
Annalisa Appice Michelangelo Ceci
Corrado Loglisci Giuseppe Manco
Elio Masciari Zbigniew W. Ras (Eds.)

 123

LN
AI

 7
76

5

First International Workshop, NFMCP 2012
Held in Conjunction with ECML-PKDD 2012
Bristol, UK, September 2012, Revised Selected Papers

New Frontiers
in Mining
Complex Patterns

Lecture Notes in Artificial Intelligence 7765

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Annalisa Appice Michelangelo Ceci
Corrado Loglisci Giuseppe Manco
Elio Masciari Zbigniew W. Ras (Eds.)

New Frontiers
in Mining
Complex Patterns
First International Workshop, NFMCP 2012
Held in Conjunction with ECML-PKDD 2012
Bristol, UK, September 24, 2012
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Annalisa Appice
Michelangelo Ceci
Corrado Loglisci
Università degli Studi di Bari "Aldo Moro", Dipartimento di Informatica
Via Orabona 4, 70126 Bari, Italy
E-mail: {annalisa.appice, michelangelo.ceci, corrado.loglisci}@uniba.it

Giuseppe Manco
Elio Masciari
Institute for High Performance Computing and Networks (ICAR)
National Research Council (CNR)
Via Pietro Bucci 41C, 87036 Rende, Italy
E-mail: {manco, masciari}@icar.cnr.it

Zbigniew W. Ras
University of North Carolina, Department of Computer Science
9201 University City Boulevard, Charlotte, NC 28223, USA
and Warsaw University of Technology, Institute of Computer Science
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
E-mail: ras@uncc.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37381-7 e-ISBN 978-3-642-37382-4
DOI 10.1007/978-3-642-37382-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013934109

CR Subject Classification (1998): H.2.8, H.2, H.3, I.2.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

New Frontiers in Mining Complex Patterns

(NFMCP 2012)

Data mining and knowledge discovery can be considered today as mature re-
search fields, with numerous algorithms and studies available to extract knowl-
edge from data in different forms. Although most existing data mining ap-
proaches look for patterns in tabular data, there are also numerous studies where
the focus is on complex data (e.g., multi-table data, XML data, Web data, time
series and sequences, graphs and trees).

This book sets out to explore emerging technologies and applications where
complex patterns in expressive languages are principally extracted from new
prominent data sources such as blogs, event or log data, medical data, spatio-
temporal data, social networks, mobility data, sensor data and streams, and so
on. The individual contributions of this book illustrate advanced data mining
techniques that preserve the informative richness of complex data and allow for
efficiently and effectively identifying complex information units present in such
data.

The papers presented in this book are revised and significantly extended ver-
sions of those accepted for presentation at the First International Workshop on
New Frontiers in Mining Complex Patterns (MCP 2011), held in Bristol, UK,
on September 24, 2012, in conjunction with the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD 2012).

The book is composed of four parts and a total of 15 chapters.
Part I gives a view of mining rich (relational) datasets by illustrating some

complex situations and the related complexity. It contains two chapters. Chapter
1 proposes a learning paradigm where users can write (or adapt) their operators,
according to the problem, the data representation, and the way the information
should be navigated. The chapter explains the necessary steps for using data
instances, background knowledge, rules, programs, and operators in the same
functional language. Chapter 2 presents a feature selection method to improve
the performance of relational learning without affecting the learned hypothesis
and evaluates the approach on four datasets with the popular system Aleph and
the state-of-the-art relational learner nFOIL.

Part 2 analyzes issues posed by mining complex patterns from miscellaneous
data. It consists of four chapters. Chapter 3 investigates the use of temporal data
mining in a declarative framework to analyze the log files of computer networks.
It describes the analysis of log files based on XML. Chapter 4 analyzes data
aggregation and correlation in a relational scenario where data are character-
ized by very large fluctuations that are neither attributable to noise nor outliers.
Chapter 5 explores the use of machine learning techniques in geographical ethno-
musicology in order to predict the distribution of music from around the world.

VI New Frontiers in Mining Complex Patterns (NFMCP 2012)

Chapter 6 investigates the concept of object-driven action rules and presents
a new pair-based way of examining temporal and object-driven systems. The
chapter presents a case study in the analysis of distortions of speech disorders
in children.

Part 3 gives a general overview of mining complex patterns from trajec-
tory and sequence data by illustrating issues and solutions. It contains three
chapters. Chapter 7 presents a complete framework to cluster trajectory data
streams. Chapter 8 describes a new approach to extract patterns from a complex
sequences including both dimensional items and itemsets. Chapter 9 illustrates
an approach to cluster moving object trajectories whose data are constrained in
a (road-) network.

Finally, Part 4 presents technologies and applications where complex patterns
are discovered from graphs and networks. It contains six chapters. Chapter 10
explores the relationship between the graph structure and the distribution of at-
tribute values. Chapter 11 presents a probabilistic graph framework to model the
uncertainty inherent in real-world domains by means of probabilistic edges whose
value quantifies the likelihood of the edge existence or the strength of the link
it represents. Chapter 12 describes a technique to automatically extract concep-
tual graphs from text and illustrates the method in a scenario concerning social
networks on sociopolitical and economic topics. Chapter 13 considers a dynamic
network scenario, where nodes/relationships can be added or removed and rela-
tionships can change in their type over time and presents a method to discover
evolution chains that express the temporal evolution of the network. Chapter
14 describes an approach to quickly, capillary, and effectively ease information
spreading in a multi-social-network context. Chapter 15 illustrates the problem
of discovering predictive performance models in process mining. It describes an
ensemble-based clustering method, where multiple predictive clustering trees are
learnt and integrated into an overall (predictive) clustering model.

We would like to thank all the authors who submitted papers for publication
in this book and all the workshop participants and speakers. We are also grateful
to the members of the Program Committee and external referees for their excel-
lent work in reviewing submitted and revised contributions with expertise and
patience. A special thanks is due to both the ECML PKDD Workshop Chairs
and to the members of the ECML PKDD organization team who made the event
possible. Last but not the least, we thank Alfred Hofmann of Springer for his
continuous support.

January 2013 Annalisa Appice
Michelangelo Ceci

Corrado Loglisci
Giuseppe Manco

Elio Masciari
Zbigniew W. Ras

Organization

Program Chairs

Annalisa Appice University of Bari “Aldo Moro”, Bari, Italy
Michelangelo Ceci University of Bari “Aldo Moro”, Bari, Italy
Corrado Loglisci University of Bari “Aldo Moro”, Bari, Italy
Giuseppe Manco ICAR-CNR, Rende, Italy
Elio Masciari ICAR-CNR, Rende, Italy
Zbigniew W. Ras University of North Carolina, Charlotte, USA

& Warsaw University of Technology, Poland

Program Committee

Francesco Bonchi Yahoo! Research Barcelona, Spain
Saso Dzeroski Jozef Stefan Institute, Slovenia
Floriana Esposito University of Bari “Aldo Moro”, Italy
Dimitrios Gunopulos University of Athens, Greece
Mohand-Säıd Hacid University Claude Bernard Lyon 1, France
Dino Ienco IRSTEA Montpellier, UMR TETIS, France
Donato Malerba University of Bari “Aldo Moro”, Italy
Stan Matwin University of Ottawa, Canada
Dino Pedreschi University of Pisa, Italy
Fabrizio Riguzzi University of Ferrara, Italy
Eirini Spyropoulou University of Bristol, UK
Jerzy Stefanowski Poznan University of Technology, Poland
Maguelonne Teisseire IRSTEA Montpellier, UMR TETIS, France
Shusaku Tsumoto Shimane University, Japan
Herna L. Viktor University of Ottawa, Canada
Alicja Wieczorkowska Polish-Japanese Institute of IT, Poland
Djamel Zighed Université Lumière, Lyon 2, France

Additional Reviewers

Nicola Di Mauro
Fabio Fumarola
Valerio Grossi
Massimo Guarascio
Lucrezia Macchia
Krystyna Napierala

Diego Pennacchioli
Gianvito Pio
Salvatore Rinzivillo
Ettore Ritacco
Daniela Stojanova
Aneta Trajanov

Table of Contents

Mining Rich (Relational) Datasets

Learning with Configurable Operators and RL-Based Heuristics 1
Fernando Mart́ınez-Plumed, Cèsar Ferri,
José Hernández-Orallo, and Maŕıa José Ramı́rez-Quintana

Reducing Examples in Relational Learning with Bounded-Treewidth
Hypotheses . 17

Ondřej Kuželka, Andrea Szabóová, and Filip Železný

Mining Complex Patterns from Miscellaneous Data

Mining Complex Event Patterns in Computer Networks 33
Dietmar Seipel, Philipp Neubeck, Stefan Köhler, and
Martin Atzmueller

Learning in the Presence of Large Fluctuations: A Study of Aggregation
and Correlation . 49

Eric Paquet, Herna Lydia Viktor, and Hongyu Guo

Pair-Based Object-Driven Action Rules . 79
Ayman Hajja, Alicja A. Wieczorkowska, Zbigniew W. Ras, and
Ryszard Gubrynowicz

Mining Complex Patterns from Trajectory and
Sequence Data

Effectively Grouping Trajectory Streams . 94
Gianni Costa, Giuseppe Manco, and Elio Masciari

Healthcare Trajectory Mining by Combining Multidimensional
Component and Itemsets . 109

Elias Egho, Chedy Räıssi, Dino Ienco, Nicolas Jay, Amedeo Napoli,
Pascal Poncelet, Catherine Quantin, and Maguelonne Teisseire

Graph-Based Approaches to Clustering Network-Constrained
Trajectory Data . 124

Mohamed Khalil El Mahrsi and Fabrice Rossi

. . .
Claire Q and Ross D. King

Retracted: Machine Learning as an Objective Approach to Understanding
Music . 64

X Table of Contents

Mining Complex Patterns from Graphs and Networks

Finding the Most Descriptive Substructures in Graphs with Discrete
and Numeric Labels . 138

Michael Davis, Weiru Liu, and Paul Miller

Learning in Probabilistic Graphs Exploiting Language-Constrained
Patterns . 155

Claudio Taranto, Nicola Di Mauro, and Floriana Esposito

Improving Robustness and Flexibility of Concept Taxonomy Learning
from Text . 170

Fabio Leuzzi, Stefano Ferilli, and Fulvio Rotella

Discovering Evolution Chains in Dynamic Networks 185
Corrado Loglisci, Michelangelo Ceci, and Donato Malerba

Supporting Information Spread in a Social Internetworking Scenario 200
Francesco Buccafurri, Gianluca Lax, Antonino Nocera, and
Domenico Ursino

Context-Aware Predictions on Business Processes: An Ensemble-Based
Solution . 215

Francesco Folino, Massimo Guarascio, and Luigi Pontieri

Author Index . 231

Erratum

Machine Learning as an Objective Approach to Understanding Music . . .
Claire Q and Ross D. King

E1

Learning with Configurable Operators

and RL-Based Heuristics�

Fernando Mart́ınez-Plumed, Cèsar Ferri, José Hernández-Orallo,
and Maŕıa José Ramı́rez-Quintana

DSIC, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València, Spain
{fmartinez,cferri,jorallo,mramirez}@dsic.upv.es

Abstract. In this paper, we push forward the idea of machine learning
systems for which the operators can be modified and finetuned for each
problem. This allows us to propose a learning paradigm where users can
write (or adapt) their operators, according to the problem, data repre-
sentation and the way the information should be navigated. To achieve
this goal, data instances, background knowledge, rules, programs and
operators are all written in the same functional language, Erlang. Since
changing operators affect how the search space needs to be explored,
heuristics are learnt as a result of a decision process based on reinforce-
ment learning where each action is defined as a choice of operator and
rule. As a result, the architecture can be seen as a ‘system for writing
machine learning systems’ or to explore new operators.

Keywords: machine learning operators, complex data, heuristics, in-
ductive programming, reinforcement learning, Erlang.

1 Introduction

The number and performance of machine learning techniques dealing with com-
plex, structured data has considerably increased in the past decades. However,
the performance of these systems is usually linked to a transformation of the
feature space (possibly including the outputs as well) to a more convenient, flat,
representation, which typically leads to incomprehensible patterns in terms of
the transformed (hyper-)space. Alternatively, other approaches do stick to the
original problem representation but rely on specialised systems with embedded
operators that are only able to deal with specific types of data.

Despite all these approaches and the vindication of more general frameworks
for data mining [6], there is no general-purpose machine learning system which
can deal with all of these problems preserving the problem representation. There

� This work was supported by the MEC projects CONSOLIDER-INGENIO 26706 and
TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, and the REFRAME
project granted by the European Coordinated Research on Long-term Challenges in
Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA),
and funded by the Ministerio de Economı́a y Competitividad in Spain. Also, F.
Mart́ınez-Plumed is supported by FPI-ME grant BES-2011-045099.

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 F. Mart́ınez-Plumed et al.

are of course several paradigms using, e.g., distances or kernel methods for struc-
tured data [13,9] which can be applied to virtually any kind of data, provided we
can define similarity functions to compare the individuals. However, this general-
ity comes at the cost of losing the original problem representation and typically
losing the recursive character of many data structures.

Other paradigms, such as inductive programming (ILP [23], IFP [16] or IFLP
[12]), are able to tackle any kind of data thanks to the expressive power of first-
order logic (or term rewriting systems). However, each system has a predefined
set of operators (e.g., lgg [24], inverse entailment [22], splitting conditions in
a decision tree, or others) and an embedded heuristic. Even with the help of
background knowledge it is still virtually impossible to deal with, e.g., an XML
document, if we do not have the appropriate operators to delve into its structure.

In this paper we present and explore a general rule-based learning setting
where operators can be defined and customised for each kind of problem. While
one particular problem may require generalisation operators, another problem
may require operators which add recursive transformations to explore the struc-
ture of the data. A right choice of operators can embed transformations on the
data but can also determine the way in which rules are generated and trans-
formed, so leading to (apparently) different learning systems. Making the user
or the problem adapt its own operators is significantly different to the use of
feature transformations or specific background knowledge. In fact, it is also sig-
nificantly more difficult, since operators can be very complex things and usually
embed the essence of a machine learning system. A very simple operator, such
as lgg, requires several lines of code in almost any programming language, if
not more. Writing and adapting a system to a new operator is not always an
easy task. As a result, having a system which can work with different kinds of
operators at the same time is a challenging proposal beyond the frontiers of the
state of the art in machine learning.

In addition, machine learning operators are tools to explore the hypothesis
space. Consequently, some operators are usually associated to some heuristic
strategies (e.g., generalisation operators and bottom-up strategies). By giving
more freedom to the kind of operators a system can use, we lose the capacity
to analyse and define particular heuristics to tame the search space. This means
that heuristics must be overhauled, as decisions about the operator that must
be used at each particular state of the learning process.

We therefore propose a setting where operators can be written or modified by
the user. Since operators are defined as functions which transform patterns, we
clearly need a language for defining operators which can integrate the represen-
tation of the examples, patterns and operators. We will argue that functional
programming languages, with reflection and higher-order primitives, are appro-
priate for this, and we will choose a powerful and relatively popular programming
language in this family, Erlang [1]. A not less important reason for using a func-
tional language is that operators can be understood by the users and properly
linked with the data structures used in the examples and background knowledge,
so making the specification of new operators easier. The language also sets the

Learning with Configurable Operators and RL-Based Heuristics 3

general representation of examples as equations, patterns as rules and models as
sets of rules.

From here, we devise a flexible architecture which works with populations
of rules and programs, which evolve as in an evolutionary programming setting
or a learning classifier system [14]. Operators are applied to rules and generate
new rules, which are combined with existing or new programs. With appropriate
operators and using some optimality criteria (based on coverage and simplicity)
we will eventually find some good solutions to the learning problem. However,
without heuristics, the number of required iterations gets astronomically high.
This issue is addressed with a reinforcement learning (RL) approach, where the
application of an operator over a rule is seen as a decision problem, for which
learning also takes place, guided by the optimality criteria which feed a rewarding
module. Interestingly, different problems using the same operators can reuse the
heuristics. As a result, the architecture can be seen as a ‘system for writing
machine learning systems’ or to explore new operators.

The paper is organised as follows. Section 2 makes a short account of the many
approaches and ideas which are related to this proposal. Section 3 introduces how
operators are expressed and applied. Section 4 describes the RL-based heuristics
used to guide the learning process. Section 5 includes some examples which
illustrate how operators are defined and how solutions are reached. Section 6
closes the paper.

2 Previous Work

The system we present in this paper is related to different areas of machine
learning: learning from complex data, reinforcement learning, Learning Clas-
sifiers Systems, evolutionary techniques, meta-learning, etc. In this section we
summarise some of the previous works in these fields somehow related to our
proposal.

Inductive programming [16], inductive logic programming (ILP) [23] and some
of the related areas such as relational data mining [8] are arguably the oldest at-
tempts to handle complex data. They can be considered general machine learning
systems, because any problem can be represented, preserving its structure, with
the use of the Turing-complete languages underneath: logic, functional or logic-
functional. Apart from their expressiveness, the advantage of these approaches
is the capability of capturing complex problems in a comprehensible way. ILP,
for instance, has been found especially appropriate for scientific theory forma-
tion tasks where the data are structured, the model may be complex, and the
comprehensibility of the generated knowledge is essential. Learning systems us-
ing higher-order (see, e.g., [19]) were one of the first approaches to deal with
complex structures, which were usually flattened in ILP. Despite the power of
higher-order functions to explore complex structure, this approach has never
become mainstream.

All these systems are based on the use of different fixed operators. For in-
stance, Plotkin’s lgg [24] operator works well with a specific-to-general search.

4 F. Mart́ınez-Plumed et al.

The ILP system Progol [22] combines the Inverse Entailment with general-to-
specific search through a refinement graph. The Aleph system [26] is based on
Mode Direct Inverse Entailment (MDIE). In inductive functional logic program-
ming, the FLIP system [12] includes two different operators: inverse narrowing
and a consistent restricted generalisation (CRG) generator. In any case, the set of
operators configures and delimits the performance of each learning system. Also,
rules that are learned on a first stage can be reused as background knowledge
for subsequent stages (incremental learning). Hybrid approaches that combine
Genetic Algorithms and ILP have also been introduced as in [29].

As an evolution of ILP into the fields of (statistical) (multi-)relational learning
or related approaches, many systems have been developed to work with rich
data representations. In [4], for example, we can find an extensive description of
the current and emerging trends in the so-called ‘structured machine learning’
where the authors propose to go beyond supervised learning and inference, and
consider decision-theoretic planning and reinforcement learning in relational and
first-order settings.

Structured Prediction (SP) is one example of learning from complex data con-
text, where not only the input is complex but also the output. This has led to
new and powerful techniques, such as Conditional Random Fields (CRFs) [18],
which use a log-linear probability function to model the conditional probability
of an output y given an input x where Markov assumptions are used in order to
make inference tractable. Other well-known Global Model is SVM for Interde-
pendent and Structured Output spaces (SVM-ISO, also known as SVM struct)
as a SP evolution of [13] (Kernels) or [9] (distances). [30]. Also, hierarchical clas-
sification can be viewed as a case of SP where taxonomies and hierarchies are
associated with the output [17].

Some of these previous approaches use special functions (probabilistic dis-
tributions, metrics or kernels) explicitly defined on the individual space. These
methods either lack a model (they are instance-based methods) or the model
is defined in terms of the transformed space. A recent proposal which has tried
to re-integrate the distance-based approach with the pattern-based approach is
[11], (leading, e.g., to Newton trees [21]).

There have been several approaches applying planning and reinforcement
learning to structured machine learning [28]. While the term Relational Re-
inforcement Learning (RRL) [7,28] seems to come to mind, it offers state-space
representation that is much richer than that used in classical (or propositional)
methods, but its goal is not structured data. Other related approaches are, for
instance, incremental models [3,20] which try to solve the combinatorial nature
of the very large input/output structured spaces since the structured output is
built incrementally. These methods can be applied to a wide variety of techniques
such as parsing, machine translation, sequence labelling and tree mapping.

Finally, there is an approach, somewhat in between genetic algorithms and
reinforcement learning, known as Learning Classifier Systems (LCSs) [15]. LCSs
employ two biological metaphors: evolution and learning which are respectively
embodied by the genetic algorithm, and a reinforcement learning-like mechanism

Learning with Configurable Operators and RL-Based Heuristics 5

appropriate for the given problem. Both mechanisms rely on what is referred to
as the environment of the system (the source of input data). The architecture
of our system will resemble in some ways the LCS approach.

Learning to learn is one of the (required) features of our setting and is related
to the area of meta-learning [2]. Learning at the metalevel is concerned with ac-
cumulating experience on the performance of multiple applications of a learning
system. A more integrated approach resembling meta-learning and incremental
learning is [25], where the authors present the Optimal Ordered Problem Solver
(OOPS), an optimally fast way of incrementally solving each task in the sequence
by reusing successful code from previous tasks.

3 Configuring Rule Operators

After this review of related work, we still perceive a lack of flexibility in the
way in which different problems can be handled, especially when structured
learning is required. As we have mentioned in Section 1, in this paper we set the
goal of constructing a system which can be configured with different (possibly
user-defined) operators, and where the heuristics are also learned from previous
applications of operators for the same or similar problems. As a long-term goal,
this can be roughly seen as a general system for designing customised systems
for applications with complex data.

In order to achieve the above-mentioned goals, we need to use configurable
operators, instead of hard-wired operators. Changing hard-wired operators re-
quires the modification of dozens of lines of code and usually entails a re-writing
(or complete overhauling) of heuristics. Instead, in our approach the heuristics
will be substituted by a reinforcement learning approach, which will determine
which pair of operator and rule will be chosen at each state of the system.

Additionally, we will represent operators in the same language already used
for examples, models and background knowledge. The advantages of using the
same representation language (in this case, rules expressed as unconditional /
conditional equations) has been previously shown by the fields of ILP, IFP and
IFLP (except for operators). Hence, we look for a flexible language, with powerful
features for defining operators and able to represent all other elements (theories
and examples) in an understandable way. For this reason we use Erlang, a func-
tional language with reflection mechanisms which allows us to interact easily
with the meta-level representation of how rules and programs are transformed
by operators.

3.1 Notation

Let Σ be a set of function symbols together with their arity and X a countably
set of variables, then T (Σ,X) denotes the set of terms built from Σ and X . The
set of variables occurring in a term t is denoted Var(t). A term t is a ground
term if V ar(t) = ∅.

6 F. Mart́ınez-Plumed et al.

An equation is an expression of the form l = r where l and r are terms. l is called
the left hand side (lhs) of the equation and r is the right hand side (rhs).R denotes
the space of all (conditional) functional rules ρ of the way l [when G]→ T, r where
l and r are the lhs and the rhs of ρ (respectively),G = {g1, g2, . . . gm | m ≥ 0}) is a
set of conditions or Boolean expressions called guards, and T = b1, . . . , bn, the tail
of ρ, is a sequence of equations. IfG = ∅, then ρ is said to be an unconditional rule.
LetP = 2R be the space of all possible functional programs formed by sets of rules
ρ ∈ R. Given a program p ∈ P , we say that term t reduces to term s with respect
to p, t →p s, if there exists a rule l [when G] → T, r ∈ p such that a subterm of
t at occurrence u matches l with substitution θ, all conditions hiθ holds, for each
equation bil = bir ∈ T , bilθ and birθ have the same normal form (that is, bilθ →∗

p b,
and birθ →∗

p b and b can not be further reduced) and s is obtained by replacing in
t the subterm at occurrence u by rθ.

An example e is a rule without condition nor tail, that is e is of the form l →
r, being r in normal form and both l and r are ground. We say that an example
l → r is covered by a program p (denoted by p |= {l → r}) if l and r have the
same normal form with respect to p. A functional program p ∈ P is a solution of a
learning problemdefined by a set of positive examplesE+, a (possibly empty) set of
negative examplesE− and a background theoryB if it covers all positive examples,
B∪p |= E+ (posterior sufficiencyor completeness), anddoesnot cover anynegative
example, B ∪ p �|= E− (posterior satisfiability or consistency). Our system has
the aim of obtaining complete solutions, but their consistency is not a mandatory
property, so approximate solutions are possible. The function Cov+ : 2R → N
calculates the positive coverage of a program p ∈ 2R and it is defined asCov+(p) =
Card({e ∈ E+ : B ∪ p |= e}), where Card(S) denotes the cardinality of the set
S. Additionally, the function Cov− : 2R → N calculates the negative coverage of
a program p ∈ 2R and it is defined as Cov−(p) = Card({e ∈ E− : B ∪ p |= e}).

As we can see in Figure 1, our system works with two sets: a set of rules
R ⊆ R and a set of programs P ⊆ P , where each program p ∈ P is composed by
rules belonging to R. Initially, the set of rules R is populated with the positive
evidence E+ and the set of programs P is populated with as many unitary
programs as there are rules in R.

3.2 Operators

The definition of customised operators is one of the key concepts of our proposal.
The idea is to transform the set of rules R using a set of operators O (provided
by the user or existing in the system). An operator o ∈ O is then a function
o : 2R → 2R where O ∈ O will be the set of operators defined by the user.

An operator can be seen as a piece of code (as complex as the user may wants)
which performs modifications over the lhs or rhs of a rule and which is written
in the same functional language as the system (Erlang) to take advantage of
its high-order and reflection capabilities. The main idea is that, when the user
wants to deal with a new problem, he/she can define his/her own set of operators,
especially suited for the data structures of the problem. This feature allows our
system to adapt to the problem at hand.

Learning with Configurable Operators and RL-Based Heuristics 7

Depending on the operators the user provides to the system, it could well
behave as a decision tree or, more precisely, as a coverage-based rule learning
system (if we implement operators that apply some conditions on the rules), or as
a bottom-up concept covering algorithm (if we provide generalisation operators).
That is, the system may behave very differently by changing the operators.

Let us see an example. Given a rule FName(Arguments) → RHS, where
Arguments is a list, imagine that we want to define an operator for obtaining
the head of Arguments and return it as the rhs of a new rule. This operator
could be defined as:

takeHead(FName(Arguments)→ RHS) [when Arguments is a List]
⇒ (FName(Arguments)→ head(Arguments)).

where ⇒ represents the rule transformation relation defined by the operators.
The codification in Erlang could be as follows:

Operator takeHead(Rule) ->

(1) {function, ,FName, ,{clause, ,Arguments,Guards,RHS}} = Rule,

(2) {cons, ,L1,L2} = Arguments,

(3) {function, ,FName, ,{clause, ,Arguments,Guards,L1}}.
where identifiers with a capital letter followed by any combination of uppercase
and lowercase letters and underscores are Erlang variables, and other static (or
constants) literals are Erlang atoms. In line 1, the Rule is parsed and transformed
into a valid Erlang abstract syntax tree (AST) in order to easily access to its
components: the Erlang forms FName, Arguments, Guards and RHS. Next, the
operator decomposes Arguments into the Erlang meta-expression for lists (line
2), and finally, line 3 returns the new AST constructed by replacing the RHS

part by L1 in the AST obtained in line 1. For simplicity, we have omitted some
further code for checking the arity and type of Arguments.

Our system also has a special kind of operators, called combiners, that only ap-
ply to programs. The Program Generator module (Figure 1) applies a combiner
to the last rule ρ′ generated by the Rule Generator module and the population
of programs P . Thus, a combiner c ∈ C can be formally described as a function
c : P × P → P that transforms programs into programs.

By default, our system provides two simple combiners (although other possi-
bilities are considered): addition, joins the new rule ρ′ generated with the best
program (in terms of optimality) to the population P ; and union which joins
the two best programs (also in terms of optimality) in P .

4 LR-Based Heuristics

The freedom given to the user concerning the definition of their own operators
implies the impossibility of defining specific heuristics to explore the search space.
This means that heuristics must be overhauled, as decisions about the operator
that must be used at each particular state of the learning process. For this,
we have developed a model-based reinforcement learning approach, where the
application of an operator over a rule is seen as a decision problem, for which

8 F. Mart́ınez-Plumed et al.

POPULATION

RULES [R] PROGRAMS [P]

OPERATORS COMBINERS

REINFORCEMENT MODULE (Agent)

Action

<o, ρ>

EVIDENCE [E+,E-]

HEURISTIC
MODEL

BK

O C

State St tState

Reward

SYSTEM
(Environment) PROBLEM

RULE
GENERATOR

PROGRAM
GENERATOR

O C ρ'

R ρ' p'

OGRAM

P

Fig. 1. Prototype System Architecture

learning also takes place, guided by the optimality criteria which feed a rewarding
module. Below we will describe our approach.

4.1 State of the System

To guide the learning process we need a picture of the system in each step of the
process (before and after applying an action) in terms of the quality of the set
of rules and programs generated until now. Formally, we define a state at each
iteration t of the system as a tuple σt = 〈R,P 〉 which represent the population
of rules R and programs P in t. The probable infinite number of states makes
the abstraction of states necessary. How to do this? As we want to find a good
solution to the learning problem, we describe each state σt by a tuple of features
st = 〈φ1, φ2, φ3, φ4, φ5〉 from which to extract relevant information in t:

1. Global optimality (φ1): This feature shows the average optimality of all pro-
grams in Pt. In turn, the optimality of each program p consists of four factors:

– Positive Coverage measures the proportion of positive examples covered
by the program:

PosCov(p) =
Cov+(p)

Card(E+)
(1)

– Negative Coverage measures the proportion of negative examples covered
by the program:

NegCov(p) =
Cov−(p)

Card(E−)
(2)

Learning with Configurable Operators and RL-Based Heuristics 9

– Program Length Ratio measures the cardinality of p w.r.t. the cardinality
of the positive evidence:

ProgLength(p) =
Card(p)

Card(E+)
(3)

– Applied Operators Ratio, the idea is to penalise programs which have
used a large number of operators:

OpersRate(p) =

∑
ρ∈p Card(PrevOpers(ρ))

Card(O) · Card(p)
(4)

where PrevOpers(ρ) is the list of previous operators applied to obtain the rule
ρ. The optimality of a program p is computed by weighting the four factors
according to its importance, in away inspiredby theMDL/MMLprinciple [31]:

Opt(p) = w1 · PosCov(p) − w2 ·NegCov(p) (5)

−w3 · ProgLength(p)− w4 ·OpersRate(p)

by default, w1 = 0.4, w2 = 0.3, w3 = 0.1 and w4 = 0.2.
Finally, theGlobal optimality factor is then calculated as the average of the
optimalities of all programs in the system:

OptGlobal(Pt) =
1

Card(Pt)

∑
p∈Pt

Opt(p) (6)

2. Average Size of Rules (φ2): measures the average size of all the rules in Rt.
In particular, we compute the size of a rule ρ as in [12]:

Size(ρ) = 1 + nv/2 + nc + nf (7)

with nv, nc and nf being, respectively, the number of variables, constants
and functors of only the rhs of r.

3. Average Size of programs (φ3): measures the average cardinality of all the
programs in Pt in terms of the number of rules.

4. Best Rule Optimality (φ4): is the optimality of the best rule (as unitary
program) generated until now.

5. Best Program Optimality (φ5): is the optimality of the best program gener-
ated until now.

4.2 Decisions

For each iteration of the system, we have to select the rule and operator to
produce new rules. Depending on the problem to solve, the number of required
iterations to learn a problem could be astronomically high. To address this issue
we need a particular heuristic to tame the search space and make good decisions
about the choice of rule and operator, in which the application of an operator
to a rule is seen as a decision problem.

For that, we model the decision process as a typical reinforcement learning
task. Formally, our decision problem is a four-tuple 〈S,A, τ, ω〉 where: S is an
infinite state space; A is a finite actions space (A = O ×R); τ : S × A → S is
a transition function between states and ω : S ×A → R is the reward function.
These components are defined below:

10 F. Mart́ınez-Plumed et al.

– States. Each state is described by five features as we have seen in section
4.1.

– Actions. An action is a tuple 〈o, ρ〉 with ρ ∈ R and o ∈ O that represents
the operator o to be applied to the rule.

– Transitions. Transitions are deterministic. A transition τ evolves the cur-
rent sets of rules and programs by applying the operators selected (together
with the rule) and the combiners.

– Rewards. The optimality criteria seen above is used to feed the rewards. In
particular, we use the result returned by equation (5) as reward.

With all these elements, the aim of our decision process is to find a policy
π : S → A that maximises

V π(st) =

∞∑
i=0

γiwt+i (8)

for all st, where γ ∈ [0, 1] is the discount parameter which determines the impor-
tance of the future rewards (γ = 0 only considers current rewards, while γ = 1
strives for a long-term high reward).

At each point in time, the reinforcement learning policy can be in one of the
states st of S and selects an action at = π(st) ∈ A to execute. Executing such
action at in st will change the state into st+1 = τ(st, at), and the policy receives
a reward wt = ω(st, at). The policy does not know the effects of the actions, i.e.
τ and ω are not known by the policy and need to be learned. This is the typical
formulation of reinforcement learning [27] but using features to represent the
states.

In our setting, for the reinforcement learning module, we use a hybrid between
model-free value-function methods (which search for action that maximises val-
ues) and model-based methods (which generalise τ and ω) [27]. Our approach
uses the state-value function (Q(s, a), which returns q values) generalising it
with a regression model, actually a Linear Regression, where s ∈ S, a ∈ A, and
finally, the quality values q ∈ R .

A modelM : S×A → R calculates the optimality or q-value for each state and
action. By using at = argmaxa∈A {M(st, ai)} we get the best action for state st.
Once we have the action, it is carried out to obtain a new state st+1 = τ(st, at).

In order to train the model we need to provide different states and actions as an
input, and quality values as output. We use q values for the state-value function
as in Q-learning [32], so to train the model we use a matrix Q = |S| × |O| × |R|
where S is the set of states reached so far, O is the set of operators and R is
the set of rules generated. Both sets, S and R, grow in each step of the system
(the number of operators is constant), therefore, the matrix also grows in terms
of the number of rows (states) and columns (actions). In Table 1 we can see an
example of a Q-matrix that can be used to train our model. Before the system
starts, this matrix is initialised with one row (state s0) with q values equal to
1 for every action (combinations of operators and rules). In this way, the model
trained with this matrix will have the same probability of selection for all possible
actions at the initial steps of the algorithm.

Learning with Configurable Operators and RL-Based Heuristics 11

Table 1. Q-matrix example

state (s) action (a)
q

φ1 φ2 φ3 φ4 φ5 o ρ

1.223 1.473 3.431 1.88 1.99 2 12 0.78

1.301 1.511 3.431 1.88 1.99 5 27 0.65

. . .

Once the system has started, at each step, the Q-matrix is updated (as we
will see below) and the model can be retrained periodically.

To update each q value in the Q-matrix at each step we use the following
formula, as in Q-learning:

Q[st, at]← Q[st, at] + α×
[
wt+1 + γmax

at+1

M(st+1, at+1)−Q(st, at)

]
(9)

where the max future value is obtained by the model instead of a Q-matrix.
α (α ∈ [0, 1]) is the learning rate which determines to what extent the newly
acquired information will override the old information (α = 0 makes the agent
not to learn anything, while α = 1 makes the agent consider only the most recent
information); and γ ∈ [0, 1] is the discount parameter. By default, α = 0.5 and
γ = 0.5.

Using our Reinforcement Learning approach, populations of rules and pro-
grams are updated at each step of the algorithm. First, the Rule Generator
process (Figure 1) gets the operator o and the rule ρ returned as an action
a = 〈o, ρ〉 by the Reinforcement Learning Module (policy). This process applies
the operator over the rule obtaining a new rule ρ′ (if the operator is not suit-
able for the rule selected, the process returns the same rule) which is added to
R. The way in which the set programs is evolved is by the Program Generator
process. This takes the new rule generated ρ′ (if appropriate) as input, the set of
programs P and the set of combiners C and generates a new program p′ (which
is added to P) applying the combiners over the previous inputs.

4.3 Stopping Criterion

The process is limited to a maximum number of iterations which is also deter-
mined by the user or when the prototype founds the best solution (a program
which covers all the positive evidence and and does not cover any negative ex-
amples) with a minimum optimality value, whichever comes first.

5 Examples

In this section, we describe three different examples where we illustrate how
operators are defined and used to iteratively approach the solution. We also
show more details about our system1 and how it solves these problems2.

1 Available at http://users.dsic.upv.es/~flip/SystemMetaRL.rar
2 Available at http://users.dsic.upv.es/~flip/SystemMetaRLProblems.rar

12 F. Mart́ınez-Plumed et al.

5.1 Sequence Processing

Let us start with a toy example of the kind used in structured prediction, where
not only the input is structured but also the output. Consider the problem of
learning a transformation over the words formed by a given alphabet. More
precisely, suppose we have a set of instances where both the input and output
are lists (i.e., strings). Consider the very particular case where we have a small
alphabet of a non-empty finite set of symbols Σ = {a, t, c, g, u} and the transfor-
mation just replaces t with u. Instances would look like this: trans([t, c, g, a, t])→
[u, c, g, a, u].

The first thing we need to define is the basic replacement functions for the
symbols in the alphabet. This is done in the background knowledge, with func-
tions like: fat(a) → t; fcg(c) → g; ... Typically, all the combinations can be
defined or only some of them if some replacements are not possible.

According to the data structure of examples (a string), we need a way to nav-
igate the structure and apply local or global changes. In order to do this we need
to define appropriate operators. The first operator, applyMap is a mechanism
to convert a rule into another rule which introduces the higher-order function
map, which applies a parametrised function to the whole list. The definition of
this operator is written in Erlang, but it can be informally defined as follows:
applyMap(trans(X)→ Y) ⇒ trans(X)→ map(VF , X), where X and Y stand
for any list and VF is a function variable (a higher-order variable).

In order to introduce a replacement function, we need more operators, such as
addBKf , which fills the gap VF by introducing the function f from the BK. Note
that at this moment it seems a matter of taste whether we define one operator
for each replacement function or a single stochastic operator for all of them, but
the difference is important for heuristics. An example of one of each of these
operators is: addBKf (trans(X) → map(VF , X)) ⇒ trans(X) → map(f,X).
Finally, we need a way of generalising input (and output) strings. This is per-
formed by the genPat operator: genPat(trans(X)→ Y) ⇒ trans(VS) → Y ,
where VS is a string variable.

For this toy example there is a simple sequence of operator applications which
turns a simple example into a general solution. For instance, given the instance
trans([t, c, g, a, t])→ [u, c, g, a, u], we have this sequence.

genPat(trans([t, c, g, a, t]) → [u, c, g, a, u]) ⇒ trans(VS) → [u, c, g, a, u]

applyMap(trans(VS) → [u, c, g, a, u]) ⇒ trans(VS) → map(VF , VS)

addBKftu(trans(VS) → map(VF , VS)) ⇒ trans(VS) → map(ftu, VS)

This latter equation trans(VS) → map(ftu, VS) is the solution for this toy ex-
ample. Given the simplicity and the relatively small number of operators, the
effect of the coverage mechanisms and the heuristics is not critical, and the sys-
tem solves this problem (with five positive and five negative examples) in 9.58
seconds using 58 iterations.

Learning with Configurable Operators and RL-Based Heuristics 13

5.2 Bunch of Keys

We will continue with a more complex problem, a well-known multi-instance
classification problem. Consider the problem of determining whether a key in a
bunch of keys can open a door [19]. More precisely, for each bunch of keys either
no key opens the door or there is at least one key which opens the door. Each
instance is given by a bunch of keys, where each key has several features, so
there is a two-level structure (sets of lists). While this is a prototypical multiple-
instance problem, it is similar to a number of important practical problems, e.g.,
drug activity prediction [5].

We model a Bunch of keys as a set of keys. Each key, in turn, is modeled as
a list capturing four of its properties: the company that makes it (Abloy, Chubb,
Rubo, Yale), its number of prongs (an integer), its length (Short, Medium, Long)
and its width (Narrow, Normal, Broad).A training example (a bunch with two
keys which does open the door) may look like this: opens([[abloy, 3,medium,
narrow], [chubb, 6,medium, normal]]) = true.

Given a set of such examples, we want to learn the function opens : Bunch →
{True,False}.For this, we need a function setExists(Key,Bunch) which evaluates
(True or False) whether there exists a Key in a Bunch. This function will belong
to the background knowledge. We also need to provide the system with a set of
operators. We again need an operator which incorporates conditions on the right
hand side of a rule: addBK(opens(X) = True)⇒ opens(X)→ setExists([], X).

This incorporates an empty list of conditions. Now we need operators to add
conditions. We will have one operator for each attribute value. For instance, the
operator for inserting a condition for keys with abloy is: KCond(opens(X) →
setExists(C,X)) ⇒ opens(X)→ setExists([abloy|C], X)).

Finally, we need a generalisation operator which introduces a variable instead
of a list: genPat(opens(X) = Y) ⇒ opens(VL)→ Y .

If the system and operators are provided, given the original evidence for this
example (five True instances and four False instances), it will return the follow-
ing definition: opens(X)→ setExists([abloy,medium], X), which means that a
bunch of keys opens the door if and only if it contains an abloy key of medium
length, which is the proposed solution for this classical example. The system
solves this problem in 17.88 seconds using 60 iterations.

5.3 Web Categorisation

The last example corresponds to a web classification problem with a higher level
of difficulty. It was originally proposed in [10]. The evidence of the problem is
modelled with 3 parameters described as follows: Structure (the graph of links
between pages is represented as ordered pairs where each node encodes a linked
page), Content (the content of the web page is represented as a set of attributes
with the keywords, the title, etc.), and Connections (the information derived
from connections to a web server which is encoded by means of a numerical
attribute with the daily number of connections).

The goal of the problem is to categorise which web pages are about sports. A
training example looks like this: sportsWeb(Structure, Content, Connections)→

14 F. Mart́ınez-Plumed et al.

true where the Structure attribute may be for instance [{[olympics, games],
[swim]}, {[swim], [win]}, {[win], [medal]}] and is interpreted in the followingway:
the first component of the list stands for the current web page with keywords
“olympics” and “games”. This page links to another page which has “swim” as its
only keyword. There are other two connections. The Content may be [{olympics,
30}, {held, 10}, {summer, 40}], which represents the frequency (number of occur-
rences) of the most relevant words in the web page. Finally, Connections is just an
integer attribute which represents the number of connections.

Given the structure of the data, we need to add functions to the back-
ground knowledge to navigate this structure. We define graphExists(Edge,Graph)
which checks whether an edge is in a graph, and setExists(Key,List) which
tests whether the keyword Key belongs to the list. Again, we also need to pro-
vide the system with a set of operators. As in previous cases, we can reuse
a generic operator to select some function from the background knowledge
(one for each function) in order to replace the right hand side of the rules:
addBKgraph(sportsWeb(S,C, U) → True) ⇒ sportsWeb(S,C, U) → graph-
Exists({[], []}, S), which introduces an empty condition about a connection be-
tween pages. We can similarly define an operator for introducing a condition
over the sets.

Another useful operator takes some type constants and add adds them to the
condition of the setExists function (first attribute) and another operator which
generate a node and adds it as a node to search in the graph attribute of the
function graphExists :

linklfootball(sportsWeb(S,C, U)→ graphExists({X,Y }, S))
⇒ sportsWeb(S,C, U)→ graphExists({[football|X], Y }, S).
Note that this operator is parametrised for the different attribute values. Fi-
nally, we need a generalisation operator for each input pattern of the rules:
genPat1(sportsWeb(S,C,U) → True) ⇒ sportsWeb(VS, C, U) → True. There are
also some other operators to generalise the second and third arguments.

Our system found the following correct program which defines the sportsWeb
function:

{sportsWeb(VS, VC , VU) → graphExists({[final], [match]}, VS).

sportsWeb(VS, VC , VU) → setExists([{athens]}, VC).

sportsWeb(VS, VC , VU) → setExists([{europe]}, VC). }

which means that if the word ‘athens’ or ‘europe‘ appears in Content, and Struc-
ture contains the link {[final], [match]} then this is a sport web page. The system
solves this problem (with seven positive examples and 2 negative examples) in
19.02 seconds using 42 iterations.

6 Conclusions and Future Work

The increasing interest in learning from complex data has led to a more inte-
grated view of this area, where the same (or similar) techniques are used for a

Learning with Configurable Operators and RL-Based Heuristics 15

wide range of problems using different data and pattern representations. This
general view has not been accompanied by general systems which otherwise need
to be modified when the original data representation and structure changes. In
fact, the most general approach can still be found in ILP (or the more general
area of inductive programming). However, each system is still specific to a set
of embedded operators and heuristics.

In this paper, we have proposed that more general systems can be constructed
by not only giving power to data and background knowledge representation but
also to a flexible operator redefinition and the reuse of heuristics across problems
and systems. This carries a computational cost. In order to address this issue we
rely on the definition of customised operators, depending on the data structures
and problem at hand. This can be done by the user, using a language for express-
ing operators. A generalised operator choice entails generalised heuristics, since
the use of different operators precludes the system to use specialised heuristics
for each of them. The choice of the wight pair of operator and rule has been
reframed as a decision process, as a reinforcement learning problem.

We have included some illustrative examples with a first system implementing
the general architecture, and we have seen where the flexibility stands out. Our
immediate future work is focused on the reuse of operators and heuristics (RL
models) across different problems.

Overall, we are conscious that our approach entails some risks, since a general
system which can be instantiated to behave virtually like any other system by
a proper choice of operators is an ambitious goal. We think that for cocomplex
problems that cannot be solved by the system with its predefined operators,
the system can be used to investigate which operators are more suitable. In
more general terms, this can be used as a system testbed, where we can learn
and discover some new properties, limitations and principles for more general
machine learning systems that can be used in the future.

References

1. Armstrong, J.: A history of erlang. In: Proceedings of the Third ACM SIGPLAN
Conf. on History of Programming Languages, HOPL III, pp. 1–26. ACM (2007)

2. Brazdil, P., Giraud-Carrier: Metalearning: Concepts and systems. In: Metalearning.
Cognitive Technologies, pp. 1–10. Springer, Heidelberg (2009)

3. Daumé III, H., Langford, J.: Search-based structured prediction (2009)
4. Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured

machine learning: the next ten years. Machine Learning 73, 3–23 (2008)
5. Dietterich, T.G., Lathrop, R., Lozano-Perez, T.: Solving the multiple-instance

problem with axis-parallel rectangles. Artificial Intelligence 89, 31–71 (1997)
6. Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf,

J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)
7. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-

chine Learning 43, 7–52 (2001), 10.1023/A:1007694015589
8. Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer (2001)
9. Estruch, V., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Similarity

functions for structured data. an application to decision trees. Inteligencia Artifi-
cial, Revista Iberoamericana de Inteligencia Artificial 10(29), 109–121 (2006)

16 F. Mart́ınez-Plumed et al.

10. Estruch, V., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Web cate-
gorisation using distance-based decision trees. ENTCS 157(2), 35–40 (2006)

11. Estruch, V., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Bridging the
Gap between Distance and Generalisation. Computational Intelligence (2012)

12. Ferri-Ramı́rez, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Incremental
learning of functional logic programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS
2001. LNCS, vol. 2024, pp. 233–247. Springer, Heidelberg (2001)

13. Gärtner, T.: Kernels for Structured Data. PhD thesis, Universitat Bonn (2005)
14. Holland, J.H., Booker, L.B., Colombetti, M., Dorigo, M., Goldberg, D.E., Forrest,

S., Riolo, R.L., Smith, R.E., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: What is
a learning classifier system? In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.)
IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 3–32. Springer, Heidelberg (2000)

15. Holmes, J.H., Lanzi, P., Stolzmann, W.: Learning classifier systems: New models,
successful applications. Information Processing Letters (2002)

16. Kitzelmann, E.: Inductive programming: A survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 50–73. Springer, Heidelberg (2010)

17. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words.
In: Proceedings of the Fourteenth International Conference on Machine Learning,
ICML 1997, pp. 170–178. Morgan Kaufmann Publishers Inc., San Francisco (1997)

18. Lafferty, J., McCallum, A.: Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In: ICML 2001, pp. 282–289 (2001)

19. Lloyd, J.W.: Knowledge representation, computation, and learning in higher-order
logic (2001)

20. Maes, F., Denoyer, L., Gallinari, P.: Structured prediction with reinforcement learn-
ing. Machine Learning Journal 77(2-3), 271–301 (2009)

21. Mart́ınez-Plumed, F., Estruch, V., Ferri, C., Hernández-Orallo, J., Ramı́rez-
Quintana, M.J.: Newton trees. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 174–
183. Springer, Heidelberg (2010)

22. Muggleton, S.: Inverse entailment and Progol. New Generation Computing (1995)
23. Muggleton, S.H.: Inductive logic programming: Issues, results, and the challenge

of learning language in logic. Artificial Intelligence 114(1-2), 283–296 (1999)
24. Plotkin, G.: A note on inductive generalization. Machine Intelligence 5 (1970)
25. Schmidhuber, J.: Optimal ordered problem solver. Maching Learning 54(3), 211–

254 (2004)
26. Srinivasan, A.: The Aleph Manual (2004)
27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press

(1998)
28. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An

overview. In: Proc. of the Workshop on Relational Reinforcement Learning (2004)
29. Tamaddoni-Nezhad, A., Muggleton, S.: A genetic algorithms approach to ILP. In:

Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 285–300.
Springer, Heidelberg (2003)

30. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In: ICML (2004)

31. Wallace, C.S., Dowe, D.L.: Refinements of MDL and MML coding. Comput.
J. 42(4), 330–337 (1999)

32. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

Reducing Examples in Relational Learning

with Bounded-Treewidth Hypotheses

Ondřej Kuželka, Andrea Szabóová, and Filip Železný

Faculty of Electrical Engineering, Czech Technical University in Prague
Technicka 2, 16627 Prague, Czech Republic
{kuzelon2,szaboand,zelezny}@fel.cvut.cz

Abstract. Feature selection methods often improve the performance of
attribute-value learning. We explore whether also in relational learning,
examples in the form of clauses can be reduced in size to speed up learn-
ing without affecting the learned hypothesis. To this end, we introduce
the notion of safe reduction: a safely reduced example cannot be distin-
guished from the original example under the given hypothesis language
bias. Next, we consider the particular, rather permissive bias of bounded
treewidth clauses. We show that under this hypothesis bias, examples
of arbitrary treewidth can be reduced efficiently. The bounded treewidth
bias can be replaced by other assumptions such as acyclicity with similar
benefits. We evaluate our approach on four data sets with the popular
system Aleph and the state-of-the-art relational learner nFOIL. On all
four data sets we make learning faster for nFOIL, achieving an order-
of-magnitude speed up on one of the data sets, and more accurate for
Aleph.

1 Introduction

Reducing the complexity of input data is often beneficial for learning. In
attribute-value learning, a wide range of feature selection methods is available
[1]. These methods try to select a strict subset of the original example features
(attributes) while maintaining or even improving the performance of the model
learned from it with respect to that learned from the original feature set. For
binary classification tasks with Boolean features, the REDUCE [2] algorithm has
been proposed that removes so called irrelevant features. For any model learned
with the original feature set, a model with same or better fit on the learning
examples may be expressed without the irrelevant features. In the later work [3],
the REFER algorithm extended REDUCE to the multiple-class learning setting.

In inductive logic programming—an important framework for relational learn-
ing [4]—examples are not expressed as tuples of feature values but rather take the
form of logical constructs such as first-order clauses. Feature-selection methods
are thus not applicable to simplify such learning examples. Here we are inter-
ested to see whether also first-order clausal examples can somehow be reduced
while guaranteeing that the set of logical formulas which can be induced from
such reductions would not be affected.

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 17–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 O. Kuželka, A. Szabóová, and F. Železný

C

HH

Cl

C

HH

Cl

C
H

Cl

Fig. 1. A learning example and its reduction

An obvious approach would be to look for θ-reductions [5] of the input clauses.
A θ-reduction of a clause is a smaller, but subsumption-equivalent (and thus
also logically equivalent) clause. We have explored an approach based on θ-
subsumption before in [6], achieving learning speed-up factors up to 2.63. How-
ever, the main problem of θ-reduction is that finding it is an NP-hard problem,
rendering the approach practically unfeasible in domains with large examples
such as those describing protein structures [7].

Here we follow the key idea that the complexity curse can be avoided by
sacrificing part of the generality of θ-reduction. In particular, we will look for
reductions which may not be equivalent to the original example in the logical
sense, but which are equivalent given the language bias of the learning algorithm.
In other words, if the learning algorithm is not able to produce a hypothesis
covering the original example but not covering its reduction (or vice versa),
the latter two may be deemed equivalent. For instance, consider the clausal
example ← atom(a1)∧ carbon(a1)∧ bond(a1, a2)∧ . . ., whose entire structure is
shown in the left of Figure 1. Assume that all terms in hypotheses are variables
and hypotheses must have treewidth at most 1 or be acyclic. Then the learning
example is equivalent to the simpler one shown in the right of the figure.

Our first main contribution is a formal framework for example reduction based
on the given language bias for hypotheses. In this framework, we prove two
propositions which can be used for showing that certain procedures which trans-
form learning examples always produce reductions equivalent to the original
examples under the given bias.

Our second main contribution is the application of the above framework to the
specific bias of bounded treewidth clauses. We show that in this case, interestingly,
learning examples can be reduced in polynomial time, and moreover, that, in
some cases, they can be reduced even more than they would be using the NP-
hard θ-reduction.

Intuitively, a clause viewed as a graph (not necessarily a tree) has a small
treewidth if it can be recursively decomposed into small subgraphs that have
small overlap [8]. As the previous paragraph indicates, the benefits gained from
the bounded treewidth assumption are significant. Notably though, the price we
pay for them is not too high in that the bias would be over-restrictive. First
remind that, as a hypothesis bias, it only constrains the learned clauses, and not
the learning examples. Second, low treewidth is in fact characteristic of clauses
induced in typical ILP experiments. In [9] we observed that all clauses learned

Reducing Examples in Relational Learning 19

by the ILP system Progol in all the conducted experiments had treewidth 1
although this had not been stipulated by the language bias. Similarly, in ex-
periments in another study [10], all clauses learned by the systems nFOIL and
kFOIL were of treewidth 1 after the removal of the variable formally identifying
the learning example. These observations become plausible when viewing the
exemplary chemical-domain clauses shown in the leftmost column of Table 1,
which have the respective treewidths 1 and 2.

A salient feature of our approach is its general application scope. Indeed,
example reduction can take place independently of the type of ILP learner em-
ployed subsequently. While we evaluate the approach in the standard ILP setting
of learning from entailment, it is also relevant to propositionalization [11], which
aims at the construction of feature-based descriptions of relational examples.
Interestingly, propositionalization can simultaneously benefit from both the re-
lational example reduction step employed before the construction of features,
and any feature selection algorithm applied subsequently on the constructed
feature set. In this sense, our approach is complementary to standard feature
selection methods.

The rest of the paper is structured as follows. In the next section we review
the preliminaries for the study, namely θ-subsumption and reduction, their cor-
respondence to the constraint satisfaction problem model, and the concepts of
tree decomposition and treewidth. Section 3 presents the framework for safe
reduction of relational examples under a given hypothesis language bias. Sec-
tion 4 instantiates the framework to the langauge bias of bounded-treewidth
clauses and shows that reduction under this bias can be conducted effectively.
We experimentally evaluate our method in Section 5 and conclude in Section 6.

2 Preliminaries: Logic, Constraint Satisfaction, Treewidth

A first-order-logic clause is a universally quantified disjunction of first-order-logic
literals. For convenience, we do not write the universal quantifiers explicitly. We
treat clauses as disjunctions of literals and as sets of literals interchangeably.
We will sometimes use a slightly abused notation a(x, y) ⊆ a(w, x) ∨ a(x, y)
to denote that a set of literals of one clause is a subset of literals of another
clause. The set of variables in a clause A is written as vars(A) and the set of all
terms by terms(A). Terms can be variables or constants. A substitution θ is a
mapping from variables of a clause A to terms of a clause B. The next definition
introduces the concepts of θ-subsumption and θ-equivalence [5].

Definition 1 (θ-subsumption). Let A and B be clauses. The clause A θ-
subsumes B (denoted by A �θ B), if and only if there is a substitution θ such
that Aθ ⊆ B. If A �θ B and B �θ A, we call A and B θ-equivalent (written
A ≈θ B).

The notion of θ-subsumption was introduced by [5] as an incomplete approxi-
mation of implication. Let A and B be clauses. If A �θ B then A |= B but the
other direction of the implication does not hold in general. However, it does hold
for non-self-resolving function-free clauses.

20 O. Kuželka, A. Szabóová, and F. Železný

Example 1. Let us have clauses A = a(X,Y) ∨ a(Y, Z) and B = a(c, d) ∨ a(d, e)
∨ a(f, d). Then A �θ B because, for θ = {X/c, Y/d, Z/e}, we have Aθ = a(c, d)
∨ a(d, e) ⊆ B.

Definition 2 (θ-Reduction). Let A be a clause. If there is another clause R
such that A ≈θ R and |R| < |A| then A is said to be θ-reducible. A minimal such
R is called θ-reduction of A.

Constraint satisfaction [12] with finite domains represents a class of problems
closely related to the θ-subsumption problems and to relational-structure ho-
momorphisms. In fact, as shown by [13], these problems are almost identical
although the terminology differs.

Definition 3 (Constraint Satisfaction Problem). A constraint satisfaction
problem is a triple (V ,D, C), where V is a set of variables, D = {D1, . . . , D|V|} is
a set of domains of values (for each variable v ∈ V), and C = {C1, . . . , C|C|} is a
set of constraints. Every constraint is a pair (s,R), where s (scope) is an n-tuple
of variables and R is an n-ary relation. An evaluation of variables θ satisfies a
constraint Ci = (si, Ri) if siθ ∈ Ri. A solution is an evaluation that satisfies all
constraints.

The CSP representation of the problem of deciding A �θ B has the following
form [14]. There is one CSP variable Xv for every variable v ∈ vars(A). The
domain of each of these CSP variables contains all terms from terms(B). The
set of constraints contains one k-ary constraint Cl = (sl, Rl) for each literal l =
predl(t1, . . . , tk) ∈ A. We denote by Ivar = (i1, . . . , im) ⊆ (1, . . . , k) the indexes
of variables in arguments of l (the other arguments might contain constants).
The scope sl of the constraint Cl is (Xti1

, . . . , Xtim) (i.e. the scope contains
all CSP variables corresponding to variables in the arguments of literal l). The
relation Rl of the constraint Cl is then constructed in three steps. First, a set Ll

is created which contains all literals l′ ∈ B such that l �θ l′ (note that checking
θ-subsumption of two literals is a trivial linear-time operation). Then a relation
R′

l is constructed from the arguments of these literals such that it contains a
tuple (t′1, . . . , t

′
k) if and only if l′ = pred(t′1, . . . , t

′
k) ∈ Ll. Finally, the relation

Rl of the constraint Cl is then the projection of R′
l on indexes Ivar (only the

elements of tuples which correspond to variables in l are retained).
Next, we exemplify this transformation process.

Example 2 (Converting θ-subsumption to CSP). Let us have clauses A and B
as follows

A = hasCar(C) ∨ hasLoad(C,L) ∨ shape(L, box)

B = hasCar(c) ∨ hasLoad(c, l1) ∨ hasLoad(c, l2) ∨ shape(l2, box).

We now show how we can convert the problem of deciding A �θ B to a CSP
problem. Let V = {C,L} be a set of CSP-variables and let D = {DC , DL} be a
set of domains of variables from V such that DC = DL = {c, l1, l2}. Further, let
C = {ChasCar(C), ChasLoad(C,L), Cshape(L,box)} be a set of constraints with scopes

Reducing Examples in Relational Learning 21

(C), (C,L) and (L) and with relations {(c)}, {(c, l1), (c, l2)} and {(l2)}, respec-
tively. Then the constraint satisfaction problem given by V , D and C represents
the problem of deciding A �θ B as it admits a solution if and only if A �θ B
holds.

The Gaifman (or primal) graph of a clause A is the graph with one vertex for
each variable v ∈ vars(A) and an edge for every pair of variables u, v ∈ vars(A),
u �= v such that u and v appear in a literal l ∈ A. Similarly, we define Gaifman
graphs for CSPs. The Gaifman graph of a CSP problem P = (V ,D, C) is the
graph with one vertex for each variable v ∈ V and an edge for every pair of
variables which appear in a scope of some constraint c ∈ C. Gaifman graphs can
be used to define treewidth of clauses or CSPs.

Definition 4 (Tree decomposition, Treewidth). A tree decomposition of a
graph G = (V,E) is a labeled tree T such that

– Every node of T is labeled by a non-empty subset of V .
– For every edge (v, w) ∈ E, there is a node of T with label containing v, w.
– For every v ∈ V , the set of nodes of T with labels containing v is a connected

subgraph of T .

The width of a tree decomposition T is the maximum cardinality of a label in T
minus 1. The treewidth of a graph G is the smallest number k such that G has a
tree decomposition of width k. The treewidth of a clause is equal to the treewidth
of its Gaifman graph. Likewise, the treewidth of a CSP is equal to the treewidth
of its Gaifman graph.

An illustration of Gaifman graphs of two exemplar clauses and their tree-
decompositions is shown in Table 1. Note that tree decomposition is not unique.

It is easy to check that if a clause A has treewidth bounded by k then also the
CSP representation of the problem of deciding A �θ B has treewidth bounded
by k for any clause B. Constraint satisfaction problems with treewidth bounded
by k can be solved in polynomial time by the k-consistency algorithm1 [16].
If the k-consistency algorithm returns false for a CSP problem P then P is
guaranteed to have no solutions. If it returns true then the problem may or may
not have some solutions. Finally, if the k-consistency algorithm returns true and
P has treewidth bounded by k then P is guaranteed to have a solution. It is
known that due to the equivalence of CSPs and θ-subsumption, the problem of
deciding θ-subsumption A �θ B can be solved in polynomial time when clause
A has bounded treewidth.

Proposition 1. We say that clause A is k-consistent w.r.t. clause B (denoted
by A �k B) if and only if the k-consistency algorithm executed on the CSP
representation of the problem of deciding A �θ B returns true. If A has treewidth
at most k and A�k B then A �θ B.

1 In this paper we follow the conventions of [15]. In other works, e.g. [16], what we
call k-consistency is known as strong k + 1-consistency.

22 O. Kuželka, A. Szabóová, and F. Železný

Table 1. An illustration of Gaifman graphs and tree-decompositions of clauses

Clause Gaifman graph Tree decomposition

← atm(A, h)∧
bond(A, B, 1) ∧ atm(B, c)∧

bond(B,C, 2) ∧ atm(C, o)
A B C

A, B

B, C

← bond(A, B, 1)∧
bond(B, C, 1) ∧ bond(C, D, 1)∧
bond(D, E, 1) ∧ bond(E, A, 1)

A

B C

E D

A, C, E

E, D, C A,B, C

Proof. Follows directly from the solubility of CSPs with bounded treewidth
by the k-consistency algorithm [15] and from the equivalence of CSPs and θ-
subsumption shown earlier in this section.

3 Safe Reduction of Learning Examples

The learning task that we consider in this paper is fairly standard. We are given
labelled learning examples encoded as first-order-logic clauses and we would like
to find a classifier predicting the class labels of examples as precisely as possible.
This task could be solved by numerous relational-learning systems. We aim at
finding a reduction procedure that would allow us to reduce the number of literals
in the examples while guaranteeing that the coverage of any hypothesis from a
pre-fixed hypothesis language L would not be changed.

There are several settings for logic-based relational learning. We will work
within the learning from entailment setting [17].

Definition 5 (Covering under Learning from Entailment). Let H be a
clausal theory and e be a clause. Then we say that H covers e under entailment
if and only if H |= e.

The basic learning task is to find a clausal theory H that covers all positive
examples and no negative examples and contains as few clauses as possible.

Definition 6 (Safe Equivalence and Safe Reduction under Entailment).
Let e and ê be two clauses and let L be a language specifying all possible hypothe-
ses. Then ê is said to be safely equivalent to e if and only if ∀H ∈ L : (H |=
e)⇔ (H |= ê). If e and ê are safely equivalent and |ê| < |e| then ê is called safe
reduction of e.

Reducing Examples in Relational Learning 23

Clearly, if we have a hypothesis H ∈ L which splits the examples to two sets X
and Y then this hypothesis H will also split the respective set of safely reduced
examples to the sets X̂, Ŷ containing the safely reduced examples from the sets
X and Y , respectively. Also, when predicting classes of test-set examples, any
deterministic classifier that bases its decisions on the queries using the covering
relation |= will return the same classification even if we replace some of the
examples by their safe reductions. The same is also true for propositionalization
approaches that use the |= relation to construct boolean vectors which are then
processed by attribute-value-learners.

In this paper, we focus on hypothesis languages in the form of non-resolving
clausal theories. Recall that we do not put any restrictions on the learning exam-
ples. The only restrictions are those put on hypotheses. A non-resolving clausal
theory is a set of clauses such that no predicate symbol which appears in the head
of a clause appears also in the body of any clause. The main reason why we start
with non-resolving clausal theories is that logical entailment H |= A, for a non-
resolving clausal theory H and a clause A, can be checked using θ-subsumption.
If there is a clause H ∈ H such that H �θ A then H |= A, otherwise H �|= A.

We start by defining x-subsumption and x-equivalence which are weaker ver-
sions of θ-subsumption and θ-equivalence. The notions of x-subsumption and
x-equivalence will be central tools used in this section.

Definition 7 (x-subsumption, x-equivalence). Let X be a possibly infinite
set of clauses. Let A, B be clauses not necessarily from X. We say that A x-
subsumes B w.r.t. X (denoted by A �X B) if and only if (C �θ A)⇒ (C �θ B)
for every clause C ∈ X. If A �X B and B �X A then A and B are called
x-equivalent w.r.t. X (denoted by A ≈X B). For a given set X, the relation �X

is called x-subsumption on X and the relation ≈X is called x-equivalence on X.

For example, the set X can consist of clauses having treewidth bounded by
k or having hypertreewidth [18] bounded by l or having at most m variables
etc. When it is clear from the context, we omit the phrase w.r.t. X from A x-
subsumes B w.r.t. X . The x-equivalence w.r.t. the set X is closely related to safe
equivalence w.r.t. a set L ⊆ 2X containing only non-resolving clausal theories
composed of clauses from X . If two learning examples are x-equivalent w.r.t.
the set of clauses X then they are also safely equivalent w.r.t. the set of clausal
theories L.

Example 3. Let us have the following two clauses: C = e(A,B) ∨ e(B,C) ∨
e(C,A) and D = e(A,B) ∨ e(B,C) ∨ e(C,D) ∨ e(D,A). For these clauses, it
holds C �X D and D �X C w.r.t. the set of clauses with treewidth at most 1.
On the other hand, C ��X D, D ��X C for sets of clauses with treewidth at most
k where k > 1. This is because the treewidth of C and D is 2.

The next proposition states basic properties of x-subsumption and x-equivalence.

Proposition 2. Let X be a set of clauses. Then x-subsumption w.r.t. X is
a transitive and reflexive relation on clauses and x-equivalence w.r.t. X is an
equivalence relation on clauses.

24 O. Kuželka, A. Szabóová, and F. Železný

Proof. These properties of x-subsumption and x-equivalence can be shown very
easily.

1. Transitivity of x-subsumption: Let A �X B and B �X C. We need to show
that then necessarily also A �X C, i.e. that for any clause D ∈ X such that
D �θ A it also holds D �θ C. This is straightforward because if D �θ A
then D �θ B (from A �X B) and also D �θ C (from B �X C).

2. Reflexivity of x-subsumption: obvious.
3. x-equivalence is an equivalence relation: Reflexivity and transitivity of x-

equivalence follow from reflexivity and transitivity of x-subsumption. It re-
mains to show that x-equivalence is also symmetric but that follows imme-
diately from (A ≈X B)⇔ (A �X B ∧B �X A).

Definition 7 provides no efficient way to decide x-subsumption between two
clauses as it demands θ-subsumption of an infinite number of clauses to be
tested in some cases. The next proposition provides a necessary condition for x-
subsumption. It will be the basic tool that we exploit in this section to develop
methods for safely reducing learning examples.

Proposition 3. Let X be a set of clauses. If �X is x-subsumption on X and
�X is a relation such that:

1. If A�X B and C ⊆ A then C �X B.
2. If A ∈ X, ϑ is a substitution and Aϑ�x B then A �X B.

Then (A �X B) ⇒ (A �X B) for any two clauses A, B (not necessarily from
X).

Proof. We need to show that if A �x B then (C �θ A) ⇒ (C �θ B) for all
clauses C ∈ X . First, if A�xB and C ��θ A then the proposition holds trivially.
Second, C �θ A means that there is a substitution ϑ such that Cϑ ⊆ A. This
implies Cϑ �X B using the condition 1. Now, we can use the second condition
which gives us C �X B (note that C ∈ X and Cϑ�XB). Finally, we get C �θ B
using Definition 7 because C ∈ X .

Proposition 3 can be used to check if two learning examples e and ê are equivalent
w.r.t. hypotheses from a fixed hypothesis language. It can be therefore used to
search for safe reductions of learning examples. This is formalized in the next
proposition. Note that this proposition does not say that e and ê are equivalent.
It merely says that they are equivalent when being used as learning examples in
the learning from entailment setting with hypotheses drawn from a fixed set.

Proposition 4. Let L be a hypothesis language containing only non-resolving
clausal theories composed of clauses from a set X and let �X be a relation
satisfying conditions 1 and 2 from Proposition 3 on the set X. If e and ê are
learning examples (not necessarily from X), e �X ê and ê �X e then for any
H ∈ L it holds (H |= e) ⇔ (H |= ê). Moreover, if |ê| < |e| then ê is a safe
reduction of e under entailment.

Reducing Examples in Relational Learning 25

Proof. First, e�X ê and ê�X e imply e ≈X ê (where ≈X denotes x-equivalence
on the set X). Then for any non-resolving clausal theory H ∈ L we have (H |=
e) ⇔ (H |= ê) because for any clause A ∈ X we have (A �θ e) ⇔ (A �θ ê)
(from e ≈X ê). This together with |ê| < |e| means that ê is a safe reduction of e
under entailment w.r.t. hypothesis language L.

We will use Propositions 3 and 4 for showing that certain procedures which
transform learning examples always produce safe reductions of these examples.
Specifically, we will use them to show that k-consistency algorithm can be used
for computing safe reductions of learning examples w.r.t. hypothesis sets com-
posed of clauses with bounded treewidth.

We start with two simpler transformation methods for which Propositions 3
and 4 are not actually needed. For the first transformation method, we assume to
have a fixed hypothesis language LU consisting of non-resolving clausal theories
which contain only constants from a given set U . The transformation then gets
a clause A on its input and produces a new clause Ã by variabilizing constants
in A which are not contained in U . It is easy to check that for any such A
and Ã it must hold A ≈X Ã w.r.t. the set of clauses containing only constants
from U . Therefore A and Ã are safely equivalent w.r.t. L. We can think of the
constants not used in a hypothesis language L as identifiers of objects whose
exact identity is not interesting for us. Such constants can appear e.g. when we
describe molecules and we want to give names to atoms in the molecules with
no actual meaning.

Another simple transformation which produces safely equivalent clauses is
based on θ-reduction. In this case the set of clauses X can be arbitrary. The
transformation gets a clause A on its input and returns its θ-reduction. The
x-equivalence of the clause A and its θ-reduction follows from the fact that θ-
subsumption is an x-subsumption w.r.t. the set of all clauses.

Importantly, transformations which produce x-equivalent clauses w.r.t. a set
X can be chained due to transitivity of x-subsumption. So, for example, if we
have a hypothesis language LU consisting of non-resolving clausal theories which
contain only constants from a pre-fixed set U and we want to safely reduce a
clause A then we can first variabilize it and then reduce it using θ-reduction.

Example 4. Let us have an example

e = edge(a, b, 1) ∨ edge(b, a, 2) ∨ edge(b, c, 2) ∨ edge(c, d, 1) ∨ edge(d, a, 2)

and a hypothesis language L containing arbitrary non-resolving clausal theories
with the set of allowed constants U = {1, 2}. We variabilize e and obtain clause

ẽ = edge(A,B, 1) ∨ edge(B,A, 2) ∨ edge(B,C, 2) ∨ edge(C,D, 1) ∨ edge(D,A, 2).

Now, e and ẽ are safely equivalent w.r.t. to hypotheses from L. Next, we obtain
a safe reduction of e by computing θ-reduction of ẽ which is ê = edge(A,B, 1) ∨
edge(B,A, 2).

26 O. Kuželka, A. Szabóová, and F. Železný

4 Reduction under the Bounded Treewidth Assumption

Next, we describe a transformation method which assumes the hypothesis lan-
guages to consist only of clauses with bounded treewidth. Unlike the exponential-
time method based on θ-reduction, this method runs in time polynomial in the
size of the reduced clause (though, with a multiplicative factor exponential in
the fixed maximum treewidth of allowed hypotheses). Interestingly, it does not
need any restrictions (e.g. bounded treewidth) on the learning examples which
are reduced. The reduction method is based on x-subsumption on the set Xk

of clauses with treewidth at most k. We start by showing that x-subsumption
w.r.t. Xk can be checked using the k-consistency algorithm. We do this by show-
ing that the k-consistency relation �k on clauses satisfies the conditions from
Proposition 3.

Proposition 5. Let Xk be a set containing only clauses with treewidth at most
k. For any two clauses A, B, if A�k B (i.e. if A is k-consistent w.r.t. B) then
A �X B w.r.t. the set Xk.

Proof. We will show that the conditions of Proposition 3 are satisfied by �k from
which the validity of the proposition will follow. First: If C ⊆ A and A�kB then
C�k B. which is obviously true. Second: If C is a clause with treewidth bounded
by k and Cθ �k D then C �θ D. Checking Cθ �k D is equivalent to checking
k-consistency of the original CSP representation of C �θ D problem where we
added additional constraints to enforce consistency with the substitution θ. If
this restricted problem is still k-consistent then also for the original problem it
must have held C �k D and consequently C �θ D because C has treewidth at
most k (using Proposition 1).

We leave the question open whether x-subsumption w.r.t. the set of clauses with
treewidth at most k also implies k-consistency.

The safe reduction method based on k-consistency works as follows. We sup-
pose that there is a set U of constants which are allowed in the hypothesis lan-
guage Lk and that the hypotheses in Lk consist only of clauses with treewidth at
most k. The method gets a clause A and variabilizes all constants not contained
in U . The result is a clause Ã which is also safely equivalent to A w.r.t. the hy-
pothesis language Lk. This clause is then reduced by so-called literal-elimination
algorithm which is based on the k-consistency algorithm, always produces a
clause Â which is safely equivalent to A w.r.t. Lk as Proposition 6 shows. More-
over, it runs in time polynomial in the size of the reduced clause (though, with
a multiplicative factor exponential in the fixed maximum treewidth of allowed
hypotheses).

Literal-elimination algorithm:

1. Given a clause A for which the x-reduction should be computed.
2. Set A′ := A, CheckedLiterals := {}.
3. Select a literal L from A′\CheckedLiterals. If there is no such literal, return

A′ and finish.

Reducing Examples in Relational Learning 27

4. If A�k A
′ \ {L} then set A′ := A′ \ {L}, else add L to CheckedLiterals.

5. Go to step 3.

Proposition 6. Let Lk be a set of non-resolving hypotheses containing only
clauses with treewidth at most k. Let C be a clause and Ĉθ be the maximal θ-
reduction of a subset of the literals in C. We can find a clause Ĉk such that
C ≈X Ĉk w.r.t. to Lk and |Ĉk| ≤ |Ĉθ| in time O

(
|C|2k+3

)
by the ”literal-

elimination algorithm”.

Proof. First, it follows from transitivity of k-equivalence that Ĉk ≈k C. What
remains to be shown is that the resulting clause Ĉk will not be θ-reducible. Let
us assume, for contradiction, that |Ĉk| is θ-reducible. When Ĉk is θ-reducible,

there must be a literal l ∈ Ĉk such that Ĉk �θ Ĉk \ {l}. θ-subsumption implies

k-consistency (for clauses of arbitrary treewidth) therefore it also holds Ĉk �k

Ĉk \ {l}. However, then l should have been removed by the literal-elimination

algorithm which is a contradiction with Ĉk being output of it. As for the running
time of the algorithm, k-consistency can be checked in time O(|C|2k+2) [15] and
it is invoked exactly |C| times by the above procedure which gives us the runtime
O(|C|2k+3).

We can find even smaller safely equivalent clauses w.r.t. Lk for a clause C by a
literal-substitution algorithm with just a slightly higher runtime O(|C|2k+4). This
algorithm first runs the literal-elimination algorithm and then tries to further
reduce its output C′ as follows: For each pair of literals l, l′ ∈ C′ it constructs
a substitution θ : vars(l) → vars(l′) and checks if C′θ �k C′ and if so, it sets
C′ ← C′θ. It is easy to check that it always holds C ≈X C′ w.r.t. the set of
clauses with treewidth at most k. The algorithm runs in time O(|C|2k+4) as it
performs O(|C|2) k-consistency checks.

The clauses with bounded treewidth are not the only ones for which efficient
safe reduction can be derived. For example, it is possible to derive a completely
analogical safe reduction w.r.t. acyclic clauses, which can have arbitrary high
treewidth but despite that admit a polynomial-time θ-subsumption checking
algorithm. The only difference would be the use of generalized arc-consistency
algorithm [16] instead of the k-consistency test.

5 Experimental Evaluation of Safe Reduction

We experimentally evaluate usefulness of the safe reduction of learning exam-
ples with real-world datasets and two relational learning systems – the popu-
lar system Aleph and the state-of-the-art system nFOIL [19]. We implemented
literal-elimination and literal-substitution algorithms for treewidth 1, i.e. for
tree-like clausal theories. We used the efficient algorithm AC-3 [20] for check-
ing 1-consistency2. We forced nFOIL and Aleph to construct only clauses with

2 Note again the terminology used in this paper following [15]. In CSP-literature, it is
often common to call 2-consistency what we call 1-consistency.

28 O. Kuželka, A. Szabóová, and F. Železný

PTC CAD Hexose 1 Hexose 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
C

om
pr

es
si

on
 [−

]

PTC CAD Hexose 1 Hexose 2
0

10

20

30

40

50

60

70

80

R
ed

uc
tio

n
ru

nt
im

e
[s

]

Fig. 2. Left: Compression rates achieved by literal-substitution algorithm on four
datasets (for treewidth 1). Right: Time for computing reductions of learning examples
on four datasets (for treewidth 1).

PTC CAD Hexose 1 Hexose 2
0

1

2

3

4

5

6

7

8

9

10
x 10

4

R
un

tim
e

of
 n

F
O

IL
 [s

]

PTC CAD Hexose 1 Hexose 2
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Fig. 3. Left: Runtime of nFOIL on reduced (blue) and non-reduced (red) datasets.
Right: Predictive accuracies of nFOIL on four datasets estimated by 10-fold cross-
validation.

treewidth 1 using their mode declaration mechanisms. We used three datasets
in the experiments: predictive toxicology challenge [21], CAD [22] and hexose-
binding proteins [7]. The PTC dataset contains descriptions of 344 molecules
classified according to their toxicity for male rats. The molecules are described
using only atom and bond information. The CAD dataset contains descriptions of
96 class-labelled product-structure designs. Finally, the hexose-binding dataset
contains 80 hexose-binding and 80 non-hexose-binding protein domains. Follow-
ing [7] we represent the protein domains by atom-types and atom-names (each
atom in an amino acid has a unique name) and pair-wise distances between the
atoms which are closer to each other than some threshold value. We performed
two experiments with the last mentioned dataset for cut-off set to 1 Angstrom
and 2 Angstroms.

We applied the literal-elimination algorithm followed by literal-substitution
algorithm on the three datasets. The compression rates (i.e. ratios of number

Reducing Examples in Relational Learning 29

of literals in the reduced learning examples divided by the number of literals
in the original non-reduced examples) are shown in the left panel of Figure 2.
The right panel of Figure 2 then shows the time needed to run the reduction
algorithms on the respective datasets. We note that these times are generally
negligible compared to runtimes of nFOIL and with the exception of Hexose ver.
2 also to runtimes of Aleph.

5.1 Experiments with nFOIL

We used nFOIL to learn predictive models and evaluated them using 10-fold
cross-validation. For all experiments with the exception of the hexose-binding
dataset with cut-off value 2 Angstroms, where we used beam-size 50, we used
beam-size 100. From one point of view, this is much higher than the beam-sizes
used by [19], but on the other hand, we have the experience that this allows
nFOIL to find theories which involve longer clauses and at the same time have
higher predictive accuracies. The runtimes of nFOIL operating on reduced and
non-reduced data are shown in the left panel of Figure 3. It can be seen that
the reduction was beneficial in all cases but that the most significant speed-
up of more than an order of magnitude was achieved on Hexose data. This
could be attributed to the fact that nFOIL constructed long clauses on this
dataset and the covering test used by it had not probably been optimized. So, in
principle, nFOIL could be made faster by optimizing the efficiency of its covering
test. The main point, however, is that we can speed-up the learning process for
almost any relational learning algorithm merely by preprocessing its input. The
right panel of Figure 3 shows nFOIL’s predictive accuracies (estimated by 10-
fold cross-validation). The accuracies were not affected by the reductions. The
reason is that (unlike Aleph) nFOIL exploits learning examples only through the
entailment queries.

5.2 Experiments with Aleph

We performed another set of experiments using the relational learning system
Aleph. Aleph restricts its search space by bottom-clauses. After constructing a
bottom-clause it searches for hypotheses by enumerating subsets of literals of the
bottom-clause. When we reduce learning examples, which also means reduction
of bottom-clauses, we are effectively reducing the size of Aleph’s search space.
This means that Aleph can construct longer clauses earlier than if it used non-
reduced examples. On the other hand, this also implies that, with the same
settings, Aleph may run longer on reduced data than on non-reduced data. That
is because computing coverage of longer hypotheses is more time-consuming.
Theories involving longer clauses may often lead to more accurate predictions.
For these reasons, we measured not only runtime and accuracy, but also the
average number of learnt rules and the average number of literals in these rules
on reduced and non-reduced data.

We ran Aleph on reduced and non-reduced versions of the datasets and eval-
uated it using 10-fold cross-validation. We used the literal elimination algorithm

30 O. Kuželka, A. Szabóová, and F. Železný

PTC CAD Hexose 1 Hexose 2
0

200

400

600

800

1000

1200

1400

1600
R

un
tim

e
of

 A
le

ph
 [s

]

PTC CAD Hexose 1 Hexose 2
0

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
ob

ta
in

ed
 b

y
A

le
ph

Fig. 4. Left: Runtime of Aleph on reduced (blue) and non-reduced (red) datasets.
Right: Predictive accuracies of Aleph on reduced (blue) and non-reduced (red) datasets
estimated by 10-fold cross-validation.

PTC CAD Hexose 1 Hexose 2
0

0.5

1

1.5

2

2.5

3

3.5

A
vg

. n
o

of
 r

ul
es

 [%
]

PTC CAD Hexose 1 Hexose 2
0

1

2

3

4

5

6

A
vg

. n
o

of
 li

te
ra

ls
 in

 r
ul

es
 [s

]

Fig. 5. Left: Average number of rules generated by Aleph on reduced (blue) and non-
reduced (red) datasets. Right: Average number of literals in rules generated by Aleph
on reduced (blue) and non-reduced (red) datasets.

for reducing examples. We set the maximum number of explored nodes to 50000,
the noise parameter to 1% of the number of examples in the respective datasets.
The runtime in the performed experiments was higher for reduced versions of
datasets PTC and CAD, the same for Hexose 2 and lower for Hexose 1 than
for their non-reduced counterparts (see left panel of Figure 4). The accuracies
were higher for reduced versions of all four datasets (see right panel of Figure 4).
Similarly, the average number of rules, as well as the average number of literals
in the rules, was higher for the reduced versions of all four datasets (see Figure
5). These results confirm the expectation that Aleph should be able to construct
longer hypotheses on reduced datasets which, in turn, should result in higher
predictive accuracies.

Reducing Examples in Relational Learning 31

6 Conclusions

We have introduced a novel concept called safe reduction. We have shown how
it can be used to safely reduce learning examples (without affecting learnability)
which makes it possible to speed-up many relational learning systems by merely
preprocessing their input. The methods that we have introduced run in polyno-
mial time for hypothesis languages composed of clauses with treewidth bounded
by a fixed constant. The bounded-treewidth assumption, while arguably appro-
priate in ILP, can be replaced by other kinds of assumptions such as acyclicity.

Acknowledgements. This work was supported by the Czech Grant Agency
through project 103/11/2170 Transferring ILP techniques to SRL.

Appendix: The k-Consistency Algorithm

In this section, we briefly describe the k-consistency algorithm. The description is
based on the presentation by Atserias et al. [15]. Let us have a CSP P = (V ,D, C)
where V is the set of variables,D is the set of domains of the variables and C is the
set of constraints. A partial solution ϑ is an evaluation of variables from V ′ ⊆ V
which is a solution of the sub-problem P ′ = (V ′,D, C). If ϑ and ϕ are partial
solutions, we say that ϕ extends ϑ (denoted by ϑ ⊆ ϕ) if Supp(ϑ) ⊆ Supp(ϕ)
and V ϑ = V ϕ for all V ∈ Supp(ϑ), where Supp(ϑ) and Supp(ϕ) denote the sets
of variables which are affected by the respective evaluations ϑ and ϕ.

The k-consistency algorithm then works as follows:

1. Given a constraint satisfaction problem P = (V ,D, C) and a positive integer
k.

2. Let H be the collection of all partial solutions ϑ with |Supp(ϑ)| < k + 1.
3. For every ϑ ∈ H with |Supp(ϑ)| ≤ k and every V ∈ V , if there is no ϕ ∈ H

such that ϑ ⊆ ϕ and V ∈ Supp(ϕ), remove ϑ and all its extensions from H .
4. Repeat step 3 until H is unchanged.
5. If H is empty return false, else return true.

References

1. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: An ever evolving fron-
tier in data mining. Journal of Machine Learning Research - Proceedings Track 10,
4–13 (2010)

2. Lavrac, N., Gamberger, D., Jovanoski, V.: A study of relevance for learning in
deductive databases. J. Log. Program. 40(2-3), 215–249 (1999)

3. Appice, A., Ceci, M., Rawles, S., Flach, P.A.: Redundant feature elimination for
multi-class problems. In: ICML, vol. 69 (2004)

4. Raedt, L.D.: Logical and Relational Learning: From ILP to MRDM (Cognitive
Technologies). Springer-Verlag New York, Inc. (2008)

5. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163
(1970)

32 O. Kuželka, A. Szabóová, and F. Železný

6. Kuželka, O., Železný, F.: Seeing the world through homomorphism: An experimen-
tal study on reducibility of examples. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010.
LNCS, vol. 6489, pp. 138–145. Springer, Heidelberg (2011)

7. Nassif, H., Al-Ali, H., Khuri, S., Keirouz, W., Page, D.: An inductive logic program-
ming approach to validate hexose binding biochemical knowledge. In: De Raedt,
L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 149–165. Springer, Heidelberg (2010)

8. Erickson, J.: CS 598: Computational Topology, course notes, University of Illinois
at Urbana-Champaign (2009)

9. Kuželka, O., Železný, F.: Block-wise construction of acyclic relational features with
monotone irreducibility and relevancy properties. In: ICML 2009: the 26th Int.
Conf. on Machine Learning (2009)

10. Kuželka, O., Železný, F.: Block-wise construction of tree-like relational features
with monotone reducibility and redundancy. Machine Learning 83, 163–192 (2011)

11. Krogel, M.-A., Rawles, S., Železný, F., Flach, P.A., Lavrač, N., Wrobel, S.: Compar-
ative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto,
A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg
(2003)

12. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
13. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp

and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998)

14. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction al-
gorithms. Machine Learning 55(2), 137–174 (2004)

15. Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
279–290. Springer, Heidelberg (2007)

16. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

17. De Raedt, L.: Logical settings for concept-learning. Artif. Intell. 95(1), 187–201
(1997)

18. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)

19. Landwehr, N., Kersting, K., Raedt, L.D.: Integrating näıve bayes and FOIL. Jour-
nal of Machine Learning Research 8, 481–507 (2007)

20. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1),
99–118 (1977)

21. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology chal-
lenge 2000-2001. Bioinformatics 17(1), 107–108 (2001)

22. Žáková, M., Železný, F., Garcia-Sedano, J.A., Masia Tissot, C., Lavrač, N.,
Křemen, P., Molina, J.: Relational data mining applied to virtual engineering of
product designs. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP
2006. LNCS (LNAI), vol. 4455, pp. 439–453. Springer, Heidelberg (2007)

Mining Complex Event Patterns in Computer Networks

Dietmar Seipel1, Philipp Neubeck2, Stefan Köhler3, and Martin Atzmueller4

1 University of Würzburg, Department of Computer Science
2 Google Germany GmbH, Munich

3 Infosim GmbH & Co. KG, Würzburg
4 University of Kassel, Knowledge and Data Engineering Group

Abstract. More and more ubiquitous and mobile computer networks are becom-
ing available, which leads to a massive growth in the amount of traffic and accord-
ing log messages. Therefore, sophisticated approaches for network management
and analysis are necessary for handling and managing networks efficiently.

In this paper, we show how to use temporal data mining in a declarative
framework for analysing log files for computer networks. From a sequence of
network management protocol messages, we derive temporal association rules,
which state frequent dependencies between the occuring events. We also present
methods for extendable and modular parsing of text messages and their analysis
in log files based on XML.

1 Introduction

With the advent of mobile, dynamic, and more and more ubiquitous devices, computer
networks – providing the technical infrastructure, that is, the links between the indi-
vidual computational nodes – are becoming more widespread at a rapid pace. In such
contexts, e.g., in TCP/IP–based environments, network management is a critical issue
for ensuring continuous quality of service and stability of the network. With the grow-
ing adoption and size of the networks, there is an increasing amount of alarm events
and error messages indicating exceptional situations. Usually, their detection is based
on analysing logs and searching for faults or other exceptional events. An appropriate
management needs to apply sophisticated approaches both for handling the amount of
data and for determining patterns at the appropriate level of abstraction.

In this paper, we consider a declarative framework for analysing events in networks.
More specifically, we focus on the analysis of network events using temporal data min-
ing techniques. The main contributions are the integrated analysis and the preprocessing
and postprocessing options of the mined patterns. The presented techniques allow for
the detection of relations between different events in order to identify complex event
patterns. From a log file, we could, e.g., automatically extract the rule “Every link down
event is preceded by a lineprotocol down event in less than 10 seconds”. Thus, complex
patterns consisting of sequences of events are identified and can then be applied, e.g.,
for managing and optimizing the system.

Approaches for the temporal analysis of event sequences and for temporal data min-
ing have become increasinly prominent in recent years. Especially, mining alarm pat-
terns has attracted significant attention, e.g., [10, 5, 14]: Most similarly to our setting,

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 33–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 D. Seipel et al.

de Aguiar et al. [14] present an approach for alarm pattern mining. However, in contrast
to their approach, we present a method and case study that focuses more on message and
sequence analysis. It considers grouping equivalences, resolving word–based, most spe-
cific event types, and filtering rules using background knowledge, e.g., already known
relations.

Laxman et al. [11] provide a general overview of the field of temporal data min-
ing. They discuss the problem setting and introduce several algorithms. Furthermore,
Achar et al. [1] provide a unified view on apriori–based algorithms for frequent episode
discovery. Mannila et al. [12, 10] provide classic instantiations of the problem and pro-
pose the WINEPI and MINEPI algorithms for mining frequent sequences and episodes;
these algorithms are among the core ingredients of our presented approach. However,
we have extended these approaches by flexible filtering, mainly concerning overlapping
sequences and repetitions, and additional message and sequence analysis. Wu et al. [19]
as well as Tatti and Cule [17] consider extensions of episode mining algorithms focus-
ing on complete or strictly closed episodes. As discussed below, this remains as one of
the possible future extensions of our work.

For the analysis of event logs, the Simple Logfile Clustering Tool (SLCT) [18], for
example, analyses text messages and determines frequent line patterns. The patterns
can be reused for defining event types by the analyst. The approach is iterative and
requires human interaction; an automatic approach is not mentioned. It is also important
to note, that SLCT does not consider temporal relations, but only absolute frequencies
of patterns. In contrast, our approach combines sequence and message analysis. Instead
of a simple event type, we assign several key/value pairs to each event.

The rest of the paper is structured as follows: Section 2 summarizes steps for pre-
processing the log files. Section 3 describes the framework for temporal data mining
including some examples for the presented approach. Section 4 presents a more de-
tailed case study, and Section 5 explains the practical relevance of our approach. Finally,
Section 6 concludes with a summary and discusses possible future extensions.

2 Log File Processing

A common source of log information are facilities, such as syslog under Unix–like oper-
ating systems and Windows Event Logs under Microsoft Windows. Several log facilities
collect events with a text field, which is used in many ways and not further standardised.
This section is concerned with analysing this unstructured text field. The other fields,
like the timestamp, sender, log facility, and priority of the events will be ignored for
now. Below, we give examples from a syslog file, which has 20.000 lines and occupies
6 MB of space; it is an Excel file in CSV format (values separated by “:”) covering the
events of about 2 days. A small selection of text messages shows the diversity of the
events in the file:

07.430: %SYS-5-CONFIG_I:
Configured from console by mdoess.k5 onvty0 (23.80.40.147)

%CRYPTO-6-AUTOGEN: Generated new 768 bit key pair
%SSH-5-ENABLED: SSH 1.99 has been enabled
%LINEPROTO-5-UPDOWN: Line protocol on Interface

FastEthernet0/26, changed state to down

Mining Complex Event Patterns in Computer Networks 35

%LINK-3-UPDOWN:
Interface FastEthernet0/26, changed state to down

14.272: %OSPF-5-ADJCHG:
Process 1, Nbr 23.80.248.135 on Serial0/2/1
from FULL to DOWN, Neighbor Down: Interface down or detached

13.522: %IPPHONE-6-REGISTER_NEW:
ephone-1:SEP00146A62D078 IP:23.80.250.62
Socket:1 DeviceType:Phone has registered.

13.743: %IPPHONE-6-UNREGISTER_NORMAL:
ephone-1:SEP00146A62D078 IP:23.80.250.62
Socket:1 DeviceType:Phone has unregistered normally.

System: SNMP configuration change.
SNMP access control 2 access type. 0x0003

Control Manager: 7035: Y068DPK1\a0681634:
The control statement "start" was sent successfully
to the service "Eventlog to Syslog".

Control Manager: 7036: Service "McAfee McShield"
now is in the status "stopped".

Control Manager: 7036: Service "McAfee McShield"
now is in the status "executed".

In the listing above, the lines have been broken; the continuation lines are indented.
The separators “:” either separate fields – as in, e.g., the last two lines – or attribute
value pairs – as in, e.g., IP:23.80.250.62. We have developed parsers that can
distinguish between these two uses of “:”.

2.1 Removing Digits from Event Messages

The simplest analysis involves manually reviewing the file with a standard file viewer
and searching for a message pattern.

We apply an automatic transformation, which improves the overview of the file con-
siderably without much effort: The central step is to replace all consecutive occurrences
of digits by a single placeholder character, e.g., ’9’, because in most cases numbers
identify values (like a time or address). The reduced messages can then be sorted and
duplicates can be dropped. This reduces the 20.000 lines to 1.048 different lines (pat-
terns). For example, we find the patterns:

%SSH-9-ENABLED: SSH 9.9 has been enabled
%LINK-9-UPDOWN: Interface FastEthernet9/9, changed state to up

2.2 Extracting Event Types and List Patterns

We apply the following incremental approach for extracting event types by grouping
event messages: The log file itself is the initial group. In each step, we take a large group,
identify a frequent pattern, write a new parser rule and split the group accordingly.
The splitting can be done automatically according to the type, which we store in each
event. Repeating this step, creates a tree structure of patterns. The nodes near the root
represent rather general patterns, whereas the leafs represent the most specific ones. In
the case of the example log file, we can obtain the tree in Figure 1. The nodes cisco and
cisco/updown correspond to the previously mentioned patterns. The first number of an
inner node, counts the events matched by this node and none of its children, the second
one counts the events matched by the whole subtree. Accordingly, leafs are marked only
with a single number.

36 D. Seipel et al.

all
203/19998

win
2388/16981

cisco
522/2791

cisacs
17

snmp
6

servicestate
13135

nextevent
539

ticketrequest
332

succbackup
214

servicecmd
197

backup
176

updown
2269

Fig. 1. Hierarchy of Event Types

At this stage, reviewing the groups reveals, that the win group with 2.388 matching
events and 847 patterns is the most inhomogeneous; all the other groups are homoge-
neous already. The used file clearly has a strong dominance of Windows events. In log
files with more diverse events, we would find more formats of different vendors and
logging facilities at the top layer.

While creating the parsers for this example, we also found patterns of syntax ele-
ments like lists of key/value pairs or the dotted–decimal notation of IP addresses. These
patterns can be handled by parser modules, which are used orthogonally to the tree
structure. For example, we find a list pattern in many Windows messages. In the two
patterns below, the lists follow the word System:

Security: 9: ... System: login attempt from: ME
account: lock workstation: Y9 error code: 9xC9A

Security: 9: ... System: user logout: user
name: Y9 domain: Y9 login type: 9

The list pattern has the form “a1 : v1 a2 : v2 ...”, where ai and vi are key/value pairs.
After defining a parser for this format, we have implemented a very generic transfor-
mation rule for extracting all such lists from Windows event messages.

In order to build an extendable parser, we have formulated each parser element using
transformation rules in the PROLOG–based XML transformation language FNTRANS-
FORM [16]. The rules are applied repeatedly, until no more rules match. This permits
transformations to refine the result of previous transformations. We have also developed
more refined parsing techniques based on extended definite clause grammars, which can
be used for elegantly specifying and parsing more complex structures. Such grammar
rules have been applied, for example, to electronic dictionaries in [15].

2.3 A Modular Event Format

Text messages are intended for human readers, and only a few formatting standards
exist. Over time, many formats have evolved, all of which need special processing.
So we cannot expect a parser to handle all of them. Instead, parser elements for new
types of messages have to be created, and the parser has to be easily extendable. The
following message, for example, taken from the mentioned log file, is expressed by the
XML element below:

Mining Complex Event Patterns in Computer Networks 37

’1215009055419000’,’31087: Jul 2 16:30:54:’,’unknown’,
’%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/26,
changed state to up’,’23’,’5’,...

<event source="syslog" timestamp="1215009055419000"
message="%LINEPROTO-5-UPDOWN: Line pro..."
sl_facility="23" sl_priority="5" ... />
<content type="cisco" severity="5" mnemonic="UPDOWN"

facility="LINEPROTO" text="Line protocol on Interf..."/>
<content type="updown" new_state="up"

iface="FastEthernet0/26"/>
</event>

The attributes of the event element describe general values provided by the logging fa-
cility. Each parsing step creates an additional content subelement storing the extracted
information. In the example above, the first content element of type cisco contains the
fields common to all cisco events. The second content element provides the special
values of this kind of line protocol message. This modular format allows for represent-
ing general patterns. Furthermore, we can refine these patterns by defining additional
parsing rules. Such general patterns are defined, e.g., by hardware or software vendors
like Cisco or Microsoft.

3 Temporal Data Mining Workflow

In this section, we will describe our declarative framework for temporal data mining.
For the data reduction phase (preprocessing), declarative programming in PROLOG was
very suitable, since the methods can be flexibly adapted and extended. Our approach
also allows flexible options for analysis, considering, e.g., the inclusion of background
knowledge. In a prototypical implementation, we have also formulated the central tem-
poral data mining algorithms in PROLOG; since the performance was no problem, we
have postponed a possible reimplementation in a standard procedural language. In Sec-
tion 3.5 we also apply text mining approaches for reducing the number of words.

Sy
sl

og
 M

es
sa

ge
s

SN
M

P
Tr

ap
s Association

Rules

Fig. 2. Temporal Data Mining Workflow

We have decided to store the events uniformly in XML. In the case of parsed events,
several properties are available. Unparsed events reveal only the basic values like the
timestamp, the text message, and the sender address.

38 D. Seipel et al.

3.1 Combining Sequence Analysis and Message Analysis

The event sequence analysis of [10, 12] requires to assign an event type to each event.
The event types could be identified by integers, and in the case of text messages, each
type would describe a set of messages, i.e. the type describes a pattern. So, defining
event types, requires approximately as much work as implementing the parser functions.

The approach presented in this paper combines sequence and message analysis. Gen-
eralising simple event types, we assign several key/value pairs to each event; the set of
these pairs forms the event data. For unparsed text messages, we follow the approach
of SLCT [18] and split the message into words. Every word is a value and the key is
the word’s position in the message. For parsed messages, more meaningful data, like
the event types of [10, 12], can be added instead. We define a selection predicate using
only the words of each text message. It selects the required attributes timestamp and
message with expressions of the PROLOG–based XML query language FNQUERY [16],
and then splits the message into words. Finally, the words are enumerated in their order,
and we consider each position/word pair as an event on its own by inheriting the times-
tamp of the event; we call these events subevents. Because every original event had a
unique timestamp, we can still reconstruct the event from its subevents. Subevents will
show similarly strong correlations in a temporal analysis as were found in the non–
temporal analysis of SLCT.

Since words describe the attributes of a message, temporal relations between at-
tributes of events correspond to relations between subevents. Applying temporal analy-
sis on the subevents will reveal these relations, although at no step manual classifiction
of events was necessary. We augment the event sequence with unique timestamps.
An event pair P = (T,E) consists of the event’s timestamp T and the event data E.
Moreover, an episode α = (P1, . . . , Pn) is a sequence of event pairs Pi.

3.2 Sliding Windows

The WINEPI algorithm is based on sliding a window over the event sequence. At each
position of the window, it considers the set (or multiset) of visible events; the order of
the events is irrelevant. For our analysis, we are only interested in the content of each
window and not in its time bounds. A call window(Win) providing all possible in-
stances of the sliding window in the variable Win as a list of events would be nice, but
has some deficiencies. Firstly, we are not interested in empty windows. These are un-
needed for frequency analysis, and the total number of windows can be computed from
the sequence’s bounds. Secondly, depending on the distribution of the events, many con-
secutive windows share the same content. Furthermore, the number of windows – but
not the number of different contents – depends heavily on the timestamps’ resolution. To
avoid these issues, we have implemented a slightly different call window(Win,Rep),
which provides all windows in the variable Win ; several identical successive windows
are returned only once. Rep specifies the repetition of the window Win . The rest of
the algorithm, i.e. the candidate generation and the controlling loop, is equivalent to the
standard apriori algorithm. Per option injective , one can decide between injective and
not injective episodes, i.e. an episode may contain the same event type several times.

Mining Complex Event Patterns in Computer Networks 39

3.3 Frequent Episodes

We can now apply the frequent episodes analysis on events. For a first analysis, a rather
small window size of 10 seconds has turned out to be appropriate. After having fil-
tered (cf. Section 3.7) the most frequent episodes with a small temporal extent, we can
select larger window sizes. The minimum frequency is difficult to preselect, because a
single episode can occur in several windows. For example, a single occurrence of an
event is counted in 100 windows, if the timestamps are given in 10–ths of a second and
the window size is 10 seconds. But an episode spanning 10 seconds occurs in exactly
one window. We decided to use a minimum frequency of 0.01 and selected appropriate
settings in the following sections to obtain comparable results.

Using the words of the original text messages as event types, only three frequent
injective and parallel episodes are found in the log file with 20.000 messages:

1-episodes: [’__ "stopped".’]-0.03799, [’__ "executed".’]-0.038002
2-episodes: [’__ "stopped".’ , ’__ "executed".’]-0.0376735

Here, __ stands for the text ’Control Manager: 7036: Service "McAfee
McShield" now is in the status’. Inspecting the frequencies of the 1–
(single events) and 2–episodes (combinations of events) reveals, that the start and stop
messages of the antivirus software almost always occur close to each other.

3.4 Episode Rules

Such temporal relations are described by episode rules, which are similar to association
rules. We can apply the algorithm for association rules without modification.

Given the list of frequent itemsets (or frequent episodes), we search for an itemset A
and a subset B of A, such that the confidence conf = f(A)/f(B) is larger than a given
minimum confidence threshold; here, f(I) is the frequency of an itemset I . The result is
an association rule B → A\B. If we apply the filtering on the set of frequent episodes,
which we found above, then the following episode rules with a confidence of at least
0.99 are found. For brevity, we have replaced some text passages with an underscore –
as in the previous subsection.

(’__ "stopped".’ -> ’__ "executed".’):[0.99167, 0.0376735]
(’__ "executed".’ -> ’__ "stopped".’):[0.99136, 0.0376735]

In the sequence of subevents, we find too many and a lot of redundant episode rules.
We are interested in the most general rules, where a rule r : A → B is more general
than a rule s : C → D, if A ⊆ C and D ⊆ B; the frequency is not important here.
For example, the rule {a} → {c, d} is more general than {a, b} → {c}. The less
general rule s can be deduced from the more general rule r, because of the trivial rules
C → A and B → D; this means, that s provides no additional information except the
confidence, which is not already provided by r. We ignore the confidence here, because
we are interested in the compliance with the rather high confidence threshold and not
the exact value. Of course, other variations are conceivable.

40 D. Seipel et al.

3.5 Data Reduction Based on Most Specific or Equivalent Words

Searching for frequent episodes in the sequence of subevents, i.e. on the words of the
messages, produces a huge number of frequent episodes. Many of these episodes have
no temporal extent, but occur in a single message, because the subevents of a message
show a strong correlation. All subsets of a frequent message’s words will be identified as
frequent episodes. That is just too much to calculate and provides no new information.
The main reason of this problem is the number of words per message: the 20.000 mes-
sages of the example file produce 259.735 words.

Therefore, in this section, we will present two methods for reducing the number of
words or event data before applying frequent episode mining. Prior to any other reduc-
tion or analysis, we can drop all infrequent words, as they appear neither in frequent
itemsets nor in frequent episodes. Dropping words with a frequency below 0.05 lowers
the number of words from 259.735 down to 222.026.

Most Specific Words. Text messages are highly redundant, especially if they contain
regular sentences. All redundant words can be dropped and the remaining words will
suffice to identify the type of the message. Such relations are described by association
rules treating the messages as transactions and the words as items. The interpretation of
a rule a→ b is that in a message containing the word a, we will also find the word b. If
this rule has a high confidence, then we can drop the word b. Afterwards, b can also be
reconstructed in all messages containing a.

The effect of this reduction is, that each message is described by as few words as
possible. These words are the most specific ones, and unspecific words occuring in
different types of messages are removed. For example, the following message is reduced
to the three words/position pairs (1,’%LINK’), (5,’FastEthernet0/26’)
and (9, up). From the first pair all remaining words can be derived.

%LINK-3-UPDOWN: Interface FastEthernet0/26, changed state to up

Applying this reduction on the log file lowers the word count from 222.026 to 20.793.
Afterwards, a temporal analysis on the remaining words can only discover relations
between such very specific types of messages, and more general patterns are lost.

Equivalent Words. Another approach is to find equivalent words in the messages. Of
two equivalent words, only one has to be kept, the other one does not carry any further
information and can be dropped, or the two words can be merged into one compound
word. Two words are equivalent, if they always occur together. In data mining, we can
only determine such relations with a certain frequency, of course.

At first, we search for frequent wordsets in the messages, i.e. itemsets in trans-
actions. We only consider frequent 1– and 2–itemsets. Similar to finding association
rules, the next step is finding association equivalences with a high confidence. From a
frequent 2–itemset {a, b} we deduce the association equivalence a↔ b with the confi-
dence conf (a ↔ b) = min{f(a)/f(b), f(b)/f(a)}; here, f(i) is the frequency of an
item i.

Mining Complex Event Patterns in Computer Networks 41

According to [18], applying the apriori algorithm for finding frequent sets of words
in messages results in exponentially (i.e., for 2–itemsets: quadratically) many candi-
dates, nearly all of which are infrequent. It is more appriopriate to deduce candidates
from each message and to check these candidates’ frequency, which occur at least once.
For two parameters MinIt ≤ MaxIt , we compute all k–itemsets with k ≤ MaxIt by
applying the apriori algorithm only after the MinIt–th iteration. For calculating only the
1– and 2–itemsets without utilising the apriori algorithm, we set MinIt = MaxIt = 2 .
From the frequent 1– and 2–itemsets, we calculate all equivalences with high confi-
dence.

The 20.000 messages reveal about 480 word equivalences with a confidence of at
least 0.95. Using these equivalences, the 222.026 frequent words can be reduced to
48.318 words. For example, the words of the antivirus message from above are com-
bined into two groups. The first group describes, that the service “McAfee McShield”
has changed its state, and the second indicates the new state, the service changed to.
The listing below shows the groups in detail. This example shows, that the grouping by
association equivalences can be as accurate as a manual type definition.

[(1, Control), (2, Manager), (3, 7036), (4, Service), (5, "McAfee),
(6, McShield"), (7, now), (8, is), (9, in), (10, the), (11, status)]

[(12, "stopped")]
[(12, "executed")]

In contrast to the reduction to the most specific words, which removes the words
describing general message types, the reduction based on equivalent words keeps key-
words for different degrees of abstraction, and more general relations can be discovered.

Frequent Episode Mining. After reducing the number of words to a more feasible num-
ber, we can apply the frequent episode algorithm and the rule discovery on the sequence
of words or word groups. With the same settings as before (window size of 10 seconds,
minimum frequency of 0.01, and injective episodes), we find three rules, which provide
exactly the same information as the rules discovered before from the sequence of mes-
sages. For clarity we omit some words of the groups, which have already been listed
above:

((12, "stopped") -> (12, "executed"), [(1, Control) __]):0.99
((12, "executed") -> (12, "stopped"), [(1, Control) __]):0.99
([(1, Control) __] -> (12, "stopped"), (12, "executed")):0.98

We notice a deficiency of using parallel episodes for finding relations between
subevents. The rules do not describe the temporal extent of the affected events, and
accordingly, the reference to a relation between occurrences of complete text messages
is unclear.

Let {A} → {B,C} be the third rule with the actual words replaced by the variables
A,B and C. Then, we cannot tell, if this rule describes primarily three different occur-
rences of messages or only two, because the events may coincide with each other. A
single message is not covered by this rule, because B and C exclude each other. In the
case of two messages it is unclear, if A and B belong to a single message, or instead A
and C. These rules do not comprise any temporal extent, and especially, do not describe
any ordering, because we have used parallel episodes. It is important to keep in mind

42 D. Seipel et al.

that the episodes discovered by the sliding window approach only identify frequent oc-
currences of events in a time span given by the window size. Actually, there can be
several occurrences in a single window.

3.6 Minimal Occurrences of Episodes

For comparison, we discuss another approach using minimal occurrences and serial
episodes based on the MINEPI algorithm in this section. Every episode α is now addi-
tionally augmented with the set μα of its minimal occurrences, i.e. the minimal intervals
containing the episode.

1–Episodes. In analogy to the apriori algorithm, we begin by determinining all 1–
episodes. The minimal occurrences of a 1–episode (A) are given by the occurrences of
the event A. If A occurs at time S, then the point interval [S, S] is a minimal occurrence
of (A).

Candidate Generation. From a set of frequent serial episodes, larger episodes can be cre-
ated analogously to the apriori algorithm. Two serial episodes α = α′ · δ and β = δ · β′

can be concatenated to an episode γ = α′ · δ · β′. I.e., the suffix δ of α is also a prefix
of β, and δ apprears only once in the concatenation. According to [12], the minimal
occurrences μγ of γ can be calculated from μα and μβ by merging pairs of intervals:
Let [SA, EA] ∈ μα and [SB, EB] ∈ μβ be minimal occurrences of α and β respec-
tively, such that SA < SB and EA < EB . If there is no other, later minimal occurrence
[S′

A, E
′
A] ∈ μα, where SA < S′

A, with the same property, then [SA, EB] is a minimal
occurrence of γ. For example, for the sequence 〈(1, a), (2, b), (3, a), (4, c), (5, b), (6, c),
(7, d)〉 and the episodes α = (a, b, c) and β = (b, c, d), we get μα = {[1, 4], [3, 6]},
μβ = {[5, 7]}, γ = (a, b, c, d), and μγ = {[3, 7]}. We enforce the intervals [SA, EA]
and [SB, EB] to be different, because we allow non–injective episodes. This can be seen
in the following simple example. In the case of injective episodes, this restriction can be
left out. In the sequence 〈(1, a), (2, a)〉, for example, the episode α = β = (a) has the
set μα = μβ = {[1, 1], [2, 2]} of minimal occurrences, and the combination γ = (a, a)
has only a single minimal occurrence: μγ = {[1, 2]}. Beginning with the 1–episodes,
we iteratively combine k–episodes to candidate (k + 1)–episodes. From these candi-
dates only the frequent ones are selected. In this process, we find all frequent episodes.

Rules. We use serial episodes and minimal occurrences in this section. Therefore, we
have to adapt the previous rule algorithm, which uses parallel episodes and relative
frequencies (based on windows). Different kinds of rules can be derived from serial
episodes; we describe only the two most understandable kinds.

Forward rules have the form α → β, where α and β are serial episodes. Their
interpretation is: if α has a minimal occurrence [S,E], then the concatenation γ = α ·β
has a minimal occurrence [S, F] (with E ≤ F). Less formally spoken, an occurrence of
α is followed by an occurrence of β. The maximal extent of all occurrences is given by
the same upper bound. That is, we do not use two different time bounds for each rule, but
only one upper bound for the whole rule. This reduces the parameters for the algorithm,
and nonetheless, rules with a smaller temporal extent are still found. Backward rules

Mining Complex Event Patterns in Computer Networks 43

β ← α mean: if α has a minimal occurrence [S,E], then the concatentation γ = β · α
has a minimal occurrence [R,E] (with R ≤ S). In other words, an occurrence of α is
preceded by an occurrence of β. In both cases, the confidence of such rules r is easily
calculated as conf (r) = f(γ)/f(α), as in the case of association rules.

In the 20.000 lines of the example log file, we discover the same relation as before.
The upper bound was set to 10 seconds, the minimum support to a 1/10 of the word
count (20.793), and the minimum confidence was set to 0.90.

(12, "stopped") -> (12, "executed")
(12, "stopped") -> (1, Control) __ (11, Status)

But this time, the rules are more expressive. We can interpret both rules together, be-
cause their left hand sides are identical. They describe that a message including the
word stopped is usually followed by a message including the words of the right hand
sides (Control executed) within 10 seconds. Again, we have omitted some
words of the word groups described in Section 3.5.

Analysing the Minimal Occurrences. The minimal occurrences of the concatenation
(i.e., γ from above) of a rule’s left and right hand side indicate the rule’s temporal
expansion, which can actually be much smaller than the given upper bound.

Therefore, we analyse the lengths of the minimal occurrences. Several thousands of
values can be visualised in a histogram. But a histogram does not necessarily reveal
dense regions, if the values differ slightly as is the case with distances between events.
It seems more appriopriate to apply a clustering algorithm on the length values. We
have selected the common hierarchical clustering method. Beginning with a cluster for
each value, clusters too close to each other are merged repeatedly. For our experiments,
we have used the distance between the arithmetic means of two clusters to decide their
proximity. In the case of the above rule, the results are trivial. The two events occur
in immediate succession, i.e. all minimal occurrences have a length of two 10–ths of a
second. Further interesting results that we have obtained with MINEPI will be reported
in a more detailed case study in Section 4.

3.7 Filter Rules for Event Messages

In order to discover additional correlations, it is reasonable to filter already known re-
lations, which would clutter up the results unnecessarily. A first filter would replace
the previously shown two messages of the antivirus software with a single stop/start
message. Analysing the reduced event sequence will then reveal, that these messages
repeat approximately every 5 minutes. Therefore, we need other filter rules, which are
the combination of repeating events and the deletion of a rule’s consequent.

For a replacement rule replace(Episode,Replace,WinSize) the events matching
the serial episodeEpisode are removed from the sequence, and the replacementReplace
is inserted at the time of the first event. WinSize determines the time span in which the
episode has to occur. Moreover, each event type in the episode can match a more spe-
cific type. For example, the event type or event data X matches the data Y , where

X = [(1,"Service"), (2,"McAfee")],
Y = [(1,"Service"), (2,"McAfee"), (3,"stopped")].

44 D. Seipel et al.

4 Case Study

We have developed an interactive workflow, which incorporates the presented methods.
In the following list, we briefly repeat each step’s functionality:

1. Read the log file – provided in CSV format – and create the initial event sequence.
2. Apply the event filters thereby removing already discovered correlations from the

sequence.
3. Reduce the number of words by dropping infrequent data and by identifying the

most specific words and the equivalent words.
4. Create the sequence of subevents.
5. Decide suitable parameters, and then apply a data mining algorithm (WINEPI or

MINEPI) to find frequent parallel or serial episodes.
6. Derive episode rules. In the case of serial episodes from the MINEPI algorithm,

we display the extent of the minimal occurrences in a histogram and determine
clusters, which can help to find temporal properties of the rules.

In an extensive experiment, we did several successive runs of the data mining algorithm
MINEPI (steps 5 and 6), discovered new relations each time, and formulated appropriate
filter rules. Depending on the results of the previous run, we decided the parameters for
the next run. As input we used again a log file with 20.000 messages. In the following,
we describe the settings and results of each run of MINEPI. For clarity, we omit all
but some important keywords from the discovered rules; the gaps are marked with an
underscore.

First Run. The algorithm MINEPI (injective, serial episodes) is applied with the follow-
ing parameters: Upper Bound: 10 seconds, Min. Support: 0.1, Confidence: 0.9. It dis-
covers the following relation: A stop message of service McAfee is followed immedi-
ately (less than 1 second) by a start message of the same service. They occur always
together and in this order:

[(1, Control), (2, Manager) __ (5, "McAfee) __ (12, "stopped")] <->
[(1, Control), (2, Manager) __ (5, "McAfee) __ (12, "executed")]

The double arrow describes that from either message the existence of the other can be
deduced.

The first run reveals the relation which we have already described in the previous
sections. We integrate this relation in a filter rule. The joint occurrence of the messages
is replaced by a single stop/start message. 6.320 such occurrences are found in the log
file. These settings reveal no other relations, therefore, we have to increase the upper
bound or lower the minimum support in the next iteration.

Second Run. The algorithm MINEPI (not only injective, serial episodes) is applied with
the following parameters: Upper Bound: 6 minutes, Min. Support: 0.1, Confidence: 0.9.
It discovers the following relation: A McAfee stop/start message is repeated in about
6 minutes with a propability of 0.99.

[(1, Control), (2, Manager) __ (5, "McAfee) __ (7, stop/start)] <->
[(1, Control), (2, Manager) __ (5, "McAfee) __ (7, stop/start)]

Mining Complex Event Patterns in Computer Networks 45

Without lowering the minimum support, we had to increase the upper bound to 6 min-
utes in order to find something interesting. The reported relation indicates a periodic
repetition of this message. Investigating the lengths of the minimal occurrences reveals
a single cluster, i.e. the messages repeat after an average gap of 5 minutes. We can filter
these chains using a repetition rule, which removes 6.241 messages.

Third Run. In this run, four relations were found using the algorithm MINEPI (injec-
tive, serial episodes) with the following parameters: Upper Bound: 10 seconds, Min.
Support: 0.01, Confidence: 0.9. It discovers the following relation: A change of an in-
terface’s state causes a change to the protocol’s state of this interface. The algorithm
reported the following rules:

[(1, %LINK), (2, 3), (3, UPDOWN), (4, Interface),
(6, changed), (7, state), (8, to), (9, up)] ->

[(1, %LINEPROTO), (2, 5), (3, UPDOWN), (4, Line),
(5, protocol), (6, on), (7, Interface), (9, changed),
(10, state), (11, to), (12, up)]

[(1, %LINEPROTO), (2, 5), (3, UPDOWN), (4, Line),
(5, protocol), (6, on), (7, Interface), (9, changed),
(10, state), (11, to), (12, down)] <-

[(1, %LINK), (2, 3), (3, UPDOWN), (4, Interface),
(6, changed), (7, state), (8, to), (9, down)]

The start–up of a link is followed by the start–up of the according line protocol. The
reversed arrow of the second rule describes that the shut–down of a link is preceded by
the shut–down of the line protocol. The rules don’t talk about the words at position 5
and 8 in the link and the line protocol message respectively. These words describe the
affected interface. That means, the algorithm correctly identified an abstract pattern and
categorisation of messages. The same relation is reported with messages of a slightly
other format, too. We will handle these in the same way.

The event filter can remove the line protocol message using two deletion rules. The
current implemetation of the event filter does not support variables to describe that only
pairs of messages should be filtered, which affect the same interface. 810 line protocol
messages were removed all together.

In the following, we explain three of the relations discovered during the third run.

1. Discovered relation: The assignment of special permissions and the successful lo-
gin of a specific user always occur together within 1 second and in this order:

[(1, Security) __ (5, Besondere), (6, Rechte), (7, bei),
(8, neuer), (9, Anmeldung), (10, Benutzername),
(11, Y068SPWDK102$), (12, Domaene), (13, Y068DPK1) __] <->

[(1, Security) __ (5, Erfolgreiche), (6, Netzwerkanmeldung),
(7, Benutzername), (8, Y068SPWDK102$), (9, Domaene’),
(10, Y068DPK1) __]

Interestingly, this relation is found for one specific user. That means, that this user
logs in very frequently. Nonetheless, this rule should be effective for any user.
123 messages of the second kind could be removed.

2. Discovered relation: We have no useful interpretation of the following relation with
a time bound of less than 1 second; 132 messages of the first kind were removed:

46 D. Seipel et al.

[(1, find), (2, message), (3, file), (4, key), (5, for),
(6, "SYSTEM__\\TsmVssPlugin")] <->

[(1, TsmVssPlugin) __ (7, Status), (8, Success)]

3. Discovered relation: The service Volumeschattenkopie (i.e., a backup) starts if and
only if the control manager has sent the command to do so in advance. The algo-
rithm reported the following equivalence in two seperate rules:

[(1, Control), (2, Manager) __ (6, Der),
(7, Steuerbefehl), (8, "starten"), (9, wurde) __ (11, an),
__ (14, "Volumeschattenkopie"), (15, gesendet)] <->

[(1, Control), (2, Manager) __ (5, "Volumeschattenkopie"),
__ (9, im), (10, Status), (11, "executed")]

We decided to remove the second message, i.e. the execution, and keep the com-
mand. The event filter reports 89 deletions. Later, we found the same relation be-
tween the same messages but translated to english. These occured 57 times.

Fourth Run. The algorithm MINEPI (injective, serial episodes) is applied with the fol-
lowing parameters: Upper Bound: 10 minutes, Min. Support: 1/130, Confidence: 0.9.
It discovers the following relation: The service Volumeschattenkopie completes in less
than 8 minutes.

[(1, Control), (2, Manager) __ (8, "starten") __
(11, an) __ (14, "Volumeschattenkopie"), (15, gesendet)] <->

[(1, Control), (2, Manager) __ (5, "Volumeschattenkopie") __
(11, "Beendet")]

86 messages were removed. The results of this run include a lot of clutter caused by
bursts of logouts.

5 Practical Relevance

New technology and vendors are integrated daily in a large network. This leads to new
log messages, and based on the connection of the elements new event types occur in
a network. In practice the amount of log messages (several millions over a day) and
the simultaneous occurrence of different events leads to a mix up in the received event
messages of different events and makes it very difficult to extract best–practice rules
for daily operation.

With our presented approach, we expect to simplify the life of a network adminis-
trator, and in the best case to even automate the generation of rules in the used fault
management system. We use the proposed approach to group and aggregate messages
to dedicated events as a first stage in our practical implementation.

Thus, from millions of lines of log messages, which are nearly impossible to in-
vestigate, we come to a much smaller set of events with dedicated log messages. The
network operator only has to investigate the small amount of discovered and grouped
events and to decide, if the discovered correlation should be part of the rule set of his
used fault management system. This simplifies the process of rule discovery dramati-
cally, and good feedback is already provided. Our ultimate goal would be an automatic
generation of rules based on the network events.

Mining Complex Event Patterns in Computer Networks 47

6 Conclusions

We have presented two selected algorithms for the discovery of episode rules, and we
have given insights into the possible results, providing the basis for future research
about these rules.

As a next step, we are planning to integrate the presented solution into the com-
mercial network management solution StableNet, which covers fault, performance and
configuration management in one product. StableNet has been used by large enterprise
and telco customers for several years. The integration gives us the possibility to ver-
ify the results in large data networks. We are expecting that the discovery of rules will
simplify the setup of fault management in StableNet dramatically. At the moment, rules
have to be defined by an experienced user and refined later. We are expecting to simplify
and speed up this process with the presented approach, such that we can react earlier to
changes in the network.

The used temporal data mining algorithms can be further extended to also support
the discovery of serial episodes using window–based frequency and parallel episodes
using minimal occurrences. Furthermore, we can consider complete or strictly closed
episodes [19, 17]. The combination of non–injective serial episodes and subevents is
still an issue, because several subevents share the same timestamp. At the moment,
we have solved this by enforcing the minimal occurrences to contain only one event
per timestamp and accordingly only one event per message, but some interesting rules
require message patterns consisting of several words.

For example, consider the messages login of X and logout of X for some
user X. Then, we can usually find serial episodes like ((1,login),(1,logout),
(1,login),(1,logout)) or ((1,login),(3,A),(1,logout),(3,B)),
but not like the serial non–injective episode ((1,login),(3,A),(1,logout),
(3,A)), because the first two and the last two words occur at the same time re-
spectively. But, the latter would be required for the rule ((1,login),(3,A))->
((1,logout),(3,A)).

While applying the filter rules, the event filter could at the same time determine
the confidence and the outliers of each filter rule. The confidence would then indicate
the quality of the filter rules and the incorporated knowledge with respect to the latest
events. The outliers indicate particularly interesting events. Furthermore, causal analy-
sis of event sequences, c.f. [6], complementing the association and correlation analysis,
would be interesting as well, since it could directly provide more actionable knowl-
edge. Additionally, the integration and extension of subgroup discovery methods [2–4]
for temporal sequences is another interesting option to consider.

References

1. Achar, A., Laxman, S., Sastry, P.: A Unified View of the Apriori–Based Algorithms for
Frequent Episode Discovery. Journal of Knowledge and Information Systems 31(2), 223–
250 (2012)

2. Atzmueller, M., Lemmerich, F.: Fast Subgroup Discovery for Continuous Target Concepts.
In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp.
35–44. Springer, Heidelberg (2009)

48 D. Seipel et al.

3. Atzmueller, M., Puppe, F.: A Knowledge-Intensive Approach for Semi-Automatic Causal
Subgroup Discovery. In: Berendt, B., Mladenič, D., de Gemmis, M., Semeraro, G.,
Spiliopoulou, M., Stumme, G., Svátek, V., Železný, F. (eds.) Knowledge Discovery En-
hanced with Semantic and Social Information. SCI, vol. 220, pp. 19–36. Springer, Heidelberg
(2009)

4. Atzmueller, M., Puppe, F., Buscher, H.-P.: Exploiting Background Knowledge for
Knowledge–Intensive Subgroup Discovery. In: Proc. 19th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 647–652 (2005)

5. Chen, J., He, H., Williams, G., Jin, H.: Temporal Sequence Associations for Rare Events. In:
Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 235–239.
Springer, Heidelberg (2004)

6. Chuah, E., Lee, G., Tjhi, W., Kuo, S., Hung, T., Hammond, J., Minyard, T., Browne, J.C.:
Establishing Hypothesis for Recurrent System Failures from Cluster Log Files. In: Proc.
9th IEEE International Conference on Dependable, Autonomic and Secure Computing, pp.
15–22 (2011)

7. Casas-Garriga, G.: Discovering Unbounded Episodes in Sequential Data. In: Lavrač, N.,
Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838,
pp. 83–94. Springer, Heidelberg (2003)

8. Hand, D.J., Smyth, P., Mannila, H.: Principles of Data Mining. MIT Press (2001)
9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Series in Data Management

Systems. Morgan Kaufmann (2000)
10. Klemettinen, M., Mannila, H., Toivonen, H.: Rule Discovery in Telecommunication Alarm

Data. Journal of Network and Systems Management 7(4), 395–423 (1999)
11. Laxman, S., Sastry, P.S.: A Survey of Temporal Data Mining. Sadhana, Academy: Proceed-

ings in Engineering Sciences 31, 173–198 (2006)
12. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of Frequent Episodes in Event Se-

quences. Journal of Data Mining and Knowledge Discovery 1, 259–289 (1997)
13. Méger, N., Rigotti, C.: Constraint-Based Mining of Episode Rules and Optimal Window

Sizes. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS
(LNAI), vol. 3202, pp. 313–324. Springer, Heidelberg (2004)

14. Pfleger de Aguiar, L., de Almeida, V.A.F., Meira, W.: Mining Redundant Industrial Alarm
Occurrences with Association Rules Extraction and Complex Networks Modeling. Journal
of Computational Methods in Science and Engineering 11, 15–28 (2011)

15. Schneiker, C., Seipel, D., Wegstein, W., Prätor, K.: Declarative Parsing and Annotation of
Electronic Dictionaries. In: Proc. 6th International Workshop on Natural Language Process-
ing and Cognitive Science, NLPCS (2009)

16. Seipel, D.: Processing XML–Documents in PROLOG. In: Proc. 17th Workshop on Logic
Programmierung, WLP (2002)

17. Tatti, N., Cule, B.: Mining Closed Strict Episodes. Journal of Data Mining and Knowledge
Discovery 25(1), 34–66 (2012)

18. Vaarandi, R.: A Data Clustering Algorithm for Mining Patterns from Event Logs. In: Proc.
IEEE Workshop on IP Operations and Management (2003)

19. Wu, J., Wan, L., Xu, Z.: Algorithms to Discover Complete Frequent Episodes in Sequences.
In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds.) PAKDD Workshops 2011. LNCS,
vol. 7104, pp. 267–278. Springer, Heidelberg (2012)

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 49–63, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Learning in the Presence of Large Fluctuations:
A Study of Aggregation and Correlation

Eric Paquet1,2, Herna Lydia Viktor2, and Hongyu Guo1

1 National Research Council, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
2 School of Electrical Engineering and Computer Science, University of Ottawa, 800 King

Edward, Ottawa, Ontario, K1N 6N5, Canada
{eric.paquet,hongyu.guo}@nrc-cnrc.gc.ca,

hlviktor@eecs.uottawa.ca

Abstract. Consider a scenario where one aims to learn models from data being
characterized by very large fluctuations that are neither attributable to noise nor
outliers. This may be the case, for instance, when predicting the potential future
damages of earthquakes or oil spills, or when conducting financial data analysis.
If follows that, in such a situation, the standard central limit theorem does not
apply, since the associated Gaussian distribution exponentially suppresses large
fluctuations. In this paper, we present an analysis of data aggregation and
correlation in such scenarios. To this end, we introduce the Lévy, or stable,
distribution which is a generalization of the Gaussian distribution. Our theoretical
conclusions are illustrated with various simulations, as well as against a
benchmarking financial database. We show which specific strategies should be
adopted for aggregation, depending on the stability exponent of the Lévy
distribution. Our results indicate that the correlation in between two attributes may
be underestimated if a Gaussian distribution is erroneously assumed. Secondly,
we show that, in the scenario where we aim to learn a set of rules to estimate the
level of stability of a stock market, the Lévy distribution produces superior results.
Thirdly, we illustrate that, in a multi-relational database mining setting,
aggregation using average values may be highly unsuitable.

Keywords: Aggregation in Relational Learning, Correlation-based Analysis
and Covariance, Lévy Distribution, Stable Distribution.

1 Introduction

Aggregation is an important step when pre-processing data, prior to building a data
mining model. This step is crucial when considering complex data that represents
interactions between several potentially heterogeneous entities. For instance, in social
network analysis the frequency of a particular relationship is often represented by an
aggregation based on the number of occurrences. The same observation holds in
multi-relational database mining and in spatial data exploration, where aggregation is
needed to link multiple tables together [1, 2]. Similarly, data obtained from data
streams are frequently summarized into manageable sized buckets or windows, prior
to mining.

50 E. Paquet, H.L. Viktor, and H. Guo

Often, during a data mining exercise, it is implicitly assumed that large-scale data
fluctuations must be either associated with noise or outliers, or that a concept drift has
occurred. The most striking consequence of such an assumption is that, once the noisy
data and the outliers have been eliminated, the remaining data may be characterized in
two ways. That is, firstly, their typical behaviour (i.e. their mean) and secondly, by
the characteristic scale of their variations (i.e. their variance). Fluctuation above the
characteristic scale is thus being assumed to be highly unlikely, or assumed to
indicate that a model has become outdated. However, there are many categories of
data which are characterized by large-scale fluctuations. For instance, surprisingly,
supermarket ketchup sales have been shown to be typified by such large-scale
fluctuations [3]. Further, financial data and earthquake-related data are also examples
of data exhibiting this behaviour [4]. This issue is highly relevant when aiming to
build models that predict the potential damages caused by catastrophic events, such as
financial market turbulences and tsunamis. The large-scale fluctuations do not origin
from noise or outliers, but constitute an intrinsic and distinctive feature of the data.
Mathematically speaking, small fluctuations are modelled with the central limit
theorem and the Gaussian distribution, while large fluctuations are modelled with the
generalized central limit theorem and the Lévy distribution. This paper studies the
aggregation of data presenting large-scale fluctuations, to determine their properties,
the best approaches for their aggregation and the impact of such behaviour on their
correlation.

Our main contributions are as follows. Firstly, we provide a theoretical analysis
which shows the importance of taking the data distribution characteristics, when
learning involves aggregation and correlation, into account. Secondly, we introduce
the Lévy (or also called stable) distribution as a mechanism to allow machine learning
methods to compute meaningful aggregated information and to correctly evaluate the
correlation when learning from data presenting large fluctuations. Thirdly, we
demonstrate the proposed method’s applicability in typical machine learning and data
mining problems. Here, we discuss the analysis of financial data in order to build
rules to classify the volatility of the market as well as the case of multi-relational
database learning involving aggregation.

This paper is organized as follows. In Section 2, we review the fundamental
assumptions behind aggregation, namely the central limit theorem and the Gaussian
distribution. In Section 3, we introduce a more general distribution for the aggregate,
the Lévy distribution, for which the Gaussian distribution is a particular case. We
explain how this distribution may be estimated from the empirical data and present
some useful properties of the Lévy distribution. Then, we study the rank ordering
statistics of the Lévy distribution in order to determine if there are some dominant
terms in the distribution. We introduce the multivariate stable distribution in order to
generalize, in Section 4, the concepts of covariance and correlation to stable
distributions. In Section 5, we present various simulations in order to illustrate the
theoretical results obtained in the previous sections, as well as their consequences for
aggregation. We show that our methodology is applicable to real world financial data,
within two classification settings. The last section present our conclusions and
directions for future work.

Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation 51

2 Aggregation, Central Limit Theorem and Gaussian
Distribution

In this section, we review the basic assumptions on which aggregation is based.
Despite the fact that these assumptions are quite general, they do not cover all
possible data distributions, for instance, the Lévy distribution. Importantly, as will be
shown in Section 5, data associated with catastrophic events stock market crashes,
other financial turmoil (such as a housing market collapse) and earthquakes often
follows the Lévy distribution and need special care during data pre-processing and
model building. Consequently, we aim to understand their strengths as well as their
limitation in order to be able to address them in the following sections.

Aggregation is based on the standard central limit theorem which may be stated as
follows. The sum of N normalized independent and identically distributed random

variables of zero mean and finite variance 2s is a random variable with a probability

distribution function converging to the Gaussian distribution with variance 2s . This
implies that aggregation, in the sense of a sum of real numbers, has a Gaussian
distribution irrespectively of the original distribution of its individual data. This is a
very powerful theorem because the Gaussian distribution may be characterized with

solely two numbers, namely its mean m and its variance 2s which are the first two

moments of the distribution. In practice, this implies that an aggregation, such as a
sum, may be fully characterized by its mean and its variance; this is why aggregation
is so powerful. All the other moments of the Gaussian distribution are equal to zero.

Aggregation has often been used, during data pre-processing, to handle one to many
and many to many relationships in data. For example, consider the scenario where one is
building a classification model against a relational database that contains one to many
relationships from the so-called target table to the other (background) tables. Existing
methods such as Relaggs and MRC proceed by using the standard SQL aggregation
operations such as average, sum, minimum and maximum, in order to link these tables
together [5, 6]. Further, in data streams a number of techniques employ some form of
aggregation, when selecting the data window to be used for model building [7]. It follows
that aggregation is highly suitable in domains where the central limit theorem holds.
However, it should be used with care, especially in cases where large-scale fluctuations
are common. This is often the case in many data stream applications that involve
monitoring, e.g. medical monitoring or security screening of CCTV. In these cases, we are
more interested in finding the exception that is typified by a large fluctuation (e.g. a
security breach), rather than the rule. In the next section, we consider a generalization of
the central limit theorem which requires the introduction of the Lévy or stable distribution.

3 Aggregation with an Underlying Lévy Distribution or Stable
Distribution

In this section, we review the Lévy distribution, we show how it may be estimated
from the underlying empirical data and we analyze its properties. Finally, we

52 E. Paquet, H.L. Viktor, and H. Guo

introduce the multivariate Lévy distribution in order to extend the notions of
covariance and correlation to data distributed in this way.

3.1 Definition of the Lévy Distribution

One may associate to a probability distribution ()L x its Fourier transform or

characteristic function ()L k :

 () () () () () ()1
exp exp

2
L k ik x L x dx L x ik x L k dk

p

¥ ¥

-¥ -¥

= = -ò ò (1)

Stable or Lévy distributions are distributions for which the individual data as well as
their sum are identically distributed [8]. This fact implies that the convolution of the
individual data is equal to the distribution of the sum or, equivalently, that the
characteristic function of the sum is equal to the product of their individual
characteristic functions. The Lévy distribution does not have a closed form and is more
easily defined from its characteristic function:

() ()()
() ()()

, , , exp

exp 1 sgn ,

L k ik X

i k k i k W k

a m b g
aam g b a

= =

- - -é ù
ê úë û

E
 (2)

where ()E is the expectation and where

 ()
tan 1

2,
2
ln 1

W k
k

pa
a

a
a

p

ìïï ¹ïïïíïï- =ïïïî

 (3)

The Lévy distribution is characterized by four parameters, as opposed to the Gaussian
distribution which is characterized by only two. The parameters are the stability
exponent a , the scale parameter g , the asymmetry parameter b and the localisation

parameter m . While the tail of the Gaussian distribution is exponentially suppressed,

the tail of the Lévy distribution decays as a power law (heavy tail) which depends on
its stability exponent a :

 ()
1

x

C
L x

x
a a

+

¥

 (4)

Eq. (4) shows that extreme values are much more likely for the Lévy distribution than
they are for the Gaussian distribution. The reason for this is that the Gaussian
distribution fluctuates around its mean, the scale of the fluctuations being
characterized by its variance (the fluctuations are exponentially suppressed) while the
Lévy distribution may produce fluctuations far beyond the scale parameter. This
behaviour is due to the tail power decay law. It should be noted that the Lévy

Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation 53

distribution reduces to the Gaussian distribution when 2a = and when the

asymmetry parameter is equal to zero; then one has 2 1

2
s g= . Finally, the moments

of the Lévy distribution, ()n
nm x P x dx

¥

-¥

= ò , may be finite if n a£ while they

are infinite if n a> . This implies that a Lévy distribution with 1 2a£ < has a
finite mean, but an infinite variance while a distribution with 1a < has both an
infinite mean and an infinite variance. As we will see in the following sections, these
properties have grave consequences from the aggregation point of view. This is
because the concept of a mean and variation becomes unsuitable when the data
follows this distribution.

3.2 Estimation of the Lévy Distribution from the Empirical Data

We explain how the parameters of the Lévy distribution may be estimated from the
empirical data and how the validity of the Lévy distribution hypothesis may be asserted.
Although various approaches have been proposed in the literature, one of the most
efficient is the one presented by Paulson, Holcomb and Leitch (PHL) [9] in which the
following objective function is minimized against the parameters of the Lévy distribution

 () (), , , , , , PHL
ˆmin L k L ka b g m a m b g- (5)

where the PHL-norm is defined as

 () () () () ()2 2
, , , , , ,PHL

ˆ ˆ expL k L k L k L k k dka m b g a m b g

¥

-¥

- - -ò (6)

Because the integration domain is not bounded, Eq. (5) is more readily solved with a
Gauss-Hermite quadrature.

3.3 Rank Ordering Statistics

More insight about the Lévy distribution may be obtained from its rank ordering
statistics

 () () () () ()
1

1 1

n n

N n n

n n n n

y y

N
F y dy N n P x dx P y dy P x dx

n

- -¥ ¥

= - + -
æ ö æ öæ ö ÷ ÷ç ç÷ç ÷ ÷ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷÷ç ÷ ÷è ø ÷ ÷ç çè ø è ø

ò ò (7)

which gives the probability that the largest value of order n be ny ; for instance, 1y

is the maximum. From Eq. (7), it may be demonstrated that the maximum of
likelihood for the statistics of order n associated with the stable distribution is:

()

1

ML
1

1n

N
y

n

aa g

a

é ù+ê ú= ê ú+ê úë û
 (8)

54 E. Paquet, H.L. Viktor, and H. Guo

When the stability exponent is inferior to one, the rank ordering statistics exhibit a
strong hierarchical behaviour up to the point that the ordering statistic of order one
(the maximum) completely dominates over all the other rank ordering statistics. This
behaviour shall become more evident with the experimental results, presented in
Section 5. A practical consequence associated with this behaviour is that the
aggregation should be based on the maximum value which completely dominates the
ordering statistics. This is the case, for instance, when a Stock Market Index crashes.
The information obtained from the rank ordering statistics may be exploited in order
to group the elements of the hierarchy according to their scale, or order of magnitude.
Then, it may be shown that each scale is characterized by its own Gaussian
distribution. Consequently, the Gaussian paradigm is applicable to the Lévy
distribution in a multiscale framework and the Lévy distribution might be thought of
as a multiscale generalization of the Gaussian distribution.

3.4 Multivariate Lévy Distribution: Definition and Estimation

We extend the Lévy distribution to the multivariate case, i.e. when we have more than
one dimension or feature. Such a multivariate distribution is required when one aims
to study the correlation in between two stable stochastic variables. The multivariate
Lévy characteristic function [8] of dimension d is defined as follow

() ()()

() () ()

μ

μ

, exp

exp , exp , ,
dS

L I

i i ds

a

ay

= - =
é ù
ê úé ù = - - Dê úë û ê úë û

ò

Xk k

E k X k k s
 (9)

where as usual ()E is the expectancy, where

 ()
()

()

1 sgn tan 1
2

1 sgn ln 1
2

u i u
u

u i u u

a

a

pa
a

y
p

a

ì æ öï ÷çï - ÷ ¹çï ÷ç ÷ï è øïí æ öï ÷çï + ÷ =çï ÷ç ÷ï è øïî

 (10)

and where the Euclidian inner product, the frequency vector and the stochastic data
vector are defined as

T T

1 1
1

, , , , , , ,
d

i i d d
i

k X k k X X
=

é ù é ù= =ë û ë ûåk X k X (11)

As opposed to the univariate case, three parameters are required. This is in contrast to
the four scalar parameters that are required for the one-dimensional stable
distribution. The first two are the stability exponent a and the localisation vector μ .

The information about the scale and the asymmetry, which in the one-dimensional
case was captured by two scalar parameters, is now encapsulated in a unique

parameter ()dsD which is a measure, or a partition, defined on the hypersphere dS

Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation 55

(or the sphere in two dimensions). In order to estimate such a distribution from the
empirical data, we follow an approach introduced by Nolan et al. [10]. At first, the
means and the stability exponents associated with each dimension are estimated
independently. Then, the estimated mean vector and the stability exponent of the
multivariate distribution are given by:

 ()μ T
1

1

1
ˆ ˆ ˆ ˆ, , ,

d

d k
kd

m m a a
=

= = å (12)

The empirical multivariate characteristic function is obtained from a discrete
formulation of Eq. (9). The discrete equation associated with the expectation is:

 () () () ()
1

1ˆexp , exp ,
M

i i j
j

L i L i
M =

é ù= =ë û åk E k X k k X (13)

where { }
1, ,j j M=

X

is the set of all the empirical multivariate data while the discrete

equation associated with the right part of Eq. (9) is:

 () () ()
1

ˆ ˆln ,
n

i i i j j
j

I L ay
=

= - = Dåk k k s (14)

If a symmetric grid is assumed for both the hypersphere and the frequency domain,

the weights on the hypersphere { } 1, ,i i n=
D

may be estimated from the following

constrained objective function

 Δ Δ
2

min 0- \ ³c A (15)

where

()() ()()
()() ()()

Δ

T
1

1

,

ˆ ˆRe , ,Re ,
ˆ ˆIm , , Im

,

m

m

j i j

I I

I I

A

é ù
ê ú= ê ú
ê úë û
é ù é ù= D =ë û ë û

k k
c

k k

A

 (16)

where Re and Im stand for the real and imaginary part of a complex number and where

()()
()(),

Re , , 1, ,

Im , , 1, ,2
i j

i j
i j

i j m
A

i j m m
a

a

y

y

ìï =ï= íï = +ïî

k s

k s

 (17)

Then, we use this grid in order to define the generalization of the covariance for the
stable distribution.

4 Generalization of the Covariance: The Covariation

We extend the concept of covariance to stable distributions. This is important, in practice,
because we often need to determine if two variables are correlated or not. This is the case,
for instance, when aiming to protect data privacy, where the goal is to determine if an

56 E. Paquet, H.L. Viktor, and H. Guo

attribute may be inferred from another [11]. If the data are distributed according to a Lévy
distribution, the concept of covariance must be generalized with the concept of covariation
[12]. The covariation in between two stochastic stable variables is defined as

 () ()
2

11 1
1 2 1 2, sgn

S

X X k k ds x x x
aa a

a

-- -= D \ò (18)

where the measure on the bidimensional sphere is associated with the bivariate
distribution of the vector formed from the concatenation of the two stochastic variables

involved in the convolution () T
1 2,ds X Xé ùD = ë ûX .

Such a measure may be estimated with the method presented in the previous section
and with the grid introduced in Eq. (15). The covariation reduces to the covariance
when the distribution is Gaussian, i.e. when the stability exponent is equal to two and

the asymmetry is zero. The correlation belongs to the interval 0,1é ùë û where zero indicates

an absence of correlation while the unity indicates a strong correlation. As shown in the
next section, the covariance and the correlation tend to be much stronger if the stability
exponent is less than two. Practically, if one incorrectly assumes a Gaussian distribution
from the start, one may strongly underestimate the real correlation between two
variables. Such an underestimation might have severe consequences [13].

For instance, consider the scenario where private attributes should be identified and
protected. Our earlier work shows that aggregation potentially introduces new privacy
violations. That is, potentially harmful attributes obtained with aggregation are often
different from the ones obtained from non-aggregated databases which means that,
even when privacy is enforced on non-aggregated data, it is not automatically
enforced on the corresponding aggregated data [14]. Suppose that an absence of
correlation between two aggregated attributes such as Age and Income is assumed,
due to an erroneous assumption that the data distribution is Gaussian, rather than
Lévy. However, in reality, these two attributes may be highly correlated. This
incorrect assumption would result in an absence of protection for sensitive attributes,
when they do indeed need to be protected against induced attacks.

5 Experimental Results

In this section, we present various simulations and experiments against real-world
financial databases which illustrate our previous theoretical results. All experiments
were performed using Mathematica 8.0 on a Dell Precision M6400. In the following,
one should keep in mind that 2a = corresponds to a Gaussian distribution.

Table 1. Estimation of the exponent of the Lévy distributions associated with various Stock
Exchange. Excerpted from [15]

Index Period a
FTA W Jap 86.01-93.09 1.808
TOPIX 75.01-91.02 1.519

MSCI Japan Net 80.01-93.09 1.463
Nikkei 225 80.01-93.09 1.626

Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation 57

We begin by analyzing some results on financial data as reported by Lévy Véhel
and Walter (LVW) [15]. The importance of stable distribution is not only theoretical;
as a matter of fact, it has far reaching consequences for financial data. With the
pioneer work of Mandelbrot, it became increasingly apparent that financial data may
be characterized with stable distributions. For instance, let us consider Table 1 which
shows the results obtained for various Stock Market Indexes in Europe and in Japan
by LVW [15]. The stability exponent was estimated with the method presented in
Section 3 and the null hypothesis was asserted with the Kolmogorov-Smirnov test.
As shown by the data, all these indexes clearly have a stable distribution (confidence
level of 99%) and the value of the stability exponent is typically in between 1.6 and
1.8, which is clearly not in the Gaussian regime.

Table 2. Covariation of two shares (Thompson and Michelin) and the CAC 40 Index for
various values of the stability exponent. The acquisition period is from 87.07.09 to 95.05.31.
Excerpted from [15].

1 2,X X
2.0 1.7 1.5 1.3

THOMPSON, CAC 40 0.042 0.157 0.390 0.975
MICHELIN, CAC 40 0.042 0.159 0.326 0.993
CAC 40, CAC 40 0.036 0.128 0.300 0.750

Table 2 shows the covariations in between the Michelin and the Thompson titles as
well as with the CAC 40 Stock Exchange Index. The covariations may be estimated
with the method presented in Sections 4. The calculation was repeated for various
values of the stability exponent; the real one being around 1.7. Table 2 shows that, if a
Gaussian distribution is incorrectly assumed, the correlation (covariation) tends to be
underestimated. For instance, the covariation in between the Michelin share and the
CAC 40 Index is 0.042 with the false assumption of a Gaussian distribution for the
data while in reality it is 0.159 for a stability exponent of 1.7. Here, the covariation
tends to be stronger, when the stability exponent is smaller.

5.1 Market Value Volatility Classification

In the next experiment, we consider a binary classification problem. In this simulation,
the level of stability of the market (i.e. whether a market is volatile or stable) is assumed
to be inferred from a set of rules based on the enterprise value indicator. The enterprise
value is an economic indicator reflecting the market value of a business in its entirety. It
is defined as the sum of the claims of all the security-holders, namely debt holders,
preferred shareholders, minority interest, common equity holders, and others. The
enterprise value is one of the fundamental metrics used in business valuation, financial
modelling, accounting and portfolio analyses, amongst others. A rule assessing the
volatility of the market may be stated as follows. If the typical fluctuation of the
enterprise value indicator is greater than a critical level, then the market is likely to
become volatile. On the other hand, if the typical fluctuation of the indicator is less than
the critical value, the market should remain stable.

58 E. Paquet, H.L. Viktor, and H. Guo

In order to simulate this problem, we created ten synthetic data sets. Each data set is
constituted of 100 000 enterprise value indicators. The indicators are distributed
according to a truncated Lévy distribution. The truncation is necessary in order to have a
realistic simulation, because the indicators may only take values within a certain
interval. That is, the value that an enterprise is worth is always bounded in that its value
cannot be infinite. In this case, the typical fluctuation may be assimilated to the scale
parameter g of the Lévy distribution. In order to demonstrate the importance of taking

into account the underlying distribution, we estimate the typical fluctuation with two
approaches. In the first approach, we assume that the central limit theorem applies and
that the typical variation may be assimilated to the standard deviation of the data. In the
second approach, we fit a truncated Lévy distribution to the synthetic data and
assimilate the typical fluctuation to the scale parameter of the fitted Lévy distribution.

The Lévy distribution used in order to generate the data is parameterized as
follows. The stability exponent which characterized extreme fluctuations has a value
of 0.5. The scale parameter, which refers to the typical variations of the indicator, has
a value of 4. For the purpose of this simulation, the asymmetry parameter is equal to
zero and the localization parameter is equal to one, while the distribution is defined on
the interval one to hundred. The critical value of the indicator, i.e. the value where the
market becomes volatile, is set to 5.

Fig. 1. Distribution of the Balance attribute (PKDD 1999 discovery challenge financial database)
in blue and of the best fitting normal distribution in red as obtained with the maximum of
likelihood method. (The normal distribution poorly represents the actual distribution.) The abcissa
is the Balance attribute and the ordinate is the probability density function.

If one assumes an underlying Gaussian distribution and calculates the typical
variation with the standard deviation for each data set, one obtains a value in between
19.38 and 19.54 (recall that the correct value is 4) with an accuracy of 0%. On the other
hand, if one fits a truncated Lévy distribution to each data set and read the typical
variation from the scale parameter of the fitted distribution, one obtains a value in
between 3.96 and 4.04 (recall again that the correct value is 4) with an accuracy of
100%. The validity of the fitting is asserted by applying both the Kolmogorov-Smirnov
and the Cramér-von Mises tests. In both cases, the null hypothesis that the data are
distributed according to the fitted distribution is not rejected at the 5% level.

Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation 59

Fig. 2. Distribution of the Balance attribute in blue and of the best fitting stable distribution in
red; the later is obtained with the maximum of likelihood method. The abcissa is the Balance
attribute and the ordinate is the probability density function.

Consequently, if one assumes an underlying Gaussian distribution for the data, one
wrongly classifies the market as highly volatile (19.38 > 5). When fitting a Lévy
distribution, one correctly concludes the market is unlikely to be volatile (4.04 < 5).

5.2 PKDD 1999 Discovery Challenge Financial Database

Next, we consider the PKDD 1999 discovery challenge financial database, which has
been widely used as a benchmark in the multi-relational classification domain. This
database was offered by a Czech bank and contains data describing the level of risk of
a customer to default on a loan [16]. The database consists of eight tables. The
Account table contains the account number, as well as the information regarding the
district a person falls in and the frequency of payment. Other tables include
the Demographic profile, the client’s Disposition in terms of type, Credit Card
information and Client descriptions, including gender and the location in which they
reside. The Order table details the number of money transfers and the Loan table
describes the payments of loans. Very often, this database is used to classify whether
a Loan is at risk or not. This dataset contains the data about 682 Loans, of which 76
had bad outcomes. In this paper, we are especially interested in situations where an
unforeseen event may expose more Loans to risk and we are thus interested in
determining the upper limits of the minimum payments associated with high risk
Loans. To this end, we aim to determine the interplay in between the remaining
Balance and the Amounts to be paid, in order to determine their importance for
determining the risk level of a Loan. Specifically, we are interested in determining the
rules to identify the Loans that are likely to become high risk (the minority class), e.g.
in a housing market collapse caused by sudden financial turmoil.

To this end, we turn our attention to the Transaction table, which contains the
details of all Transactions associated with a Loan. We apply a number of feature
selection algorithms to this database, including the Gain ratio, Chi Squared and
Correlation based Feature Selection (CFS) measures [11]. Our results indicate that the

60 E. Paquet, H.L. Viktor, and H. Guo

Amount and Balance attributes are always selected as being features that are strongly
related to the outcome of a Loan, with and without aggregation. In this setting, a
single Loan has many Transactions associated with it.

Table 3. Parameters of the fitted stable distribution associated with the Balance attribute

a b m g

1.6232 1.0 47321.3 14013.9

The Transaction table contains, amongst others, the Amount and Balance attributes

that both contain 54694 entries. Recall that, to accommodate one to many
relationships, existing techniques that learn from multi-relational databases, such as
Relaggs and MRC, use SQL aggregation functions [5, 6]. To this end, for each Loan,
the original Transaction table is transformed into storing the average, minimum,
maximum and sum of the Amount and Balance, prior to model building. Implicitly, it
is assumed that the data has a normal distribution. For example, the SQL average
function computes the average of a set of values by dividing the sum of those values
by the count of values that is not null. Next, we explore whether this implicit
assumption holds for these two attributes.

Table 4. Mean, standard deviation, skewness and kurtosis as obtained from the fitted Gaussian
and Lévy distributions associated with the Balance attribute

Distribution Mean Std Dev. Skewness Kurtosis
Normal 44534.2 24109.7 0 0
Lévy 47321.3 ∞ ∞ ∞

Figure 1 shows the distribution of the Balance attribute as well as the best fitting

Gaussian distribution. The parameters of this distribution are obtained with the
maximum likelihood method. It follows that the Gaussian distribution offers a poor fit
to the Balance attribute distribution. We attempted to fit numerous distributions to the
Balance, such as the Student distribution, the Weibull distribution, amongst others.
However, the best fit was obtained with the Lévy distribution, as illustrated in Fig. 2.
The parameters corresponding to this distribution, which were obtained with the
maximum likelihood method, are shown in Table 3.

Table 5. Mean, standard deviation, skewness and kurtosis as obtained from data generated from
the fitted stable distribution associated with the Balance attribute. Each generated data set
consists of 54694 entries.

Distr. Mean Std Dev. Skewness Kurtosis
1 47419.2 99020.1 145.408 27467.7

2 47996.1 158948 168.972 33756.5
3 47041.7 46051.2 18.1492 677.382

Table 4 shows the mean, the standard deviation, the skewness and the kurtosis

calculated from the normal and the stable distributions associated with the Balance
attribute distribution. Since the stability exponent a is smaller than two, it is not

Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation 61

possible to evaluate the standard deviation and the skewness from the stable
distribution, because the statistical moments needed for the calculation are infinite.
Nevertheless, the parameters of the stable distribution provide a measure of the
standard deviation and of the skewness through the scale parameter g and b the
asymmetry parameter. This implies that, when the underlying distribution is stable,
the scale and the asymmetry should not be estimated directly from the data, but from
the parameters of the fitted distribution.

In order to further stress the importance of not directly estimating these parameters
from the data, we have generated three data sets. These datasets consisted of 54694
entries as in the original database with the stable distribution parameterized by Table 4.
Table 5 shows the results. Since the stability exponent is greater than one (1.62), the
estimation of the mean from the data is consistent from one set to the next. However,
because the stability exponent is less than two (1.62), it is not possible to estimate any
moment greater or equal than two which means that the standard deviation, the
skewness and the kurtosis are not consistent from one synthetic data set to the next. In
other words, any measure based on the statistical moments greater or equal than two is a
random number which will vary from one realization of the data set to the other as
shown in Table 5. These findings suggest that when correlation evaluation is sensitive,
one should carefully select the right equation for correlation computation [11].

Fig. 3. Distribution of the Amount attribute in blue and of the best fitting Weibull distribution
in red. The abcissa is the Amount attribute and the ordinate is the probability density function.

Next, we turn our attention to the Amount attribute, which also contains 54,694
values. Here, the best fit was obtained with a Weibull distribution [17], another
extreme value distribution

 ()

1

0, , expm a

am x

W x
a

x

x

x
<

+

é ùæ öê ú+ - ÷ç ÷ê úç ÷ç ÷ê úç ÷= -ç ÷ê ú÷ç ÷ê úç ÷ç ÷çê úè ø
ê úë û

 (19)

as illustrated in Fig. 3. This distribution also has a heavy tail, which implies that the
normal distribution is not a good fit in the case where one is interested in studying
extreme values. In this application, it follows that we are indeed very interested in
transactions with high amounts, in order to alert the financial institution of e.g. the

62 E. Paquet, H.L. Viktor, and H. Guo

possibility of money laundering activities. The same observation holds for small
amounts being paid, which may point to customers who are at risk to shortly default
on their loans. Again, using aggregation functions to handle the one to many
relationship between the Loan and the Transaction table, may lead to a data mining
algorithm failing to find rules that detect such cases.

In summary, our analysis indicates that care should be taken when employing
aggregation when building models against relational databases. In many cases, assuming
that the normal distribution holds is not correct. In the case where we are interested in
extreme values, averaging values may not be the best option. To further illustrate this
point, we built a number of J48 decision trees and JRIP rule learners against a dataset
which contains the Loan and Transaction tables. The resulting dataset contains 682 tuples
with aggregated values for the balances and amounts paid. We trained the classifiers
against this dataset, in order to explore the importance of each aggregate when aiming to
predict a loan’s outcome. We followed the standard 10 fold cross validation approach. The
accuracy of a default classifier in 88.8% and it fails to identify any bad Loans.

Next, we used an aggregate based on the minimum values of the Amounts being
paid and remaining Balances, i.e. in order to predict the upper limits of the minimum
Amounts and Balances being paid, before a high risk loan defaults. This aggregate
produce a J48 decision tree which is 93.8% accurate and a JRIP rule learner which is
94.5% accurate. We were thus able to learn sets of highly accurate rules that identify
the upper threshold values for the Balances and Amounts associated with bad Loans.
Specifically, JRIP created two out of three high coverage rules that are 100% accurate
against the bad Loans. Importantly, using the average values does not produce highly
accurate predictive models, with an accuracy of only 89.1%. Rather, when using the
average, this aggregate fails to correctly classify any bad Loans. This confirms our
observation that the averages are not useful to typify the outcomes of high risk Loans.

6 Conclusions

The development of new data mining models for catastrophic event prediction,
including stock market volatility detection, estimating the damages caused by oil
spills, and forecasting the extend of tsunamis and other natural disasters, are an
important and urgent research topic. In this communication, we have analyzed data
aggregation and the data covariance (covariation), of such data, where the underlying
distributions are not Gaussian, but Lévy. We have shown that such data may be
aggregated with the mean, but not with the variance. This is due to the fact that the
variance becomes infinite and its estimate tends to fluctuate randomly when evaluated
on a finite size aggregate. We have also shown that the estimation of the mean
converges rather slowly when the stability exponent is small. In this case, both the
mean and the variance are infinite and their estimate on a finite size aggregate tends to
fluctuate randomly. In these circumstances, the aggregate is better characterized with
its upper limit which tends to dominate by many orders of magnitude over the other
elements of the aggregate, both from a sum and rank ordering statistics point of view.
We have shown that financial data may be characterized with stable distributions with
a stability exponent typically around 1.7. The calculation of the covariations in
between Stocks and Stock Market Indexes has shown that the covariance
(covariation) tends to be underestimated if a Gaussian distribution is wrongly

Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation 63

assumed. We have shown that, for a well-known benchmarking financial database,
some attribute values follow a stable distribution rather than the normal distribution.
Further, our results show that the use of average values is not suitable in such
situations. As we also mentioned in Section 2, our approach is highly relevant for data
stream mining, where we are interested in finding exceptions and large fluctuations in
fast evolving data. We aim to explore this research issue in our future work.

References

1. Knobbe, A.J., Siebes, A., Marseille, B.: Involving Aggregate Functions in Multi-Relational
Search. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI),
vol. 2431, pp. 145–168. Springer, Heidelberg (2002)

2. Malerba, D.: A relational perspective on spatial data mining. Int. J. Data Mining.
Modelling and Management 1(1), 103–118 (2008)

3. Groot, R.D.: Lévy distribution and long correlation times in supermarket sales. Physica A:
Statistical Mechanics and its Applications 353, 501–514 (2005)

4. Walter, C.: Lévy-stability-under-addition and fractal structure of markets: implications for
the investment management industry and emphasized examination of MATIF notional
contract. Mathematical and Computer Modelling 29(10-12), 37–56 (1999)

5. Krogel, M.A., Wrobel, S.: Facets of aggregation approaches to propositionalization. In:
The 13th International Conference on Inductive Logic Programming, ILP 2003 (2003)

6. Guo, H., Viktor, H.L.: Multirelational classification: A multiple view approach.
Knowledge and Information Systems 17, 287–312 (2008)

7. Zliobaite, I., et al.: Next challenges for adaptive learning systems. ACM SIGKDD
Explorations Newsletter 14(1), 9 (2012)

8. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic
Models with Infinite Variance. Chapman & Hall, New York (1994)

9. Paulson, A.S., Holcomb, E., Leitch, R.: The estimation of the parameters of the stable law.
Biometrica 62(1), 163–170 (1977)

10. Nolan, J.P., Panorska, A.K., McCulloch, J.H.: Estimation of spectral measures.
Mathematical and Computer Modelling 34(9-11), 1113–1122 (2001)

11. Guo, H., Viktor, H.L., Paquet, E.: Privacy Disclosure and Preserving in Learning with
Multi-relational Databases. Journal of Computing Science and Engineering 5(3), 183–196
(2011)

12. Cheng, B., Rachev, S.: Multivariate Stable Future Prices. Mathematical Finance 5, 133–
153 (1995)

13. Tao, Y., Pei, J., Li, L., Xiao, X., Yi, K., Xing, Z.: Correlation hiding by independence
masking. In: IEEE 26th International Conference on Data Engineering, ICDE, pp. 964–967
(2010)

14. Jafer, Y., Viktor, H.L., Paquet, E.: Aggregation and privacy in multi-relational databases.
In: Tenth Annual International Conference on Privacy, Security and Trust, PST, pp. 67–74
(2012)

15. Lévy Véhel, J., Walter, C.: Les marchés fractals (“The fractal markets”). Presses
Universitaires de France, Paris (2002)

16. Berka, P.: Guide to the Financial Data Set. In: Siebes, A., Berka, P. (eds.) PKDD 2000
Discovery Challenge (2000)

17. Rinne, H.: The Weibull Distribution: A Handbook. Taylor & Francis Group, Boca Raton
(2009)

http://sedac.ciesin.columbia.edu/gpw

Pair-Based Object-Driven Action Rules

Ayman Hajja1, Alicja A. Wieczorkowska2,
Zbigniew W. Ras1,3, and Ryszard Gubrynowicz2

1 University of North Carolina, Dept. of Computer Science,
9201 University City Blvd., Charlotte, NC 28223, USA
2 Polish-Japanese Institute of Information Technology,

Koszykowa 86, 02-008 Warsaw, Poland
3 Warsaw University of Technology, Institute of Computer Science,

Nowowiejska 15/19, 00-665 Warsaw, Poland
{ahajja,ras}uncc.edu, alicja@poljap.edu.pl,

rgubryn@pjwstk.edu.pl

Abstract. Action rules, as proposed by Raś and Wieczorkowska in [11],
can be defined as actionable tasks that describe possible transitions of ob-
jects from one state to another with respect to a distinguished attribute.
Recently, a new specialized case of action rules, namely object-driven
action rules, has been introduced by Ayman et al. in [4]. Object-driven
action rules are action rules that are extracted from information sys-
tems with temporal and object-based nature. By object-based nature,
we refer to systems that contain multiple observations for each object. A
typical example of an object-based system would be a system of patients
recording multiple visits; each patient is considered a distinct object. In
this paper, we will further investigate the concept of object-driven action
rules by proposing a new pair-based way of examining object-driven sys-
tems, which we believe is more intuitive for temporal and object-driven
systems. The focus of this paper will be on our proposed pair-based ap-
proach, along with the modifications required to extract action rules and
calculate their properties.

Keywords: action rules, object-driven action rules, temporal data,
hypernasality.

1 Introduction and Background

Action Rules, as proposed by Raś and Wieczorkowska in [11], describe possible
transitions of objects from one state to another with respect to a specific at-
tribute, called the decision attribute. Action rules have been successfully applied
in many domain areas including business [11], medical diagnosis and treatment
[16], [17], and music automatic indexing and retrieval [6], [9].

System users are mainly interested in actionable tasks that trigger state tran-
sitions that move objects from a less desirable state to a more desirable state;
action rules specify the actions needed to be taken to reach that desired goal.

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 79–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

80 A. Hajja et al.

In this paper, we will introduce a novel approach for extracting action rules
from object-driven and temporal systems. There has been considerable research
on the varied methodologies for extracting action rules from information systems
[5,7,13]. However, adapted action rules systems that are designed for datasets
with particular nature is to some extent new. In [4], Ayman et al. proposed an
adapted action rules extraction method for information systems of temporal and
object-based nature. In this work, we will extend the approach presented in [4].

2 Object-Driven Action Rules Revisited

The drive behind the introduction of object-driven action rules in [4] was to
bring forth an adapted approach to extract action rules from systems of tempo-
ral and object-driven nature.

In [4], we proposed an object-independency assumption that suggests extract-
ing patterns from subsystems defined by unique objects, and then aggregating
similar patterns amongst all objects. The motivation behind this approach is
based on the fact that same-object observations share similar features that are
not shared with other objects, and these features are possibly not explicitly in-
cluded in our dataset. Therefore, by individualizing objects prior to calculating
action rules, variance is reduced, and over-fitting is potentially avoided. In addi-
tion to the object-independency assumption, temporal information is exploited
by taking into account only the state transitions that occurred in the valid
direction.

In this section, we will start with providing the necessary background con-
cerning action rules. A complete description of the motivation and the concept
of the pair-based approach will be presented next, along with the modifications
required to extract object-driven action rules and calculate their properties.

2.1 Action Rules

The notion of action rules was first proposed by Z. W. Raś and A. Wieczorkowska
in [11]. Action rules describe possible transition of objects from one state to
another with respect to a specific attribute, called the decision attribute. The
goal of action rules is to provide system users with actionable tasks that can be
directly applied to objects listed in information systems to reach a desired goal.

Let S = (X,A, V) denotes an information system [8], where:

1. X is a nonempty, finite set of instances (objects),

2. A is a nonempty, finite set of attributes;

a : X → Va is a function for any a ∈ A, where Va is called the domain of a,

3. V =
⋃
{Va : a ∈ A}.

By a decision table, we mean an information system that makes a clear explicit
distinction between attributes in A, and will therefore label each attribute as
either a decision attibute, or a non-decision attribute, called condition attribute.

Pair-Based Object-Driven Action Rules 81

The decision attribute(s), which normally but not necessarily is a single at-
tribute, is the attribute that we are interested in most. For system users, the
eventual goal would be to change the decision attribute from less desirable to
more desirable state. For example, a company would be interested in moving
clients’ states of loyalty from lower to higher.

All non-decision, or condition, attributes are further partitioned into two mu-
tually exclusive sets; the first one is the stable attributes set, and the second one
is the flexible attributes set. By stable attributes set we mean the set that con-
tains attributes that we have no control over; their values cannot be changed by
the users of our system. An example of a stable attribute is the place where the
person was born. On the other hand, values of flexible attributes can be influ-
enced and changed; an example of a flexible attribute is the patient’s prescribed
medications. In this paper, ASt, AFl, and {d} will represent the set of stable at-
tributes, the set of flexible attributes, and the decision attribute, respectively.
Hence, the set of attributes A can be redefined as A = ASt ∪AFl ∪ {d}.

An atomic action set is an expression that defines a change of state for a
single distinct attribute. For example, (a, a1 → a2) is an atomic action set which
defines a change of state for the attribute a from a1 to a2, where a1, a2 ∈ Va.
Clearly, in this case, the attribute a is a flexible attribute, since it changes its
state from a1 to a2. In the case when there is no change, we omit the right arrow
sign, so for example, (b, b1) means that the value of attribute b remains b1, where
b1 ∈ Vb.

An action set is defined as follows:

1. If t is an atomic action set, then t is an action set.

2. If t1, t2 are action sets and ∧ is a 2-argument functor called composition,
then t1 ∧ t2 is a candidate action set.

3. If t is a candidate action set and for any two atomic action sets (a, a1 →
a2), (b, b1 → b2) contained in t we have a �= b, then t is an action set.

4. No other sets are called action sets.

The domain Dom(t) of an action set t is the set of attributes of all atomic action
sets contained in t. For example, t = (a, a1 → a2) ∧ (b, b1) is an action set that
consists of two atomic action sets, namely (a, a1 → a2) and (b, b1). Therefore,
the domain of t is {a, b}.

Action rules are expressions that take the following form: r = [t1 ⇒ t2], where
t1, t2 are action sets. The interpretation of the action rule r is that by applying
the action set t1, we would get, as a result, the changes of states in action set
t2. We also assume that Dom(t1)∪Dom(t2) ⊆ A, and Dom(t1)∩Dom(t2) = φ.

For example, r = [[(a, a1 → a2) ∧ (b, b2)] ⇒ (d, d1 → d2)] means that by
changing the state of the attribute a from a1 to a2, and by keeping the state
of the attribute b as b2, we would observe a change in the attribute d from the
state d1 to d2, where d is commonly referred to as the decision attribute.

82 A. Hajja et al.

Standard interpretation Ns of action sets in S is defined as follows:

1. If (a, a1 → a2) is an atomic action set, then
Ns((a, a1 → a2)) = [{x ∈ X : a(x) = a1}, {x ∈ X : a(x) = a2}].

2. If t1 = (a, a1 → a2) ∧ t and Ns(t) = [Y1, Y2], then
Ns(t1) = [Y1 ∩ {x ∈ X : a(x) = a1}, Y2 ∩ {x ∈ X : a(x) = a2}].

Let us define [Y1, Y2] ∩ [Z1, Z2] as [Y1 ∩ Z1, Y2 ∩ Z2] and assume that Ns(t1) =
[Y1, Y2] and Ns(t2) = [Z1, Z2]. Then, Ns(t1 ∧ t2) = Ns(t1) ∩Ns(t2).

If t is an action set and Ns(t) = [Y1, Y2], then the support of t in S is defined
as supp(t) = min{card(Y1), card(Y2)}.

Let r = [t1 ⇒ t2] be an action rule, supp(t1) > 0, Ns(t1) = [Y1, Y2], and
Ns(t2) = [Z1, Z2]. Support supp(r) and confidence conf(r) of r are defined as:

supp(r) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)},

conf(r) =

[
card(Y1 ∩ Z1)

card(Y1)

]
∗
[
card(Y2 ∩ Z2)

card(Y2)

]
.

2.2 Action Rules Extraction

There have been a considerable amount of research on various methodologies for
extracting action rules from information systems [5,7,13]. In general however,
we can categorize all methodologies into two groups; the first one being when
classification rules are required prior to the construction of action rules [12],
[15], and the second, more recent approach, being when action rules are directly
extracted from an information system [10].

To extract pair-based object-driven action rules, we used the algorithm de-
scribed in [10]. The idea of the algorithm is to start by constructing all possi-
ble action sets that have occurred more than a pre-defined number, called the
minimum support. Then, in accordance to our desired change in the decision
attribute, action rules are formed.

Let ta be an action set, where Ns(ta) = [Y1, Y2] and a ∈ A. We say that ta is
a frequent action set [10] if card(Y1) ≥ λ1 and card(Y2) ≥ λ1, where λ1 is the
minimum support. Another way of interpreting the frequent action sets would be
that all frequent action sets have support greater than or equal to the minimum
support λ1. By specifying λ1, we make sure that the extracted action rules have
support greater than or equal to the minimum support λ1. Algorithm presented
below is similar to [1].

To extract action rules, we start with generating atomic action sets that have
support greater than or equal to the minimum support value λ1 pre-defined
by the user; we will refer to this set as 1-element frequent action set. The
term frequent will be used to indicate that an action set has support greater
than or equal to the minimum support, and the term k-element will be used
to indicate the number of elements (or atomic action terms) in an action set.

Pair-Based Object-Driven Action Rules 83

Both frequent atomic action sets and 1-element frequent action set refer to ex-
actly the same set, since from the definition of action sets, they consist of only
one element.

After generating all frequent atomic action sets, we undertake the following
two-step process initially for k = 1:

1. Merge step: Merge pairs (t1, t2) of k-element action sets into all (k + 1)-
element candidate action sets.

2. Delete step: Delete all (k+1)-element candidate action sets that are either
not action sets, or contain a non-frequent k-element action set, or that have
support less than the minimum support λ1.

We keep iterating the above two steps until we cannot generate new frequent
action sets anymore. At this point, we have generated all (k+1)-element frequent
action sets, which will allow us to generate action rules that are guaranteed
to have support greater than or equal to the minimum support λ1. Last step
is to further filter the desired action rules based on their confidence, where
we only consider action rules with confidence greater than or equal to a pre-
defined minimum confidence λ2. For example, from the frequent action set
t1 = (a, a1 → a2) ∧ (d, d1 → d2), we can generate the following two action rules:

1. r1 = [(a, a1 → a2)⇒ (d, d1 → d2)].

2. r2 = [(d, d1 → d2)⇒ (a, a1 → a2)].

where both r1 and r2 have support greater than or equal to the minimum sup-
port λ1. However, we will only be interested in specific changes of the decision
attribute, e.g. in changing the decision attribute d from state d1 to d2. Therefore,
we will only consider r1.

2.3 Temporal Constraint and Pair-Based Approach

As defined previously, temporal object-driven datasets consist of numerous unique
objects, where each object is comprised of multiple instances that have assigned
corresponding timestamps. Previously in [4], the object p based standard in-
terpretation of an action set t = (a, a1 → a2) was defined as the pair of two
sets [Y1, Y2] where Y1 is the set of instances of the object p that satisfy the left
side, or condition side, of the action set, and Y2 is the set of instances of the
object p that satisfy the right side, or decision side, of the action set, with the
addition that for every instance in Y1, there exist a matching instance in Y2

that occurred after it. This definition resembles the definition of standard in-
terpretation for classical action rules while restricting valid transitions to only
one direction. In this paper however, we argue that the nature of the object-
driven temporal dataset allows us to redefine the standard interpretation into
a more intuitive pair-based structure which we believe is more appropriate for
object-driven temporal systems.

84 A. Hajja et al.

Let us first assume that Is(p) denotes the set of all instances of the object p
in an information system S. Also, the relation ∠ ⊆ Is(p) is defined as:
(p1, p2) ∈ ∠ iff p2 has occurred after p1 .

The pair-based standard interpretation NTC
s(p) in S = (X,A, V) for an object

p is redefined as:

1. If (a, a1 → a2) is an atomic action set, then
NTC

s(p)((a, a1 → a2)) = {(p1, p2) ∈ ∠ : a(p1) = a1, a(p2) = a2}
where ∠ ⊂ Is(p) .

2. If t1 = (a, a1 → a2)∧ and NTC
s(p)(t) = Y1, then

NTC
s(p)(t1) = Y1 ∩ {(p1, p2) ∈ ∠ : a(p1) = a1, a(p2) = p2}

where ∠ ⊂ Is(p) .

In other words, our standard interpretation will consist of all valid transitions
from the left side of an action set to the right side, represented as pairs. The
motivation behind this new interpretation is due to the fact that the instances
within one object are not observed independently, which will allow us to relax
the minimum assumption previously used. Our object-independency assumption
states that the whole system consists of multiple independent subsystems, each
one marked by a unique object. Although it confines the system to extract action
rules only from instances of the same object, it provides more flexibility to be
applied within unique objects.

If t is an action set and NTC
s(p)(t) = Y1, then the support of t in S is defined

as: suppTC
p = card(Y1).

Let r = [t1 ⇒ t2] be an action rule, where NTC
s(p)(t1) = Y1, N

TC
s(p)(t2) = Y2.

The pth support suppTC
p (r) and the pth confidence confTC

p (r) of r are defined
as follows:

suppTC
p (r) = card(Y1 ∩ Y2),

confTC
p (r) =

[
card(Y1 ∩ Y2)

card(Yd)

]
.

To define Yd, let us first assume that ζ(Y) denotes the set of first elements of
the set of pairs Y . For instance, if Y = {(p1, p3), (p3, p4), (p1, p2)}, then ζ(Y) =
{p1, p3}. We define Yd = {(p1, p2) ∈ Y1 : p1 ∈ ζ(Y2)}. The interpretation of this
definition means that to calculate the confidence of the action rule r = (a, a1 →
a2) ⇒ (d, d1 → d2), the pairs that we are considering are the ones that have
first elements that satisfy a = a1 and d = d1. Since the transition from a1 to a2
could possibly trigger other states of decision attribute d, we are only interested
in the states of our action rule.

After all object-driven action rules are extracted and their pth support and
pth confidence are computed for all p ∈ X , we then calculate their total support
suppTC

X (r) (called support) and total confidence confTC
X (r) (called confidence)

following the definition below:

Pair-Based Object-Driven Action Rules 85

Table 1. Information System S

objectID a b c d

x0 1 a1 b1 c1 d1
x1 1 a2 b1 c1 d1
x2 1 a2 b2 c2 d2
x3 1 a1 b2 c1 d1
x4 1 a2 b1 c1 d2
x5 2 a1 b2 c1 d2
x6 2 a2 b1 c1 d1
x7 3 a1 b2 c1 d1
x8 3 a2 b2 c1 d2
x9 3 a1 b1 c1 d1
x10 3 a2 b1 c1 d2

suppTC
X (r) =

∑
p∈X

suppTC
p (r) ,

confTC
X (r) =

∑
p∈X

(
suppTC

p (r) ∗ confTC
p (r)

suppTC
X (r)

)
.

If the denominator in the formula for calculating confidence is equal to zero,
then the confidence is equal to zero by definition.

Example to Demonstrate Pair-Based Object Driven Support and Con-
fidence: Here, we provide an example to demonstrate how we calculate the sup-
port and the confidence for the whole system S shown in Table 1. We assume
that for all 3 objects in X their instances xi, where 1 ≤ i ≤ 10, have chronolog-
ical order.

Referring to our information system S shown in Table 1, we calculate the
support suppTC

X (r) and the confidence confTC
X for the following rule:

r = [(a1 → a2) ∧ (c, c1)⇒ (d, d1 → d2)].

We first calculate the pth standard interpretation for each object p (e.g. for a
patient) for both the condition and the decision parts in the action rule r:

NTC
s(1)((a, a1 → a2) ∧ (c, c1)) = {(x0, x1), (x0, x2), (x0, x4), (x3, x4)} ∩

{(x0, x1), (x0, x3), (x0, x4), (x1, x3), (x1, x4), (x3, x4)}
= {(x0, x1), (x0, x4), (x3, x4)} ,

NTC
s(1)(d, d1 → d2) = {(x0, x2), (x0, x4), (x1, x2), (x1, x4), (x3, x4)} ,

NTC
s(2)((a, a1 → a2) ∧ (c, c1)) = {(x5, x6)} ,

86 A. Hajja et al.

NTC
s(2)(d, d1 → d2) = φ ,

NTC
s(3)((a, a1,→ a2) ∧ (c, c1)) = {(x7, x8), (x7, x10), (x9, x10)} ∩

{(x7, x8), (x7, x9), (x7, x10), (x8, x9), (x8, x10), (x9, x10)}
= {(x7, x8), (x7, x10), (x9, x10)} ,

NTC
s(3)(d, d1 → d2) = {(x7, x8), (x7, x10), (x9, x10)} .

Using the temporal constraint and the object-driven assumptions, the pair-based
support and confidence for each object is calculated as follows:

supTC
1 (r) = card({(x0, x4), (x3, x4)}) = 2 ,

confTC
1 (r) =

[
card({(x0, x4), (x3, x4)})

card({(x0, x1), (x0, x4), (x3, x4)})

]
=

2

3
,

supTC
2 (r) = card(φ) = 0 ,

confTC
2 (r) = 0 ,

supTC
3 (r) = card({(x7, x8), (x7, x10), (x9, x10)}) = 3 ,

confTC
3 (r) =

[
card({(x7, x8), (x7, x10), (x9, x10)})
card({(x7, x8), (x7, x10), (x9, x10)})

]
=

3

3
= 1 .

Now we calculate the overall support and confidence for the whole system:

supTC
X (r) = 5, confTC

X (r) =

(
2 ∗ 2

3

5

)
+

(
3 ∗ 1
5

)
=

4.33

5
= .87 .

3 Experimental Data: Hypernasality Data Set

Distortions of the velopharyngeal closure, resulting in speech hypernasality or
hyponasality, may cause speech disorders in children [3]. The patient’s nasophar-
ynx disorders have been examined in the Children’s Memorial Health Institute in
Warsaw for many years. The gathered data also include general information on
the patient’s condition if it can be of importance, e.g. cerebral palsy, neurology,
or myopathy. This way a reach collection of complex data describing hypernasal-
ity was gathered, in close cooperation with one of the co-authors, Prof. Ryszard
Gubrynowicz, who is a speech scientist and expert in this area; the data were
collected when he was working in the Children’s Memorial Health Institute.

Pair-Based Object-Driven Action Rules 87

3.1 Velum Malfunction in Children

Hypernasality can be examined by means of Czermak’s mirror test of nasal
air escape, see Figure 1. The child is asked to repeat several times a syllable
composed of a plosive consonant and an open vowel, e.g. /pa/-/pa/-/pa/, and
the sizes of the fogging circles appearing on the mirror are rated on 4–point
scale, from 0 (no hypernasality) to 3 (most severe hypernasality). Therefore,
Czermak′s mirror test was used as a decision attribute in the nasality data set.
All attributes, representing various medical conditions in the examined children,
are listed in Table 2. More explanations about these attributes are given below.

Each patient was examined several times. Personal data were recorded (first
name and last name, sex), and for each examination the age of the child was
marked. Personal data were removed before further processing, and replaced with
ID data, representing the patient’s ID combined with the sequential number of
this patient’s visit.

During each visit, the articulation of selected vowels and consonants was
recorded, and the recording date was marked (recording date attribute). The
data stored in columns marked as diagnosis and diagnosis2 describe patient’s
condition related to nasality; only one diagnosis is stored in each of these columns,
so diagnosis2 represents additional diagnosis, if there is more than one. The fol-
lowing diagnoses are described in these columns: R - cleft, RP - cleft palate, OR
- after cleft palate surgery, WKP - congenital short velum, NO - hypernasal-
ity, NZ - hyponasality, BR - no diagnosis, PRP - submucous cleft palate, AT
- after tonsillectomy, DKP - quite short palate, RJ - cleft uvula, III - hyper-
trophy of adenoids and possibly palatine tonsils, MP - hypertrophy of palatine
tonsils, MPDz - cerebral palsy, AD - after adenotomy, ADT - after adenoton-
sillectomy, UK - larynx after injury/trauma, NS - hypoacusis, ORM - retarded
speech development, NEU - neurology, ONR - after neurological surgery. If NO
(hypernasality) is diagnosed and marked in the column diagnosis, it represents
the most severe case of hypernasality. The numbers 0–3 in diagnosis2 refer to
sleep apnoea, i.e. temporary cessation of respiration during sleep. 0 means no
apnoea, 3 - very often. Sleep apnoea is also represented as a separate attribute,
but the values assessed for the same patient may differ significantly, so they were
kept in both columns. Generally, physicians may differ in their opinions, this is
why we must be prepared to deal with some inconsistencies in the data. More of

Fig. 1. Czermak’s mirror fogging test, rating the degree of the patient’s nasal air escape
on a 4-point scale: none = 0; small = 1, medium = 2, large = 3 [3]

88 A. Hajja et al.

Table 2. Attributes in the Hypernasality Data Set. Expansions of acronyms are given
in the text, see Section 3.1.

Attribute Description

ID Patient’s ID, with the sequential number of his/her visit
age Age [years, months]
sex Sex {M, F}
recording date Recording Date [yyyy.mm.dd]
diagnosis Diagnosis {AD, ADT, AT, BR, III, myopathy, MPDz,

NEU, NO, ONR, OR, ORM, RJ, RP, UK, WKP}
comments Comments, details of the diagnosis
diagnosis2 Diagnosis {0, 1, 2, 3, DKP, RJ, WKP}
sleep apnoea Sleep apnoea {0, 1, 2, 3}
tonsils Hypertrophy of adenoids and possibly palatine tonsils

{0, 1, 2, 3}
Czermak′s mirror test
- decision attribute Mirror-fogging test {0, 1, 2, 3}
yeaoui Measure of nasalization for vowels /I, e, a, o, u, i/

[0, 100]
i− long Measure of nasalization for vowel /i/-long [0, 100]
bdg Measure of nasalization for high pressure consonants

/b, d, g/ [0, 100]
motility Motility of the soft palate [0, 12]

difference level F1− F2 The difference level of 1st & 2nd formant measured
for /i/-long [-14, 26]

diagnostic details are given in the column comments, but these comments are
not taken into account in the current version of our action rule software.

Other physical conditions recorded in the database include the degree of hy-
pertrophy of adenoids and possibly palatine tonsils, and the degree of motility of
the soft palate, represented as tonsils and motility attributes. The assessment
of the patient’s recorded speech is represented in the following attributes: yeaoui
(vowels /I, e, a, o, u, i/ - a sequence of short vowel sounds spoken in isolation),
i− long (long vowel /i/ - vowel of sustained phonation), and bdg (high pressure
consonants /b, d, g/); SAMPA coding of phonetic alphabet is used [14]. These
attributes describe the measure of nasalization (coefficient of nasalization), cal-
culated from the analysis of mouth and nose signals (separately recorded), as
the ratio of the nose signal level to the sum of the level of the nose and mouth
signals for the phonemes indicated in each attribute. difference level F1 − F2
describes the vocal tract’s first 2 resonances as the difference level of the 1st and
the 2nd formant, measured for /i/-long.

The best diagnosis we are interested in is when the parameters’ values are
in normal ranges. Our decision attribute is Czermak’s mirror test, so its values
are most important in our research. The most desired value of our decision
attribute is when it is equal to 0. The diagnosis is worse when Czermak’s test
value equals 2, next worse case is when Czermak’s test value equals 3, and
this is the most severe case. The lower the Czermak’s test value, the better

Pair-Based Object-Driven Action Rules 89

the diagnosis is. Therefore, we are interested in action rules indicating how to
decrease the Czermak’s test value. The goal of our system is to find action rules
which purpose is to provide hints referring to doctor’s interventions. They show
how values of certain attributes need to be changed (through various medical
procedures, according to the physician’s order), so the patient’s condition will
get improved.

4 Application of Object-Driven Action Rules

In this work, we derived a new set of attributes in accordance to [4]. In addition
to our attributes shown in Table 2, for each of the following four attributes:
yeaoui, i - long, bdg, and motility, two new attributes were derived, resulting in
eight new attributes. The two derived attributes are the difference, and the rate
of change for every two consecutive instances, which we calculated as follows:

1. The difference of values for yeaoui, i - long, bdg and motility for every
two consecutive visits is calculated, thus constituting the following new at-
tributes: yeaoui1, i1 − long, bdg1 and motility1. For example, the value of
bdg1 equals to the value of bdg for the (k+1)th visit minus the value for the
kth visit.

2. The rate of change a2 for every two consecutive visits is defined as:

a2 = arctan

(
a1

age difference in months

)
where a1 is the difference of values of the attribute a for the two visits.

After calculating the derived attributes, we used the Rough Set Exploration
System [2] to discretize our real-valued attributes wrt. our decision attribute.
Next, our temporal object-driven action rule discovery system, presented in Sec-
tion 2.3, was applied to the discretized data.

Our decision attribute Czermak’s mirror test was not discretized. Moreover,
when a physician could not decide between two neighboring Czermak’s test val-
ues, an intermediate value was assigned. Therefore, the decision values are {0,
.5, 1, 1.5, 2, 2.5, 3}.

5 Results and Discussion

In this section we show a sample of the results after running our proposed pair-
based approach to extract object-driven action rules from temporal systems.
We show that by using pair-based approach, not only we were able to extract
a dramatically larger set of action rules, but also we were able to extract ac-
tion rules that provide more dramatic decrease of patient severity than the rules
extracted in [4]. For an action rule to be eligibly used on a patient, the pre-
conditions of the action rule and the patient’s current condition have to match,
meaning that only a subset of our patients will benefit from each particular ac-
tion rule. Having said that, using our pair-based approach to extract action rules

90 A. Hajja et al.

will generate a significant amount of action rules that can be appropriately used
for various sets of patients.

Rule 1. r1 = (difference level F1-F2 ,≥ 9.5→ [6.5, 9.5))
⇒ (Czermak’s mirror test , 3→ 2); supp(r1) = 2, conf (r1) = 100% .

This rule means that by decreasing the difference between the first two formants
of the vocal tract for /i/ - long, we would notice a decent shift of the Czermak’s
mirror test, decreasing from 3 to 2. In [4], we extracted a similar action rule that
also indicated the importance of difference level F1-F2 attribute. However, this
action rule is exclusive to the work described in this paper.

Rule 2. r2 = (i2 − long,≥ 5.5 →< 5.5) ⇒ (Czermak’s mirror test , 3 → 2);
supp(r2) = 3, conf (r2) = 66.7% .

This rule means that decreasing the value of i− long in a short period of time,
since i2− long is defined as the rate of change, will result in a similar decrease of
the Czermak’s mirror test from 3 to 2. Again, this rule affirms the importance
of the attribute i− long.

Rule 3. r3 = (i2 − long,≥ 5.5→< 5.5) ∧ (bdg,≥ 8.5)
⇒ (Czermak’s mirror test , 2.5→ 2); supp(r3) = 2, conf (r3) = 100% .

This rule is similar to Rule 1. It confirms the effect of decreasing the rate of
change of the nasalization measured for /i/ - long, but also adds an additional
condition concerning the nasality of /bdg/, that is, this rule only applies to pa-
tients suffering from high nasality for /bdg/ (≥ 8.5).

Rule 4. r4 = (tonsils , < 2) ∧ (i2 − long,≥ 5.5→< 5.5) ∧ (motility, [4.5, 5.5))
⇒ (Czermak’s mirror test , 2→ 1.5); supp(r4) = 2, conf (r4) = 100% .

This rule states that when a patient is experiencing a little hypertrophied ade-
noids and possibly palatine tonsils (tonsils < 2), we can slightly improve his
condition from Czermak’s mirror test 2 to 1.5 by decreasing the rate of change
in /i/ - long, and if the motility of the soft palate does not change.

Rule 5. r5 = (bdg,≥ 8.5 → [6.5, 8.5)) ⇒ (Czermak’s mirror test , 1 → .5);
supp(r5) = 3, conf (r5) = 66.7% .

This rule states that by only decreasing the nasality of /bdg/, we would be able
to shift the patients’ Czermak’s mirror test state from 1 to .5.

Rule 6. r6 = (i − long,≥ 9.5→ [2.5, 7.5))⇒ (Czermak’s mirror test , 1 → .5);
supp(r6) = 2, conf (r6) = 100% .

Although the support of this action rule is not high, the rule is rather interesting.
It states that by decreasing only one attribute; /i/ - long, there is a 100% chance
that the Czermak’s mirror test will shift from 1 to .5.

Pair-Based Object-Driven Action Rules 91

Rule 7. r7 = (motility,< 3.5→ [4.5, 5.5)) ∧ (diagnosis, OR)
⇒ (Czermak’s mirror test , 1→ 0); supp(r7) = 3, conf (r7) = 100% .

This rule states that if a patient has gone through a cleft palate surgery (OR),
then increasing the motility of the soft palate would significantly improve the
patient’s condition, to the level where the patient is entirely cured, which will
result in shifting the Czermak’s mirror test value from 1 to 0.

Rule 8. r8 = (i2 − long,≥ 5.5 →< 5.5) ⇒ (Czermak’s mirror test , .5 → 0);
supp(r8) = 7, conf (r8) = 71% .

This rule has a relatively high support. It states that decreasing the rate of
change of i− long from greater than or equal to 5.5, to less than 5.5, will result
in curing a light hypernasality.

Rule 9. r9 = (i2 − long,≥ 5.5→< 5.5) ∧ (sleep apnoea , < 2)
⇒ (Czermak’s mirror test , .5→ 0); supp(r9) = 6, conf (r9) = 83% .

This rule is a similar, but more specific action rule than rule 8. By expanding the
condition side of action rules, we are able to generate action rules with higher
confidence. Rule 8 states that by only decreasing the rate of change of i− long,
we would have a 71% chance of shifting the Czermak’s mirror test from .5 to
0. However, rule 9 states that by decreasing the rate of change of i − long and
maintaining a low value of sleep apnoea, we would have an 83% chance of shift-
ing Czermak’s mirror test from .5 to 0.

Rule 10. r10 = (tonsils,≥ 2 →< 2) ⇒ (Czermak’s mirror test , .5 → 0);
supp(r9) = 5, conf (r9) = 100% .

This rule states, with absolute certainty (confidence 100%), that by decreas-
ing the hypertrophied adenoids and possibly palatine tonsils that the patient
is experiencing, the Czermak’s mirror test will shift from .5 to 0. Although the
improvement does not appear to be significant, the high support and high con-
fidence make this rule highly valuable.

In our hypernasality dataset, most of the patients were experiencing slight to
no hypernasality speech (Czermak’s mirror test .5 or 0). As a consequence, the
last three action rules had a much higher support compared to the others.

6 Summary and Conclusions

In this paper we presented a new approach to examine temporal and object-
driven information systems. We proposed a novel pair-based extraction approach
that extends the work proposed by Ayman et al. in [4]. In addition to extracting
stronger action rules in the same domain of hypernasality speech treatment,
we were able to extract a dramatically larger set of action rules that is highly
diversified and can be applied to various cases of patients.

92 A. Hajja et al.

One of the authors is still collaborating with physicians, so the outcome of
this research can be implemented and tested in practice. This confirms that
the obtained rules are in concordance with experience, and they help speech
scientists to recapitulate their practical knowledge.

Acknowledgments. The authors would like to thank Dr. Danuta Chojnacka-
Wa̧do�lowska and Dr. Cecylia Konopka fromChildren’s Memorial Health Institute
in Warsaw for their help with data collection and providing medical diagnoses.

This project was partially supported by the Research Center of PJIIT, sup-
ported by the Polish Ministry of Science and Higher Education. It is also based
upon work supported by the National Science Foundation under Grant No.
OISE-0730065.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of
Items in Large Database. In: Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, pp. 207–216 (1993)

2. Bazan, J.G., Szczuka, M.: The rough set exploration system. In: Peters, J.F.,
Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56.
Springer, Heidelberg (2005)

3. Gubrynowicz, R., Chojnacka-Wa̧do�lowska, D., Konopka, C.: Assessment of Velum
Malfunction in Children Through Simultaneous Nasal and Oral Acoustic Signals
Measurements. Archives of Acoustics 32(1), 165–175 (2007)

4. Hajja, A., Wieczorkowska, A., Raś, Z.W., Gubrynowicz, R.: Object-driven Ac-
tion Rules and their Application to Hypernasality Treatment. In: Proceedings of
ECML-PKDD Workshop on New Frontier in Mining Complex Patterns, Bristol,
UK, September 24-28, pp. 104–115 (2012)

5. He, Z., Xu, X., Deng, S., Ma, R.: Mining Action Rules from Scratch. Expert Sys-
tems with Applications 29(3), 691–699 (2005)

6. Raś, Z.W., Wieczorkowska, A.A. (eds.): Advances in Music Information Retrieval.
SCI, vol. 274. Springer, Heidelberg (2010)

7. Paul, R., Hoque, A.S.: Mining Irregular Association Rules Based on Action and
Non-action Type Data. In: Proceedings of the Fifth International Conference on
Digital Information Management, ICDIM, pp. 63–68 (2010)

8. Pawlak, Z.: Information systems - theoretical foundations. Information Systems
Journal 6, 205–218 (1981)

9. Raś, Z., Dardzińska, A.: From Data to Classification Rules and Actions. Interna-
tional Journal of Intelligent Systems 26(6), 572–590 (2011)

10. Raś, Z.W., Dardzińska, A., Tsay, L.S., Wasyluk, H.: Association action rules. In:
IEEE International Conference on Data Mining Workshops, pp. 283–290 (2008)

11. Raś, Z.W., Wieczorkowska, A.: Action-Rules: How to increase profit of a company.
In: Zighed, D.A., Komorowski, J., Zytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 587–592. Springer, Heidelberg (2000)

12. Raś, Z.W., Wyrzykowska, E., Wasyluk, H.: ARAS: Action Rules discovery based
on Agglomerative Strategy. In: Raś, Z.W., Tsumoto, S., Zighed, D.A. (eds.) MCD
2007. LNCS (LNAI), vol. 4944, pp. 196–208. Springer, Heidelberg (2008)

Pair-Based Object-Driven Action Rules 93

13. Rauch, J., Šimůnek, M.: Action Rules and the GUHA Method: Preliminary Con-
siderations and Results. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.)
ISMIS 2009. LNCS, vol. 5722, pp. 76–87. Springer, Heidelberg (2009)

14. SAMPA - computer readable phonetic alphabet,
http://www.phon.ucl.ac.uk/home/sampa/

15. Tsay, L.-S., Raś, Z.W.: Action rules discovery system DEAR 3. In: Esposito, F.,
Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203,
pp. 483–492. Springer, Heidelberg (2006)

16. Wasyluk, H., Raś, Z.W., Wyrzykowska, E.: Application of Action Rules to HEPAR
Clinical Decision Support System. Experimental and Clinical Hepatology 4(2), 46–
48 (2008)

17. Zhang, X., Raś, Z.W., Jastreboff, P.J., Thompson, P.L.: From Tinnitus Data to
Action Rules and Tinnitus Treatment. In: Proceedings of 2010 IEEE Conference
on Granular Computing, Silicon Valley, CA, pp. 620–625. IEEE Computer Society
(2010)

http://www.phon.ucl.ac.uk/home/sampa/

Effectively Grouping Trajectory Streams

Gianni Costa, Giuseppe Manco, and Elio Masciari

ICAR-CNR
{costa,manco,masciari}@icar.cnr.it

Abstract. Trajectory data streams are huge amounts of data pertaining
to time and position of moving objects. They are continuously generated
by different sources exploiting a wide variety of technologies (e.g., RFID
tags, GPS, GSM networks). Mining such amount of data is a challeng-
ing problem, since the possibility to extract useful information from this
peculiar kind of data is crucial in many application scenarios such as
vehicle traffic management, hand-off in cellular networks, supply chain
management. Moreover, spatial data streams pose interesting challenges
for their proper representation, thus making the mining process harder
than for classical point data. In this paper, we address the problem of
trajectory data streams clustering, that revealed really intriguing as we
deal with a kind of data (trajectories) for which the order of elements is
relevant. We propose a complete framework starting from data prepara-
tion task that allows us to make the mining step quite effective. Since
the validation of data mining approaches has to be experimental we per-
formed several tests on real world datasets that confirmed the efficiency
and effectiveness of the proposed technique.

1 Introduction

The trajectory streams clustering challenge. Data Clustering is one of the most
important mining techniques exploited in the knowledge discovery process[12].
Clustering huge amounts of data is a difficult task since the goal is to find a suit-
able partition in a unsupervised way (i.e. without any prior knowledge) trying to
maximize the similarity of objects belonging to the same cluster while minimiz-
ing the similarity among objects in different clusters. Many different clustering
techniques have been defined in order to solve the problem from different per-
spective, i.e. partition based clustering (e.g. K-means [20]), density based clus-
tering (e.g. DBScan[7]), hierarchical methods (e.g. BIRCH [31]) and grid-based
methods (e.g. STING [28]). Moreover, clustering methods have been exploited
in a wide variety of application scenarios ranging from transactional data, text
documents, XML data, etc. The main problem when clustering data is the high
degree of uncertainty both in the data selection phase and in the definition of
clusters, moreover due to complexity matter some algorithms do not scale-up
very well when the size of the dataset becomes really huge.

Trajectory data streams are intrinsically quite difficult to be analyzed due
to their ordering that makes the clustering task quite complex. This difficulty
propagates through the knowledge discovery process affecting the quality of the

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 94–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Effectively Grouping Trajectory Streams 95

obtained results. particular we can have imprecise information about: a) the data,
i.e. we are unsure of what exactly we observe or measure (every phenomenon
in real life scenarios exhibits a spatial variability). As an example, consider the
symptoms of natural disasters like hurricanes, such as sudden temperature and
pressure variations: a hurricane monitoring system collecting data from different
devices should detect the symptoms to plan a proper reaction to the event. More-
over, trajectory data are collected incrementally as the source devices generate
new data points; b) the extracted rules, e.g. we are unsure about the conclusions
we can draw from even perfect data, i.e. an unusual data is an outlier or is it the
symptom that something is changing in the structure of data (concept drift)?

This work follows our first proposal for trajectory clustering shown in [21,22].
Although our previous works gave some contribution to the trajectory cluster-
ing goal the techniques previously implemented are quite different since: 1) they
are not designed for dealing with data streams; 2) we exploited an approach
based on trajectory partitioning. We point out that, in this paper we tackle the
clustering problem from a different point of view w.r.t. existing approaches (by
ourselves and the other approaches in literature) both in the clustering definition
(we work on the original trajectories) and the acquisition paradigm (we work
on trajectory streams). The features of the presented approach guarantee more
flexibility and better performances as will be shown in the experimental section.

Plan of the paper. In Section 2 we briefly describe some related works. In Section
3 we formalize the trajectory clustering problem and our pre-processing strategy
exploiting lifting schemes. In Section 4 we show our fourier based algorithm
for trajectory clustering. In Section 5 we describe our experimental evaluation.
Finally in section 6 we draw our conclusions.

2 Related Work

Mining trajectory data is an active research area and many interesting propos-
als exist in the literature. In [29] an algorithm for sequential pattern mining is
introduced. The algorithm TrajPattern mines patterns by a process that identi-
fies the top-k most important patterns with respect to a suitable measure called
NM . The algorithm exploits a min-max property since the well known Apriori
property no longer holds for that measure. A general formal statement for the
trajectory pattern mining problem is provided in [10], in that work, trajectory
patterns are characterized in terms of both space (introducing the concept of
regions of interest) and time (considering the duration of movements). In [17]
TRACLUS a density-based trajectory clustering algorithm working over the en-
tire set of sub-trajectories is presented. Clustering is performed using a two-phase
algorithm that first partitions the trajectory according to the MDL principle and
then clusters the trajectory segments using a line-segment clustering algorithm.
The algorithm is parametric w.r.t. weights assigned to sub-trajectories partici-
pating in the cluster definition, namely ε and MinLns. In [18] a technique for
defining and maintaining micro clusters of moving objects is defined. In [14] a
filter-refinement approach has been used for discovering convoys in trajectory

96 G. Costa, G. Manco, and E. Masciari

databases. In particular various trajectory simplification techniques are studied
along with different query processing strategies. Other proposal for trajectory
clustering are described in [9,3]. As a matter of fact all of these algorithms cannot
efficiently handle incremental trajectory data. They are not suitable for incre-
mental data since clusters are re-calculated from scratch every time. In [16] a
partition and detect framework is presented for trajectory outlier detection. In
particular a hybrid approach distance-based and density-based is exploited to
identify anomalies. Interesting approaches exploiting Edit distance are proposed
in [27] and [5]. In particular in [27] a distance measure called LCSS is proposed
while in [5] the proposed distance measure is EDR. In both approaches the
simple edit distance is improved in order to take into account possible errors
such as noise, shifts, or different sampling choices among different trajectories.
A traditional approach for comparing sequences is known in literature as Time
Warping [30], which mainly consists in considering every possible stretching and
narrowing of the two signals, and choosing the best matching. Essentially, time-
warping corresponds to a tree-edit over sequences. Hence, it is quite expensive
(quadratic in complexity), and in most cases the resulting structural similarity
of two trajectories does not necessarily correspond to a similar shape of the as-
sociated signals. An approach exploiting dynamic time warping for comparing
time series is presented in [15].

Data stream clustering has been widely studied and some proposal are
available such as CluStream[1] that studies clustering dynamic data streams.
However all the proposed methods handles only incremental data but not tra-
jectory streams. Instead, the only proposal so far available for trajectory streams
clustering is described in [19]. It works in two steps: online micro-cluster main-
tenance and offline macro-cluster creation. For online part, when a new bunch
of trajectories arrives, each trajectory is simplified into a set of directed line
segments in order to find clusters of trajectory subparts, this simplification is
similar to the one for the static trajectories presented in [17]. When new data
arrive, micro-clusters are updated incrementally to reflect the changes. For off-
line part, when a user requests to see current clustering result, macro-clustering
is performed on the set of micro-clusters rather than on all trajectories over the
whole time span. There exists also a class of approaches to trajectory data that
can be considered orthogonal to our work but deserves to be mentioned. In [4],
the authors examine an alternative representation for motion data, called non-
materialized trajectory, which addresses the problem of effectively representing
trajectory data by taking advantage of the a priori knowledge about the motion
that can be gathered in a transport network. In [11] the problem of compressing
spatio-temporal trajectories is studied in order to provide that the most com-
mon queries can still be answered approximately after the compression step has
taken place. Finally, various compression algorithms for position data streams
are presented in [13]. In [23], the authors propose SCUBA for evaluating con-
tinuous queries over spatio-temporal data streams. The key idea of SCUBA is
to group moving objects and queries based on common spatio-temporal prop-
erties at runtime into moving clusters to optimize query execution and thus

Effectively Grouping Trajectory Streams 97

facilitate scalability. SCUBA exploits shared cluster-based execution by abstract-
ing the evaluation of a set of spatio-temporal queries as a spatial join first be-
tween moving clusters. This cluster-based filtering prunes true negatives. In [6],
an algorithm for computing the approximate k-median of huge number of mov-
ing objects is presented. In order to process distributed location streams with
redundancy and inconsistency, the authors propose a method based on min-wise
hash and location summarization. With this method, redundant updates of dis-
tributed location streams can be filtered out, while the true location could be
derived from inconsistent ones. Consequently, globally uniform samples can be
obtained.

Main Differences of Our Method w.r.t. Existing Methods.Our approach
differs from the above mentioned approaches both for the representation of tra-
jectories and their mining. First of all, we work on the original trajectories with
no loss of information (we will exploit the lifting of trajectories that is a lossless
operation [25]). This feature makes our approach different also from the stream
based approaches so far proposed in literature. Moreover, the spectral analysis
allows us to catch both global an (eventually) local similarity among trajecto-
ries. Finally, the algorithm we designed is incremental so we can easily perform
cluster computation and maintenance.

3 Background

In this paper we tackle the problem of clustering large corpus of trajectory
data streams. While for transactional data a tuple is a collection of features, a
trajectory is an ordered set (i.e., a sequence) of timestamped points. Trajectory
data are usually recorded in a variety of different formats, and they can be drawn
from a continuous domain. We assume a standard format for input trajectories,
as defined next.

Definition 1 (Trajectory). Let P and T denote the set of all possible (spatial)
positions and all timestamps, respectively. A trajectory is defined as a finite
sequence s1, · · · , sN , where N ≥ 1 and each si is a pair (pi, ti) where pi ∈ P and
ti ∈ T .

3.1 Data Pre-processing

Trajectory data are usually two dimensional, thus when a high accuracy is required
we cannot disregard any point. Therefore, there is a need for a multi-resolution
analysis to take into account both the spatial dimensions in the pre-processing
step. We first give some preliminary definition on multi-resolution analysis.

Definition 2. Let {Sm} be a set of subspace of L2(R) and m ∈ Z such that
the following hold: 1) Sm ∈ Sm+1; 2)

⋃
j∈Z Sm = L2(R); 3)

⋂
j∈Z Sm = ∅; 4)

x(t) ∈ Sm ⇔ x(t
2 ∈ Sm−1) then {Sm} is a multi-resolution system.

98 G. Costa, G. Manco, and E. Masciari

The choice of {Sm} defines the analysis being performed in particular if we
choose orthogonal subspace we have orthogonal multi-resolution analysis. We
exploit here L space since it has a proper norm.

Trajectory data multi-resolution analysis aims at representing each trajectory
being analyzed (and then elaborated using a mathematical transform) using a
reliable set of coefficient. In order to perform this step allowing a perfect (i.e.
lossless) reconstruction of trajectories we adopt the so called Lifting Scheme
approach.

3.2 Lifting Schemes

An effective approach for multi-resolution analysis is the lifting scheme. It was
originally introduced for filtering signal and due to its intuitive features and
more important because of its ability to exactly reconstruct the original input
sequences it has been widely used also as a support for image compression in
wavelet based systems. Moreover it is well suited as a preprocessing step for non
separable transforms. In order to perform the proper lifting we need to define a
filtering function. A filtering function F , is a function that transform an input
sequence I into an output sequence O according to an optimization function.
Most widely used filters are Least Mean Square, Regression or Kalman filtering.
In our implementation we exploited the Least Mean Square filter since it works
by minimizing the least mean squares of the error signal, i.e. the difference
between the computed and the actual signal.

Performing lifting steps. Given a filtering function F and a input trajectory Trx,
the trajectory can be split in two subsequences Trxo and Trxe that are respec-
tively the sequence of odd and even indices. The trajectory lifting is performed
by iteratively updating the subsequences with their predicted version in order
to obtain two shorter sequences that are representative of the original sequence
(say it Tr′x) and the trend sequence (say it Trh). Obviously, when performing
this step some errors could arise (say it Tre). More formally, let P and U be
two filtering functions exploited for prediction and update, a generic lifting step
works as follows:

– Tre(k) = Trxo(k)− P(Trx′(k));
– Trh(k) = Trxe(k)− U(Trxe(k)).

By iterating the above steps, we obtain a succinct representation of the origi-
nal trajectory with no loss of information. The proposed lifting scheme will be
used for implementing the non separable transform based clustering described
in next section. Indeed, when the trajectory size becomes unpractical we will
reduce it by a lifting step without decreasing the information quality. Further-
more this step allow us to make trajectories equally lengthened so the successive
transforms will better compare them without needing any alignment or interpo-
lation operation. To better clarify the proposed pre-elaboration steps we provide
a toy example. Consider the trajectories depicted in Fig. 1(a) regarding buses
movements in the Athens metropolitan area. Applying the lifting scheme defined

Effectively Grouping Trajectory Streams 99

above on a sample trajectory will produce the sequence in Fig. 1(b) where the
solid (blue) stars represent the trend sequence, while the empty (red) stars rep-
resent the error sequence. It is easy to see that the number of points taken into
account after lifting is really smaller than the original trajectory and this feature
is particularly useful when considering (real life) longer trajectories having more
complex shapes. Moreover, lifted trajectories can be updated as new data points
arrive: indeed, incremental computation is a key requirement for streaming algo-
rithms. Furthermore, we can make the lifted trajectories equally sized in order
to enhance the clustering performances.

(a) Original Data (b) A lifted trajectory

Fig. 1. Trajectory Lifting Example

4 Exploiting Fourier Transforms for Spatial Quincunx
Lattices Based Clustering

In this section we exploit non separable transforms in order to effectively manage
two dimensional trajectories. Non separable transforms allow us to consider the
whole trajectory taking into account both dimensions in the computation thus
avoiding any approximation due to mono-dimensional transform composition.
We will exploit them in a suitable way in order to catch similarity among tra-
jectories. The first step to be performed for any mathematical transform is to
define the basis function and the features of the search space where data reside.
After a deep investigation of several trajectory datasets we found that the best
representation for the trajectory search space is a Quincunx Lattice1. Indeed,
optimal sampling scheme in the two-dimensional space is the hexagonal lattice.
Unfortunately, hexagonal lattice is quite unwieldy in terms of hardware and soft-
ware implementations. An appealing compromise is the quincunx lattice that is a
sublattice of the square lattice. The quincunx lattice has a diamond tessellation
which is closer to optimal hexagon tessellation than square lattice, and it can
be easily generated by down sampling conventional digital images without any
hardware change. Indeed, for this reason, quincunx lattice is widely adopted in
many application dealing with spatial images[32]. Based on the above mentioned
consideration exploiting a quincunx lattice will allow us to represent compactly

1 It is always possible to find a basis that allows this representation for the search
space.

100 G. Costa, G. Manco, and E. Masciari

while preserving the representation accuracy even for trajectories laying close to
the edges of the search space. The first step is the construction of the algebra
(details are not relevant for this paper, more details in [24]) that induces the
spatial signal spectrum defined below:

– uk = cos(k+1/2
n/2 · π), 0 < k < n/2

– vl = cos(l+1/2
n/2 · π), 0 < l < n/2

– wk,l,± = ± 1
2

√
(1 + uk) · (1 + vl)

Once obtained the spatial signal spectrum we can easily define the distance
between two trajectories by considering their spectra. We recall that we assume
that each trajectory point is an impulse in the overall signal associated to the
trajectory. In particular, given two trajectories Tr1 and Tr2 and their spectra
Q(Tr1), Q(Tr2), we compute their angular distances as d

α̂β
= arccos(u1k) −

arccos(u2k) and d
γ̂δ

= arccos(v1l) − arccos(v2l). For each pair of wk,l,± we

compute the modulo distance as dw =
√
w2

1k,l,± − w2
2k,l,±. Finally, we define

the overall Quincunx based distance as:

distQ(Tr1, T r2) =

√√√√ n2∑
k=1

dw(k)2 · cos(μ(dα̂β)− μ(d
γ̂δ
))

where μ(d
α̂β

) is the average angle distance between each pair of uk and μ(d
γ̂δ
)

is the mean between each pair of vl. The distance so far defined is able to catch
dissimilarity between trajectories since it considers the difference in angular dis-
tances between the two trajectories (the cos argument) while taking into account
the overall extension of the spatial signal (the modulo part). This is a crucial
feature since when using trajectory simplification techniques defined in literature
we could lose relevant information about trajectories.

Clustering Trajectory Streams. We briefly recall the notion of trajectory
cluster.

Definition 3 (Trajectory Cluster). Given a set of trajectories T , a cluster
is a subset C ⊆ T such that the distance between each pair of trajectories in
C is minimum, and the distance between each pair of trajectories Tri ⊆ C and
Trj � C is maximized w.r.t. the chosen metric.

Our algorithm described below is tailored for clustering evolving streams of tra-
jectories, thus the dataset W being mined is defined as a sliding window over
the continuous stream. W moves forward by a certain amount. Each window W
either contains the same number of trajectories (count-based or physical win-
dow), or contains all trajectories arrived in the same period of time (time-based
or logical window). The window is maintained by adding the new slide (δ+)
and dropping the expired one (δ−). Therefore, the successive instances of W
are referred as W1,W2, ·. The number of trajectories that are added to (and

Effectively Grouping Trajectory Streams 101

Method: IncrementalClusteringMaintenance
Input:
A trajectory stream T .
Output:
A trajectory clustering CT .
Vars:
A new slide Si of the input trajectories;
An expiring slide Sexp of the input trajectories;
A set of lifted trajectories TL

0: CT = ∅
1: For Each New Slide Si

2: lift(TL, Si);
3: CTi = mineNewCluster(TL);
4: mergeClusters(CT , CTi

5: For Each trajectory t ∈ TL

6: annotate(t);
7: For Each Expiring Slide Sexp

8: deleteOldestT rajectories(CT);
9: compactClusters(CT);

Fig. 2. The incremental clustering algorithm

removed from) each window is called its slide size. In this paper, for the purpose
of simplicity, we assume that all slides have the same size, and also each window
consists of the same number of slides. Thus, n = |W | ÷ |S| is the number of
slides (a.k.a. panes) in each window, where |W | denotes the window size and |S|
denotes the size of the slides. The incremental clustering algorithm is reported
in Fig. 2.

As a new window slide Si is loaded we compute the lifting of trajectories
contained in Si. We compute the clustering of the lifted trajectories (mineNew
Cluster) by running k-means++, a stable k-means improvement that has been
proposed in [2], using a distance-based probabilistic algorithm O(log(k)) that
makes it competitive with optimal clustering and avoid the initial cluster assign-
ment problem. To keep fresh clusters and to avoid concept drift we merge the
existing clusters with the new computed one (mergeClusters) by minimizing
distQ between each pair of trajectories to be merged. More in detail, given the
centers of the candidate clusters we assign the center of the new cluster as the
trajectory that minimize the distQ w.r.t previous centers, then we eventually
discard trajectories that are now closer to a different existing cluster than the
one being created. The result of this step is a cluster assignment that is contin-
uously updated, thus it results impervious to the eventual concept drift. After
clustering computation we annotate the trajectories (by their timestamps) in the
current window slide to allow successive delta maintenance (function annotate).
Finally, as a window slide expires we discard the oldest trajectories and re-
compact the clusters that could results loosely compact after trajectory deletions
(we perform compactClusters by recomputing cluster centers w.r.t. distQ min-
imization as in mergeclusters). In this respect, we recompute the clustering in-
cluding the new trajectories and assigning new cluster centers (that are

102 G. Costa, G. Manco, and E. Masciari

carefully chosen by the clustering algorithm we exploit), this will allow us to
take into account the eventual concept drift. Note that no threshold information
are provided by the user since the provided distance is a metric thus it preserves
the k-means++ features.

5 Experimental Results

In this section, we present the experiments we performed to assess the effec-
tiveness of the proposed approach in clustering trajectories. To this purpose, a
collection of tests is performed, and in each test some relevant groups of homo-
geneous trajectories (trajectory classes) are considered. The direct result of each
test is a similarity matrix representing the degree of similarity for each pair of
trajectories in the data set. The evaluation of the results relies on some a priori
knowledge about the trajectory classes being used that was obtained by domain
experts or available from the datasets providers.

We set up two classes of experiments: 1) we tested our algorithm (we refer to
it in the following as Fourier2D) in a static context, i.e. we considered datasets
that can fit in a single window. The comparison in this case is made against
TRACLUS [17], since TRACLUS is a parametric algorithm we report here the
best parameters assignment as suggested by the authors in [17]. This set of tests
is intended to evaluate the accuracy of the clustering, and we choose TRACLUS
since it is (at the best of our knowledge) the most accurate system available for
static trajectory clustering and 2) we tested the dynamic streaming performances
by tuning the windows size and measuring the effectiveness and the efficiency
against TCMM [19] that is the most accurate proposal available for clustering
trajectory data streams at the best of our knowledge.

Static Performance Evaluation.We performed several experiments on a wide
variety of real datasets. More in detail we analyzed the following data: 1) School
Bus : it is a dataset consisting of 145 trajectories of 2 school buses collecting
(and delivering) students around Athens metropolitan area in Greece for 108
distinct days; 2) Animals, it is a dataset containing the major habitat variables
derived for radio-telemetry studies of elk, mule deer, and cattle at the Starkey
Experimental Forest and Range in northeastern Oregon2.

In order to perform a simple quantitative analysis we produce for each test
a similarity matrix, aimed at evaluating the resulting intra-cluster similarities
(i.e., the average of the values computed for trajectories belonging to the same
cluster), and to compare them with the inter-cluster similarities (i.e., the similar-
ity computed by considering only trajectories belonging to different classes). To
this purpose, values inside the matrix can be aggregated according to the cluster
of membership of the related elements: given a set of trajectories belonging to n
prior classes, a similarity matrix S about these trajectories can be summarized
by a n×n matrix CS , where the generic element CS (i, j) represents the average
similarity between cluster i and cluster j.

2 http://www.fs.fed.us/pnw/starkey/data/tables/index.shtml

http://www.fs.fed.us/pnw/starkey/data/tables/index.shtml

Effectively Grouping Trajectory Streams 103

CS (i, j) =

⎧⎨⎩
∑

x,y∈Ci,x �=y DIST (x,y)

|Ci|×(|Ci|−1) iff i = j∑
x∈Ci,y∈Cj

DIST (x,y)

|Ci|×|Cj| otherwise

where DIST (x, y) is the chosen distance metric (TRACLUS metric or the
distQ).

The above definition is significant since we normalize the different metrics
pertaining to the different approaches, this will allow us to compare performance
in the ideal setting for both approaches.

The higher are the values on the diagonal of the corresponding CS matrix
w.r.t. those outside the diagonal, the higher is the ability of the similarity mea-
sure to separate different classes. In the following we report a similarity matrix
for each dataset being considered, as it will be clear the reported results show
that our technique is quite effective for clustering the datasets being considered
and outperforms TRACLUS.

Measuring Effectiveness for School Bus. For this dataset our prior knowl-
edge is the set of trajectories related to the two school buses that define the two
clusters in the dataset. Our algorithm is able to exactly detect the two clusters.
We present the results using the two classes but we point out that our technique
is able to (eventually) further refine the cluster assignment identifying the micro-
clusters represented by common sub-trajectories. As it is easy to see in Fig. 3(a)
and (b) Fourier2D outperforms TRACLUS by allowing a perfect assignment
to the proper class to each trajectory.

TRACLUS Bus 1 Bus 2

Bus 1 0.9790 0.8528

Bus 2 0.8528 0.9915

(a)

Fourier2D Bus 1 Bus 2

Bus 1 1 0.6250

Bus 2 0.6250 1

(b)

Fig. 3. TRACLUS and Fourier2D similarity matrices for Bus dataset

The presence of several turnsmade by the busesmakes the feature ofFourier2D
well suited for this dataset since it takes into account all the angular values of the
trajectory.

Measuring Effectiveness for Animals. In this case we considered as a class
assignment the different trajectories traversed by elk, mule deer, and cattle.
Also in this case our approach correctly identify the three cluster present in
the dataset. We point out that it is worth studying animal data because the
trajectories are in unrestricted space rather than on well known road network.
In this case there were 3 main classes as it is shown in Fig. 4(a) and (b). Also in
this case Fourier2D outperforms TRACLUS. As we can see, differences among

104 G. Costa, G. Manco, and E. Masciari

the various classes are marked with higher precision by Fourier2D. This is mainly
due to the fact that our approach is quite discriminative since it takes into ac-
count both angular and modulo distances in the spectrum of a trajectory.

Fourier2D elk mule deer cattle

elk 0.9986 0.7759 0.7055

mule deer 0.7759 0.9889 0.7566

cattle 0.7055 0.7566 0.9920

(a)

TRACLUS elk mule deer cattle

elk 0.9885 0.7439 0.7108

mule deer 0.7439 0.9899 0.7223

cattle 0.7108 0.7223 0.9874

(b)

Fig. 4. TRACLUS and Fourier2D similarity matrices for Animals dataset

Quality Measures Evaluation. Distance minimization is a natural and widely
used norm of similarity, but a devil’s advocate can point out that other clustering
algorithms might not measure their effectiveness in terms of this metric or even
the compactness and homogeneity of each cluster around its centroid. Thus, in
this section we will attempt to measure the quality of the clusters produced by
Fourier2D using very different criteria inspired by the nearest subclass classi-
fiers that were previously used in a similar role in [26] and [8]. A first relevant
evaluation measure is the error rate of a k-Nearest Neighbor classifier defined on
the basis of the similarity measure. For a given trajectory, we can check whether
the dominant class of the k most similar elements allows to correctly predict
the actual class of membership. Thus, the total number of trajectories correctly
predicted can be considered as a measure for evaluating the effectiveness of the
similarity at hand. Formally, the error ek(S) of a kNN classifier exploiting a
similarity matrix S can be defined as

ek(S) =
1

N

N∑
i=1

γk(i)

where N is the total number of trajectories, and γk(i) is 0 if the predicted class
of the i-th trajectory coincides with its actual class, and 1 otherwise. This value
will measure the errors made in the cluster computation. Low values of the ek(S)
index correspond to good results.

The above measure can be refined by evaluating the average number of ele-
ments, in a range of k elements, having the same class of the trajectory under
consideration. Practically, we define qk as the average percentage of trajectories
in the k-neighborhood of a generic trajectory belonging to the same class of that
trajectory. Formally:

qk(S) =
1

N

N∑
i=1

|Nk(i) ∩ Cl(i)|
min(k, ni)

where Cl(i) represents the actual class associated with the i-th trajectory in the
dataset, ni = |Cl(i)|, and Nk(i) is the set of k trajectories having the lowest

Effectively Grouping Trajectory Streams 105

distances from Tri, according to the similarity measure at hand. In principle, a
Nearest Neighbor classifier exhibits a good performance when qk is high, since
high values of qk indicate a great purity of the clustering. Furthermore, qk pro-
vides a measure of the stability of a Nearest-Neighbor: high values of qk make a
kNN classifier less sensitive to increasing values k of neighbors considered. The
sensitivity of the similarity measure can also be measured by considering, for
a given group of trajectories x, y, z, the probability that x and y belong to the
same class and z belongs to a different class, but z is more similar to x than y
is. We denote this probability by ε(S), which is estimated as

ε(S) =
1

N

N∑

i=1

⎛

⎝ 1

(ni − 1)(N − ni)

∑

Cl(j)=Cl(i),j �=i

∑

Cl(k) �=Cl(i)

δS(i, j, k)

⎞

⎠

where δS is 1 if S(i, j) < S(i, k), and 0 otherwise. Once again, low values of ε(S)
denote a good performance of the similarity measure under consideration, since
they indicates a low ambiguity in the clustering.

The quality values obtained by the various techniques are reported in the
following Tables. As in the previous section we first show the Table for Bus
dataset. For measures ek and qk we considered neighborhoods of size 70, i.e. the
actual size of each class in the data set. As it is easy to see the results shown
in Fig. 5 confirm the ones obtained by similarity matrix, thus assessing that for
Bus dataset Fourier2D outperforms TRACLUS.

Bus
ε ek=70 qk=70

Fourier2D 0.0113 0.0235 0.9965
TRACLUS 0.1811 0.0997 0.9658

Animals
ε ek=50 qk=50

Fourier2D 0.0792 0.1225 0.8945
TRACLUS 0.1801 0.1887 0.6257

Fig. 5. Quality indices for our datasets

For Animals dataset, measures ek and qk are evaluated considering neighbor-
hoods of size 50, i.e. the actual size of each class in the data set. Again the results
shown in Fig. 5 confirm the ones obtained by similarity matrix, thus assessing
that for Animals dataset Fourier2D still outperforms TRACLUS.

Measuring Performance on Streams. In previous section we assessed the ac-
curacy of the approach for detecting clusters. In this section we will measure the
performances of our algorithm when dealing with stressing trajectory streams.
We report the results obtained for two huge real life datasets: 1) Hurricanes tra-
jectory dataset. It is a dataset containing data about Atlantic hurricanes since
1851, it includes position in latitude and longitude, maximum sustained winds in
knots, and central pressure in millibars 3; 2) GPS trajectory dataset collected in

3 Available at http://weather.unisys.com/hurricane/atlantic/

http://weather.unisys.com/hurricane/atlantic/

106 G. Costa, G. Manco, and E. Masciari

(Microsoft Research Asia) GeoLife project [33] by 165 users in a period of over
two years (from April 2007 to August 2009). This dataset recoded a broad range
of users outdoor movements, including not only life routines like go home and
go to work but also some entertainments and sports activities, such as shopping,
sightseeing, dining, hiking, and cycling. Therefore, the dataset allows a severe
test for our clustering approach.

We ran several tests varying the window size (|W |) thus using the count-based
approach for comparison purposes w.r.t. TCMM. Moreover, in order to perform
a better comparison against TCMM we computed the average SSQ as described
in [19]. In particular, we find for each cluster its centroid and then compute the
SSQ using our distQ in the well known SSQ formula. In Fig. 6(a) and (b) we
report the results for Hurricanes dataset w.r.t. varying window size expressed
in MBytes while times are expressed as seconds, while in Fig. 6(c) and (d) we
report the results obtained for GPS dataset. Fourier2D (the left red bar) out-
performs TCMM (the right green bar) both in terms of execution times and
accuracy. The faster execution is due to the incremental computation of the lifted
trajectories that allows us to save execution time as new point are added, while
the accuracy result is due to the peculiar features of distQ that takes into ac-
count all possible differences between trajectories as explained above even when
incrementally maintained.

(a) Accuracy Hurricanes (b) Efficiency Hurricanes

(c) Accuracy GPS (d) Efficiency GPS

Fig. 6. Performance Comparison w.r.t. TCMM

Quality Measures Evaluation. The quality values obtained by the Fourier2D
and TCMM are reported in the following Tables. We first show the Table for
Hurricanes dataset. For measures ek and qk we considered neighborhoods of size
100, i.e. the actual size of each class in the data set. As it is easy to see the results
shown in Fig. 7 assess that for Hurricanes dataset Fourier2D outperforms
TCMM .

Concerning GPS dataset for measures ek and qk we considered neighborhoods
of size 75, i.e. the actual size of each class in the data set. Again the results shown
in Table 7 confirm that also for GPS dataset Fourier2D outperforms TCMM .

Effectively Grouping Trajectory Streams 107

Hurricanes
ε ek=100 qk=100

Fourier2D 0.0097 0.0354 0.9877
TCMM 0.1433 0.1025 0.9551

GPS
ε ek=75 qk=75

Fourier2D 0.1633 0.2895 0.7781
TCMM 0.2534 0.4033 0.6021

Fig. 7. Quality indices for our datasets

6 Conclusion

In this paper we addressed the problem of detecting clusters in trajectory data.
The technique we have proposed is mainly based on the idea of representing a
trajectory with its lifted version. Thereby, the similarity between two trajectories
can be computed by analyzing their Fourier transforms in the two-dimensional
case. Experimental results showed the effectiveness of the approach in detecting
common clusters for trajectories and robustness to the eventual concept drift.

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: VLDB, pp. 81–92 (2003)

2. Arthur, D., Vassilvitskii, S.: k-means++ the advantages of careful seeding. In:
SODA, pp. 1027–1035 (2007)

3. Cadez, I.V., Gaffney, S., Smyth, P.: A general probabilistic framework for clustering
individuals and objects. In: KDD, pp. 140–149 (2000)

4. Cao, H., Wolfson, O.: Nonmaterialized motion information in transport networks.
In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer,
Heidelberg (2005)

5. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: SIGMOD, pp. 491–502. ACM, New York (2005)

6. Chong, Z., Ni, W., Xu, L., Xu, Z., Shu, H., Zheng, J.: Approximate k-median
of location streams with redundancy and inconsistency. Int. J. of Software and
Informatics 4(2), 165–182 (2010)

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD (1996)

8. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection of xml
structural similarity. IEEE TKDE 17(2), 160–175 (2005)

9. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models.
In: KDD, pp. 63–72 (1999)

10. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
KDD, pp. 330–339 (2007)

11. Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing
spatio-temporal trajectories. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835,
pp. 763–775. Springer, Heidelberg (2007)

12. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000)

108 G. Costa, G. Manco, and E. Masciari

13. Hönle, N., Grossmann, M., Reimann, S., Mitschang, B.: Usability analysis of com-
pression algorithms for position data streams. In: GIS, pp. 240–249 (2010)

14. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. In: PVLDB, vol. 1(1), pp. 1068–1080 (2008)

15. Keogh, E.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417. VLDB
Endowment (2002)

16. Lee, J.G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect
framework. In: ICDE, pp. 140–149 (2008)

17. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group
framework. In: SIGMOD (2007)

18. Li, Y., Han, J., Yang, J.: Clustering moving objects. In: KDD, pp. 617–622 (2004)
19. Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajectories. In: Kita-

gawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010, Part II. LNCS,
vol. 5982, pp. 32–46. Springer, Heidelberg (2010)

20. Lloyd, S.: Least squares quantization in pcm. IEEE TOIT 28 (1982)
21. Masciari, E.: A complete framework for clustering trajectories. In: ICTAI, pp. 9–16

(2009)
22. Masciari, E.: Trajectory clustering via effective partitioning. In: Andreasen, T.,

Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS,
vol. 5822, pp. 358–370. Springer, Heidelberg (2009)

23. Nehme, R.V., Rundensteiner, E.A.: SCUBA: Scalable cluster-based algorithm for
evaluating continuous spatio-temporal queries on moving objects. In: Ioannidis, Y.,
Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A.,
Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer,
Heidelberg (2006)

24. Puschel, M., Rotteler, M.: Fourier transform for the directed quincunx lattice. In:
ICASSP (2005)

25. Secker, A., Taubman, D.: Lifting-based invertible motion adaptive transform (li-
mat) framework for highly scalable video compression. IEEE Trans. on Image Pro-
cessing 12(12), 1530–1542 (2003)

26. Veenman, C.J., Reinders, M.J.T.: The nearest subclass classifier: A compromise
between the nearest mean and nearest neighbor classifier. IEEE PAMI 27(9), 1417–
1429 (2005)

27. Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional
trajectories. In: ICDE, p. 673

28. Wang, W., Yang, J., Muntz, R.R.: Sting: A statistical information grid approach
to spatial data mining. In: VLDB, pp. 186–195 (1997)

29. Yang, J., Hu, M.: TrajPattern: Mining sequential patterns from imprecise trajec-
tories of mobile objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes,
F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 664–681. Springer, Heidelberg (2006)

30. Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences
under time warping. In: ICDE, pp. 201–208 (1998)

31. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method
for very large databases. In: SIGMOD, pp. 103–114 (1996)

32. Zhang, X., Wu, X., Wu, F.: Image coding on quincunx lattice with adaptive lifting
and interpolation. In: Data Compression Conf., pp. 193–202 (2007)

33. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel
sequences from gps trajectories. In: WWW, pp. 791–800 (2009)

Healthcare Trajectory Mining by Combining

Multidimensional Component and Itemsets

Elias Egho1, Chedy Räıssi4, Dino Ienco2,3, Nicolas Jay1, Amedeo Napoli1,
Pascal Poncelet2,3, Catherine Quantin5, and Maguelonne Teisseire2,3

1 Orpailleur Team, LORIA, Vandoeuvre-les-Nancy, France
firstname.lastname@loria.fr

2 Irstea, UMR TETIS, 34093 Montpellier, France
firstname.lastname@teledetection.fr

3 LIRMM, Univ. Montpellier 2, Montpellier, France
firstname.lastname@lirmm.fr

4 INRIA, Nancy Grand Est, France
firstname.lastname@inria.fr

5 Department of Biostatistics and Medical Information
CHU of Dijon, Dijon, France

Abstract. Sequential pattern mining is aimed at extracting correlations
among temporal data. Many different methods were proposed to either
enumerate sequences of set valued data (i.e., itemsets) or sequences con-
taining multidimensional items. However, in real-world scenarios, data
sequences are described as events of both multidimensional items and
set valued information. These rich heterogeneous descriptions cannot be
exploited by traditional approaches. For example, in healthcare domain,
hospitalizations are defined as sequences of multi-dimensional attributes
(e.g. Hospital or Diagnosis) associated with two sets, set of medical pro-
cedures (e.g. { Radiography, Appendectomy }) and set of medical drugs
(e.g. { Aspirin, Paracetamol }) . In this paper we propose a new approach
called MMISP (Mining Multidimensional Itemset Sequential Patterns) to
extract patterns from a complex sequences including both dimensional
items and itemsets. The novelties of the proposal lies in: (i) the way in
which the data can be efficiently compressed; (ii) the ability to reuse
and adopt sequential pattern mining algorithms and (iii) the extraction
of new kind of patterns. We introduce as a case-study, experimented on
real data aggregated from a regional healthcare system and we point
out the usefulness of the extracted patterns. Additional experiments on
synthetic data highlights the efficiency and scalability of our approach.

Keywords: Sequential Patterns, Multi-dimensional Sequential Patterns,
Data Mining.

1 Introduction

Data warehouses are constituting a large source of data that can be used to ex-
tract information for expert analysis and decision makers [5]. In temporal data

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 109–123, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

110 E. Egho et al.

warehouses, every bit of information is associated with a timeline describing a
total order over events. This total ordering introduces complexity in the extrac-
tion process. Many efficient approaches were developed to mine these patterns
(i.e., sequential patterns) like PrefixSpan [9], SPADE [17], ClosSpan [14],...etc.
However, all these techniques and algorithms, without any exception, focus solely
on sequences of set valued data (i.e., itemsets) and do not pay attention to real-
world data that is described over multiple dimensions. To overcome this problem,
Pinto et al. [10] introduced the notion of multi-dimensionality in sequences and
proposed an efficient algorithm. Later works, like Zhang et al. [18] or Yu et al.
[16] extended the initial Pinto’s approach for different scenarios and use-cases.
While in set valued approaches the events are represented by itemsets, in multi-
dimensional temporal databases the events are defined over a fixed schema where
all attributes appear in the extracted patterns. Furthermore, and this is particu-
larly true in the data warehouse environment, background knowledge is usually
available and can be represented as a hierarchy over the values of the attributes.
Taking advantage of this observation, Plantevit et al. introduced M3SP [11], an
efficient algorithm that is able to incorporate different dimensions and their tax-
onomies in the sequential pattern mining process. The benefit of this approach
is to extract patterns with the most appropriate level of granularity. Still, this
ideal representation of data is uncommon in real-world applications where het-
erogeneity is usually elevated to a foundational concept. In this study, we focus
on extracting knowledge from medical data warehouse representing information
about patients in different hospitals. The successive hospitalizations of a patient
can be expressed as a sequence of multidimensional attributes associated with a
set of medical procedures and a set of medical drugs. Our goal is to be able to
extract patterns that express patients stays along with combinations of proce-
dures over time. This type of pattern is very useful to healthcare professionals
to better understand the global behavior of patients over time. Unfortunately
this kind of complex data cannot be mined by any traditional sequential pattern
approach. In this paper, we propose a new method to extract patterns from se-
quences which include multidimensional items and itemsets at the same time.
In addition, the proposed approach incorporates background knowledge in the
form of hierarchies over attributes.

The remainder of this paper is organized as follows, Section 2 describes the
existing work in the classical and multidimensional sequential patterns. Section
3 introduces the problem statement as well as a running example. The method
for extracting multidimensional itemset frequent patterns is described in Section
4. Section 5 presents experimental results from both quantitative and qualitative
point of views and Section 6 concludes the paper.

2 Related Work

Let I be a finite set of items. An itemset X is a non-empty subset of I. A
sequence S over I is an ordered list 〈X1 · · ·Xn〉, where Xi (1 ≤ i ≤ n, n ∈ N) is
an itemset. A sequence T = 〈Y1 · · ·Ym〉 is a subsequence of S = 〈X1 . . .Xn〉,

Healthcare Trajectory Mining by Combining Multidimensional Component 111

denoted by T � S, if there exist indices 1 ≤ i1 < i2 < · · · < im ≤ n such
that Yj ⊆ Xij for all j = 1 . . .m and m ≤ n. S is said to be a supersequence
of T . Let SDB = {S1, S2 . . . Sn} be a database of sequences. The support of a
sequence s in D is the proportion of sequences of D containing s. Given a minsup

threshold, the problem of frequent sequential pattern mining consists in finding
the set FS of sequences whose support is not less than minsup. Following the first
work of Agrawal and Srikant [1] and the Apriori algorithm, many studies have
contributed to the efficient mining of sequential patterns. The main algorithms
are PrefixSpan [9], SPADE [17], SPAM [3], PSP [8], DISC [4], PAID [15], FAST
[12]. All of these algorithms aim to discover sequential patterns from a set of
sequences of itemsets.

Usually, the information in a sequence is based on several dimensions. Pinto et
al [10] propose the first work by including for mining multidimensional sequential
patterns, by including dimensions in the first or the last itemset of the sequence.
But this works only for dimensions that remain constant over time, such as
gender of the patient. Among other proposals addressed in this area, Yu et al
[16] consider multidimensional sequential pattern mining in the web domain.
Here, dimensions are pages, sessions and days. They present two algorithms:
AprioriMD and PrefixMDSpan.

in real world applications, each dimension can be represented at different levels
of granularity, by using a taxonomy. The interest lies in the capacity of extract-
ing more or less general/specific sequential patterns and overcome problems of
excessive granularity and low support. Although Srikant and Agrawal [13] com-
bined the use of hierarchy of values in the extraction of association rules and
sequential patterns, their approach is not scalable in a multidimensional con-
text. Han et al [7] proposed a method for mining multiple level association rules
in large databases. But their approach could not extract patterns containing
items from different levels in the taxonomy. Appice et al [2] proposed SPADA,
an algorithm for discovering multi-level spatial association rules. Plantevit et al
[11] proposed M3SP , an algorithm taking both multilevel and multidimensional
aspects into account. M3SP is able to find sequential patterns with the most ap-
propriate level of granularity. Egho et al [6] proposed an extension for M3SP for
extracting both general and specific sequences, they iteratively applied M3SP ,
decreasing threshold by one objects at each step. Their proposition allows the
extraction of more interesting sequences than using a single minsup threshold.

3 Problem Statement

In this section we list some preliminary definitions needed to formalize the prob-
lem. First of all, we introduce a motivating example from a real data set related
to the PMSI (Program of medical information systems). This French nationwide
information system describes hospital activities from both economical and medi-
cal points of view. In this system, each hospitalization is related to the recording
of administrative, demographical and medical data. Let SDB be a database of
multidimensional itemsets data sequences. Figure 1 illustrates such a database.

112 E. Egho et al.

Patients Trajectories
P1 〈(UHParis, C1, {p1, p2}, {drug1, drug2}), (UHParis, C1, {p1}, {drug2}), (GHLyon,R1, {p2}, {drug2})〉
P2 〈(UHParis, C1, {p1}, {drug2}), (UHParis, C1, {p1, p2}, {drug1, drug2}), (GHLyon,R1, {p2}, {drug2})〉
P3 〈(UHParis, C1, {p1, p2}, {drug1, drug2, drug3}), (GHLyon,R1, {p2}, {drug2, drug4})〉
P4 〈(UHParis, C1, {p2}, {drug1, drug2}), (UHParis, R2, {p3}, {drug2}), (GHLyon,R2, {p2}, {drug3})〉

Fig. 1. An example of a database of patient trajectories

Definition 1. (Dimensions and specialization down(d)) A dimension (D,�) is
a partially ordered set where D is the set of all items of dimension. For a given
d ∈ D, down(d) (resp. up(d)) denotes the set of all specializations {x ∈ D|x � d}
(resp. generalizations {x ∈ D|d � x}) of d.

Example 1. Figure 2 shows two dimensions (hospital and diagnosis). For hos-
pital dimension, Dhospital = {Thospital, UH,GH,UHParis, UHNancy, GHParis,
GHLyon} and UHParis ∈ down(UH) as UHParis is a direct descendant of UH .

T T

Fig. 2. Hospital and diagnoses taxonomies

By taking into account the multidimensional items and the sets of items, we
define an event as follows.

Definition 2. (Event) An event e = (d1, ..., dn, itemsetn+1, ..., itemsetn+m) is
a vector of n multidimensional items and m sets of items where di ∈ Di, i =
1, · · · , n. Given two events e = (d1, ..., dn , itemsetn+1, ..., itemsetn+m) and e′ =
(d

′
1, ..., d

′
n , itemset

′
n+1, ..., itemset

′
n+m), e is more general than e′, denoted by

e′ ≤e e, if and only if:

– ∀ i ; 1 � i � n ; d′i ∈ down(di).

– ∀ j ; 1 � j � m ; itemsetn+j ⊆ itemset
′
n+j.

Example 2. e′ = (UHParis, C1, {p1, p2, p3}, {drug2, drug3, drug4}) is an event,
where:

– UHParis, C1 are two multidimensional items representing the two dimensions
(hospital and diagnosis).

– {p1, p2, p3}, {drug2, drug3, drug4} are two sets of items representing the med-
ical procedures and the medical drugs.

The event e = (UH, Tdisease, {p1, p2}, {drug2, drug3}) is more general than e′,
e′ ≤e e, because of:

– UHParis ∈ down(UH) and C1 ∈ down(Tdisease).
– {p1, p2} ⊆ {p1, p2, p3} and {drug3, drug4} ⊆ {drug2, drug3, drug4}.

A multidimensional itemsets data sequence is composed of events.

Healthcare Trajectory Mining by Combining Multidimensional Component 113

Definition 3. (Multidimensional Itemsets Sequence) A multidimensional item-
sets sequence s =< e1, e2, ..., el > is an ordered list of events ei. Given two mul-
tidimensional itemsets sequences s =< e1, e2, ..., el > and s′ =< e′1, e

′
2, ..., e

′
l′ >,

s is more general than s′, denoted by s ≤s s
′, if there exist indices 1 ≤ i1 < i2 <

... < il ≤ l′ such that ej ≤e e
′
ij

for all j = 1 . . . l and l � l′.

Example 3. The multidimensional itemsets sequence s = 〈(UHParis, C1, {p1, p2},
{drug1, drug2, drug3}), (GHLyon, R1, {p2}, {drug2, drug4})〉 is a sequence of two
events. It expresses the fact that a patient was admitted to the University Hos-
pital of Paris UHParis for a lung cancer C1, underwent procedures p1 and p2
and was treated with {drug1, drug2, drug3}, then he went to the General Hospi-
tal of Lyon GHLyon for pneumonitis R1 where he underwent procedure p2 and
received {drug2, drug4} .

The sequence s′ = 〈(UHParis, Cancer, {p1}, {drug1, drug2})〉 is more gen-
eral than s, s ≤s s′, because (UHParis, C1, {p1, p2}, {drug1, drug2, drug3}) ≤e

(UHParis, Cancer, {p1}, {drug1, drug2}).

Definition 4. (Patient Trajectory) A patient trajectory is defined as a multidi-
mensional itemsets sequence.

Example 4. In Table 1, the multidimensional itemsets sequence s = 〈(UHParis

, C1, {p1, p2}, {drug1, drug2}), (UHParis, C1, {p1}, {drug2}), (GHLyon, R1, {p2} ,
{drug2})〉 represents the trajectory for the patient P1.

Let supp(s) be the number of sequences that includes s in SDB . Furthermore σ
be a minimum support threshold specified by the end-user.

Definition 5. (Most Specific Frequent Multidimensional Itemsets Sequence) Let
s be multidimensional itemsets sequence, we say that s is the most specific fre-
quent multidimensional itemsets sequence in SDB, if and only if: supp(s) ≥ σ
and �s′ ∈ SDB, where supp(s) = supp(s′) and s ≤s s

′.

The problem of mining multidimensional itemsets sequences is to extract the set
of all most specific frequent multidimensional itemsets sequence in SDB such as
supp(s) ≥ σ. By using the dimensions we can extract general or specific patterns
and overcome problems of excessive granularities and low supports.

Example 5. Let σ = 0.75 (i.e. a sequence is frequent if it appears at least three
times in SDB). The sequence s1 = 〈(UHParis, C1, {p1, p2}, {drug1, drug2}),
(GHLyon, R1, {p2}, {drug2})〉 is frequent. s2 = 〈(UH,Cancer, {p1, p2} , {drug1,
drug2}), (GH,Respiratory, {p2}, {drug2})〉 is also frequent. Nevertheless, s2 is
not kept since it is too general compared to s1.

4 Mining Multidimensional Itemsets Sequential Patterns

In this section, we present the MMISP (Mining Multidimensional Itemsets Se-
quential Patterns) algorithm for extracting multidimensional itemsets sequential
patterns with different levels of granularity over each dimension. MMISP follows

114 E. Egho et al.

a bottom-up approach by first focusing on extracting frequent multidimensional
items that can exist at different level of granularity, then it considers the item-
sets part of the events and compute the support of every item is SDB for each
itemset. After these two steps, frequent multidimensional items and frequent
itemsets are combined to generate events. In the final step, the frequent events
are mapped to a new representation and a standard sequential mining algorithm
is applied to enumerate multidimensional itemsets sequential patterns.

In the next subections, we provide the details of each step of our work and
discuss the different challenges.

4.1 Generating Frequent Multidimensional Items

MMISP starts by processing the n multidimensional items of the events in the
sequences. Basically it considers three types of dimensions: a temporal dimen-
sion Dt, a set of analysis dimension DA and a set of reference dimension DR.
MMISP splits SDB into blocks according to dimension DR. Then, MMISP sorts
each block according to the temporal dimension Dt. This is a classic way of
partitioning the database and was introduced in [11]. The tuples of n multidi-
mensional items appearing in an event are defined w.r.t. analysis dimensions DA.
The support of n multidimensional items is computed according to dimension of
DR. It is the ratio of the number of blocks supporting the n multidimensional
items over the total number of blocks.

Date Hospital Diagnosis
1 UHParis C1

2 UHParis C1

3 GHLyon R1

Block: Patient1

Date Hospital Diagnosis
1 UHParis C1

2 UHParis C1

3 GHLyon R1

Block: Patient2

Date Hospital Diagnosis
1 UHParis C1

2 GHLyon R1

Block: Patient3

Date Hospital Diagnosis
1 UHParis C1

2 UHParis R2

3 GHLyon R2

Block: Patient4

Fig. 3. Block partition of the database according to DR={Patient}

Example 6. In the running example, H (hospitals) andD (diseases) are the anal-
ysis dimensions,Date is the temporal dimension, and P (patients) is the reference
dimension. By using P (patients) to split the dataset, we obtain four blocks de-
fined by Patient1, Patient2, Patient3 and Patient4 as shown in Figure 3.

To simplify our works we will represent the n multidimensional items of the
event as follows:

Definition 6. (multidimensional component) Given a dimension (D,�), a mul-
tidimensional component over D, denoted (mdc,�mdc), is a tuple (d1, ..., dn)
where di ∈ D, i = 1, · · · , n. For two given multidimensional components mdc =
(d1, ..., dn) and mdc′ = (d′1, ..., d

′
n), mdc′ �mdc mdc denotes that mdc is more

general than mdc′, if for every i = 1, ..., n, d′i ∈ down(di).

Healthcare Trajectory Mining by Combining Multidimensional Component 115

Example 7. Let (UHParis, Lung Cancer) and (UH , Cancer) be two multidi-
mensional components. (UHParis, Lung Cancer) �mdc (UH, Cancer) because
UHParis ∈ down(UH) and Lung Cancer ∈down(Cancer).

The first steps in MMISP is generation all the frequent multidimensional com-
ponents. This generation is given by the product of all partially ordered sets
of the dimensions. The result of this product is a semilattice which has a top
element (T1, ..., Tm) and each node in this semilattice is a multidimensional com-
ponent. Extracting only the frequent multidimensional components can be done
by choosing minsup and building the iceberg semi-lattice. The iceberg semi-
lattice is a semi-lattice where its elements have a support greater than minsup.
Figure 4 shows iceberg semi-lattice generated by the product of the two partially
ordered sets (hospital and diagnosis) in Figure 2 with minsup= 3

4 patients.

Fig. 4. Iceberg semilattice generated by the product of the two partially ordered sets
(hospital and diagnosis) in Figure 2 with minsup= 3

4
patient

Handling the product of several partial order sets is a cumbersome process.
The result of a product is exponential in the number of partial order sets and
the cardinality of each set. So, we present a simple and efficient algorithm to
generate all frequent multidimensional components.

Following the previous partitioning, algorithm generates all the frequent mul-
tidimensional components as follows: firstly, we generate the most general multi-
dimensional component, that is (T1, ..., Tn). In our running example, we have two
dimensions (hospital and disease), so the most general multidimensional compo-
nent is (Thospital, Tdisease). Then, the algorithm generates all multidimensional
components of the form (T1, ...Ti−1, di, Ti+1, ..., Tn) where di ∈ down(Ti). We
take only the frequent multidimensional component which has support greater
than σ. In the running example and for σ = 75% (3 blocks from 4), there are
four new frequent multidimensional components: (UH, Tdisease), (GH,Tdisease),
(Thospital, Respiratory) and (Thospital, Cancer).

116 E. Egho et al.

The recursive generation of the new multidimensional components contin-
ues by using each previously generated frequent multidimensional component
(a). This is done with an indexing method that identifies an integer z which
is the position of the last dimension in a and is not top T . For example if
a=(UH, TDisease), z is equal to one, which is the first dimension (hospital)
because the value for the hospital dimension (UH) and the second dimension
(disease) has the value Tdisease.

For each dimension dk in a, where k ∈ [z,m], we replace dk with each of
its specialization from the set down(dk). For example, if a=(UH, TDisease), we
have z=1 and we can generate four new mdcs: {(UHParis, TDisease), (UHNancy,
TDisease), (UH, Respiratory), (UH,Cancer)}. The first and the second mul-
tidimensional components are generated by replacing UH by down(UH) =
{UHParis, UHNancy}, the third and the forth multidimensional components are
generated by replacing TDisease by down(TDisease) = {Respiratory, Cancer}.

At each step, we select only the frequent multidimensional components. For
our previously example with σ = 75%, {(UHParis, TDisease), (UH,Cancer)} are
the new frequent multidimensional components generated by (UH, TDisease).

Finally, from all frequent multidimensional components generated, we select
only the most specific multidimensional component.

Definition 7. (Most specific multidimensional component) Let a be multidi-
mensional component, we can say that, a is the most specific multidimensional
component, if and only if � a′ multidimensional component, where supp(a) =
supp(a′) and a′ �mdc a.

Example 8. Figure 5 illustrates the generation of all frequent multidimensional
components on the running example with σ = 3

4 . The most specific components
are (UHParis,C1) and (GHLyon,R1).

Table 1. The most specific frequent multidimensional components

Frequent multidimensional component
(UHParis,C1)
(GHLyon,R1)

(Thopital, Tdisease)

(UH, Tdisease)

(GH, Tdisease)

(Thopital, Respiratory)

(Thopital, Cancer)

(UHParis, Tdisease)

(UH, Cancer)

(GHLyon, Tdisease)

(GH, Respiratory)

(THopital, R1)

(THopital, C1)

(UHParis, Cancer) (UHParis, C1)

(UH, C1)

(GHLyon, Respiratory) (GHLyon, R1)

(GH, R1)

Frequent multidimensional
Component

The most specific frequent
multidimensional Component

Support

Fig. 5. Frequent multidimensional components generation

Healthcare Trajectory Mining by Combining Multidimensional Component 117

4.2 Generating Frequent Itemsets

In this step, MMISP focuses on m itemsets part of the events, (d1, ..., dn,
itemsetn+1 , ..., itemsetn+m). We will study separately each itemset in this part.
Basically, this step aims at extracting the set of all items that are frequent in
a sequence of length 1. Recall that, in level-wise approaches, either itemset-
extension or sequence-extension can be considered. For example, if we have a
sequence s1 = 〈{1, 2, 3}〉, then s2 = 〈{1, 2, 3}{4}〉 is an extended sequence of s1
and s3 = 〈{1, 2, 3, 4}〉 is an itemset-extended sequence of s1. In our context we
only consider itemset-extension. This task can be easily done by adapting any
standard sequential pattern algorithm to extract only the sequence of length 1.

Patients Sequences of medical procedures
P1 〈{p1, p2}{p1}{p2}〉
P2 〈{p1}{p1, p2}{p2}〉
P3 〈{p1, p2}{p2}〉
P4 〈{p2}{p3}{p2}〉

Sequences of medical procedures

Frequent medical procedures
{p1}
{p2}

{p1, p2}

Frequent medical procedures candidates

Patients Sequences of procedures
P1 〈{drug1, drug2}{drug2}{drug2}〉
P2 〈{drug2}{drug1, drug2}{drug2}〉
P3 〈{drug1, drug2, drug3}{drug2, drug4}〉
P4 〈{drug2, drug3}{drug2}{drug3}〉

Sequences of medical drugs

Frequent medical drugs
{drug1}
{drug2}

{drug1, drug2}

Frequent medical drugs candidates

Fig. 6. The frequent itemset generated

Example 9. Figure 6 shows the sequences of medical procedures and medical
drugs for patients, and also the frequent medical procedures and medical drugs
candidates for σ = 3

4 .

4.3 Generating Frequent Events

Generating frequent events is achieved by combining frequent multidimensional
components with frequent itemsets. This task has be done by building a prefix
tree such that the first level in this tree is composed of the frequent multidimen-
sional components and from the second level to leafs, each level is composed the
frequent itemset candidates for each itemset part in the vector of itemsets. More
precisely, each branch in the tree represents an event. Then a scan is performed
over the database to prune irrelevant events from the tree. For example, Figure
7 illustrates the tree before and after pruning infrequent events for σ = 3

4 .

4.4 Extracting Frequent Multidimensional Itemsets Pattern

Frequent sequences can then be mined by using any standard sequential pattern
mining algorithm. As these algorithms require that the dataset to be mined is
composed of pairs in the form (id, seq), where id is a sequence identifier and seq
is a sequence of itemsets, we transform the initial dataset as follows:

118 E. Egho et al.

T

Combination tree before pruning

T
event

Combination tree after pruning

Fig. 7. An example of the tree for generating frequent events before and after the
pruning

– Each branch in the prefix tree after pruning is assigned a unique id which
will be used during the mining operation. This is illustrated in Table 2 .

– Each block (patient) is assigned a unique id of the form Pi.
– Every block b is transformed into a pair (Pi, S(pi)), where S(Pi) is built ac-

cording to the date and the content of the blocks. The final result is reported
in Table 3.

Astandard sequencemining algorithmcanbeappliedon the transformeddatabase.

Table 2. Identification each branch (Event) in T

event-id Frequent Event
e1 (UHParis,C1,{p1}, {drug1})
e2 (UHParis,C1 {p1}, {drug2})
e3 (UHParis,C1,{p1}, {drug1, drug2})
e4 (UHParis,C1,{p2}, {drug1})
e5 (UHParis,C1,{p2}, {drug2})
e6 (UHParis,C1,{p2}, {drug1, drug2})
e7 (UHParis,C1, {p1, p2}, {drug1})
e8 (UHParis,C1,{p1, p2}, {drug2})
e9 (UHParis,C1, {p1, p2}, {drug1, drug2})
e10 (GHLyon,R1, {p2}, {drug2})

Table 3. Transformed database

id Sequence data
P1 〈{e1, e2, e3, e4, e5, e6, e7, e8, e9}{e2}{e10}〉
P2 〈{e2}{e1, e2, e3, e4, e5, e6, e7, e8, e9}{e10}〉
P3 〈{e1, e2, e3, e4, e5, e6, e7, e8, e9}{e10}〉
P4 〈{e5}〉

Healthcare Trajectory Mining by Combining Multidimensional Component 119

Then, the extraction of frequent sequences can be carried out. With σ = 0.75,
the pattern 〈{e9}{e10}〉 is frequent. This sequence corresponds to 〈(UHParis, C1

{p1, p2}, {drug1, drug2}), (GHLyon, R1, {p2}, {drug2})〉 by using the identifica-
tion in Table 2.

5 Experiments

We conduct experiments on both real and synthetic datasets. The algorithm
is implemented in Java and the experiments are carried out on a MacBook
Pro with a 2.5GHz Intel Core i5, 4GB of RAM Memory running OS X 10.6.8.
The extraction of sequential patterns is based on the public implementation of
CloSpan algorithm [14]. We use the implementation supplied by the IlliMine1

toolkit.
In order to assess the effectiveness of our approach, we run several experi-

ments on the PMSI dataset. This database includes the following informations
for each stay: patient id and gender, hospital id, principal diagnosis and date
of the stay, a set of associated diagnosis and a set of medical procedures. Our
dataset contains 486 patients suffering from lung cancer and living in the East
of France. The average length of data sequences is 27. The data is encoded using
controlled vocabularies. In particular, diagnoses are encoded with the Interna-
tional Classification of Diseases (ICD10)2. This classification is used as an input
taxonomy for MMISP. The ICD10 can be seen as a tree with two levels. As
illustrated in Figure 8, 3-characters codes such as C34 (Lung cancer) have spe-
cializations: C340 is cancer of the main bronchus, C341 is cancer of upper lobe
etc.

TT

Fig. 8. Examples of taxonomies used in multilevel sequential pattern mining

Patients Trajectories

P1 〈(C341,750712184, {ZBQK002}, {D123,K573, C780}), (Z452,580780138, {ZZQK002}, {C189}), . . .〉
P2 〈(C770,100000017, {ZBQK002}, {C189}), (C770,210780581, {ZZQK002, Y Y Y Y 030}, {D123, T573}), . . .〉
P3 〈(H259,210780110, {Y Y Y Y 030}, {D123, T573}), (H259,210780110, {ZZQK002}, {D123, T573}), . . .〉
P4 〈(R91,210780136, {Y Y Y Y 030}, {D123, C780}), (C07,210780136, {ZBQK002}, {C780}), . . .〉

Fig. 9. Care trajectories of 4 patients

Figure 9 shows an example of care trajectories described over two dimensions
(diagnosis, hospital ID) coupled with two sets of medical procedures and as-
sociated diagnosis. For example (C341, 750712184, {ZBQK002}, {D123,K573,
C780}) represents the stay of a patient in the University Hospital of Dijon (coded

1 http://illimine.cs.uiuc.edu/
2 http://apps.who.int/classifications/apps/icd/icd10online/

http://illimine.cs.uiuc.edu/
http://apps.who.int/classifications/apps/icd/icd10online/

120 E. Egho et al.

as 750712184) treated for a lung cancer (C341), where the patient underwent
chest radiography (coded as ZBQK002) and during his treatment, he has the set
of associated diagnosis {D123,K573, C780}.

The experiments extract multidimensional sequential patterns for describing
and analyzing patient trajectories. For this experiment the support value is set
to 15 (i.e. σ = 0.03). MMISP generates 156 different frequent trajectories. Fig-
ure 10 shows some results of the experiment. Pattern 2 can be interpreted as
follows: 40% of patients had a hospitalization in the University Hospital of Dijon
(750712184) for any diagnosis (ALL), where they underwent a chest radiogra-
phy (coded as ZBQK002) and an Electrocardiography (coded as DEQP003),
with supplementary billing (coded as YYYY030); they had a malignant tumor
of the lung as associated diagnosis. Then, the same patients had another stay for
acute respiratory failure (J960), and they underwent tests with supplementary
billing (coded as YYYY030). This second stay could occur in any hospital (ALL)
and had the same associated diagnosis(C349).

id Support Trajectory Patterns

1 53% 〈(710780263, All, {DEQP003}, {C349})〉
2 40% 〈(750712184, All, {ZBQK002, Y Y Y Y 030, DEQP003}, {C349})(All, J960, {Y Y Y Y 030}, {C349})〉
3 34% 〈(710780263, All, {ZBQK002, Y Y Y Y 030, DEQP003}, {C349})(710780263, All, {ZBQK002, Y Y Y Y 030, DEQP003}, {C349})〉

Fig. 10. Some healthcare patients trajectories obtained by MMISP

In the second experiment, we study the scalability of the approach. We con-
sider the number of extracted patterns and the running time with respect to
two different parameters, the number of dimensions and the average length of
itemsets in the event. The first batch of synthetic data generated contains 10000
sequences defined over (2, 3, 4 and 5) analysis dimensions. Each sequence con-
tains 30 events and each event is described, in average, by 15 items in the itemset.
Each dimension is defined over 5 levels of granularity between elements of each
analysis dimension. Figure 11 reports the results according to different values of
support threshold for different number of dimension in event. The running time

1000 1200 1400 1600 1800 2000

50
10
0

15
0

20
0

25
0

Runtime sequences over frequency threshold

Frequency

R
un

 T
im

e(
s)

2-dim
3-dim
4-dim
5-dim

1000 1200 1400 1600 1800 2000

20
00

25
00

30
00

35
00

40
00

#Frequent sequences over Frequency threshold

Frequency

N
um

be
r o

f P
at

te
rn

s

2-dim
3-dim
4-dim
5-dim

Fig. 11. Running Time (left) and Number of extracted pattern (right) obtained by
MMISP with varying in the number of dimension

Healthcare Trajectory Mining by Combining Multidimensional Component 121

1000 1200 1400 1600 1800 2000

50
10
0

15
0

20
0

Runtime sequences over frequency threshold

Frequency

R
un

 T
im

e(
s)

5-items
10-items
15-items
20-items

1000 1200 1400 1600 1800 2000

15
00

20
00

25
00

30
00

35
00

40
00

#Frequent sequences over frequency threshold

Frequency

N
um

be
r o

f P
at

te
rn

s

5-items
10-items
15-items
20-items

Fig. 12. Number of extracted pattern (right) and Running Time (left) obtained by
MMISP with varying itemsets’ cardinalities

150 200 250 300 350 400

20
40

60
80

10
0

12
0

Runtime sequences over support threshold

Support

R
un

 T
im

e(
s)

M3SP
MMISP

150 200 250 300 350 400

15
00

20
00

25
00

30
00

35
00

40
00

#Frequent sequences over support threshold

Support

N
um

be
r o

f P
at

te
rn

s

M3SP
MMISP

Fig. 13. Running Time (left) and Number of extracted pattern (right) obtained by
MMISP and M3SP over the synthetic dataset

increases for each newly added dimension. The second batch of generated syn-
thetic data contains 10000 sequences with varying number of items 5, 10, 15 and
20. The sequences in the four generated data sets have an average cardinality of
30 events, by 3 dimensions. The dimensions are defined over 5 levels of granular-
ity between elements of each dimension. Figure 12 reports the results according
to different values of support threshold for different lengths of itemsets.

Another experiment is aimed at comparing the performance of MMISP with
M3SP on a synthetic dataset. In comparison we consider both the number of
extracted patterns and the running time. The synthetic data generated contains
10000 sequences defined over two dimensions with one itemsets described by
5 items. Figure 13 reports the results according to different values of support
threshold for both M3SP and MMISP. MMISP is able to extract less patterns
than M3SP while from the point of view of time execution the two approaches

122 E. Egho et al.

show comparable performances. The reduced size of the MMISP results is related
to its ability in extracting a multidimensional itemsets sequential patterns.

6 Conclusion

In this paper, we propose a new approach to mine multidimensional itemset se-
quential patterns. Our approach is based on multidimensional items and the set
of items. We provide formal definitions and propose a new algorithm MMISP
to mine this new kind of pattern. We conduct experiments on both real and
synthetic datasets. The method was applied on real-world data where the prob-
lem was to mine healthcare patients trajectories and gave potential interesting
patterns for healthcare specialists.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, ICDE 1995, pp. 3–14.
IEEE Computer Society, Washington, DC (1995)

2. Appice, A., Berardi, M., Ceci, M., Malerba, D.: Mining and Filtering Multilevel
Spatial Association Rules with ARES (2005)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: KDD, pp. 429–435 (2002)

4. Chiu, D.-Y., Wu, Y.-H., Chen, A.L.P.: An efficient algorithm for mining frequent
sequences by a new strategy without support counting. In: ICDE, pp. 375–386
(2004)

5. Cohen, J., Eshleman, J., Hagenbuch, B., Kent, J., Pedrotti, C., Sherry, G., Waas,
F.: Online expansion of largescale data warehouses. In: PVLDB, vol. 4(12), pp.
1249–1259 (2011)

6. Egho, E., Jay, N., Räıssi, C., Napoli, A.: A FCA-based analysis of sequential care
trajectories. In: Napoli, A., Vychodil, V. (eds.) The Eighth International Con-
ference on Concept Lattices and their Applications - CLA 2011, Nancy, France.
INRIA Nancy Grand Est - LORIA (October 2011)

7. Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE
Transactions on Knowledge and Data Engineering 11(5), 798–805 (1999)

8. Masseglia, F., Cathala, F., Poncelet, P.: The PSP approach for mining sequen-
tial patterns. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 176–184.
Springer, Heidelberg (1998)

9. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixs-
pan: Mining sequential patterns by prefix-projected growth. In: ICDE, pp. 215–224
(2001)

10. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-dimensional
sequential pattern mining. In: CIKM, pp. 81–88 (2001)

11. Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Choong, Y.W.: Mining mul-
tidimensional and multilevel sequential patterns. TKDD 4(1), 1–37 (2010)

12. Salvemini, E., Fumarola, F., Malerba, D., Han, J.: FAST sequence mining based on
sparse id-lists. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.)
ISMIS 2011. LNCS, vol. 6804, pp. 316–325. Springer, Heidelberg (2011)

Healthcare Trajectory Mining by Combining Multidimensional Component 123

13. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

14. Yan, X., Han, J., Afshar, R.: Clospan: Mining closed sequential patterns in large
datasets. In: SDM, pp. 166–177 (2003)

15. Yang, Z., Kitsuregawa, M., Wang, Y.: Paid: Mining sequential patterns by passed
item deduction in large databases. In: IDEAS, pp. 113–120 (2006)

16. Yu, C.-C., Chen, Y.-L.: Mining sequential patterns from multidimensional sequence
data. IEEE Trans. Knowl. Data Eng. 17(1), 136–140 (2005)

17. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1-2), 31–60 (2001)

18. Zhang, C., Hu, K., Chen, Z., Chen, L., Dong, Y.: Approxmgmsp: A scalable method
of mining approximate multidimensional sequential patterns on distributed system.
In: FSKD (2), pp. 730–734 (2007)

Graph-Based Approaches to Clustering

Network-Constrained Trajectory Data

Mohamed Khalil El Mahrsi1,2 and Fabrice Rossi2

1 Télécom ParisTech, Département INFRES
46, rue Barrault 75634 Paris CEDEX 13, France

khalil.mahrsi@telecom-paristech.fr
2 Équipe SAMM EA 4543, Université Paris I Panthéon-Sorbonne

90, rue de Tolbiac 75634 Paris CEDEX 13, France
fabrice.rossi@univ-paris1.fr

Abstract. Clustering trajectory data attracted considerable attention
in the last few years. Most of prior work assumed that moving objects
can move freely in an euclidean space and did not consider the eventual
presence of an underlying road network and its influence on evaluating
the similarity between trajectories. In this paper, we present an approach
to clustering such network-constrained trajectory data. More precisely
we aim at discovering groups of road segments that are often travelled
by the same trajectories. To achieve this end, we model the interactions
between segments w.r.t. their similarity as a weighted graph to which we
apply a community detection algorithm to discover meaningful clusters.
We showcase our proposition through experimental results obtained on
synthetic datasets.

Keywords: similarity, clustering, moving objects, trajectories, road net-
work, graph.

1 Introduction

Traffic congestion has become a major problem that affects many human ac-
tivities on a daily basis, resulting in both serious transportation delays and
environmental damages. Monitoring the state of the road network is commonly
conducted by using dedicated sensors that register the number of vehicles pass-
ing by the section where they are installed. The prohibitive cost of deploying
and maintaining such sensors limits their deployment to the highways and the
road network’s main arteries. Subsequently, the collected data portray a partial
and incomplete state of the road network, thus complicating data mining tasks
that aim at extracting useful knowledge about flow dynamics and the behavior
of drivers moving along the network.

An alternative (or complementary) approach to addressing these shortcomings
may consist in analyzing GPS logs collected using location-aware devices (e.g.
classic GPS, smartphones, PDAs, etc.). These logs can be acquired through
probing vehicles, dedicated data acquisition campaigns (using buses, taxis or an

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 124–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Clustering Network-Constrained Trajectory Data 125

enterprise’s fleet of vehicles) or even by means of a crowdsourced approach where
different individuals willingly contribute by uploading their different commute
logs. Therefore, it is perfectly feasible to collect large amounts of trajectory data
that can be stored in dedicated databases (known as Moving Object Databases
[1]). These data offer a better coverage of the road network and can be, later on,
explored using data mining and statistical learning techniques.

Clustering is one of such techniques. Prior work on trajectory data clustering
focused mainly on the case where moving objects move freely in a euclidean space
[2–5]. By doing so, these approaches did not account for the presence, in the case
of car trajectories as well as in other cases, of an underlying network that con-
strains the movement. The network’s constraints, however, do play a paramount
role in determining the similarity between the trajectories to be clustered. More-
over, the majority of these approaches relied on the use of density-based clus-
tering which makes them vulnerable to the way the parameters of the clustering
algorithm are selected.

In [6], we presented a framework for clustering network-constrained trajec-
tories using a graph-based approach. This framework was directed towards dis-
covering groups of similar trajectories that moved along the same parts of the
road network. The hierarchical, non-parametric algorithm that we used in the
clustering step made our framework flexible and suitable for exploring the dis-
covered groups of trajectories at various levels of detail: the user can start with a
limited number of high-level, coarse clusters and delve (by means of consecutive
zooming) in the refinement of the clusters he deems interesting.

The work presented in this paper builds upon the one undertaken in [6].
We extend our framework to the case of road segments as we try to discover
relevant groups of segments that are commonly used and explored together by
a considerable number of trajectories. Our contributions can be summarized as
follows:

– We define a similarity measure that evaluates the resemblance between pairs
of road segments based on the trajectories that travelled along both of them;

– We use a graph representation to model interactions between the different
road segments. The resulting similarity graph is partitioned using modularity-
based community detection in order to discover a hierarchy of nested clusters
of road segments;

– We test our proposition on synthetic datasets and showcase how it can be
used, in association with the technique we presented in [6], for understanding
and characterizing the traffic in the road network.

The rest of this paper is organized as follows. In Section 2, we present the
network-constrained trajectories data model and we formalize our segment clus-
tering problem. Our segment clustering approach is described in detail in Section
3. Section 4 discusses the computational complexity of our proposition as well as
how the discovered clusters can be interpreted and used, complementarily with
the trajectory clusters presented in [6], in order to discover useful knowledge
about the flow dynamics and traffic in the road network. Experimental results

126 M.K. El Mahrsi and F. Rossi

are presented in Section 5. Related work is discussed in Section 6. Finally, Section
7 concludes the paper.

2 Data Representation and Problem Statement

We opt for the symbolic data representation which is the model of choice adopted
for representing network-constrained trajectories in most of prior work [7–10].
In this model, the road network is modeled as a graph, defined as follows.

Definition 1 (Road Network). The road network is represented as a directed
graph G = (V ,S). The set of vertices V represents intersections and terminal
points of roads whereas the set of directed edges S represents the road segments
interconnecting them. A directed edge s = (vi, vj) indicates that a road segment
links the two nodes vi and vj and that it can be traveled from vi in the direction
of vj but not the other way around (unless another edge states otherwise).

Given this graph representation, moving objects (i.e. vehicles) moving along
the road network produce trajectories that can be modeled conformably to the
following definition.

Definition 2 (Constrained Trajectory). A constrained trajectory T that trav-
els along the road network G can be modeled as a sequence of visited segments:

T = 〈id, {s1, s2, ..., sl}〉

id being the identifier of the trajectory, l its length (i.e. number of segments) and
∀1 ≤ i < l, si and si+1 are connected segments belonging to S.

In a real-case scenario, trajectories are collected as GPS logs (sequences of lat-
itude and longitude points) on which a map matching technique (e.g. [7, 9]) is
applied in order to produce the sequence of traveled segments. The map match-
ing step is out of the scope of this paper. Hence, we suppose that the trajectories
are already and correctly map matched to the corresponding road segments.

Finally, we formalize the road segment clustering problem that we study in
this paper as follows.

Definition 3 (Road Segment Clustering Problem). Given a road network
represented by a graph G = (V ,S) and a set of trajectories T = {T1, T2, ..., Tn}
that traveled along it, road segment clustering aims to partition the set of road
segments S into a set of disjoint clusters CS = {C1, C2, ..., CK} in such a fashion
that:

– Segments grouped in the same cluster Ci are visited by a considerable amount
of common trajectories (i.e. a trajectory T that visits a segment s ∈ Ci also
visits a fair amount of segments in this same cluster);

– Segments belonging to two different clusters Ci and Cj are visited by as few
common trajectories as possible (i.e. they are unlikely to be part of a same
trajectory).

Clustering Network-Constrained Trajectory Data 127

3 A Graph-Based Approach to Road Segment Clustering

We now present our solution to the road segment clustering problem introduced
in the previous section. First, we define a similarity measure between road seg-
ments based on the comparison of the common trajectories that visited them
(Section 3.1). Based on this measure, we build a graph depicting the relationships
between different road segments (Section 3.2). The graph is then partitioned us-
ing a modularity-based community detection algorithm in order to discover a
hierarchy of nested segment clusters (Section 3.3).

3.1 Road Segment Similarity

Similarly to the bag-of-words model (where a text is considered as an unordered
collection of words), we consider each road segment as a bag-of-trajectories that
visited it (i.e. ∀s ∈ S, s ≡ {T ∈ T : s ∈ T }).

In order to compare two road segments si and sj , one can simply observe how
often they co-appear in trajectories (i.e. calculate |{T ∈ T : si ∈ T ∧ sj ∈ T }|).
The larger the number of concomitant appearances of both segments is, the more
they are considered similar. However, different trajectories do not hold the same
discriminative power when it comes to characterizing the similarity between
road segments they visit: a lengthy trajectory that travels along a considerable
number of road segments is not very informative when judging the similarity
between two segments in particular and, vice versa, short trajectories are highly
relevant to the formation of the cluster that contains the segments they visit.

We account for this observation by devising a tfidf-like weighting strategy
where the contribution of each trajectory is proportional to its length. The weight
ωT,s assigned to trajectory T while inspecting a road segment s is expressed in
formula (1):

ωT,s =
ns,T∑

T ′∈T ns,T ′
· log |S|

|s ∈ S : s ∈ T | (1)

The first part in this weight calculates the contribution of T to the segment s by
calculating the ratio between the number of appearances ns,T of s in T and the
total number of appearances of s in the whole dataset of trajectories T . Since
multiple visits of a same road segment are very rare, this part is often equal to

1
|{T∈T :s∈T}| . The second part evaluates the importance of the trajectory across

the whole set of road segments : the more segments a trajectory visits the less
important it becomes and vice versa.

We use a cosine similarity to measure the similarity between two road seg-
ments ei and ej as expressed in formula (2):

Similarity(si, sj) =

∑
T∈T ωT,si · ωT,sj√∑

T∈T ω2
T,si
·
√∑

T∈T ω2
T,sj

(2)

128 M.K. El Mahrsi and F. Rossi

3.2 Road Segment Similarity Graph

We model the similarity relationships between road segments using an undi-
rected, weighted graph SGS = (S, E ,W). Each road segment in S is mapped to
a vertice in SGS . An edge between a pair of segments si and sj exists if and
only if Similarity(si, sj) > 0 (i.e. if there is at least one common trajectory that
crossed both segments). In which case the similarity is assigned as a weight to
that edge. This concept of similarity graph is depicted in Fig. 1.

Similarity(si, sj) sjsi

Fig. 1. Excerpt from a segment similarity graph. Vertices represent the studied road
segments while weighted edges indicate the presence and strength of the similarity
between pairs of segments.

The main advantage of using this graph representation, besides being natural
and easy to understand, is that it does not invent an ”artificial” similarity be-
tween totally incompatible road segments. On the contrary, it emphasizes on the
fact that road segments that do not share common trajectories are independent
and should, therefore, not be ”immediately” grouped in the same cluster since
there is no similarity edge linking them.

3.3 Clustering the Similarity Graph

Road networks are complex and contain a considerable amount of segments,
resulting, therefore, in a large similarity graph. Moreover, since one common
trajectory is sufficient for a similarity edge to exist between a pair of segments,
the vertices of the similarity graph tend to have high degrees (although, from
our observations, this degree distribution does not follow a proper power law).
Modularity-based community-detection algorithms are a popular and widely
adopted choice to clustering such graphs [11].

Given a graph G = (V , E ,W), with vertices V = {v1, v2, ..., vn}, weighted
edges E such as ωij ≥ 0 and ωij = ωji, and given a partition of the vertices
into K clusters (or communities) C1, ..., CK , the modularity of the partition is
expressed according to formula (3):

Q =
1

2m

K∑
k=1

∑
i,j∈Ck

(
ωij −

didj
2m

)
(3)

Clustering Network-Constrained Trajectory Data 129

di =
∑

j 	=i ωij and m = 1
2

∑
i di. The modularity measures the quality of the

clustering by inspecting the arrangement of the edges within the communities of
vertices. A high modularity is an indicator that the edges within the communities
outnumber (or have higher weights than) those in a similar randomly generated
graph (i.e. one that does not present a community structure). Communities
discovered using modularity optimization have a structure that is similar to
the structure of cliques. In our context of segment clustering, this means that
segments grouped together are heavily connected (which is the intended result)
and are travelled by a considerable number of shared trajectories.

To cluster the segment similarity graph, we use the implementation of hierar-
chical modularity-based clustering described in [12]. The pseudo-code is given in
Algorithm 1. First, the algorithm retrieves a partition of the vertices with opti-
mal modularity (line 1): the Partition procedure start by considering the trivial
partition where each vertex is in its own community and merges communities
in a greedy fashion (i.e. each time, it merges the two communities that produce
the maximum increase of modularity). The merging operation stops when no
possible merge can be done without a degradation of the modularity. In which
case the Partition procedure proceeds to a refinement step where members of
different communities are interchanged in an attempt to further improve the
modularity of the partition.

Algorithm 1. Hierarchical modularity-based clustering.

Input: an undirected, weighted graph G = (V, E ,W)
Output: hierarchy of nested clusters of vertices
1: C

(1)
1 , ...C

(1)
K ← Partition(G) � initial partition

2: KT ← K � clusters counter
3: l ← 1 � hierarchy level
4: repeat
5: l ← l + 1
6: for all cluster C ∈ C

(l−1)
1 , ..., C

(l−1)
K do

7: extract the sub-graph GC of vertices belonging to C
8: CC

1 , ...CC
k ← Partition(GC)

9: if TestSig(CC
1 , ...CC

k) then

10: C
(l)
KT +1, ..., C

(l)
KT +k ← CC

1 , ...CC
k

11: KT ← KT + k
12: end if
13: end for
14: until no significant subdivision of level l can be found

Once the initial partition is retrieved, the algorithm proceeds iteratively to
construct the hierarchy of communities (lines 4 through 14). For each community
at a given level, the sub-graph containing only the vertices of the community
and the edges connecting them is isolated (line 7). This subgraph is partitioned
separately (by invoking Partition as shown in line 8). The TestSig evaluates the
significance of the found partition (by comparing its modularity to the modular-
ity of partitions obtained on similar randomly generated graphs). If the partition

130 M.K. El Mahrsi and F. Rossi

is significant indeed, its communities are considered for partitioning in the next
iteration (lines 9-12), otherwise it’s rejected and the original community is re-
tained. The iterations stop when none of the communities at level l yield a
significant partition (line 14).

Modularity-based graph clustering approaches are very popular and achieve
good results in practice [11]. Nevertheless, we do not exclude the use of other
graph clustering alternatives (e.g. spectral clustering [13]) if such techniques can
yield better results.

4 Discussion

First, we focus on how the produced clusters can be explored and analyzed
in order to deduce useful knowledge about the flow dynamics and the drivers’
behavior in the road network (Section 4.1). Then, we address the algorithmic
complexity of our approach (Section 4.2).

4.1 Cluster Exploration

We illustrate how the trajectory clusters [6] and segment clusters can be explored
and used conjointly. For illustration purposes, we use a synthetic dataset con-
taining 85 trajectories that moved along the Oldenburg road network (cf. Section
5 for more details about this network) and visited a total of 485 distinct road
segments. We manually partitioned the trajectories into five clusters (depicted
in Figure 2) that we consider hereafter as the ground-truth clusters.

Applying the trajectory clustering [6] results in a hierarchy of clusters where
the optimal level w.r.t. modularity (i.e. the very first level) contains only three
trajectory clusters: the ground-truth clusters 2 and 3 are considered as part of
a same cluster (the same occurs with clusters 4 and 5). Nevertheless, all the
ground-truth clusters are retrieved correctly (some of them are even refined) in
the following levels. The cluster hierarchy is especially suitable for exploring large
datasets where a flat clustering can still produce a high number of clusters: the
analyst can start with the few, coarse clusters contained in the first hierarchical
levels in order to gain a quick grasp of the general tendencies and movement
patterns in the road network. He, then, can choose clusters of interest that he
can explore, by means of successive zooms, in higher detail. This idea is depicted
in Figure 3 which shows a coarse trajectory cluster and its three, more refined
subclusters.

Segment clusters are not as easy to grasp and understand as trajectory clus-
ters. Even though it is feasible to try and explore these clusters as stand-alone
clusters, we recommend involving the trajectory clusters in the process. Cross-
comparing both types of clusters can reveal interesting information about flow
dynamics and yield a better interpretation of the clusters. For example, a seg-
ment cluster can be interpreted based solely on the trajectory groups that inter-
acted with it, thus revealing potential hubs, etc. Fig. 4 shows the crossed matrix
of the second level trajectory clusters (reported on the rows) and the second

Clustering Network-Constrained Trajectory Data 131

(a) Cluster 1 (14 trajectories) (b) Cluster 2 (19 trajectories) (c) Cluster 3 (20 trajectories)

(d) Cluster 4 (20 trajectories) (e) Cluster 5 (12 trajectories)

Fig. 2. Ground-truth clusters in the dataset

level road segment clusters (on the columns) and gives an idea about the sizes of
the clusters and how clusters of one type interact with those of the other type.

The crossed matrix does indeed reveal some interesting patterns and interac-
tions. For instance, the fourth segments clusters is explored exclusively by two
trajectory clusters. Visualizing both this segment cluster and its visiting trajec-
tory clusters (Fig. 5) shows that the segment cluster plays the role of a hub for
these two groups of trajectories that converge to it from two different areas in
order to travel to two different destinations.

Crossing trajectory clusters and segment clusters is flexible and can be done
at various levels of the hierarchies of both cluster types. However, it is totally
up to the user to decide the relevance of the crossed clusters. The case of the
eleventh segment cluster (cf. Fig. 4) illustrates this point: this segment cluster
is very interesting since it interacts with six trajectory clusters. However, it is
evident that the segment cluster contains a lot of ”noise” segments which is
expressed by the considerable amount of white space in the six first rows (rep-
resenting the trajectory clusters) in the column representing the cluster in the
crossed matrix. Consequently, drawn conclusions about the interactions between
the clusters won’t be very reliable. A wiser alternative would be to study the
interactions between the, more refined, subclusters of this segment cluster with
the six trajectory cluster it interacts with.

132 M.K. El Mahrsi and F. Rossi

(a) Parent cluster (39 trajecto-
ries)

(b) Subcluster 1 (12 trajectories)

(c) Subcluster 2 (19 trajectories) (d) Subcluster 3 (8 trajectories)

Fig. 3. A coarse cluster containing 39 trajectories (a) and its more detailed subclusters
(b-d)

Fig. 4. Crossed matrix of the trajectory clusters (rows) and road segment clusters
(columns). Each cell gives an idea about the interaction between the corresponding
trajectory and segment clusters: the more black the cell contains the more trajectories
in the trajectory cluster cross segments belonging to the segment cluster.

4.2 Algorithmic Complexity

Let n be the number of trajectories in T and m the number of road segments in
S. Road segments can be represented as a matrix M containing m rows (each
representing a road segment) and n columns (each corresponding to a trajec-
tory). mi,j corresponds to the weight of the trajectory represented by column
j while inspecting the segment represented by row i. Using this vector model
representation, comparing two road segments can then be done in O(n) time

Clustering Network-Constrained Trajectory Data 133

(a) Hub segment cluster (b) Trajectory cluster 7 (c) Trajectory cluster 8

Fig. 5. A segment cluster (a) playing the role of a hub for two different trajectory
clusters ((b) and (c)) that borrow it to travel to two separate destinations

complexity. Constructing the similarity graph requires m(m−1)
2 similarity calcu-

lations. Therefore, the cost of constructing the graph is O(nm2).
The similarity graph contains m vertices (representing the m segments of S)

and, at most, m(m−1)
2 edges. Therefore, the theoretical (maximal) complexity of

the community detection algorithm used in our clustering phase is O(m3) [11].
However, this complexity is rarely observed in practice where the complexity is
somewhere near O(m2).

The complexity of the approach we presented in [6] can be deduced using the
same reasoning: the trajectory similarity graph is constructed in O(mn2) and is
clustered in O(n3) in theory (O(n2) in practice).

5 Experimental Results

In this section, we validate the effectiveness of our approach by comparing it to
two alternative graph clustering techniques. First, we describe our experimental
setting, including the used datasets and the evaluated algorithms in Section 5.1.
Then cluster quality results are presented in Section 5.2.

5.1 Experimental Setting

In order to validate our choice of modularity-based clustering, we compare it
to two other graph clustering techniques: i. spectral clustering; and ii. label
propagation clustering. In spectral clustering [13], eigenvectors are extracted
from the graph’s Laplacian and are used to conduct a k-means clustering in
order to partition the graph’s vertices. Label propagation, on the other hand,
works by labeling the vertices with unique labels and then updating the labels
by majority voting in the neighborhood of the vertex [14].

We compare the performances of the three algorithms on five synthetic datasets
(cf. Table 1) produced with the Brinkhoff generator [15] using the Oldenburg
road network. The latter is composed of 6105 vertices and about 14070 road
segments. Each dataset contains 100 trajectories visiting a various amount of
road segments.

134 M.K. El Mahrsi and F. Rossi

Table 1. Characteristics of the five synthetic datasets

Number of Number of edges in
Dataset segments the similarity graph

1 2562 79811
2 2394 100270
3 2587 110095
4 2477 87023
5 2348 80659

The performance of each algorithm is evaluated by measuring the quality of
the segment partition CS it produces according to formula (4):

Q(CS) =
∑
C∈C

1

|C|
∑

si,sj∈C

|{T ∈ T : si ∈ T ∧ sj ∈ T }|
|{T ∈ T : si ∈ T ∨ sj ∈ T }| (4)

|C| is the number of segments in clusters C, |{T ∈ T : si ∈ T ∧ sj ∈ T }| is
the number of trajectories both road segments si and sj while |{T ∈ T : si ∈
T ∨ sj ∈ T }| is the number of trajectories that travelled along at least one of
them.

5.2 Results

Contrary to the spectral clustering algorithm, the modularity-based and label
propagation algorithms do not give the user the possibility to configure the
number of resulting clusters: the label propagation algorithm produces just one
flat partition while the modularity-based algorithm produces a partial hierarchy
(i.e. a hierarchy that does not retain all the merging operations).

First, we compare modularity-based clustering and spectral clustering based
on the former’s optimal number of clusters (i.e. the number of clusters at the
hierarchy’s first level). The results are depicted in Table 2.

In order to compare the three algorithms at once (cf. Table 3), we proceed
as follows. Since label propagation clustering produces only on partition, we
configure the spectral clustering to produce the same number of clusters as
this partition. As for modularity-based clustering, we choose the hierarchical
level that produces the closest number of clusters to those discovered by label
propagation.

From both Table 2 and Table 3 we can verify that, as expected, the clus-
tering quality increases as the number of clusters increases. Results also show
the superiority of modularity-based clustering over label propagation and spec-
tral clustering and suggest that applying the former results in better and more
compact clusters of road segments.

We also notice that label propagation results in a large number of clusters.
This supports the observation we made in Section 4.1 where we claimed that
flat clustering is not suitable for exploring large datasets.

Clustering Network-Constrained Trajectory Data 135

Table 2. Comparison between spectral clustering and modularity-based clustering

Clustering quality (clusters)
Dataset Spectral Modularity

1 306.33 (23) 657.20 (23)
2 254.97 (21) 524.46 (21)
3 245.64(20) 561.08 (20)
4 249.89 (22) 594.75 (22)
5 284.74 (26) 666.23 (26)

Table 3. Cluster qualities achieved by the three algorithms on the five datasets

Clustering quality (clusters)
Dataset Label prop. Spectral Modularity

1 684.19 (68) 678.81 (68) 1614.40 (67)
2 550.66 (59) 549.70 (59) 1276.63 (57)
3 606.45 (66) 567.57 (66) 1516.45 (61)
4 634.63 (68) 637.62 (68) 1406.38 (57)
5 604.97 (64) 539.27 (64) 1418.67 (65)

6 Related Work

Approaches to trajectory clustering are mainly adaptations of existing algorithms
to the case of trajectories. Existing problem formulations and propositions include
flock patterns [3], convoy patterns [5], the TRACLUS partition-and-group frame-
work [4] and the T-OPTICS and TF-OPTICS algorithms [2]. The aforementioned
algorithms use euclidean-based similarities and distances and can, therefore, be
used only in the case of unconstrained trajectories. Furthermore, the majority of
these approaches use density-based algorithms which suffer from two major draw-
backs: i. their results are very sensitive to the parameter values; and ii. they assume
that trajectories in the same cluster have a rather homogeneous density, which is
rarely the case (as discussed in [10]).

Roh et Hwang [10] present a network-aware approach to clustering trajecto-
ries where the distance between trajectories in the road network is measured
using shortest path calculations. A baseline algorithm, using agglomerative hi-
erarchical clustering, as well as a more efficient algorithm, called NNCluster, are
presented for the purpose of regrouping the network constrained trajectories. In
[8], the authors describe an approach to discovering ”dense paths” or sequences
of frequently traveled segments in a road network. This approach resembles our
segment-based clustering although they diverge on many key aspects. For in-
stance, the approach in [8] produces flat clusters using a density-based approach
(which requires fine tuning) whereas ours produces a hierarchy of nested clus-
ters and does not require parametrization. In [6], we presented our graph-based
framework to clustering network-constrained trajectories. The work described in

136 M.K. El Mahrsi and F. Rossi

the present paper build upon this framework as it extends it to the case of road
segment clustering.

A wide variety of graph clustering algorithms was proposed in the literature,
including spectral clustering [13], clustering using label propagation [14], etc.
(complete surveys on graph clustering can be found in [16, 11]). Among these
propositions, modularity-based community detection algorithms stand out for
the good results they yield in practice. We use the hierarchical modularity-based
clustering implementation described in [12] (which follows the recommendations
in [17]) in our clustering step of our framework in order to detect the presence
of clusters among road segments.

7 Conclusion

In this paper, we presented a framework for clustering road segments based on
the moving object trajectories that travelled along them. The main novelty of
the framework is the use of a graph representation to structure the similarity
relationships and interactions between road segments. This framework presents
many advantages: i. it does not require parameters, contrary to the majority of
existing approaches that are very sensitive to their threshold values; and ii. it
also produces a hierarchy of nested clusters promoting exploration at various
levels of granularity and detail in situations where a flat clustering approach
would have produced a unique level containing a very large number of clusters.
Moreover, we showed how segment clusters can be used in conjunction with the
trajectory clusters we defined in [6] in order to better understand flow dynamics
in the road network.

The framework, however, is not flawless. The community detection algorithm
used in the clustering step can be sensitive in presence of noise (i.e. marginal
road segments that do not forcefully belong to any cluster) which can degrade the
quality of the discovered clusters. Also, the computational cost of the approach
and the fact that it requires predisposing of all the data beforehand prohibits it
from being used in a streaming context.

In future work, we will focus on alternative graph representations for trajec-
tory data. Mainly, the use of a bipartite graph to represent interactions between
trajectories and segments. Such graphs can be partitioned using bi-clustering
algorithms in order to simultaneously discover clusters of trajectories and road
segments (this is done separately in the present framework) which has the main
advantage of automatically crossing both types of clusters based on how they
interact, thus relieving the user from this delicate task.

References

1. Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy - Geographic
Knowledge Discovery. Springer (2008)

2. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
J. Intell. Inf. Syst. 27(3), 267–289 (2006)

Clustering Network-Constrained Trajectory Data 137

3. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. In:
Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 660–671. Springer,
Heidelberg (2006)

4. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group
framework. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 593–604. ACM, New York (2007)

5. Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In:
ICDE 2008: Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, pp. 1457–1459. IEEE Computer Society, Washington, DC (2008)

6. El Mahrsi, M.K., Rossi, F.: Modularity-Based Clustering for Network-Constrained
Trajectories. In: Proceedings of the 20th European Symposium on Artificial Neu-
ral Networks, Computational Intelligence and Machine Learning, ESANN 2012,
Bruges, Belgique, pp. 471–476 (April 2012)

7. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proceedings of the 31st International Conference on Very Large Data
Bases, VLDB 2005, pp. 853–864. VLDB Endowment (2005)

8. Kharrat, A., Popa, I.S., Zeitouni, K., Faiz, S.: Clustering algorithm for network
constraint trajectories. In: SDH. Lecture Notes in Geoinformation and Cartogra-
phy, pp. 631–647. Springer (2008)

9. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for
low-sampling-rate gps trajectories. In: Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS
2009, pp. 352–361. ACM, New York (2009)

10. Roh, G.-P., Hwang, S.-W.: NNCluster: An efficient clustering algorithm for road
network trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010, Part II. LNCS, vol. 5982, pp. 47–61. Springer, Heidelberg (2010)

11. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(2010)

12. Rossi, F., Villa-Vialaneix, N.: Représentation d’un grand réseau à partir d’une clas-
sification hiérarchique de ses sommets. Journal de la Société Française de Statis-
tique 152(3), 34–65 (2011)

13. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4),
395–416 (2007)

14. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E 76(3) (September
2007)

15. Brinkhoff, T.: A framework for generating network-based moving objects. Geoin-
formatica 6, 153–180 (2002)

16. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
17. Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Vahren-

hold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009)

Finding the Most Descriptive Substructures

in Graphs with Discrete and Numeric Labels

Michael Davis, Weiru Liu, and Paul Miller

Centre for Secure Information Technologies (CSIT),
School of Electronics, Electrical Engineering and Computer Science,

Queen’s University, Belfast, United Kingdom
{mdavis05,w.liu}@qub.ac.uk, p.miller@ecit.qub.ac.uk

Abstract. Many graph datasets are labelled with discrete and numeric
attributes. Frequent substructure discovery algorithms usually ignore nu-
meric attributes; in this paper we show that they can be used to improve
discrimination and search performance. Our thesis is that the most de-
scriptive substructures are those which are normative both in terms of
their structure and in terms of their numeric values. We explore the rela-
tionship between graph structure and the distribution of attribute values
and propose an outlier-detection step, which is used as a constraint dur-
ing substructure discovery. By pruning anomalous vertices and edges,
more weight is given to the most descriptive substructures. Our experi-
ments on a real-world access control database returns similar substruc-
tures to unconstrained search with 30% fewer graph isomorphism tests.

Keywords: graph mining, frequent substructure discovery, numeric at-
tributes, outlier detection.

1 Introduction

A common task in graph mining is to discover frequently-occurring substructures
for concept learning, clustering or anomaly detection. Frequent substructures are
defined as those which pass some minimum support threshold [10,13,18] or in
information-theoretic terms, as the patterns which can be used to maximally
compress the input graph [5]. In this paper, we consider how numeric attributes
can be combined with structural data, to constrain the search for the most
descriptive substructures.

To count the frequency of each pattern, discovery algorithms must compare
subgraphs for identity, or Graph Isomorphism (GI). GI is computationally com-
plex to decide for the general case [8], but in practice the complexity is highly
dependent on the features of the graphs under consideration. Common spe-
cial cases can be solved in polynomial time, using techniques such as sorting
candidate substructures by their canonical labels [10,13], organising discovered
subgraphs into spanning trees [2,18] or by performing a heuristic search [5]. How-
ever, it is always possible to come up with a set of input graphs where even the
best algorithms perform poorly.

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 138–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Substructure Discovery in Graphs with Discrete and Numeric Labels 139

(a) Single large graph (b) Simple
transaction

(c) Forward
edges

Fig. 1. Graph of Access Control Transactions on a University Campus

Substructure discovery algorithms typically operate on graphs where the labels
represent discrete attributes of vertices or edges. Many graph datasets also con-
tain numeric labels or weights, representing attributes such as size, distance,
time, frequency or amount. We propose that the best substructures are not only
frequent, but also have the most normative numeric attributes. In this paper,
we analyse how the dependencies between graph structure and attributes af-
fect the complexity of substructure discovery. Our contribution is to show how
numeric attributes can be used to constrain the search in a way that preserves
anti-monotonicity. By pruning unlikely candidates early, we focus computational
resources on the most descriptive patterns. In our experiments, we were able to
discover the most descriptive substructures with a 30% reduction in the number
of GI tests required, compared to an unconstrained search.

Applications of substructure discovery include: discovering molecular struc-
tures from chemical compounds, e.g. for predictive toxicology; learning commu-
nication patterns in an e-mail network; and video scene analysis. Our motivat-
ing application is to detect “suspicious” behaviour patterns in secure buildings,
such as airports, hospitals and power stations. Our experimental data is from
the building access control system for a university campus, represented by the
graph in Fig. 1a. Vertices represent door sensors and directed edges represent
movements between pairs of sensors. The density of transactions is higher in ar-
eas with greater security requirements, viz. laboratories for laser, radiation and
medical research. As we are interested in paths taken by individuals through
the network, we reorganised the graph as a transaction database, where each
subgraph represents the movement of an individual within a given day (Fig. 1b–
1c). We score each subgraph based on its structural elements and its numeric

140 M. Davis, W. Liu, and P. Miller

timing values [6]. Our method shows greater discrimination than scoring based
on frequent substructures without numeric attributes.

This paper is organised as follows: Sect. 2 is a brief survey of substructure
discovery in graphs and constraint-based graph mining. In Sect. 3, we explore
how the distribution of labels and attributes affects the complexity of substruc-
ture discovery. In Sect. 4, we outline a method of using numeric outlier detection
to constrain the search for normative substructures. Sect. 5 presents our exper-
imental method and datasets (including a method for generating random graph
attributes), results and a discussion of complexity; and conclusions are in Sect. 6.

2 Related Work

Frequent Substructure Discovery. Frequent substructure discovery algo-
rithms attempt to find the subgraphs which occur most frequently in a graph
database. Early approaches were based on Apriori-style itemset mining: AGM [10]
and FSG [13] generate candidate substructures by growing them one vertex or
one edge at a time, respectively. Frequent substructures are those which exceed
a specified minimum support threshold. The main weakness is that candidate
generation is expensive, as canonical labels must be calculated for a large number
of redundant candidates.

gSpan [18] avoids candidate generation. Canonical labels are determined by
the minimum representation of vertex orderings as discovered by a Depth-First
Search (DFS). These labels are organised into a hierarchical spanning tree. Fre-
quent structures are discovered by traversing this tree, checking for substruc-
tures which exceed minimum support. CloseGraph [19] and SPIN [9] improve on
gSpan by mining only “closed” or “maximal” frequent subgraphs, i.e. frequent
substructures which are not part of any larger frequent substructure. [2] gener-
alises the canonical form found in gSpan and demonstrates that canonical labels
based on Breadth-First Search (BFS) are equally valid.

Subdue [5] represents another class of substructure discovery algorithm, based
on information theory. Rather than searching for substructures with minimum
support, Subdue looks for the substructures which can be used to best compress
the input graph based on the Minimum Description Length (MDL) principle.
Complexity is managed with a heuristic: candidate substructures are discovered
using a greedy beam search (a limited-length queue of the best few patterns
found so far). This allows Subdue to search in single large graphs, which is not
generally possible with AGM, FSG and gSpan. The disadvantage of the greedy
search strategy is that some interesting patterns could be missed.

Constraint-Based Graph Mining. One of the main problems with pattern-
mining algorithms is the large numbers of patterns produced. One possible so-
lution is to introduce constraints, which are used to prune away uninteresting
patterns and focus on the most meaningful subgraphs. [15] defines a “cohesive
pattern constraint” on a connected subgraph, where the vertex attributes are the
same within some subspace and some density constraint is met. The cohesive

Substructure Discovery in Graphs with Discrete and Numeric Labels 141

(a) Social graph (b) Molecular
structure

(c) Scene
Analysis

(d) Sensor
Network

Fig. 2. Examples of the distribution of attributes on various kinds of graph

pattern constraint is defined for graphs with discrete attributes; in this paper,
we define a constraint on graphs with numeric attributes.

In [11], gSpan is extended by including edge weights into the support calcula-
tion and pruning low-weighted substructures from the search. Anti-monoticity is
an important property of pattern growth-based algorithms: if a substructure fails
to achieve minimum support, all of its supergraphs will also fail. Two of the pro-
posed weighting schemes preserve anti-monotonicity, by thresholding the weight
measure in addition to thresholding for minimum support. A third weighting
scheme uses a heuristic and does not rely on preserving anti-monotonicity. All
three weighting schemes assume that higher weights are more significant (which
may not necessarily be the case).

Constraints on weighted graphs are considered within a more general frame-
work in [7]. Attribute-based constraints (which are not guaranteed to be anti-
monotonic) are used to prune substructures by running a measure function on
the edge (or vertex) weights and comparing the output to a threshold. If the def-
inition of the measure function is extended to take multi-dimensional numeric
attributes as its input, then the outlier detection step that we propose in Sect. 4
could be considered a measure function within this theoretical framework.

3 Graph Mining with Attribute-Based Constraints

Previous work on attribute-based constraints has assumed independence between
the structure of a graph and its attributes. If this is the case, then attribute-
based constraints are not anti-monotonic. However, in most real-world graphs,
the structure and attributes are not independent. In this section, we discuss a
graph/attribute model where the attributes of vertices and edges are condition-
ally dependent on the attributes of similar or neighbouring vertices and edges
in the graph. In Sect. 4, we will present a method to constrain substructure
discovery based on the values of numeric attributes.

Fig. 2 shows four examples to illustrate the dependence of graph structure
and attributes. The social graph in Fig. 2a is labelled with the favourite sport
of the actors: people tend to form friendship bonds with people of similar in-
terests. In molecules (Fig. 2b), the vertex label (atom name) is conditionally

142 M. Davis, W. Liu, and P. Miller

dependent on the molecular structure; the degree of each vertex is dependent on
the number of free electrons of each atom; and the length of the edges (bonds)
is dependent on the atomic weights of the vertices. Fig. 2c is from video scene
analysis, showing a green object moving across a red and blue background. Each
vertex represents a superpixel in the frame: the colour attribute is conditionally
dependent on the colour of adjacent vertices. The velocities of adjacent vertices
are also conditionally dependent, as the superpixels in the object will move to-
gether and those of the background will move together. Fig. 2d continues the
example shown in Fig. 1: the time taken to travel between a pair of sensors is
conditionally dependent on the name and GPS coordinates of the sensor.

All of the above examples are labelled graphs, which have an arbitrary number
of discrete and numeric labels on their vertices and edges. Formally:

Definition 1. A labelled graph G is a tuple 〈V,E, L,LV ,LE〉. V is a set of
vertices and E is a set of edges: E ⊆ {〈v, w〉 : v, w ∈ V × V }. If the tuple 〈v, w〉
is ordered, the edge is directed, otherwise it is undirected. L is a set of graph
labels; LV and LE are label-to-value mapping functions.

Definition 2. The set of graph labels L is the union of the sets of vertex labels
LV and edge labels LE. L is partitioned into discrete labels LD and numeric
labels LN , LD ∩ LN = ∅. Thus L = LV ∪ LE = LD ∪ LN . Let AD be the set of
discrete attribute values and AN ⊂ R be the set of numeric attribute values.

Definition 3. The label-to-value mapping function for vertices is denoted as:

LV : V × (LV ∩ LD)→ AD

V × (LV ∩ LN)→ AN

For a vertex-weighted graph, the weight functionW(v) is treated as a special case
of its numeric attributes: ∀v ∈ V :W(v) = LV (v, “weight”). (The label-to-value
mapping function for edges LE can be denoted in a similar manner.)

During substructure discovery, one important method of reducing the complexity
of the GI test is vertex partitioning [8,10,13,18]. Vertices can be partitioned into
similar disjoint sets or equivalence classes. We extend this notion to also define
edge partitions:

Definition 4. The vertex partition set and edge partition set are defined as:

V =
⋃
i

Vi E =
⋃
i

Ei

where all vertices in the same partition share the same discrete attribute values:

∀v ∈ Vi ∀w ∈ Vi ∀l ∈ (LV ∩ LD) : LV (v, l) = LV (w, l)
Similarly, all edges in the same partition share the same discrete attribute values,
with the additional constraint that their source and target vertices are from the
same partitions:

∀ 〈v, w〉 ∈ Ei ∀ 〈x, y〉 ∈ Ei : v ∈ Vj ∧ x ∈ Vj ∧ w ∈ Vk ∧ y ∈ Vk

In the case of an undirected graph, 〈v, w〉 ⇔ 〈w, v〉

Substructure Discovery in Graphs with Discrete and Numeric Labels 143

(a) Unlabelled (b) Labelled (c) Increasing no. of vertex partitions1

Fig. 3. Relationship between number of vertex partitions and complexity

There is an important relationship between the number of partitions and the
complexity of GI and substructure discovery. To illustrate this, consider the un-
labelled partial clique in Fig. 3a. This graph contains eight distinct subgraphs
with two or more vertices; 27 subgraph instances in all. As multiple subgraph
instances share the same vertex partition set, it requires 20 GI tests to deter-
mine which instances are isomorphic. Compare this to the graph in Fig. 3b,
which has the same structure, but each vertex is uniquely labelled. Once again
there are 27 substructure instances, but each has a distinct vertex and edge par-
tition set. Subgraphs with different partition sets cannot be isomorphic, so we
can determine that there are 27 distinct subgraphs without needing to do any
isomorphism tests.

In practice, real-world graphs will lie somewhere between these extremes.
Fig. 3c shows the relationship between the number of vertex partitions and the
complexity of substructure discovery: the number of distinct subgraphs rises with
the number of partitions, but the number of instances of each subgraph falls.
This leads to an exponential reduction in the number of GI tests and thus the
complexity of substructure discovery.

In addition to reducing the number of GI tests required, increasing the number
of partitions constrains the search by reducing the support for each substructure.
Formally, we define a constraint as follows:

Definition 5. A constraint c is a Boolean predicate which any subgraph g ∈ G
must fulfil. c is said to be anti-monotone if it satisfies ∀g′ ⊂ g : c(g) =⇒ c(g′).

1 Fig. 3c shows the results for R-MAT random graphs, with 0, 1, . . . , 9 binary labels,
i.e. 0–512 vertex partitions. The experiment was repeated 10 times (and across mul-
tiple sizes of graph) and the results averaged. The attribute values in Fig. 3c were
assigned independently from a uniform distribution. Our experiments on synthetic
and real datasets (Sect. 5) verify that the complexity of substructure discovery in-
creases with the homogeneity of vertices and edges, and that this holds when the
independence assumption is removed.

144 M. Davis, W. Liu, and P. Miller

An example of an anti-monotone constraint is minimum support: a graph g can
reach minimum support only if all of its subgraphs g′ reach minimum support.
In previous work on constraint-based graph mining [7,11], it has been assumed
that the structure of the graph and its attributes are independent, and there-
fore attribute-based constraints are not anti-monotonic. However, in real-world
graphs, the independence assumption does not hold (Fig. 2).

Our approach is to consider the dependencies between attributes as a Random
Field [1]: the discrete attribute values on each vertex (or edge) are dependent on
its adjacent vertices, but are conditionally independent of the rest of the graph.
We use the conditional independence (CI) assumption as the basis of a generator
for graph attributes (see Sect. 5). In the next section, we use the CI assumption
to define a constraint on numeric attribute values: as attributes depend on graph
structure, the constraint is used to prune instances, or reduce support for specific
substructures, so the property of anti-monotonicity is preserved.

4 Frequent Substructure Discovery with Numeric
Attribute Constraints

In the previous section, we discussed the relationship between the number of
discrete partitions and the complexity of substructure discovery. In this section,
we discuss how to use numeric attributes as a constraint during substructure
discovery. We have argued that graph attributes are dependent on graph struc-
ture. Therefore, we can define the most descriptive substructures as those which
are normative both in terms of their structure and in terms of their numeric
attributes. The corollary is that vertices or edges containing numeric outliers
are abnormal and can therefore be pruned early in the discovery process. We
determine whether numeric attributes are “normal” or anomalous by means of
a numeric outlier detection function:

Definition 6. We define a numeric outlier function O on a dataset D as:

O : D → R ∀d ∈ D : O(d) =
{
q0 if d is “normal” w.r.t. D
q otherwise

where q0 is some constant value and q �= q0 is a value measuring the degree of
outlierness.

The value of q0 and the range of O will depend on the specific choice of outlier
detection function. For our experiments in Sect. 5, we chose Local Outlier Factors
(LOF) [3]. LOF is a density-based measure: the LOF score of a sample p is a
measure of its outlierness with respect to its local neighbourhood, computed as:

LOFMinPts(p) =

∑
o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|

where N is the number of samples in the dataset, MinPts is the minimum
number of points to consider as the local neighbourhood and lrd is a function

Substructure Discovery in Graphs with Discrete and Numeric Labels 145

which computes the local reachability density of the neighbourhood (the inverse
of the average reachability distance in the neighbourhood). Intuitively, the LOF
score is based on the distance of a sample from its local neighbourhood and
the relative density of the neighbourhood. A sample d belonging to a dense
cluster or deep within a sparse cluster has LOF(d) � 1. Outliers have LOF
values several times larger. Thus LOF satisfies the property given in Def. 6:
LOF(d) � 1 for normal values of d and LOF(d) � 1 for anomalous values.
LOF is well-suited to unsupervised learning, as it makes no assumptions about
the underlying distribution of the data and can cope with clusters of different
sizes and densities. For more discussion on the choice of outlier function, see the
comments in Sects. 5 and 6 and our previous work [6].

To calculate O(dv) for a vertex v, we define dv as a multi-dimensional feature
vector across all the numeric attributes of v: dv = LV (v, LN). The outlier factor
for each dv is calculated relative to the dataset defined by its vertex partition,
∀dv ∈ Di : v ∈ Vi.

To use O as a constraint on substructure discovery, structural elements are
classified as normal or anomalous by Def. 7:

Definition 7. A vertex v ∈ Vi is normal if O(LV (v, LN)) � q0, anomalous
otherwise. An edge e ∈ Ei is normal if O(LE(e, LN)) � q0, anomalous otherwise.

During substructure discovery, anomalous vertices and edges are pruned from
the graph. This can be done as a pre-processing step before generating all fre-
quent 1- and 2-vertex subgraphs. As we only consider elements with “normal”
numeric values to be part of normative substructures, this pruning dramatically
reduces the number of GI tests required, without significantly affecting which
substructures are discovered. We validate this experimentally in the next section.

5 Experiments

The purpose of our experiments is to analyse the effect of pruning anomalous
vertices and edges from graphs on the performance and accuracy of substructure
discovery. Specifically, we analysed the number of graph isomorphism tests re-
quired; the computation time for substructure discovery; and the accuracy and
meaningfulness of the discovered substructures. We show that our constraint-
based approach can more efficiently find frequent subgraphs than an uncon-
strained approach. In many cases where the input graph is intractable with an
unconstrained approach due to the computational or memory overheads, our
approach allows the graph to be processed.

Synthetic Datasets. Our experimental setup included Erdős-Rényi random
graphs and R-MAT random graphs with up to 10,000 vertices. For the R-MAT
graphs, we added edges with mean degree 2, 4, 6 and 8 and probabilities that an
edge is placed in one of the four quadrants of the graph as 〈0.57, 0.19, 0.19, 0.05〉,
to ensure that the random graphs exhibited clustering/community properties.
Attributes were added in three ways: random selection from a uniform distribu-
tion (“white noise”); according to pre-defined prior probabilities; and according

146 M. Davis, W. Liu, and P. Miller

to the generative algorithm described below. The purpose of the experiments on
synthetic data was to compare the effect of increasing size, structure, density and
dependencies between graph structure and attributes on the complexity of sub-
structure discovery, and to evaluate the effect of our constraint-based approach
on the performance of substructure discovery.

Random Generation of Graph Attributes. The R-MAT graph generator [4]
creates random graphs with properties similar to many real-world graphs (small-
world, power-law degree distribution, etc.). As R-MAT creates unlabelled graphs,
we had to devise a way to assign labels and attribute values. A näıve approach is
to randomly allocate attribute values according to some prior distribution, but
this assumes that the graph structure and attributes are independent. Here we
present AttributeGen, an algorithm to generate random attribute values on an
unlabelled graph. Alg. 1 shows the version for discrete attributes.

The Random Field model assumes that the attribute values on each vertex
depend on its neighbours. For AttributeGen, we used a simpler assumption, that
the values on each vertex depend only on its higher-degree neighbour; i.e., the
dependencies between attributes will be propagated from hubs to leaves. Vertices
with no higher-degree neighbour are assigned values from a prior distribution
over A (line 6: we define one distribution per vertex label). Edges and the other
vertices are assigned values from a posterior distribution over A. Edge attributes
are conditional on the vertex partition of the source vertex (line 8). Vertex
attributes on a target vertex are conditional on the vertex partition of the source
vertex and the edge partition of the connecting edge (line 10).

Random numeric values are generated by an analagous method. From our
analysis of numeric attributes on real-world datasets (see below), we see that
numeric attributes are generated by multiple processes; the specific mixture of
processes depends on the vertex (or edge) partition. We use this observation
to extend Alg. 1 to generate numeric as well as discrete attribute values. Each
numeric attribute LV (v, l) on a given vertex partition Vi : v ∈ Vi is modelled as
a mixture of Gaussian processes:

Algorithm 1. Discrete AttributeGen

Require: Unlabelled Random Graph G = 〈V,E〉, Labels LV , LE , Attribute Values A,
Prior distributions PV , Posterior distribuitions QV , QE

1: Define vertex labels in G from LV and edge labels from LE

2: Sort vertices V by degree in descending order
3: for all v ∈ V in order do
4: for all l ∈ LV do
5: if LV (v, l) is unassigned then
6: Assign LV (v, l) ← a ∈ A : a is randomly selected from pl ∈ PV

7: for all e ∈ E : e is adjacent to v, l ∈ LE do
8: Assign LE(e, l) ← a ∈ A : a is randomly selected from qv,l ∈ QE

9: Let w be the adjacent vertex: ∃w ∈ V : e = 〈v, w〉
10: Assign LV (w, l) ← a ∈ A : a is randomly selected from qv,e,l ∈ QV

Substructure Discovery in Graphs with Discrete and Numeric Labels 147

PVi,l =
∑
j

ωj · ηj(μj , σj)

similar to those illustrated in Fig. 5. ωj is the weight of each component in
the mixture;

∑
j ωj = 1 forms a probability distribution Ω over all the compo-

nents. Numeric attributes are assigned by randomly selecting component j of
the mixture from Ω, then choosing a random numeric value from the Gaussian
distribution ηj(μj , σj). Thus the distributions of numeric values are dependent
on the vertex partition and conditionally independent of the rest of the graph.

Ideally, we should learn the prior and posterior distributions of the attribute
values from data, to create attribute generators for specific types of graph (social
graphs, molecular structures, etc.). As that was outside the scope of this work,
the distributions for the synthetic data in the experiments were created manually.

Access Control System Dataset. Our real-world dataset is from the access
control system logs of a large university campus. The ≈ 1 million log entries
are graphically represented in Fig. 1a, showing the movements of approximately
6,500 students and staff. The ≈ 800 vertices represent door sensors; directed
edges represent movements between pairs of sensors. We are interested in find-
ing patterns representing “suspicious” behaviour, particularly in high-security
areas such as laboratories for laser, radiation and medical research [6]. For the
purpose of our experiments, we reorganised the graph as a transaction database,
where each graph transaction represents the movement of an individual within
a given 24-hour period (Fig. 1b). If a user fails to swipe in at a particular sensor
(e.g. if someone holds open a door for them), this creates missing edges in the

Fig. 4. Numeric edge labels

graph. We compensated for this effect by including
forward edges from each sensor to all subsequent
sensors visited by the user (Fig. 1c).

Numeric attributes were calculated from the log
entries and added to the edges in the graph as
shown in Fig. 4. Absolute time is the time of day
(seconds since midnight) when the user presented
their ID card to a door sensor at the end of the
path segment. Elapsed time is the difference in sec-
onds between the absolute time at the current sen-
sor and the absolute time at the previous sensor.
Day of Week (DoW) is strictly an ordinal attribute,
but it was convenient to represent it numerically:
LOF combined it with the other attributes in multi-
dimensional space, effectively clustering different patterns of behaviour on dif-
ferent days. Weekend patterns are quite different from weekday patterns, per-
haps representing the movements of security staff or cleaners as well as weekend
workers.

148 M. Davis, W. Liu, and P. Miller

Fig. 5. Distribution of Empirical Data and Local Outlier Factors

We cannot assume that the numeric attributes within real-world graphs are
a simple Gaussian; nor can we assume that the probability distribution is the
same across all partitions. The left-hand side of Fig. 5 shows four examples of the
distribution of the Time of Day numeric attribute across the edges of four of the
edge partitions. For each partition, there is a mixture of underlying processes: in
a lab, some people work there and stay for many hours; others go in simply to
speak to a colleague for a few minutes; security staff may show up periodically
for short intervals in the middle of the night. The mixture of processes between
partitions is also different: the behaviours in a lab are very different from the
behaviours in a lift.

This analysis supports our decision to use a density-based approach to calcu-
late numeric outliers. The distribution of LOF scores for each of the empirical
distributions is shown to the right of Fig. 5. Although the data distributions are
very different, the distributions of LOF scores are very similar, with normal val-
ues clustered around 1 and anomalous values stretching out in a long tail to the
right. This verifies that by using LOF, we do not have to make any assumptions
about the underlying distribution of the data.

The experimental results in the next section verify that LOF is an effective
measure for pruning anomalous vertices and edges.

Substructure Discovery in Graphs with Discrete and Numeric Labels 149

(a) Independent Attributes (b) Conditionally Independent
Attributes

Fig. 6. Frequent substructure discovery on R-MAT random graphs

5.1 Results

Synthetic Datasets. The experiments on random single large graphs were
repeated 10 times for each combination of no. of vertices, no. of vertex partitions
and no. of numeric attributes, and the results averaged. In all cases, run time
was directly proportional to the number of GI tests. The time taken to calculate
numeric outliers was trivial compared to the time to discover substructures:
≈ 0.2 seconds for a graph with 10,000 vertices and 100 numeric attributes. LOF’s
O(n2m) complexity is acceptable on graphs where each partition has up to a few
thousand vertices or edges. For graphs with larger partitions, some alternative
measures are suggested in Sect. 6.

Fig. 6a shows the results for graphs where the attributes were assigned inde-
pendently from a uniform distribution. On the 1,000 vertex graphs, we measured
an average 66% reduction in the number of GI tests required when using numeric
outliers to prune the graph, compared to an unconstrained search. (As the at-
tributes are independent, we cannot make any claims about the meaningfulness
of the discovered substructures in this case; cf. our comparison with random
substructure removal, Fig. 8).

Fig. 6b shows the results for graphs where the attributes are conditionally
dependent on the graph structure (Alg. 1), so the anti-monotone condition holds.
These experiments show an average 80% reduction in the number of GI tests,
demonstrating that our constraint-based approach is most effective when the
graph exhibits conditional independence between structure and attributes.

We found that graphs with 10,000 vertices and a small number of partitions
were not tractable without using numeric attributes, as there were millions of
instances of each pattern, requiring more memory to process than was available
in our experimental setup. However, we were able to process the 10,000 vertex
graphs with the numeric constraint, as there were an order of magnitude fewer
instances to compare for isomorphism. This suggests that our method could be
useful when processing Very Large Graphs.

150 M. Davis, W. Liu, and P. Miller

(a) Number of GI tests required (b) Frequency of top 10 substructures

Fig. 7. Effect of pruning numeric anomalies on frequent substructure discovery

Access Control System Dataset. The results on the real-world graph trans-
action database are shown in Fig. 7. Fig. 7a shows the number of GI tests
for datasets of 2,000–10,000 vertices. In the real-world data, numeric attributes
vary in their ability to discriminate between normal and anomalous patterns, but
combining attributes gives the best performance overall. Absolute and elapsed
time are both good discriminators, but day of week is very poor. However, if
we combine day of week with elapsed time, we get a slightly better result than
using elapsed time on its own; and the best results were achieved by combining
all three attributes. The benefit of our approach increased with increasing size
of database, as we were able to prune more anomalous substructures. In the
dataset with 10,000 vertices, we reduced the number of GI tests by around 30%,
which equated to a speed-up of 1.45.

Next, we wanted to validate that the discovered substructures are meaningful.
Fig. 7b compares the ten best substructures discovered by Subdue (with no
numeric attributes) to the substructures discovered when we added attributes.
Our approach discovered the same substructures as Subdue, but fewer instances
of each. The relative order of the top ten substructures was changed slightly.
Where there is a large difference in relative frequency (e.g. 1st–3rd substructures),
the ordering was unchanged: these substructures are robust against the removal
of anomalous edges. In cases where the relative frequencies were very similar,
the order was sometimes transposed (e.g. 4th and 5th substructures exchanged
places). This is because greater weight is given to substructures with normal
numeric values.

To investigate this effect further, we compared our method of pruning anoma-
lous edges to random removal of edges from the graph. We conducted experi-
ments where we randomly deleted 10%–90% of the edges in the graph before
searching for frequent substructures. The results are shown in Fig. 8.

Fig. 8a shows the effect on performance. It is necessary to remove around 45%
of the graph in order to reduce the number of GI tests by a similar amount as
our approach.

Substructure Discovery in Graphs with Discrete and Numeric Labels 151

(a) Number of GI tests required (b) Frequency of top 10 substructures

Fig. 8. Effect of randomly removing graph edges on substructure discovery

Fig. 8b shows the frequency counts of the top 10 substructures. Substructures
with edges randomly removed are shown in grey; substructures discovered by
our approach are superimposed in black. Randomly removing edges increases
the entropy of the graph: the shape of the curve becomes flatter as more of the
graph is removed. Substructure 1 is quite distinct; even with 90% edge removal,
it remains the most descriptive pattern. Substructures 2–3 are also quite robust;
discrimination is lost at around 70% edge removal. However, discrimination be-
tween substructures 4–10 diminishes after 20% edge removal and by 50% edge
removal, the order is random. These results show that randomly deleting graph
edges does not preserve the meaningfulness of the output.

5.2 Analysis of Complexity

Here we briefly discuss the benefits (and costs) of using our approach with respect
to the complexity of substructure discovery. Substructure discovery algorithms
have essentially two parts: finding instances in a graph (or graph database); and
grouping instances together into common substructures for evaluation.

Finding Instances. The graph space is searched starting from each vertex in-
stance. If n = |V | and m = |E|, an exhaustive search of all possible substructure
instances in a single graph has complexity O(n2 + nm). For a graph database
with K transactions, D = {G1, . . . , GK}, the complexity of instance discovery is
O(n2

1 + n1m1 + . . . + n2
K + nKmK). In practice, algorithms do not perform an

exhaustive search, as the cost is prohibitive in all but the most trivial graphs.
Subdue constrains the search with its parameters; gSpan uses minimum support.
gSpan’s approach does not scale to single large graphs; graph transactions with
more than a few hundred vertices and edges are intractable [11].

The benefit of our approach is to prune away the parts of the search space
which contain numeric anomalies. If 0 < p ≤ 1 is the proportion of “normal”
vertices and 0 < q ≤ 1 is the proportion of “normal” edges, the complexity of
an exhaustive search for substructure instances reduces to O((pn)2 + pqnm).

152 M. Davis, W. Liu, and P. Miller

Grouping Instances into Substructures. Instances are grouped together
using isomorphism tests (or canonical labels, which involves finding a set of au-
tomorphisms and determining which is “least”). The complexity of GI is one
of the most famous unsolved problems in complexity theory, so a formal anal-
ysis is well outside the scope of this paper. The interested reader is referred
to [8] for an introduction and to [14] for the state-of-the-art. The best proven

worst-case complexity for the general case is eO(
√
n logn), though most real-world

graphs exhibit polynomial complexity. Suffice to say that the GI test is the most
computationally expensive part of the discovery process: any reduction to the
number of GI tests will have a dramatic effect on the computational cost.

The upper bound on the number of GI tests required is O(|I| × |S|), where I
is the set of instances and S is the set of discovered substructures. In practice,
we only approach this upper bound where the input graph exhibits low entropy:
see the discussion following Def. 4. Our approach reduces |I| as discussed above.
There is little effect on the frequent substructures in S (see Fig. 7b, 8b), but
infrequent substructures will lose support and will be pruned earlier, so we expect
some reduction in |S|.

Cost of Calculating Numeric Anomalies. LOF has complexity O(n2d),
where d is the number of numeric attributes. For a graph withN vertex partitions
(Def. 4), the complexity of calculating LOF for all vertices is O(n2

1d+ . . .+n2
Nd).

Thus, the cost of calculating LOF is typically orders of magnitude smaller than
the cost of substructure discovery, but rises significantly when the input graph
exhibits low entropy (as there are fewer partitions with more vertices in each).

Where each ni is small (not more than a few thousand), LOF’s O(n2d) com-
plexity is acceptable. For very large or very regular graphs, the complexity can be
reduced by replacing LOF with an approximation algorithm such as aLOCI [16]
or PINN [17], which has sub-quadratic complexity, O(dn logn).

In summary, our approach reduces the complexity of substructure discovery
at both the instance mining and substructure grouping phases, and the cost
of calculating the numeric anomaly scores is typically orders of magnitude less
than the cost savings. The resulting performance improvement means that sub-
structure discovery remains tractable for larger graphs than is possible with the
standard algorithms.

6 Conclusions

In this paper, we presented a method of using numeric outliers as a constraint
on the search for frequent substructures in graphs. Our thesis is that the “best”
substructures are those which are not only the most frequent, but which are also
normative in terms of their numeric attributes.

Previous work on attribute-based constraints has assumed independence be-
tween graph structure and attributes, but this assumption does not hold for
real-world graphs. Our outlier-based constraint and algorithm for generating
random attributes on graphs assume conditional independence between graph
structure and attributes.

Substructure Discovery in Graphs with Discrete and Numeric Labels 153

Our experiments on random graphs demonstrate that in many cases where the
input graph is intractable with an unconstrained approach, our approach allows
the graph to be processed. In experiments on real-world data, we find similar
substructures to an unconstrained search, with around 30% fewer graph isomor-
phism tests. Where discovered substructures are of similar frequency, we are
better able to discriminate between them, because we give greater weight to
substructures with normal numeric attributes.

Future Work. The algorithm for generating random attributes (Sect. 5) must
be provided with prior and posterior distributions of attribute values. We plan to
analyse real-world datasets representing different kinds of graph to learn these
distributions. This will allow us to generate different types of random graph
which share the characteristics of real-world graphs.

Instead of hard-pruning anomalies, the measure O could be used in the calcu-
lation of how much support each subgraph instance contributes. Instances with
normal numeric values would contribute a support of 1, whereas instances with
anomalous numeric values would contribute a support of less than 1. We plan to
conduct further experiments to compare this alternative support measure with
the pruning approach.

We used LOF as the measure function O. As discussed in Sect. 5.2, where the
vertex or edge partitions are very large, LOF’s complexity may be unacceptable.
This could be addressed by replacing LOF with aLOCI [16] or PINN [17].

We tested our approach on graphs with a moderate number of numeric at-
tributes (up to 10). If there are very many attributes, the numeric feature vectors
become very sparsely distributed in high-dimensional space. In this case, LOF’s
ability to discriminate between normal and anomalous values is diminished.
However, not all attributes are of equal importance to all clusters. For high-
dimensional data, we could amend our approach to detect numeric anomalies in
subspaces rather than in full space by choosing only locally-relevant attributes
on which to calculate the outlier score [12].

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
2. Borgelt, C.: Canonical forms for frequent graph mining. In: 30th Annual Conf.

German Classification Society, GfKl 2006, pp. 337–349. Springer (2006)
3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based

local outliers. SIGMOD Rec. 29(2), 93–104 (2000)
4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph

mining. In: SDM 2004. SIAM (2004)
5. Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intelligent Systems 15,

32–41 (2000)
6. Davis, M., Liu, W., Miller, P., Redpath, G.: Detecting anomalies in graphs with

numeric labels. In: CIKM 2011, pp. 1197–1202. ACM (2011)
7. Eichinger, F., Huber, M., Böhm, K.: On the usefulness of weight-based constraints

in frequent subgraph mining. In: ICAI 2010, pp. 65–78. BCS SGAI (December
2010)

154 M. Davis, W. Liu, and P. Miller

8. Fortin, S.: The graph isomorphism problem. Tech. rep., Univ. of Alberta (1996)
9. Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: Mining maximal frequent subgraphs

from graph databases. In: KDD 2004, pp. 581–586. ACM (2004)
10. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining fre-

quent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow,
J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000)

11. Jiang, C., Coenen, F., Zito, M.: Frequent sub-graph mining on edge weighted
graphs. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010.
LNCS, vol. 6263, pp. 77–88. Springer, Heidelberg (2010)

12. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Transactions on Knowledge Discovery in Data 3(1), 1:1–1:58 (2009)

13. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM 2001, pp.
313–320. IEEE (2001)

14. McKay, B.D., Piperno, A.: Practical graph isomorphism, II (January 2013),
http://arxiv.org/abs/1301.1493v1

15. Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs
with feature vectors. In: SDM, pp. 593–604 (2009)

16. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: Loci: fast outlier de-
tection using the local correlation integral. In: Proceedings of the 19th International
Conference on Data Engineering 2003, pp. 315–326 (March 2003)

17. de Vries, T., Chawla, S., Houle, M.: Finding local anomalies in very high dimen-
sional space. In: ICDM 2010, pp. 128–137. IEEE (2010)

18. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM 2002,
pp. 721–724. IEEE (2002)

19. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: KDD
2003, pp. 286–295. ACM (2003)

http://arxiv.org/abs/1301.1493v1

Learning in Probabilistic Graphs Exploiting

Language-Constrained Patterns

Claudio Taranto, Nicola Di Mauro, and Floriana Esposito

Department of Computer Science, University of Bari ”Aldo Moro”
via E. Orabona, 4 - 70125, Bari, Italy

{claudio.taranto,nicola.dimauro,floriana.esposito}@uniba.it

Abstract. The probabilistic graphs framework models the uncertainty
inherent in real-world domains by means of probabilistic edges whose
value quantifies the likelihood of the edge existence or the strength of
the link it represents. The goal of this paper is to provide a learning
method to compute the most likely relationship between two nodes in a
framework based on probabilistic graphs. In particular, given a proba-
bilistic graph we adopted the language-constrained reachability method
to compute the probability of possible interconnections that may exists
between two nodes. Each of these connections may be viewed as feature,
or factor, between the two nodes and the corresponding probability as
its weight. Each observed link is considered as a positive instance for
its corresponding link label. Given the training set of observed links a
L2-regularized Logistic Regression has been adopted to learn a model
able to predict unobserved link labels.

1 Introduction

Over the last few years the extension of graph structures with uncertainty has
become an important research topic [13,18,12], leading to probabilistic graph
model. Probabilistic graphs model uncertainty by means of probabilistic edges
whose value quantifies the likelihood of the edge existence or the strength of
the link it represents. One of the main issues in probabilistic graphs is how to
compute the connectivity of the network. The network reliability problem [3] is
a generalization of the pairwise reachability, in which the goal is to determine
the probability that all pairs of nodes are reachable from one another. Unlike a
deterministic graph in which the reachability function is a binary value function
indicating whether or not there is a path connecting two nodes, in the case of
probabilistic graphs the function assumes probabilistic values.

The concept of reachability in probabilistic graphs is used, along with its spe-
cialization, as a tool to compute how two nodes in the graph are likely to be
connected. Reachability plays an important role in a wide range of applications,
such as in peer-to-peer networks, for probabilistic-routing problem, in road net-
work, and in trust analysis in social networks. Reachability is quite similar to the
general concept of link prediction [5], whose task may be formalized as follows.
Given a networked structure (V,E) made up of a set of data instances V and a

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 155–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 C. Taranto, N. Di Mauro, and F. Esposito

set of observed links E among some nodes in V , the task corresponds to predict
how likely should exist an unobserved link between two nodes. The extension
to probabilistic graphs adds an important ingredient that should be adequately
exploited. The key difference with respect to classical link prediction is that here
the observed connections between two nodes cannot be considered always true,
and hence methods exploiting probabilistic links are needed.

The goal of this paper is to provide a learning method to compute the most
likely relationship between two nodes in probabilistic graphs. In particular, given
a probabilistic graph we adopted the reachability tool to compute the probability
of some possible interconnections that may exists between two nodes. Each of
these connections may be viewed as a feature, or a pattern, between the two
nodes and the corresponding probability as its weight. Each observed labeled link
is considered as a positive instance for its corresponding link label. The link label
corresponds to the value of the output variable yi, and the features between the
two nodes, computed with the reachability tool, correspond to the components of
the corresponding vector xi. Given the training set D = {(xi, yi)}ni=1, obtained
from n observed links, a L2-regularized Logistic Regression has been adopted
to learn a model to be used to predict unobserved link labels. The proposed
approach is quite similar to that of propositionalization proposed in the field of
Statistical Relational Learning [6], where the relational data are flattened to a
propositional representation using relational features in order to have efficient
learning results. Here the further problem that we have to handle is that the
relational representation is uncertain.

The application domains we chosen correspond to the problem of recom-
mender systems [4] and to the protein interactions task [11]. In the first domain
the aim is to predict the unknown rating between an user and an item, while in
the second one the goal is to predict the presence or absence of an interaction
between two proteins. Experiments proved that the proposed approach achieves
significant results when compared to a Singular Value Decomposition (SVD) ap-
proach [14], representing one of the best recent methods for the recommendation
task [9].

The rest of this paper is organized as follows. The next section introduces the
probabilistic graph model. Then, Section 3 describes how the link classification
problem is solved combing a linear classifier and a set of relational probabilistic
features. Section 4 shows the results of the proposed approach on some real world
problems. Lastly, Section 5 concludes the paper.

2 Probabilistic Graphs

Let G = (V,E), be a graph where V is a collection of nodes and E ∈ V × V is
the set of edges, or relationships, between the nodes.

Definition 1 (Probabilistic graph). A probabilistic graph is a system G =
(V,E, Σ, lV , lE , s, t, pe), where (V,E) is an directed graph, V is the set of nodes,
E is the set of ordered pairs of nodes where e=(s,t),Σ is a set of labels, lV : V → Σ

Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns 157

is a function assigning labels to nodes, lE : E → Σ is a function assigning labels
to the edges, s : E → V is the source node of an edge, t : E → V is the target node
of an edge, pe : E → [0, 1] is a function assigning existence probability values to
the edges.

The existence probability pe(a) of an edge a = (u, v) ∈ E is the probability that
the edge a, between u and v, can exist in the graph. A particular case of proba-
bilistic graph is the discrete graph1, where binary edges between nodes represent
the presence or absence of a relationship between them, i.e., the existence prob-
ability value on all observed edges is 1. The possible world semantics, specifying
a probability distribution on discrete graphs and formalized in the distribution
semantics of Sato [15] for the first order logic, is usually used for probabilistic
graphs. We can imagine a probabilistic graph G as a sampler of worlds, where
each world is an instance of G. A discrete graph G′ is sampled from G according
to the probability distribution Pe, denoted as G′ � G, when each edge a ∈ E is
selected to be an edge of G′ with probability pe(a). Edges labelled with probabil-
ities are treated as mutually independent random variables indicating whether
or not the corresponding edge belongs to a discrete graph.

Assuming independence among edges, the probability distribution over dis-
crete graphs G′ = (V,E′) � G = (V,E) is given by

P (G′|G) =
∏
a∈E′

pe(a)
∏

a∈E\E′
(1− pe(a)). (1)

Definition 2 (Simple path). Given an uncertain graph G, a simple path of
a length k from u to v in G is an acyclic path denoted as a sequence of edges
pu,v = 〈e1, e2, . . . ek〉, such that e1 = (u, v1), ek = (vk−1, v), and ei = (vi−1, vi)
for 1 < i < k − 1.

Given an uncertain graph G, and pu,v a path in G from the node u to the node
v, �(pu,v) = lE(e1)l(e2) · · · l(ek) denotes the concatenation of the labels of all
the edges in pu,v. We adopt a regular expression R to denote what is the exact
sequence of the labels that the path must contain.

Definition 3 (Language-constrained simple path). Given a probabilistic
graph G and a regular expression R, a language constrained simple path is a
simple path p such that �(p) ∈ L(R), where L(R) is the language described by R.

2.1 Inference

Given a probabilistic graph G, a main task corresponds to compute the probabil-
ity that there exists a simple path between two nodes u and v, that is, querying
for the probability that a randomly sampled discrete graph contains a simple
path between u and v. More formally, the existence probability Pe(q|G) of a sim-
ple path q in a probabilistic graph G corresponds to the marginal P ((q,G′)|G)
with respect to q:

1 Sometimes called certain graph.

158 C. Taranto, N. Di Mauro, and F. Esposito

Pe(q|G) =
∑
G′�G

P (q|G′) · P (G′|G), (2)

where P (q|G′) = 1 if there exits the simple path q in G′, and P (q|G′) = 0
otherwise. In other words, the existence probability of the simple path q is the
probability that the simple path q exists in a randomly sampled discrete graph.

Definition 4 (Language-constrained simple path probability). Given a
probabilistic graph G and a regular expression R, the language-constrained simple
path probability of L(R) is

Pe(q|L(R), G) =
∑
G′�G

P (q|G′, L(R)) · P (G′|G), (3)

where P (q|G′, L(R)) = 1 if there exists a simple path q in G′ such that �(q) ∈
L(R), and P (q|G′, L(R)) = 0 otherwise.

The previous definition give us the possibility to compute the probability of a set
of simple path queries, or patterns, fulfilling the structure imposed by a regular
expression. In this way we are interested in discrete graphs that contain at least
one simple path belonging to the language denoted by the regular expression.

Computing the existence probability directly using (2) or (3) is intensive and
intractable for large graphs since the number of discrete graphs to be checked
is exponential in the number of probabilistic edges. It involves computing the
existence of the simple path in every discrete graph and accumulating their
probability.

A natural way to overcome the intractability of computing the existence prob-
ability of a simple path is to approximate it using a Monte Carlo sampling
approach [8]:

1. we sample n possible discrete graphs, G1, G2, . . . Gn from G by sampling
edges uniformly at random according to their edge probabilities; and

2. we check if the simple path exists in each sampled graph Gi.

This process provides the following basic sampling estimator for Pe(q|G):

Pe(q|G) ≈ P̂e(q|G) =

∑n
i=1 P (q|Gi)

n
. (4)

Note that is not necessary to sample all the edges to check whether the graph
contains the path. For instance, assuming to use an iterative depth first search
(DFS) procedure to check the path existence. When a node is just visited, we
will sample all its adjacent edges and pushing them into the stack used by the
iterative procedure. We will stop the procedure either when the target node is
reached or when the stack is empty (non existence).

Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns 159

3 Link Classification

After having defined the probabilistic graph, we can adopt language-constrained
simple paths in order to extract probabilistic features (patterns) to describe the
link between two nodes in the graph.

Given a probabilistic graph G, with the set V of nodes and the set E of edges,
and Y ⊆ Σ a set of edge labels, we have a set of edges D ⊆ E such that for each
element e ∈ D: lE(e) ∈ Y . In particular D represents the set of observed links
whose label belongs to the set Y .

Given the set of training links D and the set of labels Y we want to learn a
model able to correctly classify unobserved links. A way to solve the classification
task can be that of using a language based classification approach. Given an
unobserved edge ei = (ui, vi), in order to predict its class ŷi ∈ Y we can solve
the following maximization problem:

ŷi = argmax
j

P (qj(ui, vi)|G), (5)

where qj(ui, vi) is the unknown link with label qj ∈ Y between the nodes ui

and vi. In particular, the maximization problem corresponds to compute the
link prediction for each qj ∈ Y and then choosing that label with maximum
likelihood.

The previous link prediction task is based on querying the probability of some
language-constrained simple path. In particular, predicting the probability of the
label qj as P (qj(ui, vi)|G) in (5) corresponds to compute the probability P (q|G)
for a query path in a language Lj, i.e., computing P (Lj |G) as in (3):

ŷj = argmax
j

P (qj(ui, vi)|G) ≈ argmax
j

P (q|Lj, G). (6)

The previous query based approach consider the languages used to compute the
(6) as independent form each other without considering any correlation between
them. A more interesting approach that we want investigate in this paper is
to learn from the probabilistic graph a linear model of classification combining
the prediction of each language constrained simple path. In particular, given
an edge e and a set of k languages L = {L1, . . . , Lk}, we can generate k real
valued features xi where xi = P (q|Li, G), 1 ≤ i ≤ k. The original training set
of observed links D can hence be transformed into the set of instances D =
{(xi, yi)}i=1,...,n, where xi is a k-component vector of features xij ∈ [0, 1], and
yi is the class label of the corresponding example xi.

Linear classification represents one of the most promising learning technique
for problems with a huge number of instances and features aiming at learning
a weight vector w as a model. L2-regularized Logistic Regression belongs to
the class of linear classifier and solves the following unconstrained optimization
problem:

min
w

f(w) =

(
wTw

2
+ C

n∑
i=1

log(1 + exp(−yiwTxi))

)
, (7)

160 C. Taranto, N. Di Mauro, and F. Esposito

where log(1 + exp(−yiwTxi)) = ξ(w;xi, yi) denotes the specific loss function,
1
2w

Tw is the regularized term, and C > 0 is a penalty parameter. The decision
function corresponds to sgn(wtxi). In case of binary classification yi ∈ {−1,+1},
while for multi class problems the one vs the rest strategy can be used.

Among many methods for training logistic regression models, such as iterative
scaling, nonlinear conjugate gradient, quasi Newton, a new efficient and robust
truncated Newton, called trust region Newton method, has been proposed [10].
In order to find the parameters w minimizing f(w) it is necessary to set the
derivative of f(w) to zero. Denoting with σ(yiw

Txi) = (1 + exp(−yiwTxi))
−1,

we have:
∂f(w)

∂w
= w + C

n∑
i=1

(
σ(yiw

Txi)− 1
)
yixi = 0.

To solve the previous score equation, the Newton method requires the Hessian
matrix:

∂2f(w)

∂w∂wT
= I+ CXTDX,

where X is the matrix of the xi values, D is a diagonal matrix of weights with
ith diagonal element σ(yiw

Txi)(1 − σ(yiw
Txi)), and I is the identity matrix.

The Newton step is wnew ← wold + sold, where sold is the solution of the
following linear system:

∂2f(wold)

∂w∂wT
sold = −∂f(wold)

∂w
.

Instead of using this update rule, [10] propose a robust and efficient trust region
Newton method, using new rules for updating the trust region, whose corre-
sponding algorithm has been implemented in the LIBLINEAR2 system.

4 Experimental Evaluation

The application domains we chosen to validate the proposed approach are that
of recommender systems and interactions between proteins.

In order to validate the proposed approach in recommender systems the first
dataset we used is the MovieLens dataset3, made available by the GroupLens
research group at University of Minnesota for the 2nd International Workshop
on Information Heterogeneity and Fusion in Recommender Systems. We used
the MovieLens 100K version consisting of 100000 ratings (ranging from 1 to 5)
regarding 943 users and 1682 movies, divided into five folds. Each user has rated
at least 20 movies and there are simple demographic info for the users (such as
age, gender, occupation, and zip code). In this paper we used the ratings only
without considering the demographic information.

The Hetrec2011-lastfm [2] dataset, related to recommender systems domain
(music recommendation), is the second dataset we used to validate the proposed

2 http://www.csie.ntu.edu.tw/~cjlin/liblinear.
3 http://ir.ii.uam.es/hetrec2011/datasets.html

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://ir.ii.uam.es/hetrec2011/datasets.html

Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns 161

method. This dataset contains social networking, tagging, and music artist lis-
tening information from a set of 2K users from Last.fm online music system. In
this dataset we have 1892 users, 17632 artists, 12717 bi-directional user friend
relations and 92834 user-artist relations. We have discretized the user-listened
artist relations into three (equal bins) classes play1, play2 and play3 indicat-
ing the frequency with which a user has listened to a specific artist, where
play1 < play2 < play3. Hetrec2011-lastfm dataset has been divided into 4 fold
made up of ∼70000 training ratings and ∼20000 testing ratings.

For these two datasets the goal is to predict the user’s interest with respect to
an unknown object. In Movielens dataset, we want to predict the user’s interest
with respect to a new film, while in the hetrec2011-lastfm dataset the goal is to
predict the frequency with which a user may listen to a new artist.

The last dataset we used, ppi, describes interactions among proteins [11]. The
dataset is composed by 3888 probabilistic interactions among 918 proteins, and
it has been divided into 4 fold consisting of 5832 training interactions and 1944
testing interactions, where further 3888 negative interactions between unlinked
proteins have been added. Here the goal is to predict the presence or the absence
of an interaction between two proteins.

Hence, in some domains both data and probabilistic relationships between
them are observable (like in ppi), while in other domains (as in Movielens and
hetrec2011-lastfm) it is necessary to elicit the uncertain relationships among the
given evidence.

4.1 Probabilistic Graph Creation in Recommender System Domain

When we work with a set of data, in which the probabilistic relationships between
data are hidden, a common approach to elicit these connections is based on using
similarity measures. To model the data with a graph we can adopt different
similarity measures for each type of node involved in the relationships.

In a recommender system domain we have two types of entities: the users and
the items, and the only observed relationship corresponds to the ratings that
a user has assigned to a set of items. The goal is to predict the rating a user
could assign to an object that he never rated in the past. In the collaborative
filtering approach there are two methods to predict unknown rating exploiting
users or items similarity. User-oriented methods estimate unknown ratings based
on previous ratings of similar users, while in item-oriented approaches ratings
are estimated using previous ratings given by the same user on similar items.

Let U be a set of n users and I a set of m items. A rating rui indicates the
preference degree the user u expressed for the item i, where high values mean
stronger preference. Let Su be the set of items rated from user u. A user-based
approach predicts an unobserved rating r̂ui as follows:

r̂ui = ru +

∑
v∈U|i∈Su

σu(u, v) · (rvi − rv)∑
v∈U|i∈Su

|σu(u, v)|
, (8)

162 C. Taranto, N. Di Mauro, and F. Esposito

where ru represents the mean rating of user u, and σu(u, v) stands for the similar-
ity between users u and v, computed, for instance, using the Pearson correlation:

σu(u, v) =

∑
a∈Su∩Sv

(rua − ru) · (rva − rv)√∑
a∈Su∩Sv

(rua − ru)2
∑

a∈Su∩Sv
(rva − rv)2

.

On the other side, item-based approaches predict the rating of a given item using
the following formula:

r̂ui =

∑
j∈Su|j 	=i σi(i, j) · ruj∑

j∈Su|j 	=i |σi(i, j)|
, (9)

where σi(i, j) is the similarity between the item i and j.
These neighbourhood approaches see each user connected to other users or

consider each item related to other items as in a network structure. In particular
they rely on the direct connections among the entities involved in the domain.
However, as recently proved, techniques able to consider complex relationships
among the entities, leveraging the information already present in the network,
involves an improvement in the processes of querying and mining [17,16].

Given the set of observed ratings K = {(u, i, rui)|rui is known}, we add a node
with label user for each user in K, and a node with label item for each item in
K. The next step is to add the edges among the nodes. Each edge is characterized
by a label and a probability value, which should indicate the degree of similarity
between the two nodes. Two kind of connections between nodes are added. For
each user u, we added an edge, labeled as simU, between u and the k most similar
users to u. The similarity between two users u and v is computed adopting a
weighted Pearson correlation between the items rated by both u and v.

In particular, the probability of the edge simU connecting two users u and v is
computed as: P (simU(u, v)) = σu(u, v) · wu(u, v), where σu(u, v) is the Pearson
correlation between the vectors of ratings corresponding to the set of items rated
by both user u and user v, and wu(u, v) = |Su ∩ Sv|/|Su ∪ Sv|. For each item i,
we added an edge, with label simI, between i and the most k similar items to i.
In particular, the probability of the edge simI connecting the item i to the item
j has been computed as: P (simI(i, j)) = σi(i, j) · wi(i, j), where σi(i, j) is the
Pearson correlation between the vectors corresponding to the histogram of the
set of ratings for the item i and the item j, and wi(i, j) = |Si ∩ Sj |/|Si ∪ Sj |,
where Si is the set of users rating the item i. Finally, edges with probability
equal to 1, and with label rk between the user u and the item i, denoting the
user u has rated the item i with a score equal to k, are added for each element
(u, i, rk) belonging to K.

4.2 Feature Construction

After having constructed the probabilistic graph, the next step corresponds to
the features construction that will serve as input to the classification model.

Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns 163

Adopting a recommender system dataset we can assume that the values of
rui are discrete and belonging to a set R. Given the recommender probabilistic
graph G, the query based classification approach try to solve the problem r̂ui =
argmaxj P (rj(u, i)|G), where rj(u, i) is the unknown link with label rj between
the user u and the item i. This link prediction task is based on querying the
probability of some language constrained simple path. For instance, a user-based
collaborative filtering approach may be obtained by querying the probability of
the edges, starting from a user node and ending to an item node, denoted by the
regular expression Li = {simU1r1i }. In particular, predicting the probability of
the rating j as P (rj(u, i)) corresponds to compute the probability P (q|G) for a
query path in Lj, i.e., r̂ui = argmaxj P (rj(u, i)|G) ≈ argmaxj P (Lj|G). In the
same way, item-based approach could be obtained by computing the probability
of the paths constrained by the language Li = {r1i simI1}.

In the case of interactions among proteins we can assume that we have one
label rui for all the edges. Given the proteins interactions probabilistic graph
G, the query based classification approach try to solve the problem of querying
the probability of some language constrained simple path made up of a series of
homogeneous edges.

However, the power of the proposed framework is most evident when the
labels of the edges are heterogeneous (as for the recommender system case). In
fact, in such a situation our approach gives us the possibility to construct more
complex queries such as that constrained by the language Li = {risimIn : 1 ≤
n ≤ 2}, that gives us the possibility to explore the graph by considering not only
direct connections. Hybrid queries, such as those constrained by the language
Li = {risimIn : 1 ≤ n ≤ 2} ∪ {simUmr1i : 1 ≤ m ≤ 2}, give us the possibility to
combine the user information with item information.

In order to use the feature based classification approach proposed in this paper
we can define a set of regular expression L and then computing for each language
Li ∈ L the probability P (Li|G) between two nodes in the graph. In particular
in recommender system case, the set of observed ratings K = {(u, i, rui)|rui is
known} is mapped to the training set D = {(xi, yi)}i=1,...,n, where xij is the
probability P (Lj |G) between the nodes u and i, and yi is equal to rui. The
proposed link classification method has been implemented in the Eagle system4

that provides a set of tools to deal with probabilistic graphs.

4.3 Validation

For each dataset, given the training/testing set, the validation procedure followed
the steps:

1. creating the probabilistic graph from the training ratings data set as reported
in Section 4.1;

2. defining a set L of regular expressions to be used to construct a specific set
of features as described in Section 4.2;

4 http://www.di.uniba.it/~claudiotaranto/eagle.html

http://www.di.uniba.it/~claudiotaranto/eagle.html

164 C. Taranto, N. Di Mauro, and F. Esposito

3. learning the L2-regularized Logistic Regression model; and,
4. testing the links reported in the testing data set T by computing, for each

pair (u, i) ∈ T the predicted value adopting the learned classification model
and comparing the result with the true prediction reported in T .

For the ppi dataset, the first step is not necessary because the connections
are observable. For Movielens graph construction, edges are added using the
procedure presented in Section 4.1, where we set the parameter n = 30, in-
dicating that an user or a film is connected, respectively, to 30 most similar
users (resp., films). The value of each feature have been obtained with the
Monte Carlo inference procedure by sampling M discrete graphs. In order to
construct the set of features, we proposed to query the paths belonging to the
set of languages Lmlk reported in Table 1. The first language-constrained sim-
ple paths Lml1 corresponds to adopt a user-based approach, while the second
language Lml2 gives us the possibility to simulate an item-based approach.
Then, we propose to extend the basic languages Lml1 and Lml2 in order to
construct features that consider a neighbourhood with many nested levels. Fi-
nally, we constructed hybrid features by combining both the user-based and
item-based methods and the large neighbourhood explored with paths whose
length is greater than one (Lml5, Lml8 and Lml9). We defined two sets of fea-
tures Fml1 = {Lml1, Lml2, Lml3, Lml4, Lml5}, based on simple languages, and
Fml2 = {Lml3, Lml4, Lml5, Lml6, Lml7, Lml8, Lml9}, exploiting more complex
queries.

Table 1. Language constrained simple paths used for the MovieLens dataset

Lml1 = {simU1r1k}
Lml2 = {r1ksimF1}
Lml3 = {r1ksimFn : 1 ≤ n ≤ 2}
Lml4 = {simUnr1k : 1 ≤ n ≤ 2}
Lml5 = {simUnr1k : 1 ≤ n ≤ 2} ∪ {r1ksimFn : 1 ≤ n ≤ 2}
Lml6 = {r1ksimFn : 1 ≤ n ≤ 3}
Lml7 = {simUnr1k : 1 ≤ n ≤ 3}
Lml8 = {simUnr1k : 1 ≤ n ≤ 3} ∪ {r1ksimFn : 1 ≤ n ≤ 3}
Lml9 = {simUnr1k : 1 ≤ n ≤ 4} ∪ {r1ksimFn : 1 ≤ n ≤ 4}

For hetrec2011-lastfm graph construction, edges are added using the proce-
dure presented in Section 4.1, where we set the parameter n = 1500, indicat-
ing that an user or an artist is connected, respectively, to 1500 most similar
users, resp. artists. We defined two sets of features, as reported in Table 2:
Fwsr = {Llfm1,Llfm2,Llfm3,Llfm4,Llfm5} based on simple languages without
considering the social relationships among the elements in the network, and
Fpsr = {Llfm1,Llfm2,Llfm3,Llfm4,Llfm5,Llfm6,Llfm7,Llfm8} in which social
connections are considered.

In the ppi dataset we used the set of features Fppi reported in Table 3 based
on simple and complex queries.

Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns 165

Table 2. Language constrained simple paths used for the hetrec2011-lastfm dataset

Llfm1 = {simUser1r1k}
Llfm2 = {r1ksimArtist1}
Llfm3 = {simUsernr1k : 1 ≤ n ≤ 2}
Llfm4 = {r1ksimArtistn : 1 ≤ n ≤ 2}
Llfm5 = {simUser1r1ksimArtist

1}
Llfm6 = {friend1r1k}
Llfm7 = {simUser1friend1r1k}
Llfm8 = {friend1r1ksimArtist1}

Table 3. Language constrained simple paths used for the ppi dataset

Lppi1 = {interact1interact1}
Lppi2 = {interact1interact1interact1}
Lppi3 = {interact1interact1interact1interact1}
Lppi4 = {interact1interact1interact1interact1} ∪ {interact1interact1}
Lppi5 = {interactn : 1 ≤ n ≤ 3}
Lppi6 = {interactn : 1 ≤ n ≤ 4}

In order to learn the classification model as reported in Section 3, we used the
L2-regularized Logistic Regression implementation included in the LIBLINEAR
system [10]. Given a set T of testing instances, the accuracy of the proposed
framework has been evaluated according to the macroaveraging mean absolute
error [1], for the recommender case,

MAEM (r̂ui, T) =
1

k

k∑
j=1

1

|Tj|
∑

xi∈Tj

|r̂ui − rui|,

where Tj ⊂ T denotes the set of test rating whose true class is j, or with
the conditional log likelihood, area under the Precision-Recall (AUC-PR) and
Receiver Operating Characteristic (AUC-ROC) curves for the case of ppi dataset.

4.4 Results

Table 4 shows the results on MovieLens dataset obtained adopting the proposed
approach implemented in the Eagle system when compared to those obtained
with the RecSys SVD approach based implementation5. The first row reports
the mean value of the MAEM averaged on the five folds obtained with an SVD
approach and with the proposed method. As we can see the error achieved by
our method is lower than that obtained by the SVD method. The results improve
when we use the set Fml2 of features. The difference of the results obtained with
the two methods is statistically significant, with a p-value for the t-test equal
to 0.0000004 when using the set Fml1 of features, and equal to 0.0000002 for
the other set of features. The last two columns report the results of two baseline

5 https://github.com/ocelma/python-recsys

https://github.com/ocelma/python-recsys

166 C. Taranto, N. Di Mauro, and F. Esposito

methods. The second last column reports the results obtained with a system
that predicts a rating adopting a uniform distribution, while the last column
reports the results of a system that uses a categorical distribution that predicts
the value k of a rating with probability pk = |Dk|/N , where Dk is the number
of ratings belonging to the dataset having value k, and N is the total number of
ratings.

Table 4. MAEM values obtained with Eagle and SVD on MovieLens dataset

Fold SVD Eagle@Fml1 Eagle@Fml2 U C

1 0.9021 0.8372 0.8044
2 0.9034 0.8323 0.8055
3 0.9111 0.8429 0.8256
4 0.9081 0.8494 0.8231
5 0.9159 0.8507 0.8270

Mean 0.908±0.006 0.842±0.007 0.817±0.011 1.6 1.51

p-value 0.0000004 0.0000002

In Table 5 we can see the errors committed by each method for each rating.
The rows for the methods U and C report the mean of the MAEM value for each
fold using a system adopting a uniform or a categorical distribution. The dataset
is not balanced and both the SVD and the proposed method adhere more to the
categorical distribution proving that they are able to recognize the unbalanced
distribution of the dataset.

Table 5. MAEM values for each class obtained with Eagle and SVD on MovieLens
dataset

Method r1 r2 r3 r4 r5

U 2.0 1.4 1.2 1.4 2.0
C 2.53 1.65 1.00 0.89 1.47
SVD 1.62 1.03 0.55 0.44 0.88

Eagle@Fml1 1.14 0.80 0.65 0.65 0.93
Eagle@Fml2 1.03 0.73 0.66 0.66 0.96

Hetrec2011-lastfm dataset is composed by two types of edges: similarity edges
(simUser and simArtist) and social relationship edges (friend). In this paper, we
want to evaluate whether adopting the social connections improves the classi-
fication performances [7]. Table 6 shows the hetrec2011-lastfm results for each
class comparing Eagle@Fwsr and Eagle@Fpsr, we can see that Eagle@Fpsr that
adopt social relationship edges achives better results than Eagle@Fwsr that does
not use these connections.

Table 7 shows the results on ppi dataset obtained adopting the proposed
approach implemented in the Eagle system when compared to those obtained

Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns 167

Table 6. MAEM values for each class obtained with Eagle on hetrec2011-lastfm
dataset

Fold Method play1 play2 play3 All

1 Eagle@Fwsr 0.6315 0.5686 0.4216 0.5405
Eagle@Fpsr 0.6047 0.2524 0.5946 0.4839

2 Eagle@Fwsr 0.6090 0.5975 0.4460 0.5508
Eagle@Fpsr 0.5794 0.2326 0.6268 0.4796

3 Eagle@Fwsr 0.6194 0.5875 0.4542 0.5537
Eagle@Fpsr 0.6062 0.1963 0.6796 0.4940

4 Eagle@Fwsr 0.6295 0.6077 0.4181 0.5517
Eagle@Fpsr 0.5976 0.2432 0.5840 0.4749

Average Eagle@Fwsr 0.6223 0.5903 0.4349 0.5492
Eagle@Fpsr 0.5969 0.2311 0.6212 0.4831

Table 7. MAEM , CLL, PR and ROC on ppi dataset

Fold Train Set Test Set Random Eagle

1 5829 1943 0.500 0.190
2 5829 1943 0.500 0.184
3 5829 1943 0.500 0.203
4 5829 1943 0.500 0.189

Mean 0.500 0.191

CLL
Mean -0.439
StdDev 0.144

PR
Mean 0.861
StdDev 0.011

ROC
Mean 0.854
StdDev 0.012

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

Fig. 1. On the left side AUC-PR and on the right side AUC-ROC on the ppi dataset

168 C. Taranto, N. Di Mauro, and F. Esposito

with a random approach. Furthermore we show for each CLL, PR and ROC
the mean and standard deviation values. Figure 1 shows on the left side the PR
curve and on the right side the ROC curve on the ppi dataset.

5 Conclusions

In this paper we adopt the probabilistic graphs framework to deal with uncertain
problems exploiting both edges probabilistic values and edges labels denoting
the type of relationships between two nodes. We proposed a learning method to
compute the most likely relationship between two nodes in probabilistic graphs.
Given the training set of observed links a L2-regularized Logistic Regression has
been adopted to learn a model able to predict the label of unobserved links.
The experimental evaluation proved that the proposed approach achieves better
results when compared to that obtained with models induced by Singular Value
Decomposition.

References

1. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression.
In: Proceedings of the 2009 9th International Conference on Intelligent Systems
Design and Applications, ISDA 2009, pp. 283–287. IEEE Computer Society (2009)

2. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogene-
ity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th
ACM Conference on Recommender Systems, RecSys 2011. ACM, New York (2011)

3. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press
(1987)

4. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based rec-
ommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.)
Recommender Systems Handbook, pp. 107–144. Springer (2011)

5. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explorations 7(2), 3–12
(2005)

6. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press (2007)

7. He, J., Chu, W.W.: A social network-based recommender system (snrs). In: Memon,
N., Xu, J.J., Hicks, D.L., Chen, H. (eds.) Data Mining for Social Network Data.
Annals of Information Systems, vol. 12, pp. 47–74. Springer (2010)

8. Jin, R., Liu, L., Ding, B., Wang, H.: Distance-constraint reachability computation
in uncertain graphs. Proc. VLDB Endow. 4, 551–562 (2011)

9. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)

10. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region newton method for logistic re-
gression. Journal of Machine Learning Research 9, 627–650 (2008)

11. Peregrin-Alvarez, J.M., Xiong, X., Su, C., Parkinson, J.: The modular organiza-
tion of protein interactions in escherichia coli. PLoS Computational Biology 5(10)
(2009)

Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns 169

12. Pfeiffer III, J.J., Neville, J.: Methods to determine node centrality and cluster-
ing in graphs with uncertain structure. In: Proceedings of the Fifth International
Conference on Weblogs and Social Media. The AAAI Press (2011)

13. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: k-nearest neighbors in uncertain
graphs. Proc. VLDB Endow. 3, 997–1008 (2010)

14. Pryor, M.H.: The effects of singular value decomposition on collaborative filtering.
Tech. Rep. PCS-TR98-338, Dartmouth College, Computer Science, Hanover, NH
(1998)

15. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming,
ICLP 1995, pp. 715–729. MIT Press (1995)

16. Taranto, C., Di Mauro, N., Esposito, F.: Probabilistic inference over image net-
works. In: Agosti, M., Esposito, F., Meghini, C., Orio, N. (eds.) IRCDL 2011. CCIS,
vol. 249, pp. 1–13. Springer, Heidelberg (2011)

17. Witsenburg, T., Blockeel, H.: Improving the accuracy of similarity measures by
using link information. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W.
(eds.) ISMIS 2011. LNCS, vol. 6804, pp. 501–512. Springer, Heidelberg (2011)

18. Zou, Z., Gao, H., Li, J.: Discovering frequent subgraphs over uncertain graph
databases under probabilistic semantics. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
633–642. ACM (2010)

Improving Robustness and Flexibility

of Concept Taxonomy Learning from Text

Fabio Leuzzi1, Stefano Ferilli1,2, and Fulvio Rotella1

1 Dipartimento di Informatica – Università di Bari
{fabio.leuzzi,stefano.ferilli,fulvio.rotella}@uniba.it

2 Centro Interdipartimentale per la Logica e sue Applicazioni – Università di Bari

Abstract. The spread and abundance of electronic documents requires
automatic techniques for extracting useful information from the text they
contain. The availability of conceptual taxonomies can be of great help,
but manually building them is a complex and costly task. Building on
previous work, we propose a technique to automatically extract concep-
tual graphs from text and reason with them. Since automated learning of
taxonomies needs to be robust with respect to missing or partial knowl-
edge and flexible with respect to noise, this work proposes a way to deal
with these problems. The case of poor data/sparse concepts is tackled
by finding generalizations among disjoint pieces of knowledge. Noise is
handled by introducing soft relationships among concepts rather than
hard ones, and applying a probabilistic inferential setting. In particu-
lar, we propose to reason on the extracted graph using different kinds of
relationships among concepts, where each arc/relationship is associated
to a weight that represents its likelihood among all possible worlds, and
to face the problem of sparse knowledge by using generalizations among
distant concepts as bridges between disjoint portions of knowledge.

1 Introduction

The spread and abundance of electronic documents requires automatic tech-
niques for extracting useful information from the text they contain. The avail-
ability of conceptual taxonomies can be of great help, but manually building
them is a complex and costly task. Obtaining automatically Full Text Under-
standing is not trivial, due to the intrinsic ambiguity of natural language and to
the huge amount of common sense and linguistic/conceptual background knowl-
edge needed to switch from a purely syntactic representation to the underlying
semantics. Nevertheless, even small portions of such knowledge may significantly
improve understanding performance, at least in limited domains. Although stan-
dard tools, techniques and representation formalisms are still missing, lexical
and/or conceptual taxonomies can provide a useful support to many NLP tasks,
allowing automatic systems to exploit different kinds of relationships that are
implicit in the text but required to correctly understand it. Building on previous
work, we propose a technique to automatically extract conceptual graphs from
text and reason with them. Since automated learning of taxonomies needs to be

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 170–184, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improving Robustness and Flexibility 171

robust with respect to missing or partial knowledge and flexible with respect to
noise and to the need of shifting the representation, this work proposes a way
to deal with these problems. Data poorness, concept sparsity and representation
shift are tackled by finding generalizations among disjoint pieces of knowledge
in order to build a bridge between them. Noise is handled by introducing soft
relationships among concepts rather than hard ones, and applying a probabilis-
tic inferential setting to reason on the extracted graph using different kinds of
relationships, where each arc/relationship is associated to its likelihood of being
true in all possible worlds.

This work is organized as follows: the next section describes related works;
Section 3 outlines the proposed approach; then we present an evaluation of our
solution; lastly we conclude with some considerations and future works.

2 Related Work

Many approaches have been attempted to build taxonomies and ontologies by
mining large amounts of text. They can be arranged into two main groups:
the former is based only on what is contained in the text, while the latter ad-
ditionally exploits some external resources to fill the gap between the purely
syntactic level and the semantic one. The former approaches are particularly
indicated when there exists no kind of structured and Machine-readable exter-
nal knowledge whatever. Following this approach, [1] builds concept hierarchies
using Formal Concept Analysis by grouping objects with their attributes, which
are determined from text by linking terms with verbs. Conversely, we are in-
terested in building conceptual graphs by relying on the whole net of concepts
and relationships rather than only on shared attributes. The other approach,
proposed in [12], defines a language to build formal ontologies by deductive
discovery as in logic programming. In particular, the author defines both a spe-
cific language for manipulating Web pages and a logic program to discover the
concept lattice. Differently from [12], we do not limit the nature/kind of relation-
ships to a predefined set, since new relationships are created as soon as a new
(i.e., never encountered before) verbal relationship between concepts is found.
On the other hand, approaches in the second group were focused on building
taxonomies and/or ontologies. For instance, [11, 10] build ontologies by labeling
taxonomic relations only, while we label also non-taxonomic ones with actions
(verbs); [13] builds a taxonomy considering only concepts that are present in a
domain but do not appear in others, while we are interested in all recognized
concepts independently of their being generic or domain-specific.

As regards our proposal, for the syntactic analysis of the input text we ex-
ploit the Stanford Parser and Stanford Dependencies [9, 2], that can identify
the most likely syntactic structure of sentences (including active/passive and
positive/negative forms), and specifically ‘subject’ or ‘(direct/indirect) object’
components. They also normalize the words in the input text using lemmatiza-
tion instead of stemming, which allows to distinguish their grammatical role and
is more comfortable to read by humans.

172 F. Leuzzi, S. Ferilli, and F. Rotella

We also use ProbLog [14] to apply probabilistic reasoning on the extracted
knowledge. It is essentially Prolog where all clauses are labeled with the prob-
ability that they are true, that in turn can be extracted from large databases
by various techniques. A ProbLog program T = {p1 : c1, ..., pn : cn} specifies
a probability distribution over all its possible non-probabilistic subprograms ac-
cording to the theoretical basis in [15]. The semantics of ProbLog is then defined
by the success probability of a query, which corresponds to the probability that
the query succeeds in a randomly sampled program. Indeed, the program can be
split into a set of labeled facts pi :: fi, meaning that fi is a fact with probability of
occurrence pi, and a Prolog program using those facts, which encodes the back-
ground knowledge (BK). Probabilistic facts correspond to mutually independent
random variables (RV s), which together define a probability distribution over
all ground logic programs L ⊆ LT (where LT is the set of all fi’s):

P (L|T) =
∏
fi∈L

pi
∏

fi∈LT \L
(1− pi)

In this setting we will use the term possible world to denote the least Herbrand
model of a subprogram L together with BK, and we will denote by L both the
set of sampled facts and the corresponding world.

Lastly, we need in some steps of our technique to assess the similarity among
concepts in a given conceptual taxonomy. A classical, general measure, is the
Hamming distance [6], that works on pairs of equal-length vectorial descriptions
and counts the number of changes required to turn one into the other. Other
measures, specific for conceptual taxonomies, are sfFa [4] (that adopts a global
approach based on the whole set of super-concepts) and sfWP [16] (that focuses
on a particular path between the nodes to be compared).

3 Proposed Approach

This proposal relies on a previous work [5], in which we assume that each noun
in the text corresponds to an underlying concept (phrases can be preliminarily
extracted using suitable techniques, and handled as single terms). A concept
is described by a set of characterizing attributes and/or by the concepts that
interact with it in the world described by the corpus. The outcome is a graph,
where nodes are the concepts/nouns recognized in the text, and edges represent
the relationships among these nodes, expressed by verbs in the text (the direction
of edges denotes the role of the associated nodes in the relationship). In this
work, we introduce two novelties: the former handles noise by weighting the
relationships among concepts, where each arc/relationship is associated to a
weight that represents its likelihood among all possible worlds ; the latter faces
the problem of sparse knowledge by using generalizations among distant concepts
as bridges between disjoint portions of knowledge.

Improving Robustness and Flexibility 173

3.1 Graph Construction

Natural language texts are processed by the Stanford Parser in order to extract
triples 〈subject, verb, complement〉 that will represent the concepts (the subjects
and complements) and attributes (verbs) for the graph. We have adopted some
representational tricks: indirect complements are treated as direct ones by em-
bedding the corresponding preposition into the verb; sentences involving verb
‘to be’ or nouns with adjectives contributed in building the sub-class structure
of the taxonomy (e.g., “the penguin is a bird” yields is a(penguin,bird)). For the
sake of clarity, we must specify that all edges are verbal (labeled with the verb
linking the two concepts) and among all we exploit the ones labeled with ‘is a’
in order to build the taxonomy. In order to enrich the representation formalism
previously defined, we analyzed the syntactic tree to seize the sentence positive
or negative form based on the absence or presence (respectively) of a negation
modifier for the verb. Moreover we decided to take into account separately the
frequency of each arc between the concepts in positive and negative sentences.

This setting allowed us to give robustness to our solution through a statisti-
cal approach. In fact, the obtained taxonomy could be inspected and used by
filtering out all portions that do not pass a given level of reliability. This could
be useful for the identification of relevant concepts, as shown in [5], or for other
applications that will be explained in the next two subsections.

3.2 Reasoning ‘by Association’

Reasoning ‘by association’ means finding a path of pairwise related concepts that
establishes an indirect interaction between two concepts c′ and c′′ in the semantic
network. In this work we propose two reasoning strategies: the former works in
breadth and aims at obtaining the minimal path between concepts together with
all involved relations, the latter works in depth and exploits ProbLog in order
to allow probabilistic queries on the conceptual graph.

3.2.1 Non-probabilistic Reasoning
In this strategy, we propose to look for a minimal path using a Breadth-First
Search (BFS) technique, applied to both concepts under consideration. Figure 1
shows an example of this kind of reasoning. The expansion steps of the two
processes are interleaved, checking at each step whether the new set of concepts
just introduced has a non-empty intersection with the set of concepts of the other
process. When this happens, all the concepts in such an intersection identify one
or more shortest paths connecting c′ and c′′, that can be retrieved by tracing
back the parent nodes at each level in both directions up to the roots c′ and c′′.
Since this path is made up of concepts only, to obtain a more sensible ‘reasoning’
it must be filled with the specific kind of interaction represented by the labels
of edges (verbs) that connect adjacent concepts in the chain. In this work we
provide also the number of positive/negative instances, and the corresponding
ratios over the total, in order to help understanding different gradations (such
as permitted, prohibited, typical, rare, etc.) of actions between two objects.

174 F. Leuzzi, S. Ferilli, and F. Rotella

Fig. 1. Example of non-probabilistic reasoning

While this value does not affect the reasoning strategy, it allows to distinguish
which reasoning path is more suitable for a given task.

3.2.2 Probabilistic Reasoning
Since real world data are typically noisy and uncertain, there is a need for strate-
gies that soften the classical rigid logical reasoning. In particular, one might run
into the above problems when knowledge is learned from text, as in our case.
This requires an inference engine that allows to perform several kinds of proba-
bilistic queries, like choosing the best (i.e., the most likely) path, or computing
the exact probability of all possible paths between two concepts. We exploited
ProbLog for this purpose, whose descriptions are based on the formalism pi :: fi
where fi is a ground literal having probability pi. In our case, fi is of the form
link(subject, verb, complement) and pi is the ratio between the sum of all ex-
amples for which fi holds and the sum of all possible links between subject and
complement.

Figure 2 shows an example where many links are present between farmer and
plant, expressing different kinds of interactions between these two concepts on
which probabilistic reasoning can be applied. For example, if we ask for a path
between farmer and plant and wonder what might be the most likely explanation
thereof, we have to compute all different proofs or explanations (if any) of the
query ?-path(farmer,plant) exploiting SLD-resolution. Each successful proof in
the SLD-tree uses a set of facts {pi1 :: ci1, ..., pi1 :: cik} ⊆ T . Exploiting those
facts we can compute the maximum probability as [8]:

Px(q|T) = max
e∈E(q)

P (e|T) = max
e∈E(q)

∏
ci∈e

pi

where E(q) is the set of all explanations for a query q . However one of the
problems of these approaches is the tight connection between the quality of the
reasoning results and that of the network, in turn depending on the processed

Improving Robustness and Flexibility 175

farmer

ground

plant cow

transporter

0.25::cultivate

0.4::prune

0.35::eat

1.0::own 1.0::grow on

0.4::eat

0.6::trample

1.0::carry

Fig. 2. Example of ProbLog Network

texts. Indeed, if two nodes belong to disjoint regions of the graph, reasoning
cannot succeed. We tackle this problem by defining a generalization operator as
follows.

3.3 Generalization Operator

Let us first provide a more precise account of our generalization.

Definition 1 (Generalization). Given two concepts G and C, G generalizes
C if anything that can be labeled as C can be labeled as G as well, but not vice-
versa.

The use of generalizations provides many opportunities of enrichment and/or
manipulations on the graph:

1. building taxonomic structures by (repeatedly) applying this operator, also
after the addition of new text (possibly causing the presence of new nodes
in the graph);

2. shifting the representation, by removing the generalized nodes from the
graph and leaving just their generalization (that inherits all their relation-
ships to other concepts);

3. extending the amount of relationships between concepts belonging to the
same connected component of the graph, or building bridges between disjoint
components that open new (previously impossible) reasoning paths.

In particular, the third case can be viewed as a tool that aids reasoning ‘by
association’ to reach its objectives, and hence as a multi-strategy setting in
which induction and deduction cooperate.

More formally, we provide the following definition.

176 F. Leuzzi, S. Ferilli, and F. Rotella

Algorithm 1. Pair-wise clustering of all concepts in the network.

Input: matrix C × C+A (where C is the set of objects/concepts, and A is the set of positive
and negative verbs), that for each cell has the value 1 if at least one link exist, 0 otherwise;
THRESHOLD for Hamming distance.
Output: set of clusters.

pairs ← empty
averages ← empty
for all Oi | Oi �= zero vector ∧ i ∈ C do
newCluster ← Oi
clusters.add(newCluster)

end for
for all pair(Ck, Cz) | C ∈ clusters ∧ k, z ∈ [0, clusters.size] do
if completeLink(Ck, Cz) then
pairs.add(Ck, Cz)
averages.add(getScoreAverage(Ck, Cz))

end if
end for
pair ← getPairWithMaxMin(pairs,averages)
merge(pair)

completeLink → check the complete link assumption for the passed clusters.

getPairWithMaxMin → get the pair with the maximum or minimum average depending on task.

Definition 2 (Bridge). Given a piece of knowledge K represented as a concept
graph made up of many disjoint regions, a bridge in K is a modification of the
graph that connects some of such regions, allowing to reach any node of either
from any node of the other. A bridge that connects n isolated sub-graphs is named
n-way bridge.

Regardless of the task, three steps can be outlined to describe the general pro-
cedure:

1. Concept Grouping, in which all concepts are grossly partitioned to obtain
subsets of concepts: we group similar concepts if the aim is to enrich the
relationships, or dissimilar ones in the bridging perspective (Algorithm 1);

2. Word Sense Disambiguation, that associates a single meaning to each term
by solving possible ambiguities using the domain of discourse (Algorithm 2);

3. Computation of taxonomic similarity, in which WordNet [3] is exploited in
order to further filter with an external source the groups found in step 1,
and to choose an appropriate subsumer (Algorithm 3).

To generalize two or more concepts, we use as their description their direct
neighbor concepts plus the verbs (in positive or negative form) used to connect
them. Thus, considering the set Attributes of all verbs in their positive and
negative forms, we build a matrix C

Concepts× (Concepts ∪ Attributes)

where:

– Ci,j = 1 if j denotes a concept column and there is at least a relationship
between concepts i and j, Ci,j = 0 otherwise;

Improving Robustness and Flexibility 177

Algorithm 2. Find “best synset” for a word.

Input: word t, list of domains with weights.
Output: best synset for word t.

best synset ← empty
best domain ← empty
for all synset(st) do
max weight ← −∞
optimal domain ← empty
for all domains(ds) do
if weight(ds) > max weight then
max weight ← weight(ds)
optimal domain ← ds

end if
end for
if max weight > weight(best domain) then
best synset ← st
best domain ← optimal domain

end if
end for

– Ci,j = 1 if j denotes an attribute column and there is at least a relationship
between concept i and verb j, Ci,j = 0 otherwise.

Each row is a feature vector describing the concept, and hence two vectors can
be compared according to the Hamming distance. Pairwise clustering under the
complete link assumption is applied to these descriptions: initially, each non-
null row becomes a singleton cluster; then, clusters are merged while a merging
condition is fulfilled. In its standard view, complete link states that the distance
of the farthest items of the involved clusters must be less than a given threshold.

As stated earlier, generalizations can be carried out for different objectives,
affecting the way complete link is applied. In particular, if the objective is the
enrichment of relationships within connected components, it is applied in the
standard way, otherwise, if the objective is to build bridges, the distance of
the closer items of the involved clusters must be greater than a given threshold.
When the condition is satisfied, the average score between all pairs of items
in the two clusters is saved, and only the pair of clusters corresponding to the
smallest (respectively, greatest) average is merged. We define more formally the
clustering of dissimilar objects as follows.

Definition 3 (Inverse clustering). Given a set of objects and a distance mea-
sure, inverse clustering is obtained by iteratively grouping most dissimilar objects
while their distance is above a given distance threshold.

Now, the clusters contain similar (resp., dissimilar) concepts that can be gener-
alized in order to create new relationships (resp., to merge nodes) for enrichment
(resp., bridging) purposes. However, this procedure alone might be unreliable,
both because terms that occur seldom in the corpus have few connections (which
would affect their cluster assignment due to underspecification), and because
the expressive power of this formalism is too low to represent complex contexts

178 F. Leuzzi, S. Ferilli, and F. Rotella

Algorithm 3. Effective generalization research.

Input: the set of C clusters returned by pair-wise clustering; T similarity threshold; max the
max number of generalizations to try to extract from a cluster.
Output: set of candidate generalizations.

generalizations ← empty set
for all c ∈ C do
good pairs ← empty set
for all pair(Oi, Oj) | i, j ∈ c do
if similarity score(pair(Oi, Oj)) > T then
good pairs.add(pair(Oi, Oj), wordnet hypernym(pair(Oi, Oj)))

end if
end for
for all i ∈ [0, max] do
if good pairs �= empty set then
new set ← {good pairs.getBestPair, good pairs.getStar}
generalizations.add(new set)
good pairs.remove(new set)

end if
end for

end for

good pairs → contains a list of pairs that satisfy T , with their relative subsumer.

good pairs.getBestPair → get the pair that has the best similarity score.

good pairs.getStar → get the Star of the pair

good pairs.remove → remove all pairs in the passed set.

wordnet hypernym → get the subsumer discovered in WordNet for the passed pair.

(which would affect even more important concepts). Note that the bridging set-
ting is less affected by the underspecification problem, because it tends to group
dissimilar concepts. Since underspecification corresponds to almost zero vectors,
taking dissimilar vectors we tend to group the most specified distant vectors.
Indeed, since there cannot be any 1 in the same positions in both descriptions
(because this would mean that there exists a path between them), the more 1’s
overall in the two descriptions, the larger their distance, which means that the
bridge is merging two hub (i.e., highly connected) nodes. This clearly improves
the quality of the bridge. This solution allows to limit the shortest average length
among all possible paths built between the sub-graphs that the bridge connects.
However, the support of an external resource might be desirable. We consider
WordNet as a sensible candidate for this, and try to map each concept in the
network to the corresponding synset (a non trivial problem due to the typical
polysemy of many words) using the one domain per discourse assumption as a
simple criterion for Word Sense Disambiguation, whose algorithm is described
in [5]. Thus, WordNet allows to check and confirm/reject the similarity of con-
cepts belonging to the same cluster, by considering all possible pairs of concepts
whose similarity is above a given threshold. Similarity is determined by blending
two measures, that mutually smooth each other, as follows:

sf(A,B) = sfFa(A,B) · sfWP (A,B)

Improving Robustness and Flexibility 179

The former adopts a global perspective rather than depending on the choice of
a single path between the two concepts [4]:

sfFa(i
′, i′′) = sf(n, l,m) = α

l + 1

l + n+ 2
+ (1− α)

l+ 1

l +m+ 2

where:

– n is the number of ancestors of i′ but not of i′′;
– l is the number of common ancestors between i′ and i′′;
– m is the number of ancestors of i′′ but not of i′;
– α is a weight that determines the importance of i′ with respect to i′′ (0.5

means equal importance).

The latter considers the actual generalizing path [16]:

sfWP (A,B) =
2 ∗ depth(lcs({A,B}))
depth(A) + depth(B)

where:

– depth(c) is the depth of concept c in the taxonomy;
– lcs(C) is the Least Common Subsumer (LCS) in the taxonomy of concepts

in C.

At this point, a set of similar pairs is selected, then the star of the best pairs
is computed and used to obtain the generalization set. Let us state this more
formally.

Definition 4 (Star). Given a set S of unordered pairs of items and an un-
ordered pair P = {a, b} s.t. P ∈ S, we define the function star(P) that returns
a set of pairs S′ s.t. ∀P ′ ∈ S′, (a ∈ P ′ ∨ b ∈ P ′) ∧ P ′ �= P (i.e., the set of pairs
that contain a or b).

Now we need again function lcs(C), that returns the first common node found
exploring the hypernyms of concepts in C in WordNet.

Definition 5 (Generalization set). Given a set of concepts C, and a pair

P = argmax
P ′∈C×C
sf(P ′)>T

sf(P ′)

the generalization set of P in C with threshold T is

gs(P,C, T) = {i | i ∈ P ∧ P ∈ S}

where T is a similarity threshold and S = {P ′′ ∈ star(P) | lcs(P) = lcs(P ′′)}.

After obtaining the generalization set, we can finally generalize it using the
recognised least common subsumer. Obviously, we described how to obtain a
generalization over a single star per cluster. However, removing the subset of
pairs already used for the last generalization, we can reiterate this procedure
more times obtaining many generalizations per cluster (if any).

180 F. Leuzzi, S. Ferilli, and F. Rotella

Table 1. Examples of smooth reasoning ‘by association’ through BFS (start and target
nodes in emphasis)

Subject Verb Complement

1
young look [Pos: 3/3] television

television talk about [Pos: 3/3], critic [Pos: 1/1] facebook
facebook help [Pos: 1/4, Neg: 3/4], distract [Pos: 1/1] schoolwork

2
people be in [Pos: 1/1] group
group invite [Pos: 2/2] facebook

facebook help [Pos: 1/1] individual

3
everyone want [Pos: 5/5] occupation
occupation maintain [Pos: 1/1] lifestyle
lifestyle see in [Pos: 1/1], change in [Pos: 1/1], media

4 Evaluation

The proposed approach was evaluated using ad-hoc tests, with the objective
of obtaining qualitative outcomes that may indicate its strengths and weak-
nesses. Our aim is to keep massive experiments for further studies, in order to
evaluate quantitative results only if qualitative ones are consistent. Although
preliminary, these results seem enough to suggest that the approach is promis-
ing. We exploited a dataset made up of documents concerning social networks
on socio-political and economic topic, including 669 objects (subjects and/or
complements) and 727 verbs. The size of the dataset was deliberately kept small
in order to increase the probability of having problems such as noise and poor
knowledge. The settings of each specific operator are reported in the following
subsections.

4.1 Reasoning ‘by Association’

The first experiment concerned reasoning ‘by association’, both deterministic
and probabilistic. The former setting, a sample of whose outcomes is reported
in Table 1, aimed at investigating the minimum path (if any) between two nodes
in the graph. In order to show the strengths of this kind of reasoning, each verb
is labeled with the frequency with which it occurs in the paths subject, verb,
complement. Focusing on case 1, we wanted to explore the relationship between
young and schoolwork. The association chain includes verb look, that occurs
only in positive sentences with probability 1.0; this means that the available
knowledge consistently indicates that young “always” look television. The same
case involves a relationship between facebook and schoolwork, in which the verb
help appears with probability 0.25 in positive sentences and 0.75 in negative ones.
This can be interpreted as facebook “may” help schoolwork, or with the specific
associated probability. It should be pointed out that this reasoning strategy
shows all possible verbs between each pair of adjacent nodes in the path.

The latter experiment, reported in Table 2, shows a sample of probabilis-
tic queries executed on the same paths . We have computed the exact success

Improving Robustness and Flexibility 181

Table 2. Examples of probabilistic reasoning ‘by association’ through ProbLog

Query Probability

problog exact(path(young - schoolwork)) 0.530
1 problog max(path(young - schoolwork)) 0.375

problog approx(path(young - schoolwork)) 0.555

problog exact(path(people - individual)) 0.167
2 problog max(path(people - individual)) 0.167

problog approx(path(people - individual)) 0.162

problog exact(path(occupation - media)) 0.750
3 problog max(path(occupation - media)) 0.500

problog approx(path(occupation - media)) 0.744

Table 3. Generalizations for pairwise clustering of similar concepts, and corresponding
conceptual similarity scores (bottom)

Bridge Subsumer Subs. Domain Concepts Conc. Domain

1 No variable [105857459] mathematics
variable [105857459] mathematics
factor [105858317] mathematics

2 No person [100007846] biology, person
type [109909060] person
collegian [109937056] factotum

3 No person [100007846] biology, person
type [109909060] person
model [110324851] person

4 No integer [113728499] mathematics
nineteen [113747989] number
forty [113749527] number

5 No person [100007846] biology, person
scholar [110251779] school
job [110222949] person
name [110344443] person

Pairs Fa score WP score Score

1 variable, factor 0.7 0.857 0.6

2 type, collegian 0.659 0.737 0.486

3 type, model 0.692 0.778 0.538

4 nineteen, forty 0.75 0.75 0.562

5
scholar, job 0.711 0.823 0.585
scholar, name 0.678 0.778 0.528

probability, the most likely explanation probability and an approximate proba-
bility according to the MonteCarlo method implemented in [7] keeping a 95%
of confidence interval. The last type of query has been provided because exact
inference can be intractable even for small networks, and so sometimes it can
be reasonable to make approximate inference. The probability of each sentence
was computed according to the criteria described in Section 3.2.2. For instance,
in case 1 with most likely explanation, the proof entails the set {(young, look,
television), (television, talk about, facebook), (facebook, not help, schoolwork)},
respectively with probability {1.0, 0.75, 0.5}, whose product is 0.375.

182 F. Leuzzi, S. Ferilli, and F. Rotella

Table 4. Generalizations for pairwise Inverse clustering, and corresponding conceptual
similarity scores (bottom)

Bridge Subsumer Subs. Domain Concepts Conc. Domain

1 Yes
teaching

pedagogy
talk [100893243] pedagogy

[100887081] lecture [100892861] pedagogy

2 Yes
person

biology, person
scientist [110560637] person

[100007846] youth [110804406] person

3 Yes
music

music
introduction [106396930] literature, music

[107020895] end [106398401] literature, music

4 Yes
figure

number
two [113743269] number

[113741022] pair [113743605] number

5 Yes
person

biology, person
viewer [110633450] person

[100007846]
model [110324851] person
volunteer [110759151] person

6 No
theory

factotum
basis [105793554] factotum

[105888929] theory [105888929] factotum

7 No
municipality

administration, hometown [108671644] geography

[108626283]
geography,

city [108524735]
literature, administration,

town planning geography, town planning

8 No
territorial dominion administration, state [108544813] geography
[108552138] town planning department [108548733] geography

9 No
structure

factotum
wall [104546855] buildings

[104341686] level [103365991] buildings

10 No
representation

factotum
scene [106614729]

photography, racing,

[104076846]
sociology, telecommunication

photo [103925226] photography

Pairs Fa score WP score Score

1 talk , lecture 0.739 0.869 0.643

2 scientist, youth 0.724 0.727 0.526

3 introduction, end 0.75 0.714 0.536

4 two, pair 0.72 0.823 0.593

5
viewer, model 0.71 0.666 0.474

viewer, volunteer 0.71 0.666 0.474

6 basis, theory 0.694 0.842 0.584

7 hometown, city 0.738 0.842 0.621

8 state, department 0.75 0.75 0.562

9 wall, level 0.733 0.8 0.586

10 scene, photo 0.735 0.823 0.605

4.2 Generalization Operator

Two toy experiments are reported for concept generalization, the former aimed
at the enrichment of relationships, the latter with the bridging perspective. The
maximum threshold for the Hamming distance was set to 0.001, while the min-
imum threshold for taxonomic similarity was fixed at 0.45 in both.

Table 3 shows that, consistently with the enrichment-only perspective, no
bridges are built. Conversely, applying Inverse clustering yields, as expected,
also bridges among two or more disjoint graph regions. Analyzing the two con-
ceptual similarity measures in both experimental settings, they both return very
high values for almost all pairs, leading to final scores that neatly pass the 0.45
threshold. Another very interesting outcome is that sfWP is always greater than
sfFa for ‘enrichment’ generalizations. Since the former is more related to a spe-
cific path, and hence to the goodness of the chosen subsumer, this confirms the

Improving Robustness and Flexibility 183

previous outcomes (suggesting that the chosen subsumer is close to the general-
ized concepts). This regularity is not present in Table 4, where Inverse clustering
was used to build bridges, which supports the motivations for using sfFa: the
identification of similar concepts when this is not so evident based only on the
single subsuming path. Observing the outcome, three aspects can be empha-
sized: the effectiveness of the search for bridges in case 5, in which a three-way
bridge was built; the overall quality of the generalizations obtained; and the op-
portunity to perform not only representation shifts, but also an alignment as
in case 1 of Table 3. Note that, after enriching the network, one is able to rea-
son ‘by association’ also exploiting the new paths opened by generalization. We
have decided to assign probability 1.0 to each generalization because an oracle,
in our case WordNet, has suggested the common subsumer. For example, if we
search for a path between serenity and food, we have to pass through verbs {find
[Pos: 2/2], want [Pos: 3/3]} for reaching type and then follow the new arc to
reach model ; then, through the verbs {eat [Pos: 1/4 Neg:3/4], buy [Pos: 2/2]}
we finally reach food.

5 Conclusions

This work proposes a technique to automatically extract conceptual graphs from
text and reason with them. In particular, it presented a way to deal with miss-
ing (or partial) knowledge, noisy data, and discussed the need of shifting the
representation, facing these problems through reasoning ‘by association’ and a
generalization operator. Preliminary experiments confirmed the results of pre-
vious works and show that the approach can be viable, and suggested possible
directions for future work. Further extensions and refinements include the defi-
nition of an Anaphora Resolution strategy that allows also handling of Named
Entities, a study on how to set automatically suitable thresholds for search-
ing generalizations, and the design of techniques that allow to find appropriate
subsumers without the need for existing resources, such as WordNet.

References

[1] Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. J. Artif. Int. Res. 24(1), 305–339 (2005)

[2] de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed depen-
dency parses from phrase structure trees. In: LREC (2006)

[3] Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

[4] Ferilli, S., Biba, M., Di Mauro, N., Basile, T.M.A., Esposito, F.: Plugging taxo-
nomic similarity in first-order logic horn clauses comparison. In: Serra, R., Cuc-
chiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 131–140. Springer, Heidelberg
(2009)

[5] Ferilli, S., Leuzzi, F., Rotella, F.: Cooperating techniques for extracting concep-
tual taxonomies from text. In: Proceedings of The Workshop on Mining Complex
Patterns at AI*IA XIIth Conference (2011)

184 F. Leuzzi, S. Ferilli, and F. Rotella

[6] Hamming, R.W.: Error detecting and error correcting codes. Bell System Techni-
cal Journal 29(2), 147–160 (1950)

[7] Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of probLog programs. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008)

[8] Kimmig, A., De Raedt, L., Toivonen, H.: Probabilistic explanation based learning.
In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D.,
Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 176–187. Springer,
Heidelberg (2007)

[9] Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural
language parsing. In: Advances in Neural Information Processing Systems, vol. 15,
MIT Press (2003)

[10] Maedche, A., Staab, S.: Mining ontologies from text. In: Dieng, R., Corby, O.
(eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 189–202. Springer, Heidelberg
(2000)

[11] Maedche, A., Staab, S.: The text-to-onto ontology learning environment. In: ICCS-
2000 - Eight International Conference on Conceptual Structures, Software Demon-
stration (2000)

[12] Ogata, N.: A formal ontology discovery from web documents. In: Zhong, N., Yao,
Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 514–519.
Springer, Heidelberg (2001)

[13] Cucchiarelli, A., Velardi, P., Navigli, R., Neri, F.: Evaluation of OntoLearn, a
methodology for automatic population of domain ontologies. In: Ontology Learn-
ing from Text: Methods, Applications and Evaluation. IOS Press (2006)

[14] De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its
application in link discovery. In: Proceedings of 20th IJCAI, pp. 2468–2473. AAAI
Press (2007)

[15] Sato, T.: A statistical learning method for logic programs with distribution se-
mantics. In: Proceedings of the 12th ICLP 1995, pp. 715–729. MIT Press (1995)

[16] Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the
32nd Annual Meeting on Association for Computational Linguistics, Morristown,
NJ, USA, pp. 133–138. Association for Computational Linguistics (1994)

Discovering Evolution Chains

in Dynamic Networks

Corrado Loglisci, Michelangelo Ceci, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari ”Aldo Moro”
via Orabona, 4 - 70126 Bari - Italy

{corrado.loglisci,michelangelo.ceci,donato.malerba}@uniba.it

Abstract. Most of the works on learning from networked data assume
that the network is static. In this paper we consider a different scenario,
where the network is dynamic, i.e. nodes/relationships can be added or
removed and relationships can change in their type over time. We assume
that the “core” of the network is more stable than the “marginal” part
of the network, nevertheless it can change with time. These changes are
of interest for this work, since they reflect a crucial step in the network
evolution. Indeed, we tackle the problem of discovering evolution chains,
which express the temporal evolution of the “core” of the network. To
describe the “core” of the network, we follow a frequent pattern-mining
approach, with the critical difference that the frequency of a pattern is
computed along a time-period and not on a static dataset. The proposed
method proceeds in two steps: 1) identification of changes through the
discovery of emerging patterns; 2) composition of evolution chains by
joining emerging patterns. We test the effectiveness of the method on
both real and synthetic data.

1 Introduction

In recent years, there has been a constantly growing interest in learning from
networked data [5]. This is due to the fact that in many application domains,
data naturally come in the form of a network, such as in protein interaction
networks, social networks, linked web documents, and co-author networks, just
to mention some of the most prominent examples. Any dataset represented as
a set of relations and foreign key constraints in a relational database can be
naturally represented as a network, which makes learning algorithms developed
for networked data naturally applicable to any relational database. For the same
reason, this class of algorithms is applicable to spatial data which are charac-
terized by spatial relationships (e.g., topological, directional and distance-based
relationships), although in this case the additional challenge comes from the fact
that the (many) spatial relationships are implicit in the data [7].

Most of the algorithms developed to learn or analyze networked data assume
that the network is static and unchangeable, i.e., the structure and the properties
of a network do not vary over time. This assumption seems to be too restrictive
in real scenarios where networks can be dynamic and exhibit changes especially

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 185–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

186 C. Loglisci, M. Ceci, and D. Malerba

when modeling phenomena which evolve over time. In particular, nodes and
edges of the networks may appear and disappear over time and relationships
can change in their nature.

The importance of knowledge discovery from dynamic networks has been rec-
ognized only recently; hence the body of methods and techniques for the analysis
of dynamic networks is much less developed than for static networks. Research
on learning from dynamic networks follows three main lines: i) detection of com-
munities over time, ii) characterization of the evolution of the networks, and iii)
prediction of nodes/edges of the networks. Sun et al. [8] propose a technique
to discover communities and detect changes in dynamic graphs represented in
the form of contingency matrices with encoding schemes. A different approach
principled on frequent graph-based patterns is reported in [2], where the repre-
sentation of the time-evolving graphs as a sequence of cumulative graphs enables
the discovery of rules which characterize the evolution of the network in terms
of topological changes. Algorithms developed for predictive tasks are quite re-
cent. Most of them try to make inferences at a specific time point, typically the
time point next to the last observed. For instance, in [10] a hybrid framework
combines the temporal information with topological patterns and a probabilistic
relational model to infer the existence of links in social networks.

In this paper, we tackle a different task whose goal is to discover evolution
chains, which express the temporal evolution of patterns, here intended as sets
of labelled edges of the dynamic network. Indeed, in some applications where
the network can be observed at different time-points, it is important to discover
what is the “core” portion of the network which changes with time. We assume
that the “core” of the network is more stable than the “marginal” part of the
network, nevertheless it can change with time. These changes are of interest for
this work, since they reflect a crucial step in the network evolution. To identify
patterns concerning the “core” of the network, we follow a frequent pattern-
mining approach, with the critical difference that the frequency of a pattern is
computed along a time-period and not on a static dataset. In other terms, we
assume that “frequent” patterns (along a time-period) do capture the more sta-
ble structure of the “core” of the network, while the many “infrequent” patterns
do represent marginal aspects of the dynamic network, which are much more
unstable and, thus, less interesting.

An example of evolution chain which can be extracted in the context of social
network analysis is the following:

{(user a, user b, friendship), (user b, user c, participation to same event)}τ1
{(user a, user b, friendship), (user b, user c,membership to a group)}τ2
{(user b, user c,membership to a group), (user c, user d, publish on the wall of)}τ3

It includes three frequent patterns discovered in as many consecutive time-
periods (τ1, τ2 and τ3). These patterns express topological regularities of the
network. Nevertheless, not all frequent patterns are taken, but only those which
meet two conditions:

Discovering Evolution Chains in Dynamic Networks 187

i) their frequency significantly changes between the considered time-period and
the previous one;

ii) the “similarity” between a pattern and the pattern associated with the pre-
vious time-period is maximized.

Thus, as a time-period is observed, we extract emerging patterns from that pe-
riod and we incrementally join them with the sequence of patterns generated in
the previous time-periods in order to generate complete evolution chains. In or-
der to consider conservative periods, in the joining process we can join frequent
patters extracted from non-consecutive time-periods if, in the intermediate pe-
riods, they do not show any changes in frequency.

The paper is organized as follows. In Section 2 we formally define the problem
of discovering evolution chains. The proposed computational solution is reported
in Section 3. In Section 4 we report and discuss experimental results on both
real and synthetic data. Finally, conclusions are drawn.

2 Problem Formulation

Before formally defining the problem we intend to solve, some definitions are
necessary. Let D = 〈D1, D2, . . . , Dn〉 be a sequence of time-ordered observations
of the network, obtained at regular time points. At each time-point ti, the net-
work is described by the set Di = (Ni × Ni, Ei), Ni ⊆ N and Ei ⊆ E , where
N and E denote the sets of the nodes and types of edges observed in {t1 . . . tn},
respectively. An edge is modelled as a triple (n1, n2, e12), where n1 and n2 are
the connected nodes while e12 is a label denoting the edge type.1 We say that an
edge (n1, n2, e12) occurs at a time-point ti if the observation Di = (Ni ×Ni, Ei)
includes it, i.e., (n1, n2, e12) ∈ Di.

In this work, a pattern P is a set of edges. We say that P occurs at a time-
point ti if all edges in P occur at the same time-point ti. To give the definition
of frequent pattern in a temporal interval, we first introduce the concept of
time-period.

A time-period (or simply period) τ in {t1 . . . tn} is a sequence of consecutive
time-points {ti, . . . , tj} (t1 ≤ ti, tj ≤ tn). The width w of τ is the number of
time-points in τ , i.e. w = |{ti, . . . , tj}|. Here we assume that all the periods have
the same width w. Two periods τ = {ti, . . . , ti+w} and τ ′ = {ti+w+1 . . . ti+2w}
are said consecutive. As we consider consecutive time-periods, we can enumerate
them and use the notation τh+1 to indicate a period consecutive to τh.

Definition 1. Given a time-period τh and a pattern Pτh we say that Pτh is
frequent in τh if it occurs in at least minSupp time points of τh.

We consider the relative frequency of Pτh computed as the number of time points
in τh in which Pτh occurs, divided by the width of τh (i.e. j− i+1). On the basis
of the concept of frequent pattern, we can give the following definition:

1 We assume that two nodes can be connected by multiple edges of different types and
that edges are not symmetric.

188 C. Loglisci, M. Ceci, and D. Malerba

Definition 2. Given a node X ∈ N , an evolution chain LX is a sequence
of frequent patterns 〈Pτh , Pτh+1

, . . . , Pτh+v
〉 where the node X belongs to some

triple in Pτh and for each i = 0, . . . , v−1, Pτh+i+1
differs from Pτh+i

in only one
triple. The sequence τh+1, . . . , τh+v is called supporting period for the evolution
chain.

Intuitively, the patterns Pτh+i
and Pτh+i+1

represent a relevant state of the net-
work in the two consecutive periods τh+i and τh+i+1. The fact that Pτh+i+1

differs
from Pτh+i

in only one triple guarantees that an evolution chains catches only
slight differences in the structure of the patterns. This is coherent with condi-
tion ii), according to which the “similarity” between a pattern and the pattern
associated with the previous time-period is maximized.

The problem we intend to solve can be formalized as follows:
Given: the set of time-stamped observations of the network D = 〈D1, D2, . . . ,
Dn〉, a set of consecutive time-periods τ1, . . . , τm (n� m), and a node X ∈ N ,
Find: the set of evolution chains LX = {LX} whose supporting periods are
included in τ1, . . . , τm.

A computational solution to this problem is described in the following.

3 The Method

The proposed solution is structured in two-steps. The first step aims to discover
emerging patterns, while the second step incrementally joins the extracted pat-
terns in order to compose, through the periods, evolution chains. The two steps
are detailed in the following.

3.1 Emerging Patterns to Represent Dynamic Networks

Emerging patterns (EPs) [6] are a particular kind of frequent patterns (FPs) used
to characterize a partition of the data with respect to other partitions. The main
property is that their support (relative frequency) significantly changes from one
partition to another one. The greater the change of the support of a pattern,
the more interesting the pattern. Changes in the support are quantitatively
estimated in terms of growth rate (GR), which is a frequency ratio computed as
the ratio GR(P) = supppartitioni(P)/supppartitionj (P), where supppartitioni(P)
is the support of the pattern P in the partition i and supppartitionj (P) is the
support of P in the partition j. Examples of the application of emerging patterns
in the spatio-temporal context can be found in [4],[3].

In our context, EPs are used to characterize the changes that the network may
exhibit in a time-period with respect to the previous time-period both in the co-
occurrences of the edges and in the presence of types of edges. In particular, EPs
are discovered by evaluating the FPs generated in the period τi (FPi) against
those generated in the previous period τi−1 (FPi−1). Each pattern P of FPi

becomes emerging if it satisfies the following conditions:

Discovering Evolution Chains in Dynamic Networks 189

Fig. 1. The lattice generated during the process of frequent pattern mining

– it differs, for only one triple, from at least one of the patterns of FPi−1;
– there exists a pattern P ′ ∈ FPi−1, P

′ �= P such that

GR(P, P ′) = suppτi(P)/suppτi−1(P
′) ≥ minGR,

where minGR is a user-defined threshold.

Note that the above definition of EP differs from the classical definition which
captures differences in the support on the same pattern, and not on “slightly” dif-
ferent patterns. However, this divergence is necessary to catch evolutions which,
otherwise, would not be detected.

Algorithmically, FPs are discovered in each period by exploiting the well-
known Apriori algorithm [1]. In addition to frequent patterns, the Apriori algo-
rithm returns also a graph-based structure (lattice) whose nodes correspond to
possibly generated patterns while the edges denote a subset relationship among
the connected patterns. More precisely, each edge connects a pattern P of length
k to k patterns Q1, . . . , Qk of length k − 1 which are subsets of P . In Figure
1, the pattern 〈(n1, n2, e12), (n1, n3, e13), (n2, n3, e23)〉 of length 3 is connected
with the three patterns 〈(n1, n2, e12), (n1, n3, e13)〉, 〈(n1, n3, e13), (n2, n3, e23)〉,
〈(n1, n2, e12), (n2, n3, e23)〉. In the process of frequent pattern mining, it holds
the anti-monotonicity of the support according to which if P is frequent then
Q1, . . . , Qk are also frequent, while if one among Q1, . . . , Qk is infrequent, then
P is infrequent too. This property is exploited in order to: i) generate k-length
patterns from frequent (k−1)-length patterns, and ii) avoid to generate k-length
patterns from infrequent (k − 1)-length patterns.

In our approach, we exploit the anti-monotonicity property in the process of
extracting emerging patterns. In particular, for each frequent k -length pattern
P in FPi, we consider its (k-1)-length patterns Q1, . . . , Qk and we retrieve them
from the frequent (k-1)-length patterns in FPi−1. From the retrieved set of
frequent patterns in FPi−1, we identify their corresponding (k)-length patterns
in FPi−1. The set of patterns obtained in this way (denoted as PP , τi−1), contains
patterns which have the same length of P , share k − 1 triples with P , and are
frequent in τi−1. Then, P is considered to be an emerging pattern if ∃P ′ ∈
PP , τi−1, P ′ �= P, s.t. GR(P, P ′) = suppτi(P)/suppτi−1(P

′) ≥ minGR.
A concrete example is reported in Figure 2. Let the pattern P = 〈(n1, n2, e12),

(n1, n3, e13), (n2, n3, e23)〉 (k=3) be frequent in the period τi. The patterns of

190 C. Loglisci, M. Ceci, and D. Malerba

Fig. 2. Emerging patterns are selected among the frequent patterns which differ in one
triple only

length k=2 connected to P are Q : 〈(n1, n2, e12), (n1, n3, e13)〉, R : 〈(n1, n2, e12),
(n2, n3, e23)〉 and S : 〈(n1, n3, e13), (n2, n3, e23)〉.

Then, they are searched (circles 1,2,3) in the lattice of the period τi−1 and,
once found, are used to retrieve the set PP , τi−1 of frequent k-length patterns
which may have been derived by joining Q, R, S with other (k − 1)-length
patterns. In the example2, k-length patterns are P : 〈(n1, n2, e12), (n1, n3, e13),
(n2, n3, e23)〉, P ′ : 〈(n1, n2, e12), (n1, n4, e14), (n1, n3, e13)〉 and P ′′ : 〈(n1, n3, e13),
(n2, n3, e23), (n5, n3, e53)〉. Finally, we determine the growth-rate suppτi(P)/
suppτi−1(P

′) and suppτi(P)/suppτi−1(P
′′): if at least one of these values exceeds

the threshold minGR, we consider P as emerging.

3.2 Discovering Evolution Chains as Incremental Join of EPs

In order to formally define the problem of discovering evolution chains, some
preliminary definitions have to be introduced. Let SN : N × N → [0, 1] and
SE : E ×E → [0, 1] be two similarity functions between nodes and types of edges,
respectively. These two functions return real values and are here considered as
background knowledge for the investigated problem. They can naturally model
similarity among types of edges or similarity between types of nodes in het-
erogeneous networks (in the social networks, the similarity between the edges
corresponding to “friendship” and “membership to the same group” can be 0.9).

Their availability is a quite reasonable assumption since in real-world networks
we can easily define notions of similarity on nodes and types of edges.

Considering the notions introduced so far, the problem of discovering evolution
chains in a dynamic network can be so formulated:

2 For the sake of simplicity, in Figure 2 we do not report all the patterns which are
derived by joining Q, R, S with other (k − 1)-length patterns.

Discovering Evolution Chains in Dynamic Networks 191

Given: the set of sets of EPs P mined in the periods τ1, . . . , τm; SN , SE two
similarity measures on N and E respectively; σN and σE two minimum similarity
thresholds for SN and SE respectively; a node X ∈ N
Find: the set of evolution chains LX .

The intuition behind the solution here proposed is that dynamic networks actu-
ally may exhibit topological changes in some parts (nodes and relationships can
be added/removed and relationships can change in their type over time) while
keeping others unchanged, especially between adjacent periods. We use this in-
tuition by considering as valid those chains which connect both unchanged and
changed parts of the network. This is coherent with our assumption that the
”core” of the network is more stable than the marginal part which makes our
approach particularly adequate for networks that exhibit concept drift rather
than concept shift [9].

The proposed solution joins EPs in adjacent periods (τi−1, τi) only if they have
the same length (v edges) and differ for one edge: v − 1 edges would represent
the unchanged part of the network while the two different edges (one for each
FP used in the construction of the EP) would denote the changed part. It is
noteworthy that this does not inhibit our approach from considering multiple
changes in the same network, since multiple EPs can extracted. When several
patterns are candidates to be used for the join operation, we exploit the notion of
similarity for nodes and types of edges by joining the candidate for which the new
edge is “enough” similar to the removed one. Similarity is the average pairwise
similarity between the nodes and the types of edges (computed according to
SN and SE). Indeed, in real-world dynamic networks, we do not expect drastic
changes in adjacent periods but rather mild changes which could be originated
from slight variations on the topological aspects and on the occurrences of the
edges. The integration of the similarity measures SN , SE allows us also to prevent
the generation of meaningless and noise evolution chains.

In order to build chains and, at the same time, guarantee the completeness of
the results, the approach adopts two mechanisms of space search:

– backtracking, which, starting from chains discovered until the previous time-
period, explores backward the EPs of the previous periods in order to identify
alternative chains;

– skipping, which, considering the possibility that EPs of adjacent periods
could be not joined, analyzes forward the remaining periods in order to find
EPs suitable for joining.

Indeed, this inability to join EPs in adjacent periods could be due to different
factors: i) the nodes and the edges of the EPs might exhibit low similarity which
does not exceed the minimum threshold, ii) EPs might present completely dif-
ferent edges or, conversely, identical edges. Indeed, when the FPs (in adjacent
time-periods) are completely different, we cannot identify the unchanged parts
of the network (as described above). On the contrary, when the FPs are the same
and no EP can joined, we cannot identify the changed parts of the network.

192 C. Loglisci, M. Ceci, and D. Malerba

Algorithm 1. Discovering Evolution Chains
1: input: P,SN , SE , σN , σE , minGR, X ∈ N

output: LX
2: found := false; h := 1; candidates := ;
3: while not found do
4: for all EP ∈ getEPs(P, h) do
5: if contains(X,EP) then
6: candidates := EP
7: found := true
8: end if
9: end for
10: if candidates = then
11: h := h + 1
12: else
13: selected := argmin

EP∈candidates
length(EP)

14: selected := argmax
EP∈selected

Growth Rate(EP)

15: end if
16: end while
17: i := h + 1
18: push(τ stack, i)
19: mark(selected)
20: push(EP stack, selected)
21: while EP stack <> do
22: LX ← FWjoin(τ stack, EP stack,P,SN ,SE , σN , σE , minGR,LX)
23: pop(EP stack)
24: pop(τ stack)
25: end while

The algorithmic description is reported in Algorithms 1 and 2. In order to
clarify how they work, we report an explanatory example in Figure 3. Con-
sider τ1, τ2, τ3 as time-periods, the input node X as n1 and the thresholds
σN=σE=σ=0.25. The similarity measures SN ,SE return values reported in Fig-
ure 3a). The reflexive similarity of nodes and edges (e.g., (n1, n1)) is 1. As to
the Algorithm 1, the first operation (lines 3-16) aims at finding the first period
where X occurs. In the example, the search starts from τ1 and finds n1 in the
EPs of τ1. If n1 had not been found there, the search would have proceeded
through the next periods. The presence of n1 in a set of EPs (candidates) leads
to select only one EP with minimum length and maximum growth rate (lines
13-14), that is, FP1 in Figure 3b. The use of a length-based selection criterion
is justified by the fact that the anti-monotonicity property of the support guar-
antees that the shorter the pattern, the higher the frequency, and the better the
pattern represents the network. Moreover, the selection by growth rate allows us
to consider EPs which better represent the changes in the network between the
previous period and the current one. However, only when X is found in the first
period of the network τ1, as in the current example, the selection is performed
on the set of FPs and considers the length and support of the patterns (circles
A,B in Figure 3b). This because we cannot discover EP in the first period τ1
since EPs are determined by evaluating FPs in τi against the FPs in τi−1.

The EPs selected at the lines 13-14 and the associated period are stored in
two stack structures (lines 18,20) which will be used to explore (in forward and
backward mode) the next periods and the EPs there discovered.

Discovering Evolution Chains in Dynamic Networks 193

Algorithm 2. Incremental Forward Join of EPs (FWjoin)

1: input: τ stack, EP stack,P,SN ,SE , σN , σE , minGR
output: LX

2: i := pop(τ stack)
3: m := |P| {Number of time-periods}
4: selected EP := pop(EP stack)
5: while i ≤ m do
6: candidates ← getEPs(P, i)
7: candidates ← select by length(candidates, selected EP)
8: candidates ← select by triples(candidates, selected EP)
9: candidates ← remove marked(candidates)
10: candidates ← select by similarity(candidates, selected EP,SN ,SE , σN , σE)
11: for all EP ∈ candidates do
12: if i < m then
13: candidate := arg max

EP∈candidates
Growth Rate(EP)

14: push(τ stack, i)
15: mark(candidate)
16: push(EP stack, candidate)
17: selected EP := candidate
18: LX ← LX ∪ concatenate(LX , selected EP, {candidate})
19: else
20: candidates ← select by minGR(candidates,minGR)
21: LX ← LX ∪ concatenate(LX , selected EP, candidates)
22: end if
23: end for
24: i = i+ 1
25: end while

Once the latest selected EP is stored in the stack, it is considered for the
possible join with EPs of the next periods (forward mode - lines 2,4 of the
algorithm FWjoin). The operation is performed by first selecting, among the
FPs identified as emerging (see Section 3.1), those which have the same length
of selected EP and differ from it in only one edge (lines 6-8). In the case no EP
is found, the process skips the current period τi and continues the search in the
next period (line 24). In the example, we have EP3 and EP4 (discovered in τ2)
which are identified as candidates to be joined with FP1 (selected EP), since
they differ for only one triple from FP1 (in Figure 3b, differences are represented
by means of the circles C,D and E,F, respectively). Only one pattern among EP3

and EP4, identified with the similarity measures and the growth rate values, will
be used for the join with FP1 (lines 10,13 and 20).

The measures SN ,SE are used to determine the similarity of the pairs of
patterns (FP1, EP3) and (FP1, EP4) by considering the similarity among nodes
and among types of edges in the different edges of (FP1, EP3), and (FP1, EP4).
In particular, the similarity value between two patterns is obtained as the mean
of three similarities obtained from the two different edges, two values obtained
from the pairs of nodes and one obtained from the pair of edges: in the example,
we have 0.45 for (FP1, EP3) and 0.4 for (FP1, EP4) (Figure 3a). Among the
patterns for which the similarity and GR thresholds are exceeded, the chosen
pattern is that which shows the highest growth rate value (lines 13, 20). In
Figure 3a, EP3 and EP4 exceed the thresholds, but EP3 is preferred for its
highest value of similarity with FP1 (0.45). The pattern EP3 is stored (lines 14-
16) and considered for subsequent join operations. In the subsequent iteration,

194 C. Loglisci, M. Ceci, and D. Malerba

(a)

(b)

Fig. 3. Incremental join of EPs: an example

the algorithm processes the period τ3. In this iteration, EP5 and EP6 differ from
EP3 for only one edge, more precisely, the edge at the circle G (EP5) and the
node and edge at the circles H, I (EP6). The similarity values are 0.9 (EP5) and
0.53 (EP6) and both exceed the threshold σ.

The exploration of the last period (τ3,m = 3) completes the incremental joins
with the chains created until to τ2. Indeed, we consider all EPs returned by
select by similarity which meet the condition of minimum growth rate (lines
10 and 20): each of these EPs will be evaluated to complete the chains created
with the EPs previously selected, namely of FP1 and EP3. Once the last period
(τm) is reached, the backtracking mechanism is performed (backward mode): the
control returns to Algorithm 1 where the last stored EP (EP3 in τ2 in Figure 3b)
is removed (lines 23-24, Algorithm 1) and the EPs of the period τ1 are explored
again. This means that we consider the possibility to join FP1 with the EPs in
τ2 without evaluating the EPs already included in the chains previously created,
namely those marked (line 15 in Algorithm 2, line 19 in Algorithm 1). So, the
algorithm FWjoin is executed again in order to evaluate the join between FP1

and EP4, and then, complete the chain with EP5 and the chain with EP6.

Discovering Evolution Chains in Dynamic Networks 195

4 Experiments

In order to prove the viability of the proposed approach, we performed exper-
iments on real world and synthetic datasets. The first one is a social political
dynamic network derived from the news reports concerning the relationships
among nations and world-wide organizations: social and political relationships
correspond to the types of edges of the network while nations and world-wide
organizations are the nodes. The second one has been specifically built in order
to test the computational properties of the approach. Periods are determined
according to an equal-width discretization technique which partitions the obser-
vations D : 〈D1, D2 . . . Di . . . Dn〉 in a sequence 〈τ1, τ2, . . . , τm〉 of consecutive
time-periods with identical width.

4.1 Real-World Dynamic Network

The network is collected under the study KEDS (Kansas Event Data System)3.
In this dataset, our approach aims at building an explanatory model able to
identify particular connections established among nations over time as well as
track the change of social and political relations.

Dataset Description. The dataset includes 123,821 edges collected between
April 1979 and December 2009 (D) and the time-points are in the format
year/month/day. The number of nodes N is 228 while the types of edges are
20, i.e. 20 names of social and political relations reported in natural language.
In this domain, understanding the evolution of the network in terms of type of
edges (social and political relations) can be more interesting than considering
the evolution on the nodes (nations). Coherently, we fix SN to return the middle
of the range of the similarity, namely 0.5, while the measure SE is defined as the
semantic similarity on the types of edges. In particular, we exploited the “Mea-
sures of Semantic Relatedness tools”(http://cwl-projects.cogsci.rpi.edu/msr/).

Experimental Setup. Experiments are performed to test the influence of the
input parameters on the final evolution chains. Moreover, we define a quanti-
tative measure in order to conduct an objective evaluation of the discovered
chains. Such a measure estimates the rarity of the information expressed in each
chain. More formally, let L: EP1, EP2, . . . , EPq be a chain discovered in the peri-
ods τ1, τ2, . . . , τm and let [i1, s1), [i2, s2), . . . , [ik, sk] be a pre-defined equal-width
discretization4 on the values of the growth-rate, the rarity is computed as:

rarityGR(L) = 1 −
1

q

⎡
⎣ ∑

j=1,2,...q

rarityGR(EPj)

⎤
⎦ (1)

rarityGR(EPj) =
#EPs(i,s)

#EPsτj
(2)

where #EPs(i,s) is the number of EPs whose growth-rate is included in the
same bin and #EPsτj is the number of EPs generated in the period when EPj

3 http://web.ku.edu/keds/data.html
4 Note that GR cannot be equal to infinity, since constructed from frequent patterns.

196 C. Loglisci, M. Ceci, and D. Malerba

is generated. Therefore, the rarity of a chain ranges in [0, 1] where the higher
values the rarer the chain is. The same measure can be also defined for the
similarity. Intuitively, the rarity is high for evolution chains whose EPs have less
concurrent EPs in the same GR bin. In this case, the considered chain represents
evolutions possibly not caught by other chains. According to its definition, the
higher the rarity, the better the chain.

Results. Results are collected by varying the minimum thresholds σN , σE and
minGR with two different width of time-periods δτ . The thresholds σN , σE are
set to the same value of σ. The first node X is set as ”usa” (United States of
America) and minSupp=1.5%. Results are shown in Table 1 and Table 2 where
we report the number of discovered chains, average length of the chains, average
number of FPs and EPs generated in the periods involved in the chains and
rarity. Each row in Table 1 presents the values averaged on minGR=64, 8, 4,
2, while the values of the rows in Table 2 are averaged on σ=0.4, 0.25, 0.15, 0.1.

A first consideration can be drawn from the number and length of the chains
in Table 1: decreasing the minimum similarity leads to have a greater set of
chains with higher length. Indeed, low values of σ lead to select EPs with low
similarities in the join operations (besides those with high similarities) with the
result of i) avoiding skipping and ii) continuing to apply the join operation for
the chains currently processed. The same motivation applies also to the sets of
FPs and EPs: the number of FPs and EPs tends to grow because we have to
consider EPs with low similarities, due to the decrease of σ.

As expected, the threshold σ influences rarityGR: the higher the value of
similarity threshold the higher the average rarity. This allows us to point out a
peculiarity of the approach: patterns of edges, which are dissimilar each other,
can participate to a chain, but the resulting chains have relative low uniqueness
in terms of frequency (rarityGR), so chains which relate two nodes belonging to
different time-periods with dissimilar intermediate edges can be very rare.

The different settings of δτ identify two different widths of the periods τ1, τh+1,
. . . , τm: when δτ is 240 we have a smaller set of periods which explains smaller avg
length and higher number of chains. By considering results in Table 1, we notice
that δτ = 120 leads to better values of rarityGR. Indeed, with a larger duration
of a time-period (δτ=240) we collect a greater set of edges, namely observations
of the network, which can lead to the generation of new patterns, which, in their
turn, motivate the lower values of rarityGR with respect to δτ=120.

In Table 2 we can observe the correlation between the threshold minGR and
the raritysimilarity and the influence of minGR on the final chains. Indeed,
low values of growth-rate (obtained by decreasing minGR) lead to consider a
larger set of EPs (for the join operation) which can increase the probability
that an higher number of EPs can fall into the bins of the discretization of
raritysimilarity , with the final result of generating less rare chains. It is note-
worthy that, in this case, δτ does not influence raritysimilarity . This means that
chains are more uniformly distributed in terms of the similarity of involved EPs.

In the following we report the (unique) evolution chain obtained with σ=0.4,
minGR=64, X = ”usa”.

Discovering Evolution Chains in Dynamic Networks 197

Table 1. Results with different values of σ and δτ

δτ σ # chains avg length avg FPs avg EPs rarityGR

0,4 1,75 5,00 168,06 166,66 0,2875
0,25 1,75 5,00 170,35 168,88 0,2875

120 0,15 25,75 12,16 186,53 185,59 0,09028
0,1 52,31 12,29 179,82 179,82 0,07775

0,4 23,75 2,96 380,73 351,70 0,09475
0,25 24,25 3,45 977,71 945,55 0,08875

240 0,15 30,5 4,10 937,74 905,88 0,06180
0,1 32 4,39 931,98 900,31 0,06750

Table 2. Results with different values of minGR and δτ

δτ minGR # chains avg length avg FPs avg EPs raritysimilarity

64 4,25 6,325 172,87 172,2075 0,87387
8 16,75 9,09 177,63 176,58 0,4875

120 4 14,75 9,66 177,67575 176,63 0,6204
2 45,8125 9,3725 176,5825 175,53 0,846

64 24,25 3,7725 813,75 780,825 0,92625
8 23,75 3,995 704,9425 673,7375 0,91275

240 4 23,5 3,965 712,09675 681,5525 0,87325
2 39 3,165 997,365 967,325 0,74833

{(usa, isr, consult), (igo, pse, consult)}(1979−12−13/1980−04−11) ,

{(usa, isr, consult), (syr, usa, consult)}(1981−04−10/1981−08−08) ,

{(usa, isr, consult), (isr, usa, appeal)}(1981−08−09/1981−12−07) ,

{(usa, isr, consult), (isr, usa, consult)}(1984−08−02/1984−11−30) ,

{(igo, isr, appeal), (isr, usa, consult)}(1998−07−02/1998−10−30)

It describes the chain developed from the period 1981− 04− 10/1981− 08− 08
to the period 1998 − 07 − 02/1998 − 10 − 30 and has ”usa” as first node and
”igo” (Intergovernmental organizations) as last node. It depicts the evolution
on the edges of the network which involve also the nodes ”pse”, ”syr”, ”isr”
(Palestinian Occupied Territories, Syria, Israel). This chain has rarityGR=0.22
and raritysimilarity=0.706.

With σ=0.1 and minGR=64 we obtain the following evolution chain:

{(usa, lbn, consult), (lbn, usa, consult)}(1979−12−13 1980−04−11)

{(usa, lbn, express intent to cooperate), (lbn, usa, consult)}(1983−04−06 1983−08−04)

{(usa, lbn, express intent to cooperate), (lbn, usa, fight)}(1983−08−05 1983−12−03)

{(usa, lbn,fight), (lbn, usa,fight)}(1983−12−04 1984−04−02)

In this chain (rarityGR=0.14, raritysimilarity=0.4), the relation between the
nodes ”usa” and ”lbn” (Lebanon) changes from ”consult”to ”fight” through
”express intent to cooperate”. Note that in the time-period 1983-08-05 / 1983-
12-03 there is an asymmetric relationship among the nodes ”usa” and ”lbn”.

4.2 Synthetic Dynamic Network

Synthetic datasets are generated by varying δτ , cardinality of E and N as well
as the number of edges per time-point. In Table 3, we report a summary of the

198 C. Loglisci, M. Ceci, and D. Malerba

Table 3. Artificial dataset characteristics

δτ |N | |E| #edge types
500 (5,10,15,20) (5,10,15,20) (5,10,15,20)
1000 (5,10,15,20) (5,10,15,20) (5,10,15,20)
2000 (5,10,15,20) (5,10,15,20) (5,10,15,20)
3000 (5,10,15,20) (5,10,15,20) (5,10,15,20)

Table 4. Experiments on synthetic datasets

δτ

(# nodes,# edges,#edge types)
(5,5,5) (10,10,10) (15,15,15) (20,20,20)

avg length 2 2.14 2.02 2
500 time(mins) 68.1 147.8 162.9 97.67

chains 2000 7891 6937 19

avg length 2 2.47 2.11 –
1000 time(mins) 50,4 113.1 27.96 20.3

chains 1360 48894 165 0

avg length 2 2.15 2.24 –
2000 time(mins) 66.4 117.6 60.7 38.4

chains 2000 3001 1074 0

avg length 2 2.23 2.18 –
3000 time(mins) 80 145.2 71.7 41.8

chains 1960 3225 3082 0

artificial datasets: for instance, when δτ=500, we have four datasets where the
cardinalities of N , E and the number of types of edge per time-point are equal to
(5,5,5), (10,10,10), (15,15,15), (20,20,20) for the first, second, third and fourth
dataset, respectively. The edges of a period τi are generated independently from
those of other periods in order to evaluate our approach in the (worst) case
in which (possible) chains are randomly generated. This choice avoids possible
biases introduced by the criterion used in the generation of chains, but, on the
other hand, only allows a quantitative evaluation of generated chains and not a
qualitative evaluation. Coherently with this choice, we set the threshold minGR
to 1.0. The values of similarities among the nodes and among the types of edges
are identical and set to 0.1 (σ=0.1).

A first observation we can draw (see Table 4) is that the computational cost of
the approach is related to the produced results, namely the number of discovered
chains and their length: the time performances grows up when # chains and avg
length increase, especially in the settings (10,10,10), (15,15,15). Indeed, when the
network becomes more complex (e.g. (20,20,20)), the running times are shorter
due to the small number of discovered chains. This behavior can be motivated
by the fact that the increase of the size of N and E does not imply an increase
in the frequency of the patterns and, subsequently, of the emerging patterns and
chains, with shorter running time for their (incremental) evaluation.

5 Conclusions

In this paper we investigated the task of discovering evolution chains in dynamic
networks. The proposed solution is based on the extraction of emerging pattens

Discovering Evolution Chains in Dynamic Networks 199

which are subsequently joined in order to generate evolution chains expressed
as time-period stamped patterns. Experiments prove the applicability of the
approach in real-world challenges. In particular, obtained results qualitatively
prove the soundness and the usefulness of extracted chains in capturing changes
in the “core” of a social and political network. Moreover, experiments on ar-
tificially generated data show that the algorithm well scales on large datasets,
depending on the data distribution. For future work, we plan two directions: i)
automatically determination of time-period widths on the basis of the under-
lying distribution of the data, ii) discovering chains in streaming environments
where the networks typically exhibit gradual and sudden concept drift.

Acknowledgments. This work is in partial fulfillment of the PRIN 2009 Project
”Learning Techniques in Relational Domains and Their Applications” funded by
the Italian Ministry of University and Research (MIUR).

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Mor-
gan Kaufmann (1994)

2. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution
rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

3. Ceci, M., Appice, A., Loglisci, C., Caruso, C., Fumarola, F., Malerba, D.: Novelty
detection from evolving complex data streams with time windows. In: Rauch, J.,
Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 563–572.
Springer, Heidelberg (2009)

4. Ceci, M., Appice, A., Malerba, D.: Discovering emerging patterns in spatial
databases: A multi-relational approach. In: Kok, J.N., Koronacki, J., Lopez de
Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS
(LNAI), vol. 4702, pp. 390–397. Springer, Heidelberg (2007)

5. Di Mauro, N., Malerba, D.: Mining networked data. In: Chawla, N., King, I.,
Sperduti, A. (eds.) Symposium on Computational Intelligence and Data Mining,
IEEE-CIDM 2011, p. xx. IEEE (2011)

6. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and
differences. In: KDD, pp. 43–52 (1999)

7. Malerba, D.: A relational perspective on spatial data mining. IJDMMM 1(1), 103–
118 (2008)

8. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free
mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2007,
pp. 687–696. ACM, New York (2007)

9. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23(1), 69–101 (1996)

10. Zhu, J., Xie, Q., Chin, E.J.: A hybrid time-series link prediction framework for
large social network. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.)
DEXA 2012, Part II. LNCS, vol. 7447, pp. 345–359. Springer, Heidelberg (2012)

Supporting Information Spread

in a Social Internetworking Scenario

Francesco Buccafurri, Gianluca Lax, Antonino Nocera, and Domenico Ursino

DIMET, University “Mediterranea” of Reggio Calabria, Via Graziella,
Località Feo di Vito, 89122 Reggio Calabria, Italy

{bucca,lax,a.nocera,ursino}@unirc.it

Abstract. The problem of quickly, capillary and effectively spreading
information over social networks has become extremely important in
many areas of our society. This problem has been widely studied in the
recent literature and is still open, but it becomes even more challenging,
due to the new issues to deal with, in a multi-social-network context,
where the possibility that information can cross different social networks
has a fundamental role. As a matter of fact, this is the scenario towards
which social networks are evolving with a rapid increase of the mutual
interaction among them. In this new scenario, called Social Internetwork-
ing Scenario (SIS, for short), we propose an approach devoted to favor
information spreading, by identifying two stereotypes, specific for SISs,
which are expected to be good spreaders: the starter and the bridge.

Keywords: Social Networks, Social Internetworking Scenarios, Infor-
mation Spread, Starters, Bridges.

1 Introduction

The problem of spreading information over large communities as much quickly,
capillary and effectively as possible, has a crucial importance in many areas, like
economy, government, culture, society, etc. The problem is much more evident
if we consider new generation communication systems, such as social networks,
which are radically changing the communication model with respect to the past.
Information spreading has been first considered in the context of economy, above
all in marketing [21,41]. Here, the communication happens in a broadcast fashion,
starting from a given subject (i.e., a company) and aiming at directly reaching a
large number of other subjects (i.e., customers). The networks considered in this
context are the provider-consumer ones, generally very different from the current
social networks. For instance, in the past, a direct relationship between providers
and consumers who were linked to each other by means of advertising systems
operating in broadcasting and/or by means of large-scale distributors did not
often exist. With the appearance of social networks, this frame of mind dras-
tically changed, since at their core there is the direct relationship between two
partners. This fact influenced also economy and marketing since, now, thanks to

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 200–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Supporting Information Spread in a Social Internetworking Scenario 201

e-commerce, the relationship between providers and consumers is often direct.
This new form of communication may give relevant benefits in terms of effective-
ness. Think, for instance, of a suggestion to buy a product provided by a friend
with respect to the same suggestion provided by a TV advertising. Thus, the
role of recipients becomes very different, moving from the passive one of the past
to an active participation to the communication process. This radical change led
to the necessity of designing new approaches to improving information spread-
ing, which strictly take both the new communication architecture and the role
of involved actors into account. The recent literature includes a lot of efforts in
this direction, like [22,27,13,7], and the problem is still open. However, an even
newer phenomenon should be taken into account. Social networks are proliferat-
ing, and users are going towards contemporary memberships to different social
networks, also addressing multiple aspects of their personality. Each commu-
nity is not an isolated element, but a component of a overall scenario where all
the communities interact with each other to communicate, to share resources,
to acquire opinions, and so forth. This is what is called Social Internetworking
Scenario (SIS, for short). Here, information spreading is even more challenging
and includes some new issues to deal with, mainly related to the possibility that
information can cross different social networks. We expect that if we apply to a
SIS one of the techniques conceived in the literature for facilitating information
spreading in a (single) social network, we will be far from the best possible result,
since those techniques do not take into account the problem of cross-spreading,
which is instead crucial in this context. Unfortunately, due to the currentness
of the social internetworking field, in the literature no technique exists (to the
best of our knowledge) to attack the above problem in the context of SISs. This
work is aimed at giving a first proposal in this setting, by defining a suitable
model and a method which enhance single-social-network approaches by taking
the features of the new context into account. In particular, the stereotypes we
look for in order to identify good information spreaders are of two kinds. The
former, which we call starter, is a sort of leader, who is often (but not necessar-
ily) a power user with high activity on the network, heterogeneous interests (in
such a way that she can be followed by many people with different interests and
needs [9,46]) and with good attractiveness (in the sense that the information
posted by her in the past attracted the interest of many other users). The latter
is specific of the SIS context. It is called bridge. The identikit of a bridge requires
that she should join more social networks and, above all, that she and her friends
should be characterized by a high centrality degree, and these last ones should
be interested in the topics characterizing the information to spread. It is worth
noting that the above stereotypes depend on the topic, in the sense that it can
happen that a user is a good starter (bridge, resp.) for a certain information
topic and a bad starter (bridge, resp.) for another one. In our model a user is
characterized by a starter degree and a bridge degree. The best users to spread
information are certainly those having both a high starter degree and a high
bridge degree. Among the other ones, if a SIS consists of few social networks,
starter degree must be preferred to bridge degree. By contrast, if a SIS consists

202 F. Buccafurri et al.

of many social networks, bridge degree must be preferred to starter degree. On
the basis of these degrees, we may also evaluate the maximum spread that can be
obtained for a given information entity starting from a certain user considered
as a starter. As a final remark, we can observe that even though our approach is
based on the usage of only data marked by users as public, a problem of privacy
anyway arises. Indeed, we use such public data for classifying people (although
our classification does not include any negative connotation), in order to discover
knowledge about them which is not voluntarily and explicitly included by users.
However, this fact is inherently related to the social network phenomenon, where
users are in general aware (or at least they should be aware) that exposing a part
of their life leads to the concrete possibility that someone can collect, analyze,
elaborate such an information and can exploit it also for business. This is in
fact what currently happens in real life, so that we feel that the results of our
research may have a meaningful applicative impact.

The plan of this paper is as follows. In the next section, we present the adopted
SIS model. How starter and bridge degrees can be computed for a given user is
illustrated in Section 3. In Section 4, we show that our approach is not inherently
limited by the chosen stereotypes, but can be extended to other possible ones
leading to a sort of general approach. The related literature is analyzed in Section
5. Finally, in Section 6, we draw our conclusions.

2 The Underlying SIS Model

In this section, we illustrate the SIS model underlying our approach. It repre-
sents a set of concepts and relationships currently very common in social net-
works. It considers the following sets:

– the set users of the users of the SIS;
– the set social newtorks of the social networks of the SIS;
– the set resources of the resources posted in the SIS by its users;
– the set opinions of the opinions posted in the SIS by its users;
– the set tags of the tags used by at least one user to label at least one resource

or one opinion;
– the set comments of the comments posted by users and referring to a resource

or an opinion;

In addition to these sets, which represent concepts intrinsic in social networks,
our model considers a further set which plays a key role. In particular, it considers
the set of tags representing the information entity to spread. We will use the term
context (of that information entity) to represent this set of tags. The relationships
considered in our model often represent actions performed by users. Currently,
our model considers the following relationships:

– membershipui,sk ; it indicates that the user ui joined the social network sk.
– resource postingui,rj,sk (resp., opinion postingui,oj ,sk); it denotes that ui

posted the resource rj (resp., the opinion oj) in sk.

Supporting Information Spread in a Social Internetworking Scenario 203

– resource taggingui,rj ,th,sk (resp., opinion taggingui,oj,th,sk); it indicates
that ui specified the tag th as one of the tags in the label of rj (resp.,
oj) in sk.

– resource accessingui,rj ,sk (resp., opinion acessingui,oj,sk); it indicates that
ui accessed rj (resp., oj) in sk.

– resource commentingui,rj ,cx,sk (resp., opinion commentingui,oj,cx,sk); it
denotes that ui submitted the comment cx for rj (resp., oj) in sk.

– friendshipui,ul,sk ; it indicates that ui and ul declared their friendship in sk.

Observe that opinions and resources could be considered of the same nature (for
instance, an opinion could be considered as a textual resource expressing some
ideas of the user posting it). Moreover, they are characterized by exactly the
same relationships. For this reason, as pointed out in the introduction, we will
use the term information entity to represent both of them. Starting from the sets
and the relationships introduced above, our model defines the following derived
sets, which will be exploited in the detection of starters and bridges.

– prui ; it represents the profile of the user ui; it consists of the set of the tags
mostly used by her in her past activities.

– prej ; it represents the profile of the information entity ej ; it consists of a set
of tags indicating the content of ej (in case ej is a resource) or the subjects
of ej (in case ej is an opinion).

– prcntz ; it represents the profile of a context cntz, i.e. the set of tags repre-
senting the corresponding information to spread.

– prsk ; it represents the profile of the social network sk; this profile consists of
the set of the tags mostly used therein.

– userssk ; it represents the set of the users of sk.
– max friendssk ; it represents the maximum number of friends of a user in

sk.
– social networksui ; it represents the set of the social networks joined by ui.
– posted entitiesui; it represents the set of information entities posted by ui.
– friendsui ; it represents the set of the users who declared their friendship

with ui in one or more social networks.

3 Starter and Bridge Detection

In this section, we show how the starter and bridge degrees can be computed for
a given user.

3.1 Starter Detection

In our application scenario a starter can be defined as an individual who, over a
significant period of time, generates information entities (i.e., resources and/or
opinions) that other individuals access and comment. Preliminarily, we recall
from the introduction that, given a user, her attitude to act as a starter de-
pends on the context of the information entity to spread; we have seen that the
context of an information entity consists of the set of its topics. The following
considerations help us to find an identikit of a starter:

204 F. Buccafurri et al.

1. A starter should have been recently active, i.e., she should have recently
posted many information entities.

2. Information entities posted by a starter should have been frequently accessed
and commented.

3. Information entities posted by a starter should have attracted the interest
of many other users.

4. Users who accessed the information entities posted by a starter should have
heterogeneous interests and needs. This condition does not exclude the possi-
bility that a starter is monothematic. However, in this case, she could attract
the interest of only a portion of users, i.e. the ones interested in the corre-
sponding topic. By contrast, if a starter posts information entities about
different topics, then she could attract the interest of a larger portion of
users and, therefore, she could have a larger number of followers.

In order to “quantify” these considerations we must introduce the following
support sets; these are derived from the basic ones defined in Section 2.

– posted entitiesui,cntz represents the set of information entities of posted
entitiesui which refer to the context cntz. This set can be defined as follows:

posted entitiesui,cntz = {ej ∈ posted entitiesui|J(prej , prcntz) > thc}

Here, J(A,B) represents the Jaccard coefficient of the sets A and B, whereas
thc is a suitable threshold. We recall that the Jaccard Coefficient J(A,B)

between two sets A and B is defined as J(A,B) = |A∩B|
|A∪B| .

– posted entitiesui,cntz,T represents the set of information entities of posted
entitiesui,cntz posted in the last T days.

– accessesui,cntz,T represents the set of accesses, performed by the SIS users,
to the information entities of posted entitiesui,cntz,T .

– commentsui,cntz,T represents the set of comments, performed by the SIS
users, to the information entities of posted entitiesui,cntz,T .

– posted snui,cntz,T represents the set of social networks where ui submitted
at least one information entity of posted entitiesui,cntz,T .

– accessing usersui,cntz,T represents the set of users who accessed at least one
information entity of posted entitiesui,cntz,T .

– commenting usersui,cntz,T represents the set of users who submitted a com-
ment for at least one information entity of posted entitiesui,cntz,T .

Starting from these sets we can introduce the following derived metrics, each
expressing a contribution in the measuring of the starter degree of ui:

1. entities stdui,cntz = α
|posted entitiesui,cntz,T |
|posted entitiesui,cntz,βT |+

(1− α)
|posted entitiesui,cntz,T |

maxul∈{{ui}∪friendsui
}(|posted entitiesul ,cntz,T |)

This parameter is an indicator of the tendency of ui to post information
entities stimulating discussions. The first factor is an indicator of the trend
of the posting frequency of ui; the second term is an indicator of the posting

Supporting Information Spread in a Social Internetworking Scenario 205

activity of ui w.r.t. the one of the other users in contact with her. The
parameter α, belonging to the real interval [0, 1] allows the tuning of the
contribution of the two factors. The parameter β is a positive integer higher
than or equal to 2 allowing the tuning of the time period to be considered
in the computation of the trend of the posting frequency of ui.

2. accesses stdui,cntz and comments stdui,cntz are computed in a way anal-
ogous to entities stdui,cntz except that, in the formula, the sets posted
entities are substituted by the sets accesses and comments.

3. acc users stdui,cntz =
|accessing usersui,cntz,T |

|
⋃

sn∈posted snui,cntz,T
userssn | and

comm users stdui,cntz =
|commenting usersui,cntz,T |

|
⋃

sn∈posted snui,cntz,T
userssn | . These parameters

represent an indicator of the fraction of the users reached by the informa-
tion entities about a context cntz posted by ui who really accessed and
commented these last information entities.

4. het acc users stdui,cntz =

1−
∑

(ul,um∈accessing usersui,cntz,T)∧(um �=ul)
J(prl,prm)

|accessing usersui,cntz,T |·(|accessing usersui,cntz,T |−1) and

het comm users stdui,cntz =

1−
∑

(ul,um∈commenting usersui,cntz,T)∧(um �=ul)
J(prl,prm)

|commenting usersui,cntz,T |·(|commenting usersui,cntz,T |−1) . These parameters

are indicators of the heterogeneity of the users who accessed the informa-
tion entities posted by ui. The former (resp., the latter) is defined as an
average on the Jaccard coefficients computed on all the possible pairs of
accessing usersui,cntz,T (resp., commenting usersui,cntz,T).

Observe that the values of all the metrics defined above can range in the real in-
terval [0, 1]. We are now able to illustrate how the “starter degree” stdui,cntz of a
user ui in a context cntz can be computed. Specifically: stdui,cntz = agg(entities
stdui,cntz , accesses stdui,cntz , comments stdui,cntz , acc users stdui,cntz, het acc
users stdui,cntz , comm users stdui,cntz , het comm users stdui,cntz). Here, agg
is a suitable aggregation operator which returns a value in the real interval [0, 1].
For instance, it could represent a weighted mean of the involved parameters.

3.2 Bridge Detection

In our application scenario, a bridge can be defined as an individual who has
accounts in more social networks and stimulates the exchange of information
entities among these last ones. Analogously to the starter case, the attitude of a
user to act a bridge depends on the context of the information entity to spread.
Starting from this definition it is possible to find an identikit of a bridge:

– Given a user, the higher the number of social networks she joins and the
higher her potential bridge degree.

– Given a user, the more central her friends in the corresponding social net-
works, the higher her possibility to disseminate information entities and,
ultimately, the higher her potential bridge degree.

206 F. Buccafurri et al.

In order to “quantify” these considerations we must introduce the following
support sets and measures derived from the basic ones illustrated in Section 2:

– context expertssk,cntz represents the set of the users of a social network sk
expert in the context cntz associated with an information entity. This set
can be defined as follows:

context expertssk,cntz = {ul ∈ userssk |J(prul
, prcntz) > th′

c}

Here th′
c is a suitable threshold.

– expert friendsui,cntz,sk represents the set of the users of sk expert in cntz
who declared their friendship with ui.

– centrality degreeui,cntz,sk represents the centrality degree of ui in sk as far
as cntz is concerned. In this computation we consider the relationships be-
tween ui and her friends who are expert in cntz. This degree is computed
by means of a modified version of the PageRank algorithm [6]. Its formula
is the following:

centrality degreeui,cntz,sk =

δ + (1 + δ) ·
(∑

ul∈expert friendsui,cntz,sk

centrality degreeul,cntz,sk

|expert friendsul,cntz,sk
|

)
Here δ is the so called “dumping factor” introduced in the definition of PageR-
ank. It is often set to 0.75. Observe that centrality degreeui,cntz,sk ranges in the
real interval [0,+∞). In order to perform its normalization we can divide it by
the maximum centrality degree of a user expert of cntz in sk. The formula is the
following:

norm centrality degreeui,cntz,sk =
centrality degreeui,cntz,sk

maxul∈usersk
(centrality degreeul,cntz,sk

)

We are now able to illustrate how the “bridge degree” bdui,cntz of ui in cntz can
be computed. Specifically:

bdui,cntz =

∑
sk∈social networksui

|userssk | · norm centrality degreeul,cntz,sk∑
sk∈social networks |userssk |

The rationale underlying this formula is the following: the higher the number
and the dimension of social networks joined by ui, the higher her bridge degree.

4 Extending Our Approach to Other Stereotypes

As pointed out in Section 5, starters and bridges can be considered as special
cases of stereotypes in a SIS. Stereotypes allow the categorization of people to
groups; a “general idea” or a “label” can be associated with each group. Other
possible stereotypes in a SIS could be the “power user”, the “spammer”, and
so on. By generalizing the idea presented in this paper, it would be possible to
define a set of stereotypes of interest. Analogously to starters and bridges, also
these new stereotypes should be related to the reference context. By considering

Supporting Information Spread in a Social Internetworking Scenario 207

all the stereotypes it could be possible to construct a stereotypical map for each
user. Specifically, given a user ui, her stereotypical map st mapui consists of a
matrix having a row for each context and a column for each stereotype considered
in the SIS. The generic element st mapui [z, w] is a number in the real interval
[0, 1] and indicates how much the personal traits of ui are compliant with the
features of the stereotype stw as far as the topics represented by the context
cntz are concerned. The knowledge of these maps could be beneficial for several
applications; among them we cite:

– Enrichment of user profiles based on user behaviors. Generally, the classic
profile of a user stores her interests and needs (usually represented by means
of some tags); often, it can also register the actions performed by her, as
well as her relationships. A user stereotypical map could enrich a classical
user profile by adding new information, generally not considered in it. This
information appears extremely useful to foresee the possible behavior of the
corresponding user. However, the exploitation of tags in classical user profiles
presents some problems. One of them is the possible presence of semantic
anomalies (e.g., synonymies, homonymies, polysemies) among tags [16]. A
second problem is the power law distribution of tags [12,17]; this last prob-
lem could affect not only tags but also user actions and relationships (think,
for instance, to a power law distribution of friends). Owing to these prob-
lems, it is very difficult to classify or characterize a set of users in such a
way as to construct homogeneous groups of them. The exploitation of user
stereotypical maps is a solution to this problem. In fact, the map entries are
identical for all users because they correspond to the stereotypes considered
in the SIS. As a consequence, users can be compared and categorized on the
basis of the same features.

– Computation of trust and reputation of users. Trust and reputation measure
the reliability of a user in a community. Trust is a subjective measure; in-
deed, the trust of a user ui in a user ul indicates how much ul is considered
reliable by ui. Reputation is an objective measure since it indicates how
much a user ui is considered reliable by a community. Stereotypes represent
a powerful support in the computation of trust and reputation. In fact, a co-
efficient in the real interval [0, 1] could be associated with each stereotype. It
expresses the “goodness” of this last one; the higher its value, the higher the
“goodness” of the corresponding stereotype. Once “goodness coefficients”
have been associated with all stereotypes of the SIS, the trust and the rep-
utation of a user can be easily computed by taking both her stereotypical
degrees (specified in her stereotypical map) and “goodness coefficients” into
consideration.

– Team Building. It is well known that a team wholly composed by people
having the same psychological and behavioral features is often characterized
by negative dynamics. For instance, in a company, a team consisting of
only technically talented experts is often characterized by a negative form
of competition because its components tend to assert themselves by nature.
This fact creates stress among them, lowers the quality of their interactions

208 F. Buccafurri et al.

and, ultimately, deters them to achieve the goals for which the team was
built [28]. On the contrary, if a team is harmonious, composed by people
having “orthogonal” psychological and behavioral traits, it is possible to
expect that it will better accomplish assigned goals. Clearly, the knowledge
of the stereotypical map of a user gives important information about her
psychological and behavioral traits and, consequently, can become a precious
support when a team must be built.

As a further development of the idea expressed in this paper, it could be pos-
sible, given a context cntz, to construct a stereotypical map sis st mapcntz of
a SIS. This could consist of a set of graphs: sis st mapcntz = {sis reg1cntz , . . . ,
sis regycntz , . . . , sis regmcntz}. Each graph represents a region of the map and is
associated with one or more reference stereotypes. Clearly, graphs could par-
tially overlap. The knowledge of the stereotypical map of a SIS could be useful
for several applications. Among them we cite:

– “Cold Start” Problem. This is one of the main problems in social sites. It
concerns the difficulty to involve a new user in the activities performed by
the other ones in a site. For this purpose, generally, a social site provides
a new user with a set of suggestions of users, resources, etc. Clearly, these
suggestions could be as much as possible of interest to her. For this reason,
many sites require a new user to fill a questionnaire when she joins them.
Generally, these questionnaires have been conceived to know the user’s main
interests and needs, whereas a little emphasis is given to her behavior also
because, generally, there is no way to fruitfully exploit this information.
However, we argue that this knowledge could be very useful if there exists
a way to exploit it, and, in our opinion, stereotypes (which just concern
the behavioral traits of a user) can help in this last process. In this case the
questionnaire should also have a part devoted to know the main stereotypical
traits of the user. These last ones could complement the knowledge about her
interests and needs and, consequently, could improve the suggestions of users
and resources. For instance, given a context, if the stereotypical traits of a
user are similar to the ones of a given region of the SIS, the other members
of the region could be suggested to her. Analogously, it could be possible to
suggest those resources exploited by the users whose stereotypical traits are
the most similar to the ones of the user.

– Information search support. Assume that a user is searching for informa-
tion of her interest or that she wants to submit a query referring to a given
context. If she does not preliminarily select the potential targets she could
waste a lot of time and could be overwhelmed by useless information and/or
answers. A SIS stereotypical map could supply her a useful support to face
this issue. As a matter of fact, having this tool at disposal, she could search
for information or submit queries in those regions of the SIS characterized
by positive stereotypes (such as power users) and could avoid regions char-
acterized by negative stereotypes (such as spammers) for the contexts of her
interest.

Supporting Information Spread in a Social Internetworking Scenario 209

5 Related Literature

The idea of labeling users as starters or bridges is a particular case of the most
general activity of stereotyping user behavior. The concept of stereotype, in its
modern psychology meaning, was originally proposed in sociology and psychol-
ogy [31,24]. In the context of Computer Science, stereotypes have been used in
the definition of models to represent groups of users [18,45], in e-commerce [2],
in the development of techniques to hasten the learning process of robots [38,34],
and in several other application fields [37,8,26]. However, the use of stereotypes
in online social networks, and, more in general, in online social communities, re-
ceived little attention in the past [30]. In [38], an approach for the creation and
the exploitation of stereotyped partner models to speed up the process of learning
about a robot’s interactive partner is investigated. In [18], the authors analyze
some possible improvements in agent modeling using re-evaluative stereotyping
with switching. The use of stereotypes has been proposed to create models of
individual users [34] and to reduce the latency problem in collaborative filter-
ing recommender systems [37]. A formal evaluation method to test the accuracy
and/or the homogeneity of stereotypes derived from the explicit characteristics
of users is proposed in [45].

Starter and bridge detection could be used to tackle the problem of informa-
tion propagation. This problem has been first addressed in the telecommunica-
tion networks research area [15,25,32]. It was also shown that the dynamics of
the information flow in a network strongly resembles the epidemic spread in a
population [3,4]. However, the kind of investigation on information spread dealt
with in our scenario is very different from the one considered in telecommuni-
cation networks and epidemic spread. As a matter of fact, telecommunication
researchers investigate issues like the role of mobile devices, the physical features
of exploited networks, and so forth; furthermore, typically, their goals are en-
ergy saving or network design. Instead, we focus on the problem of information
propagation in social networks. In this context, several approaches have been
proposed. In particular, in [23], a mechanism which uses gossip algorithms [5]
for information dissemination on social networks is presented. In order to manage
traffic and to solve possible bottleneck problems, this mechanism uses two strate-
gies: the former spreads rumors inside the social network and finds the network
of interests; the latter collects messages in the network of interests with consid-
eration of a threshold of independent paths. Information propagation problem
has been studied for both single-piece and multi-piece information spreading
[36]. Interesting results regarding how information is propagated over real-life
environments centered on social networks have been presented in [22,27,13,7].
Differently from the above proposals, in order to support information spread,
our paper aims at identifying starters and bridges.

The problem of finding starters is faced in [1], where the authors propose three
heuristic algorithms for finding such users among the communities of a social
network. An approach devoted to identify the influence and the roles of nodes of
a social network on the basis of the structure of the corresponding communities is
presented in [46]. Differently from our proposal, these two approaches are solely

210 F. Buccafurri et al.

based on the link structure of the social network and do not take the important
parameter of user activity into consideration. In [9] the authors propose a model
to mine the top-k influential bloggers on the basis of their interest domains and
their links. The proposed mining technique leverages on two main contributions,
namely Accumulated Posts and General Links. The former measures the influ-
ence of a blogger’s posts, the latter measures the reachability of a blogger’s page
inside the Web on the basis of its external links. In [39] the authors propose an
approach to the mining of the top-k influential nodes in a mobile social network
(i.e., a social network inferred by mobile call logs). This approach first detects
communities in a mobile social network on the basis of information diffusion and,
then, uses a dynamic programming algorithm to select the best communities to
consider for inferring influential nodes. An approach for the evaluation of the
influential strength of a blogger and for the identification of the most influential
bloggers in the blogosphere is proposed in [29]. In this paper the authors pro-
pose an MIV (Marketing Influential Value) based model which provides tools
to measure the capability of a blog to influence marketing. As for a comparison
between our approach and the ones described in [9,39,29], we observe that these
last three approaches are not specific for social networks and, thus, they handle
and exploit information typically not provided in our context.

Most of the approaches for bridge identification [33] proposed in the past aim
at finding bridges among different communities of a single social network. In
particular, methodologies for the detection of node categories (such as highly
connected nodes or nodes belonging to densely connected subgroups) have been
originally proposed in Social Network Analysis [10]. They can be exploited to
assess if a node can assume a specific role (e.g., bridge, starter, power user,
etc.) in a single social network on the basis of its position and of the network
structure. All these approaches are strictly based on centrality measures (such
as degree, closeness, eigenvector, and betweenness [19]) which are derived from
the examination of the structural connections characterizing the network. All of
them can be adapted to behave as bridge detection approaches, if the consid-
ered role is bridge. As a matter of fact, some works perform this adaptation in
several application fields (e.g., biology, communication theory, information sci-
ence, marketing, epidemiology, telecommunications) [44,20,11,42] as a side effect
during the solution of specific problems. In these approaches bridge detection is
performed only on the basis of the network structure.

Only few approaches capable of explicitly performing bridge detection have
been proposed. In particular, the authors of [43] present SCAN, a Structural
Clustering Algorithm for Networks. SCAN aims at clustering the nodes of a
network on the basis of the analysis of their neighborhoods. Once clusters have
been defined, it determines which nodes belong to a cluster, which ones can be
regarded as bridges and which ones are outliers. In [14], the authors focus on
several kinds of user nodes in a network which play a key role in the interactions
among the network components. Their approach considers the network topology
as well as the information registered on the links between user nodes. It strongly
relies on the concept of network transitivity [40], which represents a common

Supporting Information Spread in a Social Internetworking Scenario 211

property in most networks. In [35] the authors define several roles which can
be assumed by a user node in a network. They show how these roles can sup-
port existing link mining techniques and propose a technique for their detection,
based on the network topology and on the knowledge of the number of commu-
nities each node is related to. We observe that the techniques proposed in [43]
and [35] do not take the activity of users into account, thus missing an impor-
tant parameter that, instead, has a great weight in the detection of bridges. All
the proposals for bridge detection described above have not been conceived for
a Social Internetworking Scenario. On the other hand, this scenario cannot be
considered as a trivial union of several social networks, as widely remarked in the
introduction. In other words, these techniques are not oriented to facilitate infor-
mation cross-spreading, which is crucial in the context of social internetworking.
From this point of view, our work includes a strong element of originality, since
it poses cross-spreading as the key concept which drives the proposed approach.
We feel that both this originality and the evident difficulty of testing our tech-
nique in real-life social networks in reasonable time, allow the validation of our
approach to be limited to the above comparison with the literature as well as to
all the reasonings included in the work and showing that it can be expected that
our stereotypes are really able to improve information spread. In other words,
being this work a first idea, whose significance is, from our point of view, well
supported by both a number of solid argumentations, a net originality, and a
convincing theoretical model, we postpone the hard task of involving real-life
social networks for the experimental validation to our future work.

6 Conclusion

In this paper we present an approach devoted to support information spread in
a SIS. First we have seen that the solutions to this problem presented in the
past for single social networks cannot be directly applied to a SIS, due to the
peculiarities of this scenario. Then, we have proposed a new solution centered
on the presence of two stereotypes, namely starters and bridges, which are spe-
cific in the new context of SISs. Finally, we have seen that the knowledge of
these and other stereotypes can be beneficial in many application contexts. As
for future work, a possible development of our research efforts in this field could
be the definition of approaches that, given an information entity, are capable of
identifying the users of the SIS who are the most interested in it. After this, they
could find the best paths in the SIS to reach these users. Furthermore, it could
be challenging to investigate the derivation of other stereotypes (such as power
users and spammers) in a SIS. In particular, it could be interesting to verify if
and how techniques already proposed for solving this problem in a single social
network can be extended to SISs, as well as to define new techniques specific for
this scenario which highly benefit from its peculiarities.

Acknowledgement. The Authors thank the anonymous Referees whose sug-
gestions allowed them to highly improve the quality of this paper.

212 F. Buccafurri et al.

References

1. Anjerani, M., Moeini, A.: Selecting influential nodes for detected communities in
real-world social networks. In: Proc. of the Iranian Conference on Electrical Engi-
neering, ICEE 2011, Tehran, Iran, pp. 1–6 (2011)

2. Ardissono, L., Goy, A., Petrone, G., Segnan, M., Console, L., Lesmo, L., Simone,
C., Torasso, P.: Agent technologies for the development of adaptive web stores. In:
Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI), vol. 1991, pp.
194–213. Springer, Heidelberg (2001)

3. Barthelemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hi-
erarchical spread of epidemic outbreaks in scale-free networks. Physical Review
Letters 92, 178701–178704 (2004)

4. Boguna, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex net-
works. Physical Review E 66, 047104–047107 (2002)

5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: Design, analy-
sis and applications. In: Proc. of the International Joint Conference of the IEEE
Computer and Communications Societies, INFOCOMM 2005, Miami, FL, USA,
vol. 3, pp. 1653–1664 (2005)

6. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks 30(1-7), 107–117 (1998)

7. Buccafurri, F., Lax, G.: Improving Similarity-Based Methods for Information Prop-
agationon Social Networks. Networked Digital Technologies 87(3), 391–401 (2010)

8. Burnett, C., Norman, T.J., Sycara, K.: Bootstrapping trust evaluations through
stereotypes. In: Proc. of the International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2010, Toronto, Ontario, Canada, pp. 241–248. Inter-
national Foundation for Autonomous Agents and Multiagent Systems (2010)

9. Caiv, Y., Chen, Y.: Mining influential bloggers: From general to domain specific.
In: Velásquez, J.D., Ŕıos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part II.
LNCS, vol. 5712, pp. 447–454. Springer, Heidelberg (2009)

10. Carrington, P., Scott, J., Wasserman, S.: Models and Methods in Social Network
Analysis. Cambridge University Press (2005)

11. Catanzaro, M., Caldarelli, G., Pietronero, L.: Assortative model for social networks.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 70(3), 037101–
037104 (2004)

12. Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D.P., Loreto, V., Hotho, A.,
Grahl, M., Stumme, G.: Network properties of folksonomies. Artificial Intelligence
Communications 20(4), 245–262 (2007)

13. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of informa-
tion propagation in the flickr social network. In: Proc. of the International Confer-
ence on World Wide Web, WWW 2009, Madrid, Spain, pp. 721–730. ACM (2009)

14. Chou, B.-H., Suzuki, E.: Discovering Community-Oriented Roles of Nodes in a
Social Network. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK
2010. LNCS, vol. 6263, pp. 52–64. Springer, Heidelberg (2010)

15. Datta, A., Quarteroni, S., Aberer, K.: Autonomous Gossiping: A Self-Organizing
Epidemic Algorithm for Selective Information Dissemination in Wireless Mobile
Ad-Hoc Networks. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra,
S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 126–143. Springer, Heidelberg (2004)

16. De Meo, P., Nocera, A., Terracina, G., Ursino, D.: Recommendation of similar
users, resources and social networks in a Social Internetworking Scenario. Informa-
tion Sciences 181(7), 1285–1305 (2011)

Supporting Information Spread in a Social Internetworking Scenario 213

17. De Meo, P., Quattrone, G., Ursino, D.: Exploitation of semantic relationships and
hierarchical data structures to support a user in his annotation and browsing ac-
tivities in folksonomies. Information Systems 34(6), 511–535 (2009)

18. Denzinger, J., Hamdan, J.: Improving Modeling of Other Agents using Tentative
Stereotypes and Compactification of Observations. In: Proc. of the International
Conference on Intelligent Agent Technology, IAT 2004, Beijing, China, pp. 106–112.
IEEE Computer Society (2004)

19. Freeman, L.C.: A set of measuring centrality based on betweenness. Sociome-
try 40(1), 35–41 (1977)

20. Goldenberg, J., Han, S., Lehmann, D.R., Hong, J.W.: The Role of Hubs in the
Adoption Process. Journal of Marketing 73, 1–13 (2009)

21. Goldenberg, J., Libai, E., Muller, E.: Talk of the network: A complex systems
look at the underlying process of word-of-mouth. Marketing Letters 12(3), 211–
223 (2001)

22. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through
blogspace. In: Proc. of the International Conference on World Wide Web, WWW
2004, pp. 491–501. ACM, New York (2004)

23. Hamed, A., Arman, M., Ehsan, A.: Towards an Efficient Method for Spreading
Information in Social Network. In: Proc. of the Asia International Conference on
Modelling & Simulation, Bandung, Bali, Indonesia, pp. 152–157. IEEE Computer
Society (2009)

24. Hamilton, D.L., Trolier, T.K.: Stereotypes and stereotyping: An overview of the
cognitive approach. In: Dovidio, J.F., Gaertner, S.L. (eds.) Prejudice, Discrimina-
tion, and Racism, pp. 127–163. Academic Press, US (1986)

25. Khelil, A., Becker, C., Tian, J., Rothermel, K.: An epidemic model for information
diffusion in MANETs. In: Proc. of the International Workshop on Modeling Anal-
ysis and Simulation of Wireless and Mobile Systems, MSWiM 2002, Atlanta, GA,
USA, pp. 54–60. ACM (2002)

26. Kuflik, T., Shapira, B., Shoval, P.: Stereotype-based versus personal-based filtering
rules in information filtering systems. Journal of the American Society for Infor-
mation Science and Technology 54(3), 243–250 (2003)

27. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of
blogspace. World Wide Web 8(2), 159–178 (2005)

28. LaFasto, F.M.J., Larson, C.: When Teams Work Best. Sage Publications, Inc.
(2001)

29. Li, Y.M., Lai, C.Y., Chen, C.W.: Discovering influencers for marketing in the
blogosphere. Information Sciences 181(23), 5143–5157 (2011)

30. Lin, F., Chen, C., Tsai, K.: Discovering Group Interaction Patterns in a Teachers
Professional Community. In: Proc. of the Annual Hawaii International Conference
on System Sciences, HICSS 2003, Big Island, Hawaii, USA, p. 116. IEEE Computer
Society (2003)

31. Lippmann, W.: Public Opinion. Macmillan (1922)
32. Monclar, R., Tecla, A., Oliveira, J., de Souza, J.M.: MEK: Using spatial–temporal

information to improve social networks and knowledge dissemination. Information
Sciences 179(15), 2524–2537 (2009)

33. Nocera, A., Ursino, D.: PHIS: a system for scouting potential hubs and for favoring
their “growth” in a Social Internetworking Scenario. Knowledge-Based Systems
(forthcoming)

34. Rich, E.: User modeling via stereotypes. In: Maybury, M.T., Wahlster, W. (eds.)
Readings in Intelligent User Interfaces, pp. 329–342. Morgan Kaufmann Publishers
Inc., San Francisco (1998)

214 F. Buccafurri et al.

35. Scripps, J., Tan, P.N., Esfahanian, A.H.: Node Roles and Community Structure in
Networks. In: Proc. of the International Workshop on Knowledge Discovery on the
Web and on Social Network Analysis, WebKDD/SNA-KDD 2007, San Jose, CA,
USA, pp. 26–35. ACM (2007)

36. Shah, D.: Gossip Algorithms. Foundations and Trends� in Networking 3(1), 1–125
(2008)

37. Sollenborn, M., Funk, P.: Category-Based Filtering and User Stereotype Cases to
Reduce the Latency Problem in Recommender Systems. In: Craw, S., Preece, A.D.
(eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 395–420. Springer, Heidelberg
(2002)

38. Wagner, A.R.: Using stereotypes to understand one’s interactive partner. In: Proc.
of the International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2010, Toronto, Ontario, Canada, pp. 1445–1446. International Foundation
for Autonomous Agents and Multiagent Systems (2010)

39. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for min-
ing top-k influential nodes in mobile social networks. In: Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, pp. 1039–1048. ACM (2010)

40. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

41. Wong, Y.H., Chan, R.Y.K., Leung, T.K.P.: Managing information diffusion in In-
ternet marketing. European Journal of Marketing 39(7/8), 926–946 (2005)

42. Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In:
Proc. of the International Conference on Hypertext and Hypermedia, Hypertext
2006, Odense, Denmark, pp. 111–114. ACM (2006)

43. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering
algorithm for networks. In: Proc. of the International Conference on Knowledge
Discovery and Data Mining, KDD 2007, San Jose, CA, USA, pp. 824–833. ACM
(2007)

44. Yoneki, E., Hui, P., Crowcroft, J.: Distinct Types of Hubs in Human Dynamic
Networks. In: Proc. of the International Workshop on Social Network Systems,
SNS 2008, Glasgow, Scotland, UK, pp. 7–12. ACM (2008)

45. Zhang, X., Han, H.: An empirical testing of user stereotypes of information retrieval
systems. Journal of Information Processing and Management 41(3), 651–664 (2005)

46. Zhu, T., Wu, B., Wang, B.: Social Influence and Role Analysis Based on Commu-
nity Structure in Social Network. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng,
X., Li, X. (eds.) ADMA 2009. LNCS, vol. 5678, pp. 788–795. Springer, Heidelberg
(2009)

Context-Aware Predictions on Business

Processes: An Ensemble-Based Solution

Francesco Folino, Massimo Guarascio, and Luigi Pontieri

Institute for High Performance Computing and Networking (ICAR)
National Research Council of Italy (CNR)

Via Pietro Bucci 41C, 87036 Rende (CS), Italy
{ffolino,guarascio,pontieri}@icar.cnr.it

Abstract. The discovery of predictive models for process performances
is an emerging topic, which poses a series of difficulties when consid-
ering complex and flexible processes, whose behaviour tend to change
over time depending on context factors. We try to face such a situation
by proposing a predictive-clustering approach, where different context-
related execution scenarios are equipped with separate prediction mod-
els. Recent methods for the discovery of both Predictive Clustering Trees
and state-aware process performance predictors can be reused in the ap-
proach, provided that the input log is preliminary converted into a suit-
able propositional form, based on the identification of an optimal subset
of features for log traces. In order to make the approach more robust and
parameter free, we also introduce an ensemble-based clustering method,
where multiple PCTs are learnt (using different, randomly selected, sub-
sets of features), and integrated into an overall model. Several tests on
real-life logs confirmed the validity of the approach.

Keywords: Process Mining, Clustering, Prediction, Ensemble Learn-
ing.

1 Introduction

Process mining techniques [2] are a valuable tool for the analysis of business
processes, which can extract useful information out of historical process logs and
provide the analyst with a high-level process model. While traditional approaches
focused on the discovery of control-flow models describing how process activities
were executed in the past, increasing attention is being gained by the discovery
of predictive process models, capable to offer operational support at run-time. In
particular, an emerging research stream [11,3] concerns the induction of models
for forecasting performances metrics on new process instances. In particular,
in [3], an annotated finite-state model is induced from a given log, where the
states correspond to abstract representations of process traces. Conversely, a
non-parametric regression model is used in [11] to build the prediction for a new
(possibly partial) trace upon its similarity to historical ones, where the similarity
between two traces bases on comparing their respective abstract views.

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 215–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

216 F. Folino, M. Guarascio, and L. Pontieri

However, it is not easy to make accurate forecasts for fine-grain measures
(like, e.g., processing times), especially when the analyzed process exhibits com-
plex and flexible dynamics, and its execution schemes and performances change
over time, depending on the context. In general, the precision of induced work-
flow models can be increased by exploiting ad-hoc clustering methods [16], while
regarding each resulting cluster as evidence for a peculiar execution scenario.
However, few efforts have been spent so far to improve the accuracy of perfor-
mance predictors through trace clustering [14].

In this paper, we describe a general predictive-clustering computation scheme,
meant to detect different context-related execution scenarios (or process vari-
ants), and to equip each of them with a process performance model. The ap-
proach exploits and integrate different kinds of techniques (concerning data
transformation and selection, predictive clustering of propositional data, process-
performance model induction), yet being parametric w.r.t. each of them, and
yields a clustering-based performance prediction model, which can effectively
support forecasts over unfinished process instances. A first possible implemen-
tation of this approach, proposed in [14], consists in exploiting a PCT learning
algorithm [6] for the discovery of a predictive clustering model, and the method
in [3] for deriving a performance prediction model out of each discovered cluster.
Owing to both scalability and effectiveness reasons, prior to applying the former
learning method, the input log is converted into a propositional form, where the
performance values associated with each trace are encoded as numeric target
features with the help of state-abstraction techniques features. Since selecting a
good subset of such features is crucial to obtaining an accurate clustering model,
we also propose to solve the clustering task via an alternative ensemble-based
method, where multiple PCTs are learnt, by using different randomly-selected
subsets of these features, and eventually combined into a single clustering model.

After introducing some preliminary concepts, in Section 2, we describe the
general approach, in Section 3, and the two concrete instantiations of it, in
Section 4. Some major experimental findings are discussed in Section 5, before
providing the reader with a few concluding remarks.

2 Preliminaries and Formal Framework

Log data and Performance Measures. As usual, we assume that for each pro-
cess instance (a.k.a “case”) a trace is recorded, encoding the sequence of events
happened during its enactment. Let T be a reference universe of all (possibly
partial) traces that may appear in a log. For any trace τ ∈ T , len(τ) is the
number of events recorded in τ ; moreover, for i = 1 .. len(τ), τ [i] denotes the
i-th event of τ , while task(τ [i]) and time(τ [i]) are the task and timestamp as-
sociated with τ [i], respectively. Two tuples are also defined for τ , characterizing
its execution context: (i) (“intrinsic”) data properties, denoted by data(τ), and
(ii) (“extrinsic”) environmental features, denoted by env(τ), and capturing the
state of the BPM system when τ started. For short, context(τ) denotes the jux-
taposition of data(τ) and env(τ). Moreover, for i = 0 .. len(τ), τ(i] is a prefix

Context-Aware Predictions on Business Processes 217

sub-trace of τ , which contains the first i events of τ and the same context data.
(i.e., context(τ(i] = context(τ)).

A log L is a finite subset of T , while the prefix set of L, denoted by P(L), is the
set of all the prefixes of L’s traces, i.e., P(L) = {τ(i] | τ ∈ L and 0 ≤ i ≤ len(τ)}.

Let μ̂ : T → R be an (unknown) function assigning a performance value to any
(possibly unfinished) process trace. For the sake of concreteness, we will here-
inafter focus on the special case where the target performance value associated
with each trace is the remaining process time (measured, e.g., in days, hours,
or in finer grain units), i.e., the time needed to finish the corresponding process
enactment. Moreover, we will assume that such a performance value is known
for any prefix trace in P(L), for any given log L. Indeed, for any log trace τ , the
(actual) remaining-time value of τ(i] is μ̂(τ(i]) = time(τ [len(τ)])− time(τ [i]).

Abstraction-based Prediction. A (predictive) Process Performance Model
(PPM) is a model that can predict the performance value (i.e., remaining time)
of any process enactment, based on its associated (possibly incomplete) sequence
of events. Such a model can be viewed as a function μ : T → R estimating μ̂
all over the trace universe. Learning a PPM is then a special induction problem,
where the training set is a log L, and the value μ̂(τ) of the target measure
is known for each (sub-)trace τ ∈ P(L). Recent approaches to this problem
(e.g., [3,11]) share the idea of regarding traces at a higher level of abstraction
– indeed, performances hardly depends on the particular sequence of events
occurred, but rather on certain properties of them. Three families of such trace
abstraction functions are defined next.

Definition 1 (Trace Abstraction Function). Let h ∈ N+∪{∞} be a thresh-
old on past history. A trace abstraction function absmode

h : T → R is a function
mapping each trace τ ∈ T to an element absmode

h (τ) in a spaceR of abstract rep-
resentations.1 For any τ ∈ T , let us denote n = len(τ) and j = n−h+1 if n > h,
and j=1 otherwise. Then we define: (i) abslisth (τ) = 〈task(τ [j]), . . . , task(τ [n])〉,
(ii) absbagh (τ) = [(t, p) | t ∈ absseth (τ) and p = |{τ [k] | j ≤ k ≤ n, task(τ [k]) =
t}|], and (iii) absseth (τ) = {task(τ [j]), . . . , task(τ [n])}. �

Example 1. We next introduce a running example, inspired to a real-life case
study (also used for validating our approach) that concerns a transshipment
process. Basically, for each container c passing through the harbor, a distinct
log trace τc is stored, registering all the tasks applied to c, which may include
the following ones: moving c by means of either a straddle-carrier (MOV) or a
shore crane (OUT), and swapping c with another container (SHF). Several data
attributes are available for τc, including physical properties (e.g., size, weight) of
container c, its previous and next calls (namely PrevHarbor and NextHarbor),
the navigation lines delivering/loading c (namely NavLine IN and NavLine OUT).
A few additional features are computed for τc to characterize the state of the
transshipment system at the time, say tc, when c arrived at the harbor: the

1 Each α ∈ R is a high level representation of some traces, meant to capture some
performance-relevant state of the process analyzed.

218 F. Folino, M. Guarascio, and L. Pontieri

hour (ArrivalHour), day of the week (ArrivalDay) and month (ArrivalMonth)
extracted from tc, and a rough Workload indicator (counting how many con-
tainers were in the harbor at time tc). Let τ be a log trace associated with
a sequence 〈e1, e2, e3〉 of three events such that task(e1) = task(e2) = MOV
and task(e3) = OUT . With regard to the abstraction functions in Def. 1, it is
easy to see that for the prefix τ(2] (i.e., the partial enactment consisting of the
first two events) it is: abslist∞ (τ(2]) = 〈MOV,MOV 〉, absbag∞ (τ(2]) = [MOV 2],
absset∞ (τ(2]) = {MOV }. Using instead the shortest possible threshold h = 1 on

history horizon, all the abstractions abslist1 (τ(2]), absbag1 (τ(2]) and absbag1 (τ(2])
just consist of the sole element MOV , which is indeed the last task in τ(2]. �

Predictive Clustering. The core idea of Predictive Clustering approaches [6] is
that, based on a suitable clustering model, predictions for new instances can be
based on the cluster where they are estimated to belong. Two kinds of features
are considered for any element z in the given instance space Z = X×Y : descrip-
tive features and target features (to be predicted), denoted by descr(z) ∈ X and
targ(z) ∈ Y , respectively. Then, a Predictive Clustering Model (PCM), for
a given training set L ⊆ Z, is a function q : X → Y of the form q(x) = p(c(x), x),
where c : X → N is a partitioning function and p : N × X → Y is a (possibly
multi-target) prediction function. Clearly, whenever there are more than one
target features, q clearly encodes a multi-regression model. Several PCM learn-
ing methods have been proposed in the literature, which can work with general
relational data [6], or with propositional data only (e.g., system CLUS [1]).

A novel specific sub-class of such models can be defined for log traces, an-
notated with both context and performance data. In fact, as we believe that
process performances may depend on context factors, when trying to predict
the performances of any (partial) trace τ , we regard its associated context data
context(τ) as descriptive attributes.

Definition 2 (Context-Aware Performance Prediction Model (CA-PPM)).
Let L be a log (over T), with context features context(T), and μ̂ : T → R, be
a performance measure, known for all τ ∈ P(L). Then a context-aware perfor-
mance prediction model (CA-PPM) for L is a pair M = 〈c, 〈μ1, . . . , μk〉〉, with k
denoting the number of different clusters found for L. Model M encodes the
unknown performance function μ̂ in terms of a predictive clustering model μM ,
such that: (i) c : context(T) → {1, . . . , k}, (ii) μi : T → R, for i ∈ {1, . . . , k},
and (iii) μM (τ)=μj(τ) with j=c(context(τ)). �
Our ultimate goal is to find a CA-PPM M such that, for any (possibly partial)
trace τ , the associated performance value μ̂(τ) is well approximated by μM (τ).
Performance predictions will hence rely on a partitioning function c, assigning
(possibly novel) process instances to trace clusters (based on their context data),
and on multiple process performance predictors μi (one for each cluster). Such
a model is a special kind of PPM model, relying on a predictive clustering one.
As such, it can be built by combining a predictive clustering model and multiple
simpler PPMs (as building blocks for implementing c and each μi, respectively),
as discussed in the next section.

Context-Aware Predictions on Business Processes 219

3 Solution Approach: Meta-algorithm CA-PPM Discovery

Seeking an explicit encoding for the hidden performance measure μ̂, based on
a given log L, can be stated as the search for a CA-PPM (cf. Def. 2) minimizing
some loss measure, like those in [6], possibly evaluated on an different sample
L′ ⊆ T than the one used for the training. However, in order to prevent long
computations, a heuristics approach can be undertaken (like in [14]), where a
CA-PPM is discovered by solving two subproblems: (P1) find a function c (locally)
minimizing the loss on a propositional view of the input log, summarizing the
correlation between execution patterns and performance values; and (P2) learn
the predictors μi out of the clusters generated by c.

The main motivation for using a propositional view of the log is the belief
that a direct application of classic predictive clustering methods to process logs
is likely to yield poor scalability and accuracy results. In particular, our two-
phase approach reduces the search space, as it avoids considering all possible log
partitions, with all of their associated prediction functions.

In order to build such a log view, a set of target features must be defined
for each trace τ — which is associated, indeed, with a sequence of time values
(namely, μ̂(τ(1]), μ̂(τ(2]), . . . , μ̂(τ)). Heuristically, each trace is mapped into a
vector space, whose dimensions coincide with relevant states of the (hidden)
process performance model. Such target features are defined by way of the trace
abstraction functions in Def. 1, which try to transform, indeed, each trace into
an abstract representation of its enactment state, based on its past history.

Specifically, given an abstraction function abs : T → R, a “candidate” target
feature corresponds to each abstract (state) representation α ∈ R, and the value
val(τ, α) of this feature for any trace τ is val(τ, α) = agg(〈 μ̂(τ(i1]), ..., μ̂(τ(is]) 〉),
where {i1, ..., is} = {j ∈ Z | 0 ≤ j ≤ len(τ) and abs(τ(i]) = α}, and ij < ik for
any 0 ≤ j < k ≤ s, while agg is a function aggregating a sequence of measure
values into a single one (e.g., the average, median, first, last in the sequence).
In our tests, the last element of a sequence was always chosen as such an aggre-
gate. As a special case, we assume that function agg returns a “null” value when
provided with an empty list – i.e., agg(〈〉) = NULL.

Definition 3 (Pivot Abstractions and Log Sketch). Let L be a log, abs :
T → R be a trace abstraction function. Let abs(L) ⊆ R be the set of all the
state abstractions that are generated by applying abs to L, and let Φ : R →
{true, false} be a function encoding some given criterion for selecting state
abstractions — a concrete instantiation of such a function (denoted by Φ[φ, σ])
is described in the next section. Then, any state abstraction α ∈ abs(L) is a
Pivot (state) Abstraction for L, w.r.t. abs and Φ, if Φ(α) = true, i.e. if α is
selected by Φ. PAΦ

abs(L) will indicate the set of all pivot state abstractions for
L w.r.t. abs and Φ. Moreover, given a set A = {αj1, ..., αju} of such pivot state
abstractions, the Performance Sketch PSA(L) of L w.r.t. A is a (propositional)
view of L such that: (i) each trace τ in L corresponds to a distinct data in-
stance zτ in PSA(L), (ii) context(τ) are the descriptive features of zτ and (iii)
val(τ, αj1), ..., val(τ, αju) are the target features of zτ . �

220 F. Folino, M. Guarascio, and L. Pontieri

The reason for defining some selection criterion over state abstractions is that
their number may be very high, so that the clustering algorithm may well get
confused when searching over a high-dimensional and sparse space (while taking
long computation times).

The whole solution approach is encoded below in a general algorithmic form.

Definition 4 (Meta-algorithm CA-PPM Discovery). Given a log L, compute
a CA-PPM model M for L as follows:

1. Derive context(τ) for each τ ∈ L, by suitably computing env(τ);
2. Compute a reference set R of state abstractions for L via a given trace

abstraction function abs; // i.e., R = { abs(τ) | τ ∈ L }
3. T := PCM mine(L,R); // build a PCM by using some performance sketch of L

w.r.t. a subset of R, chosen according to a suitable selection criterion (cf. Def. 3)

4. Let c and p be the partitioning and prediction functions of T , resp., and
L[1], . . . , L[k] be the clusters found;

5. for i = 1..k do
6. μi := PPM mine(L[i]); // induce the PPM model μi out of L[i]

7. end
8. return 〈 c, 〈 μ1, . . . , μk 〉 〉; �

4 Instantiations of CA-PPM Discovery

The general computation scheme introduced in the previous section is parametric
w.r.t. three major kinds of tasks: (i) selecting a subset of the target features (i.e.,
state abstractions) in the a propositional view produced for the log, (ii) inducing
a multi-target predictive clustering model from a such a log view (Step 3), and
(iii) inducing a single process-performance model from each trace cluster (Step
6). Various instantiations of this scheme can be devised by suitably implementing
these tasks. Two concrete algorithms implementing it are illustrated in the rest
of this section, named CA-TP and Ens-CA-TP, respectively.

4.1 Algorithm CA-TP

As this algorithm has the same structure as meta-algorithm CA-PPM Discovery,
we will only describe next how the three major points of parametricity mentioned
right above are actually implemented in it.

Selection of candidate state abstractions A simple greedy strategy (pro-
posed in [14]) for the selection of state abstractions, relies on the usage of an
ad-hoc scoring function φ : R× 2T → [0, 1] to give each state abstraction α ∈ R
a score φ(α,L). This score is meant to quantify the confidence in the fact that
α is a good target feature for finding an effective predictive clustering model for
L. More specifically:

φ(α,L) = 3

√
φvar(α,L)× φcorr(α,L)× φsupp(α,L) (1)

Context-Aware Predictions on Business Processes 221

where φvar(α,L), φcorr(α,L) and φsupp(α,L) are all functions ranging on [0, 1].
Basically, φvar(α,L) gives preference to higher-variability abstractions – the
more the variability of trace measures the higher the score. Conversely, φcorr(α,L)
measures the correlation between the values taken by α on a trace and the as-
sociated descriptive (context). Finally, φsupp(α,L) simply is 2 ×min(0.5, |{τ ∈
L | val(τ, α) > 0}|). In this way, the selection is biased towards the creation
of target features that will ensure a good trade-off between support, correla-
tion with descriptive features (i.e., those guiding the partitioning of log traces)
and performance values’ variability (as to find clusters showing quite different
performance models).

Based on the scoring function above and on a suitable threshold σ ∈ [0, 1], a
subset of pivot abstractions is selected by simply keeping any abstraction with
a score higher than σ. This corresponds to considering a specific instantiation
of the general selection criterion Φ, denoted by Φ[φ, σ] hereinafter, such that,
for any α ∈ abs(L), Φ[φ, σ](α) = true iff φ(α) ≥ σ. Once these pivot abstrac-
tions have been chosen, the corresponding performance sketch can be derived for
the given log (cf. Def 3), and exploited to induce a preliminary (propositional)
predictive clustering model — with the target features being an approximated
representation of how remaining times vary along process enactments — prior to
refining the prediction function by inducing a more precise process performance
model for each cluster (Steps 5-7 in Def. 4).

Inducing a predictive clustering model (Function PCM mine). In algo-
rithm CA-TP, predictive clustering models take the form of Predictive Clustering
Trees (PCTs) [6] (more precisely, multi-regression PCTs), which showed good
accuracy and scalability in many real-life applications. Such a model, where the
cluster assignment function is encoded by a decision tree, is learnt with system
CLUS [1], via a recursive partitioning of the training set. Roughly speaking,
at each step, a split test is greedily chosen, over one descriptive feature, which
(locally) minimizes a loss function, according to (prototype-based) intra-class
variances. In particular, distances are measured by applying the classical Eu-
clidean distance to target features only, while the prototype of each cluster Ci

(also used as the local, constant, predictor for Ci) is the projection of Ci’s cen-
troid (i.e., the cluster mean, under the above distance) onto the target subspace.

Inducing a state-based performance model (Function PPM mine). In or-
der to implement Step 6, the method proposed in [3] is used to discover, for each
cluster, a PPM model, in the form of an Annotated Finite State Machine (A-
FSM). Basically, in [3], an FSM is first built, where a one-to-one mapping exists
between its nodes and the representations yielded by a given abstraction function
abs, while each transition is labelled with an event property (namely, a task label
in our setting). Assuming, e.g., that function abslist∞ is used and that a, b, c are
three process tasks, a transition labelled with c from state 〈a, b〉 to state 〈a, b, c〉
will appear in the resulting FSM model if there is some trace τ in the input log
such that abslist∞ (τ(i]) = 〈a, b〉 and abslist∞ (τ(i + 1]) = 〈a, b, c〉. Such a model is
eventually turned into an A-FSM, by equipping each node s with some statis-
tics (e.g., the average), computed from the values that μ̂ takes on all trace prefix

222 F. Folino, M. Guarascio, and L. Pontieri

IF
NextHarbor ∈ {VCE,KOP,FOS,GOA,SAL,VAR,

T XG,NYC,CND,MT R,ODS} AND
NavLine OUT= JMCS AND
NavLine IN ∈ {CPS,MSK,SEN,HLL,UAC} AND
PrevHarbor ∈ {ASH,MER,ALY,NYC,LEH,

HOU,HFA,EWR,ORF,CHS} AND
ArrivalDay ∈ {SAT,SUN} AND
Arrivalhour> 11.0 AND
Workload> 117.0

THEN
Cluster label = 37

(a) (b)

Fig. 1. Excerpt of a CA-PPM: (a) decision rule and (b) A-FMS model for one cluster

τ ∈ P(L) such that abs(τ) coincides with the abstraction of s. The A-FSM model
of cluster L[i] is used to implement function μi, estimating the remaining time
of any (sub-) trace τ(j] falling in L[i]. In fact, reasonably assuming that valid
context data are available for τ (i.e., context(τ) does not contain missing/null
values), the partitioning function c can always assign τ to one of the discovered
clusters (denoted by c(τ)). In case τ(j] is mapped (by iterated applications of
abs) to an unseen sequence of states of the model, the forecast is simply derived
from the latest valid estimate computed for the same enactment. Precisely, de-
noting by τ(j′] the longest prefix of τ(j] reaching a valid state in the A-FSM
model, we estimate μ(τ(j]) = max{ 0, μi(τ(j

′])− time(τ [j]) + time(τ [j′]) }.

Example 2. Fig. 1 shows an excerpt of a CA-PPM which was mined from log data
like those described in Example 1, by using algorithm CA-TP with the abstraction
function absbag4 . The left side of Fig. 1 reports the decision rule associated with
cluster 37 — corresponding to a leaf of the PCT model found by CLUS [1].
Clearly, cluster membership depends on both case properties and environmental
data. Despite its simplicity, the rule helps recognize quite a specific, and yet
relatively frequent, scenario for handling containers – the cluster gathers, indeed,
43 of the 5336 traces. The A-FSM encoding the prediction function (μ37) of the
same cluster is depicted on the right of the figure. Notice that notation MOV 2,
appearing in certain nodes, means taskMOV occurring twice. The forecast made
by this A-FSM, for a novel container case, clearly depends on the latter 4 tasks
it has undergone. In particular, two consecutive MOV tasks are estimated to
yield shorter processing times (than when the first MOV is followed by a SHF).
Let us assume that the following context data are associated with the trace τ of
Example 1: NavLine IN = CPS, NavLine OUT = JMCS, NextHarbor = KOP ,
PrevHarbor = ASH , Workload=200, ArrivalDay = SUN and ArrivalHour =
16. Clearly all τ ’s prefixes are assigned to cluster 37, and the respective forecasts
(made by way of the A-FSM in Fig. 1.b) are: μ(τ(0]) = μ(τ(1]) = 0.21, μ(τ(2]) =
0.000291, and μ(τ(3]) = 0.0. �

4.2 An Ensemble-Based Solution: Algorithm Ens-CA-TP

A critical point in the computation of a CA-PPM (as it is specified in Def. 4)
concerns the clustering phase (Step 3 in Def. 4), and, in particular, the careful

Context-Aware Predictions on Business Processes 223

selection of a subset of (pivot) state abstractions, to be used as target variables in
a propositional encoding of the log. In algorithm CA-TP, this sub-problem is sim-
ply faced by requiring the user to set a lower threshold on the scores (computed
via the function in Eq. 1) of the candidate state abstractions. However, it is
not easy, in general, to determine an optimal value for this threshold, which can
ensure that the selected features are an adequate choice for eventually finding
a good CA-PPM model. In order to overcome this limitation, and to also reduce
the amount of human intervention required, we next introduce an ensemble-
based approach to log clustering, as an alternative implementation of function
PCM mine where no relevance threshold must be stated at all. This gives rise to
a second instantiation, named hereinafter Ens-CA-TP, of the general computa-
tion scheme of Def. 4. This algorithm coincides with algorithm CA-TP (shown in
the previous subsection) in the implementation of all of the steps but the third
one (where the abstract function PCM mine is invoked). Hence, for the sake of
conciseness, the rest of this subsection only illustrates how this specific task is
accomplished in algorithm Ens-CA-TP through an ensemble clustering approach,
while omitting the description of the other steps.

In general, the core idea of ensemble approaches is to combine a set of mod-
els, all fulfilling the same mining task, in order to obtain a better composite
global model. In particular, in the case of predictive models, for any new in-
stance a prediction can be made by combining the prediction functions of all
the models in the ensemble. The specification of a typical ensemble method con-
sists of three building blocks: (i) a base induction algorithm (a.k.a. base learner),
(ii) an ensemble generation strategy, where different base models are produced
by applying instantiations of the base learner to sets of instances derived form
the original training set, and (iii) a combination strategy, determining how the
different models in the ensemble are eventually integrated together.

In the rest of this section, we explain how these three components are specified
in algorithm Ens-CA-TP, relatively to the implementation of function PCM mine.

Base learner and ensemble generation. Ens-CA-TP reuses, as base learner,
the same method [1] as algorithm CA-TP, so that an ensemble of PCTs is even-
tually built. A necessary condition for having an effective ensemble is that its
base models are both accurate enough and quite different from each other. Typi-
cally, diversity is obtained by manipulating either the training set or the learning
algorithm itself. For example, in [17], where the discovery of ensembles of multi-
objective decision trees has been studied, two ensemble generation methods are
considered: bagging and random forests. Incidentally, in a bagging [8] scheme,
each model is trained on a sample of instances (taken with replacement from
the training set), with each sample having the same size as the original training
set; conversely, a Random Forest ensemble [9] consists of many individual, un-
pruned decision trees, each of which is induced quickly by iteratively choosing
the best split among a random sample of the input attributes. Both approaches
were shown capable to help improve the performances and robustness of PCT
learners, but are not suitable for our setting, where the main concern is to reduce
the dimensionality of the output space.

224 F. Folino, M. Guarascio, and L. Pontieri

We thus propose to build an ensemble of PCT models, by applying the same
learning algorithm [1] to m different performance sketches of the input process
log, each of which provides a different view of the input traces, based on a
different set of pivot state abstractions. In order to generate each PCT model
Ti (with i = 1, . . . ,m), we randomly choose a value σi ∈ {0, 0.8}, and compute
the set Ai of all the state abstractions that get a score higher than σi by the
function in Eq. 1 — i.e., Ai = PAΦ[φ,σi] (cf. section 4.2). In more details, we
set σi = max{0.4 × σ′, 0.8}, by taking σ′ out of a lognormal distribution with
mean 0 and standard deviation 0.25. Based on the selected pivot abstraction Ai,
a propositional encoding PSAi of the log can be obtained, and given as input
to the base learner, in order to build the i-th model (i.e., Ti) of the ensemble.
In order to make the PCT induction faster, and to possibly increase the level
of diversity among base models, we preliminary manipulate PSAi , by applying
a random-projection procedure [5] mapping the target features of PSi

A into a
k-dimensional space, where k itself is chosen randomly. More specifically, we set
k = max{40, k′}, where k′ is a random variable following a Poisson distribution
with mean 25. Notice that the particular probability distributions used for setting
variables σi and k were chosen pragmatically, based on the results of a series of
experiments, conducted against different data distributions.

Combination. In general, there are two main approaches to combining cluster-
ing models: (i) pure consensus methods and (ii) meta-learning. The first family of
methods includes, e.g., those using a majority voting scheme [13], performance-
guided weighting schemes [19], hypergraph partitioning techniques [21], or linear
programming [7], just to cite a few. Meta-learning methods, which generally try
to learn from the output of base models, include, in particular, stacking tech-
niques [12,15,22]. In the case of clustering, these latter kind of techniques basi-
cally build a meta-dataset (encoding how training data have been clustered by
the different models in the ensemble), which is eventually used as the input for
a further (meta-) clustering step — where whatever clustering algorithm could
be employed, in principle.

In algorithm Ens-CA-TP, the second kind of combination strategy (i.e. meta-
learning) is adopted. In more details, each trace τ is turned into a tuple of the
form 〈c1(τ), . . . , cm(τ)〉, where ci(·) denotes the partitioning function of the PCT
model Ti, for i = 1, . . . ,m. Notice that the prediction function of the models are
disregarded at all, as we are only interested here in exploiting these models in
order to find a consensus clustering over the input log. In this way, a higher-level
training set is produced, from which a meta-clustering model can mined out.

Two classical algorithms can be alternatively used in Ens-CA-TP to compute
such a partitioning: k-means and EM (Expectation Maximization). In general,
the number of clusters is a critical parameter which can strongly impact on the
quality of the final consensus clustering model. When applying either of the meta-
clustering methods above, two options are available in algorithm Ens-CA-TP for
automatically setting the number of meta-clusters: (i) MaxCl#, the maximum
number of clusters found by the various models in the input ensemble; and (ii)
AvgCl#, a weighted average of the cardinalities of all the clustering models in the

Context-Aware Predictions on Business Processes 225

ensemble, where the weight of each model coincides with the accuracy score of the
model itself. More precisely, the weight of each model Ti in the ensemble (with

i = 1, . . . ,m) is computed as follows: weight(Ti) =
maxj=1,..,m{Err(Tj)}−Err(Ti)

maxj=1,..,m{Err(Tj)} ,

where Err(Ti) is the average of the three error metrics (namely, rmse, mae,
mape) computed for Ti (via cross-validation), and rescaled all onto [0,1] — i.e.,

Err(Ti) = 1
3 ×

[
rmse(Ti)

maxj=1,..,m{rmse(Tj)} + mae(Ti)
maxj=1,..,m{mae(Tj)} +mape(Ti)

]
. These

simple heuristics have been chosen mainly for scalability reasons, in the place of
more refined methods available in the literature, such as, e.g., [18,20,10].

Notice, moreover, that the distance function d(·, ·), used in the k-means proce-
dure, essentially corresponds to a weighted mismatch score, computed as follows.
Let x and y be two distinct traces, and 〈cx1 , . . . , cxm〉 and 〈c

y
1 , . . . , c

y
m〉 be their

respective representations in the meta-dataset encoding the clusterings of the
base models — here cxi (resp., cyi) denotes the cluster label assigned to x (resp.,
y) by the i-th model. Then, d(x, y) = |{i ∈ 1, . . . ,m | cxi �= cyi }| × 1

m .
In this way, considering all the PCTs in the ensemble, the input log can be par-

titioned into a set of clusters, as required in algorithm CA-PPM Discovery (Step
4). However, function PCM mine is also expected to return a PCM model, which
includes, in particular, a partitioning function c(·) of the form c : context(T)→
N, assigning any trace τ ∈ T to a cluster, based only on its context features
context(τ). This overall partitioning function is built in algorithm Ens-CA-TP

by combining the partitioning functions c1(·), . . . , cm(·) of the base PCTs in the
ensemble as follows: any new (possibly partial) trace τ is first converted into
the meta-tuple 〈c1(context(τ)), . . . , cm(context(τ))〉, which is then assigned to
its closest (meta-)cluster — by considering either the distances between this tu-
ple and all clusters’ centroids, in the case of a k-means meta-clustering, or all
clustering membership probabilities, in the case of an EM-based meta-clustering.

5 Experiments

A series of tests are described in this section, which were performed on the logs
of the transshipment scenario mentioned in Example 1, using both algorithms
CA-TP and Ens-CA-TP to discover a CA-PPM for the prediction of remaining pro-
cessing times. Specifically, we report results obtained (using different kinds of
abstraction functions) on a sample of 5336 traces, corresponding to all the con-
tainers that passed through the system in the first third of year 2006.

Prediction effectiveness was measured, according to a 10-fold cross validation
scheme, by way of three classic error metrics: root mean squared error (rmse),
mean absolute error (mae), and mean absolute percentage error (mape). All the
error results shown in the following have been averaged over 10 trials.

Table 1 reports the average errors, and the associated variances, made by
algorithm Ens-CA-TP with a fixed size (m = 50) of the underlying ensemble,
while varying both the meta-clustering algorithm (either k-means or EM) for
combining them, and the heuristics for automatically setting the number of
meta-clusters (either MaxCl#, or AvgCl#). These results are compared with those

226 F. Folino, M. Guarascio, and L. Pontieri

Table 1. Time prediction errors (average±std dev) obtained, in combination with
abstraction function absLIST

2 , by the algorithms: (i) CA-TP, provided with a randomly
selected value of σ, and (ii) Ens-CA-TP, used with different meta-clustering options.
Each parametrization of Ens-CA-TP is identified by a pair of the form (meta-clustering
method, cluster#-selection mode), with KM denoting k-means.

Metric CA-TP
Ens-CA-TP

(KM. AvgCl#) (KM. MaxCl#) (EM. AvgCl#) (EM. MaxCl#)

rmse 0.327±0.070 0.193±0.008 0.174±0.010 0.303±0.087 0.236±0.101
mae 0.107±0.023 0.066±0.001 0.056±0.002 0.073±0.005 0.063±0.005
mape 0.259±0.061 0.147±0.036 0.164±0.012 0.229±0.031 0.182±0.062

Table 2. Error reductions (%) achieved by CA-TP and by Ens-CA-TP w.r.t. the baseline
performance-prediction method (FSM [3])

Parameters (absmode
h) rmse (Δ%) mae (Δ%) mape (Δ%)

mode h CA-TP Ens-CA-TP CA-TP Ens-CA-TP CA-TP Ens-CA-TP

LIST

1 -1.2% -1.1% -1.6% -1.4% -5.8% -6.0%
2 -28.1% -25.5% -55.2% -53.5% -31.3% -29.2%
4 -65.6% -62.7% -71.4% -72.6% -73.9% -60.8%
8 -64.1% 61.2% -71.4% -70.3% -74.9% -73.4%
16 -64.1% -59.3% -71.4% -69.1% -74.9% -73.1%

Total −44.6% −42.0% −54.2% −53.4% −52.1% −48.5%

BAG

1 -1.2% -1.1% -1.6% -1.4% -5.8% -6.0%
2 -27.7% -23.8% -53.3% -47.1% -33.0% -28.9%
4 -65.6% -62.3% -72.4% -73.8% -73.4% -75.3%
8 -65.6% -66.4% -72.4% -72.5% -75.5% -76.6%
16 -65.6% -64.2% -72.4% -71.9% -75.5% -75.9%

Total −45.1% −43.6% −54.4% −53.3% −52.6% −52.6%

Grand Total −44.9% −42.8% −54.2% −53.4% −52.4% −50.5%

obtained by using algorithm CA-TP with a randomly chosen value of the rele-
vance threshold σ — taken from the same probability distribution as that used
by Ens-CA-TP to generate an ensemble of PCT models. The goal of such an anal-
ysis is to study the improvement that can be obtained by our ensemble-based
clustering, with respect to the case where a (possibly inexperienced) user has
to decide how target features are to be selected, by choosing a particular value
of σ. The figures in Table 1 demonstrate, as expected, that the ensemble-based
approach is more accurate and stabler than an unbiased application of algorithm
CA-TP. In fact, irrespective of the consensus strategy adopted, the average er-
rors and their associated variances are always lower than those obtained with a
single PCT model. Similar results were obtained as well when using other trace
abstraction functions abshmode than the one reported in the table — details are
omitted for space reasons. Notably, the application of the Wilcoxon test [23] to
the errors obtained by the two algorithms CA-TP and Ens-CA-TP proved that the
improvement obtained by the latter is statistically significant (at a 0.05 level),
whatever values are chosen for its parameters. However, due to lack of space,
we next report only some detailed results obtained by Ens-CA-TP, using either
k-means or EM together with the MaxCl# option.

Context-Aware Predictions on Business Processes 227

Table 2 summarizes the percentage of error reduction (Δ%), in the prediction
of remaining times, obtained by CA-TP and Ens-CA-TP w.r.t. the performance
prediction method proposed in [3], here denoted by FSM . The tests were per-
formed using different trace abstraction functions absh (set-based abstractions
are omitted for lack of space). Differently from the experiments above, algorithm
CA-TP is provided with the optimal value of the relevance threshold (namely,
σ = 0.4), pragmatically found throughout numerous trials on the same dataset.
For the sake of clarity, the table only focuses on the case where the ensemble
created by Ens-CA-TP (still consisting of 50 PCTs) is combined by using k-means
along with the option MaxCl# — i.e., the maximum number of clusters in the
ensemble is chosen. Notice that, for all metrics, variance values (not reported
here for lack of space) were always lower than 5% of the respective average.
The goal of this empirical analysis is two-fold: (i) showing the superiority of the
general context-aware approach encoded by meta-algorithm CA-PPM Discovery

w.r.t. previous performance prediction methods, and (ii) assessing the capability
of algorithm Ens-CA-TP to achieve good results, without any external guidance
on the filtering of the target features. In fact, the above results clearly show that
both algorithms outperforms neatly the baseline method (FSM), as confirmed
by a Wilcoxon test on detailed results. On the other hand, the achievements
of the ensemble-based algorithm are always very close to those of the “biased”
version of CA-TP (instantiated with an optimal value of σ). As far as concerns
the impact of trace abstraction functions, prediction accuracies seems to depend
mainly on the history horizon h. Indeed, appreciable benefits are obtained as
soon as h > 1, with the best performances achieved with h = 8 (when each
error shrinks at least of 61% w.r.t. the baseline), while no substantial further
improvement is obtained with h > 8. The effect of the abstraction mode looks
less marked, since very similar (good) results are found in both cases.

Table 3. Computation times (sec) for algorithm CA-TP. the baseline performance-
prediction method (FSM [3]). and algorithm Ens-CA-TP. used with two different
choices (namely. k-means and EM) of the underlying meta-clustering method.

Parameters (absmode
h) Ens-CA−TP

CA-TP FSM[3]
mode h k-means EM

LIST

1 59.2 32.5 16.8 3.9
2 76.5 241.1 20 5.6
4 75.3 305.7 19.6 10.7
8 86.9 373.4 20.2 16.0
16 168.9 397.4 92.3 89.8

Total 93.4 270.0 33.8 25.2

BAG

1 61.3 42.4 17.0 4.0
2 74.8 235.8 19.7 5.5
4 72.5 315.0 18.7 8.4
8 85.3 304.6 19.8 10.6
16 145.7 328.2 79.0 32.3

Total 87.92 245.2 30.9 12.2

Grand Total 90.67 257.6 32.4 18.7

228 F. Folino, M. Guarascio, and L. Pontieri

Table 3 shows the average computation times spent by the baseline method [3],
CA-TP and Ens-CA-TP (using both k-means and EM for consensus clustering),
on a dedicated machine with an dual-core Intel processor, 2GB of RAM and
Windows XP Pro. As expected, the latter two methods (and, in particular,
Ens-CA-TP) always take longer times than the baseline, yet getting a good trade-
off between effectiveness and efficiency. Moreover, preliminary experiments with
a parallelized version of Ens-CA-TP make us confident about the possibility of
achieving substantial scalability gains.

All the experiments discussed so far were performed by always using the
same ensemble size (namely, m=50), which seemed to us capable to ensure a
good trade-off between effectiveness, robustness and scalability. In fact, in a
preliminary series of tests (where m was made moving from 2 to 512), we noticed
that a wide range of ensemble sizes allows to obtain almost the same averages
and variances for all the error metrics — apart from the case of little ensembles
(namely, those consisting of less than 8 models), which tend to yield higher (and
more variable) errors. Detailed results from this analysis are not reported here,
due to space reasons.

6 Conclusions

We have described a predictive clustering method for discovering performance-
oriented process models, where a number of homogeneous execution groups are
recognized, and provided with separate performance-prediction model. In par-
ticular, we have proposed the adoption of an ensemble learning approach for the
delicate task of finding preliminary clustering out a propositional encoding of
the input log. The approach has been implemented and validated on a real case
study, where it showed promising results.

As to future work, we plan to investigate on using novel methods for selecting
relevant space abstractions, and on adopting more powerful process models to
capture concurrent behaviors effectively. We will also explore the possibility to
convert the discovered PCTs all into a set of decision rules, each associated each
with an A-FSM predictor, and to directly combine these rule-based predictive
models according according to a consensus regression approach (similarly to [4]).

Acknowledgements. This work was partially funded by the Italian Ministry
MIUR, under the research project “FRAME” (PON 2007-2013).

References

1. CLUS: A predictive clustering system, http://dtai.cs.kuleuven.be/clus/
2. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,

Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data &
Knowledge Engineering 47(2), 237–267 (2003)

3. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information Systems 36(2), 450–475 (2011)

4. Aho, T., Zenko, B., Dzeroski, S.: Rule ensembles for multi-target regression. In:
Proc. of 9th Int. Conf. on Data Mining, ICDM 2009, pp. 21–30 (2009)

http://dtai.cs.kuleuven.be/clus/

Context-Aware Predictions on Business Processes 229

5. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: ap-
plications to image and text data. In: Proc. of 7th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, KDD 2001, pp. 245–250 (2001)

6. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1-2), 285–297 (1998)

7. Boulis, C., Ostendorf, M.: Combining multiple clustering systems. In: Boulicaut,
J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI),
vol. 3202, pp. 63–74. Springer, Heidelberg (2004)

8. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
9. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

10. Casillas, A., de Lena, M.T.G.d., Mart́ınez, R.: Document clustering into an un-
known number of clusters using a genetic algorithm. In: Matoušek, V., Mautner,
P. (eds.) TSD 2003. LNCS (LNAI), vol. 2807, pp. 43–49. Springer, Heidelberg
(2003)

11. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction:
When will this case finally be finished? In: Proc. of 16th Int. Conf. on Cooperative
Information Systems, CoopIS 2008, pp. 319–336 (2008)

12. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering:
A cluster ensemble approach. In: Proc. of 20th Int. Conf. on Machine Learning,
ICML 2003, pp. 186–193 (2003)

13. Filkov, V., Skiena, S.S.: Heterogeneous data integration with the consensus clus-
tering formalism. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp.
110–123. Springer, Heidelberg (2004)

14. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Proc. of 20th Int. Conf. on Cooperative
Information Systems, CoopIS 2012, pp. 287–304 (2012)

15. Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refine-
ment. In: Proc. of Workshop on Algorithm Engineering and Experiments, ALENEX
2008, pp. 109–117 (2008)

16. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process mod-
els by clustering log traces. IEEE Transaction on Knowledge and Data Engineer-
ing 18(8), 1010–1027 (2006)

17. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Ensembles of multi-objective de-
cision trees. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S.,
Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 624–
631. Springer, Heidelberg (2007)

18. Mufti, G.B., Bertrand, P., El Moubarki, L.: Determining the number of groups
from measures of cluster stability. In: Proc. of Int. Symp. on Applied Stochastic
Models and Data Analysis, ASMDA 2005, pp. 404–412 (2005)

19. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural-
network ensemble. In: Proc. of Advances in Neural Information Processing Systems
8, NIPS 1995, pp. 535–541 (1995)

20. Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of
the number of clusters. In: Proc. of 17th Int. Conf. on Machine Learning, ICML
2000, pp. 727–734 (2000)

21. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

22. Topchy, A.P., Jain, A.K., Punch, W.F.: A mixture model for clustering ensembles.
In: Proc. of 4th SIAM Int. Conf. on Data Mining, SDM 2004 (2004)

23. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bul-
letin 1(6), 80–83 (1945)

Erratum: Machine Learning as an Objective Approach
to Understanding Music

Claire Q1 and Ross D. King2

1 Aberystwyth University, UK
ceq08@aber.ac.uk

2 University of Manchester, UK
ross.king@manchester.ac.uk

A. Appice et al. (Eds.): NFMCP 2012 Workshop, LNAI 7765, pp. 64–78, 2013.
© Springer-Verlag Berlin Heidelberg 2013

DOI 10.1007/978-3-642-37382-4_16

The paper starting on page 64 of this publication has been withdrawn because
Figure 1 is incorrect and it is unclear if the paper’s results can be reproduced.

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-37382-4_5

Author Index

Atzmueller, Martin 33

Buccafurri, Francesco 200

Ceci, Michelangelo 185
Costa, Gianni 94

Davis, Michael 138
Di Mauro, Nicola 155

Egho, Elias 109
El Mahrsi, Mohamed Khalil 124
Esposito, Floriana 155

Ferilli, Stefano 170
Ferri, Cèsar 1
Folino, Francesco 215

Guarascio, Massimo 215
Gubrynowicz, Ryszard 79
Guo, Hongyu 49

Hajja, Ayman 79
Hernández-Orallo, José 1

Ienco, Dino 109

Jay, Nicolas 109

King, Ross D. 64
Köhler, Stefan 33
Kuželka, Ondřej 17

Lax, Gianluca 200
Leuzzi, Fabio 170
Liu, Weiru 138
Loglisci, Corrado 185

Malerba, Donato 185
Manco, Giuseppe 94
Mart́ınez-Plumed, Fernando 1
Masciari, Elio 94
Miller, Paul 138

Napoli, Amedeo 109
Neubeck, Philipp 33
Nocera, Antonino 200

Paquet, Eric 49
Poncelet, Pascal 109
Pontieri, Luigi 215

Q, Claire 64
Quantin, Catherine 109

Räıssi, Chedy 109
Ramı́rez-Quintana, Maŕıa José 1
Ras, Zbigniew W. 79
Rossi, Fabrice 124
Rotella, Fulvio 170

Seipel, Dietmar 33
Szabóová, Andrea 17

Taranto, Claudio 155
Teisseire, Maguelonne 109

Ursino, Domenico 200

Viktor, Herna Lydia 49

Wieczorkowska, Alicja A. 79

Železný, Filip 17

	Cover
	Title
	New Frontiers in Mining Complex Patterns
	Organization
	Table of Contents
	Mining Rich (Relational) Datasets
	Learning with Configurable Operatorsand RL-Based Heuristics
	Introduction
	Previous Work
	Configuring Rule Operators
	Notation
	Operators

	LR-Based Heuristics
	State of the System
	Decisions
	Stopping Criterion

	Examples
	Sequence Processing
	Bunch of Keys
	Web Categorisation

	Conclusions and Future Work
	References

	Reducing Examples in Relational Learningwith Bounded-Treewidth Hypotheses
	Introduction
	Preliminaries: Logic, Constraint Satisfaction, Treewidth
	Safe Reduction of Learning Examples
	Reduction under the Bounded Treewidth Assumption
	Experimental Evaluation of Safe Reduction
	Experiments with nFOIL
	Experiments with Aleph

	Conclusions
	References

	Mining Complex Patterns from Miscellaneous Data
	Mining Complex Event Patterns in Computer Networks
	Introduction
	Log File Processing
	Removing Digits from Event Messages
	Extracting Event Types and List Patterns
	A Modular Event Format

	Temporal Data Mining Workflow
	Combining Sequence Analysis and Message Analysis
	Sliding Windows
	Frequent Episodes
	Episode Rules
	Data Reduction Based on Most Specific or Equivalent Words
	Minimal Occurrences of Episodes
	Filter Rules for Event Messages

	Case Study
	Practical Relevance
	Conclusions
	References

	Learning in the Presence of Large Fluctuations:A Study of Aggregation and Correlation
	Introduction
	Aggregation, Central Limit Theorem and GaussianDistribution
	Aggregation with an Underlying Lévy Distribution or StableDistribution
	Definition of the Lévy Distribution
	Estimation of the Lévy Distribution from the Empirical Data�
	Rank Ordering Statistics
	Multivariate Lévy Distribution: Definition and Estimation

	Generalization of the Covariance: The Covariation
	Experimental Results
	Market Value Volatility Classification
	PKDD 1999 Discovery Challenge Financial Database

	Conclusions
	References

	Machine Learning as an Objective Approachto Understanding Music
	Introduction
	An Objective Approach to Understanding Art
	Geographical Ethnomusicology
	Related Work

	Method
	Music Collection
	Audio Features
	Geographic Representation
	Spherical k-Nearest Neighbour Prediction Method
	Utilising a priori Background Knowledge

	Results
	kNN Performance
	kNN with Population Distribution
	Statistical Significance
	Performance by Country

	Discussion and Future Work
	References

	Retracted: Machine Learning as an ObjectiveApproach to Understanding Music
	Introduction
	An Objective Approach to Understanding Art
	Geographical Ethnomusicology
	Related Work

	Method
	Music Collection
	Audio Features
	Geographic Representation
	Spherical k-Nearest Neighbour Prediction Method
	Utilising a priori Background Knowledge

	Results
	kNN Performance
	kNN with Population Distribution
	Statistical Significance
	Performance by Country

	Discussion and Future Work
	References

	Pair-Based Object-Driven Action Rules
	Introduction and Background
	Object-Driven Action Rules Revisited
	Action Rules
	Action Rules Extraction
	Temporal Constraint and Pair-Based Approach

	Experimental Data: Hypernasality Data Set
	Velum Malfunction in Children

	Application of Object-Driven Action Rules
	Results and Discussion
	Summary and Conclusions
	References

	Mining Complex Patterns from Trajectory andSequence Data
	Effectively Grouping Trajectory Streams
	Introduction
	Related Work
	Background
	Data Pre-processing
	Lifting Schemes

	Exploiting Fourier Transforms for Spatial Quincunx Lattices Based Clustering
	Experimental Results
	Conclusion
	References

	Healthcare Trajectory Mining by CombiningMultidimensional Component and Itemsets
	Introduction
	Related Work
	Problem Statement
	Mining Multidimensional Itemsets Sequential Patterns
	Generating Frequent Multidimensional Items
	Generating Frequent Itemsets
	Generating Frequent Events
	Extracting Frequent Multidimensional Itemsets Pattern

	Experiments
	Conclusion
	References

	Graph-Based Approaches to ClusteringNetwork-Constrained Trajectory Data
	Introduction
	Data Representation and Problem Statement
	A Graph-Based Approach to Road Segment Clustering
	Road Segment Similarity
	Road Segment Similarity Graph
	Clustering the Similarity Graph

	Discussion
	Cluster Exploration
	Algorithmic Complexity

	Experimental Results
	Experimental Setting
	Results

	Related Work
	Conclusion
	References

	Mining Complex Patterns from Graphs and Networks
	Finding the Most Descriptive Substructuresin Graphs with Discrete and Numeric Labels
	Introduction
	Related Work
	Graph Mining with Attribute-Based Constraints
	Frequent Substructure Discovery with Numeric Attribute Constraints
	Experiments
	Results
	Analysis of Complexity

	Conclusions
	References

	Learning in Probabilistic Graphs ExploitingLanguage-Constrained Patterns
	Introduction
	Probabilistic Graphs
	Inference

	Link Classification
	Experimental Evaluation
	Probabilistic Graph Creation in Recommender System Domain
	Feature Construction
	Validation
	Results

	Conclusions
	References

	Improving Robustness and Flexibilityof Concept Taxonomy Learning from Text
	Introduction
	Related Work
	Proposed Approach
	Graph Construction
	Reasoning `by Association'
	Generalization Operator

	Evaluation
	Reasoning `by Association'

	Conclusions
	References

	Discovering Evolution Chainsin Dynamic Networks
	Introduction
	Problem Formulation
	The Method
	Emerging Patterns to Represent Dynamic Networks
	Discovering Evolution Chains as Incremental Join of EPs

	Experiments
	Real-World Dynamic Network
	Synthetic Dynamic Network

	Conclusions
	References

	Supporting Information Spreadin a Social Internetworking Scenario
	Introduction
	The Underlying SIS Model
	Starter and Bridge Detection
	Starter Detection
	Bridge Detection

	Extending Our Approach to Other Stereotypes
	Related Literature
	Conclusion
	References

	Context-Aware Predictions on BusinessProcesses: An Ensemble-Based Solution
	Introduction
	Preliminaries and Formal Framework
	Solution Approach: Meta-algorithm CA-PPM Discovery
	Instantiations of CA-PPM Discovery
	Algorithm CA-TP
	An Ensemble-Based Solution: Algorithm Ens-CA-TP

	Experiments
	Conclusions
	References

	Author Index
	Untitled

