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Preface

The latest advances in the high-performance computing (HPC) hardware, such
as increased capabilities of a single NUMA node or heterogeneous architectures
combining traditional CPU nodes with accelerators, have significantly raised the
level of principally available compute performance. At the same time, the growing
hardware capabilities of modern supercomputing architectures have caused an
increasing complexity of the parallel application development technology. While
a number of new programming paradigms, e.g., task-based parallelization and
data-driven programming frameworks, have been introduced to fully exploit the
available compute resources, very little has been done in terms of tools for
performance optimization and debugging for new programming models nor for the
latest generation of hardware.

Despite numerous efforts to improve and simplify application development, there
is still a lot of manual tuning work required in order to take full advantage of
modern HPC architectures. The process of identifying and eliminating performance
issues, ranging from simple memory leaks to inefficient design of communication
patterns, is very difficult, unless special tools are used. The HPC tools for debug-
ging, performance analysis, and optimization of parallel applications make a major
contribution to development of the robust and efficient parallel software.

In order to enable a technology exchange and cross-fertilization in the optimiza-
tion techniques and development approaches across the HPC tools’ developers, the
Center for Information Services and High Performance Computing of the University
of Dresden (ZIH-TUD)1 and the High-Performance Computing Center Stuttgart
(HLRS)2 jointly organize the International Parallel Tools Workshop. The workshop
is an annual event, which addresses challenges in parallel software performance
assurance and discusses novel trends in HPC tools development.

The workshop has two major goals. The first is serving as discussion forum
for tool developers on the latest advances in performance analysis techniques and

1http://tu-dresden.de/die tu dresden/zentrale einrichtungen/zih/
2http://www.hlrs.de/
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software technologies for them. Approaches of eliminating typical performance
issues in complex application scenarios by coupling techniques used in different
tools were of a special interest for the last workshop’s edition. The second goal
is to offer the users of parallel tools a unique opportunity to gain a consolidated
outlook on state-of-the-art HPC tools. The workshop has proved successful among
the application providers, who get an opportunity to have a discussion with the other
developers sharing similar performance issues or establish new contacts with tools’
developers. On the other hand, the users’ feedback helps tools’ developers define
obstacles to newly raising performance issues and identify engineering or research
approaches to overcome them.

This book comprises a continuation of a successful series of publications that
started in 2007. It contains contributed papers presented at the 6th International
Parallel Tools Workshop,3 held 25–26 September 2012 in Stuttgart, Germany. The
workshop’s audience represent leading scientific and industrial organizations world-
wide. The presentations covered different aspects of the software optimization,
ranging from parallel debugging to complex performance data visualization tech-
nology. More than ten different tools were addressed in workshop presentations or
hands-on tutorials.

Along with the newest features of the well-known tools, such as Vampir
(a performance analysis framework for a wide range of parallel applications) or
DDT (a debugging framework with a big set of extensive analysis features), the
book introduces new tools which were presented for the first time in the Parallel
Tools series, e.g., Temanejo (a debugging environment for StarSs) or MemPin (an
automatic memory detection tool for MPI applications). The book’s material is
organized in four sections: Debugging, Automatic Error Detection, Performance
Analysis and Optimization, and Performance Data Visualization.

We believe that the presented material offers a comprehensive outlook on
the mainstream application analysis and optimization technology in the high-
performance computing domain for both categories of readers – parallel tools’
developers and developers of parallel applications.

Stuttgart, Germany Alexey Cheptsov
February 2013 Steffen Brinkmann

José Gracia
Michael M. Resch

Wolfgang E. Nagel

3http://toolsworkshop.hlrs.de/2012/

http://toolsworkshop.hlrs.de/2012/
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Debugging at Scale with Allinea DDT

David Lecomber and Patrick Wohlschlegel

Abstract As core counts in HPC clusters grow, almost every application user is
trying to run software at higher scale than before. It is not always an easy task
and can end in failure as the limitations of existing software are discovered. Users
and developers quickly find new (and old) bugs as scale increases: software can be
complex when it seeks to use more threads or processes to exploit the hardware.
In this document, we show how using a debugger at the scale of the bug is the
most effective way to tackle parallel software problems today. We introduce Allinea
DDT – the world’s only scalable parallel debugger – and show how it is fast, capable,
and lets you debug your parallel or multithreaded application, no matter how big or
small a system you use, easily. Allinea DDT has been setting standards for usability
for many years and has torn up scalability records. It is used on the world’s largest
systems – debugging over 220,000 processes simultaneously in some cases. Bugs
can be fixed easily for all developers – not just those with extreme scale – by using
Allinea DDT at your scale.

1 Why Scalability Matters for Debugging

Studies of job failure on larger HPC systems have shown that software problems
account for a significant proportion of failures.

Increasingly errors appear at higher scales: exhaustive testing at high scale is
often infeasible due to the cost of machine access, or lack of machine access. There
are regularly differing development and production environments. This means that
errors often occur at scale in production environments – and fixing them is a very
high priority.
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Software developers are used to trying many tricks to find software bugs – and
no trick is more common than inserting a quick print statement. This technique can
be revealing – but it is one that can scarcely handle a small parallel cluster, let alone
1,000 cores! The difficulty of knowing where to place the print statements in the first
place leads to a repetitive task – but the killer problem for debugging larger parallel
jobs is making sense of the interleaved print outputs of multiple processes – and this
gets much worse as the number of cores increases.

Another approach is to try and make the bug appear at a smaller scale – but
this is often an impossible task. Real users have discovered scale-related defects
whenever applications are scaled to a higher level of concurrency – and then that it
is difficult to observe such defects at reduced scales. Some bugs just do not exist at
small scale – or can’t be found in smaller datasets. If a stable application suddenly
fails when moving to a larger system, it is unlikely that a smaller test will exhibit
the issue.

Whilst many bugs are not random, many are and can be the hardest to track
down. Developers familiar with array overruns or memory corruption will recognize
the random consequences of such errors, and those with multithreaded applications
or MPI applications with point-to-point communications or RDMA, will know that
timing and ordering of events is a major source of random behaviour.

A bug that is random may fail to occur frequently enough to reproduce it on a
job of say, 16 cores, but on 128 cores, it would be more likely to happen just by
the cumulative effect of probability or the increase in the number of permutations of
event orderings. So, again, reducing the scale of the application doesn’t help in fix
the problem.

We have seen that scale-related bugs are observed to occur frequently and that
two of the tools in the developer’s bug-fixing toolbox are just not able to deliver the
help required as scale increases.

You might want to spend days or weeks trying to reproduce at a smaller scale or
deciphering print output – or you could get straight to the problem by debugging
at scale.

2 The Ability to Debug at-Scale Changes Everything

Allinea DDT is a graphical parallel debugger – used by many scientific computing
centres, universities and corporations to help in the everyday task of finding
and fixing bugs, from single process workstations through to the very largest
supercomputers.

It has many features not present in ordinary debuggers – such as memory
debugging, data visualization and support for the many MPI and OpenMP imple-
mentations that are used by parallel software developers. It also has an interface that
makes debugging easy, at any scale.

With Allinea DDT, it’s possible to take debugging to as high a scale as you
want to take your application – it is there and it is fast! For the first time in
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Fig. 1 A typical application crash

history, a debugger with performance logarithmic in the number of cores is giving
fraction-of-a-second performance for global (or subset) operations on applications
running all the way up from the humble workstation to Petascale.

3 How Allinea DDT Helps to Fix Bugs

Let’s start by looking at how Allinea DDT can help in some of those straightforward
cases – like a simple crash. Typically, when an application crashes on a HPC system,
very little information is available – the job is cleaned up and all trace of the cause
removed. It’s usual not to generate core files – as most filesystems would not want
multi-gigabyte core files being written by every process on application crash! With
a bit of luck, there would be some output, perhaps some print statement that could
explain roughly where the job had reached before it crashed – but beyond that,
it would all be guesswork!

With Allinea DDT, the bug fixing is easier. Run the job inside Allinea DDT at
the scale of the problem, and when the job crashes, this is what you see (Fig. 1).

It’s immediately clear exactly where the crash happened – to the exact line, and
exactly which processes. The error message conveys exactly what the problem is,
and the source code is highlighted to tell you where things happened.

4 Understanding Multiple Processes

Sometimes just knowing the source file and line is enough – but often you will
need to see the bigger picture. Allinea DDT’s Parallel Stack View enables a rapid
identification of where processes and threads are. It displays the stacks of every
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Fig. 2 A parallel stack view of 150,120 cores

process in the application in a tree view – with alike stacks merged together and a
process counter shown.

This component does not become any more complex as the process or thread
counts increase, as you can see (Fig. 2). This is also one of the bedrocks of hybrid
debugging, where it is still of great value even as the number of threads is increasing
by many orders of magnitude. It’s not unusual to see 20,000 threads in a single GPU
device!

One of the great things about Allinea DDT is its speed in giving you this
information – Allinea DDT takes a fraction of a second to report where every thread
is in a job on the largest machines in the world, which means even if you are using
of a few hundred cores you can be confident of incredibly responsive debugging. If
a crash like this happens at 16 cores, 128 cores or 200,000 cores, it’ll still be quick
to fix.

Debugging is not just about the speed and responsiveness of the debugger, it’s
also about how to let the user see and control what’s happening, easily. At scale this
is extremely important.

5 Simple and Effective Process Control

Not all bugs are as simple as a crash – there could instead be incorrect output, say. In
these cases it is helpful to step through an application and to watch progress unfold
by manually controlling the application with a debugger – perhaps running first to a
breakpoint in a known good location.

With Allinea DDT, you can quickly jump to a location in the source code, and
a simple one click command will let your application run all the processes to that
location.

Playing, pausing or stepping groups of processes at scale is scarcely different
when working on a workstation or on a cluster. Source code highlighting and the
parallel stack view both scale to the task very well.
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Fig. 3 Summary view of process status

If you’ve seen Allinea DDT before, perhaps running at smaller job sizes, you
might remember the graphical tools Allinea DDT used to tell you that processes are
paused or which are still playing. But you might ask, how can Allinea DDT tell you
such information about a very large job?

Yet again Allinea DDT has the answer: it has a scalable way to show you this – a
summary view, as seen on (Fig. 3) – and the GUI automatically mutates to use this
when you have more than 64 cores.

In just a glimpse you can see how many processes are busy – and if you hover
the mouse over the Paused or Running numbers, Allinea DDT will tell you which
processes they are scalably – showing 0,16,21–251, for example.

6 Smart Highlighting and Sparklines

One of the recent innovations in Allinea DDT is Smart Highlighting. Allinea DDT’s
raw speed enables variables to be compared across processes automatically in
negligible time.

Forgetting to check the error code of function calls within software is a regular
source of bugs – it happens too easily – those system call errors seem so unlikely
to happen at the time a client function is written – but they bite hard when they do
error and the code doesn’t check! Smart Highlighting is ideal for this situation.

With Smart Highlighting, Allinea DDT compares variables across processes
automatically every time processes pause after stepping or playing. It will then
use colour highlighting when data changes or when different values occur on other
processes. This means you see unintrusive hints that may be relevant to why a code
has diverged.

Those unexpectedly returned error values we mentioned earlier are a great
example of where this feature helps – it would not be practical for a user to
repeatedly, manually, check for errors after every step through the code, but with the
debugger colour-highlighting a difference, it quickly indicates something is wrong.
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Fig. 4 Smart highlighting and sparklines, showing data change and process differences

We also added a fancy new feature called sparklines, which draws a tiny graph
next to each variable in the interface. It compares its value across all the processes,
instantly. As a consequence, you don’t even need to consider each process one
by one – just look at the picture (Fig. 4), and you will intuitively understand if
something is going wrong.

7 Searching Data Sets

Large datasets can also be a challenge – with single errors rapidly propogating
across the dataset and then across to other processes. For a long time Allinea DDT
has given users a spreadsheet like view of arrays, with the ability to filter – to search
for NaN or Inf, or some outliers.

This array viewing capability has been extended in Allinea DDT to give access
to arrays distributed across multiple processes: It is simple to stitch together arrays
distributed over a regular arrangement of processes, such as a 1, 2, or 3D process
grid.

This feature lets you search for rogue elements across processes. Filtering data
across many processes can be achieved in similar time to on a single processes. This
can be seen on (Fig. 5). This is coupled with lazy evaluation where only the visible
portion of the array is fetched to the GUI at any time, which means Allinea DDT is
always responsive and never swamped.

There is also multi-process multi-dimension array viewing capability – and a
built-in export capability to HDF5 and CSV. Exporting data is a theme in Allinea
DDT: it is even possible to export, scalably, the stack traces in XML or CSV of
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Fig. 5 Filtered search accross multiple processes

processes from the Parallel Stack View we saw earlier. This is particularly useful
for reporting bugs to other people!

8 Visualizing Large Data Sets in Real-Time

For scientists, Allinea DDT includes the integration of time-based distributed and
scalable visualization tool called VisIT. This is illustrated in (Fig. 6). As there is no
need to instrument the code or to write complex scripts, this feature allows easier
access to data. Moreover, it integrates the ability to click back from observable
troublespots to application processes.

Scientific simulations are inherently about the data, and the integration of full-
strength scientific visualization within a debugging session is key to exploring – by
visualizing – the behavior of data and its interaction with code in an application.
VisIt is recognized by the major supercomputing centers as one of the most capable
visualization packages for data intensive HPC.

If you are already using VisIt on your cluster, you are aware of how painful it
can be to look at data: you either need to store huge data sets on your storage or
to instrument your code using an external library to tell VisIt what to do. With this
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Fig. 6 Visualizing data at runtime and in parallel with VisIt

feature, this era is over: visualize a 1D, 2D or 3D array in real-time just as easily as
you would look at it using the Multi-Dimensional Array Viewer. Allinea DDT will
instrument the code with VisIt automatically for you!

9 Deadlocks

Deadlock is one of the easier bugs to track down with Allinea DDT. The symptom
will be that an application appears to make no progress – perhaps failing to terminate
in a timely manner, or the stream of progress output in the job log dries up.

At this point is a dilemma: cancel the job, and waste the cycles so far in the
belief that it has locked up – or give the job another “five minutes” in the hope that
it will get somewhere. The dilemma is readily solved by just attaching a debugger
to the job. Allinea DDT is able to scalably attach to running jobs or subsets of a
job – ranks can be specified as a subset such as “1,4,121–140”. Subsets can even
be psuedo-randomly selected if the user wishes to just look at (say) one percent of
the job.
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On attaching, processes are paused and the location of processes, and the data
values can be easily seen. This allows a quick decision to be made as to whether the
application has hung – and if so where – or whether the application should continue.
Detaching from the session will allow it to continue as normal.

10 Memory Debugging

The final class of bug we’ll mention today is the memory problem. We don’t mean
a hardware problem, in this case we’re referring to things like memory leaks –
forgetting to deallocated memory – or reading beyond the end of an array. Such
crashes can often appear to be quite random and can be difficult to detect.

Allinea DDT’s memory debugging feature is able to help with these kinds of
issues – and fixing this kind of bug is still important at scale. Many aspects of
memory debugging translate to large scale very easily – for example checks for
out of bound array access or for double deallocation of pointers are entirely parallel
operations. Allinea DDT scalably merges and displays error messages when errors
happen.

The random nature of these bugs means that being able to have the entire job
under the control of a debugger is essential to not missing a crash – yet another
reason to have a debugger that can cope with whatever scale you are trying to deploy
applications at.

Memory leak detection is also there to help at any scale. Allinea DDT maintains
information about the memory usage of the entire job – but crucially it finds the
usage issues in a chosen current process, and in the worst processes (in terms of
memory usage). This lets you interrogate the problem processes very easily – giving
the scalability and focus that is needed to tackle the problem.

11 Summary

The same capabilities that users expect of single process debugging or when
working with small clusters are still needed to find bugs at higher scale.

Without debuggers, users often “work blind” – and this is increasingly true as the
limitations of print statements and other techniques to fix bugs become evident.

By introducing a debugger that can reach the scale at which users are having
problems, Allinea is helping users to scale applications successfully. Features, such
as Smart Highlighting help users to work quickly, and smartly at all scales.

With Petascale debugging now a reality, we continue to improve the existing
performance and optimize where possible. We are also addressing challenges of
debugging large scale hybrid systems of GPUs, and working to ensure that the
scalability results so far will carry over as machines head towards Exascale.
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Task Debugging with TEMANEJO

Steffen Brinkmann, José Gracia, and Christoph Niethammer

Abstract In recent years memory layouts have become more and more complex
and bandwidth turned out to be the crucial performance parameter. This reflects
in new programming paradigms which focus on data flow rather than instruction
sequence. A very successful approach is StarSs, where the parallel programme
consists of small computing units called tasks and dependencies between these tasks
which are defined by the programmer. At runtime a dependency graph is created
which determines the parallel or sequential execution of the tasks. When it comes
to debugging StarSs applications, traditional debuggers such as gdb don’t provide
enough information and control to uncover shortcomings of the program. We present
a new type of debugger which acts on the task level giving the user access to the
dependency graph. Information is extracted from the running application with the
lightweight library AYUDAME and the information is passed to the remote client
TEMANEJO which visualises the dependency graph and passes user requests, such
as blocking or prioritising a task, to the application.

1 Introduction

Due to the complexity of parallel programming and the different approaches to
parallelism, debugging has become increasingly difficult. The main problems are
that (a) threads share resources such as signals, file descriptors and memory
address space and (b) threads have to synchronise access to the resources to avoid
race conditions. The rules controlling resource access and synchronisation can be
explicitly set by the programmer or implicitly generated by the runtime environment
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Fig. 1 Example task graph

(referred to simply as runtime hereafter) which controls the parallel execution of the
application.

The implicit behaviour of parallel applications often causes problems in appli-
cation development. What a runtime does is many times per se hard to understand,
poorly documented and will almost certainly produce bugs that are hard to find. To
avoid these problems many programmers increase the use of explicit synchronisa-
tion, e.g. in the form of barriers, which conflicts with the idea of parallel design and
will decrease performance.

Many debuggers exist and many of them are capable of debugging multi threaded
applications. Nevertheless all of these tools, being originally designed for single
threaded programs, work on the base of threads and instructions. The natural unit
is the line of code. Contrary to that many parallel programming models support so
called tassk parallelism. A task in this context is a self contained piece of code with
well-define input and output dependencies. Namely the growing family of StarSs
compilers and libraries (e.g. SMPSs [1], OmpSs [2], StarPU [3], KAAPI [4] among
others) are based on the task as their natural unit.

The tasks generally have implicit and explicit dependencies on other tasks
forming a acyclic directed graph (dependency graph or task graph hereafter) which
set the rules for executing the application in parallel (see Fig. 1). Tasks that do
not depend on each other can in principle run concurrently. When a given thread
runs a specific task is decided by the runtime, which also creates the tasks and
dependencies, ergo the task graph.

In order to debug such an application it is necessary to add a new kind of
debugger to the developers toolbox. This tool must visualise the task graph and
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enable the programmer to interact with the application on the basis of tasks and
dependencies.

We present the next version 0.9 of TEMANEJO [5], a tool for debugging task-
parallel applications visually. It communicates with the runtime (presently SMPSs
is supported fully, StarPU and OmpSs are under development) via the library
AYUDAME which was written for that purpose.

In the following we will discuss the new approach to debugging imposed by task
parallelism (Sect. 2). Thereafter we will describe how TEMANEJO and AYUDAME

cope with these new necessities (Sect. 3) and finally draw our conclusions (Sect. 4).

2 What Debugging Means in the Context of Task-Based
Parallelism

The debugging process of a task parallel application is best divided in three
stages: (1) checking the code without tasks enabled, (2) checking the code with
tasks enabled and executing the tasks in the order of creation on one thread and
(3) checking the code with tasks enabled on multiple threads. This scheme must
naturally be enhanced as more complex features such as running with various queues
or a communicator thread are not taken into account.

For the first and second stage a debugger like gdb will suffice enabling the
programmer to find bugs of the kind you would have in a serial program. Not so for
the third stage. When running separate tasks on different threads two consecutive
actions on one thread may (and generally will) be totally independent of each other.
Choosing a thread in a gdb session for instance can provide valuable information
about what is happening inside a task. But when the execution reaches the end of the
task, the thread will proceed with a seemingly random and most probably unrelated
other task.

Here the problem of the order of execution becomes apparent: How can the
task-parallel application be debugged as a whole?

Another problem is not as obvious: While one thread is being debugged, i.e.
halted and stepped through, what should the other threads do? Or more generically
asked: What is a breakpoint in task-based parallelism?

The answer to the first question is seeing the dependency graph and stepping
task-wise instead of instruction-wise.

The second question is far more challenging and allows for different solutions a
few of which are roughly outlined in the following.

• Stop (D Block) one task and let the rest of the application run undisturbed.
Arbitrarily many tasks can be marked with such a breakpoint.

• The whole application stops when a marked task is reached. Stopping can have
two meanings in this context: Actually halting the whole execution, or finishing
tasks which are already running but not launching any new tasks. We take the task
as the smallest unit of an application, therefore we favour the second definition
of stopping. Again, many tasks can be marked with such a breakpoint.
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• The whole application stops due to a user request (e.g. a clicked button or other
control widget). The above described ambiguity of stopping applies equally.

• The thread reaching a marked task stops. The rest of the program will run
undisturbed with one thread less.

• Block a task conditionally, i.e. blocking it until a specific event occurs. Usually
the event will be finishing another task. This way one can add dependencies to
the application’s task graph while running the application.

Each of these strategies can be very useful in some situations and totally
meaningless in others. That is why a tool for debugging task-parallel applications
must provide not only the graphical interface to the dependency graph but also
numerous ways of interacting with the running application through the visual
representation of the graph.

In the following section we will describe how TEMANEJO accomplishes this.

3 The Debugging Process

The first and not to be underestimated aid that TEMANEJO can provide is displaying
the graph. When the dependencies are correct, the programmer will proceed to
run the application within TEMANEJO. Both of these parts of the debugging
process require communication between the application and the debugger. This is
accomplished in two steps (see Fig. 2).

3.1 Communication

The runtime environment which runs the actual application is instrumented with
callback routines of the lightweight communication library AYUDAME. As runtimes
differ drastically in how tasks are created, ordered and executed and what is more,
what a task can be, the instrumentation cannot be done generically. In fact it has to
be “tailor-made” for each runtime and both AYUDAME and TEMANEJO grow with
each runtime they support.

In the next step AYUDAME passes the information to TEMANEJO via a previously
established socket connection using tcp/ip. This way we assure that the application
can run on any remote computer while the programmer can debug it from his
desktop. The relevant information consists of eight 64-bit unsigned integer which
is send as a package to the socket client TEMANEJO. While the first number always
identifies the runtime environment and the last one always is a timestamp, the
meaning of the other six numbers differs according to the communicated event.

On the other hand the programmer can launch control requests such as executing
one or more tasks (stepping), setting breakpoints (see Sect. 2), changing the priority
level of a task or the number of active threads. These requests are passed from
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Fig. 2 Information flow between the application, AYUDAME and TEMANEJO

Fig. 3 Typical error as displayed by TEMANEJO. (a) Tasks 2, 3 and 4 implement a reduction but
run serial in this program. (b) Corrected version, tasks 2, 3 and 4 run in parallel

TEMANEJO via the tcp/ip socket to AYUDAME which reacts accordingly. This can
mean to call a function implemented by the runtime or to set certain variables which
in turn can be accessed by the runtime through callback functions.

3.2 Graph Display

TEMANEJO receives the information and displays, analyses and logs the execution
of the application. Often times the mere display of the actual graph hints at bugs,
unwanted behaviour or even optimisation options not foreseen by the programmer.
As an example see Fig. 3.

The information displayed in TEMANEJO are described in the following (see also
Fig. 4).
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Fig. 4 Annotated screenshot of TEMANEJO

3.2.1 Nodes

The nodes represent tasks which are the natural unit of a task-parallel application.
Tasks can consist of a function (subroutine, method), a part of a vectorised loop,
a block of code or any other sequence of instructions depending on the runtime. The
information displayed by the nodes is:

Label The label is an arbitrary number used to identify the task. It must be unique
for each task. Future versions of TEMANEJO will allow for strings to be task
labels.

Function By default the fill colour of the node denotes the taskified function
or code block. It is communicated by a unique number, the function id. These
numbers must be consecutive an start with 0. Future versions will allow for
arbitrary function ids, consisting of a number or string.
This information is most useful for correctness checking of the structure of the
dependency graph.

Task status By default an extra margin is drawn around the nodes which shows
the task status. It is red for tasks which still depend on other tasks to finish (not
queued), yellow for tasks which do not (any more) depend on other tasks but are
not yet to be executed because there is no execution resource available (queued),
green for tasks which are dispatched to run on a specific thread (running) and no
margin for tasks which ran successfully (finished).
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The programmer will use this information for checking the basic runtime
behaviour of the application. For instance the number of queued tasks (see
Sect. 3.2.3) is equivalent to the potential parallelism at a certain point in the
execution.

Thread By default the shape of the node indicates the thread on which a task is
scheduled to run, is running or has run.
This information can be used by runtime developers to check the correct
dispatching of tasks to the threads and by application developers if it is possible
to control the dispatch mechanism of the runtime in order to find the optimal
setting.

Task duration TEMANEJO offers a rough insight in the execution time of each
task. The difference of the cycle counters immediately before and after task
execution can be displayed as the node colour. In order to get useful results
one has to switch off any type of breakpoint and run the application with the
“Fast Forward” button, ignoring at least so many stops as there are threads. The
Program will run until the end and the task duration in CPU cycles can be shown
as node colour.
This feature does not replace a performance tool but it may give a first hint to
tasks which run too long (work balance!) or too short (overhead!).

Distance between tasks When a node is marked using the context menu, the
node colours in the graph can be set to indicate the distance to the marked node.
As node that are not connected are drawn in white it becomes instantly clear on
which part of the graph the task represented by the marked node depends on and
which part of the graph depends on this task.
This feature enables the programmer to gain a quick overview over a given
application and to analyse the deeper connectivity within the task graph.

3.2.2 Edges

The edges indicate dependencies between tasks. Generally these will consist in data
addresses which one task will write to and another will read from. TEMANEJO can
indicate the memory address by a label end a colour which uniquely identifies the
memory address.

For runtimes which support dependency renaming, a feature equivalent to reg-
ister renaming which allows the runtime to enhance parallel execution of logically
independent tasks working on the same memory, the user can choose to see the
original or the renamed memory address.

3.2.3 Other Information

TEMANEJO keeps track of the number of tasks for each function, each thread and the
status of each task. Tables indicate how many tasks are queued, running or finished
in total and for each thread or function (see Fig. 4). This information can be used
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for instance to identify bottlenecks (no queued tasks) or the maximal parallelism at
a given stage of execution (number of queued tasks).

Also all messages received from AYUDAME are logged so the exact order of
execution can be traced by the programmer.

3.3 Execution Control

By default TEMANEJO will halt the execution before each task. This enables to
examine the status of the application while executing it task-wise. On of these steps
can consist of one or an arbitrary number of tasks. Halting the application can be
switched of in order to run the whole application, e.g. for time measurements.

Individual tasks can be blocked (compare Sect. 2). They are marked with a
red cross in the graph display (see Fig. 4). A blocked task is not executed until
unblocked. Consequently tasks dependent on a blocked task are not executed.

The mechanism of blocking tasks can be used to add artificial dependencies
during the debugging process, i.e. during runtime of the application without
recompiling it. When a task is marked (blue margin in the graph display, see Fig. 4)
and the programmer right-click on another task, the option “make dependent on
marked task” appears active in the context menu. When clicked, the task is blocked
and remains so until the previously marked task is finished.

Furthermore it is possible to keep the runtime from running tasks at all (compare
Sect. 2). This can be achieved by pressing the button “stop scheduling tasks” in the
control tab.

In order to debug a task internally or to debug the main thread it is possible
to launch gdb from TEMANEJO. gdb is automatically attached to the applications
process and opens with the option -tui (terminal/text user interface) in a separate
window.

4 Conclusion

We present a debugging toolset for task-parallel applications consisting of the
graphical user interface TEMANEJO and the communication library AYUDAME.
It has proven very useful to application and runtime developers. With TEMANEJO

it is possible to display detailed information about the dependency graph, namely
executed functions, state of tasks and threads, duration of tasks, connectivity of
subgraphs, memory addresses which cause dependencies, and some statistics.

Moreover the programmer can steer the application by using mechanisms to step
task-wise through the application, add dependencies and halt execution at any point
in time. The widely used gnu debugger gdb can be launched from TEMANEJO and
is automatically attached to the running process.
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The library AYUDAME can be used to instrument other runtime environments
which use task-parallelism. This way runtime programmer can make debugging
with TEMANEJO readily available for application programmers. Presently SMPSs
is fully supported, the instrumentation for OmpSs and StarPU is being developed.
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MPI Runtime Error Detection with MUST:
Advanced Error Reports

Joachim Protze, Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz,
Matthias S. Müller, and Wolfgang E. Nagel

Abstract The Message Passing Interface (MPI) is a widely used paradigm for
distributed memory programming. Its API is primarily designed for good perfor-
mance and less for usability; it provides only very limited abstractions that help
enforce its correct use. As a result, application developers need tools that aid in the
detection and removal of MPI usage errors. Our runtime error detection tool MUST
addresses this issue and provides a wide range of automatic correctness checks.
MUST uses state-of-the-art approaches to cope with complex MPI semantics like
derived datatypes, collective operations, and wildcard receive operations. However,
equally important to detecting correctness violations, is that such correctness tools
present all details of the violating MPI call(s) required to pinpoint the problem in
the source code and to remove the error. In this paper we focus on the error reports
presented by MUST and propose a new set of error reports that present complex
errors with fine-grained details of the error situation. This includes a deadlock view
and a view for usage errors in complex MPI datatypes.

1 Introduction

The development of Message Passing Interface (MPI) [1] applications is a time
consuming and complex task. One of the key challenges, aside from achieving
high efficiency, is guaranteeing soundness of an application’s use of MPI, i.e., its
correct usage of the MPI API. While some MPI related errors may directly cause
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Process 0 Process 1
MPI Recv(from:1, tag:100) MPI Recv(from:0, tag:200)
MPI Isend(to:1, tag:200, &req) MPI Isend(to:0, tag:100, &req)
MPI Wait(&req) MPI Wait(&req)

Recv-recv deadlock.

Process 0 Process 1
MPI Isend(to:1, tag:200, &req) MPI Isend(to:0, tag:100, &req)
MPI Recv(from:1, tag:200) MPI Recv(from:0, tag:100)
MPI Wait(&req) MPI Wait(&req)

Deadlock resulting from a tag mismatch.

a

b

Fig. 1 MPI usage error
examples. (a) Recv-recv
deadlock. (b) Deadlock
resulting from a tag mismatch

wrong results, application crashes, or hangs, some errors may only manifest on
some systems or runs and then in some cases only long after their cause or simply
by producing wrong results at the end of the execution. If done manually, finding
such problems can be a long and difficult task and developers therefore require
tool support that aids in the removal of these errors. Runtime error detection, i.e.,
detecting errors during an application run, is one tool class that provides this support.
We develop the Marmot Umpire Scalable Tool (MUST), named after its predecessor
tools Marmot [2] and Umpire [3], for this purpose.

Recent advances in runtime deadlock detection [4] and datatype correctness
checks [5] allow MUST to efficiently detect complex errors. However, detecting
such errors is only half the solution to the overall problem. Any tool must also
present all details about a detected error in a way that helps users understand the
erroneous behavior of their codes and help them fix the problem. Consider the
following examples that illustrate some potential complexities:

Figure 1 presents two deadlock scenarios with simplified MPI calls. Two
processes attempt to send and receive a message from each other using blocking
receive and non-blocking send calls. The example in Fig. 1a results in a deadlock,
as both processes issue the MPI Recv call without issuing any send calls first. As
a result, both processes wait in a cyclic fashion for each other’s send call, which is
never reached, and hence can’t continue execution. MUST’s graph-based deadlock
detection catches this error and presents the user with a wait-for graph. As no
process issued a send call before the receive call, this report includes the key
items to understand the error, which in this case are the processes involved in the
deadlock and their individual active MPI calls. The situation in Fig. 1b represents
a similar communication, which also results in a deadlock, due to a mismatch in
the given message tags. MUST’s wait-for graph shows the user that both processes
are blocked in the MPI Recv call. As both processes have active send calls, the
simple criteria used in the example above doesn’t hold and the tool user needs
to investigate these calls manually in order to determine whether a tag or even a
communicator mismatch exists. Different source files that contain active send calls
or the use of variables as tag arguments can complicate this further.
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In this paper, we present a set of novel output extensions of MUST that provide
tool users with the necessary fine-grained and detailed information of such complex
error situations, but without overwhelming them with additional unrelated data. In
particular, we include:

• A parallel call stack that highlights the processes that MUST determined as the
root of a deadlock,

• A condensed message queue that only lists send and receive calls that are
meaningful in a deadlock situation, and

• A call-stack based decomposition of the message queue graph to augment a
regular message queue graph with source location information, and

• A datatype tree view that highlights error positions in derived datatypes.

We first present an overview of MUST, its correctness checks, and its basic
error report in Sect. 2, followed by a summary of MUST’s current deadlock view
and datatype usage reports. Afterwards, we present our proposed deadlock view
extensions in Sect. 4. Section 5 presents how we can efficiently pinpoint particular
error positions in derived datatypes. Finally, we present related work in Sect. 6 and
conclude in Sect. 7.

2 MUST

MUST detects MPI usage errors, i.e., usage of MPI calls that are not consistent with
restrictions laid out in the MPI standard, during an application run and reports them
to the user. Examples for such usage errors are illegal parameters to MPI calls, writes
to a send buffer while an asynchronous message transfer is in progress, inconsistent
orderings of collective operations, or deadlocks due to improper synchronization.
MUST uses the MPI profiling interface to intercept and analyze all MPI calls
that an application issues. The tool can be loaded into the application using the
LD PRELOAD mechanism. In this case, the usage of the tool becomes as easy
as replacing the respective mpiexec command with a wrapper command called
mustrun.

We distinguish two types of correctness checks: local correctness checks and
non-local checks. Local checks only require information that is available on a single
MPI process and hence don’t require any communication for their execution. As
a result, MUST is able to execute local checks inside each application process,
or more precisely inside the MUST MPI wrappers used to intercept all MPI
calls. Using local checks, we can, e.g., detect whether a datatype that is used in
a communication call is committed or whether parameters to MPI calls are out
of range. Non-local correctness checks require information from more than one
process. Datatype signature matching between sending and receiving communi-
cation calls is one such example. The implementation of non-local correctness
checks requires additional communication and hence a separate communication
mechanism that can forward information about MPI calls to other processes or extra
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Fig. 2 Example MUST error report

resources. MUST uses the Generic Tool Infrastructure (GTI) [6] for this purpose.
Currently MUST provides the following classes of correctness checks covering a
wide spectrum of possible error cases:

• Local:

– Integer checks (e.g., restrictions on tags, counts, sizes, and offsets)
– Integrity checks (e.g., Arrays allocated or communication buffer present)
– MPI resource surveillance (e.g., use of requests, datatypes, reduce operations,

groups, and communicators)
– Resource leak checks
– Communication buffer overlap checks

• Non-local:

– Collective verification (e.g., matching roots and compatible reduce operations)
– Lost message detection
– Message type matching (for both point-to-point and collective operations)
– Deadlock detection

Previous work [4] includes extensive performance results and has shown the
feasibility of this approach, including its scalability using an application study on
up to 512 processes.

In its initial form, the basic output of MUST is an HTML table that follows
the format of Marmot [7]. In Marmot checks had to be implemented for each MPI
call, even for the same error conditions, leading to significant code duplication
of any error reporting. MUST avoids this redundancy with the use of so-called
argument IDs. Figure 2 shows a basic MUST report with an integer usage error. The
check that detects the negative count argument in the MPI Send call is mapped to
many different calls and argument types. MUST uses the argument IDs to identify
the argument number and name, which increases the detail in its output reports.
Further, MUST uses the Stackwalker API of the Dyninst project1 to retrieve call
stack information for each MPI call it intercepts.

1http://www.dyninst.org/

http://www.dyninst.org/
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3 Shortcoming of Current Error Views

While the initial MUST implementation provided useful information about violated
checks, the output format was not optimal and omitted several key pieces of
information a user requires to identify the broken code location and to fix it. These
shortcomings were introduced because the initial output format was driven by the
implementation of the tool and what it naturally collects, without taking the user’s
needs into account. This is, unfortunately, common for many tools, which flood the
user with raw data, but fail to provide some essential details. We illustrate two such
problems in the following, using the examples of deadlock detection and problems
with complex datatypes. We will first show (in this section) why the existing views
are insufficient and (following in the next two sections) how we were able to work
around it.

3.1 Example 1: Pinpointing Deadlocks

A key feature of MUST is its graph-based deadlock detection [8]. It creates a wait-
for graph and then uses this graph to identify existing deadlock conditions. If such
a condition is found, the tool provides the user with a list of processes that are
in a deadlocked state as well as their wait-for dependencies that cause them to be
deadlocked. This enables MUST to separate processes that cause the deadlock from
processes that hang due to waiting for deadlocked processes directly or indirectly.

The graph based approach also has the additional advantage that we can use the
graph itself to visualize the deadlock conditions and the wait-for dependencies to
the user. As a result, MUST’s previous deadlock view provides:

• A textual description of the deadlock situation,
• A wait-for graph of the deadlocked processes, and
• A source location list of the deadlock processes.

In the following we use the erroneous sequence of MPI calls in Fig. 1b as an example
to illustrate MUST’s previous output. Figure 3a shows the wait-for graph (WFG)
that MUST provides for this example. However, this graph along with the source
location lists of the deadlocked processes alone is not sufficient to identify the
root cause for this error. From our experience, a tool must provide answers to the
following questions:

1. Which processes cause the deadlock?
2. What MPI calls are active on these processes?
3. Which control flow led to these active calls?
4. In the case of involved point-to-point operations, which other active communi-

cations exist?
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MPI_Recv@0

MPI_Recv@1

  tag=200, comm=A   tag=100, comm=A

Wait-for graph.

0

1

send:comm=A,tag=200} send:comm=A,tag=100

Message queue graph.

__libc_start_main@libc-2.13.so

main@tagmismatch.c:46

 [0]

main@tagmismatch.c:53

 [1]

MPI_Recv

 [0]

MPI_Recv

 [1]

Parallel call stack graph.

MPI_Isend MPI_Isend

__libc_start_main@libc-2.13.so

main@tagmismatch.c:45

 [0]

main@tagmismatch.c:52

 [1]

0

 [0]

1

 [1]

1

 comm=A,tag=200 

0

 comm=A,tag=100 

Call stack graph decomposition of the message queue graph.

a

c

d

b

Fig. 3 Deadlock view components for the example in Fig. 1b. (a) Wait-for graph. (b) Message
queue graph. (c) Parallel call stack graph. (d) Call stack graph decomposition of the message
queue graph
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While MUST’s previous output provides answers to the first two questions it
does not provide information on the latter two. Also, the list of source locations is
insufficient for deadlock reports that involve more than a few processes.

3.2 Example 2: Viewing Datatype Related Problems

The MPI standard imposes constraints for communication operations. Erroneous
usage of MPI datatypes may collide with three of such constraints. In the following
we sketch these three referring to version 2.2 of the MPI standard [1]:

• For sending operations, the application may not modify the communication
buffer, until the send completes.

• For receiving operations, the application must not access any part of the
communication buffer, until the receive completes.

• The type signature of a communication must adhere to matching rules during the
following three steps:

1. MPI types must match programming language types for reads from the
application memory (except for the MPI type MPI BYTE),

2. MPI types must match on receiver and sender sides during transport to
receiver, and

3. MPI types must match programming language types for writes to the applica-
tion memory (except for the MPI type MPI BYTE).

In MUST we provide checks for overlapping communication buffers handling a sub-
set of clashes with the first two constraints, and for type matching in communication
which meets step two of the latter constraint. These checks handle any (derived)
datatypes that communication calls may use. We provide no checks for memory
manipulation done in application context. Instead, we focus on simultaneous MPI
communications that break any of these constraints. If MUST detects such an error,
it is crucial that it provides precise information on its source. While the simplest
solution would be to provide memory addresses, this provides unsatisfactory details
on where the error resides in a communication buffer and its associated MPI
datatype. We currently use a path expression approach [5] to pin-point these
error locations. An example for this path expression can be found in Sect. 5.
While these expressions provide an exact position of the error location within a
datatype signature, they require a deep understanding of their format, while losing
information about the overall structure of the involved datatype(s).

4 Deadlock View in MUST

As the last section illustrated, MUST’s previous deadlock view lacked detail, espe-
cially for message mismatch situations, and scalability. To overcome this limitation,
we propose a new, dedicated deadlock view that contains the following elements:
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• A textual summary,
• A communicator overview,
• The WFG with a legend,
• A parallel call stack,
• A graph representation of the current message queue, and
• A decomposition of the message queue that uses a parallel call stack.

Our new output generator in MUST combines all of these elements in a single
HTML page (for better readability, however, we present the individual elements
in separate sub-figures). While the textual summary matches our previous outputs,
we use the communicator overview to represent each communicator with an upper
case letter. In the erroneous sequence of MPI calls in Fig. 1b, which we use as
an example throughout this section, the application only uses MPI COMM WORLD,
which we represent as comm A. If additional communicators are defined by the
application, the communicator summary includes information on the MPI calls
that created the communicator. The WFG (Fig. 3a) matches our previous outputs,
except that we now use the communicator symbols to also present information on
the communicators in use. We also add a legend to this graph as it may contain
intermediate nodes to represent complex MPI semantics. Additionally, the new view
shows the parallel call stack to provide insights for Question 3 (introduced in Sect. 3)
and the last two graphs to provide information for Question 4, which we describe in
the following.

Figure 3c shows MUST’s parallel call stack for our example. It helps to illustrate
control flow decisions that lead to the deadlock condition. While it is challenging to
represent information on the control flow of the individual processes in all details,
this limited view provided by call stacks is in most cases sufficient. Additional static
source analysis may reveal control flow relevant variables to enrich parallel call
stack graphs with further information, as an extension [9] of the STAT [10] tool
shows. Further, these graphs scale well with the number of application processes.
For our purposes, we limit this call stack graph to only the application processes
that are part of the deadlock in order to remove any unnecessary information and
provided the most concise representation.

Question 4 addresses situations where point-to-point operations are involved in
a deadlock. In this case the root-cause of the error may be a tag or communicator
mismatch. In order to understand this situation, the application developer requires
information about any active and meaningful point-to-point call, whether it is
involved in the actual deadlock condition or not. MUST provides a message queue
graph for this purpose. Since MUST detects which processes are part of the
deadlock, while it also determines which processes are blocked in point-to-point
calls, we can automatically reduce the full message queue graph to only present
messages that:

• Were started by a process that is part of the deadlock;
• Have active send operations, which target a process that hangs in a receive

operation or a completion that includes a non-blocking receive operation; or
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• Have active receive operations, which target a process that hangs in a send
operation or a completion that includes a non-blocking send operation.

Using these conditions, we can condense our output to only present relevant
point-to-point operations. Figure 3b shows this graph for our example. The graph
includes an arc from node 0 (which represents process 0) to node 1 to represent the
MPI Isend call that was issued on process 0 before the deadlock manifested. The
other arc represents the MPI Isend operation that was started by process 1.

MUST’s condensed message queue graph allows application developers to
determine whether a potential mismatch exists. In our example, Fig. 3a shows
that process 0 waits for a matching send operation of process 1, which uses the
tag 200, while Fig. 3b shows that a send operation exits, but with tag 100. If a
mismatch exists, the user needs to be able to identify the call and control flow
origin of the mismatched operation. We use a parallel call stack to represent all MPI
operations that started any operation within MUST’s relevant message queue graph.
This identifies the call stacks of these operations, but as each operation may use
multiple targets, tags, and communicators, we need to highlight which individual
parts of the message queue graph result from each leaf of the call stack graph. As
a result, we decompose the message queue graph into sub-graphs that represent
the components that each MPI operation creates. Figure 3d shows this call-graph-
based decomposition for our example. This graph allows the tool user to determine
which message might be mismatched, while it contains information about its source
location along with limited control flow information.

5 Type Tree View

In this section we will describe a new, more expressive graphical view for datatype
related errors.

The code example in Listing 1 sketches a particle simulation where information
about a subset of the particles needs to be transferred to a neighbor process. In the
application a C struct holds the information about a particle. The set of particles is
organized in an array of this struct. Using derived datatypes, MPI enables us to select
the subset from the array and send it in a single contiguous operation to the neighbor.
To create the fitting datatype, the example uses at first the MPI Type struct
constructor to represent the C struct and then an MPI Type indexed constructor
to select parts of an array of this struct. While the first constructor is correct
with respect to type matching, the second one causes a communication buffer
overlap when the example issues the MPI Sendrecv call (performed as local
operation in this simplified example). MUST’s current path expressions calculate
to [0](INDEXED)[5][4](STRUCT)[0][0](DOUBLE) for the sending part
and [0](INDEXED)[3][0](STRUCT)[0][0](DOUBLE) for the receiving
part of the MPI Sendrecv call. Figure 4a sketches the overlap within the array
(called cloud) of the C structure, i.e., the elements that the MPI Type indexed
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Listing 1 Example for a communication buffer overlap

double velocity[3]; double spin[3]; char charge;
double radius; double mass; };

struct particle cloud[112];
MPI_Datatype structtype, indexedtype;

int blocklens[7] = {3, 3, 3, 3, 1, 1, 1};
MPI_Datatype types[7] = {MPI_DOUBLE, MPI_INT, MPI_DOUBLE,

MPI_DOUBLE, MPI_CHAR, MPI_DOUBLE, MPI_DOUBLE};
// displs derived from c-struct by MPI_Get_address()
MPI_Aint displs[7] = {0, 24, 40, 64, 88, 96, 104, 112};
MPI_Type_struct (7, blocklens, displs, types,

&structtype);

int array_of_blocklens[8] = {3, 2, 1, 2, 4, 8, 1, 3};
int array_of_displs[8] = {3, 13, 23, 34, 44, 55, 65, 76};
MPI_Type_indexed (8, array_of_blocklens, array_of_displs,

structtype, &indexedtype);
MPI_Type_commit(&indexedtype);

MPI_Sendrecv(cloud, 1, indexedtype, 0, 42, cloud + 25, 1,
indexedtype, 0, 42, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

constructor selects from the array. While this representation highlights the overlap,
this display loses information about the internal datatype structure. To combine the
expressiveness of the path expression and the overview of such a memory map, we
propose an overlap graph. This graph visualizes the two path expressions that cause
the overlap along with a sketched structure of the datatypes in use. Figure 4b shows
this graph for the example in Listing 1. We represent the path expressions of the
overlap in red in this graph. For overlaps the trees of the colliding communication
operations will either join at a node of the same basic MPI type and absolute offset,
as in our example, or we use a compound node if the overlap occurs for two different
types/offsets. We join further tree nodes if they compare to equal sub-types, as for
the MPI Type struct in our example. We compute this by recursing the type
trees from the leaf towards its root.

An example for a type mismatch can be derived from the above example
by mixing up the struct entries for charge and radius at one of the
neighbor processes. The current path expression for this situation calculates to
[0](INDEXED)[0][0] (STRUCT)[4][0](CHAR) and [0](INDEXED)
[0][0](STRUCT)[4][0] (DOUBLE), indicating that an MPI CHAR mis-
matches with an MPI DOUBLE. To display the mismatch we create a tree for
both involved datatypes where we skip nodes apart from the (red) error path while
we keep a few basic MPI types near the mismatch position to have a more detailed
context of the mismatch. To derive a smaller graph we merge similar nodes of both
trees. Figure 5 provides the resulting view for the sketched mismatch situation.
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Fig. 4 Overlap view for the example in Listing 1. (a) Array indices of send/receive marked
blue/green. (b) Overlap graph

6 Related Work

This work directly relates to other runtime error detection approaches for MPI
applications, which include Marmot [2], Umpire [3], ISP [11], MPI-Check [12],
and Intel’s approach [13]. While MUST as successor of both Marmot and Umpire
identifies deadlocks with a graph-based approach, the MPI-Check tool and Intel’s
approach use a timeout-based deadlock detection. As a result, these tools only
provide a list of all active MPI calls when the presence of a deadlock is suspected.
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Fig. 5 Type mismatch view for a confusion in the type definition

ISP runs a replay based investigation of all possible interleavings of an MPI
application. As a result, this tool can detect some deadlocks that MUST would not
detect in a certain application run. ISP’s deadlock output includes a trace of all
MPI calls that each process issued, as well as their matching decisions. While very
detailed, this output will get overly complex, especially for longer application runs
with more than a few processes. While our output contains no complete history of
all issued MPI calls, we provide the user with a more scalable deadlock view that
condenses relevant history information with the use of a reduced message queue
graph.

The STAT [10] tool and debuggers like DDT and Totalview use parallel call
stack graphs and/or message queue graphs. Debuggers use interfaces to the MPI
library [14] to retrieve message queue information, whereas MUST tracks all
MPI calls during the whole application run. Existing integrations of runtime error
detection tools with debuggers, e.g. DDT and Marmot [15], could be extended
to provide debuggers with information on which processes cause a deadlock.
Debuggers could than condense message queue graphs as in our approach. Also,
the representation of derived datatypes with trees is based on ideas of the flattening
on the fly technique [16].

7 Conclusion

We present the MUST runtime error detection tool for MPI applications along
with extensions of its error reports. Our previous output for deadlock situations
failed to capture information on active point-to-point messages, which is crucial
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in the detection of message mismatch situations. We use message queue graphs
to present these active operations. MUST’s graph-based deadlock detection yields
a set of processes that cause the deadlock, which allows us to condense parallel
call stacks and message queues to only include relevant information. In order
to add call location information to the message queue graph representation, we
propose an extended parallel call stack graph that includes a decomposition of
the message queue graphs in their leaves. While these representations allow us to
present relevant information for the removal of deadlocks at moderate scale, we
still need to investigate their practicability for thousands or more processes. While
our approach allows us to visualize deadlocks that only involve a few processes, it
may fail for complex deadlocks that involve all or most application processes. This
especially affects the size of the WFG and the message queue graphs.

Our second error view provides a detailed output for errors that involve derived
datatypes. This includes communication buffer overlaps, and type mismatches
between point-to-point or collective MPI operations. The removal of these errors
requires a precise understanding of which part in a derived datatype causes the error.
As a result, we use a narrowed type tree representation that highlights the position
in the datatype that causes the error, while it sketches the structure of the involved
datatypes at the same time.
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Abstract In this paper, we describe the implementation of memory checking
functionality that is based on instrumentation tools. The combination of
instrumentation based checking functions and the MPI-implementation offers
superior debugging functionalities, for errors that otherwise are not possible
to detect with comparable MPI-debugging tools. Our implementation contains
three parts: first, a memory callback extension that is implemented on top of
the Valgrind Memcheck tool for advanced memory checking in parallel
applications; second, a new instrumentation tool was developed based on the Intel
Pin framework, which provides similar functionality as Memcheck. It can be used
in Windows environments that have no access to the Valgrind suite; third, all the
checking functionalities are integrated as the so-called memchecker framework
within Open MPI. This will also allow other memory debuggers that offer a similar
API to be integrated. The tight control of the user’s memory passed to Open MPI,
allows us to detect application errors and to track bugs within Open MPI itself. The
extension of the callback mechanism targets communication buffer checks in both
pre- and post-communication phases, in order to analyze the usage of the received
data, e.g. whether the received data has been overwritten before it is used in an
computation or whether the data is never used. We describe our actual checks, how
memory buffers are being handled internally, show errors actually found in user’s
code, and the performance improvement of our instrumentation.
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1 Introduction

Parallel programming with the Message Passing Interface MPI [7] as a
distributed memory paradigm is an error-prone process. Great effort has been
put into parallelizing libraries and applications using MPI. However when it
comes to maintaining software, optimizing for new hardware, or even porting
codes to other platforms and other MPI implementations, developers will face
additional difficulties [2]. They may experience errors due to hard-to-track
interleaving dependent bugs, deadlocks due to communication characteristics, and
MPI-implementation defined or even hardware dependent behavior. One class of
bugs that are hard-to-track are memory errors, specifically in non-blocking and
one-sided communication.

In the beginning of previous work, we introduced new implementations of
the memchecker framework within Open MPI to check for memory problems
in parallel applications [3, 11]. It extends and integrates the Valgrind [10]
Memcheck tool in memchecker to observe communication buffers during the
communication as well as user specified parameters. We also introduced a newly
developed memory checking tool, MemPin, which has similar functionalities as
Memcheck and its extension. This new tool provide more flexibilities to be
integrated in the MPI libraries. It supports both Linux and Windows platforms,
and more new memory check functionalities may be implemented. On the other
hand, the two phase MPI communication checks, i. e. pre- and post-communication
checks have been defined in previous work. Performance implications based on
these checks were also discussed, which showed that the introduced overhead by
the debugging feature is minimum when the user application is not running with the
debugger.
MemPin has been integrated into Open MPI for pre- and post-communication

checks. The communication buffers errors, such as accessing buffers of active
non-blocking operations, writing communicated buffer before reading it, or
transferring unused data are being checked and reported. This kind of functionalities
would otherwise not be detectable within traditional MPI-debuggers based on
the PMPI-interface. In this paper, we continue the work on MemPin. Details of
the MemPin implementation will be discussed. The integration of the tool and
Open MPI is based on pre- and post-communication checks for non-blocking
and collective communications. We will take a closer look into how MemPin
and Open MPI work together, as well as how new checks may be implemented.
Furthermore, several MPI parallel applications will be introduced to run with our
memory checking tool. Problems, bugs and critical issues in these applications,
which have been found using the debugging tool, will be mainly focused on.

The structure of this paper is as follows: Sect. 2 shows the basic idea
and functionalities of Intel PIN; Sect. 3 first introduces the functionalities and
architecture of MemPin, then it gives a detailed description on the integration the
tool in Open MPI libraries; Sect. 4 shows details of the pre- and post-communication
checks for parallel applications; then in Sect. 5 we give more performance
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improvement results based on previous work; finally; in Sect. 6, we introduce a
2D heat conduction application, and discuss issues found by running the application
with MemPin; in Sect. 7, we make a comparison with other available tools and
conclude the paper with an outlook of our future work.

2 Overview of Intel Pin

Intel Pin [6] is a framework for building robust and powerful software
instrumentation tools, such as profiling, performance evaluation, and error detection
tools. Intel Pin is capable of analyzing and instrumenting application code, and
it is easy-to-use, portable, transparent, and efficient for building instrumentation
tools (Pintools) written in C/CCC. The Pin framework follows the ATOM [13]
model that allows the Pintools to analyze the application at the instruction level
without detailed knowledge of the underlying instruction set. The framework API is
designed to be platform independent in order to make the Pintools compatible across
different architectures. It can provide architecture specific details when necessary.
The instrumentation process is transparent as both the application and the Pintool
observe the original application code. Pin uses techniques like inlining, register
re-allocation, and instruction scheduling, in order to run more efficiently. The basic
overhead of the Pin framework is approximately 10–20 %, and extra overhead might
be caused by the Pintool.

Figure 1 shows a basic runtime architecture of Pin on Windows. It consists of
three main processes, the launcher process, the server process and the instrumented
process. The launcher process creates the other two processes, injects the Pin
modules, and instrumented code into the instrumented process, then it waits for the
process to terminate. The server process provides services for managing symbol
information, injecting Pin, or communicating with the instrumented process via
shared memory. The instrumented process includes the Pin Virtual Machine Monitor
(VMM), the user defined Pintool library, and a copy of the application executable
and libraries. The VMM is the core engine of the entire instrumented process that
includes a system call emulator, event and thread dispatchers, and also a (Just In
Time) JIT compiler. After Pin takes over the control of the application, the VMM
coordinates its execution. The JIT compiler instruments the code and passes it to the
dispatcher, which launches the execution. The compiled code is stored in the code
cache. The Pin tool contains the instrumentation and analysis routines. It is a plug-in
and linked with the Pin library, which allows it to communicate with the Pin VMM.

The Pin JIT compiler recompiles and instruments small chunks of binary code
immediately before executing them. The modified instructions are stored in a
software code cache. It allows code regions to be generated once and reused for
the remainder of program execution, in order to reduce the costs of recompilation.
The overhead introduced by the compilation is highly dependent on the application
and workload [6].
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Fig. 1 Overview of program
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tool on Windows

In this paper, we will describe the implementation of Memcheck extension
and the integration of a newly developed Pintool as the second memchecker
component in Open MPI, which may help MPI application and Open MPI
developers to track erroneous use of memory, such as reading or writing buffers
of active non-blocking receive operations, writing to buffers of active one-sided
get operations as well as erroneous use of communicated data, such as writing the
communicated buffer before reading.

3 Design and Implementation

In previous work, we have taken advantage of an instrumentation API offered
by Memcheck to find MPI-related hard-to-track bugs in applications (and
within Open MPI). In order to allow other kinds of memory-debuggers, such
as bcheck [1] or Totalview’s memory debugging features [15], we have
implemented the functionality as a module within Open MPI’s Modular Component
Architecture [17]. The module is therefore called memchecker and may be
enabled with the configure-option --enable-memchecker.

However, that did not meet all the requirement of advanced MPI semantic
memory checking, and the current functionalities of Valgrind Memcheck do
not suffice. For example, the future MPI standard will change behavior compared
to the current version of the standard in that it allows read access to send buffers of
non-blocking operations. In order to detect send buffer rewrite errors, Memcheck
has to know which memory region is readable or writable. On the other hand,
checking the communicated buffer is also important, for example, writing the
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received buffer before reading may cause computation errors. And for performance
concerns, data transferred but never used (read) might also be necessary to detect.
The extensions for Memcheck have been implemented for this purpose.

3.1 MemPin

As Open MPI is supported on Windows platforms, a debugging tool for checking
memory errors is also necessary. A new tool named MemPin has been designed on
top of Intel Pin framework to meet this need.1

The MemPin tool uses Intel Pin’s instrumentation API to provide the same
callback functionalities as the Memcheck extension for the user application.
Furthermore it may be used to perform the basic functionalities of Memcheck,
such as make memory readable or inaccessible, but through a different approach
(see Sect. 4.2). The available interfaces and descriptions are:

• MEMPIN RUNNING WITH PIN

Checks whether the user application is running under Pin and Pintool.

• MEMPIN REG MEM WATCH

Registers the memory entry for specific memory operation.

• MEMPIN UPDATE MEM WATCH

Updates the memory entry parameters for the specific memory operation.

• MEMPIN UNREG MEM WATCH

Deregisters one memory entry.

• MEMPIN SEARCH MEM INDEX

Returns the memory entry index from the memory address storage.

• MEMPIN PRINT CALLSTACK

Prints the current callstack to standard output or a file.

The user may use the MemPin API to register memory regions with specific
callback function and parameter pointers. When the user application is not running
with the Pintool, all MemPin calls will be taken as empty macros, and add no
overhead. But if running with MemPin tool, Pin first reads the entire executable,
and all the MemPin calls will be replaced with the corresponding function calls that
are defined inside MemPin. The generated instrumented codes will be then executed
and MemPin will observe and respond to the behavior of the user application.

1The MemPin tool in this work is developed only targeting at Windows platforms, although it may
be used under Linux too.
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MemPin uses image and trace instrumentations in user applications. The image
instrumentation is done when the image is loaded. In this stage, all the MemPin
calls used in the user application will be replaced, and the main entry function, like
main will be instrumented for starting the trace engine and the callstack log of
MemPin.

The next stage will mainly take care of the memory access, callback functions
and the user application callstack. The trace instrumentation is analyzed according
to each Basic Block (BBL), and every memory operation in the BBL is checked.
When the memory is read or written, the single instruction of the memory operation
is instrumented with an analysis function with memory information as operands. For
generating useful information of where exactly the memory operation has happened,
a callstack log engine is instrumented also in this stage. The callstack engine is
implemented using a simple CCC stack structure, which stores only the necessary
historical instruction addresses of the application and translates the addresses into
source information when required. The new function entry address from the caller
will be pushed onto the stack, and it is popped off at the end of the callee. To achieve
this goal, the tail instruction of each BBL has to be analyzed. More precisely,
every “call” and “return” instruction are instrumented for pushing and popping the
instruction address stack.

3.2 Integration of MemPin with Open MPI

MemPin has been successfully integrated into Open MPI as an MCA component,
in order to achieve the parallel memory checking discussed in previous sections.
Figure 2 shows the basic architecture of MemPin and how it can work with
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Open MPI. memchecker component can directly communicate with MemPin at
runtime. When a communication is initialized, memchecker send a request to
MemPin to record or update the memory information. The Memory Management
component is in charge of inserting, deleting or updating memory entries. An
memory entry contains information of a communication buffer, including starting
address, size, callback function pointer and memory operation flag. All memory
entries are stored in the Memory Registration Storage, which is a multiple map data
structure. The Search Engine intercepts the translated application code from Intel
Pin, and find the match access according to the storage. If a match is found, it will
send corresponding memory information to the Callback Engine, which then will
directly call the callback function registered with the memory entry.
MemPin has no information about whether the memory is readable or writable.

But similar functionalities for making memory readable and writable have been
implemented in Open MPIusing the callback scenario of MemPin. In the callback
function defined in Open MPI, for both pre- and post-communication checks, the
same memory states Bits are used. For pre-communication checks, the two Bits
of memory state are used for marking the memory readable or writable, as shown
in Fig. 3a. If the first Bit is set to “1”, the memory is marked as not readable.
The second Bit is the writable Bit, which means a “1” is for not writable. When
both Bits are set to “1”, then the memory is marked as not accessible at all.

For post-communication checks, the same Bit table will be used in order to
save the storage. But the two bits have different meanings, see Fig. 3b. The first
Bit indicates whether the byte of memory has been read or not. The second
bit is for whether the byte of memory has been written or not. The callback
function will check for each registered receive buffer, whether they are read
before written, otherwise reporting a Write Before Read error. Furthermore, in the
MPI Finalize call, all memory state Bits are checked for buffer that are not used
after communication.

These two phases of memory checks in MPI communication may change auto-
matically to the other phase. If a parallel application has several communications,
whenever the communication is started, for example calling the MPI Isend, the
pre-communication check will be enabled. When the communication is finished,
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for example MPI Wait is called, the post-communication check will be executed.
The shadow memory for both checks does not need to be reallocated, as they have
the same format but different meaning of the Bits. All the registered memory checks
will be cleared in the MPI Finalize, which is the end of the parallel computation.

4 Memory Checks in Parallel Application

4.1 Pre-communication Checks

In Open MPI objects such as communicators, types and requests are declared as
pointers to structures. These objects when passed to MPI-calls are being immedi-
ately checked for definedness and together with MPI Status are checked upon
exit.2 Memory being passed to send operations is being checked for accessibility
and definedness, while pointers in receive operations are checked for accessibility,
only.

Reading or writing to buffers of active, non-blocking receive operations and
writing to buffers of active, non-blocking Send-operations are obvious bugs. Buffers
being passed to non-blocking operations (after the above checking) are being
set to undefined within the MPI-layer of Open MPI until the corresponding
completion operation is issued. This setting of the visibility is being set independent
of non-blocking MPI Isend or MPI Irecv function. When the application
touches the corresponding part in memory before the completion with MPI Wait,
MPI Test or multiple completion calls, an error message will be issued. In order
to allow the lower-level MPI-functionality to send the user-buffer as fragment, the
lower-layer BTLs (Byte Transfer Layers) are adapted to set the fragment in question
to accessible and defined, as may be seen in Fig. 4. Care has been taken to handle
derived datatypes and its implications. Complex datatypes are checked according to
their definitions, which means gaps will be ignored to avoid false positive messages.

For send operations, the MPI-1 standard also defines, that the application
may not access the send-buffer at all (see [7], p. 30). Many applications do not
obey this strict policy, domain-decomposition based applications that communicate
ghost-cells, still read from the send-buffer. To the authors’ knowledge, no existing
implementation requires this policy, therefore the setting to undefined on the Send
side is only done when strict-checking is enabled.

For one-sided communications, MPI-2 standard defines that, any conflicting
accesses to the same memory location in a window are erroneous (see [8], p. 112). If
a location is updated by a put or an accumulate operation, then this location cannot
be accessed by a load or another RMA operation until the updating operation is

2For example this showed up uninitialized data in derived objects, e.g. communicators created
using MPI Comm dup.
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Fig. 4 An example of non-blocking communication using pre-communication checks with
fragment handling to set accessibility and definedness

completed on the target. If a location is fetched by a get operation, this location
cannot be accessed by other operations as well. When a synchronization call starts,
the local communication buffer of an RMA call and a get call should not be updated
until it is finished. User buffer of MPI Put or MPI Accumulate, for instance, are
set not accessible when these operations are initiated, until the completion operation
finished. Valgrind will produce an error message, if there is any read or write
to the memory area of the user buffer before corresponding completion operation
terminates.

In Open MPI, there are two One-sided communication modules, point-to-point
and RDMA. Similar checks have been implemented for MPI Get, MPI Put,
MPI Fence and MPI Accumulate in point-to-point module.

For the above communication buffer checking, the original features of
Valgrind are used and integrated in Open MPI on Linux. On the other hand,
in order to implement the same checks on Windows, the callback scenario of
MemPin is used. When the communication starts, for example, the MPI Isend
and MPI Irecv are called, all the communication buffers are registered, and
all read and write access on the buffers will be checked whether they are legal
according to the standards. If an illegal access is found, a warning message with
sufficient callstack information will be generated for the user. However, in order
to make the MemPin efficient and lightweight, memory checks for accessibility
and definedness cannot be easily implemented due to complex and large shadow
memory consumption.

4.2 Post-communication Checking

For more detailed memory checking, one may further implement an interface
to encode read and write accesses of previously communicated data. This new
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analysis mechanism may help user applications to detect whether data has been
sent needlessly, i. e. data that has been sent but might be overwritten before reading
or may be never accessed in the receiving process.

More precisely, read accesses on the received data is counted as meaningful,
while the first write access is not, for the communicated buffer is overwritten
before any actual use. To achieve this goal, we make use of the tools introduced
in Sect. 3.1, in order to notify Open MPI of the corresponding tasks based on the
type of operations, i.e. read or write to the received buffer.

All the communication buffers are registered when the communication
finishes. For example, in Fig. 5, when the MPI Wait is called for non-blocking
communication, every read and write access on the received buffer will be processed
by the callback implementation in Open MPI, and a write before read is marked as
illegal. In the finalization phase of the parallel application, all registered memory
will be checked for whether there are communicated data but never used, i. e.
whether there are buffers without a read access.

5 Performance Comparison

In previous work [12], we showed the performance when the benchmarks were
not run with debuggers. The results proved that the overhead introduced by the
debugging frameworks are neglectable. However, when the benchmarks are run with
debuggers, there will be approximately 30–50 % slowdown.

Figure 6 shows a comparison between running with Valgrind and MemPin
using NetPIPE. NetPIPE was run under supervision of Valgrind and MemPin
respectively using two compute nodes interconnected with InfinBand on Nehalem
cluster at HLRS. The latency (in Fig. 6a) of using MemPin is nearly 50 % less than
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Fig. 6 NetPIPE latency (left) and bandwidth (right) comparison of Open MPI run with the
memchecker framework over InfiniBand. (a) Latency over TCP connection. (b) Bandwidth over
TCP connection

the latency using Valgrind. The difference of bandwidth between the two tests
increases largely when the message size increases, as shown in Fig. 6b. Using the
memchecker framework based on MemPin has a better performance than using
framework based on Valgrind.

6 2D Heat Conduction Program with MemPin

During the course of development, several software packages have been tested with
the memchecker functionality. Among them problems showed up in Open MPI
itself (failed in initialization of fields of the status copied to user-space), an MPI
testsuite [4], where tests for the MPI ERROR triggered an error. In order to reduce
the number of false positives in Infiniband networks, the ibverbs library of the
OFED stack [14] was extended with instrumentation for buffer passed back from
kernel-space.

A 2d heat conduction algorithm has been used for running with the new
implemented memory checking framework on both Linux and Windows. The
algorithm is based on Parallel CFD Test Case [9]. It solves the partial differential
equation for unsteady heat conduction over a square domain. It was firstly run
with two processes under control of MemPin, where warnings about 112 bytes of
communicated but not used data were reported. A small amount of data on two
processes may be not critical to the communication time. But when running with
large number of processes with the application, it may differ.

In the 2D domain decomposition algorithm, it requires calculating elements from
their horizontal and vertical neighbor elements, but the whole border element arrays
are updated from neighbor sub-domain. This results that, for the border update in
every sub-domain, there will be four corner elements that will never be used for
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Fig. 7 Comparison of the communication time between the original and modified heat conduction
program on Nehalem cluster. (a) On 4 nodes. (b) On 64 nodes

calculation (without periodic boundary condition, the virtual border elements are not
taken into account in the example). This might be no harm for the calculation result
of the algorithm. But when decomposing the entire problem into a large number of
sub-domains, the total amount of transferred but unused data may be high, and as
consequence communication might require more time.

Take a 4 � 4 domain decomposition as an example, where every element
calculation requires horizontal and vertical neighbor elements. In this specific
condition, there will be 72 elements transferred but not used (36 corner ele-
ments transferred two times). When scaling this code by doubling the number of
processors used to compute this domain, the number of elements communicated
but not used increases dramatically. In the case of a 8 � 8 domain decomposition,
that has 392 elements (196 corner elements transferred two times) might not be
communicated. Assuming we have a M � N domain decomposition, the total
amount of such elements are described by:

.M � 1/ � .N � 1/ � 4 � 2 (1)

It is obvious that, the number of unnecessary communicated data grows
superlinearly with the domain decomposition.

The heat program has further been tested with more processes on different
number of nodes on BWGrid and Nehalem Cluster at HLRS, in order to discover
the relationship between the communicated but unused corner elements and the
communication performance. For the first test, the heat program was set to a
1;500�1;500 domain, and parallelized with different number of processes over four
compute node (eight cores on each node) on Nehalem cluster. A modified version of
the heat program was also used for the test, which does not send any unused corner
elements. The average communication time and overall run time are measured based
on five executions on different number of processes, as shown in Fig. 7a. When not
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oversubscribing the nodes (each core has no more than one process), the modified
version is generally better than the original version ranging from 3 to 7 %. As we
can see, communicating the corner elements of the sub-domains will indeed affect
the communication time of the program.

Another test on 64 nodes was made on Nehalem cluster to start large number
of processes without oversubscribing the compute node cores. The processes are
assigned using round-robin algorithm among the nodes, in order to achieve a better
load balancing for the simulation. Figure 7b shows the communication time of
running the same simulation with different number of processes on the cluster. It
presents the communication time for different number of processes (64–310). The
modified version has a shorter communication time on average, which is 10 % better.
The best case is even 20 % better than the original version.

The communication time does not increase of decrease linearly with the number
of processes, because the domain decomposition will influence the communication
efficiency. Assuming we have eight bytes data in each corner element, for a 96
processes run (12 � 8 decomposition), the number of border exchange is .12 � 1/ �
.8 � 1/ � 4 � 2, which is 616 times. This results to 4,928 bytes of communicated
but never used data. For the same configuration, if running with 128 processes
(16 � 8 decomposition), the size of each border element is halved, i. e. four bytes.
But the number of border exchange is now .16 � 1/ � .8 � 1/ � 4 � 2, which
is 840 with 3,360 bytes in total. One may argue that the total size of transferred
data is smaller with high resolution of domain decomposition, the communication
speed should increase. However, this is not true. The overall communication speed
is highly determined by the number of communication but not the data size that is
transferred. In Open MPI, for blocking and non-blocking communication, there are
two transmission protocols, i.e. Eager and Rendezvous. When the data size is small
than 12 kB, the data will be sent in one package (Eager protocol). But when the data
size is larger than 12 kB, the data will be divided into smaller packages (Rendezvous
protocol), so there is not only one send and receive operation on this data. When the
data size does not exceed the limit, the number of the communication will determine
the overall communication speed. This also explains why the communication time
is larger when running with 64 processes. In this case, the corner data is much larger
than 12 kB, so the number of communication is doubled or even tripled.

7 Conclusion

We have presented an implementation of memory debugging features into Open
MPI, using the instrumentation of the Valgrind and a newly developed Intel
Pintool, and the performance implication of using the instrumentation with several
benchmarks. This allows detection of hard-to-find bugs in MPI parallel applications,
libraries and Open MPI itself [2]. Up to now, no other debugger is able to find these
kinds of errors.
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With regard to related work, debuggers such as Umpire [16], Marmot [5] or the
Intel Trace Analyzer and Collector [2], actually any other debugger based on the
Profiling Interface of MPI, may detect bugs regarding non-standard access to buffers
used in active, non-blocking communication without hiding false positives of the
MPI-library itself.
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Generic Support for Remote Memory Access
Operations in Score-P and OTF2
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Abstract Remote memory access (RMA) describes the ability of a process to
access all or parts of the memory belonging to a remote process directly, without
explicit participation of the remote side. There are a number of parallel program-
ming models based on RMA operations that are relevant for High Performance
Computing (HPC). On the one hand, Partitioned Global Address Space (PGAS) lan-
guage extensions use RMA operations as underlying communication substrate, e.g.
Co-Array Fortran and UPC. On the other hand, RMA programming APIs provide
so called one-sided data transfer primitives as an alternative to the classic two-sided
message passing. In this paper, we describe how Score-P, a scalable performance
measurement infrastructure for parallel applications, is extended to support trace-
based performance analyses of RMA parallelization models. Emphasis is given to
the generic event model we designed to record RMA operations in the OTF2 trace
format across a range of one-sided APIs and libraries.

1 Introduction

In high-performance computing (HPC), the prevalent programming paradigm has
been the Message Passing Interface (MPI) for many years. Although MPI defines
three communication paradigms, point-to-point, collective, and one-sided commu-
nication, the former two are widely used, whereas the latter is scarcely present
in current HPC applications. The reasons for this imbalance can be manifold, as
the one-sided communication interface was added with MPI 2.0 a year after the
initial release of MPI, and many developers perceive the interface semantics to be
unwieldy and complicated. Despite its minor role in current HPC applications, with
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the complexity of petascale computing systems in use and exascale systems on the
horizon, the interest in one-sided communication is beginning to rise again. This
is much due to Partitioned Global Address Space (PGAS) libraries and languages
entering the HPC world, promising to reduce programming complexity while
retaining performance levels of current applications. In the PGAS programming
model, the developer can directly address variables on remote processes through a
global shared memory view. Thus, the developer does not have to deal explicitly
with data transfers. Instead, the PGAS runtime system manages data transfers
among remote portions of the memory transparently to the user, reducing the
source code complexity. The most prevalent PGAS representatives today are Unified
Parallel C (UPC) [18] and Co-Array Fortran (CAF) [15].

Although showing promising results in terms of performance, all lack support for
incremental parallelization starting from the prevalent HPC programming languages
C and Fortran. However, with HPC application codes relying on code bases with
several decades of history, the adoption of the PGAS concept is slow. As alternative
approaches, one-sided parallelization models were developed which require neither
language extensions nor special compilers. Examples are GASNet [2], ARMCI [13],
GlobalArrays (GA) [12], SHMEM [14], GPI [11], Cray’s DMAPP [19], and MPI
3.0 [17]. All provide APIs plus libraries for remote memory access (RMA) opera-
tions in a similar way as MPI provides point-to-point and collective communication
operations. The RMA APIs promise an easier adoption by the HPC community
compared to PGAS language extensions, yet there is no established quasi-standard
dominating the field like MPI is for point-to-point and collective communication.

When various RMA parallelization models gain momentum in the HPC field,
tool support for performance analysis and optimization becomes crucial. Yet, it is
impractical to develop individual tools for all promising RMA libraries. Therefore,
this paper presents a first step towards a generic performance tool infrastructure
for RMA parallelization models. This is feasible because all build around the same
fundamental semantics even though they provide different APIs. This leads to a
number of common concepts of HPC RMA models and a generic event model for
RMA operations together with its representation in the Open Trace Format Version
2 (OTF2). Performance tools will be able to build on top of this abstract model to
provide abstract analysis functionality.

In the following section, we give a short overview about the Score-P/OTF2 event-
based performance analysis infrastructure. After that, Sect. 3 introduces the common
concepts in RMA libraries and Sect. 4 presents the design of the new generic RMA
event types in OTF2. The paper ends with an outlook and conclusion.

2 Overview of Score-P and OTF2

The Score-P project started in 2009, funded by the German BMBF and the US DOE,
and the entire performance measurement infrastructure is available as Open Source
under the New BSD License.
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2.1 The Score-P Instrumentation and Measurement System

The Score-P performance measurement system [10] is a highly scalable and
user-friendly tool suite for profiling, event tracing, and online analysis of HPC
applications. It is designed as a joint instrumentation and run-time data collection
infrastructure for a number of performance analysis tools. Currently, Score-P sup-
ports the well-established analysis tools Periscope [1], Scalasca [7], VAMPIR [9],
and TAU [16] and is open for other tools.

To collect performance data, e.g., times, visits, or communication metrics,
measurement probes are inserted into the application code. These probes will collect
performance-related data whenever they are triggered during measurement runs.
Currently, Score-P supports the following instrumentation variants for C/CCC and
Fortran codes:

• Compiler instrumentation,
• MPI library interposition,
• OpenMP source code instrumentation using OPARI2,
• Source code instrumentation using the TAU instrumentor,
• Binary instrumentation via COBI, and
• User instrumentation using convenient macros.

Score-P targets programs parallelized via MPI 2.1 and OpenMP 3.0 (incl. tied
tasking) as well as hybrid combinations.

Besides the post-mortem analysis of the gathered performance data, Score-P
offers an interface for on-line analysis. Using this interface, analysis tools can
re-configure measurement parameters, retrieve profile data, and also interrupt and
resume the application’s execution.

2.2 The Open Trace Format 2

The Open Trace Format 2 [5] is a highly scalable, memory efficient event trace data
format and support library. It is the common successor format for the Open Trace
Format (OTF) [8] and the EPILOG trace format [20]. The analysis tools Scalasca,
VAMPIR, and TAU already use OTF2 as their standard trace format. Nevertheless,
OTF2 is open to support other tools.

The most important innovation of OTF2 over OTF and EPILOG is its scalability.
Using a combination of online event-data and zlib compression reduces the trace file
size considerably and thus defers potential buffer flushes. Leveraging the scalable
parallel I/O library SIONlib [6], multiple task-local result files can be mapped onto
one single or a small number of physical files, which results in reduced pressure
on metadata servers during file creation. Finally, OTF2 avoids copying trace data
during unification of parallel event streams.
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2.3 Existing Event Record Types

The OTF2 format is based on two basic record types. On the one hand, there
are definition records containing general information like subroutine names and
processes/threads used. On the other hand, OTF2 provides event records. Currently,
the following types of event records are supported:

Program flow: Events of this category are used to record program flow, e.g.
entering or leaving subroutine calls.

Communication: The second category contains events like message transfers via
point-to-point or collective communication.

OpenMP-related events: For OpenMP parallel programs OFT2 provides records
to track creation and termination of threads as well as records associated with
OpenMP locking routines. In order to support OpenMP 3.0 tasking, events for
tracking task creation, completion, and task switches are provided.

Measurement control: We do not always need performance data of the full
program run to narrow down performance bottlenecks. To reduce the amount
of storage required, the user can therefore limit event recording to performance
critical parts of code. For this purpose, the Score-P measurement system provides
the option of temporarily switching off recording, which will later be indicated
by corresponding records in the trace file.

Additional information: Often the information obtained from the previously
mentioned event types is not sufficient for comprehensive performance analysis.
For example, information on floating-point performance or cache misses helps
to unveil unfavorable data access patterns. Sources of such information are
hardware performance counters, whose values can be stored in metric records.

2.4 Current and Future Directions

Emerging new trends and architectures in HPC are continuously addressed by
Score-P. New instrumentation and measurement features are being integrated during
the continuous evolution of the trace and profile formats. However, to keep changes
to the output formats moderate, we strive for generic event abstractions that can
serve several programming models. Future Score-P releases will feature

• Sampling as alternative to instrumentation when obtaining performance data,
• A plugin-architecture to connect to a wide range of external metric sources,
• Improved threading support—the OpenMP support will be generalized and

extended to address Pthread-, OmpSS-, and HMPP-based programming models,
• The compression of time-series call-path profiles to record the detailed perfor-

mance dynamics even of long-running codes,
• And the reduction of I/O-demands of hybrid programming models on ever-

growing HPC-systems through extended SIONlib support.
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3 RMA in HPC Parallel Programming

Below, the most relevant one-sided communication interfaces in the HPC field will
be introduced, followed by an overview about common terms and concepts.

3.1 RMA Operations in HPC Parallelization Libraries

The following RMA parallelization models were the starting points for the common
concepts. PGAS language extensions are postponed to the outlook in Sect. 6.

MPI 2.0 and 3.0

When the extensions to the Message Passing Interface were introduced with
MPI 2.0 in 1995, they included an interface for one-sided communication. As a
third communication paradigm, it complemented the existing point-to-point and
collective communication interfaces. Adoption in the user community as a direct
user-level interface was very slow. Its interface was often regarded by users as
too complicated, and Bonachea and Duell [3] showed that several aspects in the
interface disqualify it for use as a runtime backend for PGAS languages. With MPI
3.0, the MPI Forum addressed these shortcomings to enable the interface to be used
as a portable interface for PGAS compiler and library providers.

SHMEM and OpenSHMEM

The SHMEM interface was originally introduced by Cray as a shared memory
programming interface for their supercomputing platforms. Although initially a
proprietary interface, it has since been ported to different platforms. With OpenSH-
MEM [4] an open interface was introduced in 2010 that was explicitly designed to be
used as the one-sided backend for PGAS compilers, such as the Open64 Co-Array
Fortran compiler.

ARMCI and GlobalArrays

The Aggregate Remote Memory Copy Interface (ARMCI) [13] was designed and
is still used as the one-sided communication backend for the Global Arrays Toolkit
(GA) [12], a library for PGAS-like computation on distributed matrices.
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GPI and GASPI

The Global Address Space Programming Interface (GPI) is a proprietary library
for RMA parallelization developed and commercially distributed by the Fraunhofer
Institut fr Techno-und-Wirtschaftsmathematik (ITWM). Together with academical
and industrial partners, they started a community-driven project in 2011 called The
Global Address Space Programming Interface (GASPI). On the one hand, it strives
for a standardization of RMA APIs for HPC parallelization. On the other hand, it
will provide an Open Source reference implementation.

CUDA and OpenCL

The Compute Unified Device Architecture (CUDA) is a programming model
developed by NVIDIA for their line of GPGPUs. The Open Computing Language
(OpenCL) is an open standard for parallel programming for heterogeneous plat-
forms, including GPU devices and other accelerator devices.

Both do not belong to the area of one-sided communication interfaces. Yet, they
employ direct memory access (DMA) operations for the data transfer between hosts
and devices which are very similar to the RMA operations relevant for this paper. It
turns out, they can be covered with the same event model. Thus, this selected aspect
of their APIs is also covered here, whereas all other aspects are left out.

3.2 Concepts in RMA Parallelization Models

The following concepts have been collected across all RMA models covered.

Communication Contexts

A communication context is the frame in which the remote side of an RMA
operation (i.e. the target for write operations or the source for read operations) is
specified. One could also call it a name space for the remote processes. Further-
more, synchronization and interaction between RMA operations are enclosed in
communication contexts, e.g. the preservation of the order of operations. The best
known example in the HPC field are MPI communicators, where the specification
or the remote rank is relative to the communicator and the same rank number in
different communicators may refer to different processes. Most RMA parallelization
models have only a single global context but there are a few exceptions: First
MPI, which uses its communicator concept also for one-sided operations. Second
GPI and GASPI which have so called communication queues. In each queue the
operations stay in-order, across queues this is not guaranteed. Finally, for CUDA and
OpenCL there are only local contexts within every host in which the first, second,
third, : : : local accelerator device can be addressed. With separate contexts, one can
distinguish between all accelerator devices across multiple hosts.
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Memory Windows

In most RMA models, only parts of the address space may be accessed by RMA
operations. Such address ranges are called memory windows.

There are models that offer symmetric windows (SHMEM), where the start
address of the window is the same on all processes. Others have non-symmetric
ones (MPI, ARMCI). Some models allow only a single static window where all
data for communication needs to be placed (GPI, GASPI) while others allow many
fine-granular and dynamic windows (MPI, SHMEM). Finally, not all models have
such a concept (CUDA).

Remote Memory Access Operations

The get and put primitives are the very essence of the RMA concept. They allow
access to a remote memory location without the active participation from the other
side.1 Some interfaces explicitly distinguish between non-blocking calls, which just
issue an operation, and blocking variants, which wait for local completion of the
operation. Here, local completion means that following local operations cannot
interfere with an operation in flight, e.g. by overwriting the source location. Remote
completion can only by inferred via synchronization operations, see below.

Besides the basic get and put operations, atomic operations allow more sophisti-
cated operations on remote memory. Sometimes they are called read-modify-write
operations. Examples are compare-and-swap and fetch-and-increment. Atomic
operations guarantee atomicity for the entire operation, which does not hold for
successive get and put operations that imitate the same behavior on the same remote
memory location. The same rules for non-blocking vs. blocking operations apply.

Synchronization

The completion of a remote memory access operation usually has only local scope.
Therefore, additional synchronization primitives are provided to ensure local and
remote completion. Unlike for P2P communication, there are two separate aspects
of synchronization for RMA communication. One is the execution synchronization,
which waits for remote operations to be finished before proceeding locally. The
other is memory synchronization which waits for local or remote memory windows
to be accessible again. Both can be used separately or combined.

The synchronization methods provided by the different RMA models
fall into four categories: collective synchronization, group synchronization,
notification, and locking. Collective synchronization is performed among all

1Sometimes they are called read and write instead, but get and put are the typical terms. To avoid
confusion, load and store are used explicitly for local memory accesses.
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processes of the communication context. Examples include MPI Win fence
and ARMCI Barrier. Note that all processes in the communication context
need to participate, regardless of whether they issued RMA operations themselves
(i.e. active ones) or whether they were target of any (i.e. passive ones).

Synchronization among a sub-group of a communication context is much more
lightweight than collective synchronization in the entire context. The sub-groups
don’t need to be collectively defined, but again all active and passive processes need
to participate. This kind of synchronization is sometimes used to define so called
phases in which the access to a memory window is restricted to either only local or
only remote access.

Notification is another flavor which is useful for pairwise synchronization. The
typical procedure is that a process waits for a change at a local memory address
which is eventually triggered by an RMA operation from a remote process.

Finally, synchronization via locking is a method to coordinate mutual exclusive
access to either entire memory windows or parts thereof. There are normal locking
models where the acquisition of a lock may be successful, unsuccessful, or block
until it succeeds. In addition, MPI has a special mode of issuing a locking request,
which is guaranteed to be fulfilled in the future. Afterwards, non-blocking RMA
operations may be issued and are automatically postponed until the lock is available.

Collective Communication

Collective communication operations combine data from a group of processes in
predefined or self-defined ways. These are, in particular, reduction operations such
as sum, maximum, or minimum. Such operations could be implemented manually
using either basic get and put operations or using point-to-point send and receive
operations. Therefore, this is no inherent RMA concept. Still, it is covered with
new event types below, because collective operations influence the synchronization
within RMA based parallel applications.

4 Generic RMA Event Types

This section presents and explains the RMA event record types distilled out of the
set of RMA programming models previously covered. They relate directly to the
common concepts identified before.

4.1 RMA Window Handling

The memory window concept is directly represented by a definition record and two
event records that mark the creation and destruction of the window.
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The OTF2 GlobalDefRmaWin record defines a new window with a unique
identifier, a free form name, and a reference to a communicator. The communicator
has to be defined earlier and references all participating processes or threads as well
as the actual RMA model (MPI, GASPI, : : :).

OTF2 GlobalDefRmaWin
OTF2 RmaWinRef self the new window ID being defined
OTF2 StringRef name a free form name, e.g. “MPI window” or “Gfx Card 1”
OTF2 CommRef comm underlying communicator

With this definition, the OTF2 RmaWinCreate or OTF2 RmaWinDestroy events
can be generated. They mark the location and time of the creation resp. destruction
of the window on all participating processes/threads and thus enclose all operations
related to this window.

OTF2 RmaWin(CreatejDestroy)
OTF2 LocationRef location Process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window

4.2 Specification of the Passive Side

RMA event records are usually recorded at the active process or thread, i.e. where
they are issued with a RMA API call. In an event record the active side is referenced
with an OTF2 LocationRef entry. This is not possible in the same way for the
passive side, because that are entire address spaces instead of processes or threads.

As a flexible solution, the RMA event records represent the passive sides of RMA
operations as a pair of an index target and a memory window window. The window
refers to a communicator definition which in turn refers to all processes or threads in
the communicator. The index can be used to identify one or all threads that belong
to the passive side’s address space. Usually, it is the same number that was passed to
API call which issued the operation. This scheme is used for all following records.

4.3 Get and Put

The get and put operations access remote memory addresses. The corresponding get
and put records mark when they are issued. The actual start and the completion may
happen later.
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OTF2 Rma(PutjGet)
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint32 t target rank of target in context of window
uint64 t size number of bytes transferred
uint64 t matching matching number

The matching number allows to reference the point of completion of the
operation. It will reappear in a completion record on the same process or thread
(see Sect. 4.5).

This can mean different things: For put operations, the local completion means
that the data is sent off and the source address range may be modified again
without affecting the RMA operation. Remote completion means that the new data
is ensured to be visible when read on the passive target process. Completion of get
operations means that the data is available at the local target address, i.e. the fetched
data is safe to be used. Remote completion is implied in this case.

4.4 Atomic RMA Operations

The atomic RMA operations are similar to the get and put operations. As an
additional field they provide the type of operation from the following set, which
may be extended in the future.

OTF2 RmaAtomicType
OTF2 RMA ATOMIC TYPE ACCUMULATE accumulate
OTF2 RMA ATOMIC TYPE FETCH AND INCREMENT fetch and add
OTF2 RMA ATOMIC TYPE TEST AND SET test and set
OTF2 RMA ATOMIC TYPE COMPARE AND SWAP compare and swap

Depending on the type, data may be received, sent, or both, therefore, the sizes
are specified separately. Matching the local and optionally remote completion works
the same way as for get and put operations.

OTF2 RmaAtomic
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window window
uint32 t target rank of target in context of window
OTF2 RmaAtomicType type type of atomic operation
uint64 t size sent number of bytes transferred to target
uint64 t size received number of bytes transferred from target
uint64 t matching matching number
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4.5 Completion Records

The completion records mark the end of RMA operations. Local completion for
every RMA operation (get, put, or atomic operation) always has to be marked with
either OTF2 RmaOpCompleteBlocking or OTF2 RmaOpCompleteNonBlocking
using the same matching number as the RMA operation record. An RMA operation
is blocking when the operation completes locally before leaving the call, for
non-blocking operations local completion has to be ensured by a subsequent call.

OTF2 RmaOp(Testj(Complete(BlockingjNonBlockingjRemote))
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint64 t matching matching number

The OTF2 RmaOpTest record indicates a test for completion. This is only useful
for non-blocking RMA calls where the API supports such a test. The test record
stands for a negative outcome, otherwise a completion record is written. An optional
remote completion point can be specified with OTF2 RmaOpCompleteRemote.
The OTF2 RmaOpCompleteRemote record is recorded on the same process as the
RMA operation itself. Again, multiple RMA operations may map to the same
OTF2 RmaOpCompleteRemote. The target processes are not explicitly specified but
implicitly as all those that were referenced in matching RMA operations. There is no
counterpart for OTF2 RmaOpTest for remote completion, because no RMA model
provides such a primitive. A completion record marks all RMA operation records
(get, put atomic operation) that used the same matching number as completed in the
respective scope. Using the distinct matching numbers for every operation implies a
1:1 relationship between operation and completion records. Where semantics permit
it the same matching number can be used for subsequent operations, leading to an
n:1 relationship between operation and completion records, effectively reducing the
number of records in the trace.

4.6 Notification via RMA

The OTF2 RmaWaitChange event marks a synchronization point that blocks until a
remote operation modifies a given memory field (see ‘notification’ in Sect. 3.2).

OTF2 RmaWaitChange
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window

This event marks the beginning of the waiting period. The memory field in
question is part of the specified window. Its address and length is not stored
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because different RMA models specify them differently. It can be added as optional
model-specific key-value attributes. The source process/thread of the modification
cannot be determined in general and is therefore omitted.

4.7 Synchronization

Synchronization plays an important role in all RMA models and can mean two
different things: On the one hand, the execution of processes/threads are synchro-
nized, such that they cannot proceed before all processes arrive. This is the notion
of a barrier for parallel execution. On the other hand, memory areas of RMA
operations “in flight” are synchronized. This does not necessarily imply that the
processes/threads are synchronized. (Yet, synchronization records do not replace
completion records which must be written in addition.)

The following four synchronization levels cover all combinations of the two:

enum OTF2 RmaSyncLevel
OTF2 RMA SYNC LEVEL NONE no process synchronization or access completion,

e.g. MPI Win post/start
OTF2 RMA SYNC LEVEL PROCESS synchronize processes, e.g. MPI Win create/free
OTF2 RMA SYNC LEVEL MEMORY complete memory accesses,

e.g. MPI Win complete/wait
OTF2 RMA SYNC LEVEL ALL complete memory accesses and synchronize

processes, e.g. MPI Win fence

The first synchronization record type is for simple pairwise synchronization:

OTF2 RmaSync
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint32 t target rank of target in context of window
OTF2 RmaSyncLevel sync level synchronization level

The second record type synchronizes a sub-group of the processes associated
with the given memory window. It needs to be recorded for all participants.

OTF2 RmaSyncGroup
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaSyncLevel sync level synchronization level
OTF2 RmaWinRef window memory window
OTF2 GroupDef group group of participating processes or threads

Further means of synchronization are RMA collective operations, see below.
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4.8 Collective Operations and Synchronization

Many RMA models provide collective operations. They are similar to the MPI
collectives and as such not specific to the RMA concept. But they are also part of
the RMA models and affect the synchronization with RMA operations. Therefore,
separate records are defined which refer to the synchronization level introduced
before.

The following event records for collective RMA operations must be generated on
all participating members of the communicator that is referenced from the memory
window. On all processes, a OTF2 RmaCollectiveBegin event record with only the
location and time must be followed by a OTF2 RmaCollectiveEnd event record
with all details. It is invalid to intermix or nest begin and end records of different
collective operations, but local or remote completion records may be placed in
between. If there is a root process, it must be specified in root which is a process
rank relative to window. Finally, the amount of data send or received is given.

OTF2 RmaCollectiveBegin
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp

OTF2 RmaCollectiveEnd
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaSyncLevel sync level synchronization level
OTF2 RmaWinRef window memory window
uint32 t root root process/rank if there is one
uint64 t size sent number of bytes sent
uint64 t size received number of bytes received

4.9 Locking of Resources

Another basic concept is locking and unlocking of shared resources in order to
ensure data consistency during concurrent accesses. A lock can be exclusive, i.e.,
only one participant may hold it at a time. This is necessary for competing write
accesses. Or it can be shared, i.e., many participants may hold it. This can be
allowed for simultaneous read access. The following lock types are defined in OTF2
to distinguish the two.

OTF2 LockType
OTF2 LOCK TYPE EXCLUSIVE only one lock allowed at the same time, e.g.,

write-lock, mutex, MPI exclusive lock
OTF2 LOCK TYPE SHARED multiple shared locks allowed at the same time, e.g.,

read-lock, MPI shared lock
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For the actual locking and unlocking, four record types are defined. All are
associated to a memory window on a target process, which either is the subject
of the lock or contains it. In addition, a lock id can be specified to describe different
targets in the same window. The lock id is simply a number with no semantics and
there is no definition record for it.

For the actual lock event, there are three separate record types with slightly dif-
ferent semantics. First, the OTF2 AquireLock marks the time that a lock is granted.
This is the typical situation. It has to be followed by a matching OTF2 ReleaseLock
record later on. Second, an attempt to acquire a lock which turns out negative can
be marked with OTF2 TryLock. In this case, no release record may follow. With
this a series of unsuccessful locking attempts can be identified. If an lock attempt
is successful, it is marked with OTF2 AquireLock right away instead of a pair of
OTF2 TryLock and OTF2 AquireLock. And third, the OTF2 RequestLock record
marks the time that a request for a lock is issued where the RMA model ensures
that the lock is granted eventually without further notification. As of now this is
specific for MPI. In this case, the OTF2 AquireLock event is not present.

Finally, the OTF2 ReleaseLock marks the time the lock is freed. It contains
all fields that are necessary to match it to either an earlier OTF2 AquireLock or
OTF2 RequestLock event and is required to follow either of the two.

OTF2 (AquirejTryjRequest)Lock
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint32 t target rank of target in context of window
OTF2 RmaLockType lock type Type of lock (shared vs. exclusive)
uint64 t lock id lock id in context of window

OTF2 ReleaseLock
OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window
uint32 t target rank of target in context of window
uint64 t lock id lock id in context of window

5 Example Cases with RMA Event Types

In the following, a number of examples illustrate how typical situations with
selected RMA parallelization models would be captured in an OTF2 event trace.

Figure 1 shows three aspects with an example scenario for MPI. The first aspect is
the creation of a memory window in the beginning and the destruction in the end. For
both activities, the MPI call is recorded (MPI Win create and MPI Win free)
on every process with Enter (E) and Leave (L) events (which contain the time, the
process/thread, and the function being called). Inside the CollectiveBegin (Cb) and
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Fig. 1 Timeline example for OTF2 RmaWinCreate and OTF2 RmaWinDestroy in MPI
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Fig. 2 Example of the use of completion events for blocking and non-blocking RMA operations
in ARMCI. It uses the same legend as Fig. 1

CollectiveEnd (Ce) events mark them as collective calls and the actual WinCreate
(C) or WinDestroy (D) events are the earliest or latest points when the defined
memory window may be used, respectively. The second aspect shown in Fig. 1
is an example of MPI’s “general active target synchronization” [17]. Rank 0
plays the active role using MPI Win start and MPI Win complete and rank
1 is the passive side which still needs to take part in the synchronization with
MPI Win post and MPI Win wait. All record group synchronization events
(Sg). The third aspect is the connection between a RMA get event (G) inside the
MPI Get call and its completion point (Cn) inside MPI Win complete. Both
are only present on the origin process.

The second example in Fig. 2 presents typical put and get events, here with the
ARMCI RMA model. On rank 0 two blocking put (P) operations are issued. Their
local completion (Cb) is recorded inside the same API call. Their remote completion
points (Cr) are recorded in the ARMCI AllFence call later on—this is the time
where the arrows for the data transfer should end. On rank 2 two non-blocking get
operations (G) are issued followed by a (negative) test (T) for the completion. Both
get operations are connected to the same local completion event (Cn). Here, no
remote completion event is necessary.

The third example in Fig. 3 shows locking of memory windows with SHMEM
(top) and MPI (bottom)—Cray SHMEM actually allows mixing with MPI and uses
the ranks from MPI COMM WORLD. The SHMEM case shows how acquiring
(Ac) and releasing (R) a lock is serialized over ranks 0 and 1 as one would expect.
The MPI case shows the special variant for MPI requesting a lock (Rq) which can
happen (almost) simultaneously (ranks 2 and 3). The actual lock will be assigned
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Fig. 3 Example of the different uses of lock events for SHMEM (top) and MPI (bottom)
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Fig. 4 Example of the a device-to-device memory transfer in Cuda

to the ranks later without a general way to observe when this happens. The only
indication of a serialized execution on the locked memory window is the difference
in the time when the associated release events (R) take place.

The final example in Fig. 4 shows how the generic RMA event types are also used
for the CUDA data transfers. All operations are issued by a host process. A typical
host-to-device or device-to-host transfer can be recorded like a normal put or get
event similar to the example in Fig. 2. The scenario shown includes three sides, the
active host issuing a device-to-device transfer and two passive devices which are
the source resp. the target of the operation. Since the host is recording all events
for the devices, it is feasible that the active side (Host) places events in one of the
passive sides (Device 0). The recommended way is to record a put event (P) together
with completion events (Cb,Cr) for the source as shown in Fig. 4. As an alternative,
the target could record a get event.

6 Conclusions and Outlook

In this paper, we presented a generic representation of parallelization models based
on the remote memory access (RMA) paradigm in the event tracing mode of the
Score-P measurement infrastructure. It focuses only on RMA-models relevant in
the field of high-performance computing. Starting from the concepts common to all
those models, a set of event record types was designed that covers all relevant RMA
models and they were illustrated with four examples.

With this background, the performance analysis of RMA patterns will become
possible on a generic level, i.e without having to know the specific underlying
RMA model. Examples are the evaluation of data transfer volumes between
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processes/threads and the total waiting time at collective synchronization points
due to load imbalances. The presented event model is not bound to one of the
RMA models, unlike the representation of point-to-point communication which is
inherently MPI specific—which is less critical because it is the only relevant model
for HPC.

The following steps of the ongoing collaborative development will be to imple-
ment the instrumentation layers for the RMA libraries in the order of actual
demand, starting with CUDA/OpenCL followed by GASPI or MPI 3.0 depending
on when their official versions will be available. Afterwards, RMA-specific analysis
functionality will be implemented for the analysis tools based on Score-P. In
particular, this includes the graphical representation and the visual analysis of
VAMPIR and the automatic replay-based analysis of Scalasca.

A topic of future work will be how to incorporate PGAS language extensions
with the same event model. Even though this is generally feasible, it poses
two challenges. First, the instrumentation may be more difficult because PGAS
compilers insert RMA operations in a transparent fashion. This can be solved rather
easily in all cases where RMA operations are mapped to an underlying library
such as GASNet or Cray’s libonesided. Second, the occurring RMA operations are
more difficult to be related to the source code because there are no explicit RMA
statements. Furthermore, there is no direct way to predict how a PGAS compiler will
interpret a modified source code after a change (optimization) due to the analysis of
the original code. In particular with optimizing PGAS compilers, this may result in
complex behavioral changes in the application’s execution.
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Cache-Related Performance Analysis Using
Rogue Wave Software’s ThreadSpotter

Royd Lüdtke and Chris Gottbrath

Abstract Modern processors cannot deliver high performance without applying
caching mechanisms. However, the cache-conscious programming requires from the
developer quite a deep knowledge about the underlying processor’s hardware archi-
tecture and is thus very hard to be adopted by the software codes. The cache-aware
application optimization is getting even more challenging for the parallel (multi-
threaded) applications running in multi-processor and/or multi-core environments.
We introduce the Rogue Wave Software’s ThreadSpotter performance analysis
tool, which is designed to simplify the cache-aware application development by
leveraging the unique performance optimization techniques. Following an original
statistical approach, ThreadSpotter enables the in-depth application analysis on the
wide range of hardware platforms.

1 Introduction

Application optimization is always challenging, in particular when considering such
hardware-related features as caching. This paper focuses on the impact of applying
the cache utilization technique on the application performance optimization. As
an easy-to-use profiling tool, ThreadSpotter, developed by Rogue Wave Software,
offers a lot of opportunities for cache-related performance optimization. The paper
starts by giving a brief overview on the caching technology in Sect. 2, also including
the discussion on the relevant metrics. Section 3 discusses ThreadSpotter’s statistical
approach for the applications analysis and introduces the basics of the tool’s usage.
Section 4 discusses the performance issues identified by ThreadSpotter. Section 5
concludes the paper.
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2 Basic Overview on Caching

This section is dedicated to the discussion on the major quality metrics of the
application’s cache utilization.

2.1 Motivation for Caching

From a processors point of view, high-performance processing of a program is
strongly dependent on memory access time. In turn, that time is related to memory
type, memory size, and a machines architecture. There are two main kinds of
memory that are used in computers. Each has different characteristics that make
them ideal for playing different roles in the memory system as a whole.

For the main memory purposes, DRAM’s are used because of their low space
requirement due to a high integration level. Unfortunately, their use of capacitors
for storage causes a relatively long access time. In contrast to DRAM, SRAM’s
are based on bistable multivibrators (flip-flops). These act much faster, but require a
considerably larger square footage on the chip as they consist of about six transistors
per bit (�140 F 2), compared to the one transistor and one capacitor per bit (� 6–10
F 2) on which DRAM’s are based. Regardless of a much higher cost of production,
as well as non-economical power consumption, SRAM’s of several GB would take
much more space on the motherboard. The longer average distance to the processor
would compensate for the advantage of faster access time.

Another factor on the main memory’s response time is the computer’s architec-
ture. von Neumann architectures are based on a bus system, which in general suffers
from limited bandwidth (von Neumann bottleneck). Therefore buffering (caching)
of often used data in very small, but very fast memory is a good compromise. Cache
memory is usually based on SRAM technology, ideally having a small size in the
range of a few kB and located directly on the processor’s chip, in order to allow very
fast accesses.

2.2 Cache Architectures

Most systems have a cascading set of two or three cache buffers of ascending
sizes. The first level cache (L1$) is the smallest and fastest. Usually the majority
of reused data (e.g. in program loops) does not exceed the size of L1$. However,
if this happens, the next higher level cache will take over. The caches L2$ and
L3$ (if available) are slower because their access times are related to their size,
but accessing them is still much faster than accessing main memory.

The typical cache sizes are:

• L1$: �4–256 kB per core;
• L2$: �64–512 kB per core;
• L3$: �2–32 MB shared by all cores.
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2.3 Cache Organization

Caches store chunks of data called cache lines. A cache line is the smallest unit
of data a cache is able to address. Cache line sizes depend on the processor type.
Common sizes are 64 and 128 bytes. Since the number of memory blocks in main
memory is much larger than the number of cache lines, cache memory must be
organized in such a way that every memory block can be mapped on one or more
cache lines. The choice of the mapping defines the so-called cache associativity.
That means that cache lines are labeled by tags, which are referring to addresses
of main memory. This architecture offers a very fast way for finding out whether
requested data is already cached or not.

2.4 Prefetching

The decision on what kind of data has to be copied from main memory to the cache
is made by the algorithm called the prefetcher. The prefetcher predicts the memory
addresses the processor will most likely access in the near future based on constant-
stride patterns it has identified. This works well in the case when strides have a
fixed length, e.g. if an array will be populated element by element, in ascending
order, or inside of a loop. If the application accesses data randomly, or in a way
the prefetcher interprets as random, it would be prevented from working correctly.
This could even lead to caches filling up with unusable data. The likelihood of cache
misses will increase which will result in time consuming accesses to main memory.

Modern processors have hardware prefetching algorithms already implemented
on chips. Another common method is controlling prefetching by software where
the developer or the compiler places prefetch instructions in the code. Usually it
is recommended to rely on the processors hardware prefetching algorithms. Only
if the application needs to access data irregularly does it makes sense to assist the
prefetcher by using software prefetch instructions.

2.5 Eviction of Cache Lines (Replacement Policies)

There are a variety of more or less effective strategies for selecting cache lines in
order to evict them from cache. Below is a list of the most common strategies:

• LRU (Least Recently Used): The least recently used cache line will be evicted.
This is the most common strategy used in modern processors,

• Random: A random cache line will be replaced,
• FIFO (First In First Out): The oldest entry will be removed,
• LFU (Least Frequently Used): The least requested cache line will be evicted.
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2.6 Complexity Added by Coherence

If multithreaded applications are executed on multicore or multiprocessor environ-
ments, caching becomes more complex. Each thread uses its own cache in order
to achieve optimal concurrency. This means that if one thread changes data in
its own cache by initiating a write operation, all other caches that have stored
the same data in their private caches will need to be informed that their data has
become invalid. The most common technique modern microprocessors leverage for
keeping all caches synchronized is the so-called MESI coherency protocol (MSI,
MOSI, MOESI, MERSI, MESIF operate similarly). Each cache line will get a state
described by flags.

The MESI Cache Line States are as follows:

• Modified: the data in this cache has been modified. There are no copies in other
caches. In case it has to be evicted or requested by another thread, it needs to be
written back to main memory.

• Exclusive: only one copy of the cache line exists, which is the one located in this
cache. The data has not been modified.

• Shared: the cache line is still in an unmodified state. There might be copies in
other caches.

• Invalid: the cache line contains invalid data.

It is obvious that such a technique requires a lot of inter-cache communication
and data interchange. A detailed description of how the MESI protocol works would
go beyond the scope of this article.

2.7 Important Statistics

The following statistical metrics describe the quality of an applications cache
utilization:

• Miss ratio – the percentage of memory accesses that causes a miss in the cache.
• Fetch ratio1 – the percentage of the applications memory access statements

that causes an access to main memory. Due to prefetching, the miss ratio will
usually be lower than the fetch ratio. The fetch ratio is a direct rate for the
applications bandwidth requirement concerning read accesses.

• Fetch utilization1 – the average percentage of data the cache lines use before the
cache lines are evicted from cache. A low fetch utilization means the prefetcher
is loading a lot of unused data from main memory into cache and is consuming
bandwidth unnecessarily.

1This statistical metric is introduced by Rogue Wave Software.
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• Writeback utilization1 – the fraction of a cache line which is written back to main
memory that has actually been changed.

• Communication ratio – the percentage of the applications memory accesses that
cause communication between threads.

• Communication utilization1 (of a multithreaded application) – means that only
a small fraction of a cache line sent by a thread is really used by a receiver
(consumer) thread. It can be seen as a rate for multithreading efficiency.

• Upgrade ratio – the number of upgrades to a cache lines state in comparison to
the whole number of memory accesses. Upgrade means that a memory access
will cause a cache line to change its state either from “Shared” to “Exclusive” or
“Modified”.

Assume a thread loads a cache line into its cache that would get a Shared state,
because a copy is already stored in another cache. If that thread modifies the data
in the cache line by performing a write access, the state of the cache line will be
upgraded. On the other hand, a cache line that is in an Exclusive or Modified state
would be downgraded to a Shared state if another thread performs a read request on
that data. It would get upgraded again if the first thread writes to that cache line.

2.8 Optimal Cache Utilization

The remarks above provide a brief idea of how caching works in general. In order to
take the best advantage of the cache system and run an application with maximum
performance, programmers need to keep the cache “hot” by following three simple
rules:

• Try to let the processor get as much data as possible from the cache and not from
main memory (assist the prefetcher, don’t confuse it).

• Try to ensure that every fetched cache line will have 100 % of its data used.
• When possible, let each thread do work that makes use of data already stored in

its local cache (and avoid using data that resides in another thread’s cache).

As simple as these rules are, it is complex to implement programs that will
not disregard them in some cases. Therefore performance analysis tools like
ThreadSpotter can assist programmers in successfully finding places in their code
that present opportunities for optimization (aka slow spots).

2.9 What Performance Improvement Is Possible When
Optimizing an Application’s Cache Utilization?

This question cannot be answered in general. Even huge applications which process
small amounts of data will not benefit from optimizations if the whole data set
fits into the cache’s size. Likewise, very small improvements would be seen if
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an application mostly deals with input and output, without performing repeated
accesses to the same data (e.g. load balancers). The influence of caching in this
case is marginal.

On the other hand, applications that process huge amounts of data by performing
many r/w memory accesses could have improved throughputs ranging from 2 to 7
times faster than before optimization; sometimes just by modifying a small piece
of code. With regard to those applications, cache related performance analysis tools
are always a valuable investment.

3 ThreadSpotter: A Statistical Approach for Cache-Related
Profiling

This section will focus on different approaches profiling tools use for benchmarking
an application. In addition, the technique that ThreadSpotter utilizes will be
discussed, including a brief description of its usage.

3.1 Different Approaches of Cache Related Performance
Analysis

In general, there are two approaches profiling tools use in order to gather data and
create reports. The first, very common approach is reading hardware counters. Tools
that use this method usually have a very low runtime overhead. Unfortunately, they
are not very flexible because the data they take as a basis for creating reports is
strongly dependant on the hardware parameters of the system from which they
have retrieved the data. The second approach is using simulators. Simulators are
not bound to specific hardware and therefore, they are very flexible. The flip side
is that depending on the amount of data they have to process, they are usually slow
and their results are only as reliable as the underlying model.

In contrast to both these approaches, ThreadSpotter utilizes statistical models
based on samples of the running processes’ memory access behavior. Depending on
the sample rate, the performance overhead can be very low. Based on the gathered
data (fingerprint of the sampled application), ThreadSpotter is able to create a
report containing information on where performance optimizations might exist. This
approach provides the most flexibility because it is possible to create reports for
different target systems based on the same fingerprint (e.g. different number of
processors, cores, caches, and cache sizes).

Since only the binary is analysed, ThreadSpotter is usable for all applications
based on compiled languages.
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Fig. 1 The reuse distance d is the number of interim data accesses until a cache line sized data
pattern will be reused (Adopted from [1])

3.2 What Kind of Data Is ThreadSpotter Looking at in Order
to Create a Report?

ThreadSpotter looks at the accesses to memory a program performs during execu-
tion. It tries to identify patterns of the same data that is requested several times
while sampling the address stream. It also takes metrics regarding the distances of
occurrence, see Fig. 1.

If a datum “A” is fetched a second time and in between the first and second fetch,
two fetches to other data occurs, the reuse distance would be rd D 2. Based on
the detected reuse distances combined with cache properties like size and cache
line length, ThreadSpotter is able to calculate the miss ratio. The fetch ratio can be
derived from the miss ratio by considering the effect of prefetching. Realistic models
of the target system’s cache architecture enable ThreadSpotter to create surveys
about the number of cache misses, percentage of cache line’s data utilization, and
other cache relevant metrics.

3.3 Sampling an Application

ThreadSpotter was designed to be simple and intuitive. It provides a graphical user
interface, but the tool’s functionality can be invoked via command line as well. In
order to execute the application and to start sampling, the sampler simply takes the
name and arguments of the application to be sampled as its arguments. It is also
possible to attach the sampler to an already running process (see Fig. 2).

In some cases it will only be necessary to just sample a portion of the whole
application. This is made possible by providing the sampler with several start and
stop conditions (see Fig. 3). The sample rate will automatically be adjusted to what
works well in most cases.

In order to meet special requirements, e.g. for very short running applications, it
is also possible to provide a sample period (see Fig. 4).

Thread Spotter also provides special scripts for sampling MPI applications.
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Fig. 2 ThreadSpotter’s sampler settings

Fig. 3 ThreadSpotter’s sampler allows defining start and stop criteria in order to sample slices of
an application
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Fig. 4 The sample period can be modified to take enough samples for short running applications

3.4 Report Generation

ThreadSpotter generates platform independent reports based on fingerprint files that
were previously established by the sampler. These reports do not necessarily have
to be created for the same environment and processor architecture on which the
sampling was made. Such flexibility is very useful because the production machines
will often times differ from the development machines.

If a developer has implemented an application on his laptop (e.g. Intel CPU
T2500, 2 cores, 2�32 kB L1$, 2 MB L2$), they may need to optimize this
application to perform as well on an Intel Core i7 server (4 cores, 4�32 kB L1$,
4�256 kB L2$, 8 MB L3$) without a need for creating new fingerprints on the target
machine.

The settings for generating reports are just as simple as for sampling. The user
can easily choose the cache level for which the report has to be generated. By
default, the highest cache level will be selected (see Fig. 5).

If not explicitly specified, the generator will take the CPU’s architecture for
the current machine as a template for the underlying cache model. However,
it is possible to choose the target CPU from a comprehensive list (see Fig. 6)
or by providing its parameters regarding to number of caches, cache sizes, and
replacement policy explicitly (see Fig. 7).
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Fig. 5 ThreadSpotter’s settings for report generation

Fig. 6 CPU model selection interface
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Fig. 7 Possible adaptations of the model

The generated reports can be displayed by ThreadSpotter’s viewer application,
supported on both Linux and Windows platforms. The viewers act as web servers,
allowing the use of web browsers for presenting the content.

3.5 Presenting Optimization Opportunities That ThreadSpotter
Discovers

Presenting results in a clearly arranged way is always a challenge. The approach
ThreadSpotter utilizes to present the opportunities for optimization, as well as the
underlying statistics inside a browser window, allows for establishing hierarchical
structures. The user gets the information needed, but is always able to dive into
a deeper level. Comprehensive help messages are linked to most of the displayed
issues, and metrics which will then pop up with a mouse click on the referring item.

Every report includes a quick overview page (see Fig. 8) which outlines the
necessity of optimization. Four indicators give an idea whether the application
suffers from bandwidth, latency, data locality, or thread interaction issues. During
the development process, this page can be helpful for quick, intermediate checks.

The main report page (see Fig. 9) is divided into three sections:

• Section 1: A tabbed area called a summary frame that contains all metrics,
diagrams, and found issues listed in order of severity;
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Fig. 8 ThreadSpotter quick overview page

Fig. 9 ThreadSpotter main report page
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Fig. 10 ThreadSpotter summary tab

• Section 2: An issue frame, located below the summary frame, showing detailed
information referring to selected issues or loops;

• Section 3: An area for selected issues (“slowspots”) that are referenced to
responsible lines of the source code when the binary is built using the -g compiler
option.

The “Summary” tab of the summary frame (Fig. 10) shows the global statistics
based on the sampled data of the application. The most important numbers for
qualifying a sampled application at a glance are the miss ratio, fetch ratio, fetch
utilization, and the communication utilization (for multithreaded applications).

Additional diagrams provide the statistics for miss/fetch ratio, write-back ratio,
and utilization related to the cache size. Achievable improvements that can be gained
by amending the cache utilization are represented in the diagrams by the additional
curves called utilization corrected fetch ratio and utilization corrected write-back
ratio.

In the same way the global statistics are represented, there are also similar frames
for loops and instruction groups related to detected issues. Underneath the “Issues”
tab (see Fig. 11), all detected issues are separated by “Bandwidth Issues”, “Latency
Issues”, “Multi-Threading Issues”, and “Pollution Issues”, ordered by severity.

The listed issues icon will indicate the type of issue. Red icons are generally
used for labeling issues that are responsible for decreasing performance. Purple
icons are used to identify opportunities where fixing an issue could improve
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Fig. 11 ThreadSpotter issues tab

Fig. 12 ThreadSpotter issue frame

performance. Blue icons are indicators for high cache activity. Every listed issue
can be expanded in order to obtain more detailed information, such as individual
statistics, instructions involved in this issue (stack frame), and assistance from a
comprehensive help system (see Fig. 12).

If the application was built using the -g compiler flag and the source code files
were available during report generation, ThreadSpotter’s report includes the source
code related to every listed issue and references each issue to the responsible line of
code (see Fig. 13).

Detailed statistics on the significant machine instructions and icons representing
the issues will appear when the expand button is pressed. Based on this information,
programmers are able to look for opportunities for code improvements.
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Fig. 13 ThreadSpotter source code frame

4 Types of Performance Optimization Opportunities
Discovered by ThreadSpotter

ThreadSpotter was designed for assisting developers in optimizing applications
regarding the performance. This section outlines the opportunities for optimization
Thread-Spotter is able to discover.

4.1 What Kind of Cache-Related Opportunities
for Performance Optimization Can Be Discovered
by ThreadSpotters Statistical Approach?

ThreadSpotter is able to reliably detect the cache related performance issues by
examining the binary and mark the responsible line(s) in the source code, grouped
in the following categories.

Poor Fetch Utilization

The content of a fetched cache line will only partially be used. This issue is typical
in object oriented programming. A good example is a program traversing an array of
structures while accessing only one of multiple member variables of every structure.
This fills up the cache with unnecessary data that will increase the likelihood a fetch
will end up having to access the slower main memory. Similar effects could occur
in the case where member variables of structures are unfavorably aligned.
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Poor Write-Back Utilization

Writing data will first take effect to the referring cache line. The main memory will
not be updated until the cache line is evicted from cache. At that time the content of
the entire cache line has to be written back. When the application is updating only
a subset of the whole cache line, even unchanged data will be written back to main
memory, which increases the bandwidth usage of the system.

Poor Communication Utilization

In multithreaded environments, threads very often need to interchange cache lines
between their private caches. This procedure is always time consuming and is
accompanied by some inter-thread communication. ThreadSpotter sets the amount
of communication between two threads in relation to the cache line utilization of the
receiving thread. A high percentage of communication utilization is an indicator of
the efficiency of the multithreaded application.

False Sharing

False sharing is also an issue that only occurs in multithreaded environments. Some-
times two threads have to access different data independently that are unfortunately
located in the same cache line. That could mean that although the two threads are
working on different data, they have to update the same cache line in their private
caches, which produces unnecessary communication and data exchange overhead.
A solution could be to distribute the referring data into two different cache lines.

Inefficient Loop Nesting

If multidimensional arrays are traversed in the wrong direction inside a loop
(e.g. column wise instead of row wise in C/CCC applications), only one data
element will be used from each cache line. Depending on the size of the cache, this
could mean that cache lines have already been evicted from cache until they have to
be used the next time. This ends up in bad fetch/write-back utilization issues.

Random Access Pattern

If the application does not access memory addresses in a regular manner, the
hardware prefetcher is not able to identify constant-stride access patterns in order
to work efficiently. This will usually result in an increase of cache misses. The
application will require more bandwidth because the processor has to access main
memory more often. Two strategies could help in this case. It will either be necessary
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to change the algorithms of the application so they have regular data access patterns
or add software prefetch statements to the code in order to assist the hardware
prefetcher.

Unnecessary Prefetch

This refers to a software prefetch statement that just takes execution time without
providing any benefit because the data was already cached (e.g. by a smart hardware
prefetcher).

Prefetch Too Distant

If a software prefetch statement points to a too distant data address referring to the
actual stride pattern, it is most likely that a cache line which would contain the
predictive data has already been evicted before it can be requested.

Prefetch Too Close

This occurs when the software prefetch statement points to data which is located too
close to data that was recently fetched. That means that the access time for receiving
the data from main memory is too long in order to have that data copied to cache
before it will be used.

4.2 Reuse

Two following reuse opportunities can be detected by ThreadSpotter.

Spatial/Temporal Blocking

Blocking means optimizing a memory-consuming algorithm by breaking it down
so it will process the whole amount of data contained in the cache. An example for
optimizing matrix multiplication by blocking is shown in Fig. 14.

Loop Fusion

The reuse opportunity loop fusion will be pointed out if different loops are iterating
over the same data and an effective reuse of that data will be prevented because the
cache lines are already evicted from cache before the second loop will request them.
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Fig. 14 Matrix
multiplication optimized by
blocking

In these cases, moving these loops closer together or even fusing them may improve
reusability, and as a result, performance. ThreadSpotter explicitly references the
fusible instruction groups belonging to each other.

4.3 Non-temporal Data

If cached data will never be reused, it is obvious that the cache lines just occupy
valuable space in the cache without providing any performance benefit. Other
threads or processes might make better use of that cache space. Depending on the
compiler and hardware, software prefetch statements could avoid caching that data.
Typical examples for processing non-temporal data are I/O operations.

4.4 Cache Hot Spots

In addition to the caching issues mentioned above, which can be qualified as related
to inefficient coding, ThreadSpotter points out parts in the code that are responsible
for exceptional cache activities:

• Fetch Hot-Spots
• Write-Back Hot-Spots
• Communication Hot-Spots

These hot-spots are not necessarily caused by improper code patterns. Sometimes
they are simply an unavoidable side effect of the algorithms used. However, it is
always useful to have a closer look at the referring parts in the code. Referring to
the majority of identified slow spots in the application, ThreadSpotter assists the
programmer by discovering opportunities for optimizing performance.
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5 Conclusion

This article has reflected on caching mechanisms and cache related performance
issues that can be detected and analyzed by a statistical approach, upon which Rogue
Wave Software’s ThreadSpotter is based. The introduction of new profiling concepts
should help make programmers aware of potential cache related optimizations.
However, the cache-related performance analysis and the optimization of applica-
tions are topics that are much more substantial than this article may suggest. For
more information please refer to the manual [2]. Further reading on these subjects
is therefore recommended.
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Custom Hot Spot Analysis of HPC Software
with the Vampir Performance Tool Suite

Holger Brunst and Matthias Weber

Abstract The development and maintenance of scalable, state-of-the-art
applications in High Performance Computing (HPC) is complex and error-
prone. Today, performance debuggers and monitors are mandatory in the software
development chain and well established. Like the applications, the tools themselves
have to keep track of the developments in system and software engineering.
Prominent developments in this regard are for example hybrid, accelerated, and
energy aware computing. The ever increasing system complexity requires tools that
can be adjusted and focused to user specific interests and questions. This article
explains how the performance tool Vampir can be used to detect and highlight
user-defined hot spots in HPC applications. This includes the customization and
derivation of performance metrics, highly configurable performance data filters and
a powerful comparison mode for multiple program runs. The latter allows to keep
track of the performance improvements of an application during its evolution.

1 Introduction

Today, High Performance Computing (HPC) is implemented by means of many
thousand to millions of processing elements working together at the same task [4].
Writing software for systems of this scale is cumbersome and involves hybrid pro-
gramming models, accelerated computing [2], and even energy considerations [3].
An iterative performance design, verification, and optimization process [5, 7]
is needed to exploit the vast resources efficiently. This article describes recent
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Fig. 1 Default performance overview at initial Vampir startup

developments implemented in the Vampir [1] performance tool suite to customize
the verification and optimization process to specific user interests. First of all,
a new hybrid flow diagram is introduced that visualizes performance metrics in
the context of a program’s procedural invocation graph. Thereafter, the intuitive
graphical definition of derived custom metrics is discussed and demonstrated with
examples. Subsequently, the customization and filtering of complex invocation
graphs by means of linked rule sets is presented. Finally, the detailed structural
comparison of multiple program runs using manual graphical event data alignment
is described.

When opening a program’s event log (trace file) for the first time, Vampir’s
main Trace View window displays a default set of performance charts (see Fig. 1),
which are called Master Timeline (left), Function Summary (top right), Context View
(center right), and Function Legend (bottom right). The Master Timeline reveals
the exact procedural program behavior, i.e. what is executed when and by whom,
for arbitrary program phases, while the Function Summary provides corresponding
accumulated performance metrics, e.g. the inclusive time spent in procedures.

Multiple timeline charts are aligned horizontally. This alignment ensures that the
temporal relationship of events is preserved across the charts. For chart objects that
have been clicked with the left mouse button, supplemental detail information is
provided in the Context View. Color encoding is customizable and typically refers
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Fig. 2 Master Timeline with semitransparent heat map overlay and opacity set to 40 %

to the type of program activity, e.g. communication D red, computation D green,
as shown in the Function Legend. On top of all charts a tool bar is available which
allows to add further charts to the Trace View (left) and to navigate through the
presented performance log, i.e. refine the time interval of interest (right).

2 Heat Map Overlay for the Master Timeline

Vampir 7.5 features the highlighting of arbitrary program phases that match user-
defined performance conditions in combination with the recorded application flow.
For this purpose, a new overlay mode has been introduced to Vampir’s Master
Timeline chart. This overlay mode is fully compatible with the Performance Radar
chart known from previous releases. It is capable of highlighting user-defined hot
spots on top of the procedural information provided in the Master Timeline chart.
Figure 2 gives an overview of the new overlay mode. It is activated via the chart’s
context menu under Options ! Performance Data. When the overlay mode is
active, a tool bar appears at the top of the Master Timeline chart. On the left hand
side, it allows to select the performance metric of interest. On the right hand side,
a slider that controls the opacity of the overlay is provided. The overlay is capable
of displaying all metrics available in the Performance Radar and the Counter Data
Timeline chart.

The selected metric PAPI FP OPS (floating point operations per second) is
shown in a color-coded fashion. The overlay mode combines the visualization
capabilities of the Master Timeline, i.e. showing the application’s chain of events,
and the Performance Radar, which shows the development of arbitrary performance
metrics over time. To fully benefit from this combination, the opacity slider of the
overlay control window needs to be used as depicted in Fig. 3. The slider allows to
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Fig. 3 Master Timeline with fully transparent (top) and opaque heat map overlay (bottom)

quickly manipulate the opacity of the overlay making the underlying application
context visible. This is particularly useful for pinpointing performance relevant
areas and subsequently analyzing these areas in detail.

The color scale of the performance data overlay is freely customizable. Clicking
the wrench icon in the overlay control window opens the color scale options dialog
as depicted in Fig. 4. The color scale provides three standard modes: Default,
Highlight, and Find. Additionally, the mode Custom allows to configure the color
scale to personal preferences.

To identify program phases with high or low floating point performance the
display range of the metric can be adjusted as depicted in Fig. 5. The adjustment
has been done by dragging the edges of the colored area of the scale to the desired
minimum and maximum values. As a result, only performance values within the
given range appear color-coded in the chart. Values outside the given range are
grayed out.

Figure 5 highlights program phases with bad floating point performance. The
color scale has been set to a range between 0.1 and 1.6 GFLOPS. The minimum
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Fig. 4 Dialog for color scale customization

Fig. 5 Highlighting of program phases with low performance

value is set to 0.1 GFLOPS to completely hide non-computing program activity
like MPI Init and MPI Send. As a result, only computational program phases with
low floating point performance are highlighted now. In this example these areas
represent procedures at the beginning of each iteration. Likewise, program phases
with high floating point performance can be highlighted accordingly by moving the
colored slider to the right boundary of the scale.
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Fig. 6 Custom metric editor showing a simple custom metric called Wait Time. The metric adds
up the duration of the functions MPI Isend and MPI Wait

3 Customization of Performance Metrics

The Custom Metrics Editor allows to derive custom metrics from recorded metrics
and events. This is particularly useful for refining and narrowing the effect under
investigation. The editor is accessible via the context menu entry Customize
Metrics . . . in the Performance Radar or the Counter Data Timeline charts. A basic
example of a custom metric called Wait Time is shown in Fig. 6. This metric
combines the time spent in the functions MPI Irecv and MPI Wait. Custom metrics
are built from input metrics that are re-combined by using arithmetic and logical
operations. In the editor the context menu accessible via the right mouse button
allows to add new input metrics and operations. New custom metrics become
available in the metric selection lists of the respective charts. Custom metrics can be
exported and imported in order to use them in multiple trace files.

The following examples illustrate the usage of custom metrics in combination
with the heat map overlay explained in Sect. 2. The depicted trace file data originates
from a parallel program run of the Open Source Weather Research & Forecasting
Model (WRF) [6] on 16 CPU cores.
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Fig. 7 Identification of delayed MPI Wait invocations (highlighted in bright orange and red) in
combination with the overall application flow (dimmed areas)

3.1 Delayed MPI Communication

Delayed invocations of the function MPI Wait are investigated in the following
example. The first step is to construct a custom metric showing the MPI Wait
duration time as explained above. Subsequently, the heat map overlay is used to
show the custom metric in the Master Timeline as depicted in Fig. 7. The color
scale is configured to show delayed MPI Wait invocations (longer than one million
clock cycles). Program phases that fulfill the given condition are highlighted in deep
red. Zooming into detail eventually reveals individual MPI Wait invocations. The
invocation context of these calls becomes visible in the Master Timeline by setting
the opacity slider to 50 %.

3.2 Conditional Floating Point Performance

Vampir also allows to search for invocations of individual functions below or
above a custom performance threshold. In this example invocations of a given
function (SOLVE EM) with a floating point performance above 150 MFLOPS are
searched. The first step is to construct a custom metric providing the floating point
performance for the given function only. The custom metric definition is depicted



102 H. Brunst and M. Weber

Fig. 8 Custom metric definition which computes the FLOPS metric for function SOLVE EM only

in Fig. 8. It is a combination of the recorded hardware metric flop/s and a program
state mask which is one whenever the program resides in the function of interest and
zero otherwise. The multiplication of both metrics results in flop/s readings greater
zero whenever in the given function and zero otherwise.

Figure 9 shows the resulting metric in the heat map overlay of the Master
Timeline. The color scale is configured to highlight the given function if its
performance is above 150 MFLOPS. When zooming into an area of interest the
opacity slider can be used to reveal individual function invocations in the timeline.

4 Refinement of Invocation Graph

The conceptual and procedural structure of a parallel program is defined by the
respective program developers. Yet, standard building blocks like STL, Boost, MPI
and OpenMP add structural elements to the procedural invocation structure of an
HPC application. The resulting overall structure is hard to study and often beyond
the interests of application developers who want to focus on particular aspects of
a program only. Vampir has the ability to filter the recorded procedural invocation
history per individual event. The filtering is controlled from the Function Filter
dialog depicted in Fig. 10. This dialog can be accessed from the main menu under
Filter ! Functions . . . The filter affects all performance charts that deal with the
procedural invocation structure.
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Fig. 9 Conditional FLOPS metric depicted as transparent heat map overlay in Master Timeline.
Please note that only some (those who perform at least at 150 MFLOPS) of the SOLVE EM
invocations are highlighted

Fig. 10 Procedural Event Filter Dialog with example rules
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A custom filter is defined by combining a set of rules. The different types of
rules are explained below. The header of the dialog entitled Show only functions
that match . . . of the following conditions: defines how multiple rules are evaluated.
One possibility is to build up the filter in a way that combines the filter rules with
an and relation. To enable this mode, all must be selected at the top of the dialog.
This means that all rules must apply. An alternative way is to combine the rules
with an or relation. To enable this mode, any must be selected. In this case each rule
is applied individually to the recorded performance data. An arbitrary number of
conditions can be defined as rules. This example shows four common rules, which
limit the invocation graph to MPI procedures called from the procedure SOLVE EM
occurring more frequently than 10 times and taking longer than 0.5 ms.

4.1 Rules

4.1.1 Event Matching by Name

A straight-forward way of filtering the procedural invocation graph is by procedure
name. This condition checks procedure invocations against the given reference name
with the following alternative ways of matching:

• Contains: The given string must occur in the procedure name.
• Does not contain: The given string must not occur in the procedure name.
• Is equal to: The given string must be the same as the procedure name.
• Is not equal to: The given string must not be the same as the procedure name.
• Begins with: The procedure name must start with the given string.
• Ends with: The procedure name must end with the given string.

The matching is not case sensitive. Alternatively, a complete list of procedure names
allows to directly select a set of procedures to be displayed.

4.1.2 Event Matching by Duration

Procedure invocations can also be filtered by their duration. Duration of a procedure
refers to the time spent in this procedure from entry to exit. There are two options
available:

• Is greater than: The invocations must take longer than the given duration.
• Is less than: The invocations must be shorter than the given duration.
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4.1.3 Event Matching by Invocation Number

The number of invocations of a procedure can also be used for filtering. This criteria
refers to how often a procedure is invoked during an application run. There are two
possible parameter interpretations in this mode:

• Is greater than: Procedure must be called at least N times.
• Is less than: Procedure must not be called more frequently than N.

Number of Invocations refers to the total number of invocations in the whole
application run. Number of Invocations per Process refers to the individual number
of invocations per process. Hence, if the number of invocations of a procedure varies
across processes, a procedure might be shown for some processes and filtered for
others.

4.2 Examples

The following examples explain the usage of the procedure invocation filter. They
enable the reader to understand the basic principles of procedure invocation filtering
at a glance.

4.2.1 Showing MPI Procedure Invocations Only

In this example only procedures that contain the string mpi (not case sensitive) in
their name are shown. Since all MPI procedures are prefixed with MPI this filter
setting shows all MPI invocations and hides all others as depicted in Fig. 11.

4.2.2 Showing Procedure Invocations Longer than 250 ms

This example demonstrates the filtering of procedures by duration. In this case only
long procedure invocations with a minimum duration time of 250 ms are shown as
depicted in Fig. 12. All other procedure invocations remain hidden. This filter is
effective whenever fine grained program behavior – for example calls to the STL –
is of no interest.

4.2.3 Combining Rules

This example combines the two previously introduced rules. The relation any is
used. The resulting performance charts in Fig. 13 depict all procedure invocations
that are at least 250 ms long and additionally all MPI invocations (also the
short ones).
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Fig. 11 Master Timeline, Process Timeline (top), and filter (bottom) showing MPI activity only

4.2.4 Building Value Ranges

The combination of rules enables the filtering of procedures which fulfill a specific
criteria range. The following filter setup shows all procedure invocations whose
number of invocations is in the the range of 100–15,000 as depicted in Fig. 14.
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Fig. 12 Showing procedure invocations that are longer than 250 ms
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Fig. 13 Combination of rules that reveals all MPI invocations together with non-MPI activity
taking longer than 250 ms
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Fig. 14 Procedures that have been called more than 100 times and fewer than 15,000 times
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Fig. 15 Compare View with combined zoom and alignment toolbar (top) and timeline charts
(center) for identical program runs on three different computer systems

5 Comparison of Multiple Program Runs

The comparison of multiple program runs has been integrated seamlessly into
Vampir, which allows software developers to track the performance evolution of a
software project. For comparison of performance characteristics all existing displays
are supported. In order to effectively compare multiple trace files, their time needs
to be coupled and synchronized. Furthermore, selected areas in the trace files need
to be shifted freely on the time scale. This allows for arbitrary alignments of the
trace files, and thus, enables comparison of user selected sections in the trace data.
All comparison features are provided in a new window entitled Compare View.
Figure 15 depicts the aligned computation part of three program execution logs as
Master Timelines. They represent the measurement of one test application on three
different computer systems. The test application consists of an initialization phase,
ten iterations of computation, and a finalization phase. All three Master Timeline
charts share the same time scale and zoom.
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Fig. 16 Compare View with Master Timeline (upper left), Function Summary (right), and Process
Timeline (bottom left) for identical program runs on three different computer systems

5.1 Multiple Program Executions at a Glance

The Compare View supports all available performance charts of Vampir. In contrast
to the single file mode, multiple chart instances are opened whenever the user clicks
on a chart toolbar icon, i.e. with three input files, a click on the Master Timeline
toolbar icon opens three aligned Master Timeline charts in the same view instead
of just one. To distinguish between the trace files depicted in the charts, all charts
belonging to the same trace file have an individual background color. Figure 16
depicts a Compare View with Master Timeline, Process Timeline, and Function
Summary charts. Due to the fact that the Compare View automatically couples
the time range of all trace files, the displays can be used to compare performance
characteristics. As can be seen in Fig. 16, trace A (white background) has the longest
overall execution time. The execution time of trace C (blue background) is very
short and almost invisible. Zooming into the computation phase of trace C reveals
its details but hides the corresponding computation phases of trace A and B (green
background) as depicted in Fig. 17. This behavior is clearly not desirable. In order
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Fig. 17 Unaligned view of computation phase (ten iterations) of program run C (blue background)

to compare the computation phases across multiple traces, the trace files need to be
aligned to the starting points of the computation phases.

5.2 Alignment of Multiple Trace Files

The Compare View functionality to shift individual trace files in time allows to
compare areas of the data that did not occur at the same time. For instance, in order
to compare the iterations of the three example trace files these areas need to be
aligned to each other. This is required due to the fact that the initialization of the
application took different times on the three computer systems.

There are several ways to shift the trace files in time. One way is to use the
context menu of the Navigation Toolbar. A right click on the toolbar displays the
context menu. The entry Set Time Offset allows to manually set an arbitrary time
offset for the trace file.
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Fig. 18 Alignment process of trace A and B. While holding down the Ctrl modifier key, the trace
can be dragged with the left mouse button

The easiest way to achieve a coarse alignment is to drag the trace file in the
Navigation Toolbar itself. Holding down the Ctrl modifier key and the left mouse
button, the trace can be moved to the desired position in time. After the coarse
shifting has been carried out for all three traces, a finer alignment can be done in
the Master Timeline itself. First of all the user needs to zoom into the area to be
aligned and compared. While keeping the Ctrl modifier key pressed, the trace can be
dragged with the left mouse button. Figure 18 depicts the process of dragging trace
B to the beginning of trace A’s iterations. Once the traces are aligned it becomes
quite obvious that although the initialization phase of run A took the longest,
this system was the fastest in computing the actual iterations. While this is just a
minor finding for a basic example, real world load distribution issues and arbitrary
temporal deviations can be documented, compared, and presented efficiently for the
entire evolution of a given program.
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6 Conclusion

This article introduces new graphical approaches to customize event-based per-
formance analysis of HPC software. A semi-transparent heat map overlay layer
now allows to analyze both structural and performance behavior of any given HPC
application at the same time. The intuitive graphical editor for derived performance
metrics presented in this article enables users to study custom effects specific to their
application, which is particularly useful for refining and narrowing the investigation
process. Today’s complex procedural invocation hierarchies are addressed by means
of combinable filter rules, which allow to adapt the performance visualization
(timelines and profiles) to the relevant parts of a given program. Finally, a new
powerful compare- and alignment-mode is outlined, which allows to compare
multiple program executions in detail, i.e. step by step per procedure invocation.
Detailed examples demonstrate the above approaches and techniques in the Vampir
tool suite.
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Extending Scalasca’s Analysis Features

Daniel Lorenz, David Böhme, Bernd Mohr, Alexandre Strube,
and Zoltán Szebenyi

Abstract Scalasca is a performance analysis tool, which parses the trace of an
application run for certain patterns that indicate performance inefficiencies. In this
paper, we present recently developed new features in Scalasaca. In particular, we
describe two newly implemented analysis methods: the root cause analysis which
tries to identify the cause of a delay and the critical path analysis, which analyses the
path of execution that determines the application runtime. Furthermore, we present
time-series profiling, a method that allows to explore time-dependent behavior of
an application. Finally, we extended the means of Scalasca and its output format
CUBE to define and display topologies.

1 Introduction

Today, high performance computers provide the computing power which is required
by the complexity of many scientific computations. However, providing larger
and more powerful computer systems is useless if the applications do not make
efficient use of the available resources. Especially since the clock rate will no longer
continue to grow, the performance increase is due to increasing the parallelism of
the computer systems.

However, the complexity of parallel programs is much higher than sequential
programs. Furthermore, the hardware is more complex, too. Instead of a single
processor, the programmer must deal with e.g. networks, data transfer rates and
hierarchical memory. Thus, the optimization becomes much more difficult.
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Fig. 1 The performance analysis workflow with Scalasca

Before a programmer can optimize the performance of his program, he must
understand the performance behavior of his program and identify causes of per-
formance reduction. In order to analyze the performance of a program, various
performance analysis tools have been developed, like Scalasca [6], Vampir [8],
TAU [13], Periscope [7] and Paraver [11]. Although each of the tools has its specific
features and methods for analysis and display of results, there are some common
techniques.

Some tools [1, 6, 13] can create a so called profile. It consists of aggregated
statistics of performance metrics like runtime and/or number of visits for every
function or call path and/or for every thread. These statistics give an overview over
the execution.

Another approach is to record all events, e.g. function entry/exit, and its
associated performance data like timestamps in a so called trace. This allows a fine
grained analysis of the application. The user can visualize the trace directly, e.g.,
with Vampir [8] or Paraver [11]. However, manually searching the whole trace is
very tedious. Another possibility, which is used by Scalasca [6], is to automatically
examine an event trace for certain patterns of inefficient behavior. This search
guarantees to cover the whole trace.

Figure 1 shows the performance analysis workflow with Scalasca. To instrument
his application, a user must prefix the original compile and link command with the
scalasca instrumenter. During application run, the events are recorded into a trace
file. The Scalasca parallel trace analyzer analyses the trace and writes an analysis
output which can be interactively explored in the CUBE graphical user interface
(GUI). The CUBE GUI has three panes. The left panes allows to select a metric,
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e.g. time waited, due to a late sender. The middle pane shows a call tree which
provides information where in the code, a particular issue appeared. The right pane
shows the distribution of values over all processes for the selected call path.

Scalasca uses a highly scalable event-trace replay mechanism for its analysis.
Hereby, the trace for every process is stored in a separate file. The trace analyzer is
launched as a separate program after the target application finished and runs on the
same number of processes as the application ran. Every analysis process traverses
the trace of one application process. Whenever the application process commu-
nicated with another process, Scalasca exchanges information, too. Furthermore,
a backward replay is also possible.

In this paper, we will present extensions and new features to Scalasca. First,
we added two new analysis methods to our automatic trace analysis. The first
new method is called root-cause analysis, which identifies the root causes of wait
states in MPI synchronization points. It is described in Sect. 2. Afterwards, Sect. 3
describes the second new analysis method, called critical-path analysis. It is able to
detect inefficiencies that otherwise may be hidden through data aggregation.

Usually, profiling tool designs assume that the iterations of an iterative appli-
cation behave basically the same. However, this is not generally true. Section 4
presents a new feature to analyze time dependent behavior.

Section 5 describes the enhancements of the possibilities to define and display
topologies.

2 Root Cause Analysis

So far, Scalasca’s trace analysis could identify wait states at MPI synchronization
points. Wait states, which are intervals through which a process is idle while
waiting for a delayed process, are a primary symptom of load imbalance in parallel
programs. The new root-cause analysis [2] also identifies the root causes of these
wait states and calculates the costs of delays in terms of the waiting time that they
induce.

A delay is the original source of a wait state, that is, an interval that causes a
process to arrive belatedly at a synchronization point, causing one or more other
processes to wait. Besides simple computational overload, delays may include a
variety of behaviors such as serial operations or centralized coordination activities
that are performed only by a designated process. The costs of a delay are the
total amount of wait states it causes. Wait states can also themselves delay
subsequent communication operations and produce further indirect wait states. This
propagation effect does not only add to the total costs of the original delay, but
also creates a potentially large temporal and spatial distance in between a wait state
and its original root cause. The root-cause analysis closes this gap by mapping the
costs of a delay onto the call paths and processes where the delay occurs, offering a
high degree of guidance in identifying promising targets for load or communication
balancing. Together with the analysis of wait-state propagation effects, the delay
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Fig. 2 Distribution of
computation time, waiting
time, and total delay costs in
Zeus-MP/2 across the
8 � 8 � 8 three-dimensional
computational domain. Red
colors indicate high values.
(a) Computation. (b) Waiting
time. (c) Delay costs

costs enable a precise understanding of the root causes and the formation of wait
states in parallel programs.

We applied the delay analysis to a variety of real-world MPI programs. One
example is the astrophysics code Zeus-MP/2, where we studied the formation
of wait states in a simulation of a 3D blast wave over 100 time steps on
512 processes. Around 12.5 % of the program’s total CPU allocation time is waiting
time. Scalasca’s report browser can visualize the Cartesian process topology of
a program, which we use in Fig. 2 to illustrate the relation between waiting and
delaying processes in terms of their position within the computational domain.
Obviously, there is a computational load imbalance between the central and outer
ranks of the domain. Accordingly, the underloaded processes exhibit a significant
amount of waiting time (Fig. 2b). Our analysis shows that about 70 % of the
waiting time was indirectly caused by wait-state propagation. Examining the delay
costs reveals that almost all the delay originates from the border processes of the
central, overloaded region (Fig. 2c). The distribution of the workload explains this
observation: Within the central and outer regions, the workload is relatively well
balanced. Therefore, communication within the same region is not significantly
delayed. In contrast, the difference in computation time between the central and
outer region causes wait states at synchronization points along the border, which
subsequently propagate towards the outer domain border. By pinpointing one
subroutine and three computational loops with particularly high delay costs, the
delay analysis also helped isolating the imbalanced source-code regions that lead to
the wait states.

3 Critical Path Analysis

Our search for compact yet powerful means to uncover inefficiencies in parallel
programs has led us to revisit the critical path as a key performance structure.
Although the power and expressiveness of the critical path has been demonstrated
in previous work, critical-path techniques only play a minor role in current
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performance analysis tools. This arises partly from the difficulty in isolating the
critical path, but also from the inability to extract intuitively accessible insight
from the available information. Our work [3] addresses both issues. We leverage
Scalasca’s parallel trace replay technique to isolate the critical path in a highly
scalable way. Also, instead of exposing the lengthy critical-path structure to the
user in its entirety, we use the critical path to derive a set of compact performance
indicators, which provide intuitive guidance about load-balance characteristics and
quickly draw attention to potentially inefficient code regions.

The critical path is the longest path through a program activity graph that does not
include wait states. Thus, it determines the length of program execution. Prolonging
activities on the critical path increases program runtime, whereas shortening them
(usually) reduces it. In contrast, optimizing an activity not on the critical path only
increases waiting time, but does not affect the overall runtime.

Our critical-path analysis produces a critical-path profile, which represents the
time an activity spends on the critical path. In addition, we combine the critical-
path profile with per-process time profiles to create a critical-path imbalance
performance indicator. This critical-path imbalance corresponds to the time that
is lost due to inefficient parallelization in comparison with a perfectly balanced
program. As such, it provides similar guidance as prior profile-based load imbalance
metrics (e.g., the difference of maximum and average aggregate workload per
process), but the critical-path imbalance indicator can draw a more accurate picture.
The critical path retains dynamic effects in the program execution, such as shifting
of imbalance between processes over time, which per-process profiles simply
cannot capture. Because of this, purely profile-based imbalance metrics regularly
underestimate the actual performance impact of a given load imbalance. As an
extreme example, consider a program like the example in Fig. 3, where a function is
serialized across all processes but runs for the same amount of time on each. Purely
per-process profile based metrics would not show any load imbalance at all, whereas
the critical-path imbalance indicator correctly characterizes the functions serialized
execution as a performance bottleneck.

Both delay analysis and critical-path analysis are implemented as extensions to
the automatic wait-state detection of the Scalasca performance analysis toolset,
leveraging its scalable, post-mortem event-trace analysis. The analyzer traverses
the traces in parallel, iterating over each process-local trace, and exchanges data
required for the performance analysis at each recorded synchronization point using
a communication operation similar to the one originally used by the program.

Other than the pure wait-state analysis, the delay and critical-path analysis
require an additional, backward replay over the trace. A backward replay processes
a trace backwards in time, from its end to its beginning, and reverses the role of
senders and receivers. Overall, the analysis now consists of two stages: (1) a parallel
forward replay that performs the wait state analysis and annotates communication
events with information on synchronization points and waiting time incurred; and
(2) a parallel backward replay that identifies the delays causing each of the wait
states detected during forward replay, calculates their costs, and extracts the critical
path. Starting at the endmost wait states, the backward replay allows delay costs
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Fig. 3 Analysis of dynamic performance effects: The serialized execution of function B, as seen
in the timeline (a), goes unnoticed in a summary profile (b), but is correctly identified as a
performance bottleneck by the critical-path imbalance indicator (c)

to travel from the point where they materialize in the form of wait states back to
the place where they are caused by delays. The backward replay also facilitates
the critical-path analysis, since the route of the critical path through the program
cannot be determined without knowing the end of the execution. For MPI programs,
the critical path runs between MPI Init and MPI Finalize. Our critical-path search
begins by determining the MPI rank that entered MPI Finalize last, which marks the
endpoint of the critical path, and then exploits the lack of wait states on the critical
path: whenever a wait state is found on the currently active path, the search proceeds
on the MPI rank that caused the wait state. This way, we follow the entire critical
path backwards through the trace.

4 Time-Series Profiling

Call path profiling accumulate multiple visits of the same call path. If all visits of
the same call path behave basically the same, all visits are well represented by the
resulting statistics. For iterative applications, the user usually assumes very similar
behavior of each iteration. However, this assumption is not always true. Szebebyi
et al. [15] have shown on examples from the SPEC MPI benchmarks (see Fig. 4)
and on the coulomb solver PEPC [16] (see Fig. 5) that some applications change
their behavior for different iterations.
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Fig. 4 Runtime of iterations of the SPEC MPI benchmark codes 121.pop, 126.lammps, 128.GAP-
geofem, 129.tera tf, 143.dleslie, and 147.l2wrf2

To display time-dependent behavior of iterative applications, the Scalasca mea-
surement system can now record separate profiles for every iteration of the main
loop. For this purpose, a user can manually instrument the body of the main loop
using the EPIK API. TAU [13] and Score-P [10] provide similar concepts named
dynamic timer, or dynamic region, respectively.
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Fig. 5 Point-to point
communication time of the
PEPC code for each program
iteration

However, for applications with many iterations such a time-series profile may
become very large. To reduce the memory requirements of the profile, we added
a mechanism which clusters similar iterations to a single profile sub-tree instance
[14]. The maximum number of clusters is configurable. However, we only cluster
iterations with a similar structure. Iterations which contain different call paths are
never clustered together. The time dynamics can be reconstructed from a mapping
table, which stores the cluster associated with each iteration.

In case of the SPEC MPI benchmarks, the clustered profiles match the profiles
without clustering very well, even if only 64 clusters are used. Figure 6 shows
the comparison between the runtimes of iterations with clustering and without
clustering. In the case of clustering the more complex PEPC coulomb solver, count
based metrics show already a good match when using 64 clusters. However, time
based metrics require more clusters for a good match [14].

5 Topologies

Scalasca obtains performance data for every process/tread of the application. In
many cases, the hardware, the network, the communication system (e.g. MPI), or
the application define neighborhood/dependency relationships and/or structure on
these processes/threads, called topologies. However, network structure, hardware
hierarchy, and application neighborhood relationships may significantly influence
the performance of an application. Thus, we extended Scalasca’s capabilities to
record and display topologies. The previous capabilities of Scalasca to represent
topologies were limited to 3-dimensional Cartesian topologies, i.e. each element has
an unique set of coordinates in a 3-dimensional realm. Now, the topologies defined
in Scalasca can have any number of dimensions. Furthermore, an application can
define more than one topology, e.g., to compare the results for hardware topology
and an algorithms domain topology.

Scalasca can work with the following types of Cartesian topologies:
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Fig. 6 comparison between the runtimes of each iteration without clustering and with cluster-
ing for the SPEC MPI benchmarks 129.tera tf, and 147.l2wrf2. (a) 129.tera tf, no clustering.
(b) 129.tera tf, 32 clusters. (c) 147.l2wrf2, no clustering. (d) 147.l2wrf2, 64 clusters

5.1 Hardware Topologies

Supercomputers, such as the IBM Blue Gene series, can report where on the
machine processes run. This is useful in tightly-coupled programs, where distance
information can provide insights on communication delays. This information is
collected automatically by Scalasca during measurement.

Going further with the example of the Blue Gene series, the Blue Gene/Q model
of supercomputer has a five-dimensional torus network, which is fully supported
by Scalasca. Besides the support of topologies with more than 3 dimensions on
measurement and analysis, Scalasca now has a “folding” mechanism which allows
the user to select three-dimensional slices of the topology for visualization. Scalasca
now also supports names for all the topologies and their dimensions, thus, the
topologies can be easily identified. The names of the dimensions also are helpful
to identify the individual processes/threads in complex hardware topologies such as
the Blue Gene/Q’s (see Fig. 7).
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Fig. 7 CUBE showing the Blue Gene/Q’s 5D Hardware Topology. The screenshot shows 524,288
threads on the Jülich BlueGene/Q machine

5.2 Processes X Threads

Scalasca now automatically creates a two-dimensional virtual topology that shows
all OpenMP threads belonging to each process.

5.3 Runtime Mapping

On MPI programs, for instance, Scalasca can show how the processes are distributed
in ranks and the relationship between them. This information is also collected
automatically by Scalasca during measurement. Scalasca now supports any number
of dimensions. In the future, topologies whose communicator was named using the
MPI Comm set name function will have this name shown in the topology’s tab.

5.4 Algorithm Domain

The MPI specification does not enforce a strict mapping between neighbor ranks
and the hardware, neither between ranks and the problem decomposition, which is
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application specific. In some specific cases, the user might benefit from creating a
virtual topology that is independent from the hardware and from the MPI mapping,
being specific to the application. These topologies can be created manually by the
user, using our API.

6 Future Work

As computational science evolves and new programming paradigms emerge, new
challenges for performance analysis appear. Thus, we will continue to improve
Scalasca. This section describes some of the ongoing developments and planned
features for Scalasca.

First, we will replace Scalasca’s native instrumentation and measurement system
by Score-P [10]. Score-P is a common instrumentation and measurement system,
initially used by Periscope [7], Scalasca [6], TAU [13], and Vampir [8]. This implies
that these tools will also share common data formats for tracing and profiling.
Scalasca will remain as a pure trace analyzer for traces written in the Score-P
OTF2 [4] trace format. Score-P profiles and Scalasca trace analysis reports will be
written in the CUBE4 format, which is the more scalable successor of the current
CUBE3.

The common Score-P measurement stack improves the interoperability of the
tools. Furthermore, it reduces the need for each tool to maintain its own instrumen-
tation and measurement system, and thus, allows tool developers to focus on the
specific analysis strengths of their tools.

With respect to future trace analysis enhancements, we plan to extend the current
OpenMP analysis of Scalasca with the analysis of OpenMP tasks. Score-P can
already record task events [9, 12]. However, we must extend Scalasca’s profile
construction algorithm and we want to add some task specific patterns to its analysis.

At the Barcelona Supercomputing Centre, a new tasking system was developed,
named OmpSs [5]. We want to support measurements of applications using OmpSs.
Therefor, we will implement instrumentation and measurement support for OmpSs
in Score-P. Furthermore, we want to create the task analysis general enough that it
covers also OmpSs tasks. A third new analysis feature that we are working on is the
analysis of one-sided communication and PGAS languages.
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12. Schmidl, D., Philippen, P., Lorenz, D., Rössel, C., Geimer, M., an Mey, D., Mohr, B., Wolf, F.:
Performance analysis techniques for task-based OpenMP applications. In: 8th Int. Workshop
of OpenMP (IWOMP), LNCS, vol. 7312, pp. 196–209. Springer, Berlin / Heidelberg (2012)

13. Shende, S., Malony, A.D.: The TAU parallel performance system. International Journal of High
Performance Computing Applications 20(2), 287–331 (2006)

14. Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Space-efficient time-series call-path profiling of parallel
applications. In: Proc. of the ACM/IEEE Conference on Supercomputing (SC09), Portland,
OR, USA. ACM (2009). DOI 10.1145/1654059.1654097

15. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: SCALASCA parallel performance analyses of SPEC
MPI2007 applications. In: Proc. of the 1st SPEC International Performance Evaluation
Workshop (SIPEW), Darmstadt, Germany, Lecture Notes in Computer Science, vol. 5119, pp.
99–123. Springer (2008). DOI 10.1007/978-3-540-69814-2 8

16. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: Scalasca parallel performance analyses of PEPC. In:
Proc. of the 1st Workshop on Productivity and Performance (PROPER) in conjunction with
Euro-Par 2008, Las Palmas de Gran Canaria, Spain, Lecture Notes in Computer Science, vol.
5415, pp. 305–314. Springer (2009). DOI 10.1007/978-3-642-00955-6 35

http://dx.doi.org/10.1007/978-3-642-19595-2_15


The HOPSA Workflow and Tools

Bernd Mohr, Vladimir Voevodin, Judit Giménez, Erik Hagersten,
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Abstract To maximise the scientific output of a high-performance computing
system, different stakeholders pursue different strategies. While individual appli-
cation developers are trying to shorten the time to solution by optimising their
codes, system administrators are tuning the configuration of the overall system to
increase its throughput. Yet, the complexity of today’s machines with their strong
interrelationship between application and system performance presents serious
challenges to achieving these goals. The HOPSA project (HOlistic Performance
System Analysis) therefore sets out to create an integrated diagnostic infrastructure
for combined application and system-level tuning – with the former provided by the
EU and the latter by the Russian project partners. Starting from system-wide basic
performance screening of individual jobs, an automated workflow routes findings
on potential bottlenecks either to application developers or system administrators
with recommendations on how to identify their root cause using more powerful
diagnostic tools. Developers can choose from a variety of mature performance-
analysis tools developed by our consortium. Within this project, the tools will be
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further integrated and enhanced with respect to scalability, depth of analysis, and
support for asynchronous tasking, a node-level paradigm playing an increasingly
important role in hybrid programs on emerging hierarchical and heterogeneous
systems.

1 Introduction

To maximise the scientific and commercial output of a high-performance com-
puting system, different stakeholders pursue different strategies. While individual
application developers are trying to shorten the time to solution by optimising their
codes, system administrators are tuning the configuration of the overall system to
increase its throughput. Yet, the complexity of today’s machines with their strong
interrelationship between application and system-level performance demands an
integration of application and system programming.

The HOPSA project (HOlistic Performance System Analysis) therefore sets out
for the first time to develop an integrated diagnostic infrastructure for combined
application and system-level tuning. Using more powerful diagnostic tools appli-
cation developers and system administrators will easier identify the root causes of
their respective bottlenecks. With the HOPSA infrastructure, it is more effective to
optimise codes running on HPC systems. More efficient codes mean either getting
results faster or being able to get higher quality or more results in the same time.

The work in HOPSA is carried out by two coordinated projects funded by the EU
under call FP7-ICT- 2011-EU-Russia and the Russian Ministry of Education and
Science, respectively. Its objective is the new innovative integration of application
tuning with overall system diagnosis and tuning to maximise the scientific output
of our HPC infrastructures. While the Russian consortium will focus on the system
aspect, the EU consortium will focus on the application aspect. At the interface
between these two facets of our holistic approach, which is illustrated in Fig. 1,
is the system-wide performance screening of individual jobs, pointing at both
inefficiencies of individual applications and system-related performance issues.

This article describes the overall workflow of performance analysis of parallel
programs using the HOPSA infrastructure, introduces the individual tools developed
inside the project consortium, and shows how to use the tools in a complemen-
tary way. For detailed information, please see the user guides of the individual
performance-analysis tools.

At the centre of this workflow is the so-called lightweight measurement module
(LWM2). It is responsible for the first step in the workflow, the system-wide
mandatory collection of basic performance data. For each execution on the cluster,
LWM2 produces a so-called job digest. The metrics listed in this compact report
indicate whether an application suffers from an inherent performance problem
or whether application interference may have been at the root of dissatisfactory
behaviour. They also provide a first assessment regarding the nature of a potential
performance problem and help to decide on further diagnostic steps using any of the
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Fig. 1 System-level tuning (bottom), application-level tuning (top), and system-wide performance
screening (centre) use common interfaces for exchanging performance properties

more powerful performance-analysis tools. For each of those tools, a short summary
is given with information on the most important questions it can help to answer.
Moreover, the document covers Score-P [5], a common measurement infrastructure
shared by some of the tools. The performance data types supported by Score-P form
a natural refinement hierarchy that can be followed to track down and represent
even complex bottleneck situations at increasing levels of granularity. Finally, a
brief excursion on system-level tuning explains how system providers can leverage
the data collected by LWM2 to identify a suboptimal system configuration or faulty
components.

2 The HOPSA Workflow

2.1 Overview

The performance-analysis workflow (Fig. 2) consists of two basic steps. During the
first step, we identify all those applications running on the system that may suffer
from inefficiencies. This is done via system-wide job screening supported by a
lightweight measurement module (LWM2) dynamically linked to every executable.
The screening output identifies potential problem areas such as communication,
memory, or file I/O, and issues recommendations on which diagnostic tools can be
used to explore the issue further. Available application performance analysis tools
include Paraver/Dimemas [1, 12], Scalasca [2], ThreadSpotter [3], and Vampir [4].
The data collected by LWM2 is also fed into the Clustrx.Watch hierarchical cluster
monitoring system [13] which combines it with system and hardware data and
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Fig. 2 Overview of the performance analysis workflow

forwards it to the LAPTA cluster monitoring and analysis system [14] for further
analysis by system administrators.

In general, the workflow successively narrows the analysis focus and increases
the level of detail at which performance data are collected. At the same time, the
measurement configuration is optimised to keep intrusion low and limit the amount
of data that needs to be stored. To distinguish between system and application-
related performance problems, some of the tools allow also system-level data to be
retrieved and displayed. The system administrator, in contrast, has access to global
performance data. He can use this data to identify potential system performance
bottlenecks and to optimise the system configuration based on current workload
needs. In addition, the administrator can identify applications that continuously
underperform and proactively offer performance-consulting services. In this way,
it becomes possible to reduce the unnecessary waste of expensive system resources.

2.2 Performance Screening

This step decides whether an application behaves inefficiently. On the side of
the user, nothing has to be done except running the application as usual. Upon
application start, LWM2 is automatically and transparently linked to the executable
through library pre-loading. At runtime, the module collects basic performance data
with very low overhead. The performance data characterise various aspects such as
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sequential performance, parallel performance, and file I/O. At the end of execution,
the user receives a job digest that contains the most important performance metrics.
The digest also recommends further diagnostics in the case certain key metrics show
unexpected values, which may often be indicative of a performance problem. If
needed, the user can disable LWM2, for example, to avoid interference with the
analysis tools used in subsequent stages of the tuning process.

2.2.1 The Lightweight Measurement Module LWM2

The lightweight measurement module LWM2 collects basic performance data for
every process of a parallel application. It supports applications based on MPI and
multithreaded applications based on POSIX Threads or any higher-level model
implemented on top of it, which usually includes OpenMP. Multithreaded MPI
applications and applications that additionally use CUDA are supported as well. To
keep the overhead at a minimum, the module applies a combination of sampling and
careful direct instrumentation via interposition wrappers. Direct instrumentation is
needed to track the state of a thread (e.g., whether it executes inside or outside an
MPI function) and to access relevant communication or I/O parameters such as the
number of bytes sent or written to disk. Based on the state tracking performed by the
instrumentation, sampling partitions the execution time into different components
such as computation, communication, or I/O. LWM2 refrains from direct time
measurements as far as possible. Hardware counters deliver basic information on
single-node performance. To save storage space, the performance data of individual
threads are folded into per-process metrics such as the average number of threads.

In addition to collecting performance data separately for each process, LWM2

divides the time axis into disjoint slices, recording selected metrics related to the use
of shared resources at this finer granularity. The slices have a length of 10s and are
synchronized across the entire machine. Together with the location of each process
on the cluster, which LWM2 records along with the performance data, LWM2

provides performance data for each active cell of a cluster-wide time-space grid.
The discretised time axis constitutes the first dimension, the nodes of the system the
second one.

The purpose of organising the performance data in this way is threefold: First,
by comparing the data of different jobs that were active during the same time slice,
it becomes possible to see signs of interference between applications. Examples
include reduced communication performance due to overall network saturation or
low I/O bandwidth due to concurrent I/O requests from other jobs. Second, by
looking at the performance data of the same node across a larger number of jobs and
comparing it to the performance of other nodes during the same period, anomalies
can be detected that would otherwise be hidden when analysing performance data
only on a per-job basis. Third, collecting synchronised performance data from all
the jobs running on a given system will open the way for new directions in the
development of job scheduling algorithms that take the performance characteristics
of individual jobs into account. For example, to avoid file-server contention and
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waiting time that may occur in its wake, it might be wiser not to co-schedule
I/O-intensive applications. In this way, overall system utilisation may be further
improved.

After the expiration of every time slice, LWM2 passes the data of the current time
slice on to Clustrx.Watch, a system-monitoring infrastructure running on each node.
Clustrx augments these data with system data collected using various sensors and
forwards them to the LAPTA system performance database.

2.2.2 LAPTA

LAPTA is a pAckage for Performance moniToring and Analysis. The software is
aimed at providing flexible, scalable and extendable infrastructure for system-level
performance analysis. It includes special tools and interfaces for data collection
supporting various data collectors (Clustrx, Ganglia, LWM2, etc.), data storage
supporting wide range of databases (MongoDB, Cassandra, etc.) and both stored
and streamed data access and analysis. LAPTA provides interfaces to access
the collected system monitoring data for both query models: post mortem and
on-the-fly. For example LAPTA serves as the basis for Job Digest generation based
on system-level performance monitoring data. The screening of general job behavior
through Job Digest is very useful for users and tuners to understand the possible
bottlenecks that can be seen at a glance (like network overload, bad data locality,
inefficient memory usage, too intensive I/O, etc.). Also, performance data of the
same application collected over an extended period of time will document the
tuning and scaling history of this application allowing to make even more detailed
analysis of the dynamic application behavior further. Studying the performance
behaviour of the entire job mix will allow to make conclusions on the optimal
system configuration for the given workload. For example, system providers will
learn whether requirements to amount of physical memory available, I/O or network
bandwidth and other system hardware requirements were over- or underestimated.

2.3 Performance Diagnosis

This step decides why an application behaves inefficiently. It is only needed
if the screening identifies a potential performance problem. Depending on the
recommendation made by LWM2 , the user chooses one or more of the performance-
analysis tools offered by the HOPSA tool environment. The general strategy of the
diagnosis is to start with an overview and then to go deeper as more information on
the problem’s root cause becomes available.
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Table 1 Classification of tools based on problem class and level of detail

Intra-node Inter-node
peformance peformance I/O

Overview ThreadSpotter Score-P profile C cube Scalasca(Cube)
In-depth analysis ThreadSpotter, Scalasca trace analyzer C Paraver, Vampir

Paraver, Vampir Cube, Paraver, Vampir

2.3.1 Overview of the Performance Analysis Tool Suite

An overview of the HOPSA performance analysis tool suite is presented in Table 1.
For the analysis of intra-node performance, ThreadSpotter is the primary tool,

with the possibility of more detailed analyses using Paraver. For investigating inter-
node performance, looking at a performance profile using Scalasca’s Cube browser
is a good starting point. For even more detailed analyses, the results of the Scalasca
trace-analyser can be displayed in Cube, or the Vampir and Paraver/Dimemas tools
can be used for a detailed visual exploration of the traces. For understanding I/O-
related issues, profiles displayed in the Cube browser give a good overview, while
Vampir can be used for more in-depth analysis.

2.3.2 The Score-P Instrumentation and Measurement System

The Score-P [5] measurement infrastructure is a highly scalable and easy-to-use tool
suite for profiling, event tracing, and online analysis of HPC applications. It collects
performance data that can be analysed using the HOPSA tools Scalasca and Vampir.
In addition, it supports the performance tools Persicope [6] and TAU [7] developed
outside the HOPSA project. Score-P has been created in the projects SILC and
PRIMA funded by the German Ministry of Education and Research and the US
Department of Energy, respectively. It will be maintained and further enhanced in a
number of follow-up projects including HOPSA.

The main performance data formats produced by Score-P are CUBE-4 [8] for
profiles and OTF2 [9] for event traces. Profiles provide a compact performance
overview, while event traces allow the in-depth analysis of parallel performance
phenomena. While classic profiles aggregate performance metrics across the entire
execution, time-series profiles treat individual iterations of the application’s main
loop separately, which allows studying the temporal evolution of the performance
behaviour. They provide less detail than event traces, but can cover longer execu-
tions. Together, the above-mentioned options form a hierarchy of performance data
types with increasing level of detail. The main advantage of Score-P is that a user
needs to become familiar with only one set of instrumentation commands to produce
all theses data types, which can be analysed using the majority of the tools listed
Table 1. Figure 3 provides and overview of the different performance data types
supported by Score-P and the tools that can be used to analyse them. Below we
cover the individual data types in more detail.
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Fig. 3 Performance data types supported by Score-P and the tools that can be used to analyse
them. The * next to the second mentioning of Cube indicates a display type that will be provided
in a future version

Profiles Profiles in the CUBE-4 format map a set of performance metrics such
as the time spent on some activity or the number of messages sent or received
onto pairs of call paths and processes (or threads in multithreaded applications).
Metrics with a specialization (i.e., subset) relationship can be arranged and
displayed in a hierarchy. The call-path dimension forms the natural call-tree
hierarchy. Processes and threads are also arranged in an inclusion hierarchy
together with hardware components such as the nodes they reside on. In addition,
it is possible to define Cartesian process topologies to represent network or
virtual topologies. Profiles can be visually explored using the Cube browser.
Compared to its predecessor CUBE-3, CUBE-4 files have been optimized for
fast writing by storing the metric values in a binary file.

Time-Series Profiles Time-series profiles are like normal CUBE-4 profiles
except that they maintain a separate sub-tree in the call tree for each iteration
of the time-step loop. This allows the user to distinguish individual iterations
and to observe the evolution of the performance behaviour along the time axis.
Time-series profiles are created by annotating the body of the time-step loop with
special instrumentation, which tells Score-P when an iteration ends and when a
new one begins. They can be analysed using the normal Cube display. A future
version of Cube (to be completed after this project ends) will provide special
iteration diagrams that offer an easy way to judge how the performance changes
over time. To avoid that profiling data exceeds the available buffer space, future
versions of Score-P will support the dynamic compression of time-series profile
data using an online clustering algorithm [15].

Event Traces Event traces include all events of an application run that are of
interest for later examination, together with the time they occurred and a number
of event-type-specific attributes. Typical events are entering and leaving of



The HOPSA Workflow and Tools 135

functions or sending and receiving of messages. Event traces produced by Score-
P are stored in the Open Trace Format Version 2 (OTF-2), a new trace format
whose design is based on the experiences with the two predecessor formats
OTF [10] and EPILOG [11], the former native formats of Vampir and Scalasca,
respectively. The main characteristics of OTF-2 are similar to other record-based
parallel event trace formats. It contains events and definitions and distributes
data storage over multiple files. In addition, it is more memory efficient, offering
the possibility to achieve measurements with less perturbation due to memory
buffer flushes. In contrast to OTF, the event traces are stored in a binary
format, which reduces the size of the trace files without the need for a separate
compression step. OFT-2 traces are the foundation for further analysis. Vampir
can display OTF-2 traces visually using different kinds of displays, including a
zoomable timeline. The Scalasca trace analyser identifies wait states and their
root causes, producing a CUBE-4 file that provides a higher-level view of the
application performance data. This is typically recommended to get an idea
of key performance issues before visually exploring the traces directly using
a trace browser. Moreover, there is on-going work to convert the traces to the
Paraver format so that they can be analysed using Paraver (visual exploration)
and Dimemas (what-if analysis).

Overhead Minimisation

Another important aspect is the quality of the collected performance data in terms
of intrusion and their size. To keep both intrusion and data size small, the Score-P
measurement system offers a systematic approach of expanding the level of detail
while at the same time narrowing the measurement focus:

1. Generate a summary profile with generous instrumentation while measuring
the overhead. If the overhead is too large (>10 %), reduce instrumentation, for
example, through the application of filter lists. Measure overhead again and
iterate until the overhead is satisfactory.

2. Generate a new summary profile with acceptable overhead. This provides an
overview of the performance behaviour across the entire execution time and
allows the identification of suspicious call paths and processes.

3. Generate a time-series profile, which provides a separate summary profile for
every iteration of the time-step loop. This shows to which degree the performance
behaviour changes as the simulation progresses and allows the identification of
iterations that warrant deeper analysis. A semantic compression algorithm will
ensure that the size of time-series profiles stays within reasonable limits.

4. For the identified iterations, generate event traces. Event traces provide the
highest level of detail and offer a number of interesting analysis options including
automatic wait-state analysis and visual exploration.



136 B. Mohr et al.

2.4 The HOPSA Performance Tools

This section introduces the various HOPSA performance tools.

2.4.1 Dimemas

Dimemas [12] is a performance prediction tool for message-passing programs.
The Dimemas simulator reconstructs the time behaviour of a parallel application
using as input an event trace that captures the time resource demands (CPU and
network) of a parallel application. The target machine is modeled by a reduced set
of key factors influencing the performance that model linear components like the
point-to-point transfer time as well as non-linear factors like resources contention
or synchronisation. Using a simple model, Dimemas allows performing parametric
studies in a very short time frame. The supported target architecture is a cloud
of parallel machines, each one with multiple nodes and multiples CPUs per node
allowing the evaluation of a very wide range of alternatives, despite the most
common environment is a computing cluster. Dimemas can generate as part of its
output a Paraver trace file, enabling the user to conveniently examine the simulated
run and understand the application behaviour.

Typical Questions Dimemas Helps to Answer

• How would my application perform in a future system?
• Can increasing the network bandwidth improve the application performance?
• Would my application benefit from asynchronous communication?
• Is my application limited by the network or by serialisation and dependency

chains in my code?
• What is the sensitivity of my application to different system parameters?
• What would be the impact of accelerating specific regions of my code?

2.4.2 Paraver

Paraver [1] is a very flexible data browser that is part of the CEPBA-Tools toolkit.
Its analysis power is based on two main pillars. First, its trace format has no
semantics; extending the tool to support new performance data or new programming
models requires no changes to the visualiser – just capturing such data in a Paraver
trace. The second pillar is that the metrics are not hardwired in the tool but can
be programmed. To compute them, the tool offers a large set of time functions,
a filter module, and a mechanism to combine two timelines. This approach allows
displaying a huge number of metrics with the available data. To capture the expert’s
knowledge, any view or set of views can be saved as a Paraver configuration file.
After that, re-computing the view with new data is as simple as loading the saved
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Fig. 4 Paraver timeline display

Fig. 5 Paraver histogram display

file. The tool has been demonstrated to be very useful for performance analysis
studies, giving much more details about the application behaviour than most other
performance tools.

Performance information in Paraver is presented with two main displays that
provide qualitatively different types of information. The timeline display represents
the behaviour of the application along time and processes, in a way that easily
conveys to the user a general understanding of the application behaviour and simple
identification of phases and patterns. The statistics display provides numerical
analysis of the data that can be applied to any user-selected region, helping to draw
conclusions on where and how to focus the optimisation effort. See Figs. 4 and 5 for
an example of Paraver’s main displays.

Typical Questions Paraver Helps to Answer

• What is the parallelisation efficiency and the performance of communication?
• What are the differences that can be observed between two different executions?
• Does the behaviour of the application change over time?
• Are performance or workload variations the cause of load imbalances in compu-

tation?
• Which performance issues do the microprocessor’s hardware counters reflect?
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Fig. 6 Interactive exploration of performance behaviour in Scalasca along the dimensions perfor-
mance metric (left), call tree (middle), and process topology (right). Screendump shows result of a
524,288 threads run on the Jülich BlueGene/Q machine

2.4.3 Scalasca

Scalasca [2] is a free software tool that supports the performance optimisation of
parallel programs by measuring and analysing their runtime behaviour. The tool
has been specifically designed for use on large-scale systems including IBM Blue
Gene and Cray XE, but is also well suited for small- and medium-scale HPC
platforms. The analysis identifies potential performance bottlenecks – in particular
those concerning communication and synchronization – and offers guidance in
exploring their causes.

The user of Scalasca can choose between two different analysis modes: (i) per-
formance overview on the call-path level via profiling and (ii) the analysis of
wait-state formation via event tracing. Wait states often occur in the wake of
load imbalance and are serious obstacles to achieving satisfactory performance.
Performance-analysis results are presented to the user in an interactive explorer
called Cube (Fig. 6) that allows the investigation of the performance behaviour on
different levels of granularity along the dimensions performance problem, call path,
and process. The software has been installed at numerous sites in the world and has
been successfully used to optimise academic and industrial simulation codes.
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Fig. 7 Highlighting a “false sharing” situation. Top left part contains lists of problems. Lower left
contains details, and annotated source code is to the right

Typical Questions Scalasca Helps to Answer

• Which call-paths in my program consume most of the time?
• Why is the time spent in communication or synchronisation higher than

expected?
• Does my program suffer from load imbalance and why?

2.4.4 ThreadSpotter

ThreadSpotter [3] is a commercial tool that will help programmers optimise their
programs with respect to architectural bottlenecks such as cache size and memory
system bandwidth and point out inefficient communication modes between threads.
Its scope is a single process, including both single-threaded as well as multi-
threaded applications.

Some programming styles will exercise the memory system in suboptimal ways
that can reduce performance drastically. Examples of these are failure to observe or
exploit locality properties in code or data. Inappropriate communication through
shared memory between threads may cause the coherence traffic to become a
bottleneck.

ThreadSpotter explains the inefficiencies of observed memory access patterns on
a high level in a graphical user interface (Fig. 7) and provides pointers to suggestions
to optimise the code. It offers deep explanations on hardware level to back up the
suggestions, educating the user as he uses the tool.
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Fig. 8 Vampir GUI

Typical Questions ThreadSpotter Helps to Answer

• How does my program abuse the memory system and what can I do about it?
• Do the threads of my program exchange data with each other in an inefficient

way?
• When adjusting my program, are the changes actually helping to minimise the

footprint of the application?

2.4.5 Vampir

Vampir [4] is a graphical analysis framework that provides a large set of different
chart representations of event-based performance data. These graphical displays,
including timelines and statistics, can be used by developers to obtain a better
understanding of their parallel program’s inner working and to subsequently
optimise it. See Fig. 8 for an impression of the Vampir GUI.

Vampir is designed to be an intuitive tool, with a GUI that enables developers
to quickly display program behavior at any level of detail. Different timeline
displays show application activities and communication along a time axis, which
can be zoomed and scrolled. Statistical displays provide quantitative results for the
currently selected time interval. Powerful zooming and scrolling along the timeline
and process/thread axis allows pinpointing the causes of performance problems.
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All displays have context-sensitive menus, which provide additional information
and customisation options. Extensive filtering capabilities for processes, functions,
messages or collective operations help to narrow down the information to the
interesting spots. Vampir is based on Qt and is available for all major workstation
operation systems as well as on most parallel production systems. The parallel
version of Vampir, VampirServer, provides fast interactive analysis of ultra large
data volumes.

Typical Questions Vampir Helps to Answer

• What happens in my application execution during a given time in a given process
or thread?

• How do the communication patterns of my application execute on a real system?
• Are there any imbalances in computation, I/O or memory usage and how do they

affect the parallel execution of my application?

2.5 Integration Among Performance Analysis Tools

Sharing the common measurement infrastructure Score-P and its data formats and
providing conversion utilities if direct sharing is not possible, the performance
tools in the HOPSA environment and workflow already make it easier to switch
from higher-level analyses provided by tools like Sclasca to more in-depth analyses
provided by tools like Paraver or Vampir. To simplify this transition even further,
the HOPSA tools are integrated in various ways (see Fig. 9). With its automatic
trace analysis, Scalasca locates call paths affected by wait states caused by load
or communication imbalance. However, to find and fix these problems in a user
application, it is in some cases necessary to understand the spatial and temporal
context leading to the inefficiency, a step naturally supported by trace visualizers
like Paraver or Vampir. To make this step easier, the Scalasca analysis remembers the
worst instance for each of the performance problems it recognizes. Then, the Cube
result browser can launch a trace browser and zoom the timeline into the interval
of the trace that corresponds to the worst instance of the recognized performance
problems.

In the future, the same mechanisms will be available for a more detailed visual
exploration of the results of Scalasca’s root cause analysis as well as for further
analyzing call paths involving user functions that take too much execution time.
For the latter, ThreadSpotter will be available to investigate their memory, cache
and multi-threading behaviour. If a ThreadSpotter report is available for the same
executable and dataset, Cube will allow launching detailed ThreadSpotter views for
each call path where data from both tools is available.
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Fig. 9 Scalasca to Vampir or Paraver Trace browser integration. In a first step, when the user
requests to connect to a trace browser, the selected visualizer is automatically started and the event
trace, which was previously the basis of Scalasca’s trace analysis, is loaded. Now, in a second
step, the user can request a timeline view of the worst instance of each performance bottleneck
identified by Scalasca. The trace browser view automatically zooms to the right time interval. Now
the user can use the full analysis power of these tools to investigate the context of the identified
performance problem

2.6 Integration of System Data and Performance Analysis
Tools

The Russian ClustrX.Watch management software provides node-level sensor
information that can give additional insight for performance analysis of applications
with respect to the specific system they are running on. This allows populating
Paraver and Vampir traces with system information (the granularity will depend on
the overhead to obtain the data) and to analyze them with respect to the system-wide
performance.

The Russian LAPTA system data analysis and management software provides
node-level sensor information that can give additional insight for performance
analysis of applications with respect to the specific system they are running on. This
allows populating Paraver and Vampir traces with system information collected by
Clustrx, Ganglia, and other sources (the granularity will depend on the overhead to
obtain the data) and to analyze them with respect to the system-wide performance.
The system offers two different ways to access to the collected data:
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Fig. 10 Vampir screendump showing aligned system and application data

Historic information is stored with a given granularity for all the sensors and
all the IP (nodes) on the system. The initial granularity was very coarse (1 min)
and did not seem useful for the population of application trace files because there
can be many different program phases in a 1 min interval. On the other hand, the
circular buffer provides historical information with fine-grained detail (coarser or
equal to 1 s depending on the sensor) for the last minutes (300 measurements).
Streamed information can be requested for any range of sensors and IPs. The
interface provides at least a value every 10 s unless there is a change greater than
a 10 %. Currently, the finest available granularity is 1 s.

Both mechanisms use a connection through an HTTP protocol that in the case of
the streamed data has to be refreshed periodically or dies after 5 min. We evaluated
both alternatives to see their potential and identified possible drawbacks.

The Vampir team implemented a prototype Score-P adapter that enhances OTF2
traces at the end of the measurement. For evaluation, the benchmark code HPL
was instrumented with Score-P. In addition to the application and MPI events,
the trace was enhanced with HOPSA node-level metrics and per-process PAPI
counters. Tested and working HOPSA sensors include node memory usage values
and Infiniband packet counts. The evaluation shows that phases in the application
clearly correlate to measured values of the node level sensors, e.g. heavy MPI
communication to Infiniband packet counters (see Fig. 10). As a use case, this
integration allows the user to analyze how the application utilizes network hardware
of each node or how shared usage of network resources affects the application
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Fig. 11 Paraver screendumps showing aligned system and application data

execution. Currently the sensor values are available in 1 s granularity for the last
500 s and 1 min granularity before that.

The Paraver team experimented with Gromacs, a popular production code in life
sciences, trying to correlate the sensors values to the activity of the application. As
one can see in Fig. 11, on a higher level, it is possible to correlate system metrics
with application program phases (left side of the picture). However, due to the
limited resolution of the system metrics data, this is not possible on a more detailed
level (see right side of the figure).

2.7 Opportunities for System Tuning

Several opportunities for system tuning arise from the availability of historic
performance data collected by LWM2. First, data on individual system nodes along
an extended period of time in comparison to other nodes can be analysed to spot
anomalies and detect deficient components. Second, data on the entire workload
can be used to improve the understanding of the workload requirements and
configure the system accordingly. The insights obtained may guide the evolution
of the system and influence future procurement decision. Finally, knowledge of
the resource requirements of individual jobs offers the chance to develop resource-
aware scheduling algorithms that avoid oversubscription of shared resources such
as the file system or the network.
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3 Conclusion

The HOPSA project creates an integrated diagnostic infrastructure for combined
application and system tuning. Starting from system-wide basic performance
screening of individual jobs, an automated workflow routes findings on potential
bottlenecks either to application developers or system administrators with recom-
mendations on how to identify their root cause using more powerful diagnostics.
This document specifies the performance analysis workflow that connects the
different steps. At the same time, it provides an impression of the overall vision
behind the project. The high-level description is intended to make it readable also
for non-tool experts.

Although the specification is based on long experience with HPC application
developers and how they tend to use performance tools, it is a blueprint that needs
to be validated in practice. This validation is planned for the last quarter of the
project at Moscow State University, once all the components are in place and, in
particular, LWM2 has been fully completed, tested, and integrated into the overall
environment. During this validation process, some of the details presented in this
document may change and ultimately result in a new revision. We expect though
that all major elements will be retained.

Beyond the lifetime of the project, the HOPSA infrastructure is supposed to
collect large amounts of valuable data on the performance of individual applications
as well as the system workload as a whole. It will be of interest in three ways: to
tune individual applications, to tune the system for a given workload, and finally
to observe the evolution of this workload over time. The latter will allow the
effectiveness of our strategy to be studied. An open research issue to be tackled on
the way will be the reliable tracking of individual applications, which may change
over time, across jobs based on the collected data. In this way, it will become
possible to document the performance history of code projects and demonstrate the
effects of our tool environment over time.
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Gonzalez, André Grötzsch, Thomas Ilsche, Germán Llort, Christopher Schleiden, Konstantin
Stefanov, Zoltán Szebenyi, Igor Zacharov, Pavel Saviankou, Igor Ustinov, Vadim Voevodin, and
Sergey Zhumatiy as well as the Paraver, Scalasca, and Vampir teams in general.

References

1. J. Labarta, S. Girona, V. Pillet, T. Cortes, L. Gregoris, DiP: A parallel program develop-
ment environment. in: Proc. of the 2nd International Euro-Par Conference, Lyon, France,
Springer, 1996.



146 B. Mohr et al.
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Visualizing More Performance Data Than What
Fits on Your Screen

Lucas M. Schnorr and Arnaud Legrand

Abstract High performance applications are composed of many processes that
are executed in large-scale systems with possibly millions of computing units.
A possible way to conduct a performance analysis of such applications is to register
in trace files the behavior of all processes belonging to the same application.
The large number of processes and the very detailed behavior that we can record
about them lead to a trace size explosion both in space and time dimensions. The
performance visualization of such data is very challenging because of the quantities
involved and the limited screen space available to draw them all. If the amount of
data is not properly treated for visualization, the analysis may give the wrong idea
about the behavior registered in the traces. This paper is twofold: first, it details data
aggregation techniques that are fully configurable by the user to control the level
of details in both space and time dimensions; second, it presents two visualization
techniques that take advantage of the aggregated data to scale. These features are
part of the VIVA open-source tool and framework, which is also briefly described in
this paper.

1 Introduction

High performance computing systems today are composed of several thousands
and sometimes millions of cores. The fastest parallel machine as defined by the
Top500 [5] in June 2012 has more than 1.5 million cores. Parallel machines with
billions of cores are expected in the way towards exascale computing. Parallel
applications running on these large-scale platforms are therefore composed of many
processes and threads that together explore the extreme concurrency available to
solve problems in a variety of domains.
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A possible way to conduct a performance analysis of such applications is by
recording in trace files the behavior of all processes of the same application. The
behavior of each process can be defined by a succession of timestamped events
that register the important parts of the application, as defined by the analyst. With
low-intrusion tracing techniques, the events can be as frequent as one event per
nanosecond. Because of the quantity of processes and the amount of details we can
collect about each of them, traces become very large, at least in the space and time
dimensions.

Despite the technical challenge of managing possibly millions of very large
traces that are scattered in the platform, another aspect is how to extract useful
information from them. A possibility is to use performance visualization techniques
to visually represent the behavior described in the traces. Several techniques exist,
but the most prominent is the traditional space/time view – also known as timeline
view or Gantt-like chart, shared by many trace visualization tools [3, 4, 11, 12, 18].
Other techniques such as classical histograms, communication matrices, and kiviat
diagrams also appear in the literature [3, 7]. Independently of which visualization
technique is chosen to represent traces, the task is commonly very challenging
and complex because of the quantities involved – number of processes, amount of
details – and the limited screen space available to represent all the information.

Most of performance visualization tools today have implicit assumptions about
how traces should be represented. Let us consider a very detailed trace of an
application that executes for several days. When visually representing an overview
of that trace on the screen, a pixel might represent many hours of execution. Some
tools [3] take the more common application state on that time interval and choose
its color to draw the pixel. Although this works well to scale the visualization,
it might not work for all scenarios if, for example, the state chosen to draw the
pixel is not the one that is the focus of the analysis. This also has the potential
disadvantage of dropping important information when two different states have
similar presence in the time interval of a given pixel. Some other tools [4] simply
rely on graphical rendering – thereby ignoring completely the problem. This second
case might lead to an extreme negative scenario where the understanding of the trace
depends on the graphics card and library used to draw its representation. Generally,
these implicit assumptions mixed with large-scale traces may give the wrong idea
about the behavior registered in the traces. We argue that all assumptions done
when visualizing trace data should be taken by the analyst, and not built-in in trace
visualization tools.

This paper addresses the issue of visualizing more performance data than what
could fit on the available screen space. Instead of directly drawing the trace events
with a visualization technique, our approach transforms raw traces into aggregated
traces – according to analyst needs – and then visually represent the transformed
traces. Therefore, this paper is twofold: first, it details data aggregation techniques
that transforms the raw traces and are fully configurable by the user to control
the level of details in both space and time dimensions; second, it presents two
visualization techniques that take advantage of the aggregated data to scale.
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The paper is organized as follows. Section 2 presents an extended discussion
about the problem of scalable performance visualization and a classification of tools
considering implicit or explicit trace aggregation. Section 3 describes the multi-
scale aggregation techniques applied to transform trace data before visualization.
Section 4 presents two interactive visualization techniques designed to explore
aggregated traces: the squarified treemap and the hierarchical graph views. Section 5
presents the VIVA visualization tool, which implements the data aggregation
algorithms and the visualization techniques. Finally, Sect. 6 draws a conclusion and
future work.

2 Motivation and Discussion

The performance analysis of parallel applications must deal with the problem
of trace size. This increase in size is present in different forms. The more
common situations are the following: spatial size increase, when the application
is large with many processes; temporal, when many details for each process must
be interpreted – even if there is only a few processes to be analyzed; or both. The use
of visualization to analyze large-scale traces is especially influenced by this increase
in size, since traditional visualization have scalability problems.

We take as example the Sweep3D benchmark [15] to illustrate the scalability
issue in trace visualization. The experiment is configured as follows. The MPI
application is executed on 16 nodes of the Griffon cluster, part of the Grid’5000 [2]
platform. The TAU library [22] traces all the MPI operations, resulting in traces that
are merged into a single file. This single file is converted to the Paje File Format [21]
using the tau2paje1 tool and finally exported to CSV (comma-separated values)
using the pj dump2 tool. A combination of R [8] and the ggplot2 package [23]
is used to plot the resulting CSV file to a graphical representation based on the
space/time view into a vector file.

Figure 1 shows two visualization of this vector file: one as seen by the Gnome
Evince (left); the other by Acroread (right). As traditional space/time views,
processes are listed in the vertical axis while the horizontal axis depicts the behavior
of each processes along time. The different colors (or gray scales) represent different
MPI operations. We can see that while both tools visualize the same file, the
visualization is completely different depending on the viewer chosen, misguiding
the analysis. If only Evince is used, the analysts might conclude that there are very
few states denoted by the red color; if Acroread is used, it is hard to take the exact
same conclusion, since we can see that red states are quite present for all processes.

The extreme negative scenario shown in Fig. 1 clearly illustrates the problem
when visualizing too much data in the same screen without care. The trace obtained

1Part of Akypuera toolset, available at https://github.com/schnorr/akypuera
2Part of PajeNG, available at https://github.com/schnorr/pajeng

https://github.com/schnorr/akypuera
https://github.com/schnorr/pajeng
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Fig. 1 Performance visualization of the Sweep3D MPI application with 16 processes – the vertical
axis lists the processes, while the horizontal axis depicts time – as visualized with two PDF viewers:
Gnome Evince (left) and Acroread (right): depending on the viewer, the analyst takes different
conclusions about the performance behavior

from Sweep3D, even for this small run of 2 s, has many events in time – more events
than the horizontal resolution is capable to contain. Since the vector file contains all
events – most of them in the microseconds scale – many states have to be drawn in
the same screen pixel. The color choice for a given pixel is taken by the renderer
and the anti-aliasing algorithm, which is different depending on the visualization
tool and does not make any sense for such Gantt-charts. That is why we get different
views depending on the tool.

This issue about implicit data aggregation also appears on performance visu-
alization tools which are specific to trace analysis. Considering space/time views,
the scalability problem can appear in both dimensions: in the horizontal dimension
when there is too much detail about each process (as in Fig. 1), in the vertical
dimension when the application is composed by many thousands processes. Many
data reduction techniques exists in several forms [1, 10, 13, 14, 16, 17, 19] to try to
reduce the amount of data that is going to be visualized. They might be broadly
classified in two groups: selection and aggregation. The first group – based on
selection – encompasses all solutions that select a subset of the data according to
some criteria, which on its turn can be either fully based on a direct choice made
by the analyst or not. Clustering algorithms considering behavior summaries as
similarity pattern are an example of automatic selection. The second group – based
on aggregation – acts upon the data, transforming into another kind of data whose
intent is to represent the aggregated entities.

There is always some kind of aggregation considering performance visualization
of large traces, although it is often implicit and uncontrolled. We explain now the
three possibilities that appear on performance visualization tools regarding trace
aggregation:

Explicit Data Aggregation. The analyst keeps control of the aggregation oper-
ators and the data neighborhood that is going to be aggregated. Moreover,
the visualization tool gives some feedback to let the analyst know that a data
aggregation takes place and is being used in the visualization.
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Implicit Data Aggregation. There is no way to distinguish in the visualization
something that has been aggregated from raw traces. The Fig. 1 is an example of
implicit data aggregation where the renderer takes the decision and the analyst is
unaware about what is being visualized, if it is aggregated or not.

Forbidden Data Aggregation. The performance visualization tools forbids data
aggregation at some level, commonly to avoid an implicit data aggregation that
could mislead the analysis. The analyst is aware of that since the tool blocks, for
example, an interactive operation, such as zoom out to get an overview.

Performance visualizations tools are sometimes present in more than one of
these data aggregation categories. Paje’s space/time view [12], for example, has
explicit data aggregation in the temporal axis – the user realizes that an aggregation
took place since aggregated states are slashed in the visualization, while forbidding
data aggregation on the spatial axis – minimum size for each resource is 1 pixel.
Another tool that falls in more than one category depending on the represented
data is Vampir’s master timeline [3]. For the temporal axis, it has implicit and
explicit data aggregation. Implicit aggregation happens for function representations
(colored horizontal bars): the tool choose the color of each screen pixel according to
a histogram and selecting the more frequent function on that interval of time [6]. The
user has no visual feedback if an aggregation takes place or not. Explicit aggregation
appears in Vampir for the communication representation (arrows): a special message
burst symbol [6] is used to tell the user that a zoom is necessary to get further
details on the messages. Vite’s timeline [4] has implicit data aggregation on spatial
and temporal dimensions, since it draws everything no matter the size of the screen
space dedicated to the visualization. Triva [20] has explicit data aggregation for
spatial and temporal dimensions, but it uses different visualization techniques, such
as the aggregated treemap, to visualize performance data.

Thus, the best scenario for a performance visualization tool is to provide pure
explicit data aggregation. This choice enables users to realize what is happening
with eventual trace transformations through a visual feedback in the visualization
technique. This is commonly present on traditional statistical plots, where the
amount of data is reduced with statistical mechanisms which are fully controlled by
the analyst. Therefore, the goal on performance visualization is to propose explicit
data aggregation which enables visualizations that are richer than classical statistical
plots and, at the same time, safer than traditional trace visualization. Next section
details our approach to explicit data aggregation for visualization.

3 Multi-scale Trace Aggregation for Visualization

We briefly detail how data aggregation is formally defined in our approach. Let
us denote by R the set of observed entities – which could be the set of threads,
processes, machines, processors, or cores – and by T the observation period.
Assume we have measured a given quantity � – which is a tracing metric – on
each resource:
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In our context, �.r; t/ could for example represent the CPU availability of resource
r at time t . It could also represent the execution of a function by a thread r at time t .
In most performance analysis situations, we have to depict several of such functions
at once to investigate their correlation.

As we have have illustrated in Fig. 1, � is generally complex and difficult to
represent. Studying it through multiple evaluations of �.r; t/ for many values of r

and t is very tedious and one often miss important features of � doing so. This is also
one of the reasons explaining the previous visualization artifact seen in the previous
section.

Assume we have a way to define a neighborhood N�;�.r; t/ of .r; t/, where �

represents the size of the spatial neighborhood and � represents the size of the
temporal neighborhood. In practice, we could for example choose N�;�.r; t/ D
Œr �� =2; r C� =2��Œt ��=2; t C�=2�, assuming our resources have been ordered.
Then, we can define an approximation F�;� of � at the scale � and � as:

F�;� W

8̂<
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ZZ

N�;�.r;t /

�.r 0; t 0/:dr 0:dt 0 (1)

Intuitively, this function averages the behavior of � over a given neighborhood of
size � and �. For example a crude view of the system is given by considering the
whole system as the spatial neighborhood and the whole timeline as the temporal
neighborhood. Since � can be continuously adjusted, we can temporally zoom in
and consider the behavior of the system at any time scale. Once this new time
scale has been decided, we can observe the whole timeline by shifting time and
considering different time intervals.

The analyst have to be careful about the conclusions that are taken during an
analysis based on aggregated data. The nature of the data aggregation technique
as presented here leads to the attenuation of behaviors registered in scales smaller
than the one used to aggregate the data. For example, if a temporal aggregation is
configured to integrate data using a 2 s interval, all the details smaller than 2 s are
attenuated by the integration.

At the same time, the analyst needs to be aware that, although some information
is lost, such aggregation generally lead to better visualization which can allow for
the detection of anomalies that could pass undetected without data aggregation.
Our approach deals with such questions by letting the analyst choose freely which
scale is used to aggregate trace data. That’s why this approach can be considered
a pure explicit data aggregation method, where traces are transformed before
being visualized. Next section details two visualization techniques for data that is
aggregated following this method.
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4 Visualization Techniques

Previous sections have shown the importance of explicit data aggregation algorithms
for performance analysis through visualization. We present now two visualization
techniques that have interactive mechanisms to deal with different aggregation
levels, at the same time giving the user a feedback when the information in traces is
aggregated: the squarified treemap and the hierarchical graph view. Their common
characteristic is the lack of a timeline, as the one used on Gantt-charts, because
the trace information is temporally aggregated. This lack of timeline also enables
the use of both screen dimensions to draw observed entities and thus display more
information.

4.1 Squarified Treemap View

The treemap technique [9] represents an annotated hierarchical structure on the
screen using a space-filling approach. The recursive technique starts on the root
of the tree, dividing the screen space among its children depending on their values.
The screen surface each node occupies is proportional to its value. This mechanism
allows an easy comparison of the characteristic of the different nodes of the
structure, even in large-scale scenarios.

The squarified treemap view [19], in our approach, is capable to represent
performance data that is temporally and spatially aggregated: one screenshot
represents therefore the application behavior in a time slice and spatial cut. These
levels of detail are configurable by the user and can be changed interactively during
the analysis. However, spatial aggregation is only calculated when the available
performance data is hierarchically organized (threads grouped by process, process
by machine, and so on). The hierarchy is therefore used as spatial neighborhood
criteria (as presented in Sect. 3). Whenever the time slice or the spatial cut is
changed, a new squarified treemap is calculated and drawn. Three interactive
transitions of this kind are depicted in Fig. 2.

Figure 2 shows four treemaps of the same trace at a given time interval configured
by the analyst. The top-right treemap of the figure shows, for instance, the Executing
and Blocked state for the six clusters of this synthetic example (as indicated by the
rounded dashed rectangles). We can see the three clusters per site and the two sites.
The values for the states for a cluster are calculated by the aggregation algorithm
considering the Blocked and Executing states for the machines belonging to that
cluster.

The main advantage of the original treemap representation over traditional
space/time views is its visual scalability. The technique is, as any other visualization
technique, also limited by the screen size. The treemap A of Fig. 3 shows the repre-
sentation of synthetic trace with 100 thousands processors. We can see that with that
large number of processors, the visualization suffers from implicit data aggregation
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Fig. 2 Four treemaps to show the per-level aggregation of Blocked and Executing states

Hierarchy: Site (10) - Cluster(10) - Machine (10) -  Processor (100) Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100) 

Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100) Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100) 

Maximum Aggregation

a

c

b

e

d

Fig. 3 Normal (a) and 4 aggregated treemap visualizations (b–e) of 2 states for 100 thousand
processors (based on synthetic trace)

during graphical rendering – there is a lack of pixels to draw all processors in
a way that we could extract useful information from them. With the aggregated
treemap view, the scalability limits of the representation are pushed forward since
it is no longer necessary to view the behavior of every single monitored entity
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in the analysis. Treemaps B–E of Fig. 3 depicts aggregated behavior of groups of
processes. The scalability limit lies on how deep the trace hierarchy is for a given
trace. If there is not enough levels on this hierarchy, they can be created by grouping
nodes according to some analysis criteria.

The aggregated treemap view, as presented here, is a complementary technique
in performance visualization. Although it offers a very scalable way to represent
aggregated trace data, it has some disadvantages. It lacks, for example, support
for a causal order analysis, which is obvious when using space/time views. By
using treemaps as a complementary view, it is possible to get the best of both
techniques. Another problem of treemaps (and space/time views) is that it lacks
topological information, which might be crucial when analyzing performance
behavior considering the network bandwidth limitations.

Next section details the second visualization technique based on hierarchical
graphs to offer a topological analysis of parallel applications behavior.

4.2 Hierarchical Graph View

The traditional timeline view is expected by most of users of high performance com-
puting, as can be observed by the number of visualization tools that implement it.
Although useful to show the causal order in program behavior, timeline views lack
topological information. Contrasting behavior with topological data is sometimes
crucial for the comprehension of application behavior, especially because it allows
to find the origin of contentions and better adapt the application to these constraints.
The hierarchical graph view, presented in this section, enables an analysis that
correlates all program behavior with a graph. The hierarchical aspect is used to
tackle the scalability issues of graphs. We detail here two basic aspects of the
hierarchical graph view: how temporal-aggregated metrics are mapped to the graph;
and how the spatial-aggregated data is used to achieve visualization scalability.

The mapping from the trace to the graph works as follows. All monitored entities
are mapped to nodes, while edges indicate a connection between two monitored
entities. Monitored entities can be physical components of the system (machines,
network links) but also the applications components (threads, processes). They are
differentiated in the representation through different geometric shapes, while their
attributes (size, color, filling) are mapped from the trace metrics associated to each
monitored entity. Generally, all geometric shapes and properties can be somehow
configured depending on trace metrics.

Figure 4 shows an example of six variables (two per resource) showing resource
availability (normal line) and consumption (dotted line) and three graph mappings
depending on the selected time intervals (A, B and C). Hosts are mapped to squares,
while links are mapped to diamonds. The size of the geometric forms are equivalent
to the time-integrated resource availability, while the filling comes from resource
consumption.
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Fig. 4 Mapping temporally-integrated trace metrics (left) to three graph representation (right)
depending on the selected time intervals, considering that hosts are mapped to squares, links to
diamonds

The spatial aggregation algorithm presented in Sect. 3 also influences how the
graph representation in our approach. Figure 5 shows an example that illustrates how
the spatial aggregation affects the representation. As before, hosts are represented
by squares filled by their utilization, links by diamonds, also filled according to
their utilization. We consider for this example that the time-slice is already fixed.
In the left of the figure, GroupA indicates the first neighborhood taken into account
during the first spatial aggregation. All data within this group is space aggregated
following the Eq. 1. The resulting representation is depicted in the center of the
figure, surrounded by the dashed gray line: it combines a square, representing all
hosts, and a diamond, representing all links (in this case there is only one). The
properties of these two geometric shapes are calculated according to the space-
aggregated values of the traces, considering all the entities within the group used to
do the aggregation. The example ends with a second spatial aggregation, considering
the whole GroupB, with all monitored entities. As of result, in the right of the figure,
there are only one square and one diamond representing all the hosts and all the links
of the initial representation.

Spatial aggregation as defined in Sect. 3 plays a major role in the scalability
of the hierarchical graph view. Graphs are by nature non-scalable, as we increase
the number of nodes, the harder it gets to analyze and understand patterns. The
possibility to interactively aggregate a portion of the graph, while keeping its general
behavior through the use of aggregated values, enables an analysis of large-scale
scenarios. Figure 6 shows an example of this change of spatial detail with the
Grid5000 platform and its network topology. Each graph node represents a machine,
and its size is equivalent to the computing power of the machine. The leftmost graph
depicts all the 2,170 computing nodes. Subsequent plots represent higher-level cuts
on the hierarchy defining aggregated graphs – in the cluster and site levels. The
rightmost graph represents the full aggregation considering the computing power of
all hosts (on its left) and the bandwidth of all network links (on its right).
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Fig. 5 Two spatial-aggregation operations and how they affect the topology-based representation

Fig. 6 Grid5000 network topology with 2,170 computing nodes, depicted in 4 different aggrega-
tion levels of the hierarchical graph view: resource capacity is used to draw the size of geometric
shapes

5 The Viva Visualization Tool

The VIVA3 visualization tool implements the multi-scale aggregation algorithm
(Sect. 3) and the two visualization techniques of the previous section. It is imple-
mented in CCC using the Qt libraries as user interface. The tool also uses the
PAJENG4 framework to deal with traces. This framework encloses all the basic
building blocks such as reading trace files, simulating their behavior and offering
access to trace data through the Paje protocol.

6 Conclusion

The performance visualization of traces might be a complex task because of the size
of parallel applications and the amount of detail collected for each process. Besides
dealing with the technical issues of large-scale traces, there is the problem of how
to keep a given visualization technique useful, capable of detecting performance

3Available at http://github.com/schnorr/viva/
4Available at http://github.com/schnorr/pajeng/

http://github.com/schnorr/viva/
http://github.com/schnorr/pajeng/
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problems, on scale. We have shown that if traces are represented without care, the
visualization might misguide the analysis.

This paper addresses the issue of visualizing more performance data than what
could fit on the available screen space. Instead of directly drawing the trace events,
our approach is to use a multi-scale data aggregation algorithm to transform raw
events into aggregated traces. These transformed traces are then visualized by two
visualization techniques especially tailored to handle aggregated data: the squarified
treemap and the hierarchical graph view. The squarified treemap view enables the
comparison of processes behavior by mapping per-process trace metrics to screen
space. The hierarchical graph view enables the correlation of application behavior
with the network topology by mapping trace metrics to geometrical attributes of a
graph representation. Both techniques can scale since they expect spatial-aggregated
data as input.

Relying on data aggregation is fundamental to scale the visualization techniques.
However, it also has some disadvantages. As defined in Sect. 3, our multi-scale
aggregation algorithm averages behavior in space and time dimensions. Depending
on the situation, this average might smooth or even completely hide a certain
behavior from the analysis. In addition, it is likely that space and time scales should
be linked – a zoom in/out in one dimension implicates a zoom in/out in the another
one – since it is meaningless to visualize the behavior of several thousands processes
in a 1-�s time interval. Currently, we transfer to the analyst the responsibility to
choose a space/time neighborhood in order to mitigate these issues.

Beyond this space/time rescaling issue, we can identify at least three other
interesting research topics. The first one is to revisit space/time representations (also
known as timeline views) to draw aggregated data instead of raw events, diminishing
the problems detailed on Sect. 2 and especially in Fig. 1. The second topic consists
in studying new aggregation techniques and operators that take into account the
uncertainty of events in the temporal dimension, in particular to deal with large-
scale scenarios and in the presence of time synchronization issues. And finally, since
aggregations smooth and may lead to potential loss of information, being able to
quantify such loss could be used to provide feedback to the analyst. This feedback
would indicate where particular attention is necessary due to aggressive aggregation.
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