
Linear Discriminant Analysis

with Maximum Correntropy Criterion

Wei Zhou and Sei-ichiro Kamata

Waseda University, Japan

Abstract. Linear Discriminant Analysis (LDA) is a famous supervised
feature extraction method for subspace learning in computer vision and
pattern recognition. In this paper, a novel method of LDA based on
a new Maximum Correntropy Criterion optimization technique is pro-
posed. The conventional LDA, which is based on L2-norm, is sensitivity
to the presence of outliers. The proposed method has several advantages:
first, it is robust to large outliers. Second, it is invariant to rotations.
Third, it can be effectively solved by half-quadratic optimization algo-
rithm. And in each iteration step, the complex optimization problem
can be reduced to a quadratic problem that can be efficiently solved by
a weighted eigenvalue optimization method. The proposed method is ca-
pable of analyzing non-Gaussian noise to reduce the influence of large
outliers substantially, resulting in a robust classification. Performance
assessment in several datasets shows that the proposed approach is more
effectiveness to address outlier issue than traditional ones.

1 Introduction

In many data measurement problems, observation data often lies in a lower
dimensional subspace which can be obtained from the original high dimensional
data space. Such a lower dimensional subspace, especially the linear subspace,
has many important applications in computer vision or pattern recognition, such
as object recognition [1], motion estimation [2]. Among these subspace meth-
ods, linear discriminant analysis (LDA) [3] is one of the most popular methods.
LDA tries to find a set of projections that maximize the ratio of the between-
class distance to the within-class distance. These projections constitute a low-
dimensional linear subspace by which the data structure in the original input
space can be effectively captured.

In general, LDA approaches [3] [4] utilize the Frobenius norm (L2-Norm) (we
call it LDA-L2 in the following) to measure the between-class and within-class
distances. Thus, the process of training may be dominated by outliers since the
between-class or within-class distances is determined by the sum of squared dis-
tances. Recently, in order to solve the outlier problem, Li [5] proposed rotation
invariant L1-norm (notated as R1-norm) based linear discriminant analysis (we
call it LDA-R1 in the following). The R1-norm is determined by the sum of
elements without being squared. Thus, the R1 norm is less sensitive to outliers
than L2-norm. However, in the spatial dimension, squared data is still used.
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Moreover, LDA-R1 takes a lot of time to achieve convergence for a large dimen-
sional input space and it can not effectively handle large outlier problem. In this
paper, instead of maximizing variance which is based on L2-norm, maximum cor-
rentropy criterion (MCC) [6] based linear discriminant analysis (we denote it as
LDA-MCC) is proposed, which is a useful measurement to handle non-Gaussian
noise with large outliers. From the viewpoint of Information Theoretic Learning
(ITL), LDA-MCC is a natural extension of LDA by replacing MSE criterion by
MCC and has several appealing advantages: 1) It is robust to outliers as well
as rotationally invariant. 2) Optimal solutions of the proposed method are the
principal eigenvectors of a robust covariance matrix corresponding to the largest
eigenvalues.

The remainder of this paper is organized as follows: Problem formulation will
be described in section 2. In section 3, the solution of the proposed method will
be introduced and experiments are presented in section 4. Finally, conclusions
and future work are discussed in section 5.

2 Problem Formulation

Assume we have a set of samples X = {{xl
i}Nl

i=1}Cl=1 ∈ R
d×n, Nl of which belong

to class ωl (l = 1, 2, ..., C), where n and d denote the number of samples and the

dimension of the original input space, respectively. And n =
∑C

l=1 Nl. In LDA-

L2, the objective is to seek t projections Y = {{yli}Nl
i=1}Cl=1 ∈ R

t×n by means of t
linear transformation vectors W ∈ R

d×t, which embeds the original d dimension
into t dimension vector space such that t < d. Let Tr(.) be the trace of its matrix
argument, Sb be the between-class scatter matrix, and Sw be the within-class
scatter matrix, which are formulated as: Sb =

∑C
l=1(ml − m)(ml − m)T and

Sw =
∑C

l=1

∑Nl

i=1(x
l
i − ml)(x

l
i − ml)

T . Here ml = (1/Nl)
∑Nl

i=1 x
l
i is the mean

of the samples belonging to class ωl, and m = (1/n)
∑C

l=1 Nlml is the global
mean of the samples. LDA-L2 aims to find an optimal transformation W by
maximizing the ratio of Tr(Sb) and Tr(Sw) as following problem

max
W

JL2 = max
W

Tr(Sb)

Tr(Sw)

= WT SbW
WTSwW

(1)

The denominator of the objective function JL2 can be simply to WTSwW = I,
since it is invariant with respect to rescaling of the vectors W → βW (β is
some coefficient). Thus, the problem of maximizing JL2 can be converted into
the following constrained optimization problem:

max
W

WTSbW

s.t. WTSwW = I
(2)

It is known that the L2-norm is sensitive to outliers and recently, R1-norm
approach [5] was presented to solve this problem. In this case, the problem
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becomes finding W that maximizes the following objective function:

max
W

JR1 = (1 − α)
∑C

l=1

√||WT (ml −m)||2−
α
∑C

l=1

∑Nl

i=1

√
||WT (xl

i −ml)||2
(3)

However, for a large dimensional input space, it takes a lot of time to achieve
convergence, and in the spatial dimension, squared data is still used. Thus, R1-
norm approach is not effective and efficient for larger outlier problems. In this
paper, we try to use Maximum Correntropy Criterion (MCC) to measure the
between-class scatter instead of Mean Square Error (MSE). In practice, the
correntropy is defined as a generalized similarity measure between two arbitrary
random variables A and B:

Vn,σ(A,B) =
1

n

n∑

l=1

kσ(al − bl) (4)

When kernel function kσ(.) is Gaussian kernel g(x) = exp(−x2/2σ2), then

Vn,σ(A,B) =
1

n

n∑

l=1

g(al − bl) (5)

In order to measure the similarity of two random variables A and B, MSE uses
all the samples in the input space while correntropy is just determined by kernel
function along the line al = bl. This important property intuitively explains
the reason that the correntropy is superior to MSE if the residual of A − B is
non-symmetric or with nonzero mean.

In ITL, it has been pointed out that MSE is a global measurement while
MCC is a local measurement [6]. By global, that means all the data points in
the joint space will contribute equally to the value of the measurement and
the locality of MCC means that the value is mainly determined by the kernel
function. Since an outlier is far away from the data cluster, then its contribution
to estimating correntropy will be smaller so that it always receives a low value in
the matrix. Therefore, the outliers will have weaker influence on the estimation
as correntropy increases. As a result, LDA-MCC is robust against outliers even
large outliers occur.

Substituting al = (ml−m) and bl = WVl into Eq.(5), here, Vl = WT (ml−m)
is a projected vector, and we can obtain a novel maximum correntropy criterion
based LDA as follows:

max
W

JMCC =
∑C

l=1 g((ml −m)−WVl)

s.t. WTSwW = I
(6)

Since W is orthonormal and then

g((ml −m)−WVl) = g(
√||(ml −m)−WWT (ml −m)||2)

= g(
√
(ml −m)T (ml −m)− (ml −m)TWWT (ml −m))

(7)
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let Ml = (ml − m)then the Eq.(6) can be converted into following objective
function:

max
W

JMCC =
∑C

l=1 g(
√
MT

l Ml −MT
l WWTMl)

s.t. WTSwW = I
(8)

3 Linear Discriminant Analysis with Maximum
Correntropy Criterion

Recently, Information theoretic learning (ITL) has been proved more efficient
to data analysis problems. ITL utilizes probability density function of the data,
estimated by Parzen kernel estimator [7], as the cost function.

3.1 Optimization

In ITL, the half-quadratic technique [8] [9] is often used to solve nonlinear ITL
optimization problem. And in our study, half quadratic based algorithm is also
applied to solve Eq.(8). According to the theory of convex conjugated functions
[8], we can get the following proposition.

Proposition: There exists a convex conjugated function ϕ of g(x) such that

g(x) = max
p′

(p′
||x||2
σ2

− ϕ(p′)) (9)

where p′ ∈ R is a scalar variable, and for a fixed x, the maximum is reached at
p′ = −g(x) [9]. Substituting Eq.(9) into Eq.(8), we can get an augmented objec-
tive function in the enlarged parameter space then the Eq.(6) can be converted
into

max
W,P

JMCC =
∑C

l=1(pl(M
T
l Ml −MT

l WWTMl)− ϕ(pl))

s.t. WTSwW = I
(10)

where P = [p1, p2, ..., pC ] is storing the auxiliary variables introduced in the Half-
Quadratic optimization. Consequently, we can optimize (W,P ) by iterations as:

max
W,P

L = JMCC − λ(WTSwW − I) (11)

Then, according to Lagrangian method, a weighted traditional LDA problem
can be obtained as follows

(Sw)
−1SbPW = λW (12)

where P is a diagonal matrix whose diagonal entity p(l, l) = −pl and

pl = −g(
√
MT

l Ml −MT
l WWTMl). Thus, the final algorithm of LDA-MCC is

listed in Algorithm 1.
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Algorithm 1. LDA-MCC

Require: X = {{xl
i}Nl

i=1}Cl=1 ∈ R
d×n, t ≤ d

Initialization: W = [w1, w2, ..., wt] ∈ R
d×t,W TW = I

while not converge do
1. Calculate pl = −g(

√
MT

l Ml −MT
l WW TMl)

2. Update W according to (Sw)
−1SbPW = λW

end while
return W ∈ R

d×t

3.2 Convergence of LDA-MCC

Let r be the iteration number of Algorithm 1. then

Jr+1
MCC − Jr

MCC = JMCC(W
r+1, P r+1)− JMCC(W

r, P r)
= [JMCC(W

r+1, P r+1)− JMCC(W
r, P r+1)]

+[JMCC(W
r, P r+1)− JMCC(W

r, P r)]
(13)

Based on the Proposition and Eq.(12), W r+1 and P r+1 is the optimization value
for Jr+1

MCC and Jr
MCC , respectively. Then JMCC(W

r+1, P r+1)−JMCC(W
r, P r+1)

≥ 0 and JMCC(W
r, P r+1)−JMCC(W

r, P r) ≥ 0. So Jr+1
MCC−Jr

MCC ≥ 0. That is,
the objective function Jr

MCC |r=1,2,... increases monotonically. In the other side,
apparently, Jr

MCC |r=1,2,... function has an upper bound Thus, we can get that
Jr
MCC |r=1,2,... converges.

4 Experiments

In this section, the proposed approach is applied to some pattern recognition
problems and the performance is compared with those of LDA-L2 and LDA-R1.
This work follows the lines of correntropy [6] and estimates the bandwidth σ by
Silvermans rule [10].

4.1 Toy Set

The first experiment is based on a toy set composed of ten samples clustered
into two category with an additional large outlier as shown in Fig.1(a).

To evaluate the effectiveness of LDA-MCC which is less sensitivity to outlies,
the outlier sample (plotted as triangle at the top-right corner of Fig.1(a)) is
intentionally added into the training samples of Class 1 before classification.
For this kind of data, LDA-L2, LDA-R1 and LDA-MCC are applied and the
projection vectors are wL2 = [−0.7071, 0.7071]T , wR1 = [−0.76431, 0.6448]T

and wMCC = [−0.8784, 0.4779]T . The final learning results are plotted as 1-
dimensional signals in Fig.1(b) , Fig.1(c) and Fig.1(d) corresponding to LDA-
L2, LDA-R1 and LDA-MCC, respectively. After the step of dimension reduction.
Clearly, the between-class scatter of the two-class samples except for the outlier
sample in Fig.1(d) is much larger than that in Fig.1(b) and Fig.1(c). In this
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Fig. 1. (a) Samples in toy set (b) Results of LDA-L2 (c) Results of LDA-R1 (d) Results
of LDA-MCC

experiment, LDA-MCC is randomly initialized and only two iterations are taken
for convergence, while LDA-R1 converges in four iterations. Thus, the proposed
method is more powerful to address the outlier problem.

4.2 Brodatz Texture Dataset

The second experiment is to evaluate the classification performance over the
subset of Brodatz Texture Dataset [11]. In this dataset, 20 images are selected
as category(”real” images) and one image is selected as outlier image(shown in
Fig.2).

At first, each image is normalized into 128 × 128 size, and then is non-
overlapping divided into 16 regions. 5 regions per category and 1 region in outlier
image are used as gallery and others per category are treated as probe. The final
classification results are shown in Fig.3, where x-axis corresponds to the reduced
dimension and y-axis is associated with the accuracy. From this figure, we can
see the proposed method is less sensitive to outlier than the other two tradi-
tional approaches. In average, the proposed method can achieve about 6 percent
higher than LDA-R1 and 11 percent higher than LDA-L2 approach. Moreover,
form Dim. 30 to Dim. 40, the accuracy of LDA-R1 drops significantly, that means
the projection weights from Dim. 30 to Dim. 40 obtained by LDA-R1 are very
sensitivity to the outlier while LDA-MCC is much stable.
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(a) (b) 

Fig. 2. Samples in Brodatz Texture Dataset (a) ”real” images (b)outlier image
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Fig. 3. Accuracy in Brodatz Texture Dataset

4.3 ORL Dataset

The third experiment is evaluated over the ORL dataset [12]. All images are
gray scale and normalized to a resolution of 32 × 32 pixels. Among these 400
images, 30 percent were randomly selected and occluded with a rectangular noise
consisting of random black and white dots whose size was 10 × 10, located at
a random position. For a better illustration, some training samples are shown
in Fig.4. 3 images per person are used for training and others are for testing.
Simple 1-nearest-neighbor(1NN) classifier is used for the final classification. The
performance is shown in Fig.5. The average number of iterations for LDA-MCC
is 6.25 while 9.7 for LDA-R1. From this figure, we can see that the proposed
method is the outstanding one and can obtain about 10 percent or 35 percent
than LDA-R1 and LDA-L2, respectively.

Moreover, in this figure, when the reduced dimension is very small, the pro-
posed method can get significant performance. In order to see how the accuracy
changes in small dimension, another experiment is carried out and the result is
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(a) (b)

Fig. 4. ORL dataset (a) Original Images (b) Corresponding Images with occlusion
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Fig. 5. Accuracy in ORL Dataset

shown in Fig.6. From this figure, we can see more clear about the effectiveness
of the proposed method.

Finally, the accuracy on ORL dataset and the average training time are con-
cluded in Table 1, here, PCA-L2 [13] means L2 norm based PCA while PCA-L1
[14] is L1 norm based PCA. From this table, we can see that our proposed
method has higher performance than traditional ones.

Table 1. Recognition rate and computation cost on ORL dataset

method Recognition Rate Average number of iterations Average time (s)

LDA-L2 38.6 / /

LDA-R1 67.1 9.7 21.8

PCA-L2 [13] 49.5 / /

PCA-L1 [14] 68.1 / /

LDA-MCC 75.7 6.25 10.9

In next experiment, the proposed method is applied to face reconstruction
problem and the performance is compared with those of other methods. We ap-
plied LDA-L2, LDA-R1, LDA-MCC and extracted various numbers of features.
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By using only a fraction of features, we could compute the average reconstruction
error with respect to the original unoccluded images as Eq.(14).
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Fig. 6. Classification results for small dimension in ORL Dataset

e(m) =
1

n

n∑

i=1

||Xorg −WWTX ||2 (14)

Here, n is the number of samples, which is 400 in this case, Xorg and X are
the original unoccluded image and the image used in the training, respectively.
Fig.7 shows the average reconstruction errors for various numbers of extracted
features. In this figure, even when the number of extracted features is small, the
average reconstruction error of the proposed method is smaller than LDA-L2
and LDA-R1 approaches.
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Fig. 7. Average reconstruction errors for ORL dataset
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4.4 AR Dataset

The AR [15] dataset consists of over 3,200 color images of the frontal images
of faces of 126 subjects. Each subject has 26 different images, including frontal
views of with different facial expressions, lighting conditions and occlusions. For
each subject, these images were recorded in two different sessions which are
separated by two weeks, each session consisting of 13 images. For the experiments
reported in this section, 60 different individuals were randomly selected from
this database. Then there are 1560 images in our experiments. All images were
manually cropped and resized to 80 by 60. Some example images of one person
are shown in Fig.8.

Fig. 8. Some samples from AR dataset

In this evaluation, the recognition performances of the different algorithms on
AR database are compared. Six samples of each individual are randomly selected
as gallery (training images), and the remaining ones are used for probe (testing
images). In our study, we perform 5 times to randomly choose the training set
and calculate the average recognition rates. Some classification results are listed
in Fig.9, where we can see that the proposed method has higher performance
than LDA-L2 and LDA-R1. In general, LDA-MCC can obtain about 10 percent
or 20 percent than LDA-R1 and LDA-L2, respectively. And the average number
of iterations for LDA-MCC is 10.1 while 25.3 for LDA-R1. Thus, we can see
clearly that LDA-R1 takes much more computation cost to achieve convergence
in larger dimensional input space, such as face recognition application, than
LDA-MCC. Base on this evaluation, our proposed method is more effective and
efficient than the traditional approaches to solve facial expression, illumination
or occlusions issues.

In Fig.10, only low-dimensional space is focused on since we want to make
a comparison of the most discriminant features for the proposed method and
some related algorithms. Same as Fig.9, the proposed methods can extract more
discriminant features.

Finally, the average accuracy and time cost for training on AR dataset is
concluded in Table 2, and our proposed methods are superior to the traditional
approaches.
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Fig. 9. Classification results in AR Dataset

5

15

25

35

45

55

65

75

1 2 3 4 5 6 7 8 9 10

A
ve

ra
g

e 
R

ec
o

g
n

it
io

n
 R

at
e

Dim.

LDA-L2

LDA-R1

LDA-MCC

Fig. 10. Classification results for small dimension in AR Dataset

Table 2. Recognition rate and computation cost on AR dataset

method Recognition Rate Average number of iterations Average time (s)

LDA-L2 58.6 / /

LDA-R1 69.1 25.3 87.8

PCA-L2 [13] 55.2 / /

PCA-L1 [14] 73.2 / /

LDA-MCC 83.7 10.1 30.5

5 Conclusions and Future Work

In this paper, we proposed a novel method of LDA with MCC, which better
characterizes the between-class separability. The proposed objective function is
robust to outliers and can be efficiently optimized by the half-quadratic optimiza-
tion technique. For each iteration step, the complex correntropy objective can
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be reduced to a weighted traditional LDA optimization problem. The proposed
subspace method not only successfully suppresses the negative effects of outliers
but also it is invariant to rotations. Experimental results have demonstrated the
effectiveness of the proposed method compared to the existing approaches.

In out future work, first, how to apply MCC to with-class distance and how
to extend MCC to matrix or tensor based LDA will be studied. Second, some
specific applications, such as facial expression recognition, using the proposed
method will be evaluated.
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