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Abstract. Having robots as reliable and robust mobile sensor platforms in un-
known environments is getting more and more attractive. The control of each 
robot as a single machine is often complicated enough. But if there are more 
than one robots in a given scenario, the task get’s even harder. The operators 
then do not only have to care about steering their robot, but they also have to 
cooperate with each other. In this paper we describe the results of a research 
project regarding control strategies for a group of heterogeneous, autonomous 
robots. The swarm receives orders from a central control station, that uses a 
Battle Management Language, which is abstract, but human readable. An ab-
stract language postulates a certain degree of intelligence within each robot of 
the cooperation, because the orders are mostly more complex than simple 
moves from A to B. There is a command hierarchy within the swarm, but every 
robot implements its own control strategies, to fulfill the overall goal of the or-
ders. The technical as well as the operational realizations are described and dis-
cussed mostly with the focus on the unmanned aerial robots. 
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1 Introduction 

Today single robots are getting more and more robust and reliable in terms of naviga-
tion, map building and data preprocessing. Therefore the next step is to combine sev-
eral heterogeneous machines into a swarm. Even more interesting is the combination 
of ground and airborne systems at the same time to make use of each ones comple-
mentary features.  

Unmanned ground vehicles (UGVs) are very useful for various tasks of reconnais-
sance and transportation, if they are tele-operated, or even autonomous. In that case 
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human operators are greatly supported and do not have to enter possibly dangerous 
areas personally. Depending on their size, ground robots do have a high operating 
distance by being able to carry energy reserves, combined with huge loading capaci-
ties for cargo. Their handicaps on the other side are a typically limited maneuverabili-
ty in heavy terrain and their relatively slow speeds. 

Unmanned aerial vehicles (UAVs), especially ones that are capable of vertical ta-
keoff and landing (VTOL), usually present complementary characteristics. Since they 
normally do not have to cope with obstacles they are highly maneuverable and can 
traverse great distances very fast. But their energy reserves are typically very low, 
which is directly proportional to loading capacity and flight duration. 

Within the presented project, three different research groups had to incorporate 
their individual systems into one scalable organization. Each of these groups uses its 
own software implementation and communication protocol, which makes it necessary 
to define precise interfaces for global communication processes. Existing standards 
have been used to solve this problem and to enable even more systems to be inte-
grated into the organization with very little implementational effort. This paper is 
focused mainly on the aerial parts of the project, but the overall concepts for all part-
ners will be presented as well. 

Generally ground air cooperation is a fast rising field of research, since UAV plat-
forms are getting cheaper and more robust. But the amount of published results cop-
ing with the fusion of heterogeneous systems from different institutions is quite small. 
In [1] an UAV was used to enhance the localization quality of the ground vehicle. In 
[2] and [3] simulation tools are used to test theoretical control approaches. This com-
pletely eliminates the need for a communication middleware, since software imple-
mentations on the real system are completely faded out. In [4] UAVs are used to  
discover interesting areas in an urban surveillance scenario. After that is done, the 
ground vehicles are sent to these locations to execute further reconnaissance tasks. 

2 Project Description 

For military as well as for civil organizations it gets more and more important to have 
suitable tools at hand, while coping with (partly) unknown environments. Especially 
in dangerous areas like war zones or contaminated sites after a nuclear or chemical 
disaster, the need for unmanned and even autonomous robots will increase. Since 
there is not the one robot to solve all problems connected with reconnaissance, the 
cooperation of heterogeneous robots and the potential for a unified control method is 
evaluated using a realistic military scenario. 

Our goal is to analyze the feasibility of a robot swarm, consisting of unmanned 
ground and aerial vehicles within a reconnaissance scenario. The main focus lies on the 
definition and standardization of interfaces used to control unmanned robots without 
having to know everything about their, often proprietary, software installations. The 
research is done in cooperation between the University of Siegen (EZLS), the Leibniz 
University of Hannover (RTS), and the Fraunhofer Institute for Communication,  
Information Processing and Ergonomics (FKIE). 

In the following sections the most important components of the project will be  
described: 
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2.1 Battle Management Language 

The main focus for evaluation lies on the concept of interpretation of an abstract but 
human readable language. The North Atlantic Treaty Organization (NATO) devel-
oped the battle management language (BML) as an unambiguous language used to 
command and control units and technical equipment conducting military tasks. Addi-
tionally there is a possibility for reporting information about the current status of units 
and the environment. Currently it is used for real troops and simulation purposes. The 
language is readable for machines in order to enable simulations and therefore should 
be usable for robot control too. Having a common standard for communication also 
enables the interoperability between forces from different members of the coalition. 

The German version of BML is realized in the Command and Control Lexical 
Grammar (C2GL) Specification [5] and is used as the command language for this 
project. C2GL is human readable and the sentences are constructed by following a set 
of formal and context-free rules of a type 2 grammar. Thus sentences like “move to 
position-X as soon as possible” can be generated from a rule like “order → task where 
when”. The arrow means that the symbol on the left side is transformed into a sen-
tence defined by the rule on the right side of it. The non-terminal symbols task, where 
and when are defined by rules too and are transformed accordingly until only terminal 
symbols remain which represent a complete order. 

An important part in reconnaissance scenarios is of course the information coming 
back from the reconnaissance unit. C2GL defines rules for so called reports, which are 
sent back to the control station. Reports do not intend the receiver to do something, but to 
inform him about something. They are also in most cases not as precise as orders, be-
cause a lot of information that is gathered through reconnaissance is normally attained 
without the counterpart knowing about being observed, or because of noisy sensor data. 
There are rules for various kinds of reports within C2GL (see [5]). The interesting ones 
for this project are task- and status reports. They inform the controller about the process 
of order execution, or the technical condition of the robots. 

2.2 Robot Operating System 

Choosing a language for expressing commands and reports raises the question of 
information transport. Since we do have a multi robot scenario, messages have to be 
distributed between these systems and the control station. Instead of implementing a 
proprietary interface, we chose the robot operating system (ROS) [6] as our commu-
nication middleware. 

ROS does not fulfill the tasks of process management or scheduling, like tradition-
al operating systems do. It is rather a communication service lying on top of a tradi-
tional operating system. The main goals in the development of ROS are to build a free 
and Open-Source, multi-lingual, peer-to-peer platform. 

Since the commands and reports must be compatible to C2GL a ROS message is 
defined, which encapsulates all necessary data fields needed for communication. Ad-
ditionally a converter is written, that translates pure C2GL messages into the ROS 
format and vice versa. This makes it very easy to connect processes from different 
partners together, because the interface is strictly defined and it is mostly platform 
and language independent. 
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2.3 User Interface 

The graphical user interface (GUI) is designed by the FKIE. It is the standard user inter-
face, which is used to communicate with military simulation environments employed by 
the NATO. Therefore it is natively only able to use C2GL as a communication protocol. 
Since ROS is used as the communication middleware, we implemented a C2GL to ROS 
connector, which translates between the two interfaces where possible. For many things 
that can be expressed in ROS there are no analogies in C2GL, like pictures, or generally 
sensor data. So we added a separate communication channel between the connector and 
the GUI which transports all not in C2GL expressible information. 

2.4 UGV HANNA 

The University of Hannover takes care of all work concerning the ground robot part 
of the project. They are using the unmanned ground vehicle RTS HANNA [7][8]. This 
robot is based on a Kawasaki Mule 3010, which is equipped with a drive-by-wire 
system from PARAVAN GmbH. It can move with up to 40 Km/h and has a maxi-
mum payload of 600kg. For environment perception the robot features 2D and 3D 
laser scanners and cameras. Together with a high precision localization module, 
backed by differential GPS and inertial sensors, it delivers high resolution occupancy 
grid maps of a given area, as well as live-video. 

 

Fig. 1. Unmanned aerial vehicle PSYCHE 1000 

2.5 UAV Psyche 1000 

Within this project the University of Siegen utilizes two UAVs Psyche 1000 (see Fig. 1) 
which are modified drones MD4-1000, originally built by Microdrones1. They are elec-
tronically driven helicopters with four rotors, so called quadrocopters, providing a max-
imum flying weight of 6 kg. Having four rotors leads to a system which is controlled 
only by changes in rotational speed of each rotor. Every one of this rotors is driven by 
its own brushless engine. That makes the UAV almost completely maintenance free. In 
                                                           
1 www.microdrones.com 
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comparison to a conventional helicopter design with a lot of moving parts like a swash 
plate, the possibility for technical failures is widely reduced. 

The UAVs do have a high precision position stabilization and location estimation 
system. As in most localization systems a GPS receiver is used to obtain information 
about the absolute position. Together with measurements from accelerometers, gyros-
copes, a magnetometer and a barometer the manufacturer provides the user a filtered 
position estimation. We extend the capabilities of the UAVs by adding a system on a 
chip running a specialized embedded Linux distribution that supports both a commu-
nication channel with the base station and other robots, as well as autonomous flight 
control. Our control modules utilizes the localization and attitude estimations from the 
UAV and generates signals that are fed back into the proprietary control software of 
the drone. The interface we use is the same, as the original radio control connection. 
This allows us to make use of all position stabilization functionalities provided by the 
manufacturer, as we electronically simulate a human operator. By the flick of a switch 
a real operator can obtain control over the UAVs at any given time for safety reasons. 

Communication from and to the UAV is realized with two wireless connections. 
The original radio control device is connected over a bi-directional low-bandwidth, 
but high distance 2.4Ghz channel. It sends control commands to the UAV and rece-
ives information about the height, attitude and battery level, that are shown on a built-
in LCD. The second channel is a 5Ghz Wireless LAN connection, used to transmit 
data with high bitrates. 

Since this project is mainly focused on reconnaissance, the drones are equipped each 
with a 14.7 MP zoom camera. Since the UAVs have to alter their attitude to make changes 
in movement, a fixed mounting of the cameras would result in mostly blurry images. To 
resolve this, they are mounted within a moveable frame, which is deflected by two servos. 
The angle control input is taken from the attitude estimation made by the manufacturer. 
Pictures are accessible in two versions. One way is the live video preview, which is nor-
mally used on the camera display. These pictures do have a resolution of 320x240 pixels, 
an average file size of 9kB and are available at 15Hz. The second way is the single picture 
mode, where a high resolution picture is taken. In this case the pictures do have a resolu-
tion of up to 4416x3312 pixels and an average file size of 4MB. 

 

Fig. 2. Schematic hierarchy of the different robot groups, down to single robots that can be 
commanded 



530 S. Thamke et al. 

 

2.6 Scenarios 

During the design process for the project we decided to formulate a scenario which is 
close to reality in terms of given propositions and usability. The basic task is to do 
reconnaissance in a roughly known area using a swarm of three heterogeneous, un-
manned robots. In order to give the operator a clear overview of the environment, one 
UGV will traverse a known road map of the territory and deliver a occupancy grid 
map, while two UAVs provide image intelligence from above. To simplify the control 
process for the human operator the robots can be accessed separately, or in different 
groups (see Fig. 2). By standard, all orders are sent to the whole swarm only once. 
But if the current circumstances demand different behaviors, all orders can be given 
to every other entity within the hierarchy as well. 

As mentioned above, BML is a rather high-level language, what makes it easy to 
read for machines but not very versatile in altering commands. We selected six com-
mands from the pool and defined actions for the different types of robots to perform. 
Commands are described by so called BML orders. Each order has specific produc-
tion rules defined by the C2GL rule set. Every one of them begins with the header, 
consisting of the sender, the addressee and the sendingTime. The header is followed 
by the order body (OB), which contains all information needed for the task. 

All commands do share some common symbols. Tasker and Taskee are the names 
of entities that give, respectively receive orders. At-Where and Route-Where are spa-
tial modifiers, describing a point, a list of points or an area. Start-When and End-
When are temporal modifiers, and define when the command must be executed, or 
finished. And finally Label is set to a unique name for each given task. 

1) Move: As the name implies this command moves robots from their current posi-
tion to a specified point, which is the most basic ability the swarm has to be capable 
of. The rule for this order hast the following structure: 

 
OB → move Tasker Taskee At-Where Start-When (End-When) Label 

 
If this command is send to the whole swarm it is processed by the ground vehicle in 
first place. It calculates a path from its current position to the target point, using the 
information from a previously known road map. While executing the order, the ve-
hicle generates continuously (with a frequency of 1Hz) new move commands for the 
drone swarm, using its own position as the target point. All drones will then process 
these new messages and therefore follow the vehicle on its way to the destination in a 
formation depending on the number of UAVs. 

2) Patrol: Sometimes it might be more interesting for the operator to have a look 
from different perspectives at the ground vehicle while it is moving. Therefore now 
the drones orbit around the ground vehicle, while it is traversing a number of target 
points. During this time the cameras of the drones are always headed towards the 
ground vehicle. The patrol command is structured as follows: 

 
OB → patrol Tasker Taskee Route-Where Start-When (End-When) Label 
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From the technical perspective the execution of this order is quite similar to move. 
The UGV traverses all the points given by the order using the information from the 
known road map. The UAVs now receive a patrol order from the UGV each second 
with its own position. With this information they calculate their position on an orbit 
around the UGV, using the absolute time from the GPS receiver and the knowledge of 
the number of drones in the swarm. Additionally the required angles for the camera 
are continuously updated using the position difference between each drone and the 
UGV. 

3) Observe: This command lets the swarm approach a given point of interest. When 
this point is reached, all robots will deliver live video to the control station. 
 

OB → observe Tasker Taskee At-Where Start-When (End-When) Label 
 
If this command is given to the swarm, the ground vehicle internally uses the move 
command to guide the UAVs to the point of interest, so that the target is in the field of 
view of its camera. When approaching the destination the observe order is given once 
to the drones. They start to orbit around the target, by continuously generating patrol 
commands addressing themselves with a fixed target point.  

4) Distribute: While the previous commands only took care of single points, or a 
route defined by points, the next ones describe actions taken on areas defined by po-
lygons. Now the At-where in rule (4) does not consist of a single point, but of three or 
more, depending on the complexity of the polygon describing the area. 

 
OB → distribute Tasker Taskee At-Where Start-When (End-When) Label 

 
As the result of this command the swarm moves to the area of interest, lead by the 
UGV using move orders and then splits up. All robots distribute themselves equally 
within the area and send back live video to create an overview. The final positions for 
the robots are calculated by determining the center of gravity (CG) of polygons. The 
UGV uses the CG of the initial polygon and finds the closest point on a road within 
the map. When this point is reached the UAVs receive the distribute order, containing 
the polygon and split it up into smaller parts, depending on the number of drones. 
Then they apply the same algorithm as the UGV on this smaller polygons to deter-
mine their final positions for this scenario. 

5) Guard: In comparison to the Distribute command, Guard is more challenging 
from the drones point of view. The ground vehicle executes the same behavior as 
during the Distribute scenario, except that it sends a single Guard command to the 
drone swarm, when it reaches the target area. The UAVs split up the given area into 
smaller parts, depending on the number of drones, and then traverse this smaller areas 
continuously while delivering high-resolution pictures to the control station. 

 
OB → guard Tasker Taskee At-Where Start-When (End-When) Label 

 
The waypoints needed for the UAVs to traverse the area are generated by overlaying 
the polygon with lines that are parallel to the line that divides the original polygon 
into smaller ones. The intersection points between this lines and the polygon bounda-
ries are used for navigation, which leads to a saw tooth pattern of movement. 
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6) Reconnaissance: This is the most complex command for the swarm. The ground 
vehicle traverses all known roads within the given target area and builds up an occu-
pancy grid of the environment while the drones deliver images from above. 

 
OB → reconnaissance Tasker Taskee At-Where Start-When (End-When) Label 

 
The ground vehicle guides the drone swarm to the target area using the move com-
mand. When the area is reached, one UAV is given the reconnaissance command, 
which lets it traverse all corner points of the polygon and deliver high resolution pic-
tures from there. The second UAV is continuously given the patrol command to fol-
low the ground vehicle as described above. 

3 UAV Hard-/Software Modules 

Besides the software implemented by the manufacturer, that takes care of stabilization 
and localization of the UAV, we added an additional system which executes supple-
mentary tasks and generates the control signals for flight maneuvers, like the ones 
described in the last chapter. This system consists of a ARM9 system on a chip (SOC) 
with a total of 128MB of RAM and several interfaces like USB 2.0 and three serial 
connections. It is realized as a densely packed circuit measuring 54x54mm in size and 
30g in weight. 

3.1 Psyche Embedded Linux 

As the operating system for this SOC we use a custom made Linux distribution. The 
kernel is highly adapted to the used hardware and the included libraries are reduced to 
a minimum to save as much resources as possible for user applications. 

 

Fig. 3. ROS integration into the system. Blue parts show ROS modules. Red parts show pro-
prietary UAV modules. 
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3.2 Psyche Software Environment 

The main proprietary software modules running on the UAV are sketched with red 
color in Fig. 3. A more detailed information about the architecture is given in [9], but 
core functionalities should be mentioned shortly: 

1) DroneState: This module makes all data coming from the drone available to a 
client via a UDP connection. Examples for types of data are position and attitude 
informations, battery status, wind-speed, etc.  

2) DroneControl: Through this module users send orders to the UAV. Those are 
basically waypoints, or lists of waypoints attributed with a desired velocity and atti-
tude. 

3) Camera: Users are able to access the pictures shot with the USB attached cam-
era through a TCP connection by using this module. Both, the low- and high-
resolution pictures mentioned above are transported to the clients. 

4) CameraControl: This module allows the user to remotely adjust all parameters 
of the camera. Typical use cases are zoom, exposure time, desired resolution and also 
the tilt angle of the moveable camera frame. 

3.3 Reactive Collision Avoidance 

Although all robots in the swarm are commanded from the control station, there is no 
central path planning system for the UAVs. The flying formations are chosen careful-
ly to avoid small gaps between the drones, but while formation changes distances may 
fall below the safety limit. Therefore each drone is equipped with a software module, 
that realizes a reactive collision avoidance. 

Due to a lack of sensors that are able to detect other UAVs during flights, the 
drones permanently publish data about their positions and movements via a UDP 
broadcast connection. This communication is established via an ad-hoc wireless net-
work. WLAN is chosen, because it is very cheap and easy to implement into the sys-
tem and it is stable and reliable when used for short distance communication, which is 
always given, if the threat of collision is present. 

3.4 ROS Interface 

ROS is used as the communication layer within this project, so every robot has to 
have the ability to publish and receive messages. Therefore the software parts, which 
implement the algorithms for task execution, also build a bridge between ROS and the 
proprietary interfaces on the robots. This part is called Flight planner in the case of 
the UAVs and its interfaces are shown in Fig. 3. The implementation on the UGV is 
mostly identical and not separately described here. The drones receive commands 
from an operator or from the ground vehicle in form of BML orders, embedded in 
ROS messages. The messages are processed and depending on the current scenario, 
different kinds of data are sent back to the control station. In this stage of the project 
such data mainly consists of reports of the robots positions (geometry msgs/Pose), 
pictures or videos (sensor msgs/CompressedImage) from interesting points and occu-
pancy grids (nav msgs/OccupancyGrid) for operator defined areas. 
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3.5 Scenario Interpretation 

As mentioned above all algorithms needed for the execution of the different scenarios 
are implemented within the Flight planner module onboard of the UAVs and accor-
dingly on the UGV. The Planner is realized as a state machine with transitions trig-
gered by incoming new, or completions of existing orders. If a new order arrives the 
first thing to check is the Taskee entry of the BML message. The different entities, 
that can be used as tasks are shown in Fig. 2. If the message must be processed on the 
given robot the next barrier is the level of the Tasker. If this level is higher, or on the 
same level as the currently active one, the message is further handled. Otherwise it is 
dismissed.  

If the order has to be executed, the robots will start a behavior as described in 2.5. 
Thus the state machines makes a transition into the appropriate state and the level for 
the current tasker is set, for further comparisons. If the order is fully processed, before 
a new one arrives the tasker level is reset to the lowest one possible, so that orders 
from each entity are processed again. 

4 Results 

This project shows, that it is possible to control a heterogeneous robot swarm by a 
very abstract, but formal and context-free language. Using an abstract language re-
quires a certain degree of autonomy on the robots, depending on the degree of ab-
stractness. If this autonomy is available, a single operator can take care of many coo-
perating systems, without getting overstrained by caring too much about single robots. 
All scenarios described above were successfully demonstrated at a designated test 
ground with one ground robot and two aerial robots. All tasks were assigned to the 
whole robot swarm by a single operator using a simple and intuitive graphical user 
interface. Mission times, longer than 30 minutes without manual intervention or mal-
functions of the systems were effectively shown. 

But since the communication channel is strongly constrained by using a formal 
language, there are some information that cannot be transferred. Rather simple values 
like desired flying height, or an attitude cannot be expressed in BML. Even more 
problematic is the task of transmitting sensor data. To overcome this problem, either 
the language has to be extended to be able to handle binary data. Or the robot swarm 
has to be more intelligent. In this case sensor data has to be preprocessed on the indi-
vidual robot and only the higher level interpretation of the information is transferred 
in the form of BML reports. 
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