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Abstract. Vector quantization (VQ) using exhaustive nearest neighbor
(NN) search is the speed bottleneck in classic bag of visual words (BOV)
models. Approximate NN (ANN) search methods still cost great time in
VQ, since they check multiple regions in the search space to reduce VQ
errors. In this paper, we propose ExVQ, an exclusive NN search method
to speed up BOV models. Given a visual descriptor, a portion of search
regions is excluded from the whole search space by a linear projection.
We ensure that minimal VQ errors are introduced in the exclusion by
learning an accurate classifier. Multiple exclusions are organized in a tree
structure in ExVQ, whose VQ speed and VQ error rate can be reliably
estimated. We show that ExVQ is much faster than state-of-the-art ANN
methods in BOV models while maintaining almost the same classification
accuracy. In addition, we empirically show that even with the VQ error
rate as high as 30%, the classification accuracy of some ANN methods,
including ExVQ, is similar to that of exhaustive search (which has zero
VQ error). In some cases, ExVQ has even higher classification accuracy
than the exhaustive search.

1 Introduction

Bag of visual words (BOV) has become a widely used practice in computer
vision and related research, whose application include (but are not limited to)
retrieval [1], scene recognition [2], and object categorization [3], etc. In spite of
its simplicity, BOV achieves state-of-the-art performance in many problems.

In a classic BOV model, visual descriptors are first clustered to form a visual
codebook, and the cluster centers are called visual codewords. A visual descrip-
tor is then represented by the index of its nearest codeword. The procedure that
maps a descriptor to its codeword index is called vector quantization (VQ). Fi-
nally, an image is represented by a histogram of the codeword indexes contained
in this image. Classifiers are applied to these histograms to perform visual clas-
sification, e.g., in object or scene recognition. Recently, new BOV methods are
also proposed, e.g., those based on the sparse coding [4][5].

In this paper, we limit our discussions to the classic BOV procedure, in which
the vector quantization essentially performs a nearest neighbor (NN) search
within all visual codewords, which is also the major speed bottleneck in ap-
plying BOV models. Two typical situations make this issue more prominent:
large scale and real time. In large scale problems such as the TRECVID bench-
mark, weeks of time was needed even when computer clusters were used [6].
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On the other hand, in real time applications where 30 or more images need to
be processed per second, the VQ speed is again of paramount importance. We
also observe that the VQ step occupies most of the processing time in BOV.
Encoding an image in BOV is divided into three modules in [6]: point sampling,
descriptor computation and VQ. Using the Caltech 101 [7] as an example, when
we use densely sampled points and SIFT descriptors, the VQ time occupied from
87.53% to 96.56% of the total BOV processing time when the codebook size K
varies from 256 to 1024.

Approximate nearest neighbor (ANN) search is a natural choice to speed up
the VQ process. In this paper, we propose ExVQ, an efficient ANN method,
which greatly accelerates the VQ speed, without affecting the classification ac-
curacy of BOV models.

ANN methods, e.g., FLANN [8], have shown great speedup effects in searching
within large point sets. It has already been used in vector quantization in [9]. In
this paper, our goal is to further improve the VQ speedup by maintaining the
classification accuracy. First, we systematically evaluate the effect of ANN VQ
errors to the subsequent visual classification stage. We show that some ANN
methods, even with up to 30% VQ error rates, do not reduce the classification
accuracy in object and scene recognition tasks.

Next, we propose a new ANN method to speed up the VQ process. Existing
ANN methods follow a branch and bound strategy: split the search space into
regions according to certain criterion, and assume that a point and its nearest
neighbor will fall into the same region. Thus, the algorithm only needs to examine
the few points in one region. We call this strategy the inclusive strategy. The
inclusive assumption, however, rarely holds in reality. Thus, searching only one
region leads to high VQ error rate. More regions (e.g., nearby ones) must also
be examined, which increases the cost of ANN search. For example, FLANN has
a parameter that specifies how many regions are to be checked.

In ExVQ, we use an exclusive strategy instead. For a BOV model, all clusters
of visual descriptors, not only the codewords, are divided into three regions, L,
R, and I. Instead of insisting that nearest neighbors of visual descriptors from
L must also reside inside L (i.e., inclusive), we only assume that such neighbors
will not appear in R (and I is a buffer region which is ignored in this process).
ExVQ thus do not search through codewords from clusters in R. We will show
that our exclusive assumption can be ensured to be correct (or almost correct)
by learning a classifier that assigns all clusters into appropriate regions L, R, and
I. In reality, we perform several exclusions in ExVQ, organized in a hierarchical
tree structure.

Overall, the following contributions are presented in this paper:

• A systematic evaluation of the effects of VQ errors caused by ANN. We
reveal that a high VQ error rate (e.g., 30%) does not necessarily reduce the
classification accuracy of the BOV model.

• An exclusion strategy for ANN search. We ensure the correctness of the
exclusion by learning classifiers, which also gives a reliable estimation of the
VQ error.
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• ExVQ, an ANN system for vector quantization in BOV. ExVQ requires only
about 10–20% of the VQ time of the classic VQ, or half of that of FLANN.
And, all three methods have indistinguishable classification accuracies.

2 Related Works

Vector quantization and its acceleration has long been studied in image and
video coding. Tree-structure VQ methods such as TSVQ are popular because
of its speed advantage [10]. Various branch-and-bound methods have also been
used to find the exact or approximate NN with faster speed.

Tree structure is a useful tool to reduce search time. The hierarchical k-means
tree can organize O(nm) items in a depth m tree, in which every internal tree
node has n fan-out branches. A query then involves finding the path of the most
similar nodes from the root of the tree toward a leaf node, which only requires nm
distance computations. It has been successfully used in object retrieval from large
object databases with tens of thousands of objects [11][12]. Randomized trees
and extremely randomized clustering forests have also shown excellent speed and
accuracy in matching features and detecting objects [13][14].

The branch-and-bound strategy, which usually utilizes linear projections to
split the search space, is also proven valuable in ANN search. kd-tree splits the
search space into halves using a hyperplane (which is a special case of linear
projection) on the dimension with the largest variance and continues to split
iteratively until each node contains only one point. Randomized kd-trees and
ensembles of them have shown acceleration up to the 30x with approximately
90% correct nearest neighbors [8], comparing to the exhaustive nearest neighbor
search of SIFT descriptors.

Spill tree [15] is similar to the proposed ExVQ, in that they both adopt overlap
(buffer) between the two split search sets. Spill tree splits the search set using
a random projection. The overlap contains those search points within a small
distance to the projection boundary. The difference is, ExVQ learns an accurate
SVM classifier from the available visual descriptors and uses it to determine:
which clusters, rather than data points, form the search sets or the overlap.
Visual descriptors in the two split search sets, especially in the overlap, have
zero (or almost zero) NN search error, which is not ensured in the spill tree.
Similar strategy using a buffer to eliminate the decision error is also used in
multi-class problem [16][17]. However, the method in [17] is very slow, which
may take days to learn on the same dataset used in this paper.

Another family of methods use multiple linear projections to map the feature
vector (or visual descriptor) into a short string with few binary bits, e.g., local-
ity sensitive hashing (LSH) [18], Hamming embedding [19], and spectral hash-
ing [20]. This strategy is particularly attractive for processing huge datasets.
Their storage requirements are greatly reduced, although their NN search accu-
racy may be significantly lower than ANN methods such as FLANN.

In recent years, sparse coding [4][5] is popular in object recognition and
classification, such as Locality-constrained Linear Coding (LLC) [4]. Multiple
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database points are assigned weights under the sparse constraint. In this paper,
we will empirically compare ExVQwith LLC. Recently, product quantization [21]
is also used for NN search. It can save search time and storage by quantizing
the sub-vectors of the original high-dimension feature vector, which is, however,
more suitable for retrieval applications rather than for visual recognition.

3 ExVQ: Exclusive Vector Quantization

In the BOV model, given a set of visual descriptors X = {x0,x1, ...,xN−1},
by applying the k-means clustering, the cluster centers are used as a codebook
{c0, c1, ..., cK−1}, where xi, cj ∈ R

d, i = 0, 1, ..., N − 1, j = 0, 1, ...,K − 1. A
visual descriptor x ∈ R

d is quantized by the index of its nearest codeword as:

nn(x) = argmin
0≤i≤K−1

dist(x, ci), (1)

where dist(·, ·) can be any distance metric between two vectors. We consider the
Euclidean distance in this paper, that is, dist(x, ci) = ‖x− ci‖�2 .

3.1 Effect of ANN VQ Errors to Classification

In an ANN method, we define the searched nearest neighbor index for a point
x as ann(x). During an ANN based VQ process, a VQ error happens when
ann(x) is different from nn(x). Intuitively, a high VQ error rate will lead to more
classification errors in the subsequent visual classification stage. However, we find
empirically that this is not the case. When certain ANN methods are used, a high
VQ error rate (e.g., 30%) does not necessarily hurt the classification accuracy.
Thus, we have the freedom to allow some VQ errors in order to accelerate the
VQ process.

Fig. 1a shows one example of how the classification accuracy varies with the
VQ error rate of FLANN. Although VQ errors vary from 5.70% to 32.44%, the
classification accuracies are almost the same. This result seems counter intu-
itive. We conjecture that it can be explained by the properties of the VQ errors :
some VQ errors are benign and will have minimal effect on the classification
performance.

To validate this conjecture, we first define the error rank of ann(x) using
the following procedure. We calculate the distance of x with each codeword
dist(ci,x), i = 0, 1, ...,K− 1, and store them in an array in the ascending order.
The error rank of ann(x) is defined as the index of dist(cann(x),x) in this sorted
array. The error rank is 0 when ann(x) = nn(x). Then we define the benign
VQ error: a small portion of VQs (< 30% or around)1 has error and the error
ranks are small. This definition provides us with an empirical way to evaluate the
property of VQ errors. In Fig. 1b, we show the histograms of ANN error ranks
using FLANN with different check numbers, where the vertical axis is shown

1 We find 30% is valid for most cases. More results will be shown in the experiment.
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Fig. 1. (a) VQ error rate and classification accuracy (one round) using FLANN hierar-
chical k-means tree, on Caltech 101, when K = 256; (b) The histograms of ANN error
ranks. The vertical axis is the frequency numbers shown in natural logarithm. We use
FLANN hierarchical k-means tree with different check numbers on Caltech 101 when
K = 256.

in natural logarithm. The error ranks of most VQ errors are close to 1, which
supports our conjecture on benign VQ errors. More systematic results will be
presented in Sec. 4.

3.2 ANN Search: Inclusion vs. Exclusion

When inclusive methods (e.g., LSH and FLANN) search the nearest neighbor of
a visual descriptor in the codebook {c0, c1, ..., cK−1}, they use linear projections
to reduce the search range. With a linear projection (w, b),w ∈ R

d, b ∈ R, an
inclusion strategy implicitly assumes that:

∀x ∈ R
d, sgn(wT cnn(x) + b) = sgn(wTx+ b), (2)

where sgn(·) is the sign function.
However, in most cases, inclusive search methods fail to find the nearest neigh-

bor in the reduced search range. Fig. 2 illustrates the inclusive NN search in the
2-D space. We use k-means to get 15 clusters from the randomly generated
points. Each black star is the center of a cluster (i.e., codewords), which alto-
gether form the codebook. Subject to the linear projection (the black line), 40%
clusters (which are crossed by the line) violate the inclusive assumption. In re-
ality, the inclusive assumption is violated even more seriously. Using a random
linear projection on Caltech 101 (K = 256, d = 128), only about 10% clusters
can guarantee Eq. 2. Thus the inclusive search methods usually need to check
NN in multiple adjacent regions to maintain the search accuracy, which slows
down the search speed.

We propose an exclusive NN search strategy to fulfill three goals: to reduce
NN search time, to maintain a reasonable VQ error rate, and to ensure that the
VQ errors are benign. In this strategy, the search range is reduced by excluding
a portion of clusters (rather than data points) from the whole search space
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Fig. 2. Illustration of inclusive vs. exclusive NN search. The random projection violates
the inclusive assumption. The exclusive strategy, however, can correctly excludes the
red or the green clusters. This figure should be viewed in color.

subject to a linear projection. The exclusive NN search involves three index sets:
the available search set C containing the indexes of all clusters to be searched,
the positive and negative exclusion sets C+1(L) and C−1(R), which are the index
sets of clusters that can be excluded.

We illustrate the idea of exclusive NN search in Fig. 2. We first assign the
indexes of red and green clusters to C+1 and C−1, respectively. Then, for a point
above the linear projection, we search NN from the codewords within the red
and blue clusters. Those green clusters (C−1) can be safely excluded. In the
inclusive strategy, for a point above the linear projection, its NN can be one of
the blue-colored centers. Thus, regions in both sides of the black line are to be
searched, that is, no cluster can be safely ignored.

In real-world NN search problems, a random linear projection may fail to
produce high quality exclusion sets. Instead, we utilize existing examples to
evaluate the irregular boundaries of exclusion clusters in C+1 and C−1. We use
visual descriptors in all exclusion clusters to train an accurate linear classifier
such that a high quality linear projection direction can be learned. This linear
projection can accurately split the exclusion clusters on two sides.

Specifically, first, we calculate the inner product of the codeword in each
cluster ci, i ∈ C = {0, 1, ...,K − 1} with a random vector r ∈ R

d and sort the
values in the ascending order. Then, we choose the desired exclusion portion
0 < p < 1/2 and assign the indexes of clusters which codewords are of the
p · |C| largest (smallest) values of rT ci to C+1 (C−1). Next, we generate the
positive training set X+1 = {x|x ∈ X,nn(x) ∈ C+1} and the negative training
set X−1 = {x|x ∈ X,nn(x) ∈ C−1}. Finally, we train a linear SVM classifier
(w, b) using X+1 and X−1:

min
w,b

1

2
‖w‖22 + α

∑

x∈X+1

max(0, 1− (wTx+ b))2

+ α
∑

x∈X−1

max(0, 1 + (wTx+ b))2, (3)

where α is the trade off parameter.
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After the linear SVM classifier is trained, we obtain (w, b), C, C+1 and C−1.
For a visual descriptor x ∈ R

d, the exclusive NN search is defined as:

ann(x) = argmin
i

‖x− ci‖�2 , (4)

s.t. i ∈ C − C−sgn(wTx+b), (5)

where C − C−sgn(wTx+b) is the active search set of x.
ExVQ and spill tree operates on different principles. ExVQ excludes one clus-

ter entirely, which includes all points within the corresponding Voronoi cell.
Thus, the nearest codewords of points in the rest search space never or rarely
(depending on the training quality of the linear SVM classifier) exist in the exclu-
sion set. In the spill tree, although a centroid may be far away from the exclusion
region, its corresponding cluster (i.e., Voronoi cell) may have large overlap with
it, that is, causing many VQ errors.

3.3 Tree-Structured ExVQ

One single exclusion is not enough in real-world applications. In ExVQ, we use
multiple linear classifiers with a hierarchical tree structure. We implement ExVQ
in an L-level complete binary tree, where each node is indexed level by level from
0 to 2L−2. The ith node is related to three cluster index sets: Ci, Ci

+1 and Ci
−1,

which are the available search set, and the positive and negative exclusion sets,
respectively. First, in the root node, we set C0 = {0, 1, ...,K−1}. Then, in the ith
node, Ci

+1 and Ci
−1 are chosen from Ci by a random vector ri ∈ R

d as described
in Sec. 3.2, and to train a linear SVM classifier (wi, bi) according to Eq. 3. Next,
we compute the available search sets for the the left and right children of the
ith node as C2i+1 = Ci − Ci

−1 and C2i+2 = Ci − Ci
+1, respectively. Finally,

the whole tree can be built recursively from the root. This process is detailed in
Algorithm 1.

After the tree is built, we get {(wi, bi), C
i, Ci

+1, C
i−1} in every node. For a

query x ∈ R
d, the NN search is processed as follows: first, starting from the root

node, we compute wT
i x+ bi. If the value is positive, the exclusion process goes

to process its left child, otherwise to the right. This process continues iteratively
until a leaf node is reached. Then we output the active search set of the leaf node.
Finally, the NN of x is acquired by exhaustively searching the active search set.
We fully specify ANN search by ExVQ in Algorithm 2.

In ExVQ, the tree level L and the exclusion portion p can influence the search
speed and the VQ error rate. Applying ExVQ to a visual descriptor, the number
of distance computations in the NN search is: K̂ = L+K(1− p)L.

If we assume that the VQ error rates caused by the exclusions from the same
level nodes in the tree are the same, the whole VQ error rate of ExVQ can be
estimated by:

evq = 1−
L∏

l=1

(1− pel), (6)
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Algorithm 1. Build tree-structure ExVQ

1: Input: Descriptors {x0,x1, ...,xN−1} ⊆ R
d and K centers {c0, c1, ..., cK−1},

ExVQ tree level L and an exclusion portion parameter p.
2: C0 ← {0, 1, ..., K − 1}
3: for id = 0 ← 2L − 2 do
4: Cid

+1 ← ∅, Cid
−1 ← ∅, parent← 0

5: if id > 0 then
6: parent = � id−1

2
�

7: end if
8: if id is odd then
9: Cid ← Cparent − Cparent

−1

10: else
11: Cid ← Cparent − Cparent

+1

12: end if
13: a← ∅, X+1 ← ∅, X−1 ← ∅
14: generate a random vector r ∈ R

d

15: a← a ∪ rT ci, ∀ i ∈ Cid

16: for i in Cid do
17: if rT ci in the p · |Cid| biggest values of a then
18: Cid

+1 ← Cid
+1 ∪ i

19: X+1 ← X+1 ∪ xj ,∀ j, nn(xj) == i
20: end if
21: if rT ci in the p · |Cid| smallest values of a then
22: Cid

−1 ← Cid
−1 ∪ i

23: X−1 ← X−1 ∪ xj , ∀ j, nn(xj) == i
24: end if
25: end for
26: train a linear projection (wid, bid) with positive set X+1 and negative set X−1

27: end for
28: Output: {(wi, bi), C

i, Ci
+1, C

i
−1}, i = 0, 1, ..., 2L − 2.

where el is the VQ error rate caused by the exclusion in the l-th level. We note
that el is the generalization error of the linear classifiers in level l. Take Caltech
101 as an example, when K = 256, L = 10, p = 1/5, we get K̂/K = 14.64%. If
we use the maximum training error of all linear SVM classifiers as an estimation
for el, we estimate the VQ error as evq = 14.45% using Eq. 6, which provides a
reasonable estimation of the actual VQ error rate (which is 11.13%).

4 Experiments

We use 4 datasets in our experiments: Caltech 101 (15 + 20) [7], scene 15 (100
+ rest) [3], sports 8 (70 + 60) [22], and indoor 67 (80 + 20) [23]. X+Y for each
dataset means the number of training and testing images used in every category,
respectively. Following the suggestion from [24], we use SIFT (d = 128) for
Caltech 101, and the CENTRIST (d = 256) descriptor for other datasets. We
use the LIBLINEAR package [25] to train a linear SVM classifier in each node
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Algorithm 2. NN search using ExVQ

1: Input: A visual descriptor q ∈ R
d,

{(wi, bi), C
i, Ci

+1, C
i
−1}, i = 0, 1, ..., 2L − 2.

2: id← 0
3: while id < 2L − 1 do
4: if wT

idq + bid > 0 then
5: id← id× 2 + 1
6: else
7: id← id× 2 + 2
8: end if
9: end while

10: Output:
11: leaf = � id−1

2
�

12: if id is odd then
13: ann(q) = arg min

i∈(Cleaf−C
leaf
−1 )

‖q − ci‖�2 .

14: else
15: ann(q) = arg min

i∈(Cleaf−C
leaf
+1 )

‖q − ci‖�2 .

16: end if

of the ExVQ tree. The trade off parameter in Eq. 3 is α = 0.01. After the
BOV representation of all images are created, we use a one-vs-all SVM classifier
with the χ2 kernel κ(x1,x2) =

∑d
i=1

2x1ix2i

x1i+x2i
[26][27] for classification. For each

dataset, five training / testing sets are randomly split and average accuracy and
VQ time of these five rounds are reported, if not otherwise specified.

4.1 VQ Time vs. Classification Accuracy

First, we compare the VQ time and classification accuracy of ExVQ, FLANN
and the exhaustive search, with different codebook size K. FLANN is a state-
of-the-art ANN search method [8]. In all experiments, we use the hierarchical
k-means tree (which leads to a higher classification accuracy than the randomized
kd-trees) with default parameters in FLANN. For ExVQ, we fix the exclusion
portion p = 1/5 and fix the tree level L = 10 for K = 256 and L = 15 for
K = 1024. The results are shown in Table 1 (K = 256) and Table 2 (K = 1024).

ExVQ is much faster than FLANN while their classification accuracies are
almost the same. In Table 1 and Table 2, the classification accuracy of ExVQ and
FLANN on all four datasets have no statistically significant difference. However,
ExVQ is about twice faster than FLANN no matter on the codebook with a
small size (K = 256) or a large size (K = 1024). Both ExVQ and FLANN are
much faster than the exhaustive search. ExVQ speed up NN search 5–10 times
than the exhaustive search. Especially, in the indoor 67 dataset, when K = 256,
ExVQ’s classification accuracy is even significantly better than the exhaustive
search.

When the codebook size is larger, the NN search speedup of ExVQ is more
prominent. The search speedup of K = 1024 is about twice of that when K =
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Table 1. VQ time Ti (seconds) and classification accuracy (%) of various methods.
Ti/Tj is the speedup ratio between two methods. i, j = 0, 1, 2, K = 256.

ExVQ FLANN Exhaustive
Dataset T0 T2/T0 T1/T0 Accuracy T1 T2/T1 Accuracy T2 Accuracy

Caltech 101 129.2 4.86 2.83 61.87±0.25 365.0 1.72 62.22±0.72 627.8 62.63±0.55
Scene 15 358.6 5.77 2.22 81.16±0.45 797.6 2.60 81.17±0.14 2070.8 81.36±0.42
Sports 8 292.6 5.93 2.29 82.50±0.90 670.2 2.59 82.71±1.07 1736.2 82.33±1.28

Indoor 67 471.6 5.78 2.53 35.75±1.09 1193.4 2.28 35.04±1.28 2724.6 34.76±1.39

Table 2. VQ time Ti (seconds) and classification accuracy (%) of various methods.
Ti/Tj is the speedup ratio between two methods. i, j = 0, 1, 2, K = 1024.

ExVQ FLANN Exhaustive
Dataset T0 T2/T0 T1/T0 Accuracy T1 T2/T1 Accuracy T2 Accuracy

Caltech 101 277.0 8.92 1.90 65.08±0.50 526.6 4.69 65.53±0.62 2472.0 65.79±0.53
Scene 15 660.2 12.36 2.41 83.17±0.32 1592.0 5.13 83.27±0.33 8162.4 83.53±0.20
Sports 8 556.4 12.39 2.92 83.42±0.77 1622.2 4.25 83.67±1.22 6892.4 84.17±1.11

Indoor 67 885.0 12.22 2.83 38.52±1.96 2503.2 4.32 38.91±1.30 10818.6 38.94±1.33

256, which is similar for FLANN. However, the larger the codebook size is, the
more tree level ExVQ will need to achieve the speedup. This requirement usually
costs more time in building the tree, mainly in training the linear SVM classifiers.
When K = 256, building the 10-level tree costs 18.8–56.6 seconds on different
datasets. The building time increases to 326–617 seconds using 15 levels when
K = 1024. In the experiments, we keep the number of training descriptors from
40468 to 76219, to restrict the training time of linear SVM classifiers. Note that
the classifiers are trained offline, and are trained for only once.

We also test a smaller check number for FLANN. When the check number is
4, FLANN is faster than default check number 32, but its VQ time is still at least
67% longer than ExVQ (or higher than 67% on different datasets). Furthermore,
when K = 1024, the classification accuracy of FLANN with check number 4 is
statistically significantly lower than that of ExVQ.

4.2 Properties of VQ Errors

For these datasets, the VQ error rates of ExVQ and FLANN are shown in Table 3.
In some cases, the VQ error rates of ExVQ and FLANN are close. In many cases,
the VQ error rate of ExVQ is higher than that of FLANN. However, as observed
from Table 1 and Table 2, the difference in VQ error rates does not have impact
on the classification performance. In fact, if we increase L and reduce p, ExVQ
can easily achieve both faster VQ speed and smaller VQ error rate than FLANN,
with the cost of larger storage.

In practice, we don’t need very large L, because ExVQ has benign VQ errors.
We further evaluate the VQ errors generated by ExVQ in Fig. 3, which plots the
histograms of error ranks for ExVQ. ExVQ error ranks are all within a small
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Table 3. VQ error rates (%) of ExVQ and FLANN

K = 256 K = 1024
Dataset ExVQ FLANN ExVQ FLANN

Caltech 101 11.13 4.91 14.15 19.32
Scene 15 4.99 3.20 18.64 7.14
Sports 8 5.82 4.23 19.19 6.63

Indoor 67 6.03 5.81 16.90 6.26
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Fig. 3. Histograms of error ranks of ExVQ on the four datasets with the codebook
size K = 256 (blue) and K = 1024 (red). The horizontal axis is the error rank and the
vertical axis shows the frequency number plot in natural logarithm.

range (compared to the codebook size) close to 1, which we believe are benign
to classification.

When the codebook size is larger, the maximum error rank is also lager. The
maximum error rank for K = 1024 (red curve) is 2.57–3.15 times of that for
K = 256 (blue curve). One may conjecture that the reduction in the number of
training descriptors of each codeword makes the linear classifiers inaccurate when
K is larger. However, when we increase the training descriptors for K = 1024,
we find that the maximum error rank is almost the same as that in Fig. 3. In
fact, the VQ error rate is mostly dependent on the tree level L and the exclusion
portion p.

4.3 Effects of L and p

L and p are the two parameters that can be tuned in ExVQ. In this section,
we evaluate how L and p affect the trade off between the classification accuracy
and the VQ time. First, we evaluate the classification accuracy and VQ time
when we change L with a fixed p. We change L from 5 to 15 (with step size 2)
and test on one round of Caltech 101 with p = 1/5,K = 256. The classification
accuracy and the VQ time are shown in Fig. 4a. When L is larger than 11, the
VQ time is not reduced apparently. Besides, a larger L can induce a higher VQ
error. However, all classification accuracies are similar with different L. When
L is even larger, the VQ time cost will be bigger and the classification accuracy
will drop.

Next, we evaluate ExVQ with different exclusion portion p with a fixed L. We
change 1/p from 3 to 11 (with step size 2) and fix L = 10 on one round of Caltech
101 with K = 256. The classification accuracy and the VQ time are shown in
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(a) (b)
Fig. 4. (a) The classification accuracy and the VQ time with L and fixed p; (b) The
classification accuracy and the VQ time with 1/p and fixed L

Table 4. Comparison with other related methods on Caltech 101, K = 1024

ANN methods VQ time (s) Accuracy (%)

ExVQ 280 65.17
Spill tree 291 63.87

LSH 3247 63.97
LLC 4817 65.77

Fig. 4b. When p is smaller, the training of linear classifiers in the tree will be
more accurate. So the VQ error will be smaller. Meanwhile, in the leaf node of
the ExVQ tree, the active search set will be larger, which leads to longer VQ
time. However, the classification accuracies keep almost the same for different p.
When p is even smaller, the VQ time will cost more and the accuracy can be a
little better (the linear projection is more accurate).

4.4 ExVQ and Other Related Methods

Finally, we compare ExVQ with more related methods including spill tree [15],
LSH [18] and LLC [4]. We evaluate the VQ time and the classification accuracy
of these methods on Caltech 101 with K = 1024. We use the same tree structure
of ExVQ for spill tree: the same L and p. So we can compare their classification
accuracy under equivalent VQ time. We use the E2LSH package2 to implement
LSH, which is to search all near neighbors within a radius R of the query point.
In order to use it in the BOV model, we search exhaustively from the returned
results of LSH to get the nearest neighbor. In E2LSH, we use multiple radius
for near neighbor search to save the VQ time. For LLC, we use the published
Matlab code3 for testing. The results are shown in Table 4.

ExVQ has the shortest VQ time. Spill tree’s VQ time is close, but its classi-
fication accuracy drops significantly. Meanwhile, the VQ error rate of spill tree
(41% � 30%, although the error ranks are small) is much more than that of
ExVQ, which influences the classification accuracy. ExVQ has similar accuracy

2 http://www.mit.edu/~andoni/LSH/
3 http://www.ifp.illinois.edu/~jyang29/LLC.htm

http://www.mit.edu/~andoni/LSH/
http://www.ifp.illinois.edu/~jyang29/LLC.htm
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with LLC, but is about 20 times faster. Note that this comparison is qualitative
rather than quantitative, because different programming languages are used. We
also want to point out that ExVQ uses only a single core, while LLC utilizes mul-
tiple cores of a six-core CPU. Since LLC also needs to search kNN, ExVQ can be
used to accelerate it. LSH is effective in large scale NN search problems. However,
it is not suitable to get the nearest neighbor from the codebook with K = 1024,
which costs more time even than the exhaustive NN search. The VQ error of LSH
is not benign: its histogram of error ranks has a long tail, and the maximum error
rank is 997. LSH has a lower classification accuracy than ExVQ, which coincides
with our conjecture about how VQ errors impact the classification.

5 Conclusions

We presented ExVQ, an approximate nearest neighbor (ANN) search method
for vector quantization (VQ) in BOV models. ExVQ achieves 10x speedup than
exhaustive search and 2x speedup than state-of-the-art ANN methods. The key
insight in ExVQ is an exclusive strategy, which can safely reduce the search
range. The exclusion’s quality is guaranteed by learning an accurate classifier.
Thus, it is more efficient than the commonly used inclusive strategy in ANN
search. We also systematically evaluated how VQ errors affect the accuracy of
BOV-based visual classification, and conclude that some VQ methods have be-
nign VQ errors, which does not reduce the classification accuracy even with
30% VQ errors. On four benchmark datasets, ExVQ leads to indistinguishable
accuracy rates with the exhaustive search method and the FLANN method.

Future works include the following issues. First, effective exclusive NN search
on large databases (e.g., K = 100, 000) will be investigated. Second, integration
of multiple trees in ExVQ to further improve the NN search efficiency. Third,
ExVQ can be extended to search NN using arbitrary distance metrics, e.g.,
histogram intersection kernel [28]. Finally, we want to work out a theoretical
framework for analyzing the effect of VQ errors to classification.
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