haveA DLMA. As example, we have done experiments of TPLBP DLMA
and FPLBP DLMA on FERET datasets. Three-Patch LBP (TPLBP) and Four-
Patch LBP (FPLBP) of [21] have a few parameters, including patch size, ring
radii, the number of the additional patches distributed in the ring, etc. We use
the default values of [21].
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Table 5. The recognition rates of original TPLBP, FPLBP, and TPLBP DLMA and
FPLBP DLMA without / with Preprocessing [10] for the FERET probe sets, the
mean recognition rate of the Fb+Fc+Dup1, and results of permutation test with a
95% confidence level

Fb Fc Dup1 Dup2
Fb,Fc Permutation Test

Method & Dup1 lower mean upper

TPLBP
Euclidean Distance 94.64% 74.23% 62.33% 55.98% 81.71% 68.13% 74.12% 80.00%

Histogram intersection 96.44% 86.08% 74.65% 69.23% 88.04% 80.00% 85.06% 90.00%
Chi square statistic 95.98% 86.08% 74.79% 69.66% 87.83% 79.38% 84.50% 89.38%

TPLBP Euclidean Distance 99.26% 91.90% 75.97% 71.80% 90.62% 83.05% 87.51% 91.77%

DLMA
Histogram intersection 99.48% 95.15% 79.79% 75.7% 92.35% 85.68% 89.83% 93.91%
Chi square statistic 99.38% 93.27% 78.83% 74.30% 91.79% 85.75% 89.90% 93.96%

Preprocessed Euclidean Distance 98.88% 98.39% 77.56% 73.54% 91.54% 84.92% 89.27% 93.48%
TLBP Histogram intersection 99.14% 98.23% 83.17% 81.98% 93.60% 87.87% 91.88% 95.68%
DLMA Chi square statistic 99.15% 98.99% 82.31% 81.46% 93.38% 87.85% 91.85% 95.68%

FPLBP
Euclidean Distance 95.73% 69.59% 64.13% 54.70% 82.52% 72.50% 78.07% 83.13%

Histogram intersection 96.65% 74.23% 67.45% 56.84% 84.60% 75.94% 81.19% 86.25%
Chi square statistic 96.65% 74.23% 67.73% 56.41% 84.70% 75.63% 81.16% 86.25%

FPLBP Euclidean Distance 98.89% 76.16% 68.68% 57.11% 86.47% 79.64% 84.32% 88.91%

DLMA
Histogram intersection 98.82% 81.09% 69.62% 60.98% 87.21% 80.84% 85.51% 90.09%
Chi square statistic 99.04% 84.38% 70.56% 60.50% 87.95% 81.12% 85.78% 90.31%

Preprocessed Euclidean Distance 98.74% 98.24% 75.10% 69.65% 90.61% 84.01% 88.27% 92.45%
FPLBP Histogram intersection 99.00% 98.23% 76.96% 73.49% 91.39% 84.79% 89.07% 93.25%
DLMA Chi square statistic 98.94% 98.22% 77.19% 73.08% 91.44% 85.05% 89.33% 93.49%
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The results are shown in Figure 5.
We can easily see that the performances of TPLBPDLMA and FPLBPDLMA

are significantly better than TPLBP and FPLBP respectively.

5 Discussions and Conclusion

We introduce a LBP displacement concept so that LBP can be embedded into
an Electoral College framework. The integration of LBP and Electoral College,
LBP DLMA, improves significantly the performances of the original LBP. Exper-
iments also show that our approach can also be applied to descriptor approaches
other than LBP.

The LBP DLMA adopts Electoral College, where winner-take-all is applied
to select one “winner” when a pile of a probe is matched with a pile of a gallery
image. An immediate question is whether we can replace the Electoral College
by “soft-combination”, where the similarities of corresponding LBP displace-
ment piles are added up to form the similarity between the LBP displacement
descriptions of a pair of faces. Indeed we can prove that the answer to this ques-
tion is positive [22]. It may be interesting to investigate the adoption of more
complex strategies, such as the randomized decision trees [23] for constructing
/ representing LBP displacement pile, and the learning of a similarity metrics
[24] for exploiting the similarity values or assessments of all LBP displacement
piles of a pair of LBP displacement descriptions.
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(Grant No. 261403-2011 RGPIN).
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Face Recognition with Learned Local Curvelet

Patterns and 2-Directional L1-Norm Based
2DPCA
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Abstract. In this paper, we propose Learned Local Curvelet Patterns
(LLCP) for presenting the local features of facial images. The proposed
method is based on curvelet transform which can overcome the weakness
of traditional Gabor wavelets in higher dimension, and better capture
the curve singularities and hyperplane singularities of facial images. Dif-
ferent from wavelet transform, curvelet transform can effectively and ef-
ficiently approximate the curved edges with very few coefficients as well
as taking space-frequency information into consideration. First, LLCP
designs several learned codebooks from Curvelet filtered facial images.
Then each facial image can be encoded into multiple pattern maps and
finally block-based histograms of these patterns are concatenated into
an histogram sequence to be used as a face descriptor. In order to re-
duce the face feature descriptor, 2-Directional L1-Norm Based 2DPCA
((2D)2PCA-L1) is proposed which is simultaneously considering the row
and column directions for efficient face representation and recognition.
Performance assessment in several face recognition problem shows that
the proposed approach is superior to traditional ones.

1 Introduction

During the last several decades, face recognition has become a popular area
of research in computer vision. Compared with other biometrics [1], such as
fingerprint and iris, face recognition has great advantage in high-universality,
high-collectability, high-acceptability, and low-circumvention. Hence, face recog-
nition is widely used in a variety of fields such as image analysis, classification,
forensic identification and access control. However, due to the fact that the fa-
cial appearances are easily affected by the variations of expression, illumination,
pose and other factors, it is still an active and challenging research topic.

Recently, local matching approaches are presented in face recognition with in-
variant to illumination and expression issues. The most famous method is called
Local Binary Patterns (LBP) [2]. Since Gabor wavelet has good characteristics
in space frequency, space position and direction selectivity, local patterns based
on Gabor feature have also been proposed for face representation, such as Local
Gabor Binary Patterns (LGBP) [3] and Learned Local Gabor Patterns (LLGP)
[4]. Different from LBP or LGBP, in LLGP, first, the patterns are learned by

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 109–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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applying the clustering approach to the set of patches to generate several code-
books. Second, the facial image is encoded into some pattern maps based on
the learned codebooks. However, the common issue of these methods is that the
feature dimension is very large due to Gabor decomposition and Gabor trans-
form cannot well represent curve singularity of human face images since Gabor
wavelets are very effective in representing objects with isolated point singulari-
ties, but failed to represent line or curve singularities.

To overcome the weakness of Gabor wavelets, and to better capture the curve
singularities and hyperplane singularities of high dimensional signals, Candes
and Donoho [5] proposed curvelet transform, which directly takes edges as the
basic representation elements and is strongly anisotropic. It is optimal in repre-
senting curved singularities in images or higher dimensional signals. The detail
and fine coefficients of curvelet are strongly orientation-sensitive, which is a use-
ful property for detecting curves in images. In [6], comparison of wavelet, Ga-
bor wavelet and curvelet transform for face recognition under illumination and
expression changes is discussed and concluded that curvelet is a better choice
compared with wavelet and Gabor wavelet, since the curvelet transform has a
more sparse representation of the image than wavelet, thus offering a descrip-
tion with higher time frequency resolution and high degree of directionality and
anisotropy, which is particularly appropriate for many images rich with edges
and curves. In a word, Curvelet transform not only captures time-frequency lo-
calization property of wavelets but also shows a very high degree of directionality
and anisotropy as well as its singularities can be well approximated with very
few coefficients.

In traditional curvelet based face recognition problems, researches [7] [8] [9]
are only applied some feature reduction methods into curvelet coefficients and
do not consider the special patterns in our face images [10]. In this paper, unlike
the common methods which used Gabor wavelet to transform facial images into
frequency space and overcome the problems of traditional Wavelet and Curvelet
feature based face recognition [7], Local Curvelet Patterns are studied. First,
according to curvelet filtered facial images, Learned Local Curvelet Patterns
(LLCP) is proposed. Then, based on the learned patterns, the facial image can
be encoded into multiple pattern maps. At last, the input facial image can be
described as a histogram sequence by combining the block-based histograms of
the learned patterns together. The proposed patterns have several advantages:
first, face-special patterns are designed to encode the face images. Second, it
can better obtain curve or line singularities in our face images. Third, it consid-
ered both scale and orientation information of our face. Fourth, multi-mapping
is used to obtain the final more robust histogram sequence. Fifth, less feature
dimension will be generated compared to Gabor wavelet based descriptor. In
order to further reduce the feature dimension, the 2-Directional L1-Norm Based
2DPCA((2D)2PCA-L1) for efficient face representation and recognition is devel-
oped by simultaneously considering the row and column directions in our face
image. Experimental results based on two famous and challenging databases-AR
[11] and FERET [12] show the effectiveness of the proposed methods.
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The remainder of this paper is organized as follows: LLCP will be described
in section 2. In section 3, (2D)2PCA-L1 will be introduced and experiments are
presented in section 4. Finally, conclusions are discussed in section 5.

2 Learned Local Curvelet Patterns

Curvelet aims to deal with interesting phenomena occurring along curved edges
in a 2D image. As illustrated in [13], curvelet needs fewer coefficients for repre-
sentation and the edge produced from curvelet is smoother than wavelet edge.
Curvelet has several advantages compared to other transforms as follows:

1.) Optimal sparse representation of objects with edges
2.) Optimal image reconstruction in severely ill-posed problems

Curvelet transform is a special member of the multi-scale geometric transforms.
It is a transform with multi-scale pyramid with many directions at each length
scale. In our study, the facial image is decomposed into coarse, detail and fine
coefficients and some reconstructed images including coarse layer, two detailed
layer and one fine layer are illustrated in Fig.1. Further, reconstructed images
by four orientations of detailed 2 layer are shown in Fig.2. Here, CurveLab 2.1.2
which is available at [14] is used.

(a) Original Image (b) Coarse Layer (c) Detail 1 Layer (d) Detail 2 Layer (e) Fine Layer

Fig. 1. Reconstructed Images from different curvelet coefficients

(a) (b) (c) (d)

Fig. 2. Reconstructed Images from detailed 2 layer by four orientations

Generally speaking, face encoding by LLCP can be divided into learning phase
and representing phase. In the learning phase, several particular codebooks are
constructed while facial images are encoded in the representing phase. In ad-
vance, several particular codebook patterns should be learned (shown in Fig.3).
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Fig. 3. The process of learning a particular codebook

In this step, images are first sampled into many patches and then all the patches
are clustered into K patterns by random-projection tree [15].

In the learning phase (shown in Fig.5 ), each image in the training set is
reconstructed to Curvelet Patterns (CPs) with different curvelet coefficients.
Then based on all CPs in the same layer, one patch set can be constructed by
sampling patches. Here, the sampling method is illustrated as Fig.4). At last,
by using random-projection tree clustering approach to each patch set, LLCP
learned codebooks can be constituted. Thus, C LLCP codebooks can be obtained
with C layers.

R1R2RR

Sampling 
pixel

Fig. 4. Sampling method used in our implementation, R1 = 1, R2 = 2

In the representing phase (shown in Fig.6 ), first, each facial image is re-
constructed to several CPs with different curvelet coefficients. Then each CP
is encoded into T pattern maps by mapping its patches to the corresponding
LLCP codebook pixel by pixel (Note: here the intensity of mapped image is
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Fig. 5. The learning phase for face encoding by LLCP

corresponding to the type of learned patterns, and also the same intensity in
different LLCP maps stands for different type of patterns since the codebook is
different.) One point should be noted during representing phase is that the in-
put patch can match top T -th smallest distance codewords in the codebook since
the input patch is very similar with the top T -th smallest distance codewords in
some cases. Thus, one CP can be encoded by T LLCP maps. And totally C ×T
LLCP maps can be obtained. Finally, these pattern maps are spatially divided
into many blocks and the histograms of all the blocks are concatenated together
to form one enhanced histogram sequence which is considered to represent the
input facial image.

3 2-Directional L1-Norm-Based 2DPCA

Recently, a new technique called L1-Norm-Based 2DPCA (2DPCA-L1) was pro-
posed for feature reduction and image representation [16]. As discussed in [16],
2DPCA-L1 avoids computation of the eigenvalue decomposition process and its
iteration step is also easy to be performed. Compared to traditional L2-Norm-
Based 2DPCA, it not only makes good use of structural information of image
but is also robust to outliers. However in [16], 2DPCA-L1 is just works in the
row direction of images, in this section, we extend it into both row and column
directions.

First, an optimal matrix U can be learned by 2DPCA-L1 from a set of training
images to reflect the corresponding row information of images, and then we can
project a h by w image X onto U , yielding an h by s matrix Y U = XU .
Similarly, the alternate 2DPCA-L1 can learn an optimal matrix V to reflect the
corresponding column information between images, and then we can also project
X onto V , yielding a t by w matrix Y V = V TX . In this study, we are about to
present an approach to use the projection matrices U and V simultaneously.
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Suppose now we have obtained the projection matrices U and V , and then
we can project the h by w image X onto U and V simultaneously, yielding a t
by s matrix Y as

Y = V TXU (1)

The matrix Y can also be named the coefficient matrix in the image represen-
tation task, which could be used to reconstruct the original image X by the
following equation:

X̄ = V Y UT (2)

4 Experiments

In this section, two large and widely used database - AR [11] and FERET [12]
datasets are considered to evaluate the proposed methods. For AR dataset, the
performance is focused on the proposed feature reducing method while LLCP is
estimated in FERET dataset detailedly. And in general, 1-NN is used for simple
classification.

4.1 Evaluation on AR Database

The AR [11] dataset consists of over 3,200 color images of the frontal images
of faces of 126 subjects. Each subject has 26 different images, including frontal
views of with different facial expressions, lighting conditions and occlusions. For
each subject, these images were recorded in two different sessions which are sep-
arated by two weeks, each session consisting of 13 images. For the experiments
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Fig. 7. Some samples from AR dataset

reported in this section, 60 different individuals were randomly selected from
this database. Then there are totally 1560 images in our experiments. All the
images are manually cropped and resized to 88× 80 pixels and divided into 8 by
8 blocks in our study. Some example images of one person are shown in Fig.7.

In the first evaluation, the recognition performance of the subspace algorithms
on AR database are compared to judge whether the proposed methods are pow-
erful or not. Four samples of each individual are randomly selected as gallery
(training images), and the remaining ones are used for probe (testing images). In
our study, we perform 5 times to randomly choose the training set and calculate
the average recognition rates.

In our implementation, the codebooks are learned from gallery and K is fixed
to 128 according to the following experiments, so totally the feature dimension
is 128 × 64 × 4= 32768 for LLCP based encoding and 256 × 64 = 16384 for
LBP based encoding. Some results are list in Fig. 8 and Fig. 9. Here h = 256,
w = 64 and h = 128, w = 256 for LBP and LLCP, respectively.

From these two figures, we can see (2D)2PCA-L1 based feature reduction is
better than 2DPCA-L1 based feature reduction with fewer coefficients. Addition-
ally, (2D)2PCA-L1 based approach can reduce feature dimension significantly
where the feature dimension is just 50 × 60 = 3000 by cutting 90.8% compared
to the original feature vector for LLCP encoding.

In the next experiment, some d(d = 1, 2, 3, 4) images of each person are ran-
domly chosen for training, while the remaining images for testing. To compare
our method with LBP, LGBP and LLGP, five tests are performed with a varying
number of training samples and mean rate is recorded. Table 1 shows the accu-
racy. The optimal recognition rate by the feature reduction methods is recorded.
It can be seen that the proposed methods achieve better performance. Thus, fea-
ture reduction approaches can obtain discriminant feature space and (2D)2PCA-
L1 is the outstanding one compared to LDA [17], 2DPCA [18] and 2DPCA-L1.
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Table 1. Accuracy on AR- d (1,2,3,4) for gallery and others for probe

1 2 3 4

LBP 0.72 0.75 0.77 0.80

LBP+DCT 0.72 0.77 0.78 0.82

LBP+2DPCA 0.73 0.75 0.78 0.81

LBP+2DPCA-L1 0.73 0.76 0.79 0.82

LBP+(2D)2PCA-L1 0.78 0.79 0.82 0.85

LGBP 0.78 0.81 0.83 0.85

LLGP 0.82 0.84 0.85 0.88

LLCP 0.85 0.86 0.89 0.91

LLCP+DCT 0.85 0.88 0.89 0.92

LLCP+2DPCA 0.85 0.87 0.90 0.92

LLCP+2DPCA-L1 0.86 0.88 0.90 0.92

LLCP+(2D)2PCA-L1 0.88 0.91 0.92 0.95

4.2 FERET Database

The FERET database consists of a total of 14,051 gray-scale images representing
more than 1,100 individuals. These images contain variations in lighting, facial
expressions, pose angle and so on. In this study, only frontal faces are selected.
These facial images can be divided into five sets as follows: 1.) Fa set, which
is generally used as a gallery set, containing frontal images of 1,196 people. 2.)
Fb set which has 1,195 images and the subjects were asked for an alternative
facial expression than that in set Fa. 3.) Fc set which were taken under different
lighting conditions and contains 194 images. 4.) Dup I set (722 images). The
images were taken later compare with Fa or Fb set. 5.) Dup II set (234 images).
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Fig. 9. Performance on AR dataset by LLCP+2DPCA-L1 and LLCP+(2D)2PCA-L1
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Fig. 10. Performance of LLCP on FERET dataset with different size of codebook

This is a subset of the dup I set containing those images which were taken at
least a year after the corresponding gallery image. And in our study all facial
images are normalized to 88 × 80 pixels according to the eye positions provided
in the database.

In order to determine how the parameters K affect the final recognition rate,
one experiment is evaluated on FERET dataset based on LLCP method. Fig. 10
shows the recognition rates change with the size of codebook K (Here, the block
size is fixed to 8× 8 and histogram intersection is used for classification). From
this figure, we can find that the performance becomes better with the increase
of K and slightly change or equal when K is larger than 128.

Next experiment is based on the change of block size while the K is fixed to
128. The results are shown in Fig.11. From this figure, we can seen that small
or large block size can decrease the performance, especially with larger one.
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When the block size is about 8 × 8, the best accuracy can be obtained. The
possible reason may be that larger block size can not preserve enough spatial
information in the facial images while the patterns in smaller block can not
discriminate effectively.
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Fig. 11. Performance of LLCP on FERET dataset with different block size

The third experiment is designed to judge whether our multi-mapping is useful
or not. The evaluation is list in Fig.12. We can see that a little larger T can
improve our performance which is same as our thinking. And if T is so large,
that means the input patch is also encoded by some dissimilar patterns which
can confuse the distribution of final histogram and decrease our final result.
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Table 2. Precision in FERET [12] database

Fb Fc Dup I Dup II

LBP 0.91 0.43 0.58 0.42

LGBP [3] 0.94 0.97 0.68 0.53

LLGP [4] 0.97 0.97 0.75 0.71

POEM-HS [19] 0.98 0.96 0.78 0.76

Retina filter + POEM-HS [19] 0.98 0.99 0.80 0.79

LLCP 0.98 0.97 0.78 0.75

LLCP+DCT 0.98 0.96 0.79 0.77

LLCP+2DPCA 0.98 0.97 0.80 0.77

LLCP+2DPCA-L1 0.99 0.97 0.81 0.79

LLCP+(2D)2PCA-L1 0.99 0.98 0.83 0.81

At last, the total performance on FERET dataset is list in Table 2. From
Table 2, we can get the effectiveness of Curvelet transform and the proposed
feature dimension reduction method.

5 Conclusions

In this paper, first, Learned Local Curvelet Patterns (LLCP) for presenting the
local patterns is proposed. The represented facial images can better capture
the curve singularities and hyperplane singularities than some traditional meth-
ods, such as LGBP, LLGP. Some codebooks are learned from sampled patches
which is regraded as face-specific. Second, one feature reduction method called
(2D)2PCA-L1 is proposed, which is simultaneously considering the row and col-
umn directions for efficient face representation and recognition. Experiments in
face recognition show the effectiveness of our proposed local descriptors and
illustrated the powerful of our feature reduction method.

References

1. Jain, A.K.: Biometric recognition: how do i know who you are? In: Proceedings of
12th IEEE Signal Processing and Communications Applications Conference, pp.
3–5 (2004)

2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary pat-
terns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28,
2037–2041 (2006)

3. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local gabor binary pattern
histogram sequence (lgbphs): a novel non-statistical model for face representation
and recognition. In: ICCV, pp. 786–791 (2005)

4. Xie, S., Shan, S., Chen, X., Meng, X., Gao, W.: Learned local gabor patterns for
face representation and recognition. Signal Processing, 2333–2344 (2009)

5. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms.
Multiscale Modeling and Simulation 5, 861–899 (2006)



120 W. Zhou and S.-i. Kamata

6. Zhang, J., Wang, Y., Zhang, Z., Xia, C.: Comparison of wavelet, gabor and curvelet
transform for face recognition. Optica Applicata XLI, 183–193 (2011)

7. Mandal, T., Wu, Q.J.: Face recognition using curvelet based pca. In: ICPR, pp.
1–4 (2008)

8. Huo, H., Song, E.: Face recognition using curvelet and selective pca. In: ICICIP,
pp. 348–351 (2010)

9. Zhang, J., Wang, Y.: A comparative study of wavelet and curvelet transform for
face recognition. In: CISP, pp. 1718–1722 (2010)

10. Saha, A., Wu, Q.: Facial expression recognition using curvelet based local binary
patterns. In: 2010 IEEE International Conference on Acoustics Speech and Signal
Processing (ICASSP), pp. 2470–2473 (2010)

11. Martinez, A., Benavente, R.: The ar-face database. CVC Technical Report 24
(1998)

12. Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The feret evaluation methodology
for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000)

13. Boubchir, L., Fadili, J.: Multivariate statistical modelling of images with the
curvelet transform. Image Processing Group, 747–750 (2005)

14. http://www.curvelet.org

15. http://cseweb.ucsd.edu/naverma/RPTrees/index.html

16. Li, X., Pang, Y., Yuan, Y.: L1-norm-based 2dpca. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 40, 1170–1175 (2009)

17. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal
components for face recognition. In: 3rd International Conference on Automatic
Face and Gesture Recognition (1998)

18. Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-dimensional pca: a new ap-
proach to appearance-based face representation and recognition. IEEE Trans. Pat-
tern Anal. Mach. Intell. 26, 131–137 (2004)

19. Vu, N.S., Dee, H.M., Caplier, A.: Face recognition using the POEM descriptor.
Pattern Recognition 45, 2478–2488 (2012)

http://www.curvelet.org
http://cseweb.ucsd.edu/naverma/RPTrees/index.html


LBP − TOP Based Countermeasure

against Face Spoofing Attacks

Tiago de Freitas Pereira1,2, André Anjos3,
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Abstract. User authentication is an important step to protect informa-
tion and in this field face biometrics is advantageous. Face biometrics
is natural, easy to use and less human-invasive. Unfortunately, recent
work has revealed that face biometrics is vulnerable to spoofing attacks
using low-tech cheap equipments. This article presents a countermeasure
against such attacks based on the LBP −TOP operator combining both
space and time information into a single multiresolution texture descrip-
tor. Experiments carried out with the REPLAY ATTACK database show
a Half Total Error Rate (HTER) improvement from 15.16% to 7.60%.

1 Introduction

Despite the progress in the last years, automatic face recognition is still an active
research area. Many tasks, such as recognition under occlusion or recognition in
a crowd and with complex illumination conditions still represent unsolved chal-
lenges. Advances in the area were extensively reported in [8] and [16]. However,
the issue of verifying if the face presented to a camera is indeed a face from a
real person and not an attempt to deceive (spoof) the system has received less
attention.

A spoofing attack consists in the use of forged biometric traits to gain il-
legitimate access to secured resources protected by a biometric authentication
system. The lack of resistance to attacks is not exclusive to face biometrics. [23],
[14] and [18] indicate that fingerprint authentication systems suffer from similar
weakness. [11], [12] and [19] diagnose the same shortcoming on iris recognition
systems. Finally, [5] and [7] address spoofing attacks to speaker biometrics. The
literature review for spoofing in face recognition systems will be presented in
Section 2.

In authentication systems based on face biometrics, spoofing attacks are usu-
ally perpetrated using photographs, videos or forged masks. Moreover, with the
increasing popularity of social networks websites (facebook, flicker, youtube, in-
stagram and others) a great deal of multimedia content is available on the web

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 121–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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that can be used to spoof a face authentication system. In order to mitigate the
vulnerability of face authentication systems, effective countermeasures against
face spoofing have must be deployed.

In this context, we proposed a novel countermeasure against face spoofing.
Our approach uses an operator called Local Binary Patterns from Three Or-
thogonal Planes (LBP-TOP) that combines space and time information into a
single descriptor with a multiresolution strategy. Experiments conducted using
the REPLAY ATTACK database [6] indicate that our approach has a better
performance in detecting face spoofing attacks using photographs and videos
than state-of-the-art techniques.

The remainder of the paper is organized as follows: Section 2 briefly review the
relevant literature. Section 3 discusses the application of Local Binary Patterns
(LBP ) in space and time domains. Section 4 presents our approach against facial
spoofing attacks. Our experimental set-up and results are discussed in Section 5.
Finally, in Section 6 we summarize this work highlighting its main contributions.

2 Prior Work

Considering the type of countermeasures that do not require user collabora-
tion, Chakka et al. in [4] made a classification considering the following cues in
spoofing attacks:

– Presence of vitality (liveness);
– Differences in motion patterns;
– Differences in image quality assessment.

Presence of vitality or liveness detection consists in the search of features that
only live faces can possess. For example, Pan et al. in [20] develop a counter-
measure based on eye-blink.

The countermeasures based on differences in motion patterns rely on the fact
that real faces displays different motion behavior compared to a spoof attempt.
Kollreider et al. [13] present a motion based countermeasure that estimates the
correlation between different regions of the face using optical flow. In that coun-
termeasure, the input is considered a spoof if the optical flow field on the center
of the face and on the center of the ears present the same direction. The perfor-
mance was evaluated using the subset ”Head Rotation Shot” of the XM2VTS
database whose real access was the videos of this subset and the attacks were
generated with hard copies of those data. With this database, that was not
made publicly available, an Equal Error Rate (EER) of 0.5% was achieved. An-
jos et al. [3] present a motion based countermeasure measuring the correlation
between the face and the background through simple frame differences. With
the PRINT ATTACK database, that approach presented a good discrimination
power (HTER equals to 9%).

Countermeasures based on differences in image quality assessment rely
on the presence of artifacts intrinsically present at the attack media. Such re-
markable properties can be originated from media quality issues or differences
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in reflectance properties. Li et al. [15] hypothesize that fraudulent photographs
have less high frequency components than real ones. To test the hypothesis a
small database was built with 4 identities containing both real access and printed
photo attacks. With this private database, an accuracy of 100% was achieved.
Because of differences in reflectance properties, real faces very likely present
different texture patterns compared with fake faces. Following that hypothesis,
Maatta et al. [17] and Chingovska et al. [6] explored the power of Local Binary
Patterns (LBP ) as a countermeasure. Maatta et al. combined 3 different LBP
configurations (LBPu2

8,2, LBPu2
16,2 and LBPu2

8,1) in a normalized face image and
trained a SVM classifier to discriminate real and fake faces. Evaluations carried
out with NUAA Photograph Impostor Database [21] showed a good discrim-
ination power (2.9% in EER). Chingovska et al. analyzed the effectiveness of
LBPu2

8,1 and set of extended LBPs [22] in still images to discriminate real and fake
faces. Evaluations carried out with three different databases, the NUAA Pho-
tograph Impostor Database, REPLAY ATTACK database and CASIA - Face
Anti-spoofing Database [24] showed a good discrimination power with HTER
equals to 15.16%, 19.03% and 18.17% respectively. Assuming that real access
images concentrate more information in a specific frequency band, Zhang et al.
[24] used, as countermeasure, a set of DoG filters to select a specific frequency
band to discriminate attacks and non attacks. Evaluations carried out with the
CASIA - Face Anti-spoofing Database showed an Equal Error Rate of 17.00%.

3 LBP in Space and Time Domain

Maatta et al. [17] and Chingovska et al. [6] propose LBP based countermea-
sures to spoofing attacks based on the hypothesis that real faces present dif-
ferent texture patterns in comparison with fake ones. However, the proposed
techniques analyze each frame in isolation, not considering the behavior over
time. As pointed out in Section 2, motion is a cue widely used and in combina-
tion with texture can generate a powerful countermeasure.

The first attempt to extend LBP to image sequences, exploring the space and
time information, was introduced with the concept of Volume Local Binary Pat-
terns (V LBP ) [25]. To capture interframe patterns in textures, V LBP considers
the frame sequence as a parallel sequence. Considering a 3× 3 kernel and thresh-
olding the surroundings of each pixel with the central pixel of the frame sequence,
the result is considered a binary value and its decimal representation is:

V LBPL,P,R =

3P+1∑
q=0

f(ic − iq)2
q, (1)

where L corresponds to the number of predecessors and successors frames, P
is the number of neighbors of ic that corresponds to the gray intensity of the
evaluated pixel, iq corresponds to the gray intensity of a specific neighbor of ic,
R is the radius of considered neighborhood and f(x) is defined as follows:
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f(x) =

{
0 if x < 0
1 if x ≥ 0

. (2)

An histogram of this descriptor, contains 23P+1 elements. Considering P = 8 (the
most common configuration [6] [17] [1]) the number of bins in such histogram
will be 33, 554, 432 which is not computationally tractable.

To address this issue, [25] presented a simplification of the V LBP operator;
the so called LBP from Three Orthogonal Planes (LBP − TOP ). Instead of
considering the frame sequence as a three parallel planes, the LBP − TOP
consider three orthogonal planes intersecting the center of a pixel in the XY
direction (normal LBP [1]), XT direction and Y T direction, where T is the time
axis (the frame sequence). Considering three orthogonal planes intersecting each
pixel in a frame sequence, three different histograms are generated and then
concatenated, as it can be seen in Fig. 1. With this approach, the size of the
histogram decreases to 3 ∗ 2P .

Fig. 1. (a) Three planes intersecting one pixel (b) LBP histogram of each plane (c)
Concatenating the histograms (courtesy of [25])

In the LBP − TOP representation, the radii in each direction (RX , RY and
RT ) and the number of sampling points in each plane (PXY , PXT and PY T )
can be different as well as the type of LBP operator in each plane. They can
follow the normal, the uniform pattern (u2) or rotation invariant uniform pat-
tern (riu2) approaches [10], for example. The representation of the LBP −TOP
descriptor is denoted as LBP − TOP operator

PXY ,PXT ,PY T ,RX ,RY ,RT
. In addition to the

computational simplification, compared with V LBP , LBP − TOP has the ad-
vantage to generate independent histograms for each of intersecting planes, in
space and time, which can be treated in combination or individually.

Because of the aforementioned complexity issues on the implementation of
a V LBP based processor, the developed countermeasure uses LBP − TOP to
extract spatio-temporal information from video sequences.

4 The Proposed Countermeasure

Fig. 2 shows a block diagram of the proposed countermeasure. First, each frame
of the original frame sequence was gray-scaled and passed through a face detector
using MCT features [9]. Only detected faces with more than 50 pixels of width
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Fig. 2. Block diagram of the proposed countermeasure

and height were considered. The detected faces were geometric normalized to
64× 64 pixels. In order to reduce the face detector noise, for each set of frames
used in the LBP − TOP calculation, the same face bounding box was used. As
can be seen in the Fig. 3, the middle frame was chosen. Unfortunately, the face
detector is not error free and in case of error in the middle frame face detection,
the nearest detection was chosen otherwise the observation was discarded.

After face detection step, the LBP operators were calculated for each plane
(XY , XT and Y T ) and the histograms were computed and then concatenated.

To generate a multiresolution description, the histograms in time domain
(XT and Y T ) are concatenated for different values of Rt. The notation chosen
to represent these settings is using brackets for the multiresolution data. For
example, Rt = [1, 3] means that the LBP −TOP operator will be calculated for
Rt = 1, Rt = 2 and Rt = 3 and all resultant histograms will be concatenated.
After the feature extraction step, this data is ready for binary classification to
discriminate spoofing attacks from real accesses.

In order to be comparable with [6], each observation in the original frame
sequence will generate a score independent of the rest of the frame sequence.

Fig. 3. Face detection strategy for Rt = 1

The proposed countermeasurewas implemented using the free signal-processing
andmachine learning toolbox Bob [2] and the source code of the algorithm is avail-
able as an add-on package to this framework1.

1 http://pypi.python.org/pypi/antispoofing.lbptop

http://pypi.python.org/pypi/antispoofing.lbptop
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5 Experiments

This section describes the performance evaluation of the proposed countermea-
sure on the REPLAY-ATTACK database [6] and using its defined protocol. Such
protocol defines 3 non-overlapped partitions for training, development and test-
ing countermeasures. The training set should be used to train the countermea-
sure, the development set is used to tune the parameters of the countermeasure
and to estimate a threshold value to be used in the test set. The protocol de-
fines the Equal Error Rate (EER) as a decision threshold. Finally, the test set
must be used only to report results. As performance measurement, the protocol
suggests to report the Half Total Error Rate (HTER) on the test data.

5.1 Evaluation Methodology

In order to measure the effectiveness of this countermeasure, each parameter
was tuned solely (fixing other elements) using the development set. For this, 5
experiments were carried out evaluating the effectiveness of:

1. Each LBP − TOP plane;
2. Different classifiers;
3. Different LBP operators;
4. Different numbers of sampling points in the LBP − TOP operator
5. Multiresolution approach.

Inspired on [6], the LBP − TOP operator chosen to start the evaluation was
LBP − TOPu2

8,8,8,1,1,RT
.

5.2 Effectiveness of Each LBP − TOP Plane

Fig. 4 shows the evolution of the test set HTER considering individual and com-
bined histograms of LBP −TOP planes. First, it was analyzed the effectiveness
of each individual plane and then combinations when the multiresolution area
(Rt) is increased. We used, as binary classifier, a linear projection derived from
Linear Discriminant Analysis LDA as is [6].

It can be seen that, by combining the time components (XT and Y T planes)
the results were improved. This suggests that the time information is an impor-
tant cue. The combination of the three planes generated the best results which
suggests that both spatial and time information are important to classify real
and fake faces. For that reason, next results will be presented always with a
combination of the three LBP − TOP planes (XY , XT and Y T ).

5.3 Effectiveness of Different Classifiers

Fig. 5 shows the performance of this countermeasure, in HTER terms, with
different classifiers when the multiresolution area (Rt) is increased. The first
classifier applied was the χ2 distance, since the feature vectors are histograms.
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Fig. 4. (Color online) Evaluation of HTER(%) in each plane when the multiresolution
area (Rt) is increased with LBP − TOPu2

8,8,8,1,1,Rt
and LDA classifier - test-set

Fig. 5. (Color online) Evaluation of HTER(%) with LBP − TOPu2
8,8,8,1,1,Rt

using dif-
ferent classifiers

For that, the same strategy adopted in [6] was carried out. A reference histogram
only with real accesses was created averaging the histograms in the training set.
Experiments using more complex classifiers were carried out as well. For that,
Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM) with
a radial basis function kernel (RBF) were chosen.

It can be seen that best results were obtained with the non linear SVM using
RBF kernel. It is important to remark that results presented with SVM, should
be analyzed carefully for overtraining. The final machine uses ∼ 25000 support
vectors to achieve 7.97%. This number represents ∼ 33% of the training set
size. A simple comparison with the same LBP − TOP configuration with LDA
classifier resulted in an HTER equal to 11.35%. This is not a huge gap and the
classifier is far simpler.
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Fig. 6. (Color online) (a) Evaluation of HTER(%) with LBP − TOP8,8,8,1,1,Rt using
different LBP configurations in the planes with SVM classifier (b) Evaluation of the
histogram size when (Rt) is increased

5.4 Effectiveness of Different LBP Operators

The size of the histogram in a multiresolution analysis, in time domain, increases
linearly with Rt. The choice of an appropriate LBP representation in the planes
is an important issue since this choice impacts the size of the histograms. Using
uniform patterns or rotation invariant extensions, in one or multiple planes, may
bring a significative advantage in computational complexity. Fig. 6 (a) shows the
performance, in HTER terms, configuring each plane as normal LBP (with 256
bins for P = 8), LBPu2 and LBP riu2 when the multiresolution area (Rt) is
increased. Results must be interpreted with the support with the Fig. 6 (b),
which shows the number of bins on the histograms used for classifications in
each configuration.

It can be seen that, when Rt is increased, the HTER saturates in ∼ 11%
and ∼ 8% for LBP riu2 and LBPu2 respectivelly. The normal LBP operator
presents a minimum in 7.60% with Rt = [1, 2] (the best result achieved in this
paper). Results with LBP and LBPu2 presented similar performance and even
the LBP presented the best result, using LBPu2 seems a reasonable tradeoff
between computational complexity and performance (in HTER terms). Hence
we will still proceed with LBPu2.

5.5 Effectiveness of Different Numbers of Sampling Points in the
LBP − TOP Operator

Another parameter that impacts in the size of the histograms is the number of
sampling points (P ) in each plane. Fig. 7(a) and (b) show the performance, in
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Fig. 7. (Color online) Evaluation of HTER(%) with LBP − TOPu2 using different
values for PXT and PY T in the time planes using (a) SVM classifier (b) LDA classifier

HTER, varying the values of PXT and PY T to 4, 8 and 16 when the multireso-
lution area (Rt) is increased with SVM and LDA classifiers respectively.

It can be seen that results with LBP − TOPu2
8,8,8,1,1,Rt

achieved the best
performance (saturating around 8%), using an SVM classifier (see Fig. 7(a)).
However, it was expected good performance using PXT and PY T set to 16 when
the multiresolution analysis (Rt) is increased, since more points were extracted
over the time. Observing the Fig. 7 (b), with LDA as a classifier, the best per-
formance was achieved with PXT and PY T equal to 16. These results suggests
that, when the multiresolution area is increased with PXT and PY T equals to
16, the SVM classifier loses generalization power. In order to track that hypoth-
esis, a simple observation in the number of support vectors can be done. Not
surprisingly, the number of support vectors increases from ∼ 30000 to ∼ 35000
for Rt equals to [1, 2] and [1, 6] respectively. That increase, in the final SVM,
represents ∼ 32% and ∼ 39% of the training set size respectively, re-assign the
overtraining hypothesis. Hence we will still proceed with LBPu2

8,8,8,1,1,Rt
for the

next experiment.

5.6 Effectiveness of Multiresolution Approach

Fig. 8 shows the performance of this countermeaure considering a multiresolu-
tion approach compared with a single resolution approach. The single resolution
approach consists in using only fixed values for Rt, without concatenating his-
tograms for each Rt. With this approach the size of the histograms will be
constant along Rt increase, what decreases the computational complexity.
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Fig. 8. (Color online) Evalutation of HTER% using LBP − TOPu2
8,8,8,1,1,Rt

with and
without histogram concatenation using SVM classifier

It can be seen that, when the single resolution approach is considered, the
HTER increases with Rt whereas the multiresolution approach helps to keep the
HTER low with the increasing value of Rt. It is possible to suggest that, for
the LBP −TOP descriptor, motion patterns between closest frames carry more
information for spoofing detection than distant ones. Nevertheless, information
from distant frames are important as well and thats help to explain why the best
results were achieved with the multiresolution approach.

5.7 Summary

Table 5.7 summarizes all results obtained compared with the state of art results.
The two first rows are results presented in [6] and the third row was a counter-
measure based on [3] whose source code is freely available for comparison. It can
be seen that the proposed countermeasure presented the best results, overtaking
the state of art results in the REPLAY ATTACK database.

Table 1. HTER(%) of classification with different countermeasures

HTER(%)
dev test

LBPu2
8,1 + SVM [6] 14.84 15.16

(LBPu2
8,2+LBPu2

16,2+ LBPu2
8,1) + SVM [6] 13.90 13.87

Motion coefficient based [3] 11.78 11.79

LBP − TOP riu2
8,8,8,1,1,[1−6] + SVM 9.78 11.15

LBP − TOPu2
8,4,4,1,1,[1−6] + SVM 8.49 9.03

LBP − TOPu2
8,8,8,1,1,[1−4] + SVM 8.49 7.95

LBP − TOP8,8,8,1,1,[1−2] + SVM 7.88 7.60

LBP − TOP8,16,16,1,1,[1−2] + SVM 9.16 8.22
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6 Conclusion

This article presented a countermeasure against face spoofing attacks using the
LBP − TOP descriptor combining both space and time information into a sin-
gle descriptor. Experiments carried out with the REPLAY ATTACK database
showed that an analysis in time domain improved the results comparing to the
still frame analysis presented in [6] and [17]. A multiresolution analysis in time
domain shows even better results, achieving 7.60% when combined with an SVM
classifier (the best result achieved). It is important to remark that results with
SVM classifier should be taken with care because with the increase of the mul-
tiresolution area, the SVM classifier tends to overtrain on the data. However,
experiments with simpler classifiers, such as LDA, showed that the LBP −TOP
multiresolution approach still demonstrated a great potential against face spoof-
ing in different kind of attacks scenarios, beating the state of art results.
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Abstract. RGB-D is a powerful source of data providing the aligned
depth information which has great potentials in improving the perfor-
mance of various problems in image understanding, while Local Binary
Patterns (LBP) have shown excellent results in representing faces. In
this paper, we propose a novel efficient LBP-based descriptor, namely
Gradient-LBP (G-LBP), specialized to encode the facial depth infor-
mation inspired by 3DLBP, yet resolves its inherent drawbacks. The
proposed descriptor is applied to gender recognition task and shows its
superiority to 3DLBP in all the experimental setups on both Kinect and
range scanner databases. Furthermore, a weighted combination scheme of
the proposed descriptor for depth images and the state-of-the-art LBPU2

for grayscale images applied in gender recognition is proposed and eval-
uated. The result reinforces the effectiveness of the proposed descriptor
in complementing the source of information from the luminous intensity.
All the experiments are carried out on both the high quality 3D range
scanner database - Texas 3DFR and images of lower quality obtained
from Kinect - EURECOM Kinect Face Dataset to show the consistency
of the performance on different sources of RGB-D data.

1 Introduction

Originally proposed by Ojala et al. [1] for texture analysis, Local Binary Patterns
(LBP) has now shown its leading performance in a wide range of applications,
especially in facial image processing. A large number of works demonstrating
excellent results in applying LBP variants to various tasks ranging from face
recognition [2], facial expression analysis [3] to age estimation [4], gender and
ethnicity classification [5][6], etc. could be widely found in literature recently.

Due to its simplicity yet very powerful discriminative capability, many LBP
variants have been developed since its first introduction. Most of them focus
solely on luminous intensity [7][8]. Some other methods also extend the LBP
approach to 3D data [9] or spatio-temporal signals [10]. However, there are very
few efforts in customizing the technique for depth images and RGB-D data.
Meanwhile, the explosive development of 3D content and devices recently has
made the depth information widely available and successfully exploited in many
applications. The access to the RGB-D source of information of home customers

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 133–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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has never been as easy with the introduction of Kinect-like devices. Depth data
is a special source of information that could characterize the object shape while
being fully invariant to textures and lighting condition, which has been proved to
be consistently improving the performance of various tasks in computer vision
[11][12]. In [13], Huang et al. put a pioneering effort in developing an LBP-
based descriptor, namely 3DLBP, specialized for facial depth images utilizing
a special characteristics of the smoothness of facial depth images comparing to
grayscale images. This work can be seen as the current state-of-the-art LBP-
based feature specially developed for human facial depth images. However, the
method suffers from some shortcomings as the feature length is much larger
while the performance gain compared to LBPU2 is not significant. The encoding
method is unstable when separating and encoding each digit of the binary form
of the depth differences individually. Furthermore, the encoding scheme only uses
the absolute value of the depth difference and ignores its true signed measure.
These shortcomings should potentially reduce the performance of the approach.

With the above analysis, in this paper we introduce a novel efficient LBP-
based descriptor, namely Gradient-LBP, for facial depth images which is proven
to be superior to 3DLBP and resolves its inherent drawbacks. The proposed de-
scriptor is applied to the gender recognition task and demonstrate its efficiency
in outperforming 3DLBP in all the experimental setups on both the Kinect and
range scanner images. Furthermore, we propose and evaluate a weighted com-
bination scheme of the proposed descriptor for depth images and LBPU2 for
grayscale images in gender recognition using different RGB-D sources of infor-
mation. Experimental results reinforce the effectiveness of the proposed descrip-
tor in complementing the result on grayscale images and confirm the efficiency
of the combination of LBP-based approaches on RGB-D data for facial analysis.

In short, the contributions of the paper are as follow:

• Proposition of an efficient descriptor for facial depth images: the descriptor is
much more compact and outperforms 3DLBP in all the experimental setups
on both Kinect and range scanner images in gender recognition task.

• Proposition and analysis of a weighted combination scheme of the proposed
descriptor for facial depth images and the state-of-the-art LBPU2 feature
for grayscale images in gender recognition using different sources of RGB-
D data: the experimentation is carried out on both high quality 3D range
scanner database and images of lower quality from Kinect device. The ex-
perimental results reinforce the effectiveness of the proposed descriptor in
complementing the information from grayscale images and confirm the effi-
ciency of the combination of LBP-based approaches on RGB-D data.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
works in literature. The definition of LBP and 3DLBP is recapulated in section
3. Section 4 presents our proposed descriptor for human facial depth images.
Section 5 introduces the proposed weighted combination scheme on RGB-D data.
The experimental setups and results are given in section 6. Finally, the conclusion
and future works are presented in section 7.
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2 Related Work

LBP is originally proposed as a simple yet efficient operator that encodes the sign
of the differences between the central pixel and its eight surrounding neighbors.
Since then, the method has been continuously improved and now there are many
variants applied in a vast domain of applications. In [14], Jin et al. proposed an
improved LBP (ILBP) which compares all the pixels with the mean intensity of
the patch to enhance its discriminative capability. Since LBP only encode the
signs of the gray-value differences (GDs), Guo et al. proposed a complete LBP
(CLBP) [7] to partly encode all the information from the sign, the GDs and
also the gray values of the central pixels. Also to compensate the information of
the gray values of neighboring pixels in the patch, Ylioinas et al. introduced the
combination of LBP and the variance of the gray values of surrounding pixels in
LBP/VAR [15] and showed consistent improvement. A complete survey of these
methods could be found in [16].

Most of the variants are solely introduced for grayscale images. Some other
efforts tried to extend the approach to 3D and spatio-temporal data. In [9], Fehr
exploited the spherical harmonic transform to compute LBP for 3D volume
data in frequency domain. Whereas Zhao and Pietikäinen successfully extended
the approach to spatio-temporal data with the introduction of volumn LBP
(VLBP) [10], in which it combines motion and appearance information in image
sequences. However, very few variants are found in the domain of depth images
and RGB-D data. In [13], Huang et al. made a pioneering attempt to extend
the LBP approach to facial depth images with the introduction of 3DLBP. The
method utilizes the special characteristics of the smoothness of the facial depth
images comparing to grayscale images, where most of the depth differences (DDs)
of neighboring pixels are very small. Therefore, 3DLBP uses a limited number of
bits to represent the DDs and encodes them in an LBP-like way. This approach
shows its efficiency when encoding most of the depth difference information into
the feature, besides the original LBP. However, it suffers from some drawbacks
as the feature length is large, the encoding scheme is unstable when transforming
the DDs into the binary form and encoding each digit separately, breaking the
integrity of the values, causing a very little change of the DDs would create a
big difference in the coded values. Furthermore, the method only uses the abso-
lute values of the DDs, ignoring their signed nature with positive and negative
entities. These shortcomings should potentially affect the performance of the
approach.

3 Face Representation Using LBP and 3DLBP

In this section, LBP and 3DLBP are reviewed as the background for the com-
prehension of our proposed approach in section 4.
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3.1 LBP

LBP operator performs by thresholding the differences of the center value and
the neighborhood in the 3x3 grid surrounding one pixel. The resulting values are
then considered as an 8-bit binary number represented for that pixel (Fig. 1).
The histogram of these binary numbers in the whole image can be used as a
descriptor for the image.

Fig. 1. An example of the original LBP operator [15]

The operator was then extended and generalized for any radius and number
of points in the neighborhood. The notation (P, R) is used to indicate the use
of P sample points in the neighborhood on the circle of radius R. The value of
the LBP code at the pixel (xc, yc) is given by:

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p (1)

where gc is the gray value of the center pixel (xc, yc), gp are the gray values of
P pixels at the radius R, s defines the thresholding function as follow:

s(x) =

{
1 if x ≥ 0
0 otherwise

(2)

Another remarkable improvement of LBP is the so called uniform pattern [1].
LBP codes are not uniformly distributed, some codes appear much more fre-
quently than the others. These frequent codes have at most two transitions from
0 to 1 or vice versa when the pattern is traversed circularly, and are called uni-
form patterns. When computing the histogram, every uniform pattern is labeled
with one distinguished value while all the non-uniform patterns are group into
one category. The uniform LBP is denoted as LBPU2

P,R. The LBPU2
8,1 has 59 bins

and was proven as much more efficient than the original LBP.

3.2 3DLBP

LBP is a powerful approach to analyze and discriminate textures. However, it
just considers the sign of differences and ignores the difference values, which can
be an important source of information. By just keeping the sign of the differences,
two different textures could be misclassified as the same by LBP.
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Fig. 2. An example of 3DLBP and its comparison to LBP [13]

In [13], Huang et al. extended the LBP approach to encode the extra informa-
tion of the values of depth differences (DD) specialized for facial depth images.
From a statistical point of view, the authors observe that more than 93% of the
DD between points in R = 2 are smaller than 7. This is due to the smoothness
in depth transitions of human faces, which is not true for grayscale images in
general, where the neighboring points could be arbitrarily different depending
on the texture and environmental conditions. Hence, the authors then use just
three bits to represent the DD. Three binary units can characterize the absolute
value of DD from 0 to 7. All the |DD| > 7 are assigned to 7. The DD is then
binarized. Therefore, combining with one bit representing the sign of the DD,
for each pixel surrounding the center point, there are four bits representing that
position {i1i2i3i4}, where i2i3i4 represents the absolute value of the DD and i1
represents the sign (encoded as the original LBP). Formally speaking, we have:

i1 =

{
1 if DD ≥ 0
0 otherwise

(3)

|DD| = i2 ∗ 22 + i3 ∗ 21 + i4 ∗ 20 (4)

The four bits are then separated into four layers. Then, for each layer, the cor-
responding bits of all the DD from the surrounding pixels are concatenated and
generate one LBP code. In total, there are four LBP codes {P1, P2, P3, P4},
where the first LBP code is the same as the original LBP. They are called 3D
Local Binary Patterns (3DLBP) (see Fig. 2). For matching, the histogram of
each LBP code is computed, then the four histograms are concatenated to form
a unique descriptor for the image.
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4 Gradient-LBP for Facial Depth Description

3DLBP is a good descriptor that incorporates depth differences into the feature
besides the original LBP. This feature works especially well for depth images
thanks to the smoothness of facial depth images, where most of the depth dif-
ferences are smaller than 7 levels. However, this approach suffers from several
limitations:

• The feature length is large. At each pixel, there are four LBP codes. For
the creation of the descriptor, each LBP code will then contribute to a his-
togram. With the standard LBP8,1, each histogram is of size 256 bins. Four
histograms would correspond to a feature length of 256 x 4 = 1024.

• The encoding scheme is unstable. A very small change of the depth difference
(DD) in a position could lead to a big difference in the coded values. For
example, when the DD of 3 (binary representation 011) increases into 4
(binary representation 100), the whole three last LBP codes will change.
This problem is caused by the unconventional way of transforming the DD
into binary form and forcefully encoding each binary digit separately in an
LBP-like way.

• The DD are encoded on the basic of their absolute values, losing the informa-
tion of the full range DD including negative and positive entities. Although
this is compensated by the inclusion of the LBP from the signs of DD in the
first LBP code, the separate encoding of this information into an LBP code
and transforming into the histogram loosens the intrinsic connection of the
sign and the absolute value parts of the DD.

Fig. 3. The eight orientations in computing the standard LBP8,1

Fig. 4. The eight LBP8,1-based orientations of the depth differences. The example
demonstrates the separated depth difference images in each orientation of the sample
image patch of size 4x4.
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With the above observations, we propose a novel efficient approach to incorpo-
rate the DD into the original LBP that overcomes all the mentioned shortcomings
of 3DLBP. The proposed method has been proved to be superior to the 3DLBP
approach in all the experimental setups carried out.

The proposed approach is based on a different orientation-based view towards
the LBP operator. For the standard LBP8,1, we can view the LBP operator
under a different perspective where eight surrounding pixels are compared to
the center value following eight orientations as shown in Fig. 3. The values of
DD are indeed calculated through these eight orientations. As illustrated in
Fig. 4, we consider each orientation in the computation of LBP separately for
the whole image, which leads to the creation of eight depth difference images
corresponding to eight orientations used by LBP8,1 (Fig. 3). This notion of
orientations and the oriented depth difference images can be generalized with
the use of LBPP,R of any number of sample points and radius. P sample points
used correspond to P orientations and would generate P oriented depth difference
images, when we consider each orientation separately in the computing of DD of
neighboring pixels. Each oriented depth difference image contains the DD values
of neighboring pixels in one corresponding orientation. At each position (xc, yc)
where the LBPP,R code is computed as in equation (1), the P oriented depth
differences corresponding to that central pixel are provided as follow:

ODDP,R,p
p=0...P−1 = max(min(gp − gc, 7),−8) (5)

where ODDP,R,p is the Oriented Depth Difference at pixel (xc, yc) in the depth
difference image corresponding to the orientation p (the orientation formed by
the point (xp, yp) and (xc, yc)), gp is the depth value at position (xp, yp) on the
circle of radius R surrounding the center pixel, gc is the depth value at the center
pixel, min(x,y) and max(x,y) are two functions that take the min and max value
between two variables (x,y) respectively. This means that we clip the DD to be
in the range -8 to 7, anything greater than 7 is set to be 7 and anything less than
-8 is set to -8. The DD thus has sixteen possible values. This threshold is based
on the statistical observation of 3DLBP that most of the DD of neighboring
pixels are no more than 7. Notice that we use the true values of DD, not taking
their absolute part.

After having P oriented depth difference images obtained as stated above,
we can build the histogram of each depth difference image in each orientation,
resulting in P histograms. Each histogram has 16 bins from -8 to 7. The infor-
mation from P histograms is then combined by concatenation to form a unique
oriented histogram of depth differences. For the creation of the image descrip-
tor, the histogram of LBPU2 is also extracted from the original depth image.
The descriptor is then the concatenation of the histogram of LBPU2 and the
oriented histogram of depth differences. It should be noticed that, the P depth
difference images corresponding to P orientations in computing LBP are pair-
wise symmetric (see Fig. 4), they are pairwise minus sign of the other. Thus,
using all P depth difference images would be redundant. We propose to use only
half of the P depth difference images in the computation of the final descriptor
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and call this Gradient-LBP (G-LBP). For the standard LBP of 8 sample points,
the proposed descriptor has the length of 59 + 16*4 = 123 (the histogram of
LBPU2 with 59 bins concatenated with four histograms of four oriented depth
difference images, each has 16 bins) which is much more compact compared to
3DLBP.

5 Weighted Combination of LBP and Gradient-LBP on
RGB-D Face Data for Gender Recognition

Although the problem of Gender Recognition has been explored extensively in
the scope of grayscale face images [6][5], there are very few works on Depth or
RGB-D source of information. In [11], Lu et al. experimented the combination
of range and luminous intensity data in gender and ethnicity classification and
showed the improvement by this approach. However, the authors just use the
simple pixel-based feature and the basic averaging fusion of the depth and lumi-
nous intensity information and demonstrate moderate results. Furthermore, the
experiments are carried out only on range scanner data. The analysis on lower
quality RGB-D data obtained from other widely used devices such as Kinect has
not been examined.

Here, we apply a weighted combination scheme based on our proposed de-
scriptor for depth images and the state-of-the-art LBPU2 feature for grayscale
images, since the contribution of each part is unbalanced, usually grayscale im-
ages are more discriminative than depth images. The method is then evaluated
on both professional 3D range scanner images and a Kinect database to evalu-
ate the behavior of the approach on different sources of RGB-D data. Support
Vector Machines is chosen to perform the classification task due to its superior
efficiency in demographic classification as has been proven in [17]. More specif-
ically, the classification is first performed separately for grayscale and depth
images using SVM, which returns the probabilities of belonging to classes of
male or female for each subject. The combination scheme of the results on two
sources of information is formulated as follow:

p(male|s) = wg ∗ p(male|sgray) + wd ∗ p(male|sdepth)
wg + wd

(6)

p(female|s) = wg ∗ p(female|sgray) + wd ∗ p(female|sdepth)
wg + wd

(7)

where s is the subject to be classified, p(male|s) and p(female|s) are the fi-
nal probabilities that the subject belongs to male or female class respectively,
p(male|sgray) and p(female|sgray) are the resulting posterior probabilities re-
turned by SVM for grayscale images while p(male|sdepth) and p(female|sdepth)
are the results from depth images, wg and wd are the weighting factor for the
grayscale and depth information respectively, they are the free parameters and
could be adjusted according to the contribution of each part to the final decision.



An Efficient LBP-Based Descriptor for Facial Depth Images 141

In our experimentation, we propose to use these parameters as the resulting ac-
curacy returned by SVM when using each source of information (grayscale or
depth) separately for training and validating.

6 Experimental Analysis

6.1 Experimental Data

The EURECOM Kinect Face Dataset [19] and Texas 3DFR Dataset [18] are
used for experimentation, both having color and depth images where the former
is obtained using Kinect device while the latter is captured by range scanner.

The EURECOM Kinect Face dataset contains face images of 52 people (14
females, 38 males) taken in two sessions. In each session, the people are captured
with nine states (neutral, smile, open mouth, left profile, right profile, occlusion
eyes, occlusion mouth, occlusion paper, light on), besides the depth image, the
raw depth level sensed by Kinect is also provided in a .txt file for better precision.
The dataset also includes 6 manually located landmark points on the face (left
eye, right eye, tip of the nose, left and right side of the mouth, the chin).

The Texas 3DFR dataset provides 1149 images (366 females, 783 males). The
data includes both the raw images and the preprocessed data where the images
underwent Gaussian smoothing, median filtering and hole filling steps. The 25
manually located anthropometric facial fiducial points are also provided.

6.2 Preprocessing

Based on the manual landmark points on the face, the images are first cropped
into a square centered by the nose with the width and height two times the
distance between the left and right eye centers.

Fig. 5. The sample preprocessed images from EURECOM Kinect Face Dataset

For the depth information of EURECOM Kinect Face Dataset, we use raw
depth levels in .txt files to have better representation. To fill holes, the closing
operation is further applied to depth images. An illustration of the preprocessed
images is shown in Fig. 5. For the Texas 3DFR dataset, we use the preprocessed
images provided by the database. The cropped images in the EURECOM Kinect
Face Dataset are then scaled to 96x96 pixels and the ones in Texas 3DFR dataset
are scaled to 256x256 due to their higher resolution.
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6.3 Settings

The images are divided into 8x8 blocks. The LBPU2, 3DLBP and Gradient-LBP
are extracted for each block and then concatenated to form a spatially enhanced
feature for evaluation. Different configuration of (P,R) = (8,1) and (P,R) = (8,2)
for all the three descriptors are experimented to obtain the in-depth evaluations.

For the classification task, we use SVM with non-linear RBF kernel as it
has been proven to be a prominent technique in gender classification. We use 3
states in the EURECOM Kinect Face Dataset (Neutral, Smile and Light On)
which cover different expressions and lighting conditions. For all the investigated
methods, we carry out three experimental setups. In the first experiment (Kinect
1), we use the first session of EURECOM Kinect Face Dataset as the training
set, the second session is the testing set. The second experiment (Kinect 2) is
carried out by using first half number of males and females in both sessions of
EURECOM Kinect Face Dataset as training set, the remaining are for testing.
The third experiment (Range Scanner) is executed on the Texas 3DFR Dataset,
where first half number of males and females are used as training and the re-
maining are used for testing, as in Kinect 2 setup.

6.4 Results and Analysis

To evaluate the performance of the proposed Gradient-LBP for depth images,
the comparison between Gradient-LBP, 3DLBP and LBPU2 on depth images in
three experimental setups as stated in section (6.3) are carried out. The detail

Table 1. The detailed comparison of the accuracy (in %) of the three investigated
descriptors on depth images

Kinect 1 Kinect 2 Range Scanner
Male Female Overall Male Female Overal Male Female Overal

LBPU2
8,1 96.49 83.33 92.95 80.70 73.81 78.85 95.15 59.02 83.65

LBPU2
8,2 98.25 78.57 92.95 83.33 71.43 80.13 96.17 59.19 83.13

3DLBP8,1 95.61 90.48 94.23 83.33 83.33 83.33 95.66 60.11 84.35

3DLBP8,2 96.49 88.10 94.23 84.21 90.48 85.90 97.96 63.39 86.96

Gradient-LBP8,1 96.49 92.86 95.51 86.84 88.10 87.18 99.74 62.30 87.83

Gradient-LBP8,2 96.49 92.86 95.51 85.09 88.10 85.90 100 68.31 89.91

Table 2. The accuracy (in %) of the combination scheme compared to using LBP-
based descriptors on depth and grayscale images for the configuration of (P,R) = (8,1)

Kinect 1 Kinect 2 Range Scanner
Male Female Overall Male Female Overal Male Female Overal

G-LBP8,1 (Depth) 96.49 92.86 95.51 86.84 88.10 87.18 99.74 62.30 87.83

LBPU2
8,1 (Gray) 98.25 97.62 98.08 94.74 69.05 87.82 95.15 92.90 94.43

Combination 99.12 100 99.36 95.61 76.19 90.38 98.98 91.80 96.70
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results are shown in Table 1. From the experiments, we can draw two conclusions
regarding the performance of the features specialized for depth images:

• LBPU2 alone is not a good descriptor for depth images, the extra depth
difference information included in 3DLBP does improve the recognition per-
formance for depth images.

• For the depth images, the Gradient-LBP outperforms the 3DLBP and LBPU2

approaches in all the experimental setups on both Kinect data and range
scanner images, and for both radius of 1 and 2, this proves the consistent
superiority of the proposed descriptor on facial depth data.

Table 3. The accuracy (in %) of the combination scheme compared to using LBP-
based descriptors on depth and grayscale images for the configuration of (P,R) = (8,2)

Kinect 1 Kinect 2 Range Scanner
Male Female Overall Male Female Overal Male Female Overal

G-LBP8,2 (Depth) 96.49 92.86 95.51 85.09 88.10 85.90 100 68.31 89.91

LBPU2
8,2 (Gray) 95.61 97.62 96.15 92.98 71.43 87.18 93.62 90.16 92.52

Combination 98.25 97.62 98.08 93.86 80.95 90.38 97.96 89.62 95.30

The evaluated effectiveness of the combination scheme of Gradient-LBP for
depth images and LBPU2 for grayscale images comparing to the use of these
methods alone on both Kinect and range scanner data are given in Table 2
and Table 3. The results demonstrate that, although LBPU2 is very robust and
efficient in representing grayscale images in gender classification, the addition
of Gradient-LBP source of information from depth images always improve the
final performance. The results are very consistent in both the range scanner data
and images of lower quality from home devices like Kinect. This result reinforces
the effectiveness of the proposed feature for depth images in complementing the
luminous intensity information and the efficiency of the combination of LBP-
based approaches on RGB-D data.

It can also be noticed that, all the experimental results follow the same trend
in which the experimental setup with the first session of the EURECOM Kinect
Face Dataset used as training produces the highest accuracy, followed by the
setup where half the images in Texas 3DFR are trained, the lowest result corre-
sponds to using half the images in both sessions of the EURECOM Kinect Face
Dataset as training. This can be explained since in Kinect 1 setup, all the people
presented in the testing set also appear in the training set, which helps the clas-
sifier easily recognize the features. The result of the experimental setup Kinect
2 in overall is worse than Range Scanner because the resolution and quality of
images in the Texas 3DFR database are better than Kinect data.
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7 Conclusion and Future Works

In this paper, a novel feature descriptor specialized for facial depth images in-
spired by 3DLBP is introduced. The proposed descriptor is much more compact
yet consistently outperforms 3DLBP in all the experimental setups carried out
on both sets of images from Kinect device and range scanner. We further propose
a weighted combination scheme and reinforce the effectiveness of the proposed
descriptor by its efficient combination with the result from LBPU2 on grayscale
images. Although LBPU2 is already an excellent descriptor for grayscale im-
ages, the combined scheme consistently shows the improvement across different
experimental setups and RGB-D sources.

In the scope of this work, experimentations have been performed on a simple
two-class problem, that is to say gender recognition, in order to validate the
efficiency of the proposed approach. Next step would consist in extending our
tests on multiple-class problems, e.g. age, ethnicity, identity classification.
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Center for Machine Vision Research,
Department of Computer Science and Engineering,
P. O. Box 4500 FI-90014 University of Oulu, Finland

{jukmaatt,hadid,mkp}@ee.oulu.fi

Abstract. While there is a significant number of works addressing e.g.
pose and illumination variation problems in face recognition, the vulner-
abilities to spoofing attacks were mostly unexplored until very recently
when an increasing attention is started to be paid to this threat. A spoof-
ing attack occurs when a person tries to masquerade as someone else e.g.
by wearing a mask to gain illegitimate access and advantages. This work
provides the first investigation in research literature on the use of dy-
namic texture for face spoofing detection. Unlike masks and 3D head
models, real faces are indeed non-rigid objects with contractions of facial
muscles which result in temporally deformed facial features such as eye
lids and lips. Our key idea is to learn the structure and the dynamics of
the facial micro-textures that characterise only real faces but not fake
ones. Hence, we introduce a novel and appealing approach to face spoof-
ing detection using the spatiotemporal (dynamic texture) extensions of
the highly popular local binary pattern approach. We experiment with
two publicly available databases consisting of several fake face attacks
of different natures under varying conditions and imaging qualities. The
experiments show excellent results beyond the state-of-the-art.

1 Introduction

Because of its natural and non-intrusive interaction, identity verification and
recognition using facial information is among the most active and challenging
areas in computer vision research. Despite the significant progress in the face
recognition technology in the recent decades, wide range of viewpoints, aging
of subjects and complex outdoor lighting are still research challenges. While
there is a significant number of works addressing these issues, research on face
biometric systems under spoofing attacks has mostly been overlooked although
face recognition systems are known, since long time ago, to respond weakly to
attacks. A spoofing attack occurs when a person tries to masquerade as someone
else by falsifying data and thereby gaining illegitimate access. Very recently, an
increasing attention is started to be paid to the problem of spoofing attacks
against face biometric systems. This can be attested by the recently organized
IJCB 2011 competition on counter measures to 2D facial spoofing attacks [1]
which can be seen as a kick-off for studying best practices for non-intrusive
spoofing detection.

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 146–157, 2013.
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One can spoof a face recognition system by presenting a photograph, a video
or a 3D model of a targeted person to the camera. While one can also use make-
up or plastic surgery as other means of spoofing, photographs are probably the
most common sources of spoofing attacks because one can easily download and
capture facial images. Typical countermeasure against spoofing is liveness detec-
tion that aims at detecting physiological signs of life such as eye blinking, facial
expression changes, mouth movements, etc. For instance, Pan et al. [2] exploited
the observation that humans blink once every 2-4 seconds and proposed an eye
blink-based anti-spoofing method. Another commonly used countermeasure is
motion analysis since it can be assumed that the movement of planar objects
(e.g. displays and photographs) differs significantly from that of real human faces
which are complex non-rigid 3D objects [3,4]. Obviously, such countermeasures
can only be considered with photographs while nowadays videos are ubiquitous
and hence can easily be used for spoofing attacks. Another category of anti-
spoofing methods are based on the analysis of skin properties such as skin tex-
ture and skin reflectance. An intuitive approach is to explore the high frequency
information in the facial region, since mobile phone displays and smaller pho-
tographs probably contain fewer high frequency components compared to real
faces [5,6]. Such an approach is likely to fail with higher quality photographs
and videos, as shown for example in [7]. Recently, also micro-texture analysis
has been applied to measure facial texture quality with impressive results [8,9].
However, the evaluations were made using data sets with little variations and the
used high frequency information depends strongly on the input image and fake
face quality. Other countermeasures against face spoofing attacks include multi-
modal analysis and multi-spectral methods. A system combining face recognition
with other biometric modalities such as gait and speech is indeed intrinsically
more difficult to spoof than uni-modal systems. Multi-spectral imaging can also
be used for analyzing the reflectance of object surfaces and thus discriminating
live faces from fake ones [10].

It appears that most of the existing methods for spoofing detection are either
very complex (and hence not very practical for real-world face biometric systems
requiring fast processing) or using non-conventional imaging systems (e.g. multi
spectral imaging) and devices (e.g. thermal cameras). We therefore propose in
this work a novel computationally fast approach based on highly discriminative
dynamic micro-texture features, using conventional images and requiring no user-
cooperation.

This work provides the first investigation in research literature on the
use of dynamic texture for face spoofing detection. Unlike masks and 3D head
models, real faces are indeed non-rigid objects with contractions of facial mus-
cles which result in temporally deformed facial features such as eye lids and
lips. Our key idea is to learn the structure and especially the dynamics of
the facial micro-textures that characterize only real faces but not fake ones.
Hence, we introduce the first and appealing spatio-temporal approach to face
spoofing detection using the spatiotemporal (dynamic texture) extensions of the
highly popular local binary pattern (LBP) approach [11]. Spatiotemporal LBP
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has shown very promising performance in various problems, including dynamic
texture recognition, face and facial expression recognition, lip-reading, and ac-
tivity and gait recognition [11].

Dynamic textures provide a new and very effective tool for motion analysis.
The past research on motion analysis has been usually based on assumption
that the scene is Lambertian, rigid and static. For example, the Lambertian as-
sumption has been crucial when developing methods for tracking, determining
optical flow or finding correspondences. This kind of constraints greatly limits
the applicability of motion analysis. Recently, approaches based on dynamic tex-
tures have been proposed as a new and potentially very effective tool for motion
analysis [11]. These developments have inspired us to approach face spoofing
detection from dynamic texture point of view. We introduce below our novel
approach and provide extensive experimental analysis on two publicly available
databases (CASIA Face Anti-Spoofing Database [7] and Print-Attack Database
[12]) consisting of several fake face attacks of different natures and under varying
conditions and imaging qualities, showing excellent results beyond the state-of-
the-art.

2 Spatiotemporal Face Liveness Description

For describing the face liveness for spoofing detection, we considered an elegant
approach to face analysis from videos which is based on a spatiotemporal repre-
sentation for combining facial appearance and dynamics. We adopted the LBP
based spatiotemporal representation because of its recent excellent performance
in modeling moving faces for face and facial expression recognition and also for
dynamic texture recognition. More specifically, we considered local binary pat-
terns from three orthogonal planes (LBP-TOP) which have shown to be very
effective in describing the horizontal and vertical motion patterns in addition to
appearance [13].

The LBP texture analysis operator, introduced by Ojala et al. [14,15], is de-
fined as a gray-scale invariant texture measure, derived from a general definition
of texture in a local neighborhood. It is a powerful texture descriptor and among
its properties in real-world applications are its discriminative power, computa-
tional simplicity and tolerance against monotonic gray-scale changes. The orig-
inal LBP operator forms labels for the image pixels by thresholding the 3 × 3
neighborhood with the center value and considering the result as a binary num-
ber. The histogram of these 28 = 256 different labels can then be used as a image
descriptor.

The original LBP operator was defined to only deal with the spatial infor-
mation. Recently, it has been extended to a spatiotemporal representation for
dynamic texture analysis (DT). This has yielded to so called Volume Local Bi-
nary Pattern operator (VLBP) [13]. The idea behind VLBP consists of looking at
dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote
the spatial coordinates and T denotes the frame index (time). The neighborhood
of each pixel is thus defined in a three dimensional space. Then, similarly to ba-
sic LBP in spatial domain, volume textons can be defined and extracted into
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histograms. Therefore, VLBP combines motion and appearance into a dynamic
texture description.

To make the VLBP computationally simple and easy to extend, the co-
occurrences of the LBP on the three orthogonal planes (LBP-TOP) was also
introduced [13]. LBP-TOP consists of the three orthogonal planes: XY, XT and
YT, and concatenating local binary pattern co-occurrence statistics in these
three directions. The circular neighborhoods are generalized to elliptical sam-
pling to fit to the space-time statistics. The LBP codes are extracted from the
XY, XT and YT planes, which are denoted as XY − LBP , XT − LBP and
Y T−LBP , for all pixels, and statistics of the three different planes are obtained,
and then concatenated into a single histogram. The procedure is shown in Fig. 1.
In this representation, dynamic texture (DT) is encoded by the XY − LBP ,
XT − LBP and Y T − LBP .

Fig. 1. (a) Three planes of dynamic texture; (b) LBP histogram from each plane; (c)
Concatenated feature histogram [13]

Using equal radiuses for the time and spatial axes is not reasonable for dy-
namic textures [13] and therefore, in the XT and YT planes, different radii
can be assigned to sample neighboring points in space and time. More gen-
erally, the radii in axes X, Y and T, and the number of neighboring points
in the XY, XT and YT planes can also be different denoted by RX , RY and
RT , PXY , PXT and PY T . The corresponding feature is denoted as LBP −
TOPPXY ,PXT ,PY T ,RX ,RY ,RT .

Let assume we are given an X×Y ×T dynamic texture (xc ∈ {0, · · · , X − 1} ,
yc ∈ {0, · · · , Y − 1} , tc ∈ {0, · · · , T − 1}). A histogram of the DT can be defined
as:

Hi,j =
∑
x,y,t

I {fj(x, y, t) = i} , i = 0, · · · , nj − 1; j = 0, 1, 2 . (1)

in which nj is the number of different labels produced by the LBP operator in
the jth plane (j = 0 : XY, 1 : XT and 2 : Y T ) and fi(x, y, t) expresses the LBP
code of central pixel (x, y, t) in the jth plane.

Similarly to the original LBP, the histograms must be normalized to get a
coherent description for comparing the DTs:

Ni,j =
Hi,j∑nj−1

k=0 Hk,j

. (2)
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Fig. 2. Dynamic texture based face description

Due to its tolerance against monotonic gray-scale changes, LBP is adequate for
measuring the facial texture quality and determining whether degradations due
to spoofing medium are observed. We adopted the LBP based spoofing detection
in spatiotemporal domain because LBP-TOP features have been successfully
applied in describing dynamic events. Our key idea is use LBP-TOP features for
detecting e.g. specific facial motion patterns or sudden characteristic reflections
of planar spoofing media which might differentiate real faces from fake ones.

When deriving our proposed face liveness description, we aim to avoid scaling
during geometric face normalization in order to keep all valuable information
about the facial texture quality which is a crucial visual cue in spoofing de-
tection. Simple head pose correction based on eye locations may also be too
unstable between video frames, e.g. due to inaccurate eye detection, yielding
performance degradation in dynamic texture analysis. To overcome these effects,
LBP-TOP8,8,8,1,2,2 operator is instead applied on each pixel and the dynamic
LBP histogram for every frame is calculated over the volume bounded by the
roughly normalized face location (see Fig. 2). Then, the histograms of 768 bins
are accumulated over a period of two seconds (50 frames at 25fps) to form the
final feature vector.

3 Experimental Analysis

To assess of the effectiveness of our proposed spatiotemporal face liveness de-
scription for spoofing detection, we performed a set of experiments on the CASIA
Face Anti-Spoofing Database [7] and Print-Attack Database [12] from the Idiap
Research Institute. We used Viola-Jones algorithm for face detection [16] while
eye localization is performed using 2D Cascaded AdaBoost [17]. The relative eye
positions from the first frame are used to refine the detected faces so that the
face areas are roughly aligned in every frame. We also exploited the fact that the
spoofing medium might be visible around the face, thus the height and width of
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the aligned face are set to 3.5d and 3.0d where d represents the distance between
eyes (see Fig. 2). Once the face liveness description is derived, a homogeneous
kernel map [18] is applied to obtain a five dimensional linear approximation
of a χ2 kernel. The approximated feature map is computed with VLFeat [19]
and the final classification is performed using a linear SVM implementation of
LIBLINEAR [20].

The SVM classifier is trained using a set of positive (genuine faces) and nega-
tive (fake faces) samples which are extracted from the provided training data. In
order to get sufficient amount of data for building the model, the whole length of
each training video is divided into several time windows with temporal overlap
of one second over which the LBP-TOP features are computed. On the test sets,
however, only the first two seconds from the beginning of each video sequence
are used for determining whether a genuine face or a fake one is observed. The
use of the whole video sequence may naturally lead to better detection results
but at the cost of more computational time which could be an issue in real-life
applications.

Fig. 3. Example images from the CASIA Face Anti-Spoofing Database [7]

3.1 Evaluation on the CASIA Face Anti-Spoofing Database

We first conducted extensive experiments on the CASIA Face Anti-Spoofing
Database [7] and compared our results against those which are provided along
with the database. The database includes significant improvements compared to
previous databases, since it provides more variations in the collected data. The
data set contains 50 real clients and the corresponding fake faces are captured
with high quality from the original ones. The variety is achieved by introducing
three imaging qualities (low, normal and high) and three fake face attacks which
include warped photo, cut photo (eyeblink) and video attacks. Examples from
the database can be seen in Fig. 3. Altogether the database consists of 600 video
clips and the subjects are divided into subsets for training and testing (240
and 360, respectively). Results of a baseline system are also provided along the
database for fair comparison. The baseline system considers the high frequency
information in the facial region using multiple DoG features and SVM classifier
and is inspired by the work of Tan et al. [6].

Since the main purpose of the database is to investigate the possible effects
of different fake face types and imaging qualities, the test protocol consists of
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seven scenarios in which particular train and test samples are to be used. The
quality test considers the three imaging qualities separately, low (1), normal (2)
and high quality (3), and evaluates the overall spoofing detection perfomance
under variety of attacks at the given imaging quality. Similarly, the fake face test
assesses how robust the anti-spoofing measure is to specific fake face attacks,
warped photo (4), cut photo (5) and video attacks (6), regardless of the imaging
quality. In the overall test (7), all data is used to give a more general evaluation.
The results of each scenario are reported as Detection-Error Trade-off (DET)
curves and equal error rates (EER), which is the point where false acceptance
rate (FAR) equals false rejection rate (FRR) on the DET curve.

Fig. 4. Overall comparative results on the CASIA Face Anti-Spoofing Database

The results of the experiments are shown in Fig. 4 as DET curves for the
overall test, i.e. including all scenarios. As it can be seen, the use of only fa-
cial appearance (LBP) leads to better results compared to the baseline method
(CASIA baseline). Importantly, when the temporal planes XT and YT are
also considered for spatio-temporal face description (LBP-TOP), a significant
performance enhancement is obtained, thus confirming the benefits of encod-
ing and exploiting not only the facial appearance but also the facial dynamics
information.

More detailed results for each spoofing attack scenario are presented in Fig. 5
and in Table 1. The results indicate that the proposed LBP-TOP based face
description yields best results in all configurations except at the highest imag-
ing quality. The facial appearance description (LBP) works perfectly when the
highest imaging quality is used because the skin texture of genuine faces looks
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Fig. 5. DET curves under the different protocols of the CASIA Face Anti-Spoofing
Database

Table 1. EER comparison between the baseline method, LBP and LBP-TOP on the
CASIA Face Anti-Spoofing Database

Scenario 1 2 3 4 5 6 7

Baseline 0.13 0.13 0.26 0.16 0.06 0.24 0.17
LBP 0.04 0.10 0.00 0.04 0.04 0.01 0.04
LBPTOP 0.03 0.03 0.01 0.01 0.02 0.01 0.02

strikingly sharper compared to the fake ones. Thus, the measurement of facial
texture quality seems to provide sufficient means to reveal whether degradation
due to recapturing process is observed if the imaging quality is good enough
to capture the fine details of a human face. However, the quality test shows
that the use of facial dynamics enhances the spoofing detection results at lower
imaging qualities without any significant performance drop when a high res-
olution camera is used for capturing the facial image. Furthermore, the fake
face test indicates that adding temporal planes to the face description improves
the robustness to different types of spoofing attacks, especially to warped and
cut photo attacks, at various imaging qualities. The downsized resolution of the
original high quality video spoofs (due to limited iPad screen resolution) [7] and
the occasionally visible video screen frame around the fake faces also partially
explain the less challening nature of the video attack tests.
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3.2 Evaluation on the Print-Attack Database

For extensive evaluation, we also conducted experiments on a second publicly
available database namely Print-Attack Database [12] which was originally in-
troduced within the IJCB 2011 Competition on Counter Measures to 2D Facial
Spoofing Attacks [1]. The database consists of 200 real client accesses and 200
print-attack videos (50 clients) which were captured in controlled and uncon-
trolled lighting conditions using a webcam at 25fps with a resolution of 320×240
pixels. The print attacks were generated by taking high-resolution photographs
of each client under the same conditions as in their authentication sessions and
the captured images were printed in color on A4-sized paper. The spoofing at-
tack attempts were performed with fixed or hand-held prints. Example images
from the database are shown in Fig. 6. The database is divided into three sets,
training, development and test data (see Table 2). Clients have been randomly
divided for each subset so that the identities do not overlap between the subsets.
The EER of development set is used for tuning the threshold which is applied
for discriminating the test samples. For simplicity, we used the provided face
locations for extracting the LBP-TOP representations.

Fig. 6. Examples from Print-Attack Database [12] with the provided face locations.
Note that the photo attacks suffer from apparent printing artefacts.

Table 2. The decomposition of the Print-Attack Database. The numbers indicate how
many videos are included in each subset (the sums indicate the amount of hand-based
and fixed-support attacks).

Type Train Devel. Test Total

Real 60 60 80 200

Attack 30+30 30+30 40+40 100+100

Total 120 120 160 400

Our dynamic texture based face description approach easily detected and
characterized the printing artifacts and facial movements, e.g. eye blinking. Our
approach yields perfect detection results (EER of 0%) on this database. Print
attacks are perhaps less challenging to our method than the combination of
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different types of attacks as in the CASIA Face Anti-Spoofing Database. Table 3
shows a performance comparison between our proposed approach and the works
of different research groups who participated in the IJCB 2011 Competition on
Counter Measures to 2D Facial Spoofing Attacks [1]. It is worth mentioning that
our proposed dynamic texture based face description performed very well even
using only a single LBP-TOP feature vector which is easily extracted from the
face area, whereas the other methods considered more complex analysis using
multiple cues, e.g. fusion of separate motion and texture analysis, or relying on
describing the strongly visible print defects which are quite obvious in the data
set.

Table 3. Performance comparison between the proposed approach and the teams who
participated in the IJCB 2011 Competition on Counter Measures to 2D Facial Spoofing
Attacks [1]

Development Test
Method FAR FRR FAR FRR HTER

AMILAB [1] 0.00 0.00 0.00 1.25 0.63
CASIA [1] 1.67 1.67 0.00 0.00 0.00
IDIAP [1] 0.00 0.00 0.00 0.00 0.00
SIANI [1] 1.67 1.67 0.00 21.25 10.63
UNICAMP [1] 1.67 1.67 1.25 0.00 0.63
UOULU [1] 0.00 0.00 0.00 0.00 0.00

Proposed approach 0.00 0.00 0.00 0.00 0.00

4 Conclusion

Inspired by the recent progress in dynamic texture, we investigated the problem
of face spoofing detection using spatiotemporal local binary patterns. To the best
of our knowledge, this is the first work in the literature applying dynamic tex-
ture to the spoofing detection problem. The key idea of our proposed approach
consists of analyzing the structure and the dynamics of the micro-textures in
the facial regions using LBP-TOP features which provide an efficient and com-
pact representation for face liveness description. Experiments on two publicly
available databases showed excellent results under various fake face attacks, in-
cluding video replay attacks, at different imaging qualities. The incorporation
of facial dynamics significantly increased the robustness of the LBP based face
description regardless of the imaging quality, especially under warped and cut
photo attacks. Our obtained results can be used by the research community as
a new reference on these spoofing databases for future research.

The excellent obtained results on these two publicly available databases sug-
gest that more challenging databases (e.g. using 3D skin-like masks of very high
quality and precision) should be designed, captured and made publically avail-
able for the research community in the near future. It would be then of great
interest to evaluate our approach on such challenging data when available. We
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are currently incorporating the described anti-spoofing measure into our exist-
ing access control system for deployment in real-world applications. We plan to
release the source code of our described anti-spoofing method for the research
community after the publication of this work.
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15. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. on PAMI
24 (2002)

16. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 511–518 (2001)

17. Niu, Z., Shan, S., Yan, S., Chen, X., Gao, W.: 2d cascaded adaboost for eye lo-
calization. In: Proc. of the 18th International Conference on Pattern Recognition
(2006)

18. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2010)

19. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms (2008)

20. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research 9,
1871–1874 (2008)



Class-Specified Segmentation with Multi-scale

Superpixels

Han Liu1, Yanyun Qu1,	, Yang Wu2, and Hanzi Wang3

1 Computer Science Department, Xiamen University, China
2 Academic Center for Computing and Media Studies, Kyoto University, Japan

3 Center for Pattern Analysis and Machine Intelligence, Xiamen University, China

Abstract. This paper proposes a class-specified segmentation method,
which can not only segment foreground objects from background at pixel
level, but also parse images. Such class-specified segmentation is very
helpful to many other computer vision tasks including computational
photography. The novelty of our method is that we use multi-scale su-
perpixels to effectively extract object-level regions instead of using only
single scale superpixels. The contextual information across scales and the
spatial coherency of neighboring superpixels in the same scale are repre-
sented and integrated via a Conditional Random Field model on multi-
scale superpixels. Compared with the other methods that have ever used
multi-scale superpixel extraction together with across-scale contextual
information modeling, our method not only has fewer free parameters
but also is simpler and effective. The superiority of our method, com-
pared with related approaches, is demonstrated on the two widely used
datasets of Graz02 and MSRC.

1 Introduction

This paper aims to segment an image into semantic objects. As a special case,
we can extract foreground region from background region at pixel level. More
generally, we can segment an image according to the class labels of its compo-
nents as well; namely, label all objects in the image. Such a task is referred to
as class-specified image segmentation in this paper.

Class-specified image segmentation is quite different from the unsupervised
bottom-up image segmentation. A single region generated by the bottom-up
image segmentation rarely represents a physical object, which is usually trou-
blesome when used for higher level vision tasks. Moreover, bottom-up image
segmentation is likely to be sensitive to the model parameters and the image
data itself. Different choices of the parameters in a particular bottom-up im-
age segmentation algorithm could generate segments with different quality on
the same image. Therefore, the class-specified segmentation is proposed to over-
come such problems. It segments an image according to the semantic informa-
tion of the objects within it, which is expected to be consistent with humans
perceptions.
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The development of object localization has shed some light on class-specified
segmentation. Dalal et al. [1] implemented a sliding window scheme combined
with SVM classifiers to detect pedestrians. However, that method is time con-
suming. In order to solve this problem, Lampert et al. [2] proposed an efficient
subwindow search method, which is based on the branch-and-bound scheme, to
detect the generic object. Blaschko et al. [3] treated the problem of object lo-
calization as a regression problem, in which the objects location is an output
of a learned objective function. However, the above-mentioned methods are all
conditioned on the existence of an object template, which is hard to be made ro-
bust to the change of object appearance, such as rotation, illumination changes,
occlusion, etc. Utilizing multiple templates might somewhat ease the problem,
but for many objects in the unconstrained real images, such a strategy may lead
to a significant increase of the total number of the required templates. Another
flaw of those methods is that they only extract an object with a bounding box,
thus being unable to provide accurate segmentation at pixel level.

Recent success in pixel-level categorization has shown a promise for object
localization, in which one can label image pixels with the corresponding classes
instead of roughly bounding an object with only a rectangle. Shotton et al.
[4] constructed semantic texton forests (STF) to learn the local representation.
They used a grid with small cells as the input to STF. However, their method is
sensitive to the size of the cells and its accuracy decreases as it meets a higher
speed demand. Fulkerson et al. [5] used superpixels instead of the regular patch
grid for representation. They represented the local image information in an adap-
tive domain rather than in a fixed window and adopted Conditional Random
Field (CRF) [6] to extract the object-level regions. Tighe et al. [7] proposed
a similar method as [5]. The difference is that they used superpixel matching
instead of classifying to compute the likelihood score for each class, while their
commonness is to base themselves on the superpixels of a single scale. Therefore,
both of their methods can only capture the context of neighboring superpixels,
but not cover the across scale context of the informative superpixels of multiple
levels in the scale space. Their performances are thus sensitive to the scale of
superpixels and the range of superpixel neighbors, which results in a relative
unstable object-level segmentation. Kohli et al. [8] proposed an image parsing
method based on both pixels and unlabeled segments, encouraging pixels in the
same segment to share the same label. Similar to [5][7], this method does not
take into account the scale space context as well. The latest work that explored
both the spatial coherency of neighboring superpixels in the same scale and the
contextual information across scales was presented by Lubor et al. [9], in which
a hierarchical CRF model was performed. However, this work has two shortcom-
ings which limit its effectiveness and applicability. One is that its performance
depends much on the goodness of the initial unsupervised segmentation, and the
other is that it has many free parameters to be predefined, which is not a trivial
task.

In this paper, we propose a new approach for class-specified segmentation
which inherits the virtues of the existing methods while at the same time avoids
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Fig. 1. The framework of the class-specified segmentation method. a) the original
image; b) the classification of the segments at three scales where the red color means
a high probability of the corresponding superpixels belonging to the bike and the
blue color means a high probability of the corresponding superpixels belonging to
the background; c) graph construction on the multi-scale superpixels; d) the obtained
confidence map. (The figure is best viewed in color.)

their shortages. The proposed approach follows the idea of using CRF to in-
tegrate both the spatial coherency and across-scale consistency of multi-scale
superpixels, but in a simpler and more effective way than the one presented in
[9]. More precisely, instead of using appearance for representing the across-scale
contextual information, we use the overlapping ratio which is proved to be more
efficient and more effective. Our model has only one single free parameter: the
number of scales, which is not sensitive to the input data, as to be witnessed in
our experiments. All the other parameters of our model can be learned in the
training stage. Besides its applicability, its superiority in terms of segmentation
performance will be demonstrated in this paper, especially when it is compared
with the most related method [5].

The rest of the paper is organized as follows. In section 2, we give the details
about our method. In section 3, the experimental results are given to show the
performance of our method. Conclusions are given in the section 4.

2 Class-Specified Segmentation

The framework of our method is shown in Figure 1. We firstly obtain the su-
perpixels at multiple scales by changing the number of segments at each scale.
Then an adaboost classifier for the foreground object is learned on the labeled
training data. After that, the confidence values of superpixels are computed
using the classifier. We employ the CRF model [6] to enforce the spatial consis-
tency between the superpixels and their neighbors both in the same scale and
in the consecutive levels in the scale space. Finally, we obtain the class-specified
segmentation of an image, as shown in Figure 1(d).
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Fig. 2. The flowchart of superpixel’s description with bag of words model. We get the
SIFT descriptors for all the pixels. With the vocabulary of visual words, we describe
each superpixel by the word frequency of the pixels within it.

2.1 Superpixel and Description

The motivation of using multi-scale superpixels is to capture the context of the
superpixels of multiple levels in the scale space which may be critical for stable
object-level segmentation. In our method, we firstly use SLIC superpixels [10] to
oversegment an image with different numbers of segments and obtain the multi-
scale superpixels. We have evaluated the following image segmentations in our
framework: graph-based-segmentation [11], quickshift [12] and SLIC [10], and
we found that the superpixels obtained by SLIC achieved the best performance
with our model. It probably dues to the fact that the parameters in quickshift
segmentation and graph-based-segmentation are relatively less sensitive to the
change of color, which results in many repeated superpixels.

We employ the bag-of-words model (BOW) to describe these superpixels.
Since sparse sampling may end up with a representation of superpixels which
is not informative and stable enough, we use the dense description instead and
describe each pixel by a SIFT descriptor [13] as shown in Figure 2, which is sim-
ilar to [5,7]. These descriptors are then mapped to a vocabulary of visual words
which are computed using vector quantization based on the K-means scheme.
Before representing a superpixel, we dilate each superpixel region by four pixels
in order to enforce the boundary information to the superpixel descriptor follow-
ing [5,7]. To represent superpixels, we build a histogram of word frequency for
each superpixel with the vocabulary. Moreover, we use the color cue as well. We
compute the average color for each superpixel in the Lab color space for its high
discriminative ability on colors. Finally we simply concatenate the histogram of
visual words and the average color to form a high dimension feature vector for
each superpixel.
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2.2 Classification

In order to compute the confidence value of superpixels, we learn adaboost clas-
sifiers [14] based on the superpixels contained in the labeled object regions in
the training datasets. The label of each training superpixel is decided by the
labels of the pixels in the superpixel. If the pixels in the region of a superpixel
belong to several different classes, the label of the superpixel is determined by
the label shared by the largest number of pixels in the superpixel region. In the
case of binary segmentation, we learn a single binary adaboost classifier using
the labeled training data. For the case of the multi-class segmentation, we learn
the adaboost classifiers with multiple weak learners trained in a one-vs-rest way,
and the confidence of predicted label for each superpixel is decided by calculating
the votes from all these weak learners.

2.3 Graph Construction

Considering the spatial consistency between superpixels, we construct an three-
dimensional adjacency graph G(S,E) to encode the spatial constraints, in which
S is the set of nodes, indicating all the superpixels from all scales, while E is the
set of edges connecting pairs of superpixels (si, sj) being adjacent either spatially
in the same scale or across consecutive scales. As shown in Figure 1(c), we define
these two types of edges as horizontal edges and vertical edges. We connect the
pairwise superpixels in the same scale of an image with a horizontal edge if
they share a boundary, which represents the spatial context. And we connect
the pairwise superpixels in the multiple levels in the scale space with a vertical
edge if they share pixels, which stands for the scale context. Compared with
[5], we add the vertical edges which enable our method to capture the context
of multiple levels in the scale space and extract a stable object-level region. In
contrast, the performance of [5] is sensitive to the size of superpixels.

2.4 Inferring with CRF

We introduce CRF to carry out inference on the graph we built. Let P (c|G,ω, ν)
be the conditional probability of predicting label {c1, · · · , cn} ∈ C given the
adjacent graph G(S,E) and the weights ω and ν:

−log(P (c|G,ω, ν))=
∑

si∈S

ψ(ci|si)+ω
∑

(si,sj )∈Eh

φ(ci, cj |si, sj)+ν
∑

(si,sj)∈Ev

ϕ(ci, cj |si, sj)

(1)

where Eh is the set of the horizontal edges, and Ev is the set of the vertical edges.
Moreover, ψ is the unary potential and φ is the horizontal pairwise potential,
while ϕ is the vertical pairwise potential. There are two weights ω and ν used
in our model: ω is the tradeoff parameter between the unary potentials and
the horizontal edge potentials, and ν is the tradeoff parameter between the
unary potentials and the vertical edge potentials. Since each graph may contain
more than one thousand nodes and thousands of edges, it could take several
days to train the parameters if we use gradient decent scheme. Alternatively, we
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use an approximate scheme called stochastic gradient descent [15] to train the
parameters ω and ν. For each iteration t, this scheme randomly selects a sample
which contains about 5 to 20 batches of points, and computing its gradient
by optimizing the maximum-likelihood estimation of C with P (c|G,ω, ν). Then
update the current parameters with the gradient by a small step. Repeat this
process until it converges or iterates sufficient times. It is very fast and efficient.

We define the unary potential ψ(ci|si) by the confidence value obtained from
Adaboost which is operated on the superpixels obtained in subsection 2.2. The
horizontal pairwise edge potential φ is defined as:

φ(ci, cj |si, sj) = 1

1 + ‖si − sj‖ · [ci �= cj ] (si, sj) ∈ Eh (2)

and the vertical pairwise edge potential ϕ is defined as:

ϕ(ci, cj |si, sj) = |si ∩ sj |
|si ∪ sj | · [ci �= cj ] (si, sj) ∈ Ev (3)

where [ci �= cj ] is the zero-one indicator function. ‖si − sj‖ is the norm of the
color distance between superpixels in Lab color space. The vertical pairwise edge
potential is the ratio of the intersection area |si ∩ sj | and the union area |si∪ sj |
of the pairwise superpixels.

In our experiments we find that the vertical edges have contributed more
than horizontal ones, because ν/ω is greater than 1 in most cases. It indicates
that the context across scales is more important for object segmentation. As
we mentioned before, the total number of the nodes in the graph is usually
over a thousand, thus an exact inference is intractable. Therefore, we carry out
approximate inference by employing the loopy belief propagation (LBP) [16],
which is simple and efficient.

2.5 Across-Scale Label Confidence Integration

For each test image, we get the superpixels and the corresponding descriptions
as mentioned in section 2.1. And then all the superpixels are tested through
the Adaboost classifier obtained in section 2.2. After that, the CRF inference is
carried out with the graph constructed in section 2.3, and the confidence value of
each superpixel is obtained. Based on the CRF inference result, we can construct
a pixel-wise confidence map for each category by averaging the class-specified
confidence values from all the corresponding superpixels, that is, the confidence
map is an image whose dimension is equal to the number of classes. Finally, a
pixel is labeled according to its the maximum value of the labels, as shown in
Figure 3(d) and 5(d).

3 Experimental Results

We evaluate our method on two publically available databases: Graz-02 and
MSRC, and all of our results have been released on our website 1.

1 https://sites.google.com/site/hanliupers/research/image-parsing

https://sites.google.com/site/hanliupers/research/image-parsing
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3.1 Graz-02

There are three categories in the Graz-02 dataset: car(300), bike(300) and per-
son(300). It is a challenging dataset because the objects significantly vary with
rotation, occlusion, scales, etc. We mainly compare our work with Fulkerson et
al.’s work [5] because it is most related to our method, and we use the same
training and testing data (i.e. the oddly indexed images are used as the training
set, while the evenly indexed ones are used as the testing set). Some represen-
tative results are shown in Figure 3(d). As a result, our method has achieved
better performance than Fulkerson et al.’s work (see Figure 3(c) and Table 1). In
their work, different dilate sizes have been applied to superpixels, which results
in different segmentation accuracies. On the contrast, in our work we dilate each
superpixel with four pixels. In Table 1, we compare our segmentation accuracy
with the best result of [5]. We present the results of our method with various
numbers of scales (NS) to test the influence of NS on the performance. The re-
sults show that our approach work best when the number of scales is equal to 5.
Compared with [5], our method achieves 11% higher accuracy on car, while the
accuracy improvements on bike and person are 7% and 9%, respectively.

We have tried several different vocabulary sizes K=[100, 200, 400, 600, 800,
1000] in our experiment, and the results show that larger K tends to result in a
better performance. However, when K gets greater than 200, it has little effect
on the performance improvement. Therefore, we select K = 600 in our method.

Table 1. The comparison results in terms of the recall=precision points between [5]
and the proposed method with different numbers of scales on the Graz-02 dataset

Car Bike Person

The method in [5] 72.2% 72.2% 66.3%

The proposed method with
different numbers of scales.

NS=3 79.5% 76.4% 72.2%
NS=4 83.5% 77.1% 72.9%
NS=5 81.4% 79.4% 75.1%
NS=6 81.2% 78.2% 74.8%

3.2 MSRC

The MSRC dataset contains twenty-three categories. Similar to [4], we discard
two categories: horse and mountain because they have too few samples. In this
dataset, misclassifications usually happen between similar categories. For exam-
ple, some parts of a cow can be misclassified as those of a sheep. Shotton [4]
suggested to use an image-level prior (ILP) to solve this problem, considering
that one may have some prior knowledge about what an image possibly contains
before image parsing. To evaluate the ILP in our experiment, we simply describe
each trained image with the bag of words model of Spatial Pyramid scheme
[17], and learn a classifier from the training images. For each test image, we
compute the prior probability(ILP) P (c) on twenty-one categories with the



Class-Specified Segmentation with Multi-scale Superpixels 165

Fig. 3. Representative results on the Graz-02 dataset in which the red pixels represent
the predicted foreground region; a) original images; b) ground-truth labels; c) the
results of [5]; d) our results. (They are best viewed in color.)

trained classifier, and then multiply P (c|G,ω, ν) by the posterior probability
P (c) as:

P ′(c|G) = P (c|G,ω, ν) · P (c)α (4)

where α is used to soften the prior probability. P ′(c|G) is the final confidence
value on each category. In section 2.4 we mentioned that the vertical edge is
more important than the horizontal edge. To prove it, we show the value of
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Table 2. The comparison of the tradeoff parameter ratios between vertical pairwise
potential and horizontal pairwise potential for the 21 categories on the MSRC dataset
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ν/ω 2.0 3.4 2.2 0.3 4.8 1.4 1.3 4.3 2.1 1.2 1.3 3.4 2.1 5.7 1.3 3.3 1.8 6.7 1.5 3.0 1.8

the tradeoff ν/ω for each category trained by stochastic gradient descent [15] in
Table 2. We have ν/ω > 1 for all the 21 categories except cow.

We present the pixel-level confusion matrix of our method on MSRC dataset
in Figure 4 and show some representative segmentation results in Figure 5. Since
Fulkerson et al. [5] did not experiment on the MSRC dataset, to compare with it,
we test their method with our own implementation and show its results in Figure
5(c) and Table 3. Besides of that, we also compare our method with [4] and [18]
in terms of segmentation accuracy. As shown in Table 3, our method achieves
both the highest global accuracy (total proportion of correctly predicted pixels)
of 75% and the highest averaged accuracy of 68%, and performs better than the
other methods on 11 categories (more than half of 21). In terms of efficiency, our
method takes an average of 8 seconds to process an image, while [18] required
3 minutes per image. Unlike [4] relies on learning from a large pool of features,
our method only uses quite simple ones.

Fig. 4. The pixel-level confusion matrix of our method on the MSRC dataset
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Fig. 5. The results of segmentation and classification for the MSRC dataset; a) original
images; b) ground-truth labels; c) the results of [5]; d) our results, each map shows the
most confident class at pixel level. (The figure is best viewed in color.)
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Table 3. Segmentation accuracy (in percentage) for each class on the MSRC dataset

Ours [5] [18] [4]

building 72 54 62 49
grass 90 73 98 88
tree 72 66 86 79
cow 70 65 58 97

sheep 74 68 50 97
sky 79 89 83 78

airplane 93 90 60 82
water 77 65 53 54
face 81 75 74 87
car 85 76 63 74

bicycle 95 89 75 72
flower 82 69 63 74
sign 81 78 35 36
bird 30 24 19 24
book 68 50 92 93
chair 60 59 15 51
road 61 46 86 78
cat 46 53 54 75
dog 35 31 19 35

body 50 55 62 66
boat 25 23 7 18

Global 75 65 71 72

Average 68 62 58 67

4 Conclusions

We propose a class-specified segmentation method, which utilizes CRF to inte-
grate the information of multi-scale superpixels under spatial constraints. The
proposed method can be used to segment foreground objects from background,
and it can also be used for image parsing. The experimental results on the widely
used Graz02 and MSRC datasets show that the proposed method is superior to
the related methods [4,5,18] and is more simpler and more effecient than the
work [9].
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8. Kohli, P., Ladický, L., Torr, P.H.: Robust higher order potentials for enforcing label
consistency. Int. J. Comput. Vision 82, 302–324 (2009)

9. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Associative hierarchical crfs for
object class image segmentation. In: ICCV 2009, pp. 739–746 (2009)

10. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC Su-
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Abstract. Auto white-balance plays a very important role in computer
vision, and also is a prerequisite of color processing algorithms. For keep-
ing the color constancy in the real-time outdoor environment, a simple
and flexible auto white balance algorithm based on the color histogram
overlap of the image is presented in this paper. After looking at a nu-
merous images under different illuminance, an essential characteristic
of the white-balance, the color histogram coincidence, is generalized as
the basic criterion. Furthermore the overlap area of the color histogram
directly reflects this coincidence, namely, when the overlap area of the
color histogram reaches the maximum, the respective gain coefficients of
color channels can be derived to achieve the white-balance of the camera.
Through the subjective and objective evaluations based on the processing
of real world images, the proposed histogram overlap algorithm can not
only flexibly implement the auto white-balance of the camera but also
achieve the outstanding performance in the real-time outdoor condition.

1 Introduction

The formation of an image captured by the digital camera depends on the phys-
ical content of the scene, the sensitive property of the camera and the illumina-
tion of the environment. In the case of the different illumination from various
light sources, the image will appear the different color against the same scene.
For instance, a white object shotted still keeps its white color under the nor-
mal daylight, but it will present the reddish color when it’s captured under the
incandescent bulb, similarly the bluish color will appear under the fluorescent
light source[13]. This color cast more easily occurs to the vision system of an
autonomous vehicle running outdoor. Therefore, it is necessary to correct the
white balance of cameras against the various illuminants with the specified tem-
perature so that the autonomous vehicle can perceive the objects in the same
scene as the non-deviation color objects and recognize them under the different
illumination.

The auto white balance(AWB), a basic function on the digital camera, is to
remove the color case as the camera imaging, keep the color constancy in the
different illumination. In the past decades years, many researchers proposed a
number of AWB algorithms in many manners. The Gray-World is an oldest and
best-known assumption, it assumes that the average reflectance in a scene under
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a neutral light source is achromatic[3,12], that is, all the pixel values of R, G and
B channels are nearly equivalent and the color in each sensor channel averages
to gray over the entire image[1,2,14]. However, when there are some big areas
with single color or some predominant color in a scene, such as face, grassland
and sea, the Gray-World algorithm will cause obviously errors. The White-Patch
algorithm also called the perfect reflectance, assuming the observed pixels with
greatest intensity must correspond to a color-neutral surface patch in the scene,
dedicates to look for the maximum values for the R, G and B channels in the
image, and obtain the chromaticity of the light source, so as to compensate the
color cast efficiently[12,10,6,5]. Although the White-Patch algorithm amended
the defect of the Gray-World method, it will inevitably encounter the failure
when there are greatly bright pixels in plenty in the image. Instead of only using
statistics of pixel values for determining the AWB, more sophisticated and com-
plex methods were developed, which exploited information and features captured
in a learning phase. One of them was the gamut mapping by Forsyth[9], which
assumed that one may observe only a limited number of colors for a given illumi-
nant in real-world images[12]. The gamut mapping algorithms derive the results
quit well[7,8], but the computationally expensive cost limits their application
in real-time environment such as autonomous robot. Most of methods are more
or less based on some assumptions, which makes them limited to apply in the
common environment. For the sake of algorithms’ robustness, some researchers
combined different approaches together[15,4]. Obviously this combination made
a large increase of the performance comparing to those state-of-the-art single
algorithms.

Although many AWB also knows as color constancy algorithms achieved nu-
merous successful applications in various fields, there is still no full fitted algo-
rithm to be consider as universal. Especially in the context of the autonomous
mobile vehicle, there is still a need to develop a real-time and robust AWB algo-
rithm for it’s vision system. In this paper, a simple and flexible AWB algorithm
based on the coincidence of the color histogram is proposed for deriving the
stable and efficient performance of the AWB at low computational cost. Fur-
thermore the experiment results indicate that the proposed algorithm present a
good performance of removing color cast and decreasing computational cost.

2 White Balance Approach

As the above reviewed, there are various kinds of methods to implement the AWB
at present. In general, aiming at the single input image for determining the AWB,
most of the AWB methods can obviously be divided into two procedures. Firstly,
the color temperature of the input image should be determined according to the
features and properties of the input image, i.e. deducing the color temperature of
the unknown light source. After that, the color cast correction can be obtained
from the mapping between the unknown light source and the canonical light
source.
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2.1 Color Temperature Determination

According to the theory of the digital image formation, the simple and practical
assumption model is the Lambertian model that only considering the major
and key factors: the color of input light, the surface reflectance and the camera
sensitivity.

Based on the Lambertian assumption, a color image is represented as
follows[12],

Ek(x, y, λ) =

∫
ω

R(x, y, λ)L(λ)Sk(λ)dλ (1)

where, the R(x, y, λ) denotes the surface reflectance, the L(λ) is the illumination
property, and the Sk(λ) is the sensor characteristic, all the three variables are as
a function of the wavelength λ, over the visible spectrumω. Every channel of the
sensor is represented by the subscript k(k = R,G,B) , and the Ek(x, y, λ) is the
image corresponding to the kth channel. Generally, under the assumption that
the surface reflectance is a constant and the sensor’s property is also known, the
color appearance of the image will directly response to the change of illuminance
in a scene. Thus the color temperature of the input image (or more accurately,
the color temperature of unknown light) can be derived from the features of
input image. For example, the Grey-World method fully utilizes the RGB mean,
the statistic feature, through the whole or parts of the image.

2.2 Color Correction

Once deriving the color temperature of the image, the color correction can be
implemented through transforming the input image shot under an known light
source to the image without color cast. Considering the application in the vision
of the autonomous robot, the linear diagonal transformation also called von kries
model[12], can be used to simplify the complication of processing and reduce the
computational cost, instead of the complicate others such as the linearized Brad-
ford, CIECST02 or affine transformation[12]. Most of the algorithms mentioned
previously adopted to this linear model exactly.⎛⎝Rc

Gc

Bc

⎞⎠ =

⎛⎝kR 0 0
0 kG 0
0 0 kB

⎞⎠ ·
⎛⎝Ru

Gu

Bu

⎞⎠ (2)

From the (2), the Rc, GcandBcrepresent three color values from RGB channels
respectively, which were taken under an unknown light source, correspondingly
the Ru, Gu and Bu describe the color values under canonical light source. the
linear and diagonal transform matrix maps the color that were taken under the
unknown light source to their corresponding color under the reference light source.

2.3 Color Histogram and White Balance

Histograms exactly show us the 256 different brightness levels from black to
white, here the level 0 represents the pure black and the level 255 denotes pure
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white, So this makes that the histogram can give an indication of how many dark,
middle tone, and bright pixels there are, and whether any shadow or highlight
detail is lost. Ideally luminosity histogram can be applied to monitor the camera’s

(a) Temperature 2850K incandescence (b) Temperature 3800K fluorescence

(c) Temperature 6200K daylight (d) Temperature 11500K shadow

Fig. 1. Images under different illuminance and their respective histograms

exposure and assess the changes in brightness or contrast. However, we’re more
interested in analyzing and modifying how tones the entire image distributes,
obviously a color histogram of the image can really reflect those features instead
of luminosity. The color histogram provides a compact summarization of the
color distribution in an image. The following equation reflects the essence of the
color histogram in depth,

hc[n] =
1

XY

∑
x∈X

∑
y∈Y

{
1 if Ic(x, y) = n

0 otherwise.
n ∈ [0, 255] (3)

The h is the statistic amount of pixels on every grey level n , the superscript c
denotes each channel in the RGB color space. After accumulating the frequency
of every color value Ic(x, y) throughout the entire image with the size of width X
and height Y, the color histogram h attained can represent the color distribution
of the image. Generally, the color histogram of an image has the relative invari-
ance with the translation and rotation regarding the viewing axis. So it becomes
an important basic method in the field of pattern recognition. Furthermore, the
color histogram still presents high sensitive to the variation of illumination in the
RGB color space. Considering the (1) and the (2) together, the color histogram
also describes the changes of the color temperature, namely the illuminance in
the shot scene. Based on the significant feature of the color histogram’s high
lightness sensitivity, determining the accurate change of the gain regarding the
white balance becomes more simply and easier in an application to the real-
time autonomous vehicles. How to derive the parameters of the white balance
from the color histogram of an image? From the research of a large number of
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images shot under different color temperatures, we know that the coincide of
the color histogram reflects the change of color temperature. As the Fig.1 shows
this relationship, when there is obviously color cast in the 1(a) and 1(d), i.e.
severely bluish and reddish, accordingly their respective color histograms show
the big deviation at both the peak and valley position, in the meantime their
figures also appear extreme dissimilar. Their color temperatures are rather far
from the 6200K of the standard light source. In the 1(b), the color deviation still
exists, but the respective histogram of R, G and B channels has comparable fig-
ure, and their extreme points are quite closed in position, additionally the color
temperature more approaches to the standard light source. In the ideal image
1(c), obviously the RGB histograms emerges more overlap areas and have almost
the same figure except the part of blue area on the left side that is caused by
dominated color. As the Table 1 presented, when the deviation of color temper-

Table 1. Overlap areas under different illuminants

illuminant Area(pixels) Ratio(%)

Incandescence 123586 45.33
Fluorescence 178440 65.45
Daylight 188272 69.06
Shadow 131475 48.22

ature from normal daylight increases hardly, correspondingly the overlap area
decreases obviously. In the case of daylight, the color constant reaches in the
image, simultaneously the overlap area also presents greatest value comparing
to others.

In the other hand, the assumptions of the Gray-World and the White-Patch
similarly embody the principle of the coincide of the histogram. The Gray-World
assume that the average intensities of the Red, Green and Blue channels should
be equal when plenty of colors exist in an image. When the average intensities
reach the equality, their color histogram coincide very well, i.e. the number of
overlapping pixels reaches the most amount. The White-Patch assume that the
greatest intensity must correspond to a color-neutral surface patch in the scene,
this color-neutral also means the corresponding color histogram has the greatest
coincidence and its intensities of pixels in the RGB channels are nearly equal.

In view of the above analysis, a novel white-balance method is proposed,
which utilizes the coincidence of the color histogram to estimate the white-
balance of images. That is, according to the RGB histograms’ overlap, the related
position and figure of color histogram represents the different action in different
light source. Only determining the max measurement of overlap, and then the
corresponding illumination is easy to obtain.
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3 Proposal Algorithm

The purpose of white-balance algorithm is to convert the image shot under
the unknown light source to the image shot under the canonical light source.
From the previous analysis,we know that the histogram represents the color
distribution, only if the histogram keep the max overlap between three color
channels, the image must be considered as being shot under canonical light. In
this case, the color of the image from the camera should be consistent with that
from human eyes.
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Fig. 2. White balance principle chart

As Fig.2 shown, the RGB channels’ histograms appear some deviation each
other in the left graph, that is, the overlap rate is quite low. The goal of ob-
taining the white-balance of the image through its histogram is to determine the
related coefficients of the gains when making three channels’ histograms greatest
overlapping, like as the right graph. The Fig.3 is the implementing diagram of
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Fig. 3. The block diagram of implementing Auto white balance

the proposed method, it implements auto white-balance in four steps. Firstly,
the color histogram,the statistic measurement that describes the distribution
of the color of an image, is counted through the whole image or its down-
sampling image. Then the proposed algorithm measures the common overlap
of the color histogram between three color channels. Afterwards it compares the
different overlap area regarding the gains of the different R, G and B channels,
and determine the optimal gain of channels, which really is the expected gain
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coefficients of the image. In the end the color cast image can be convert to the
ideal color image by color correction matrix, looking like that is shot under the
standard light source.

3.1 Obtain the Overlap of the Color Channel Histogram

For deriving the overlap of the color histogram, the minimum value will be kept
at every grey level and the overlap area can reach through the sum from level 0
to level 255. the (4) generalize the process simply.

H(hR, hG, hB) =

∑n
j=1 min(hR

j , h
G
j , h

B
j )∑n

j=1 h
G
j

(4)

where, the hR
j , h

G
j , and hB

j are the value of the jth grey level in the R,G and B
channel respectively.

The overlap area can be obtained between three channels from the (4). Here
the H indicates the overlap area of the R, G and B channels’ histograms, which
derives from the accumulated minimum on all grey levels regarding three color
channels.

3.2 Find Optimal Coincide

Since the overlap area of the color histogram reflects the variation of the color
temperature of images, and the max overlap area is responsible for the standard
color temperature, the corrected coefficients can be derived when the overlap
area reaches the maximum.

arg max
kR,kG,kB

H(hR(kR), h
G(kG), h

B(kB)) (5)

As the (5) shown, if the overlap area H reaches the maximum, the gain coefficients
kR, kG and kB become the desired values. That can also be considered that the
optimal status is obtained when the histograms of the R,G and B channels have
closest features and smallest dissimilarity. Furthermore, the optimal parameters
are applied directly to the linear and diagonal transform matrix to correct the
gains of the R, G and B color channels.

4 Experiment and Evaluation

For verifying the performance of the proposed algorithm, the related experiments
require the tested image with a scene illuminant known or standard marker as

ground truth. The P.V. Gehler’s database set[ ?? ] including 258 images with
a wide variety of indoor and outdoor shots, which placed a MacBeth Color
Checker in the scene as the ground truth of images, is applied to effectively
evaluate the performance of algorithms. In the meantime, a number of real-
world outdoor shots with diverse illumination and complicate scenes also are
adopted to examine the proposed algorithm.
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4.1 Experiment

In general, the outdoor images always include some noise that is caused by many
factors such as the variation of illuminance. So the Gaussian filter is adopted
to reduce the affection of the noise prior to other procedures. Subsequently the
counting process of the color histogram starts in the image that has been elim-
inated the noise and still kept original color distribution. The metric of coin-
cidence in the histograms is computing the overlap area, That is, by (4 ), the
diverse overlap areas is easy to determine corresponding to the variable gain
coefficients. Note that the overlap area of the color histogram shouldn’t include
the grey level 0 and 255 when summing the number of all pixels on the every
grey level, because when an image shot in the condition of under-exposure or
over-exposure, there are a lot of pixels accumulate on the grey level 0 or 255,
which have lost abundant color information of the scene. Actually this situation
will also arise similarly when searching the optimal gain coefficients in the im-
age with normal exposure, if the varying ranges of gain parameters is too big,
the extreme situation will be encountered easily. In this case, those pixels are
useless to compute the overlap area. On the contrary, it not only severely affects
the accuracy of the results but also causes the failure of the proposed method.
The Fig.4 illustrates the exceptions. When the range of the gain parameters is

(a) Original image (b) Exception with level 0 (c) Exception with level 255

Fig. 4. The case of exception with grey level 0 and 255

[0.2,1.2], as the Fig.4(b) shown, the image corrected looks dimmer than the orig-
inal image. On the contrary, many too bright areas arise in Fig.4(c) within the
range [0.6,5]. Therefore, the actual ranges of R and B channels are set in [0.4,2]
and the results are quit satisfied. In practice, the variation of the Green channel
should be kept in small range, such as [0.8,1.2]. Because if the Green channel
change too more, which contribute more than the Red and Blue channels to the
intensity, the intensity of the image will change hardly, this consequence will
become unacceptable for the purpose of the AWB algorithm. Actually the algo-
rithm holds the green channel unadjusted to sustain the intensity of the image
with color cast, simultaneously the process also reduces the running time of the
algorithm and complexity.

After deriving the max overlap area and its corresponding optimal parameters,
the (2) can fast and linearly correct the color cast of images, namely implement
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color constancy. But there is still a notable matter that the value over 255 need
be set to 255 during mapping the image shot under the unknown light source into
the canonical light source using the diagonal matrix composed of the optimal
parameters. Otherwise, the corrected image may arise some discontinuous pixels
obviously.

(a) Original images

(b) Images corrected

Fig. 5. The results of the proposed algorithm

The results of the experiment using real-world images and database images
were shown in the Fig.5. Obviously in the Fig.5(a), the three original images
had the different color cast, while in the corresponding Fig.5(b), the color of
images looked vivid and the color cast was eliminated after the processing of the
proposed method even the image with a complicate scene. Hence the proposed
algorithm implemented the AWB efficiently.

4.2 Subjective and Objective Evaluation

For comparing the proposed histogram overlap method with others, we use the
Gray-World, White-Patch and Gamut mapping to correct the same original im-
age with some color cast, and then listed the results in the Fig.6 as comparison.
From their respective color histogram, all methods of the AWB had increased the
coincidence of their color histograms contrasting with original image. However,
the best coincidence of the color histogram derived from the proposed method.
Meanwhile, the white car also reached the purest white and the blue parking
sign, yellow barrier gate and lawn appeared more vivid. No doubt, this achieved
greatest overlap area that leaded to best white-balance, and made the corrected
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(a) Original parking place (b) After Grey-World

(c) After White-Patch (d) After Gamut mapping

(e) Our method

Fig. 6. Images after different AWB algorithms and their respective histograms

Table 2. Overlap areas comparing between algorithms

Algorithm Area(pixels) Ratio(%)

Original 119506 43.94
Grey-World 157594 57.94
White-Patch 121899 44.82
Gamut mapping 131412 48.31
Histogram overlap 189301 69.60

image look more consistent with real-world perceived by human eyes. Since the
quantitative analysis is more objective to evaluate the performance of the pro-
posed AWB algorithm , we summed the number of pixels in the overlap area of
the color histogram after every AWB algorithm. From the Table 2, obviously the
histogram overlap method obtained the greatest number of pixels in the over-
lap area, which also reached consistence with the above subjective evaluation.
On the other hand, based on the color checker in the scene, the Euclidean dis-
tance (ΔE∗

ab) between the reference white and the white-balanced colors in the
color space CIE L*a*b, provides the relative perceptual differences directly. The
computer equation is just as the (6) shown.

ΔE∗
ab =

√
(ΔL∗)2 + (Δa∗)2 + (Δb∗)2 (6)
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where, the difference of the lightness: ΔL∗ = L∗
2 − L∗

1 , and the difference of
the chromaticity :Δa∗ = a∗2 − a∗1 and Δb∗ = b∗2 − b∗1 . In the equation, the
L∗
1, a

∗
1 and b∗1 indicate the luminance and color values of the color checker , while

the L∗
2, a

∗
2 and b∗2 indicate the luminance and color values of the captured image.

The results of the presses by the histogram overlap method and the other meth-
ods were summarized in the Table 3. Obviously the the proposed method had the

Table 3. The average of ΔEab of images under different methods

Algorithm image1 image2 image3 image4 image5 image6 image7

Original 23.95 43.94 19.4 17.94 30.52 38.76 9.72
Grey-World 15.75 23.35 17.6 14.4 22.83 23.58 9.02
White-Patch 12.18 11.82 18.95 12.51 27.5 22.14 8.86
Gamut mapping 13.14 9.81 16.96 8.23 21.3 19.91 7.98
Histogram overlap 11.23 8.36 16.92 7.36 17.33 18.84 7.76

lest Euclidean distance comparing to the Grey-World, White-Patch and Gamut
mapping methods in the same scene under the same illuminance, namely this
histogram overlap is a highly effective algorithm and its color is more consistent
with the perception of human eyes.

Although the proposed method had outperformed others in numerous real
scenes, it sometime lacked of strength for the cases of dominant color. In the
case of the scenes with the extreme dominant color such as grassland and red
wall, the overlap area of color histogram rapidly decreased and became more
sensitive to the dominant channel rather than non-dominant channels, that’s
likely to result the local optimal values.

5 Conclusions

In this paper, a simple and practical AWB algorithm is proposed based on the co-
incidence of the color histogram of an input image, which dynamically measures
the overlap area of the histograms in the R,G and B channels and derives the
optimal parameters when the overlap area reaches or approaches the maximum.
According to the determined adjusting coefficients, the camera can automati-
cally adjust its gains of the R,G and B channels to eliminate the color case of
the images and implement the white-balance. This proposed histogram overlap
method utilizes the essential characteristic, the coincidence of each basic color
hue, to achieve the color consistent, it not only reaches the same goal by different
route instead of the classic assumptions like the gray world and white patch, but
also overcomes their shortcoming and obtains the better results. Through the
test of hundreds of images, the proposed algorithm can very well implement the
auto white balance of the camera, furthermore, it simplifies and improves the
performance of the AWB without training images beforehand.
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Abstract. We have developed a robust statistical edge detection method
by combining the ideas of Kundus method, in which the region segmen-
tation of local area is used, and Fukuis method, in which a statistic
evaluation value separability is used for edge extraction and also have
developed a region segmentation method based on the global features
like the statistics of the region. A new region segmentation method is
developed by combining these two methods, in which the edge extraction
method is used instead of the first step of region segmentation method.
We obtained the almost same results as the ones of previous region seg-
mentation method. The proposed one has some advantages because we
are able to introduce a new conspicuity degree including a clear contrast
value with the adjacent regions, a envelopment degree based on clear
edge and so on without much difficulty and it will contribute to develop
a further unification algorithm and a new feature extraction method for
scene recognition.

1 Introduction

Edge, where a sudden spatial change of a characteristic (such as brightness or
color) occurs, is a fundamental feature for understanding images. The conven-
tional methods of edge extraction can be classified into three broad categories:
spatial differentiation-based methods [2, 6, 7, 11, 16–18], model-based meth-
ods [8], and statistics-based methods [4, 9, 20]. The spatial differentiation-based
methods use a bottom-up approach, the model-based methods use a top-down
approach, and the statistics-based methods use either a top-down or a bottom-
up approach. In the statistics-based methods for edge extraction, a local area
is divided into two sub-regions, R1 and R2, according to the top-down or the
bottom-up criteria, and a statistical evaluation of edge existence is conducted.

Yakimovsky [20] used top-down approach for a local area segmentation and
equation (1) for statistical evaluation.

η0 =
σ
2(N1+N2)
0

σ2N1
1 σ2N2

2

, (1)

where σ2
0 is the variance of the feature in the local area, and σ2

i and Ni are
respectively the variance in and the number of pixels belonging to Ri. The value
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of η0 is approximately 1 in a homogeneous feature area and it is infinite at a
step-type edge.

Kundu [9] divided the local area according to the mean value μ0 of the k-th
maximum and k-th minimum brightness in the area (bottom-up approach). The
evaluation was based on the distance between the centers of the two sub-regions
R1 and R2, respectively (μ1x, μ1y) and (μ2x, μ2y), and on the size difference
|N1 −N2|.

Fukui [4, 5, 19] proposed one rectangle separated into two equal-sized small
rectangles and obtained four rectangles by rotating them in 45-degree steps.
The evaluation was carried out using separability η1 defined by equations (2)-
(4) mentioned by Otsu [15].

η1 =
σ2
b

σ2
T

, (2)

σ2
b = N1(μ1 − μ0)

2 +N2(μ2 − μ0)
2, (3)

σ2
T =

∑
(Ij − μ0)

2, (4)

where Ij is the brightness of the j-th pixel, and μ0, μ1, and μ2 are the mean
brightness in the original rectangle, one small rectangle, and the other small
rectangle, respectively. The value η1 is almost 1 in a step-type edge, approxi-
mately 0 in a homogeneous feature area, and approximately 0.75 (more precisely,
0.75/(1− 1/n2), where n is rectangle size) in a homogeneous gradient area (i.e.,
smooth gradation area). However, the value for a step-type corner edge is about
0.33, less than rather than greater than that for a homogenous gradient area.

Unfortunately, these conventional methods have the following problems:

(1) spatial differentiation-based methods often
require the use of smoothing filters for the suppression of noise and so produce

thick edges,
(2) Kundus [9] method is ineffective under massive impulse-type noisy condi-

tions [6], and
(3) Fukuis [4] method is ineffective for a corner or curved edge, as mentioned

above.

We have ever proposed a method to solve the above mentioned problems (in-
cluding the critical deficit of Canny operator) of the conventional method [14].
Herein, an application of the new method is presented.

Section 2 describes the fundamental concept of the statistical method [14], and
Section 3 presents the simulation system combined the edge extraction method
[14] and the region segmentation method [13] and the simulation results.

2 Statistical Method of Edge Extraction

A color image consisting of n × n-sized blocks is set as the first step to
solve the problems mentioned in Section 1. At each block, the mean values
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(μ0R, μ0G, andμ0B) for color components R, G, and B, and the variances
(σ2

0R, σ
2
0G, andσ

2
0B) are calculated, and the color α with the highest variance

is extracted. The block which has the standard deviation lower than a thresh-
old λσ (σ0 =

√
σ2
0R + σ2

0G + σ2
0B < λσ) is designated the homogeneous feature

area, and it is not divided into two sub-regions. Other non-homogeneous block
is divided into the two sub-regions R1 and R2 according to the mean value of
the color α (μ0α) like R1 is composed of pixels whose color value α is greater
than μ0α. In the dividing process, the number Ni of pixels in region Ri, the
mean values μiξ of the colors and locations, and the variances σ2

iξ are calculated,
where i∃{1, 2}, ξ∃{x, y,R,G,B}.This process contributes to solve the problems
of the conventional methods mentioned in Section 1. When Ni < n, the edge
extraction process is stopped for the block, to ensure stability, because the edge
might be near the block end and the stability might be lost. However, a boundary
edge near the block end can be handled in images consisting of half-size (n/2)
shifted blocks. The extracted edges in the four shifted images are superimposed.
In this way, the problem that a boundary edge that is near the block end might
not be extracted is solved. Then, the proposed statistical evaluation value η, the
edge location (ex, ey), the edge orientation (θx, θy), the mean color difference
Delta, and the distance d between sub-regions are calculated. We call a set of
these extracted features the virtual edge. The real edges are the boundary be-
tween sub-regions Ri. This concept is shown in Fig.1. The proposed statistical
evaluation value η for the homogeneous block is defined as zero.

Fig. 1. Virtual edge location and orientation

η = 1− N1 × σ1 +N2 × σ2

n× n× σ0
, (5)
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(ex, ey) =
N1 × (μ2x, μ2y) +N2 × (μ1x, μ1y)

n× n
, (6)

(θx, θy) =
(−μ2y + μ1y, μ2x − μ1x)

|(−μ2y + μ1y, μ2x − μ1x)| , (7)

Δ = |(μ2R − μ1R, μ2G − μ1G, μ2B − μ1B)|, (8)

d = |(μ2x − μ1x, μ2y − μ1y)|, (9)

η(k) = 1− N1 × σk
1 +N2 × σk

2

n× n× σk
0

, (10)

One possible statistical evaluation measure of edge existence (separability) is
η(k), expressed by equation (10), where η1 = η(2) and η = η(1). In equation (5),
the separability for a step type, ramp type, linear gradation type and flat type
is 1.0, 0.75, 0.5 (= 1− 0.5((n2 − 4)/(n2 − 1))1/2), and 0.0, respectively.

The distance d and the area of overlap of the sub-regions will be useful cues
for discriminating a peak type, a valley type, and a convex/concave roof type
from a step type and a ramp type. This process will be developed in future
research.

3 Simulation System and Results Applied to Color Image
[12]

A flow chart for extracting virtual edges is given as Fig.2.
To test the universality of the parameters, a fixed set of parameters (n =

8, λη = 0.7, λΔ = 30) was applied to many color images. In Fig.3, the results for
the proposed method are shown in the center column.

Experiments were executed to compare the separabilities η0, η1 , and η , where
the block segmentation proposed herein was used to compare these under iden-
tical conditions. The results from using separability η0, defined by Yakimovsky
[20], are shown in the right-hand column of Fig.3. Noticeable are the lack of
important edges and the addition of many noise edges. The results from using
separability η1, defined by Fukui [4], and the proposed separability η under their
respective threshold values, λη1 and λη (where λη1 = 1.5λη) , are shown in Fig.4.
Separability η1 had the drawback that it omitted more edges than the proposed
separability, η, as shown in Fig.4. Also, more noise edges sometimes appeared
for the threshold λη1 = 0.66 than for the threshold λη = 0.5.

The threshold of the parameter for determining a homogenously colored re-
gion was varied for both the proposed method (λΔ) and that of Kundu [9] (γ)
and the performance compared. The results are shown in Fig.5. The number
of detected edges dramatically changed in the case of Kundus method, but was
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Fig. 2. Process of extracting a virtual edge [14]

almost constant for the proposed method. This property of the proposed method
may be due to the introduction of separability.

Many applications of the proposed method [14] can be considered like a plau-
sible true edge extraction, a base of disparity extraction, a base of motion ex-
traction, a base of region segmentation and so on.

We present here some results that the virtual edge extraction method [14] was
applied to color image segmentation and conspicuous objects extraction [13] as
the first step of the processing. In the application of [14], small sub-regions ob-
tained in the process of presented method are used as the start of segmentation
process mentioned in [13] in which the region segmentation is done according to
global statistics of location and feature similarity among small blocks. Although
a method based on global features has been reported [3], the method has some
following defects: (1)the number of regions to be extracted is fixed, (2)the large
background may be split, and (3)the region boundaries sometimes do not fol-
low object boundaries exactly, even when the object boundary is visually quite
apparent(over-unification) [3]. We have proposed a completely different method
using global features, in which the above mentioned defects are removed. [13]
The proposed method is also completely different from the region segmentation
method based on the closed line obtained by connecting edges [1, 10, 20], in
which the closed line is not always obtained.

Some results of region segmentation and the most conspicuous object-regions
extracted in the system are shown in Fig.6 and Fig.7 respectively.

The extracted conspicuous regions for 21 images exhibited high correspon-
dence (90± 16%) with the regions reported on the touch panel screen by the 60
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(a) Image 1 (b) proposed method (c) Yakimovsky[20]

(d) Image 5[12] (e) proposed method (f) Yakimovsky[20]

(g) Image 7[12] (h) proposed method (i) Yakimovsky[20]

Fig. 3. Virtual edges using a fixed set of parameters and edges using the proposed
method [14] (λη = 0.46, 8×8, λΔ = 30) and that of Yakimovsky[20] (λη0 = 400, λΔ = 3)
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(a) Image 10[12] (b) proposed method (c) Yakimovsky[20]

(d) Image 11[12] (e) proposed method (f) Yakimovsky[20]

(g) Image 17 (h) proposed method (i) Yakimovsky[20]

Fig. 3. It Continued
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(a) Fukui[4] (λη1 =
0.75)

(b) Fukuii[4] (λη1 =
0.70)

(c) Fukuii[4] (λη1 =
0.66)

(d) Proposed method
(λη = 0.5)

(e) Proposed method (λη =
0.46)

(f) Proposed method (λη =
0.44)

Fig. 4. Results from using the method of Fukui [4] and the proposed method [14]
(λη1 = 1.5λη)

(a) γ = 3 Kundu [9]
(b) λΔ = 3 Pro-
posed 8× 8 [14]

(c) λΔ = 3 Pro-
posed 5× 5 [14]

(d) γ = 30 Kundu [9]
(e) λΔ = 30 Pro-
posed 8× 8 [14]

(f) λΔ = 30 Pro-
posed 5× 5 [14]

Fig. 5. Variation in edge detection for changes in threshold (γ and λΔ)
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(a) Image 1 (b) Image 5 (c) Image 7

(d) Image 10 (e) Image 11 (f) Image 17

Fig. 6. Result of image segmentation

(a) Image 1 (b) Image 5 (c) Image 7

(d) Image 10 (e) Image 11 (f) Image 17

Fig. 7. Result of extracted most conspicuous objects
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subjects (The reaction times of the touch were 1.9± 0.5 sec). These results are
about equals to those of paper [14]. However, as the current system has the pre-
cise boundary information with the adjacent region, more adequate conspicuity
value of the segmented region will be obtained. The boundary information may
be useful for the integration of adjacent regions.

The process of image segmentation in the paper [14] is shown in Fig.8 for
reference. The sub-regions R1 and R2 are used instead of the object block or
pixels in the non-object blocks in paper [14](See processes c and d in Fig.8).

Fig. 8. Image segmentation process [13]

4 Conclusion

We have developed a robust statistical edge detection method [14] by combining
the ideas of Kundus method, in which the region segmentation of local area is
used, and Fukuis method, in which a statistical evaluation referred to as sep-
arability is used for edge extraction and also developed a region segmentation
method [13] based on the global features like the statistics of the region. A new
region segmentation method is developed by combining these two methods, in
which the sub-regions in the edge extraction method [14] is used instead of ob-
ject blocks or pixels in the first step of region segmentation method [13]. We
obtained the almost same results as the ones of previous region segmentation
method [13]. This means that the proposed method worked effectively. A new
conspicuity degree including a clear contrast value with the adjacent regions, a
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envelopment degree by clear edge and so on will be included in the next version
of the proposed method without much difficulty and it will contribute to develop
a further unification algorithm and a new feature extraction method for scene
recognition.
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Abstract. In this paper we describe a close-to-sensor low latency visual
processing system. We show that by adaptively sampling visual informa-
tion, low level tracking can be achieved at high temporal frequencies
with no increase in bandwidth and using very little memory. By having
close-to-sensor processing, image regions can be captured and processed
at millisecond sub-frame rates. If spatiotemporal regions have little use-
ful information in them they can be discarded without further process-
ing. Spatiotemporal regions that contain ‘interesting’ changes are further
processed to determine what the interesting changes are. Close-to-sensor
processing enables low latency programming of the image sensor such
that interesting parts of a scene are sampled more often than less in-
teresting parts. Using a small set of low level rules to define what is
interesting, early visual processing proceeds autonomously. We demon-
strate system performance with two applications. Firstly, to test the
absolute performance of the system, we show low level visual tracking at
millisecond rates and secondly a more general recursive Baysian tracker.

1 Introduction

There is increasing interest in low cost computer vision systems with a wide
range of applications including gesture based user interfaces, surveillance, au-
tomotive systems and robotics. As the complexity of consumer, sensing and
military systems increase the demands on energy resources becomes critical for
high-level computing performance. Vision systems are proving to be extremely
valuable across a range of applications and to be able to efficiently process visual
information offers a huge advantage in the functionality of such systems.

Traditional computer vision systems typically consist of a camera continually
capturing and transmitting images at a fixed frame rate and resolution with a
host computer sequentially processing them to obtain a result such as the trajec-
tory of a moving object. A major drawback of this pipeline is that large amounts
of memory are required to store the image data before it is processed, especially
as frame rate and image resolution increase. Additionally large amounts of the
image data is transmitted to the host for processing regardless of the amount
of information contained in this data. In the case of object tracking, computer
vision algorithms work towards creating a concise description such as, ‘a group
of pixels at a certain location is moving in a particular way’. Often the object is

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 194–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Adaptive Sampling for Low Latency Vision Processing 195

relatively small compared to the whole image and the background maybe static.
In cases like this, the traditional computer vision processing pipeline could be
considered as being highly inefficient as large amounts of image data are being
captured, transmitted to the host, stored in memory and being processed on a
per-pixel basis while most of the visual information comes from a small num-
ber of changing pixels. In such cases most of the image data is discarded as it
contains no useful information.

In the case of a scene with an object moving across a static background most
of the image data changes very little while some pixel areas might change rapidly
or move a different speeds. The fixed temporal sampling rate of standard camera
systems cannot take this into account and artifacts such as motion blur and tem-
poral incoherence are introduced. These artifacts consequently confound down
stream processing necessitating ever more complex computer vision algorithms
to overcome these imaging effects.

A significant problem with digital video capture is that of temporal quantiza-
tion. Given a finite set of resources, digital video capture proceeds by sequentially
sampling frames at fixed temporal rates and spatial resolution within a range of
luminance in a non-interactive passive manner. Biological systems proceed very
differently; unable to sequentially process entire views, selective scene sampling
is performed using a combination of eye movements. In Rucci et.al. [1,2,3,4,5] it
is shown that a number of strategies exist for visual sampling in human vision
depending on the task being carried out. A human eye is constantly moving in
order to avoid fading, the loss of sight due to a lack of change on the retina.
As well as head movement, eye movements include saccades, micro-saccades and
drift. These movements enhance and stabilize the binocular view allowing the
process of foveation to create a highly detailed perception capable of difficult
tasks such as threading a needle.

Modern high speed cameras are capable of capturing images at thousands of
frames a second and can have dedicated processing modules close to the sensor.
In [6] the wing of a fly was tracked using regions of interest (ROI) at 6000Hz.
The system used edge detection to analyse the shape and motion of the fly’s
wing via feedback from a tracker which predicted the next ROI. One problem
with such systems is they are rigid in their FPGA based design, are task specific
and highly implementation and environment dependent.

In order to increase the flexibility and efficiency of high-level downstream pro-
cessing, image sensor design companies are developing devices that can compute
interest points and local descriptors in silicon [7]. Other silicon devices include
the artificial retina [8]. The artificial retina is being investigated in a number of
contexts, one of which is ‘event-based stereo vision in real-time with a 3D rep-
resentation of moving objects’ [9]. The low latency of this device is of particular
interest. However, there is no illumination detail provided. This is overcome in
a hybrid system that includes a traditional digital camera system to investigate
selective attention or saliency for real-time active vision [10].

In a keynote speech Ed Dowski [11], lead for new technologies at OmniVision
CDM Optics, Inc. suggested that:“An important class of future imaging systems,
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in our view, will be Application-Specific Imaging Systems (ASIS). These imaging
systems will not be general purpose in that they are meant primarily for human
viewing, but will be specialized systems that capture and communicate specific
types of information depending on the particular application.”

The central hypothesis of this paper is that low latency visual sampling can
provide a framework for solving many challenging real world vision problems.
The proposed system has characteristics similar to those of several compressive
sensing methods [12]. Non-linear visual sampling in the spatial and temporal
domains followed by image reconstruction of whole image sequences is a popu-
lar research avenue. However, current compressive sensing techniques generally
involve highly specialised and expensive components with the results being re-
constituted using time consuming and computationally demanding algorithms
rendering them difficult to apply to practical real-world problems.

In this paper we are particularly interested in exploiting spatiotemporal redun-
dancy and the low latency control offered by close-to-sensor processing through
the use of non-linear visual sampling and piecewise visual processing. By
exploiting spatiotemporal redundancy, high speed imaging can be accomplished
without increasing bandwidth while reducing errors introduced by temporal
quantization. Low latency enables software pipelines that can be switched so
as to adapt to changes in visual input and be posed as a functional visual
sampling problem. The proposed system and associated algorithms are strictly
real-time in the sense that the capture and image processing relationship is di-
rectly linked and interdependent. An advantage of the proposed systems is that
a broad range of traditionally hard or impossible vision based processing tasks
can be addressed within a novel, cost and energy efficient framework. We pro-
pose a highly programmable visual sampling approach for application specific
imaging pipelines (ASIP), that can provide output for machine vision systems
as well as human observers.

1.1 Hardware System

Central to the system design is the XMOS microprocessor and the ability to re-
program image sensor parameters with very low latency. The processor allows
a direct connection to an image sensor, has no operating system, does not use
interrupts and supports concurrent threads within a parallel architecture. The
XMOS1 XCore is a multi-threaded processing component with instruction set
support for communication, I/O and timing. Thread execution is deterministic
and the time taken to execute a sequence of instructions can be accurately
predicted. This makes it possible for software executing on an XCore to perform
many functions normally performed by hardware, especially DSP and I/O.

To investigate the exploitation of spatiotemporal redundancy via piecewise
visual processing a development board has been designed and built. Figure 1
shows the layout of the latest visual processing system. The design is such that
pixel information is read in from an image sensor a one end of the pipeline and

1 www.xmos.com

www.xmos.com
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then processed into higher and higher representations as data passes through
the system. Communications via ethernet and RAM is available at the far end
of the pipeline. The pipeline can be configured in software and feedback to the
image sensor control thread can be provided at any stage of processing. It should
be noted that the original sampled pixel information need never be lost and in
the simplest configuration the system behaves as a standard camera. With nine
xcores in total 4500MIPS of processing across 36 concurrent threads is available
for processing. XLinks provide fast inter core bi-directional communications and
extensive GPIO is available.

Fig. 1. Block diagram for the latest hardware design. It consists of four dual core
and a single core processors, 128MB SDRAM, ethernet phy, approximately ten smaller
chips (flash, buffers, oscillator, reset supervisors, etc), one FFC connector for the image
sensor (H5 and H7), one FPC connector for the LCD (H6), male and female 16 pin IDC
headers for XLinks (H1 and H2). XLinks enable multiple boards to be connected with
each other and have a bandwidth of 320Mb/s. XLinks are also what form the backbone
of the pipeline connecting the processor in series from sensor input at L2D to ethernet
and RAM on L2A and L1 respectfully. Extensive GPIO is available on header H4.

Figure 2 shows an advanced system layout that could be implemented by
the design in figure 1. For the work described in this paper less elaborate sub-
system designs have been used. The minimal configuration consists of an image
sensor connected to an XMOS processor and software running on a single xcore;
one thread being used to read in pixels and control the sensor and a further
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two threads to run a UDP ethernet transmitter. The architecture is highly pro-
grammable; if several xcores are linked a wide range of processing and feedback
designs can be implemented.

The underlying imaging used in this paper is, rather than capture an entire
image and then process the pixels at a standard frame rate, regions of interest
(ROI) are captured and processed at high frame rates. An advantage gained
using this approach is that an ROI can be processed in the time it takes to
expose the next ROI. The key advantage of this approach is that areas of an
image that have interesting changes occurring in then can be sampled more often
than in image areas where no changes are occurring. Throughout this paper the
pixel depth was set to 8 bits and ROI were set to 64 by 40 pixels, the sensor
resolution was set to 640 by 480 pixels and 2 by 2 pixel binning was used to
give an effective image resolution of 320 by 240 pixels. Each xcore has 64KB of
on chip memory, all of the follow experiments use only this memory and were
carried out using two quad-core XMOS processors.

Fig. 2. A system diagram for a fully functioning processing pipeline. Early processing
and sensor control execute in separate dedicated threads close to the sensor. Higher
level processing and communications occurs in many threads over several cores and
processors.

In the following section two applications for low level visual tracking are
described. They are based on the system layout of figure 2. As such the two
trackers can be seen as running in parallel with each other. If there are no in-
teresting changes with respect to the millisecond tracker pixel data is passed
on to the higher level Baysian tracker. The Baysian tracker then directs the re-
programming of the image sensor according to what it determines as the next
interesting ROI to sample. However, if the millisecond tracker does detect pixels
that are interesting to it, it now overrides higher level processing and proceeds
of its own accord. When the millisecond tracker no longer detects interesting
changes control of the sensor re-programming is handed back to the higher level
processing system. These two application are now described in more detail.
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1.2 Experiments and Results

After initialization the system proceeds by repeating the following; program the
ROI position on the sensor, exposing the ROI, read in ROI pixels from sensor,
process ROI pixels. After a short period of time temporal differences can be
computed, i.e. the difference between two spatially coherent but temporally offset
ROI. This temporal differencing provides the basis for low level event detection
and tracking. The sensor can be run in two modes; free running or triggered.
The design in figure 1 allows for both. However, the hardware used in this paper
could only function in free running mode. To understand the performance and
limitation of the system the sensor was run at full speed, table 1 describes the
low level timings and identifies when and how processor cycles are being used.

Table 1. Timing information in CPU cycles at 100MHz with frame and row delay at
zero and sensor clock at 25MHz. One frame is dropped in the first three rows with
overall frame time being ∼ 103000 cycles (frame grab plus frame delay, 964fps). The
time between row read-ins is 816 cycles.

Frame Data Frame Frame
Grab Send Update Delay

FPS

42384 2042 46480 61296 964

42384 a 2042 32544 61296 964

42384 b 32 32538 61296 964

42384 c 32 4682 9455 1928

42384 d 32 34 9455 1928

a No display window update. OK if display columns remain constant.
b No data send.
c No window update, with display window update.
d No update at all.

In table 1 timing information in CPU cycles at 100MHz with frame and row
delay at zero and sensor clock at 25MHz is given. The order of processing is as
follows; the frame ready pin is pulled high (this is when timing starts), pixels
are read in on a line by line basis, the pixel data is transmitted to the ethernet
transmitter thread, the ROI position is updated via I2C and the next exposure
begins. This cycle is repeated over the whole sensor surface, returning back to
(0, 0) after each 320 by 240 composite image is read if the sensor windows are
updated. From table 1 it is clear that transmitting the pixel data on to the next
thread takes roughly two thousand clock cycles. The display window is the sensor
width by ROI height region that the sensor exposes and the window update is
the region of pixels that the sensor reads out. The time it takes to update the
display window does not effect the FPS value, however updating the read out
window involves programming over twice as many registers. Updating the read
out window with or without updating the display window takes longer than the
exposure time, consequently a whole frame is dropped before the frame ready
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pin is pulled high. With no window updates and no data send the absolute
performance is demonstrated; it take 42384 cycles to read in the pixel data
and 9455 cycles to expose the sensor giving an absolute frame rate of 1928FPS
(100000000/(42384+9455)). If the sensor windowing updates take less than the
exposure time then a frame is not dropped.

Millisecond Tracker. The above timings are with respect to a single thread
running at 100MHz and with the delay between rows read-ins (816 cycles) there
remain roughly 50000 cycles for processing the 64 by 40 ROI. To perform single
ROI low level tracking a background model is built for each incoming ROI. This
consists of two histograms, one for the maximum values of each row and one for
the maximum of each column. If a single peak over a certain threshold exists a
point of interested is considered as detected. If in the next ROI a similar point
exists tracking begins and the x and y offsets between the two peaks are used
to initialize a predictive tracker. The mean value of the previous and current
prediction is used to estimate where the point in the next ROI will be. The
position of the ROI on the sensor is updated and the process is iterated until
the interest point is lost. Figure 3 show the laser point stimulus. The motion
is so fast that at 30fps the light is smeared across the exposures. In figure 4
some example frames from the tracking result are shown, behind the text there
is a bright point light. It should be noted that there is not a direct one to one
match of fields of view or temporal synchronization between the images shown
in Figures 3 and 4 as the different sensors are in different positions and are not
fully aligned.

Fig. 3. The the laser point stimulus. The motion is so fast that at 30fps the light
is smeared across the exposures. The point light is moved using a servo that has a
maximum rotation speed of 0.16s for 60 degrees.

Fig. 4. Fast point tracker. Behind the text there is a point light. The top row of numbers
shows the x and y positions within the ROI of the max pixel value. The second row
shows the predeicted position of the point ligth according to the first order tracker.
The third row shows the x value of the predictive tracker.
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Baysian Tracker. If the above criteria for a point of interest is not met, ROI
pixel data is transmitted on to a more complex tracking system. This is now
described in detail. Given an image sensor surface, S, with resolution [X,Y ] a
spatiotemporal volume is described as v(x, y, t) where x ∈ [1, X ] and y ∈ [1, Y ]
are the row and column coordinates respectively and t is the temporal coordinate.
A non-overlapping rectangular grid is defined as go ∈ G ≡ S and gs is the set
of all possible rectangles that belong to G. The image sensor is programmed by
registers that can be set, on a sub-image by sub-image basis, enabling selective
sampling of G with variable intervals of t. Initially, over all go we sample sub-
images, s(xs, ys), where xs and ys are the rows and columns of each sub-image,
generally xs < (X/4) and ys < (Y/4). There are No non-overlapping sub-images
in go that cover S and as each sub-image is captured some sparse feature vector
representation, f , of each sub-image is computed. After t(No +1) samples, sub-
images s1 and sNo+1 are compared to determine if any changes have occurred.
Any metric can be used to determine if and how the samples might have changed,
the simplest is a difference, dgo(1) = (fNo+1−f1). When t(2×No) samples have
been captured a multi-modal distribution of differences across the extent of G
is computed as:

p(d)t=0 = pdf(d) =

∫
go

1√
2π

e−d2/2 (1)

Equation 1 initializes the system; if p(d) = 0, no changes in the pairs of sub-
images have occurred otherwise p(d) is proportional to the magnitude of change
according to the feature description and metric used. p(d) is updated with each
new differential observation, d, in a manner similar to a large class of algorithms
that include sequential Baysian filtering, Kalman filters, particle filters, HMMs,
etc.

p(d)t =

∫
go

1√
2π

e−(p(d)t−1+dt)
2/2 (2)

So far, xs and ys belong to go and δt is constant. The proposed algorithm now
proceeds by re-sampling p(d) such that a new set of sub-images, sgp , where
gp ∈ gs, predict likely visual changes at some time in the future:

(gp, tgp) ← p(d) (3)

The algorithm proceeds to iterate over the Equation 2 and 3 effectively tracking
visual changes that are ‘interesting’ according the feature set description and dif-
ference metric. The above description represents the simplest formulation of the
proposed system, more complex formulations easily fit within the same frame-
work. Equation 3 provides the basis for the hypothesis of this paper; δtgp and
the number of sub-images, sgp are not fixed. There are several interesting con-
sequences of this; firstly no whole images exist in the traditional sense, secondly
there is no fixed frame rate, sub-images are captured at different spatial location
and at different temporal rates depending on changes in the visual scene. An area
of a scene where little or no change occurs gets sampled infrequently and the
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δt between corresponding temporal sub-images will be relatively large. An area
that changes a lot and rapidly will be sample frequently and δt will tend towards
its minimum. In the current and proposed hardware design min(δt) ≤ 0.5ms. As
fewer sub-images are sampled more frequently there is no significant difference
in bandwidth compared to the bandwidth of standard frames rates and resolu-
tions. It should be noted that the original sampled pixel information need never
be lost and offers the potential for compressive sensing or other more standard
techniques to be implemented further down the pipeline. Figure 5 shows the
overall composition of the higher level tracking system. Figure 6 shows the indi-
vidual components of the image processing pipeline and figure 7 shows selected
frames of an object being tracked.

Fig. 5. The composition of the recursive Baysian tracker system. The full system is
shown including a host PC that enables the internal states of the pipeline to be visu-
alised.

1.3 Discussion

The work presented in this paper is in its infancy and the authors expect to be
able to create much more advanced systems as dedicated hardware and higher
quality image sensors become available. We will research and develop multiple
pixel processing pipelines that implement low latency detection and tracking,
autonomous stereo alignment and higher level vision processing. Multiple spa-
tiotemporal resolutions will be used to direct focus of attention and stabilize vi-
sion algorithms. A major potential of the work is to investigate image sampling
strategies given a particular stimulus and/or task. We will learn the underlying
rules that enable the system to change its mode of operation. We will investigate
autonomous pan, tilt and focus so as to provide continuously changing perspec-
tives of any given visual stimulus. Sensor-processors will be able to change their
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Fig. 6. The the individual components of the image processing pipeline. Each units
represents a single concurrent thread running on a quadcore XMOS processor.

Fig. 7. Adaptive camera tracker, selected frames of an object being tracked. Blue rect-
angles are sensor surface regions that are momentarily being less frequently sampled.

Fig. 8. The latest hardware design which is based on the block diagram layout de-
scribed in figure 1
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line of sight automatically based on low level rules for tasks such as; follow and
focus on the largest moving object in a scene. To understand how a stereo pair
of sensors might automatically configure themselves is particularly interesting,
being able to move and focus independently allows a sensor pair to optically
search over the depths of multiple objects within a scene.

Initial work on an adaptive processing pipeline for low level visual tracking has
been presented, more advanced tasks could include; ‘track a single object at a
frame rate that minimizes motion blur’, ‘track the depth of the most interesting
moving object in the scene’, ‘generate a super resolution snap shot of the most
interesting object within a scene’ or ‘compute optical flow if the whole scene
changes rapidly’, etc. These tasks can be combined such that as a scene changes
the most appropriate mode of pipeline operation is selected.

1.4 Conclusions

Traditional digital imaging is generally a passive process whereby images of
fixed size and frame rates are captured regardless of what is occurring in the
scene. Understanding motion cues is often made easier by increasing frame rate.
However, this greatly increases the amount of data that needs to be transmitted
and processed. Additionally, reprogramming a cameras image sensor often takes
a number of frames leading to a latency between what an artificial system has
processed and what the next image content might be. We have shown that by
adaptively sampling visual information with respect to what is occurring in a
scene, the performance of low level vision systems can be improved without
increasing bandwidth. By having close-to-sensor processing, image regions can
be captured and processed very rapidly. If spatiotemporal regions have little
useful information in them they can be discarded without further processing.
Spatiotemporal regions that contain ‘interesting’ changes are further processed
to determine what the interesting changes are. Close-to-sensor processing enables
low latency programming of the image sensor such that interesting parts of a
scene are sampled more often than less interesting parts. Using a small set of low
level rules to define what is interesting, early processing proceeds autonomously
with very low latency.

The presented hardware design offers a cost effect high frame rate compu-
tational camera. As image processing is carried out in a piecewise manner a
traditional frame store is not required. This in turn reduces the complexity of
the system. The deterministic and parallel nature of the XMOS architecture
allows for efficient and flexible visual processing pipeline designs.

1.5 Future Work

It should be noted that the default behaviour of the proposed system is that of a
standard camera and original pixel information need never be lost. The proposed
system is a computation camera capable a wide range of functionality. Multiple
systems can be connected within the plug and play design to create multi-sensor
systems. A four part system could consist of a monochrome stereo pair, a colour
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sensor and an IR sensor all with fast interconnections and 18000MIPS of par-
allel computing resources. With the existing design this would cost less than
1000USD, be the size of a small laptop and interface via a standard ethernet
connection. In future work we plan to build a much smaller and more powerful
design. One motivation for this is to be able to make the system more widely
accessible to the vision and robotics community. Figure 8 shows the latest hard-
ware design and roughly mirrors the layout described in figure 1.
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Abstract. Colorimetric correction is a necessary task to generate com-
fortable stereoscopic images. This correction is usually performed with a
3D lookup table that can correct images in real-time and can deal with
the non-independence of the colour channels. In this paper, we present a
method to compute such 3D lookup table with a non-linear process that
minimizes the colorimetric properties of the images. This lookup table is
represented by a polynomial basis to reduce the number of required pa-
rameters. We also describe some optimizations to speedup the processing
time.

1 Introduction

In recent years, stereoscopic technologies have been subject to an impressive
growth and became incontrovertible in the movie maker industry. More recently,
this technology has advanced from stereoscopic to autostereoscopic displays, in-
volving more than two views and hence more than two cameras. The use of
these multiview devices emphasizes technical issues in term of video stream syn-
chronization, camera calibration, geometrical issues or colorimetric correction.
This paper deals with this last problem, i.e. how to represent each object of the
scene with a coherent colour in every view. Indeed, colorimetric inconsistencies
in stereoscopic images may cause some perception troubles, as described in [1]
as well as issues for multi-view video coding [2] or video-based rendering [3]. The
goal of this paper is to get a uniform colour response among the camera and not
to perform a colorimetric calibration [4] to get an absolute colour accuracy.

Most of the colorimetric inconsistencies mainly come from the camera sensors.
Even if the cameras are the same model and come from the same factory, the
sensor response is often quite different. Thus, selecting the same settings for
each camera, i.e. gain, brightness or shutter speed may not solve the problem.
Moreover, the camera response for two identical cameras may differ according
to their respective position on the scene, where the illumination is not perceived
the same or where the camera temperature is different. These colorimetric issues
are clearly apparent on low cost cameras but are also visible with professional
grade devices.

The usual requirement for a colorimetric correction technique is to be fast
and accurate. Moreover, the process should be efficient on high resolution images
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for the movie industry as well as for daily applications such as teleconference
running on consumer grade hardware. Most of the professionals claim that using
separated 1D-LUT for each channel are not recommended since it is known that
the colour channels are not independent. The standard approach for colorimetric
corrections is to use 3D LookUp Tables (LUT) implemented on the GPU. Indeed,
the GPU implementation is straightforward and the performances are excellent.
Finally, for images with 256 colour levels per channel, a full size 3D-LUT would
have a 2563 voxel resolution. In practice, the 3D-LUT may have a much lower
resolutions since the missing data are linearly interpolated by the GPU. As an
example, a 323 3D-LUT is preforment enough and requires few memory (e.g. less
memory than a RGB 200×200 image). The goal of this paper is to propose a 3D-
LUT computation to perform a colorimetric correction between multiple cameras
of a camera array.

2 Related Work

The problem of transferring the colorimetric properties of a source image to a
target image, namely colour transfer, has been the starting point of numerous
methods dealing more specifically with multiple view colorimetric correction.
A survey of the related works for these two approaches is presented in the fol-
lowing parts.

2.1 Colour Transfer between Two Images

Reinhard et al. [5] present a method that matches the colour mean and vari-
ance of the target image to the source image. This operation is performed on
the lαβ-colour space where the colour channels are not correlated. However this
method is limited to linear transforms. Papadakis et al. [6] describe a variational
formulation of the problem using cumulated histograms under colour conserva-
tion constraints, but provides 1-D transformations that is not suitable for our
purpose.

Morovic and Sun [7] present a method to match the 3D colour histogram of the
two images. Neumann and Neumann [8] have te same approach but also apply a
smoothing and a contrast constraint to limit unexpected high gradients artifacts.
Finally, Pitié et al. [9] matches the probability density function between the two
images using a N-dimensional transfer function. These methodes are specially
designed to perform colour transfer from images with very different colorimetric
properties.

Finally, Abadpour and Kasaei [10] use a principal component analysis (PCA)
to generate a new colour space where the channels are decorrelated. In [11], they
use the PCA to compute a colour space from some specific image regions selected
manually. PCA-based approaches will perform well on a static images, but can
fail in video sequences where the variation of the colours may not match the
initial colour space.
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2.2 Colour Correction and Camera Array

Camera arrays dedicated to stereoscopic rendering are subject to several geomet-
rical constraints (i.e. the cameras should be correctly aligned [12]) and hence the
acquired images represent approximatively the same scene, with similar colori-
metric properties.

Yamamoto et al. [13] extract SIFT correspondences [14] in order to handle
scene occlusions and perform a multiview colorimetric correction. Yamamoto and
Oi [15] use the same approach using an energy-minimization function on the 2D
correspondences. Tehrani et al. [16] propose an iterative method based on an
energy minimization of a nonlinearly weighted Gaussian-based kernel density
function applied on SIFT corresponding feature points. The main drawback of
these two methods is the fact that the colorimetric correction is performed on
each RGB channels independently.

Shao et al. [17] distinguish the foreground and the background parts from a
precomputed disparity map. They perform a PCA-based colorimetric correction
only on the forground parts that are more likely to appear on each view. Shao
et al. [18] also requires a precomputed disparity map to perform the correction
using a linear operator on the YUV colour space.

Finally, Shao et al. [19] present a content adaptive method that performs a
PCA on the data in order to select the relevant colours of the scene and generate
a 3× 3 correction matrix. This method does not require any disparity map but
is limited to linear correction.

2.3 Outline of Our Method

As specified above, 1-dimension LUTs applied independently on each RGB chan-
nel are known for their limited colorimetric correction accuracy, whereas 3D-LUT
based methods are much more accurate, still fast and easy to use. We propose
a method to generate such 3D-LUT by a non-linear process that minimizes
the colorimetric properties differences between each image. A 3D-LUT with full
resolution would imply 3×2563 � 5.107 variables involving extremely long com-
putation times. Even a 3D-LUT with a standard resolution of 323 would result
in 3 × 323 � 104 variables that still can not be computed in a reasonable time
delay.

In this paper, we introduce a substitution of the 3D-LUT by an orthogonal
basis functions that can represent the initial 3D-LUT with very few variables.
We present a non-linear minimization process that finds optimal values for these
variables such the recovered 3D-LUT generates corrected images with similar
colorimetric properties. In regard to the related works, our method does not
require any precomputed disparity map, can handle non-linear corrections, does
not consider each channel independently, generates a set of 3D-LUT and is fully
compatible with SIFT or other point correspondences approaches.

This paper is organized as follows: In section 3, we introduce the Chebyshev
polynomial basis. Section 5 describes the non-linear minimization process used
for the colorimetric correction. Section 6 presents some optimizations to speedup
the process and section 7 shows some results.
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3 3D-LUT and Basis Functions

3.1 Basis Functions for 3D-LUT

The purpose of the basis function is to decrease the number of variables rep-
resenting the 3D-LUT. The basis function should be orthogonal to ensure the
unicity of the LUT representation. We selected Chebyshev polynomial basis for
several reasons. Indeed, the first order polynomials have soft variations, hence
higher order polynomials can be ignored without a significant loose on the 3D-
LUT description. Moreover, polynomial basis functions can represent the identity
function used for the initialization. Some other well known basis such as discrete
cosine transform can not unless they use all the functions of the basis. Finally,
each Chebyshev polynomials are alternatively odd and even such the first poly-
nomials have a specific signification in term of colour processing, as presented in
Table 1.

Table 1. Polynomial basis for 3D-LUT: a signification for the first degrees

Degree Effect

0 colour offset
1 identy function
2 brightness/gain
3 contrast

3.2 Chebyshev Polynomial Basis

The Chebyshev polynomials are a sequence of orthogonal functions defined for
x ∈ [−1, 1] as:

Tn(x) =
(x−√

x2 − 1)n + (x+
√
x2 − 1)n

2

They can also be expressed recursively with:⎧⎪⎪⎪⎨⎪⎪⎪⎩
T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x) − Tn−1(x)

Figure 1 depicts the first Chebyshev polynomials.
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T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1
T7(x) = 64x7 − 112x5 + 56x3 − 7x
T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1
T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

Fig. 1. Left: the first Chebyshev polynomials. Right: their graphical representation

3.3 3D-LUT Representation

Without loss of generality, we consider in the rest of this paper that the colour
levels range from 0 to 1. We define a 3D-LUT f that transforms three input
colours r, g and b into three output colours (r′, g′, b′)	 = f(r, g, b) with the
following formula:⎛⎜⎜⎜⎝

r′

g′

b′

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∑n

i=0

∑n
j=0

∑n
k=0 α

r
i,j,kTi(r).Tj(g).Tk(b)∑n

i=0

∑n
j=0

∑n
k=0 α

g
i,j,kTi(r).Tj(g).Tk(b)∑n

i=0

∑n
j=0

∑n
k=0 α

b
i,j,kTi(r).Tj(g).Tk(b)

⎞⎟⎟⎟⎠ (1)

where n is the higher polynomial degree used and αc
i,j,k is the coefficient associ-

ated to the polynomial Ti(x)×Tj(y)×Tk(z), for the output colour channel c. An
illustration of a 2-dimension Chebyshev basis functions is depicted in Figure 2.

Fig. 2. A representation of the 2-dimensional Chebyshev basis with the 6 first levels,
where each block Tij(x, y) = Ti(x)×Tj(y). A coefficient αc

i,j is associated to each block
(in 3-dimension in our case) to represent a signal g(x, y) =

∑
i,j αi,jTij(x, y).

The look-up table representation is defined by 3×n3 coefficients associated to
the first n Chebyshev polynomials for the three channels r, g and b. A standard
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3-dimension lookup table with n colour levels (i.e. 256 or 32) would involve 3×n3

variables. This representation also requires 3 × n3 parameters, but the number
n can be drastically diminished (e.g. n = 7). Moreover, the main response of
the 3D-LUT is concentrated on the channel considered. Indeed, in (r, g, b), r is
more significant than g and b to compute r′ (respectively for g and b). Thus, it
is possible to associate a higher accuracy for the channel considered rather than
for the two other channels.

The conversion from the polynomial representation to the standard form is
computed by applying equation (1) to all the lookup table elements.

4 Initialization

The 3D-LUTdefault initialization is the identity function, i.e. (r, g, b)	 = f(r, g, b).
This configuration is obtained by using only the L1(x) = x polynomial for the
channel related to the colour being processed. In term of coefficients, identity cor-
responds to: ⎧⎨⎩αr

1,0,0 = αg
0,1,0 = αb

0,0,1 = 1

αc
i,j,k = 0 otherwize

(2)

It is also possible to convert an existing standard 3D-LUT to our model. Indeed,
setting the initial function f with a good estimation of the expected lookup table
will decrease the number of iterations required to reach convergence. Given a 1-
dimensional lookup table g(x) such that:

g(x) =

∞∑
k=0

ckLk(x)

the coefficients ck can be found by ([20], p.67):

ck =
4

π

∫ 1

−1

g(x).Tk(x)√
1− x2

dx

except for c0 that should be divided by 2.
The discreet form with n discretization steps is:

ck =
4

πn

n−1∑
i=1

g(2 i
n − 1).Tk(2

i
n − 1)√

1− (2 i
n − 1)2

Actually, a much faster estimation of ck is given by:

ck � 2

n+ 1

n∑
i=0

g
(
cos

πi

n

)
. cos

πki

n
(3)

still with c0 divided by 2.

To perform this stage with a 3-dimensional lookup table, the previous method
should be repeated on the three dimensions.
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5 Non-Linear Process

5.1 Image Descriptors

Let {Ii=1...k} be a set of k images and the vector x = D(I) a representation of
the colorimetric properties of an image I. The vector xi is a concatenation of
measures on the image Ii. The purpose of the minimization process is to find the
3D-LUT such the transformed images provide similar vectors x. As a minimal
setup, we propose the following measures:

– image average color: returns a value (in [0, 1]) for each r, g and b channel.
– image saturation: returns a single value (in [0, 1]) corresponding to the

average saturation per pixel. A pixel saturation is computed as the variance
of the r, g and b channels.

– image contrast: returns a single value (in [0, 1]) corresponding to the vari-
ance of the image 3D histogram.

In this paper, we mainly focus on these three measures, however any other
measures satisfying distances properties can be added in the vector x.

5.2 Minimization

The non-linear process consists in finding the parameters αc
i,j,k representing a

3D-LUT that transforms the input images Ii=1...k such the xi=1...k become simi-
lar. Thus, this process is equivalent to minimize the cost function M({xi=1...k}):

M({xi=1...k}) = ‖σ(xi)i=1...k‖ (4)

Where σ(xi) denotes the variance of the vectors xi. This approach makes the
corrected images to have their descriptors converging to an average value x̂.
Another possibility is to select a reference image Ir whose descriptor xr will be
considered as a target for the other images during the minimization process. The
function Mr({Ii=1...k}) becomes:

Mr({xi=1...k}) =
k∑

i=1
i�=r

(
xi − xr

)2
(5)

5.3 Point Correspondences

The minimization process can be performed on the whole images but can also
be restricted on a set of selected areas. In that situation, point correspondences
can be found using usual techniques such SIFT [14] or SURF [21]. Applying the
minimization on a restricted set of areas on the images presents some advantages
about robustness. Indeed, if a colour appears only on an image but not on the
others, this colour will not be selected and hence will not contribute to the
colorimetric correction. However, the risk of this method is to limit the diversity
of colours encountered in the areas and hence to decrease the accuracy of the
colorimetric correction.
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6 Optimizations

The minimization process is sometimes long to compute, hence we propose in
the following sections some optimizations to speedup the process to reach con-
vergences. None of these methods affect the accuracy of the final results.

6.1 Initialization

As described in section 4, the initial parameters αc
i,j,k are setup with equa-

tion (2) such the resulting 3D-LUT represents the identity function. An alter-
native is to start the iterative process from a solution that is fast to compute
and not too far from the expected solution. In practice, we first compute an his-
togram equalization for each r, g and b channels, resulting in three 1-dimensional
LUT. The corresponding coefficients αc

i,j,k are extracted from these LUTs using
equation (3).

6.2 Histogram Domain

Most of the descriptors presented in section 5.1 require the computation of a
3D histogram and the remaining descriptors can be computed from these his-
tograms. Hence, the successive 3D-LUT computed during the non-linear process
are directly applied on the histograms rather than to apply them on the images
and then extract the histograms. Moreover, the 3D histogram data is stored on
a 1D array with size equal to the number of the different colours appearing in
the image. Thus, in the worth case (all pixels have different colours), this array
has the same size as the image. Since a LUT is a surjective function, the size
of the array will never increase during the iterative process. Finally, avoiding to
apply the lookup tables to the images makes the computation time independent
from the images’resolution and hence makes possible to work on high resolution
images.

6.3 Pyramidal 3D Histograms

Finally, we use a pyramidal method on the iterative process. During the first
iterations, the 3D histograms are quantized to decrease their size of 80%, involv-
ing a fast but inaccurate convergence. The quantization effect is progressively
decreased during the iterations such that the last iterations become slower but
use the image data with full details. The effect of this pyramidal method is first
to speed up the computation during the first iterations and second to speed up
total convergence.

7 Tests and Results

We implemented our minimization method in C++, with Levenberg-Marquardt
minimization algorithm as described in [22] (p. 600). We tested our method on
a set of images with different colorimetric properties and geometrically rectified
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Table 2. Computation time with and without optimizations presented in section 6.
The image resolution for the RGB and non-optimized version are reduced to 400× 266
to get acceptable computation time, whereas the optimized version run on 2300×1533
resolution images. Moreover, using only 3 × 73 parameters for the RGB-LUT leads to
unsatisfactory results.

number standard without pyramidal pyramidal
of variables RGB optimization histogram histogram

3D-LUT + initialization

3× 33 18 min 13 min 5 min 5 min
3× 53 230 min 124 min 58 min 54 min
3× 73 960 min 416 min 331 min 177 min

with [12]. Figure 4 depicts a result using the Chebyshev basis function with the
degree 7, with a reference image as in equation (5). The resulting 3D-LUT for
some images is shown in Figure 5 and clearly underline the non-independence
between each channels.

The computational time is still long, Table 2 presents the computational time
of our method, with and without the optimizations presented in section 6. As a
comparison, our optimized method with 7 polynomials takes less than 3 hours
to compute high resolution images when the direct RGB-3D-LUT computation

Fig. 3. Convergence speed with 3 × 73 polynomials for the methods using just the
Chebyshev polynomial basis, the method with the 3D-histogram optimization and the
method that also includes a 1D-LUT initialization
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Fig. 4. Left: four input images with different colorimetric properties. Right: the cor-
rected images with 7 polynomials using the top left image as a reference, with equa-
tion (5 ).

with 3 × 73 elements and low resolution images takes more than 16 hours, for
very low quality results.

Figure 3 shows the minimization convergence speed comparison between our
methods with or without the 3D histogram optimization and the initialization,
for 3×73 polynomials. The use of the initialization drastically decreases the num-
ber of iterations required to reach convergence. The 3D-histogram optimization
does not decrease the number of iterations, but reduces the computation time of
an iteration. During the tests, we tried our method using L*a*b* colour space
instead of rgb but we didn’t noticed any changes in the results neither on the
computation time.
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Fig. 5. 3D-LUT corresponding to the three corrected images of Figure 4

8 Conclusion

This paper presents a method to perform a colorimetric correction for a set of
images captured with different cameras for stereoscopic purposes. The method
produces a 3D lookup table that can be used in real-time on the GPU. This
lookup table is represented by a basis function to reduce the number of required
parameters. These parameters are computed by a non-linear method to minimize
the difference of the colorimetric properties between the considered images.

In order to speedup the minimization process, we consider a compact form of
the 3D histogram of the images rather than the images by them-self. This tech-
nique makes the process much faster and independent of the images resolution.
The minimization process can start from the identity 3D lookup table or from
any lookup table. Our tests show that using a fast 1D lookup table as an approx-
imation of the results makes a very suitable starting point for our minimization
process and produces a very fast convergence.
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Camera Calibration Using Vertical Lines
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Abstract. In this paper we present an easy method for multiple cam-
era calibration with common field of view only from vertical lines. The
locations of the vertical lines are known in advance. Compared to other
calibration objects, the vertical lines have some good properties, since
they can be easily built and can be visible by cameras in any direction
simultaneously. Given 5 fixed vertical lines, an image containing them
taken by a camera may provide 2 constraints in the intrinsic parame-
ters of the camera, and extrinsic parameters can then be recovered. The
calibration procedure consists of three main steps: Firstly, the image is
rectified by a homography, which makes the projections of vertical lines
parallel to u-axis in the rectified image. Secondly, for any vertical scan
line in the rectified image, if we consider the scan line is taken by a virtual
1D camera, then we can calibrate the 1D camera. Finally, the intrinsic
parameters of the original camera can be determined from the intrinsic
parameters of the virtual 1D camera. By evaluating on both simulated
and real data we demonstrate that our method is efficient and robust.

1 Introduction

Camera calibration is a necessary process of recovering 3D information from 2D
images. Generally there are two classes of methods to calibrate cameras: the first
class uses calibration objects, while the other one doesn’t need to use any calibra-
tion objects. Since cameras are becoming cheaper and more precise, researchers
have paid much attention to multi-camera system applications [1],[2],[3],[4],[5].
It’s important to calibrate multiple cameras in a single coordinate frame. But
traditional calibration methods may not meet this requirement. Some solutions
using one-dimensional objects were proposed, but they all need to move or rotate
the objects [6],[7]. The self-calibration method also had to capture a sequence of
images [13].

Nowadays cameras are of good precision so that we can simplify the camera
models. For the pinhole camera model, we can set the camera skew to zero,
the pixel aspect ratio to one and also the principal point to the center of the
image. So we usually care much more about the focal length than other intrinsic
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Peking University, Beijing, China.

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 218–229, 2013.
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parameters. In this paper we present a convenient method for camera calibration
with a set of 5 fixed vertical lines, as shown in Fig.1, which are visible by cameras
in any direction simultaneously. Lines can be easily set exactly vertical because of
the gravity (such as plumb lines). From one image of vertical lines we can obtain
two constraints on the intrinsic parameters and full information of the extrinsic
parameters can then be determined. Our proposed calibration procedure consists
of three steps. First rectify the observed lines with a homography matrix to make
them parallel to the u-axis of image. After rectification, the problem turns into
a virtual pure pan camera calibration, which can be solved by one-dimensional
camera calibration. From the two intrinsic parameters of the virtual pure pan
camera and the homography matrix, at last we obtain two constraints on the
original camera’s intrinsic parameters. By adding a fixed visible point on one of
the vertical lines, we also can obtain the extrinsic parameters.

Fig. 1. When captured the five located vertical lines, we can get two constraints on
the intrinsic parameters and then recover the extrinsic parameters

2 Related Work

There are a variety of calibration methods with different kinds of objects. A
planar pattern viewed from at least three different orientations is used in [8].
Some other methods use spheres[9], [10], circles [11]. Most of these methods use
the objections that are not visible by cameras in any direction simultaneously.

In some multi-camera systems [12], they use a moving plate for calibration.
Svoboda et al. [13] calibrated their system of at least three cameras by obtaining
a set of virtual 3D points made by waving a bright spot throughout the working
volume. Baker and Aloimonos [14] proposed a calibration method for a multi-
camera network which requires a planar pattern with a precise grid. Lee et al.
[15] established a common coordinate frame for a sparse set of cameras so that all
cameras observe a common dominant plane. They tracked objects moving in this
plane and from their trajectories they estimated the external parameters of the
cameras in a single coordinate system. Sinha et al. [16] calibrated multi-camera
system using epipolar geometry constraints.
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There are two studies that are most related to this paper. Wong et al. [17]
obtain an approximate circular motion of the camera by using a string, a peg
and a tripod. The string in the image approximately coincide with the vertical
direction. They rectified the image by a homography induced by the string in the
image, in order to allow the camera motion to be estimated using the circular
motion algorithm. Ying et al. [18] propose a closed form solution for computing
the camera pose from a set of three or more known parallel lines. But the solution
is under the assumption that focal length is known, and the pose is determined
up to a translation along the line direction.

As shown in several recent works [19],[20], knowledge about the vertical direc-
tion were used for reducing the minimum number of points for instantiating a
hypothesis about the relative camera pose down to three or even only two in the
perspective pose computation case. Most of these methods assume the intrinsic
parameters are given in advance.

In [21], straight lines in the scene were used to provide constraints on the distor-
tion parameters, and Kang [22] proposed radial distortion snakes to solve radial
distortion problem. These methods can be used in conjunction with our method.

3 Notations

3.1 Two-Dimensional Pinhole Camera Model

Let M = (x, y, z, 1)
T

be a world point and m = (u, v, 1)
T

be its image point,
both in the homogeneous coordinates. Under pinhole camera model, they satisfy

μm = PM (1)

where P is a 3 × 4 homogeneous projection matrix describing the perspective
projection process. μ is an unknown scale factor. The projection matrix can be
decomposed as

P = K [R |t ] , (2)

where

K =

⎡⎣fx s u0

0 fy v0
0 0 1

⎤⎦ . (3)

Here the upper triangular matrix K is the intrinsic parameter matrix, and (R, t)
denotes a rigid transformation (i.e., R is a 3× 3 rotation matrix and t is a 3× 1
translation vector) which indicates the orientation and position of the camera
with respect to the world coordinate system.

3.2 One-Dimensional Pinhole Camera Model

A one-dimensional pinhole camera project points from 2D to 1D [23]. So let

M̄ = (y, z, 1)T be a point of 2D and m̄ = (v, 1)T be its image points of 1D.
Similarly they satisfy

μm̄ = P̄M̄, (4)
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where P̄ is a 2 × 3 homogeneous projection matrix, and μ is an unknown scale
factor. The projection matrix also can be decomposed as

P̄ = K̄
[
R̄ |̄t] , (5)

where

K̄ =

[
f̄ v̄
0 1

]
. (6)

Here the upper triangular matrix K̄ is the intrinsic parameter matrix, and R̄ is
a 2× 2 rotation matrix and t̄ is a 2× 1 translation vector.

4 Pure Pan Camera Calibration

For a pure pan camera, without loss of generality, we assume that its principal
line is perpendicular to the vertical lines, while the u-axis of the image is parallel
to them. The five vertical lines are represented as:

Li = Mi + λex, for λ ∈ R, i = 1, 2, ..., 5. (7)

Here Mi = (0, yi, zi, 1)
T
denotes a point of 2D on line Li, and ex = (1, 0, 0, 0)

T

is the direction of Li. We have

μli = PLi, (8)

where P = K [R |t ]= K [Rx |t ]. Rx indicates the rotation matrix around x-axis.
Considering the v-axis of image plane as an image of a one-dimensional cam-

era, we can rewrite equation (8) in the following form:

μm̄i = P̄M̄i, (9)

in which we use m̄i = (vi, 1)
T
and M̄i = (yi, zi, 1)

T
instead of Li and li to express

the one-dimensional projection process. The projection matrix P between Li and
li satisfies

P =

⎡⎣fx s u0

0 fy v0
0 0 1

⎤⎦⎡⎣1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

∣∣∣∣∣∣
t1
t2
t3

⎤⎦ , (10)

where ϕ indicates the rotation angel of the camera around x-axis.
The orientation and position of the one-dimensional camera with respect to

the world coordinate system are the same with the two-dimensional camera. So
we have

P̄ =

[
f̄ v̄
0 1

] [
cosϕ sinϕ
− sinϕ cosϕ

∣∣∣∣ t2t3
]
. (11)

Thus

μ

⎡⎣λmi

vi
1

⎤⎦ =

⎡⎣fx s u0

0 fy v0
0 0 1

⎤⎦⎡⎣1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

∣∣∣∣∣∣
t1
t2
t3

⎤⎦
⎡⎢⎢⎣
λMi

yi
zi
1

⎤⎥⎥⎦ , (12)
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and

μ

[
vi
1

]
=

[
f̄ v̄
0 1

] [
cosϕ sinϕ
− sinϕ cosϕ

∣∣∣∣ t2t3
]⎡⎣yizi

1

⎤⎦ . (13)

From equation (12) and equation (13), we find constraints between K and K̄
that

K =

⎡⎣fx s u0

0 f̄ v̄
0 0 1

⎤⎦ . (14)

That is to say fy = f̄ and v0 = v̄.
When given the location of vertical lines (i.e. m̄i), we can solve K̄ through

DLT solution. Then we can obtain two of the five parameters of K.
As shown in equation (13), one vertical line provides one linear constraints on

the parameters of the one-dimensional camera. So we have to capture at least 5
vertical lines to calibrate this pure pan camera.

5 Camera Calibration

In this section, we describe in detail how to solve the camera calibration problem
from one or more observations of 5 vertical lines. Fig.2 shows the rectification
procedure of the calibration.

(a) input image (b) rectified image

scan line

iM
imC

1D virtual camera center

(c) 1D projection

Fig. 2. The procedure of calibration: (a) Capture an image of the five vertical lines. (b)
After the rectification, image lines are parallel to the u-axis. (c) Calibrate the virtual
1D camera. Then from the parameters of 1D camera and the homography, we can
calibrate the original camera.

Let Li be the vertical lines. li are projected image lines, intersecting at the
vanishing point, mv = (uv, vv, 1)

T .We use a projective transformation to make
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li parallel,

m′
v = Hmv =

⎡⎣h11 h12 h13

h21 h22 h23

h31 h32 1

⎤⎦⎡⎣uv

vv
1

⎤⎦ , (15)

where m′
v is the transformed point on the line at infinity. And we have

m′
v = (u′

v, v
′
v, 0). (16)

In order to simplify the solution, we set

H =

⎡⎣ 1 0 0
0 1 0
h31 h32 1

⎤⎦ , (17)

and H satisfies
h31uv + h32vv + 1 = 0. (18)

After projective transformation, the parallel lines are l′i. Rotate l′i with a rota-
tion matrix Rθ,

Rθ =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦ , (19)

where θ indicates the angel between l′i and u-axis of image plane. Then we
obtain a set of image lines parallel with u-axis. We can assume that they are
projected by a virtual pure pan camera.

Let M = (x, y, z, 1)
T

be a world point. After projection and the 2D planar

transformation, its image point is m′′ = (u, v, 1)T . The process can be presented
as follows,

μm′′ = RθHK[R |t ]M. (20)

Let
A = RθHK. (21)

From equations (3), (17) and (19), we have

A =

⎡⎣ fx cos θ s cos θ + fy sin θ u0 cos θ + v0 sin θ
−fx sin θ −s sin θ + fy cos θ −u0 sin θ + v0 cos θ
h31fx h31s+ h32fy h31u0 + h32v0 + 1

⎤⎦ . (22)

After Schmidt decomposition, A becomes

A = K′R′, (23)

where K′ is an upper triangular matrix and R′ is an orthogonal matrix. K′ is
the intrinsic matrix of the virtual pure pan camera,

K′ =

⎡⎣f ′
x s′ u′

0

0 f ′
y v′0

0 0 1

⎤⎦ . (24)
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We have had a solution under this condition in the previous section, f ′
y and

therefore we can compute the value of and . From (22) and (23), we have

v′0 = (−f2
xh31 sin θ − s2h31 sin θ − fysh32 sin θ + fysh32 cos θ + f2

yh32 cos θ

− u2
0h31 sin θ − u0v0h32 sin θ − u0 sin θ + u0v0h31 cos θ + v20h32 cos θ

+ v0 cos θ)/(f
2
xh31

2 + h31
2s2 + 2fysh31h32 + f2

yh32
2 + u2

0h31
2

+ 2u0v0h31h32 + 2u0h31 + v20h32
2 + 2v0h32 + 1),

(25)
while the expression of f ′

y is too complicated to be shown here.
At this point we have got 2 constraints of K from one image, and more images

will produce more constraints.
In common we can set the camera skew to zero, the pixel aspect ratio to one

and also the principal point to the center of the image. Then the intrinsic matrix
K only has one degree of freedom,

K =

⎡⎣f 0 u0

0 f v0
0 0 1

⎤⎦ . (26)

At this time, the expression of v′0 becomes a rational fraction of 2 degrees and
the expression of f ′

y becomes a rational fraction of 6 degrees, so we have two
equations for solving f . Both of the two equations have uniquely positive real
solution.

From equation (20), (21) and (23), we have

μm′′
A = K′[R′R |R′t ]MA, (27)

which presents the projection process of the pure pan camera. So it satisfies

R′R =

[
1 0T

0 R̄

]
, and R′t =

[
t1
t̄

]
. (28)

where 0 = [0 0]
T
.

Given a control point Mf on Li, which can be detected in the image, we can
compute the last unknown parameter ti.

Without loss of generality, let Mf = (0, yi, zi, 1)
T
, and mf = (uf, vf, 1)

T
is its

image point. Then we have

μmf = K [R |t ]Mf . (29)

From (28) and (29), we can solve ti.
We need at least 5 vertical lines and a visible control point to calibrate the

8 parameters of the camera (2 intrinsic parameters and 6 extrinsic parameters),
and additional vertical lines will not provide more constraints. We know that the
vanishing point provides 2 constraints, each correspondence between the vertical
lines and their image lines provides one constraint, the additional control point
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provides one constraint. If we have a sixth vertical line, from its location we can
compute its image line in the rectified image (the virtual pure pan camera has
already been calibrated using the other 5 vertical lines). So we can say that 5
or more vertical lines and a control point provides exact 8 constraints on the
camera parameters.

6 Experiments

We have several tests on synthetic datasets (with various levels of noise and
different solutions). We present an approximate solution for locating the vertical
lines, and compared our calibrated focal length with that of Zhang’s [8] method.
We also test our method for 3D reconstruction on real datasets. In synthetic
tests the virtual viewport size for the camera was [1000,1000] units, leading to
focal length coordinates of comparable magnitude, while setting the principal
point to the center of the image.

In real data experiments, we use a set of 5 colored electroluminescent wires as
calibration object, which were straightened by heavy objects hanging below. So
the gravity makes the lines exactly vertical. The whole cost of the electrolumines-
cent wires is about $ 30. Our calibration object is cheap and easy to build.

6.1 Synthetic Tests

For this series of tests, we calibrated synthetically generated ground-truth cam-
eras. The camera’s orientation and position were selected randomly but looking
on ground-truth vertical lines. We also assume that the camera skew is zero, the
pixel aspect ratio is one and also the principal point is the center of the image.

Properties of Different Solutions. Refer to (17) and (18), the homography
matrix has two degrees of freedom but only one constraint. Fig.3 shows that
h31/h32 might influence the calibration results. Let α = arctan(h31/h32 ) ,
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Fig. 3. Relative error of focal length with different deviation of lines and α using two
constrains: (a) Solve f from the expression of v′0; (b) Solve f from the expression of
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which varied from 0◦ to 180◦. The noise was added randomly to the angular of
the lines observed, with maximum from 0.1◦ to 2◦. We took 200 estimates for
each angular of α and each level of noise.

Evaluate the Extrinsic Parameters. In the real applications, the influence
of our method generated by noise is mainly on the deviation of lines detected
from the image. Therefore, we have tested the error of rotation and translation
under different levels of lines’ deviation. Hough Transform algorithm [24] and
Least Square Method are widely used for line detection, and the accuracy can
reach less than 0.1◦. The line angular deviation varied from 0.1◦ to 1◦, and for
each level of line deviation we made 500 estimations.
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Fig. 4. The rotation error and the translation error caused by the deviation of line
angular

Fig.4 shows the results of the estimations, which are represented by the MAT-
LAB function boxplot. The blue box in Fig.4 represents values 25% to 75%
quantile, and the red horizontal line in the middle of the box shows the median.
The red crosses show data beyond 1.5 times the interquartile range. We can see
that when the line angular deviation increased to 0.3◦, the orientation error and
translation error is still lower than 5◦, but when the angular deviation reached
0.5◦ and even 1◦, the error increased rapidly. We also noticed that the error of
rotation is apparently lower than the translation error.

6.2 Real Data

We present an approximate solution for locating the vertical lines. As shown in
Fig.5, the intersections of vertical lines and their shadows in the image are the
image points of the intersections of vertical lines and ground. We assume that
the ground is horizontal. If we place a square on the ground near the vertical
lines, we can rectify the image through homography so that the square’s image
is perpendicular to the optical axis and in the middle of the viewport. Then we
can approximately estimate the location of the intersections of vertical lines and
ground (i.e. the location of vertical lines).

Table 1. shows the results of our method (using the estimated locations of
vertical lines) and that of Zhang’s method [8].

In order to illustrate the performance of our calibration results, we reconstruct
a 3D model of a little boy, using shape-from-silhouette method. The experimental
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shadows

light

vertical lines

square

Fig. 5. Method for determining the coordinates of intersections between vertical lines
and the ground plane (the horizontal plane)

Table 1. The focal length computed by our method and zhang’s method [8]

Camera number 1 2 3 4 5 6

Our method 793.8629 816.6807 825.7224 859.7057 844.2413 841.1764
Zhang’s method [8] 812.2360 815.8392 791.7388 840.8044 805.9483 821.3549

Camera number 7 8 9 10 11 12

Our method 834.0384 848.5016 839.4029 805.2660 790.1430 797.5329
Zhang’s method [8] 813.7866 807.1752 796.1261 787.3946 778.2069 810.4973

(a) (b)

(c) (d)

(e)

(f)

Fig. 6. (a) (c) are part of the 12 source images of the kid model, (b) (d) are corre-
sponding images of 5 colored electroluminescent wires (the control point is on the red
line) while the cameras remain fixed as (a) and (c). The projections of vertical lines
can be easily extracted from such images. (e) is the reconstruction result, and (f) is
the textured 3D model.
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sequence consists of 12 images. The images was captured using 12 low resolution
cameras (656×493), which are calibrated using one image of 5 vertical lines by
our proposed method. Fig.6 shows the source images and the reconstruction
result.

7 Conclusions

In this paper, we proposed a convenient method for multiple camera calibra-
tion only from vertical lines. Compared to other calibration objects, the vertical
lines are easily built and are visible in any direction simultaneously. The most
related study is proposed in [17], they use a string on the ground to generate an
approximate circular motion, while we use plumb lines which are from a set of
colored electroluminescent wires straightened by heavy objects hanging below.
So the gravity makes the lines exactly vertical. It seems that we may provide
better initial values for camera parameters. Given 5 fixed vertical lines and a
fixed control point on one of the lines, one observation of them will provide 2
constraints for the intrinsic parameters and all the extrinsic parameters. We also
present a convenient method to determine the locations of vertical lines. Both
simulated and real data experiments were presented to evaluate the method we
proposed, and the results demonstrate that our method is efficient and robust.
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Abstract. This paper proposes a method for long-range vehicle local-
ization using fusion of omnidirectional camera and Global Positioning
System (GPS) in wide urban environments. The main contributions are
twofold: first, the positions estimated by visual sensor overcome the mo-
tion blur effects. The motion constrains of successive frames are obtained
accurately under various scene structures and conditions. Second, the cu-
mulative errors of visual odometry system are solved completely based
on the fusion of local (visual odometry) and global positioning system.
The visual odometry can yield the correct local position at short distance
of movements but it will accumulate errors overtime, on the contrary, the
GPS can yields the correct global positions but the local positions may
be drifted. Moreover, the signals received from satellites are affected by
multi-path and forward diffraction then the position errors increase when
vehicles move in dense building regions or jump/miss in tunnels. To uti-
lize the advantages of two sensors, the position information should be
evaluated before fusion by Extended Kalman Filter (EKF) framework.
This multiple sensor system can also compensate each other in the case
of losing one of two. The simulation results demonstrate the accuracy of
vehicle positions in long-range movements.

Keywords: Omni-directional camera, chamfer matching, visual odom-
etry, GPS, cumulative error, EKF.

1 Introduction

Autonomous vehicle/robot navigation is an important research in various ap-
plications of localization, path planning and mapping. Although, the progress
has been made in this field during the last few years, still there are no methods
satisfying the requirement of high accurate as well as robustness in long distance
of movements or different kind of conditions or environments.

In recent years, many methods have been developed for vehicle navigation,
which can roughly be divided into several categories. Namely: methods using
only electro-magnetic devices (e.g., Global Positioning System (GPS), Inertial
Measurement Unit (IMU), wheel odometer, laser sensor), methods based on
vision system only (e.g., monocular camera, stereo camera, catadioptric camera)
and methods combined electro-magnetic devices and vision systems. In the first
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group, the on-board GPS devices receive signals from satellites and then plot
the absolute positions of vehicle on map. The accuracy of this method is often
low. The signals from satellites are often drifted if it is compared with ground
truth. Moreover, in the dense building region of urban scene these signals may
be lost or jump in certain period. Therefore, vehicle may lose the direction
information. The improvement of this method is supplementing other sensors.
The system becomes multi-sensor system. With additional wheel odometer, for
example, can improve the translation but it may work inaccurately if wheels slip
or move on rough roads. Other device often considers is IMU. This can be used
for acceleration and orientation measurement. However, the costs for this kind
of devices are very expensive. Laser sensor is also a good choice in these cases,
however, the signals may weak with objects appeared in far distance. Overall,
the GPS signal is accurate in global shape of ego-motion but low accuracy in
local position. This important characteristic will be utilized in this paper.

In the second group, vision systems are mounted on the vehicles and collect im-
ages/videos from scenes for process afterwards. Usually, the rotation and transla-
tion constraints of successive frames are first analyzed. Some robust features are
considered as landmark, such as points, lines, planes. After finding out the cor-
respondences of these features, the ego-motion will be achieved. Here, the scale
ambiguity is worthy of remark. With the calibrated stereo systems (stereo per-
spective camera, stereo catadioptric camera), the scale of scene model and real
scene is clearly known. However, with the monocular camera systems, this initial
scale should be guessed or using additional device for calculation this scale (e.g.,
laser sensor). Overall, this kind of system can yield the accurate results in short
distance of movements or in environment without GPS signals. The big problems
in this kind of methods are accumulated errors. When the vehicles move in the
large-scale scene, this cumulative error will be accumulated. Therefore the final
trajectory will be diverged if compare with ground truth. However, one advantage
of this approach is the local error in short distance of movements is small. This
characteristic will be utilized in this paper.

In the third group, some combination of electro-magnetic devices and vision-
based methods are proposed. These kinds of methods utilize the advantages of
every sensor. The global signal from GPS can be used as the main orientation in
each movement step of visual sensor. Moreover, the movement of visual systems
can be performed easily in the rich texture of outdoor environment with many
natural and human-made landmarks. This visual system may use the global
direction to correct the main rotation direction. Besides, these sensors can com-
pensate each other’s in the cases of losing one of two signals. For example, when
vehicles move in tunnels or very dense building city, the GPS signal may be lost.
Then the visual system can work independently. In addition, the visual system
can correct the GPS signals that are not often exact with standard GPS receiver
devices. In this paper, the main idea also relies on that judgment.

This paper is organized into six sections. The next section will summarize
the related works from former authors. Section 3 describes the local positioning
system: using visual sensor for rotation estimation. Section 4 presents the precise
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evaluation and how combines the advantages of each positioning system. The
experiments are shown in section 5. Finally, paper is finished with conclusions
and point out future works discussed in section 6.

2 Related Works and Proposed Method

The combination of visual system and electro-magnetic devices are considered
as a solution for accumulated error problem in recent years. The related works
can be separate in three categories: the first group using only vision systems for
localization, the second group use GPS combined magnetic devices, the third
group combines vision and GPS devices. In the first group, the early research
on vision based odometry using single conventional camera start by Nister et
al. in [1] and Royer et al. [2]. Some authors propose using binocular camera as
in [3], [4]. Because of limitation angle of view, some authors propose methods
using omni-directional camera. Some typical Omni-vision based odometry can
be listed as [5-8]. The basic principle of these approaches is using feature cor-
respondence and epipolar geometry. The difficult point is: it is not easy to find
the matching of features accurately. Most of them suffer from repeated textures,
motion blur, illumination changes, high distortions due to the mirror, etc. There-
fore, the results often incur the large error. The final trajectory may correct if
vehicle/robot move in short distance. However, when they move in large-scale
scene or work long time in outdoor environment, the trajectory will be diverge
compared with ground truth. This is also the challenge in the increment meth-
ods of visual odometry or visual SLAM. In addition, the scale of trajectories
is ambiguous if using only monocular vision system. In the second group, the
multi-magnetic sensors are integrated in the system [9], [10]. Usually, the GPS is
used for global position and IMU/wheel odometers are used as the local position
estimation. These kinds of methods often yield correct result on the large-scale
scene but the final trajectories are often drift. This is also the challenge of local-
ization or navigation without vision systems. In recent years, the combination
of two kinds of methods above are considers as the solution to overcome the dis-
advantages. Some authors, typically as in [11-13], propose method using stereo
system and GPS. The results are significantly improved. However, these kinds
of methods also rely on the feature correspondence and outlier removal in each
process, so it is really time consuming.

According to the analysis above, the method based on Omni-directional cam-
era and standard GPS is proposed in this paper. The rich information of environ-
ment is obtained by 3600 field of view camera. When the vehicle/robot rotates a
large angle, the landmarks still tracked. With the orientation are guided by GPS,
the final trajectories are both keep the local accuracy of Omni-vision and the
global trajectory shape of standard GPS. The overview of this proposed method
is shown in figure 1.

The detail of this method is described as follow: in the first frame, the direction
of ego-motion is manually selected. Then the constraint of the second frame and
the previous frame is computed. Here, the robust method using chamfer match-
ing is applied instead of conventional point correspondence which is heavily



Vehicle Localization Using Omnidirectional Camera 233

Fig. 1. General proposed scheme

suffered from motion blur affect. Besides, the translations of vehicle are absolute
values, which are received from wheel odometry. Because of the ambiguous of
monocular vision, this sensor is added to measure the true translation distances.
In the next stage, the standard GPS receiver provides the global/absolute po-
sition of vehicle, which is extracted as the orientation guidance. However, the
position from GPS may not correct in urban scene then the evaluation processes
need to be performed. After obtaining the high accurate GPS position, the vi-
sual odometry and GPS position will be combined by using EKF. Especially,
two these systems compensate together in the case of losing one of two signals,
e.g., there are no GPS signals when vehicle move in tunnel or the direction es-
timation of vision system will be wrong if the tracked region is the very fast
moving objects.

3 Omnidirectional Camera Based Localization

Main purpose of this step is finding the trajectory using only vision system. To
do that, successive frame constrains must be computed. There are two main in-
formation must be achieved: translation and rotation. This is also the canonical
topic in multiple view geometry last few decades. Some former authors pro-
pose using feature based method for calculating essential matrix whereas others
proposing using appearance based methods. The absolute translation distance is
typically calculated using magnetic devices, for instance, wheel encoder [14]. The
rotation angles are computed exactly by using omnidirectional camera, which can
cover 360-degree field of view.
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3.1 Rotation Estimation

For the rotation estimation, the new approach is proposed. Note that the frames
which are extracted from video often suffer from motion blur effects. Therefore,
the feature point based correspondence methods yield low accurate matching po-
sition. This problem will lead to the wrong movement direction. Here, the edge
based correspondence method is robust with this effect. The chamfer matching
[15] is considered in this research but the application is used for omnidirectional
images.

Fig. 2. Edge matching. (a) the region of forward direction. (b) the matching region in
the successive frame.

The regions extracted in the forward direction of the first frame and second
frame are considered as a template and region of interest (ROI). Illustration is
shown in figure 2. Firstly, the edge of both template and ROI are extracted by
applying edge detection algorithm. Here, Canny edge operator is applied. Sec-
ondly, the distance transformation of region of interest (DTROI) is computed.
Initially, the pixels on the edge are assigned by zero and the remains are as-
signed by infinity. The Euclidean distance was used to compute the distance
transformation.
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whereDk
i,j is the value of the pixel in the position (i, j) at iteration k. This process

iterates until the value of each pixel is not change. The template is represented
by binary image with the edge pixels are assigned one and zero for otherwise.
Thirdly, the similarity measurement between template and sub-region of interest
is computed. Then compute the sum of pixel value that the edge coincides on the
DTROI. Slide template on DTROI to find the best matching which minimum the
sum above. The perfect matching will be achieved when this sum reach to zero,
i.e., the template superimpose on the sub-region of ROI. When the matching is
found, the direction of the next frame also obtained as shown in figure 3.

Fig. 3. Rotation direction (a) the direction of previous frame. (b) the computed direc-
tion in the successive frame.

After achieving the rotations and translations, the motion model can be con-
structed according to [16] without consider slip. If the position estimated from
visual odometry is P(t) = (x, y, θ) and the error covariance matrix is Σp (t),the
kinematic equations which are formulated into EKF frame work are as follows:

P (t+ τ) = P (t) + τ

⎛⎝V (t) cos(θ(t))
V (t) cos(θ(t))

ω(t)

⎞⎠ (2)

Σp (t+ τ) = J(t)Σp (t)J(t)
T +K(t)ΣV K(t)T +ΣN (3)

Σp (t) =

⎛⎝σxo(t)
2
σxyo(t) σxθo(t)

σxyo(t) σyo(t)
2
σyθo(t)

σxθo(t) σyθo(t) σθo(t)
2

⎞⎠ (4)

where τ is the sampling interval, V (t), θ (t) and ω (t) represent vehicle velocity,
orienta-tion and angular velocity respectively, J(t) is the Jacobian of P (t) with
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respect to x, y and θ, K(t) is the Jacobian of P (t) with respect to V and ω, ΣV

is the measurement error of odometry, ΣN is the truncation error, ΣV and ΣN

are determined accord-ing to the result of some autonomous motions because
these parameters are different in each system.

4 Multiple Sensor Fusion

4.1 GPS Evaluation

Fig. 4. Vehicle position estimated by visual odometer and GPS data

In most of long-range positioning system, the GPS is considered as the main
orientation divide. However, to get the high accuracy position, it needs to pay
the very expensive cost. With the standard GPS receiver, the GPS signal is
uncertain. Therefore, the evaluation of the raw data should be performed (figure
4). Especially, when the vehicles move in the dense building regions or tunnels
in urban scene the signal may be multi-path reflected, forward diffracted and
even missed. The local signal may be wrong. The GPS position with small error
will be extracted and use to correct the visual odometry. Here, authors assume
that the trajectory of visual odometry is correct in short distance. Then the
GPS with large error compared with visual odometry will be discarded [16]. The
observation equation of GPS position is

Pgps(t) =

⎛⎝xgps(t)
ygps(t)
θgps(t)

⎞⎠ (5)
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while the GPS observation (xgps (t) , ygps (t) , θgps (t)) is provided by GPS po-
sition measurement. As mention above, the GPS measurement may be affected
from a lot of noise, so the GPS position error can be described as follows:

W−1
gps =

⎛⎜⎝σ2
xgps

−1
0 0

0 σ2
ygps

−1
0

0 0 σ2
θgps

−1

⎞⎟⎠ (6)

For compare the position distance of GPS and visual odometry, the Mahalanobis
distance is analyzed. The position distance is computed as follows:

dxy(t) =

√
(Xgps(t)−Xo(t))

T
(Σo(t) +Σgps(t))

−1
(Xgps(t)−Xo(t))

2
(7)

where
Xo(t) = (xo(t), yo(t)) (8)

Xgps(t) = (xgps(t), ygps(t)) (9)

Σo(t) =

(
σxo(t)

2
σxyo(t)

σxyo(t) σyo(t)
2

)
(10)

Σgps(t) =

(
σxgps 0
0 σygps

)
(11)

Similarly, the direction distance is computed as follows:

dθ(t) =

√
(θgps(t)− θo(t))

T
(σ2

θo(t) + σ2
θgps)

−1
(θgps(t)− θo(t))

2
(12)

Here, Xo(t), Σo (t), θo(t), σθo(t) are the subset of P(t) and Σp (t) which are
obtained from the odometry. σgps and σθgps are constant values which the au-
thors determined from the observation of GPS measurement error. This distance
implies the accuracy of GPS position and one threshold will be selected empiri-
cally. If the distance is smaller than the threshold, GPS should be used for visual
trajectory correction or discarded on the contrary case.

4.2 Vision and GPS Sensor Fusion

There have several methods for multi sensors fusion. Here, the EKF is applied for
this purpose. After evaluating the GPS position, the visual odometry trajectory
will be corrected by using equation of maximum likelihood estimation in the
EKF framework if it is small (less than threshold)

P̂f (t) = P (t) +Σf (t)W
−1
gps(Pgps(t)− P (t)) (13)

Σf (t) = (Σp(t)
−1

+W−1
gps)

−1 (14)

where P̂f (t) and Σf (t) represent corrected vehicle position and its error covari-
ance matrix after fusion. For correcting the vehicle position which was estimated
by odometry, each P (t) and Σp (t) is updated with P̂f (t) and Σf (t).
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5 Experiments

In this section, the simulations are presented to evaluate effectiveness of proposed
method. The experiments are performed in long-range movements covered a
large region in urban environment. The videos and GPS positions are acquired
by hyperbolic omnidirectional camera and GPS receiver mounted on a vehicle
(figure 5).
In this experiment, the distance of movement is around 1.6km and 5716 frames

Fig. 5. Vehicle equipped with multiple sensors

are processed. The Omni-images are unwrapped into panoramic images and the
direction of the car is defined on the first frame. To find the direction for the
next frame, one region of size [50x240] on the forward direction of the first image
is slide and match to the second frame. Here, to reduce the time consuming
of appearance based matching method, the chamfer matching are performed.
The edges of template region and panoramic image of the second frame are
obtained by using Canny edge detection. The direction of car on the second
frame is calculated based on the matching position the second frame. To reduce
the direction error which occurs suddenly, one threshold of direction angle is
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defined. With the remark that even the road corner is 90 degree or smaller,
the angle direction change regularly in the arc shape because of the mechanical
structure and kinematic model of vehicle. With this assumption, some large error
in direction cause by the near objects appeared in the images are discarded. In
addition, the wheel encoder provides the translation distance in the absolute
values. However, the result of only vision system and odometry often suffer
from the cumulative errors then the trajectory will be diverged compared with
ground truth when the moving distance is long (more than 200m, figure 6).
At the same time, the positions of vehicle from GPS signals are also analyzed.
The corrected positions are selected based on the measurements with odometry
system. Here, one threshold is defined for these distances. If this Mahalanobis
distance is smaller than this threshold then it is considered as corrected positions.
After selecting the corrected position from GPS, vehicle position drifted on the
odometry system will be corrected. These procedures will be interacted after
50 frames. When the car move on the tunnels or very dense building in urban
the GPS may lost or jumps, the trajectory will be recovered by only odometry
system. The GPS evaluation and correction process will be performed once the
GPS signals appear again. The GPS position, odometry trajectory and the GPS
combined odometry are shown in figure 6.

Fig. 6. Localization result
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6 Conclusions

Vehicle localization and mapping by using multiple sensor fusion system in long-
range motions is presented in this paper. Some advantages were pointed out
through our arguments and experiments. First, this method solves cumulative
errors in long-range odometry, which lead to diverged trajectory compared with
ground truth. In some special cases, the trajectory or vehicle location is not com-
pletely correct in local position but the global trajectory will never lose. Second,
the visual compass works accurately in complicated scene structure and differ-
ence lighting conditions of outdoor environments. The robustness and rapidity of
this approach can let it be applied in other real time orientation systems. Third,
the combination of local positioning system and global positioning system not
only improve the local position (cumulative errors) but also can be used for
GPS position correction in some cases. This system also can compensate each
other when losing one of two guidance. Our future woks focus on improving
this method for real time application and building high accuracy sensors fusion
systems for odometry or SLAM.
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Abstract. Development processes for building image recognition sys-
tems are highly specialized and require expensive expert knowledge. De-
spite some effort in developing generic image recognition systems, use
of computer vision technology is still restricted to experts. We propose
a flexible image recognition system (FOREST), which requires no prior
knowledge about the recognition task and allows non-expert users to
build custom image recognition systems, which solve a specific recog-
nition task defined by the user. It provides a simple-to-use graphical
interface which guides users through a simple development process for
building a custom recognition system. FOREST integrates a variety of
feature descriptors which are combined in a classifier using a boosting
approach to provide a flexible and adaptable recognition framework. The
evaluation shows, that image recognition systems developed with this
framework are capable of achieving high recognition rates.

1 Introduction

Current image recognition systems are developed for highly specialized purposes.
Experts have to identify suitable feature descriptors and learning methods for
the task at hand. Additionally, a tremendous amount of ground truth data has
to be gathered, on which the classifier is trained. All in all, the development pro-
cess is expensive and produces inflexible and highly specialized systems. While
this is justified for commercial applications where high accuracy is crucial, it
prevents the adoption of image recognition systems for a large variety of appli-
cations. With the growing importance of social networks and communities, there
is a large potential for image recognition systems to exploit the huge amounts
of freely available image data. Face recognition is currently being implemented
in social networks and introduces image recognition to a worldwide community.
Our goal is to provide a flexible tool for this community, which allows the sim-
ple development of custom, i.e., user-defined, image recognition systems. Such
systems could support the further application of image recognition in everyday
tasks and would typically access publicly available webcams, e.g., notifying the
user if a window was left open at the office or if a parking space is available.

We present a flexible object recognition system (FOREST) which aims to over-
come the limitations of current specialized image recognition systems. It is a
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simple-to-use framework for building custom image recognition systems and does
not require any knowledge of image recognition methods. In this work, we dis-
tinguish two different components:

1. The framework (FOREST) for developing custom image recognition systems
2. Custom recognition systems developed using FOREST

The terms custom recognition system and user-defined recognition system are
used interchangeably in this work and refer to an image recognition system
which was developed for a specific application by a non-expert user. The actual
recognition task is defined solely through the annotation of the ground truth
data for the recognition task. The FOREST framework, which provides the func-
tionality for developing such custom recognition systems, is therefore required
to be flexible. Although individual custom recognition systems are likely to solve
rather simple recognition tasks, the variety of possible recognition tasks is unlim-
ited. The required flexibility is achieved through the integration of a variety of
existing keypoint detectors and feature descriptors which extract large amounts
of image features independently of the recognition task at hand. Discriminative
features are then identified in the process of building a boosting classifier, based
on the annotations provided by the user.

Although there has been some research on generic image recognition, it fo-
cused on individual aspects, like, for example, the development of feature de-
scriptors. In contrast, we present a complete framework, which guides the user
through every step of the development process, from image acquisition to the
final image recognition system, including the annotation of ground truth data.
The system is not designed as a generic image recognition system in the sense
that it includes the object-specific recognition functionality out of the box. In-
stead, it is a framework for creating application-specific recognition systems with
little effort, and thereby aims to exploit publicly available image data sources,
like webcams. More specifically, the contributions of FOREST compared to state-
of-the-art specialized image recognition systems are the following:

– It requires no prior knowledge about the context of the recognition task
– It guides non-expert users through every step of the development process

This work is structured as follows: The next section describes the related work
for this research, Sections 3 and 4 describe the development process from a
user’s perspective and the architecture of the framework. Afterwards, we provide
an evaluation of the recognition capabilities in Section 5 and conclude with a
summary and an outlook on future work.

2 Related Work

A lot of research in computer vision has been invested in the development of
robust keypoint detectors [15,23] and feature descriptors, like SIFT [11], GLOH
[14], SURF [3], Shape contexts [4], steerable filters [7] and color and texture
descriptors [13]. Although such features are state of the art for many applications,
they are, individually, not powerful enough to solve arbitrary recognition tasks.
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Bag-of-keypoints approaches have been popular in recent years for object cat-
egorization tasks [5,18,12]. Such approaches extract feature descriptors from im-
age patches, cluster them in feature space and calculate histograms. Zhang et
al. [27] evaluated several feature descriptors and combinations thereof in a bag-
of-keypoints approach. Although these approaches are popular in generic object
categorization tasks, they are not directly applicable to recognition tasks.

Generic object recognition was investigated by Agarwal et al. [1], who em-
ployed a vocabulary of visual words and the spatial relations between these to
create sparse feature vector representations. The sparseness was then exploited
by the sparse network of Winnows (SnoW) used for classifier training. Recently,
boosting has been successfully employed in generic recognition tasks. Viola and
Jones [24] applied rectangle features together with boosting for object recog-
nition. Opelt et al. extended the boosting algorithm to handle heterogeneous
feature types, like SIFT, moment invariants, and textual moments [19,20] to
achieve correct recognition even in complex and cluttered scenes. A similar clas-
sifier was applied by Hegazy et al. [8] on feature sets consisting of SIFT and color
features. Zhang et al. [26] employed a two-layer boosting algorithm, which used
shape context and SIFT feature sets in the first stage and the spatial relations
between features in the second classifier stage.

Although generic object recognition has been a major research topic for years,
it has not yet been considered within a real application environment. Especially
the creation of ground truth data for such systems has been neglected. However,
the task of image annotation has been investigated in other research areas, such
as human computation [21], which has led to the development of so called Games
with A Purpose (GWAP), with their best known example, the ESP Game [2],
which gathers annotations for images. Russell et al. developed a web-interface
called LabelMe for community based image annotation [22]. Objects or parts of
an image can be annotated by anyone willing to contribute. Similarly, Yao et
al. provide an annotation tool for the creation of a large, general purpose data
set [25]. All of these approaches share the same limitation, which is that they
create general purpose data sets. Such data sets are suitable for the evaluation
of new image recognition or classification algorithms but they cannot be used as
a training data set for custom, user-defined image recognition systems. In the
area of content based image retrieval, Koskela et al. [9] developed a system for
the automated semantic annotation of images based on the PicSOM system [10]
using self-organizing maps (SOM), where an existing ground truth data set is
used to annotate other images in the data set. Also based on self-organizing maps,
the authors previously developed a graphical user interface which displays image
sets as ordered by a SOM [16,17]. The system was developed for the annotation
of image data sets, with a focus on creating ground truth data.

3 Development Process

The process of developing a custom image recognition system using FOREST is
given in Table 1. The graphical user interface (GUI) shown in Figure 1 guides
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Table 1. Development process using FOREST from a user’s point of view. Brackets
( [[..]] ) indicate an additional step for expert users only, italicized text indicates
automatic processing by FOREST.

Development process

1. Select image data source
2. if image data is not prerecorded
3. Set time interval or end date for image acquisition

fi
4. Select region to be observed
5. [[ Select operators and adjust parameters ]]
6. Image acquisition, keypoint detection, and feature extraction
7. Annotate images
8. Classifier calculation
9. if results of cross validation are satisfying
10. Calculation finished

else
11. Add training data (goto 2) or annotate regions (see Section 4.2)

fi

the user through the complete development process. Users may enter a name and
description for the custom image recognition system that is being developed at
any time during the development process. This information is always displayed
in the GUI (see Figure 1) to provide orientation in case users develop more than
one recognition system concurrently. Figure 1a) shows the first screen that is
displayed when a new process is initiated (steps 1-4 in Table 1). The user may
select a local image directory or enter a webcam URL. An exemplary image is
retrieved from the specified data source and displayed. The user may specify
an observation region within the image, e.g. doors or meeting areas in interior
scenarios. If a webcam is chosen as the data source, the user has to specify the
duration for image acquisition, either by setting the time interval, the date and
time when it ends, or simply the number of images that should be captured. The
user may then start the image acquisition and processing (detection and feature
extraction) with the default configuration or move on to the expert option panel
(step 5), shown in Figure 1b, where individual operators can be enabled or
disabled and the configuration of each operator can be adapted. This step is,
as indicated in Table 1, meant for expert users only. However, we expect expert
users to work with this framework only for evaluating new operators or rapid
prototyping, since usually experts will demand more and direct access to the
processing functionality. The image acquisition, keypoint detection and feature
extraction run automatically without any need for user interaction.

After the automatic feature extraction is complete, the user is asked to anno-
tate the ground truth data using the integrated annotation interface described
in Section 4.2 (step 7). The annotated ground truth data is afterwards used for
calculating a boosting classifier (step 8).
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Fig. 1. Exemplary screens of the UI: a) image acquisition screen, b) expert option
screen. Information about the recognition system is displayed in the upper panel.

The validation result of the calculated classifier is displayed to the user, to-
gether with information about the number of distinct feature types used (step
9). This provides basic feedback about the computational costs and might en-
courage users to choose a slightly inferior classifier for their task. Feature types
which are not considered by the boosting classifier will not be extracted from
the images in recognition mode, thereby speeding up the image processing. If
the results are insufficient, the user may simply gather more training data and
retrain the custom recognition system, or the user might choose to annotate
image regions, as described in Section 4.3.

4 Forest

The architecture of FOREST is depicted in Figure 2. The basic design follows a
three-stage architecture, which includes keypoint detection, feature extraction
and classification. Image data is passed to the keypoint detection and feature
extraction stages. The resulting feature vectors are passed on to the classification
stage. In the training phase, the image annotation stage receives image data and
feature vectors for calculating a clustering on the image data. The classifier
learns discriminative features based on the annotations provided by the user.
The individual stages are described in detail in the following sections.

The main functionality of FOREST, i.e., the image processing functionality, is
implemented in Matlab, due to its efficiency. Various operator implementations
are also already available in Matlab or can easily be integrated via its C and Java
interfaces. Operators implement a custom interface and new ones can be added
to extend the functionality of FOREST during runtime. A Java wrapper for the
Matlab functionality of FOREST was implemented, which provides an API for
the GUI.
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Fig. 2. Basic architecture of FOREST with exemplary operators given for the detection
and extraction stage. In recognition mode, the image annotation step is obsolete.

4.1 Keypoints and Feature Descriptors

Although individual operators, like SIFT, perform well for specific tasks, they
cannot achieve the same performance in substantially different scenarios. There-
fore, a flexible system without prior knowledge cannot rely on single keypoint or
feature descriptors. Combinations of feature types have been used previously in
generic recognition systems to improve recognition rates in comparable scenar-
ios. However, these systems were often restricted in the number of feature types
they use. There is no technical limit to the integration of further operators in
FOREST. Extensibility is an important aspect, since use of a variety of different
operators is crucial for the flexibility of the framework.

A lot of research has been invested in the development of robust and flex-
ible operators, therefore existing operators for keypoint detection and feature
extraction were integrated into FOREST. If open source implementations existed
for these operators they were integrated, e.g., SIFT1 and affine-invariant fea-
tures2, otherwise the operators were reimplemented.

4.2 Image Annotation

Most image recognition systems rely on established ground truth data sets. By
contrast, since the purpose of FOREST is to build custom recognition systems,
annotation has to be performed by users themselves. We consider the prospect
of having to annotate thousands of images individually as the major obstacle
preventing users from using a system like FOREST. However, we overcome this
problem with the image annotation tool developed by the authors [16,17]. It sim-
plifies the image annotation task by calculating a self-organizing map (SOM) on
the images and displaying this clustered structure in a zoomable user interface.
The annotation interface was found to speed up the annotation process and re-
quires no special computer skills. Images are displayed in clusters, which may be

1 http://www.vlfeat.org
2 http://www.robots.ox.ac.uk/~vgg/research/affine/index.html

http://www.vlfeat.org
http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
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Fig. 3. Positive (left, showing windsurfers) and negative (right) training images3 high-
lighting salient regions of images, which were positively annotated in the first annota-
tion stage.

annotated by users at once. Due to the fact that efficiency with respect to user
interaction is important, FOREST applies weakly supervised learning, i.e. each
image is annotated as a whole, not individual regions.

The annotation tool relies on features extracted from the images, therefore,
the user is asked to annotate images after the feature extraction is completed.
Currently, the annotation tool relies on color histograms or color layout descrip-
tors for SOM calculation. Since there is no distance metric for comparing differ-
ent feature types, SOM calculation is confined to using one individual feature
type. Although color based descriptors might not lead to semantically meaning-
ful clusters, they produce a clustering result which is intuitive and experienced
as reasonable, especially by non-expert users.

4.3 Region Annotation

Custom recognition systems developed with the proposed framework by non-
expert users are capable of achieving high recognition rates, as can be seen in
Section 5. However, the concept of high quality training data sets may not be
familiar to non-experts. Users might choose to capture training data during a
short period of time and obtain data sets which do not capture enough variation,
or obtain data sets with extreme skews, e.g., much more negative than positive
training data. Such constellations favor the learning of unintended correlations
by the classifier, especially since FOREST employs weakly supervised learning.
Precise annotations of image regions help to overcome this problem, but such
annotations are expensive with respect to the effort required for their creation.

We therefore extended FOREST to obtain more precise annotations of regions
within the training images using the existing annotation tool. The keypoints
and regions of interest detected by FOREST are used to find salient regions in
positive training images. These salient regions are then used to create a new rep-
resentation which is annotated by the user. The new representations are shown
in Figure 3. The salient region and its immediate surrounding is drawn opaque
while the rest of the image is semi-transparent. A rectangle indicates the salient
region. Annotation trials showed that this visualization is well suited for direct-
ing the user’s attention to the area of interest, whereas cropped versions resulted

3 http://www.wsce.de/Kamera2/webcam_big.jpg

http://www.wsce.de/Kamera2/webcam_big.jpg
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in lack of context information. Feature descriptors which were extracted from
regions annotated negatively in this second annotation step will be handled ap-
propriately in the classifier training process.

Although the annotation effort of this second annotation step is comparable
to the initial annotation, it is preferable to employ only one annotation step
whenever possible.

4.4 Classification

As mentioned above, FOREST initially applies weakly supervised learning. Each
image produces a large, arbitrary number of feature descriptors of different types
and dimensionality. Since no prior knowledge for the recognition task is available,
any kind of quantization would introduce problems regarding the comparability
of keypoints throughout the data set and lead to loss of important information.
Opelt et al. [19,20] applied a boosting classifier for identifying discriminative
feature descriptors from a heterogeneous feature data set. Since the problem
statement is similar and the classifier has been found to be successful, the boost-
ing approach was applied in FOREST.

As already stated by Opelt et al. the calculation of the distance matrix be-
tween all feature descriptors is computationally very expensive. The advantage
is that the distance matrix needs to be calculated only once. The calculation
of weak hypotheses from this distance matrix, as well as the evaluation of the
strong hypothesis is computationally efficient. We do not consider the computa-
tional costs as a major drawback. User interaction is required at specific steps
within the development process. These are compact periods and no interaction
is required in between. The time needed for processing data does not keep the
user occupied, therefore a long training phase is no limitation to the system.

5 Evaluation

The evaluation of FOREST focuses on two aspects, the first is the evaluation of
FOREST on real world data sets, the second is the impact of a second annotation
step on the final recognition rates. The impact of using multiple feature types
instead of individual feature types has been evaluated in [20,26] and will not be
considered here.

The first real world data set used for the evaluation is taken from a webcam,
which shows a public area where a market takes place a few times a week, which
the system is supposed to recognize (referred to as market data set). Images were
acquired in the course of ten days. This data set is an example for an arbitrary
recognition task which can be performed on live and freely available image data.
The second data set is taken from an interior camera, directed towards a row of
windows, acquired over the course of two weeks. This data set is an example for
image recognition systems for private use, since the detection of open windows
in the ground floor of a building is of interest to prevent theft. Following this
motivation, the system is meant to recognize if any of the windows is open.
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Table 2. Recognition rates on Caltech [6] airplanes, motorbikes, and faces, as well as
the three webcam data sets. Caltech recognition rates were calculated using 10-fold
cross validation. The market, window and lake recognition rates were calculated on the
complete test set. Default configuration for all operators was used in all tests.

Caltech
airplanes

Caltech
Motorbike

Caltech
Faces

Market Windows Lake

Correct rec. rate (%) 87.8 93.0 95.5 97.64 92.05 95.4
# training images 60 60 60 720 300 1000
# test images 60 60 60 935 2000 2000
# weak hypotheses 35 35 15 20 25 25

Figure 4 shows some exemplary images from both data sets. The third data set
is taken from a webcam showing a lake where windsurfers can be observed (see
Figure 3). Due to seasonal and time constraints, this is an example for a data set
with extreme skew, i.e. containing a total of only 52 positive samples. Gathering
more training data might not be possible, in this case, because of a change in
weather conditions. The goal of the recognition task using this lake data set
was to detect windsurfers. In order to evaluate the general applicability of the
framework we tested the performance of custom recognition systems on three
exemplary categories of the Caltech-101 data set [6]. To enable comparability to
other recognition systems trained on these data sets, 30 images of each category
were used for training and testing in a 10-fold cross validation on the airplanes,
motorbikes and faces categories.

Recognition rates for three data sets from the Caltech database and the three
real world data sets are given in Table 2. Except for the airplane example all
recognition systems achieve over 90%, with the market example achieving the
best result with 97.6% correct recognition rate. It has to be noted that the
classification errors in the market example resulted from uncertainties in the
annotations. When the market is built up or ends, there is a certain number
of cars and wagons still around (see Figure 4). It is difficult to determine at
which point it exactly ends, both for a recognition system and human users. The
window example had difficulties with windows that were only slightly open. Still,
a number of correct features are matched near the open window (rectangles over
window in middle, Figure 4), which indicates that retraining the system could
increase the true positive rate.

Recognition systems for the three Caltech categories achieved high and com-
parable recognition rates. Discriminative features selected by the boosting clas-
sifier were of the types SIFT, SURF, color layout descriptor, shape context, and
Haralick texture descriptor.

Although the recognition rate for the lake data set seems OK, the true pos-
itive rate reveals the consequence of the extreme skew. Using a second anno-
tation stage on this data set increases the true positive rate dramatically. The
additional annotation stage took approximately eight minutes to accomplish. Of
course, the training set still captures limited variation (angles of sails etc.) but



Efficient Development of User-Defined Image Recognition Systems 251

Fig. 4. Exemplary images for correct classification and false positives, with matched
features indicated by rectangles. False positives in the market data set were due to
uncertainties in the annotations. Windows which can be opened are actually the darker
areas, not the glass panes.

Table 3. Recognition rates for systems using one- and two-stage annotation

Lake
1-stage

Lake
2-stage

Window
1-stage

Window
2-stage

Recognition rate (%) 95.4 97.7 92.05 93.55
True pos. rate (%) 17.86 62.5 88.01 92.55

it efficiently reduced correlations concerning weather conditions. The results for
the lake and windows data sets using one-level and two-level annotation are given
in Table 3. Applying a second annotation stage to the balanced windows data
set, which already achieved high recognition rates with one annotation stage,
further improved the recognition rates.

6 Conclusion

We presented FOREST, a framework for simple development of custom image
recognition systems. The approach is similar to that of a generic image recogni-
tion system, since the framework is not restricted to a specific recognition appli-
cation. It provides the possibility of creating custom image recognition systems,
i.e., recognition systems developed for a specific application. The recognition
application is defined solely through the annotation of the ground truth data for
the task. To overcome the burden of the laborious annotation process, a sophis-
ticated user interface for simple image annotation is employed and extended to
provide region annotations in a second, optional, annotation step.

The system was designed to run as autonomously as possible with little user
interaction, to simplify the development of image recognition systems as far as
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possible. To achieve satisfying recognition rates without explicit context infor-
mation, a variety of keypoint detectors and feature descriptors are applied. The
boosting classifier identifies discriminative features for the specific application
intended by the user automatically. Evaluations on real world data sets show
that image recognition systems developed using FOREST achieve good recog-
nition rates, although they can completely be developed by users without any
knowledge of image recognition whatsoever.

Future work will include the further optimization of user interfaces, with a
focus on the image annotation, as well as the evaluation of the overall usabil-
ity and acceptability of the framework. Integration of publicly available, multi-
modal data sources might be useful to enhance the recognition functionality.
Complementary recognition systems could be trained on specific data depend-
ing on the situation, e.g. the weather. Additional data sources may also be used
to estimate the quality of training data sets. This knowledge could be used to
enhance the user’s understanding of important criteria for good training sets or
to automatically gather missing training image data.
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Abstract. The majority of vision research focusses on advancing techni-
cal methods for image analysis, with a coupled increase in complexity and
sophistication. The problem of providing access to these sophisticated
techniques is largely ignored, leading to a lack of application by main-
stream applications. We present a feature-based clustering segmentation
algorithm with novel modifications to fit a developer-centred abstrac-
tion. This abstraction acts as an interface which accepts a description
of segmentation in terms of properties (colour, intensity, texture, etc.),
constraints (size, quantity) and priorities (biasing a segmentation). This
paper discusses the modifications needed to fit the algorithm into the
abstraction, which conditions of the abstraction it supports, and results
of the various conditions demonstrating the coverage of the segmentation
problem space. The algorithm modification process is discussed generally
to help other researchers mould their algorithms to similar abstractions.

1 Introduction

Research into computer vision techniques has far outpaced the research of in-
terfaces (e.g. Application Programming Interfaces) to support the accessibility
of these techniques, especially to those who are not experts in the field such
as mainstream developers or system designers. Advances in the robustness of
vision methods have led to a surge in real-world applications, from face detec-
tion on consumer cameras to articulated human body modelling for natural user
interfaces. The algorithms capable of performing these feats are in the domain
of experts, even if implementations are provided, due to the understanding re-
quired to: tune the parameters, which are often poorly documented and relate
directly to variables in the mathematics of the method; form the input, which
may include complicated templates for detection or pre-processed images (e.g.
foreground-background separated); choose this method for the problem being
solved - there are usually many methods, and it is a challenge even for experts
to select the right algorithm given the conditions of the problem.

We argue that a simpler, higher-level interface can be provided to developers
in order for them to utilise sophisticated vision methods. Our contribution in this
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paper is an algorithm modified to fit a segmentation abstraction and a mapping
of its specific algorithmic parameters to the abstraction’s interface.

Developing an abstraction for computer vision is important for many rea-
sons: 1) Developers may focus on their applications main task, rather than the
algorithms; 2) Advances in the state-of-the-art can be incorporated into exist-
ing systems without re-implementation; 3) Hardware acceleration of algorithms
may be used transparently; 4) The limitations of a particular platform can be
taken into account automatically e.g. mobile devices may require a set of low-
power consuming algorithms; 5) Computer vision expertise can be more readily
adopted by researchers in other disciplines and general developers. If any abstrac-
tion is used to access vision methods, hardware and software developers of the
underlying mechanisms are free to continually optimise and add new algorithms.
This idea has been applied successfully in many other fields, notably OpenGL
in graphics [1], but none has yet been successful within computer vision.

There has been a recent industry push to define standards for access to com-
puter vision: the standards group Khronos have organised a working group to
develop a hardware abstraction layer (tentatively titled CV HAL) to accelerate
vision methods and provide simpler access mechanisms.1 Khronos are propos-
ing a layer beneath libraries such as OpenCV [2] in order to accelerate existing
library calls (much like projects such as OpenVIDIA2).

We believe this abstraction layer has been targeted at too low a level to be
useful for general developers. We propose an additional higher-level layer using a
task-based abstraction to hide the details of algorithms, platforms and hardware
acceleration from developers and allow them to focus on developing applications.
The algorithm we present in this paper is tailored to an abstraction to provide
developers with simpler access to segmentation results.

2 Related Work

Various surveys provide excellent overviews of the versatile approaches used for
image segmentation. Shaw et al. surveyed important methods for segmentation
based on intensity, colour and texture properties [3]. Skarbek et al. categorised
various approaches more in depth focussing on colour segmentation [4] . Chan
et al. showed some recent developments in variational image segmentation[5].
Zhangas surveyed unsupervised methods for image segmentatin[6]. Raut et al.
added some modern approaches as well [7]. From these analyses we can sum-
marise the important approaches of segmentation as follows:

Thresholding: These are generally used for greyscale images and are simple to
implement [8]. Some methods use multi-dimensional histograms to extend this
approach to include colour and texture properties for the segmentation [7].

Region: Region growing and region splitting-merging are the main procedures
in this approach [9–11]. The region growing method groups pixels or sub-regions

1 http://www.khronos.org/vision
2 http://openvidia.sourceforge.net

http://www.khronos.org/vision
http://openvidia.sourceforge.net
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into large regions based on pre-defined criteria. Regions are grown from an initial
set of seed points, based on comparing neighbouring pixels’ properties to that of
the seed. Selection of seed points is therefore critical for colour images, and the
result is highly dependent on these initial seeds.

Boundary: Edge detection is by far the most common approach for detecting
meaningful discontinuities in grey level images [10]. In practice, edge-based tech-
niques using sets of pixels seldom characterise an edge completely due to noise
and non-uniform illumination which creates spurious intensity discontinuities.
Hence edge detection algorithms need additional post processing by using link-
ing procedures to assemble edge pixels into meaningful edges.

Graphing: The image is modelled as a weighted undirected graph [12]. Each pixel
is a node in the graph, and an edge is formed between every pair of pixels. The
weight of an edge is a measure of the similarity between the pixels. The image
is partitioned into disjoint sets by removing the edges connecting the segments.
The optimal partitioning of the graph is the one that minimises the weights of
the edges that were removed. Shi’s algorithm seeks to minimise the normalised
cut, which is the ratio of the ‘cut’ to all of the edges in the set [13].

Morphology: The Watershed transformation considers the gradient magnitude as
a topographic surface [14]. Pixels with the highest gradient magnitude intensities
(GMIs) correspond to watershed lines (which represent the region boundaries) -
‘water’ placed on any pixel enclosed by a common watershed line flows downhill
to a common local intensity minima. The method is initialised with markers to
avoid over-segmentation due to noise and local gradient irregularities.

Clustering: Clustering for colour segmentation is especially effective with multi-
ple features and one-dimensional methods (e.g. thresholding) cannot be applied.
Colour is generally represented as multiple features, such as red, green and
blue (RGB) or hue, saturation and intensity (HSI) [4]. Many techniques have
been proposed in the literature of cluster analysis [10]. A classical technique for
colour segmentation is k-means [15], extended to a probabilistic modelling using
a fuzzy c-means algorithm [16]. There are various other approaches for segmen-
tation via clustering, such as ISODATA (Iterative Self-Organizing Data Analysis
Techniques) [10] and the mean shift algorithm [17, 18]. Connected-component la-
belling methods are used to compute the final segmentation based on the clusters
[19, 20]. Clustering-based approaches are useful when the clusters of features are
normal and easily distinguishable. If the features are cluttered among objects,
this approach can not be guaranteed to give a good segmentation.

Automatic selection: Some automatic methods to select algorithms and param-
eters based on metrics or case-based learning have been tried recently. These
approaches are meaningful in the sense that they can select an optimal algo-
rithm and parameters adaptive to the characteristics of images to process. One
methodology involves a generic framework for segmentation evaluation using a
metric based on the distance between segmentation partitions [21]. Case-based
reasoning was introduced to select an algorithm and parameters depending on
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the image characteristics [22]. The cases have image characteristics similar to
those of the current input image, and the segmentation parameters associated
with the most similar case is applied to the input image. Yong et al. [23] pro-
posed a simulation system designed to select the optimal segmentation algorithm
from four candidates for synthetic images. Martin et al. [24] proposed a scheme
to automatically select segmentation algorithm and tune theirs key parameters
using a preliminary supervised learning stage. Nickisch et al.[25] proposed a new
evaluation and learning method with user supervision.

While cluster-based methods for segmentation have drawbacks such as over-
segmentation in the presence of high detail, they are extremely effective for
isolating known regions. This is the case for developers designing applications
with segmentation, where we envision the majority of use-cases are known in
advance looking for a particular set of objects. We present a modified algorithm
designed to accommodate a segmentation abstraction, which we present first.

3 Developer-Centred Segmentation

The central part of a segmentation framework provided to developers is a higher-
level abstraction which hides algorithmic detail (the algorithm used and the
parameters it uses) but still provides a powerful and flexible interface to seg-
mentation results. We use a task-centred description for the interface, through
which developers may describe the segmentation problem they need to solve.

For the abstraction we use a relatively simple definition of segmentation: pro-
ducing a set of distinct regions (segments) within the image. We apply the con-
cept of properties to measure distinctiveness. A property is measurable over a
region of the image, which leads to an extensive list of possibilities, such as colour,
intensity, texture, shape, contour, etc. Conceptually, a segment is bounded by a
smooth, continuous contour, and is not dependent on pixels or any other discrete
representation. Developers must specify at least one property to define the seg-
mentation of the image: segment properties allow developers to decompose the
image based on what they consider to be important to their problem, and provide
us with the information required to produce a corresponding segmentation.

Each property is associated with a distinctiveness to allow the developer to
define how distinct the segments should be with respect to that property. Due to
the range of possible methods of segmentation, the term ‘distinct’ was chosen as
the best abstraction of the conceptual meaning. This was in preference to terms
such as threshold or distance which may be used in other methods but would
not be applicable in all cases. The description also allows multiple properties for
a single segmentation. Conceptually this will lead to segments which are distinct
based on all specified properties. The advantage of the task-based description is
the details of how this is performed are hidden from the developer, and so they
do not need to take this into account when developing an application.

When defining the available set of properties we attempt to make sure each
is orthogonal to the others, to avoid repetition in the description space and
encourage completeness. Our eventual goal is to create a unified space for vision
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(a) (b)

Fig. 1. Illustration of the use of a binary decision tree to create a set of clusters for
segmentation. In (a), the initial feature space has 100 samples and is divided into two
child nodes with 70 samples and 30 samples. The red nodes are determined to be cluster
nodes since they are not divisible according to the end conditions. In (b), a priority
node is added to capture use requirements for the grouping of similar pixels.

descriptions, to apply to all problems, which can be interpreted into algorithms
and parameters to provide the developer with a solution. The description space
should be kept as small as possible while still maintaining a wide coverage to
help minimise the complexity as the description language is extended.

The last aspect of the description is the use of priorities : the developer can de-
fine volumes in property space towards which the segmentation should be biased,
which is useful in applications such as chroma-keying or skin-colour detection.

The properties and priorities together form what we define as the requirements
of the segmentation. The last component we need to complete our description is
constraints. Constraints introduce some additional complexity to the operation,
because they are capable of overriding the distinctiveness requirement. The three
constraints we provide are size, quantity and regularity. Size governs the final
area of the segments, quantity the number, and regularity the level of variation
allowed in the gradient of the segment’s contour. Size and quantity are related
and must trade off against one another; Regularity constrains the overall shape
of the segments: a regularity of 0 does not constrain the shape at all and a value
of 1 constrains the shape of every segment to be the same.

4 Transforming Cluster-Based Segmentation

Cluster-based segmentation is one of the most well-known and useful approaches
for image segmentation. It is relatively simple to understand, practical for many
use cases (especially when multivariate features such as RGB colours are used)
and also benefits from good performance for general purpose segmentation. The
major drawback is the difficulty for non-experts to understand how it works
and the configuration required to achieve their required result. The parameters
have a significant effect on the result of clustering and they should be carefully
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determined by experts to meet the requirements of each application. However, it
is often difficult even for experts to match the parameters with the requirements
of diverse applications. In this section a cluster-based segmentation method for
colour images is transformed to work with a developer-centred abstraction. The
problem conditions of image segmentation can be described by developers instead
of requiring expert knowledge of the algorithm and its parameters.

4.1 Method Overview

A cluster-based segmentation uses two main steps: feature-space clustering and
region labelling. Various algorithms such as k-means, fuzzy c-means and ISO-
DATA may be used to find clusters in the feature space. We use k-means with
RGB colour, followed by connected component analysis for region labelling. A
conventional k-means algorithm is as follows:

1. Place K points in RGB feature space (cluster centroids).
2. Assign each sample (RGB value) to the cluster that has the closest centroid.
3. When all samples have been assigned, recalculate the centroids based on the

newly assigned samples.
4. Repeat steps 2 and 3 until the centroids are static.

This produces a separation of the samples into clusters ready for post-processing:
using the distance between two clusters as the metric, we can decide whether to
sub-divide clusters or not (this is discussed further below).

One of the drawbacks of k-means is the requirement for a known number of
centroids and the provision of each cluster with a good initial centroid. When
the number of clusters is not appropriate for the input image, the segmentation
can be over- or under-sampled. Variations of clustering such as ISODATA were
developed to adjust the number of clusters by merging those that are similar,
but it is still sensitive to the choice of initial centroids.

This weakness of k-means also makes it challenging to transform the method
into a developer-centric framework. The clustering algorithm should adjust its
parameters according to the description of segmentation to produce results sat-
isfying the developer’s requirements. The k-means algorithm is very rigid: its
parameters do not neatly map to a developer-level description. To begin, we
propose the parameters be adjusted as follows:

– Maximum number of clusters (KMAX): determined according to the desired
quantity of segments.

– Minimum distance of clusters (DMIN ): determined according to the desired
distinctiveness of segments. If any pair of clusters are too close each other,
they are not distinctive enough.

To adjust the algorithm to match our segmentation abstraction, a binary decision
tree is combined with k-means to make these parameters adjustable. Instead of
applying the k-means algorithm to the whole feature space, it is applied to a
binary tree representing the feature space. This partitions the feature space of
each node into two clusters, e.g. the root node contains the original feature space
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and it is divided into two clusters, then the samples constituting the original
feature space are divided into two subspaces based on the distance to cluster
centroids. Two child nodes are generated within these two subspaces respectively
and attached to the root node. K-means is applied to these two child nodes
again in the same way. With this approach the initial K centroids are no longer
necessary:K can be determined by the framework through tree generation. Some
conditions are required to stop the subdivision and control the size of the tree.
The detailed algorithm for this new clustering method is:

1. Make a root node with the samples of the original feature space.
2. For each node that is not classified as a cluster node:

– Partition the node with k-means into two clusters.
– Check the condition of the node with the provided parameters to deter-
mine whether it is divisible.
– – If the node is divisible: divide the samples in the node into two subgroups
and generate two child nodes.
– – If the node is not divisible: it is classified as a cluster node.

3. Repeat step 2 until there is no node divisible.

Figure 1 shows the concept of using a binary decision tree for segmentation,
and illustrates an example tree generated with this process. The conditions to
determine the divisibility of a node use the following parameters:

– KMAX : if the number of cluster nodes generated exceeds this parameter, all
terminal nodes are marked as clusters and the process stops.

– DMIN : if the distance between two clusters in a node is less than this pa-
rameter, then the node is determined not to be divisible and it becomes a
cluster node.

Based on the identified clusters, a two-pass connected component labelling al-
gorithm is used to generate segments (regions of the image) corresponding to
the clusters. The two parameters of the clustering method are mapped to the
description of segmentation in terms of properties and constraints. The details
for this mapping are explain in the following section.

4.2 Parameter Mapping

The mapping of segmentation abstraction parameters to our method are:

– Distinctiveness : The distinctiveness of produced segments is linked toDMIN .
– Quantity: The quantity of segments to produce is linked to KMAX .

When DMIN is large, potentially divisible clusters may not be divided and the
distinctiveness of clusters is decreased. For high distinctiveness, the parameter
should be small enough to produce clusters with smaller gaps. KMAX affects
the quantity of segments: for large values the tree will contain more branches
(and more clusters), therefore more regions are segmented. Table 1 shows the
mapping between the clustering parameters and the segmentation description.
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(a) (b)

Fig. 2. Sample images used for illustration of the results. Image (a) has dimensions
400× 265, (b) has dimensions 553 × 720.

4.3 Priorities

The last property-related aspect of the description is priorities. These are sup-
plied to let the developer specify volumes in property space which should bias
the segmentation. This is important in the definition of boundaries: for example
if a single-colour sphere is illuminated from one angle, the colour will have a
gradient - the sphere’s colour can be prioritised to segment the ball into a sin-
gle region. With our segmentation method, we can accommodate priorities by
inserting a new subspace defined by a volume in feature space; this can form a
cluster and produce segments corresponding to the developer’s requirements.

To implement priorities, a subspace corresponding to a developer-defined pri-
ority is expressed as a range of colours. This range is represented as a pair of
RGB colour values and it constitutes a cubic subspace in the feature space. This
subspace is represented as a special node in the binary decision tree and is at-
tached to the root node. The samples which fall into the subspace are excluded
from the root node so that the prioritized subspace is not considered for further
clustering. Multiple priorities can be defined by adding additional priority nodes
to the root node. Figure 1b shows the binary decision tree when a priority is
defined, and an example of the clusters in feature space compared to the same
space without a priority is shown in Figure 4.

5 Results

Ourmethod was implemented (within the abstraction) in C++ and used OpenCV
for utility functions; it was tested on a MacBook Pro Retina quad-core 2.6GHz
with the images presented in Figure 2. To illustrate the use of the abstraction-level
distinctiveness, Figure 2 was segmented with Low (Figure 3(a),DMIN = 0.5) and
High (Figure 3(b), DMIN = 0.01) distinctiveness, both with High set for quan-
tity (KMAX = 20). For quantity control, the results shown in Figure 5 have a Low
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Table 1. Parameter mapping from the developer-centred abstraction to the clustering
algorithms parameters. This is an example set of numbers given an RGB feature space
and approximate measures (High, Medium, Low) for distinctiveness and quantity.

Description Clustering Parameter Mapped Values

Distinctiveness DMIN High : 0.01; Medium: 0.3; Low: 0.5;
Quantity KMAX High : 20; Medium: 10; Low: 5;

(a) Low distinctiveness (b) High distinctiveness

Fig. 3. A feature-space visualization of a binary decision tree for clustering with the
results shown above

quantity while leaving the distinctiveness constant (the images can be compared
to the same distinctiveness with High quantity in Figure 3(b) and Figure 4(a)).
A priority-based segmentation result is shown in Figure 4(b), with the associated
cluster tree with the priority volume (and cluster) shown in the top right of the
feature space. A priority was given using a volume defined by the RGB range
(1.0, 0.0, 0.6)− (0.8, 0.2, 0.8) to hint to the segmentation method which parts of
the feature space are important. The result shows the reddish regions of the image
have been assigned the same label, a very different result from the over-segmented
image in (a) with no priorities given. In all cases the method takes approximately
one second to provide a result. Please note the implementation is not optimised
to use accelerated hardware processing, and is intended as a proof-of-concept to
fit the abstraction defined in Section 3. The images demonstrate a close match
between developer-provided parameters through the higher-level abstraction and
the result produced by our segmentation method.
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(a) High distinctiveness (b) High distinctiveness with priority

Fig. 4. A feature-space visualization of a binary decision tree for clustering, comparing
the tree with (1) and without (2) priorities, and the results shown above

(a) (b)

Fig. 5. The use of quantity (with High distinctiveness): quantity is set to Low
(KMAX = 5), and can be compared to the results in Figure 3(b) and Figure 4(a)

There is a relationship between DMIN and quantity, and KMAX and dis-
tinctiveness. The abstraction methodology is set up such that size, quantity
and distinctiveness are related. To get very few segments, the developer could
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request a Low distinctiveness and a Low quantity - all parameters are used in
the process, which provides the developer with greater control over the result.

6 Conclusions

We have presented a segmentation clustering algorithm which has been trans-
formed to work with a developer-level abstraction, allowing non-experts access
to sophisticated segmentation results. This has been achieved through the in-
clusion of a binary decision tree for creating clusters in feature space, mapping
the abstraction description to the parameters of the method and modifying the
clustering algorithm to allow segmentation biases to be included. Results demon-
strate the clear mapping between the description a developer provides into the
parameters used and the segmented images provided.

The abstraction and method will need to be modified to make it more clear
to developers the impact on using distinctiveness and quantity as measures of
segmentation (since they are linked); this may involve modifying the abstraction
directly or making the results of using both for segmentation very clear, either
with documentation or feedback from the abstraction framework.
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Abstract. The integral histogram for images is an efficient preprocess-
ing method for speeding up diverse computer vision algorithms including
object detection, appearance-based tracking, recognition and segmenta-
tion. Our proposed Graphics Processing Unit (GPU) implementation
uses parallel prefix sums on row and column histograms in a cross-weave
scan with high GPU utilization and communication-aware data transfer
between CPU and GPU memories. Two different data structures and
communication models were evaluated. A 3-D array to store binned his-
tograms for each pixel and an equivalent linearized 1-D array, each with
distinctive data movement patterns. Using the 3-D array with many ker-
nel invocations and low workload per kernel was inefficient, highlighting
the necessity for careful mapping of sequential algorithms onto the GPU.
The reorganized 1-D array with a single data transfer to the GPU with
high GPU utilization, was 60 times faster than the CPU version for a
1K × 1K image reaching 49 fr/sec and 21 times faster for 512 × 512
images reaching 194 fr/sec. The integral histogram module is applied
as part of the likelihood of features tracking (LOFT) system for video
object tracking using fusion of multiple cues.

1 Introduction

The integral histogram extends the integral image method for scalar sums to
vector (i.e. histogram) sums and enables multiscale histogram-based search and
analysis in constant time after a linear time preprocessing stage [1, 2]. The inte-
gral histogram is a popular method to speed up computer vision tasks, especially
sliding window based methods for object detection, tracking, recognition and
segmentation [1–12]. Histogram-based features are widely used in image analy-
sis and computer vision due to their simplicity and robustness. Histogram is a
discretized probability distribution where each bin represents the frequency or
probability of observing a specific range of feature values for a given descriptor
such as intensity, color, edginess, texture, shape, motion, etc. Robustness to geo-
metric deformations makes histogram-based feature representation appealing for
many applications. One major drawback of sliding window histograms is their
high computational cost, limiting their use for large scale applications such as
content-based image retrieval with databases consisting of millions of images or

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 266–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Efficient GPU Implementation of the Integral Histogram 267

  Vs : Vertical Cumulative Sum 
     Hs : Horizontal Cumulative Sum 

(x, y) 

),( cr

R 

),( cr

),( cr),( cr

Fig. 1. (a) Computation of the histogram up to location (x, y) using a cross-weave
horizontal and vertical scan on the image. (b) Computation of the histogram for an
arbitrary rectangular region R (origin is the upper-left corner with y-axis horizontal.)

full motion video archives with billions of frames. Any improvement that leads
to a speed-up in integral histogram calculation is imperative especially due to
fast trend towards extreme-scale and high-throughput data analysis. Mapping
image analysis and computer vision algorithms onto many-core and multicore
architectures has benefits ranging from faster processing, deeper search, greater
scalability, and better performance especially for recognition, retrieval and re-
construction tasks [13–19]

As far as we know this is the first detailed description and performance charac-
terization of a parallel implementation of the integral histogram for GPU archi-
tectures. Previously, a parallelization of the integral histogram for the eight-core
IBM Cell/B.E. processor was described in [20] and the scalar integral image
computation was parallelized for the GPU [21]. Although both the integral im-
age and integral histogram follow the same strategy, the integral histogram uses
high memory since the histogram needs to be maintained for every pixel and
leads to a 3D array data structure that is difficult to manage on small 48KB on-
chip shared memory per stream multiprocessor available on GPUs. This paper
presents two parallel implementations of the integral histogram computation,
that we have developed, for many-core GPU architectures, using the CUDA
programming model [13, 22, 23]. Both methods, GPU Integral Histogram using
Multiple Scan-Transpose-Scan (GIH-Multi-STS) and GPU Integral Histogram
using Single Scan-Transpose-Scan (GIH-Single-STS) use CUDA SDKs for par-
allel cumulative sums of rows and columns (prescan) based on a cross-weave
scanning mode, 2-D or 3-D transpose kernels and communication-aware data
management.

The contributions of this work are designing the best data structure and its
layout in GPU memory, finding the kernel configuration that maximizes the re-
source utilization of the GPUs and minimizes the data movement. Section 2
presents a short review of the integral histogram algorithm. Section 3 explores
our parallel integral histogram implementations on GPUs, followed by experi-
mental results including application to tracking and conclusions.

2 Integral Histogram Description

The integral histogram is a recursive propagation preprocessing method used to
compute local histograms over arbitrary rectangular regions in constant time [1].
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Algorithm 1. Sequential Integral Histogram

Input : Image I of size h× w
Output : Integral histogram tensor H of size h× w × b
1: Initial H:

H ← 0
2: for z=1:b do
3: for x=1:w do
4: for y=1:h do
5: H(x, y, z) ← H(x− 1, y, z) +H(x, y − 1, z)

−H(x− 1, y − 1, z) +Q(I(x, y), z)
6: end for
7: end for
8: end for

The efficiency of the integral histogram approach enables real-time histogram-
based exhaustive search in vision tasks such as object recognition and tracking.
The integral histogram is extensible to higher dimensions and different bin struc-
tures. The integral histogram at position (x, y) in the image holds the histogram
for all the pixels contained in the rectangular region defined by the top-left corner
of the image and the point (x, y) as shown in Figure 1. The integral histogram for
the region defined by the spatial coordinate (x, y) and bin variable b is defined
as:

H(x, y, b) =

x∑
r=0

y∑
c=0

Q(I(r, c), b) (1)

where Q(I(r, c), b) is the binning function that evaluates to 1 if I(r, c) ∈ bin b,
and evaluates to zero otherwise. Sequential computation of integral histograms is
described in Algorithm 1. Given the image integral histogram H, computation of
the histogram for any test region R delimited by points
{(r−, c−), (r−, c+), (r+, c+), (r+, c−)} reduces to the combination of four inte-
gral histograms:

h(R, b) = H(r+, c+, b)−H(r−, c+, b)−H(r+, c−, b) +H(r−, c−, b) (2)

Figure 1 illustrates the notation and accumulation of integral histograms using
vertical and horizontal cumulative sums (prescan), which is used to compute
regional histograms.

3 Parallelization Using Parallel Prefix-Sum (Exclusive
Scan)

One basic pattern in parallel computing is the use of independent concurrently
executing tasks. The recursive sequential Algorithm 1 is a poor approach to
parallelize since row (r+1) cannot be executed until row r is completed, with only
intra-row parallelization. The cross-weave scan mode (Fig. 1), enables cumulative
sum tasks over rows (or columns) to be scheduled and executed independently
allowing for inter-row and column parallelization. The GPU Integral Histogram
using Multiple Scan-Transpose-Scan (GIH-Multi-STS) is shown in Algorithm 2.
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Algorithm 2. GIH-Multi-STS: GPU Integral Histogram using Multiple Scan-
Transpose-Scan

Input : Image I of size h× w
Output : Integral histogram tensor IH of size b× h× w
1: Initialize IH

IH ← 0
IH(I(w,h),w,h) ← 1

2: for z=1 to b do
3: for x=1 to h do
4: //horizontal cumulative sums (prescan, size of rows)

IH(x, y, z) ← IH(x, y, z) + IH(x, y − 1, z)
5: end for
6: end for
7: for z=1 to b do
8: //transpose the bin-specific integral histogram

IHT (z) ← 2-D Transpose(IH(z))
9: end for
10: for z=1 to b do
11: for y=1 to w do
12: //vertical cumulative sums (prescan, size of columns)

IH(x, y, z) ← IHT (y, x, z) + IHT (y, x− 1, z)
13: end for
14: end for

This approach combines cross-weave scan mode with an efficient parallel prefix
sum operation and an efficient 2-D transpose kernel. The SDK implementation
of all-prefix-sums operation using the CUDA programming model is described
by Harris, et al. [24]. We apply prefix-sums to the rows of the histogram bins
(horizontal cumulative sums or prescan), then transpose the array and reapply
the prescan to the rows to obtain the integral histograms at each pixel.

3.1 Parallel Prefix Sum Operation on the GPU

The core of the parallel integral histogram algorithm for GPUs is the parallel
prefix sum algorithm [24]. The all-prefix-sums operation (also refered as a scan)
applied to an array generates a new array where each element k is the sum of
all values preceding k in the scan order. Given an array [a0, a1, ..., an−1] the
prefix-sum operation returns,

[0, a0, (a0 + a1), ..., (a0 + a1 + ...+ an−2)] (3)

The parallel prefix sum operation on the GPU consists of two phases: an up-
sweep (or reduce) phase and a down-sweep phase (see Fig. 2). Up-sweep phase
builds a balanced binary tree on the input data and performs one addition per
node. Scanning is done from the leaves to the root. In the down-sweep phase
the tree is traversed from root to the leaves and partial sums from the up-
sweep phase are aggregated to obtain the final scanned (prefix summed) array.
Prescan requires only O(n) operations: 2 ∗ (n− 1) additions and (n− 1) swaps.
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Fig. 2. Parallel prefix sum operation, commonly known as exclusive scan or prescan
[24]. Top: Up-sweep or reduce phase applied to an 8-element array. Bot: Down sweep
phase.

The GPU-based prefix sum (prescan) operation moves data from CPU memory
to off-chip global GPU memory then exploits the on-chip shared memory for
each row operation [24].

3.2 GPU-Based Transpose Kernel

The integral histogram computation requires two prescans over the data. First, a
horizontal prescan that computes cumulative sums over rows of the data, followed
by a second vertical prescan that computes cumulative sums over the columns
of the first scan output. Taking the transpose of the horizontally prescanned
image histogram, enables us to reapply the same (horizontal) prescan algorithm
effectively on the columns of the data. We used the optimized transpose kernel
described in [25] that uses zero bank conflict shared memory and guaranties
that global reads and writes are coalesced. Figure 3 shows the data flow in the
transpose kernel. A tile of size BLOCK DIM ∗ BLOCK DIM is written to the
GPU shared memory into an array of size BLOCK DIM ∗ (BLOCK DIM + 1).
This pads each row of the 2-D block in shared memory so that bank conflicts do
not occur when threads address the array column-wise. Each transposed tile is
written back to the GPU global memory to construct the full histogram trans-
pose. The SDK 2-D transpose kernel needs to be launched from the host b times
in order to transpose the integral histogram tensor. In order to allow a single
transpose operation, we transform the existing 2-D transpose kernel into a 3-D
transpose kernel by using the bin offset in the indexing. The 3-D transpose kernel
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Fig. 3. Data flow between GPU global memory and shared memory while computing
the coalesced transpose kernel; stage 1 in red, stage 2 blue, reads are dashed lines,
writes are solid lines.

is launched using a 3-D grid of dimension (b, w/BLOCK DIM, h/BLOCK DIM),
where BLOCK DIM is the maximum number of banks in shared memory (32
for all graphics card used).

3.3 Data Structure and Implementation Strategy

An image with dimensions h × w produces an integral histogram tensor of di-
mensions h×w× b, where b is the number of bins in the histogram. This tensor
can be represented as a 3-D array which in turn can be mapped to an 1-D row
major ordered array for efficient access as shown in Figure 4. Both implementa-
tions, GIH-Multi-STS and the improved GPU Integral Histogram using Single
Scan-Transpose-Scan (GIH-Single-STS), start by prescanning each row. Since
the maximum number of threads per block is 1024 and each thread processes
two elements, each row can be divided into segments up to 2048 pixels. If the
size of row is smaller than 2048 then the size of the thread block will be reduced
to the w/2. The GIH-Multi-STS implementation uses the 3-D data structure.
Exclusive prefix sum (prescan) kernel (see Section 3.1) is applied to the data one
row at a time. This approach suffers from many kernel invocations in the hori-
zontal/vertical scan and 2-D transpose phases, from little work per kernel and
eventually GPU under-utilization (Algorithm 2 ). To reduce the total number of
kernels invocations from (w+ h)b+ b to only 3 invocations, the GIH-Single-STS
implementation uses a 1-D row ordered format array and launches the prescan
kernel once using a 1-D grid of size (b∗h∗w)/(2∗Num Threads). Padding is ap-
plied to shared memory addresses to avoid bank conflicts by adding an offset of
32 to each shared memory index. After prescanning each row (horizontal scan),

… 

… 
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b0 b1 bn-1 

row0 rowh-1 

w 
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Fig. 4. Integral histogram tensor represented as 3-D array data structure (left), and
equivalent 1-D array mapping (right)
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Algorithm 3. GIH-Single-STS: GPU Integral Histogram using Single Scan-
Transpose-Scan

Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor IH of size b× h× w
1: Initialize IH

IH ← 0
IH(I(w,h),w,h) ← 1

2: for all b× h blocks in parallel do
3: //horizontal cumulative sums
4: Prescan(IH)
5: end for
6: //transpose the histogram tensor

IHT ← 3D Transpose(IH)
7: for all b× w blocks in parallel do
8: //vertical cumulative sums
9: Prescan(IHT )
10: end for

the prescanned array is transposed to compute (column) cumulative sums in the
second pass using a 3-D transpose kernel (Algorithm 3). We implemented and
evaluated two parallel GPU integral histogram computation approaches: parallel
GIH-Multi-STS, and parallel GIH-Single-STS and compared them to a sequen-
tial CPU-only implementation. Our experiments were conducted on a 2.0 GHz
Quad Core Intel CPU (Core i7-2630QM) and two GPU cards: an NVIDIA Tesla
C2070 and an NVIDIA GeForce GTX 460. The former is equipped with fourteen
32-core SMs and has about 5GB of global memory, 48KB shared memory with
compute capability 2.0. The latter consists of seven 48-core SM and is equipped
with 1GB global memory, 48KB shared memory with compute capability 2.1.

The parallel GIH-Multi-STS implementation exploits the work efficient pres-
can operation to calculate for each bin the cumulative sums of rows, one row at
a time. Therefore, the scan kernel is launched b × h times for horizontal scan
and b×w times for vertical scan. The efficient 2-D transpose kernel is launched
b times to transpose the integral histogram tensor after horizontal scan. The
GIH-Multi-STS is based on many kernel invocations, each of them performing
a small amount of work and therefore greatly under-utilizing the many-cores on
the GPU. In addition, the all-prefix-sum kernel works very well only on very
large array consisting of millions of elements. Therefore, we proposed the GIH-
Single-STS to increase the amount of work performed by each kernel invocation
and reduce the number of scan kernel invocations by a factor of (h+ w)b. This
can be easily achieved by modifying the kernel configuration without rewriting
the kernel code (array indices are derived from block and thread indices). Since
the maximum number of threads per block is 1024 and each thread processes
two elements, each row can be divided into segments up to 2048 pixels. If the
size of row is smaller than 2048 then the size of the thread block will be reduced
to the w/2 for horizontal scan and h/2 for vertical scan as well. Therefore, the
number of blocks for horizontal scan will be ((b × h × w)/(2 × threadblock)).
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GIH-Single-STS also benefits from the modified 2-D transpose kernel which per-
forms a single 3-D transpose operation by using the bin offset in the indexing.
GIH-Single-STS is divided into three phases: a single horizontal scan, a 3-D
transpose, and a vertical scan.

The initial implementation of GIH-Single-STS had several unnecessary data
transfer between host and device after each phase. In the first implementation,
the integral histogram tensor was being transferred to the GPU before invoking
the kernel and then sent back to the CPU before launching the next kernel;
these extra data transfers lead to reduced performance (referred to as GIH-
Single-STS1). However, the GPU is specialized for compute-intensive, highly
parallel computation and the overhead of communication between host and de-
vice cannot be hidden or double-buffered by non data-intensive kernels. In the
improved GIH-Single-STS implementation, the integral histogram computations
start after transferring the image to the GPU, complete the calculation of the
integral histogram on the GPU then transfer the final integral histogram tensor
back to the CPU, removing the extra communication overhead. In addition, the
number of threads is automatically determined based on the image size to ensure
maximum occupancy per kernel.

Figure 5 shows the kernel execution time versus data transfer time for GIH-
Multi-STS, GIH-Single-STS1 (implementation with extra data transfers) and
GIH-Single-STS for different image sizes. We see that the GIH-Multi-STS is
compute bound (that is, the kernel execution time is larger than the CPU to
GPU data transfer time), this method under utilizes the GPU, whereas the GIH-
Single-STS1 is data-transfer-bound. The results show that the data transfer time
for GIH-Single-STS1 is on average five times worse than GIH-Single-STS. The
final GIH-Single-STS implementation shows a balance between data transfer and
kernel execution time (Fig. 5).
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Fig. 6. Frame rate of GIH-Multi-STS, GIH-Single-STS and CPU-only integral his-
togram implementations: (UL) GIH-Multi-STS frame rate for different image sizes,
(UR) GIH-Multi-STS frame rate for different number of bins, (LL) GIH-Single-STS
frame rate for different image sizes, (LR) GIH-Single-STS frame rate for different num-
ber of bins for 512x512 image size.

Figure 6 summarizes the frame rate performance of the two GPU implemen-
tations compared to the sequential CPU-only implementation. The frame rate is
defined as the maximum number of images processed per second. Since we use
double buffering, the frame rate equals 1/(kernel execution time) for compute-
bound cases, or 1/(data transfer time) for data-transfer-bound cases. Consider-
ing double buffering timing, our GIH-Single-STS achieves 194 fr/sec to compute
16-bin integral histograms for a 512 × 512 image and 94 fr/sec for 1K × 1K
image using the NVIDA Tesla C2070 GPU.

Figure 7 reports the speedup of our GPU implementations of the integral
histogram compared to a sequential CPU implementation. The speedup takes
into consideration the overlapping of computation and communication used by
double buffering. The speedup of the improved GIH-Single-STS for a 16-bin
integral histogram for a 1K × 1K image is 60 times on an NVIDIA Tesla C2070
GPU and varies between 15 times to 25 times for a 512× 512 image depending
on the number of bins and the type of GPU.

Figures 8 shows feature maps for the target and search window with corre-
sponding likelihood maps produced by the integral histogram-based likelihood
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Fig. 7. Speedup of the two GPU designs over CPU on two NVIDA graphic cards: (UL)
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STS for different image sizes, (LR) Speedup of GIH-Single-STS with varying number
of bins for 512x512 image size.

estimation approach. Figure 9 shows sample tracking results and fused likelihood
maps for sample frames from an aerial wide area image sequence.

4 Conclusions

We have presented two parallel implementations of the integral histogram using
the cross-weave scanning approach for GPU architectures, utilizing the CUDA
programming model. The poor performance of the GIH-Multi-STS (prescan)
implementation which was slower than the sequential version and the first imple-
mentation of GIH-Single-STS, clearly demonstrates that in parallelizing sequen-
tial image analysis algorithms on the GPU, data structures, GPU utilization and
communication patterns need careful consideration. The GIH-Single-STS (effi-
cient communication) implementation reduced the severe communication over-
head bottleneck, by transferring an image size 1-D array instead of an integral
histogram 3-D array and increased the GPU utilization. The GIH-Single-STS
exploits an efficient prescan and 3-D transpose operation with maximum occu-
pancy per kernel. It achieved frame rate of 185 for standard images 640 × 480
for 16 bins integral histogram computations which outperforms results presented
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Fig. 8. Top row shows the car template and associated raw target features for intensity,
gradient magnitude, Hessian shape index, normalized curvature index, Hessian eigen-
vector orientations, and oriented gradient angles. Row 2 shows the predicted search
window and associated raw features. Row 3 shows the corresponding likelihood maps
combining target template with the associated search window features using integral
histogram.

Fig. 9. LOFT tracking results are shown for the first five frames for car C4 1 0 from
CLIF aerial wide-area motion imagery [26]. Top row shows the tracked car locations
and the bottom row shows the fused likelihood maps used by LOFT [8] to determine
the best target location in each corresponding frame.

for 8 SPEs (120 fr/sec for cross-weave scan and 172 for wavefront scan mode)
in [20]. However, in most cases our performance is data-transfer-bound. One
approach to further improve the time and memory efficiency of the GPU-based
integral histogram method is to develop our custom parallel scan kernel for the
horizontal and vertical cumulative sum computations without transpose phase
for each tile of integral histogram tensor.
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Abstract. It is easy to retrieve the small size parts from small videos.
It is also easy to retrieve the middle size part from large videos. However,
we have difficulties to retrieve the small size parts from large videos. We
have large needs for estimating plays in sport videos. Plays in sports
are described as the motions of players. This paper proposes the play
retrieving method based on both of the motion compensation vector and
normal color frames in MPEG sports videos. In MPEG videos, there are
motion compensation vectors. Using the motion compensation vectors,
we do not need to estimate the motion vectors between adjacent frames.
This leads to decrease the huge computations about motion estimations.
This work uses the 1-dimensional degenerated descriptions of each mo-
tion image between 2 adjacent frames. Connecting the 1-dimensional
degenerated descriptions on time direction, we have the space-time map.
This space-time map describes a sequence of frames as a 2-dimensional
image. Using this space-time map on motion compensation vector frames
and normal color frames, this work shows the method to retrieve a small
number of plays in a huge number of frames. Our experiment records
0.93 as recall, 0.81 as precision and 0.86 as F-measure on 139 plays in
132503 frames.

1 Introduction

There are many videos about sports. There is a large need for content-based
video retrievals. The amount of videos is huge, so we need an automatic indexing
method [9]. We proposed the method that retrieves shots including a similar
motion, based on the similarity of the motion with a sample part of videos [1].

We propose the method to retrieve the plays using only motion compensation
vectors in MPEG videos with the 1-dimensional degeneration named Space-Time
map. Many works try to index sport videos using the motions in the videos.
Many of the works use the motion vectors in MPEG videos. They succeed to
find camera works. They are zoom-in, zoom-out, pan and, etc. However, no
work retrieves a play of a single player from only motions directly. Off cause,
camera works have an important role in understanding videos. Sound also have
some role in understanding videos. Many works use camera works and sound
for understanding sport videos. Those feature-combining methods have some
successes about retrieving home-runs and other plays. However, those works did
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not success to retrieve plays from only motions. Recently, many works focused
on retrieval combining many features and their relations[5,14].

There are some works proposed the method that retrieves play only from mo-
tions. The method can works with textures, sound, and camera works. However,
the works proposed the method to retrieve play only from motions in motion
compensation vectors in MPEG videos. The method gets the motions from mo-
tion compensation vectors in MPEG videos, and makes the 1-dimensional pro-
jections from the X direction motion and Y direction motion. The 1-dimensional
projection represents the motions between a pair of adjacent frames as a 1-
dimensional color strip. The method connects the strips in the temporal direc-
tion and gets an image that has 1 space dimension and 1 time dimension. The
resulting image has the 1-dimensional space axis and the 1-dimensional time
axis as the temporal slice [4,7,11,12]. Our method carries information about all
pixels, but the temporal slice method does only about the cross-sections. We call
this image as space-time map. Using the images, the method retrieves parts of
videos as fast as image retrievals do.

We propose a video retrieval method based on the motions and textures for
sports videos with Space-Time map. The proposed method includes making
same compact description of a sequence of a frame describing MPEG motion
compensation vectors and texture, similar video retrieval using the compact
descriptions.

2 Motions and Textures in MPEG Videos

For retrieving a similar play in sport videos, the motions of players is important.
Some works use only the mpeg motion compensation vectors and the correlations
between the template and a part of videos. In mpeg motion compensation vectors
of our experiments, pitchers share only 2×6 pixels. In the texture frames, pitchers
share 27×107 pixels. In frames, the region representing a pitcher is 1% of a frame.
It is difficult to retrieve the pitches in texture frames. In motion compensation
vector frames, also the region representing a pitcher is 1% of a motion frame.
However, in the motion frames, there is no move except for a pitcher. In the
case, it is easy to find small motions of a pitcher. In motion frames, our proposed
method works well to retrieve pitches. The smallness of the motion regions leads
that the small discrimination power in the texture frames. However, it is easy
to discriminate the environments.

This paper uses both of play discrimination with motion compensation vec-
tor and environment discrimination with texture frames for pitch retrievals. In
motion frames, our method uses only correlations. In color frames, our method
uses correlation and color differences for retrieving similar parts of videos.

3 Space-Time Map

Temporal slice is one answer to decreasing the amount of huge videos. The
temporal slice is a simple selection of parts of frames. The temporal slice is
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sensitive about the movements of frames. This feature is not fit for our objective.
We need the descriptions that do not sensitive about the movements of frames.
We introduce the simple description as the temporal slice.

In mpeg video, we have the motion vector (2-dimensional) on every motion
compensation block. The amount of information is 2/16× 16× 3 of the original
color video. This is very small comparing with the original color frames. The
base-ball games can long about 2 hours.

Using the textures in frames, we have 16 × 16 × 3 times larger descriptions
than one of motion compensation vectors. The needs for the small descriptions
increase in normal color frames.

The experimental video has 200K frames. If we compare frame by frame, there
needs a huge computation. There is a large difficulty to retrieve similar parts
of a video. We can retrieve similar parts of videos using classical representative
frame-wise video retrieve method. However, it is difficult to retrieve similar part
of videos based on the player’s motions, because the motion leads a change of
subsequent frames.

We can use many feature extraction methods to retrieve similar part of videos.
However, the applicability of the method depends on the features selected to
use. The generality of the method may be lost using specified features. The
temporal slice is also the selections of features. In other words, the temporal
slice is the selections of small number of pixels in frames. The temporal slice does
not represent any information outside of the temporal slice. This paper uses the
1-dimensional degeneration for reducing the amount of information without lost
generality [8].

Figure 1 shows the process to create a Space-time map from frames. We
make 1-dimensional degenerations at each direction on each frame as in the
top of Fig. 1. We have 2 1-dimensional descriptions. Then, we connect the 2
1-dimensional descriptions into a single 1-dimensional description. And last, we
connect the 1-dimensional descriptions on time direction. The resulting descrip-
tion is 2-dimensional description.

This method does not select any parts in frames nor any frames in videos. The
average is a major descriptive statistic of a set of numerical data. The proposed
1-dimensional description has information about all pixels. The temporal slice
has no information about unselected pixels.

I1dx(x) =

∑
y∈[0,Ymax]

I2d(x, y)

Ymax + 1
(1)

I1dy(y) =

∑
x∈[0,Xmax]

I2d(x, y)

Xmax + 1
(2)

Equation (1) makes 1-dimensional degenerated description of X direction from
a 2-dimensional image. (2) makes 1-dimensional degenerated description of Y
direction from a 2-dimensional image. In (1) and (2), I2d(x, y) stands for the
intensity at the pixel (x, y). (Xmax, Ymax) is the coordinate of the right-upper
corner.
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Fig. 1. Process making Space-time map

I(j) =

{
j ≤ Xmax → I1dx(j)
j > Xmax → I1dy(j −Xmax − 1)

(3)

The resulting 1-dimensional degenerated description is defined as (3).
There are 2 directions to make a 1-dimensional degeneration. We use both

2 directions that are X-axis and Y-axis using (1) and (2). In each color plane,
we have a 1-dimensional degenerated description. We connect the 2 degenerated
descriptions onto X-axis and the transposed projection onto Y-axis as from the
second to the third of Fig. 1. We represent the X-direction motion in red, and
Y-direction motion in green. There is no value in blue. Then, we have a 1-
dimensional degenerated color strip from the motion compensation vector. In
the color strip, red represents the X-direction motion and green does the Y-
direction motion. For the convenience, we set 255 in blue when both of X and Y
direction motions are 0.

We connect the 1-dimensional color strips describing motion frames on time
passing direction as the bottom of Fig. 1. Connecting 1-dimensional color strips,
we have a color image that has 1 space axis and 1 time axis. In this paper, the
image is described as ST (Space-Time) image. In the following experiments, we
use the 320×240 pixels half size frames. In the MPEG format, each 16×16 pixels
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block holds a motion compensation vector. This leads to reduce the amount of
information into 1/256. The resulting motion image is 20 × 15 pixels. The 1-
dimensional degenerated description is 7/60 of the original 20× 15 pixels image.
As a result, the usage of the Space-time map of motion compensation vector in
MPEG video reduces the amount of information into 1/2200. In normal color
frames, the original size is 320 × 240. In resulting Space-time maps, a normal
color frame is represented as 320 + 240 pixels stripe. The resulting description
is 1/137 of an original color frame.

3.1 Similarity on Space-Time Map

The similar motion retrieval estimates what kind of motions exists on a place. It
is same as the cost of the retrieval on images to retrieve similar part of videos on
a Space-time map. There are many similar image retrieval methods. They can
be applied in Space-time maps describing motions of videos. This paper uses the
correlation between two images in motion compensation vectors. In normal color
frames, we use both of a color difference and correlations in 3 color planes.

We normalize the resulting correlations for compensating the variance among
videos. We have 2 independent correlations between two space-time maps from
each color plane. They are an X-direction motion and a Y-direction motion.

3.2 Matching between Template Space-Time Map and Retrieved
Space-Time Maps

All Space-time maps have same space direction size. The original frame is X×Y
pixels. Then, the size of the space axis of Space-time maps is X + Y pixels. For
computing the correlations between the template Space-time map and any part
of retrieved Space-time map, there is no freedom on space axis. There is only
the freedom on time axis. If a template Space-time map is S × t and a retrieved
Space-time map is S × T , the computation cost of correlations is S × t × T .
In a baseball game, the length t of interesting play of a video is short. So the
computational cost of correlations is small enough to be able to apply large scale
video retrieval. Because of the shortness of the retrieved part, there is no need
to compensate the length of the part. There is no very slow pitch or no very fast
one. There is no very slow running or no very fast one.

In normal color frames, it is difficult to retrieve pitches precisely. Our method
uses normal color Space-time map for deciding the environment caught with a
frame. In a pitching sequence of frames, there is no move of camera directions.
We have no need to check the all frames in a pitching scene. We use only a
single frame of a pitching scene for a template. As a result, the computation
cost is S × T . In normal color frames, S is 16 times larger than one in the
motion compensation vector frames. A pitching scene is about 60 frames. As a
result, the matching computation in normal color frames is about 1/4 in motion
compensation vector frames.
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3.3 Similarity Measure in Motion Space-Time Map

We use the mutual correlation as the measure of similarity in motion Space-time
maps. We have 2 dimensional correlation vectors. They are X-direction motion
and Y-direction motion. If there is a similar motion between the template and
the retrieved part of Space-time map, both of the 2 correlations are large. We
use the similarity measure in motion Space-time maps shown in (4).

S(I0, I1) = min{Col(I0P , I1P )− TP , P = X,Y } (4)

In (4), Col is the correlation between I0P and I1P . I0 and I1 are Space-time
maps. TP is the threshold. P is one of x and y that represent the X-direction
motion and Y-direction motion. This similarity measure is scalar.

3.4 Similarity Measure in Normal Color Space-Time Map

We have 2 methods about the similarity in normal color Space-time maps. They
are RGB color plane-wise correlations and the color difference. The correlation
in each color plane does not depend on the absolute color. It only depends on
the change within the color plane. Otherwise, the color difference depends on
the absolute color. We try both methods in our experiments.

Correlation in each Color Plane. We can use the mutual correlation as the
measure of similarity. We have 3 dimensional correlation vectors in each color
plane. They are red plane, green plane and blue plane. If there is an similar
environment between the template and the retrieved part of Space-time map,
all of the 3 correlations are large. We use the similarity measure shown in (5).

S(I0, I1) = min{Col(I0C , I1C)− TC , C = red, green, blue} (5)

In (5), Col is the correlation between I0C and I1C . I0 and I1 are Space-time
maps in normal color frames. TC is the threshold at each color plane. C is one
of red, green and blue that represent red plane, green plane and blue plane.

This similarity measure is scalar. It is same as the similarity measure as in
motion compensation vector frames.

Color Difference in Normal Color Space-Time Map. We also use the
color difference as the measure of difference. In the case, we have a scalar color
difference at each pixel in normal color Space-time map. We use the average
square of color differences as the measure of the difference between the template
and the retrieved part of a video.

From RGB color space to L*a*b color space, we use 2 steps. The first one
is the conversion from RGB color space to XYZ color space as (8). The second
one is the conversion from XYZ color space to L*a*b* color space as in (11). In
L*a*b* color space, the color difference is defined as (12). In the equations, I0L
shows the L∗ in frame 0. We define the similarity in normal color frames as (13)
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using the average square of color differences. In (13), Ep is the color difference
at pixel p. For making the similarity measure, we invert the average square of
color differences in (13).

X = 0.412453×R+ 0.35758×G+ 0.180423×B (6)

Y = 0.212671×R+ 0.71516×G+ 0.072169×B (7)

Z = 0.019334×R+ 0.119193×G+ 0.950227×B (8)

L∗ = 116

(
Y

Yn

) 1
3

− 16 (9)

a∗ = 500

((
X

Xn

) 1
3

−
(

Y

Yn

) 1
3

)
(10)

b∗ = 200

((
Y

Yn

) 1
3

−
(

Z

Zn

) 1
3

)
(11)

E =
√
(I0L − I1L)2 + (I0a − I1a)2 + (I0b − I1b)2 (12)

SCD = −
(∑

p∈Allpixels E
2
p

|Allpixels|

)
− ThCD (13)

4 Experiments on Baseball Game and Evaluation

4.1 Baseball Game

This paper treats baseball game MPEG videos. In baseball games, players uni-
forms change between half innings. There is large number of pitches. This paper
uses a single play of a pitch as a template. Using this template, the proposed
method retrieves large number of pitches using similar motion retrieval. Motion
based similar video retrieval can find many types of plays based on the template.
There are a few repeated plays that are not pitches. This paper distinguishes a
pitch and other plays.

4.2 Experimental Objects

This paper uses a whole base-ball game for experiments. The game is 79minutes,
132485 frames in a video. In the game, there are right-hand pitchers and a left-
hand pitcher. There are 168 pitches. There are 31648 frames that represent the
camera work that catches the pitching scenes.

Figure 2 shows the example of pitches in our experimental video at each 5
frames distance. We use the left one as the template of a pitch. In Fig. 2, the
center one and the right one are retrieved parts of a video using the template.
The center one and right one differ from the template at the uniforms. The right
one differs from the template one at left-hand and right-hand.
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Fig. 2. Examples of pitches

4.3 Experiment Process

The experimental videos are recorded from Japanese analog TV to DVD. Then,
the recorded videos are reduced into 320 × 240 pixels and monochrome and
encoded MPEG1 format. Most plays of pitches are very short. So there is no
reduction on time direction. There are 30 frames in 1S. There are all parts
including telops, sportscasters and CG overlays. The first step of our experiment
is the extraction of motion compensation vectors. The motion compensation
vector is at each 16× 16 pixel blocks. In every motion compensation block, we
have a motion compensation vectors. Similar shot detection in motion frames
uses 20 frames of the left pitch in Fig. 2 as a template and retrieves the shots
including pitches of videos. In Fig. 3, the left one shows the part of the Space-
time map based on the motions from motion compensation vectors in a MPEG
video. And, the center shows the Space-time map based on the original colors in
frames. The frames of this part are shown in the right. In the color-based Space-
time map, we can see the place of the player. In the motion-based Space-time
map, we can see the stripes representing the players motion.

Similar environment detection in normal color frames uses only 1 frame in the
pitching template. There is no camera works in the template frames. As a result,
there is no difference in selection of 1 frame from 20 frames in the template shot.
We use the first frame of the template shot.
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Fig. 3. Motion Space-time map, Texure Space-time map and Original frames

F-Measure

F −measure =
2× precision× recall

precision+ recall
(14)

=
R

1
2 (N + C)

(15)

F-measure is defined as (15). In (15), N is the number of retrieved items. R is
the number of retrieved proper items. C is the number of proper items.

4.4 Motion Frame Template Experiments in Pitching Retrieval

These experiments use a single template image of the length 20 frames. When
we use the pitch near 83000th frame for the template play, we can use 82924th
frames to 83062th frame. This sequence has 139 frames. Our pre-experiments
using some length of template Space-time maps show that the 20 frames template
Space-time map starting from 83001th frame is best. We control the thresholds
that make the F-measure as maximum. In this experiment, precision is 0.686
and recall is 0.601. This experiment allows the multiple retrievals of a pitch.
The single template Space-time map experiment shows 0.64 at F-measure. In
the number, there are 147 retrievals, 36 error retrieval, and 101 recalls.

4.5 Normal Color Frame Experiments in Environment Retrieval

In normal color frames, it cannot detect precise sequences of frames that are
pitches. In our experiments, we only try to retrieve the frames that catch the
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pitchers from right-rear direction. In the case, the caught environments are sim-
ilar in every frame. There is no need to retrieve the sequence of frames. We only
need to retrieve every single frame that catches the same environment.

The experiments have 2 methods that use the color difference and the corre-
lations in each color planes. They also control the thresholds as the F-measures
made as maximum. In the experiment using correlations in each color-planes,
the resulting F-measure is 0.89. The recall is 0.891. The correctness is 0.891.

This performance is much better than one in motion frames. However, the
retrieved objects differ between this normal color frame experiment and the
motion frame experiment. In this experiment, the experiment retrieves the same
environment frames. Otherwise, in the motion frame experiment, the experiment
retrieves the precise pitches.

The experiment using similarity based on color difference retrieves the frames
that show larger similarity based on color differences than the threshold. In the
experiment, there is a single threshold. The resulting F-measure is 0.9. The recall
is 0.907. The correctness is 0.906.

Table 1. Simple scene retireval with normal color frames

Correlation Color difference

Recall 0.891 0.907
Correctness 0.891 0.906
F-measure 0.89 0.90

In those 2 experiments, color difference experiment shows better performance.

4.6 Complex Retrieval Experiment Both of Motion and Normal
Color Frames

For retrieving the precise pitches in frames, we need to use the motion frame
retrieval. With combining the motion frame retrieval and normal color frame
retrieval, we can improve the performance of the precise pitch retrieval.

To combining motion frame retrieval and normal color frame retrieval, we have
some difficulties to find the proper set of thresholds. In motion frame retrieval,
there are 2 thresholds that work in each X and Y direction motions. In color
correlation retrieval, there are 3 thresholds that work in each red, green and blue
color plane. In color difference retrieval, there is a threshold that work in color
difference.

To combining motion frame retrieval and color correlation retrieval, we have
5 thresholds. To combining motion frame retrieval and color difference retrieval,
we have 3 thresholds.

It is difficult to optimize all thresholds at once. We divided the optimization
of thresholds into 2 steps. They are a normal color frame threshold optimization
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and motion frame threshold optimization. We have 2 methods in normal color
frame retrieval. As a result, we have 4 types of optimization results. We shows
the result of our experiments in table 2. In table 2, the correlation retrieval in the
normal color frame and motion retrieval is best. It marks 0.865 in F-measure.
The recall is 0.928. The correctness is 0.811.

There is no difference between color-correlation+motion and motion+color-
correlation with same thresholds. However, it is easy to find better set of thresh-
olds in the color-correlation+motion case.

Table 2. Total performance of pitches retrieval in a baseball game

Motion + Motion + Color Color
Correlation Color difference + correlation+
in Color difference Motion Motion

Recall 0.8 0.8 0.804 0.928
Correctness 0.851 0.828 0.780 0.811
F-measure 0.82 0.81 0.79 0.865

5 Conclusion

This paper discusses about the retrieval of plays in sport MPEG videos using
similar motion retrieval and similar scene retrieval in normal color frames. For
recognizing sport videos, the motions represent important meanings. In the cases,
there must be similar video retrieval methods based on the motions described in
the videos. The scene retrieval based on color frames works well. The proposed
similar play retrieval method is the combination of motion based similar play
retrieval method and color based similar scene retrieval method.

The experiment shows that the similar play retrieval works well using both of
motion compensation vectors and normal color frames in MPEG videos. Classical
works using MPEG motion compensation vector only uses global-scale motions.
However, the proposed method utilizes local motions. The proposed combination
of motion compensation vector method and normal color frame method works
well in our experiments. Using both methods, the proposed method gets some
more performance than a single motion vector method.
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Abstract. Most of video-surveillance based applications use a
foreground extraction algorithm to detect interest objects from videos
provided by static cameras. This paper presents a benchmark dataset
and evaluation process built from both synthetic and real videos, used
in the BMC workshop (Background Models Challenge). This dataset fo-
cuses on outdoor situations with weather variations such as wind, sun or
rain. Moreover, we propose some evaluation criteria and an associated
free software to compute them from several challenging testing videos.
The evaluation process has been applied for several state of the art algo-
rithms like gaussian mixture models or codebooks.

1 Introduction

The ability to detect objects in videos is an important issue for a number of
computer vision applications like intrusion detection, object tracking, people
counting, etc. In the case of a static camera, a foreground extraction algorithm
is a popular operation to point out objects of interest in the video sequence.
Although modeling background seems simple, challenging situations occur in
classic outdoor environments such as variation of illumination conditions or local
appearance modifications resulting to wind or rain. In order to handle such
situations, many background/foreground adaptive models have been proposed
in the last fifteen years. An important issue is to provide a way to evaluate and
compare most popular models according to standard criteria.

Although the evaluation of background subtraction algorithms (BSA) is an
important issue, the impact of relevant papers that handle with both benchmarks
and annotated dataset is limited [1,10]. Moreover, many authors that propose
a novel approach use [11] as a gold-standard, but rarely compare their method
with recent related work. This paper proposes a set of both synthetic and real
video and several performance evaluation criteria in order to evaluate and rank
background/foreground algorithms. Popular methods are then evaluated and
ranked according to these criteria.

The next section (Section 2) presents the annotated datasets we have pro-
posed for the BMC (Background Models Challenge), composed of 20 synthetic

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 291–300, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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videos and 9 real videos. We also define the quality metrics available in the
benchmark, and computable with a free software (BMCW). In Section 3, we
conduct a complete evaluation of six classic background subtraction algorithms
of the literature, thanks to the benchmark of BMC.

2 Datasets and Evaluation Criteria

2.1 Learning and Evaluation Videos

In the contest BMC (Background Models Challenge) 1, we have proposed a com-
plete benchmark composed of both synthetic and real videos. They are divided
into two distinct sets of sequences: learning and evaluation.

The benchmark is first composed of 20 urban video sequences rendered with
the SiVIC simulator [4]. With this tool, we are also able to render the associate
ground truth, frame by frame, for each video (at 25 fps). Two scenes are used
for the benchmark:

1. a street;
2. a rotary.

For each scene, we propose 5 event types:

1. cloudy, without acquisition noise;
2. cloudy, with noise;
3. sunny, with noise;
4. foggy, with noise;
5. wind, with noise.

For each configuration, we have two possible use-cases:

1. 10 seconds without objects, then moving objects during 50 seconds;
2. 20 seconds without event, then event (e.g. sun uprising or fog) during 20

seconds, finally 20 seconds without event.

The learning set is composed of the 10 synthetic videos representing the use-case
1. Each video is numbered according to presented event type (from 1 to 5), the
scene number (1 or 2), and the use-case (1 or 2). For example, the video 311
of our benchmark describes a sunny street, under the use-case 1 (see Figure 1).
In the learning phase of the BMC contest, authors use these sequences in order
to set the parameters of their BSA, thanks to the ground truth of each image
that is available, and to a software of computation of quality criteria (see next
section).

The Evaluation set first contains the 10 synthetic videos with use-case 2. In
Figure 1, the video 422, presenting a foggy rotary under use-case 2, is depicted.
This set is also composed of real videos acquired from static cameras in video-
surveillance contexts (see Figure 2). This dataset has been built in order test

1 http://bmc.univ-bpclermont.fr

http://bmc.univ-bpclermont.fr


A Benchmark Dataset for Outdoor Foreground/Background Extraction 293

Fig. 1. Examples of synthetic videos and their associated ground truth in our dataset.
Left: scene 1, configuration 3, use-case 1 (learning phase). Right: scene 2, configuration
4, use-case 2 (evaluation phase)

the algorithms reliability during time and in difficult situations such as outdoor
scenes. So, real long videos (about one hour and up to four hours) are available,
and they may present long time change in luminosity with small density of
objects in time compared to previous synthetic ones. This dataset allows to test
the influence of some difficulties encountered during the object extraction phase.
Those difficulties have been sorted according to:

1. the ground type (bitumen, ballast or ground);
2. the presence of vegetation (trees for instance);
3. casted shadows;
4. the presence of a continuous car flow near to the surveillance zone;
5. the general climatic conditions (sunny, rainy and snowy conditions);
6. fast light changes in the scene;
7. the presence of big objects.

Fig. 2. Examples of real videos and their associated ground truth in our dataset (eval-
uation phase)

For each of these videos have been manually segmented some representative
frames that can be used to evaluate a BSA. In the evaluation phase of the BMC
contest, no ground truth image is available, and authors should test their BSA
with the parameters they have set in the learning phase.

2.2 Quality Assessment of a Background Subtraction Algorithm

In our benchmark, several criteria have been considered, and represents different
kinds of quality of a BSA.
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Static Quality Metrics. Let S be the set of n images computed thanks to a
given BSA, and G be the ground truth video sequence. For a given frame i, we
denote by TPi and FPi the true and false positive detections, and by TNi and
FNi the true and false negative ones. We first propose to compute the F-measure,
defined by:

F =
1

n

n∑
i=1

2
Preci ×Reci
Preci +Reci

, (1)

with

Reci(P ) = TPi/(TPi + FNi) ; Preci(P ) = TPi/(TPi + FPi) (2)

Reci(N) = TNi/(TNi + FPi) ; Preci(N) = TNi/(TNi + FNi) (3)

Reci = (1/2)(Reci(P ) +Reci(P )) ; Preci = (1/2)(Preci(P ) + Preci(P )).(4)

We also compute the PSNR (Peak Signal-Noise Ratio), defined by:

PSNR =
1

n

n∑
i=1

10 log10
m∑m

j=1 ||Si(j)−Gi(j)||2 (5)

where Si(j) is the jth pixel of image i (of size m) in the sequence S (with
length n). These two criteria should permit to compare the raw behavior of each
algorithm for moving object segmentation.

Application Quality Metrics. We also consider the problem of background
subtraction in a visual and perceptual way. To do so, we use the gray-scale
images of the input and ground truth sequences (see Figure 3) to compute the
perceptual measure SSIM (Structural SIMilarity), given by [14]:

SSIM(S,G) =
1

n

n∑
i=1

(2μSiμGi + c1)(2covSiGi + c2)

(μ2
Si

+ μ2
Gi

+ c1)(σ2
Si

+ σ2
Gi

+ c2)
, (6)

where μSi , μGi are the means, σSi , σGi the standard deviations, and covSiGi

the covariance of Si and Gi. In our benchmark, we set c1 = (k1 × L)2 and
c2 = (k2×L)2, where L is the size of the dimension of the signal processed (that
is, L = 255 for gray-scale images), k1 = 0.01 and k2 = 0.03 (which are the most
used values in the literature).

We finally use the D-Score [8], which consists in considering localization of
errors according to real object position. As Baddeleys distance, it is a similarity
measure for binary images based on distance transform. To compute this measure
we only consider mistakes in BSA results. Each error cost depends on the distance
with the nearest corresponding pixel in the ground-truth. As a matter of fact,
for object recognition, short or long range errors in segmentation step are less
important than medium range error, because pixels on medium range impact
greatly on object’s shape. Hence, the penalty applied to medium range errors
is heavier than the one applied to those in a short or large range, as shown on
Figure 4.
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Fig. 3. To compute the SSIM, we need the intensities of pixels, in the ground truth
sequence G (Left), and in the sequence computed by a BSA (Right)

Fig. 4. Examples of computation of the D-Score. From Left to Right: a ground-truth
image; cost map based on a DT; example of long ranges errors, leading to a D-Score
of 0.003; omissions with medium range errors, with D-Score: 0.058

More precisely, the D-Score is computed by using:

D−score(Si(j)) = exp
(
(− log2 (2.DT (Si(j))− 5/2)2

)
(7)

where DT (Si(j)) is given by the minimal distance between the pixel Si(j) and
the nearest reference point (by any distance transformation algorithm). With
such a function, we punish errors with a tolerance of 3 pixels from the ground-
truth, because these local errors do not really affect the recognition process. For
the same reason, we allow the errors that occur at more than a 10 pixels distance.
Details about such metric can be found in [8]. Few local/far errors will produce
a near zero D-Score. On the contrary, medium range errors will produce high
D-Score. A good D-Score has to tend to 0.

3 Results and Analysis

3.1 Material and Methods

In this article, we will present the quality measures presented in the previous sec-
tion for the methods depicted in Table 1. Most of those approaches are available
thanks to the OpenCV library 2. The parameters were tuned with a stochastic
gradient descent to maximize the F-measure for the sequences of the learning
phase.

We present the values of all the quality criteria exposed in the previous section,
for the evaluation set of videos. Criteria are calculated thanks to the BMC

2 http://opencv.org/

http://opencv.org/
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Table 1. The methods tested in this article, with their associated references

Name Description

NA Naive approach, where pixels differing from the first image of the sequence
(under a given threshold) are considered as foreground (threshold = 22).

GMM1 Gaussian mixture models from [5,11], improved by [6] for a faster learning
phase.

GMM2 Gaussian mixture models improved with [12,13] to select the correct number
of components of the GMM (history size = 355, background ratio = 16).

BC Bayesian classification processed on feature statistics [9] (L = 256, N1 =
9, N2 = 15, Lc = 128, Nc

1 = 25, Nc
2 = 25, no holes, 1 morphing step,

α1 = 0.0422409, α2 = 0.0111677, α3 = 0.109716, δ = 1.0068, T = 0.437219,
min area = 5.61266).

CB Codewords and Codebooks framework [7].
VM VuMeter [3], which uses histograms of occurences to model the background

(α = 0.00795629 and threshold = 0.027915).

Wizard (BMCW, see a screenshot in Figure 5), which can be downloaded from
the BMC website 3.

Fig. 5. The BMC Wizard, a free software to compute criteria of our benchmark

3.2 Results

Figures 6 to 10 show the global performance of each method for each evaluated
score. Figure 10 can be consulted in color in the online version.

Tables 1 to 29, from the supplementary material of this article, show the
performance of each method for each sequence:

3 http://bmc.univ-bpclermont.fr/?q=node/7

http://bmc.univ-bpclermont.fr/?q=node/7
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Fig. 10. Precision and Recall for each method

– Learning phase:
• Street: tables 1 to 5;
• Rotary: tables 6 to 10.

– Evaluation phase:
• Street: tables 11 to 15;
• Rotary: tables 16 to 20;
• Real applications: tables 21 to 29.

3.3 Analysis

From a statistical point of view (Figure 6), we can notice that the best method
of our tests is BC, since its F-measure has the shortest range of values, with



A Benchmark Dataset for Outdoor Foreground/Background Extraction 299

highest values (from 0.65 to 0.93 approximately). The case of the VM method
is interesting because its F-measure is focused around the interval [0.8; 0.85].
These observation can be confirmed by Figure 10, where BC and VM have the
greatest numbers of points coming close the (1, 1) point. GMM1 has also a similar
behaviour, around the 0.75 value, and a very good precision. GMM2 has a point
of focus around the 0.9 value, but has also a wide interval of F-measures. The
CB approach returns a very wide range of values, which could be induced by
the high variability of the parameters of the method. Figure 10 informs us that
the real videos of our benchamrk are not correctly processed by CB, impacting
a global bad results. This phenomenon can also be observed for the NA, in a
more negative way.

As illustrated in Figure 8, the PSNR gives us equivalent general informations
about the tested BSA. We can also notice an increasing feeling of non-control of
the results of CB and NA. Points of focus are also observable for VM ([50; 60])
and GMM1 ([45; 55]).

From a structural point of view, the values of SSIM and D-score lead to
similar conclusions: CB and NA are not constant, and not efficient on the whole
benchmark. Its seems even better to choose NA (SSIM greater than 0.4) instead
of CB (SSIM can be around 0.1 or 0.2).

4 Conclusion

In this article, we have proposed to test the benchmark proposed in the BMC
contest, with six classic background subtraction algorithms of the literature.
Thanks to the measures we have computed, we can determine several qualities
of the tested methods.

We would like to propose an other contest in 2013, with maybe more real
videos, containing complex contexts. The BMC website is an interesting way to
keep our benchmark available to researchers who want to test their algorithm.
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Abstract. Background models are often used in video surveillance sys-
tems to find moving objects in an image sequence from a static camera.
These models are often built under the assumption that the foreground
objects are not known in advance. This assumption has led us to model
background using one-class SVM classifiers. Our model belongs to a fam-
ily of block-based nonparametric models that can be used effectively for
highly complex scenes of various background distributions with almost
the same configuration parameters for all examined videos. Experimen-
tal results are reported on a variety of test videos from the Background
Models Challenge (BMC) competition.

1 Introduction

Moving foreground objects in an image sequence from a static camera can be
detected by comparing new images with a representation of the background
scene. This process is called background subtraction and the representation of
the background is called the background model. Background models must be
able to cope with changes in the background scene that may occur over time.
These include illumination changes, fluctuations of local image patterns (e.g.,
swaying trees and fluttering flags), flickering CRTs, and so on.

A common assumption in background modeling is that ground-truth images
are not available for training. Thus, background models should be built with-
out knowledge about what foreground objects are expected to appear [1]. With
respect to the background, however, it is common to assume that a priori knowl-
edge is available for training. Because the available information pertains to only
one side of the problem, we propose in the following to use one-class classification
tools to model background scenes.

In general, traditional supervised classifiers are trained using positive and
negative examples. However, in our settings, labeled data exist for only the
background class. A straightforward learning approach would be to estimate the
distribution of the background. However, density estimation in high-dimensional
data is hard, requiring a large number of examples, and is sensitive to outliers.
One-class classifiers are an efficient alternative. Unlike the binary decisions out-
put by traditional classifiers, the decisions output by one-class classifiers tell us
whether examples were drawn from the distribution of the learned class. In this
work we use one-class SVM (OCSVM ) classifiers [2] to model the distribution of
the background. Our decision to use OCSVM is motivated by its nonparametric

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 301–307, 2013.
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assumption about the expected distribution of the background, which allows us
to effectively model highly complex scenes of various background distributions.
In addition, its robustness to outliers during training allows us to efficiently
construct models where some foreground objects may appear in the images.

In short, our model works as follows. Images are processed at three levels of
resolution: block-level, region-level, and frame-level. We follow the approach used
by Stauffer et al. [3] and assume that no foreground objects exist in the first
n images. The first images are thus used to initialize the model. At the block-
level, images are divided into b equal-sized blocks of pixels. Then, b OCSVM
classifiers are independently trained on each block to model the distribution of
its background. At the region-level, inter-block relationships are used to refine
the OCSVM classification results. At the frame-level, an adaptive background
method is used to re-initialize the model with regions that are considered with
high confidence to be part of the background.

Our method performed very well on a variety of test videos in the Background
Models Challenge (BMC) competition 1. Two guidelines influenced our design
and implementation decisions. First, in order that our model be effective in
practice, we wanted it to rely on as few parametric assumptions as possible.
Second, when faced with a trade-off between performance stability (under various
background distributions) and precision, we were more likely to prefer the stable
alternative. As a result, we were able to run all synthetic videos using the same
configuration parameters. Almost the same parameters were used for all real
videos as well.

2 Related Work

Our proposed background model belongs to a family of nonparametric models.
Unlike parametric models, which make distributional assumptions about the
background scene and will not perform well when the model does not fit the
data, nonparametric models make no such assumptions and hence are more
likely to perform well on a wider range of background distributions.

Background models can further be divided to pixel-based and block-based
models. Pixel-based models, which are perhaps the most common, are used to
model each pixel separately. For example, a nonparametric pixel-based model
was introduced by Elgammal et al. [4], where kernel density estimators were used
to model distributions of each pixel. This is in contrast to block-based models,
which take a broader view of the problem: knowledge about groups of adjacent
pixels (blocks) are used to model distributions. For example, in [5], the median
and variance statistics over the background learning period are calculated for
each block. A block is thus considered as a part of the background if it correlates
positively with the background statistics.

Although block-based models are expected to have more stable performance
than pixel-based models, they are less commonly used in practice, mainly be-
cause their resolution is limited to a block size. Indeed, this limitation may

1 http://bmc.univ-bpclermont.fr

http://bmc.univ-bpclermont.fr
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lead in some image sequences to a degradation in precision and an increased
false-positive rate. However, recent improvement in efficiency of parallel compu-
tational methods and increased resolution of surveillance cameras might change
this trend. Our introduction, in this work, of a nonparametric block-based model
is a step in this promising direction. In addition, as far as we know, this work is
the first to use OCSVM for this purpose.

3 One-Class Background Model

We now introduce the proposed one-class model to perform robust background
subtraction.

3.1 Block Level

A one-class SVM classifier is built for each equal-sized block of N ×N pixels 2.
We assume that a set of n block instances taken from the background scene
is available to train the classifier. For color images, each block instance is rep-
resented by its intensity values as a feature vector of size d = 3 × N × N . A
rough invariance to illumination changes is obtained by normalizing the feature
vectors so that their sum equals one. The set of n d-dimensional feature vectors
x1, . . . , xn is used as the training set.

The OCSVM classifier is a nonparametric approach for estimating the support
vectors (SVs) of a high-dimensional distribution [2]. Suppose we use a mapping
function Φ : Rd → F to map the feature vectors to some other space F such
that each mapped vector lies on a hypersphere. The basic concept is to treat
the origin of this hypersphere as the only member of the second class, and
to find the separating hyperplane between the classes with maximal margins.
This optimization problem is solved under the condition that no more than a
predefined quantile of training examples lies outside the hyperplane. At the end
of the training phase, the signed distance between a mapped feature vector Φ(x)
and the calculated separating hyperplane is

t (x) = −
n∑

i=1

αiK (xi, x) + b (1)

where α1, . . . , αqc are called the SVs’ coefficients and K (·, ·) is a kernel function
that serves as a dot product in F , i.e., K (xi, xj) = (Φ(xi) · Φ(xj))F

3.
While not strictly true in theory, it is common to assume in practice that a

larger distance t(x) corresponds to a lower likelihood that x was drawn from the
distribution of the learned class. The proposed one-class model uses this property
to estimate the probability of a new block to be a part of the background.
For this purpose, a cross-validation procedure over the training set is used to

2 A block size of 5× 5 pixels was used for all experiments.
3 We use a Gaussian kernel K(xi, xj) = e−γ(xi−xj)

2

.
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estimate the expected distances of background blocks. Then, given a distance
t(x) associated with a new block, the following nonparametric, one-tailed version
of the Chebyshev inequality is used to bound the probability that this is a
background block:

P (t(x)− μ ≥ kσ) ≤ 1

1 + k2
(2)

where μ and σ are the expected mean and standard deviation of the distance
of background blocks, and k is a real number greater than zero. New blocks
with probability lower than a predefined threshold th are classified as foreground
blocks. Since the distribution of background blocks may vary over time, a pooled
variance procedure is used every fixed number of m blocks to update μ and σ
with distances of new blocks that were classified as a part of the background.

3.2 Region Level

Given a binary image consisting of foreground and background pixels that were
set at the block-level, we apply the following region-level process. Foreground
pixels of each connected component in the image are replaced with their convex
hull to get a hole-free component. Then, erosion and dilation operators are ap-
plied with a disk structuring size of 8 for erosion and 4 for dilation. We found
that this process increases the recall with a reasonable decrease of precision.

3.3 Frame Level

To support model adaptation for abrupt changes in the background scene, de-
tection results of the last n images are saved (recall that n is also the number
of block instances used for training). When all n recent detections of a specific
block have been classified as foreground, the model associated with this block is
re-initialized by training its OCSVM classifier using these n blocks.

3.4 Technical Considerations

The number of blocks b is an external input parameter specified by the available
computational resources 4. Given b, each image is resized so that no more than
b blocks of size N ×N will fit into the image.

Experiments were conducted on 20 synthetic and 9 real videos taken from the
BMC competition. On some of the synthetic videos 5, all blocks in the training
set that correspond to the same location might be identical. This ill-conditioned
input provides a meaningless solution and a constant distance is returned for
all inputs. A simple ad-hoc solution that overcomes this problem is to classify a
new block as foreground if it does not share the same values as in the training
set. Although this trivial solution may lead to increased false-positive rates,

4 Note that all blocks can be trained and run independently, suggesting straightfor-
ward, effective, parallel implementation.

5 Synthetic videos 111, 112, 121, 122; see Section 4 for details.
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we decided to direct our time and efforts in other directions because it is very
unlikely that this problem will actually occur.

For the synthetic videos, we treat the beginning of the evaluation sequences
as extensions of the learning sequences. Due to abrupt changes at the beginning
of most evaluation sequences, th is multiplied by a factor of 0.01 for the first n
images, until the model is stabilized.

One last modification was made to remove temporal patterns from image se-
quences. For each pixel in a new image, its median RGB intensities over the last
three images are used as inputs for the block-level instead of their original inten-
sities. This modification slightly improved the precision for the snowy weather
video (real video 5).

4 Experimental Results

Experiments were conducted on 10×2 synthetic and 9 real videos taken from the
BMC competition 6. The default parameters were as follows: The first n = 150
frames were used to initialize the model, thresholds were set to th = 0.001,
and distance statistics were updated every m = 50 images. Exceptions are n =
50 for real videos 2, 3, 6, 8 (due to the presence of foreground objects during
training), and th = 0.0005 for real videos 1, 4, 6, 9. For synthetic videos, images
were divided into b = 5000 blocks of pixels. Due to runtime considerations, real
videos were divided to b = 500 blocks 7. Results, displayed in the format of the
BMC competition, are provided in Table 1 and Table 2.

Table 1. Results for the learning phase (synthetic videos only)

- Total Dynamic 1 phase Dynamic 2 phase Static phase
# Rec. Prec. F PSNR Rec. Prec. F PSNR Rec. Prec. F PSNR Rec. Prec. F PSNR

111 0.99 0.63 0.77 43.29 0.99 0.63 0.77 38.99 0.99 0.62 0.76 43.12 0.99 0.63 0.77 38.32
121 0.99 0.68 0.81 45.30 0.99 0.68 0.80 47.71 0.98 0.66 0.79 47.70 0.98 0.68 0.81 40.94
211 1.00 0.78 0.87 56.19 1.00 0.79 0.88 51.86 0.99 0.79 0.88 57.78 1.00 0.78 0.87 51.07
221 0.97 0.76 0.85 51.44 0.99 0.72 0.83 50.69 0.87 0.73 0.79 53.85 0.98 0.77 0.86 48.09
311 1.00 0.76 0.86 55.24 1.00 0.78 0.88 51.69 1.00 0.79 0.88 57.44 0.99 0.77 0.87 50.35
321 0.96 0.76 0.85 51.32 0.99 0.71 0.83 50.72 0.86 0.74 0.74 54.30 0.97 0.77 0.86 47.53
411 0.98 0.76 0.85 54.62 0.99 0.79 0.88 52.00 0.98 0.81 0.89 59.36 0.98 0.80 0.89 53.08
421 0.93 0.70 0.80 47.07 0.95 0.70 0.80 49.51 0.81 0.71 0.76 52.88 0.96 0.79 0.86 48.96
511 0.99 0.78 0.88 56.77 1.00 0.79 0.88 52.36 0.99 0.80 0.88 58.29 0.99 0.79 0.88 51.75
521 0.97 0.76 0.85 51.49 0.99 0.72 0.83 51.14 0.86 0.73 0.79 54.00 0.98 0.77 0.86 47.96

5 Discussion

Our decision to prefer stability over precision is illustrated in Figure 1 (blocks
are bordered with white lines). It can be seen that while all foreground pixels are

6 10 synthetic videos are divided to learning and evaluation phases, 20 in total. See
http://bmc.univ-bpclermont.fr/?q=node/6 for details.

7 On a standard PC with an Intel Duo-core 2.4GHz 4G RAM processor, average train-
ing time for a block is 0.136 seconds (classification time is less than 1 millisecond).

http://bmc.univ-bpclermont.fr/?q=node/6
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Table 2. Results for the evaluation phase (synthetic and real videos)

- Synthetic video Real video
# Rec. Prec. F PSNR D-Score SSIM # Rec. Prec. F PSNR D-Score SSIM

112 0.85 0.66 0.75 45.41 0.0035 0.99 Vid1 0.87 0.64 0.74 35.72 0.0126 0.97
122 0.88 0.70 0.78 42.28 0.0051 0.99 Vid2 0.67 0.63 0.65 21.58 0.0255 0.87
212 0.98 0.82 0.89 50.49 0.0019 1.00 Vid3 0.67 0.64 0.66 34.57 0.0215 0.95
222 0.89 0.82 0.85 46.65 0.0031 0.99 Vid4 0.97 0.68 0.80 39.16 0.0107 0.98
312 0.95 0.82 0.88 50.53 0.0018 1.00 Vid5 0.87 0.60 0.71 38.61 0.0085 0.97
322 0.85 0.82 0.83 46.74 0.0030 0.99 Vid6 0.84 0.64 0.73 25.65 0.0267 0.91
412 0.88 0.76 0.82 49.25 0.0020 0.99 Vid7 0.92 0.77 0.83 28.41 0.0215 0.93
422 0.81 0.75 0.78 45.18 0.0031 0.99 Vid8 0.59 0.53 0.56 24.04 0.0271 0.89
512 0.96 0.84 0.89 50.98 0.0018 1.00 Vid9 0.94 0.64 0.76 45.74 0.0069 0.99
522 0.85 0.85 0.85 47.42 0.0027 0.99

Fig. 1. Recall: 1.0. Precision: 0.17 (Vid1)

detected, the precision drops dramatically due to misclassifications in the region
surrounding the foreground object. Indeed, this drop in precision is not desired.
However, we believe that regions of misclassified pixels adjacent to foreground
objects are an acceptable price to pay to achieve stable results.

In general, although better results can be achieved by choosing different pa-
rameters for different videos, we preferred, for the sake of efficiency, to evaluate
our model with almost the same configuration for all videos. The stability of
our results can be found across almost all videos, especially the long ones where
background scenes change over time (real videos 1, 5, and 9). Note that videos
with degraded performance (real videos 2, 3, 6, and 8) are usually the shorter
ones where foreground objects are present from the very first frame. When no
semantic knowledge about foreground objects is available for modeling, it is hard
to tell that these objects are not part of the background scene. In terms of its
computational efforts, our model is easy to implement in real-time on standard
computers.
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Using Mixture of Gaussians and SURF Features
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Abstract. The Mixture of Gaussians (MoG) is a frequently used
method for foreground-background separation. In this paper, we pro-
pose an on-line learning framework that allows the MoG algorithm to
quickly adapt its localized parameters. Our main contributions are: local
parameter adaptations, a feedback based updating method for stopped
objects, and hierarchical SURF features matching based ghosts and lo-
cal illumination suppression method. The proposed model is rigorously
tested and compared with several previous models on BMC data set and
has shown significant performance improvements.

1 Introduction

Precise localization of foreground objects is the most important building block of
the higher-level computer vision applications including smart video surveillance,
automatic sports video analysis, health care and interactive gaming [1]. However,
an accurate foreground detection for complex visual scenes in real-time is a
difficult task due to the intrinsic complexities of the real-world scenarios. The
key challenges are: dynamic background, shadows, sudden illumination changes,
bootstrap, camouflage and foreground aperture [2].

Recently, important research efforts have been made in developing methods
and systems for detecting foreground objects for complex video streams [1, 3–5].
The Mixtures of Gaussians (MoG) is the most popular background model among
the community due to its robustness for multi-model backgrounds, and gradual
illumination changes [1, 3]. Thus, it is widely adopted as a basic framework
in many subsequent models [6, 7]. However, it is a parametric model and in-
order to get satisfactory results one has to manually tune the parameters for
typical scene, which is a tedious task and makes this less attractive for real-time
applications [1, 8].

In the last decade, several improvements have been proposed for MoG param-
eter learning. The Dirichlet prior [6], stochastic approximation procedure [9],
mixture weight and particle swarm [8] based approaches are adopted for optimal
setting of the number of mixture components. In [7], an adaptive learning rate
for each Gaussian component is adopted. Furthermore, the MoG [3] is enhanced
in [4] to address its slow learning issue. They used different updating equations
for initial training and on-line updating to make it robust for dynamic scenes.
Moreover, they also presented a shadow detection technique using brightness

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 308–314, 2013.
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and chromatic distortion cue’s. Nevertheless, reliable moving object detection in
complex visual scenes is still an open problem [1].

In this paper, we propose an on-line adaptive background learning model for
better foreground detection in complex video scenes. The main contributions are
as follows: Firstly, we introduce a new localized learning algorithm using some
of the recent random samples for the periodic re-learning and a local frequency
of change for optimal parameters selection. Secondly, a novel background up-
date algorithm for handling paused objects in the scene is proposed. We use
temporal foreground history as feedback to adjust foreground updating to pre-
vent incorporating sleeping objects into the background. Fourth, we introduce a
new matching function by separately modeling intensity and color cue’s. Fifth, a
novel local illumination (shadows and lighting) and ghosts suppression method
is proposed using SURF [10] features matching. We have rigorously tested and
compared of our proposed model with several previous techniques on background
model challenge (BMC’12) data set 1. The propose model achieves significantly
better results as compared to the previous models.

2 The Proposed Method

The main components of the propose models are described as follows.

2.1 Background Model

We have used MoG framework [3] as a base for our proposed model and built
on it. In our proposed model each pixel is characterized by YUV color feature
and probability of observing the current pixel value is given as follows:

P (Xt) =
K∑
i=1

ωi,t.η(Xt, μk,t, Σk,t) (1)

Here Xt is YUV color feature of the current pixel, K is the number of compo-
nents, ωi,t is a weight associated to the ith component, μk is mean, Σk standard
deviation of pixel values and η is Gaussian probability density function. The first
few video frames are used for initial training by employing the EM algorithm
and very first frame is used to initialize the model by setting mean of the first
component to the pixel value and variances to some higher value and weight
to 1 for the first component and to 0 for all others. It should be noted that
mixture weights are non-negative and add up to one. To avoid the costly matrix
inversion, it is assumed that dimensions of X are statistically independent and
identical (i.i.d) and represented covariance matrix as (Σk = σ2

i,tI). However, we
computed separate variance for color (UV) and intensity (Y) channels.

It has been observed from several real video data that distribution of pixels’
has higher variance in intensity channel and relatively lower variations in color

1 http://bmc.univ-bpclermont.fr/

http://bmc.univ-bpclermont.fr/
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Fig. 1. Distribution of pixel data in
YUV color space

Surf match [blob#1]

Initial foreground

Refined foreground

SURF miss-match [blob#2]

Current ImageBackground Image

Fig. 2. Example demonstrating the effective-
ness of SURF features matching for ghosts
suppression

channels as shown in Fig.1. This is a common trend specially if data is repre-
sented in YUV color space 2. We propose a new match function by computing
separate variances for color and intensity channels. A new match function is
formulated as follows:

Mk
i,t =

{
1, if (|μk,I

i,t −XI
i,t| < λi,tσ

2,k,I
i,t ) ∧ (|μk,c

i,t −Xc
i,t| < λi,tσ

2,k,c
i,t )

0,Otherwise
(2)

where k, i and t are the indexes of Gaussian component, pixel number in a frame
and frame number in a video respectively whereas XI

i,t=Y is an intensity of the
pixel and Xc

i,t={U, V } is a color vector of the pixel. Here, the match function is
1 for the closest component to the pixel data and 0 for all others.

Background pixels appear more frequently than the foreground ones, thus the
components are arranged in a descending order by the rank Rk = ωk/σk, and
the first B components having cumulative posterior probability greater than the
threshold T are considered background as follows:

B = argminb(
b∑

k=1

ωk > T ). (3)

For each input video frame, pixel value is matched against already learned mod-
els. If the matching component is among the first B components then it is clas-
sified as background, otherwise as foreground.

2.2 SURF Features Based Ghost Suppression

Local illumination changes (shadows and lighting) are common phenomena in
real world videos and have similar motion properties as foreground, which causes

2 The YUV color space represent intensity and color information separately thus a
better choice for modeling the underlying data.
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large number of false positives (ghosts). In this section we introduce SURF [10]
features based approach to remove the ghosts from the foreground map.

The foreground regions (bounding box of the blobs) of the current image and
background image generated from the highest rank components of the back-
ground model are used for SURF feature detection and matching. For every
foreground blob SURF features are matched and irrelevant features are removed
using RANSAC sampling. If there is an enough evidence of similarity between
background and current image we classify that blob as a background and stop
further processing. Otherwise, we divide the foreground blob into 4 equal size
blocks and repeat the same matching process recursively until the block is clas-
sified as background or its size reaches to some minimum area. The effectiveness
of ghost removing techniques can be seen in Fig.2.

2.3 Background Model Update Algorithm

If there is no match with any of the existing component, then the least probable
Gaussian is replaced by setting mean to a the pixel data, σ to some higher value
(Σ0), and weight to a small value (ωinit). The parameters are then updated as
follows:

μk,c
i,t+1 = (1−ρ)μk,c

i,t +ρXc
i,t, (4) μk,I

i,t+1 = (1− ρ)μk,I
i,t + ρXI

i,t, (5)

σ2,k,I
k,t+1 = (1− ρ)σ2,k,I

k,t + ρ((μk,I
i,t −XI

i,t)o(μ
k,I
i,t −XI

i,t)), (6)

σ2,k,c
k,t+1 = (1− ρ)σ2,k,c

k,t + ρ((μk,c
i,t −Xc

i,t)o(μ
k,c
i,t −Xc

i,t)), (7)

ρ =
αi,tP (k|Xt, Θ)

ωk,t+1
. (8)

where P (k/Xt, Θ) is the likelihood for component k given the pixel value (Xt)
and Gaussian parameters (Θ). Here P (k/Xt, Θ) is 1 for winning component and
0 for all others.

The presence of sleeping objects is an other issue that confounds traditional
models. The adaptive models quickly adapt to the changing condition and there-
fore incorporate stopped objects into the background model due to the blind
update mechanism. A new background updating technique is proposed here to
protect paused objects from being incorporated into the background. Foreground
blobs having a traceable history of spatial and temporal movement are detected
as paused objects and the models corresponding to these objects are adapted as
follows:

ωk
t+1 =

{
ωk
t + ε, if Mk

i,t == 1

ωk
t , otherwise

(9)

where ε is fixed global learning rate set to very small value. Our proposed tech-
nique increases the weight of winning Gaussian a little and keep the weights



312 M. Shah, J. Deng, and B. Woodford

for all others the same. In this way proposed model is more resistive in adding
foreground objects into the background model. Non-sleeping pixels are updated
as follows:

ωk
t+1 = (1− αi,t)ω

k
t + αi,tM

k
i,t, (10)

2.4 Automatic Parameter Selection

To enable automatic parameter adaptation we use a fixed length sliding window
to keep the most recent N frames in order to capture ongoing statistical changes
in a video. Empirically we find a setting of 10 ≤ N ≤ 20 is sufficient.

Learning Rate (α): Learning rate α controls the convergence speed of the
model. The optimal value for the learning rate depends on the given background
scene. A static background needs a small learning rate, whereas a dynamic back-
ground scene require higher α [7]. Complex dynamic scenes are hard to model
by using single global α therefore we employ an adaptive α defined locally for
each pixel as a follows:

fi,t =

{
fi,t−1 + 1, if δi,t > ϕ

fi,t−1, otherwise
(11) αi,t =

∑N
k=1 fi,k
Ki,tN

, (12)

where δn is an absolute difference in pixel values of consecutive frames and ϕ is
a threshold used to avoid changes due to noise, typically set to some small value.
The local learning rate is then modeled as shown in Eq. (12) where Ki,t is the
current number of Gaussian components for pixel i. Hence the adaptive α does
not depend on the initial settings but will adapt to the scene dynamics rapidly.

Deviation Threshold (λ): The deviation threshold λ is used to avoid various
video acquisition noises such as sensor noise, weather condition and auto focus.
We again propose to use local adaptive deviation thresholds and relate them to
the local intensity difference δi as follows.

γi =

{
δi,t, if δi,t ≤ 2.5λi,t−1

λi,t−1, otherwise
, (13) λi,t =

1

N

N∑
k=1

γi,k (14)

It should be noted that only the change due to noise is used whereas large
changes are considered as outliers and thus ignored. The deviation threshold is
then smoothened as shown in Eq.(14).

3 Experimental Results

The proposed model is rigorously evaluated on the data-set provided for back-
ground models challenge (BMC) data-set. This data-set contains number of syn-
thetic and real world video sequences both for indoor and out door environment.
Furthermore, for performance evaluation human annotated ground truths are
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Table 1. Results on synthetic video dataset

Video Recall Precision F-measure PSNR D-score SSIM

112 0.94773 0.86402 0.90394 51.85110 0.00128 0.99590

122 0.93307 0.89738 0.91487 48.20490 0.00176 0.99359

212 0.92327 0.89341 0.90810 52.70680 0.00108 0.99612

222 0.92826 0.91176 0.91994 48.68980 0.00157 0.99374

312 0.86582 0.90613 0.88552 53.13000 0.00113 0.99574

322 0.78298 0.93670 0.85297 49.41880 0.00193 0.99214

412 0.84390 0.74639 0.79216 49.19960 0.00105 0.99091

422 0.79753 0.74788 0.77191 45.32370 0.00174 0.98623

512 0.92118 0.76930 0.83842 49.17320 0.00123 0.99236

522 0.91955 0.89088 0.90499 48.22730 0.00169 0.99275

Table 2. Results on real video dataset

Video Recall Precision F-measure PSNR D-score SSIM

001 0.70782 0.70391 0.70175 35.61480 0.00859 0.96129

002 0.83300 0.78968 0.81076 30.00140 0.01102 0.94430

003 0.93272 0.86177 0.89584 46.59210 0.00445 0.98359

004 0.83701 0.89368 0.86442 51.90270 0.00304 0.99063

005 0.73716 0.72640 0.71420 37.45680 0.00284 0.95699

006 0.80093 0.81573 0.80826 35.93770 0.01111 0.95763

007 0.75143 0.75175 0.75159 27.73580 0.01453 0.95243

008 0.68647 0.64794 0.66655 39.11460 0.00723 0.95004

009 0.69182 0.70130 0.69652 53.09370 0.00284 0.99185

provided for all the sequences. We compared our proposed model “illumination
invariant background model (IIBM)” with three previous techniques: MoG [3],
AMoG [6] and MoG-SH [4]. These models are evaluated using the parameters
values mentioned in the original papers whereas our proposed model automati-
cally learn optimal setting of parameters from the data, therefore in that sense
it can be seen as a non-parametric model. Furthermore, we used standard per-
formance metrics Precision, Recall and F -measure for quantitative and PSNR,
SSIM and D-Score for qualitative analysis. 3

Table 1 and 2 shows the results for synthetic and real video sequences. For
synthetic dataset IIBM gives on average more than 85% accuracy both for qual-
itative and quantitative performance measures. Whereas for real video data-set
IIBM achieves more than 80% accuracy which is slightly less than synthetic
data-set. Our propose model (IIBM) gives about 6% improvement above the
best reported previous model (MoG-SH) as shown in Table 3. In summary, our
proposed model achieve significantly better results on most of the performance
evaluation metrics. The processing time for the proposed model running on an

3 Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and
dis-similarity criteria (D-Score).
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Intel (R) Core(TM) 2 (2.26 GHz Quad core CPU) machine was about 10 FPS for
BMC data-set (average). Thus, it can easily be applied in real-time application.

Table 3. Overall comparative results on BMC dataset

Video Recall Precision F-measure PSNR D-score SSIM

MoG [3] 0.82230 0.69273 0.74876 37.03239 0.00980 0.93598

AMoG [6] 0.82950 0.72803 0.77268 40.28893 0.00752 0.95627

MoG-SH [4] 0.70812 0.81325 0.75556 44.43956 0.00468 0.97206

IIBM 0.83085 0.81109 0.81852 46.32124 0.00337 0.98363

4 Conclusion

In this paper we presented an enhanced MoG background model by introducing
an online and self-adaptive mechanism for automatic selection of the parameters
and a novel match function. is presented. Furthermore, traceable temporal and
spatial history of foreground blobs is used as a feedback to detect and handle
paused objects by adjusting update speed. In the last step, the SURF features
matching is used to remove ghosts due to illumination changes.
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Abstract. Foreground detection is the first step in video surveillance
system to detect moving objects. Robust Principal Components Analy-
sis (RPCA) shows a nice framework to separate moving objects from the
background. The background sequence is then modeled by a low rank
subspace that can gradually change over time, while the moving fore-
ground objects constitute the correlated sparse outliers. In this paper,
we propose to use a low-rank matrix factorization with IRLS scheme
(Iteratively reweighted least squares) and to address in the minimization
process the spatial connexity and the temporal sparseness of moving
objects (e.g. outliers). Experimental results on the BMC 2012 datasets
show the pertinence of the proposed approach.

1 Introduction

The detection of moving objects is the basic low-level operations in video anal-
ysis. This detection is usually done using foreground detection. This basic op-
eration consists of separating the moving objects called ”foreground” from the
static information called ”background”. Recent research on robust PCA shows
qualitative visual results with the background variations appromatively lying in
a low dimension subspace, and the sparse part being the moving objects. First,
Candes et al. [1] proposed a convex optimization problem to address the robust
PCA problem. The observation matrix is assumed represented as: A = L + S
where L is a low-rank matrix and S must be sparse matrix with a small frac-
tion of nonzero entries. This research seeks to solve for L with the following
optimization problem:

min
L,S

||L||∗ + λ||S||1 subj A = L+ S (1)

where ||.||∗ and ||.||1 are the nuclear norm (which is the L1 norm of singular
values) and l1 norm, respectively, and λ > 0 is an arbitrary balanced parameter.
Under these minimal assumptions, this approach called Principal Component
Pursuit (PCP) solution perfectly recovers the low-rank and the sparse matrices.

In this paper, we propose a robust low-matrix factorization with IRLS scheme
to adress the second limitation. For a data matrix A containing the sequence, we
assume that a part is approximatively low-rank and product of two matrices, and
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a small part of this matrix is corrupted by the outliers. Furthermore, we directly
introduced a spatial term in the l1 minimization to address the spatial connexity
of the pixels. So, our contributions can be summarized as follows: 1) Addition
of spatial constraint to minimization process, 2) IRLS alternating scheme for
weighted the 2-parameters ||.||α,β for matrix low-rank decomposition. The rest
of this paper is organized as follows. The Section 2 focus on IRLS method ap-
plied on vector regression problems. In Section 3, we present a robust low-rank
matrix factorization which allows us to detect foreground objects in dynamic
backgrounds. In Section 4, we present results on the BMC 2012 datasets1 and
the Section 5 provides the conclusion.

2 Lp Minimization with Spatial Constraint

In most applications, video surveillance data is assumed to be compose of back-
ground, foreground and noise. Regression task is a crucial part of the proposed
decomposition algorithm. We consider the following minimization problem (2),
where A is a dictionary matrix (row order) and b is a row vector, the second
term forces the error E to be a connexe shape, through the TV (Total Variation)
of the residual must be small, where the matrix ∇s is a spatial gradient.

argmin
x

||Ax− b||α + λ||∇s(Ax− b)||1 (2)

The left part of the problem (3) is convex for α > 1 and the usual IRLS (Itera-
tively reweighted least squares) scheme for solve argmin

x
||Ax− b||α is given by

D(i) = diag((ε+ |b−Ax(i)|)α−2)

x(i+1) = (AtD(i)A)−1AtD(i)b
(3)

It was proven that a suitable IRLS method is convergent for 1 ≤ α < 3 [2]. Since
if the process is expressed with a residual formulation, we gain more numericaly
stability and let us to choose freely α ∈ [1,∞[ with an adapted step size λopt on
every iteration.

r(i) = b−Ax(i)

D = diag((ε+ |r(i)|)α−2)

y(i) = (A′DA)−1A′Dr(i)

x(i+1) = x(i) + (1 + λopt)y
(i)

(4)

With a fixed λopt, we should choose λopt as developed [3].
Otherwise, the algorithm is twice iterative, where we try to get an optimal x

and an optimal λ at each step.

c(i) = Ay(i)

d(i) = b−A(x(i) + y(i))

argmin
λopt

||c(i)λ− d(i)||α

λ(0) = Λ(α)

s(k) = d− λ(k)c

E = diag((ε+ |s(k)|)α−2)

z(k) = ctEs(k)

ctEc

λ(k+1) = λ(k) + (1 + Λ(α))z(k)

(5)

1 http://bmc.univ-bpclermont.fr

http://bmc.univ-bpclermont.fr
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Only few iterations (≈ 10) is enough for acceptable approximation of λopt of
the λ(k) sequence. Moreover, the convergence is usually improved by a Aitken
process or an other acceleration technique. Note for case α > 2, convergence
is achieved when 0 < 1 + λ < 2

α−1 . Additionally, TV is particular case of the
following problem:

argmin
x

||Ax− b||α + λ||Cx − d||β (6)

By derivation, the associated IRLS scheme is,

r1 = b−Ax(i), r2 = d−Cx(i), e1 = ε+ |r1|, e2 = ε+ |r2|
D1 = (

∑
eα1 )

1
α
−1diag(eα−2

1 ), D2 = λ(
∑

eβ2 )
1
β
−1diag(eβ−2

2 )

y(i) = (A′D1A+C′D2C)−1(A′D1r1 + C′D2r2)

x(i+1) = x(i) + (1 + λopt)y
(i)

(7)

More generally, we consider the following matrix regression problem with two
parameters norm (α, β) and a weighted matrix (W ),

min
X

||AX −B||α,β
W

with ||Mij ||α,β
W

= (

n∑
i=1

(

m∑
j=1

Wij |Mij |β)α
β )

1
α (8)

The problem is solved in the same manner on matrices with a reweighted regres-
sion strategy,

Until X is stable, repeat on each k-columns
R ← B −AX
S ← ε+ |R|
Dk ← diag(Sβ−2

ik ◦ (∑j(S
β
ij ◦Wij))

α
β
−1 ◦Wik)k

Xik ← Xik +(1+Λ(max(α, β)))(AtDkA)−1AtDkRik

(9)

3 Foreground Detection via Robust Low-Rank Matrix
Factorization and Temporal Constraint

The training video sequence A ∈ R
n×m is stored as a matrix with a particular

structure. Columns are spatial frames and rows are values of a fixed pixel over
time. For A =

{
I1, . . . , Im

}
, Ij denotes a vectorized frame of n pixels at j-time

with m is the number of frames. Ay+hx,t implies the pixel intensity at coordinate
x, y, t. The background modeling process finds an ideal subspace of the video
sequence, which describes the best as possible the (dynamic) background as
shown in Fig. 2. Then, the decomposition involves the following model:

A = L+ S = BC + S (10)

where B is a low-rank matrix corresponding to the background model plus noise
and C allows to approximate L by linear combination. S is a sparse matrix which
corresponds to the foreground component obtained by subtraction.
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Fig. 1. Overview of the learning and evaluation process. Learning process needs GT
(Groundtruth) for better fits the eigenbackground components.

Fig. 2. At left: The common process of back-
ground subtraction via PCA (Principal Com-
ponent Analysis). At final step, an adaptative
threshold is used to get a binary result.

Fig. 3. At right: Using the previous
decomposition on a low-rank random
matrix plus noise, different kind of pat-
tern on residual matrix emerge with the
choice of the norm

The model involves the error reconstruction determined by the following
constraints:

min
B∈Rn×p,C∈Rp×m

||(A−BC) ◦W ||α,β + μ||BC||∗ (11)

where ||.||∗ denote the nuclear norm. The decomposition is split into two parts.
Firstly, we track 1-Rank decomposition since the first eigen-vector is strongly
dominant in video surveillance.

R1 = A−B1C1 min
B1,C1

||R1||1,1
R = A−B1C1 −BrCr min

Br,Cr

||R ◦ φ(R1)||2,1→0
(12)

We use ||.||2,1→0 instead of usual ||.||1,1 because it forces spatial homogeneous
fitting. Besides β = (1 → 0) means the β parameter decreases during iteration.
First, we search a solution of the convex problem ||.||2,1, then use the solution
as an initial guess for non-convex problem ||.||2,(1−ε). Finally, we find a local
minimum of ||.||2,0 and hope that is near of the global minimum of this prob-
lem. Furthermore, this norm enforce temporarily sparseness of outliers as shown
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Fig. 4. At Left: Schema ofideal PCA
processing. The eigenbackground are
computed using a Weighted-PCA with
GroundTruth.

Fig. 5. At right: First eigenBackground of the
fifths sequence of Rotary (BMC) with the
norms ||.||opt, ||.||1,1 and ||.||2,1 . Last row shows
eigenBackground on real dataset with ||.||2,1 .

in Fig.4. In the case where α = β = 2, the decomposition is usually solved
by a SVD (Singular Value Decomposition). Thus, our SVD algorithm can be
seen as an iterative regression. The proposed scheme determines alternatively
the optimal coefficients, it means searching C for B fixed and searching B for C
fixed.

C(k+1) = (AtA)−1AtB(k)

C̄(k+1) = C(k+1)
√
Ct(k+1)C(k+1)

−1

B(k+1) = (AtA)−1AtC̄(k+1)

(13)

Additionnaly, this alternating regression framework allows to associate a weigthed
matrix W which is entrywise multiplied to the error term,

min
B,C

||(A−BC) ◦W ||α,β (14)

The W mask is iteratively computed and aims to enforce the fit exclusively on
guessed background region.
We define a function φ that have two goals, smooth the error (like spatial me-
dian filtering) and transform the error for obtain a suitable weighted mask for
regression.

W = φ(|A −BC|) , φ(E) = e−γTV (E) (15)

By including local penalty as a constraint in RPCA, this explicitly increases
local coherence of the sparse component as filled/plain shapes (therefore moving
object).

4 Experimental Results

Here, we show experimental results on the real dataset of BMC,
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Table 1. Quantitative results with common criterions. Last column show the original,
GT and result of the first four real video sequences.

Video Recall Precision F-measure PSNR Visual Results
1 0.9139 0.7170 0.8036 38.2425
2 0.8785 0.8656 0.8720 26.7721
3 0.9658 0.8120 0.8822 37.7053
4 0.9550 0.7187 0.8202 39.3699
5 0.9102 0.5589 0.6925 30.5876
6 0.9002 0.7727 0.8316 29.9994
7 0.9116 0.8401 0.8744 26.8350
8 0.8651 0.6710 0.7558 30.5040
9 0.9309 0.8239 0.8741 55.1163

5 Conclusion

In this paper, we have presented a robust matrix factorization for foreground
detection. This method is conceptually simple, easy to implement and efficient.
Furthermore, experiments on video surveillance datasets show that this approach
is more robust than recent RPCA approaches in the presence of dynamic back-
grounds and illumination changes. Further research consists in developping an
incremental version to update the model at every frame and to achieve real-time
requirements.
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Temporal Saliency for Fast Motion Detection
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Abstract. This paper presents a novel saliency detection method and
apply it to motion detection. Detection of salient regions in videos or im-
ages can reduce the computation power which is needed for complicated
tasks such as object recognition. It can also help us to preserve impor-
tant information in tasks like video compression. Recent advances have
given birth to biologically motivated approaches for saliency detection.
We perform salience estimation by measuring the change in pixel’s in-
tensity value within a temporal interval while performing a filtering step
via principal component analysis that is intended to suppress noise. We
applied the method to Background Models Challenge (BMC) video data
set. Experiments show that the proposed method is apt and accurate.
Additionally, the method is fast to compute.

1 Introduction

Salient regions of a scene are regions that are important to tasks such as ob-
ject recognition, surveillance, event detection, video compression and video re-
targeting. In video processing, common approach to detection of salient regions
is background subtraction (e.g. [1–4]).

In videos, detection of salient region (i.e. saliency detection) is highly depen-
dant on recognition of salient motion (i.e. the motion that attracts attention).
Salient motion depends on environment’s dynamics which makes saliency detec-
tion in videos a challenging problem.

Visual attention theories have had central role in psychology and neuroscience
for ages. Recent advances in biologically inspired system engineering have led
to development of remarkably effective methods for relating visual attention to
relevant salient regions. These techniques can be applied to the problem of salient
region detection in images and videos.

Method of [5] is one of the first publications in this area. Their approach is
based on extracting early visual features (e.g. colors, orientations, edges, ...) and
fusing them into a saliency map using center-surround technique. Later, many
publications adapt center-surround technique because of it biological plausibility
and effectiveness [6].

Itti and Baldi [7] define video saliency in terms of surprising stimulus, mea-
sured as the Kullback-Leibler (KL) divergence between posterior and prior be-
liefs of an observer. In [8], a stochastic method is introduced where saliency of
each video sequence is treated as a Markovian process. Rahtu et al. [9] exploit
Bayesian inference to derive a saliency detector for both images and videos.

J.-I. Park and J. Kim (Eds.): ACCV 2012 Workshops, Part I, LNCS 7728, pp. 321–326, 2013.
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Mahadevan et al. [10] introduced a spatio-temporal method which utilizes
dynamic texture model of [11] and KL divergence criteria to measure saliency in
a patch. Based on center-surround theory, they measure saliency in terms of KL
divergence value which shows the disparity of center and surround in an image
patch. Evaluating saliency in a video frame requires several patch evaluations.
This makes the method a computationally intensive one.

Later, Gopalakrishnan, et al. [12] adapt dynamic texture model used in [10]
to propose a pure temporal method. They apply observability measure [13] to
determine saliency of video frames exploring pixel state-space model by assuming
a video sequence follows a Multi Input Multi Output (MIMO) state-space model.

In this paper, we introduce a method of estimating motion saliency in the
context of Background Models Challenge (BMC). The approach is based on
temporal cues obtained using frame decorrelation. The method was evaluated
thanks to the BMC data set. Our analysis shows that the proposed method is
fast and accurate.

2 Method

In human vision system, it is shown that neurons adapt to small changes in
visual perception in small temporal windows in order to reduce dependencies
between neural responses. To replicate this phenomena, principal component
analysis (PCA) with whitening can be applied to reduce amount of redundant
information in image sequences to ease the realization of salient object. Moreover,
assuming that the noise is Gaussian, PCA suppresses noise.

In this paper, we focus on computing temporal salience maps which presents
amount of motion in a frame. Assuming that salient motion is steady, we con-
centrate on detection of firm movements. Hence, we apply principal component
analysis (PCA) procedure to reconstruct the video buffer extracted from video
sequence while suppressing background clutter and noise. Figure 1 summarizes
the process as a work flow.

Let us assume that we have an image sequence F = {ft, ft+1, . . . , ft+n}, where
fi is the luminance of video frame at time i in column representation obtained
in LMS color space. Initially, we subtract the mean value μf of each row of im-
age sequence; it represents the static information of sequence (i.e. background).
Consequently, F̃ = F − μf will provide an approximation of movements (i.e.
change over time) in the scene.

Later, we apply eigendecomposition to covariance of F̃ , Σ = EDET . Approx-
imation of image sequence is obtained by applying PCA and computing the back
projected sequence F̃p as follows:

F̃p = EpE
T
p F̃ . (1)

where Ep is the first p eigenvectors of covariance matrix. Finally, we normal-

ize the F̃p to have uncorrelated and unit variance variables (i.e. whiten them)

denoted by F̃w
p ; and temporal salience measure is computed as follows:
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Video Buffer
Convert color space
from RGB to LMS

and obtain Luminance

Recompute video
buffer mean, μf .

Subtract mean from
video buffer, F̃ .

Apply PCA with
whitening to have F̃p.

Compute Saliency S by
summing video frames.

post-process

segment foreground

new image

Fig. 1. Flowchart of the proposed method

S =
∑
i

|f̃w
pi|. (2)

where f̃w
pi is the ith image vector of F̃w

p .
Eventually, the final saliency map is obtained by initially applying morpho-

logical gray-scale dilation operator to (2) with a disk structure element of size 3.
Later, it is blurred with a Gaussian filter of standard deviation 5 and normaliz-
ing to the range of [0, 1]. In order to segment the foreground, we apply a simple
threshold where pixels with saliency value exceeding 0.5 are labelled as fore-
ground. Figure 2 depicts an example video frame, ground truth and segmented
foreground object using the proposed method.

Fig. 2. Some arbitrary video frames from different sequences. From left to right, original
image, corresponding ground truth and result of the proposed method.

At the first glance it may look that the proposed method has similar ideas
with well-known subspace learning techniques [14], but it is different in sev-
eral aspects. The major difference is that in subspace learning methods PCA is
applied to model the background where m largest eigenvalues of an image se-
quence (usually background sequence) is used to build a background model for
a given image. On the other hand, the proposed method applies PCA to provide
a representation of foreground object in a temporal queue.
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3 Results

We ran the proposed method on sequences provided by BMC data set 1. Se-
quences are categorized into learning and evaluation. Evaluation sequences con-
tain real world videos as well as synthetic ones. We analysed the segmented
results using the software provided by BMC. It provides precision, recall, F-
measure, PSNR, for both learning and evaluation sequences, and two extra mea-
sures of D-Score, and structural similarity (SSIM) for evaluation videos.

Table 1 summarizes the average performance for the learning phase sequences.
The proposed method has good precision values, which means that it accurately
detects the objects based on their motions. High PSNR value shows that the
proposed method does not produce false positives. The same behaviour can be
observed in images depicted in Figure 2.

Table 1. Performance analysis for learning phase synthetic videos

Sequence Recall Precision F-measure PSNR

T
o
ta

l

111 0.5810 0.7967 0.6720 54.7278
121 0.5662 0.8197 0.6697 51.2139
211 0.5847 0.6610 0.6205 52.5032
221 0.5689 0.7085 0.6311 50.1010
311 0.5982 0.5986 0.5984 49.5130
321 0.5903 0.7417 0.6574 50.5152
411 0.6207 0.7957 0.6974 54.9855
421 0.5850 0.7931 0.6734 51.1417
511 0.5696 0.7332 0.6411 54.0039
521 0.5686 0.7692 0.6538 50.8672

More in-depth analysis is available for evaluation sequences through the eval-
uation software. Table 2 depicts the results for synthetic evaluation sequences.
F-measure, D-score and SSIM can be used to compare different methods while
summarizing precision and recall information. In some cases, F-measure value
indicates that possibly there could exist detection error. Although the F-measure
is not very high in those cases, small value of D-Score suggests that the errors do
not perturb object recognition. This is in compliance with the low recall value
and high precision amount for those cases. Table 3 summarizes the results for
real videos. Although the sequences are more difficult, we can draw the same
conclusion.

We also measured the running time of the proposed method. The pure Matlab
implementation of the proposed method requires 0.07 second to process a frame
of size 320 × 240 on a machine with 2.4GHz CPU running 32-bit Windows 7
and Matlab 2012a. This makes the proposed method a suitable algorithm for
methods that require real time motion detection.

1 Available at: http://bmc.univ-bpclermont.fr/

http://bmc.univ-bpclermont.fr/
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Table 2. Performance analysis for evaluation synthetic videos

Sequence Recall Precision F-measure PSNR D-score SSIM

112 0.6051 0.8704 0.7139 53.7327 0.0013 0.9937
122 0.5705 0.8719 0.6897 49.4959 0.0023 0.9894
212 0.6123 0.8156 0.6995 53.2329 0.0013 0.9934
222 0.5760 0.8762 0.6950 49.4481 0.0023 0.9893
312 0.6041 0.8112 0.6925 53.2750 0.0013 0.9933
322 0.5811 0.8669 0.6958 49.4123 0.0023 0.9893
412 0.6166 0.5595 0.5867 44.3411 0.0024 0.9838
422 0.5796 0.8925 0.7028 49.5036 0.0023 0.9891
512 0.6061 0.7745 0.6800 52.8273 0.0013 0.9929
522 0.5770 0.8761 0.6957 49.4432 0.0023 0.9893

Table 3. Performance analysis for evaluation real videos

Sequence Recall Precision F-measure PSNR D-score SSIM

001 0.6423 0.6403 0.6413 39.7397 0.0064 0.9744
002 0.5409 0.8633 0.6651 26.5448 0.0084 0.9231
003 0.5510 0.7359 0.6302 38.5132 0.0134 0.9647
004 0.5816 0.6891 0.6308 44.1028 0.0042 0.9825
005 0.5230 0.5443 0.5358 45.2341 0.0048 0.9825
006 0.5708 0.8080 0.6690 33.3523 0.0091 0.9551
007 0.5318 0.6961 0.6029 27.2633 0.0089 0.9277
008 0.5507 0.6688 0.6040 37.1402 0.0092 0.9653
009 0.6027 0.6662 0.6329 52.9102 0.0027 0.9918

4 Conclusion

In this paper we introduced a saliency detection mechanism for motion detection.
We measured salience by estimating the change in pixel’s intensity value within a
temporal interval while performing a filtering step via principal component anal-
ysis that is intended to replicate sensory adaptation in human neurons. Moreover,
it suppress noise under assumption of Gaussian noise. The method is fully unsu-
pervised and requires no training. We applied the method to Background Models
Challenge (BMC) video data set. Experiments showed that the proposed method
has good performance, and is fast enough to compute in real-time.
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Abstract. We present a robust background model for object detection
and report its evaluation results using the database of Background Mod-
els Challenge (BMC). Our background model is based on a statistical lo-
cal feature. In particular, we use an illumination invariant local feature
and describe its distribution by using a statistical framework. Thanks
to the effectiveness of the local feature and the statistical framework,
our method can adapt to both illumination and dynamic background
changes. Experimental results, which are done thanks to the database
of BMC, show that our method can detect foreground objects robustly
against background changes.

1 Introduction

Many researchers proposed a lot of object detection methods based on back-
ground modeling [1–7]. To accurately detect foreground objects, it is necessary
to adapt to background changes, which are divided into two types: “illumination
changes” and “dynamic background changes”, such as waving trees.

To handle illumination changes in the background, some local feature-based
background models [1, 2] have been proposed. However, it is difficult for them
to handle dynamic background changes, which affect the local features in the
background significantly. Statistical methods [3, 4] have been used to cope with
dynamic background changes, and they model multimodal distribution of the
previously observed intensity values of each pixel. However, it is difficult for
them to handle illumination changes, which vary intensity values rapidly and
significantly. To handle both illumination and dynamic background changes,
Tanaka et al. [5] used multiple different background models, and the results of
them were combined using “logical AND” operation. However, their method
tends to detect many false-negative pixels, since only positive regions from both
algorithms are accepted and all other regions are rejected. On the other hand,
Zhaoa et al. [6] used a local feature defined by multiple point pairs that exhibit
a stable statistical intensity relationship as a background model. However, their
method is not suitable for on-line surveillance since it needs to scan the entire
input sequence to analyze the stability between point pairs.

In this paper, we present a background model [7], in which the concepts of a
local feature-based and a statistical approaches are integrated into a single frame-
work. Our target scenes are mainly “long shot” scenes in the outdoors, and our
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method is not intended for “close-up shot” scenes such that a foreground object
is very large. To verify the effectiveness of our method, we report its evaluation
result using the database of Background Models Challenge (BMC1). The experi-
mental results show that our method can detect the foreground objects robustly
against both illumination and dynamic background changes.

2 Background Model Based on Statistical Local Feature

We apply a Gaussian mixture model (GMM) to a local feature called the Local
Difference (LD) to get a statistical local feature called the Statistical Local Dif-
ference (SLD). Finally, we define Statistical Local Difference Pattern (SLDP) [7]
for the background model by using several SLDs.

2.1 Construction of Local Difference

A target pixel and its neighboring pixel in an observed image are described by
the vectors pc = (xc, yc)

T and pj = (xj , yj)
T , respectively. f(p) represents the

image intensity at pixel p. We can then define a local feature called the Local
Difference (LD) as Xj = f(pc) − f(pj). In cases where illumination changes
occur, the changes in the LD are small, since the pixels in the localized region
show a similar change. Therefore, the value of LD is stable under the illumination
changes as shown in Fig.1(a).

2.2 Construction of Statistical Local Difference

We apply a Gaussian mixture model (GMM) to LD to represent probability
density functions (PDF) for LD. This gives a statistical local feature called Sta-
tistical Local Difference (SLD). We define the SLD P (Xt

j) (PDF for LD) at
time t by:

P (Xt
j) =

K∑
k=1

wt
j,kη(X

t
j |μt

j,k,Σ
t
j,k), (1)

where wt
j,k, μ

t
j,k and Σt

j,k are the weight, the mean and the covariance matrix
of the k-th Gaussian in the mixture at time t respectively, and η is the Gaussian
probability density. We construct the background model by updating the GMM
(SLD). The updating method for the GMM is based on the method proposed
by Shimada et al [4]. The SLD can handle dynamic background changes, since
its GMM can learn the variety of background hypotheses as shown in Fig.1(b).

2.3 Object Detection Using Statistical Local Difference Pattern

In our method, each pixel has a pattern of SLD in the background model, and
we call it Statistical Local Difference Pattern (SLDP) [7]. The SLDP at time t

1 1st ACCV Workshop on Background Models Challenge:
http://bmc.univ-bpclermont.fr/

http://bmc.univ-bpclermont.fr/
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Fig. 1. Adaptivities of our method to background fluctuation

is defined as St = {P (Xt
1), . . . , P (Xt

j), . . . , P (Xt
N )} by using a target pixel pc

and N neighboring pixels pj which radiate out from pc. Here, N represents the
number of neighboring pixels (Fig.1 shows an example for N = 6). Note that
all of the neighboring pixels lie on a circle with radius r centered at a target
pixel pc.

Foreground detection using SLDP uses a voting method to judge whether a
target pixel pc belongs to the background or the foreground. When the pattern
of N LDs is given as Dt = {Xt

1, . . . ,X
t
j , . . . ,X

t
N}, foreground detection based

on SLDP is decided according to:

Φ(pc) =

{
background if Σj φ(Dt

j ,S
t
j) ≥ TB,

foreground otherwise,
(2)

where TB is a threshold for determining whether a target pixel pc belongs to the
background or the foreground. In Eq.2, φ(Dt

j ,S
t
j) is a function which returns 0

or 1, depending on whether or not the LD Xt
j matches the SLD P (Xt

j) at time
t. For further details, we refer the reader to the literature[4].

3 Evaluation

We evaluated the SLDP on the database provided for the Background Models
Challenge (BMC). Human annotated ground truth is also available for all videos
and is used for performance evaluation. Thus, exhaustive competitive comparison
of methods is possible on this database.

3.1 Parameters

All the videos were processed with a unique set of parameters which are tuned
based on 10 synthetic videos for learning phase. The list of parameters and their
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Table 1. Evaluation results using 10 synthetic videos for evaluation phase

Method Measure
Street Rotary

112 212 312 412 512 122 222 322 422 522

GMM [4]

Recall 0.927 0.927 0.897 0.861 0.921 0.923 0.931 0.897 0.843 0.934
Precision 0.866 0.868 0.580 0.526 0.619 0.886 0.890 0.626 0.535 0.840
F-measure 0.896 0.896 0.705 0.653 0.740 0.904 0.910 0.738 0.655 0.884

Adaptive

RRF

Recall 0.843 0.889 0.866 0.848 0.878 0.856 0.897 0.853 0.836 0.894
Precision 0.840 0.760 0.745 0.726 0.560 0.867 0.836 0.830 0.756 0.726
F-measure 0.841 0.820 0.801 0.782 0.684 0.861 0.865 0.841 0.794 0.801

Ours
(SLDP)

Recall 0.857 0.857 0.827 0.822 0.852 0.915 0.920 0.885 0.854 0.924
Precision 0.883 0.894 0.876 0.773 0.643 0.894 0.906 0.888 0.794 0.870
F-measure 0.870 0.875 0.851 0.797 0.733 0.904 0.913 0.886 0.823 0.896

value is as follows: the radial distance is r = 20, the number of neighboring pixels
is N = 6 and the detection threshold for SLDP is TB = 5. Although the details
of GMM are not explained in Section 2.2, we also indicate the parameter settings
in GMM for reproducibility: the learning rate is α = 0.01, the initial weight is
W = 0.05 and the threshold of choosing the background model T = 0.7.

3.2 Analysis of Experimental Results

To evaluate the effectiveness of the statistical and local feature-based approaches
respectively, we compared the performance of foreground detection with two dif-
ferent approaches: the GMM method [4] and the Adaptive Radial Reach Filter
(RRF). The GMM method [4] removes the local feature-based framework from
our method, and is consistent with a statistical approach using Gaussian mixture
model. The Adaptive RRF introduces an updating scheme into a local feature-
based approach using Radial Reach Correlation (RRC) [2]. Table 1 and 2 show
evaluation results on BMC database including 10 synthetic and 9 real videos for
evaluation phase. As shown in Table 1 and 2, except real video 002, the SLDP
achieves similar or higher F-measure compared to other methods. To demon-
strate the effectiveness of SLDP, we also show some examples of foreground
detection results in Fig.2: the first row is a scene where the illumination changes
in “Street(312)”, the second row is a scene where tree leaves flutter in the wind in
“Street(512)”, the third row is a scene where the fog is coming in “Rotary(421)”
and the fourth row is a scene where both illumination and dynamic background
changes are observed in “Real Applications(008).”

Fig.2 (the first and the third rows) shows that GMM method detects a lot of
false-positive pixels which are affected by illumination change and the fog, and
Table 1 shows Precision of GMM is low on Street(312) and Rotary(421). On the
other hand, Adaptive RRF and SLDP methods which use a local feature-based
framework detect few false-positive pixels. These results are typical evidence
of the effectiveness of a local feature-based framework regarding illumination
changes which affect a target pixel value in proportion with others. We also see
that Adaptive RRF falsely detects the movement of tree leaves from Fig.2 (the
second row), and its corresponding Precision is low from Table 1. Meanwhile,
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Table 2. Evaluation results using 9 real videos for evaluation phase

Method Measure
Real Applications

001 002 003 004 005 006 007 008 009

GMM [4]
Recall 0.949 0.680 0.959 0.929 0.854 0.880 0.791 0.823 0.928

Precision 0.782 0.646 0.880 0.680 0.535 0.736 0.703 0.595 0.890
F-measure 0.857 0.662 0.918 0.785 0.658 0.802 0.744 0.691 0.909

Adaptive
RRF

Recall 0.849 0.819 0.870 0.894 0.835 0.832 0.722 0.764 0.756
Precision 0.824 0.889 0.820 0.812 0.657 0.794 0.823 0.609 0.914
F-measure 0.837 0.853 0.844 0.851 0.735 0.813 0.769 0.678 0.828

Ours
(SLDP)

Recall 0.926 0.671 0.954 0.916 0.823 0.856 0.790 0.824 0.909
Precision 0.818 0.862 0.913 0.891 0.597 0.825 0.780 0.829 0.920
F-measure 0.869 0.754 0.933 0.904 0.692 0.841 0.785 0.827 0.914

GMM and SLDP methods which use a statistical framework can detect the fore-
ground objects correctly. These results are typical evidence of the effectiveness
of a statistical framework regarding dynamic background changes.

In cases of real videos, illumination changes and dynamic background changes
are often observed at the same time as shown in Fig.2 (the fourth row). Fig.2
(the fourth row) shows that GMM method falsely detects the region of the sky
because of illumination change, and that Adaptive RRF method falsely detects
the region of grass because of dynamic background change. On the other hand, we
see our method can detect foreground objects robustly against both illumination
and dynamic background changes from Fig.2 (the fourth row), and both Recall

Input image Ground truth Ours (SLDP) GMM method Adaptive RRF

Fig. 2. Examples of foreground detection results
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and Precision of SLDP is higher than those of other methods from Table 2
(008). This is because SLDP has the ability to tolerate the effects of illumination
changes thanks to a local feature (LD), and also can learn the variety of dynamic
background thanks to a statistical framework (GMM).

In the case of real video 002, Table 2 shows that Recall of SLDP is much low.
This is because the SLDP does not model the background color but rather the
difference between a target pixel and its neighboring pixels. In most cases of close-
up shot scenes including real video 002, the background has an uniform texture,
and then the change in the SLDP is hardly-detectable when an object with an
uniform texture appears. Therefore, the SLDP confuses foreground objects with
background in the close-up shot scenes.

4 Conclusion

In this paper, we have presented a backgroundmodel based on the Statistical Local
Difference Pattern (SLDP) by combining the concepts of a local feature-based ap-
proach and a statistical approach into a single framework. Our method can handle
both illumination and dynamic changes in the background. This is because the
SLDP uses illumination-invariant local features which have the ability to toler-
ate the effects of illumination changes, and describes their distribution by GMMs
which can learn the variety of dynamic background. As a result of evaluation on
BMC database, we have confirmed that SLDP can detect the foreground objects
robustly against illumination changes and dynamic background changes.
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