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Abstract. Image analysis tasks such as classification, clustering, detec-
tion, and retrieval are only as good as the feature representation of the
images they use. Much research in computer vision is focused on finding
better or semantically richer image representations. Bag of visual Words
(BoW) is a representation that has emerged as an effective one for a va-
riety of computer vision tasks. BoW methods traditionally use low level
features. We have devised a strategy to use these low level features to
create “higher level” features by making use of the spatial context in
images. In this paper, we propose a novel hierarchical feature learning
framework that uses a Naive Bayes Clustering algorithm to convert a
2-D symbolic image at one level to a 2-D symbolic image at the next
level with richer features. On two popular datasets, Pascal VOC 2007
and Caltech 101, we empirically show that classification accuracy ob-
tained from the hierarchical features computed using our approach is
significantly higher than the traditional SIFT based BoW representation
of images even though our image representations are more compact.

1 Introduction

Over the years, research in computer vision has tried to narrow down the gap be-
tween raw image pixels and what humans see when they look at the image. The
efforts to do so can be very broadly categorized into two classes. The first class of
methods uses a robust representation based on relatively low level features (e.g.
SIFT based Bag of Words (BoW) representations [1, 2]). BoW representations
have received widespread success in a variety of computer vision tasks such as
image classification and object detection [1–3] owing to their invariance to scale,
spatial and rotational distortions. These methods also use domain knowledge.
Over the years, much research has gone into improving the performance of mod-
els that employ BoW representations. Non-linear SVMs, specialized kernels of
different kinds [4–7], and spatial pyramids [8] have all contributed to the success
of these representations. Most of these approaches tend to increase the overall
image representation size. While these methods have been successful in captur-
ing diversity in image patches at low levels, it is hard to incorporate them into a
hierarchical feature learning frameworks naturally as there is no systematic way
to create higher level symbols from combinations of lower level discrete symbols.
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The second class of methods continues to enrich low level features by using
hierarchical feature learning paradigms. Most hierarchical feature learning ap-
proaches such as Deep Belief Networks [9], Convolutional Neural Networks [10],
Convolutional Deep Belief Networks [11] and other hierarchical models [12] use
simple building blocks such as a logistic function to learn complex overall models
with many parameters to tune. Ideas like layered incremental training have made
the training of these models practical. Further they can model translation invari-
ance well using max pooling. The limitation in these models is that they need
real-valued inputs at each layer in the hierarchy and hence the traditional BoW
approaches that generate a large number of discrete symbols at lower levels can-
not be naturally incorporated into such hierarchical feature learning frameworks.
While the deep learning methods have been known to work well for a variety of
simpler datasets such as ILSVRC 2010, ImageNet and Hollywood 2, they haven’t
enjoyed much success on more challenging datasets such as PASCAL [13].

Research into bridging the gap between these two directions exists. Hyperfea-
tures [14] exploit the spatial co-occurrence statistics at scales larger than their
local input patches by aggregating local descriptors using methods such as GMM
and LDA. This paper is a step forward in this direction and tries to combine
the strengths of hierarchical feature learning and BoW learning paradigms. We
propose a generic framework for building discrete feature hierarchies in an un-
supervised fashion starting from any first level symbol image (e.g. dense SIFT
visual words). The framework has two parts: (a) a novel Naive Bayes Clustering
algorithm that clusters symbolic image patches using EM like updates to maxi-
mize the log likelihood of the data in terms of a mixture of naive Bayes discrete
multi-variate distributions, and (b) a maximum pooling on neighboring patches
using the posterior probabilities of clusters in data points to reduce the image
size at the next level. Evaluations on Caltech 101 and Pascal VOC 2007 indicate
our compact, meaningful representations outperform the traditional BoW and
deep learnt representations.

2 Background

In this section we briefly summarize the two prominent directions in computer
vision which endeavour to represent the visual world through features which are
invariant to various external parameters. However, while the BoW approaches
can improve by further exploiting the information content in the spatial layout
of images, the deep learning methods can enhance their utility by overcoming
the training and architectural complexity for learning large scale computer vision
systems. We intend to learn from these two directions and take an approach that
combines their powers to achieve superior representation.

2.1 Beyond Bag of Words

Visual BoW draws its inspiration from the analogous BoW models for document
representation that ignore the order of words. Traditional image classification in-
volves computing local features at interest points in an image and pooling these
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local features to give a global image representation. BoW essentially quantizes
each local feature into one of the visual words using a codebook and then rep-
resents each image as a histogram of visual words. Computing the codebook
involves identifying interesting local patches in an image, extracting features
or keypoints such as SIFT from these local patches and finally clustering (usu-
ally using K-means) to group key points from the training images into clusters;
the center of each cluster corresponds to a different visual word. Finally each
SIFT vector is quantized by assigning it the label of the nearest cluster center.
We represent each image as a histogram of the visual words, called the BoW
representation.

BoW represents an image using the distribution of visual word occurrences.
In doing so, it converts images of different sizes into fixed length representations.
This is especially convenient for the classification task that need fixed dimen-
sional inputs. However, BoW relies only on the appearance of the visual words
and ignores their spatial layout. This characteristic imparts invariance to scale,
translation and deformation, at the cost of discriminative power especially when
the spatial layout is important.

There have been many recent attempts to overcome the limitations of BoW [15].
These include part generative models like [16] and frameworks that use geometric
correspondence search [17]. These work well but are computationally expensive.
BoW can be enhanced [18] by extending the codebook to include doublets which
are pair-wise relations between features that lie in the same local neighbourhood.
Spatial pyramids [8] was a major breakthrough in this direction; it incorporates
spatial information by computing BoW representations for different image re-
gions at different scales and concatenating these representations and finally uses
a pyramid matching kernel [19] for classification. Almost everything in the book
- from kernels [4–7] to sparsity [20] to local codes [6] has been attempted to
enhance the power of these low level representations [21].

All these indicate the need of raising the semantic depth of the low level
features discovered through the BoW process. Bringing context of neighboring
features to define “higher level” features is clearly recognized as the next natural
step here. As described in section 1, hyperfeatures [14] were devised especially
to fulfil this need. In this paper, we continue to explore this middle ground.

2.2 Deep Learning

Deep learning networks [9, 11] and convolutional networks [10] represent an
orthogonal school of thought. These are driven by the idea that good internal
representations are hierarchical and can be learned directly from the data. These
networks have hierarchical layers (also called feature maps) stacked together;
each feature map learns artifacts in the image by assembling smaller artifacts
learnt by the preceding feature maps. Pixels are assembled into edges, edges into
object parts, object parts into objects, and objects into a scene; deep learning
thus exploits the spatial information in the images. These levels represent the
feature hierarchy.
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Convolutional networks typically work on overlapping patches at each level
(the overlap takes care of small translations) and summarize the features learnt in
a neighbourhood by a pooling method. Popular pooling methods are (a) average
pooling where the features computed over a region (called a cell) are averaged to
give the feature representation of the cell and (b) max-pooling where the feature
representation of the cell is the maximum of the features in the cell. Convolu-
tional networks usually alternate between feature maps and pooling layers to
achieve invariance to small translations and distortions.

Deep learning gives robust image representations. However insufficient depth
can hurt. Also, training deep networks involves making many design decisions,
huge training set, is computationally challenging and most of the feasible training
algorithms are mostly approximations of the actual objective. (In fact, attempts
at training deep networks had failed before [9].)

There have been a few attempts to bridge the gap between the two schools by
taking the middle ground and developing frameworks that exploit the advantages
of both [22]. In this paper, we intend to take a leap forward in this direction. Our
approach involves deep / hierarchical learning of higher level discrete symbols
from lower level discrete symbols (for instance BoW visual words) that lie in
the same spatial neighbourhood. Our approach is different from traditional deep
learning in that we work with symbols / visual words and not real valued features.
A novel Naive Bayes Clustering method allows us to cluster combinations of low
level symbols.

3 Naive Bayes Clustering

In order to build hierarchy of discrete features to compose symbols at the next
level using the right juxtapositions of symbols at the previous level, we need a
systematic way of dealing with the combinatorial explosion. For example, if we
use 1000 low level features obtained from BoW and create higher level symbols
from just 2× 2 patches of SIFT visual words, the potential combinatorial space
of discrete symbols at next level is O(1012), clearly too prohibitive to just do
traditional 2×2-gram histogram counting. If this were real-valued data, we could
use any clustering technique but since this is symbolic data in a large vocabulary
we need to use a non traditional clustering technique.

In this section we present a novel Naive Bayes clustering algorithm to cluster
multi-variate discrete data in general and discrete image patches in particular.
Note that in our experiments, we start with SIFT-BoW visual words; a discrete
image patch is thus a patch of such visual words. To define a clustering algorithm,
we need to define a “cost function”, a “cluster representation” and of “update
rules” to learn the cluster centers and cluster associations with data. First some
notation: Let X = {xn = (xn

1 . . . xn
D)}Nn=1 be the set of N data points. Each

feature Xd ∈ Vd comes from a discrete feature vocabulary Vd =
{
vd1 . . . v

d
Md

}
of

size Md = |Vd|. In image domain, each 2-D discrete image patch of size P × P
is treated as a one-dimensional vector of size D = P 2 and each symbol comes
from the same vocabulary, (i.e. Vd = V of dense SIFT clusters.)
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3.1 Mixture of Multi-variate Discrete Naive Bayes

Mixture models [23] are commonly used to partition the data into meaningful
clusters. Our patches are in P×P discrete space. Typically a parametric mixture
model is learnt by maximizing a (log) likelihood objective over the data:

J(Θ) = log

N∏

n=1

P (xn) =

N∑

n=1

log

K∑

k=1

P (k)P (xn|k) . (1)

Depending on the nature of the data, the mixture density function P (x|k) takes
different forms. For example when x ∈ RD any real-valued multi-variate density
function such as a full Gaussian can be used. In our case x ∈ VD and therefore in
this paper, we propose to use the simplest multi-variate discrete density function,
i.e. Naive Bayes (NB):

P (xn|k) =
D∏

d=1

P (xn
d |k) (2)

In NB clustering, therefore we learn a “mixture-of-Naive Bayes” parametric gen-
erative model (Eq. 1) over a multi-variate discrete data by conveniently assuming
independence among the features (Eq. 2). In general there are two constraints
that are also part of the objective. The priors must add up to one and the den-
sity functions over all possible values that each feature can take for any given
mixture component must also add up to one, i.e.,

K∑

k=1

P (k) = 1,

Md∑

m=1

P
(
vdm|k

)
= 1, ∀d = 1 . . .D (3)

A total of K ×
(
1 +

∑D
d=1 Md

)
parameters Θ =

{
P (k),

{
P (vdm)

}Md

m=1

}K

k=1
are

learnt using an EM-algorithm with the following update rules for the E-step (Eq.
4) and smoothed M-step (Eq. 5 and 6) from iteration t− 1 to iteration t.

Pt(k|xn) =
Pt−1(xn|k)Pt−1(k)

∑K
k′ Pt−1(xn|k′)Pt−1(k′)

(4)

Pt(k) =
λ+

∑N
n=1 Pt(k|xn)

λK +N
(5)

Pt(v
d
m|k) =

λ′ +
∑N

n=1 δ(xn,d = vdm)Pt(k|xn)

λ′Md +NPt(k)
(6)

Equation 4 computes the posterior probability of assigning a data point to cluster
k in the next iteration (t) given the parameters at the previous iteration (t− 1).
Equations 5 and 6 are the parameter updates based on the assignment of data
points to the clusters in this iteration. δ is the kronecker delta. Here we employ
basic laplacian smoothing that takes affect mostly if the number of points in a
cluster is small compared to the vocabulary size.
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3.2 Soft vs. Hard Clustering

The EM algorithm described above represents a soft clustering algorithm where
each data point is assigned to all clusters using the posterior probabilities i.e.,
Pt(k|xn) in each iteration. This increases the computational complexity of the
other update rules by a factor ofK. In traditional (hard) clustering in each itera-
tion, a data point is assigned to the cluster with the highest posterior probability.
The hard clustering version of the above soft clustering algorithm alternates be-
tween the assign cluster E-step (Eq. 7) and the cluster parameters M-step (Eq. 8
and 9):

κt−1(x
n) = arg max

k=1...K
{Pt−1(xn|k)Pt−1(k)} (7)

Pt(k) =
1

N

N∑

n=1

δ (κt−1(x
n) = k) (8)

Pt

(
vdm|k

)
=

∑N
n=1 δ

(
xn
d = vdm

)
δ (κt−1(x

n) = k)
∑N

n=1 δ (κt−1(xn) = k)
(9)

Hard clustering is faster since parameter updates take K times less time per
iteration. Combined with a smarter initialization strategy discussed below, we
found this to be better than soft clustering in terms of convergence and quality.

3.3 Smart Initialization

Sensitivity to initialization is a well known problem with clustering. Bad random
initializations typically result in slow convergence, poor clustering quality and
require multiple runs with different random initializations to generate the right
final clusters. This randomness and uncertainty in clustering initialization can
be mitigated by a number of smart initialization strategies [24]. In this paper, we
employ a farthest first point (FFP) initialization. The goal of this initialization
is to pick the initial K clusters such that they “cover” the entire data space well
by spreading themselves as far away from each other as possible. Representation
score of a point is defined as the similarity of a data point with the nearest
cluster. The similarity between two data points xn and xn′

, sim(xn,xn′
) =∑

k δ(x
n
d = xn′

d ) The FFP algorithm works as follows:

1. Initialize:
– First cluster randomly: k ← 1, μ1 = xr where r =random({1 . . .N})
– Representation scores: R (xn|μ1) = sim(xn, μ1), ∀n = 1 . . .N

2. Sample least represented point as the next cluster. If there are more than
one equally representative points, pick one randomly.:

μk+1 = arg min
n=1...N

R (xn|μ1 . . . μk) (10)

3. Update the representation scores of all data points:

R (xn|μ1 . . . μk+1) = max {R (xn|μ1 . . . μk) , sim (xn, μk+1)} , ∀n = 1 . . .N
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4. k ← k + 1, repeate steps 2 through 4 while k < K

FFP based smart initialization gives significantly better clusters and faster con-
vergence than traditional random initializations.

4 Learning Hierarchical Bag of Words

Any form of vector quantization gives a symbolic representation to the keypoints.
Kmeans as a vector quantization framework has the limitation that it can cluster
real valued keypoints only, because it has no distance metric to compare symbols.
This is the primary hurdle that has prevented the evolution of models that
learn hierarchical bags of features. As described in section 3.2, the NB clustering
algorithm is designed to cluster symbolic data and hence it can be used to
quantize discrete symbolic vectors. With this useful tool, we are prepared to
exploit the principles of deep learning to learn features in the BoW domain.

4.1 Approach

We start conventionally by employing K-means on features computed at local
image patches to give us symbol representations for the low level keypoints.
Given these representations, we compute BoW representations of the images:
we refer to these as our first level image representations / features. However,
we do not lose the symbolic image yet, for it has spatial context. Adhering
to the conventional mode of feature extraction, we collect keypoints (vectors
of symbols) from patches in a dense grid over the level 1 symbol image. We
quantize these symbolic vectors using the naive bayes clustering approach to
get another level of symbols and another symbol image in turn. The symbols
at this level are aggregations of the symbols at the previous level that lie in
the same local neighbourhood. We compute the BoW representation of these
level 2 symbol images and call these the second level image representations. We
have thus devised a hierarchical feature extraction scheme that is independent
of the way we get the visual words at any level: this process can be repeated any
number of times to get a desired level of image representation. Figure 1 describes
our approach.

4.2 Maximum Pooling

Spatial pooling is an idea borrowed from the deep learning community that in-
troduces compactness in the representation and imparts invariance to distortions
by reducing the spatial resolution. Conventionally, spatial pooling is done over
a grid of cells where the keypoints within each cell are summarized by a single
keypoint. For a cell c spanning P ×P symbolic keypoints (xn, n = 1, . . . , P 2), we
define the cell representative αc to be the symbol with the maximum posterior
probability as given by

αc = argmax
n
{P (xn|κ(xn))P (κ(xn))} (11)
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Fig. 1. Block diagram of our approach. SIFT features are computed on the raw image
patches and quantized using K-means to get the first level symbol image. Henceforth,
keypoints at any level of the hierarchy are collected from patches in a dense grid over the
symbol image at the previous level. These keypoints are clustered using NB clustering
and quantized to get the the symbol image at the current level. This process can be
repeated any number of times. BoW representations can be computed using the symbol
image at any level of the hierarchy and used for classification.

where κ(xn) is the cluster representative of xn. In our experiments, we follow
the usual convolutional network maxpooling protocol which uses non-overlapping
patches of size 2× 2 pixels.

5 Experiments, Results and Discussions

In this section, we use the NB clustering to learn hierarchical feature represen-
tations and use the learnt representations for the task of image classification.
We first demonstrate our approach on a simple two class classification prob-
lem, and later show comprehensive results on two popular object classification
datasets, namely Caltech 101 and Pascal VOC 2007. In this process, we gain
insights into the learning by studying the effect of the parameters like the patch
size (p), the size of the symbol space at each level (K) and the level of the hi-
erarchy (l). We argue that the method learns semantically meaningful concepts
by assessing the objective we are trying to achieve. We also demonstrate that
hierarchical representations learnt through the NB clustering of visual words are
better representations and outperform the traditional BoW method of image
classification.

Experimental Setup: In all the following experiments, we extract SIFT fea-
tures over a dense grid using a scale of 12 and a shift of 6 pixels. Our baseline
BoW representations are computed by clustering the SIFT vectors into 1000
visual words. For classification, we use a χ2 homogeneous kernel map [3] on the
BoW histograms and use a linear pegasos SVM [25].
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5.1 Two Class Classification: Okapi vs Llama

For the first set of experiments, the two classes we work with are llama and
okapi (Figure 2a) which are part of the Caltech 101 dataset. We sample 15
images randomly for training and testing each from both these classes. This
gives us training and testing sets of sizes 30 images each. These classes are hard
to differentiate because the two animals look structurally similar and are found
against similar looking backgrounds.

For these experiments, we use our baseline BoW representations to compute
Level 2 features using patch sizes p2 = 2, 3 with shifts 1 and 2 respectively and
vocabulary size K2 = 50, 100, 150, 200, 250, 500 (from this point on, we denote
the patch size and the size of the symbol space at the nth level by pn and Kn

respectively). BoW on the level 2 features given by each combination of p2 and
K2 gives us a different level 2 representation. We compute Level 3 features using
the level 2 representation given by p2 = 2,K2 = 200. For level 3, we use p3 = 2
with shift of 1 and K3 = 50, 100, 200. We use classification accuracy as the
performance metric in our evaluations in these experiments.

Figures 2b and 2c compare the classification performance of hierarchical rep-
resentations with the baseline BoW. In 2b we fix the representation level (l = 2)
and vary K2 and p2; in 2c we fix p2 and vary the representation level (l = 2, 3)
and K2 and K3. In 2b, level 2 features significantly outperform level 1 features.
Also, a patch size of 3 works gives better accuracy. At the representation size
of 200, the performance gap between level 1 and level 2 features is 30%. In 2c
The plots demonstrate the improvement in classification accuracies as we build
higher representations. For level 3, we hit the 100% accuracy bound at K3 = 100
while for level 1, accuracy is merely 68% for K1 = 1000. Hence we achieve 32%
higher accuracies using 1/10th representation size.
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Fig. 2. Two-Class (Llama vs Okapi) Classification. (a) Llama (top) and Okapi (bot-
tom) (b) Variation of accuracy with level 2 patch size and size of symbol space. (c)
Classification accuracy based on Level 2,3 features; We chose p=2.
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Figures 3a and 3b investigate what goes on at the core of the NB clustering
algorithm during the vocabulary building procedure. We plot the average pos-
terior probability per symbol per symbolic patch over the epochs of the training
procedure. This is the average probability of a symbol to assume a particular
position in a patch. This in turn determines the probability of a patch being part
of a cluster of patches. In (c), we fix the level of representation (l = 2) while
varying p2 and K2; in (d) we fix patch size and vary the representation level
(l = 2, 3) and the number of clusters K2 and K3. It can be observed that bigger
patches have lower average probabilities per symbol. This can be attributed to
the fact that clustering a vector of 9 symbols is tougher than clustering a vector
of 4 symbols because bigger patches are more complex in the number of ways
the symbols are aligned in a patch. Another observation is that this probability
increases as we increase the number of clusters. This can be explained by stating
that increasing the number of clusters is allowing the arrangements of symbols in
a patch more states to be in. Thus, each patch is more likely to find a state that
it is most similar to. Finally, we comment on the increase in these probabilities
across levels of the hierarchy. Figure 3b shows that the probabilities are higher
for level 3 (for a fixed K). This shows that patches at this level are more likely
(than patches at level 2) to find states / configuration of symbols that describe
them. This has a direct bearing on the purity of the representations in terms of
what they mean semantically.
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Fig. 3. (a) Plot of mean posterior probabilities per symbol per patch over epochs. Effect
of the patch size (p) and size of symbol space (K) can be seen here. (b) NB Learning for
different sizes of symbol space (K) across hierarchical levels 2 and 3. Higher probabilities
for Level 3 show that the method is learning semantically meaningful concepts.

5.2 Caltech 101

Caltech 101 contains a total of 9146 images, split among 101 distinct object
categories. In these experiments, we sampled 30 random images for training
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Table 1: Classification accuracies on Caltech 101 for combinations of Spatial Pyramid
and NB hierarchical features (and the baseline BoW). Table 2: Classification Accuracies
on Caltech. BoW represents our baseline BoW results, BoW* represents the results
quoted in [8]. Note that [8] uses pyramid kernel (and we use χ2) and different scale,
shift for SIFT computation. NBC represents our best results corresponding to L2,
K2 = 250 with level 2 SPM.

Table 1. Caltech 101- NB + SP

SPM BoW L2(250) L3(200)

L 0 43.4 ± 1.2% 60.4 ± 0.7% 61.3 ± 1.4%
L 1 59.0 ± 0.8% 68.2 ± 0.8% 66.6 ± 1.6%
L 2 68.3 ± 1.3% 72.4 ± 0.6% 69.8 ± 0.9%
L 3 67.6 ± 0.7% 67.8 ± 1.1% 66.3 ± 1.4%

Table 2. Classification on Caltech

Method Accuracy

BoW* [8] 64.6 ± 0.8%
CDBN [11] 65.4 ± 0.5%
BoW 68.3 ± 1.3%
NBC 72.4 ± 1.8%

from each of the 101 categories, getting a total of 3030 training images; the rest
of the images were treated as testing images; however, as in [8], we limited the
number of testing images per category to 50. These experiments were repeated 5
times with random subsampling and the mean classification accuracies over the
five experiments are reported. To compute the BoW codebook, we sampled 5
training images from each category (505 images in all). We trained a one-vs-rest
SVM for each class and the test image was assigned the label of the classifier
with the highest score and report the accuracy of the classification.

For level 2, we use patches of sizes 2× 2 and 3× 3 with shifts of 1 and 2 pixels
respectively. To compute the level 2 vocabulary, we sample 5 images randomly
from each class and further sample each of these images to collect 25% of the
total keypoints per image; we use K2 = 100, 250. For the third level, the patch
size is 2 × 2 with a shift of 1 and K3 = 100, 200, vocabulary is computed using
5 random training images per class and using 25% of the keypoints per image.
The classification pipeline remains the same as in the baseline case.

The classification accuracies for these procedures can be seen in Tables 1 and 2.
It can be seen that hierarchical features learnt using the NB clustering approach
significantly outperform the baseline BoW representation. Table 1 compares the
classification performance of the baseline BoW representation with features at
levels 2 and 3 and also shows further improvement in classification performance
by using spatial pyramids on top of the image representations derived through
the various methods. Hence, the representative power of hierarchical features can
be further enhanced by using spatial pyramids. Note that in these experiments,
we use only the spatial pyramid representation and not the pyramid matching
kernel. As mentioned earlier, we use a homogeneous χ2 kernel map; In Table 2,
there are two rows devoted to BoW. BoW represents our baseline experiments
(with χ2 kernel), BoW* reports the accuraries quoted in [8] (Note that [8] uses
SIFT features computed at a scale of 16 and shift of 8, and a pyramid matching
kernel).
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Kindly note that while the spatial pyramid representation size increases many
folds per level, our hierarchical representations typically become more compact.
We achieve better classification performance despite this fact.

5.3 Pascal VOC 2007

Pascal VOC 2007 data set has a total of 9955 images, split into 5011 training
and 4944 testing images, distributed across 20 object categories. We use the
entire dataset for our experiments. In these experiments, the BoW codebook
was computed by clustering the keypoints collected from 10 random training
images from each category (200 images in all). The classification scheme here
is different from our experiments on Caltech. Pascal dataset allows multiple
object categories in the same image, hence computing classification accuracies
by assigning the class label of the classifier that returns the highest score to
the test image is not fair assessment. In this set of experiments, we train a
classifier for each class and compute Average Precision (AP) over the ranked list
of test images. We finally report the mean AP over all the classes. Note that
for our final image representation, we use a 2nd level spatial pyramid [8]. As
mentioned in section 1, deep learning methods have not enjoyed much success
on this challenging dataset. Unlike Caltech 101, where the images are aligned and
centered, Pascal has significant variation in the scale, position and orientation of
the object in the image; it also allows multiple objects in the image. Note that
CDBN [11] results are not available on Pascal 2007.

For level 2 features, we experiment with patch sizes of 2× 2, 3× 3 with shifts
of 1 and 2 respectively. To compute the level 2 vocabulary, we sample 10 images
randomly from each class and further sample each of these images to collect
25% of the total keypoints per image; we use K2 = 100, 250. For level 3, we
use patches of size 2 × 2 with a shift of 1 and K2 = 100, 200. We use the same
classification pipeline to classify the features at level 2 and 3. Table 3 displays
the classification results for the mentioned methods. Here again, we significantly
outperform the baseline results. While the baseline representation achieves a
mean AP of 52.8% using a representation size of 1000, our L3 representation
achieves 57% at a smaller representation size of 200. Hence, our representation
is both richer and more compact.

Table 3. Classification Results on the Pascal VOC 2007 dataset. The table shows
mean classification APs over 20 classes.

Method SIFT BoW L2 L2 L2 L3 L3 L3

p - 3 3 2 2 2 2
K 1000 100 250 100 250 100 200
AP 52.84 54.90 55.86 55.64 56.20 56.48 57.04
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5.4 Discussion

Our results on two classes explore the semantic meaning of the learnt hierarchical
representations. Empirical comparisions with spatial pyramids reveal that we can
achieve better classification accuracies with a much smaller representation size.
Both these methods endow BoW with means to use spatial context. However,
while spatial pyramids intend to discover the same low level artifacts in different
regions of the image, we learn aggregates of such low level artifacts in the hope
that these artifacts are part of a larger context and repeating this process of
aggregation over and over will eventually lead us to learning the objects we are
trying to classify.

The complexity of our representation is dictated by the number of levels in the
hierarchy, the size of the patches and the size of the symbol space at each level.
Deciding the optimal complexity requires all these parameters to be taken into
account. This is similar to determining the number of clusters in clustering or any
other model complexity determination problem. We believe this is still an open
issue that may be addressed by empirical parameter sweeps or regularization
theory as research in this field continues. In this paper, we experiment with 2-3
levels of hierarchy.

By empirically outperforming both SPM and CDBN representations on the
two datasets, we demonstrate that our representations are both richer and more
compact. For example, in Table 3, our L3 representation of size 200 outperforms
the baseline representation of size 1000 significantly. The performance of our
approach can be further improved by allowing a larger representation size, i.e.
by using multiple scales of SIFT features as in [21]. In these experiments, our
primary focus was to demonstrate the superiority of our representation over
traditional BoW.

6 Conclusions

In this paper we devised a clustering framework for symbolic data points which can
be used to learnhierarchical features startingwithdiscrete data (such asBoWsym-
bols.) Our method attempts to bridge the gap between two directions of research
by developing a framework that learns from both approaches. We produce exper-
imental evidence to argue that our hierarchical representations are semantically
meaningful. We back this claim by outperforming the traditional BoW and deep
learning representations on popular image classification datasets. It is quite pos-
sible that there are better distance functions between discrete features that may
improve the learning procedure and the representative power of such a framework.
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