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Abstract. This paper proposes a Nash equilibrium-based model predictive 
control (MPC) scheme incorporating a cooperative particle swarm optimization 
(CPSO) to deal with the control of flocking robots whose state vectors are 
coupled in a cost function. In conventional distributed MPC, the stability is 
assured by guaranteeing a bounded error between what a subsystem plans to do 
and what neighbors believe that the subsystem plans to do over a finite 
prediction horizon. This condition is referred to as compatibility constraint, and 
the closed-loop control performance largely depends on the responses computed 
at the previous time step. As an alternative of the compatibility constraint, the 
distributed CPSO is suggested in an MPC framework, which guarantees the 
stability without enforcing the compatibility constraint. A numerical simulation 
is performed on a group of nonholonomic mobile robots to demonstrate the 
effectiveness of the proposed MPC scheme incorporating CPSO. 

Keywords: cooperative particle optimization (CPSO), model predictive control 
(MPC), Nash equilibrium, flocking. 

1 Introduction 

In distributed model predictive control (MPC) of multiple subsystems, one of the key 
issues is to find conditions guaranteeing stability while reducing the computational 
burden of optimization processes [1]-[6]. To guarantee the stability in the 
conventional distributed model predictive control (MPC), it is assumed that each 
subsystem does not deviate too far from its previous computed state trajectory, 
referred to as the state compatibility constraint or it is assumed that the updating time 
is sufficiently short [1],[2]. A drawback of this approach is that the system responses 
can be slow. A sufficiently short update period is used to relax the compatibility 
constraint, but the closed-loop control performance tends to depend on the update 
period. 

CPSO algorithm is a variant of PSO, employing multiple swarms to optimize 
different variables of the solution in a cooperative coevolution framework. An early 
attempt to apply the CC framework to PSO was made by Bergh and Engelbrecht [7], 
resulting in two cooperative PSO algorithms, namely CPSO-SK and CPSO-HK. Recent 
studies by Li and Yao [8],[9] suggested cooperative coevolving PSO (CCPSO) and 
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CCPSO2, and their performance was validated on benchmark functions of up to 1,000 
dimensions. In fact, the CPSO and its variants were originally developed to deal with 
high-dimensional optimization problems. 

This paper proposes a modified version of the CPSO to find optimal strategies for 
formation control of flocking robots operated by distributed MPC scheme. It is 
assumed that each robot is assigned with its own optimization problem and 
communicates information only with neighboring robots. Thus, each robot has a 
particle swarm to optimize its cost function value, and the optimization problem is 
solved by the particle swarm. 

The rest of this paper is organized as follows. In Section 2, formation control 
problem is defined in a distributed MPC framework. Section 3 proposes a novel 
CPSO-based distributed MPC scheme. Section 4 then presents a simulation result for 
multi-robot formation control problem. Finally, conclusion is presented in Section 5. 

2 Problem Formulation 

The formation control problem can be stated as follows: Consider a group of 
nonholonomic mobile robots. For each robot j, using its own state [xj, yj, θj]

T and its 
neighboring states [xi, yi, θi]

T, given a reference path Xr and a desired formation 
pattern P, find a controller such that a group of robots maintain the desired formation 
pattern P while the center of the formation tracks the reference path Xr. The motion 
state of the j-th robot defined by Xj=[xj, yj, θj]

T can be described by 
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where Xj is described by its position (xj, yj) and orientation θj; vj and ωj are the linear 
and angular velocities of each robot, respectively. 

In order to solve the formation control problem in a distributed way, let us define 
the formation and tracking error of the robot j as 
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where 
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in which the former summation part is the formation error and the latter part is the 
tracking error. Also, [ , , ]Tj j j j r jX x y X Xq= = -   , Pj=[pjx, pjy, 0]T, and μj=1 if the 
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reference Xr is available to robot j, and μj=0 if Xr is not available to robot j. The error 
ej is obtained by multiplying a rotation matrix in a robot fixed frame with zje. Pj is a 
desired relative position of robot j to form a desired pattern of flocking. 

By differentiating ej with respect to time, and then substituting (1) into the resulting 
equation, the error state equation can be obtained as follows: 
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where θij=θi-θij; Nj denotes a set of neighbors of robot j; vr and ωr are the desired 
linear and angular velocities, which can be derived by differentiating Xr. The error 
state equation (3) can be generally rewritten as a nonlinear nominal system as follows: 
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where uNj (t)=(...,ui,...), i∈Nj, denotes the concatenated vector of the control inputs of 
the neighbors of robot j, and uj=[vj, ωj]

T. 
The cost function to be minimized for each robot j in a distributed MPC framework 

is designed as follows: 
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where gj(ej(t+T))=ej(t+T)Tej(t+T) is a terminal state penalty function, L(t,ej(t), uj(t))= 
ej(t)

 TQej(t)+uj(t)
TRuj(t) is a running cost function, and Q and R are positive definite 

symmetric weight matrices At time t, the open-loop optimization problem in a 
distributed MPC framework can be formulated as 
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where τ∈[t,t+T], and Vmax and Ωmax are the maximum control inputs. 
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3 CPSO-Based MPC Framework for Flocking Robots 

In this section, we propose a method that optimizes the control input sequence over a 
prediction horizon by using CPSO for formation control of flocking robots. A cost 
function for each robot is defined as a coupled form by the future state trajectories of 
the neighboring robots, and a particle swarm is assigned to each robot in order to 
minimize the cost function value. 

Let . ij lS x be the current position of the i-th particle of the j-th swarm at generation 
l, . ij lS y  the personal best of the i-th particle of the j-th swarm, and ˆ. ij lS y  the global 
best particle of the j-th swarm. Each particle . ij lS x  represents the predicted control 
input sequence of robot j at tk, uj(τ;tk)=[vj(τ;tk), ωj(τ;tk)]

T over a prediction horizon T. 
The process of the proposed CPSO algorithm is shown in Fig. 1. Each robot j 

receives global best particles found by neighboring robots and predicts the future 
states of the neighbors. Based on the predicted states, the future control input 
sequence uj(τ;tk) for τ∈[tk,tk+T] is optimized by minimizing (5) via CPSO. At 
generation l, the j-th robot evaluates the cost function value of . ij lS x  for all i using 
the global best particles 1ˆ.

i
i lS -y  where i∈Nj. The concatenated vector uNj(t) in (4) is 

constructed using the received best particles from neighbors of robot j. Then, the cost 
of . ij lS x  is evaluated by replacing uj(t) in (5) with . ij lS x . After evaluating the cost of 
. ij lS x , its personal best . ij lS y  is checked, and then the global best ˆ. ii lS y  is checked 

for update. After one generation of the process, each robot transmits its global best 
particle to neighboring robots. At each generation, the process of evaluating cost, 
updating personal best and global best particle, and updating velocity and position of 
each particle is repeated based on the updated global best particles of neighboring 
robots. When the robots reach an equilibrium state in which all the robots cannot 
further minimize their cost, the states of the robots are updated using . ij lS y  in the 
time interval [t, t+δt). 

The update rule to determine the particles' position in the next generation can be 
described as follows: 
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A block diagram of the proposed CPSO-based MPC is shown in Fig. 2. After the 
process of estimating robots' current states, the future control input sequence uj(τ;tk) is 
minimized by the CPSO process. When the CPSO process is finished, the first part of 
the control input sequence is applied to its robot. 

At each update time step tk, particles of each robot should be initialized in order to 
re-search optimal control input sequence. When initializing the particles of the j-th 
robot, the global best particle found at the last update time step is chosen again as one 
of the candidate solutions for the next time step. The fact that the optimization process 
starts with the best particle found at the last update time step leads to improved 
convergence performance. 
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Fig. 1. Flowchart of the CPSO process 

 

Fig. 2. Block diagram of the CPSO-based MPC Framework 

4 Simulation Results 

A numerical simulation is performed to validate the effectiveness of the proposed 
CPSO-based MPC scheme. For the optimization processes by the proposed CPSO, 
each robot has a particle swarm with a population size of 50, and the maximum 
number of generations is limited to 100. The inertia weight wl starts with 0.9 and 
linearly decrease to 0.4. The search space is limited to real-valued variables within  
[-Vmax, Vmax] and [-Ωmax, Ωmax] for vj and ωj, respectively, where Vmax=0.5m/s and 
Ωmax=1.57rad/s. The acceleration coefficients are c1=2.0 and c2=2.0. 

The number of prediction horizon steps is 10, while the prediction time interval are 
selected to be δt=0.1s. Thus, the prediction horizon is 1s. The weight matrices Q and 
R are set to be diagonal where Q=diag[0.1,0.1,0.01] and R=  diag[0.1, 0.1]. 

Five mobile robots are used to test the algorithm. The reference path is a circle path 
given by xr(t)=2cos(0.05t), yr(t)=2sin(0.05t), and θr(t)=atan2(

ry , rx ). Initially, the 
robots are located at   X1=[2.0, -1.0, 0.0]T, X2=[2.25, -1.0, 1.57]T, X3=  [2.5, -1.0, 
1.57]T, X4=[1.75, -1.0, 1.57]T, and X5=[1.5, -1.0, 1.57]T, respectively. The desired 
formation pattern P is a regular pentagon formation, i.e., p1x=0.5, p1y=0.0, 
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p2x=0.1545, p2y=0.4755, p3x=-0.4045, p3y=0.2939, p4x=-0.4045, p4y=-0.2939 
p5x=0.1545, and p5y=-0.4755 as shown in Fig. 3. To measure the performance of the 
algorithm, an error function of t is defined: 
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The resulting trajectories of the group of the robots are shown in Fig. 4. It is shown that 
the five robots maintain a regular pentagon formation while the center of the formation 
tracks the given reference path using the transmitted information from neighboring 
robots. Fig. 5 shows the stable total error which converges to zero during maneuvers. 
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Fig. 3. Desired formation pattern 
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Fig. 4. Trajectories and sampled positions of five robots are indicated with their heading angles. 
The gray line denotes the reference path and the black squares denote the center of the 
formation. The positions are sampled at every 20s. 
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Fig. 5. Total error during maneuvers 

5 Conclusion 

In this paper, a distributed MPC scheme incorporating CPSO was proposed for multi-
robot formation control problem. For the optimization process in MPC, a Nash 
equilibrium strategy was used to solve the optimization problem by exchanging 
particle information which has the best experience among neighboring subsystems. In 
the simulation, using the proposed MPC scheme, it was found that the robots moved 
to track a given reference path, while maintaining a desired formation pattern 
successfully. 

Future works may include investigations of the stability, robustness, improvement 
of convergence speed, and comparative studies between the proposed method and 
conventional MPC schemes. The final goal of this research is the development of 
real-time cooperative MPC scheme according to the Nash equilibrium strategy. 
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