
Chapter 22
A Review of Magnetic Phenomena
in Probe-Brane Holographic Matter

Oren Bergman, Johanna Erdmenger, and Gilad Lifschytz

22.1 Introduction

The behavior of strongly interacting matter subject to background magnetic fields
is an interesting and physically relevant problem in many different scenarios, rang-
ing from the effective 2d electron gas in graphene, to magnetars, which are neu-
tron stars with a strong magnetic field. Magnetic fields give rise to a rich array of
phenomena. Some examples in QCD are the magnetic catalysis of chiral symme-
try breaking [1–3], anomaly-driven phases of baryonic matter [4], and the chiral
magnetic effect [5]. It has also been suggested that magnetic fields induce ρ-meson
condensation and superconductivity in the QCD vacuum [6, 7]. There are also many
interesting examples in condensed matter physics, most notably the fractional quan-
tum Hall effect [8, 9].

Gauge/gravity duality, also known as holographic duality, has emerged in recent
years as a particularly useful approach to strong-coupling dynamics. Although it
does not seem to be directly applicable to physical systems, this approach can be
used to study theoretical systems that exhibit the same type of phenomena, and
that capture some of the relevant physics. The techniques of holographic duality
are especially efficient in addressing questions associated with finite temperature
and density, background fields and transport properties, that are difficult to study
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using other non-perturbative methods. This approach can also lead to new ideas for
constructing effective theories of the physical phenomena one is interested in.

Holographic models are divided into two main types, commonly referred to as
top-down models and bottom-up models. In top-down models the bulk gravitational
description of the system corresponds to a consistent solution of a well-defined
quantum gravity theory, either in the context of the full string theory or in terms
of the low-energy effective supergravity theory. This then defines some particular
strong-coupling boundary dynamics. In bottom-up models, on the other hand, one
builds into the description what one needs in order to produce the desired boundary
dynamics. Each approach has advantages and disadvantages. Top-down models are
more firmly grounded than bottom-up models, however they are more restrictive in
terms of the variety and scope of phenomena they can exhibit.

Probe-brane models are a class of top-down holographic models, in which matter
fields transforming in the fundamental representation of a gauge group are incorpo-
rated by embedding “flavor” D-branes in the gravitational background dual to the
gauge theory [10]. These branes are treated as probes, in the sense that we neglect
their backreaction on the background. (This corresponds to the ‘quenched’ approx-
imation in the dual gauge theory, where matter loops are neglected in computing
gluon amplitudes.) The matter fields are manifest in this construction: they corre-
spond to the open strings between the flavor branes and the “color” branes that make
up the background. In particular, one can easily design probe brane models in which
the light matter degrees of freedom are purely fermionic, which is obviously a de-
sirable feature for many physical systems, including QCD and condensed matter
electron systems.

The matter dynamics is determined by the properties of the probe brane embed-
ding. In particular, the fluctuations of the probe brane worldvolume fields corre-
spond to gauge-invariant composite operators that describe the mesonic states of the
matter system. There are generically two types of embeddings at finite temperature:
“BH embeddings”, in which the brane extends to the horizon of the background,
and “MN embeddings”, in which the brane terminates outside the horizon. The two
embedding types describe different phases of the matter in the dual gauge theory.
For example, in the MN phase the mesons are stable since they are associated with
real eigenfrequencies of the probe brane fluctuations. In the BH phase, on the other
hand, some of the energy of the fluctuations is dissipated into the black hole, lead-
ing to complex eigenfrequencies and damping. In this case the mesons have a finite
lifetime. MN embeddings are favored at low temperature, and as the temperature is
increased one generically observes a first order phase transition to a BH embedding.

The most extensively studied probe-brane models are the D3–D7 model [10],
in which D7-branes are added to the D3-brane background, and the D4–D8 (or
Sakai-Sugimoto) model [11], in which D8-branes and anti-D8-branes are added
to the background of D4-branes compactified on a circle. Both models describe
a strongly-coupled gauge theory in four dimensions with fundamental matter de-
grees of freedom, and both exhibit a number of phenomena similar to QCD. More
recently, a different D3–D7 system, more closely related to the D4–D8 system, has
been used as a model of strongly-interacting fermionic matter in three spacetime di-
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mensions [12–15]. We will refer to this as the D3–D7’ model. This model exhibits
several interesting phenomena that are familiar in planar condensed matter systems.

Probe-brane models are especially well-designed to study the properties of the
dual matter systems at non-zero density and in background electromagnetic fields.
Both are implemented by turning on specific components of the probe-brane world-
volume gauge field, and solving the resulting coupled differential equations for the
embedding and the gauge fields. Here one observes another basic difference be-
tween the two types of embeddings in terms of their response to a background elec-
tric field. MN embeddings correspond to electrical insulators with a mass-gap to
charged excitations, and BH embeddings describe gapless conductors.

Probe-brane models also exhibit a number of interesting phenomena in a back-
ground magnetic field, which are qualitatively similar to the phenomena listed in
the beginning. In this paper we will review how each of the three models mentioned
above respond at non-zero density to a background magnetic field in various sit-
uations. In particular, we will encounter the magnetic catalysis effect in both the
D3–D7 and D4–D8 models. In the D3–D7 model we will also demonstrate the
formation of a superfluid state. In the D4–D8 model we will describe anomaly-
generated currents and baryonic states, as well as a metamagnetic-like transition. In
the D3–D7’ model we will see both quantum and anomalous Hall effects, as well as
how the magnetic field influences the instability to the formation of stripes, and the
zero-sound mode.

This paper is divided into three main sections, reviewing each of the probe-brane
models in turn. For completeness let us mention that magnetic fields also play an
important role in the related D3–D5 system, where the probe D5-brane corresponds
to additional (2 + 1)-dimensional degrees of freedom in the dual gauge theory. In
this model, the magnetic field leads to a phase transition of Berezinskii-Kosterlitz-
Thouless (BKT) type [16, 17]. For brevity we do not discuss this model in this
review.

22.2 The D3–D7 Model

22.2.1 Brane Construction

The starting point for this model is the usual configuration of the AdS/CFT cor-
respondence [18] which involves a stack of N D3 branes. This has an open string
interpretation in which the low-energy degrees of freedom are described by U(N)

N = 4 super-Yang-Mills theory. On the other hand, in the closed string interpre-
tation of N D3 branes, the low-energy near-horizon limit gives rise to the space
AdS5 × S5. Identifying the two pictures leads to the AdS/CFT correspondence.

Let us now add Nf probe D7-branes to this configuration, as first done in [10]
and reviewed in detail in [19]. Within (9 + 1)-dimensional flat space, the D3-branes
are extended along the 0123 directions, whereas the D7-branes are extended along
the 01234567 directions. This configuration preserves 1/4 of the total amount of
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supersymmetry in type IIB string theory (corresponding to 8 real supercharges) and
has an SO(4) × SO(2) isometry in the directions transverse to the D3-branes. The
SO(4) rotates x4, x5, x6, x7, while the SO(2) group acts on x8, x9. Separating the
D3-branes from the D7-branes in the (8,9) directions by a distance l explicitly
breaks the SO(2) group. These geometrical symmetries are also present in the dual
field theory: The dual field theory is an N = 2 supersymmetric (3+1)-dimensional
theory in which the degrees of freedom of N = 4 super-Yang-Mills theory are
coupled to Nf hypermultiplets of flavor fields with fermions and scalars (ψi, q

n),
i = 1,2, n = 1,2, which transform in the fundamental representation of the gauge
group. Separating the D7-branes from the D3-branes corresponds to giving a mass
to the hypermultiplets.

For massless flavor fields, the Lagrangian is classically invariant under con-
formal transformations SO(4,2).1 Moreover, the theory is invariant under the
R-symmetries SU(2)R and U(1)R as well as under the global SU(2)Φ , which rotates
the scalars in the adjoint hypermultiplet. Note that the mass term in the Lagrangian
breaks the U(1)R symmetry explicitly. If all Nf flavor fields have the same mass m,
the field theory is invariant under a global U(Nf ) flavor group. The baryonic U(1)B
symmetry is a subgroup of the U(Nf ) flavor group. These symmetries of the field
theory side may be identified with symmetries of the D3–D7 brane intersection and
hence also with the dual gravity description.

For this field theory, gauge invariant composite operators may now be con-
structed which transform in suitable representations of the SU(2) × SU(2) × U(1)

symmetry group isomorphic to the geometrical SO(4)× SO(2). These operators are
expected to be dual to the fluctuations of the D7-brane which transform in the same
representation, as worked out in detail in [20]. An example of a meson operator is
given by

M A = ψ̄iσ
A

ijψj + q̄mXAqm, (i,m = 1,2), (22.1)

with XA the vector (X8,X9) of adjoint scalars associated with the (8,9) directions,
and σA ≡ (σ 1, σ 2) a doublet of Pauli matrices. Thus (22.1) has charge +2 under
U(1)R . It is a singlet under both SU(2)Φ and SU(2)R . The conformal dimension
is Δ = 3. This operator may be viewed as a supersymmetric generalization of a
mesonic operator in QCD, with the index A labeling two scalar mesons.

The standard AdS/CFT duality relates the N = 4 super-Yang-Mills degrees of
freedom to supergravity on AdS5 ×S5. In addition, there are new degrees of freedom
associated to the D7-brane worldvolume fields originating from the open strings
on the D7-brane. The additional duality maps these to the mesonic operators in
the field theory. This is an open-open string duality, as opposed to the standard
AdS/CFT correspondence, which is an open-closed string duality. The dynamics of
the D7-brane is described by the Dirac-Born-Infeld (DBI) action

1However note that the scale-invariance is broken at the quantum level since the beta function is
proportional to Nf /Nc and therefore non-vanishing. In the limit Nc → ∞ with Nf being fixed,
the beta function is approximately zero, i.e. we may treat the theory as being scale invariant also at
the quantum level.
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SD7 = −μ7

gs

∫
d8ξ

√
−det

(
Gab + B

(2)
ab + 2πα′Fab

)
, (22.2)

where μ7 = [(2π)7α′4]−1. G and B(2) are the induced metric and two-form field
on the probe brane worldvolume, and Fab is the worldvolume field strength. The
D7-brane action also contains a fermionic term S

f
D7. In addition there may also be

contributions of Wess-Zumino form. An example for this will be discussed below.
Let us write the AdS5 × S5 metric in the form

ds2 = r2

R2
ηij dxi dxj + R2

r2

(
dρ2 + ρ2 dΩ2

3 + dx2
8 + dx2

9

)
, (22.3)

with i, j = 0,1,2,3, ρ2 = x2
4 + · · · + x2

7 , r2 = ρ2 + x2
8 + x2

9 and R the AdS radius.
Since the D7-brane is transverse to x8, x9 in flat space, we see that it extends along
AdS5 and wraps an S3 inside S5 in the near-horizon background. The action for a
static D7-brane embedding, for which Fab may be consistently set to zero on its
world-volume, is given from (22.2) up to angular factors by

SD7 = −μ7

gs

∫
d8ξ ρ3

√
1 + ẋ2

8 + ẋ2
9 , (22.4)

where a dot indicates a ρ derivative (e.g. ẋ8 ≡ ∂ρx8). The ground state configuration
of the D7-brane then corresponds to the solution of the equation of motion

d

dρ

[
ρ3√

1 + ẋ2
8 + ẋ2

9

dx

dρ

]
= 0, (22.5)

where x denotes either x8 or x9. Clearly the action is minimized by x8, x9 being any
arbitrary constant. Therefore the embedded D7-brane is flat. According to string
theory, the choice of the position in the x8, x9 plane corresponds to choosing the
quark mass in the gauge theory action. The fact that x8, x9 are constant at all values
of the radial coordinate ρ, which corresponds to the holographic renormalization
scale, may be interpreted as non-renormalization of the mass in the dual field theory.

In general, the equations of motion have asymptotic (ρ → ∞) solutions of the
form

x = l + c

ρ2
+ · · · , (22.6)

where l is related to the quark mass m by

m = l

2πα′ . (22.7)

In agreement with the standard AdS/CFT result about the asymptotic behavior of
supergravity fields near the boundary, the parameter c must correspond to the vev
of an operator with the same symmetries as the mass and of dimension three, since
ρ carries energy dimension. c is therefore a measure of the quark condensate ψ̃ψ .
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c is obtained from ∂L /∂m which in addition to the fermion bilinear also includes
scalar squark terms. We may consistently assume that the squarks have zero vev.
Moreover, supersymmetry requires that a vev for c must be absent since c is an
F-term of a chiral superfield: ψ̃ψ is the F-term of Q̃Q. Supersymmetry is broken if
c = 〈ψ̃ψ〉 �= 0. This is reflected also in the supergravity solution: The solutions to
the supergravity equations of motion with c non-zero are not regular in AdS space
and are therefore excluded.

We therefore consider the regular supersymmetric embeddings of the D7-brane
for which the quark mass m may be non-zero, but the condensate c vanishes. For
massive embeddings, the D7-brane is separated from the stack of D3-branes in either
the x8 or x9 directions, where the indices refer to the coordinates given in (22.3).
In this case the radius of the S3 becomes a function of the radial coordinate r in
AdS5. At a radial distance from the deep interior of the AdS space given by the
hypermultiplet mass, the radius of the S3 shrinks to zero. From a five-dimensional
AdS point of view, this gives a minimal value for the radial coordinate r beyond
which the D7-brane cannot extend further. This is in agreement with the induced
metric on the D7-brane world-volume, which is given by

ds2 = ρ2 + l2

R2
ηij dxi dxj + R2

ρ2 + l2
dρ2 + R2ρ2

ρ2 + l2
dΩ3

2, (22.8)

dΩ3
2 = dψ2 + cos2 ψ dβ2 + sin2 ψ dγ 2, (22.9)

where ρ2 = r2 − l2 and Ω3 are spherical coordinates in the 4567-space. For ρ → ∞,
this is the metric of AdS5 ×S3. When ρ = 0 (i.e. r2 = l2), the radius of the S3 shrinks
to zero.

22.2.2 Finite Temperature

The finite temperature system is realized holographically by placing the D7-brane
in an AdS-Schwarzschild black hole background with metric given by

ds2 = r2

2R2

(
dx2(rh

4 + r4)

r4
− dt2(r4 − rh

4)2

r4(rh4 + r4)

)

+ R2

r2

(
dL2 + dρ2 + L2 dφ2 + ρ2 dΩ2

3

)
, (22.10)

where r2 = ρ2 + L2. The temperature is given by T = rh/(πR2).
In this metric we have introduced polar coordinates (L,φ) in the (x8, x9) plane

and consider solutions for D7-brane embeddings with L = L(ρ), φ = const. The
asymptotic near-boundary behavior of these brane embeddings is given by

L(ρ) = l + c

ρ2
+ · · · , (22.11)
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where m = l/(2πα′) is the bare quark mass and c is proportional to the condensate
〈ψ̄ψ〉. At finite temperature, supersymmetry is broken and brane embeddings with
c non-zero are possible, in contrast to the supersymmetric case discussed above.

Depending on the quark mass, there are two different types of embeddings: Those
which reach the black hole, and those which do not since the S3 they wrap shrinks
to zero outside the black hole horizon. The first type of branes is referred to as
‘black hole’ (BH) embeddings, while the second type is referred to as ‘Minkowski’
(MN) embeddings. In the BH case, fluctuations of the probe brane have complex
eigenfrequencies or quasi-normal modes, which means that the mesons associated
with these fluctuations decay. In the MN phase, the mesons are stable. The phase
transition between the two types of embeddings is first order.

At finite temperature, the solution with m = 0 also has c = 0. However, in
gravity backgrounds corresponding to confining field theories, brane embeddings
with m = 0, c �= 0 are possible. These realize spontaneous chiral symmetry break-
ing [21].

22.2.3 Magnetic Catalysis

Let us now consider, as was first done in [22], a magnetic field induced by a pure
gauge B-field in the worldvolume direction of the D3-branes,

B(2) = B dx2 ∧ dx3, (22.12)

which satisfies dB(2) = 0. This contributes to the DBI action (22.2). Since B(2) and
2πα′F enter (22.2) in the same way, we may trade B(2) for a gauge field on the
probe brane via F = −B(2)/2πα′, which justifies interpreting B of (22.12) as a
magnetic field.

In addition, there is a non-trivial Wess-Zumino contribution to the action, which
at first order in α′ is of the form

SWZ = 2πα′μ7

∫
F ∧ C(6). (22.13)

In the presence of the B-field, this leads to an additional non-trivial contribution to
the action, as explained in detail in [22]. This gives rise to a non-trivial C(6) which
breaks supersymmetry on the worldvolume of the D7-brane.

Since supersymmetry is broken, the D7-brane now has a profile which depends
on ρ as in (22.11), even at zero temperature. The Lagrangian corresponding to (22.2)
takes the form

L = −μ7

gs

ρ3 sinψ cosψ
√

1 + L′2

√
1 + R4B2

(ρ2 + L2)2
. (22.14)

For m = 0, the brane embedding solution obtained from this Lagrangian has non-
zero c ∝ 〈ψ̄ψ〉 in (22.11). The magnetic field therefore induces spontaneous chiral
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Fig. 22.1 −c̃(m̃) at
vanishing temperature, with
−c̃=〈ψ̄ψ〉(2πα′)3/(R3B3/2),
m̃ = m(2πα′)/(R

√
B).

Reproduced from [23]

symmetry breaking, a phenomenon known as magnetic catalysis [1–3]. For large m,
the condensate may be calculated analytically [22] and is found to be

〈ψ̄ψ〉 ∝ −c = −R4

4l
B2. (22.15)

For small m, c has to be evaluated numerically. The result is shown in Fig. 22.1.
By evaluating the free energy, it has been shown that when there is more than one
solution, the one with the larger condensate is preferred.

At small values of the magnetic field, it is possible to analytically evaluate the
shift of the meson masses due to its presence. For fluctuations of the embedding
scalar in particular, a Zeeman splitting is observed [22]. While in the absence of a
magnetic field, in the supersymmetric case described here, the scalar meson mass
obtained from the fluctuations is M0(n) = 2m/

√
λ · √(n + 1)(n + 2) [20], for non-

zero magnetic field there is a mass splitting

M± = M0 ± 1√
λ

B

m
. (22.16)

A review of magnetic catalysis in probe D7-brane systems is given in [24]. Mag-
netic catalysis is also found in systems involving Nf D7 branes where the back-
reaction of the metric on the background geometry is taken into account [25–27].
Out-of-equilibrium dynamics associated with the phase transition induced by mag-
netic catalysis has been investigated in [28].

In the finite temperature case, there is a competition between two mechanisms:
The black hole attracts the D7-brane, while it is repelled at small radii by the mag-
netic field. This implies a phase transition between a phase where the D7-brane
reaches the black hole and one where it does not. This is shown in Fig. 22.2 for
different values of the magnetic field, where the dimensionless ratio B/T 2 is used.
A detailed discussion of the normalization is found in [23].

There is a critical value for B/T 2 above which the probe brane is repelled from
the black hole for all values of the bare quark mass: In this case, chiral symmetry
is spontaneously broken and the mesons are stable. The phase diagram is shown in
Fig. 22.3.
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Fig. 22.2 Increasing values of B/T 2 for fixed T show the repulsive nature of the magnetic field.
We see that for large enough B/T 2, the melted phase is never reached, and the chiral symmetry is
spontaneously broken. Figure reproduced from [23]

Fig. 22.3 Phase diagram for
the D3/D7 system in the
(B/T 2, T /m) plane. Figure
from [23]

More involved phase diagrams are obtained if a U(1) chemical potential and
density are turned on in addition to the magnetic field by considering a non-trivial
profile for the U(1) gauge field on the D7-brane [29–31]. An example of a phase
diagram is shown in Fig. 22.4.

22.2.4 Superfluid

At finite isospin density, the D3–D7 model realizes a holographic superfluid
[32, 33]. Finite isospin density is obtained by considering two coincident D7-branes,
and using an ansatz for solving the equations of motion, which involves a non-trivial
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Fig. 22.4 Phase transitions at
constant B field in the (T ,μ)

plane for the D3/D7 model.
Figure reproduced from [31]
by kind permission of the
authors. c, d , J refer to the
condensate, density and
electric current, respectively

profile for the temporal component of the SU(2) worldvolume gauge field, with
asymptotic behavior

A3
t (ρ) ∝ μ3 + d3

ρ2
. (22.17)

μ3 breaks the SU(2) symmetry explicitly to a residual U(1)3. In the presence of
this background, the energetically favored solution also involves a non-trivial spatial
component of the worldvolume gauge field,

A1
x(ρ) ∝ d1

x

ρ2
. (22.18)

Here the leading contribution is absent in the asymptotic behavior, so the U(1)3
symmetry is spontaneously broken. A1

x is dual to a condensate of the form

d1
x ∝ 〈

ψ̄σ 1γxψ + φ̄σ i∂xφ
〉
, (22.19)

which is the supersymmetric equivalent of the ρ meson. The calculation of the
frequency-dependent conductivity σ(ω) for this solution shows that it describes a
superfluid: σ(ω) displays a gap. For the Sakai-Sugimoto model discussed below, a
similar condensation mechanism has been found in [34] and superfluidity has been
discussed in [35].

As discussed in [36, 37], a similar condensation process also happens when the
profile (22.17) for the temporal component of the SU(2) gauge field is replaced by
a non-trivial profile for a spatial component of the form

A3
x = By, (22.20)

which corresponds to a background magnetic field. In this case a similar condensa-
tion as above takes place. This has been demonstrated by analyzing the fluctuations
about the magnetic field background [37]: The quasi-normal modes of particular
fluctuations cross into the upper half of the complex frequency plane above a criti-
cal value of the magnetic field, indicating an instability. This is shown in Fig. 22.5.
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Fig. 22.5 Quasi-normal
modes cross into the upper
half plane above a critical
magnetic field, signaling an
instability. Figure reproduced
from [37]

Finally let us note that the Hall conductivity has been calculated for the D3/D7
model in [38]. Unlike the isospin case, the ground state involving the ρ condensate
is spatially modulated for the magnetic field background, leading to an Abrikosov
lattice [39]. A similar ρ meson condensation mechanism in a background magnetic
field has been found in the context of field theory in [6, 7, 40], based on similar
earlier results in electroweak theory [41]. For the Sakai-Sugimoto model which we
discuss below, a similar mechanism has been discussed in [42, 43].

22.3 The D4–D8 (Sakai-Sugimoto) Model

22.3.1 Basics

Nc D4-branes on R
1,3 × S1 with anti-periodic boundary conditions for fermions

provide a holographic model for the low energy behavior of 4d SU(Nc) Yang-Mills
theory with g2

YM = 4πgs

√
α′/R4 [44]. The near-horizon background at zero tem-

perature is given by (we work with dimensionless coordinates rescaled by R)

ds2
con = u

3
2
(−dx2

0 + dx2 + f (u)dx2
4

) + u− 3
2

(
du2

f (u)
+ u2 dΩ2

4

)
,

(22.21)
eΦ = gsu

3/4, F4 = 3π
(
α′)3/2

Nc dΩ4,

where f (u) = 1 − (u3
KK/u3), uKK = 4R2/(9R2

4) and R = (πgsNc)
1/3

√
α′. The IR

“wall” at u = uKK implies that the dual gauge theory is confining. At nonzero tem-
perature there is another possible background with a metric

ds2
dec = u

3
2
(−f (u)dx2

0 + dx2 + dx2
4

) + u− 3
2

(
du2

f (u)
+ u2 dΩ2

4

)
, (22.22)
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where f (u) = 1 − (u3
T /u3) and uT = (4π/3)2R2T 2. This background becomes the

dominant one when T > 1/(2πR4). The presence of a horizon at u = uT in this
background indicates that the gauge theory undergoes a (first order) deconfinement
transition at this temperature.

Quarks are added to the model by including D8-branes and anti-D8-branes that
are localized on the circle [11]. With Nf D8-branes at one point and Nf anti-D8-
branes at another point, the model has Nf flavors of massless right-handed and
left-handed fermions, and a U(Nf )R × U(Nf )L chiral symmetry. The 8-branes are
treated as probes in the near horizon background of the D4-branes. The flavor dy-
namics is thus encoded in the 5d effective worldvolume theory of the D8-branes,
which includes a DBI term and a CS term (in Lorentzian signature)2

SDBI = −N

∫
d4x duu1/4

√−det(gMN + fMN), (22.23)

SCS = −N

8

∫
d4x duεMNPQRaMfNPfQR. (22.24)

The dimensionless worldvolume gauge field aM and field strength fMN are defined
as aM = (2πα′/R)AM and fMN = 2πα′FMN , and the overall normalization is given
by N = μ8Ω4R

9/gs = (1/3)Nc R6(2π)−5(α′)−3. The anti-D8-brane has a similar
action in terms of its worldvolume gauge field āM . The DBI term is identical to
that of the D8-brane, and the CS term has the opposite sign. We define the vector
combination as aV

M = 1
2 (aM + āM), and the axial combination as aA

M = 1
2 (āM −aM).

In the low-temperature confining background (22.21) the D8-brane and anti-D8-
brane connect at u = u0 ≥ uKK into a smooth U-shaped configuration (Fig. 22.6a),
reflecting the spontaneous breaking of the U(1)R × U(1)L chiral symmetry to the
diagonal U(1)V . The embedding is determined by the DBI action (setting fMN = 0)

Scon
DBI = −N

∫
d4x duu4

[
f (u)

(
x′

4(u)
)2 + 1

u3f (u)

] 1
2

, (22.25)

which implies an asymptotic behavior

x4(u) ≈ L

2
− 2

9

u4
0

√
f (u0)

u9/2
, (22.26)

where L is the asymptotic brane-antibrane separation.
The normalizable fluctuations of the D8-brane worldvolume fields in this embed-

ding correspond to the (low spin) mesons of the model. Their mass scale is set by
u0, which we can think of as the mass of a “constituent quark” described by an open
string from u0 to uKK . There is one massless pseudoscalar field ϕ, precisely as one

2For simplicity, we will consider the single flavor case with one D8-brane and one anti-D8-brane.
This does not affect any of the results qualitatively.
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Fig. 22.6 D8-brane embeddings in the Sakai-Sugimoto model: (a) confined vacuum, (b) decon-
fined vacuum, (c) deconfined plasma, (d) confined nuclear matter, (e) deconfined nuclear matter

expects from the broken chiral symmetry. This is related to the η′ meson in QCD. It
appears (in a gauge with au = 0) as the zero mode aA

μ :3

aA
μ

(
xμ,u

) = −∂μϕ
(
xμ

)
ψ0(u) + higher modes, (22.27)

where

ψ0(u) = 2

π
arctan

√
u3

u3
KK

− 1. (22.28)

Baryons are described by D4-branes wrapped on S4 inside the D8-brane. Their
charge comes from the Nc strings which must be attached to the wrapped D4-brane
to cancel a tadpole due to the background RR field. These strings end on the D8-
brane, giving Nc units of charge.4

In the high-temperature deconfining background (22.22) the D8-branes and anti-
D8-branes can be either connected (Fig. 22.6b) or disconnected, with x4(u) = L/2
(Fig. 22.6c), the latter corresponding to the restoration of the chiral symmetry [46].
The DBI action in the high-temperature deconfining background is very similar:

Sdec
DBI = −N

∫
d4x duu4

[
f (u)

(
x′

4(u)
)2 + 1

u3

] 1
2

. (22.29)

Consequently the properties of the U embedding in this background are qualitatively
similar to those of the embedding in the confining background, for example in terms
of the spectrum of mesons. In the disconnected embedding there are no normaliz-

3Note that, although the boundary value is non-zero, this is a normalizable mode since the field
strength is normalizable. Ordinarily, boundary values of bulk fields correspond to parameters in
the boundary theory. But in this case there is a possible ambiguity, since the boundary value of aA

μ

can also describe a non-trivial gradient of the pseudoscalar field.
4For Nf > 1 the baryons correspond to instantons in the non-abelian D8-brane theory [11, 45].
This reproduces the known description of baryons as Skyrmions in the chiral Lagrangian. In this
description the baryon charge comes from the CS term coupling the U(1)V field to the instanton
density in the SU(Nf )V part.
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able fluctuations corresponding to mesons, as one expects in a chiral-symmetric
phase. Comparing the (Euclidean) actions of the two embeddings shows that the
disconnected one becomes dominant when T > 0.154/L. In particular, for small L

(L < 0.97R4) the gauge theory has an intermediate phase of deconfinement with
broken chiral symmetry.

22.3.2 Finite Density and Background Fields

The D8-brane worldvolume vector and axial gauge fields are dual to conserved vec-
tor and axial currents in the gauge theory, and therefore5

j
μ
V,A = 1

N V4

∂SD8|on-shell

∂a
V,A
μ (u → ∞)

. (22.30)

The chemical potentials are defined by6

μV = aV
0 (u → ∞) and μA = aA

0 (u → ∞). (22.31)

In our conventions quarks carry one unit of vector charge and baryons carry Nc

units. Nevertheless we will refer to the vector current as the “baryon number cur-
rent”. We are also interested in studying the effects of background “electromag-
netic” fields that couple to this current, which correspond to turning on spacetime
dependent boundary values of the worldvolume gauge field, in particular

ei = f0i (u → ∞), bi = εijkfjk(u → ∞). (22.32)

In some situations one may be required to add boundary terms to the action.
These are especially relevant if there is a CS term in the bulk. In deriving the equa-
tions of motion from the variational principle one usually assumes that the surface
terms vanish. However in some instances one has to be more careful. The surface
terms (in the au = 0 gauge) are given in general by

δS|on-shell =
∫

d4x
∂L

∂a′
ν

δaν

∣∣∣∞
umin

+
∫

d3x du
∂L

∂(∂μaν)
δaν

∣∣∣xμ→∞
xμ→−∞. (22.33)

In holography the boundary values of the fields at u → ∞ are fixed, so δaμ(u →
∞) = 0. However δaμ(umin) and δaμ(xμ → ±∞) need not vanish. Therefore a sur-

5The axial symmetry is broken by an anomaly. However this is a subleading effect at large Nc

which we can neglect. In particular, we will assume that the one-flavor pseudoscalar η′ is massless.
For a discussion of the U(1)A anomaly and the η′ mass in the context of the Sakai-Sugimoto model
see [11, 47].
6We would like to stress that this is a gauge invariant definition. The standard boundary condition
on the gauge field in AdS/CFT fixes the value of aM(u → ∞). In this case only the transformations
that vanish at u → ∞ are gauged in the bulk. In particular, these transformations do not change the
asymptotic value of a0.
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face term may be non-trivial if the fields extend to these boundaries. In order to
have a well-defined variational principle we must therefore add boundary terms
S∂(umin) + S∂(xμ → ±∞), whose variation cancels the surface terms in the varia-
tion of the bulk action.

These boundary terms also allow one to derive an alternative and useful definition
of the conserved currents. We do this by varying the off-shell action, now allowing
aμ(u → ∞) to vary, and then going on-shell by applying the equations of motion.
Due to the boundary terms, only the surface term at u → ∞ remains. Thus

jμ = 1

N

∂L

∂a′
μ

(u → ∞)

∣∣∣
on-shell

. (22.34)

In particular this relates the charge density in the boundary theory to the bulk radial
electric field. The boundary term S∂(umin) for a0 should then be interpreted as a
source term for this field. One could in principle also add boundary terms at u → ∞.
These have no effect on the derivation of the equations of motion, but may change
the value of the on-shell action, and therefore may lead to additional contributions
to (22.34).

A state with a non-zero baryon number density corresponds to an embedding
with a radial electric field. In particular, for a U embedding (in both the confin-
ing and deconfining backgrounds) this requires the addition of a baryonic source
at the tip, corresponding to a uniform spatial distribution of wrapped D4-branes
(Figs. 22.6d, 22.6e) [48] (see also [49, 50]). We assume that the distribution is dilute
enough so that we can ignore interactions between the D4-branes. We should there-
fore include the D4-brane action, which is given by (in the confining background)

SD4 = −N V4nD4Nc

(
1

3
u0 − aV

0 (u0)

)
, (22.35)

where nD4 is the density of D4-branes. The first term is the D4-brane DBI ac-
tion, and corresponds to the baryon mass, and the second term comes from the Nc

strings that connect each D4-brane to the D8-brane. The second term is precisely
the boundary term at umin = u0 that was discussed above.

The resulting asymptotic behavior of the gauge field is

aV
0 (u) ≈ μV − 2

3

d

u3/2
, (22.36)

where d = Nc nD4 is the baryon number density. On the other hand, extremizing the
action with respect to nD4 fixes the value of the gauge field at the tip to aV

0 (u0) =
u0/3 = mbaryon/Nc. This implies, as expected, that a non-zero density configuration
exists only when the chemical potential is above the baryon mass. In fact the non-
zero density state is always the dominant one. The transition to “nuclear matter”
occurs at μV = mbaryon/Nc. Near the critical point the density scales linearly with
the chemical potential d ∼ μV − mbaryon/Nc. The D4-brane action also sources the
embedding field x4(u), creating a cusp at u = u0. This can be understood in terms
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of a force balance condition between the D4-branes pulling down and the D8-brane
pulling up.

At high temperature the preferred embedding is parallel and there is a different
finite density solution. In this case the gauge fields aμ and āμ are independent, and
the field theory has a conserved axial current as well as a baryon current. For a
baryonic solution we take aV

0 (∞) = μV and aA
0 (∞) = 0. In addition, since the D8-

brane and anti-D8-brane reach the horizon we must impose aV
0 (uT ) = aA

0 (uT ) = 0.
Therefore the radial vector electric field, and thus the baryon number density, is
non-zero when μV > 0. In this phase d ∼ T 3μV for small μV .

22.3.3 Magnetic Catalysis of Chiral Symmetry Breaking

A strong magnetic field in QCD is believed to catalyze the spontaneous breaking of
chiral symmetry [1–3]. The basic mechanism for this is that in a strong magnetic
field all the quarks sit in the lowest Landau level, and the dynamics is effectively
1 + 1-dimensional. This phenomenon has been exhibited in the Sakai-Sugimoto
model in [51, 52].7

With a uniform background magnetic field b, the D8-brane action in the decon-
fining background becomes

Sdec
D8 = −N

∫
d4x duu4

√(
f (u)

(
x′

4(u)
)2 + 1

u3

)(
1 + b2

u3

)
. (22.37)

The U embedding has the same form as before (22.26), but now u0 depends on
the magnetic field, as shown in Fig. 22.7a. The mass scale associated with chiral
symmetry breaking is seen to increase with the magnetic field. One therefore ex-
pects that chiral symmetry breaking becomes more favored as the magnetic field
increases. This is indeed the case, as can be seen by comparing the Euclidean ac-
tions of the U and parallel embeddings as the temperature and magnetic field are
varied. The resulting phase diagram is shown in Fig. 22.7b. We observe that in this
model the critical temperature approaches a finite value at infinite magnetic field.

A qualitatively similar effect was observed in the D3–D7 model above. However
in the D3–D7 model there is a critical value of B/T 2 above which the chiral sym-
metry is always broken, whereas in the D4–D8 there is a critical temperature above
which the chiral symmetry is always broken.

It is also instructive to study the effect of the background magnetic field on the
mesons. This was partly done in [55], in which the high spin mesons were studied. It
was shown that the magnetic field enhances their stability by increasing their angular
momentum, and thereby increasing the dissociation temperature at which they fall
apart into their quark constituents. This is consistent with the above results.

7At non-zero baryon number density the magnetic field can actually induce an inverse magnetic
catalysis in this model [53, 54].
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Fig. 22.7 Magnetic catalysis: (a) Chiral symmetry breaking mass scale. (b) Phase diagram

22.3.4 Anomalous Currents

The chiral anomaly leads to two interesting phenomena when both the magnetic
field and chemical potential are non-zero. The first is the generation of anomalous
currents in the chiral symmetric phase of QCD. In [56, 57] it was shown that the
combination of a magnetic field and a non-zero baryon chemical potential generates
an axial current

JA = e

2π2
μ

phys
B B. (22.38)

Since the source for this current is the anomaly it is an exact result, and should
be valid in particular at strong coupling. Similarly, an anomalous vector current is
generated in a non-zero axial chemical potential:

JV = e

2π2
μ

phys
A B. (22.39)

This is known as the “chiral magnetic effect”, and may have some relevance to heavy
ion physics at RHIC [5]. Within the D3/D7 model, this effect has been discussed
in [58].

In the Sakai-Sugimoto model, the chiral-symmetric phase corresponds to the par-
allel D8–D8 embedding in the deconfined background, and the chiral anomaly is
encoded in the five-dimensional CS term (22.24). The background magnetic field
and chemical potentials correspond to different components of the worldvolume
gauge field. Through the five-dimensional CS term these source a third component,
which corresponds to a current in the four-dimensional theory [59]. Let us review
the calculation of the anomalous axial current in the Sakai-Sugimoto model. The
calculation of the anomalous vector current is virtually identical.

To be specific, we will consider a background magnetic field in the x1 direction
by turning on a background gauge field aV

3 = x2b. A non-trivial boundary value of
aV

0 will then source, via the CS term, a non-trivial aA
1 . In general aV

0 and aA
1 can

depend on both u and x2 in this case, although on-shell they will depend only on u.
We will take aV

0 (∞) = μV and aA
1 (∞) = 0. The D8-brane DBI and CS actions in
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this case become

Sdec
DBI = −N

∫ ∞

uT

d4x duu5/2

√(
1 − (

aV ′
0

)2 + f (u)
(
aA′

1

)2)(1 + b2

u3

)
, (22.40)

SCS = −N

∫
d4x du

[
b
(
aV

0 aA′
1 − aV ′

0 aA
1

) + aV
3

(
aV ′

0 ∂2a
A
1 − ∂2a

V
0 aA′

1

)]
. (22.41)

The necessary boundary terms are

S∂ = −1

2
N

∫
d3x duaV

3

(
aV

0 aA′
1 − aV ′

0 aA
1

)∣∣∣x2→∞
x2→−∞. (22.42)

By integrating by parts the last two terms in the CS action one can show that up to
a surface term at u → ∞, the bulk CS and boundary actions combine into a bulk
action

SCS + S∂

= −N

∫
d4x du

[
3

2
b
(
aV

0 aA′
1 − aV ′

0 aA
1

) − 1

2
aV ′

3

(
aV

0 ∂2a
A
1 − ∂2a

V
0 aA

1

)]
.

(22.43)

One can get rid of the remaining surface term by adding a boundary term at u → ∞
[59], however this particular term does not contribute to the on-shell action, so we
might as well ignore it.8

The equations of motion for aV
0 (u) and aA

1 (u) can be integrated once to yield
√

u5 + b2u2aV ′
0 (u)√

1 − (aV ′
0 (u))2 + f (u)(aA′

1 (u))2
= −3baA

1 (u) + d, (22.44)

√
u5 + b2u2f (u)aA′

1 (u)√
1 − (aV ′

0 (u))2 + f (u)(aA′
1 (u))2

= −3baV
0 (u), (22.45)

where d is the baryon number charge density. The integration constant in the aA
1

equation vanishes since aV
0 (uT ) = 0 and f (uT ) = 0. Using (22.34) and (22.45) we

can then evaluate the axial current:

j1
A = 3

2
baV

0 (∞) = 3

2
bμV . (22.46)

The correctly normalized physical currents are given by J = 2(2πα′N /R5)j ,
where the factor of 2 comes from adding the anti-D8-brane contribution, and the
physical chemical potentials are μphys = (R/(2πα′))μ. Thus in terms of the physi-
cal variables our result translates to

8Other boundary terms at u → ∞ could affect the on-shell action, and therefore the currents. See
for example [60, 61].
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JA = Nc

4π2
μ

phys
V B. (22.47)

Similarly, for an axial chemical potential we would get

JV = Nc

4π2
μ

phys
A B. (22.48)

Interestingly, our results are half of the weak-coupling results (where e = Nc in the
holographic model). It has been argued that the discrepancy in the axial current is
due to a different treatment of the triangle anomaly, consistent vs. covariant, and can
be corrected by adding an appropriate Bardeen counterterm on the boundary [61].
However, the same counterterm leads to a vanishing vector current. This issue is still
under investigation.

22.3.5 The Pion Gradient Phase

In the broken chiral symmetry phase the chiral anomaly leads to a novel finite den-
sity phase that dominates over nuclear matter at large magnetic fields [4]. In this
phase the baryon charge is carried not by baryons but rather by a non-zero pion
gradient background:

D = e

4π2fπ

B · ∇π0, (22.49)

where

∇π0 = e

4π2fπ

μ
phys
B B. (22.50)

In the Sakai-Sugimoto model (in the au = 0 gauge) the pseudoscalar meson ap-
pears in the zero mode of aA

μ (22.27), so

∂μϕ
(
xμ

) = −aA
μ

(
xμ,u → ∞)

. (22.51)

As in the chiral-symmetric phase, the presence of a vector chemical potential to-
gether with a background magnetic field sources a component of the axial gauge
field, which in this case corresponds to a non-trivial gradient of the pseudoscalar
field [59, 62]. Since there is only one flavor this field should really be thought as
the η′ meson. For simplicity, we will consider only the confined phase with the anti-
podal D8-brane embedding, namely u0 = uKK . (The results do not change quali-
tatively for more general U-shape embeddings, or for U-shape embeddings in the
deconfined phase.)

Following [59], the D8-brane DBI action in this case is

Scon
DBI = −N

∫ ∞

uKK

d4x duu5/2

√(
1

f (u)
− (

aV ′
0

)2 + (
aA′

1

)2
)(

1 + b2

u3

)
, (22.52)
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and the CS plus boundary actions are the same as in the deconfined phase (22.43).
The equations of motion integrate to

√
u5 + b2u2aV ′

0 (u)√
1

f (u)
− (aV ′

0 (u))2 + (aA′
1 (u))2

= −3baA
1 (u) + Nc nD4, (22.53)

√
u5 + b2u2aA′

1 (u)√
1

f (u)
− (aV ′

0 (u))2 + (aA′
1 (u))2

= −3baV
0 (u) + c, (22.54)

where we have explicitly included the baryon sources in the aV
0 equation. Our

boundary conditions are now aV
0 (∞) = μV and aA

1 (∞) = −∇ϕ(xμ). In particu-
lar aA

1 (∞) is a field rather than a parameter in the boundary theory, and we must
minimize the action with respect to its value. This simply sets j1

A = 0 and therefore
sets the integration constant in the aA

1 equation to c = 3
2bμV .9

We can now compute the total baryon number charge density d using the same
procedure as in the previous section for the current. In the absence of sources
nD4 = 0 and we find

d = −3

2
baA

1 (∞) = 3

2
b∇ϕ. (22.55)

Let us express this in terms of the physical variables. First we must define a field
with a canonically normalized kinetic term. Inserting (22.27) into the action (22.52)
we find that the canonically normalized field is given by

η′(xμ
) = R2

2πα′ fη′ϕ
(
xμ

)
, f 2

η′ = Nc u
3/2
KK

4π4α′ . (22.56)

Converting to physical variables we then find

D = Nc

4π2fη′
B · ∇η′, (22.57)

in agreement with (22.49). We would like to stress that this agreement did not de-
pend on the specific value of fη′ required for canonical normalization, since it can-
cels out when we express the result in terms of ϕ. The correct numerical factor
of 1/(4π2) is a direct consequence of including the proper boundary terms in the
action, leading to the “3/2” in (22.55).

To find the value of the gradient ∇ϕ we need to solve (22.53) and (22.54). The
result will not be as simple as (22.50). In particular it is not linear in the magnetic
field, since we are using the full non-linear DBI action. It turns out that a closed
form solution can be found in terms of a new variable

9This is also consistent with the fact that there are no quarks in this phase to carry such a current.
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Fig. 22.8 (a) The pion gradient. (b) Phase diagram with magnetic field and baryon chemical
potential

y =
∫ u

uKK

3b dũ√
f (ũ)

√
ũ5(1 + b2 ũ−3) − ( 3

2bμV )2 + (3b∇ϕ)2
. (22.58)

The solution is

aV
0 (y) = μV

2

(
coshy

coshy∞
+ 1

)
, aA

1 (y) = −μV

2

sinhy

coshy∞
, (22.59)

where y∞ = y(u → ∞). The pseudoscalar gradient is then given by

∇ϕ = −aA
1 (∞) = μV

2
tanhy∞. (22.60)

The dependence on b is shown in Fig. 22.8a. For small b the behavior is linear
in b:

∇ϕ ≈ π

2u
3/2
KK

μV b, (22.61)

and in terms of the physical quantities:

∇η′ ≈ Nc

4π2fη′
μ

phys
V B, (22.62)

in agreement with the single flavor version of (22.50).
As in the case with no magnetic field, an embedding that includes sources is

possible above a critical value of the chemical potential, which then becomes the
dominant configuration. This describes a “mixed phase” that includes both “pion-
gradient” matter and nuclear matter, with a total baryon number density

d = 3

2
b∇ϕ + Nc nD4. (22.63)

As before, one can find a closed form solution for aV
0 and aA

1 , and from it deter-
mine the values of ∇ϕ and nD4 in terms of the magnetic field b and baryon num-
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ber chemical potential μV . The resulting phase diagram is shown in Fig. 22.8b.
In particular, the critical value of μV is determined by setting nD4 = 0. The rel-
ative proportion of baryons in the mixed phase increases with μV and decreases
with b.

22.3.6 Magnetic Phase Transition

The high-temperature chiral-symmetric phase of this model also exhibits an in-
teresting magnetic phenomenon associated with the distribution of the baryonic
charge [63]. In what follows we analyze the situation for the D8-brane. As in the
broken chiral symmetry phase above, the distribution of baryonic charge along the
radial direction u changes with b. We can therefore identify two types of bary-
onic charge, one originating from the horizon, and the other from outside the hori-
zon. The latter d∗, corresponds to D4-branes that are radially smeared inside the
D8-brane. This can be best seen from the longitudinal and transverse conductivi-
ties [64]

σL =
√

u8
T + b2u5

T + u3
T (d − d∗)2

u3
T + b2

, (22.64)

σT = b(d − d∗)
u3

T + b2
+ d∗

b
, (22.65)

where d∗ = −3ba1(uT ). In particular only the horizon charge d − d∗ contributes
to the longitudinal conductivity. In the transverse conductivity, the horizon charge
contributes as an ordinary dissipative fluid, whereas the charge outside the horizon
d∗ behaves as a dissipation-free fluid. This is consistent with an interpretation of d∗
as the charge filling the lowest Landau level. As the magnetic field increases more
of the charge is “lifted” from the horizon, representing the transition to the lowest
Landau level in the boundary theory.

In fact for a fixed density at low enough temperature this transition is a first order
phase transition as a function of the magnetic field, in which the charges jump into
the lowest Landau level. This is easiest to see in the zero temperature limit.10 In this
case one can solve the gauge field equations analytically in terms of a variable

z =
∫ u

0

3b dũ√
ũ5 + b2ũ2 + d2 cosh−2 z∞

, (22.66)

where z∞ = z(u → ∞). The solution is

10Strictly speaking, at zero temperature the theory is in the confining (and broken chiral symmetry)
phase. We are considering the meta-stable state obtained by adiabatically reducing the tempera-
ture.



22 A Review of Magnetic Phenomena in Probe-Brane Holographic Matter 613

Fig. 22.9 (a) μ and (b) M as functions of b for d = 1 and T = 0.09, below the critical point.
There are now two branches of stable solutions, and the phase transition between them occurs at
b = 0.235

Fig. 22.10 (a) The phase diagram in the d–b plane at T = 0.07, and (b) the critical line in the
T –d plane

aV
0 = d sinh z

3b cosh z∞
, aA

1 = d cosh z

3b cosh z∞
− d

3b
. (22.67)

There are actually three solutions, representing two stable phases and an unstable
phase. As the magnetic field b is increased, for a fixed total baryon number den-
sity d , one finds a first order phase transition between the two stable phases. Both
the magnetization and the chemical potential are discontinuous in this transition
(Fig. 22.9), which is reminiscent of a metamagnetic phase transition. The large mag-
netic field phase represents the situation where all the charge is in the lowest Landau
level, with the chemical potential and free energy given by

μ = d

3b
, F = d2

6b
. (22.68)

The magnetic transition persists also at non-zero temperatures that are low rela-
tive to the density d . Too a very good approximation this happens when b ∼ d2/3

(Fig. 22.10a), which is the behavior expected for the lowest Landau level. At high
temperature the transition disappears (Fig. 22.10b).
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22.4 The D3–D7’ Model

The study of magnetic properties of planar matter is a very active area of research
in condensed matter physics. A simple holographic model for charged fermions in
three dimensions can be obtained by T-dualizing the D4–D8 setup. This leads to
a D3–D7 configuration with the two sets of branes intersecting on a plane [12, 14]
(for a related model using a D2–D8 system see [65]). However, unlike in the D4–D8
configuration, here the branes have a mutually transverse coordinate. On the one
hand this allows the fermions to be massive, but on the other hand it leads to an
instability since the different branes repel.

22.4.1 Stable Embeddings

First we have to address the issue of stability. As before, we will employ the probe
approximation and consider a single probe D7-brane. The background (at finite tem-
perature) in this case is

L−2 ds2
10 = r2(−h(r) dt2 + dx2 + dy2 + dz2) + r−2

(
dr2

h(r)
+ r2 dΩ2

5

)
, (22.69)

F5 = 4L4(r3 dt ∧ dx ∧ dy ∧ dz ∧ dr + dΩ5
)
, (22.70)

where h(r) = 1 − r4
T /r4, rT = πLT and L2 = √

4πgsNcα
′. It is convenient to

parameterize the five-sphere as an S2 × S2 fibered over an interval:

dΩ2
5 = dψ2 + cos2 ψ

(
dΩ

(1)
2

)2 + sin2 ψ
(
dΩ

(2)
2

)2
, (22.71)

where 0 ≤ ψ ≤ π/2. The first S2 shrinks at the “south pole” ψ = π/2 and the second
S2 at the “north pole” ψ = 0. The D7-brane wraps the two S2’s and extends along
(x, y), and has an embedding described by z(r) and ψ(r). In particular ψ is dual to
the fermion bi-linear operator in the field theory corresponding to the fermion mass.
The D7-brane DBI action in this background is given by

SDBI = −4N

∫
d3x dr r2 cos2 ψ sin2 ψ

√
1 + r4h(r)z′2 + r2h(r)ψ ′2, (22.72)

where N ≡ 4π2μ7L
8/gs . A massless embedding would correspond to ψ = π/4.

However the fluctuations contain a mode that violates the Breitenlohner-Freedman
bound, and therefore the embedding is unstable. This can also be seen by trying a
more general embedding with a large r behavior of

ψ(r) ∼ π

4
+ crΔ. (22.73)

The equation of motion for ψ gives Δ(Δ + 3) = −8, which does not have a real
solution.
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Fortunately, the D7-brane can be stabilized by turning on some worldvolume
flux [66], in this case on the two-spheres [15]:

2πα′F = L2

2

(
f1 dΩ

(1)
2 + f2 dΩ

(2)
2

)
, fi = 2πα′

L2
ni (ni ∈ Z). (22.74)

This changes the DBI action,

SDBI

= −N

∫
d3x dr r2

√(
4 cos4 ψ + f 2

1

)(
4 sin4 ψ + f 2

2

)(
1 + r4hz′2 + r2hψ ′2

)
,

(22.75)

and there is now also a CS term which gives,

SCS = −N f1f2

∫
d3x dr r4z′(r). (22.76)

The asymptotic behavior of ψ(r) is now

ψ(r) ∼ ψ∞ + mrΔ+ − cψrΔ− , (22.77)

where ψ∞ is determined by the solution of
(
f 2

1 + 4 cos4 ψ∞
)

sin2 ψ∞ = (
f 2

2 + 4 sin4 ψ∞
)

cos2 ψ∞, (22.78)

and

Δ± = −3

2
± 1

2

√
9 + 16

f 2
1 + 16 cos6 ψ∞ − 12 cos4 ψ∞

f 2
1 + 4 cos6 ψ∞

. (22.79)

In particular, the embedding is stable for a large enough flux. The coefficient of
the leading term is related to the fermion mass, and that of the subleading term
corresponds to the bi-linear condensate. Note that the scaling dimension of the bi-
linear operator is given by −Δ−. This represents a large anomalous dimension,
which is not surprising given that the model is non-supersymmetric. We should
require however that the operator be relevant, namely that Δ− ≥ −3, and therefore
that Δ+ ≤ 0, in order to consider the leading term as a “mass deformation”.

Generally there are two types of embeddings, that differ in their small r behav-
ior: Minkowski-like (MN) embeddings, in which the D7-brane terminates smoothly
outside the horizon (Fig. 22.11a), and black-hole (BH) embeddings, in which the
D7-brane crosses the horizon (Fig. 22.11b). We refer the reader to [15] for the ex-
plicit embedding equations for ψ(r) and z(r), and for their numerical solutions.

In an MN embedding ψ(r0) = π/2 or 0 for some r0 > rT , corresponding to one
or the other S2 shrinking. This indicates that the dual field theory has a mass-gap
related to r0 − rT . An important condition for the existence of MN embeddings
is the absence of sources for the worldvolume gauge field. Unlike in the model
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Fig. 22.11 (a) An MN embedding with ψ(r0) = π/2. (b) A BH embedding

of the previous section, there are no localized sources in this model. All sources
correspond to branes (or strings) connecting the D7-brane to the horizon. These
inevitably pull the D7-brane down to the horizon, resulting in a BH embedding
instead. This means that the flux on the S2 that shrinks must vanish. For ψ(r0) =
π/2, which means that f1 = 0, we find stable massive embeddings in the range

0.5235 � ψ∞ � 0.6251. (22.80)

(There are also the “mirror” embeddings with ψ(r0) = 0 and f2 = 0.) Note that the
allowed values of ψ∞ are quantized since the stabilizing flux is quantized. There
are also two isolated MN embeddings with ψ∞ = 0 and ψ∞ = π/2.

BH embeddings describe gapless phases in the dual theory. These embeddings
exist generically for any f1, f2 satisfying the stability condition.

22.4.2 Finite Density and Background Fields

For embeddings corresponding to finite density states in a background magnetic
field we need to turn on the appropriate components of the worldvolume gauge
field. As in the D4–D8 model we will work with the dimensionless field aμ =
(2πα′/L)Aμ. There are additional terms in the DBI action,

SDBI = −N

∫
dr r2

√(
4 cos4 ψ + f 2

1

)(
4 sin4 ψ + f 2

2

)

×
√(

1 + r4h(r)z′2 + r2h(r)ψ ′2 − a′
0

2)(1 + b2

r4

)
, (22.81)

and also in the CS action,

SCS = −N f1f2

∫
dr r4z′(r) + 2N

∫
dr c(r)ba′

0(r), (22.82)
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where

c(r) = 1

8π2L4

∫
S2×S2

C4
(
ψ(r)

) = ψ(r) − 1

4
sin 4ψ(r) − ψ∞ + 1

4
sin 4ψ∞.

(22.83)

We have fixed a gauge for the RR field such that c(∞) = 0. For MN embeddings
we must also add a boundary term at r = r0 (as explained in Sect. 22.3)11

S∂(r0) = 2N c(r0)ba0(r0). (22.84)

The quantity c(r0) has a nice physical interpretation: it is the total amount of 5-form
flux captured by the D7-brane in the MN embedding. It is completely fixed by the
asymptotic value of the embedding angle ψ∞. For BH embeddings the boundary
term vanishes since a0(rT ) = 0.

The integrated equation of motion for a0(r) is given by

G(r)a′
0(r) = d − 2bc(r), (22.85)

where

G(r) = r2
(

1 + b2

r4

)√
(f 2

1 + 4 cos4 ψ)(f 2
2 + 4 sin4 ψ)

Y (r)
, (22.86)

Y(r) =
(

1 + b2

r4

)(
1 + hr4z′2 + hr2ψ ′2 − a′2

0

)
, (22.87)

and d is the total charge density. As in Sect. 22.3, we are using (22.34) to define the
conserved currents. The quantity on the RHS of (22.85), d̃(r) ≡ d − 2bc(r), is the
contribution to the charge density from radial positions below r .

We would also like to study the response of the system to a background electric
field. To this end we should consider a more general ansatz for the gauge field with
ax(t, r) = te + ax(r), ay(x, r) = xb + ay(r), in addition to a0(r). The current den-
sities will be contained in the asymptotic behaviors of ax(r) and ay(r). The gauge
field equations in this case become

G(r)a′
0(r) =

[
d̃(r)

(
1 − e2

r4h(r)

)
+ j̃y(r)

eb

r4h(r)

] 1 + b2

r4

1 + b2

r4 − e2

r4h(r)

, (22.88)

G(r)a′
y(r) =

[
d̃(r)

eb

r4h(r)
− j̃y(r)

h(r)

(
1 + b2

r4

)] 1 + b2

r4

1 + b2

r4 − e2

r4h(r)

, (22.89)

11In [15] this term was derived by demanding invariance of the CS term
∫

C4 ∧F ∧F under gauge
transformations of the RR field and then fixing c(∞) = 0. However it can also be obtained by
canceling the surface term in the variation of the CS term, when we present it as

∫
F5 ∧ A ∧ F .
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G(r)a′
x(r) = − jx

h(r)

(
1 + b2

r4

)
, (22.90)

where jx is the longitudinal current density and j̃y(r) is defined by analogy with
d̃(r) as j̃y(r) ≡ jy − 2c(r)e, where jy is the transverse current density. The factor
G(r) is defined as before (22.86), now more generally with

Y(r) =
(

1 + b2

r4
− e2

hr4

)(
1 + hr4z′2 + hr2ψ ′2)

−
(

1 + b2

r4

)
a′2

0 + ha′2
x +

(
1 − e2

hr4

)
ha′2

y − 2eb

r4
a′

0a
′
y. (22.91)

22.4.3 Quantum Hall States

Let us consider first the response of the gapped MN embeddings. This is determined
by the requirement that there are no sources, namely by regularity of the gauge field
at r = r0. This implies, in particular, that

d̃(r0) = d − 2c(r0)b = 0. (22.92)

The entire charge in the MN embedding is thus due to the CS term and corresponds
to a “fluid” of D5-branes inside the D7-brane. The charge density is proportional to
the magnetic field, and the proportionality constant is fixed by the value of c(r0),
and therefore of ψ∞. This is the key property of a quantum Hall state, which is
characterized by a specific quantized value of the Landau-level filling fraction ν ∝
d/b. In terms of the physical variables D = (2πα′N /L4)d and B = b/(2πα′), the
filling fraction is given by

ν = 2πD

B
= 2Nc

π
c(r0). (22.93)

For the range of values of ψ∞ needed for stability (22.80) we get

0.6972 � ν

Nc

� 0.8045. (22.94)

Furthermore, the filling fractions are quantized according to the quantization of ψ∞.
The actual numbers can be obtained by solving (22.78), for a specific flux f2 (with
f1 = 0), and plugging into (22.83) with ψ(r0) = π/2, but they are not particularly
illuminating (for example, they are not rational numbers). The isolated embeddings
with ψ∞ = 0 and ψ∞ = π/2 correspond to ν/Nc = 1 and 0, respectively.

The current densities can likewise be computed by requiring regularity of the
spatial components of the gauge field. This condition implies that

jx = 0 and j̃y(r0) = jy − 2c(r0)e = 0, (22.95)

from which we can deduce the longitudinal and transverse conductivities:
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Fig. 22.12 (a) Mass-gap for charged states as a function of the magnetic field. (b) Dispersion
relation of the two lowest neutral modes, showing the magneto-roton

σxx = 0, σxy = ν

2π
. (22.96)

Thus the MN embeddings, when they exist, describe quantum Hall states with quan-
tized transverse conductivities, and vanishing longitudinal conductivities. Further-
more, in the holographic description, the quantization is topological since it origi-
nates from the Dirac quantization of the magnetic fluxes on the S2’s. In particular,
σxy in the MN embeddings is independent of the temperature.

Quantum Hall states are gapped to both charged and neutral excitations. In this
model charged excitations are described by strings stretched from the D7-brane to
the horizon, and therefore have a mass proportional to r0 − rT . This is seen to in-
crease with the magnetic field, as shown in Fig. 22.12a. The neutral excitations
correspond to fluctuations of the D7-brane worldvolume fields, and are also found
to be massive [67] (see also [68]). The spectrum of neutral excitations includes a
magneto-roton, which is a collective excitation whose dispersion relation has a min-
imum at non-zero momentum (Fig. 22.12b). A similar phenomenon is seen in real
quantum Hall states [69].

22.4.4 Fermi-Like Liquid

BH embeddings describe gapless Fermi-like liquids. For a BH embedding, d̃(rT )

corresponds to the horizon charge density carried by the “quarks”, and it need not
vanish. In particular, if we add sources to an MN embedding, thereby violating
(22.92), it deforms continuously into a BH embedding with horizon charge.

To compute the electrical response in a BH embedding we have a couple of op-
tions. The standard approach is to extract the conductivities using linear response
from the current-current correlators, computed holographically by studying fluc-
tuations of the bulk gauge fields to quadratic order. The other option is to find a
consistent solution in the presence of an external electric field [70]. The advantage
of the second approach, when it is applicable, is that it gives the complete non-linear
response. Using this method for the BH embeddings one finds
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Fig. 22.13 (Left): Phase diagram in the T –d plane showing the quantum critical point. (Right):
The phase diagram in the b̂, d̂ plane for m = 0. Above the line the system is in the homogeneous
phase and below the line in the striped phase

σxy = Nc

2π2

(
b

b2 + r4
T

d̃(rT ) + 2c(rT )

)
, (22.97)

σxx = Nc

2π2

r2
T

b2 + r4
T

√
d̃(rT )2 + (

f 2
1 + 4 cos4 ψ(rT )

)(
f 2

2 + 4 sin4 ψ(rT )
)(

b2 + r4
T

)
.

(22.98)

Note that the transverse conductivity has two components. The first involves the
horizon charge, and resembles the contribution of an ordinary dissipative system of
charges. The remaining charge, corresponding to the fluid of D5-branes inside the
D7-brane, contributes like a dissipationless system. The longitudinal conductivity
involves only the first component. This is basically the same separation that was
seen in the D4–D8 model (see (22.64), (22.65)).

This state of holographic matter exhibits a variety of other interesting phenomena
as a function of the charge density, temperature, background magnetic field, and
mass.

Consider first the state at T = 0, d = 0, b = 0 and m = 0. In this case the D7-
brane embedding is actually AdS4 × S2 × S2, so this situation is described by a
conformal field theory. Note that in this case σxx �= 0. At non-zero density the sys-
tem becomes unstable to the formation of stripes. The instability is signaled by the
existence of a quasi-normal mode (in the transverse gauge field sector) with positive
imaginary part in a finite range of momenta [71]. At a high enough temperature or
high enough magnetic field this instability disappears. It is convenient to parametrize
the situation with b̂ = b/r2

T and d̂ = d/r2
T . Then the instability towards the striped

phase at zero magnetic field and m = 0 happens for d̂ > 5.5. This is demonstrated
in Fig. 22.13a. Above the quantum critical point (T = m = d = 0) there is a region
which resembles a Fermi-like liquid, and on both sides there is a striped phase. For
non-zero b̂ and m = 0 the instability sets in at some other value of d̂ , as shown in
Fig. 22.13b [72]. As m increases the instability sets in at a lower temperature.

The system also has a zero sound mode. At non-zero temperature the quasi-
normal mode with the smallest imaginary part at low momentum is a purely dis-
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Fig. 22.14 (Left): The line in the b̂, d̂ plane for m = 0, separating the situation when the ze-
ro-sound is gapped (above the line) and the situation when it is gapless (below the line). (Right):
The magnetization as a function of magnetic field (solid line) and the individual contributions from
the DBI (dashed line) and the CS term (pointed line) for m = 1 d = 1 and rT = 0.1

sipative hydrodynamical mode (ω(k = 0) = 0). At some non-zero momentum it
meets another purely dissipative mode (ω purely imaginary) and crosses from a hy-
drodynamical regime into a collisionless regime, where the resulting complex mode
can be identified with the finite temperature zero-sound mode [71] (see also [73]).
The zero sound mode becomes massive as the magnetic field crosses a critical value
[72, 74] (Fig. 22.14a).

For m �= 0 the system can have a non-zero transverse conductivity, even at zero
magnetic field. This is due to having a non-trivial c(r) for these embeddings. This
is reminiscent of the anomalous Hall effect (AHE) that appears in ferromagnetic
materials (for a review see [75]). Indeed for m �= 0 the system is ferromagnetic
(Fig. 22.14b) due to the second term in (22.82). Note that both the AHE and the
ferromagnetic behavior, as well as the instability towards a striped phase, have a
common origin in the Chern-Simon term

∫
dr c(r)F ∧ F in the brane action.
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