
A Novel Approach

to Large-Scale Services Composition

Hongbing Wang� and Xiaojun Wang

School of Computer Science and Engineering, Southeast University, Nanjing, China
{hbw,seuwxj}@seu.edu.cn

Abstract. We investigate a multi-agent reinforcement learning model
for the optimization of Web service composition in this paper. Based
on the model, a multi-agent Q-learning algorithm was proposed, where
agents in a team would benefit from one another. In contrast to single-
agent reinforcement-learning, our algorithm can speed up the conver-
gence to optimal policy. In addition, it allows composite service to
dynamically adjust itself to fit a varying environment, where the proper-
ties of the component services continue changing. A set of experiments
is given to prove the efficiency of the analysis. The advantages and the
limitations of the proposed approach are also discussed.

Keywords: Web Service composition, multi-agent.

1 Introduction

As a common understanding, Web services are self-describing and open building
blocks for rapid, low-cost composition of distributed applications [8]. In prac-
tice, a single Web service may not be sufficient at performing complex tasks. We
usually need to combine multiple existing services together to meet customers’
complex requests. With today’s SOC technology, such composition is usually per-
formed by human engineers. However, the Web environment is highly dynamic,
and most Web services are evolving at all time. A service engineer cannot al-
ways foresee all the changes that could happen in the future. A manual service
composition can also be too rigid to adapt to a dynamic environment. There-
fore, dynamic service composition is regarded as a crucial functionality for the
Web of the future. Different technologies of computational intelligence have been
investigated for solving the problem of dynamic service composition.

AI planning is a typical type of techniques used to automate Web services
composition [9] [2]. Doshi [3] and Gao [4] have studied the application of MDPs
(Markov Decision Processes) in Web service composition. MDPs assume a fully
observable world and require explicit reward functions and state transition func-
tions. Such requirements are too strict to a real world scenario. Wang et al. [11]
proposed to use reinforcement learning (RL) for service composition, so as to

� This work is partially supported by NSFC (61232007) and JSNSF of China
(No.BK2010417).

Y. Ishikawa et al. (Eds.): APWeb 2013, LNCS 7808, pp. 220–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Novel Approach to Large-Scale Services Composition 221

avoid complex modeling of the real world. Although it has been proved to be
effective for small scale service compositions, it can be overly computationally
expensive when working on a large number of services.

In this paper, we present a novel mechanism based on multi-agent reinforce-
ment learning to enable adaptive service composition. The model proposed in
this paper extends the reinforcement learning model that we have previously
introduced in [11]. In order to reduce the time of convergence, we introduce
a sharing strategy to share the policies among the agents, through which one
agent can use the policies explored by the others. As the learning process con-
tinues throughout the life-cycle of a service composition, the composition can
automatically adapt to the change of the environment and the evolvement of its
component services. Experimental evaluation on large scale service compositions
has demonstrated that the proposed model can provide good results.

2 A MAMDP Model for Service Composition

In this section we present the reinforcement learning model that we have previ-
ously introduced in [11] for solving the dynamic web service composition prob-
lem. The RL model introduced in [11] will be extended in this section towards
a distributed architecture.

Reinforcement learning is the problem faced by an agent that must learn
behavior through trial-and-error interactions with a dynamic environment [7].
One key aspect of reinforcement learning is a trade-off between exploitation and
exploration. To accumulate a lot of reward, the learning system must prefer the
best experienced actions, however, it has to try new actions in order to discover
better action selections for the future. One such method is ε− greedy, when
the agent chooses the action that it believes has the best long-term effect with
probability 1− ε, and it chooses an action uniformly at random, otherwise.

We formally define the key concepts used in the model.

Definition 1. (Web Service). A Web service is modeled as a triple WS =<
Pr;E;QoS >,where

– Pr represents the precondition of WS, which specifies the states of the world
in which WS can be executed.

– E represents the effect of WS, which describes how WS changes the state
of the world.

– QoS is a n-tuple < att1; att2; :::; attn >, where each atti denotes a QoS
attribute of WS.

As mentioned earlier, we use Multi-agent Markov Decision Process (MAMDP)
to model service composition. A MAMDP involves multiple actions and paths
for each agent to choose. For agent m, we call our service composition model
WSC-MDP, which simply replaces the actions in a MDP with Web services.

Definition 2. (Web service composition MDP (WSC-MDP). A Web
service composition MDP is a 7-tuple WSC-MDP =< m, sm0 , Sm, Am(.), Pm, Rm,
smr >, where



222 H. Wang and X. Wang

s0(m)
s1

s4

s2

s3

s6

s5

sr(m)

s7

s12

s11

s10s9

s8

Weather
Forecast

Book
Flight1

Find
Map

Find
Restaurant

Book
Hotel

Query
Hotel

Query
Flight

Query
Flight

Query
Flight

Query
Hotel

Book
Hotel

Find
Restaurant

Find
Map

Find
Map

Find
Map

Book
Flight2

Book
Flight1

Book
Flight1 Book

Flight2

Book
Flight2

Fig. 1. The WSC-MDP of a Com-
posite Service for Travel Plan

s0(m) s1 s4s2 s6 sr(m)s7 s12Weather
Forecast

Book
Hotel

Query
Hotel

Query
Flight Find

Restaurant
Find
MapBook

Flight1

s0(m) s1 s5s3 s9 sr(m)s10 s11Weather
Forecast

Find
Map

Find
Restaurant

Query
Hotel Query

Flight
Book
Flight2Book

Hotel

Workflow1

Workflow2

Fig. 2. Two Workflows Contained
by the WSC-MDP in Fig. 1

– m: denote the agent m.
– Sm: a finite set of state spaces of agent m.
– sm0 ∈ Sm: is the initial state of agent m and also an execution of the service

compositions starts from this state.
– smr ∈ Sm: is the set of terminal states for agent m. Upon arriving at one of

the states, an execution of the service composition terminates.
– Am(.): represents the set of Web services that can be executed in state s ∈ Sm

. A service ws belongs to Am, only if the precondition ws P is satisfied by s.
– Pm : [pmiaj ] Sm ×Am × Sm → [0, 1]: The transitions function for the agent.

It expresses the probability that the agent m goes to state j if it executes web
service a in state i is pmiaj.

– Rm : [rmiaj ] Sm → R: defines the rewards that agent m receives if it is in
state i and goes to state j with the execution of web service a.

A WSC- MDP can be visualized as a transition graph. As illustrated by Fig. 1,
the graph contains two kinds of nodes, i.e. state nodes and service nodes, which
are represented by open circles and solid circles respectively. s0(m) represents
the initial state node. The terminal states nodes are sr(m). A state node can
be followed by a number of service nodes, representing the possible services that
can be invoked in the state. There is at least one arrow pointing from a service
node to the next state node. Each arrow is labeled with a transition probability
pmiaj , and the expected reward for that transition rmiaj . (For simplicity, we omit
the labels in Fig. 1.) The transition probabilities on the arrows rooted at a single
action node always sum to one.

Definition 3. Service Workflow. Let wf be a subgraph of a WSC-MDP. wf is
a service workflow if and only if there is at most one service that can be invoked
at each state wf . In other words, a service workflow is actually equivalent to a
deterministic state machine. A tradition service composition usually builds on a
single such workflow.

Example 1. Fig. 2 shows two of multiple service workflows. Which workflow to
be executed is determined by the policy of the Markov decision process.

Definition 4. (Policy): A policy π is a mapping from state s ∈ S to a service
ws ∈ A, which tells which service ws = (s) to execute when in state s.



A Novel Approach to Large-Scale Services Composition 223

Each policy of a WSC-MDP can determine a single workflow. By executing a
workflow, the service customer is supposed to receive a certain amount of reward,
which is equivalent to the cumulative reward of all the executed services. Given a
WSC-MDP, the task of our service composition system is to identify the optimal
policy or workflow that offers the best cumulative reward. As the environment of
a service composition keeps changing, the transition function P and the reward
function R of a WSC-MDP change too. As a result, the optimal policy changes
with time. If our system is able to identify the optimal policy at any given time,
the service composition will be highly adaptive to the environment.

3 Algorithm for Service Composition

The proposed Distributed Approach

The Q-learning is the most popular and seems to be the effective model-free
algorithm about the RL problems. It does not, however, address any of the issues
involved in generalizing over large state and/ or action spaces [7]. That is why, in
order to speed up the training process, we extend the proposed approach towards
a distributed one, in which multiple cooperative agents learn to coordinate in
order to find the optimal policy in their environment.

Experience sharing can help agents with similar tasks to learn faster and
better. For instance, agents can exchange information using communication [10].
Furthermore, by design, most multiagent systems also allow the easy insertion
of new agents into the system, leading to a high degree of scalability [1].

From agent-m’s standpoint, its control task could be thought of as an ordinary
reinforcement problem except that their action selecting strategy is dependent
on other agent’s optimal policies at the beginning of the learning. So at a cer-
tain state, one agent’s policy may be useful to other agents which can help them
to find optimal strategy quickly. But assume that each agent can simultane-
ously send its current policy to other agents, the communication information
is huge. For the purpose of reducing the communication information we don’t
let the agent to communicate with each others, but introduce supervisor agent
which supervises the learning process and synchronizes the computations of the
individual agents. In our algorithm, each agent m use the global Q-values esti-
mations stored in the blackboard which stores the global Q-values estimations
and communicate to the supervisor agent their intention to update a Q-value
estimation.

So we have two types of agents in our architecture:

– WSCA (Web Service Composition Agents). Each WSCA agent runs in a
separate process or thread and is trained using the Q-learning algorithm.
Each local agent performs local Q-values estimations updating from its own
point of view.

– a WSCS(Web Service Composition Supervisor) agent which supervises the
learning process and synchronizes the computations of the individual WSCA



224 H. Wang and X. Wang

agents. It keeps a blackboard [5] which stores the global Q-values estima-
tions. The local WSCA agents use the global Q-values estimations stored
in the blackboard and communicate to the WSCS agent their intention to
update Q-value estimation. If a local agent tries to update a certain Q-value,
the WSCS agent will update the global Q-value estimation only if the new
estimation received from the local agent is greater than the Q-values esti-
mations existing in the blackboard.

In this study, each reinforcement-learning agent uses the one-step Q-learning
algorithm. Its learning decision policy is determined by the central Q-table and
the state/action value function which estimates long-term discounted rewards for
each state/action pair. In order to get more knowledge for the agent and jump
out of the sub-superior strategy trap, searching strategy was introduced into the
Q-learning. The agent is allowed to take the action which isn’t the superior at the
current view, so ε− greedy strategy was proposed. Thus the agent can explore
the state-action space by choose the viable action randomly at some degree, and
avoid arriving at the local superior solution via only choosing the action with
the maximal Q-value.

For agent m, given a current state s and available actions A(m), a Q-learning
agent selects action ai with a probability given by the rule below:

pm(ai|s) =
{
(1− ε) if ai = argMaxa Q[s, a]
ε others

In each time step, the agent m updates Q(s, a) by recursively discounting future
utilities and weighting them by a positive learning rate α :

Q(s, a) = (1− α) ·Q(s, a) + α · [r(s, a) + γ ·maxQ(s′, a′)]. (1)

Here γ(0 ≤ γ < 1) is a discount parameter.
If Q(s, a) is the biggest among the actions in state s, than the WSCS will

update Q(s, a) in the blackboard.
The training process consists of three phases and will be briefly described in

the following.

Phase 1. Initial phase

The WSCS supervisor agent initializes the Q-values from the blackboard.

Phase 2. Training phase of each WSCA agent

During some training episodes, the individual WSCA agents will experiment
some paths from the initial to a final state, using the ε− greedy mechanism and
updating the Q-values estimations according to the algorithm described below
(algorithm 1). We denote in following by Q(s, a) the Q-value estimate associated
to the state s and a, as stored by the blackboard of the WSCS agent.



A Novel Approach to Large-Scale Services Composition 225

Algorithm 1. Multiagent Q-learning Algorithm for Agent m

Require:
The WSC-MDP for agent m;
The WSCS agent;
repeat

evaluate the starting state s
select action a from s using policy derived from Q (ε −Greddy)
repeat

Learning:(for each step of episode)
Take action a, observe the reward r(s, a) and the next state s′.
WSCA agent asks WSCS agent for Q(s, a).
WSCS retrieves Q(s, a) from the blackboard.
WSCS sends the retrieved Q(s, a) to WSCA.
WSCA agent updates the table entry Q(s, a) ad follows

Q(s, a) = (1− α) ·Q(s, a) + α · [r(s, a) + γ ·maxQ(s′, a′)]. (2)

WSCA sends the new Q(s, a) to WSCS.
WSCS updates the Q(s, a) if it is greater than the old.
WSCA agent go to state s′

until s is the terminal state
until the Q-values tiny changes

Phase 3. Executing phase

After the training of the multi-agent system has been completed, the solution
learned by the WSCS supervisor agent is constructed by starting from the initial
state and following the Greedy mechanism until a solution is reached. The system
applies the solution as a service workflow to execute. At the same time, the
execution is also treated as an episode of the learning process. The Q-functions
are updated afterwards, based on the newly observed reward.

By combining execution and learning, our framework achieves self-adaptively
automatically. As the environment changes, service composition will change its
policy accordingly, based on its new observation of reward. It does not require
prior knowledge about the QoS attributes of the component services, but is able
to achieve the optimal execution policy through learning.

4 Experimental Evaluation

In order to evaluate the methods, we conducted simulation to evaluate the prop-
erties of our service composition mechanism based on the methods discussed in
this paper. The PC configuration: Intel Xeon E7320 2.13GHZ with 8GB RAM,
Windows 2003, jdk1.6.0.

We considered two QoS attributes of services. They ware service fee and ex-
ecution time. We assigned each service node in a simulated WSC-MDP graph
with random QoS values. The value followed normal distribution. To simulate



226 H. Wang and X. Wang

the dynamic environment, we periodically varied the QoS values of existing ser-
vices based on a certain frequency. We applied the algorithms introduced in
Section 3 to execute the simulated service compositions. The reward function
used by the each learner was solely based on the two QoS attributes. After an
execution of a service , the learners get a reward , whose value is:

R(s) =
feemax

i −feesi
feemax

i −feemin
i

+
timemax

i −timesi
timemax

i −timemin
i

The reward was always positive, however service consumers always prefer low
execution time and service fee.

We will show that such cooperative agents can speed up learning, measured
by the average cumulative values in training, even though they will eventually
reach the same asymptotic performance as independent agents.

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 400 700 1000 1300 1600 1900

M
ea

n 
cu

m
ul

at
iv

e 
re

w
ar

d

Episodes

Q-learning
20 agents

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 400 700 1000 1300 1600 1900

M
ea

n 
cu

m
ul

at
iv

e 
re

w
ar

d

Episodes

Q-learning
20 agents

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 400 700 1000 1300 1600 1900

M
ea

n 
cu

m
ul

at
iv

e 
re

w
ar

d

Episodes

Q-learning
20 agents

(a) (b) (c)

 10

 15

 20

 25

 30

 35

 40

 45

 50

200 600 1000 1400 1800 2200 2600 3000

M
ea

n 
cu

m
ul

at
iv

e 
re

w
ar

d

Episodes

Q-learning
20 agents

 10

 15

 20

 25

 30

 35

 40

 45

 50

500 1000 1500 2000 2500 3000 3500 4000

M
ea

n 
cu

m
ul

at
iv

e 
re

w
ar

d

Episodes

Q-learning
20 agents

 10

 15

 20

 25

 30

 35

 40

 45

 50

500 1000 1500 2000 2500 3000 3500 4000

M
ea

n 
cu

m
ul

at
iv

e 
re

w
ar

d

Episodes

Q-learning
20 agents

(d) (e) (f)

Fig. 3. (a) Results of comparison with 20 services in each state; (b) Results of com-
parison with 30 services in each state; (c) Results of comparison with 40 services in
each state; (d) Results of comparison with 100 services in each state; (e) Results of
comparison with 150 services in each state; (f) Results of comparison with 200 services
in each state;

Scalability with respect to the number of services

In this stage of our evaluation, we studied the effect of distributed RL approach
with varied number of services in each state. We fix the state number on 500
and vary the services from 20 to 200. As the Fig. 3 shows, the distributed RL
learns more quickly than Q-learning, and when the number of services increases,
the reducing of convergence time is more considerable, because they may have
explored the different parts of a state space and share their knowledge. If agents
perform the similar task, two agents can complement each other by exchanging
their policies or use what the other agent had already learned for its own benefit.
Assume that each agent can simultaneously send its current policy at some state
to blackboard Q-table by WSCS agent, if some agent finds a better choice, it
may update blackboard Q-table through WSCS agent, then other agents can
adopt that policy with certain probability in that state.



A Novel Approach to Large-Scale Services Composition 227

The results in all cases clearly indicate that distributed RL approach presented
in this paper learns more quickly and reduces the overall computational time
compared againest the Q-learning.

5 Conclusion

This paper studied a novel framework for large scale service composition. In or-
der to reduce the time of convergence we introduce a sharing strategy to share
the policies among agents in a team. The experimental results show that the
strategy of sharing state-action space improves the learning efficiency signifi-
cantly. Additionally, the problem that has to be further investigated is how to
reduce the communication cost between the WSCA agents and WSCS agent and
explore other local search mechanisms. Next, we will concentrate on these issues
and improve our algorithm further.

References

1. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 38(2), 156–172 (2008)

2. Carman, M., Serafini, L., Traverso, P.: Web service composition as planning. In:
ICAPS 2003 Workshop on Planning for Web Services, pp. 1636–1642 (2003)

3. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition
using markov decision processes. In: IEEE International Conference on Web Ser-
vices, pp. 576–582. IEEE (2004)

4. Gao, A., Yang, D., Tang, S., Zhang, M.: Web service composition using markov de-
cision processes. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739,
pp. 308–319. Springer, Heidelberg (2005)

5. Gonzaga, T., Bentes, C., Farias, R., de Castro, M., Garcia, A.: Using distributed-
shared memory mechanisms for agents communication in a distributed system. In:
Seventh International Conference on Intelligent Systems Design and Applications,
ISDA 2007, pp. 39–46. IEEE (2007)

6. Hwang, S.Y., Lim, E.P., Lee, C.H., Chen, C.H.: Dynamic web service selection for
reliable web service composition. IEEE Transactions on Services Computing 1(2),
104–116 (2008)

7. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: A survey. Arxiv
preprint cs/9605103 (1996)

8. Papazoglou, M., Georgakopoulos, D.: Service-oriented computing. Communications
of the ACM 46(10), 25–28 (2003)

9. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: Htn planning for web service
composition using shop2. Web Semantics: Science, Services and Agents on the
World Wide Web 1(4), 377–396 (2004)

10. Sutton, R., Barto, A.: Reinforcement learning. Journal of Cognitive Neuro-
science 11(1), 126–134 (1999)

11. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive ser-
vice composition based on reinforcement learning. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer,
Heidelberg (2010)


	A Novel Approachto Large-Scale Services Composition
	Introduction
	A MAMDP Model for Service Composition
	Algorithm for Service Composition
	Experimental Evaluation
	Conclusion
	References




