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Abstract. In many problems of machine learning and computer vision,
there exists side information, i.e., information contained in the training
data and not available in the testing phase. This motivates the recent de-
velopment of a new learning approach known as learning with side infor-
mation that aims to incorporate side information for improved learning
algorithms. In this work, we describe a new training method of boost-
ing classifiers that uses side information, which we term as AdaBoost+.
In particular, AdaBoost+ employs a novel classification label imputation
method to construct extra weak classifiers from the available information
that simulate the performance of better weak classifiers obtained from
the features in side information. We apply our method to two problems,
namely handwritten digit recognition and facial expression recognition
from low resolution images, where it demonstrates its effectiveness in
classification performance.

1 Introduction

Classification plays a central role in the solutions of many computer vision prob-
lems. A classifier is a parametric function that takes input x ∈ Rd and predicts
its class label y ∈ {0, 1, · · · , C}. The conventional approach to obtain a classi-
fier is with supervised learning that uses a training set of data (x1, · · · ,xN ) and
their corresponding class labels (y1, · · · , yN ). The semi-supervised learning ap-
proach [6] relaxes on the requirement of a fully labelled training set, and can be
used to learn a classifier with a mixture of labelled and unlabelled training data.

However, in many practical applications, there may be extra sources of in-
formation other than the training data and class labels, and to which we only
have access when training the classifier. For instance, in face recognition, besides
images of faces and their corresponding subjects’ identities, we can have other
information in training, such as the age, gender, skin color, etc. In this work, we
call such features as side information, and correspondingly, we call features that
are present in both training and testing as available information.

Side information arises because some aspects of a classification problem cannot
be specified via the class labels and the training data1. Therefore, it should be

1 In the most general sense, labels of the training set can also be regarded as side
information.
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Fig. 1. Graphical illustrations of settings of different learning paradigms

differentiated from missing features, which are subsets of composing categories
of data that are unavailable in the testing and/or training sets [24,1,14,27,10].
More importantly, typical techniques addressing missing features such as data
imputation, where the missing features are replaced with their predictions from
the available information, may not be used to handle side information. Predicting
side information could be a more difficult task than directly learning the classifier
from available information, as in the cases when side information corresponds to
more complex and higher dimensional features. On the other hand, predicting
side information may not be of particular relevance to the classification task,
which could be regarded as unnecessary and wasteful in practical applications.

Incorporating side information into the construction of the classifier may be
beneficial because it provides alternative means for the system designer to input
more prior knowledge into the learned classifier. Yet, because side information
is not present when the classifier is deployed to classify a previously unseen da-
tum, it has been largely ignored in the current practice of automatic learning
of classifiers. This motivates the recent development of a new learning approach
known as learning with side information (also known as learning with privileged
information) [33,32,25]. The general idea of learning with side information is to
use a hypothetical classifier built with available and side information together
as an oracle of performance upper-bound to guild the training of the classifier
using only available information. Recent results in learning theory [21,25] have
suggested that using side information can improve the learning rate in the train-
ing of the classifier, and may be particularly useful when the training data set is
relatively small. In practice, learning with side information has shown promising
performance gain when it is incorporated in the training of the SVM classifiers
(an algorithm known as SVM+) and applied to handwritten digit recognition,
time series prediction, and protein classification [33,32]. Learning with side infor-
mation can also find abundant applications in computer vision. For instance, to
obtain an effective classifier that can recognize faces in low resolution still images
from surveillance cameras, we can use high resolution images (e.g., mug-shots)
or video clips as side information.

Here, we explore the potential of combining side information to improve
boosting classifiers, which we call AdaBoost+. Boosting has been widely used
in many computer vision problems (such as face or expression recognition), be-
cause it is constructed from simple base classifiers, e.g. decision stumps or linear
cuts, which facilitates extracting interpretable rules from the decision boundary.
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In particular, AdaBoost+ does not attempt to impute the side information with
available information, which as we have mentioned, could lead to a more diffi-
cult problem. Instead, it uses classification label imputation to construct extra
weak classifiers from the available information that simulate the performance
of better weak classifiers obtained from features in side information. We apply
AdaBoost+ to two problems, namely handwritten digit recognition and facial
expression recognition from low resolution images, where it demonstrates its
effectiveness in classification performance.

2 Related Works

In machine learning, side information has been employed in the context of un-
supervised learning, in particular, in distance metric learning [34], constrained
clustering [4] and similarity kernel learning [17]. In the unsupervised learning
context, the side information is usually cast in the form of pairwise constraints,
while few work discusses using side information in the form of extra features.

In comparison, there are fewer works discussing the use of side information
for supervised learning. The recent work of Vapnik [33,25] has shown that a
learning algorithm trained with the help of both side information (SVM+), as
well as the available information, provides improved performance over a machine
trained only on the available information (SVM). In the SVM+ algorithm, side
information is used to predict the optimal slack variables in the SVM objective
function. In statistical analysis, missing features usually cause biased estima-
tion of statistics or model parameters. To improve the estimation, we can either
delete the examples with missing features (list-wise deletion, pairwise deletion)
or impute the missing features [24,13,27] (regression imputation, hot deck impu-
tation, multiple imputation and EM). A few works focusing on the problem of
missing features only in testing data set [14,10,27]. In particular, if the missing
feature indices are known, it shows that simply imputing the missing features
will give an even worse result than using only the observed features [27]. Our
work demonstrates that an improved performance can be achieved by using the
missing feature in testing as side-information in the training phase.

In computer vision, the attribute-based object recognition [11,18] uses dis-
crete attribute as side information. These attributes are semantic visual quali-
ties of objects, such as ‘red’, ‘striped’, ‘wood’, etc. Most of the attribute-based
methods are similar to imputation, i.e., the missing attributes in the testing
data is imputed by attribute classifiers. These methods are different from our
work in two significant ways. First, they only focus on low-dimensional discrete
attribute labels, while our work is applicable to more general types of side in-
formation including discrete labels (Sec. 5.1), high-dimensional continuous data
(Sec. 5.2), time series data or 3D structure of proteins [33]. Second, they use
the attributes as mid-level features and have to learn attribute classifiers, which
may or may not be relevant to the actual classification task. In contrast, we use
side-information as extra relevant information with an explicit goal of improving
the final classification performance.
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There are some prior works on boosting with side information [36] for medi-
cal applications where the side information is the actual domain knowledge of a
particular application, rather than the data in our work. Side information is also
different from the prior work using ‘side’ data [29,7], which performs unsuper-
vised learning using a data set with relative information and an auxiliary ‘side’
data set with irrelevant information. The irrelative information in the ‘side’ data
is minimized in learning.

3 Side Information and Classification Performance

We start with a simple analysis on the relationship between side information
and classification performance. For simplicity, we consider binary classification,
and a classifier is defined as f(x̃) : X �→ {−1,+1}, which maps data to the
binary class x̃ ∈ X to the corresponding binary class labels. The optimal per-
formance of a binary classification problem is lower bounded by the Bayesian
error, P (y �= f(x̃)|x̃) [5], which itself is lower bounded by the conditional en-
tropy H(y|x̃), a direct corollary of applying the Fano’s inequality [9]. In other
words, the probability of incorrectly predicting y based on information from x̃ is
constrained by the remaining uncertainty of H(y|x̃) about y when x̃ is known.
In this sense, H(y|x̃) provides a general metric of classification performance
independent of the particular choice of f .

Next, we consider data as a composite of the available information x and the
side information z, x̃ = (x, z). Then, we haveH(y|x, z) ≤ H(y|x), sinceH(y|x)−
H(y|x, z) = I(y, z|x), where the conditional mutual information I(y, z|x) is al-
ways non-negative [9]. Therefore, including side information may lead to the
reduction of the conditional uncertainty about the class label y given input
data, which could correspond to a lower Bayesian error. Furthermore, the opti-
mal classification performance when the side information is available in training
but withheld in testing is expected to be sandwiched between of the optimal per-
formances of the two other ideal classifiers, one constructed with only available
information and the other constructed with both available and side informa-
tion. In particular, when the performance gap between the two ideal classifiers
is significant, the latter can be used as an oracle to guide the training for more
effective use of the side information.

So far, our analysis only pertains to the ideal case when we have access to
the joint distribution of data and class labels, corresponding to an infinitely
large labelled training data set. When finite training data sets are used, recent
results in learning theory [21,25] show that under some fairly general conditions,
learning with side information can lead to provably faster learning rate (in some
cases, it gives rise to exponential improvement in the learning rates [21]), i.e.,
more reduction in classification error per additional training example. This makes
learning with side information particularly useful in classification problems with
high dimensional data and limited training data sets.
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Algorithm 1. Boosting with Side Information (Adaboost+)

input: N training samples of x̃i = (xi, zi) ∈ RD+E, with available information
{xi}i=1..N and side information {zi}i=1..N and class labels {yi}i=1..N .
output: Boosted classifier fT (x) =

∑T
t=1 α

tht(x)
Initialization: Set initial classifier : f0(x) = 0.
for t = 1 to T do

Using {x̃i}i=1..N as training data, build a Type-I classifier for each feature.
Select top K weak classifiers ht

I(x̃) and the corresponding αt that minimize the
training error, Eq.(1).
for k = 1 to K do

if ht
I(x̃) is built with a feature from side information then

Train a regressor Rt from available information to this weak classifier.
Build a Type-II weak classifier ht

II(x) on this regressor (Eq. 4).
Replace the original Type-I classifier with ht

II(x).
Update the corresponding αt (Eq. 3).
Update the corresponding training error.

else
Keep the original Type-I weak classifier ht

I(x) and its corresponding error.
end if

end for
Add the updated top one weak classifier into the final boosting classifier f t(x) =
f t−1(x) + αtht(x).

end for

4 Boosting with Side Information

In this section, we will describe our algorithm to incorporates side information
into an AdaBoost classifier, named AdaBoost+. The basic idea of boosting is
to produce a strong classifier by linearly combining a set of weak classifiers,
each may be learned from one single feature, in an iterative learning procedure.
During each iteration, one optimal weak classifier will be selected based on the
strong classifier up to the previous iteration, from one feature in the feature pool.
In particular, for our scenario of learning with side information, the feature pool
includes features from both available information and side information. In this
paper, we assume that during the iterative process, there is at least one weak
classifier learned from side information will be considered as optimal for a certain
iteration, comparing to all weak classifiers from available information.

If this assumption cannot be satisfied, i.e., the weak classifier from available
information always leads to a lower error rate on the training data than that
of the side information while combining with the existing strong classifier, our
method will be degenerated into the conventional AdaBoost. When this assump-
tion can be satisfied, we assert that there is a possibility for a boosted classifier
constructed with features from both available and side information to achieve
better classification performance than a classifier built with available informa-
tion alone. One simple reason for this assertion is that the particular feature of
side information chosen during the iteration may serve as an oracle to guide the
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boosting on how to use the available information more effectively. In our paper
such guidance is achieved by classification label imputation, which uses an aux-
iliary regressor from available information to simulate the binary classification
outputs of the weak classifier from side information.

4.1 Algorithm

Let us first introduce the basic notations in the subsequent description. The
training data set of the boosting classifier includes corresponding examples of
available information {xi}i=1..N and side information {zi}i=1..N , with binary
class labels {yi}i=1..N . Note that for ith training sample, its available informa-
tion, xi ∈ RD, and side information, zi ∈ RE can be from different feature
spaces. We also denote the complete training data by combining available infor-
mation and side information as: x̃i = (xi, zi) ∈ RD+E , where xi = (x1

i , ..., x
D
i )

and zi = (z1i , ..., z
E
i ), respectively. From the training data, our goal is to learn a

boosted strong classifier fT (x) =
∑T

t=1 α
tht(x).

This algorithm is summarized in Algorithm 1 and the algorithm diagram is
shown in Figure 2. As in the general framework of boosting, our algorithm starts
with an initial classifier f0(x) = 0. Then from the whole set of training data,
{x̃i}i=1..N , we learn a Type-I classifier, hI(x) = p·(sign)(xd−θ), for each feature
corresponding to available information and side information. Specifically, hI(x)
is a decision stump, where d is the index of the selected feature, θ is the threshold,
and p ∈ {+1,−1} is the polarity of the weak classifier. We then select the top
K weak classifiers ht

I(x̃) and their corresponding αt that minimize the training
error in Eq. 1.

E =

N∑

i=1

e
(
yi, f

t−1(xi) + αtht
I(x̃i)

)
, (1)

where e(·, ·) is the error function in comparing the class label with the classifier
output. The choice of function e(·) differs among different boosting algorithms,
and we adopt the one for Adaboost [12], which is given by:

e (yi, f(xi)) = exp(−yif(xi)). (2)

Given a weak classifier ht(x), its corresponding αt to minimize Eq. 1 is computed
as:

αt = 0.5 log
(
(1− εt)/εt

)
, (3)

where εt =
∑N

i=1 wi·[yi �=ht(xi)]∑
N
i=1 wi

is the weighted error of this classifier, and the

weight wi = exp(−yif
t−1(xi)) depends on the previous strong classifier.

In the second step of the training, if any one of the top K Type-I classifiers is
from side information, we replace it with a regressor from available information
that optimally match the binary outputs of that Type-I weak classifier. In actual
testing when side information is not available, such regressor can mimic the
effect of side information since the outputs of the Type-I weak classifier have
been approximated from this regressor. Specifically, for each one of top K Type-
I weak classifier that is from side information, we train an auxiliary regressor,
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Fig. 2. The algorithm diagram of boosting with side information (Adaboost+)

Rt(x) → ht
I(z), that uses available information to predict the binary output of

this weak classifier. Note that our method is different from using a regression
to predict all the features in side information from available information, which
is the typical practice of data imputation. In contract, we call our method as
classification label imputation, which is applicable to side information with much
higher dimensions than the available information (see the experiment in Sec. 5.2).
Based on the regressor’s output, we construct a Type-II weak classifier, which is
defined as:

hII(x) = p · (sign)[R(x)− θ]. (4)

In principle, any regression method can be used in our algorithm. Considering the
efficiency and effectiveness, we use the Gaussian Process Regression (GPR) [26]
in our experiment. GPR is a non-parametric regression which assumes the regres-
sion function following gaussian process. Given the training data of input/output
pairs {xi, yi}i=1..N , the regression output of a new input x∗ can be derived as a
Gaussian distribution, and we use its mean as the regression output:

y∗ = R(x∗) = KT
∗ (K)−1Y, (5)

where K is a N ×N matrix whose entries are the kernel functions (RBF kernel
[26] in our experiment) of the training data: k(xi,xj). K∗ and Y are N dimen-
sional vectors whose entries are k(xi,x

∗) and yi respectively. To train a GPR,
we only need to estimate the covariance matrix K on the training data.

After the top K classifiers are updated, we select the top one weak classifier
into the final classifier for the current iteration. Notice that if all the top classifiers
are selected from available information, they do not need to update and our
algorithm degenerates to conventional Adaboost. We choose K > 1, because
the imperfection of the regression may change the ranking of the top K weak
classifiers. Since very low ranked classifiers has little chance to be top ranked,
we set K = 5 in our experiments, which seems working well in practices.
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Fig. 3. Examples of handwritten digits in 10× 10image

5 Experiments

We now demonstrate the effectiveness of our algorithm on two applications, hand-
written digit recognition and facial expression recognition from low resolution im-
ages, each of which uses different types of side information. Note that in both cases,
rather than developing methods of performance better than the state-of-the-art,
our emphasis here is to showcase that the boosting with side information can lead
to better performance in comparison to the conventional boosting algorithm.

5.1 Handwritten Digits Recognition

In the first set of experiments, we consider the problem of handwritten digit
recognition from images. As shown in Fig. 3, we use the data set provided by [33],
which consists of low-resolution images (10× 10 pixels) of handwritten digits 5
and 8. As in [33], we use 100 images (maximally available to the public) as
training set and 1866 images as the test set. Furthermore, for every training
image, 21 holistic (poetic) descriptions are provided by an independent expert.
Each description can be translated to a discrete value. Some of these descriptions
(with range of possible values) are: two-part-ness (0-5); tilting to the right (0-3);
uniformity (0-3), etc. Note that these descriptions are not available for the test
images and thus are treated as side information in our method.

Our goal is to learn a boosted classifier using the available information (100
dimensional vectors of the vectorized pixel values) and the side information (21
dimensional vectors from the quantized textual descriptions). The classification
errors using different training data sizes are shown in Fig. 4(a). For each training
data size smaller than 100, 12 different subsets are randomly selected from the
training data. Thus, we perform train and test 12 times and report the average
and standard deviation of these 12 testing errors. We also compare with the
regression imputation [24], i.e., the missing side information in the testing data
is recovered by the predicted value from a regression, and the augmented features
with both side information and available information are used for classification.
Here, we learn a Gaussian process regression to predict the side information
from the available information. When the training data size is 100 (only test
once), the classification error is 13.23%, 11.47% and 10.08% for imputation,
Adaboost and Adaboost+ respectively. We can see that the imputation result
is even worse than Adaboost. This is consistent with the previous imputation
result [24] and the attribute-based methods [30,11] which show that using side
information/attributes in an unselective manner does not necessarily improve
the classification. In [11], the classification performance can be improved only
when good discriminative attributes are carefully selected.
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(a) (b)

Fig. 4. (a) Performance comparison with various training data sizes. (b) Scatter plot
of error rates of 73 tests. Adaboost+ is equal or better than Adaboost in 63 tests.

Using the side information, Adaboost+ outperforms Adaboost in general. The
scatter plot in the top panel of Fig. 4 compares the Adaboost and Adaboost+
testing performances of the classifiers trained using each randomly selected train-
ing subset. We can see that Adaboost+ outperforms Adaboost in most tests.

A direct comparison with SVM+ [33] is difficult. On one hand, SVM and
boosting are two very different classification techniques. On the other hand, [33]
used 4000 images as an extra validation set for tuning the parameters in SVM and
SVM+. This validation set does not have accompanying textual descriptions as
side information. In order to have a fair comparison with SVM+, we also use this
validation set in our boosted classifier. Specifically, after applying Algorithm 1
on the training set, we obtain a set of selected features (some features are from
regression). We then extract these features for the validation data, from which we
build a Adaboost classifier. Given the same training, validation and testing data
as [33], the classification results of Adaboost+ and SVM+ are shown in Fig. 5.

Fig. 5. Digit recognition with validation
data. SVM and SVM+ results are from [32].

These results suggest that it is easy to
incorporate the validation data with-
out side information into the Ad-
aboost+ algorithm, and compared to
Fig. 4(a) the variance of the results
reduces significantly due to the large
amount of validation data. More im-
portantly, note that the side informa-
tion improves the classification per-
formances of both SVM and Ad-
aboost. For instance, using 90 train-
ing samples, the average error rate of
SVM is reduced from 8.2% to 6.7%
(SVM+), and the average error rate
of Adaboost is reduced from 6.5% to
5.3% (Adaboost+). Lastly, we notice
that the errors of Adaboost and Ad-
aboost+ decrease given larger training data size, but this decrease is not as fast
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Fig. 6. HR (a) and LR (b) images of six prototype emotions in the Cohn-Kanade
database ( c©Jeffrey Cohn) . LR is re-scaled to the same size (128× 128) as HR.

as those of SVM-based classifiers. The reason is that Adaboost directly com-
bines a large amount of validation data (4000 samples) with training data (100
samples) in training, while SVM uses training data to learn support vectors
and uses validation data to tune the hyper-parameter. Therefore, the training
data size plays a more important role in SVM. It is difficult to directly compare
SVM+ and Adaboost+ because the ways of using validation data are different.
However, we can see Adaboost+ is achieving better performance than SVM+
with the same training and validation data, and the gap between Adaboost and
Adaboost+ is significant.

5.2 Facial Expression Recognition

Facial expression provides critical cues for the internal emotions of a human
subject, and expression recognition is an important problem in computer vision.
Most of the current works [35,3,8] assumes high resolution face images. However,
many practical scenarios call for expression recognition based on low-resolution
images, for instance when the images are captured with low resolution web-cams
or surveillance cameras. In this section, we consider a system of facial expression
recognition that uses low-resolution images, but is trained with high resolution
images as side information.

We used the Cohn-Kanade (CK) Facial Expression database [20], which is
considered today’s de-facto standard for comparative studies in facial expression
analysis. This database consists of 100 subjects who are instructed to perform
a series of 23 facial displays, six of which are prototype emotions, i.e., anger,
disgust, fear, joy, sadness and surprise. For our experiment, we select 300 image
sequences from the database. The length of the sequences varies between 9 and
60 frames. Each of the sequences consists of expressions from neutral to one of the
six prototype emotions. In the original CK database, only the peak expression of
each sequence is labeled. Here, we perform recognition on every frame based on
the frame-by-frame expression label in [31]. We randomly separate the subjects
into two folds, and perform two-fold cross-validation to make sure the training
and testing images are from different subjects.

Given the original image resolution of 640×490, we simulate the low-resolution
(LR) image recognition by normalizing the face region to a 16 × 16 small image
(Fig. 6). Previous experiment [22] on CK database has shown that the recognition
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Table 1. Area under ROC for six expressions

Expression LR (Adaboost) HR LR interpolation LR+ (Adaboost+)

Anger 0.786 0.910 0.705 0.815

Disgust 0.855 0.919 0.833 0.897

Fear 0.688 0.732 0.634 0.721

Joy 0.954 0.959 0.521 0.944

Sadness 0.832 0.886 0.802 0.875

Surprise 0.976 0.992 0.773 0.980

Average 0.849 0.899 0.711 0.872

rate decreases significantly in low-resolution images. To address this problem,
previous work focus on extracting robust features from LR images [23,28]. Here,
we suppose the corresponding high-resolution (HR) face images are available as
training data, and we propose to use these HR images as side information to learn
a better classifier. This application is related to the popular super-resolution ap-
proaches [16,15,19] in face recognition, which uses HR images in training data to
learn a mapping from LR image to HR images. The test LR image is mapped to
a HR image for recognition. However, our approach is fundamentally different
from those methods because we extract complimentary and discriminative side
information from HR images rather than reconstructing the HR images them-
selves. Specifically, we extract 128×128 HR face images from the training image
sequences (Fig. 6). Local binary pattern (LBP) feature [2] is extracted from the
HR and LR images respectively. We chose LBP due to its demonstrated effec-
tiveness for expression recognition in low-resolution image [28]. Similar to [28],
we divide the HR image into 64 regions of 16×16 pixels 2 and apply the LBPu2

8,2

operator to extract a 59-bin histogram from each region. Original LBP combines
these histograms to form a long feature vector (59× 64) for the face image. For
efficiency, we map the 59 dimension vector to a two-dimensional LDA space.
Thus, the final feature vector has 2×64 = 128 dimensions. Similarly, the feature
from the side information (one HR image) also has 128 dimensions.

Using Adaboost or Adaboost+ classifier, we compare the result of different
settings as follows:

– LR recognition: Adaboost is trained on LR and tested on LR. This is the
baseline in LR-based expression recognition.

– HR recognition: Adaboost is trained on HR and tested on HR. This ideal case
provides an upper bound for LR-based recognition.

– LR-interpolate recognition: Adaboost is trained on HR and tested on re-scaled
LR though interpolation. This is an naive approach to test on LR by using
HR as training data.

– LR+ recognition: Adaboost+ is trained on LR with HR as side information
and tested on LR.

2 Before feature extraction, LR image is firstly re-scaled to 128 × 128 through cubic
interpolation.
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(a) Digit recognition (b) Expression recognition

Fig. 7. Comparison of training error for the top N features

In [28,22], only the average recognition rates are reported without false alarm.
To provide a comprehensive evaluation, the area under ROC (AUC) for six ex-
pressions are shown in Table 1. As expected, the performance of HR recognition
is the upper-bound (average AUC=0.899). Using HR as side information, the
LR recognition rate can be improved towards the upper-bound (average AUC
is improved from 0.849 to 0.872). We observe that this improvement is more
significant for subtle expressions, i.e., anger, disgust, fear and sadness. But for
expressions such as surprise and joy, the improvement is marginal. We also notice
that the naive approach of interpolating the LR image does not work well. One
possible reason is that the classifier trained on HR relies more on high frequency
features, which are not presented in interpolated LR images.

5.3 Side Information in Different Applications

In different applications, side information are extracted from different sources,
have different meanings and have difference influences on the final classifier.
Here, we compare the side information in the above two applications.

In AdaBoost+, a feature from side information is selected only when it can
further decrease the error function in Eq. 2. We show the average error function
of the top N features in Fig. 7. As expected, the error of Adaboost+ decreases
faster than Adaboost indicating a more economic use of weak classifiers based on
effective side information. We also observe that the side information (HR image)
in expression recognition is more effective. Compared to the poetic descriptions
in digit recognition, HR image provides more information to the available fea-
ture (LR image). This can also be observed in the number of features selected
from side information. In the top 20 features, average 5.5 features are selected
from side information in expression recognition, while only 0.71 features are
selected in digit recognition. These results are consistent with the theoretical
analysis [21,25], which suggests that using side information can accelerate the
convergence of learning errors.
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6 Conclusions

Side information that is contained in the training data but not available in testing
exists in many problems in machine learning and computer vision. This motivates
the recent development of a new learning approach known as learning with side
information that aims to incorporate side information for improved training of
learning algorithms. In this work, we describe a new training method of boosting
classifiers that uses side information, known as AdaBoost+. In particular, we
propose a novel classification label imputation method to construct extra weak
classifiers from the available information that simulate the performance of better
weak classifiers obtained from features in side information. The experiments on
two vision problems demonstrate the effectiveness of our method in improving
classification performance compared to AdaBoost classifier trained without using
side information.

There are several important extensions of the current work that we would
like to further pursue. First, note that in the most general sense, learning with
side information is similar to semi-supervised learning and learning with miss-
ing features, where a classifier is obtained with partially missing information.
In semi-supervised learning, this corresponds to missing labels, and in learning
with side information, this corresponds to the absence of side information in the
testing phase. Therefore, we are interested in extending the current work to a
more general setting that combines missing label, feature and side information.
This would provide a unification of all these different learning algorithms, and
can also find many applications in machine learning and computer vision. Sec-
ond, we believe that many problems in computer vision can benefit from the
incorporation of side information, and we like to extend the boosting with side
information framework to other computer vision problems.
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