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Abstract. The probabilistic graphs framework models the uncertainty
inherent in real-world domains by means of probabilistic edges whose
value quantifies the likelihood of the edge existence or the strength of
the link it represents. The goal of this paper is to provide a learning
method to compute the most likely relationship between two nodes in a
framework based on probabilistic graphs. In particular, given a proba-
bilistic graph we adopted the language-constrained reachability method
to compute the probability of possible interconnections that may exists
between two nodes. Each of these connections may be viewed as feature,
or factor, between the two nodes and the corresponding probability as
its weight. Each observed link is considered as a positive instance for
its corresponding link label. Given the training set of observed links a
L2-regularized Logistic Regression has been adopted to learn a model
able to predict unobserved link labels.

1 Introduction

Over the last few years the extension of graph structures with uncertainty has
become an important research topic [13,18,12], leading to probabilistic graph
model. Probabilistic graphs model uncertainty by means of probabilistic edges
whose value quantifies the likelihood of the edge existence or the strength of
the link it represents. One of the main issues in probabilistic graphs is how to
compute the connectivity of the network. The network reliability problem [3] is
a generalization of the pairwise reachability, in which the goal is to determine
the probability that all pairs of nodes are reachable from one another. Unlike a
deterministic graph in which the reachability function is a binary value function
indicating whether or not there is a path connecting two nodes, in the case of
probabilistic graphs the function assumes probabilistic values.

The concept of reachability in probabilistic graphs is used, along with its spe-
cialization, as a tool to compute how two nodes in the graph are likely to be
connected. Reachability plays an important role in a wide range of applications,
such as in peer-to-peer networks, for probabilistic-routing problem, in road net-
work, and in trust analysis in social networks. Reachability is quite similar to the
general concept of link prediction [5], whose task may be formalized as follows.
Given a networked structure (V,E) made up of a set of data instances V and a
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set of observed links E among some nodes in V , the task corresponds to predict
how likely should exist an unobserved link between two nodes. The extension
to probabilistic graphs adds an important ingredient that should be adequately
exploited. The key difference with respect to classical link prediction is that here
the observed connections between two nodes cannot be considered always true,
and hence methods exploiting probabilistic links are needed.

The goal of this paper is to provide a learning method to compute the most
likely relationship between two nodes in probabilistic graphs. In particular, given
a probabilistic graph we adopted the reachability tool to compute the probability
of some possible interconnections that may exists between two nodes. Each of
these connections may be viewed as a feature, or a pattern, between the two
nodes and the corresponding probability as its weight. Each observed labeled link
is considered as a positive instance for its corresponding link label. The link label
corresponds to the value of the output variable yi, and the features between the
two nodes, computed with the reachability tool, correspond to the components of
the corresponding vector xi. Given the training set D = {(xi, yi)}ni=1, obtained
from n observed links, a L2-regularized Logistic Regression has been adopted
to learn a model to be used to predict unobserved link labels. The proposed
approach is quite similar to that of propositionalization proposed in the field of
Statistical Relational Learning [6], where the relational data are flattened to a
propositional representation using relational features in order to have efficient
learning results. Here the further problem that we have to handle is that the
relational representation is uncertain.

The application domains we chosen correspond to the problem of recom-
mender systems [4] and to the protein interactions task [11]. In the first domain
the aim is to predict the unknown rating between an user and an item, while in
the second one the goal is to predict the presence or absence of an interaction
between two proteins. Experiments proved that the proposed approach achieves
significant results when compared to a Singular Value Decomposition (SVD) ap-
proach [14], representing one of the best recent methods for the recommendation
task [9].

The rest of this paper is organized as follows. The next section introduces the
probabilistic graph model. Then, Section 3 describes how the link classification
problem is solved combing a linear classifier and a set of relational probabilistic
features. Section 4 shows the results of the proposed approach on some real world
problems. Lastly, Section 5 concludes the paper.

2 Probabilistic Graphs

Let G = (V,E), be a graph where V is a collection of nodes and E ∈ V × V is
the set of edges, or relationships, between the nodes.

Definition 1 (Probabilistic graph). A probabilistic graph is a system G =
(V,E, Σ, lV , lE , s, t, pe), where (V,E) is an directed graph, V is the set of nodes,
E is the set of ordered pairs of nodes where e=(s,t),Σ is a set of labels, lV : V → Σ
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is a function assigning labels to nodes, lE : E → Σ is a function assigning labels
to the edges, s : E → V is the source node of an edge, t : E → V is the target node
of an edge, pe : E → [0, 1] is a function assigning existence probability values to
the edges.

The existence probability pe(a) of an edge a = (u, v) ∈ E is the probability that
the edge a, between u and v, can exist in the graph. A particular case of proba-
bilistic graph is the discrete graph1, where binary edges between nodes represent
the presence or absence of a relationship between them, i.e., the existence prob-
ability value on all observed edges is 1. The possible world semantics, specifying
a probability distribution on discrete graphs and formalized in the distribution
semantics of Sato [15] for the first order logic, is usually used for probabilistic
graphs. We can imagine a probabilistic graph G as a sampler of worlds, where
each world is an instance of G. A discrete graph G′ is sampled from G according
to the probability distribution Pe, denoted as G′ � G, when each edge a ∈ E is
selected to be an edge of G′ with probability pe(a). Edges labelled with probabil-
ities are treated as mutually independent random variables indicating whether
or not the corresponding edge belongs to a discrete graph.

Assuming independence among edges, the probability distribution over dis-
crete graphs G′ = (V,E′) � G = (V,E) is given by

P (G′|G) =
∏

a∈E′
pe(a)

∏

a∈E\E′
(1− pe(a)). (1)

Definition 2 (Simple path). Given an uncertain graph G, a simple path of
a length k from u to v in G is an acyclic path denoted as a sequence of edges
pu,v = 〈e1, e2, . . . ek〉, such that e1 = (u, v1), ek = (vk−1, v), and ei = (vi−1, vi)
for 1 < i < k − 1.

Given an uncertain graph G, and pu,v a path in G from the node u to the node
v, �(pu,v) = lE(e1)l(e2) · · · l(ek) denotes the concatenation of the labels of all
the edges in pu,v. We adopt a regular expression R to denote what is the exact
sequence of the labels that the path must contain.

Definition 3 (Language-constrained simple path). Given a probabilistic
graph G and a regular expression R, a language constrained simple path is a
simple path p such that �(p) ∈ L(R), where L(R) is the language described by R.

2.1 Inference

Given a probabilistic graph G, a main task corresponds to compute the probabil-
ity that there exists a simple path between two nodes u and v, that is, querying
for the probability that a randomly sampled discrete graph contains a simple
path between u and v. More formally, the existence probability Pe(q|G) of a sim-
ple path q in a probabilistic graph G corresponds to the marginal P ((q,G′)|G)
with respect to q:

1 Sometimes called certain graph.
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Pe(q|G) =
∑

G′�G

P (q|G′) · P (G′|G), (2)

where P (q|G′) = 1 if there exits the simple path q in G′, and P (q|G′) = 0
otherwise. In other words, the existence probability of the simple path q is the
probability that the simple path q exists in a randomly sampled discrete graph.

Definition 4 (Language-constrained simple path probability). Given a
probabilistic graph G and a regular expression R, the language-constrained simple
path probability of L(R) is

Pe(q|L(R), G) =
∑

G′�G

P (q|G′, L(R)) · P (G′|G), (3)

where P (q|G′, L(R)) = 1 if there exists a simple path q in G′ such that �(q) ∈
L(R), and P (q|G′, L(R)) = 0 otherwise.

The previous definition give us the possibility to compute the probability of a set
of simple path queries, or patterns, fulfilling the structure imposed by a regular
expression. In this way we are interested in discrete graphs that contain at least
one simple path belonging to the language denoted by the regular expression.

Computing the existence probability directly using (2) or (3) is intensive and
intractable for large graphs since the number of discrete graphs to be checked
is exponential in the number of probabilistic edges. It involves computing the
existence of the simple path in every discrete graph and accumulating their
probability.

A natural way to overcome the intractability of computing the existence prob-
ability of a simple path is to approximate it using a Monte Carlo sampling
approach [8]:

1. we sample n possible discrete graphs, G1, G2, . . . Gn from G by sampling
edges uniformly at random according to their edge probabilities; and

2. we check if the simple path exists in each sampled graph Gi.

This process provides the following basic sampling estimator for Pe(q|G):

Pe(q|G) ≈ ̂Pe(q|G) =

∑n
i=1 P (q|Gi)

n
. (4)

Note that is not necessary to sample all the edges to check whether the graph
contains the path. For instance, assuming to use an iterative depth first search
(DFS) procedure to check the path existence. When a node is just visited, we
will sample all its adjacent edges and pushing them into the stack used by the
iterative procedure. We will stop the procedure either when the target node is
reached or when the stack is empty (non existence).
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3 Link Classification

After having defined the probabilistic graph, we can adopt language-constrained
simple paths in order to extract probabilistic features (patterns) to describe the
link between two nodes in the graph.

Given a probabilistic graph G, with the set V of nodes and the set E of edges,
and Y ⊆ Σ a set of edge labels, we have a set of edges D ⊆ E such that for each
element e ∈ D: lE(e) ∈ Y . In particular D represents the set of observed links
whose label belongs to the set Y .

Given the set of training links D and the set of labels Y we want to learn a
model able to correctly classify unobserved links. A way to solve the classification
task can be that of using a language based classification approach. Given an
unobserved edge ei = (ui, vi), in order to predict its class ŷi ∈ Y we can solve
the following maximization problem:

ŷi = argmax
j

P (qj(ui, vi)|G), (5)

where qj(ui, vi) is the unknown link with label qj ∈ Y between the nodes ui

and vi. In particular, the maximization problem corresponds to compute the
link prediction for each qj ∈ Y and then choosing that label with maximum
likelihood.

The previous link prediction task is based on querying the probability of some
language-constrained simple path. In particular, predicting the probability of the
label qj as P (qj(ui, vi)|G) in (5) corresponds to compute the probability P (q|G)
for a query path in a language Lj, i.e., computing P (Lj |G) as in (3):

ŷj = argmax
j

P (qj(ui, vi)|G) ≈ argmax
j

P (q|Lj, G). (6)

The previous query based approach consider the languages used to compute the
(6) as independent form each other without considering any correlation between
them. A more interesting approach that we want investigate in this paper is
to learn from the probabilistic graph a linear model of classification combining
the prediction of each language constrained simple path. In particular, given
an edge e and a set of k languages L = {L1, . . . , Lk}, we can generate k real
valued features xi where xi = P (q|Li, G), 1 ≤ i ≤ k. The original training set
of observed links D can hence be transformed into the set of instances D =
{(xi, yi)}i=1,...,n, where xi is a k-component vector of features xij ∈ [0, 1], and
yi is the class label of the corresponding example xi.

Linear classification represents one of the most promising learning technique
for problems with a huge number of instances and features aiming at learning
a weight vector w as a model. L2-regularized Logistic Regression belongs to
the class of linear classifier and solves the following unconstrained optimization
problem:

min
w

f(w) =

(
wTw

2
+ C

n∑

i=1

log(1 + exp(−yiwTxi))

)
, (7)
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where log(1 + exp(−yiwTxi)) = ξ(w;xi, yi) denotes the specific loss function,
1
2w

Tw is the regularized term, and C > 0 is a penalty parameter. The decision
function corresponds to sgn(wtxi). In case of binary classification yi ∈ {−1,+1},
while for multi class problems the one vs the rest strategy can be used.

Among many methods for training logistic regression models, such as iterative
scaling, nonlinear conjugate gradient, quasi Newton, a new efficient and robust
truncated Newton, called trust region Newton method, has been proposed [10].
In order to find the parameters w minimizing f(w) it is necessary to set the
derivative of f(w) to zero. Denoting with σ(yiw

Txi) = (1 + exp(−yiwTxi))
−1,

we have:
∂f(w)

∂w
= w + C

n∑

i=1

(
σ(yiw

Txi)− 1
)
yixi = 0.

To solve the previous score equation, the Newton method requires the Hessian
matrix:

∂2f(w)

∂w∂wT
= I+ CXTDX,

where X is the matrix of the xi values, D is a diagonal matrix of weights with
ith diagonal element σ(yiw

Txi)(1 − σ(yiw
Txi)), and I is the identity matrix.

The Newton step is wnew ← wold + sold, where sold is the solution of the
following linear system:

∂2f(wold)

∂w∂wT
sold = −∂f(wold)

∂w
.

Instead of using this update rule, [10] propose a robust and efficient trust region
Newton method, using new rules for updating the trust region, whose corre-
sponding algorithm has been implemented in the LIBLINEAR2 system.

4 Experimental Evaluation

The application domains we chosen to validate the proposed approach are that
of recommender systems and interactions between proteins.

In order to validate the proposed approach in recommender systems the first
dataset we used is the MovieLens dataset3, made available by the GroupLens
research group at University of Minnesota for the 2nd International Workshop
on Information Heterogeneity and Fusion in Recommender Systems. We used
the MovieLens 100K version consisting of 100000 ratings (ranging from 1 to 5)
regarding 943 users and 1682 movies, divided into five folds. Each user has rated
at least 20 movies and there are simple demographic info for the users (such as
age, gender, occupation, and zip code). In this paper we used the ratings only
without considering the demographic information.

The Hetrec2011-lastfm [2] dataset, related to recommender systems domain
(music recommendation), is the second dataset we used to validate the proposed

2 http://www.csie.ntu.edu.tw/~cjlin/liblinear.
3 http://ir.ii.uam.es/hetrec2011/datasets.html

http://www.csie.ntu.edu.tw/~cjlin/liblinear 
http://ir.ii.uam.es/hetrec2011/datasets.html
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method. This dataset contains social networking, tagging, and music artist lis-
tening information from a set of 2K users from Last.fm online music system. In
this dataset we have 1892 users, 17632 artists, 12717 bi-directional user friend
relations and 92834 user-artist relations. We have discretized the user-listened
artist relations into three (equal bins) classes play1, play2 and play3 indicat-
ing the frequency with which a user has listened to a specific artist, where
play1 < play2 < play3. Hetrec2011-lastfm dataset has been divided into 4 fold
made up of ∼70000 training ratings and ∼20000 testing ratings.

For these two datasets the goal is to predict the user’s interest with respect to
an unknown object. In Movielens dataset, we want to predict the user’s interest
with respect to a new film, while in the hetrec2011-lastfm dataset the goal is to
predict the frequency with which a user may listen to a new artist.

The last dataset we used, ppi, describes interactions among proteins [11]. The
dataset is composed by 3888 probabilistic interactions among 918 proteins, and
it has been divided into 4 fold consisting of 5832 training interactions and 1944
testing interactions, where further 3888 negative interactions between unlinked
proteins have been added. Here the goal is to predict the presence or the absence
of an interaction between two proteins.

Hence, in some domains both data and probabilistic relationships between
them are observable (like in ppi), while in other domains (as in Movielens and
hetrec2011-lastfm) it is necessary to elicit the uncertain relationships among the
given evidence.

4.1 Probabilistic Graph Creation in Recommender System Domain

When we work with a set of data, in which the probabilistic relationships between
data are hidden, a common approach to elicit these connections is based on using
similarity measures. To model the data with a graph we can adopt different
similarity measures for each type of node involved in the relationships.

In a recommender system domain we have two types of entities: the users and
the items, and the only observed relationship corresponds to the ratings that
a user has assigned to a set of items. The goal is to predict the rating a user
could assign to an object that he never rated in the past. In the collaborative
filtering approach there are two methods to predict unknown rating exploiting
users or items similarity. User-oriented methods estimate unknown ratings based
on previous ratings of similar users, while in item-oriented approaches ratings
are estimated using previous ratings given by the same user on similar items.

Let U be a set of n users and I a set of m items. A rating rui indicates the
preference degree the user u expressed for the item i, where high values mean
stronger preference. Let Su be the set of items rated from user u. A user-based
approach predicts an unobserved rating r̂ui as follows:

r̂ui = ru +

∑
v∈U|i∈Su

σu(u, v) · (rvi − rv)∑
v∈U|i∈Su

|σu(u, v)|
, (8)
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where ru represents the mean rating of user u, and σu(u, v) stands for the similar-
ity between users u and v, computed, for instance, using the Pearson correlation:

σu(u, v) =

∑
a∈Su∩Sv

(rua − ru) · (rva − rv)√∑
a∈Su∩Sv

(rua − ru)2
∑

a∈Su∩Sv
(rva − rv)2

.

On the other side, item-based approaches predict the rating of a given item using
the following formula:

r̂ui =

∑
j∈Su|j �=i σi(i, j) · ruj∑

j∈Su|j �=i |σi(i, j)|
, (9)

where σi(i, j) is the similarity between the item i and j.
These neighbourhood approaches see each user connected to other users or

consider each item related to other items as in a network structure. In particular
they rely on the direct connections among the entities involved in the domain.
However, as recently proved, techniques able to consider complex relationships
among the entities, leveraging the information already present in the network,
involves an improvement in the processes of querying and mining [17,16].

Given the set of observed ratings K = {(u, i, rui)|rui is known}, we add a node
with label user for each user in K, and a node with label item for each item in
K. The next step is to add the edges among the nodes. Each edge is characterized
by a label and a probability value, which should indicate the degree of similarity
between the two nodes. Two kind of connections between nodes are added. For
each user u, we added an edge, labeled as simU, between u and the k most similar
users to u. The similarity between two users u and v is computed adopting a
weighted Pearson correlation between the items rated by both u and v.

In particular, the probability of the edge simU connecting two users u and v is
computed as: P (simU(u, v)) = σu(u, v) · wu(u, v), where σu(u, v) is the Pearson
correlation between the vectors of ratings corresponding to the set of items rated
by both user u and user v, and wu(u, v) = |Su ∩ Sv|/|Su ∪ Sv|. For each item i,
we added an edge, with label simI, between i and the most k similar items to i.
In particular, the probability of the edge simI connecting the item i to the item
j has been computed as: P (simI(i, j)) = σi(i, j) · wi(i, j), where σi(i, j) is the
Pearson correlation between the vectors corresponding to the histogram of the
set of ratings for the item i and the item j, and wi(i, j) = |Si ∩ Sj |/|Si ∪ Sj |,
where Si is the set of users rating the item i. Finally, edges with probability
equal to 1, and with label rk between the user u and the item i, denoting the
user u has rated the item i with a score equal to k, are added for each element
(u, i, rk) belonging to K.

4.2 Feature Construction

After having constructed the probabilistic graph, the next step corresponds to
the features construction that will serve as input to the classification model.
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Adopting a recommender system dataset we can assume that the values of
rui are discrete and belonging to a set R. Given the recommender probabilistic
graph G, the query based classification approach try to solve the problem r̂ui =
argmaxj P (rj(u, i)|G), where rj(u, i) is the unknown link with label rj between
the user u and the item i. This link prediction task is based on querying the
probability of some language constrained simple path. For instance, a user-based
collaborative filtering approach may be obtained by querying the probability of
the edges, starting from a user node and ending to an item node, denoted by the
regular expression Li = {simU1r1i }. In particular, predicting the probability of
the rating j as P (rj(u, i)) corresponds to compute the probability P (q|G) for a
query path in Lj, i.e., r̂ui = argmaxj P (rj(u, i)|G) ≈ argmaxj P (Lj|G). In the
same way, item-based approach could be obtained by computing the probability
of the paths constrained by the language Li = {r1i simI1}.

In the case of interactions among proteins we can assume that we have one
label rui for all the edges. Given the proteins interactions probabilistic graph
G, the query based classification approach try to solve the problem of querying
the probability of some language constrained simple path made up of a series of
homogeneous edges.

However, the power of the proposed framework is most evident when the
labels of the edges are heterogeneous (as for the recommender system case). In
fact, in such a situation our approach gives us the possibility to construct more
complex queries such as that constrained by the language Li = {risimIn : 1 ≤
n ≤ 2}, that gives us the possibility to explore the graph by considering not only
direct connections. Hybrid queries, such as those constrained by the language
Li = {risimIn : 1 ≤ n ≤ 2} ∪ {simUmr1i : 1 ≤ m ≤ 2}, give us the possibility to
combine the user information with item information.

In order to use the feature based classification approach proposed in this paper
we can define a set of regular expression L and then computing for each language
Li ∈ L the probability P (Li|G) between two nodes in the graph. In particular
in recommender system case, the set of observed ratings K = {(u, i, rui)|rui is
known} is mapped to the training set D = {(xi, yi)}i=1,...,n, where xij is the
probability P (Lj |G) between the nodes u and i, and yi is equal to rui. The
proposed link classification method has been implemented in the Eagle system4

that provides a set of tools to deal with probabilistic graphs.

4.3 Validation

For each dataset, given the training/testing set, the validation procedure followed
the steps:

1. creating the probabilistic graph from the training ratings data set as reported
in Section 4.1;

2. defining a set L of regular expressions to be used to construct a specific set
of features as described in Section 4.2;

4 http://www.di.uniba.it/~claudiotaranto/eagle.html

http://www.di.uniba.it/~claudiotaranto/eagle.html
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3. learning the L2-regularized Logistic Regression model; and,
4. testing the links reported in the testing data set T by computing, for each

pair (u, i) ∈ T the predicted value adopting the learned classification model
and comparing the result with the true prediction reported in T .

For the ppi dataset, the first step is not necessary because the connections
are observable. For Movielens graph construction, edges are added using the
procedure presented in Section 4.1, where we set the parameter n = 30, in-
dicating that an user or a film is connected, respectively, to 30 most similar
users (resp., films). The value of each feature have been obtained with the
Monte Carlo inference procedure by sampling M discrete graphs. In order to
construct the set of features, we proposed to query the paths belonging to the
set of languages Lmlk reported in Table 1. The first language-constrained sim-
ple paths Lml1 corresponds to adopt a user-based approach, while the second
language Lml2 gives us the possibility to simulate an item-based approach.
Then, we propose to extend the basic languages Lml1 and Lml2 in order to
construct features that consider a neighbourhood with many nested levels. Fi-
nally, we constructed hybrid features by combining both the user-based and
item-based methods and the large neighbourhood explored with paths whose
length is greater than one (Lml5, Lml8 and Lml9). We defined two sets of fea-
tures Fml1 = {Lml1, Lml2, Lml3, Lml4, Lml5}, based on simple languages, and
Fml2 = {Lml3, Lml4, Lml5, Lml6, Lml7, Lml8, Lml9}, exploiting more complex
queries.

Table 1. Language constrained simple paths used for the MovieLens dataset

Lml1 = {simU1r1k}
Lml2 = {r1ksimF1}
Lml3 = {r1ksimFn : 1 ≤ n ≤ 2}
Lml4 = {simUnr1k : 1 ≤ n ≤ 2}
Lml5 = {simUnr1k : 1 ≤ n ≤ 2} ∪ {r1ksimFn : 1 ≤ n ≤ 2}
Lml6 = {r1ksimFn : 1 ≤ n ≤ 3}
Lml7 = {simUnr1k : 1 ≤ n ≤ 3}
Lml8 = {simUnr1k : 1 ≤ n ≤ 3} ∪ {r1ksimFn : 1 ≤ n ≤ 3}
Lml9 = {simUnr1k : 1 ≤ n ≤ 4} ∪ {r1ksimFn : 1 ≤ n ≤ 4}

For hetrec2011-lastfm graph construction, edges are added using the proce-
dure presented in Section 4.1, where we set the parameter n = 1500, indicat-
ing that an user or an artist is connected, respectively, to 1500 most similar
users, resp. artists. We defined two sets of features, as reported in Table 2:
Fwsr = {Llfm1,Llfm2,Llfm3,Llfm4,Llfm5} based on simple languages without
considering the social relationships among the elements in the network, and
Fpsr = {Llfm1,Llfm2,Llfm3,Llfm4,Llfm5,Llfm6,Llfm7,Llfm8} in which social
connections are considered.

In the ppi dataset we used the set of features Fppi reported in Table 3 based
on simple and complex queries.
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Table 2. Language constrained simple paths used for the hetrec2011-lastfm dataset

Llfm1 = {simUser1r1k}
Llfm2 = {r1ksimArtist1}
Llfm3 = {simUsernr1k : 1 ≤ n ≤ 2}
Llfm4 = {r1ksimArtistn : 1 ≤ n ≤ 2}
Llfm5 = {simUser1r1ksimArtist

1}
Llfm6 = {friend1r1k}
Llfm7 = {simUser1friend1r1k}
Llfm8 = {friend1r1ksimArtist1}

Table 3. Language constrained simple paths used for the ppi dataset

Lppi1 = {interact1interact1}
Lppi2 = {interact1interact1interact1}
Lppi3 = {interact1interact1interact1interact1}
Lppi4 = {interact1interact1interact1interact1} ∪ {interact1interact1}
Lppi5 = {interactn : 1 ≤ n ≤ 3}
Lppi6 = {interactn : 1 ≤ n ≤ 4}

In order to learn the classification model as reported in Section 3, we used the
L2-regularized Logistic Regression implementation included in the LIBLINEAR
system [10]. Given a set T of testing instances, the accuracy of the proposed
framework has been evaluated according to the macroaveraging mean absolute
error [1], for the recommender case,

MAEM (r̂ui, T ) =
1

k

k∑

j=1

1

|Tj|
∑

xi∈Tj

|r̂ui − rui|,

where Tj ⊂ T denotes the set of test rating whose true class is j, or with
the conditional log likelihood, area under the Precision-Recall (AUC-PR) and
Receiver Operating Characteristic (AUC-ROC) curves for the case of ppi dataset.

4.4 Results

Table 4 shows the results on MovieLens dataset obtained adopting the proposed
approach implemented in the Eagle system when compared to those obtained
with the RecSys SVD approach based implementation5. The first row reports
the mean value of the MAEM averaged on the five folds obtained with an SVD
approach and with the proposed method. As we can see the error achieved by
our method is lower than that obtained by the SVD method. The results improve
when we use the set Fml2 of features. The difference of the results obtained with
the two methods is statistically significant, with a p-value for the t-test equal
to 0.0000004 when using the set Fml1 of features, and equal to 0.0000002 for
the other set of features. The last two columns report the results of two baseline

5 https://github.com/ocelma/python-recsys

https://github.com/ocelma/python-recsys
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methods. The second last column reports the results obtained with a system
that predicts a rating adopting a uniform distribution, while the last column
reports the results of a system that uses a categorical distribution that predicts
the value k of a rating with probability pk = |Dk|/N , where Dk is the number
of ratings belonging to the dataset having value k, and N is the total number of
ratings.

Table 4. MAEM values obtained with Eagle and SVD on MovieLens dataset

Fold SVD Eagle@Fml1 Eagle@Fml2 U C

1 0.9021 0.8372 0.8044
2 0.9034 0.8323 0.8055
3 0.9111 0.8429 0.8256
4 0.9081 0.8494 0.8231
5 0.9159 0.8507 0.8270

Mean 0.908±0.006 0.842±0.007 0.817±0.011 1.6 1.51

p-value 0.0000004 0.0000002

In Table 5 we can see the errors committed by each method for each rating.
The rows for the methods U and C report the mean of the MAEM value for each
fold using a system adopting a uniform or a categorical distribution. The dataset
is not balanced and both the SVD and the proposed method adhere more to the
categorical distribution proving that they are able to recognize the unbalanced
distribution of the dataset.

Table 5. MAEM values for each class obtained with Eagle and SVD on MovieLens
dataset

Method r1 r2 r3 r4 r5

U 2.0 1.4 1.2 1.4 2.0
C 2.53 1.65 1.00 0.89 1.47
SVD 1.62 1.03 0.55 0.44 0.88

Eagle@Fml1 1.14 0.80 0.65 0.65 0.93
Eagle@Fml2 1.03 0.73 0.66 0.66 0.96

Hetrec2011-lastfm dataset is composed by two types of edges: similarity edges
(simUser and simArtist) and social relationship edges (friend). In this paper, we
want to evaluate whether adopting the social connections improves the classi-
fication performances [7]. Table 6 shows the hetrec2011-lastfm results for each
class comparing Eagle@Fwsr and Eagle@Fpsr, we can see that Eagle@Fpsr that
adopt social relationship edges achives better results than Eagle@Fwsr that does
not use these connections.

Table 7 shows the results on ppi dataset obtained adopting the proposed
approach implemented in the Eagle system when compared to those obtained
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Table 6. MAEM values for each class obtained with Eagle on hetrec2011-lastfm
dataset

Fold Method play1 play2 play3 All

1 Eagle@Fwsr 0.6315 0.5686 0.4216 0.5405
Eagle@Fpsr 0.6047 0.2524 0.5946 0.4839

2 Eagle@Fwsr 0.6090 0.5975 0.4460 0.5508
Eagle@Fpsr 0.5794 0.2326 0.6268 0.4796

3 Eagle@Fwsr 0.6194 0.5875 0.4542 0.5537
Eagle@Fpsr 0.6062 0.1963 0.6796 0.4940

4 Eagle@Fwsr 0.6295 0.6077 0.4181 0.5517
Eagle@Fpsr 0.5976 0.2432 0.5840 0.4749

Average Eagle@Fwsr 0.6223 0.5903 0.4349 0.5492
Eagle@Fpsr 0.5969 0.2311 0.6212 0.4831

Table 7. MAEM , CLL, PR and ROC on ppi dataset

Fold Train Set Test Set Random Eagle

1 5829 1943 0.500 0.190
2 5829 1943 0.500 0.184
3 5829 1943 0.500 0.203
4 5829 1943 0.500 0.189

Mean 0.500 0.191

CLL
Mean -0.439
StdDev 0.144

PR
Mean 0.861
StdDev 0.011

ROC
Mean 0.854
StdDev 0.012
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Fig. 1. On the left side AUC-PR and on the right side AUC-ROC on the ppi dataset
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with a random approach. Furthermore we show for each CLL, PR and ROC
the mean and standard deviation values. Figure 1 shows on the left side the PR
curve and on the right side the ROC curve on the ppi dataset.

5 Conclusions

In this paper we adopt the probabilistic graphs framework to deal with uncertain
problems exploiting both edges probabilistic values and edges labels denoting
the type of relationships between two nodes. We proposed a learning method to
compute the most likely relationship between two nodes in probabilistic graphs.
Given the training set of observed links a L2-regularized Logistic Regression has
been adopted to learn a model able to predict the label of unobserved links.
The experimental evaluation proved that the proposed approach achieves better
results when compared to that obtained with models induced by Singular Value
Decomposition.
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