
Finding Diverse Friends in Social Networks

Syed Khairuzzaman Tanbeer and Carson Kai-Sang Leung�

Department of Computer Science, University of Manitoba, Canada
kleung@cs.umanitoba.ca

Abstract. Social networks are usually made of users linked by friend-
ship, which can be dependent on (or influenced by) user characteristics
(e.g., connectivity, centrality, weight, importance, activity in the net-
works). Among many friends of these social network users, some friends
are more diverse (e.g., more influential, prominent, and/or active in a
wide range of domains) than other friends in the networks. Recognizing
these diverse friends can provide valuable information for various real-life
applications when analyzing and mining huge volumes of social network
data. In this paper, we propose a tree-based mining algorithm that finds
diverse friends, who are highly influential across multiple domains, in
social networks.

1 Introduction and Related Works

Social networks [9,11] are made of social entities (e.g., users) who are linked by
some specific types of relationships (e.g., friendship, common interest, kinship).
Facebook, Google+, LinkedIn, Twitter and Weibo [13,16] are some examples of
social networks. Within these networks, a user fi usually can create a personal
profile, add other users as friends, endorse their skills/expertise, exchange mes-
sages among friends. These social networks may consist of thousands or millions
of users, and each user fi can have different number of friends. Among them,
some are more important or influential than others [2,6,7,15,17].

Over the past few years, several data mining techniques [5,8,12,14] have been
developed to help users extract implicit, previously unknown, and potentially
useful information about the important friends. Recent works on social network
mining include the discovery of strong friends [3] and significant friends [10]
based on the degree of one-to-one interactions (e.g., based on the number of
postings to a friend’s wall).

However, in some situations, it is also important to discover users who (i) are
influential in the social networks, (ii) have high level of expertise in some do-
mains, and/or (iii) have diverse interest in multiple domains. In other words,
users may want to find important friends based on their influence, prominence,
and/or diversity. For instance, some users may be narrowly interested in one
specific domain (e.g., computers). Other users may be interested in a wide range
of domains (e.g., computers, music, sports), but their expertise level may vary
from one domain to another (e.g., a user fi may be a computer expert but only
a beginner in music).

� Corresponding author.

Y. Ishikawa et al. (Eds.): APWeb 2013, LNCS 7808, pp. 301–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

302 S.K. Tanbeer and C.K.-S. Leung

Table 1. Prominence values & lists of interest groups

(a) Prominence of friends

Friend Prominence Prom(fi)
(fi) Domain D1 Domain D2 Domain D3

Amy 0.45 0.60 0.50
Bob 0.90 0.70 0.30

Cathy 0.20 0.60 0.70
Don 0.30 0.50 0.40
Ed 0.50 0.40 0.45

Fred 0.42 0.24 0.70
Greg 0.57 0.10 0.20

(b) Lists of interest groups in FSN

Domain Interest-group list Lj

L1 = {Amy,Bob,Don}
D1 L2 = {Cathy,Don}

L3 = {Amy,Bob}
L4 = {Bob,Greg}

D2 L5 = {Bob, Cathy,Don}
L6 = {Cathy,Ed}
L7 = {Bob, Cathy,Ed}
L8 = {Amy,Cathy,Ed}

D3 L9 = {Amy, Fred}
L10 = {Amy,Cathy}

In this paper, one of our key contributions is an efficient tree-based algorithm
called Div-growth for mining diverse friends from social networks. Div-growth
takes into account multiple properties (e.g., influence, prominence, and/or diver-
sity) of friends in the networks. Another key contribution is a prefix-tree based
structure called Div-tree for capturing the social network data in a memory-
efficient manner. Once the Div-tree is constructed, Div-growth computes the
diversity of users based on both their influence and prominence to mine diverse
groups of friends.

The remainder of this paper is organized as follows. We introduce the notion
of diverse friends in the next section. Section 3 introduces our Div-growth algo-
rithm, which mines diverse friends from our Div-tree. Experimental results are
reported in Section 4; conclusions are presented in Section 5.

2 Notion of Groups of Diverse Friends

Consider a social network on three different domains (domains D1, D2, D3) and
seven individuals (Amy, Bob, Cathy, Don, Ed, Fred & Greg) with prominence
values in each domain, as shown in Table 1(a). Each domain represents a sub-
category (e.g., sports, arts, education) of interest. The prominence value of
an individual reveals his level of expertise (e.g., importance, weight, value, rep-
utation, belief, position, status, or significance) in a domain. In other words, the
prominence value indicates how important, valued, significant, or well-positioned
the individual is in each domain. The prominence value can be measured by us-
ing a common scale, which could be (i) specified by users or (ii) automatically
calculated based on some user-centric parameters (e.g., connectivity, centrality,
expertise in the domain, years of membership in the domain, degree of involve-
ment in activities in the domain, numbers of involved activities in the domain). In
this paper, the prominence value is normalized into the range (0, 1]. As the same
individual may have different levels of expertise in different domains, his corre-
sponding prominence value may vary from one domain to another. For example,
prominence value PromD1(Amy) of Amy in domain D1 is 0.45, which (i) is dif-
ferent from PromD2(Amy)=0.60 and (ii) is higher than PromD1(Cathy)=0.20
(implying that Amy is more influential than Cathy in D1).

Finding Diverse Friends in Social Networks 303

Consistent with existing settings of a social network [3,5,10], let F = {f1, f2,
. . . , fm} be a set of individuals/friends in a social network. An interest-group list
L ⊆ F is a list of individuals who are connected as friends due to some common
interests. Let G = {f1, f2, . . . , fk} ⊆ F be a group of friends (i.e., friend group)
with k friends. Then, Size(G) = k, which represents the number of individuals
in G. A friend network FSN = {L1, L2, . . . , Ln} is the set of all n interest-group
lists in the entire social network. These lists belong to some domains, and each
domain contains at least one list. The set of lists in a particular domain D is
called a domain database (denoted as FD). Here, we assume that there exists an
interest-group list in every domain. The projected list FG

D of G in FD is the set of
lists in FD that contains group G. The frequency FreqD(G) of G in FD indicates
the number of lists Lj’s in FG

D , and the frequencies of G in multiple domains are
represented as FreqD1,2,...,d

(G) = 〈FreqD1
(G),FreqD2

(G), . . . ,FreqDd
(G)〉.

Example 1. Consider FSN shown in Table 1(b), which consists of n=10 interest-group
lists L1, ..., L10 for m=7 friends in Table 1(a). Each row in the table represents the list
of an interest group. These 10 interest groups are distributed into d=3 domains D1, D2

and D3. For instance, FD1 = {L1, L2, L3}. For group G = {Cathy,Ed}, its Size(G)=2.
As its projected lists on the 3 domains are FG

D1
=∅, FG

D2
={L6, L7} and FG

D3
={L8}, its

frequencies FreqD1,2,3
(G) = 〈0, 2, 1〉. ��

Definition 1. The prominence value PromD(G) of a friend group G in a single
domain D is defined as the average of all prominence values for all the friends in G:

PromD(G) =
∑Size(G)

i=1
PromD(fi)

Size(G)
. Prominence values of G in multiple domains are

represented as PromD1,2,...,d(G) = 〈PromD1(G),PromD2(G), . . . ,PromDd(G)〉. ��
Definition 2. The influence Inf D(G) of a friend group G in a domain D in FD is
defined as the product of the prominence value of G in the domain D and its frequency
in the domain database FD, i.e., Inf D(G) = PromD(G)×FreqD(G). For multiple
domains, Inf D1,2,...,d

(G) = 〈Inf D1
(G), Inf D2

(G), . . . , Inf Dd
(G)〉. ��

Definition 3. The diversity Div(G) of a friend group G among all d domains in
FSN is defined as the average of all the influence values of G in all domains in the social

network: Div(G) =

∑
d
j=1 Inf Dj

(G)

d
. ��

Example 2. Revisit FSN in Table 1(b). The prominence value of friend group G =

{Cathy,Ed} in D1 =
PromD1

(Cathy)+PromD1
(Ed)

Size(G)
= 0.20+0.50

2
= 0.35. We apply similar

computation and get PromD1,2,3(G) = 〈0.35, 0.60+0.40
2

, 0.70+0.45
2

〉 = 〈0.35, 0.5, 0.575〉.
Recall from Example 1 that FreqD1,2,3

(G) = 〈0, 2, 1〉. So, the overall influence of G in all

3 domains can be calculated as Inf D1,2,3
(G) = 〈0.35×0, 0.5×2, 0.575×1〉 = 〈0, 1, 0.575〉.

Thus, the diversity of G in these d=3 domains in FSN is Div(G)= 0+1+0.575
3

=0.525. ��

A groupG of friends in a social network FSN is considered diverse if its diversity
value Div(G) ≥ the user-specified minimum threshold minDiv, which can be
expressed as an absolute (non-negative real) number or a relative percentage
(with respect to the size of FSN). Given FSN and minDiv, the research problem
of mining diverse friends from social networks is to find every group G
of friends having Div (G) ≥ minDiv.

304 S.K. Tanbeer and C.K.-S. Leung

Example 3. Recall from Example 2 that Div({Cathy,Ed})=0.525. Given (i) FSN in
Table 1(b) and (ii) the user-specified minDiv=0.5, group G={Cathy,Ed} is diverse
because Div(G)=0.525 ≥ 0.5=minDiv. But, group G′={Ed} is not diverse because

Div(G′) = (0.5×0)+(0.4×2)+(0.45×1)
3

= 0+0.8+0.45
3

= 0.417 < minDiv. ��

3 Our Div-growth Algorithm for Mining Diverse Friends

When mining frequent patterns, the frequency/support measure [1,4] satisfies the
downward closure property (i.e., all supersets of an infrequent patterns are infre-
quent). This helps reduce the search/solution space by pruning infrequent pat-
terns, which in turn speeds up the mining process. However, when mining diverse
friends, diversity does not satisfy the downward closure property. Recall from Ex-
ample 3, group G′={Ed}) is not diverse but its super-group G={Cathy,Ed})
is diverse. As we cannot prune those groups that are not diverse, the mining of
diverse friends can be challenging.

To handle this challenge, for each domain D, we identify the (global) max-
imum prominence value GMPromD among all friends. Then, for each
friend fi, we calculate an upper bound of the influence value Inf UD(fi) by mul-
tiplying GMPromD (instead of the actual PromD(fi)) with the corresponding
frequency FreqD(fi). The upper bound of diversity value DivU (fi) can then be
computed by using Inf UD(fi).

Lemma 1. Let G be a group of friends in FSN such that a friend fi ∈ G. If DivU (fi) <
minDiv, then Div(G) must also be less than minDiv. ��
Example 4. Revisit FSN in Table 1(b). Note that GMPromD1=0.90, GMPromD2=
0.70, and GMPromD3=0.70. Recall from Example 3 that FreqD1,2,3

({Ed})=〈0, 2, 1〉.
Then, we can compute DivU ({Ed})= (0.90×0)+(0.70×2)+(0.70×1)

3
=0.7 ≥ minDiv. So, we

do not prune {Ed} to avoid missing its super-group {Cathy, Ed}, which is diverse.

Similarly, we can compute DivU ({Fred})= (0.90×0)+(0.70×0)+(0.70×1)
3

=0.23 < minDiv.
Due to Lemma 1, we prune Fred as none of its super-groups can be diverse. ��

3.1 Phase 1: Constructing a Div-tree Structure

Given FSN and minDiv, our proposed Div-growth algorithm constructs a Div-
tree as follows. It first scans FSN to calculate FreqDj

(fi) for each friend fi in
each domain Dj. For each fi, Div-growth then uses GMPromD to compute the

upper bound of the diversity value DivU (fi), which is used to prune groups of
friends who are not potentially diverse. Every potentially diverse friend fi, along
with its FreqD1,...,d

(fi), is stored in the header table.
Afterwards, Div-growth scans FSN the second time to capture the important

information about potentially diverse friends in a user-defined order in the Div-
tree. Each tree node consists of (i) a friend name and (ii) its frequency counters
for all d domains in the respective path. The basic construction process of a
Div-tree is similar to that of the FP-tree [4]. A key difference is that, rather
than using only a single frequency counter capturing either the maximum or
average frequency for all domains (which may lead to loss of information), we use
d frequency counters capturing the frequency for all d domains. See Example 5.

Finding Diverse Friends in Social Networks 305

Fig. 1. Construction of a Div-tree

Example 5. To construct a Div-tree for FSN shown in Table 1(b) when minDiv=0.5,
Div-growth scans FSN to compute (i) GMPromD1,2,3 = 〈0.9, 0.7, 0.7〉 for all d=3 do-
mains, (ii) frequencies of all 7 friends in d=3 domains (e.g., FreqD1,2,3

({Amy}) =

〈2, 0, 3〉), (iii) upper bound of diversity values of all 7 friends (e.g., DivU ({Amy}) =
(0.9×2)+(0.7×0)+(0.7×3)

3
= 1.3 using Inf UD1,2,3

({Amy})). Based on Lemma 1, we safely

remove Fred and Greg having DivU ({Fred})=0.23 and DivU ({Greg})=0.23 both be-
low minDiv as their super-groups cannot be diverse. So, the header table includes only
the remaining 5 friends—sorted in some order (e.g., lexicographical order of friend
names)—with their FreqD1,2,3

({fi}). To facilitate a fast tree traversal, like the FP-
tree, the Div-tree also maintains horizontal node traversal pointers from the header
table to nodes of the same fi.

Div-growth then scans each Lj ∈ FSN , removes any friend fi ∈ Lj having DivU (fi)
<minDiv, sorts the remaining friends according to the order in the header table, and
inserts the sorted list into the Div-tree. Each tree node captures (i) fi representing the
group G consisting of all friends from the root to fi and (ii) its frequencies in each
domain FreqD1,2,3

(G). For example, the rightmost node Ed:0,1,0 of the Div-tree in

Fig. 1(b) captures G={Cathy,Ed} and FreqD1,2,3
(G)=〈0, 1, 0〉. Tree paths of common

prefix (i.e., same friends) are shared, and their corresponding frequencies are added.
See Figs. 1(a) and 1(b) for Div-trees after reading all interest-group lists in domain D1

and the entire FSN , respectively. ��

With this tree construction process, the size of the Div-tree for FSN with a given
minDiv is observed to be bounded above by

∑
Lj∈FSN

|Lj |.

3.2 Phase 2: Mining Diverse Friend Groups

Once the Div-tree is constructed, Div-growth recursively mines diverse friend
groups by building projected and conditional trees in a fashion similar to that
of FP-growth [4].

Recall that Div (G) computed based on PromD(G) does not satisfy the down-
ward closure property. To facilitate pruning, we use GMPromD(fi) to com-
pute DivU (fi), which then satisfies the downward closure property. However,
if DivU (G) was computed as an upper bound to super-group G of fi, then it
may overestimate diversity of G and may lead to false positives. To reduce the
number of false positives, Div-growth uses the local maximum prominence
value LMPromD(G) = maxfi∈FG

D
{PromD(G)} for the projected and condi-

tional trees for G. See Lemma 2 and Example 6.

306 S.K. Tanbeer and C.K.-S. Leung

Fig. 2. Tree-based mining of diverse friend groups

Lemma 2. The diversity value of a friend group G computed based on LMPromD(G)
is a tighter upper bound than DivU (G) computed based on GMPromD. ��
Example 6. To mine potentially diverse friend groups from the Div-tree in Fig. 1(b)
using minDiv =0.5, Div-growth first builds the {Ed}-projected tree—as shown in
Fig. 2(a)—by extracting the paths 〈Amy, Cathy, Ed〉:0,0,1, 〈Bob, Cathy, Ed〉:0,1,0 and
〈Cathy, Ed〉:0,1,0 from the Div-tree in Fig. 1(b). For FEd

D1,2,3
={Amy,Bob, Cathy,Ed},

Div-growth also uses LMPromD1,2,3(F
Ed
D1,2,3

) = 〈0.9, 0.7, 0.7〉 to compute the tightened

DivU (G) such as tightened DivU ({Amy,Ed})= (0.9×0)+(0.7×0)+(0.7×1)
3

=0.23 < minsup.
As DivU ({Amy,Ed}) and DivU ({Bob, Ed}) are both below minsup, Div-growth

prunes Amy and Bob from the {Ed}-projected tree to get the {Ed}-conditional tree
as shown in Fig. 2(b). Due to pruning, Div-growth recomputes LMPromD1,2,3(F

Ed
D1,2,3

)

=〈0.5, 0.6, 0.7〉 and the tightened DivU ({Cathy,Ed})= (0.5×0)+(0.6×2)+(0.7×1)
3

=0.63 for

the updated FEd
D1,2,3

={Cathy,Ed}. This completes the mining for {Ed}.
Next, Div-growth builds {Don}-, {Cathy}- & {Bob}-projected and conditional

trees, from which potentially diverse friend groups can be mined. Finally, Div-growth
computes the true diversity value Div(G) for each of these mined groups to check if it
is truly diverse (i.e., to remove all false positives). ��

4 Experimental Results

To evaluate the effectiveness of our proposed Div-growth algorithm and its as-
sociated Div-tree structure, we compared them with a closely related weighted
frequent pattern mining algorithm called Weight [18] (but it does not use differ-
ent weights for individual items). As Weight was designed for frequent pattern
mining (instead of social network mining), we apply those datasets commonly
used in frequent pattern mining for a fair comparison: (i) IBM synthetic datasets
(e.g., T10I4D100K) and (ii) real datasets (e.g., mushroom, kosarak) from the Fre-
quent Itemset Mining Dataset Repository fimi.cs.helsinki.fi/data. See Ta-
ble 2 for more detail. Items in transactions in these datasets are mapped into
friends in interest-group lists. To reflect the concept of domains, we subdivided
the datasets into several batches. Moreover, a random number in the range (0, 1]
is generated as a prominence value for each friend in every domain.

All programs were written in C++ and run on the Windows XP operating
system with a 2.13 GHz CPU and 1 GB main memory. The runtime specified
indicates the total execution time (i.e., CPU and I/Os). The reported results

Finding Diverse Friends in Social Networks 307

Table 2. Dataset characteristics

Dataset #transactions #items maxL avgTL Density

mushroom 8,124 119 23 23.0 Dense
T10I4D100K 100,000 870 29 10.1 Sparse
kosarak 990,002 41,270 2498 8.1 Sparse

Fig. 3. Experimental results

are based on the average of multiple runs for each case. We obtained consistent
results for all of these datasets.

Runtime. First, we compared the runtime of Div-growth (which includes the
construction of the Div-tree, the mining of potentially diverse friend groups from
the Div-tree, and the removal of false positives) with that of Weight. Fig. 3(a)
shows the results for a dense dataset (mushroom), which were consistent with
those for sparse datasets (e.g., T10I4D100K). Due to page limitation, we omit the
results for sparse datasets. Runtimes of both algorithms increased when mining
larger datasets (social networks), more batches (domains), and/or with lower
minDiv thresholds. Between the two algorithms, our tree-based Div-growth al-
gorithm outperformed the Apriori-based Weight algorithm. Note that, although
FP-growth [4] is also a tree-based algorithm, it was not design to capture weights.
To avoid distraction, we omit experimental results on FP-growth and only show
those on Weight (which captures weights).

Compactness of the Div-tree. Next, we evaluated the memory consumption.
Fig. 3(b) shows the amount of memory required by our Div-tree for capturing
the content of social networks with the lowest minDiv threshold (i.e., without
removing any friends who were not diverse). Although this simulated the worst-
case scenario for our Div-tree, Div-tree was observed (i) to consume a reasonable
amount of memory and (ii) to require less memory than Weight (because our
Div-tree is compact due to the prefix sharing).

Scalability. Then, we tested the scalability of our Div-growth algorithm by
varying the number of transactions (interest-group lists). We used the kosarak
dataset as it is a huge sparse dataset with a large number of distinct items
(individual users). We divided this dataset into five portions, and each portion is
subdivided into multiple batches (domains). We setminDiv=5% of each portion.
Fig. 3(c) shows that, when the size of the dataset increased, the runtime also
increased proportionally implying that Div-growth is scalable.

308 S.K. Tanbeer and C.K.-S. Leung

Additional Evaluation. So far, we have evaluated the efficiency (e.g.,
runtime, compactness or memory consumption, as well as scalability) of our
Div-growth algorithm. Experimental results show that Div-growth is time- and
space-efficient as well as scalable. As ongoing work, we plan to evaluate the
quality (e.g., precision) of Div-growth in finding diverse friend groups. Moreover,
for a fair comparison with Weight, we have used those datasets that are com-
monly used in frequent pattern mining. As ongoing work, we plan to evaluate
Div-growth using real-life social network datasets.

5 Conclusions

In this paper, we (i) introduced a new notion of diverse friends for social net-
works, (ii) proposed a compact tree structure called Div-tree to capture impor-
tant information from social networks, and (iii) designed a tree-based mining
algorithm called Div-growth to find diverse (groups of) friends from social net-
works. Diversity of friends is measured based on their prominence, frequency
and influence in different domains on the networks. Although diversity does not
satisfy the downward closure property, we managed to address this issue by us-
ing the global and local maximum prominence values of users as upper bounds.
Experimental results showed that (i) our Div-tree is compact and space-effective
and (ii) our Div-growth algorithm is fast and scalable for both sparse and dense
datasets. As ongoing work, we conduct more extensive experimental evaluation
to measure other aspects (e.g., precision) of our Div-growth algorithm in finding
diverse friends. We also plan to (i) design a more sophisticated way to mea-
sure influence and (ii) incorporate other computational metrics (e.g., popularity,
significance, strength) with prominence into our discovery of useful information
from social networks.

Acknowledgements. This project is partially supported by NSERC (Canada)
and University of Manitoba.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994, pp. 487–499 (1994)

2. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social
networks. In: ACM KDD 2008, pp. 7–15 (2008)

3. Cameron, J.J., Leung, C.K.-S., Tanbeer, S.K.: Finding strong groups of friends
among friends in social networks. In: IEEE DASC/SCA 2011, pp. 824–831 (2011)

4. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD 2000, pp. 1–12 (2000)

5. Jiang, F., Leung, C.K.-S., Tanbeer, S.K.: Finding popular friends in social net-
works. In: CGC/SCA 2012, pp. 501–508. IEEE (2012)

6. Kamath, K.Y., Caverlee, J., Cheng, Z., Sui, D.Z.: Spatial influence vs. community
influence: modeling the global spread of social media. In: ACM CIKM 2012, pp.
962–971 (2012)

Finding Diverse Friends in Social Networks 309

7. Lee, W., Leung, C.K.-S., Song, J.J., Eom, C.S.-H.: A network-flow based influence
propagation model for social networks. In: CGC/SCA 2012, pp. 601–608. IEEE
(2012)

8. Lee, W., Song, J.J., Leung, C.K.-S.: Categorical data skyline using classification
tree. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.) APWeb 2011.
LNCS, vol. 6612, pp. 181–187. Springer, Heidelberg (2011)

9. Leung, C.K.-S., Carmichael, C.L.: Exploring social networks: a frequent pattern
visualization approach. In: IEEE SocialCom 2010, pp. 419–424 (2010)

10. Leung, C.K.-S., Tanbeer, S.K.: Mining social networks for significant friend groups.
In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA
Workshops 2012. LNCS, vol. 7240, pp. 180–192. Springer, Heidelberg (2012)

11. Peng, Z., Wang, C., Han, L., Hao, J., Ou, X.: Discovering the most potential stars in
social networks with infra-skyline queries. In: Sheng, Q.Z., Wang, G., Jensen, C.S.,
Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 134–145. Springer, Heidelberg
(2012)

12. Sachan, M., Contractor, D., Faruquie, T.A., Subramaniam, L.V.: Using content
and interactions for discovering communities in social networks. In: ACM WWW
2012, pp. 331–340 (2012)

13. Schaal, M., O’Donovan, J., Smyth, B.: An analysis of topical proximity in the
twitter social graph. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret,
C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 232–245. Springer, Heidelberg (2012)

14. Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relationship
prediction in heterogeneous bibliographic networks. In: ASONAM 2011, pp. 121–
128. IEEE (2011)

15. Tanbeer, S.K., Leung, C.K.-S., Cameron, J.J.: DIFSoN: discovering influential
friends from social networks. In: CASoN 2012, pp. 120–125. IEEE (2012)

16. Yang, X., Ghoting, A., Ruan, Y., Parthasarathy, S.: A framework for summarizing
and analyzing twitter feeds. In: ACM KDD 2012, pp. 370–378 (2012)

17. Zhang, C., Shou, L., Chen, K., Chen, G., Bei, Y.: Evaluating geo-social influence
in location-based social networks. In: ACM CIKM 2012, pp. 1442–1451 (2012)

18. Zhang, S., Zhang, C., Yan, X.: Post-mining: maintenance of association rules by
weighting. Information Systems 28(7), 691–707 (2003)

	Finding Diverse Friends in Social Networks

	Introduction and Related Works
	Notion of Groups of Diverse Friends
	Our Div-growth Algorithm for Mining Diverse Friends
	Phase 1: Constructing a Div-tree Structure
	Phase 2: Mining Diverse Friend Groups

	Experimental Results
	Conclusions
	References

