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Abstract This chapter presents a mathematical model and motion control analysis
of a buoyancy-driven underwater glider. The glider mathematical model, which
includes the presence of disturbance from the water currents, has been designed by
using the Newton-Euler method. In order to predict and control the glider motion,
a neural network control has been used as a model predictive control (MPC) as
well as a gain tuning algorithm. The motion has been controlled by six control
inputs: two forces of a sliding mass, a ballast pumping rate, and three velocities of
water currents. The simulation results show the analysis of the motion control
system for both neural network control approaches, and a comparison with the
Linear Quadratic Regulator (LQR) controller is also included. The results show
that the model is stable, and the neural network controller of MPC produced better
control performance than the neural network gain tuner and the LQR, where the
accuracy value of the MPC is 94.5 %.
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1 Introduction

In recent decades, ocean resources have become international environmental, sci-
entific and military issues. Therefore, an efficient underwater platform need to be
developed for the exploitation of these resources, especially for applications such as
oceanographic sampling [1–5] and related bathymetric purposes. The development
of an underwater glider can fulfil these requirements because it is energy efficient
and effective for long-term oceanographic sampling. The buoyancy-driven under-
water glider concept was introduced in the late 1980s, which was formally proposed
by oceanographer, Henry Stommel [1]. Currently, four underwater gliders are
operational, which are known as the SLOCUM [2], Spray [3], Seaglider [4] and
Deepglider [5]. The development of these gliders was inspired by the vision of
Henry Stommel. These gliders were buoyancy propelled and had a similar design in
terms of size, weight and configuration. However, the objective for each of these
gliders is similar, which is to minimise energy consumption during the oceano-
graphic exploration applications.

A typical underwater glider design consists of an ellipsoidal or cylindrical hull,
wings, tail or rudder, internal electronic components and batteries. In addition,
there are two internal actuators which consist of a ballast pump and a moving mass
to control buoyancy and attitude respectively. These actuators enable the under-
water glider to change buoyancy and weight to move vertically in the water
column and use the hydrodynamic lift on the wings to create the forward motion.
The hydrodynamic lift on the wings drives the glider forwards as it travels in a
series of downward and upward glides. Due to the low power consumption, the
buoyancy propulsion technique has the advantage of allowing the vehicles to
undertake a mission of longer duration compared to that of conventional auton-
omous underwater vehicles (AUVs) [4, 6]. Although underwater gliders have
demonstrated their greater efficiency, a change in vehicle configuration could
further increase glider efficiency [7]. Due to this, research work on the underwater
glider has experienced a substantial increase, and its related technologies are
expanding rapidly.

Numerous underwater glider control techniques have been proposed by
researchers, whether through simulation or actual experiment. Most existing
gliders have used the PID and LQR controller to control the gliders attitude and
motion [8–13]. In addition, the sliding mode control (SMC) has been used to
control the underwater glider [14, 15], but the main constraint in SMC is the
chattering effect, which can degrade the performance of the system, and make the
system become unstable. Although these control systems have already demon-
strated acceptable control results, they still have constraints in terms of control
performance. The high nonlinearity of underwater vehicle dynamics and under-
water disturbances are the main reasons that make it difficult to control the
underwater glider [16, 17]. Due to this, it is highly desirable to design a controller
that is robust and has an adaptive ability in order to deal with the constraints. Since
the neural network is able to handle nonlinearity and is able to adapt to the
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changing conditions of the glider dynamics, we have chosen it as the controller for
the motion control system of the buoyancy-driven USM underwater glider.

We have mathematically modelled the buoyancy-driven USM underwater gli-
der and analysed the glider motion for the open-loop system in [18], and estimated
the glider hydrodynamic coefficients and characteristics by using the Newtonian
and Slender-body theory in [19]. In this work, the implementation of neural net-
work control is implemented as the predictive control as well as the gain tuning
algorithm. The simulations for both neural network approaches were performed by
using Matlab. The motion characteristics for the glider were identified, and the
neural network performance for both approaches were compared and analysed in
the simulation results. In addition, we carried out a comparison of controller
performance between the neural network controller and the LQR.

This chapter is organised as follows. In Sect. 2, the mathematical model and
equations of motion for the USM buoyancy-driven underwater glider are pre-
sented. Section 3 describes the design of the neural network controller for the
glider motion control system. Simulation results and discussion of analyses are
presented in Sect. 4. Finally, a conclusion is given in Sect. 5.

2 Mathematical Model and Equation of Motion

In order to simulate and analyse the motion of the underwater glider, the dynamic
parameters of the glider must first be modelled either using the analytical,
experimental or computational method [20–22]. In this work, the glider model was
formulated by using the analytical method, which is based on Newtonian and
Slender-body theory. Although, there are several dynamic models of the under-
water glider, e.g. Graver [23] and Mahmoudian [24], in these models the distur-
bance of water currents is neglected. Therefore, we have included disturbance
from water currents in the dynamic model of the glider.

2.1 Kinematic Model

The USM underwater glider has a cylindrical hull with fixed wings and a tail. In
this model, the hydrodynamic forces and moments on the glider are composed of
the forces and moments acting on the cylindrical hull, wings, and the rudder. The
components configuration and the parameter values of the glider are shown in
Fig. 1 and Table 1, respectively. The parameter values were obtained from cal-
culation and Solidworks.

In order to explain the kinematic model, Fig. 2 shows the frame of reference
which was divided into a body-fixed frame (b-frame) and inertial frame (i-frame).
The b-frame is a rotating frame with respect to the i-frame, which is considered as
non-rotating frame in which the Newton’s laws of motion applies. The centre of
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buoyancy (CB) is located at the centre of the cylindrical hull (origin of b-frame),
and the centre of gravity (CG) is slightly offset from the CB in order to create a
constant gravitational moment.

Referring to Fig. 2, the position of the glider with respect to the i-frame is
denoted as g ¼ ½b;H�T , where b ¼ ½x; y; z�T and H ¼ ½;; h;w�T . The velocity of the

glider is denoted as V ¼ ½#;x�T where # ¼ ½u; v;w�T and x ¼ p; q; r½ �T . R is the
rotational matrix that maps vector in b-frame into i-frame. Thus, the 6 DOF
kinematic equations are defined as:

_g ¼ RH 03x3

03x3 THH

� �
V ; ð1Þ

where THH is the transformation matrix of the Euler angle. In the longitudinal
model, the glider travels in the vertical x-z plane with the state of r or yaw moment

Fig. 1 Components configuration of the buoyancy-driven USM underwater glider

Table 1 Principal
characteristics of the
underwater glider

Characteristics Value

Length, L 1.5 m
Body diameter, d 0.2 m
Wing length, WL 0.4 m
Wing width, Ww 0.1 m
Rudder length, RL 0.2 m
Rudder width, Rw 0.1 m
Hull mass, mh 17.4583 kg
Ballast mass, mb 0–0.850 kg
Sliding mass, mp 2 kg
Water density, q 1025 kg/m3
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is zero or small. As a result, the hydrodynamic effects of side force are neglected in
the model. In addition, other lateral states such as v; p; w and ; are also small.

2.2 Dynamic Model

The internal mass configuration of the glider is critical because the glider mass will
change when travelling through the water column. There are three principal
masses in the typical underwater glider: hull mass, mh; internal moving point mass,
mp; and ballast point mass, mb. In some models of glider, such as in [24], the
internal moving point mass is divided into two: sliding moving mass, mpx; and
rotating moving mass, mpy. However, for the USM underwater glider, only sliding
moving mass is taken into account. Thus, the rigid body mass of the glider, mrb;
and net buoyancy, m0, are defined as:

mrb ¼ mh þ mb þ mp and m0 ¼ mrb � m ð2Þ

The variable m is the mass of fluid displaced. If mrb is equal to m, the glider is
neutrally buoyant. If m0 is greater than zero, that means the glider tends to sink
because it is heavy in water. If m0 is lower than zero, the glider is buoyant and
tends to rise. The position of mp and mb in the body frame is given by the vectors

Fig. 2 Reference frame of
the buoyancy-driven
underwater glider
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rp and rb. Since the ballast mass is a variable mass with fixed position rb, therefore;
_rb ¼ rb ¼ 0

On the other hand, mp has a fixed mass but variable position, rp. The sliding
mass moves along the x-z plane for controlling the pitch, creating the following
moving mass velocity vector:

_rp ¼ ½_rpx; 0; _rpz� ð3Þ

The internal sliding mass movement creates a gravitational moment on the
glider’s body based on the amount of mass moved and the distance of its
movement.

In order to model the dynamic forces and moments of the glider, there are four
main components that need to be calculated. The components are the system
inertia of the rigid body and added mass, M, Coriolis-centripetal of the rigid body
and added mass, C(V), damping forces and moments, D(V), and gravitational and
buoyancy forces and moments, gðnÞ.

According to [25], the system inertia matrix with respect to the origin is for-
mulated as:

M ¼ MRB þ MA; ð4Þ

where MRB is the rigid-body system inertia matrix and MA is the added mass
system inertia matrix.

In order to calculate the Coriolis forces and moments, C Vð Þ, the velocity of
water currents, Vc, is included in the equation as a disturbance. Thus, the Coriolis
and centripetal force is defined as:

C Vð Þ ¼ CRB Vð ÞV þ CAðVrÞVr; ð5Þ

where

Vr ¼ V � Vc: ð6Þ

The CRB and CA represent the Coriolis of rigid body and added mass, respectively.
On the other hand, the damping forces and moments, D Vð Þ, act at a centre of
dissipative force. The dissipative force is equal to the product of pressure and area,
therefore the velocity of water currents must be taken into account as a distur-
bance. Thus, the damping force and moment is defined as:

D Vð Þ ¼ D þ DnðVrÞ; ð7Þ

where D is the linear damping matrix and DnðVrÞ is the nonlinear damping matrix.
The gravitational and buoyancy forces, gðnÞ, are also called restoring forces.

These forces occur due to weight, W, and buoyancy, B. The weight and buoyancy
are defined as:

W ¼ mrbg and B ¼ qgr; ð8Þ
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where g is gravity, q is the water density and r is the volume of the glider’s body.
It is necessary to design the underwater glider with positive buoyancy (B [ W), so
that the glider will surface automatically in the case of an emergency situation
such as power failure.

2.3 Equations of Motion

As stated in (3), the velocity vector of sliding mass is denoted as _rp. Therefore, the
position of sliding mass is defined as rp ¼ rpx; rpy; rpz

� �
and the corresponding

momentum is defined as pp ¼ ppx; ppy; ppz

� �
. Let’s say that the rate of change of pp

is equal to the net force acting on the sliding mass, therefore the force of sliding
mass is defined as:

u ¼ ux; uy; uz

� �
¼ pp � q þ mpg RT k

� �
: ð9Þ

The control input for the ballast pump is denoted as ub, which is equal to the
ballast mass rate, _mb. In addition to the control input of the actuators, we also
include the velocity and acceleration of the water currents, Vc, as the disturbance
of the underwater glider plant. The current velocity and acceleration is defined as:

Vc ¼ ½Vcx;Vcy;Vcz; _Vcx; _Vcy; _Vcz� ð10Þ

Thus, the control input to the glider is denoted as:

u ¼ u;Vc½ � ¼ ux; 0; uz; ub;Vcx;Vcy;Vcz; 0; 0; 0
� �

ð11Þ

According to the kinematic and dynamic model of the underwater glider, the 6
DOF nonlinear equations of motion for the generalized model of the underwater
glider can be written as:

_g ¼ ½ _x; _y; _z; _;; _h; _w� ¼ JðgÞV ð12Þ

_V ¼ _u; _v; _w; _p; _q; _r½ � ¼ M�1ð�CðVÞ � DðVÞ � gðnÞÞ ð13Þ

However, since the buoyancy-driven underwater glider glides vertically
through the water column, we assumed that the motion in the horizontal plane is
stable. Thus, several individual parameters in the equations of motion need to be
rewritten and this can be done by referring to Graver [23]. In addition, the fol-
lowing differential equations of the sliding mass velocity and moment and the
ballast mass rate also need to be included in the equations of motion.

_rpx ¼
1

mp
ppx � u � rpzq; ð14Þ
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_rpy ¼
1

mp
ppy � w þ rpxq; ð15Þ

_ppx ¼ ux; ð16Þ

_ppz ¼ uz; ð17Þ

_mb ¼ ub: ð18Þ

3 Neural Network Controller Design

The neural network controller has been applied to the AUV because of its
robustness and adaptability to the highly nonlinearity and dynamics environment of
the vehicle. There are several research works that have implemented neural net-
works to control AUV [17, 26–29], but none of them are used to control the
underwater glider. In this work, the neural networks is used for gain derivation and
predictive control of the buoyancy-driven underwater glider motion control system.

3.1 Linearisation

In order to design the neural network controller, the nonlinear plant of the glider
must be linearised. The linearisation is carried out about an operating point to obtain
the state-space representation of the Multiple-Input-Multiple-Output (MIMO) sys-
tem of the glider. In this work, the linearisation point is shown in Table 2.

This linearisation process produces the state-space that has 9 inputs, 17 states
and 17 outputs. However, in order to control the glider motion and analyse it, only
6 inputs, 9 states and 9 outputs of interest were selected. Table 3 shows the
selected states, inputs and outputs for the controller. The other states were not
selected since they will not affect the dynamic of the underwater glider motion in
the vertical plane.

Table 2 Linearisation operating point

Parameter Value

States Position, g ½0; 0; 0; 0; 0; 0�T
Velocity, V ½1; 0; 0; 0; 0; 0�T
Sliding mass position, rpx; rpz and forces, Ppx;Ppz

and ballast mass, mb

½0; 0; 0; 0; 0�T

Inputs Sliding mass net force, ux; uz and ballast pumping rate, ub ½0; 0; 0�T
Water current velocity and acceleration, Vc ½0; 0; 0; 0; 0; 0�T
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3.2 Neural Network Controller for Gain Derivation

The objective of designing the neural network controller is to derive the gain, K,
for the glider motion control system. Therefore, we have designed the forward
model of the neural network based on the mutlilayer perceptron (MLP) networks.
Figure 3 shows the architecture of the forward model, where the model has one
input layer, one hidden layer and one output layer. The input of the network is
matrix B (desired control inputs) of the glider linear model and target output is
matrix A (state outputs).

We used the sigmoid transfer functions in the hidden layer and output layer to
estimate the output, and then used the states or outputs error to derive the gain for
the controller. The state’s error between the desired states and actual states is
defined as:

Es ¼
Xn

i¼1
Ann � Ass; ð19Þ

where Ann is the matrix A, which obtained from the neural network and Ass is the
matrix A, which obtained from the state-space. Thus, the gain, K, is derived as:

K ¼ �ðEs=BÞ; ð20Þ

where B is the matrix B from the input layer.
In order to select the network parameters, which are weights and biases, we

have trained the network by using the backpropagation training procedure. The
backpropagation training algorithm for the MLP networks is an optimisation
procedure, which is based on the gradient descent. Thus, a mean square error
performance index can be minimised, and it is defined as:

wl
i;j k þ 1ð Þ ¼ wl

i;j kð Þ � asl
ia

l�1
j ; ð21Þ

bl
i k þ 1ð Þ ¼ bl

i kð Þ � asl
i; ð22Þ

where a is the learning rate and s is the sensitivity of transfer function to change in
the network input at layer, l:

Table 3 States, outputs and inputs of interest

Parameter

States and outputs Pitch angle, h,
Linear velocity of surge, u, and heave, w, and angular velocity of pitch, q
Sliding mass position, rpx; rpz and forces, Ppx;Ppz and ballast mass, mb

Inputs Sliding mass net force, ux; uz and ballast pumping rate, ub

Water current velocity and acceleration, Vcx;Vcy;Vcz
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3.3 Neural Network Controller for Model Predictive
Control (MPC)

The design objective of the MPC controller is to map the desired control input as
well as achieving the target output of the reference model. The MPC is chosen
because of its ability to handle the MIMO system of nonlinear plant, with low rates
of control update. The MPC architecture requires two neural network models of
the glider plant. The models are a neural network plant model (forward model) and
a neural network controller (inverse model). In addition, a performance function
and optimisation procedure, which is used to evaluate system responses and to
select the best control input, are also taken into account.

The neural network controller learns to produce the plant inputs, which were
selected by the optimisation process, and the optimisation process can be replaced
by the neural network controller when the training process is completed. Figure 4
shows the block diagram of the MPC for the underwater glider, and Fig. 5 shows
the inverse model of the neural network controller.

The MPC system model of the underwater glider is given in the discrete time
representation. The system outputs, yn, controlled outputs, zn, inputs, un and states,
xn are respectively defined as:

xn ¼ Adxn þ Bdun; ð23Þ

yn ¼ Cdxn; ð24Þ

zn ¼ Czxn; ð25Þ

Fig. 3 The forward model of the neural network controller
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where n is the nth element of the system. In order to obtain the control input of the
glider motion control system, the sampling time, control horizon and prediction
horizon must be determined during the model prediction process. In this work, we
have determined the value of sampling time, control horizon and prediction
horizon as equal to 1, 15 and 5, respectively.

In addition, we have also specified the output constraints of the MPC control
system in terms of the minimum and maximum value of the ballast mass, mb, and
sliding mass vector, rpx. These constraints are specified because the maximum
value of ballast mass is 0.850 kg and the maximum value of sliding mass vector in
x-direction is 0.40 m. Then, the MPC algorithm predicts the future system output
at each sampling time for the predetermined prediction horizon. Finally, the
control input at each sampling time is calculated based on the optimisation over
the control horizon. Thus, there are three important steps that must be carried out

Fig. 4 Model predictive control of the underwater glider motion

Fig. 5 The inverse model of the neural network controller
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in the implementation of the MPC algorithm. The steps are prediction, optimisa-
tion and control.

4 Results and Discussion

In this section, we demonstrate the simulation results of the neural network control
of the glider. The simulation was programmed using Matlab, and the results are
presented in terms of the neural network controller for gain derivation and model
predictive control. In addition, a comparison of the control performance between
the neural network controller and LQR controller is presented.

Fig. 6 a Plant inputs, and
b plant outputs for the desired
pitch angle, h = -35�
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4.1 Model Predictive Control

We have simulated the model with a different value of desired outputs, where the
range of the pitch angle, h, was between -45� to 45�, and the range of surge
velocity, u, was between 0 to 1 m/s. However, in this chapter, we demonstrate and
compare the results of two desired pitch angles of downward and upward motion
with different desired surge velocity. Thus, there are four sets of desired outputs
which have been simulated in order to obtain the plant control inputs and the plant
outputs. Figure 6a, b shows the graph of plant control inputs and actual plant
outputs, respectively, which resulted from the simulation of the first set of desired
outputs. In this first set of desired outputs, the value of the desired pitch angle, h,
was -35� (-0.6109 rad) and the rest of the desired outputs were zero. According

Fig. 7 a Plant inputs, and
b plant outputs for the desired
pitch angle, h = 35�
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to the graph of plant output (Fig. 6b), the resulting or actual pitch angle converged
to the desired angle, and the Fig. 6a shows the resulting control inputs,
u = [0.1913, 0.1689, 0.1224, 1.1832, 0, -0.0596].

Figure 7a, b shows the plant inputs and outputs for the upward motion, where
the desired pitch angle was 35� and the rest of the desired outputs were zero. The
graphs show that the neural network controller was able to achieve the desired
pitch angle and was able to predict the control inputs. The graphs of plant inputs
show that the control input for the desired motion is u = [-0.1926, 0.0209,
0.0513, -1.2088, 0, -0.0270].

In the third simulation, the third set of desired outputs represent the downward
motion, where the pitch angle was -25� and the surge velocity was 0.3 m/s.
Figure 8a, b shows the resulting plant control inputs and actual plants outputs. The
graphs show that the actual output for pitch angle and surge velocity are converged

Fig. 8 a Plant inputs, and
b plant outputs for the desired
pitch angle, h ¼ �25

�
and the

desired surge velocity,
u = 0.3 m/s
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to the desired pitch angle and surge velocity, and the predicted control input is
u = [0.1443, 0.1258, 0.0889, 1.8294, 0, -0.0720].

Finally, the plant inputs and outputs for the fourth set of desired outputs, are
shown in Fig. 9a, b. In the fourth set of desired outputs, the pitch angle was 25�,
the surge velocity was 0.6 m/s and the rest of the desired outputs were zero. As a
result, the graph shows that the actual output for pitch angle and surge velocity are
converged to the desired output, and the predicted control input is u = [-0.1218,
-0.0390, -0.0230, 1.1140, 0, -0.0457].

Fig. 9 a Plant inputs, and
b plant outputs for the desired
pitch angle, h = 25� and the
desired surge velocity,
u = 0.6 m/s
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4.2 Neural Network Gain Tuner

In order to analyse which neural network control approaches produced better
performance, we have compared the actual plant output of MPC with the neural
network gain tuner and the LQR controller. Therefore, we used the predicted
control input that we obtained from the four sets of MPC simulation. Figure 10
shows the glider motion for the first control inputs, which resulted when the
desired pitch angle, h, was -35� (-0.6109 rad). The graphs show that both the
neural network gain tuner and the LQR controller produced the pitch angle value
of -0.0218 rad and -0.0266 rad respectively, which means the desired pitch
angle is not achieved.

Figure 11 presents the resulting upward motion of the glider when the second
set of plant inputs from the MPC is entered as the control input of the neural
network gain tuner and the LQR controller. The graphs show that the desired angle
of 35� is not achieved for both controllers. The neural network gain tuner shows
the resulting value of the pitch angle is 1.4� (0.0247 rad) and the value of the pitch
angle for LQR is 1.5� (0.0271 rad).

Fig. 10 Control response of the neural network gain tuner and the LQR controller based on MPC
control input, u = [0.1913, 0.1689, 0.1224, 1.1832, 0, -0.0596]
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Figure 12 shows the downward motion of the glider for the third control inputs,
which resulted when the desired pitch angle, h, was -25� (-0.4363 rad) and the
surge velocity was 0.3 m/s. The graphs show that both the neural network gain
tuner and the LQR controller produced the pitch angle value of -0.0283 and
-0.0323 rad, respectively, which means the desired pitch angle was not achieved.
However, the surge velocity from the neural network gain tuner converged to the
desired surge velocity, which is 0.3 m/s. On the other hand, the surge velocity
from the LQR did not converge to the desired velocity, since the value is 0.44 m/s.

Finally, the resulting plant outputs from the neural network gain tuner and the
LQR controller for the fourth control inputs of the MPC, are shown in Fig. 13. The
graphs show that neither the desired pitch angle nor the desired surge velocity are
achieved by either controller, where the error rate of pitch angle for neural network
gain tuner is 98.1 % and the error rate for LQR is 96.8 %. On the other hand, the
error rate of surge velocity for the neural network gain tuner is 23.5 % and the
error rate for LQR is 41.3 %.

Fig. 11 Control response of the neural network gain tuner and the LQR controller based on MPC
control input, u = [-0.1926, 0.0209, 0.0513, -1.2088, 0, -0.0270]
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5 Conclusion

This chapter presents the neural network motion control system of the buoyancy-
driven underwater glider in the vertical plane, which is based on the linearised
model of the nonlinear underwater glider plant. In addition, the presence of water
currents as a disturbance is also included in the glider model. In this work, the
neural network controller is used for the MPC and gain tuning or derivation
algorithm. In order to predict the plant control inputs and plant outputs, four sets of
desired outputs are used in the MPC. The desired outputs consist of 9 states of the
glider linearised model. The resulting plant control inputs were then used on the
neural network controller for gain derivation and the LQR controller. Therefore,
the controllers’ performance can be compared and analysed. According to the
analysis, we found that the performance of the MPC is better than the neural
network gain tuner and the LQR controller because of the efficient optimisation
factor in the MPC. All the simulation results show that the glider model is stable,
and the MPC able to compensate for disturbance and able to predict the control
inputs and motion outputs, with a high accuracy rate of 94.5 %.

Fig. 12 Control response of the neural network gain tuner and the LQR controller based the
MPC control input, u = [0.1443, 0.1258, 0.0889, 1.8294, 0, -0.0720]
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