
An Integrated Approach
for Large-Scale Relation Extraction from the Web

Naimdjon Takhirov1, Fabien Duchateau2, Trond Aalberg1, and Ingeborg Sølvberg1

1 Norwegian University of Science and Technology, 7491 Trondheim, Norway
{takhirov,trondaal,ingeborg}@idi.ntnu.no

2 Université Lyon 1, LIRIS, UMR5205, Lyon, France
fduchate@liris.cnrs.fr

Abstract. Deriving knowledge from information stored in unstructured docu-
ments is a major challenge. More specifically, binary relationships representing
facts between entities can be extracted to populate semantic triple stores or large
knowledge bases. The main constraint of all knowledge extraction approaches is
to find a trade-off between quality and scalability. Thus, we propose in this pa-
per SPIDER, a novel integrated system for extracting binary relationships at large
scale. Through series of experiments, we show the benefit of our approach, which
in general, outperforms existing systems both in terms of quality (precision and
the number of discovered facts) and scalability.

Keywords: Relation Extraction, Knowledge Bases, Web Mining.

1 Introduction

Information available on the Web has the potential to be a great source of structured
knowledge. However this potential is far from being realized. The main benefit of ob-
taining exploitable facts such as relationships between entities from natural language
texts is that machines can automatically interpret them. The automatic processing en-
ables advanced applications such as semantic search, question answering and various
other applications and services. The Linked Open Data (LOD) aims at making the
vision of creating a large structured database a reality. In this domain, the building
of semantic knowledge bases such as DBpedia, MusicBrainz or Geonames is (semi-
)automatically performed by adding new facts which are usually represented by triples.
However, most of these triples express a simple relationship between an entity and one
of its properties, such as the birthplace of a person or the author of a book. By mining
structured and unstructured documents from the Web, one can provide more complex
relationships such as parodies. A different vision known as the web of concepts shares
similar objectives with LOD [12]. As a consequence, knowledge harvesting [9,10,14]
and more generally open-domain information extraction [5] are emerging fields with
the goal of acquiring knowledge from textual content.

In this paper, we propose a relation extraction approach named SPIDER1. It aims at
addressing the previously mentioned issues by integrating the most relevant techniques

1 Semantic and Provenance-based Integration for Detecting and Extracting Relations.

Y. Ishikawa et al. (Eds.): APWeb 2013, LNCS 7808, pp. 163–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

164 N. Takhirov et al.

to generate trustworthy patterns and relationships. SPIDER is based on a perpetual pro-
cess of generating patterns and examples either in supervised or unsupervised mode.
The main intuition is that generic patterns which are derived from similar sentences and
which are discovered in trustworthy documents are useful for detecting relationships in
other documents. In summary, our contributions in this paper are:

– Extracting relationships from a Web-scale source is a major bottleneck. To the best
of our knowledge, SPIDER is the first approach which does not require several days
to perform a single iteration.

– Contrary to most knowledge extraction tools, we tackle the problem of uniquely
identifying entities to extend their list of spelling forms and to facilitate the match-
ing to LOD.

– SPIDER includes a flexible pattern definition scheme. This scheme is used to merge
similar patterns for efficiency purposes. In addition, we introduce the notion of
confidence score that controls the ranking of patterns. The confidence score evolves
over time as the system runs continuously.

– Experiments confirm the benefits of our approach w.r.t. similar tools (ReadTheWeb,
Prospera) in terms of quality and performance.

2 Overview

2.1 Problem Definition

The overall goal of SPIDER is to continuously generate relationships and patterns. Let
us first define a relationship. It is a triplet <e1, τ , e2> where e1 and e2 represent entities
and τ stands for a type of relationship. An entity might be represented with different
labels in natural language text, and we note le ∈ L one of the mentions for the entity
e. An example of a relationship is createdBy between the work entity The Lord of the
Rings and the person entity J.R.R. Tolkien. Note that both the entities and the type
of relationship are uniquely identified using an URI. An example denotes a pair of
entities (e1, e2) which satisfies a type of relationship.

The patterns are extracted from a collection of documents D = {d1, d2, ..., dn}.
Although not limited to, these documents are webpages in our context. Each document
is composed of sentences, which may contain mentions of the two entities. In that case,
the sentence is extracted as a candidate pattern. We note CP the set of candidate
patterns given a collection of documents and a set of initial examples. Each candidate
pattern is defined as a tuple cp = {tb, e1, tm, e2, ta} with tb, tm and ta respectively
standing for the text before, the text in the middle and the text after the entities. A
sentence “Bored of the Rings is a parody of Lord of the Rings” is transformed to a
corresponding candidate pattern {“”, e1, “is a parody of”, e2, “”}.

From the set of candidate patterns CP , we derive a set P of generic patterns by ap-
plying a strategy s. A strategy is defined as a sequence of operations s =< o1, o2, ...,
ok >, each operation aiming at generalizing the candidate patterns. Namely, this gen-
eralization implies the detection of frequent terms and the POS-tagging of the other
terms of the candidate patterns. Thus, a strategy is a function such that s(CP) → P .
All generated patterns are associated to a specific type of relationship τ . For instance,

An Integrated Approach for Large-Scale Relation Extraction from the Web 165

a generic pattern for the parody type is illustrated with “{e1} is/VBZ a/DT {parody,
illusion, spoof} of/IN {e2}” 2.

Finally, a pattern and an example both have a confidence score noted confp and
confe respectively. This score is based on the support, the provenance, the number of
occurrences, the number of strategies and the iteration. A pattern similarity metric in-
dicates the proximity between two (candidate) patterns. The notion of confidence score,
as well as the one for operation, strategy, pattern similarity and (candidate) pattern, are
further detailed in the next sections.

2.2 Workflow

Given two labels, SPIDER generates patterns and derives to a relationship. This pattern
generation capability is guaranteed by the following two processes:

− Pattern Generation is in charge of detecting candidate patterns by using examples
or provided entities and of generalizing these candidate patterns to obtain patterns
for a given type of relationship (see Figure 1).

− Example Generation exploits the previously generated patterns in order to discover
new examples which satisfy the type of relationship.

The knowledge base stores all generated examples and patterns. These examples can
be used to maintain the system continuously running, but they can be exploited from a
user perspective too.

3 Pattern Generation

The pattern generation process either requires a few examples for a given type of re-
lationship so that patterns for this type of relationship can be automatically generated
(supervised), or it directly tries to guess the type of relationship for two given labels
(unsupervised). The process is similar in both modes and it is composed of three main
steps: extension of entities, extraction of candidate patterns from the collection of doc-
uments and their refinement into patterns.

3.1 Extending Entities

In a document, entities are not uniquely identified by a label but they have alternative la-
bels or spelling forms. Therefore, extending these entities with their alternative labels is
a crucial step and it requires the correct identification of the entity. For instance, the en-
tity “Lord of the Rings” can be labeled “LOTR” or “The Lord of the Rings”. To avoid
missing potentially interesting relationships, we search for these alternative forms of
spelling in the documents. Given an entity e represented by a label l, the goal is to dis-
cover its set of alternative labels Le = {l, l1, l2, ..., ln}. The idea is to match the entity
against LOD semantic knowledge bases to obtain this list of alternative labels. Namely,

2 VBZ=Verb, 3rd person sing. present, DT=Determiner, IN=Preposition or subordinating con-
junction.

166 N. Takhirov et al.

{e2} is a parody of {e1}
a spoof of {e1}, entitled{e2}

….
{e2} is a short satirical novel by …

parodying {e1}

e1

e2

lord of the rings

EXTENSION DOCUMENT
EXTRACTION GENERALIZATION SELECTION

DBpedia Freebase

OpenCyc

l11
l12
...

l1m

l21
l22
...
l2n

LOTR
LotR
…

Lord_of_the_Rings
TLotR

candidate
patterns

ranked
patterns

generic
patterns

collection of documents

Simple strategy
Contextual

strategy

{e2} is/VBZ a/DT parody of/IN {e1}
….

a/DT spoof of/IN {e1}, entitled/VBD {e2}

Fig. 1. The Pattern Generation Process

we build various queries by decomposing the initial label and we query in the aliases at-
tributes of knowledge bases (i.e., common.topic.alias for Freebase, wikiPageRedirects
for DBpedia, etc.). In most cases, several candidate entities are returned and the tool
tries to automatically select the correct one.

The process of automatically selecting the correct entity is achieved as follows. First,
an AND query is constructed with the two labels. Clusters of documents are built rep-
resenting documents belonging to a set of specific type of entities. The n number of
words around labels are extracted and stemming performed on words. Our assumption
is based on the fact that documents mentioning the same entities tend to have similar
words. Therefore, a graph of semantically related words is built. The most important
documents in the cluster are then compared against the abstract of the automatically
selected entities. Next, we extract frequent terms from the most important documents
in the result set and use these frequent words as extensions. Note that if disambiguation
is not possible, we discard the example and we do not use it for subsequent pattern gen-
eration. The result of the extension process is a list of alternative labels as illustrated in
Figure 1.

The main issue in this step deals with the absence of the two labels in any knowl-
edge base, which means that the entities cannot be extended. The number of retrieved
documents in that case could not be sufficient to extract good candidate patterns. The
first solution consists of analyzing these retrieved documents to detect potential alter-
native spellings by applying metrics such as tf-idf and Named Entity Recognition tech-
niques. Another possibility is to relax the similarity constraint when searching a label
in a knowledge base. In other words, a strict equality measure would not be applied
between the label and the candidate spelling forms from a knowledge base. Rather n-
grams or Levenshtein similarity metrics with a high threshold would be a better choice.

3.2 Extraction of Candidate Patterns

As depicted in Figure 1, the outcome of document extraction process is candidate pat-
terns. Given the lists of extended labels for both entities, our tool associates all alterna-
tive labels of the first entity to all labels of the second entity (Cartesian product) to build
different queries. The documents resulting from these queries are ranked according to

An Integrated Approach for Large-Scale Relation Extraction from the Web 167

their relevance score. The candidate patterns are extracted by parsing these documents
and locating the sentences with co-occurrence of both entities (defined by a maximum
number of words between them, currently 15 words). Note that we include in the can-
didate patterns the text before and after the entities to obtain full sentences. The final
step aims at refining the candidate patterns to obtain patterns.

3.3 Selection of Patterns

The last issue deals with the selection or ranking of the generic patterns. Thus, a confi-
dence score noted confp is computed for each pattern p with Formula 1. Our intuition
is to exploit all information which allowed the discovery of the patterns and to compare
a pattern with the ones of the same type of relationship.

conf(p) =

(
αsupp + βoccp + γprovp

α+ β + γ

)
(1)

The support supp is defined as the ratio between the number of examples exp that
this pattern is able to discover and the total number of examples exτ discovered by all
patterns of the same type of relationship τ . Note that the support cannot be computed
at the first iteration.

Similarly, the occurrency occp stands for the number of candidate patterns which
led to the generation of the pattern p. It is normalized by the total number of candidate
patterns used to generalize all patterns of the same type of relationship τ .

suppp =
exp

exτ
occp =

occp
occτ

The provenance provp refers to the relevance of the documents from which the can-
didate patterns which generalize a given pattern have been extracted. The relevance is
evaluated given three metrics: the relevance score namely applies tf-idf on the content
of the document and its values are bounded by a maximal value which depends on the
query. PageRank3 is widely known due to the Google search engine. The PageRank
scores of our collection are in the range [0.15, 10]. Finally, SpamScore indicates the
probability that a document is a spam or not [8]. The idea is to average the scores re-
turned by these three metrics for all documents from which patterns have been derived.
We note Dp this set of documents for the pattern p, and dip a document of this set. The
following formula computes a score in the range [0, 1] to evaluate the average relevance
of this set of documents, and thus the provenance of the pattern:

provp =

∑di
p 1

3

(
relevance(di

p)

max(relevance(Dp))
+

spamscore(di
p)

100 +
prank(di

p)

10

)
|Dp|

4 Relationship and Example Discovery

In the previous step, we have generated patterns for a given type of relationship. SPI-
DER aims at discovering relationships between entities and discovering new examples.

3 http://j.mp/Clueweb09-Pagerank

http://j.mp/Clueweb09-Pagerank

168 N. Takhirov et al.

4.1 Challenges for Exploiting Patterns

Using the generated patterns to discover knowledge from plain texts involves the ad-
dressing of the following two challenges: pattern similarity and NER.

Pattern Similarity. When analyzing sentences in a document, SPIDER needs to eval-
uate the similarity between a sentence and a pattern. Thus, we have designed a pattern
similarity metric. The intuition which underlies our metric is twofold: (i) the presence
of frequent terms in the sentence is crucial while there is more flexibility for less im-
portant terms and (ii) the position of the words should be taken into account. First, the
sentence is transformed (cleaning, POS-tagging and replacing the mentions of the enti-
ties) so that both the sentence s and the pattern p are composed of POS-tagged terms.
The pattern may also include a list of frequent terms, which is noted FT p. The idea
is to compute Δ, the minimal total distance to transform the sentence into the pattern.
Thus, our metric is an adaptation of the Levenshtein distance [7]. However, we do not
compute a number of operations (delete, transform or add a term) between two words
or characters, but rather we evaluate the semantic distance between two words. Given
the ith word wi

p associated to the tag tip in the pattern p and the word wj
s with the tag

tjs in the sentence s, we compute their semantic distance semdist(wi
p, w

j
s) using the

following formula:

semdist(wi
p, w

j
s) =

⎧⎨
⎩

0.0 if wj
s ∈ FT p

resnik(wi
p, w

j
s) if wj

s /∈ FT p and tip = tjs
1.0 otherwise

(2)

Namely, the distance is equal to 0 if the word in the sentence is a frequent term. POS-
tagged terms whose tags are identical (e.g., two verbs) have a similarity obtained by
applying the Resnik distance in Wordnet [13]. Else, words with different tags have
the maximal distance. The minimal total distance Δ(p, s) between a pattern p and a
sentence s is computed by the matrix algorithm of the Levenshtein distance4 using the
semantic distance for all pairs of words. The distance is normalized in the range [0, 1]
with Formula 3 which assesses the similarity pattsim.

pattsim(p, s) =
1

1 +Δ(p, s)
(3)

Our metric is flexible because extra or missing words in a sentence do not significantly
affect the similarity value. Similarly, less important words are mainly compared on their
nature (POS-tag). Finally, we can select the sentences which are modeled by a pattern
according to a threshold.

NER. When a sentence in a document corresponds to a pattern, our approach needs to
identify and extract entities contained in the sentence. Thus, the NER issue is crucial
as it determines (part of) the output. Indeed, it is necessary to correctly identify the
(labels of) entities in the sentence based on a pattern. To solve this issue, we rely on
the formalism of our patterns: since they have been POS-tagged, the tags serve as a
delimiter and may constraint the candidate entities.

4 http://j.mp/Levenschtein

http://j.mp/Levenschtein

An Integrated Approach for Large-Scale Relation Extraction from the Web 169

4.2 Discovering the Type of Relationship

Given two labels (representing an entity), the goal is to determine the possible type(s)
of relationships between these two entities. The two entities are first extended to ob-
tain their alternative labels (see Section 3.1). A set of documents is analyzed to extract
all sentences which contain one label of each entity, and these sentences are then com-
pared to all patterns stored in SPIDER’s knowledge base (see Section 4.1). If a sentence
is similar to a trustable pattern (with a sufficient confidence score), then the type of re-
lationship corresponding to this pattern is proposed to the user. Note that if there is no
trustable pattern in the knowledge base, the user has the possibility to provide training
data to the system.

4.3 Discovering New Examples

The discovery of new examples is at the basis of the never-ending feature which en-
ables the feeding of the knowledge base with additional training data for generating
new patterns. SPIDER selects in the knowledge base the patterns of a given type of
relationship. It retrieves a set of documents by querying each de-tagged pattern (or only
their frequent terms). We compute the similarity between a pattern and the sentences of
the documents which include a frequent term of this pattern. If the sentence is modeled
by the pattern, then we apply the NER techniques for discovering the two entities. Note
that each discovered example has a confidence score, which is computed with the same
formula as in Section 3.3 for the confidence of a pattern, except that supe replaces supp
and it indicates the number of patterns which discovered this example. Examples with
a very low confidence are discarded while others are stored in the knowledge base.

5 Scalability

In order to efficiently process documents, we distribute the jobs into several machines.
MapReduce inspired techniques have been popular to tackle such tasks. Therefore, the
collection is indexed with Hadoop enabling efficient indexing and searching. To com-
pute statistics, SPIDER makes use of Pig5 which is a high level platform for analyzing
a large collection of data.

Additionally, we propose a document partition to incrementally provide results on
a subset of the collection. The general idea is that highly ranked documents should
be a better source for obtaining patterns than those with lower PageRank, SpamScore
and relevance score values. The size of a partition depends on the quality of the ob-
tained patterns and examples. SPIDER is able to automatically tune the ideal size of
a partition. Initially, the documents are sorted by their PageRank, SpamScore and the
relevance score as described above. The top k documents are selected for analysis from
the head of the ranked list of documents. For the i-th round, the cursor is moved to
the range [k, i × k] and the documents in that range are picked out for analysis. Fur-
thermore, when there are too few patterns discovered for two given labels out of these
initial set of documents, the partition size is subsequently adjusted to a higher number.

5 http://pig.apache.org

http://pig.apache.org

170 N. Takhirov et al.

The combination of scores as well as the partitioning mechanism makes obtaining the
URLs of the documents and their content for a given query fast, i.e., it only requires a
few seconds. This efficiency is demonstrated in Section 7.2.

6 Related Work

Relationship extraction has been widely studied in the last decade. Supervised systems
for relationship extraction are mainly based on kernel methods, but they suffer from the
processing costs and the difficulty for annotating new training data. One of the earliest
semi-supervised system, DIPRE, uses a few pairs of entities for a given type of rela-
tionship as initial seeds [3]. It searches the Web for these pairs to extract patterns repre-
senting a relationship, and use the patterns to discover new pairs of entities. These new
entities are integrated in the loop to generate more patterns, and then find new pairs of
entities. Snowball [1] enhances DIPRE in two different directions. First, a verification
step is performed so that generated pairs of examples are checked with MITRE named
entity tagger. Secondly, the patterns are more flexible because they are represented as
vectors of weighted terms, thus enabling the clustering of similar patterns.

Espresso [11] is a weakly-supervised relation extraction system that also makes use
of generic patterns. The system is efficient in terms of reliability and precision. How-
ever, experiments were performed on smaller datasets and it is not known how the
system performs at Web-scale.

TextRunner brought further perspective in the field of Open Information Extraction,
for which the types of relationships are not predefined [2]. A self-supervised learner is
in charge of labeling the training data as positive or negative, and a classifier is then
trained. Relations are extracted with the classifier while a redundancy-based probabilis-
tic model assigns confidence scores to each new examples. The system was further
developed into a ReVerb framework [6] which improves the precision-recall curve of
the TextRunner.

ReadTheWeb / NELL [4] is another project that aims at continuously extracting cat-
egories (e.g., the type of an entity) and relationships from web documents and improv-
ing the extraction step by means of learning techniques. Four components including a
classifier and two learners are in charge of deriving the facts with a confidence score.
According to the content of the online knowledge base, more iterations provide high
confidence scores (almost 100%) for irrelevant relationships. Contrary to NELL, we do
not assume that one document returning a high confidence score for a given relation-
ship is sufficient for approving this relationship. In addition, NELL is mainly dedicated
to the discovery of categories (95% of the discovered facts) rather than relationships
between entities.

A recent work reconciles three main issues in terms of precision, recall and perfor-
mance [10]. Indeed, Prospera utilizes both pattern analysis with n-gram item sets to
ensure a good recall and rule-based reasoning to guarantee an acceptable precision. The
performance aspect is handled by partitioning and parallelizing the tasks in a distributed
architecture. A restriction of this work deals with the pattern which only covers the mid-
dle text between the two entities. This limitation affects the recall, as shown with the
example “Lord Of The Rings, which Tolkien has written”.

An Integrated Approach for Large-Scale Relation Extraction from the Web 171

Contrary to the oldest systems which include hard representations of patterns, Pros-
pera and SPIDER includes a more flexible definition of the patterns, so that similar
patterns can be merged. In addition, the patterns are at the sentence level, which means
that the texts before, after and between the entities are considered. Our confidence
score for a pattern or an example takes into account crucial criteria such as provenance.
In addition, the support and the occurrence scores are correlated within the same type of
relationship, thus the confidence in a pattern or an example may decrease over time. To
the best of our knowledge, none of these approaches deal with the issue of identifying
the alternative labels of an entity. In the future, we plan to demonstrate the impact of
these alternative labels on the recall. Finally, our approach is scalable with document
partitioning based on smart sorting using the SpamScore, PageRank and relevance score
of the documents.

7 Experimental Results

Our collection of documents is the English portion of the ClueWeb09 dataset (around
500 million documents). For the components, we have used the contextual strategy,
with the Maxent POS-tagger provided with StandfordNLP6. The NER component is
based on the OpenNLP toolkit7. Evaluation is performed using well-known metrics
such as precision (number of correct discovered results divided by the total number of
discovered results). The recall can only be estimated since we cannot manually parse
the 500 million documents to check if some results have been forgotten. However, we
show that the number of correct results increases over time.

7.1 Quality Results

In this section, we present our results in terms of quality of label extension, relationship
discovery and comparison with state of the art baseline knowledge extraction tools. The
evaluation of relationship discovery depends on the quality of generated patterns and
hence we present this evaluation rather than the pattern generation itself.

Relationship Discovery. We evaluate the quality obtained by SPIDER when running
the first use case (Section 4.2). Given two labels (representing entities), we search for
the correct type of relationship which links them. To fulfill this goal, we have man-
ually designed a set of 200 relationships, available at this URL8. Note that the type
of relationship associated to each example is the most expected one, but several types
of relationship are possible for the same example. Table 1 provides a sample of ex-
amples (e.g., Obama, Hawai) and some candidate types of relationship discovered by
SPIDER (e.g., birthplace). A bolded type of relationship indicates that it is correct for
this example. A second remark about our set of relationships deals with the complexity
of some relationships (e.g., <cockatoo, tail, yellow>). The last column shows the ini-
tial confidence score computed for the candidate relationship. The quality is measured

6 http://nlp.stanford.edu/software/CRF-NER.shtml
7 http://opennlp.apache.org/
8 http://j.mp/apweb2013

http://nlp.stanford.edu/software/CRF-NER.shtml
http://opennlp.apache.org/
http://j.mp/apweb2013

172 N. Takhirov et al.

Table 1. Examples of Discovered Types of Relationship and Confidence Scores

Example Discovered type of relationship Confidence score
birthplace 0.42

Obama, Hawai senator 0.31
president-elect 0.18
amazon 0.32

cockatoo, yellow parrot 0.31
tail 0.16
plant 0.51

eucalyptus, myrtaceae family 0.43
specie 0.27
inventor 0.60

Bartolomeo Cristofori, instrument 0.43
piano maker 0.19

in terms of precision at different top-k. Indeed, SPIDER outputs a ranked list of rela-
tionship types according to their confidence scores. In addition, our approach is able to
run with or without training data. Thus, we have tested the system when a few training
data have been provided. Using 1 training example means that the system has randomly
selected 1 correct example for bootstrapping the system. Experiments with the training
data are based on cross-validation and 5 runs reduce the impact of randomness. The
manual validation of the discovered relationships has been performed by 8 people. This
manual validation includes around 3000 invalid relationships and 600 correct ones, and
it facilitates the automatic computation of precision. In addition, we are able to estimate
the recall, i.e. to evaluate the number of correct types discovered during a run w.r.t. all
validated types. This is an estimation because there may exist more correct types of
relationship than the ones which have been validated. Besides, a discovered type may
have a different spelling from a validated type while both have the same meaning, thus
decreasing the recall.

Figures 2(a) and 2(b) respectively depict the average precision and the average
recall for the 200 relationships by top-k and by number of provided training data. We
first notice that SPIDER achieves low quality without training data (precision from
40% at top-1 to 30% at top-10). The estimated recall values are also quite low at top-1
because there is an average of 3 correct types of relationships for each example. The
top-3 results are interesting with 5 training data: the precision is acceptable (more than
80%) while the recall value (32%) indicates that one type of relationship out of three is
correctly identified. Since our dataset contains complex relationships, this configuration
is promising for bootstrapping the system. Precision strongly decreases at top-5 and
top-10, mainly because each example roughly includes 3 types. However, the top-5 and
top-10 recall values indicate that we discover more correct examples. Finally, we notice
that providing a few training data (5 examples) enables at least a 10% improvement both
for precision and recall. This remark is important since our approach aims at running
perpetually by reusing previously discovered examples and patterns.

The quality results are subject to the complexity of the set of relationships, since we
have selected some complex ones to discover, such as <“cockatoo”, “tail”, “yellow”>.
Other problems of disambiguation occurred, for instance the example “Chelsea”, “Lon-
don” mainly returns types of relationships about accommodations because Chelsea is
identified as a district of London and not as the football team.

An Integrated Approach for Large-Scale Relation Extraction from the Web 173

 0

 20

 40

 60

 80

 100

top-1 top-3 top-5 top-10

P
re

ci
si

on
 in

 p
er

ce
nt

ag
e

no training
1 example

5 examples

(a) Precision

 0

 20

 40

 60

 80

 100

top-1 top-3 top-5 top-10

E
st

im
at

ed
 r

ec
al

l i
n

pe
rc

en
ta

ge

no training
1 example

5 examples

(b) Estimated Recall

Fig. 2. Quality results according to top-k and Training Data

Baseline Comparison. A final experiment aims at comparing our system with two other
approaches, ReadTheWeb (NELL) [4] and Prospera [10], both described in Section 6.
These two approaches have been chosen as baseline because the dataset along with the
results are available online. An evaluation of these tools is described online9. Since the
seed examples are available, we have used them as training data. Table 2 summarizes
the comparison between the three systems in terms of estimated precision, as ex-
plained in the experiments reported in [4,10]. Similarly to Prospera and ReadTheWeb,
our precision is an estimation due to the amount of relationships to validate. Namely,
1000 random types have been validated for each relationship. The average precision of
the three systems is the same (around 0.91). However, the total number of facts discov-
ered by SPIDER (71,921) is 36 times higher than ReadTheWeb (2,112) and 1.3 times
higher than Prospera (57,070), outperforming both baselines.

Prospera provides slightly better quality results than our approach on
AthletePlaysForTeam relation. However, several factors have an influence on the pre-
cision results between Prospera, ReadTheWeb and SPIDER. First, Prospera is able to
use seeds and counter seeds while we only rely on positive examples. On the other side,
Prospera includes a rule-based reasoner combined with the YAGO ontology. Although
SPIDER does not support this feature, the combination of POS-tagged patterns and
NER techniques achieves outstanding precision values.

7.2 Performance

Since knowledge extraction systems deal with large collections of documents, they need
to be scalable. Figure 3(a) depicts the performance of SPIDER for retrieving and pre-
processing (i.e., clean up the header, remove html tags) the documents. The total time
(sum of retrieval and preprocessing) is also indicated. Although there is no caching,
the total time is not significant for collecting and preprocessing one million documents
(around 40 seconds). Note that in real cases, a conjunctive query composed of two
labels rarely returns more than 20, 000 documents. The peak for retrieval at 600, 000
documents is due to an overhead processing from the thread manager. Increasing the

9 http://www.mpi-inf.mpg.de/yago-naga/prospera/

http://www.mpi-inf.mpg.de/yago-naga/prospera/

174 N. Takhirov et al.

Table 2. Estimated Precision (with Number of Discovered Facts) values obtained by
ReadTheWeb (RTW), Prospera and SPIDER

Relation RTW Prospera SPIDER
AthletePlaysForTeam 1.00 (456) 0.82 (14,685) 0.80 (15,234)
TeamWonTrophy 0.68(397) 0.94 (98) 0.96 (92)
CoachCoachesTeam 1.00 (329) 0.88 (1,013) 0.90 (1,629)
AthleteWonTrophy n/a 0.92(10) 0.94 (124)
AthletePlaysInLeague n/a 0.94 (3,920) 0.95 (4,211)
CoachCoachesInLeague n/a 0.99 (676) 0.89 (741)
TeamPlaysAgainstTeam 0.99 (1,068) 0.89 (15,170) 0.93 (15,729)
TeamPlaysInLeague n/a 0.89 (1,920) 0.95 (2,409)
TeamMate n/a 0.86 (19,578) 0.84 (31,752)

 0

 10

 20

 30

 40

 50

 60

 70

 80

200000 400000 600000 800000 1M

T
im

e
in

 s
ec

on
ds

Number of documents

retrieval-time
preprocessing-time

total-time

(a) Retrieval and Preprocessing Performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000 5000 10000 20000 50000
 0

 100000

 200000

 300000

 400000

 500000

T
im

e
in

 s
ec

on
ds

N
um

be
r

of
 (

ca
nd

id
at

e)
 p

at
te

rn
s

Number of documents

candidate patterns
patterns

total time

(b) Query Performance

Fig. 3. Performance results

number of threads above 400 leads to higher thread switching latency while decreasing
this number only reports the peak earlier during the process. This issue could be simply
solved by dispatching this task on different servers.

ReadTheWeb and Prospera expose their knowledge base but not their tools. Thus, it
is not possible to evaluate the three systems on the same hardware and the following
comparison is based on the performance described in the original research papers. It
mainly aims at showing the significant improvement of SPIDER over ReadTheWeb and
Prospera, for a better average quality. To produce the results shown in Table 2, Prospera
needed more than 2 days using 10 servers with 48 GB RAM [10]. In a similar fashion,
ReadTheWeb has generated an average of 3618 facts per day during the course of 67
days using the Yahoo M45 supercomputing cluster [4]. On the contrary, our approach
performed the same experiment in a few hours. The generation of facts for each type
of relationship took between 20 to 60 minutes with four servers equipped with 24 GB
RAM. Although these values are mainly indicative, SPIDER is more efficient than the
two other systems when dealing with dynamic and large-scale environments.

8 Conclusion

In this paper, we have presented SPIDER, an approach to automatic extraction of
binary relationships from large text corpora. The main advantage of our system is to

An Integrated Approach for Large-Scale Relation Extraction from the Web 175

guarantee both a better quality and a strong improvement in terms of performance
over similar approaches, thus providing new opportunities for discovering relationships
at large scale. Finally, we have demonstrated the feasibility of SPIDER at Web-scale.

References

1. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections.
In: Proc. of DL, pp. 85–94. ACM (2000)

2. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information
extraction from the web. In: Proc. of IJCAI, pp. 2670–2676. Morgan Kaufmann (2007)

3. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendel-
zon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidel-
berg (1999)

4. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E., Mitchell, T.M.: Toward an
architecture for never-ending language learning. In: Proc. of AAAI. AAAI Press (2010)

5. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction from the
web. Communication of ACM 51, 68–74 (2008)

6. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction.
In: Proc. of EMNLP, pp. 1535–1545. ACL (2011)

7. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Journal of Soviet Physics Doklady 10, 707 (1966)

8. Lynam, T.R., Cormack, G.V., Cheriton, D.R.: On-line spam filter fusion. In: Proc. of SIGIR,
pp. 123–130. ACM (2006)

9. Mausam, Schmitz, M., Soderland, S., Bart, R., Etzioni, O.: Open language learning for in-
formation extraction. In: Proc. of EMNLP, pp. 523–534. ACL (2012)

10. Nakashole, N., Theobald, M., Weikum, G.: Scalable knowledge harvesting with high preci-
sion and high recall. In: Proc. of WSDM, pp. 227–236. ACM (2011)

11. Pantel, P., Pennacchiotti, M.: Espresso: leveraging generic patterns for automatically harvest-
ing semantic relations. In: Proc. of ACL, pp. 113–120. ACL (2006)

12. Parameswaran, A., Garcia-Molina, H., Rajaraman, A.: Towards the web of concepts: extract-
ing concepts from large datasets. VLDB Endowment 3, 566–577 (2010)

13. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its appli-
cation to problems of ambiguity in natural language. Journal of Artificial Intelligence Re-
search 11, 95–130 (1999)

14. Takhirov, N., Duchateau, F., Aalberg, T.: An evidence-based verification approach to extract
entities and relations for knowledge base population. In: Cudré-Mauroux, P., Heflin, J., Sirin,
E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bern-
stein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 575–590. Springer,
Heidelberg (2012)

	An Integrated Approachfor Large-Scale Relation Extraction from the Web
	Introduction
	Overview
	Problem Definition
	Workflow

	Pattern Generation
	Extending Entities
	Extraction of Candidate Patterns
	Selection of Patterns

	Relationship and Example Discovery
	Challenges for Exploiting Patterns
	Discovering the Type of Relationship
	Discovering New Examples

	Scalability
	Related Work
	Experimental Results
	Quality Results
	Performance

	Conclusion
	References

