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Abstract. In computer vision problems such as pair matching, only bi-
nary information - ‘same’ or ‘different’ label for pairs of images - is given
during training. This is in contrast to classification problems, where the
category labels of training images are provided. We propose a unified
discriminative dictionary learning approach for both pair matching and
multiclass classification tasks. More specifically, we introduce a new dis-
criminative term called ‘pairwise sparse code error’ for the discrimina-
tiveness in sparse representation of pairs of signals, and then combine it
with the classification error for discriminativeness in classifier construc-
tion to form a unified objective function. The solution to the new objec-
tive function is achieved by employing the efficient feature-sign search
algorithm. The learned dictionary encourages feature points from a sim-
ilar pair (or the same class) to have similar sparse codes. We validate
the effectiveness of our approach through a series of experiments on face
verification and recognition problems.

1 Introduction

Different from many classification problems where the specific class label of each
image is given during training, only binary information such as same/different or
relevant/irrlevant is provided for training data in applications such as face veri-
fication (given a target and a query image, determine whether they are from the
same person), pair matching, image retrieval, etc. Typically, a discriminative sim-
ilarity measure is learned through metric learning [1–4] from pairs of training im-
ages labeled as ‘same’ or ‘different’; this provides less specific information than
known classes - category labels. In this paper, we propose a framework to learn a
discriminative dictionary satisfying pairwise constraints.The learned dictionary is
suitable for pair matching problems with the pairwise constraints from the binary
similarity or dissimilarity information; in addition, it is also suitable for classifi-
cation problems given pairwise constraints about category information.

Sparse coding [5] approximates a signal y as a linear combination of a few
atoms from a learned dictionary A, i.e., y = Ax, and leads to good performance
in numerous applications. The learned dictionary A is critical to performance. K-
SVD [6] minimizes a reconstruction error to learn an over-complete dictionary.
However, despite its many successful applications, K-SVD is not suitable for
classification, where the dictionary should be not only representative, but also
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discriminative. Hence, some supervised dictionary learning approaches incorpo-
rate classification error into the objective function to construct a dictionary with
discriminative power. However, such frameworks consider only discriminative-
ness in the classifier construction, but do not guarantee the discriminativeness
in the sparse representations of input signals. The discriminative capability of
a dictionary usually comes from category label information. We will show that
considering the pair similarity/dissimilarity constraints without category labels
during dictionary learning can also improve the discriminative power of a dictio-
nary; no existing dictionary learning approach has fully explored this property.
Our dictionary learning approach explicitly integrates pairwise constraints for
sparse codes of input signals and a linear predictive classifier into one objective
function. The learned dictionary encourages signals from the same class (or a
similar pair) to have similar sparse codes, and signals from different classes (or
a dissimilar pair) to have dissimilar sparse codes, illustrated in Figures 1 and 2.
The similarity can be thresholded to yield a binary decision of same/different
(face verification), or it can be used to find the most similar face in a gallery
(face recognition). The main contributions of this paper are:

– We present a dictionary learning framework with explicit pairwise constraints,
which unifies the discriminative dictionary learning for pair matching and
classification problems.

– Our framework furthermore integrates the pairwise constraints for sparse
codes of input signals and a linear predictive classifier into the objective
function for dictionary learning, which addresses the desirable properties of
discriminativeness in the sparse representations of signals, and the discrimi-
nativeness in classifier construction.

– The objective function can be optimized via the efficient feature-sign search
algorithm [7].

– Our approach is validated on various public face verification and recognition
benchmarks.

1.1 Related Work

Metric learning (ML) aims at learning a discriminative similarity measure be-
tween different images [1–4]. An appropriate distance metric plays a very im-
portant role in many learning problems. Most work in metric learning, including
LDML [1], MkNN [1], ITML [2], CSML [3], etc, relies on learning a Mahalanobis
distance to map the feature space into a target space [4]. Less work, however, has
been done for face verification using dictionary learning with pairwise similarity
and dissimilarity constraints on input training examples.

[5] used sparse representations for face recognition (1:N matching problem
which finds a nearest neighbor of a given probe in a gallery face set) by relating
the problem of finding the most similar face to noiseless signal reconstruction.
Since then, many other researchers have developed methods for face recognition
using sparse representations or dictionary learning [5, 9–14]. Although many
of these existing algorithms have been shown to perform well in classification
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Fig. 1. An example of sparse codes (HoG feature) and similarity scores obtained by
K-SVD dictionary learning and our proposed discriminative dictionary learning with
pairwise constraints. Image pairs are from test set 1 of the LFW [8] dataset. (a) Original
faces of the ‘same’ pair and their similarity scores obtained by ‘K-SVD’ and ‘DDL’.
(b) Sparse codes for the ‘same’ pair obtained from ‘K-SVD’(blue) and ‘DDL’(red),
respectively. (c) Original faces of a ‘different’ pair. (d) Sparse codes for the ‘different’
pair. It can be seen that our dictionary encourages a pair from ‘same’ person to have
similar sparse codes while a pair from ‘different’ persons to have dissimilar sparse codes.

(e.g. face recognition) applications, most of them do not explicitly deal with
dictionary learning with pairwise constraints - when only binary information
such as same/different or relevant/irrelevant is given in the training stage (e.g.
face verification). Our dictionary learning framework is more general since it
deals with face verification and face recognition problems simultaneously.

To enhance discrimination power, our dictionary learning framework explic-
itly integrates pairwise constraints for sparse codes of input signals and a linear
predictive classifier into the objective function during training. Most previous
approaches treat dictionary learning and classifier training as two separate pro-
cesses, such as [15–20]. In these approaches, a dictionary is typically learned
first and then a classifier is trained based on it. There are also sophisticated
approaches [13, 21–23] combining dictionary learning and classifier training in
a mixed reconstructive and discriminative formulation. Our approach falls into
this category. We learn a single dictionary and an optimal classifier jointly.

Laplacian Sparse Coding [24] explicitly introduces a locality preserving con-
straint among similar local features in the sparse coding step to preserve the
consistence of the sparse codes. This is different since our approach is to learn
a dictionary which encourages signals from a similar pair (or the same class) to
have similar sparse codes. Furthermore, our approach integrates a linear predic-
tive classifier into the objective function to learn the dictionary and the classifier
simultaneously while [24] learns the dictionary and the classifier separately.

2 Sparse Coding and Dictionary Learning

2.1 Sparse Coding

Let Y = [y1,y2, ...yN ] ∈ R
n×N be the data matrix of N input signals, where

yi ∈ R
n denotes the i-th input signal with n-dimensional feature description.
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(d) DDL-PC2(ours)

Fig. 2. Examples of sparse codes using dictionaries learned by K-SVD and our ap-
proaches on the Extended YaleB [25] and AR [26] databases. X axis indicates the
dimensions of sparse codes. Y axis indicates the average of absolute sparse codes for
different testing images from the same class. The first and second row correspond to
class 9 in Extended YaleB (32 images) and class 30 in AR database (6 images), respec-
tively. The consistency of sparse codes of signals from the same class should have low
entropy (i.e., less high values) of these average sparse codes.

Given a dictionary A = [a1,a2, ...,aK ] ∈ R
n×K , where ai is the i-th dictio-

nary atom (l2-normalized), sparse coding [5] with l1 regularization computes
the sparse representations X = [x1,x2, ...,xN ] ∈ R

K×N of the input signals Y ,
through solving the following l1-minimization problem,

X∗ = argmin
X

N∑

i=1

(‖yi −Axi‖22 + γ‖xi‖1) (1)

where constant γ is a sparsity constraint factor and the term ‖yi−Axi‖22 denotes
the reconstruction error. Each input signal yi can be represented as a sparse lin-
ear combination of a few dictionary atoms. The feature-sign search algorithm [7]
is an efficient algorithm that can be used to solve (1).

2.2 Dictionary Learning

The goal of dictionary learning is to find optimized dictionaries that provides
a succinct representation for most statistically representative input signals. The
learning procedure can be formulated as solving the following problem [7],

< A∗, X∗ >= argmin
A,X

N∑

i=1

(‖yi −Axi‖22 + γ‖xi‖1) (2)

The optimization problem is convex in A (while holding X fixed) and convex in
X (while holding A fixed), but not convex in both simultaneously. Usually, the
above objective is iteratively optimized in a two stage manner, by alternatively
optimizing with respect to A (bases) and X (coefficients) while holding the other
fixed. The formulation (2) only focuses on minimizing the reconstruction error
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and does not consider the discriminative power of a dictionary for classification
tasks. Hence, some supervised approaches [12, 13, 21–23] have been proposed to
improve the discriminative power of dictionary, by integrating the category label
information into the objective function of dictionary learning. However, most of
them do not explicitly deal with dictionary learning with pairwise constraints.

3 Discriminative Dictionary Learning with Pairwise
Constraints (DDL-PC)

In this section, we present our Discriminative Dictionary Learning with Pairwise
Constraints algorithm which takes into account the relationships of each pair of
learned sparse codes (xi,xj). Here, the intuition is to encourage signals from a
similar pair to have similar sparse codes. We subsequently focus on the effects of
adding a discriminative term, and a classification error term into the objective
function in (2). We refer to them as DDL-PC1 and DDL-PC2, respectively.

3.1 DDL-PC1

To obtain discriminative sparse codes x with the pairwise constrained dictionary
A, the objective function for dictionary construction is defined as:

< A∗, X∗ > = argmin
A,X

N∑

i=1

(‖yi −Axi‖22 + γ‖xi‖1) + β

2

N∑

i,j=1

(‖xi − xj‖22Mij)

= argmin
A,X

N∑

i=1

(‖yi −Axi‖22 + γ‖xi‖1) + β(Tr(XTXD) − Tr(XTXM))

= argmin
A,X

N∑

i=1

(‖yi −Axi‖22 + γ‖xi‖1) + β(Tr(XTXL)) (3)

where the constants γ and β control the relative contribution of the correspond-
ing terms. The first term ‖yi − Axi‖22 is the reconstruction error term, which
evaluates the reconstruction error of the approximation to the input signals.
The second term ‖xi‖1 is the regularization term for sparsity. The last term,
which is new and proposed here, is the discrimination term called ‘pairwise
sparse code error’ based on pairwise constraints which are encoded in matrix
M . D = diag{d1, ...dN} is a diagonal matrix whose diagonal elements are the

sums of the row elements of M (see below), di =
∑N

j=1 Mij . L = D − M is
the Laplacian matrix. Matrix M has different forms depending on the problems
being considered. For example, in face verification, the relationship of a pair (yi,
yj) is given as same/different. Thus, given the sets of ‘same’ and ‘different’ pairs
S and D, we define matrix M to encode the (dis)similarity information as

Mij =

⎧
⎨

⎩

+1, if (yi,yj) ∈ S
−1, if (yi,yj) ∈ D
0, otherwise

(4)
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3.2 DDL-PC2

Although (3) can already be used for classification by defining M based on the
pairwise similarity constraints with category labels (see Sec. 3.4), the classifica-
tion error can be further included as an additional term in the objective function
in (3). Here we use a linear predictive classifier f(x;W ) = Wx. The objective
function for learning a pairwise constrained dictionary A with both reconstruc-
tive and discriminative power can then be defined as follows:

< A∗, X∗,W ∗ >= argmin
A,X,W

N∑

i=1

(‖yi −Axi‖22 + γ‖xi‖1)

+
β

2

N∑

i,j=1

(‖xi − xj‖22Mij) + α

N∑

i=1

(‖hi −Wxi‖22 + λ‖W‖22) (5)

The new term ‖hi −Wxi‖22 + λ‖W‖22, where ‖hi −Wxi‖22 represents the clas-
sification error and ‖W‖22 is the regularization penalty term, supports learning
an optimal linear predictive classifier. hi = [0, 0, ...1...0, 0]T ∈ R

m (m: number of
classes) is a label vector corresponding to an input signal yi, where the non-zero
position indicates the class label of yi.

3.3 Optimization Procedure

In this section, we only describe the optimization procedure for DDL-PC2 since
DDL-PC1 utilizes the same procedure except that α = 0 in (6)(7)(8) and the
classifier W update step is not considered during dictionary learning. Solving (5)
is a challenging task because the objective function is not convex for A, X and
W simultaneously; but fortunately, it is convex in one variable when the other
two variables are fixed. In [7], (2) was solved by an efficient feature-sign search
algorithm. Motivated by [7], we optimize A, X and W alternatively. Algorithm
1 presents the pseudocode of algorithm DDL-PC2.

Computing Sparse Codes X with Fixed A and W . When A and W
are fixed, we optimize xi alternately and fix other xj(j �= i) for other signals.
Optimizing (5) is equivalent to:

min
xi

L(xi) + γ‖xi‖1 (6)

whereL(xi) = ‖yi−Axi‖22+β(2xT
i (XLi)−xT

i xiLii)+α(xT
i W

TWxi−2xT
i W

Thi),
Li is the i

th column of L and Lii is the (i, i) element of L. (6) is exactly the prob-
lem that the feature-sign search algorithm in [7] solves. [7] iteratively searches for
the coefficient sign vector θ for xi, then (6) reduces to a standard, unconstrained
quadratic optimization problem (QP). To compute the analytical solution, we cal-
culate the gradient of L(xi) with respect to xi:

∂L(xi)

∂xi
= 2AT (Axi − yi) + 2β(XLi) + 2α(WTWxi −WThi) + γθ (7)
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Finally the analytic solution of xi can be obtained when we have ∂L(xi)
∂xi

= 0:

x∗
i = (ATA+2βLiiI +2αWTW )−1(ATyi+2αWThi− 2β

∑

k �=i

xkLki− γθ) (8)

In practice, a very small β is chosen to guarantee the Hessian matrix (ATA +
2βLiiI) to be positive semidefinite, hence (3) is convex.

Updating Dictionary A with Fixed X and W . Given X and W , we use
the Lagrange dual in [7] to optimize the following objective function:

min
A

N∑

i=1

‖yi −Axi‖22 s.t.‖aj‖22 ≤ c, ∀j = 1...K. (9)

The analytical solution of A can be computed as: A∗ = Y XT (XXT + Λ)−1,
where Λ is a diagonal matrix constructed from all the dual variables.

Updating Classifier W with Fixed X and A. Given X and A, we employ
the multivariate ridge regression model [22] to update W , with the quadratic
loss and l2 norm regularization:

min
W

N∑

i=1

‖hi −Wxi‖22 + λ‖W‖22, (10)

which yields the following solution: W ∗ = HXT (XXt + λI)−1.

Algorithm 1. Discriminative Dictionary Learning with Pairwise
Constraints-2 (DDL-PC2)

Input: input signals Y , Laplacian matrix L, label matrix H , regularization
constant γ, β and α, iteration number T̂
Output: learned dictionary A, classifier W and sparse code X.
Initialization: Compute initial A0 via K-SVD, initial X0, W0 using (1), (10)
for t = 1, 2, ...., T̂ do

Sparse Coding: compute sparse code X using (6);
Dictionary Update: update dictionary A using (9);
Classifier Update: update classifier W using (10).

end for

3.4 Matching Approach

Face Verification. In face verification or pair matching problems, a similarity
measure is typically learned from pairs of training images labeled as ‘same’ or
‘different’; this provides less specific information than known identities - image
labels. Given a training set of pairs, we first construct matrix M with their
pairwise relationships. For example, suppose three pairs of feature vectors are
given - (y1,y2) are features vectors from the same person, (y3,y4) are also
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features vectors from the same person and (y5,y6) are features vectors from
different persons. Matrix M would then be:

M =

⎡

⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4 y5 y6
y1 0 1 0 0 0 0
y2 1 0 0 0 0 0
y3 0 0 0 1 0 0
y4 0 0 1 0 0 0
y5 0 0 0 0 0 −1
y6 0 0 0 0 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

With the given training set of pairs and the corresponding matrix M , an opti-
mized discriminative dictionary A (initialized by K-SVD algorithm [6]) can be
learned using DDL-PC1. Then, when a new test pair yi and yj comes in, we
can compute the optimized sparse codes xi and xj with dictionary A by solving
(1). Finally, the cosine similarity [3, 27] of the two sparse codes is used as the
similarity metric between the image pair. This similarity is thresholded to yield
a binary decision of same/different.

Face Recognition. In face recognition, class labels are given for each image in
the training set. The pair relationships are derived from the category labels. If
yi and yj belong to the same class, we define Mij as 1; otherwise we set it to 0.
Matrix M encoding the (dis)similarity information can be defined as

Mij =

{
1, if (yi,yj) ∈ ck, k = 1...m
0, otherwise

(11)

There are two ways to construct the classifier W here. For DDL-PC1, we obtain
A and X first and then the matrix W is trained separately using (10). For
DDL-PC2, we obtain A and W jointly using Algorithm 1.

Then, when a new test sample yi comes in, we compute its sparse code xi

with respect to A by solving (1). Finally we simply use W to estimate a class
label vector for yi: l = Wxi, where l ∈ R

m. The label of yi is assigned as the
index j where lj is the largest element of l.

4 Experimental Results

We evaluate the proposed algorithm on the LFW dataset [8] for face verification
task, and the Extended YaleB database [25] and AR face database [26] for face
recognition task.

4.1 Face Verification

LFW Database. The Labeled Faces in the Wild (LFW) dataset was recently
introduced as a challenging benchmark for face verification in unconstrained
environments. Real-world images in the LFW dataset exhibit visual variations
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caused by pose, facial appearance, age, lighting, expression, occlusion, scale,
camera, misalignment hairstyle, etc.

The dataset comes with a division of 10 splits/folds (disjoint subject identi-
ties) for cross validation with three evaluation protocols: unsupervised, image-
restricted, and image-unrestricted protocols [8]. We only consider the most com-
mon protocol called ‘image-restricted’: in this setting, it is known whether an
image pair belongs to the same person or not, but identity information of the
images is not provided. The aligned version lfw-a is used in all experiments.

In our evaluations, for each independent fold, we randomly choose 500 pairs of
‘same’ and 500 pairs of ‘different’ from the training set (other 9 splits, 5400 image
pairs) to learn an optimal dictionary through DDL-PC1. The learned dictionary
consists of 510 atoms. γ is set to be 30 and β is set to be 0.1.

Experimental Setup. All the faces are cropped and rescaled to 80 × 148.
According to [28–31], combining multiple similarities from different descriptors
usually boosts performance. In our experiments, the intensity, HoG, LBP, and
Gabor features are used. Finally, the four scores for different features are fused by
averaging (no training) or training SVM. For extracting HoG and LBP features,
we divide the faces into blocks of 20×20 and extract the 16-bin HoG feature and
the 59-bin uniform LBP feature for each block. For Gabor features, we adopt
five scales and eight orientations of the Gabor filters. The final Gabor feature
vector is obtained by concatenating the responses at every 10 pixels in order to
reduce the dimensionality of the feature vector to manageable size.

Fig.3 shows some examples (5 ‘same’ and 5 ‘different’) of testing image pairs
from the LFW dataset. The similarity scores obtained from KSVD dictionary
learning and our DDL-PC1 are listed under each pair. As it shows, compared to
KSVD, higher similarity scores for the ‘same pairs’ and lower similarity scores
for ‘different’ pairs are obtained by our discriminative dictionary learning.

KSVD: 0.004 KSVD: 0.087 KSVD: 0.002 KSVD: 0.263 KSVD: 0.091

DDL: 0.500 DDL: 0.620 DDL: 0.464 DDL: 0.372 DDL: 0.205

KSVD: 0.232 KSVD: 0.217 KSVD: 0.102 KSVD: 0.141 KSVD: 0.133

DDL: 0.066 DDL: 0.101 DDL: -0.010 DDL: 0.057 DDL: 0.013

Fig. 3. Examples of some image pairs from the LFW dataset and the similarity scores
obtained from KSVD dictionary learning and proposed DDL-PC1 respectively. Top
row: Five examples of ‘same’ pairs; Bottom row: Five examples of ‘different’ pairs.
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Table 1 summarizes the performances of our method with individual feature
and their fusion. The first column shows the face verification accuracy (at equal
error rate) obtained from using the Euclidean distance of the original feature
vector pairs as similarity measure. The second column shows the accuracy from
the dictionary learned by K-SVD (followed by the l1 based sparse coding) and the
third column shows those from the proposed DDL-PC1. The combined scores are
the results from fusing the four scores for all features by averaging (no training)
or training SVM. Clearly, DDL-PC1 works best in all situations comparing to
‘Euclidean’ and ‘K-SVD’.

Table 1. Mean (± standard error) verification accuracy at equal error rate of different
feature descriptors and their fused scores on LFW dataset. Euclidean, dictionaries
learned by K-SVD and the proposed DDL-PC1 are compared.

Descriptor Euclidean K-SVD DDL-PC1

Intensity 0.7140±0.0056 0.7424±0.0051 0.7870±0.0048
HoG 0.6803±0.0046 0.7524±0.0049 0.8030±0.0037
LBP 0.6763±0.0054 0.7433±0.0052 0.7876±0.0032
Gabor 0.6920±0.0041 0.7646±0.0047 0.7996±0.0052
Combined (Avg) 0.7013±0.0045 0.8056±0.0045 0.8410±0.0041
Combined (SVM) 0.7216±0.0047 0.8196±0.0036 0.8603±0.0033

Comparison with the State-of-the-art Methods. Table 2 shows the face
verification accuracy of our method compared with recent methods with the
Image-Restricted protocol. The ‘flip’ means that when comparing image pair I
and J , we also compare I and the horizontally flipped image of J to reduce the
effects of pose variation. Then, the average of the two scores is taken as the
final similarity score. Figure 4 contains the ROC curve of our approach (dotted
red line), along with the ROC curves of selected recent state-of-the-art methods
with the Image-Restricted protocol for presentation clarity.

The results show that the verification accuracy of our approach is comparable
with the state-of-the-art methods on the LFW benchmark in the challenging
image-restricted protocol. Moreover, the methods marked by ‘∗’ use training
data outside of LFW for facial point detection or pose/illumination classification
and so on. Those can have a significant impact on verification accuracy, thus
not directly comparable. Kumar [32] achieved excellent results, marginally lower
than ours. However, the work of Kumar requires expensive training of high-level
classifiers incorporating a huge volume of images outside of the LFW dataset.
The LE method [30] relies on facial feature point detectors. Predict-Associate [33]
not only relies on facial feature point detectors, but also uses the Multi-PIE
dataset with identities covering 7 poses and 4 illumination conditions as prior
knowledge. For other methods we are in the same category with, [31] is most
comparable. Wolf [31] also combines multiple descriptors; their method adds up
several layers of information and leverages metric learning [33]. Moreover, one
disadvantage of Wolf’s method is that it requires background samples (a fixed set
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Table 2. Mean (± standard error) verification accuracy on the LFW dataset, image-
restricted protocol using the proposed DDL-PC1, and the same model except the ad-
dition of the ‘flipped’ image idea. ‘∗’ denotes methods using outside training data.

Method Accuracy

LDML [1] 0.7927±0.0060
Hybrid [29] 0.8398±0.0035
Combined b/g samples based [31] 0.8683±0.0034
*Attribute and Simile classifiers [32] 0.8529±0.0123
Single LE + holistic [30] 0.8122±0.0053
*Multiple LE + comp [30] 0.8445±0.0046
*Predict-Associate [33] 0.9057 ±0.0056
LARK + OSS [34] 0.8512 ±0.0037

DDL-PC1 0.8603 ±0.0033
DDL-PC1 (flip) 0.8710 ±0.0035
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LARK supervised
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Fig. 4. ROC curves for View 2 of the LFW dataset (Image-Restricted protocol). Only
shown with the selected best results that recently reported for clarity.

of ‘negative’ examples) that have similar properties as the faces being compared
and do not contain faces from any person who might subsequently appear in a
pair to be compared. It learns models for each pair being compared on-the-fly,
which might not be desirable in practical applications. Overall, our DDL-PC1
achieves competitive accuracy without local feature identification or any other
additional information.

4.2 Face Recognition

Extended YaleB Database. The Extended YaleB database [25] contains 38
persons under 64 illumination conditions, 2, 414 frontal-face images. The original
images are cropped to 192 × 168. We used the random face features [5, 13] to
represent the face images. Following [12, 13], we project each face image into
a 504-dimensional feature vector using a random matrix of zero-mean normal
distribution. Each row of the random matrix is l2 normalized. We randomly
sample 32 images per person for training and taking the rest as testing. We
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repeated 10 times such this sampling process and report their average as the
recognition accuracy. The parameter γ is set to 20; β and α are set to 2.0 and λ
is 1.0 here.

We fix the dictionary size of 570 atoms as in [12, 13] and evaluate our approach.
We compare the recognition accuracy with K-SVD [6], D-KSVD [13], SRC [5],
LLC [35] and recently proposed LC-KSVD [12]. We obtain the original imple-
mentations of LC-KSVD 1 from the authors [12]. A D-KSVD is implemented by
eliminating the label consistent term in LC-KSVD. For SRC, we randomly select
the average of dictionary size per person from each person and report the best
result we achieved. For LLC, we perform the experiment with 30 local bases,
which determines the sparsity of the LLC codes. The results are summarized in
Table 3. Our approaches achieve better results than K-SVD, D-KSVD, SRC and
LLC and are comparable to LC-KSVD.

We also evaluate our approach using random-face features and dictionary sizes
190, 380, 570 and 760. Then we compare the classification accuracy with state-
of-art approaches including LC-KSVD, D-KSVD, K-SVD, SRC and LLC which
use the same features and dictionary sizes. As shown in Figure 5, our approach
has higher accuracy than K-SVD, D-KSVD, SRC and LLC, and is comparable
to LC-KSVD.

Table 3. Recognition results using random-face features on the Extended YaleB.

Method K-SVD[6] D-KSVD[13] SRC[5] LLC[35] LC-KSVD[12] DDL-PC1 DDL-PC2

Acc. (%) 90.5 94.1 88.6 82.3 95.0 94.5 95.3
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Fig. 5. Recognition performance on the Extended YaleB with varying number of dic-
tionary sizes

AR Face Database. The AR face database [26] contains over 4, 000 color face
images of 126 persons taken during two sessions, with 26 images per person. The
main characteristic of the AR database is that it includes frontal views of faces

1 LC-KSVD here is the approach LC-KSVD2 in [12].
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with different facial expressions, lighting conditions and occlusion conditions. All
the faces are cropped to 165× 120. Following the standard evaluation protocol,
we use a subset of the database consisting of 2, 600 images from 50 males and
50 females. For each person, we randomly select 20 images for training and the
other six for testing. We report the results from the average of ten such random
splits. Each face image is projected into the 540-dimensional feature vector with
a randomly generated matrix as in [12, 13]. The feature descriptors used here
are random face features. The parameter γ is set to be 30, β is 0.5, α and λ are
1.0.

We evaluate our approach with a dictionary of size 500 and compare with
state-of-art approaches [5, 6, 12, 13, 35]. As shown in Table 4, both DDL-PC1
and DDL-PC2 obtain better results than K-SVD, D-KSVD, SRC, LLC and LC-
KSVD. DDL-PC2 obtains a 2% improvement over DDL-PC1.

Table 4. Recognition results using random face features on the AR face database

Method K-SVD[6] D-KSVD[13] SRC[5] LLC[35] LC-KSVD[12] DDL-PC1 DDL-PC2

Acc. (%) 87.2 88.8 74.5 88.7 93.7 94.0 96.0

5 Conclusions

We presented a novel dictionary learning approach that tackles the pair matching
and classification problem in a unified framework. We introduced a discrimina-
tive term called ‘pairwise sparse code error’ based on pairwise constraints and
combined it with the classification error term to form the objective function
of dictionary learning for better discriminating power. The objective function
can be optimized by employing the efficient feature-sign search algorithm. The
effectiveness of our approach was evaluated on both face verification and face
recognition tasks. Experimental results on face verification demonstrated that
our approach is competitive with existing techniques without using facial feature
point detectors or other additional information. We also compared our approach
with several recently proposed dictionary learning methods on two well-known
face databases. Our approach can obtain comparable face recognition perfor-
mance to state-of-art on both databases.
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