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Abstract. In this paper, we try to address the challenging problem of
combining local shape features to describe long and continuous
shape characteristics. To this end, we firstly propose a novel type of
local shape feature, namely Active Contour Fragment (ACF), to encode
the shape deformation in a local region. An ACF is automatically learnt
from the contours of a specific object class and capable to describe the
intra-class shape characteristics based on the point distribution model.
Secondly, we combine multiple ACFs into a group, namely Active Con-
tour Group (ACG), to describe the long shape characteristics .We model
the ACFs in an ACG using an undirected chain model and estimate the
parameters of the chain model in a subspace for accelerating the learning
and matching processes of ACGs. Finally, we discriminatively train the
classifiers based on ACFs and ACGs in a boosting framework for localiz-
ing objects as well as delineating object boundaries. Both qualitative and
quantitative evaluations show that our approach is capable of describing
long shapes and the proposed recognition algorithm achieves promising
performance on the public datasets.

1 Introduction

Shape-based object recognition has been extensively studied [1] [2], since shape is
an informative and stable cue to distinguish the target objects from background.

Lots of local shape templates [3] [4] [5] can provide an explicit, effective and
efficient representation for shapes, thus they are widely utilized for localizing and
delineating objects in real-scene images. Ideal shape features should be both de-
scriptive to fit the object boundaries and discriminative to reject the non-object
shapes. Therefore, the local shape templates should be deformable in case they
are misaligned with the object boundaries as shown in Fig. 1 (a). However,
deformable local shape templates may falsely match to the inner parts or clut-
tered background since they ignore shape constraints in larger regions. In Fig.
1 (a), we show three local shape templates (red fragments) and their match-
ing results (green fragments). These local shape templates are deformable, and
their matching results are in the inner or background edges according to some
matching algorithm (to be discussed in Sec. 3.2). The knowledge from perceptual
grouping inspires us to group the local shape templates and jointly match them
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Fig. 1. Comparing matching results with and without chain constraint. (a) Deformable
shape templates may fit to inner edges or cluttered background. (b) Bundling shape
templates with spring-like connections to describe long shapes. (c) Chained shape tem-
plates match to long boundary of horse back.

to images. We believe that the matching results of neighboring shape templates
should preserve the continuation property if they match to the same object, i.e.,
they may simultaneously match to a long and continuous contour instead of
scattered ones. Intuitively, we add a spring-connection between the neighboring
templates and group the shape templates into a long chain to guarantee the
continuation property (see Fig. 1 (b)). The three templates may match to the
long boundary of the horse back with the spring-connections as shown in Fig. 1.

Our motivation is to encode the local deformations using deformable shape
templates and then group them to describe the long and continuous shape char-
acteristics. We highlight this paper from three folds. Firstly, we propose a novel
type of local shape feature, namely, Active Contour Fragment (ACF). An ACF
encodes the deformation based on the Point Distribution Model (PDM), which
can be learnt from weakly labelled data. Secondly, we combine different ACFs
into one group, namely, Active Contour Group (ACG), to describe long and con-
tinuous shapes with an undirected chain model. We propose an efficient inference
algorithm for the chain model by estimating the parameters in a linear subspace
that is learnt from training data. Then, we present an incremental learning algo-
rithm to group the ACFs into ACGs based on an efficient inference algorithm.
Finally, we demonstrate the performance of ACGs for object recognition in a
boosting framework. The object classifiers can not only localize the objects with
bounding boxes but also delineate object boundaries.

We evaluate the proposed approach on Weizmann Horses dataset [5] and
ETHZ shape dataset [6]. Experiments show that ACGs can fit to the object
boundaries well. The object classifiers based on ACFs and ACGs achieve promis-
ing performance on object detection and boundary localization.

2 Related Works

We review the related works from the following two aspects, namely, shape rep-
resentation and perceptual grouping.

Shape representation has been extensively studied recently. Some researchers
represent shapes with a group of local shape templates [3] [4] [5] or descriptors [7]
[8], while others represent shapes with a global shape model. One merit of local
shape features is that they may be robust to the occlusions and T-junctions in
the real-scenes. For many local shape templates, there are two additional merits:
1) they describe shapes explicitly with contour segments; 2) they are efficient
in computation. Therefore, many researchers utilize the local shape templates
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Fig. 2. Learnt ACFs. (a) Shape bases (white line fragments) and best matching con-
tours (color fragments). (b) (c) First and second principal components. (d) Distribution
of energy proportion preserved by top two principal components over feature pool.

for object detection, such as edgelet [4], strip [3], contour fragments [5] and
boundary fragments [9]. However, the local shape features ignore the global shape
constraint and susceptible to background clutter, thus many researchers propose
lots of global shape models, such as hand-drawn skeleton or silhouette [10] [11],
boundary structure model [12], Shape Boltzmann Machine (SBM) [13] and Point
Distribution Model (PDM) [14] [1]. Our approach is different from the above local
shape features and global shape models. On one side, the proposed ACGs encode
the long and continuous part of shapes instead of the global shape characteristics.
On the other side, the proposed ACGs encode more shape constraints than the
local shape features.

Perceptual grouping is a hot topic in the area of computer vision. The basic
assumption behind these works is that the contour fragments that are related by
some perceptually properties should belong to the same object. The perceptual
properties include continuation [15], parallelism [16], closure [17] and so on. Such
properties may be the driving force for designing feature bundle [18] or learning
shape model [8]. Some recent works [1] [6] group k Adjacent Segments (kAS)
to represent generic shapes. Different from kAS, the proposed ACGs are class-
specific and thus may be more suitable for object recognition of a specific class.

3 Active Contour Fragments

We firstly propose to automatically learn ACFs from the weakly unsegmented
training data. Then, we present the matching algorithm of ACFs.

3.1 Learning ACFs from Contours

For a specified object class, we label the training objects with bounding boxes
and normalize them into an object window of a specific size (see Table 1). To
obtain the contours of objects, we extract the edge maps using the Berkeley
edge detector [19] and link the edgels (edge pixels) [20]. The jth object can be
represented by a contour set as

Cj = {cj,1, cj,2, ..., cj,|Cj |}, (1)

where cj,k is a contour (represented by a list of edgels). As shown in Fig. 2 (a),
the horse backs have simple translation variance while the horse legs have both
large articulation and non-rigid deformations. Such shape characteristics can be
described by the contour fragments. We propose to encode the deformation from
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the contour fragments. Our approach consists of two steps, i.e., grouping contour
fragments and learning the deformation from the contour fragments.

To group the contour fragments, we utilize a set of shape bases {bi}i=1,...,N .
The shape bases are generated by uniformly sampling line segments of 12∼48
pixels in the object window (see Table 1). We match each shape basis to the
contour set of training images and find the best matching results according to

f∗i,j = argmin
|fi,j |=|bi|,fi,j⊆cj,k,cj,k∈Cj

Φ(bi, fi,j), (2)

where fi,j is a contour fragment that has the same number of edgels with bi on
cj,k and Φ(•) represents the following distance function

Φ(bi, fi,j) =
∑ |bi|

p=1‖bi(p)− fi,j(p)‖D, (3)

where bi(p) represents the p
th edgel of bi and we use the same notation in the

following. We measure the distance ‖ • ‖D between two edgels as

‖ei − ej‖D = β((xi − xj)
2 + (yi − yj)

2)) + (θi − θj)
2, (4)

where an edgel ei is represented by its coordinates (xi, yi) and normal orientation
θi. The factor β is a constant that balances the importance of position and
rotation. We let β equal to 25/A, where A is the area of the object window. In
Fig. 2 (a), we visualize four shape bases and the matched contours on 20 horses.

Based on the matched contour fragments, we adopt the PDM to model the
shape deformation. Suppose the matched contour fragments f∗i,j distribute in a
2|f∗i,j |-dimensional space, the shape model can be obtained by Principal Compo-

nent Analysis (PCA). The ith ACF ψi generated by bi is formulated as

ψi : t
αi,1,...,αi,K

i = si +
∑

K
k=1αi,kvi,k, s.t.|αi,k| ≤ 2

√
λi,k, (5)

where si is the averaged contour of {f∗i,j}j=1,..,M , {vi,k, λi,k}k=1,,K are the top

K eigenvectors and eigenvalues returned by PCA and t
αi,1,...,αi,K

i is a reasonable
shape generated by the shape model. The eigenvectors encode the deformation
and the eigenvalues reflect the importance of deformation. Fig. 2 (b) and (c) show
the deformation described by the top two components. The white line fragments
are shape bases and the blue ones are averaged contour fragments. We vary the
first coordinate from −2

√
λi,k to 2

√
λi,k , and the shape deforms from dark red

to bright red then from bright green to dark green. Fig. 2 (d) shows that most
of ACFs preserve more than 80% energy by the top two principal components.

3.2 Matching ACFs to Images

Hereby, we give the matching algorithm for ACFs. As discussed in Sec. 3.1, most
of ACFs can be briefly represented by only two coordinates as in Eqn. 5. Then,
the matching energy of the ACF ψi is defined as

Eψi(E) = min
αi,1,αi,2

∑ |tαi,1,αi,2
i |

p=1 min
ep∈E

‖tαi,1,αi,2

i (p)− ep‖D, (6)
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Fig. 3. Illustration of learnt ACGs. (a) Learnt ACG on which numbers are indexes of
ACFs. (b) Pairwise energy is measured by connected segments of same length when
two neighboring ACFs are of different lengths. (c) First principal component of learnt
ACG. (d) Distribution of ACF numbers in each ACG over feature pool.

where ep is an edgel of the edge map E. When fixing αi,1 and αi,2, the energy can
be fast calculated via look-up table based on the distance transform as discussed
in [5]. To match ACFs to images, we should minimize Eqn. 6 over αi,1 and αi,2.
We quantize αi,1 into N1 = 11 values from −2

√
λi,1 to 2

√
λi,1 and αi,2 into

N2 = 7 values from −2
√
λi,2 to 2

√
λi,2. Once we find the best configuration

(α∗
i,1,α

∗
i,2), we obtain the matching curve t∗ according to Eqn. 5.

4 Active Contour Groups

We firstly model multiple ACFs with an undirected chain model to describe
longer shapes. Then, we give the matching and learning algorithms for ACGs.

4.1 Chain Model for ACGs

We define an Active Contour Group (ACG) as a group of ACFs as

Ψh = {ψh1 , ψh2 , .., ψh|Ψh|}, (7)

where the ith element of the hth ACG corresponds to an ACF. In this paper, we
suppose the ACFs in an ACG are organized under an undirected chain model as
shown in Fig. 3 (a). Each vertex of the chain corresponds to an ACF and each
edge of the chain describes the pairwise relationship of two neighboring ACFs.
Formally, we define the neighborhood system of the chain model as

N = {(ψhi , ψhj )|ψhi ∈ Ψh, ψhj ∈ Ψh, |i− j| = 1}, (8)

Our objective is to use the chain model to encode long and continuous shape
characteristics, thus we require the neighboring ACFs to preserve the continua-
tion property. Two neighboring ACFs should satisfy the following two conditions

‖shi(|shi |)− shi+1(1)‖2 ≤ Γ,

‖shi(1)− shi+1(|shi+1 |)‖2 ≥ max(|shi |2, |shi+1 |2),
(9)

where shi is the average contour fragment of ψhi . Γ is a constant that is set
as 4 in our experiments. Taking the two neighboring ACFs (e.g., ψh1 and ψh2)
in Fig. 3 (a) as an example, ψh1 should be connected with ψh2 on one end and
should not be connected with ψh2 on the other end. In the learning process (see
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Sec.4.2), we require that the neighboring ACFs should satisfy Eqn. 9. Hereby,
we define the matching energy of an ACG as

EΨh
(E) =

∑
ψhi

∈Ψh
Eψhi

(E) +
∑

(ψhi
,ψhj

)∈NEN (ψhi , ψhj ), (10)

where Eψhi
(•) is the unary energy of the ith ACF defined in Eqn. 6 and EN (•, •)

is the pairwise energy of two neighboring ACFs, which is defined as

EN (ψhi , ψhi+1) =
∑

L
p=1‖(tαhi,1

,αhi,2

hi
(L′ + p)− shi(L

′ + p)))

− (t
αhi+1,1,αhi+1,2

hi+1
(p)− shi+1(p))‖D,

(11)

where the symbols are the same with Eqn. 5, L = min(|thi |, |thi+1 |) and L′ =
max(|thi |− |thi+1 |, 0). As shown in Fig. 3, we pick up two connected segments of
the same length from ψhi and ψhi+1 when the neighboring ACFs are of different
lengths. Then, we calculate the pairwise energy by accumulating the deformation
differences of the two connected segments. For a good matching result, the pair-
wise energy should be small since the neighboring segments should have similar
deformations. As shown in Fig. 3, h5 and h6 match to the back of the same horse,
thus they should deform to high position or low position simultaneously. Since
the neighboring ACFs are connected and have similar deformations in the chain
model, the deformable ACG may always preserve the continuation property.

4.2 Learning ACGs from ACFs

To match ACGs to images, we should minimize Eqn. 10 over a 2|Ψh|-dimensional
parameter space {αh1,1, αh1,2, ..., αh|Ψh|,1, αh|Ψh|,2} but solving the minimization
problem is computational prohibitive. For an ACG that consists of 10 ACFs, the
computation complexity of the brute-force search is O((N1N2)

10) if we use the
same quantization criterion for αhi,1, αhi,2 as dicussed in Sec.3.2. Although there
are some fast inference approaches (e.g., belief propagation [21]), the computa-
tion complexity is still too high. Hereby, we propose an efficient matching algo-
rithm that reduces the computation complexity from O(N1N2)

10 to O(N1N2).
Then, we present an incremental learning algorithm of ACGs based on the effi-
cient matching algorithm.

The basic idea of the proposed matching algorithm is to constrain the param-
eter space of Eqn. 10 using the training data. Supposing that Ψh is an ACG that
is defined in Sec. 4.1, the matching result of Ψh on the jth training sample is
represented as a 2|Ψh|-dimensional vector

Θ∗
h,j = {α∗

h1,1,j, α
∗
h1,2,j, α

∗
h2,1,j , α

∗
h2,2,j , . . . , α

∗
h|Ψh|,1,j, α

∗
h|Ψh|,2,j}. (12)

Θ∗
h,j can be obtained according to Eqn. 14 (to be discussed later). Once we have

the matching results of training samples, we can derive a linear subspace using
PCA. Then, we estimate the matching parameters of Ψh according to

Ψh : Θ
γh,1,...,γh,K

h = dh +
∑

K
k=1γh,kuh,k, s.t.|γh,k| ≤ 2

√
ηh,k, (13)

where dh is the averaged vector of the matching results over the training set and
{uh,k, ηh,k|k = 1, ...,K} are the top K eigenvectors and eigenvalues returned by
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PCA. We only consider the top two principal components. To find the best γh,1
and γh,2, we quantize γh,1 into N1 = 11 values from −2

√
ηh,1 to 2

√
ηh,1 and γh,2

into N2 = 7 values from −2
√
ηh,2 to 2

√
ηh,2 as discussed in Sec. 3.2. Then, we

match ACGs to the images by minimizing Eqn. 10 over γh,1 and γh,2 and the
computational complexity is O(N1N2). After obtaining the best parameters γ∗h,1
and γ∗h,2, we can derive the matching curve according to Eqn. 13 and Eqn. 5.

Hereby, we give the learning algorithm based on Eqn.13 and explain how to
calculateΘ∗

h,j in Eqn. 12. Every ACG starts from one ACF and grows into a long
chain. At first, we select an ACF as the seed of the chain, which is considered
as the initial ACG. Then, we find all the candidate ACFs that are neighboring
with the head or the tail of the ACG according to Eqn. 9. Supposing that a
candidate ACF ψc is neighboring with the head of the ACG Ψh, we add ψc in
front of the current ACG’s head. For the new ACG, the matching energy on the
jth training sample Ej can be calculated incrementally according to

E{ψc,Ψh}(Ej) = EΨh
(Ej) + Eψc(Ej) + EN (ψc, ψh1), (14)

We can obtain the new matching result {α∗
c,1,j, α

∗
c,2,j ,Θ

∗
h,j} by minimizing Eqn.

14. To this end, we search the solution over the solution space {αc,1,j, αc,2,j,Θh,j}.
Since Θh,j can be estimated using the linear subspace according to Eqn. 13, the
computation complexity of minimizing Eqn. 14 exhaustively is O((N1N2)

2) if
we use the same quantization strategy over the solution space as discussed be-
fore. For each candidate ACF, we sum the minimized energy in Eqn. 14 over
the training set and select the one with the minimum energy. Finally, we add
the selected ACF as the head of the chain and update the subspace in Eqn.
13. When the candidate ACF ψc is connected with the tail of the ACG Ψh, we
can grow the ACG in a similar way. We repeat the growing process until the
subspace cannot preserve minimum energy or the number of ACFs in one ACG
exceeds the maximum number. We set the minimum energy as 95% of the total
energy and the maximum number of ACFs as 10.

Each ACF can grow into an ACG according to the above algorithm. Fig. 3
(a) shows one learnt ACG. In Fig. 3 (c), we show the first principal compo-
nent of the learnt subspace. In Fig. 3 (d), we can see that most of ACGs have
more than 1 ACF. To be mentioned, it is difficult to directly learn long ACFs
from images, since the T-junctions and occlusions of the edges may destroy the
long shape characteristics. However, the proposed algorithm can group the short
shape templates (i.e., ACF) into long shape templates(i.e., ACG).

5 Recognition Algorithm

We utilize ACFs or ACGs as shape features for object recognition in a boosting
framework. Similar to [4] [5] [9], we match the ACFs or ACGs to images by
minimizing the energy function (Eqn. 6 for ACFs and Eqn. 10 for ACGs) and
use the minimum energy as feature scores. Then, we select ACFs or ACGs from
feature pools into a cascaded classifier using RealBoost [22]. For acceleration, we
use Histogram of Oriented Gradients (HOG) in the first 10 stages (see [23] for
detials). We give an evaluation for the HOG filter in Sec. 6.2.
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Table 1. Sizes of detection window and feature pools of ACFs and ACGs

Horses Applelogos Bottles Giraffes Mugs Swans

Detection window 150 × 100 80× 80 50× 120 150 × 150 90× 70 120× 60
Feature pool 10315 6627 4070 14815 6137 7052

Fig. 4. Comparing matching curves of boundary fragments,ACFs and ACGs

The boundary localization is only conducted on the object windows. An object
is identified when a detection window is classified as positive at a false positive
rate of 10−5. The final boundary localization results can be obtained by averaging
the results of multiple sliding windows in all the scales. To this end, we give the
voting algorithm in one detected window. For each ACF (or ACG), we can obtain
a matching curve after minimizing Eqn. 6 (or Eqn. 10). Each point m on the
matching curve casts a vote for the detection window according to

P (bx = 1) =
∑

bm=0,1

P (bx = 1|bm)P (bm) = I(x == m)
W+
fm

W+
fm

+W−
fm

, (15)

where x represents any point in the detection window, bx identifies whether the
point x is a boundary (bx = 1) or not (bx = 0), P (bx = 1|bm = 0) is supposed to
be 0, I(x == m) equals to 1 if x == m or else equals to 0, fm is the matching
score corresponding to the matching point m, W+

fm
(or W−

fm
) is the proportion

of positive (or negative) samples when the feature response equals to fm. W+
fm

and W−
fm

can be efficiently derived using look-up table since fm is calculated in
the detection process. Fig. 8 shows some boundary localization results.

6 Experiments

We show the effectiveness and efficiency of the proposed matching approach in
this section. In Table 1, we list the sizes of detection windows and feature pools
of ACFs and ACGs for each object class used in our experiments.

6.1 Comparing Matching Approaches on Weizmann Horses Dataset

We adopt Weizmann Horses dataset to evaluate the proposed matching ap-
proach. We use the training-testing split (100 horses for training and 456 images



Grouping Active Contour Fragments for Object Recognition 297

Fig. 5. Top two selected ACGs capture long and salient shape characteristics
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(a) Detection performance with and without HOG rejector.
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(c) Boundary localization Performance.
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(b) Dectection performance with HOG rejector.
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Fig. 6. Detection and boundary localization performance on Weizmann Horses

including 228 horse images for testing) as in [5] [24].We learn ACFs and ACGs
from the 100 horses and match them to the testing horses. We compare the
matching results of ACFs, ACGs and boundary fragments [9]. The boundary
fragments use the averaged contour fragments of ACFs as templates and match
to images by translating the templates in a local region of 10 × 10 pixels. We
omit the quantitative comparison due to space limit, but present some qualita-
tive comparison in Fig.4. It can be seen that both ACFs and ACGs can fit to the
object boundaries more accurately than the boundary fragment. Furthermore,
ACGs do not only fit the object boundaries well, but also preserve the continu-
ation of the shape. We also show the top two features that are selected by the
boosting algorithm in Fig. 5. Apparently, these features capture the long and
salient shapes and delineate the major shapes for each object class.

6.2 Recognition Results on Weizmann Horses Dataset

We evaluate our method on object detection using PASCAL IoU 50% criterion
[25]. In Fig. 6 (a) (b), we plot the recall rate against False Positives Per Image
(FPPI) and give the Average Precision (AP) in the legend for each approach. We
give a quantitative evaluation for the 10-stage HOG filter proposed in Sec.5. We
implement two cascaded classifiers using ACFs: one uses 10-stage HOG filter and
the other uses only ACFs. We can see that the one with HOG filter is slightly
better than the other, and the HOG filter can also accelerate the search process.
Thus, we use the 10-stage HOG filer in the following experiments. We compare
our approach with other shape-based approaches, namely, contour fragment [5],
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Table 2. Comparing APs of different approaches on ETHZ shape dataset

Shape classes Applelogos Bottles Giraffes Mugs Swans

Fan shape model [2] 0.866 0.975 0.832 0.843 0.828
Many-to-one [8] 0.845 0.916 0.787 0.888 0.922

Grouping with PF [28] 0.844 0.641 0.617 0.643 0.798
OB+GB [29] 0.675 0.781 0.585 0.559 0.661

Dominant Set [18] 0.705 0.761 0.687 0.625 0.773
kAS [6] 0.351 0.733 0.391 0.476 0.273

TPS-RPM [1] 0.689 0.643 0.333 0.585 0.390
Ours (ACFs) 0.910 0.847 0.791 0.853 0.674
Ours (ACGs) 0.920 0.864 0.782 0.856 0.653

edgelet [4] and strip [3]. We use 10-stage HOG filer in the cascaded classifiers
with ACFs and ACGs. For contour fragment, we report two results, which are
based on Canny edge (referred from [5]) and Berkeley edge (implemented by our-
selves). The proposed approach uses deformable shape templates while contour
fragment uses fixed shape template, which is the only difference between these
two approaches. We can see the deformation algorithm improves the detection
performance by 3% ∼ 4%. Our approach outperforms the other shape features
since ACFs and ACGs are capable of learning the deformation of horses before
the matching process. Recently, some approaches [24] [26] achieve even better
performance than our approach. These approaches combine shape features with
texture and color features, while our approach only uses shape features.

To quantitatively evaluate our method on boundary localization, we show
the coverage-against-precision curves [1] averaged over correct detections when
the false positive rate equals 10−5 and the curves are obtained by varying the
threshold of boundary probability. In Fig. 6 (c), We compare our approach with
particle filter [27], edgelet [4] and strip [3]. For particle filter, we refer to the re-
ported result. For other approaches, we vote for boundary probability according
to Eqn. (15). Apparently, our approach outperforms all the other approaches.
Compared with ACFs, ACGs do not obviously improve the detection perfor-
mance but they improve the boundary localization performance. The possible
reason is that ACGs can capture long and salient shape characteristics and sup-
press the false matches on the background clutter.

6.3 Recognition Results on ETHZ Shape Dataset

We evaluate our approach in detection and boundary localization on the ETHZ
shape dataset. This dataset includes 5 classes, namely, applelogo, bottle,giraffe,
mug and swan. We follow the same training and testing splits suggested by [6].

For object detection, we report the results of our approach and some related
methods in Table 2. For kAS and TPSRPM, we estimate the APs from [1]. Ob-
viously, both ACFs and ACGs achieve competitive performance. For evaluating
boundary localization, we compare the results of our approach with those of TP-
SRPM and Bounding Boxes (B.B.) reported in [1] in Fig. 7. Apparently, both
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Fig. 7. Quantitative evaluation of boundary localization using coverage-against-
precision curves on ETHZ shape dataset

Fig. 8. Recognition examples. Black points are edgels while green points indicate
boundary probability. Bright green means higher confidence and vice versa.

ACFs and ACGs substantially outperform the B.B. especially for the less rect-
angular objects, i.e., swans and giraffes. ACGs achieve similar or better perfor-
mance comparing with TPSRPM. Comparing with ACFs, ACGs achieve better
precision in most cases, as ACGs can suppress many false matches on the inner
or background edges. Fig. 8 shows some recognition examples.

7 Conclusion and Future Works

This paper proposes a novel type of local shape features (i.e., ACFs) and an al-
gorithm to group the local shape features together (i.e., ACGs) for object recog-
nition. The proposed features encode the local deformation based on the PDM
and the grouping algorithm combines multiple local shape features to describe
long and continuous shapes. We assemble ACFs and ACGs under the boosting
framework for localizing objects as well as delineating object boundaries. Quali-
tative and quantitative experiments show that the proposed approach is effective
and efficient for object detection and boundary localization. Furthermore, the
proposed approach does not require segmented data in the training process.

The ACGs are still not global shape features although they can describe long
and continuous shape characteristics. We will consider some other perceptual
properties (e.g., closure and symmetry) in the grouping process to make ACGs
more global and further improve the performance of object recognition. Fur-
thermore, ACGs might be promising for foreground segmentation based on the
shape information. We will pursue this possibility in the future.
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