
Chapter 21
Holographic Description of Strongly Correlated
Electrons in External Magnetic Fields

E. Gubankova, J. Brill, M. Čubrović, K. Schalm, P. Schijven, and J. Zaanen

21.1 Introduction

The study of strongly interacting fermionic systems at finite density and tempera-
ture is a challenging task in condensed matter and high energy physics. Analytical
methods are limited or not available for strongly coupled systems, and numerical
simulation of fermions at finite density breaks down because of the sign problem
[1, 2]. There has been an increased activity in describing finite density fermionic
matter by a gravity dual using the holographic AdS/CFT correspondence [3]. The
gravitational solution dual to the finite chemical potential system is the electrically
charged AdS-Reissner-Nordström (RN) black hole, which provides a background
where only the metric and Maxwell fields are nontrivial and all matter fields vanish.
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In the classical gravity limit, the decoupling of the Einstein-Maxwell sector holds
and leads to universal results, which is an appealing feature of applied holography.
Indeed, the celebrated result for the ratio of the shear viscosity over the entropy den-
sity [4] is identical for many strongly interacting theories and has been considered a
robust prediction of the AdS/CFT correspondence.

However, an extremal black hole alone is not enough to describe finite density
systems as it does not source the matter fields. In holography, at leading order, the
Fermi surfaces are not evident in the gravitational geometry, but can only be de-
tected by external probes; either probe D-branes [3] or probe bulk fermions [5–8].
Here we shall consider the latter option, where the free Dirac field in the bulk carries
a finite charge density [9]. We ignore electromagnetic and gravitational backreac-
tion of the charged fermions on the bulk spacetime geometry (probe approximation).
At large temperatures, T � μ, this approach provides a reliable hydrodynamic de-
scription of transport at a quantum criticality (in the vicinity of superfluid-insulator
transition) [10]. At small temperatures, T � μ, in some cases sharp Fermi surfaces
emerge with either conventional Fermi-liquid scaling [6] or of a non-Fermi liquid
type [7] with scaling properties that differ significantly from those predicted by the
Landau Fermi liquid theory. The non-trivial scaling behavior of these non-Fermi
liquids has been studied semi-analytically in [8] and is of great interest as high-Tc

superconductors and metals near the critical point are believed to represent non-
Fermi liquids.

What we shall study is the effects of magnetic field on the holographic fermions.
A magnetic field is a probe of finite density matter at low temperatures, where the
Landau level physics reveals the Fermi level structure. The gravity dual system is
described by a AdS dyonic black hole with electric and magnetic charges Q and H ,
respectively, corresponding to a 2 + 1-dimensional field theory at finite chemical
potential in an external magnetic field [11]. Probe fermions in the background of the
dyonic black hole have been considered in [12–14]; and probe bosons in the same
background have been studied in [15]. Quantum magnetism is considered in [16].

The Landau quantization of momenta due to the magnetic field found there,
shows again that the AdS/CFT correspondence has a powerful capacity to unveil
that certain quantum properties known from quantum gases have a much more ubiq-
uitous status than could be anticipated theoretically. A first highlight is the demon-
stration [17] that the Fermi surface of the Fermi gas extends way beyond the realms
of its perturbative extension in the form of the Fermi-liquid. In AdS/CFT it appears
to be gravitationally encoded in the matching along the scaling direction between
the ‘bare’ Dirac waves falling in from the ‘UV’ boundary, and the true IR excitations
living near the black hole horizon. This IR physics can insist on the disappearance
of the quasiparticle but, if so, this ‘critical Fermi-liquid’ is still organized ‘around’ a
Fermi surface. The Landau quantization, the organization of quantum gaseous mat-
ter in quantized energy bands (Landau levels) in a system of two space dimensions
pierced by a magnetic field oriented in the orthogonal spatial direction, is a sec-
ond such quantum gas property. We shall describe here following [12], that despite
the strong interactions in the system, the holographic computation reveals the same
strict Landau-level quantization. Arguably, it is the mean-field nature imposed by
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large N limit inherent in AdS/CFT that explains this. The system is effectively non-
interacting to first order in 1/N . The Landau quantization is not manifest from the
geometry, but as we show this statement is straightforwardly encoded in the sym-
metry correspondences associated with the conformal compactification of AdS on
its flat boundary (i.e., in the UV CFT).

An interesting novel feature in strongly coupled systems arises from the fact that
the background geometry is only sensitive to the total energy density Q2 +H 2 con-
tained in the electric and magnetic fields sourced by the dyonic black hole. Dialing
up the magnetic field is effectively similar to a process where the dyonic black hole
loses its electric charge. At the same time, the fermionic probe with charge q is
essentially only sensitive to the Coulomb interaction gqQ. As shown in [12], one
can therefore map a magnetic to a non-magnetic system with rescaled parameters
(chemical potential, fermion charge) and same symmetries and equations of motion,
as long as the Reissner-Nordström geometry is kept.

Translated to more experiment-compatible language, the above magnetic-electric
mapping means that the spectral functions at nonzero magnetic field h are identi-
cal to the spectral function at h = 0 for a reduced value of the coupling constant
(fermion charge) q , provided the probe fermion is in a Landau level eigenstate. A
striking consequence is that the spectrum shows conformal invariance for arbitrarily
high magnetic fields, as long as the system is at negligible to zero density. Specif-
ically, a detailed analysis of the fermion spectral functions reveals that at strong
magnetic fields the Fermi level structure changes qualitatively. There exists a criti-
cal magnetic field at which the Fermi velocity vanishes. Ignoring the Landau level
quantization, we show that this corresponds to an effective tuning of the system
from a regular Fermi liquid phase with linear dispersion and stable quasiparticles
to a non-Fermi liquid with fractional power law dispersion and unstable excitations.
This phenomenon can be interpreted as a transition from metallic phase to a “strange
metal” at the critical magnetic field and corresponds to the change of the infrared
conformal dimension from ν > 1/2 to ν < 1/2 while the Fermi momentum stays
nonzero and the Fermi surface survives. Increasing the magnetic field further, this
transition is followed by a “strange-metal”-conformal crossover and eventually, for
very strong fields, the system always has near-conformal behavior where kF = 0
and the Fermi surface disappears.

For some Fermi surfaces, this surprising metal-“strange metal” transition is not
physically relevant as the system prefers to directly enter the conformal phase.
Whether a fine tuned system exists that does show a quantum critical phase transi-
tion from a FL to a non-FL is determined by a Diophantine equation for the Landau
quantized Fermi momentum as a function of the magnetic field. Perhaps these are
connected to the magnetically driven phase transition found in AdS5/CFT4 [18]. We
leave this subject for further work.

Overall, the findings of Landau quantization and “discharge” of the Fermi surface
are in line with the expectations: both phenomena have been found in a vast array of
systems [19] and are almost tautologically tied to the notion of a Fermi surface in a
magnetic field. Thus we regard them also as a sanity check of the whole bottom-up
approach of fermionic AdS/CFT [5–7, 17], giving further credit to the holographic
Fermi surfaces as having to do with the real world.
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Next we use the information of magnetic effects the Fermi surfaces extracted
from holography to calculate the quantum Hall and longitudinal conductivities. Gen-
erally speaking, it is difficult to calculate conductivity holographically beyond the
Einstein-Maxwell sector, and extract the contribution of holographic fermions. In
the semiclassical approximation, one-loop corrections in the bulk setup involving
charged fermions have been calculated [17]. In another approach, the backreaction
of charged fermions on the gravity-Maxwell sector has been taken into account and
incorporated in calculations of the electric conductivity [9]. We calculate the one-
loop contribution on the CFT side, which is equivalent to the holographic one-loop
calculations as long as vertex corrections do not modify physical dependencies of
interest [17, 20]. As we dial the magnetic field, the Hall plateau transition happens
when the Fermi surface moves through a Landau level. One can think of a differ-
ence between the Fermi energy and the energy of the Landau level as a gap, which
vanishes at the transition point and the 2 + 1-dimensional theory becomes scale in-
variant. In the holographic D3–D7 brane model of the quantum Hall effect, plateau
transition occurs as D-branes move through one another [21, 22]. In the same model,
a dissipation process has been observed as D-branes fall through the horizon of the
black hole geometry, that is associated with the quantum Hall insulator transition.
In the holographic fermion liquid setting, dissipation is present through interaction
of fermions with the horizon of the black hole. We have also used the analysis of the
conductivities to learn more about the metal-strange metal phase transition as well
as the crossover back to the conformal regime at high magnetic fields.

We conclude with the remark that the findings summarized above are in fact
somewhat puzzling when contrasted to the conventional picture of quantum Hall
physics. It is usually stated that the quantum Hall effect requires three key ingredi-
ents: Landau quantization, quenched disorder1 and (spatial) boundaries, i.e., a finite-
sized sample [23]. The first brings about the quantization of conductivity, the second
prevents the states from spilling between the Landau levels ensuring the existence
of a gap and the last one in fact allows the charge transport to happen (as it is the
boundary states that actually conduct). In our model, only the first condition is satis-
fied. The second is put by hand by assuming that the gap is automatically preserved,
i.e. that there is no mixing between the Landau levels. There is, however, no phys-
ical explanation as to how the boundary states are implicitly taken into account by
AdS/CFT.

We outline the holographic setting of the dyonic black hole geometry and bulk
fermions in Sect. 21.2. In Sect. 21.3 we prove the conservation of conformal symme-
try in the presence of the magnetic fields. Section 21.4 is devoted to the holographic
fermion liquid, where we obtain the Landau level quantization, followed by a de-
tailed study of the Fermi surface properties at zero temperature in Sect. 21.5. We
calculate the DC conductivities in Sect. 21.6, and compare the results with available
data in graphene.

1Quenched disorder means that the dynamics of the impurities is “frozen”, i.e. they can be regarded
as having infinite mass. When coupled to the Fermi liquid, they ensure that below some scale the
system behaves as if consisting of non-interacting quasiparticles only.
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21.2 Holographic Fermions in a Dyonic Black Hole

We first describe the holographic setup with the dyonic black hole, and the dynamics
of Dirac fermions in this background. In this paper, we exclusively work in the probe
limit, i.e., in the limit of large fermion charge q .

21.2.1 Dyonic Black Hole

We consider the gravity dual of 3-dimensional conformal field theory (CFT) with
global U(1) symmetry. At finite charge density and in the presence of magnetic
field, the system can be described by a dyonic black hole in 4-dimensional anti-
de Sitter space-time, AdS4, with the current Jμ in the CFT mapped to a U(1)

gauge field AM in AdS. We use μ,ν,ρ, . . . for the spacetime indices in the CFT
and M,N, . . . for the global spacetime indices in AdS.

The action for a vector field AM coupled to AdS4 gravity can be written as

Sg = 1

2κ2

∫
d4x

√−g

(
R + 6

R2
− R2

g2
F

FMNFMN

)
, (21.1)

where g2
F is an effective dimensionless gauge coupling and R is the curvature radius

of AdS4. The equations of motion following from (21.1) are solved by the geometry
corresponding to a dyonic black hole, having both electric and magnetic charge:

ds2 = gMNdxMdxN = r2

R2

(−f dt2 + dx2 + dy2) + R2

r2

dr2

f
. (21.2)

The redshift factor f and the vector field AM reflect the fact that the system is at a
finite charge density and in an external magnetic field:

f = 1 + Q2 + H 2

r4
− M

r3
,

(21.3)

At = μ

(
1 − r0

r

)
, Ay = hx, Ax = Ar = 0,

where Q and H are the electric and magnetic charge of the black hole, respectively.
Here we chose the Landau gauge; the black hole chemical potential μ and the mag-
netic field h are given by

μ = gF Q

R2r0
, h = gF H

R4
, (21.4)

with r0 is the horizon radius determined by the largest positive root of the redshift
factor f (r0) = 0:

M = r3
0 + Q2 + H 2

r0
. (21.5)
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The boundary of the AdS is reached for r → ∞. The geometry described by (21.2)–
(21.3) describes the boundary theory at finite density, i.e., a system in a charged
medium at the chemical potential μ = μbh and in transverse magnetic field h = hbh,
with charge, energy, and entropy densities given, respectively, by

ρ = 2
Q

κ2R2gF

, ε = M

κ2R4
, s = 2π

κ2

r2
0

R2
. (21.6)

The temperature of the system is identified with the Hawking temperature of the
black hole, TH ∼ |f ′(r0)|/4π ,

T = 3r0

4πR2

(
1 − Q2 + H 2

3r4
0

)
. (21.7)

Since Q and H have dimensions of [L]2, it is convenient to parametrize them as

Q2 = 3r4∗ , Q2 + H 2 = 3r4∗∗. (21.8)

In terms of r0, r∗ and r∗∗ the above expressions become

f = 1 + 3r4∗∗
r4

− r3
0 + 3r4∗∗/r0

r3
, (21.9)

with

μ = √
3gF

r2∗
R2r0

, h = √
3gF

√
r4∗∗ − r4∗
R4

. (21.10)

The expressions for the charge, energy and entropy densities, as well as for the
temperature are simplified as

ρ = 2
√

3

κ2gF

r2∗
R2

, ε = 1

κ2

r3
0 + 3r4∗∗/r0

R4
, s = 2π

κ2

r2
0

R2
,

(21.11)

T = 3

4π

r0

R2

(
1 − r4∗∗

r4
0

)
.

In the zero temperature limit, i.e., for an extremal black hole, we have

T = 0 → r0 = r∗∗, (21.12)

which in the original variables reads Q2 + H 2 = 3r4
0 . In the zero temperature

limit (21.12), the redshift factor f as given by (21.9) develops a double zero at
the horizon:

f = 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3). (21.13)
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As a result, near the horizon the AdS4 metric reduces to AdS2 ×R2 with the curvature
radius of AdS2 given by

R2 = 1√
6
R. (21.14)

This is a very important property of the metric, which considerably simplifies the
calculations, in particular in the magnetic field.

In order to scale away the AdS4 radius R and the horizon radius r0, we introduce
dimensionless variables

r → r0r, r∗ → r0r∗, r∗∗ → r0r∗∗,
(21.15)

M → r3
0 M, Q → r2

0 Q, H → r2
0 H,

and

(t,x) → R2

r0
(t,x), AM → r0

R2
AM, ω → r0

R2
ω,

μ → r0

R2
μ, h → r2

0

R4
h, T → r0

R2
T , (21.16)

ds2 → R2ds2.

Note that the scaling factors in the above equation that describes the quantities of
the boundary field theory involve the curvature radius of AdS4, not AdS2.

In the new variables we have

T = 3

4π

(
1 − r4∗∗

) = 3

4π

(
1 − Q2 + H 2

3

)
, f = 1 + 3r4∗∗

r4
− 1 + 3r4∗∗

r3
,

(21.17)

At = μ

(
1 − 1

r

)
, μ = √

3gF r2∗ = gF Q, h = gF H,

and the metric is given by

ds2 = r2(−f dt2 + dx2 + dy2) + 1

r2

dr2

f
, (21.18)

with the horizon at r = 1, and the conformal boundary at r → ∞.
At T = 0, r∗∗ becomes unity, and the redshift factor develops the double zero

near the horizon,

f = (r − 1)2(r2 + 2r + 3)

r4
. (21.19)

As mentioned before, due to this fact the metric near the horizon reduces to
AdS2 × R2 where the analytical calculations are possible for small frequencies [8].
However, in the chiral limit m = 0, analytical calculations are also possible in the
bulk AdS4 [24], which we utilize in this paper.
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21.2.2 Holographic Fermions

To include the bulk fermions, we consider a spinor field ψ in the AdS4 of charge q

and mass m, which is dual to an operator O in the boundary CFT3 of charge q and
dimension

Δ = 3

2
+ mR, (21.20)

with mR ≥ − 1
2 and in dimensionless units corresponds to Δ = 3

2 + m. In the black
hole geometry, (21.2), the quadratic action for ψ reads as

Sψ = i

∫
d4x

√−g
(
ψ̄Γ MDMψ − mψ̄ψ

)
, (21.21)

where ψ̄ = ψ†Γ t , and

DM = ∂M + 1

4
ωabMΓ ab − iqAM, (21.22)

where ωabM is the spin connection, and Γ ab = 1
2 [Γ a,Γ b]. Here, M and a, b denote

the bulk space-time and tangent space indices respectively, while μ,ν are indices
along the boundary directions, i.e. M = (r,μ). Gamma matrix basis (Minkowski
signature) is given in [8].

We will be interested in spectra and response functions of the boundary fermions
in the presence of magnetic field. This requires solving the Dirac equation in the
bulk [6, 7]: (

Γ MDM − m
)
ψ = 0. (21.23)

From the solution of the Dirac equation at small ω, an analytic expression for the
retarded fermion Green’s function of the boundary CFT at zero magnetic field has
been obtained in [8]. Near the Fermi surface it reads as [8]:

GR(Ω,k) = (−h1vF )

ω − vF k⊥ − Σ(ω,T )
, (21.24)

where k⊥ = k − kF is the perpendicular distance from the Fermi surface in mo-
mentum space, h1 and vF are real constants calculated below, and the self-energy
Σ = Σ1 + iΣ2 is given by [8]

Σ(ω,T )/vF = T 2νg

(
ω

T

)
= (2πT )2νh2eiθ−iπν

Γ ( 1
2 + ν − iω

2πT
+ iμq

6 )

Γ ( 1
2 − ν − iω

2πT
+ iμq

6 )
, (21.25)

where ν is the zero temperature conformal dimension at the Fermi momentum,
ν ≡ νkF

, given by (21.58), μq ≡ μq , h2 is a positive constant and the phase θ is
such that the poles of the Green’s function are located in the lower half of the com-
plex frequency plane. These poles correspond to quasinormal modes of the Dirac
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equation (21.23) and they can be found numerically solving F(ω∗) = 0 [25, 26],
with

F(ω) = k⊥
Γ ( 1

2 + ν − iω
2πT

+ iμq

6 )
− h2eiθ−iπν(2πT )2ν

Γ ( 1
2 − ν − iω

2πT
+ iμq

6 )
, (21.26)

The solution gives the full motion of the quasinormal poles ω
(n)∗ (k⊥) in the complex

ω plane as a function of k⊥. It has been found in [8, 25, 26], that, if the charge of
the fermion is large enough compared to its mass, the pole closest to the real ω axis
bounces off the axis at k⊥ = 0 (and ω = 0). Such behavior is identified with the
existence of the Fermi momentum kF indicative of an underlying strongly coupled
Fermi surface.

At T = 0, the self-energy becomes T 2νg(ω/T ) → ckω
2ν , and the Green’s func-

tion obtained from the solution to the Dirac equation reads [8]

GR(Ω,k) = (−h1vF )

ω − vF k⊥ − h2vF eiθ−iπνω2ν
, (21.27)

where k⊥ = √
k2 − kF . The last term is determined by the IR AdS2 physics near the

horizon. Other terms are determined by the UV physics of the AdS4 bulk.
The solutions to (21.23) have been studied in detail in [6–8]. Here we simply

summarize the novel aspects due to the background magnetic field [27]

• The background magnetic field h introduces a discretization of the momentum:

k → keff = √
2|qh|l, with l ∈ N, (21.28)

with Landau level index l [13, 14, 25, 26]. These discrete values of k are the
analogue of the well-known Landau levels that occur in magnetic systems.

• There exists a (non-invertible) mapping on the level of Green’s functions, from
the magnetic system to the non-magnetic one by sending

(H,Q,q) �→
(

0,
√

Q2 + H 2, q

√
1 − H 2

Q2 + H 2

)
. (21.29)

The Green’s functions in a magnetic system are thus equivalent to those in the
absence of magnetic fields. To better appreciate that, we reformulate (21.29) in
terms of the boundary quantities:

(h,μq,T ) �→
(

0,μq,T

(
1 − h2

12μ2

))
, (21.30)

where we used dimensionless variables defined in (21.15), (21.17). The magnetic
field thus effectively decreases the coupling constant q and increases the chem-
ical potential μ = gF Q such that the combination μq ≡ μq is preserved [12].
This is an important point as the equations of motion actually only depend on this
combination and not on μ and q separately [12]. In other words, (21.30) implies
that the additional scale brought about by the magnetic field can be understood as
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changing μ and T independently in the effective non-magnetic system instead of
only tuning the ratio μ/T . This point is important when considering the thermo-
dynamics.

• The discrete momentum keff = √
2|qh|l must be held fixed in the transforma-

tion (21.29). The bulk-boundary relation is particularly simple in this case, as the
Landau levels can readily be seen in the bulk solution, only to remain identical in
the boundary theory.

• Similar to the non-magnetic system [12], the IR physics is controlled by the near
horizon AdS2 × R2 geometry, which indicates the existence of an IR CFT, char-
acterized by operators Ol , l ∈ N with operator dimensions δ = 1/2 + νl :

νl = 1

6

√
6

(
m2 + 2|qh|l

r2∗∗

)
− μ2

q

r4∗∗
, (21.31)

in dimensionless notation, and μq ≡ μq . At T = 0, when r∗∗ = 1, it becomes

νl = 1

6

√
6
(
m2 + 2|qh|l) − μ2

q . (21.32)

The Green’s function for these operators Ol is found to be G R
l (ω) ∼ ω2νl and the

exponents νl determines the dispersion properties of the quasiparticle excitations.
For ν > 1/2 the system has a stable quasiparticle and a linear dispersion, whereas
for ν ≤ 1/2 one has a non-Fermi liquid with power-law dispersion and an unstable
quasiparticle.

21.3 Magnetic Fields and Conformal Invariance

Despite the fact that a magnetic field introduces a scale, in the absence of a chem-
ical potential, all spectral functions are essentially still determined by conformal
symmetry. To show this, we need to establish certain properties of the near-horizon
geometry of a Reissner-Nordström black hole. This leads to the AdS2 perspective
that was developed in [8]. The result relies on the conformal algebra and its rela-
tion to the magnetic group, from the viewpoint of the infrared CFT that was studied
in [8]. Later on we will see that the insensitivity to the magnetic field also carries
over to AdS4 and the UV CFT in some respects. To simplify the derivations, we
consider the case T = 0.

21.3.1 The Near-Horizon Limit and Dirac Equation in AdS2

It was established in [8] that an electrically charged extremal AdS-Reissner-
Nordström black hole has an AdS2 throat in the inner bulk region. This conclusion
carries over to the magnetic case with some minor differences. We will now give a
quick derivation of the AdS2 formalism for a dyonic black hole, referring the reader
to [8] for more details (that remain largely unchanged in the magnetic field).
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Near the horizon r = r∗∗ of the black hole described by the metric (21.2), the
redshift factor f (r) develops a double zero:

f (r) = 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3). (21.33)

Now consider the scaling limit

r − r∗∗ = λ
R2

2

ζ
, t = λ−1τ, λ → 0 with τ, ζ finite. (21.34)

In this limit, the metric (21.2) and the gauge field reduce to

ds2 = R2
2

ζ 2

(−dτ 2 + dζ 2) + r2∗∗
R2

(
dx2 + dy2),

(21.35)

Aτ = μR2
2r0

r2∗∗
1

ζ
, Ax = Hx

where R2 = R√
6

. The geometry described by this metric is indeed AdS2 × R2. Phys-
ically, the scaling limit given in (21.34) with finite τ corresponds to the long time
limit of the original time coordinate t , which translates to the low frequency limit of
the boundary theory:

ω

μ
→ 0, (21.36)

where ω is the frequency conjugate to t . (One can think of λ as being the fre-
quency ω.) Near the AdS4 horizon, we expect the AdS2 region of an extremal dyonic
black hole to have a CFT1 dual. We refer to [8] for an account of this AdS2/CFT1
duality. The horizon of AdS2 region is at ζ → ∞ (coefficient in front of dτ van-
ishes at the horizon in (21.35)) and the infrared CFT (IR CFT) lives at the AdS2
boundary at ζ = 0. The scaling picture given by (21.34)–(21.35) suggests that in
the low frequency limit, the 2-dimensional boundary theory is described by this IR
CFT (which is a CFT1). The Green’s function for the operator O in the boundary
theory is obtained through a small frequency expansion and a matching procedure
between the two different regions (inner and outer) along the radial direction, and
can be expressed through the Green’s function of the IR CFT [8].

The explicit form for the Dirac equation in the magnetic field is of little interest
for the analytical results that follow. It can be found in [27]. Of primary interest is
its limit in the IR region with metric given by (21.35):

(
− 1√

gζζ

σ 3∂ζ − m + 1√−gττ

σ 1
(

ω + μqR2
2r0

r2∗∗ζ

)
− 1√

gii iσ 2λl

)
F (l) = 0,

(21.37)

where the effective momentum of the lth Landau level is λl = √
2|qh|l, μq ≡ μq

and we omit the index of the spinor field. To obtain (21.37), it is convenient to
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pick the gamma matrix basis as Γ ζ̂ = −σ3, Γ τ̂ = iσ1 and Γ î = −σ2. We can write
explicitly:

⎛
⎝

ζ
R2

∂ζ + m − ζ
R2

(ω + μqR2
2r0

r2∗∗ζ
) + R

r∗∗ λl

ζ
R2

(ω + μqR2
2r0

r2∗∗ζ
) + R

r∗∗ λl
ζ
R2

∂ζ − m

⎞
⎠

(
y

z

)
= 0. (21.38)

Note that the AdS2 radius R2 enters for the (τ, ζ ) directions. At the AdS2 boundary,
ζ → 0, the Dirac equation to the leading order is given by

ζ∂ζ F
(l) = −UF(l), U = R2

⎛
⎝ m −μqR2r0

r2∗∗
+ R

r∗∗ λl

μqR2r0

r2∗∗
+ R

r∗∗ λl −m

⎞
⎠ . (21.39)

The solution to this equation is given by the scaling function F (l) = Ae+ζ−νl +
Be−ζ νl where e± are the real eigenvectors of U and the exponent is

νl = 1

6

√
6

(
m2 + R2

r2∗∗
2|qh|l

)
R2 − μ2

qR4r2
0

r4∗∗
. (21.40)

The conformal dimension of the operator O in the IR CFT is δl = 1
2 + νl . Compar-

ing (21.40) to the expression for the scaling exponent in [8], we conclude that the
scaling properties and the AdS2 construction are unmodified by the magnetic field,
except that the scaling exponents are now fixed by the Landau quantization. This
“quantization rule” was already exploited in [25, 26] to study de Haas-van Alphen
oscillations.

21.4 Spectral Functions

In this section we will explore some of the properties of the spectral function, in
both plane wave and Landau level basis. We first consider some characteristic cases
in the plane wave basis and make connection with the ARPES measurements.

21.4.1 Relating to the ARPES Measurements

In reality, ARPES measurements cannot be performed in magnetic fields so the
holographic approach, allowing a direct insight into the propagator structure and the
spectral function, is especially helpful. This follows from the observation that the
spectral functions as measured in ARPES are always expressed in the plane wave
basis of the photon, thus in a magnetic field, when the momentum is not a good
quantum number anymore, it becomes impossible to perform the photoemission
spectroscopy.

In order to compute the spectral function, we have to choose a particular
fermionic plane wave as a probe. Since the separation of variables is valid through-
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out the bulk, the basis transformation can be performed at every constant r-slice.
This means that only the x and y coordinates have to be taken into account (the
plane wave probe lives only at the CFT side of the duality). We take a plane wave
propagating in the +x direction with spin up along the r-axis. In its rest frame such
a particle can be described by

Ψprobe = eiωt−ipxx

(
ξ

ξ

)
, ξ =

(
1
0

)
. (21.41)

Near the boundary (at rb → ∞) we can rescale our solutions of the Dirac equation,
details can be found in [27]:

Fl =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
+ (rb)ζ

(1)
l (x̃)

ζ
(2)
l (x̃)

−ξ
(l)
+ (rb)ζ

(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , F̃l =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
− (rb)ζ

(1)
l (x̃)

−ζ
(2)
l (x̃)

ξ
(l)
− (rb)ζ

(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , (21.42)

with rescaled x̃ defined in [27]. This representation is useful since we calculate the
components ξ±(rb) related to the retarded Green’s function in our numerics (we
keep the notation of [8]).

Let Ol and Õl be the CFT operators dual to respectively Fl and F̃l , and c
†
k , ck

be the creation and annihilation operators for the plane wave state Ψprobe. Since the
states F and F̃ form a complete set in the bulk, we can write

c†
p(ω) =

∑
l

(
U∗

l , Ũ∗
l

)(
O†

l (ω)

Õ†
l (ω)

)
=

∑
l

(
U∗

l O†
l (ω) + Ũ∗

l Õ†
l (ω)

)
(21.43)

where the overlap coefficients Ul(ω) are given by the inner product between Ψprobe
and F :

Ul(px) =
∫

dxF
†
l iΓ 0Ψprobe = −

∫
dxe−ipxxξ+(rb)

(
ζ

(1)†
l (x̃) − ζ

(2)†
l (x̃)

)
,

(21.44)
with F̄ = F †iΓ 0, and similar expression for Ũl involving ξ−(rb). The constants
Ul can be calculated analytically using the numerical value of ξ±(rb), and by not-
ing that the Hermite functions are eigenfunctions of the Fourier transform. We are
interested in the retarded Green’s function, defined as

GR
Ol

(ω,p) = −i

∫
dxdteiωt−ip·xθ(t)GR

Ol
(t, x)

GR
Ol

(t, x) = 〈0|[Ol (t, x), Ōl (0,0)
]|0〉 (21.45)

GR =
(

GO 0
0 G̃O

)
,

where G̃O is the retarded Green’s function for the operator Õ .
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Fig. 21.1 Two examples of spectral functions in the plane wave basis for μ/T = 50 and h/T = 1.
The conformal dimension is Δ = 5/4 (left) and Δ = 3/2 (right). Frequency is in the units of effec-
tive temperature Teff. The plane wave momentum is chosen to be k = 1. Despite the convolution
of many Landau levels, the presence of the discrete levels is obvious

Exploiting the orthogonality of the spinors created by O and O† and us-
ing (21.43), the Green’s function in the plane wave basis can be written as

GR
cp

(ω,px) =
∑

l

tr

(
U

Ũ

)(
U∗, Ũ∗)GR

= (∣∣Ul(px)
∣∣2

GR
Ol

(ω, l) + ∣∣Ũl(px)
∣∣2

G̃R
Ol

(ω, l)
)
. (21.46)

In practice, we cannot perform the sum in (21.46) all the way to infinity, so we have
to introduce a cutoff Landau level lcut. In most cases we are able to make lcut large
enough that the behavior of the spectral function is clear.

Using the above formalism, we have produced spectral functions for two different
conformal dimensions and fixed chemical potential and magnetic field (Fig. 21.1).
Using the plane wave basis allows us to directly detect the Landau levels. The unit
used for plotting the spectra (here and later on in the paper) is the effective temper-
ature Teff [6]:

Teff = T

2

(
1 +

√
1 + 3μ2

(4πT )2

)
. (21.47)

This unit interpolates between μ at T/μ = 0 and T and is of or T/μ → ∞, and is
convenient for the reason that the relevant quantities (e.g., Fermi momentum) are of
order unity for any value of μ and h.

21.4.2 Magnetic Crossover and Disappearance
of the Quasiparticles

Theoretically, it is more convenient to consider the spectral functions in the Landau
level basis. For definiteness let us pick a fixed conformal dimension Δ = 5

4 which
corresponds to m = − 1

4 . In the limit of weak magnetic fields, h/T → 0, we should
reproduce the results that were found in [6].
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In Fig. 21.2(A) we indeed see that the spectral function, corresponding to a low
value of μ/T , behaves as expected for a nearly conformal system. The spectral
function is approximately symmetric about ω = 0, it vanishes for |ω| < k, up to a
small residual tail due to finite temperature, and for |ω| � k it scales as ω2m.

In Fig. 21.2(B), which corresponds to a high value of μ/T , we see the emergence
of a sharp quasiparticle peak. This peak becomes the sharpest when the Landau
level l corresponding to an effective momentum keff = √

2|qh|l coincides with the
Fermi momentum kF . The peaks also broaden out when keff moves away from kF .
A more complete view of the Landau quantization in the quasiparticle regime is
given in Fig. 21.3, where we plot the dispersion relation (ω–k map). Both the sharp
peaks and the Landau levels can be visually identified.

Collectively, the spectra in Fig. 21.2 show that conformality is only broken by
the chemical potential μ and not by the magnetic field. Naively, the magnetic field
introduces a new scale in the system. However, this scale is absent from the spectral
functions, visually validating the discussion in the previous section that the scale h

can be removed by a rescaling of the temperature and chemical potential.
One thus concludes that there is some value h′

c of the magnetic field, depending
on μ/T , such that the spectral function loses its quasiparticle peaks and displays
near-conformal behavior for h > h′

c. The nature of the transition and the underlying
mechanism depends on the parameters (μq,T ,Δ). One mechanism, obvious from
the rescaling in (21.29), is the reduction of the effective coupling q as h increases.
This will make the influence of the scalar potential A0 negligible and push the sys-
tem back toward conformality. Generically, the spectral function shows no sharp
change but is more indicative of a crossover.

A more interesting phenomenon is the disappearance of coherent quasiparticles
at high effective chemical potentials. For the special case m = 0, we can go beyond
numerics and study this transition analytically, combining the exact T = 0 solution
found in [24] and the mapping (21.30). In the next section, we will show that the
transition is controlled by the change in the dispersion of the quasiparticle and corre-
sponds to a sharp phase transition. Increasing the magnetic field leads to a decrease
in phenomenological control parameter νkF

. This can give rise to a transition to a
non-Fermi liquid when νkF

≤ 1/2, and finally to the conformal regime at h = h′
c

when νkF
= 0 and the Fermi surface vanishes.

21.4.3 Density of States

As argued at the beginning of this section, the spectral function can look quite dif-
ferent depending on the particular basis chosen. Though the spectral function is an
attractive quantity to consider due to connection with ARPES experiments, we will
also direct our attention to basis-independent and manifestly gauge invariant quan-
tities. One of them is the density of states (DOS), defined by

D(ω) =
∑

l

A(ω, l), (21.48)
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Fig. 21.2 Some typical examples of spectral functions A(ω,keff) vs. ω in the Landau basis,
keff = √

2|qh|n. The top four correspond to a conformal dimension Δ = 5
4 m = − 1

4 and the bot-

tom four to Δ = 3
2 (m = 0). In each plot we show different Landau levels, labelled by index n, as

a function of μ/T and h/T . The ratios take values (μ/T ,h/T ) = (1,1), (50,1), (1,50), (50,50)

from left to right. Conformal case can be identified when μ/T is small regardless of h/T (plots
in the left panel). Nearly conformal behavior is seen when both μ/T and h/T are large. This
confirms our analytic result that the behavior of the system is primarily governed by μ. Departure
from the conformality and sharp quasiparticle peaks are seen when μ/T is large and h/T is small
in 21.2(B) and 21.2(F). Multiple quasiparticle peaks arise whenever keff = kF . This suggests the
existence of a critical magnetic field, beyond which the quasiparticle description becomes invalid
and the system exhibits a conformal-like behavior. As before, the frequency ω is in units of Teff
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Fig. 21.3 Dispersion relation ω vs. keff for μ/T = 50, h/T = 1 and Δ = 5
4 (m = − 1

4 ). The
spectral function A(ω,keff) is displayed as a density plot. (A) On a large energy and momentum
scale, we clearly sees that the peaks disperse almost linearly (ω ≈ vF k), indicating that we are in
the stable quasiparticle regime. (B) A zoom-in near the location of the Fermi surface shows clear
Landau quantization

Fig. 21.4 Density of states D(ω) for m = − 1
4 and (A) μ/T = 50, h/T = 1, and (B) μ/T = 1,

h/T = 1. Sharp quasiparticle peaks from the splitting of the Fermi surface are clearly visible
in (A). The case (B) shows square-root level spacing characteristic of a (nearly) Lorentz invariant
spectrum such as that of graphene

where the usual integral over the momentum is replaced by a sum since only discrete
values of the momentum are allowed.

In Fig. 21.4, we plot the density of states for two systems. We clearly see the
Landau splitting of the Fermi surface. A peculiar feature of these plots is that the
DOS seems to grow for negative values of ω. This, however, is an artefact of our
calculation. Each individual spectrum in the sum (21.48) has a finite tail that scales
as ω2m for large ω, so each term has a finite contribution for large values of ω.
When the full sum is performed, this fact implies that limω→∞ D(ω) → ∞. The
relevant information on the density of states can be obtained by regularizing the
sum, which in practice is done by summing over a finite number of terms only, and
then considering the peaks that lie on top of the resulting finite-sized envelope. The
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physical point in Fig. 21.4(A) is the linear spacing of Landau levels, corresponding
to a non-relativistic system at finite density. This is to be contrasted with Fig. 21.4B
where the level spacing behaves as ∝ √

h, appropriate for a Lorentz invariant system
and realized in graphene [28].

21.5 Fermi Level Structure at Zero Temperature

In this section, we solve the Dirac equation in the magnetic field for the special
case m = 0 (Δ = 3

2 ). Although there are no additional symmetries in this case, it
is possible to get an analytic solution. Using this solution, we obtain Fermi level
parameters such as kF and vF and consider the process of filling the Landau levels
as the magnetic field is varied.

21.5.1 Dirac Equation with m = 0

In the case m = 0, it is convenient to solve the Dirac equation including the spin
connection (see details in [27]) rather than scaling it out:

(
−

√
gii√
grr

σ 1∂r −
√

gii√−gtt

σ 3(ω + qAt) +
√

gii√−gtt

σ 1 1

2
ωt̂r̂t

− σ 1 1

2
ωx̂r̂x − σ 1 1

2
ωŷr̂y − λl

)
⊗ 1

(
ψ1
ψ2

)
= 0, (21.49)

where λl = √
2|qh|l are the energies of the Landau levels l = 0,1, . . . , gii ≡ gxx =

gyy , At(r) is given by (21.3), and the gamma matrices are defined in [27]. In this
basis the two components ψ1 and ψ2 decouple. Therefore, in what follows we solve
for the first component only (we omit index 1). Substituting the spin connection, we
have [20]:

(
− r2√f

R2
σ 1∂r − 1√

f
σ 3(ω + qAt) − σ 1 r

√
f

2R2

(
3 + rf ′

2f

)
− λl

)
ψ = 0, (21.50)

with ψ = (y1, y2). It is convenient to change to the basis
(

ỹ1
ỹ2

)
=

(
1 −i

−i 1

)(
y1
y2

)
, (21.51)

which diagonalizes the system into a second order differential equation for each
component. We introduce the dimensionless variables as in (21.15)–(21.17), and
make a change of the dimensionless radial variable:

r = 1

1 − z
, (21.52)
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with the horizon now being at z = 0, and the conformal boundary at z = 1. Perform-
ing these transformations in (21.50), the second order differential equations for ỹ1
reads (

f ∂2
z +

(
3f

1 − z
+ f ′

)
∂z + 15f

4(1 − z)2
+ 3f ′

2(1 − z)
+ f ′′

4

+ 1

f

(
(ω + qμz) ± if ′

4

)2

− iqμ − λ2
l

)
ỹ1 = 0. (21.53)

The second component ỹ2 obeys the same equation with μ �→ −μ.
At T = 0,

f = 3z2(z − z0)(z − z̄0), z0 = 1

3
(4 + i

√
2). (21.54)

The solution of this fermion system at zero magnetic field and zero temperature
T = 0 has been found in [24]. To solve (21.53), we use the mapping to a zero
magnetic field system (21.29). The combination μq ≡ μq at non-zero h maps to
μq,eff ≡ μeffqeff at zero h as follows:

μq �→ q

√
1 − H 2

Q2 + H 2
· gF

√
Q2 + H 2 = √

3qgF

√
1 − H 2

3
= μq,eff (21.55)

where at T = 0 we used Q2 + H 2 = 3. We solve (21.53) for zero modes, i.e. ω = 0,
and at the Fermi surface λ = k, and implement (21.55).

Near the horizon (z = 0, f = 6z2), we have

6z2ỹ′′
1;2 + 12zỹ′

1;2 +
(

3

2
+ (μq,eff)

2

6
− k2

F

)
ỹ1;2 = 0, (21.56)

which gives the following behavior:

ỹ1;2 ∼ z− 1
2 ±νk , (21.57)

with the scaling exponent ν following from (21.32):

ν = 1

6

√
6k2 − (μq,eff)2, (21.58)

at the momentum k. Using Maple, we find the zero mode solution of (21.53) with a

regular behavior z− 1
2 +ν at the horizon [20, 24]:

ỹ
(0)
1 = N1(z − 1)

3
2 z− 1

2 +ν(z − z̄0)
− 1

2 −ν

(
z − z0

z − z̄0

) 1
4 (−1−√

2μq,eff/z0)

× 2F1

(
1

2
+ ν −

√
2

3
μq,eff, ν + i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z − z̄0)

)
, (21.59)
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Fig. 21.5 Density of the zero mode ψ0†ψ0 vs. the radial coordinate z (the horizon is at z = 0
and the boundary is at z = 1) for different values of the magnetic field h for the first (with the

largest root for kF ) Fermi surface. We set gF = 1 (h → H ) and q = 15√
3

(μq,eff → 15
√

1 − H 2

3 ).

From right to left the values of the magnetic field are H = {0,1.40,1.50,1.60,1.63,1.65,1.68}.
The amplitudes of the curves are normalized to unity. At weak magnetic fields, the wave function
is supported away from the horizon while at strong fields it is supported near the horizon

and

ỹ
(0)
2 = N2(z − 1)

3
2 z− 1

2 +ν(z − z̄0)
− 1

2 −ν

(
z − z0

z − z̄0

) 1
4 (−1+√

2μq,eff/z0)

× 2F1

(
1

2
+ ν +

√
2

3
μq,eff, ν − i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z − z̄0)

)
, (21.60)

where 2F1 is the hypergeometric function and N1, N2 are normalization factors.
Since normalization factors are constants, we find their relative weight by substitut-
ing solutions given in (21.59) back into the first order differential equations at z ∼ 0,

N1

N2
= −6iν + μq,eff√

6k

(
z0

z̄0

)μq,eff/
√

2z0

. (21.61)

The same relations are obtained when calculations are done for any z. The second

solution η̃
(0)
1;2, with behavior z− 1

2 −ν at the horizon, is obtained by replacing ν → −ν

in (21.59).
To get insight into the zero-mode solution (21.59), we plot the radial profile for

the density function ψ(0)†ψ(0) for different magnetic fields in Fig. 21.5. The mo-
mentum chosen is the Fermi momentum of the first Fermi surface (see the next
section). The curves are normalized to have the same maxima. Magnetic field is
increased from right to left. At small magnetic field, the zero modes are supported
away from the horizon, while at large magnetic field, the zero modes are supported
near the horizon. This means that at large magnetic field the influence of the black
hole to the Fermi level structure becomes more important.
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21.5.2 Magnetic Effects on the Fermi Momentum and Fermi
Velocity

In the presence of a magnetic field there is only a true pole in the Green’s function
whenever the Landau level crosses the Fermi energy [25, 26]

2l|qh| = k2
F . (21.62)

As shown in Fig. 21.2, whenever the equation (21.62) is satisfied the spectral func-
tion A(ω) has a (sharp) peak. This is not surprising since quasiparticles can be easily
excited from the Fermi surface. From (21.62), the spectral function A(ω) and the
density of states on the Fermi surface D(ω) are periodic in 1

h
with the period

Δ

(
1

h

)
= 2πq

AF

, (21.63)

where AF = πk2
F is the area of the Fermi surface [25, 26]. This is a manifestation

of the de Haas-van Alphen quantum oscillations. At T = 0, the electronic proper-
ties of metals depend on the density of states on the Fermi surface. Therefore, an
oscillatory behavior as a function of magnetic field should appear in any quantity
that depends on the density of states on the Fermi energy. Magnetic susceptibility
[25, 26] and magnetization together with the superconducting gap [29] have been
shown to exhibit quantum oscillations. Every Landau level contributes an oscillating
term and the period of the lth level oscillation is determined by the value of the mag-
netic field h that satisfies (21.62) for the given value of kF . Quantum oscillations
(and the quantum Hall effect which we consider later in the paper) are examples of
phenomena in which Landau level physics reveals the presence of the Fermi sur-
face. The superconducting gap found in the quark matter in magnetic fields [29] is
another evidence for the existence of the (highly degenerate) Fermi surface and the
corresponding Fermi momentum.

Generally, a Fermi surface controls the occupation of energy levels in the sys-
tem: the energy levels below the Fermi surface are filled and those above are empty
(or non-existent). Here, however, the association to the Fermi momentum can be
obscured by the fact that the fermions form highly degenerate Landau levels. Thus,
in two dimensions, in the presence of the magnetic field the corresponding effective
Fermi surface is given by a single point in the phase space, that is determined by nF ,
the Landau index of the highest occupied level, i.e., the highest Landau level below
the chemical potential.2 Increasing the magnetic field, Landau levels ‘move up’ in
the phase space leaving only the lower levels occupied, so that the effective Fermi
momentum scales roughly (excluding interactions) as a square root of the magnetic
field, kF ∼ √

nF ∼ kmax
F

√
1 − h/hmax. High magnetic fields drive the effective den-

sity of the charge carriers down, approaching the limit when the Fermi momentum
coincides with the lowest Landau level.

2We would like to thank Igor Shovkovy for clarifying the issue with the Fermi momentum in the
presence of the magnetic field.
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Many phenomena observed in the paper can thus be qualitatively explained by
Landau quantization. As discussed before, the notion of the Fermi momentum is lost
at very high magnetic fields. In what follows, the quantitative Fermi level structure
at zero temperature, described by kF and vF values, is obtained as a function of the
magnetic field using the solution of the Dirac equation given by (21.59), (21.60). As
in [12], we neglect first the discrete nature of the Fermi momentum and velocity in
order to obtain general understanding. Upon taking the quantization into account,
the smooth curves become combinations of step functions following the same trend
as the smooth curves (without quantization). While usually the grand canonical en-
semble is used, where the fixed chemical potential controls the occupation of the
Landau levels [30], in our setup, the Fermi momentum is allowed to change as the
magnetic field is varied, while we keep track of the IR conformal dimension ν.

The Fermi momentum is defined by the matching between IR and UV physics [8],
therefore it is enough to know the solution at ω = 0, where the matching is per-
formed. To obtain the Fermi momentum, we require that the zero mode solution

is regular at the horizon (ψ(0) ∼ z− 1
2 +ν ) and normalizable at the boundary. At the

boundary z ∼ 1, the wave function behaves as

a(1 − z)
3
2 −m

(
1
0

)
+ b(1 − z)

3
2 +m

(
0
1

)
. (21.64)

To require it to be normalizable is to set the first term a = 0; the wave function at
z ∼ 1 is then

ψ(0) ∼ (1 − z)
3
2 +m

(
0
1

)
. (21.65)

Equation (21.65) leads to the condition limz→1(z−1)−3/2(ỹ
(0)
2 + iỹ

(0)
1 ) = 0, which,

together with (21.59), gives the following equation for the Fermi momentum as
function of the magnetic field [20, 24]

2F1(1 + ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

2F1(ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

= 6ν − iμq,eff

kF (−2i + √
2)

,

(21.66)
with ν ≡ νkF

given by (21.58). Using Mathematica to evaluate the hypergeometric
functions, we numerically solve the equation for the Fermi surface, which gives
effective momentum as if it were continuous, i.e. when quantization is neglected.
The solutions of (21.66) are given in Fig. 21.6. There are multiple Fermi surfaces
for a given magnetic field h. Here and in all other plots we choose gF = 1, therefore
h → H , and q = 15√

3
. In Fig. 21.6, positive and negative kF correspond to the Fermi

surfaces in the Green’s functions G1 and G2. The relation between two components
is G2(ω, k) = G1(ω,−k) [7], therefore Fig. 21.6 is not symmetric with respect
to the x-axis. Effective momenta terminate at the dashed line νkF

= 0. Taking into
account Landau quantization of kF → √

2|qh|l with l = 1,2 . . . , the plot consists of
stepwise functions tracing the existing curves (we depict only positive kF ). Indeed
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Fig. 21.6 Effective momentum keff vs. the magnetic field h → H (we set gF = 1, q = 15√
3

). As

we increase magnetic field the Fermi surface shrinks. Smooth solid curves represent situation as
if momentum is a continuous parameter (for convenience), stepwise solid functions are the real
Fermi momenta which are discretized due to the Landau level quantization: kF → √

2|qh|l with
l = 1,2, . . . where

√
2|qh|l are Landau levels given by dotted lines (only positive discrete kF are

shown). At a given h there are multiple Fermi surfaces. From right to left are the first, second etc.
Fermi surfaces. The dashed-dotted line is νkF

= 0 where kF is terminated. Positive and negative
keff correspond to Fermi surfaces in two components of the Green’s function

Fig. 21.7 Landau level
numbers n corresponding to
the quantized Fermi momenta
vs. the magnetic field h → H

for the three Fermi surfaces
with positive kF . We set
gF = 1, q = 15√

3
. From right

to left are the first, second and
third Fermi surfaces

Landau quantization can be also seen from the dispersion relation at Fig. 21.3, where
only discrete values of effective momentum are allowed and the Fermi surface has
been chopped up as a result of it Fig. 21.3(B).

Our findings agree with the results for the (largest) Fermi momentum in a three-
dimensional magnetic system considered in [31], compare the stepwise dependence
kF (h) with Fig. 21.5 in [31].

In Fig. 21.7, the Landau level index l is obtained from kF (h) = √
2|qh|l where

kF (h) is a numerical solution of (21.66). Only those Landau levels which are below
the Fermi surface are filled. In Fig. 21.6, as we decrease magnetic field first nothing
happens until the next Landau level crosses the Fermi surface which corresponds to a
jump up to the next step. Therefore, at strong magnetic fields, fewer states contribute
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Fig. 21.8 Left panel. The IR conformal dimension ν ≡ νkF
calculated at the Fermi momentum vs.

the magnetic field h → H (we set gF =1, q = 15√
3

). Calculations are done for the first Fermi surface.

Dashed line is for ν = 1
2 (at Hc = 1.70), which is the border between the Fermi liquids ν > 1

2 and
non-Fermi liquids ν < 1

2 . Right panel. Phase diagram in terms of the chemical potential and the
magnetic field μ2 + h2 = 3 (in dimensionless variables h = gF H , μ = gF Q; we set gF = 1).
Fermi liquids are above the dashed line (H < Hc) and non-Fermi liquids are below the dashed line
(H > Hc)

to transport properties and the lowest Landau level becomes more important (see the
next section). At weak magnetic fields, the sum over many Landau levels has to be
taken, ending with the continuous limit as h → 0, when quantization can be ignored.

In Fig. 21.8, we show the IR conformal dimension as a function of the magnetic
field. We have used the numerical solution for kF . Fermi liquid regime takes place
at magnetic fields h < hc , while non-Fermi liquids exist in a narrow band at hc <

h < h′
c , and at h′

c the system becomes near-conformal.
In this figure we observe the pathway of the possible phase transition exhibited by

the Fermi surface (ignoring Landau quantization): it can vanish at the line νkF
= 0,

undergoing a crossover to the conformal regime, or cross the line νkF
= 1/2 and go

through a non-Fermi liquid regime, and subsequently cross to the conformal phase.
Note that the primary Fermi surface with the highest kF and νkF

seems to directly
cross over to conformality, while the other Fermi surfaces first exhibit a “strange
metal” phase transition. Therefore, all the Fermi momenta with νkF

> 0 contribute
to the transport coefficients of the theory. In particular, at high magnetic fields when
for the first (largest) Fermi surface k

(1)
F is nonzero but small, the lowest Landau

level n = 0 becomes increasingly important contributing to the transport with half
degeneracy factor as compared to the higher Landau levels.

In Fig. 21.9, we plot the Fermi momentum kF as a function of the magnetic field
for the first Fermi surface (the largest root of (21.66)). Quantization is neglected
here. At the left panel, the relatively small region between the dashed lines corre-
sponds to non-Fermi liquids 0 < ν < 1

2 . At large magnetic field, the physics of the
Fermi surface is captured by the near horizon region (see also Fig. 21.5) which is
AdS2 × R2. At the maximum magnetic field, Hmax = √

3 ≈ 1.73, when the black
hole becomes pure magnetically charged, the Fermi momentum vanishes when it
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Fig. 21.9 Fermi momentum kF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the first

Fermi surface. Left panel. The inner (closer to x-axis) dashed line is νkF
= 0 and the outer dashed

line is νkF
= 1

2 , the region between these lines corresponds to non-Fermi liquids 0 < νkF
< 1

2 .
The dashed-dotted line is for the first Landau level k1 = √

2qH . The first Fermi surface hits
the border-line between a Fermi and non-Fermi liquids ν = 1

2 at Hc ≈ 1.70, and it vanishes at

Hmax = √
3 = 1.73. Right panel. Circles are the data points for the Fermi momentum calculated

analytically, solid line is a fit function kmax
F

√
1 − H 2

3 with kmax
F = 12.96

crosses the line νkF
= 0. This only happens for the first Fermi surface. For the higher

Fermi surfaces the Fermi momenta terminate at the line νkF
= 0, Fig. 21.6. Note the

Fermi momentum for the first Fermi surface can be almost fully described by a func-

tion kF = kmax
F

√
1 − H 2

3 . It is tempting to view the behavior kF ∼ √
Hmax − H as

a phase transition in the system although it strictly follows from the linear scaling
for H = 0 by using the mapping (21.29). (Note that also μ = gF Q = gF

√
3 − H 2.)

Taking into account the discretization of kF , the plot will consist of an array of
step functions tracing the existing curve. Our findings agree with the results for
the Fermi momentum in a three dimensional magnetic system considered in [31],
compare with Fig. 21.5 there.

The Fermi velocity given in (21.27) is defined by the UV physics; therefore so-
lutions at non-zero ω are required. The Fermi velocity is extracted from matching
two solutions in the inner and outer regions at the horizon. The Fermi velocity as
function of the magnetic field for ν > 1

2 is [20, 24]

vF = 1

h1

(∫ 1

0
dz

√
g/gttψ

(0)†ψ(0)

)−1

lim
z→1

|ỹ(0)
1 + iỹ

(0)
2 |2

(1 − z)3
,

(21.67)

h1 = lim
z→1

ỹ
(0)
1 + iỹ

(0)
2

∂k(
˜

y
(0)
2 + iỹ

(0)
1 )

,

where the zero mode wavefunction is taken at kF (21.59).
We plot the Fermi velocity for several Fermi surfaces in Fig. 21.10. Quantization

is neglected here. The Fermi velocity is shown for ν > 1
2 . It is interesting that the

Fermi velocity vanishes when the IR conformal dimension is νkF
= 1

2 . Formally,
it follows from the fact that vF ∼ (2ν − 1) [8]. The first Fermi surface is at the
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Fig. 21.10 Fermi velocity vF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the

regime of Fermi liquids ν ≥ 1
2 . Fermi velocity vanishes at νkF

= 1
2 (x-axis). For the first Fermi

surface, the top curve, Fermi velocity vanishes at Hc ≈ 1.70. The region H < Hc corresponds to
the Fermi liquids and quasiparticle description. The multiple lines are for various Fermi surfaces
in ascending order, with the first Fermi surface on the right. The Fermi velocity vF has the same
sign as the Fermi momentum kF . As above, positive and negative vF correspond to Fermi surfaces
in the two components of the Green’s function

far right. Positive and negative vF correspond to the Fermi surfaces in the Green’s
functions G1 and G2, respectively. The Fermi velocity vF has the same sign as the
Fermi momentum kF . At small magnetic field values, the Fermi velocity is very
weakly dependent on H and it is close to the speed of light; at large magnetic field
values, the Fermi velocity rapidly decreases and vanishes (at Hc = 1.70 for the
first Fermi surface). Geometrically, this means that with increasing magnetic field
the zero mode wavefunction is supported near the black hole horizon Fig. 21.5,
where the gravitational redshift reduces the local speed of light as compared to the
boundary value. It was also observed in [8, 24] at small fermion charge values.

21.6 Hall and Longitudinal Conductivities

In this section, we calculate the contributions to Hall σxy and the longitudinal σxx

conductivities directly in the boundary theory. This should be contrasted with the
standard holographic approach, where calculations are performed in the (bulk) grav-
ity theory and then translated to the boundary field theory using the AdS/CFT dic-
tionary. Specifically, the conductivity tensor has been obtained in [11] by calculating
the on-shell renormalized action for the gauge field on the gravity side and using the
gauge/gravity duality AM → jμ to extract the R charge current-current correlator
at the boundary. Here, the Kubo formula involving the current-current correlator is
used directly by utilizing the fermion Green’s functions extracted from holography
in [8]. Therefore, the conductivity is obtained for the charge carriers described by
the fermionic operators of the boundary field theory.
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The use of the conventional Kubo formula to extract the contribution to the trans-
port due to fermions is validated in that it also follows from a direct AdS/CFT com-
putation of the one-loop correction to the on-shell renormalized AdS action [17].
We study in particular stable quasiparticles with ν > 1

2 and at zero temperature.
This regime effectively reduces to the clean limit where the imaginary part of the
self-energy vanishes ImΣ → 0. We use the gravity-“dressed” fermion propagator
from (21.27) and to make the calculations complete, the “dressed” vertex is nec-
essary, to satisfy the Ward identities. As was argued in [17], the boundary vertex
which is obtained from the bulk calculations can be approximated by a constant in
the low temperature limit. Also, according to [32, 33], the vertex only contains sin-
gularities of the product of the Green’s functions. Therefore, dressing the vertex will
not change the dependence of the DC conductivity on the magnetic field [32, 33].
In addition, the zero magnetic field limit of the formulae for conductivity obtained
from holography [17] and from direct boundary calculations [20] are identical.

21.6.1 Integer Quantum Hall Effect

Let us start from the “dressed” retarded and advanced fermion propagators [8]:
GR is given by (21.27) and GA = G∗

R . To perform the Matsubara summation we
use the spectral representation

G(iωn,k) =
∫

dω

2π

A(ω,k)

ω − iωn

, (21.68)

with the spectral function defined as A(ω,k) = − 1
π

ImGR(ω,k) = 1
2πi

(GR(ω,k)−
GA(ω,k)). Generalizing to a non-zero magnetic field and spinor case [30], the spec-
tral function [34] is

A(ω,k) = 1

π
e− k2

|qh|
∞∑
l=0

(−1)l(−h1vF )

×
(

Σ2(ω, kF )f (k)γ 0

(ω + εF + Σ1(ω, kF ) − El)2 + Σ2(ω, kF )2
+ (El → −El)

)
,

(21.69)

where εF = vF kF is the Fermi energy, El = vF

√
2|qh|l is the energy of the Lan-

dau level, f (k) = P−Ll(
2k2

|qh| ) − P+Ll−1(
2k2

|qh| ) with spin projection operators P± =
(1 ± iγ 1γ 2)/2, we take c = 1, the generalized Laguerre polynomials are Lα

n(z) and
by definition Ln(z) = L0

n(z), (we omit the vector part kγ , it does not contribute
to the DC conductivity), all γ ’s are the standard Dirac matrices, h1, vF and kF

are real constants (we keep the same notations for the constants as in [8]). The
self-energy Σ ∼ ω2νkF contains the real and imaginary parts, Σ = Σ1 + iΣ2. The
imaginary part comes from scattering processes of a fermion in the bulk, e.g. from
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pair creation, and from the scattering into the black hole. It is exactly due to in-
elastic/dissipative processes that we are able to obtain finite values for the transport
coefficients, otherwise they are formally infinite.

Using the Kubo formula, the DC electrical conductivity tensor is

σij (Ω) = lim
Ω→0

ImΠR
ij

Ω + i0+ , (21.70)

where Πij (iΩm → Ω + i0+) is the retarded current-current correlation function;
schematically the current density operator is j i(τ,x)=qvF

∑
σ ψ̄σ (τ,x)γ iψσ (τ,x).

Neglecting the vertex correction, it is given by

Πij (iΩm) = q2v2
F T

∞∑
n=−∞

∫
d2k

(2π)2
tr
(
γ iG(iωn,k)γ jG(iωn + iΩm,k)

)
. (21.71)

The sum over the Matsubara frequency is

T
∑
n

1

iωn − ω1

1

iωn + iΩm − ω2
= n(ω1) − n(ω2)

iΩm + ω1 − ω2
. (21.72)

Taking iΩm → Ω + i0+, the polarization operator is now

Πij (Ω) = dω1

2π

dω2

2π

nFD(ω1) − nFD(ω2)

Ω + ω1 − ω2

∫
d2k

(2π)2
tr
(
γ iA(ω1,k)γ jA(ω2,k)

)
,

(21.73)

where the spectral function A(ω,k) is given by (21.69) and nFD(ω) is the Fermi-
Dirac distribution function. Evaluating the traces, we have

σij = −4q2v2
F (h1vF )2|qh|

πΩ

× Re
∞∑

l,k=0

(−1)l+k+1{δij (δl,k−1 + δl−1,k) + iεij sgn(qh)(δl,k−1 − δl−1,k)
}

×
∫

dω1

2π

(
tanh

ω1

2T
− tanh

ω2

2T

)(
Σ2(ω1)

(ω̃1 − El)2 + Σ2
2 (ω1)

+ (El → −El)

)

×
(

Σ2(ω2)

(ω̃2 − Ek)2 + Σ2
2 (ω2)

+ (Ek → −Ek)

)
, (21.74)

with ω2 = ω1 + Ω . We have also introduced ω̃1;2 ≡ ω1;2 + εF + Σ1(ω1;2) with εij

being the antisymmetric tensor (ε12 = 1), and Σ1;2(ω) ≡ Σ1;2(ω, kF ). In the mo-
mentum integral, we use the orthogonality condition for the Laguerre polynomials∫ ∞

0 dxexLl(x)Lk(x) = δlk .
From (21.74), the term symmetric/antisymmetric with respect to exchange ω1 ↔

ω2 contributes to the diagonal/off-diagonal component of the conductivity (note the
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antisymmetric term nFD(ω1) − nFD(ω2)). The longitudinal and Hall DC conductiv-
ities (Ω → 0) are thus

σxx = −2q2(h1vF )2|qh|
πT

∫ ∞

−∞
dω

2π

Σ2
2 (ω)

cosh2 ω
2T

×
∞∑
l=0

(
1

(ω̃ − El)2 + Σ2
2 (ω)

+ (El → −El)

)

×
(

1

(ω̃ − El+1)2 + Σ2
2 (ω)

+ (El+1 → −El+1)

)
, (21.75)

σxy = −q2(h1vF )2 sgn(qh)

π
νh,

(21.76)

νh = 2
∫ ∞

−∞
dω

2π
tanh

ω

2T
Σ2(ω)

∞∑
l=0

αl

(
1

(ω̃ − El)2 + Σ2
2 (ω)

+ (El → −El)

)
,

where ω̃ = ω + εF + Σ1(ω). The filling factor νh is proportional to the density
of carriers: |νh| = π

|qh|h1vF
n (see derivation in [27]). The degeneracy factor of the

Landau levels is αl : α0 = 1 for the lowest Landau level and αl = 2 for l = 1,2 . . . .
Substituting the filling factor νh back to (21.76), the Hall conductivity can be writ-
ten as

σxy = ρ

h
, (21.77)

where ρ is the charge density in the boundary theory, and both the charge q and the
magnetic field h carry a sign (the prefactor (−h1vF ) comes from the normalization
choice in the fermion propagator (21.27), (21.69) as given in [8], which can be
regarded as a factor contributing to the effective charge and is not important for
further considerations). The Hall conductivity (21.77) has been obtained using the
AdS/CFT duality for the Lorentz invariant 2+1-dimensional boundary field theories
in [11]. We recover this formula because in our case the translational invariance is
maintained in the x and y directions of the boundary theory.

Low frequencies give the main contribution in the integrand of (21.76). Since
the self-energy satisfies Σ1(ω) ∼ Σ2(ω) ∼ ω2ν and we consider the regime ν > 1

2 ,
we have Σ1 ∼ Σ2 → 0 at ω ∼ 0 (self-energy goes to zero faster than the ω term).
Therefore, only the simple poles in the upper half-plane ω0 = −εF ±El +Σ1 + iΣ2

contribute to the conductivity where Σ1 ∼ Σ2 ∼ (−εF ± El)
2ν are small. The same

logic of calculation has been used in [30]. We obtain for the longitudinal and Hall
conductivities

σxx = 2q2(h1vF )2Σ2

πT
×

(
1

1 + cosh εF

T

+
∞∑
l=1

4l
1 + cosh εF

T
cosh El

T

(cosh εF

T
+ cosh El

T
)2

)
, (21.78)



584 E. Gubankova et al.

σxy = q2(h1vF )2sgn(qh)

π
× 2

(
tanh

εF

2T
+

∞∑
l=1

(
tanh

εF + El

2T
+ tanh

εF − El

2T

))
,

(21.79)

where the Fermi energy is εF = vF kF and the energy of the Landau level is El =
vF

√
2|qh|l. Similar expressions were obtained in [30]. However, in our case the

filling of the Landau levels is controlled by the magnetic field h through the field-
dependent Fermi energy vF (h)kF (h) instead of the chemical potential μ.

At T = 0, cosh ω
T

→ 1
2 e

ω
T and tanh ω

2T
= 1 − 2nFD(ω) → sgnω. Therefore the

longitudinal and Hall conductivities are

σxx = 2q2(h1vF )2Σ2

πT

∞∑
l=1

lδεF ,El
= 2q2(h1vF )2Σ2

πT
× nδεF ,En, (21.80)

σxy = q2(h1vF )2sgn(qh)

π
2

(
1 + 2

∞∑
l=1

θ(εF − El)

)

= q2(h1vF )2sgn(qh)

π
× 2(1 + 2n)θ(εF − En)θ(En+1 − εF ), (21.81)

where the Landau level index runs n = 0,1, . . . . It can be estimated as n = [ k2
F

2|qh| ]
when vF �= 0 ([ ] denotes the integer part), with the average spacing between the
Landau levels given by the Landau energy vF

√
2|qh|. Note that εF ≡ εF (h). We

can see that (21.81) expresses the integer quantum Hall effect (IQHE). At zero
temperature, as we dial the magnetic field, the Hall conductivity jumps from one
quantized level to another, forming plateaus given by the filling factor

νh = ±2(1 + 2n) = ±4

(
n + 1

2

)
, (21.82)

with n = 0,1, . . . . (Compare to the conventional Hall quantization νh = ±4n, that
appears in thick graphene.) Plateaus of the Hall conductivity at T = 0 follow from
the stepwise behavior of the charge density ρ in (21.77):

ρ ∼ 4

(
n + 1

2

)
θ(εF − En)θ(En+1 − εF ), (21.83)

where n Landau levels are filled and contribute to ρ. The longitudinal conductivity
vanishes except precisely at the transition point between the plateaus. In Fig. 21.11,
we plot the longitudinal and Hall conductivities at T = 0, using only the terms after
× sign in (21.79). In the Hall conductivity, plateau transition occurs when the Fermi
level (in Fig. 21.11) of the first Fermi surface εF = vF (h)kF (h) (Fig. 21.9) crosses
the Landau level energy as we vary the magnetic field. By decreasing the magnetic
field, the plateaus become shorter and increasingly more Landau levels contribute to
the Hall conductivity. This happens because of two factors: the Fermi level moves
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Fig. 21.11 Hall conductivity σxy and longitudinal conductivity σxx vs. the magnetic field h → H

at T = 0 (we set gF = 1, q = 15√
3

). Left panel is for IQHE. Right panel is for FQHE. At strong

magnetic fields, the Hall conductivity plateau νh = 4 appears together with plateaus νh = 2 and
νh = 6 in FQHE (details are in [27]). Irregular pattern in the length of the plateaus for FQHE is
observed in experiments on thin films of graphite at strong magnetic fields [28]

up and the spacing between the Landau levels becomes smaller. This picture does
not depend on the Fermi velocity as long as it is nonzero.

21.6.2 Fractional Quantum Hall Effect

In [27], using the holographic description of fermions, we obtained the filling factor
at strong magnetic fields

νh = ±2j, (21.84)

where j is the effective Landau level index. Equation (21.84) expresses the frac-
tional quantum Hall effect (FQHE). In the quasiparticle picture, the effective index
is integer j = 0,1,2, . . . , but generally it may be fractional. In particular, the fill-
ing factors ν = 2/m where m = 1,2,3, . . . have been proposed by Halperin [35]
for the case of bound electron pairs, i.e. 2e-charge bosons. Indeed, QED becomes
effectively confining in ultraquantum limit at strong magnetic field, and the electron
pairing is driven by the Landau level quantization and gives rise to 2e bosons. In
our holographic description, quasiparticles are valid degrees of freedom only for
ν > 1/2, i.e. for weak magnetic field. At strong magnetic field, poles of the fermion
propagator should be taken into account in calculation of conductivity. This will
probably result in a fractional filling factor. Our pattern for FQHE Fig. 21.11 resem-
bles the one obtained by Kopelevich in Fig. 3 [36] which has been explained using
the fractional filling factor of Halperin [35].

The somewhat regular pattern behind the irregular behavior can be understood
as a consequence of the appearance of a new energy scale: the average distance
between the Fermi levels. For the case of Fig. 21.11, we estimate it to be 〈ε(m)

F −
ε
(m+1)
F 〉 = 4.9 with m = 1,2. The authors of [30] explain the FQHE through the
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opening of a gap in the quasiparticle spectrum, which acts as an order parameter
related to the particle-hole pairing and is enhanced by the magnetic field (magnetic
catalysis). Here, the energy gap arises due to the participation of multiple Fermi
surfaces.

A pattern for the Hall conductivity that is strikingly similar to Fig. 21.11 arises in
the AA and AB-stacked bilayer graphene, which has different transport properties
from the monolayer graphene [37], compare with Figs. 2, 5 there. It is remarkable
that the bilayer graphene also exhibits the insulating behavior in a certain parameter
regime. This agrees with our findings of metal-insulating transition in our system.

21.7 Conclusions

We have studied strongly coupled electron systems in the magnetic field focussing
on the Fermi level structure, using the AdS/CFT correspondence. These systems are
dual to Dirac fermions placed in the background of the electrically and magnetically
charged AdS-Reissner-Nordström black hole. At strong magnetic fields the dual
system “lives” near the black hole horizon, which substantially modifies the Fermi
level structure. As we dial the magnetic field higher, the system exhibits the non-
Fermi liquid behavior and then crosses back to the conformal regime. In our analysis
we have concentrated on the Fermi liquid regime and obtained the dependence of
the Fermi momentum kF and Fermi velocity vF on the magnetic field. Remarkably,
kF exhibits the square root behavior, with vF staying close to the speed of light in
a wide range of magnetic fields, while it rapidly vanishes at a critical magnetic field
which is relatively high. Such behavior indicates that the system may have a phase
transition.

The magnetic system can be rescaled to a zero-field configuration which is ther-
modynamically equivalent to the original one. This simple result can actually be
seen already at the level of field theory: the additional scale brought about by the
magnetic field does not show up in thermodynamic quantities meaning, in particu-
lar, that the behavior in the vicinity of quantum critical points is expected to remain
largely uninfluenced by the magnetic field, retaining its conformal invariance. In the
light of current condensed matter knowledge, this is surprising and might in fact be
a good opportunity to test the applicability of the probe limit in the real world: if
this behavior is not seen, this suggests that one has to include the backreaction to
metric to arrive at a realistic description.

In the field theory frame, we have calculated the DC conductivity using kF and
vF values extracted from holography. The holographic calculation of conductivity
that takes into account the fermions corresponds to the corrections of subleading
order in 1/N in the field theory and is very involved [17]. As we are not interested
in the vertex renormalization due to gravity (it does not change the magnetic field
dependence of the conductivity), we have performed our calculations directly in the
field theory with AdS gravity-dressed fermion propagators. Instead of controlling
the occupancy of the Landau levels by changing the chemical potential (as is usual
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in non-holographic setups), we have controlled the filling of the Landau levels by
varying the Fermi energy level through the magnetic field. At zero temperature, we
have reproduced the integer QHE of the Hall conductivity, which is observed in
graphene at moderate magnetic fields. While the findings on equilibrium physics
(Landau quantization, magnetic phase transitions and crossovers) are within expec-
tations and indeed corroborate the meaningfulness of the AdS/CFT approach as
compared to the well-known facts, the detection of the QHE is somewhat surpris-
ing as the spatial boundary effects are ignored in our setup. We plan to address this
question in further work.

Interestingly, at large magnetic fields we obtain the correct formula for the fill-
ing factor characteristic for FQHE. Moreover our pattern for FQHE resembles the
one obtained in [36] which has been explained using the fractional filling factor of
Halperin [35]. In the quasiparticle picture, which we have used to calculate Hall
conductivity, the filling factor is integer. In our holographic description, quasiparti-
cles are valid degrees of freedom only at weak magnetic field. At strong magnetic
field, the system exhibits non-Fermi liquid behavior. In this case, the poles of the
fermion propagator should be taken into account to calculate the Hall conductivity.
This can probably result in a fractional filling factor. We leave it for future work.

Notably, the AdS-Reissner-Nordström black hole background gives a vanishing
Fermi velocity at high magnetic fields. It happens at the point when the IR confor-
mal dimension of the corresponding field theory is ν = 1

2 , which is the borderline
between the Fermi and non-Fermi liquids. Vanishing Fermi velocity was also ob-
served at high enough fermion charge [24]. As in [24], it is explained by the red shift
on the gravity side, because at strong magnetic fields the fermion wavefunction is
supported near the black hole horizon modifying substantially the Fermi velocity. In
our model, vanishing Fermi velocity leads to zero occupancy of the Landau levels
by stable quasiparticles that results in vanishing regular Fermi liquid contribution
to the Hall conductivity and the longitudinal conductivity. The dominant contribu-
tion to both now comes from the non-Fermi liquid and conformal contributions.
We associate such change in the behavior of conductivities with a metal-“strange
metal” phase transition. Experiments on highly oriented pyrolitic graphite support
the existence of a finite “offset” magnetic field hc at T = 0 where the resistivity
qualitatively changes its behavior [38–41]. At T �= 0, it has been associated with the
metal-semiconducting phase transition [38–41]. It is worthwhile to study the tem-
perature dependence of the conductivity in order to understand this phase transition
better.
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