
MPI Runtime Error Detection with MUST:
Advanced Error Reports

Joachim Protze, Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz,
Matthias S. Müller, and Wolfgang E. Nagel

Abstract The Message Passing Interface (MPI) is a widely used paradigm for
distributed memory programming. Its API is primarily designed for good perfor-
mance and less for usability; it provides only very limited abstractions that help
enforce its correct use. As a result, application developers need tools that aid in the
detection and removal of MPI usage errors. Our runtime error detection tool MUST
addresses this issue and provides a wide range of automatic correctness checks.
MUST uses state-of-the-art approaches to cope with complex MPI semantics like
derived datatypes, collective operations, and wildcard receive operations. However,
equally important to detecting correctness violations, is that such correctness tools
present all details of the violating MPI call(s) required to pinpoint the problem in
the source code and to remove the error. In this paper we focus on the error reports
presented by MUST and propose a new set of error reports that present complex
errors with fine-grained details of the error situation. This includes a deadlock view
and a view for usage errors in complex MPI datatypes.

1 Introduction

The development of Message Passing Interface (MPI) [1] applications is a time
consuming and complex task. One of the key challenges, aside from achieving
high efficiency, is guaranteeing soundness of an application’s use of MPI, i.e., its
correct usage of the MPI API. While some MPI related errors may directly cause

J. Protze (�) � T. Hilbrich � M.S. Müller � W.E. Nagel
Center for Information Services and High Performance Computing (ZIH), Technische Universität
Dresden, D-01062 Dresden, Germany
e-mail: joachim.protze@tu-dresden.de

B.R. de Supinski � M. Schulz
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

A. Cheptsov et al. (eds.), Tools for High Performance Computing 2012,
DOI 10.1007/978-3-642-37349-7 3, © Springer-Verlag Berlin Heidelberg 2013

25

mailto:joachim.protze@tu-dresden.de

26 J. Protze et al.

Process 0 Process 1
MPI Recv(from:1, tag:100) MPI Recv(from:0, tag:200)
MPI Isend(to:1, tag:200, &req) MPI Isend(to:0, tag:100, &req)
MPI Wait(&req) MPI Wait(&req)

Recv-recv deadlock.

Process 0 Process 1
MPI Isend(to:1, tag:200, &req) MPI Isend(to:0, tag:100, &req)
MPI Recv(from:1, tag:200) MPI Recv(from:0, tag:100)
MPI Wait(&req) MPI Wait(&req)

Deadlock resulting from a tag mismatch.

a

b

Fig. 1 MPI usage error
examples. (a) Recv-recv
deadlock. (b) Deadlock
resulting from a tag mismatch

wrong results, application crashes, or hangs, some errors may only manifest on
some systems or runs and then in some cases only long after their cause or simply
by producing wrong results at the end of the execution. If done manually, finding
such problems can be a long and difficult task and developers therefore require
tool support that aids in the removal of these errors. Runtime error detection, i.e.,
detecting errors during an application run, is one tool class that provides this support.
We develop the Marmot Umpire Scalable Tool (MUST), named after its predecessor
tools Marmot [2] and Umpire [3], for this purpose.

Recent advances in runtime deadlock detection [4] and datatype correctness
checks [5] allow MUST to efficiently detect complex errors. However, detecting
such errors is only half the solution to the overall problem. Any tool must also
present all details about a detected error in a way that helps users understand the
erroneous behavior of their codes and help them fix the problem. Consider the
following examples that illustrate some potential complexities:

Figure 1 presents two deadlock scenarios with simplified MPI calls. Two
processes attempt to send and receive a message from each other using blocking
receive and non-blocking send calls. The example in Fig. 1a results in a deadlock,
as both processes issue the MPI Recv call without issuing any send calls first. As
a result, both processes wait in a cyclic fashion for each other’s send call, which is
never reached, and hence can’t continue execution. MUST’s graph-based deadlock
detection catches this error and presents the user with a wait-for graph. As no
process issued a send call before the receive call, this report includes the key
items to understand the error, which in this case are the processes involved in the
deadlock and their individual active MPI calls. The situation in Fig. 1b represents
a similar communication, which also results in a deadlock, due to a mismatch in
the given message tags. MUST’s wait-for graph shows the user that both processes
are blocked in the MPI Recv call. As both processes have active send calls, the
simple criteria used in the example above doesn’t hold and the tool user needs
to investigate these calls manually in order to determine whether a tag or even a
communicator mismatch exists. Different source files that contain active send calls
or the use of variables as tag arguments can complicate this further.

MPI Runtime Error Detection with MUST: Advanced Error Reports 27

In this paper, we present a set of novel output extensions of MUST that provide
tool users with the necessary fine-grained and detailed information of such complex
error situations, but without overwhelming them with additional unrelated data. In
particular, we include:

• A parallel call stack that highlights the processes that MUST determined as the
root of a deadlock,

• A condensed message queue that only lists send and receive calls that are
meaningful in a deadlock situation, and

• A call-stack based decomposition of the message queue graph to augment a
regular message queue graph with source location information, and

• A datatype tree view that highlights error positions in derived datatypes.

We first present an overview of MUST, its correctness checks, and its basic
error report in Sect. 2, followed by a summary of MUST’s current deadlock view
and datatype usage reports. Afterwards, we present our proposed deadlock view
extensions in Sect. 4. Section 5 presents how we can efficiently pinpoint particular
error positions in derived datatypes. Finally, we present related work in Sect. 6 and
conclude in Sect. 7.

2 MUST

MUST detects MPI usage errors, i.e., usage of MPI calls that are not consistent with
restrictions laid out in the MPI standard, during an application run and reports them
to the user. Examples for such usage errors are illegal parameters to MPI calls, writes
to a send buffer while an asynchronous message transfer is in progress, inconsistent
orderings of collective operations, or deadlocks due to improper synchronization.
MUST uses the MPI profiling interface to intercept and analyze all MPI calls
that an application issues. The tool can be loaded into the application using the
LD PRELOAD mechanism. In this case, the usage of the tool becomes as easy
as replacing the respective mpiexec command with a wrapper command called
mustrun.

We distinguish two types of correctness checks: local correctness checks and
non-local checks. Local checks only require information that is available on a single
MPI process and hence don’t require any communication for their execution. As
a result, MUST is able to execute local checks inside each application process,
or more precisely inside the MUST MPI wrappers used to intercept all MPI
calls. Using local checks, we can, e.g., detect whether a datatype that is used in
a communication call is committed or whether parameters to MPI calls are out
of range. Non-local correctness checks require information from more than one
process. Datatype signature matching between sending and receiving communi-
cation calls is one such example. The implementation of non-local correctness
checks requires additional communication and hence a separate communication
mechanism that can forward information about MPI calls to other processes or extra

28 J. Protze et al.

Fig. 2 Example MUST error report

resources. MUST uses the Generic Tool Infrastructure (GTI) [6] for this purpose.
Currently MUST provides the following classes of correctness checks covering a
wide spectrum of possible error cases:

• Local:

– Integer checks (e.g., restrictions on tags, counts, sizes, and offsets)
– Integrity checks (e.g., Arrays allocated or communication buffer present)
– MPI resource surveillance (e.g., use of requests, datatypes, reduce operations,

groups, and communicators)
– Resource leak checks
– Communication buffer overlap checks

• Non-local:

– Collective verification (e.g., matching roots and compatible reduce operations)
– Lost message detection
– Message type matching (for both point-to-point and collective operations)
– Deadlock detection

Previous work [4] includes extensive performance results and has shown the
feasibility of this approach, including its scalability using an application study on
up to 512 processes.

In its initial form, the basic output of MUST is an HTML table that follows
the format of Marmot [7]. In Marmot checks had to be implemented for each MPI
call, even for the same error conditions, leading to significant code duplication
of any error reporting. MUST avoids this redundancy with the use of so-called
argument IDs. Figure 2 shows a basic MUST report with an integer usage error. The
check that detects the negative count argument in the MPI Send call is mapped to
many different calls and argument types. MUST uses the argument IDs to identify
the argument number and name, which increases the detail in its output reports.
Further, MUST uses the Stackwalker API of the Dyninst project1 to retrieve call
stack information for each MPI call it intercepts.

1http://www.dyninst.org/

http://www.dyninst.org/

MPI Runtime Error Detection with MUST: Advanced Error Reports 29

3 Shortcoming of Current Error Views

While the initial MUST implementation provided useful information about violated
checks, the output format was not optimal and omitted several key pieces of
information a user requires to identify the broken code location and to fix it. These
shortcomings were introduced because the initial output format was driven by the
implementation of the tool and what it naturally collects, without taking the user’s
needs into account. This is, unfortunately, common for many tools, which flood the
user with raw data, but fail to provide some essential details. We illustrate two such
problems in the following, using the examples of deadlock detection and problems
with complex datatypes. We will first show (in this section) why the existing views
are insufficient and (following in the next two sections) how we were able to work
around it.

3.1 Example 1: Pinpointing Deadlocks

A key feature of MUST is its graph-based deadlock detection [8]. It creates a wait-
for graph and then uses this graph to identify existing deadlock conditions. If such
a condition is found, the tool provides the user with a list of processes that are
in a deadlocked state as well as their wait-for dependencies that cause them to be
deadlocked. This enables MUST to separate processes that cause the deadlock from
processes that hang due to waiting for deadlocked processes directly or indirectly.

The graph based approach also has the additional advantage that we can use the
graph itself to visualize the deadlock conditions and the wait-for dependencies to
the user. As a result, MUST’s previous deadlock view provides:

• A textual description of the deadlock situation,
• A wait-for graph of the deadlocked processes, and
• A source location list of the deadlock processes.

In the following we use the erroneous sequence of MPI calls in Fig. 1b as an example
to illustrate MUST’s previous output. Figure 3a shows the wait-for graph (WFG)
that MUST provides for this example. However, this graph along with the source
location lists of the deadlocked processes alone is not sufficient to identify the
root cause for this error. From our experience, a tool must provide answers to the
following questions:

1. Which processes cause the deadlock?
2. What MPI calls are active on these processes?
3. Which control flow led to these active calls?
4. In the case of involved point-to-point operations, which other active communi-

cations exist?

30 J. Protze et al.

MPI_Recv@0

MPI_Recv@1

 tag=200, comm=A tag=100, comm=A

Wait-for graph.

0

1

send:comm=A,tag=200} send:comm=A,tag=100

Message queue graph.

__libc_start_main@libc-2.13.so

main@tagmismatch.c:46

 [0]

main@tagmismatch.c:53

 [1]

MPI_Recv

 [0]

MPI_Recv

 [1]

Parallel call stack graph.

MPI_Isend MPI_Isend

__libc_start_main@libc-2.13.so

main@tagmismatch.c:45

 [0]

main@tagmismatch.c:52

 [1]

0

 [0]

1

 [1]

1

 comm=A,tag=200

0

 comm=A,tag=100

Call stack graph decomposition of the message queue graph.

a

c

d

b

Fig. 3 Deadlock view components for the example in Fig. 1b. (a) Wait-for graph. (b) Message
queue graph. (c) Parallel call stack graph. (d) Call stack graph decomposition of the message
queue graph

MPI Runtime Error Detection with MUST: Advanced Error Reports 31

While MUST’s previous output provides answers to the first two questions it
does not provide information on the latter two. Also, the list of source locations is
insufficient for deadlock reports that involve more than a few processes.

3.2 Example 2: Viewing Datatype Related Problems

The MPI standard imposes constraints for communication operations. Erroneous
usage of MPI datatypes may collide with three of such constraints. In the following
we sketch these three referring to version 2.2 of the MPI standard [1]:

• For sending operations, the application may not modify the communication
buffer, until the send completes.

• For receiving operations, the application must not access any part of the
communication buffer, until the receive completes.

• The type signature of a communication must adhere to matching rules during the
following three steps:

1. MPI types must match programming language types for reads from the
application memory (except for the MPI type MPI BYTE),

2. MPI types must match on receiver and sender sides during transport to
receiver, and

3. MPI types must match programming language types for writes to the applica-
tion memory (except for the MPI type MPI BYTE).

In MUST we provide checks for overlapping communication buffers handling a sub-
set of clashes with the first two constraints, and for type matching in communication
which meets step two of the latter constraint. These checks handle any (derived)
datatypes that communication calls may use. We provide no checks for memory
manipulation done in application context. Instead, we focus on simultaneous MPI
communications that break any of these constraints. If MUST detects such an error,
it is crucial that it provides precise information on its source. While the simplest
solution would be to provide memory addresses, this provides unsatisfactory details
on where the error resides in a communication buffer and its associated MPI
datatype. We currently use a path expression approach [5] to pin-point these
error locations. An example for this path expression can be found in Sect. 5.
While these expressions provide an exact position of the error location within a
datatype signature, they require a deep understanding of their format, while losing
information about the overall structure of the involved datatype(s).

4 Deadlock View in MUST

As the last section illustrated, MUST’s previous deadlock view lacked detail, espe-
cially for message mismatch situations, and scalability. To overcome this limitation,
we propose a new, dedicated deadlock view that contains the following elements:

32 J. Protze et al.

• A textual summary,
• A communicator overview,
• The WFG with a legend,
• A parallel call stack,
• A graph representation of the current message queue, and
• A decomposition of the message queue that uses a parallel call stack.

Our new output generator in MUST combines all of these elements in a single
HTML page (for better readability, however, we present the individual elements
in separate sub-figures). While the textual summary matches our previous outputs,
we use the communicator overview to represent each communicator with an upper
case letter. In the erroneous sequence of MPI calls in Fig. 1b, which we use as
an example throughout this section, the application only uses MPI COMM WORLD,
which we represent as comm A. If additional communicators are defined by the
application, the communicator summary includes information on the MPI calls
that created the communicator. The WFG (Fig. 3a) matches our previous outputs,
except that we now use the communicator symbols to also present information on
the communicators in use. We also add a legend to this graph as it may contain
intermediate nodes to represent complex MPI semantics. Additionally, the new view
shows the parallel call stack to provide insights for Question 3 (introduced in Sect. 3)
and the last two graphs to provide information for Question 4, which we describe in
the following.

Figure 3c shows MUST’s parallel call stack for our example. It helps to illustrate
control flow decisions that lead to the deadlock condition. While it is challenging to
represent information on the control flow of the individual processes in all details,
this limited view provided by call stacks is in most cases sufficient. Additional static
source analysis may reveal control flow relevant variables to enrich parallel call
stack graphs with further information, as an extension [9] of the STAT [10] tool
shows. Further, these graphs scale well with the number of application processes.
For our purposes, we limit this call stack graph to only the application processes
that are part of the deadlock in order to remove any unnecessary information and
provided the most concise representation.

Question 4 addresses situations where point-to-point operations are involved in
a deadlock. In this case the root-cause of the error may be a tag or communicator
mismatch. In order to understand this situation, the application developer requires
information about any active and meaningful point-to-point call, whether it is
involved in the actual deadlock condition or not. MUST provides a message queue
graph for this purpose. Since MUST detects which processes are part of the
deadlock, while it also determines which processes are blocked in point-to-point
calls, we can automatically reduce the full message queue graph to only present
messages that:

• Were started by a process that is part of the deadlock;
• Have active send operations, which target a process that hangs in a receive

operation or a completion that includes a non-blocking receive operation; or

MPI Runtime Error Detection with MUST: Advanced Error Reports 33

• Have active receive operations, which target a process that hangs in a send
operation or a completion that includes a non-blocking send operation.

Using these conditions, we can condense our output to only present relevant
point-to-point operations. Figure 3b shows this graph for our example. The graph
includes an arc from node 0 (which represents process 0) to node 1 to represent the
MPI Isend call that was issued on process 0 before the deadlock manifested. The
other arc represents the MPI Isend operation that was started by process 1.

MUST’s condensed message queue graph allows application developers to
determine whether a potential mismatch exists. In our example, Fig. 3a shows
that process 0 waits for a matching send operation of process 1, which uses the
tag 200, while Fig. 3b shows that a send operation exits, but with tag 100. If a
mismatch exists, the user needs to be able to identify the call and control flow
origin of the mismatched operation. We use a parallel call stack to represent all MPI
operations that started any operation within MUST’s relevant message queue graph.
This identifies the call stacks of these operations, but as each operation may use
multiple targets, tags, and communicators, we need to highlight which individual
parts of the message queue graph result from each leaf of the call stack graph. As
a result, we decompose the message queue graph into sub-graphs that represent
the components that each MPI operation creates. Figure 3d shows this call-graph-
based decomposition for our example. This graph allows the tool user to determine
which message might be mismatched, while it contains information about its source
location along with limited control flow information.

5 Type Tree View

In this section we will describe a new, more expressive graphical view for datatype
related errors.

The code example in Listing 1 sketches a particle simulation where information
about a subset of the particles needs to be transferred to a neighbor process. In the
application a C struct holds the information about a particle. The set of particles is
organized in an array of this struct. Using derived datatypes, MPI enables us to select
the subset from the array and send it in a single contiguous operation to the neighbor.
To create the fitting datatype, the example uses at first the MPI Type struct
constructor to represent the C struct and then an MPI Type indexed constructor
to select parts of an array of this struct. While the first constructor is correct
with respect to type matching, the second one causes a communication buffer
overlap when the example issues the MPI Sendrecv call (performed as local
operation in this simplified example). MUST’s current path expressions calculate
to [0](INDEXED)[5][4](STRUCT)[0][0](DOUBLE) for the sending part
and [0](INDEXED)[3][0](STRUCT)[0][0](DOUBLE) for the receiving
part of the MPI Sendrecv call. Figure 4a sketches the overlap within the array
(called cloud) of the C structure, i.e., the elements that the MPI Type indexed

34 J. Protze et al.

Listing 1 Example for a communication buffer overlap

double velocity[3]; double spin[3]; char charge;
double radius; double mass; };

struct particle cloud[112];
MPI_Datatype structtype, indexedtype;

int blocklens[7] = {3, 3, 3, 3, 1, 1, 1};
MPI_Datatype types[7] = {MPI_DOUBLE, MPI_INT, MPI_DOUBLE,

MPI_DOUBLE, MPI_CHAR, MPI_DOUBLE, MPI_DOUBLE};
// displs derived from c-struct by MPI_Get_address()
MPI_Aint displs[7] = {0, 24, 40, 64, 88, 96, 104, 112};
MPI_Type_struct (7, blocklens, displs, types,

&structtype);

int array_of_blocklens[8] = {3, 2, 1, 2, 4, 8, 1, 3};
int array_of_displs[8] = {3, 13, 23, 34, 44, 55, 65, 76};
MPI_Type_indexed (8, array_of_blocklens, array_of_displs,

structtype, &indexedtype);
MPI_Type_commit(&indexedtype);

MPI_Sendrecv(cloud, 1, indexedtype, 0, 42, cloud + 25, 1,
indexedtype, 0, 42, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

constructor selects from the array. While this representation highlights the overlap,
this display loses information about the internal datatype structure. To combine the
expressiveness of the path expression and the overview of such a memory map, we
propose an overlap graph. This graph visualizes the two path expressions that cause
the overlap along with a sketched structure of the datatypes in use. Figure 4b shows
this graph for the example in Listing 1. We represent the path expressions of the
overlap in red in this graph. For overlaps the trees of the colliding communication
operations will either join at a node of the same basic MPI type and absolute offset,
as in our example, or we use a compound node if the overlap occurs for two different
types/offsets. We join further tree nodes if they compare to equal sub-types, as for
the MPI Type struct in our example. We compute this by recursing the type
trees from the leaf towards its root.

An example for a type mismatch can be derived from the above example
by mixing up the struct entries for charge and radius at one of the
neighbor processes. The current path expression for this situation calculates to
[0](INDEXED)[0][0] (STRUCT)[4][0](CHAR) and [0](INDEXED)
[0][0](STRUCT)[4][0] (DOUBLE), indicating that an MPI CHAR mis-
matches with an MPI DOUBLE. To display the mismatch we create a tree for
both involved datatypes where we skip nodes apart from the (red) error path while
we keep a few basic MPI types near the mismatch position to have a more detailed
context of the mismatch. To derive a smaller graph we merge similar nodes of both
trees. Figure 5 provides the resulting view for the sketched mismatch situation.

MPI Runtime Error Detection with MUST: Advanced Error Reports 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array indices of send / receive marked blue / green.

Overlap graph.

a

b

Fig. 4 Overlap view for the example in Listing 1. (a) Array indices of send/receive marked
blue/green. (b) Overlap graph

6 Related Work

This work directly relates to other runtime error detection approaches for MPI
applications, which include Marmot [2], Umpire [3], ISP [11], MPI-Check [12],
and Intel’s approach [13]. While MUST as successor of both Marmot and Umpire
identifies deadlocks with a graph-based approach, the MPI-Check tool and Intel’s
approach use a timeout-based deadlock detection. As a result, these tools only
provide a list of all active MPI calls when the presence of a deadlock is suspected.

36 J. Protze et al.

Fig. 5 Type mismatch view for a confusion in the type definition

ISP runs a replay based investigation of all possible interleavings of an MPI
application. As a result, this tool can detect some deadlocks that MUST would not
detect in a certain application run. ISP’s deadlock output includes a trace of all
MPI calls that each process issued, as well as their matching decisions. While very
detailed, this output will get overly complex, especially for longer application runs
with more than a few processes. While our output contains no complete history of
all issued MPI calls, we provide the user with a more scalable deadlock view that
condenses relevant history information with the use of a reduced message queue
graph.

The STAT [10] tool and debuggers like DDT and Totalview use parallel call
stack graphs and/or message queue graphs. Debuggers use interfaces to the MPI
library [14] to retrieve message queue information, whereas MUST tracks all
MPI calls during the whole application run. Existing integrations of runtime error
detection tools with debuggers, e.g. DDT and Marmot [15], could be extended
to provide debuggers with information on which processes cause a deadlock.
Debuggers could than condense message queue graphs as in our approach. Also,
the representation of derived datatypes with trees is based on ideas of the flattening
on the fly technique [16].

7 Conclusion

We present the MUST runtime error detection tool for MPI applications along
with extensions of its error reports. Our previous output for deadlock situations
failed to capture information on active point-to-point messages, which is crucial

MPI Runtime Error Detection with MUST: Advanced Error Reports 37

in the detection of message mismatch situations. We use message queue graphs
to present these active operations. MUST’s graph-based deadlock detection yields
a set of processes that cause the deadlock, which allows us to condense parallel
call stacks and message queues to only include relevant information. In order
to add call location information to the message queue graph representation, we
propose an extended parallel call stack graph that includes a decomposition of
the message queue graphs in their leaves. While these representations allow us to
present relevant information for the removal of deadlocks at moderate scale, we
still need to investigate their practicability for thousands or more processes. While
our approach allows us to visualize deadlocks that only involve a few processes, it
may fail for complex deadlocks that involve all or most application processes. This
especially affects the size of the WFG and the message queue graphs.

Our second error view provides a detailed output for errors that involve derived
datatypes. This includes communication buffer overlaps, and type mismatches
between point-to-point or collective MPI operations. The removal of these errors
requires a precise understanding of which part in a derived datatype causes the error.
As a result, we use a narrowed type tree representation that highlights the position
in the datatype that causes the error, while it sketches the structure of the involved
datatypes at the same time.

Acknowledgements Part of this work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
(LLNL-CONF-586816). This work has been supported by the CRESTA project that has received
funding from the European Community’s Seventh Framework Programme (ICT-2011.9.13) under
Grant Agreement no. 287703.

References

1. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 2.2.
http://www.mpi-forum.org/docs/mpi22-report.pdf (April 2009)

2. Krammer, B., Müller, M.S.: MPI Application Development with MARMOT. In: PARCO.
Volume 33., Central Institute for Applied Mathematics, Jülich, Germany (2005) 893–900

3. Vetter, J.S., de Supinski, B.R.: Dynamic Software Testing of MPI Applications with Umpire.
Supercomputing, ACM/IEEE 2000 Conference (04–10 Nov. 2000) 51–51

4. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: Mpi runtime error
detection with must: Advances in deadlock detection. In: Proceedings of 2012 International
Conference for High Performance Computing, Networking, Storage and Analysis. SC ’12,
New York, NY, USA, ACM (2012)

5. Protze, J., Hilbrich, T., Knüpfer, A., de Supinski, B.R., Müller, M.S.: Holistic Debugging of
MPI Derived Datatypes. In: IPDPS 2012: Proceedings of the 26th IEEE International Parallel
& Distributed Processing Symposium. (2012)

6. Hilbrich, T., Müller, M.S., de Supinski, B.R., Schulz, M., Nagel, W.E.: GTI: A Generic Tools
Infrastructure for Event Based Tools in Parallel Systems. In: IPDPS 2012: Proceedings of the
26th IEEE International Parallel & Distributed Processing Symposium. (2012)

7. Krammer, B., Hilbrich, T., Himmler, V., Czink, B., Dichev, K., Müller, M.S.: MPI Correctness
Checking with Marmot. In: Parallel Tools Workshop’08. (2008) 61–78

http://www.mpi-forum.org/docs/mpi22-report.pdf

38 J. Protze et al.

8. Hilbrich, T., de Supinski, B.R., Schulz, M., Müller, M.S.: A Graph Based Approach for
MPI Deadlock Detection. In: ICS ’09: Proceedings of the 23rd International Conference on
Supercomputing, New York, NY, USA, ACM (2009) 296–305

9. Ahn, D.H., de Supinski, B.R., Laguna, I., Lee, G.L., Liblit, B., Miller, B.P., Schulz, M.:
Scalable temporal order analysis for large scale debugging. In: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. SC ’09, New York, NY,
USA, ACM (2009) 44:1–44:11

10. Arnold, D., Ahn, D., de Supinski, B., Lee, G., Miller, B., Schulz, M.: Stack Trace Analysis
for Large Scale Debugging. In: Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International. (march 2007) 1–10

11. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: A Tool for Model
Checking MPI Programs. In: 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. (2008) 285–286

12. Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: MPI-CHECK: A Tool for
Checking Fortran 90 MPI Programs. Concurrency and Computation: Practice and Experience
15(2) (2003) 93–100

13. Desouza, J., Kuhn, B., Supinski, B.R.D.: Automated, Scalable Debugging of MPI Programs
with Intel Message Checker. In: In Workshop on Software Engineering for High Performance
Computing System Applications (SE-HPCS). (2005)

14. Cownie, J.: A standard interface for debugger access to message queue information in MPI.
In: Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 1697
of Lecture Notes in Computer Science, Springer Verlag (1999) 51–58

15. Krammer, B., Himmler, V., Lecomber, D.: Coupling DDT and Marmot for debugging of MPI
applications. In: PARCO’07. (2007) 653–660

16. Träff, J.L., Hempel, R., Ritzdorf, H., Zimmermann, F.: Flattening on the Fly: Efficient
Handling of MPI Derived Datatypes. In: Proceedings of the 6th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, London, UK, Springer-Verlag (1999) 109–116

	MPI Runtime Error Detection with MUST: Advanced Error Reports
	1 Introduction
	2 MUST
	3 Shortcoming of Current Error Views
	3.1 Example 1: Pinpointing Deadlocks
	3.2 Example 2: Viewing Datatype Related Problems

	4 Deadlock View in MUST
	5 Type Tree View
	6 Related Work
	7 Conclusion
	References

