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Abstract. Clustering trajectory data attracted considerable attention
in the last few years. Most of prior work assumed that moving objects
can move freely in an euclidean space and did not consider the eventual
presence of an underlying road network and its influence on evaluating
the similarity between trajectories. In this paper, we present an approach
to clustering such network-constrained trajectory data. More precisely
we aim at discovering groups of road segments that are often travelled
by the same trajectories. To achieve this end, we model the interactions
between segments w.r.t. their similarity as a weighted graph to which we
apply a community detection algorithm to discover meaningful clusters.
We showcase our proposition through experimental results obtained on
synthetic datasets.

Keywords: similarity, clustering, moving objects, trajectories, road net-
work, graph.

1 Introduction

Traffic congestion has become a major problem that affects many human ac-
tivities on a daily basis, resulting in both serious transportation delays and
environmental damages. Monitoring the state of the road network is commonly
conducted by using dedicated sensors that register the number of vehicles pass-
ing by the section where they are installed. The prohibitive cost of deploying
and maintaining such sensors limits their deployment to the highways and the
road network’s main arteries. Subsequently, the collected data portray a partial
and incomplete state of the road network, thus complicating data mining tasks
that aim at extracting useful knowledge about flow dynamics and the behavior
of drivers moving along the network.

An alternative (or complementary) approach to addressing these shortcomings
may consist in analyzing GPS logs collected using location-aware devices (e.g.
classic GPS, smartphones, PDAs, etc.). These logs can be acquired through
probing vehicles, dedicated data acquisition campaigns (using buses, taxis or an
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enterprise’s fleet of vehicles) or even by means of a crowdsourced approach where
different individuals willingly contribute by uploading their different commute
logs. Therefore, it is perfectly feasible to collect large amounts of trajectory data
that can be stored in dedicated databases (known as Moving Object Databases
[1]). These data offer a better coverage of the road network and can be, later on,
explored using data mining and statistical learning techniques.

Clustering is one of such techniques. Prior work on trajectory data clustering
focused mainly on the case where moving objects move freely in a euclidean space
[2–5]. By doing so, these approaches did not account for the presence, in the case
of car trajectories as well as in other cases, of an underlying network that con-
strains the movement. The network’s constraints, however, do play a paramount
role in determining the similarity between the trajectories to be clustered. More-
over, the majority of these approaches relied on the use of density-based clus-
tering which makes them vulnerable to the way the parameters of the clustering
algorithm are selected.

In [6], we presented a framework for clustering network-constrained trajec-
tories using a graph-based approach. This framework was directed towards dis-
covering groups of similar trajectories that moved along the same parts of the
road network. The hierarchical, non-parametric algorithm that we used in the
clustering step made our framework flexible and suitable for exploring the dis-
covered groups of trajectories at various levels of detail: the user can start with a
limited number of high-level, coarse clusters and delve (by means of consecutive
zooming) in the refinement of the clusters he deems interesting.

The work presented in this paper builds upon the one undertaken in [6].
We extend our framework to the case of road segments as we try to discover
relevant groups of segments that are commonly used and explored together by
a considerable number of trajectories. Our contributions can be summarized as
follows:

– We define a similarity measure that evaluates the resemblance between pairs
of road segments based on the trajectories that travelled along both of them;

– We use a graph representation to model interactions between the different
road segments. The resulting similarity graph is partitioned using modularity-
based community detection in order to discover a hierarchy of nested clusters
of road segments;

– We test our proposition on synthetic datasets and showcase how it can be
used, in association with the technique we presented in [6], for understanding
and characterizing the traffic in the road network.

The rest of this paper is organized as follows. In Section 2, we present the
network-constrained trajectories data model and we formalize our segment clus-
tering problem. Our segment clustering approach is described in detail in Section
3. Section 4 discusses the computational complexity of our proposition as well as
how the discovered clusters can be interpreted and used, complementarily with
the trajectory clusters presented in [6], in order to discover useful knowledge
about the flow dynamics and traffic in the road network. Experimental results
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are presented in Section 5. Related work is discussed in Section 6. Finally, Section
7 concludes the paper.

2 Data Representation and Problem Statement

We opt for the symbolic data representation which is the model of choice adopted
for representing network-constrained trajectories in most of prior work [7–10].
In this model, the road network is modeled as a graph, defined as follows.

Definition 1 (Road Network). The road network is represented as a directed
graph G = (V ,S). The set of vertices V represents intersections and terminal
points of roads whereas the set of directed edges S represents the road segments
interconnecting them. A directed edge s = (vi, vj) indicates that a road segment
links the two nodes vi and vj and that it can be traveled from vi in the direction
of vj but not the other way around (unless another edge states otherwise).

Given this graph representation, moving objects (i.e. vehicles) moving along
the road network produce trajectories that can be modeled conformably to the
following definition.

Definition 2 (Constrained Trajectory). A constrained trajectory T that trav-
els along the road network G can be modeled as a sequence of visited segments:

T = 〈id, {s1, s2, ..., sl}〉

id being the identifier of the trajectory, l its length (i.e. number of segments) and
∀1 ≤ i < l, si and si+1 are connected segments belonging to S.

In a real-case scenario, trajectories are collected as GPS logs (sequences of lat-
itude and longitude points) on which a map matching technique (e.g. [7, 9]) is
applied in order to produce the sequence of traveled segments. The map match-
ing step is out of the scope of this paper. Hence, we suppose that the trajectories
are already and correctly map matched to the corresponding road segments.

Finally, we formalize the road segment clustering problem that we study in
this paper as follows.

Definition 3 (Road Segment Clustering Problem). Given a road network
represented by a graph G = (V ,S) and a set of trajectories T = {T1, T2, ..., Tn}
that traveled along it, road segment clustering aims to partition the set of road
segments S into a set of disjoint clusters CS = {C1, C2, ..., CK} in such a fashion
that:

– Segments grouped in the same cluster Ci are visited by a considerable amount
of common trajectories (i.e. a trajectory T that visits a segment s ∈ Ci also
visits a fair amount of segments in this same cluster);

– Segments belonging to two different clusters Ci and Cj are visited by as few
common trajectories as possible (i.e. they are unlikely to be part of a same
trajectory).
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3 A Graph-Based Approach to Road Segment Clustering

We now present our solution to the road segment clustering problem introduced
in the previous section. First, we define a similarity measure between road seg-
ments based on the comparison of the common trajectories that visited them
(Section 3.1). Based on this measure, we build a graph depicting the relationships
between different road segments (Section 3.2). The graph is then partitioned us-
ing a modularity-based community detection algorithm in order to discover a
hierarchy of nested segment clusters (Section 3.3).

3.1 Road Segment Similarity

Similarly to the bag-of-words model (where a text is considered as an unordered
collection of words), we consider each road segment as a bag-of-trajectories that
visited it (i.e. ∀s ∈ S, s ≡ {T ∈ T : s ∈ T }).

In order to compare two road segments si and sj , one can simply observe how
often they co-appear in trajectories (i.e. calculate |{T ∈ T : si ∈ T ∧ sj ∈ T }|).
The larger the number of concomitant appearances of both segments is, the more
they are considered similar. However, different trajectories do not hold the same
discriminative power when it comes to characterizing the similarity between
road segments they visit: a lengthy trajectory that travels along a considerable
number of road segments is not very informative when judging the similarity
between two segments in particular and, vice versa, short trajectories are highly
relevant to the formation of the cluster that contains the segments they visit.

We account for this observation by devising a tfidf-like weighting strategy
where the contribution of each trajectory is proportional to its length. The weight
ωT,s assigned to trajectory T while inspecting a road segment s is expressed in
formula (1):

ωT,s =
ns,T∑

T ′∈T ns,T ′
· log |S|

|s ∈ S : s ∈ T | (1)

The first part in this weight calculates the contribution of T to the segment s by
calculating the ratio between the number of appearances ns,T of s in T and the
total number of appearances of s in the whole dataset of trajectories T . Since
multiple visits of a same road segment are very rare, this part is often equal to

1
|{T∈T :s∈T}| . The second part evaluates the importance of the trajectory across

the whole set of road segments : the more segments a trajectory visits the less
important it becomes and vice versa.

We use a cosine similarity to measure the similarity between two road seg-
ments ei and ej as expressed in formula (2):

Similarity(si, sj) =

∑
T∈T ωT,si · ωT,sj√∑

T∈T ω2
T,si

·
√∑

T∈T ω2
T,sj

(2)
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3.2 Road Segment Similarity Graph

We model the similarity relationships between road segments using an undi-
rected, weighted graph SGS = (S, E ,W). Each road segment in S is mapped to
a vertice in SGS . An edge between a pair of segments si and sj exists if and
only if Similarity(si, sj) > 0 (i.e. if there is at least one common trajectory that
crossed both segments). In which case the similarity is assigned as a weight to
that edge. This concept of similarity graph is depicted in Fig. 1.

Similarity(si, sj) sjsi

Fig. 1. Excerpt from a segment similarity graph. Vertices represent the studied road
segments while weighted edges indicate the presence and strength of the similarity
between pairs of segments.

The main advantage of using this graph representation, besides being natural
and easy to understand, is that it does not invent an ”artificial” similarity be-
tween totally incompatible road segments. On the contrary, it emphasizes on the
fact that road segments that do not share common trajectories are independent
and should, therefore, not be ”immediately” grouped in the same cluster since
there is no similarity edge linking them.

3.3 Clustering the Similarity Graph

Road networks are complex and contain a considerable amount of segments,
resulting, therefore, in a large similarity graph. Moreover, since one common
trajectory is sufficient for a similarity edge to exist between a pair of segments,
the vertices of the similarity graph tend to have high degrees (although, from
our observations, this degree distribution does not follow a proper power law).
Modularity-based community-detection algorithms are a popular and widely
adopted choice to clustering such graphs [11].

Given a graph G = (V , E ,W), with vertices V = {v1, v2, ..., vn}, weighted
edges E such as ωij ≥ 0 and ωij = ωji, and given a partition of the vertices
into K clusters (or communities) C1, ..., CK , the modularity of the partition is
expressed according to formula (3):

Q =
1

2m

K∑

k=1

∑

i,j∈Ck

(

ωij −
didj
2m

)

(3)
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di =
∑

j �=i ωij and m = 1
2

∑
i di. The modularity measures the quality of the

clustering by inspecting the arrangement of the edges within the communities of
vertices. A high modularity is an indicator that the edges within the communities
outnumber (or have higher weights than) those in a similar randomly generated
graph (i.e. one that does not present a community structure). Communities
discovered using modularity optimization have a structure that is similar to
the structure of cliques. In our context of segment clustering, this means that
segments grouped together are heavily connected (which is the intended result)
and are travelled by a considerable number of shared trajectories.

To cluster the segment similarity graph, we use the implementation of hierar-
chical modularity-based clustering described in [12]. The pseudo-code is given in
Algorithm 1. First, the algorithm retrieves a partition of the vertices with opti-
mal modularity (line 1): the Partition procedure start by considering the trivial
partition where each vertex is in its own community and merges communities
in a greedy fashion (i.e. each time, it merges the two communities that produce
the maximum increase of modularity). The merging operation stops when no
possible merge can be done without a degradation of the modularity. In which
case the Partition procedure proceeds to a refinement step where members of
different communities are interchanged in an attempt to further improve the
modularity of the partition.

Algorithm 1. Hierarchical modularity-based clustering.

Input: an undirected, weighted graph G = (V, E ,W)
Output: hierarchy of nested clusters of vertices
1: C

(1)
1 , ...C

(1)
K ← Partition(G) � initial partition

2: KT ← K � clusters counter
3: l ← 1 � hierarchy level
4: repeat
5: l← l + 1
6: for all cluster C ∈ C

(l−1)
1 , ..., C

(l−1)
K do

7: extract the sub-graph GC of vertices belonging to C
8: CC

1 , ...CC
k ← Partition(GC)

9: if TestSig(CC
1 , ...CC

k ) then

10: C
(l)
KT +1, ..., C

(l)
KT +k ← CC

1 , ...CC
k

11: KT ← KT + k
12: end if
13: end for
14: until no significant subdivision of level l can be found

Once the initial partition is retrieved, the algorithm proceeds iteratively to
construct the hierarchy of communities (lines 4 through 14). For each community
at a given level, the sub-graph containing only the vertices of the community
and the edges connecting them is isolated (line 7). This subgraph is partitioned
separately (by invoking Partition as shown in line 8). The TestSig evaluates the
significance of the found partition (by comparing its modularity to the modular-
ity of partitions obtained on similar randomly generated graphs). If the partition
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is significant indeed, its communities are considered for partitioning in the next
iteration (lines 9-12), otherwise it’s rejected and the original community is re-
tained. The iterations stop when none of the communities at level l yield a
significant partition (line 14).

Modularity-based graph clustering approaches are very popular and achieve
good results in practice [11]. Nevertheless, we do not exclude the use of other
graph clustering alternatives (e.g. spectral clustering [13]) if such techniques can
yield better results.

4 Discussion

First, we focus on how the produced clusters can be explored and analyzed
in order to deduce useful knowledge about the flow dynamics and the drivers’
behavior in the road network (Section 4.1). Then, we address the algorithmic
complexity of our approach (Section 4.2).

4.1 Cluster Exploration

We illustrate how the trajectory clusters [6] and segment clusters can be explored
and used conjointly. For illustration purposes, we use a synthetic dataset con-
taining 85 trajectories that moved along the Oldenburg road network (cf. Section
5 for more details about this network) and visited a total of 485 distinct road
segments. We manually partitioned the trajectories into five clusters (depicted
in Figure 2) that we consider hereafter as the ground-truth clusters.

Applying the trajectory clustering [6] results in a hierarchy of clusters where
the optimal level w.r.t. modularity (i.e. the very first level) contains only three
trajectory clusters: the ground-truth clusters 2 and 3 are considered as part of
a same cluster (the same occurs with clusters 4 and 5). Nevertheless, all the
ground-truth clusters are retrieved correctly (some of them are even refined) in
the following levels. The cluster hierarchy is especially suitable for exploring large
datasets where a flat clustering can still produce a high number of clusters: the
analyst can start with the few, coarse clusters contained in the first hierarchical
levels in order to gain a quick grasp of the general tendencies and movement
patterns in the road network. He, then, can choose clusters of interest that he
can explore, by means of successive zooms, in higher detail. This idea is depicted
in Figure 3 which shows a coarse trajectory cluster and its three, more refined
subclusters.

Segment clusters are not as easy to grasp and understand as trajectory clus-
ters. Even though it is feasible to try and explore these clusters as stand-alone
clusters, we recommend involving the trajectory clusters in the process. Cross-
comparing both types of clusters can reveal interesting information about flow
dynamics and yield a better interpretation of the clusters. For example, a seg-
ment cluster can be interpreted based solely on the trajectory groups that inter-
acted with it, thus revealing potential hubs, etc. Fig. 4 shows the crossed matrix
of the second level trajectory clusters (reported on the rows) and the second
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(a) Cluster 1 (14 trajectories) (b) Cluster 2 (19 trajectories) (c) Cluster 3 (20 trajectories)

(d) Cluster 4 (20 trajectories) (e) Cluster 5 (12 trajectories)

Fig. 2. Ground-truth clusters in the dataset

level road segment clusters (on the columns) and gives an idea about the sizes of
the clusters and how clusters of one type interact with those of the other type.

The crossed matrix does indeed reveal some interesting patterns and interac-
tions. For instance, the fourth segments clusters is explored exclusively by two
trajectory clusters. Visualizing both this segment cluster and its visiting trajec-
tory clusters (Fig. 5) shows that the segment cluster plays the role of a hub for
these two groups of trajectories that converge to it from two different areas in
order to travel to two different destinations.

Crossing trajectory clusters and segment clusters is flexible and can be done
at various levels of the hierarchies of both cluster types. However, it is totally
up to the user to decide the relevance of the crossed clusters. The case of the
eleventh segment cluster (cf. Fig. 4) illustrates this point: this segment cluster
is very interesting since it interacts with six trajectory clusters. However, it is
evident that the segment cluster contains a lot of ”noise” segments which is
expressed by the considerable amount of white space in the six first rows (rep-
resenting the trajectory clusters) in the column representing the cluster in the
crossed matrix. Consequently, drawn conclusions about the interactions between
the clusters won’t be very reliable. A wiser alternative would be to study the
interactions between the, more refined, subclusters of this segment cluster with
the six trajectory cluster it interacts with.
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(a) Parent cluster (39 trajecto-
ries)

(b) Subcluster 1 (12 trajectories)

(c) Subcluster 2 (19 trajectories) (d) Subcluster 3 (8 trajectories)

Fig. 3. A coarse cluster containing 39 trajectories (a) and its more detailed subclusters
(b-d)

Fig. 4. Crossed matrix of the trajectory clusters (rows) and road segment clusters
(columns). Each cell gives an idea about the interaction between the corresponding
trajectory and segment clusters: the more black the cell contains the more trajectories
in the trajectory cluster cross segments belonging to the segment cluster.

4.2 Algorithmic Complexity

Let n be the number of trajectories in T and m the number of road segments in
S. Road segments can be represented as a matrix M containing m rows (each
representing a road segment) and n columns (each corresponding to a trajec-
tory). mi,j corresponds to the weight of the trajectory represented by column
j while inspecting the segment represented by row i. Using this vector model
representation, comparing two road segments can then be done in O(n) time
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(a) Hub segment cluster (b) Trajectory cluster 7 (c) Trajectory cluster 8

Fig. 5. A segment cluster (a) playing the role of a hub for two different trajectory
clusters ((b) and (c)) that borrow it to travel to two separate destinations

complexity. Constructing the similarity graph requires m(m−1)
2 similarity calcu-

lations. Therefore, the cost of constructing the graph is O(nm2).
The similarity graph contains m vertices (representing the m segments of S)

and, at most, m(m−1)
2 edges. Therefore, the theoretical (maximal) complexity of

the community detection algorithm used in our clustering phase is O(m3) [11].
However, this complexity is rarely observed in practice where the complexity is
somewhere near O(m2).

The complexity of the approach we presented in [6] can be deduced using the
same reasoning: the trajectory similarity graph is constructed in O(mn2) and is
clustered in O(n3) in theory (O(n2) in practice).

5 Experimental Results

In this section, we validate the effectiveness of our approach by comparing it to
two alternative graph clustering techniques. First, we describe our experimental
setting, including the used datasets and the evaluated algorithms in Section 5.1.
Then cluster quality results are presented in Section 5.2.

5.1 Experimental Setting

In order to validate our choice of modularity-based clustering, we compare it
to two other graph clustering techniques: i. spectral clustering; and ii. label
propagation clustering. In spectral clustering [13], eigenvectors are extracted
from the graph’s Laplacian and are used to conduct a k-means clustering in
order to partition the graph’s vertices. Label propagation, on the other hand,
works by labeling the vertices with unique labels and then updating the labels
by majority voting in the neighborhood of the vertex [14].

We compare the performances of the three algorithms on five synthetic datasets
(cf. Table 1) produced with the Brinkhoff generator [15] using the Oldenburg
road network. The latter is composed of 6105 vertices and about 14070 road
segments. Each dataset contains 100 trajectories visiting a various amount of
road segments.
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Table 1. Characteristics of the five synthetic datasets

Number of Number of edges in
Dataset segments the similarity graph

1 2562 79811
2 2394 100270
3 2587 110095
4 2477 87023
5 2348 80659

The performance of each algorithm is evaluated by measuring the quality of
the segment partition CS it produces according to formula (4):

Q(CS) =
∑

C∈C

1

|C|
∑

si,sj∈C

|{T ∈ T : si ∈ T ∧ sj ∈ T }|
|{T ∈ T : si ∈ T ∨ sj ∈ T }| (4)

|C| is the number of segments in clusters C, |{T ∈ T : si ∈ T ∧ sj ∈ T }| is
the number of trajectories both road segments si and sj while |{T ∈ T : si ∈
T ∨ sj ∈ T }| is the number of trajectories that travelled along at least one of
them.

5.2 Results

Contrary to the spectral clustering algorithm, the modularity-based and label
propagation algorithms do not give the user the possibility to configure the
number of resulting clusters: the label propagation algorithm produces just one
flat partition while the modularity-based algorithm produces a partial hierarchy
(i.e. a hierarchy that does not retain all the merging operations).

First, we compare modularity-based clustering and spectral clustering based
on the former’s optimal number of clusters (i.e. the number of clusters at the
hierarchy’s first level). The results are depicted in Table 2.

In order to compare the three algorithms at once (cf. Table 3), we proceed
as follows. Since label propagation clustering produces only on partition, we
configure the spectral clustering to produce the same number of clusters as
this partition. As for modularity-based clustering, we choose the hierarchical
level that produces the closest number of clusters to those discovered by label
propagation.

From both Table 2 and Table 3 we can verify that, as expected, the clus-
tering quality increases as the number of clusters increases. Results also show
the superiority of modularity-based clustering over label propagation and spec-
tral clustering and suggest that applying the former results in better and more
compact clusters of road segments.

We also notice that label propagation results in a large number of clusters.
This supports the observation we made in Section 4.1 where we claimed that
flat clustering is not suitable for exploring large datasets.
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Table 2. Comparison between spectral clustering and modularity-based clustering

Clustering quality (clusters)
Dataset Spectral Modularity

1 306.33 (23) 657.20 (23)
2 254.97 (21) 524.46 (21)
3 245.64(20) 561.08 (20)
4 249.89 (22) 594.75 (22)
5 284.74 (26) 666.23 (26)

Table 3. Cluster qualities achieved by the three algorithms on the five datasets

Clustering quality (clusters)
Dataset Label prop. Spectral Modularity

1 684.19 (68) 678.81 (68) 1614.40 (67)
2 550.66 (59) 549.70 (59) 1276.63 (57)
3 606.45 (66) 567.57 (66) 1516.45 (61)
4 634.63 (68) 637.62 (68) 1406.38 (57)
5 604.97 (64) 539.27 (64) 1418.67 (65)

6 Related Work

Approaches to trajectory clustering are mainly adaptations of existing algorithms
to the case of trajectories. Existing problem formulations and propositions include
flock patterns [3], convoy patterns [5], the TRACLUS partition-and-group frame-
work [4] and the T-OPTICS and TF-OPTICS algorithms [2]. The aforementioned
algorithms use euclidean-based similarities and distances and can, therefore, be
used only in the case of unconstrained trajectories. Furthermore, the majority of
these approaches use density-based algorithms which suffer from two major draw-
backs: i. their results are very sensitive to the parameter values; and ii. they assume
that trajectories in the same cluster have a rather homogeneous density, which is
rarely the case (as discussed in [10]).

Roh et Hwang [10] present a network-aware approach to clustering trajecto-
ries where the distance between trajectories in the road network is measured
using shortest path calculations. A baseline algorithm, using agglomerative hi-
erarchical clustering, as well as a more efficient algorithm, called NNCluster, are
presented for the purpose of regrouping the network constrained trajectories. In
[8], the authors describe an approach to discovering ”dense paths” or sequences
of frequently traveled segments in a road network. This approach resembles our
segment-based clustering although they diverge on many key aspects. For in-
stance, the approach in [8] produces flat clusters using a density-based approach
(which requires fine tuning) whereas ours produces a hierarchy of nested clus-
ters and does not require parametrization. In [6], we presented our graph-based
framework to clustering network-constrained trajectories. The work described in
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the present paper build upon this framework as it extends it to the case of road
segment clustering.

A wide variety of graph clustering algorithms was proposed in the literature,
including spectral clustering [13], clustering using label propagation [14], etc.
(complete surveys on graph clustering can be found in [16, 11]). Among these
propositions, modularity-based community detection algorithms stand out for
the good results they yield in practice. We use the hierarchical modularity-based
clustering implementation described in [12] (which follows the recommendations
in [17]) in our clustering step of our framework in order to detect the presence
of clusters among road segments.

7 Conclusion

In this paper, we presented a framework for clustering road segments based on
the moving object trajectories that travelled along them. The main novelty of
the framework is the use of a graph representation to structure the similarity
relationships and interactions between road segments. This framework presents
many advantages: i. it does not require parameters, contrary to the majority of
existing approaches that are very sensitive to their threshold values; and ii. it
also produces a hierarchy of nested clusters promoting exploration at various
levels of granularity and detail in situations where a flat clustering approach
would have produced a unique level containing a very large number of clusters.
Moreover, we showed how segment clusters can be used in conjunction with the
trajectory clusters we defined in [6] in order to better understand flow dynamics
in the road network.

The framework, however, is not flawless. The community detection algorithm
used in the clustering step can be sensitive in presence of noise (i.e. marginal
road segments that do not forcefully belong to any cluster) which can degrade the
quality of the discovered clusters. Also, the computational cost of the approach
and the fact that it requires predisposing of all the data beforehand prohibits it
from being used in a streaming context.

In future work, we will focus on alternative graph representations for trajec-
tory data. Mainly, the use of a bipartite graph to represent interactions between
trajectories and segments. Such graphs can be partitioned using bi-clustering
algorithms in order to simultaneously discover clusters of trajectories and road
segments (this is done separately in the present framework) which has the main
advantage of automatically crossing both types of clusters based on how they
interact, thus relieving the user from this delicate task.
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sification hiérarchique de ses sommets. Journal de la Société Française de Statis-
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