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Abstract To maximise the scientific output of a high-performance computing
system, different stakeholders pursue different strategies. While individual appli-
cation developers are trying to shorten the time to solution by optimising their
codes, system administrators are tuning the configuration of the overall system to
increase its throughput. Yet, the complexity of today’s machines with their strong
interrelationship between application and system performance presents serious
challenges to achieving these goals. The HOPSA project (HOlistic Performance
System Analysis) therefore sets out to create an integrated diagnostic infrastructure
for combined application and system-level tuning – with the former provided by the
EU and the latter by the Russian project partners. Starting from system-wide basic
performance screening of individual jobs, an automated workflow routes findings
on potential bottlenecks either to application developers or system administrators
with recommendations on how to identify their root cause using more powerful
diagnostic tools. Developers can choose from a variety of mature performance-
analysis tools developed by our consortium. Within this project, the tools will be
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further integrated and enhanced with respect to scalability, depth of analysis, and
support for asynchronous tasking, a node-level paradigm playing an increasingly
important role in hybrid programs on emerging hierarchical and heterogeneous
systems.

1 Introduction

To maximise the scientific and commercial output of a high-performance com-
puting system, different stakeholders pursue different strategies. While individual
application developers are trying to shorten the time to solution by optimising their
codes, system administrators are tuning the configuration of the overall system to
increase its throughput. Yet, the complexity of today’s machines with their strong
interrelationship between application and system-level performance demands an
integration of application and system programming.

The HOPSA project (HOlistic Performance System Analysis) therefore sets out
for the first time to develop an integrated diagnostic infrastructure for combined
application and system-level tuning. Using more powerful diagnostic tools appli-
cation developers and system administrators will easier identify the root causes of
their respective bottlenecks. With the HOPSA infrastructure, it is more effective to
optimise codes running on HPC systems. More efficient codes mean either getting
results faster or being able to get higher quality or more results in the same time.

The work in HOPSA is carried out by two coordinated projects funded by the EU
under call FP7-ICT- 2011-EU-Russia and the Russian Ministry of Education and
Science, respectively. Its objective is the new innovative integration of application
tuning with overall system diagnosis and tuning to maximise the scientific output
of our HPC infrastructures. While the Russian consortium will focus on the system
aspect, the EU consortium will focus on the application aspect. At the interface
between these two facets of our holistic approach, which is illustrated in Fig. 1,
is the system-wide performance screening of individual jobs, pointing at both
inefficiencies of individual applications and system-related performance issues.

This article describes the overall workflow of performance analysis of parallel
programs using the HOPSA infrastructure, introduces the individual tools developed
inside the project consortium, and shows how to use the tools in a complemen-
tary way. For detailed information, please see the user guides of the individual
performance-analysis tools.

At the centre of this workflow is the so-called lightweight measurement module
(LWM2). It is responsible for the first step in the workflow, the system-wide
mandatory collection of basic performance data. For each execution on the cluster,
LWM2 produces a so-called job digest. The metrics listed in this compact report
indicate whether an application suffers from an inherent performance problem
or whether application interference may have been at the root of dissatisfactory
behaviour. They also provide a first assessment regarding the nature of a potential
performance problem and help to decide on further diagnostic steps using any of the
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Fig. 1 System-level tuning (bottom), application-level tuning (top), and system-wide performance
screening (centre) use common interfaces for exchanging performance properties

more powerful performance-analysis tools. For each of those tools, a short summary
is given with information on the most important questions it can help to answer.
Moreover, the document covers Score-P [5], a common measurement infrastructure
shared by some of the tools. The performance data types supported by Score-P form
a natural refinement hierarchy that can be followed to track down and represent
even complex bottleneck situations at increasing levels of granularity. Finally, a
brief excursion on system-level tuning explains how system providers can leverage
the data collected by LWM2 to identify a suboptimal system configuration or faulty
components.

2 The HOPSA Workflow

2.1 Overview

The performance-analysis workflow (Fig. 2) consists of two basic steps. During the
first step, we identify all those applications running on the system that may suffer
from inefficiencies. This is done via system-wide job screening supported by a
lightweight measurement module (LWM2) dynamically linked to every executable.
The screening output identifies potential problem areas such as communication,
memory, or file I/O, and issues recommendations on which diagnostic tools can be
used to explore the issue further. Available application performance analysis tools
include Paraver/Dimemas [1, 12], Scalasca [2], ThreadSpotter [3], and Vampir [4].
The data collected by LWM2 is also fed into the Clustrx.Watch hierarchical cluster
monitoring system [13] which combines it with system and hardware data and
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Fig. 2 Overview of the performance analysis workflow

forwards it to the LAPTA cluster monitoring and analysis system [14] for further
analysis by system administrators.

In general, the workflow successively narrows the analysis focus and increases
the level of detail at which performance data are collected. At the same time, the
measurement configuration is optimised to keep intrusion low and limit the amount
of data that needs to be stored. To distinguish between system and application-
related performance problems, some of the tools allow also system-level data to be
retrieved and displayed. The system administrator, in contrast, has access to global
performance data. He can use this data to identify potential system performance
bottlenecks and to optimise the system configuration based on current workload
needs. In addition, the administrator can identify applications that continuously
underperform and proactively offer performance-consulting services. In this way,
it becomes possible to reduce the unnecessary waste of expensive system resources.

2.2 Performance Screening

This step decides whether an application behaves inefficiently. On the side of
the user, nothing has to be done except running the application as usual. Upon
application start, LWM2 is automatically and transparently linked to the executable
through library pre-loading. At runtime, the module collects basic performance data
with very low overhead. The performance data characterise various aspects such as
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sequential performance, parallel performance, and file I/O. At the end of execution,
the user receives a job digest that contains the most important performance metrics.
The digest also recommends further diagnostics in the case certain key metrics show
unexpected values, which may often be indicative of a performance problem. If
needed, the user can disable LWM2, for example, to avoid interference with the
analysis tools used in subsequent stages of the tuning process.

2.2.1 The Lightweight Measurement Module LWM2

The lightweight measurement module LWM2 collects basic performance data for
every process of a parallel application. It supports applications based on MPI and
multithreaded applications based on POSIX Threads or any higher-level model
implemented on top of it, which usually includes OpenMP. Multithreaded MPI
applications and applications that additionally use CUDA are supported as well. To
keep the overhead at a minimum, the module applies a combination of sampling and
careful direct instrumentation via interposition wrappers. Direct instrumentation is
needed to track the state of a thread (e.g., whether it executes inside or outside an
MPI function) and to access relevant communication or I/O parameters such as the
number of bytes sent or written to disk. Based on the state tracking performed by the
instrumentation, sampling partitions the execution time into different components
such as computation, communication, or I/O. LWM2 refrains from direct time
measurements as far as possible. Hardware counters deliver basic information on
single-node performance. To save storage space, the performance data of individual
threads are folded into per-process metrics such as the average number of threads.

In addition to collecting performance data separately for each process, LWM2

divides the time axis into disjoint slices, recording selected metrics related to the use
of shared resources at this finer granularity. The slices have a length of 10s and are
synchronized across the entire machine. Together with the location of each process
on the cluster, which LWM2 records along with the performance data, LWM2

provides performance data for each active cell of a cluster-wide time-space grid.
The discretised time axis constitutes the first dimension, the nodes of the system the
second one.

The purpose of organising the performance data in this way is threefold: First,
by comparing the data of different jobs that were active during the same time slice,
it becomes possible to see signs of interference between applications. Examples
include reduced communication performance due to overall network saturation or
low I/O bandwidth due to concurrent I/O requests from other jobs. Second, by
looking at the performance data of the same node across a larger number of jobs and
comparing it to the performance of other nodes during the same period, anomalies
can be detected that would otherwise be hidden when analysing performance data
only on a per-job basis. Third, collecting synchronised performance data from all
the jobs running on a given system will open the way for new directions in the
development of job scheduling algorithms that take the performance characteristics
of individual jobs into account. For example, to avoid file-server contention and
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waiting time that may occur in its wake, it might be wiser not to co-schedule
I/O-intensive applications. In this way, overall system utilisation may be further
improved.

After the expiration of every time slice, LWM2 passes the data of the current time
slice on to Clustrx.Watch, a system-monitoring infrastructure running on each node.
Clustrx augments these data with system data collected using various sensors and
forwards them to the LAPTA system performance database.

2.2.2 LAPTA

LAPTA is a pAckage for Performance moniToring and Analysis. The software is
aimed at providing flexible, scalable and extendable infrastructure for system-level
performance analysis. It includes special tools and interfaces for data collection
supporting various data collectors (Clustrx, Ganglia, LWM2, etc.), data storage
supporting wide range of databases (MongoDB, Cassandra, etc.) and both stored
and streamed data access and analysis. LAPTA provides interfaces to access
the collected system monitoring data for both query models: post mortem and
on-the-fly. For example LAPTA serves as the basis for Job Digest generation based
on system-level performance monitoring data. The screening of general job behavior
through Job Digest is very useful for users and tuners to understand the possible
bottlenecks that can be seen at a glance (like network overload, bad data locality,
inefficient memory usage, too intensive I/O, etc.). Also, performance data of the
same application collected over an extended period of time will document the
tuning and scaling history of this application allowing to make even more detailed
analysis of the dynamic application behavior further. Studying the performance
behaviour of the entire job mix will allow to make conclusions on the optimal
system configuration for the given workload. For example, system providers will
learn whether requirements to amount of physical memory available, I/O or network
bandwidth and other system hardware requirements were over- or underestimated.

2.3 Performance Diagnosis

This step decides why an application behaves inefficiently. It is only needed
if the screening identifies a potential performance problem. Depending on the
recommendation made by LWM2 , the user chooses one or more of the performance-
analysis tools offered by the HOPSA tool environment. The general strategy of the
diagnosis is to start with an overview and then to go deeper as more information on
the problem’s root cause becomes available.
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Table 1 Classification of tools based on problem class and level of detail

Intra-node Inter-node
peformance peformance I/O

Overview ThreadSpotter Score-P profile C cube Scalasca(Cube)
In-depth analysis ThreadSpotter, Scalasca trace analyzer C Paraver, Vampir

Paraver, Vampir Cube, Paraver, Vampir

2.3.1 Overview of the Performance Analysis Tool Suite

An overview of the HOPSA performance analysis tool suite is presented in Table 1.
For the analysis of intra-node performance, ThreadSpotter is the primary tool,

with the possibility of more detailed analyses using Paraver. For investigating inter-
node performance, looking at a performance profile using Scalasca’s Cube browser
is a good starting point. For even more detailed analyses, the results of the Scalasca
trace-analyser can be displayed in Cube, or the Vampir and Paraver/Dimemas tools
can be used for a detailed visual exploration of the traces. For understanding I/O-
related issues, profiles displayed in the Cube browser give a good overview, while
Vampir can be used for more in-depth analysis.

2.3.2 The Score-P Instrumentation and Measurement System

The Score-P [5] measurement infrastructure is a highly scalable and easy-to-use tool
suite for profiling, event tracing, and online analysis of HPC applications. It collects
performance data that can be analysed using the HOPSA tools Scalasca and Vampir.
In addition, it supports the performance tools Persicope [6] and TAU [7] developed
outside the HOPSA project. Score-P has been created in the projects SILC and
PRIMA funded by the German Ministry of Education and Research and the US
Department of Energy, respectively. It will be maintained and further enhanced in a
number of follow-up projects including HOPSA.

The main performance data formats produced by Score-P are CUBE-4 [8] for
profiles and OTF2 [9] for event traces. Profiles provide a compact performance
overview, while event traces allow the in-depth analysis of parallel performance
phenomena. While classic profiles aggregate performance metrics across the entire
execution, time-series profiles treat individual iterations of the application’s main
loop separately, which allows studying the temporal evolution of the performance
behaviour. They provide less detail than event traces, but can cover longer execu-
tions. Together, the above-mentioned options form a hierarchy of performance data
types with increasing level of detail. The main advantage of Score-P is that a user
needs to become familiar with only one set of instrumentation commands to produce
all theses data types, which can be analysed using the majority of the tools listed
Table 1. Figure 3 provides and overview of the different performance data types
supported by Score-P and the tools that can be used to analyse them. Below we
cover the individual data types in more detail.
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Fig. 3 Performance data types supported by Score-P and the tools that can be used to analyse
them. The * next to the second mentioning of Cube indicates a display type that will be provided
in a future version

Profiles Profiles in the CUBE-4 format map a set of performance metrics such
as the time spent on some activity or the number of messages sent or received
onto pairs of call paths and processes (or threads in multithreaded applications).
Metrics with a specialization (i.e., subset) relationship can be arranged and
displayed in a hierarchy. The call-path dimension forms the natural call-tree
hierarchy. Processes and threads are also arranged in an inclusion hierarchy
together with hardware components such as the nodes they reside on. In addition,
it is possible to define Cartesian process topologies to represent network or
virtual topologies. Profiles can be visually explored using the Cube browser.
Compared to its predecessor CUBE-3, CUBE-4 files have been optimized for
fast writing by storing the metric values in a binary file.

Time-Series Profiles Time-series profiles are like normal CUBE-4 profiles
except that they maintain a separate sub-tree in the call tree for each iteration
of the time-step loop. This allows the user to distinguish individual iterations
and to observe the evolution of the performance behaviour along the time axis.
Time-series profiles are created by annotating the body of the time-step loop with
special instrumentation, which tells Score-P when an iteration ends and when a
new one begins. They can be analysed using the normal Cube display. A future
version of Cube (to be completed after this project ends) will provide special
iteration diagrams that offer an easy way to judge how the performance changes
over time. To avoid that profiling data exceeds the available buffer space, future
versions of Score-P will support the dynamic compression of time-series profile
data using an online clustering algorithm [15].

Event Traces Event traces include all events of an application run that are of
interest for later examination, together with the time they occurred and a number
of event-type-specific attributes. Typical events are entering and leaving of
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functions or sending and receiving of messages. Event traces produced by Score-
P are stored in the Open Trace Format Version 2 (OTF-2), a new trace format
whose design is based on the experiences with the two predecessor formats
OTF [10] and EPILOG [11], the former native formats of Vampir and Scalasca,
respectively. The main characteristics of OTF-2 are similar to other record-based
parallel event trace formats. It contains events and definitions and distributes
data storage over multiple files. In addition, it is more memory efficient, offering
the possibility to achieve measurements with less perturbation due to memory
buffer flushes. In contrast to OTF, the event traces are stored in a binary
format, which reduces the size of the trace files without the need for a separate
compression step. OFT-2 traces are the foundation for further analysis. Vampir
can display OTF-2 traces visually using different kinds of displays, including a
zoomable timeline. The Scalasca trace analyser identifies wait states and their
root causes, producing a CUBE-4 file that provides a higher-level view of the
application performance data. This is typically recommended to get an idea
of key performance issues before visually exploring the traces directly using
a trace browser. Moreover, there is on-going work to convert the traces to the
Paraver format so that they can be analysed using Paraver (visual exploration)
and Dimemas (what-if analysis).

Overhead Minimisation

Another important aspect is the quality of the collected performance data in terms
of intrusion and their size. To keep both intrusion and data size small, the Score-P
measurement system offers a systematic approach of expanding the level of detail
while at the same time narrowing the measurement focus:

1. Generate a summary profile with generous instrumentation while measuring
the overhead. If the overhead is too large (>10 %), reduce instrumentation, for
example, through the application of filter lists. Measure overhead again and
iterate until the overhead is satisfactory.

2. Generate a new summary profile with acceptable overhead. This provides an
overview of the performance behaviour across the entire execution time and
allows the identification of suspicious call paths and processes.

3. Generate a time-series profile, which provides a separate summary profile for
every iteration of the time-step loop. This shows to which degree the performance
behaviour changes as the simulation progresses and allows the identification of
iterations that warrant deeper analysis. A semantic compression algorithm will
ensure that the size of time-series profiles stays within reasonable limits.

4. For the identified iterations, generate event traces. Event traces provide the
highest level of detail and offer a number of interesting analysis options including
automatic wait-state analysis and visual exploration.
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2.4 The HOPSA Performance Tools

This section introduces the various HOPSA performance tools.

2.4.1 Dimemas

Dimemas [12] is a performance prediction tool for message-passing programs.
The Dimemas simulator reconstructs the time behaviour of a parallel application
using as input an event trace that captures the time resource demands (CPU and
network) of a parallel application. The target machine is modeled by a reduced set
of key factors influencing the performance that model linear components like the
point-to-point transfer time as well as non-linear factors like resources contention
or synchronisation. Using a simple model, Dimemas allows performing parametric
studies in a very short time frame. The supported target architecture is a cloud
of parallel machines, each one with multiple nodes and multiples CPUs per node
allowing the evaluation of a very wide range of alternatives, despite the most
common environment is a computing cluster. Dimemas can generate as part of its
output a Paraver trace file, enabling the user to conveniently examine the simulated
run and understand the application behaviour.

Typical Questions Dimemas Helps to Answer

• How would my application perform in a future system?
• Can increasing the network bandwidth improve the application performance?
• Would my application benefit from asynchronous communication?
• Is my application limited by the network or by serialisation and dependency

chains in my code?
• What is the sensitivity of my application to different system parameters?
• What would be the impact of accelerating specific regions of my code?

2.4.2 Paraver

Paraver [1] is a very flexible data browser that is part of the CEPBA-Tools toolkit.
Its analysis power is based on two main pillars. First, its trace format has no
semantics; extending the tool to support new performance data or new programming
models requires no changes to the visualiser – just capturing such data in a Paraver
trace. The second pillar is that the metrics are not hardwired in the tool but can
be programmed. To compute them, the tool offers a large set of time functions,
a filter module, and a mechanism to combine two timelines. This approach allows
displaying a huge number of metrics with the available data. To capture the expert’s
knowledge, any view or set of views can be saved as a Paraver configuration file.
After that, re-computing the view with new data is as simple as loading the saved
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Fig. 4 Paraver timeline display

Fig. 5 Paraver histogram display

file. The tool has been demonstrated to be very useful for performance analysis
studies, giving much more details about the application behaviour than most other
performance tools.

Performance information in Paraver is presented with two main displays that
provide qualitatively different types of information. The timeline display represents
the behaviour of the application along time and processes, in a way that easily
conveys to the user a general understanding of the application behaviour and simple
identification of phases and patterns. The statistics display provides numerical
analysis of the data that can be applied to any user-selected region, helping to draw
conclusions on where and how to focus the optimisation effort. See Figs. 4 and 5 for
an example of Paraver’s main displays.

Typical Questions Paraver Helps to Answer

• What is the parallelisation efficiency and the performance of communication?
• What are the differences that can be observed between two different executions?
• Does the behaviour of the application change over time?
• Are performance or workload variations the cause of load imbalances in compu-

tation?
• Which performance issues do the microprocessor’s hardware counters reflect?
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Fig. 6 Interactive exploration of performance behaviour in Scalasca along the dimensions perfor-
mance metric (left), call tree (middle), and process topology (right). Screendump shows result of a
524,288 threads run on the Jülich BlueGene/Q machine

2.4.3 Scalasca

Scalasca [2] is a free software tool that supports the performance optimisation of
parallel programs by measuring and analysing their runtime behaviour. The tool
has been specifically designed for use on large-scale systems including IBM Blue
Gene and Cray XE, but is also well suited for small- and medium-scale HPC
platforms. The analysis identifies potential performance bottlenecks – in particular
those concerning communication and synchronization – and offers guidance in
exploring their causes.

The user of Scalasca can choose between two different analysis modes: (i) per-
formance overview on the call-path level via profiling and (ii) the analysis of
wait-state formation via event tracing. Wait states often occur in the wake of
load imbalance and are serious obstacles to achieving satisfactory performance.
Performance-analysis results are presented to the user in an interactive explorer
called Cube (Fig. 6) that allows the investigation of the performance behaviour on
different levels of granularity along the dimensions performance problem, call path,
and process. The software has been installed at numerous sites in the world and has
been successfully used to optimise academic and industrial simulation codes.
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Fig. 7 Highlighting a “false sharing” situation. Top left part contains lists of problems. Lower left
contains details, and annotated source code is to the right

Typical Questions Scalasca Helps to Answer

• Which call-paths in my program consume most of the time?
• Why is the time spent in communication or synchronisation higher than

expected?
• Does my program suffer from load imbalance and why?

2.4.4 ThreadSpotter

ThreadSpotter [3] is a commercial tool that will help programmers optimise their
programs with respect to architectural bottlenecks such as cache size and memory
system bandwidth and point out inefficient communication modes between threads.
Its scope is a single process, including both single-threaded as well as multi-
threaded applications.

Some programming styles will exercise the memory system in suboptimal ways
that can reduce performance drastically. Examples of these are failure to observe or
exploit locality properties in code or data. Inappropriate communication through
shared memory between threads may cause the coherence traffic to become a
bottleneck.

ThreadSpotter explains the inefficiencies of observed memory access patterns on
a high level in a graphical user interface (Fig. 7) and provides pointers to suggestions
to optimise the code. It offers deep explanations on hardware level to back up the
suggestions, educating the user as he uses the tool.



140 B. Mohr et al.

Fig. 8 Vampir GUI

Typical Questions ThreadSpotter Helps to Answer

• How does my program abuse the memory system and what can I do about it?
• Do the threads of my program exchange data with each other in an inefficient

way?
• When adjusting my program, are the changes actually helping to minimise the

footprint of the application?

2.4.5 Vampir

Vampir [4] is a graphical analysis framework that provides a large set of different
chart representations of event-based performance data. These graphical displays,
including timelines and statistics, can be used by developers to obtain a better
understanding of their parallel program’s inner working and to subsequently
optimise it. See Fig. 8 for an impression of the Vampir GUI.

Vampir is designed to be an intuitive tool, with a GUI that enables developers
to quickly display program behavior at any level of detail. Different timeline
displays show application activities and communication along a time axis, which
can be zoomed and scrolled. Statistical displays provide quantitative results for the
currently selected time interval. Powerful zooming and scrolling along the timeline
and process/thread axis allows pinpointing the causes of performance problems.
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All displays have context-sensitive menus, which provide additional information
and customisation options. Extensive filtering capabilities for processes, functions,
messages or collective operations help to narrow down the information to the
interesting spots. Vampir is based on Qt and is available for all major workstation
operation systems as well as on most parallel production systems. The parallel
version of Vampir, VampirServer, provides fast interactive analysis of ultra large
data volumes.

Typical Questions Vampir Helps to Answer

• What happens in my application execution during a given time in a given process
or thread?

• How do the communication patterns of my application execute on a real system?
• Are there any imbalances in computation, I/O or memory usage and how do they

affect the parallel execution of my application?

2.5 Integration Among Performance Analysis Tools

Sharing the common measurement infrastructure Score-P and its data formats and
providing conversion utilities if direct sharing is not possible, the performance
tools in the HOPSA environment and workflow already make it easier to switch
from higher-level analyses provided by tools like Sclasca to more in-depth analyses
provided by tools like Paraver or Vampir. To simplify this transition even further,
the HOPSA tools are integrated in various ways (see Fig. 9). With its automatic
trace analysis, Scalasca locates call paths affected by wait states caused by load
or communication imbalance. However, to find and fix these problems in a user
application, it is in some cases necessary to understand the spatial and temporal
context leading to the inefficiency, a step naturally supported by trace visualizers
like Paraver or Vampir. To make this step easier, the Scalasca analysis remembers the
worst instance for each of the performance problems it recognizes. Then, the Cube
result browser can launch a trace browser and zoom the timeline into the interval
of the trace that corresponds to the worst instance of the recognized performance
problems.

In the future, the same mechanisms will be available for a more detailed visual
exploration of the results of Scalasca’s root cause analysis as well as for further
analyzing call paths involving user functions that take too much execution time.
For the latter, ThreadSpotter will be available to investigate their memory, cache
and multi-threading behaviour. If a ThreadSpotter report is available for the same
executable and dataset, Cube will allow launching detailed ThreadSpotter views for
each call path where data from both tools is available.
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Fig. 9 Scalasca to Vampir or Paraver Trace browser integration. In a first step, when the user
requests to connect to a trace browser, the selected visualizer is automatically started and the event
trace, which was previously the basis of Scalasca’s trace analysis, is loaded. Now, in a second
step, the user can request a timeline view of the worst instance of each performance bottleneck
identified by Scalasca. The trace browser view automatically zooms to the right time interval. Now
the user can use the full analysis power of these tools to investigate the context of the identified
performance problem

2.6 Integration of System Data and Performance Analysis
Tools

The Russian ClustrX.Watch management software provides node-level sensor
information that can give additional insight for performance analysis of applications
with respect to the specific system they are running on. This allows populating
Paraver and Vampir traces with system information (the granularity will depend on
the overhead to obtain the data) and to analyze them with respect to the system-wide
performance.

The Russian LAPTA system data analysis and management software provides
node-level sensor information that can give additional insight for performance
analysis of applications with respect to the specific system they are running on. This
allows populating Paraver and Vampir traces with system information collected by
Clustrx, Ganglia, and other sources (the granularity will depend on the overhead to
obtain the data) and to analyze them with respect to the system-wide performance.
The system offers two different ways to access to the collected data:
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Fig. 10 Vampir screendump showing aligned system and application data

Historic information is stored with a given granularity for all the sensors and
all the IP (nodes) on the system. The initial granularity was very coarse (1 min)
and did not seem useful for the population of application trace files because there
can be many different program phases in a 1 min interval. On the other hand, the
circular buffer provides historical information with fine-grained detail (coarser or
equal to 1 s depending on the sensor) for the last minutes (300 measurements).
Streamed information can be requested for any range of sensors and IPs. The
interface provides at least a value every 10 s unless there is a change greater than
a 10 %. Currently, the finest available granularity is 1 s.

Both mechanisms use a connection through an HTTP protocol that in the case of
the streamed data has to be refreshed periodically or dies after 5 min. We evaluated
both alternatives to see their potential and identified possible drawbacks.

The Vampir team implemented a prototype Score-P adapter that enhances OTF2
traces at the end of the measurement. For evaluation, the benchmark code HPL
was instrumented with Score-P. In addition to the application and MPI events,
the trace was enhanced with HOPSA node-level metrics and per-process PAPI
counters. Tested and working HOPSA sensors include node memory usage values
and Infiniband packet counts. The evaluation shows that phases in the application
clearly correlate to measured values of the node level sensors, e.g. heavy MPI
communication to Infiniband packet counters (see Fig. 10). As a use case, this
integration allows the user to analyze how the application utilizes network hardware
of each node or how shared usage of network resources affects the application
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Fig. 11 Paraver screendumps showing aligned system and application data

execution. Currently the sensor values are available in 1 s granularity for the last
500 s and 1 min granularity before that.

The Paraver team experimented with Gromacs, a popular production code in life
sciences, trying to correlate the sensors values to the activity of the application. As
one can see in Fig. 11, on a higher level, it is possible to correlate system metrics
with application program phases (left side of the picture). However, due to the
limited resolution of the system metrics data, this is not possible on a more detailed
level (see right side of the figure).

2.7 Opportunities for System Tuning

Several opportunities for system tuning arise from the availability of historic
performance data collected by LWM2. First, data on individual system nodes along
an extended period of time in comparison to other nodes can be analysed to spot
anomalies and detect deficient components. Second, data on the entire workload
can be used to improve the understanding of the workload requirements and
configure the system accordingly. The insights obtained may guide the evolution
of the system and influence future procurement decision. Finally, knowledge of
the resource requirements of individual jobs offers the chance to develop resource-
aware scheduling algorithms that avoid oversubscription of shared resources such
as the file system or the network.
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3 Conclusion

The HOPSA project creates an integrated diagnostic infrastructure for combined
application and system tuning. Starting from system-wide basic performance
screening of individual jobs, an automated workflow routes findings on potential
bottlenecks either to application developers or system administrators with recom-
mendations on how to identify their root cause using more powerful diagnostics.
This document specifies the performance analysis workflow that connects the
different steps. At the same time, it provides an impression of the overall vision
behind the project. The high-level description is intended to make it readable also
for non-tool experts.

Although the specification is based on long experience with HPC application
developers and how they tend to use performance tools, it is a blueprint that needs
to be validated in practice. This validation is planned for the last quarter of the
project at Moscow State University, once all the components are in place and, in
particular, LWM2 has been fully completed, tested, and integrated into the overall
environment. During this validation process, some of the details presented in this
document may change and ultimately result in a new revision. We expect though
that all major elements will be retained.

Beyond the lifetime of the project, the HOPSA infrastructure is supposed to
collect large amounts of valuable data on the performance of individual applications
as well as the system workload as a whole. It will be of interest in three ways: to
tune individual applications, to tune the system for a given workload, and finally
to observe the evolution of this workload over time. The latter will allow the
effectiveness of our strategy to be studied. An open research issue to be tackled on
the way will be the reliable tracking of individual applications, which may change
over time, across jobs based on the collected data. In this way, it will become
possible to document the performance history of code projects and demonstrate the
effects of our tool environment over time.
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