
Chapter 5
Thermal Chiral and Deconfining Transitions
in the Presence of a Magnetic Background

Eduardo S. Fraga

5.1 Introduction

The thermodynamics of strong interactions under a strong magnetic background has
proven to be a very rich and subtle subject. Recent developments were initially mo-
tivated by the utility of magnetic fields in separating charge in space, which would
render the possible formation of sphaleron-induced CP-odd domains in the plasma
created in high-energy heavy ion collisions, in the so-called chiral magnetic effect
[1–7], measurable. In fact, the magnetic fields created in non-central collisions in
heavy ion experiments at RHIC-BNL and the LHC-CERN are possibly the high-
est since the epoch of the electroweak phase transition, reaching values such as
B ∼ 1019 Gauss (eB ∼ 6m2

π ) for peripheral collisions at RHIC [8, 9] and even much
higher at the LHC due to the fluctuations in the distribution of protons inside the nu-
clei [10, 11].

From the theoretical point of view, the non-trivial role played by magnetic fields
in the nature of phase transitions has been known for a long time [12]. Modifica-
tions in the vacuum of QED and QCD have also been investigated within different
frameworks, mainly using effective models [13–27], especially the NJL model [28],
and chiral perturbation theory [29–31], but also resorting to the quark model [32]
and certain limits of QCD [33]. Interesting phases in dense systems [34–41], as well
as effects on the dynamical quark mass [42] were also considered. Nevertheless, the
mapping of the new T –eB phase diagram is still an open problem. There are clear
indications that sufficiently large magnetic fields could significantly modify the be-
havior of the chiral and the deconfinement phase transition lines [43–69], or even
transform the vacuum into a superconducting medium via ρ-meson condensation
[70–73]. Although most of the analyses so far relied on effective models, lattice
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Fig. 5.1 Originally expected magnetic field–temperature phase diagram of strong interactions.
The thick lines indicate first-order transitions, the filled circles are the (second-order) endpoints
of these lines, and the thin dashed lines stand for the corresponding crossovers. A new phase
with broken chiral symmetry and deconfinement appears at high magnetic fields. Extracted from
Ref. [48]

QCD has definitely entered the field and has been producing its first results for the
phase diagram [74–81].

From the first results obtained within effective models for the deconfining [43]
and chiral [44, 45] transition lines, one would expect the phase diagram structure
illustrated in Fig. 5.1, as discussed in Ref. [48]. Indeed, after the prediction of a
splitting between the chiral and deconfining transition lines, with the appearance
of a new phase, in Ref. [48], several model descriptions produced the same effect
[52–58, 67]. However, until 2011, all model studies have yielded either a monoton-
ically increasing or an essentially flat functional form for the deconfinement critical
line as B increases to very large values.1 Pioneering lattice simulations [77, 78] also
found an essentially flat behavior for both critical lines, that seemed to increase to-
gether at a very low rate. Nevertheless, since the pion mass used in these simulations
was still very high, this could be an indication that one would probably need huge
magnetic fields in the simulations in order to be able to compare to effective model
predictions.

This was the scenario, rather coherent in terms of expectations for the behavior of
the critical lines for the chiral and deconfining transitions in the presence of a mag-
netic background, until lattice simulations of magnetic QCD with physical masses
and fine grids were performed [80] and showed that both critical temperatures actu-
ally go down for increasing B , saturating for very large fields, very differently from
what has been predicted by all previous effective model calculations and found in
previous lattice simulations.

1Contrastingly, a significant decrease in the critical temperature as a function of B , vanishing at
eBc ∼ 25m2

π , was found in Ref. [43], featuring the disappearance of the confined phase at large
magnetic fields. This phenomenon that was not reproduced by any other effective model nor ob-
served on the lattice (even for much larger fields).
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Soon after the appearance of the new lattice results, the behavior of the critical
temperature for deconfinement in the presence of a very large magnetic field was
addressed within the MIT bag model [68], a very economic model in terms of pa-
rameters to be fixed (essentially one) and other ingredients usually hard to control
in more sophisticated effective theories. The model is, of course, crude in numerical
precision and misses the correct nature of the (crossover) transition. Nevertheless,
it provides a simple setup for the discussion of some subtleties of vacuum and ther-
mal contributions in each phase. It was shown in Ref. [68] that the influence of the
magnetic field on the thermodynamics of both extreme energy domains is captured,
so that the model furnishes a reasonable qualitative description of the behavior of
the critical temperature in the presence of B , decreasing and saturating.

The fact that chiral models, even when coupled with the (static) Polyakov loop
sector, seem to fail in the description of the behavior of Tc × eB , whereas the (as-
sumedly simple) MIT bag approach finds a good qualitative agreement, suggests
that the critical temperature in QCD is a confinement-driven observable. This was
also hinted by a previous successful description of the behavior of the critical tem-
perature as a function of the pion mass and isospin chemical potential, as compared
to lattice data, where chiral models also failed even qualitatively [82–84]. If con-
finement dynamics plays a central role in guiding the functional behavior of Tc , a
the large-Nc limit of QCD should provide an adequate and powerful framework to
study associated magnetic thermodynamics. In fact, it was shown in Ref. [85] on
very general grounds that the fact that the deconfining temperature decreases and
tends to saturate for large B , although this last point cannot be proven in a model-
independent way, depends solely on quarks behaving paramagnetically.

In the sequel we summarize results for the chiral and deconfining transitions ob-
tained in the framework of the linear sigma model coupled to quarks and to the
Polyakov loop, especially the prediction of a splitting of the two critical lines, and
how they compare to other effective model approaches as well as to lattice QCD.
Then we discuss the outcome of the magnetic MIT bag model that yields a behav-
ior for the critical deconfining temperature compatible with the most recent lattice
simulations and magnetic catalysis. We continue with a discussion of very recent re-
sults, starting with the rather general findings within the large-Nc limit of magnetic
QCD. Finally, we present our conclusions.

5.2 Modified Dispersion Relations and Integral Measures

In the presence of a classical, constant and uniform (Abelian) magnetic field, dis-
persion relations and momentum integrals will be modified. In order to compute
vacuum and thermal determinants and Feynman diagrams, it is necessary to express
these quantities in a convenient fashion. Lorentz invariance is broken by the pre-
ferred direction established by the external field, and Landau orbits redefine the new
counting of quantum states [12].
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For definiteness, let us take the direction of the magnetic field as the z-direction,
B = B ẑ. One can compute, for instance, the modified effective potential or the mod-
ified pressure to lowest order by redefining the dispersion relations of charged scalar
and spinor fields in the presence of B, using the minimal coupling shift in the gra-
dient and the field equations of motion.2 For this purpose, it is convenient to choose
the gauge such that Aμ = (A0,A) = (0,−By,0,0).

For scalar fields with electric charge q , such as pions, one has
(
∂2 + m2)φ = 0, (5.1)

∂μ → ∂μ + iqAμ. (5.2)

After decomposing φ into Fourier modes, except for the dependence in the coordi-
nate y, one obtains

ϕ′′(y) + 2m

[(
p2

0 − p2
z − m2

2m

)
− q2B2

2m

(
y + px

qB

)2]
ϕ(y) = 0, (5.3)

which has the form of a Schrödinger equation for a harmonic oscillator. Its eigen-
modes correspond to the well-known Landau levels

εn ≡
(

p2
0n − p2

z − m2

2m

)
=

(
� + 1

2

)
ωB, (5.4)

where ωB = |q|B/m and � is a positive (� ≥ 0) integer, and provide the new disper-
sion relation:

p2
0n = p2

z + m2 + (2� + 1)|q|B. (5.5)

One can proceed in an analogous way for fermions with charge q . From the free
Dirac equation (iγ μ∂μ − m)ψ = 0, and the shift in ∂μ, one arrives at the following
Schrödinger equation

u′′
s (y) + 2m

[(
p2

0 − p2
z − m2 + |q|Bs

2m

)
− q2B2

2m

(
y + px

qB

)2]
us(y) = 0, (5.6)

which yields the new dispersion relation for quarks:

p2
0n = p2

z + m2 + (2� + 1 − s)|q|B, (5.7)

where s = ±1 is the spin projection in the ẑ direction.
It is also straightforward to show that integrals over four momenta and thermal

sum-integrals acquire the following forms, respectively [44, 45, 86]:

∫
d4k

(2π)4
�→ |q|B

2π

∞∑

�=0

∫
dk0

2π

dkz

2π
, (5.8)

2Higher-order (loop) corrections need the full propagator, not only its poles.
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T
∑

n

∫
d3k

(2π)3
�→ |q|BT

2π

∑

n

∞∑

�=0

∫
dkz

2π
, (5.9)

where � represents the different Landau levels and n stands for the Matsubara fre-
quency indices [87].

5.3 PLSMq Effective Model and the Splitting of the Chiral
and Deconfining Transition Lines

Let us consider the two-flavor linear sigma model coupled to quarks and to the
Polyakov loop, the PLSMq effective model, in the presence of an external magnetic
field [48].

The confining properties of QCD are encoded in the complex-valued Polyakov
loop variable L. As a matter of fact, the Polyakov loop sector only provides a de-
scription of the behavior of the approximate order parameter for the Z(3) symmetry,
which is explicitly broken by the presence of quarks. It is convenient for modeling
the deconfining transition and has a good agreement with lattice results for most
thermodynamic quantities such as the pressure and energy density, especially for the
pure glue theory, but it does not provide a dynamical description of confinement.3

The expectation value of the Polyakov loop L is an exact order parameter for
color confinement in the limit of infinitely massive quarks:

Confinement:

{ 〈L〉 = 0, low T ,

〈L〉 �= 0, high T ,
L(x) = 1

3
TrP exp

[
i

∫ 1/T

0
dτA4(x, τ )

]
,

(5.10)

where A4 = iA0 is the matrix-valued temporal component of the Euclidean gauge
field Aμ and the symbol P denotes path ordering. The integration takes place over
compactified imaginary time τ , with periodic boundary conditions.

The chiral features of the model are encoded in the dynamics of the O(4) chiral
field, which is an exact order parameter in the chiral limit, in which quarks and pions
are massless degrees of freedom:

Chiral symmetry:

{ 〈σ 〉 �= 0, low T ,

〈σ 〉 = 0, high T ,

φ = (σ,π),

π = (π+,π0,π−).
(5.11)

Here π is the isotriplet of the pseudoscalar pion fields and σ is the chiral scalar field
which plays the role of an approximate order parameter of the chiral transition in
QCD, since chiral symmetry is explicitly broken by the nonzero quark masses.

3This will be a key feature in the discussion of recent results for the critical temperature, since Tc

seems to be a confinement-driven observable for both QCD transitions.
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Within this effective model, the quark field ψ connects the Polyakov loop L

and the chiral field φ, making a bridge between confining and chiral properties.
Quarks are also coupled to the external magnetic field since the u and d quarks are
electrically charged. Thus, it is clear that the external magnetic field will affect the
chiral dynamics as well as the confining properties of the model, as much as the
latter can be captured by the Polyakov loop sector.

This represents a natural generalization of the linear sigma model coupled to
quarks [88], an effective theory that has been widely used to describe different as-
pects of the chiral transition, such as thermodynamic properties [89–102] and the
nonequilibrium phase conversion process [103]. This generalization differs from
previous ones [104–107] by the inclusion of a bridge via the covariant derivative
and, of course, because of the modifications brought about by the magnetic field.

The Lagrangian of PLSMq describes the constituent quarks ψ , which inter-
act with the meson fields σ , π± = (π1 ± iπ2)/

√
2 and π0 = π3, the Abelian

gauge field aμ = (a0,a) = (0,−By,0,0), and the SU(3) gauge field Aμ via

the covariant derivative D
(q)
μ = (∂μ − iQaμ − iAμ) with the charge matrix Q =

diag(+2e/3,−e/3). Its explicit form is given by

L = ψ
[
iγ μD(q)

μ − g(σ + iγ5τ · π)
]
ψ + 1

2

[
(∂μσ)2 + (

∂μπ0)2]

+ ∣∣D(π)
μ

∣∣2 − Vφ(σ,π) − VL(L,T ), (5.12)

where D
(π)
μ = ∂μ + ieaμ is the covariant derivative acting on colorless pions.

The chiral potential has the form

Vφ(σ,π) = λ

4

(
σ 2 + π2 − v2)2 − hσ, (5.13)

where h = fπm2
π , v2 = f 2

π − m2
π/λ, λ = 20, fπ ≈ 93 MeV and mπ ≈ 138 MeV.

The constituent quark mass is given by mq ≡ mq(〈σ 〉) = g〈σ 〉, and, choosing g =
3.3 at T = 0, one obtains for the constituent quarks in the vacuum mq ≈ 310 MeV.
At low temperatures quarks are not excited, and the model reproduces results from
the usual linear σ -model without quarks.

The Polyakov potential adopted is given by [108–110]

VL(L,T )

T 4
= −L∗L

2

2∑

l=0

al

(
T0

T

)l

+ b3

(
T0

T

)3

log
[
1 − 6L∗L + 4

(
L∗3 + L3) − 3

(
L∗L

)2]
, (5.14)

where T0 ≡ TSU(3) = 270 MeV is the critical temperature in the pure gauge case and
a0 = 16π2/45 ≈ 3.51, a1 = −2.47, a2 = 15.2, and b3 = −1.75. Below we follow a
mean-field analysis in which the mesonic sector is treated classically whereas quarks
represent fast degrees of freedom.
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Fig. 5.2 Effects of temperature and magnetic field on quark confinement: The Polyakov loop po-
tential at T = 0.8T0 (top) and T = 1.2T0 (bottom) and at zero magnetic field (left) and at eB = 9T 2

(right). Extracted from Ref. [48]

The one-loop corrections to the free energy Ω coming from quarks can be written
as:

eiV3dΩq/T =
[

det(iγ μD
(q)
μ − mq)

det(iγ μ∂μ − mq)

]
·
[

detT (iγ μD
(q)
μ − mq)

det(iγ μD
(q)
μ − mq)

]
, (5.15)

so that the expectation values of the condensates can be obtained by minimizing the
free energy

Ω(σ,L;T ,B) = Vφ(σ,π) + VL(L,T ) + Ωq(σ,L,T ), (5.16)

at fixed values of temperature and magnetic field. The interaction piece Ωq(σ,L,T )

can be split into a vacuum (temperature-independent but still magnetic-field depen-
dent) contribution and a thermal correction. The vacuum term has the form

Ωvac
q (B) = −Nc

π

∑

f =u,d

|qf |B
[( ∞∑

n=�

I
(1)
B

(
M2

�f

)
)

− I
(1)
B (mf )

2

]

minus the standard vacuum correction in the absence of the magnetic field,

Ω(0)
q = 2Nc

∑

f =u,d

I
(3)
B

(
m2

f

)
, (5.17)

where we have defined the integral

I
(d)
B

(
M2) =

∫
ddp

(2π)d

√
p2 + M2 (5.18)
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Fig. 5.3 Expectation values
of the order parameters for
the chiral and deconfinement
transitions as functions of the
temperature. The filled circles
represent the σ -condensate,
and the empty circles stand
for the expectation value of
the Polyakov loop. In this plot
the condensates are
dimensionless. Extracted
from Ref. [48]

and M2
�f = m2

f +2�|qf |B . The thermal (paramagnetic) contribution is given by [48]

Ω
para
q = |qf |BT

π2

∑

s=± 1
2

∞∑

�=0

∞∑

k=1

(−1)k

k
Re

[
TrΦk

]
μs�(σ )K1

[
k

T
μs�(σ )

]
, (5.19)

where μs� is the energy of the �th Landau level at zero longitudinal momentum,

μs�(σ ) = [g2σ 2 + (2� + 1 − 2s)|q|B]1/2
, and the untraced Polyakov loop is such

that Re[TrΦk] = ∑3
i=1 cos(kϕi), the integer k corresponding to the winding num-

ber of the Polyakov loops [48].
For finite temperature and B = 0 this model produces a crossover for both tran-

sitions. Figure 5.3 displays the condensates as functions of the temperature, and the
critical temperature is defined by the change curvature in the curves. This occurs
simultaneously for the chiral and deconfinement transitions within this model.

At zero temperature, the Polyakov loop variable does not play a role. The pres-
ence of a magnetic field enhances the chiral symmetry breaking, increasing the
value of the chiral condensate, in line with the phenomenon of magnetic cataly-
sis [14, 15, 17, 18, 33, 111]. This is shown in Fig. 5.4. It also deepens the minimum
of the potential as B is increased, as illustrated in the same figure for several values
of the magnetic field

The dependence of the chiral condensate on the magnetic field is approximately
linear, as shown in Fig. 5.4. This is in line with results from chiral perturbation
theory [29–31]. Recent lattice results [81] seem to deviate from a linear behav-
ior for large B , growing faster, in better qualitative agreement with results from
PNJL [52–55]. However, for larger values of B , all model calculations seem to
deviate from the lattice data, whereas for very small B they all quantitatively
agree [81].

Turning on the temperature, one can investigate the effects of the magnetic field
on the thermodynamics and phase structure of strong interactions as captured by
this model description. In the confining sector, the strong magnetic field affects the
potential for the expectation value of the Polyakov loop via the intermediation of
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Fig. 5.4 Upper: the
expectation value of the
(dimensionless, σ = ξv)
condensate as a function of
the magnetic field. Black dots
are obtained from the PLSMq
and the orange line is the
linear fit. Lower: effective
potential for the condensate at
zero temperature for several
values of the magnetic
field B . Extracted from
Ref. [48] (Color figure
online)

the quarks in three ways [48]: (i) the presence of the magnetic field intensifies the
breaking of the global Z3 symmetry and makes the Polyakov loop real-valued, as
shown in Fig. 5.2; (ii) the thermal contribution from quarks tends to destroy the
confinement phase by increasing the expectation value of the Polyakov loop; (iii) on
the contrary, the vacuum quark contribution tends to restore the confining phase by
lowering the expectation value of the Polyakov loop.

In fact, the vacuum correction from quarks has a crucial impact on the phase
structure. If one disregards the vacuum contribution from the quarks, as was done
in Refs. [44, 45], one finds that the confinement and chiral phase transition lines
coincide. Moreover, in this case an increasing magnetic field lowers the equivalent
chiral-confinement transition temperature. On the other hand, the inclusion of the
vacuum contribution from quark loops in a magnetic field modifies completely the
picture: confinement and chiral transition lines split, and both chiral and deconfining
critical temperatures become increasing functions of the magnetic field. Both sce-
narios are shown in Fig. 5.5, which exhibit the full calculation of the phase diagram
from the effective potential within the PLSMq effective model. The vacuum contri-
bution from the quarks affects drastically the chiral sector as well. Our calculations
also show that the vacuum contribution seems to soften the order of the phase tran-
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Fig. 5.5 Phase diagram in
the B-T plane. Upper:
without vacuum corrections:
the critical temperatures of
the deconfinement (the
dash-dotted line) and chiral
(the dashed line) transition
coincide all the way, and
decrease with B . Lower: with
vacuum corrections: the
critical temperatures of the
deconfinement (the
dash-dotted line) and chiral
(the dashed line) transition
coincide at B = 0 and split at
higher values of the magnetic
field. A deconfined phase
with broken chiral symmetry
appears. The vertical line is
the magnitude of the
magnetic field that expected
to be realized at LHC
heavy-ion collisions [8, 9].
Extracted from Ref. [48]

sition: the first-order phase transition—which would be realized in the absence of
the vacuum contribution—becomes a smooth crossover in the system with vacuum
quark loops included.

The modifications produced by strong magnetic fields over strong interactions
seem very exciting, bringing new possibilities for the phase diagram: affecting the
nature of the transitions, splitting different coexistence lines, possibly exhibiting
new phases, increasing the breaking of Z3, and so on. As discussed in the Introduc-
tion, the second scenario has been also found in other effective models containing
a chiral and a Polyakov loop sector [52–55, 67], as well as in preliminary lattice
simulations [77, 78]. However, lattice simulations of magnetic QCD with physical
masses and fine grids have shown that both critical temperatures actually go down
for increasing B , saturating for very large fields [80], an unexpected behavior that
is very different from the scenario depicted above.

This leads us to consider of a much simpler model that, yet, seems to con-
tain the essential ingredients to describe the behavior of the deconfining line, and
produces results that are in qualitative agreement with the lattice: the magnetic
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MIT bag model [68]. As will be clear in the discussion, the subtraction proce-
dure in renormalization is subtle (which can be seen as the choice of the renor-
malization scale) but can be guided by known physical phenomena and lattice re-
sults.

5.4 Magbag—The Thermal MIT Bag Model in the Presence
of a Magnetic Background

In the MIT bag model framework for the pressure of strong interactions, one needs
the free quark pressure. As seen previously, the presence of a magnetic field in the
ẑ direction affects this computation by modifying the dispersion relation to

ω�sf (kz) = k2
z + m2

f + qf B(2� + s + 1) ≡ k2
z + M2

�sf , (5.20)

� = 0,1,2, . . . being the Landau level index, s = ±1 the spin projection, f the
flavor index, and qf the absolute value of the electric charge. Loop integrals are
also affected as presented previously [44, 45, 86].

Since it has been shown that only very large magnetic fields do affect sig-
nificantly the structure of the phase diagram for strong interactions [43–45, 51–
55, 77, 78, 80], we can restrict the free quark pressure to the limit of very high
magnetic fields, where it is possible to simplify some analytic expressions.

It is crucial to realize, however, that the lowest Landau level (LLL) approxima-
tion for the free gas pressure is not equivalent to the leading order of a large magnetic
field expansion. For the zero-temperature, finite-B contribution to the pressure, the
LLL is the energy level which less contributes in the limit of large B; the result be-
ing dominated by high values of �. Nevertheless, the equivalence between the LLL
approximation and the large B limit remains valid for the temperature-dependent
part of the free pressure (as well as for the propagator), simplifying the numerical
evaluation of thermal integrals [84].

The free magnetic contribution to the quark pressure has been considered in dif-
ferent contexts (usually, in effective field theories [44, 45, 49–51, 63, 64, 112]) and
computed from the direct knowledge of the energy levels of the system, (5.20). The
exact result, including all Landau levels, has to be computed from

Pq = 2Nc

∑

�,s,f

qf B

2π

∫
dkz

2π

{
ω�sf (kz)

2
+ T ln

[
1 + e−ω�sf (kz)/T

]}
, (5.21)

where the first term is a clearly divergent zero-point energy and the other one is the
finite-temperature contribution for vanishing chemical potential. Since ω�sf grows
with B , the largest the � labeling the Landau level considered the larger the zero-
point energy term becomes, being minimal for the LLL, corroborating the previous
discussion. Thus, in the limit of large B , the LLL approximation is inadequate here.
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The decaying exponential dependence of the finite-temperature term on ω�sf , on
the other hand, guarantees that the LLL dominates indeed this result for intense
magnetic fields.

To obtain a good approximation for the large B limit of the free pressure, we
choose to treat the full exact result and take the leading order of a xf ≡ m2

f /2qf B

expansion in the final renormalized expression. Let us then discuss the treatment
of the divergent zero-point term. Despite being a zero-temperature contribution, the
first term in (5.21) cannot be fully subtracted because it carries the modification to
the pressure brought about by the magnetic dressing of the quarks. Using dimen-
sional regularization and the zeta-function representation, which is also a type of
regularization, for the sums over Landau levels and subtracting the pure vacuum
term in (3 + 1) dimensions, one arrives at:

P V
q = Nc

2π2

∑

f

(qf B)2
[
ζ ′(−1, xf ) + 1

2

(
xf − x2

f

)
lnxf + x2

f

4

− 1

12

(
2/ε + log

(
Λ2/2qf B

) + 1
)]

, (5.22)

where a pole ∼(qf B)2[2/ε] still remains. This infinite contribution that survives
the vacuum subtraction can be interpreted as a pure magnetic pressure coming from
the artificial scenario adopted, with a constant and uniform B field covering the
whole universe (analogous to the case of a cosmological constant). In this vein, one
may neglect all terms ∼(qf B)2 and independent of masses and other couplings (as
done, e.g. in Refs. [44, 45, 49, 50, 63, 64]), concentrating on the modification of the
pressure of the quark matter under investigation. This can be seen as a choice for the
renormalization scale after the renormalization of a ∼FμνF

μν term representing the
magnetic field, as discussed, e.g. in Refs. [63, 64]. We will come back to this point
in the sequel.

The final exact result for the free pressure of magnetically dressed quarks is there-
fore

Pq

Nc

=
∑

f

(qf B)2

2π2

[
ζ ′(−1, xf ) − ζ ′(−1,0) + 1

2

(
xf − x2

f

)
lnxf + x2

f

4

]

+ T
∑

�,s,f

qf B

2π2

∫
dkz ln

[
1 + e−ω�sf (kz)/T

]
. (5.23)

In Refs. [44, 45, 49, 50, 63, 64], the constant ζ ′(−1,0) = −0.165421 . . . was not
subtracted. In the case of pions, however, the full subtraction ensures that magnetic
catalysis, i.e. an enhancement of chiral symmetry breaking, at zero temperature [14,
15, 17, 18, 33, 111], is realized. On the other hand, if this term is left, the pion
contribution to the effective potential for the chiral condensate at large magnetic
fields will eventually raise the minimum instead of lowering it.
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In the limit of large magnetic field (i.e. xf = m2
f /(2qf B) → 0), we obtain

Pq

Nc

large B=
∑

f

(qf B)2

2π2
[xf ln

√
xf ] + T

∑

f

qf B

2π2

∫
dkz ln

[
1 + e

−
√

k2
z+m2

f /T ]
.

(5.24)
Adding the free piece of the gluonic contribution and the bag constant B, the

pressure of the QGP sector in the presence of an intense magnetic field reads:

P B
QGP = 2

(
N2

c − 1
)π2T 4

90
+ Pq − B. (5.25)

It is clear that, for
√

eB much larger than all other energy scales, the pressure
in the QGP phase increases with the magnetic field, which seems to favor a steady
drop in the critical temperature with increasing B that would lead to a crossing of
the critical line with the T = 0 axis at some critical value for the magnetic field.
However, the behavior of Tc(B) also depends on how the pions react to B , so that
the outcome is not obvious.

In the confined sector, which we describe by a free pion gas, one may follow
analogous steps in order to compute the contribution from the charged pions, which
couple to the magnetic field, arriving at

Pπ+ + Pπ− = − (eB)2

4π2

[
ζ ′

(
−1,

1

2
+ xπ

)
− ζ ′

(
−1,

1

2

)
+ x2

π

4
− x2

π ln
√

xπ

]

− 2
eB

4π2
T

∑

�

∫
dkz ln

[
1 − e

−
√

k2
z+M2

π�/T ]
, (5.26)

where M2
π� ≡ m2

π + (2� + 1)eB and xπ ≡ m2
π/(2eB). In this final expression all

terms ∼(qf B)2 and independent of masses and other couplings were subtracted,
as discussed before. Notice that the spin-zero nature of the pions guarantees that
all charged pion modes in a magnetic field, differently from what happens with the
quark modes, are B-dependent. So, in the large magnetic field limit the thermal
integral associated with π+ and π− is exponentially suppressed by an effective
mass �(m2

π + eB), as was also noticed in Refs. [44, 45], and can be dropped. In this
limit, we have

Pπ+ + Pπ−
large B= − (eB)2

4π2
ζ (1,1)(−1,1/2) xπ , (5.27)

where ζ (1,1)(−1,1/2) = − ln(2)/2 = −0.346574 . . . . Neutral pions do not couple
to the magnetic field and contribute only with the usual thermal integral [87].

As before, for
√

eB much larger than all other scales, the pion pressure rises with
the magnetic field, as a consequence of the subtraction of all terms that are indepen-
dent of temperature, masses and other couplings in the renormalization process,
which renders the pressure positive. Differently from the quark pressure, however,
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Fig. 5.6 Crossing pion gas
and QGP pressures as
functions of the temperature
for different values of the
magnetic field: eB = 0
(black, solid, right-most),
20m2

π , 40m2
π , 60m2

π

(magenta, dash-dotted) and
eB = 100m2

π (gray, solid,
left-most), where
mπ = 138 MeV is the
vacuum pion mass. Extracted
from Ref. [68] (Color figure
online)

Fig. 5.7 Phase diagram in
the presence of a strong
magnetic field. We also keep
the Tc(B = 0) point. The blue
square represents a very
conservative estimate for the
maximum value of eB

expected to be achieved in
non-central collisions at the
LHC with the formation of
deconfined matter. The arrow
marks the critical temperature
for eB ≈ 210m2

π [113],
expected to be found at the
early universe. Extracted
from Ref. [68] (Color figure
online)

the B = 0 pion pressure takes over for temperatures of the order of the pion mass,
which is not small and always enlarged by the presence of a magnetic field (given
its scalar nature). Moreover, for large T , the magnetic pion pressures converge to
(1/3) of the B = 0 pressure, since π0 is the only degree of freedom that contributes
thermally for large B .

Each equilibrium phase should maximize the pressure, so that the critical line in
the phase diagram can be constructed by directly extracting Tc(B) from the equality
of pressures. It is instructive, nevertheless, to consider a plot of the crossing pres-
sures, as shown in Fig. 5.6. The figure shows, as expected, a decrease in the critical
temperature (crossing points) as B is increased due to the corresponding positive
shift of the QGP pressure. However, Tc seems to be saturating at a constant value.
One can see that the critical pressure (crossing point) goes down, but then it bends
up again due to the increase in the pion pressure with B . This combination avoids a
steady and rapid decrease of the critical temperature, as becomes clear in the phase
diagram shown in Fig. 5.7. In fact, inspection of the zero-temperature limit of (5.24)
and (5.27) shows that there is no value of magnetic field that allows for a vanishing
critical temperature.
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The phase diagram in the plane T –eB shows that the critical temperature for de-
confinement falls as we increase the magnetic field. However, instead of falling with
a rate that will bring it to zero at a given critical value of eB , it falls less and less
rapidly, tending to saturate at large values of B . Remarkably, this qualitative behav-
ior agrees quite well with the most recent lattice results with physical masses [80].4

As discussed in the Introduction, previous models [44, 45, 48, 52–57, 67], have
predicted either an increase or an essentially flat behavior for the deconfinement
critical line as B is increased to very large values. The same was true for previous
lattice simulations [77, 78], which could be reproduced by the authors of Ref. [80]
by increasing the quark masses to unphysical values.

The renormalization procedure in the presence of a constant and uniform mag-
netic field seems to be very subtle and crucial for the phenomenological outcome
for the phase structure. B-dependent, mass-independent terms survive pure vacuum
(B = 0) subtraction and have to be subtracted either in an ad hoc fashion [68] or
by including a background field counterterm associated with a term ∼FμνF

μν rep-
resenting the magnetic field [63, 64]. The latter brings a renormalization scale and,
upon an appropriate choice, reproduces the former. Subtracting all purely magnetic
terms in the pressures seems to be the appropriate choice since: (i) one guaran-
tees that the pion pressure grows with increasing magnetic field at zero tempera-
ture, which is consistent with the well-known phenomenon of magnetic catalysis;
(ii) lattice simulations usually measure derivatives of the pressure with respect to
temperature and quark mass, and do not access derivatives with respect to B , so that
purely B-dependent terms are not included in their results; and (iii) the effect of a
purely magnetic contribution to the pressure would only shift the effective potential
as a whole. In particular, there would be no modification on relative positions and
heights of different minima that represent different phases of matter.

The qualitative success of the description of the deconfinement transition in the
presence of an external magnetic field in terms of the MIT bag model suggests that
confinement dynamics plays a central role in guiding the functional behavior of Tc .
In this case, a large Nc investigation of the associated magnetic thermodynamics
seems appropriate.

5.5 Large Nc

Lattice QCD calculations [114] show that the deconfinement phase transition of
pure glue SU(Nc) gauge theory becomes first order when Nc ≥ 3 [115–122] with a
critical temperature given by [123]

lim
Nc→∞

Tc√
σ

= 0.5949(17) + 0.458(18)

N2
c

, (5.28)

4Of course, our description necessarily predicts a first-order transition, as usual with the MIT bag
model, and our numbers should be taken as rough estimates, as is always the case in effective
models.
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where σ ∼ (440 MeV)2 is the string tension. The thermodynamic properties of pure
glue do not seem to change appreciably when Nc ≥ 3 [124–126], which suggests
that large Nc arguments may indeed capture the main physical mechanism behind
the deconfinement phase transition of QCD.

It has been shown in Ref. [85] that the deconfinement critical temperature must
decrease in the presence of an external magnetic field in the large Nc limit of QCD,
provided that quarks exhibit a paramagnetic behavior. Assuming that Nf /Nc � 1
and mq = 0, the only contribution to the pressure of the confined phase that enters
at O(N2

c ) is given by the vacuum (B = 0) gluon condensate c4
0N

2
c σ 2. The gluon and

quark condensates change in the presence of a magnetic field [30, 31, 127] but these
modifications are negligible in the large Nc limit. Besides, the gluon contribution to
the deconfined pressure is blind to the magnetic field.

On the other hand, the quark contribution is affected by the magnetic field and
has the form

Pquark(T , eB) ∼ NcNpairs(Nf )T 4f̃quark
(
T/

√
σ, eB/T 2), (5.29)

with Npairs(Nf )/Nc � 1 being the number of pairs of quark flavors with electric
charges {(Nc − 1)/Nc,−1/Nc} in units of the fundamental charge. Only the largest
(∼N0

c ) charge in each pair contributes to leading order in Nf /Nc . Notice that the
function f̃quark is positive definite and must increase monotonically with T for a
fixed value of eB until it goes to 1 in the high temperature limit T � √

σ , eB .
Thus, one should expect that the critical temperature as a function of the magnetic
field, Tc(eB), must decrease with respect to the pure glue critical temperature, T

(0)
c ,

by an amount of O(Nf /Nc). This can be seen directly by equating the pressures at
Tc, which yields [85]

Tc(eB)√
σ

f
1/4
glue

(
Tc(eB)√

σ

)
= c2(Npairs, eB)

cSB

, (5.30)

where we defined

c2(Npairs, eB) ≡ c0

[
1 − 1

4

Npairs(Nf )

Nc

c4
qSBf̃quark(

T
(0)
c√
σ

, eB

T
(0)2
c

)

c4
SBfglue(

T
(0)
c√
σ

)

]
. (5.31)

Since c2(Npairs, eB) < c0, one finds that Tc(eB)/T
(0)
c < 1 by an amount

∼Nf /Nc [85]. Assuming that quarks behave paramagnetically for all values of
B , then c2(Npairs, eB) < c1(Nf ), its equivalent in the case with B = 0 and Nf > 0,
and Tc(eB) is also lower than the critical temperature in the presence of Nf /Nc

flavors of massless quarks at B = 0 [85].
In a free gas implementation of the deconfined phase fglue = 1 and, for very

strong magnetic fields, f̃quark ∼ eB/T 2
c [68], so that the magnetic suppression of the

deconfinement critical temperature goes like eBNpairs/(Ncσ ). This simple imple-
mentation in the limits of low and high magnetic fields provides a scenario in which
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Fig. 5.8 Cartoon of the
Tc × eB phase diagram in the
large Nc limit, using the
approximation of free
deconfined quarks and
gluons. The numerical
value 0.59 shown in the plot
was extracted from
Ref. [123]. Extracted from
Ref. [85]

the slope in Tc(eB) decreases for large fields, as illustrated in Fig. 5.8, which hints
for a saturation of Tc as a function of eB , as observed on the lattice [80] and in the
magnetic MIT bag model [68], but cannot be obtained in a model-independent way.

5.6 Conclusions and Perspectives

The investigation of the effects brought about by the presence of a magnetic back-
ground on the thermal chiral and deconfining transitions is in its infancy yet. Never-
theless, the promise of the outcome of a rich phenomenology in mapping this new
phase diagram of strong interactions is concrete.

First model calculations have revealed the possibility of modifications in the na-
ture of the QCD phase transitions, and also the appearance of a new phase of strong
interactions in the case of a splitting of the critical (chiral and deconfining) lines.
Even if recent, more physical lattice simulations have drastically modified the initial
picture, they have also shown that the magnetic background has a very non-trivial
influence on strong interactions. For instance, the behavior of quark condensates at
finite temperature is non-monotonic [81], rendering well-established vacuum phe-
nomena such as magnetic catalysis more subtle at finite temperature.

The functional behavior of the critical temperatures still has to be understood
more deeply. Although no model foresaw the fact that both, chiral and deconfining
temperatures, decrease then saturate at a nonzero value according to the lattice [80],
a posteriori the magnetic MIT bag model was successful to describe this behavior
for deconfinement qualitatively [68] and seems to capture some essential ingredi-
ents. A model-independent analysis in the large-Nc limit of QCD also points to this
behavior [85], which is reassuring from the theoretical standpoint.

Another key ingredient in building an understanding of the physics of the quark-
gluon plasma under these new conditions, which can be relevant for high-energy
heavy-ion collision experiments, the primordial quark-hadron transition and mag-
netars is the standard perturbative investigation of magnetic QCD. The calculation
of the pressure in thermal QCD to two loops in the strong sector using the full QED
propagator in the lowest Landau level approximation is subtle but possible, as done
originally in Ref. [84].

The computation makes use of the full magnetic propagator that was obtained by
Schwinger [128], but can be cast in a more convenient form in terms of a sum over



138 E.S. Fraga

Landau levels as derived in Ref. [129] (see also Refs. [84, 130]). In particular, it has
been shown in Ref. [84] that the chiral limit for the exchange diagram seems to be
trivial for very large magnetic fields. Concretely, it can be written diagrammatically
in the following compact form [84]:

LLL

=
(

qf B

2π

)∫
dk1dk2

(2π)2
e
− k2

1+k2
2

2qf B

d̄=2; m2
k=k2

1+k2
2

, (5.32)

which realizes the intuitive expectation that the nontrivial dynamics in an extremely
intense magnetic field should be one-dimensional. Since gluons do not couple di-
rectly to the magnetic field, their dispersion relation maintains its three-dimensional
character, which effectively results in a “massive” gluon in the dimensionally-
reduced diagram. In the end the exchange contribution to the pressure is essentially
an average over the effective gluon transverse mass m2

k = k2
1 +k2

2 of the exchange di-
agram in (1+1)-dimensions with the Gaussian weight (qf B/2π) exp[−m2

k/2qf B].
Since the trace in the reduced diagram is proportional to m2

f , the chiral limit seems
trivial [84]. A detailed analysis of the dependence of the pressure on the mass
and temperature and a semiclassical interpretation of this result will be reported
soon [131].

The nature of the phase diagram of strong interactions in the presence of a mag-
netic background is still open. Recent lattice data, especially when compared to
effective model predictions, seem to indicate that confinement dynamics plays an
important role in the phase structure that emerges and should be incorporated in any
effective description. Comparison between lattice data with very different quark
masses [77, 78, 80, 81] also show that the dependence of the critical temperatures
on this parameter is non-trivial: Tc increases at the percent level for large masses
[77, 78] whereas it decreases appreciably for physical masses [80]. This competi-
tion between the effects from the magnetic field and quark masses on Tc was also
found in the large-Nc QCD analysis of Ref. [85]. A more systematic analysis of
this phenomenon on the lattice would be very helpful for the building of effective
models.
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