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Abstract. Due to its importance, video segmentation has regained in-
terest recently. However, there is no common agreement about the neces-
sary ingredients for best performance. This work contributes a thorough
analysis of various within- and between-frame affinities suitable for video
segmentation. Our results show that a frame-based superpixel segmen-
tation combined with a few motion and appearance-based affinities are
sufficient to obtain good video segmentation performance. A second con-
tribution of the paper is the extension of [1] to include motion-cues,
which makes the algorithm globally aware of motion, thus improving
its performance for video sequences. Finally, we contribute an extension
of an established image segmentation benchmark [1] to videos, allowing
coarse-to-fine video segmentations and multiple human annotations. Our
results are tested on BMDS [2], and compared to existing methods.

1 Introduction

Segmentation is a fundamental problem in computer vision with many appli-
cations such as action recognition, 3D reconstruction, or video indexing. Many
powerful image segmentation (IS) methods exist (e.g. [3–9]) and there is common
agreement to use multiple similarities based on brightness, color and texture over
local image patches to achieve best image segmentation performance.

Video segmentation (VS) is far less researched due to its computational com-
plexity and the inherent difficulties such as camera-motion, occlusions, changes
in scale, perspective, illumination and contrast, or non-rigid deformations. Intu-
itively, besides within-frame similarities used for image segmentation, VS should
also use between-frame similarities to connect and thus segment corresponding
regions across multiple frames. While recent work on VS proposes a variety of
such between-frame similarities [2, 10–13] there is no common agreement yet on
which similarities are necessary for best performance.

The main contribution of the present work is thus a systematic analysis of
different between- and within-frame similarities in a unified framework. Similar-
ities are novel terms or derived from other VS methods. The major result of the
analysis is to identify the most powerful similarities that in combination achieve
best performance. We further contribute an extension to a hierarchical image
segmentation (HIS) [1] including motion cues, which improves significantly its
performance for video-segmentation. Finally, we extend an established IS bench-
mark [1] to evaluate coarse-to-fine VS results on multiple human annotations.
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Fig. 1. (Top row) Proposed video segmentation model: we extract superpixels (b)
with a novel motion-aware hierarchical image segmentation algorithm (MAHIS); we
systematically analyze affinity matrices (c) based on novel and existing within- and
between-frame superpixel similarities, and employ a spectral clustering framework to
provide the final video segmentation (d). (Second row) The proposed MAHIS includes
motion (e) and generates Ultrametric Contour Maps (f) which outperform the state-
of-the-art (g) [1]. Note the ability of our video segmentation algorithm (d) to overcome
the problems that standard image segmentation has for the right part of the image (h).

2 Related Work

A large body of literature on VS exists leveraging on appearance [11, 14–16], mo-
tion [2, 3, 12], or a combination of cues [10, 13, 17–23]. A variety of techniques is
used, e.g. generative layered models [19, 20], graph-based models [15], mean-shift
[17, 21], and techniques based on manifold-embedding and eigendecomposition,
such as ISOMAP [12] and spectral clustering [2, 3]. Layered models [19, 20]
have shown potential in learning general object motion and appearance, but are
limited by their computational load. On the other hand graph-based [15] and
meanshift techniques [21] may generalize to video sequences of arbitrary sizes,
as they are based on local properties. We have chosen spectral clustering for our
framework as it provides globally optimal solutions.

Recent works on VS have employed point trajectories [2], improving on the
corresponding point track clustering literature [24, 25], and dense solutions are
obtained with densification by non-linear diffusion [23] and graph-based methods
[16]. Here we consider the dense video volume, arguing that sparse tracks do not
capture the spatial cohesiveness of objects, as also maintained in [14].

Similarly to [11–13], we employ superpixels, which provide a desirable compu-
tational reduction and powerful within-frame representation. [11–13] extract re-
gion trajectories and provide video segmentations by respectively labelling them,
in a CRF and ISOMAP framework. By contrast, we encompass an analysis of the
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between-frame affinities which they use. Our results are useful to improve the qual-
ity of their region trajectories.

Other work exists which extends the HIS of [1] to include motion cues. Most
notably [26] evaluates frame differences and optical flow among multiple frames
and applies twice the machinery of [1], outperforming [1] for occlusion bound-
ary detection. Our extension to [1] is straightforward and provides significant
improvements for VS, which motivates further research on the topic.

3 Framework

Many segmentation approaches exist that could serve as a general framework
for our analysis of different within- and between-frame similarities for video seg-
mentation. For the purpose of the paper we have opted to use spectral clustering
[3, 27] given its long tradition and state-of-art performance in a number of areas
including image [1] and video object segmentation [2, 12]. The mathematical
theory is well understood, and the general framework is well established since
the pioneering work on normalized cuts [3].

The algorithm is based on an affinity matrix W formed of pair-wise similarity
scores wi,j between data elements i and j. For image segmentation these data
elements are often the image pixels themselves [1, 3] or for video object segmen-
tation these elements might be point trajectories [2, 12]. While W is quadratic in
the number of elements, it is typically sparse as only a local spatial(-temporal)
neighborhood is considered, making the approach computationally viable.

The affinity matrix W is employed to embed the data elements onto a mani-
fold, by eigendecomposing the normalized graph Laplacian L:

L = D− 1
2 (D −W )D− 1

2 = V TΛV (1)

where D is a diagonal matrix with entries di,i =
∑

j wi,j , matrix V contains the
eigenvectors, and the diagonal matrix Λ contains the eigenvalues. The mapping
into the manifold is given by taking the eigenvectors {v0, v1, . . . , vm} corre-
sponding to the m + 1 smallest eigenvalues 0 = λ0 < λ1 < . . . , < λm+1 (as
λ0 = 0, v0 is constant and can be discarded). Partitioning or segmentation of
the data elements can be obtained with standard clustering schemes.

This method is well suited to analyze the contribution of different within- and
between-frame affinities by simply defining entries of the affinity matrix W using
single or a combination of affinities. Here we employ the above approach twice in
a two-step framework. The first step results in a motion-aware hierarchical image
segmentation (MAHIS) from which we obtain superpixels for the second step.
This step uses pixel-based affinities that are calculated both from brightness,
color, and texture [1], as well as from optical flow (see sec. 4).

The second step is superpixel-based and uses a variety of within- and between-
frame affinities (see sec. 5) to obtain the video segmentation result. The moti-
vation to use superpixels for video-segmentation is two-fold. First, a drastic
reduction of the computational complexity is achieved since the number of data-
elements to be considered is lowered by two orders of magnitude. And second,
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Fig. 2. (a,b) Two foreground objects move on a background with the same texture.
None of the brightness, color and texture cues from the HIS algorithm of [1] detects the
objects (c), which our motion cue (d) clearly identifies. Our proposed MAHIS provides
the correct boundaries for the objects (e).

we can define richer and more powerful between-frame affinities than would be
possible with pixel-based affinities alone.

Sec. 4 describes our motion-aware hierarchical image segmentation approach,
sec. 5 the different between-frame affinities, and sec. 6 evaluated different com-
binations of those affinities in the context of video segmentation.

4 Motion-Aware Superpixels

Image segmentation is inherently ambiguous. In the frame shown in fig. 1(a),
the jacket has a similar color as the background, clearly distinct from the skin
and the shirt. Illumination and contrast help recover the true contours on the
left contour of the body, but not the right contour. In fig. 1(g) the output of the
image segmentation algorithm of [1] illustrates this expected result, also clear in
the corresponding image segmentation in figure 1(h). On the other hand, the rich
texture of the wood allows to accurately estimate optical flow, fig. 1(e), especially
on the right side of the person, which perfectly complements appearance. By
integrating our proposed motion cue into the algorithm of [1], we recover more
respondent boundaries, fig. 1(f), and therefore superpixels.

Please note that not only the boundaries are better weighted, but the motion
cue detects further boundaries in the image, as depicted in fig. 2 for a toy ex-
ample. This further ensures that superpixels are conservatively representing the
video without merging objects. On the other hand, the motion cue is zero for
the static parts of the scene and the output is the same as from [1]. Here we
describe our proposed MAHIS and validate it experimentally against [1].

4.1 Motion-Aware Hierarchical Image Segmentation

Optical flow has reached satisfactory maturity and suits the task of detect-
ing motion. We use the dense optical flow algorithm of [28]. For each frame,
horizontal U(x, y) and vertical V (x, y) optical flow components are composed
by averaging the respective forward U+ V + and backward U− V − estimates.
The single-frame-averages smooth the flow and reduce the effect of outliers. A
gradient is then computed for U(x, y) and V (x, y) with the histogram-based
gradient operator, employed in [1] for the brightness BG, color CG and tex-
ture TG gradients. In particular, for both U(x, y) and V (x, y), we compute
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Table 1. Our proposed image and video benchmark is used to compare our proposed
VS and MAHIS against the HIS of [1] and the VS of [15] on BMDS [2]. All measures
range [0, 1], higher is better; only VI ranges [0,∞), lower is better. (First part) Our
proposed MAHIS outperforms HIS on most metrics, most notably on boundary scores.
This clearly identifies MAHIS as the better candidate to extract superpixels for VS.
(Second part) Our VS outperforms HIS and MAHIS. STT+LTT+STM+STA is iden-
tified as the minimal best set of affinities, in agreement with fig. 4. (Third part) Our
proposed VS outperforms [15] on all fronts by large margins.

Boundary Region

SC PRI VI

ODS OSS AP ODS OSS Best ODS OSS ODS OSS

HIS of [1] 0.30 0.37 0.18 0.75 0.79 0.82 0.70 0.79 0.75 0.72

Proposed MAHIS 0.35 0.43 0.23 0.74 0.81 0.84 0.69 0.82 0.76 0.67

VS: All 0.35 0.41 0.22 0.80 0.85 0.87 0.78 0.86 0.71 0.56

VS: ABA+LTT 0.23 0.28 0.13 0.74 0.77 0.81 0.72 0.78 0.71 0.71

VS: ABM+LTT 0.21 0.25 0.11 0.74 0.76 0.80 0.72 0.77 0.71 0.71

VS: STT 0.16 0.20 0.08 0.74 0.75 0.78 0.72 0.75 0.71 0.70

VS: STT+LTT 0.20 0.24 0.12 0.74 0.76 0.79 0.72 0.77 0.71 0.71

VS: STM 0.32 0.33 0.22 0.74 0.76 0.78 0.72 0.78 0.71 0.69

VS: STA 0.19 0.25 0.11 0.74 0.75 0.76 0.72 0.75 0.71 0.71

VS: STT+LTT+STM 0.30 0.35 0.19 0.76 0.82 0.85 0.75 0.83 0.71 0.60

VS: STT+LTT+STM+STA 0.35 0.40 0.22 0.80 0.85 0.87 0.78 0.86 0.71 0.56

VS: All-ABA 0.35 0.41 0.22 0.80 0.85 0.87 0.78 0.86 0.71 0.56

VS: All-ABM 0.35 0.40 0.22 0.80 0.85 0.87 0.77 0.86 0.71 0.57

VS: All-STT 0.32 0.39 0.21 0.74 0.82 0.85 0.73 0.83 0.71 0.65

VS: All-LTT 0.30 0.33 0.19 0.74 0.78 0.79 0.72 0.80 0.71 0.67

VS: All-STM 0.24 0.29 0.13 0.74 0.76 0.80 0.72 0.77 0.71 0.70

VS: All-STA 0.31 0.36 0.19 0.76 0.82 0.86 0.75 0.83 0.71 0.60

Our VS 0.35 0.41 0.22 0.80 0.85 0.87 0.78 0.86 0.71 0.56

VS of [15] 0.20 0.23 0.10 0.74 0.76 0.78 0.72 0.76 0.71 0.71

the gradients ΔρU(x, y, θ) and ΔρV (x, y, θ) along 8 orientations θ ∈ (0, π] and
3 scale octaves ρ (same parameters as [1]). Finally the flow gradient FG, for
each orientation θ and scale ρ sample, is given by the respective squared sums

FGρ(x, y, θ) =
[
Δ2

ρU(x, y, θ) +Δ2
ρV (x, y, θ)

]− 1
2 .

The new FG is then considered an additional channel, alongside BG, CG and
TG, passed by the boundary detector to the spectral partitioning process, and
finally to the OWT-UCM machinery which produces the hierarchical segmenta-
tion, following the pipeline and setup of [1]. The superpixels are conservatively
extracted from the finest (over-)segmentation provided.

4.2 Experimental Evaluation

Our proposed MAHIS directly addresses the hierarchical image segmentation
of video frames. For single images, or static frames, MAHIS provides identical
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result as the HIS of [1]. We thus test MAHIS on a video dataset including camera
and object motion. Recently, [2] has provided the Berkeley motion segmentation
dataset (BMDS), with 26 video sequences. The dataset includes persons, cars and
other objects, and various degrees of motion. Our proposed MAHIS is evaluated
against HIS of [1] at the provided ground truth frames.

We use the established evaluation metrics for HIS, for which benchmark code is
publicly available [1]. The evaluation considers both boundaries and regions. The
former are benchmarked using precision-recall. The latter are evaluated with three
metrics: segmentation covering (SC) the degree of overlap between the ground
truth and the machine segmentation; probabilistic rand index (PRI) the fraction
of pairs of pixels consistently labelled; variation of information (VI) the distance
between segmentations in term of mutual information and conditional entropy.
For all metrics the optimal dataset scale (ODS) and optimal segmentation scale
(OSS - namely OIS in [1]) are reported: best aggregated performance over the
dataset for a fixed scale and for the best scale for each segmentation. Additionally
the benchmark reports average precision (AP) for boundaries and Best for region
SC, i.e. best selection of segments across scales.

Table 1(first part) illustrates the results: our proposed MAHIS outperforms
[1] on most metrics. An improvement on the region metrics is desirable when
extracting superpixels so as not to span multiple objects. An improvement in
the boundary metric is also desirable so that superpixels on different objects are
better separated. Most notably, the boundary ODS and OIS score outperform
[1] by about 17%, our AP improves by 28%. These results clearly shows the
potential of our proposed MAHIS for the extraction of superpixels for VS.

5 Superpixel Affinities for Video Segmentation

As discussed in sec. 3 the first step of our method extracts superpixels (sec. 4) and
the second step uses within- and between-frame superpixel affinities to derive the
final video segmentation result. This section motivates and introduces various
affinities that are analyzed in sec. 6 alone and in combination.

There are two major dimensions that we explore in this paper to define affini-
ties. The first dimension is the type of information used to calculate affinities. We
use appearance (based e.g. on color, brightness, and texture) as well as motion
and spatial overlap of superpixels in successive frames. The second dimension is
time or the number of frames considered to calculate affinities. Besides within
a single frame, one can also use affinities calculated across neighboring frames
or even across a potentially large number of frames. Intuitively, affinities con-
necting superpixels across many frames may enable good video segmentation
performance. However, in general, affinity matrices should be sparse to allow
computationally viable eigendecompositions of the graph Laplacian.

Fig. 3 illustrates samples for four of the six affinity matrices introduced below.
Superpixels are ordered with an increasing index, according to their top-down
left-right position in the frame and to their frame. Dashed lines delineate the
frame partitioning. Terms on the block diagonal correspond to within-frame
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(a) STT (b) LTT (c) ABM (d) STM

Fig. 3. Affinity matrices for 5 frames of sequence Marple1. Non-zero terms are colored
blue to red. Note the different structure and sparsity of the affinity matrices. Affinity
ABA has a similar structure as ABM and STA has a similar structure as STM.

affinities (e.g. ABM, fig. 3(c)) and terms off the block-diagonal correspond to
between-frame affinities (e.g. STT and LTT, fig. 3(a,b)). In the following, affin-
ity terms are grouped into three categories: between-frame, within-frame, and
combined between- and within-frame affinities.

5.1 Between-Frame Affinities

The first two affinities measure the spatial overlap of superpixels in different
frames. The first measure – STT – is taken from [12] that used it in the context
of video-object segmentation. As STT is restricted to neighboring frames we
define a new overlap term building on long-term point-trajectories [29].

Short-Term-Temporal Affinity – STT. [12] measures the similarity of su-
perpixels by propagating the binary support mask of a superpixel with optical
flow to neighboring frames and measuring their overlap by the Dice measure.
Given superpixel pif at frame f with binary mask mpi

f
, and superpixel pjf ′ at

frame f ′ = f ± 1, 2 with mask mpj

f′
, the STT affinity score wstt

pi
f ,p

j

f′
is given by:

wstt
pi
f ,p

j

f′
=

2|mf ′

pi
f

∩mpj

f′
|

|mf ′
pi
f

|+ |mpj

f′
| (2)

where mf ′

pi
f

indicates the propagated mask of superpixel pif to frame f ′.

Long-Term-Temporal Affinity – LTT. In order to calculate superpixel affini-
ties across many frames that are potentially hundreds of frames apart we leverage
on the recently introduced long-term point trajectories of [29]. Let Φpi

f
⊆ Υ =

{T i}Qi=1 be a subset of all trajectories, containing those trajectories T i intersect-
ing superpixel pif . We define the LTT affinity score wltt between superpixels pif
and pjf ′ , f ′ = f + N,N �= 0 to be the Dice coefficient between the intersection
sets Φpi

f
and Φpj

f′
of the superpixels:

wltt
pi
f ,p

j

f′
=

2|Φpi
f
∩ Φpj

f′
|

|Φpi
f
|+ |Φpj

f′
| (3)
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Figs. 3(a,b) illustrate the LTT and STT affinities. While both measure spatial
overlap of superpixels there are two major differences. By design, LTT allows
to calculate affinities between frames that can be hundreds of frames apart,
due to the long-term nature of the point trajectories. However, since not all
superpixels contain point trajectories, the LTT affinity matrix is much sparser
than the STT matrix, although this only calculates affinities between superpixels
in neighboring frames (in practice ±2 frames are used).

5.2 Within- and Between-Frame Affinities

One way to measure similarities between pixels across frames are spatiotemporal
affinities based on appearance and/or motion [3, 17]. In order to overcome the
computational complexity related to measuring pixel-affinities, [11] proposed to
measure spatiotemporal affinities between superpixels instead. The first measure
defined below – STA – is directly related to [11] and measures the appearance
affinity. The second term – STM – focuses on the motion affinity of superpixels.

Spatio-Temporal-Appearance Affinity – STA. To score the appearance
affinity we use the median brightness and color Labpi

f
of a superpixel pif using

CIE Lab color space. The STA affinity between pairs of superpixels pif and pjf ′ in
a spatiotemporal neighborhood (±1 frame, 2-layered neighborhood) is therefore:

wsta
pi
f ,p

j

f′
= exp

{
−λsta||Labpi

f
− Labpj

f′
||
}

(4)

The affinity is inspired by [11]. More elaborate extensions use the χ2 distance
between appearance histograms for video segmentation [15, 16].

Spatio-Temporal-Motion Affinity – STM. This term calculates affinities
based on motion to allow grouping of superpixels of the same moving objects.
Given the median optical flow upi

f
of a superpixel pif the STM affinities wstm

are calculated between superpixels pif and pjf ′ in a spatio-temporal neighborhood
(±1 frames, 2-layered neighborhood) as:

wstm
pi
f ,p

j

f′
= exp

{
−λstm||upi

f
− upj

f′
||2

}
(5)

The STM affinity has been employed in numerous works for video segmentation
[3], or in combination with an STA affinity [17]. These works use STM affinities
between pixels, here we use it for superpixels.

5.3 Within-Frame Affinities

The terms defined here are complementary to STA and STM in the sense that
they focus on the local similarities near the common boundary between super-
pixels rather than the median appearance and motion of the superpixels. The
appearance based term – ABA – directly uses the contour maps of our MAHIS
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(sec. 4). The motion based term – ABM – is one of two terms used for occlusion
boundary detection in [26].

Across-Boundary-Appearance Affinity – ABA. Motivated by the success
of the HIS-algorithm [1] for hierarchical segmentation we propose to measure
appearance affinity using our improved MAHIS algorithm. We define the affinity
waba between pairs of neighboring superpixels pif and pjf as the average value vijf
of the ultrametric contour map (see fig. 1 for a ultrametric contour map) along
the common boundary of the superpixels:

waba
pi
f ,p

j
f

= vijf (6)

Across-Boundary-Motion Affinity – ABM. While STM measures the sim-
ilarity of the median motion of two superpixels, ABM measures the local simi-
larity of motion along the common boundary of two superpixels. This measure
allows to connect superpixels e.g. in the case of non-rigid motions where the
median motion of the superpixels can be quite different but the motion on both
sides of the common boundary between superpixels might be similar. We consider
uf (x), a dense optical flow field [28], locally median filtered (first temporally (±2
frames), then spatially (3 px radius within the superpixel)). Given Ψ ij

f the set of

pixel pairs on opposite sides across the common boundary between pif and pjf ,

the ABM affinity wabm is defined as:

wabm
pi
f ,p

j
f

= exp

⎧
⎨

⎩
−λabm

∑
(xm

i ,xm
j )∈Ψ ij

f
||uf (xm

i )− uf (xm
j )||2

|Ψ ij
f |

⎫
⎬

⎭
(7)

The ABM affinity has been proposed for occlusion boundary detection in [26],
in combination with an affinity similar to ABA.

6 Experimental Validation

The VS literature does not yet provide a common benchmark or evaluation
metric that is agreed upon and widely used such as the Berkeley image segmen-
tation benchmark. Some work [15] only provide a qualitative evaluation, others
introduce datasets and metrics [2, 11, 12], but few compare on a common dataset
[2, 12, 23]. Here we use BMDS [2] (see also sec. 4.2), because it is a publicly avail-
able, of reasonable complexity and various papers show results for this dataset
[2, 12, 23]. Following [11, 12], we perform dense clustering of the video sequences,
and restrict the sequences to the first 100 frames. For each setting, we vary the
number of clusters, in the range [1,600]. We assign each video segment to a
ground truth label based on maximal region overlap, and score performance by
global and average (over each ground truth frame) per-pixel labeling error, i.e.
fraction of misclassified pixels. Note that the global per-pixel error is dominated
by the large segments in the scene (often the background) and that the average
error weights all ground-truth segments equally.
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Fig. 4. (a) Global and (b) average error curves comparing All combined affinities
against the individual terms; (c) global and (d) average error curves comparing All
against All minus one term. Please note the different scaling of the y-axis for (a,c).
Curves are evaluated on BMDS [2]. We conclude from (c,d) that LTT and STM are most
contributing to the VS performance and that the combination STT+LTT+STM+STA
(green curve) equals the performance of All (cyan).

Fig. 4 presents the results: first we evaluate the performance of individual
affinities to identify those contributing the most to VS, and then we aim to
determine the minimal set providing best overall performance. The first two
plots illustrate the performances of individual affinities and compare them to
the overall best performance when using all affinities. Since ABA and ABM
are within-frame affinities only we pair them with LTT to analyze their ‘indi-
vidual’ performance, since LTT relates some superpixels only, it is paired with
STT. Overall, the lowest error is obtained by all combined affinities (All, cyan,
fig. 4(a,b)). As for the average error (fig. 4(b)), STM (blue) is the single best, fol-
lowed by ABA+LTT (green) and ABM+LTT (yellow). STT+LTT (black) and
STT (red) are slightly worse and the weakest affinity is STA (magenta). The
ordering is nearly identical for the global error (fig. 4(a)) with the exception of
ABA+LTT being best (green) and STM being one of the weaker overall (blue).
While it can be concluded that STA does not perform well, none of the other
affinities stands out to be better than any other.

The second two plots in fig. 4 reveal more insights into which of the affinities
are essential to obtain the overall best performance when combined. For this
we compare the performance of All (cyan) when taking out individual affini-
ties, namely STM (All-STM, blue), LTT (All-LTT, black), STT (All-STT, red)
and STA (All-STA, magenta). Note the significant drop in performance for the
first two, All-STM(blue) and All-LTT(black), both for the global (fig. 4(c))
and the average error (fig. 4(d)). A less significant drop is observed for All-
STT(red) and All-STA(magenta), while the performance is not altered when
taking out the boundary affinities ABM and ABA (not reported due to space
constraints). The performance of STT+LTT+STM+STA(yellow) nearly super-
poses All(cyan), therefore barely visible, while the performance drops slightly
for STT+LTT+STM(green). Boundary terms surprisingly do not improve per-
formance for VS, while they turned out useful to improve HIS [26].

These quantitative results are supported by qualitative results. Fig. 5 illustrates
segmentation results when extracting 10 objects (i.e. clusters) from the video se-
quences Cars6 and People1. It shows (column-wise) All terms, the minimal best
set STT+LTT+STM+STA, the temporal terms STT+LTT, the individual best
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All STT+LTT+STM+STA STT+LTT STM STA

Fig. 5. 10-cluster video segmentations extracted from the video sequences Cars6 (top
two rows) and People1 (bottom two rows). STT+LTT+STM+STA provides the same
qualitative result as All affinities. STT+LTT: please note the “drag” effects generated
by the imprecise optical flow at the contours of the moving objects. STM: the affinity
gets more effective where the motion is larger, which makes STM the perfect comple-
ment to STT+LTT. STA: clusters are denoted by strong color differences. Although
performing poorly, the term supplements the three motion affinities effectively.

performer STM, and the appearance term STA. As expected from the error met-
ric All and STT+LTT+STM+STA provide the same qualitative results (while
the random colors are different, the segmentation results are nearly identical).
Temporal terms STT+LTT successfully track the image parts but suffer from
“drag” effects in cases of large motion and imprecise optical flow. By contrast,
STM addresses the moving objects, and employs the 10 object “allowance” to
neatly segment them from the background. The appearance term STA segments
the scene according to the strongest color differences. As from the numerical re-
sults, STT+LTT and STM are complementary motion terms, which are supple-
mented by STA, although the latter alone has a poor segmentation performance.

Finally, fig. 6 illustrates the use of our algorithm to extract a minimal number
of clusters, as for obtaining object cut-outs. The figure also discusses some typical
failure cases.

Next we discuss how we might obtain a commonly agreed upon evaluation
metric. We believe that a cause for the lack of an established evaluation metric
is mainly twofold: i) no standard format is given to write a segmentation output,
i.e. the benchmark of [2] requires a conversion of the labelled video into point
trajectories for evaluation; ii) the aspects of coarse-to-fine and over-segmentation
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Cars3 (3C) Cars3 (3C) Cars4 (2C) Cars4 (2C) Marple3 (5C)

Marple4 (4C) Marple4 (4C) Tennis (2C) Marple9 (6C) Marple11 (20C)

Fig. 6. Video segmentations provided with a minimal number of clusters (C). The al-
gorithm successfully segments objects in the first five examples. Marple9 and Marple11
are failure cases. Marple9: the right actress moves little, so it is wrongly segmented
due to the misleading appearance differences; the left actress, also minimally moving,
rotates the head but the motion is too small. Marple11: the person is not segmented
even with 20 clusters, as he does not move and the scene boundaries are prevalent.

are not clearly addressed, i.e. the “right” video segmentation and number of
clusters usually depends on the task, and may vary for the same video sequence.

These problems however have already been addressed for HIS [1], so that
we propose to extend those established metrics to VS. We employ the same
metrics as described in sec. 4.2, namely precision-recall for boundaries and SC,
PRI and VI for regions, aggregating performance optimally for a fixed dataset
scale (ODS) and for the best (video) segmentation scale (OSS). The extended
benchmark uses video (spatio-temporal) segments, which it evaluates against
all the ground truth frames altogether over the video sequence, thus addressing
temporal consistency. The benchmark allows for evaluating coarse-to-fine VS on
multiple ground truths, as for evaluating more general VS, without a specific
defined task. We define the coarse-to-fine VS levels by varying the number of
clusters in the range [1,600].

We evaluate the extended benchmark metrics on all BMDS videos, and report
the results in table 1(second part) for the same setups of affinities as in fig. 4.
These results confirm most findings of fig. 4: ABA+LTT and ABM+LTT are sin-
gle best performers for the region evaluation, while the single best boundaries are
provided by STM. On both boundary and region metrics, STT+LTT+STM+STA
provides the same performance as All, while removing ABA and ABM from
All does not alter performance. Interestingly, the best VS results (VS:All and
VS:STT+LTT+STM+STA) are comparable to the best IS (MAHIS) on bound-
ary metrics but neatly superior on region metrics, notwithstanding the additional
temporal consistency constraint. This confirms the importance to consider seg-
mentation as a spatio-temporal problem.

In table 1(third part), we also compare our VS with the algorithm of [15] (as
implemented by [30]), which we outperform by ∼12% on regions and ∼80% on
boundaries.



772 F. Galasso, R. Cipolla, and B. Schiele

Table 2. Comparison with [2] on BMDS according to the benchmark of [2]. Both our
10-cluster (k=10) and 20-cluster (k=20) video segmentations are comparable in error
to [2]. Notably we provide 100% density.

Density Overall error Average error Over-segmentation Extracted objects

Our VS (k=10) 100 9.92 16.52 6.77 17

Our VS (k=20) 100 5.84 15.20 16.27 18

Method of [2] 3.30 3.93 23.83 0.92 29

On a final note, we also evaluate our VS against [2] on BMDS employing
their evaluation metric. Our average error is much lower although segmenting
all pixels (density) rather than just a fraction; the number of extracted objects
and overall errors are worse, although better for a larger number of clusters; the
over-segmentation index is approximately fixed, given the number of clusters.

7 Conclusion and Future Work

We have proposed a model for unsupervised video segmentation based on clus-
tering superpixels. We have analyzed a variety of affinities in isolation and in
combination and have identified a minimal set that obtains best performance.
While the use of superpixels necessarily results in an approximation we have
shown that powerful affinity scores can be defined based on them and that good
video segmentation performance can be obtained. A second contribution of the
paper is the motion aware hierarchical image segmentation algorithm that is a di-
rect extension of [1] to also include motion features improving their approach for
image sequences. Finally, we have extended an established image segmentation
benchmark to videos. We used it to evaluate our algorithm under different setups
and to compare with a state-of-the-art algorithm [15]. The extended benchmark
allows evaluating coarse-to-fine segmentations on multiple human ground truth
annotations, although these are not yet provided by any video dataset.
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