
Chapter 2
Magnetic Catalysis: A Review

Igor A. Shovkovy

2.1 Introduction

The magnetic catalysis is broadly defined as an enhancement of dynamical symme-
try breaking by an external magnetic field. In this review, we discuss the underlying
physics behind magnetic catalysis and some of its most prominent applications.
Considering that the ideas of symmetry breaking take the center stage position in
many branches of modern physics, we hope that this review will be of interest to a
rather wide audience.

In particle and nuclear physics, spontaneous symmetry breaking is commonly
used in order to explain the dynamical origin of the mass of elementary particles.
In this context, the idea was realized for the first time over 50 years ago by Nambu
and Jona-Lasinio [151, 152], who suggested that “the nucleon mass arises largely
as a self-energy of some primary fermion field through the same mechanism as the
appearance of energy gap in the theory of superconductivity.” As we now know,
the analogy with superconductivity is not very close and the description of chiral
symmetry breaking in terms of quarks may be more natural than in terms of nucle-
ons. However, the essence of the dynamical mass generation was captured correctly
in Refs. [151, 152]. In fact, with the current state of knowledge, we attribute most
of the mass of visible matter in the Universe to precisely this mechanism of mass
generation, which is associated with breaking of the (approximate) chiral symmetry.

The conceptual knowledge that the mass can have a dynamical origin opens myr-
iads of theoretical possibilities that would appear meaningless in classical physics.
For example, keeping in view the above mentioned mechanism of mass generation
through chiral symmetry breaking, it is reasonable to suggest that the masses of
certain particles can be modified or even tuned by proper adjustments of physical
parameters and/or external conditions.
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One of the obvious knobs to control the value of the dynamical mass is an exter-
nal magnetic field. In addition to be a good theoretical tool, magnetic fields are also
relevant to many applications. For example, they are commonly present and play an
important role in such physical systems as the Early Universe [18, 30, 44, 95, 183],
heavy ion collisions [123, 179], neutron stars [38, 182], and quasi-relativistic con-
densed matter systems like graphene [155, 189].

As we discuss in detail in this review, the magnetic field has a strong tendency to
enhance (or “catalyze”) spin-zero fermion-antifermion condensates. Such conden-
sates are commonly associated with breaking of global symmetries (e.g., such as
the chiral symmetry in particle physics and the spin-valley symmetry in graphene)
and lead to a dynamical generation of masses (energy gaps) in the (quasi-)particle
spectra. The corresponding mechanism is called magnetic catalysis [99].

It should be emphasized that, in a striking contrast to its role in superconduc-
tivity, the magnetic field helps to strengthen the chiral condensate. There are many
underlying reasons for its different role. Unlike the superconductors, the ground
state with a nonzero chiral condensate shows no Meissner effect. This is because the
chiral condensate can be thought of as a condensate of neutral fermion-antifermion
pairs, not charged Cooper pairs that can give rise to supercurrents and perfect dia-
magnetism. Also, in a usual Cooper pair, the two electrons have opposite spins and,
therefore, opposite magnetic moments. When placed in a magnetic field, only one
of the magnetic moments can minimize its energy by orienting along the direction
of the field. The other magnetic moment will be stuck in a frustrated position point-
ing in the opposite direction. This produces an energy stress and tends to break the
Cooper pair. (Note, however, that the orbital motion plays a much more important
role in breaking nonrelativistic Cooper pairs.) In a neutral spin-zero pair, in contrast,
the magnetic moments of the fermion (with a fixed charge and spin) and the an-
tifermion (with the opposite charge and spin) point in the same direction. Therefore,
both magnetic moments can comfortably align along the direction of the magnetic
field without producing any frustration in the pair. (Also, in relativistic systems the
fermion-antifermion condensate is not destroyed by the orbital motion.)

The above explanation of the role that the magnetic field plays in strengthening
the chiral condensate is semi-rigorous at best and does not capture all the subtleties
of the dynamics behind magnetic catalysis (e.g., completely leaving out the details
of the orbital motion). It does demonstrates, however, how the magnetic field can
have, at least in principle, so drastically different effects on the dynamical gener-
ation of mass on the one hand and on superconductivity on the other. (It may be
curious to mention here that, in cold dense quark matter, it is possible to obtain
color superconducting states, in which diquark Cooper pairs are neutral with re-
spect to the in-medium (but not vacuum) electro-magnetism [7, 85]. In such quark
matter, the in-medium magnetic field is not subject to the Meissner effect and, in
fact, can enhance color superconductivity [54, 55, 62, 63, 75, 141, 154, 186].)

The early investigations of the effects of strong magnetic fields on chiral sym-
metry breaking in (2 + 1)- and (3 + 1)-dimensional models with local four-
fermion interactions have appeared in late 1980s and early 1990s [122, 127–
131, 135, 167, 181]. In these studies, it was already found that a constant magnetic
field stabilizes the chirally broken vacuum state.
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The explanation of the underlying physics was given in Ref. [99], where the es-
sential role of the dimensional reduction, D → D − 2, in the low-energy dynamics
of pairing fermions in a magnetic field was revealed. As a corollary, it was also
established that the presence of a magnetic field leads to the generation of a dynam-
ical mass even at the weakest attractive interaction between fermions [99–102]. The
general nature of the underlying physics was so compelling that it was suggested
that the corresponding dynamical generation of the chiral condensate and the asso-
ciated spontaneous symmetry breaking in a magnetic field are universal and model-
independent phenomena. To emphasize this fact, the new term “magnetic catalysis”
was coined [99].

The model-independent nature of magnetic catalysis was tested in numerous
(2 + 1)- and (3 + 1)-dimensional models with local four-fermion interactions
[10, 13, 29, 40, 55, 56, 80, 114, 116, 117, 132, 134, 142, 143, 157, 184, 193], in-
cluding models with additional gauge interactions [119], higher dimensional mod-
els [84], N = 1 supersymmetric models [42], quark-meson models [8, 9], mod-
els in curved space [79, 81, 118] and QED-like gauge theories [5, 6, 11, 12, 51,
53, 101, 104–107, 110, 111, 137, 138, 158, 159, 165]. The realization of magnetic
catalysis was investigated in chiral perturbation theory [32, 33, 176] and in QCD
[121, 146], as well as in a models with the Yukawa interaction [43, 59–61]. There
are studies of magnetic catalysis using the methods of the renormalization group
[74, 166, 173], lattice calculations [14–16, 24, 28, 34, 35, 52] and holographic
dual models of large-N gauge theories [4, 20, 21, 45–50, 64–66, 162, 163, 187].
Similar ideas were extended to solid state systems describing high-temperature
superconductivity [57, 58, 139, 172, 192, 194], highly oriented pyrolitic graphite
[90, 124, 125], as well as monolayer [87, 91, 93, 98, 113, 171, 174] and bilayer
[86, 88, 89, 92] graphene in the regime of the quantum Hall effect. Finally, the gen-
eralization of magnetic catalysis was also made to non-Abelian chromomagnetic
fields [39, 41, 97, 133, 175, 185, 191], where the dynamics is dimensionally re-
duced by one unit of space, D → D − 1. For earlier reviews on magnetic catalysis,
see Refs. [96, 145].

2.2 The Essence of Magnetic Catalysis

As already mentioned in the Introduction, the essence of magnetic catalysis is in-
timately connected with the dimensional reduction, D → D − 2, of charged Dirac
fermions in the presence of a constant magnetic field. In this section, we discuss in
detail how such a dimensional reduction appears and what implications it has for
the spontaneous symmetry breaking.

2.2.1 Dimensional Reduction in a Magnetic Field

Before considering a fully interacting theory and all details of the dynamics re-
sponsible for the generation of the chiral condensate and the symmetry breaking,
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associated with it, let us start from a free Dirac theory in a constant external mag-
netic field. This appears to be a perfect setup to understand the kinematic origin of
the dimensional reduction, D → D − 2.

2.2.1.1 Dirac Fermions in a Magnetic Field in 3 + 1 Dimensions

Let us start by reviewing the spectral problem for charged (3+1)-dimensional Dirac
fermions in a constant magnetic field. We assume that the field is pointing in the
positive x3-direction. The corresponding Lagrangian density reads

L = Ψ̄
(
iγ μDμ − m

)
Ψ, (2.1)

where the covariant derivative Dμ = ∂μ − ieAext
μ depends on the external gauge

field. Without loss of generality, the external field Aext
μ is taken in the Landau gauge,

Aext
μ ≡ (0,−Aext), where

Aext = (
0,Bx1,0

)
, (2.2)

and B is the magnetic field strength. By solving the Dirac equation of motion, one
finds the following energy spectrum of fermions [3]:

E(3+1)
n (p3) = ±

√
m2 + 2|eB|n + (p3)2, (2.3)

where n = 0,1,2, . . . is the Landau level index. It should be noted that the Landau
level index n includes orbital and spin contributions: n ≡ k + s + 1

2 , where k =
0,1,2, . . . is an integer quantum number associated with the orbital motion, while
s = ± 1

2 corresponds to the spin projection on the direction of the field. [For the
orbital part of the wave functions, see (2.82) in the Appendix.] Considering that the
energy depends only on n, we see that the energy of a quasiparticle in orbital state
k and spin s = + 1

2 is degenerate with the energy of a quasiparticle in orbital state
k+1 and spin s = − 1

2 . The lowest Landau level with n = 0 is special: it corresponds
to the lowest orbital state k = 0 and has only one spin projection s = − 1

2 . The letter,
in particular, implies that the lowest Landau level is a spin polarized state.

On top of the spin degeneracy of higher Landau levels (n > 0), there is an ad-
ditional (infinite) degeneracy of each level with a fixed n and a fixed value of the
longitudinal momentum p3. It is connected with the momentum p2 ∈ R, which is a
good quantum number in the Landau gauge utilized here. As follows from the form
of the orbital wave functions in (2.82), the value of −p2/|eB| also determines the
location of the center of a fermion orbit in the x1-direction. A simple analysis [3]
shows that the area density of such states in the perpendicular x1x2-plane is |eB|

2π

for n = 0 and |eB|
π

for n > 0 (here the double spin degeneracy of the higher Landau
levels is accounted for).

When the Dirac mass is much smaller than the corresponding magnetic energy
scale (i.e., m � √|eB|), we find that the low-energy sector of the Dirac theory
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is determined exclusively by the lowest Landau level (n = 0). As we see from
(2.3), the corresponding spectrum of the low-energy excitations is given by E(p3) =
±√

m2 + (p3)2, which is identical to the spectrum of a (1 + 1)-dimensional quan-
tum field theory with a single spatial coordinate, identified with the longitudinal
direction. This spectrum of the low-energy theory confirms the obvious kinematic
aspect of the dimensional reduction, 3 + 1 → 1 + 1, in a constant magnetic field.

From the physics viewpoint, the dimensional reduction is the result of a partially
restricted motion of Dirac particles in the x1x2-plane perpendicular to the magnetic
field. The effect can be seen already at the classical level in the so-called cyclotron
motion, when the Lorentz force causes charged particles to move in circular or-
bits in x1x2-plane, but does not constrain their motion along the x3-direction. A
very important new feature at the quantum level is the quantization of perpendicular
orbits. Without such a quantization, the clean separation of the low-energy sector,
dominated exclusively by the lowest Landau level, would not be possible.

It should be noted that the spin also plays an important role in the dimensional
reduction of Dirac particles. If the spin contribution were absent (s = 0), the energy
of the lowest Landau level would scale like

√|eB|, which is not vanishingly small
compared to the energy of the next Landau level

√
3|eB|. Then, a clean separation

of the lowest Landau level into a dimensionally reduced, low-energy sector of the
theory would become unjustified and meaningless.

2.2.1.2 Dirac Fermions in a Magnetic Field in 2 + 1 Dimensions

It is straightforward to obtain the spectrum of charged Dirac fermions also in
2 + 1 dimensions. The vector potential in the Landau gauge takes the form: Aext =
(0,Bx1). In the absence of the longitudinal direction x3, the magnetic field B is not
an axial vector, but a pseudo-scalar. Concerning the Dirac algebra in 2 + 1 dimen-
sions, there exist two inequivalent irreducible representations, given by

γ 0 = σ3, γ 1 = iσ1, γ 2 = iσ2, (2.4)

and

γ 0 = −σ3, γ 1 = −iσ1, γ 2 = −iσ2, (2.5)

where σi are the Pauli matrices. In each of these representations, the nature of the
lowest Landau level is somewhat unusual: it has either only a particle state (with
a positive energy E0 = m) or only an antiparticle state (with a negative energy
E0 = −m). Such an asymmetry in the spectrum is known to induce a Chern-Simons
term in the gauge sector of the theory [153, 164]. In order to avoid the unnecessary
complication, it is convenient to use the following reducible representation instead:

γ 0 =
(

σ3 0
0 −σ3

)
, γ 1 =

(
iσ1 0
0 −iσ1

)
, γ 2 =

(
iσ2 0
0 −iσ2

)
. (2.6)
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(Incidentally, in the low-energy theory of graphene, which is a real quasi-relativistic
system in 2 + 1 dimensions, such a reducible representation appears automatically
[170].) The corresponding Dirac spectrum reads

E(2+1)
n = ±

√
m2 + 2|eB|n. (2.7)

As we see, this is very similar to the (3 + 1)-dimensional result in (2.3), except for
the missing dependence on the longitudinal momentum p3.

Repeating the same arguments as in the (3 + 1)-dimensional case, we find that
the low-energy sector of the Dirac theory in 2 + 1 dimensions is also determined by
the lowest Landau level. Here we assume again that the Dirac mass is much smaller
than the corresponding Landau energy scale (m � √|eB|) in order to insure a clear
separation of the low- and high-energy scales.

Just like in the higher dimensional case, all Landau levels are (infinitely) degen-
erate. In particular, the number of degenerate states per unit area is |eB|

2π
in the lowest

Landau level. A special feature of the (2+1)-dimensional theory is a discrete, rather
than continuous spectrum of excitations. In the absence of the x3-direction and the
associated quantum number p3, all positive energy states in the lowest Landau level
have the same energy E0 = m. Moreover, when m → 0, this energy goes to zero and
becomes degenerate with the negative energy states E0 = −m. In this limit, there is
an infinite vacuum degeneracy even if the condition of charge neutrality may favor
a state with exactly half-filling of the lowest Landau level. It should be expected,
however, that taking into account any type of fermion interaction will lead to a well
defined ground state, in which the interaction energy is minimized. One can even
make an educated guess that the corresponding ground state should be a Mott-type
insulator with a dynamically generated mass/gap.

Another special and rather unusual feature of the (2 + 1)-dimensional Dirac
fermions in a magnetic field is a spontaneous symmetry breaking, which is man-
ifested by a nonzero “chiral” condensate 〈Ψ̄ Ψ 〉 already in the free theory. To see
this, let us make use of the proper-time representation of the fermion propagator in
the magnetic field, see (2.101) in the Appendix. In the limit of a small bare mass
(m0 → 0), we easily derive the following (regularized) expansion for the conden-
sate:

〈Ψ̄ Ψ 〉 ≡ −tr
[
S2+1(x, x)

] = −m0|eB|
2π3/2

∫ ∞

1/Λ2

ds√
s
e−sm2

0 coth
(
s|eB|)


 −|eB|
2π

sign(m0) − m0

π3/2

[
Λ +

√
π |eB|

2
ζ

(
1

2
,1 + m2

0

2|eB|
)]

. (2.8)

It can be shown that the first term, which remains nonzero even in the massless limit,
comes from the lowest Landau level. At first sight, this may appear to be a very sur-
prising result. Upon a closer examination, one finds that this condensate is directly
connected with a nonzero density of states and a nonzero spin polarization in the
lowest Landau level of the free Dirac theory. The result is unambiguous only after
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specifying the sign of the bare mass parameter, which is also typical for spontaneous
symmetry breaking.

In connection with the result in (2.8), it may be useful to recall that the chirality
is not well defined in the (2 + 1)-dimensional space. However, as we will discuss in
Sect. 2.2.2, the condensate 〈Ψ̄ Ψ 〉 is still of interest because it breaks another global
symmetry that has a status similar to that of the conventional chiral symmetry.

2.2.2 Magnetic Catalysis in 2 + 1 Dimensions

Now, let us consider a Nambu-Jona-Lasinio (NJL) model in 2 + 1 dimensions, in
which the magnetic catalysis of symmetry breaking is realized in its simplest possi-
ble form [99, 102]. When using the reducible representation of Dirac algebra, given
by (2.6), one finds that the kinetic part of the massless Dirac theory is invariant un-
der a global U(2) flavor symmetry. The generators of the symmetry transformations
are given by T0 = I , T1 = γ 5, T2 = 1

i
γ 3, and T3 = γ 3γ 5, where γ 5 ≡ iγ 0γ 1γ 2γ 3.

A dynamical Dirac mass will break this U(2) symmetry down to the U(1) × U(1)

subgroup with generators T0 and T3.
The NJL-type Lagrangian density, with the interaction term invariant under the

U(2) flavor symmetry, can be written down as follows:

L = Ψ̄ iγ μDμΨ + G

2

[
(Ψ̄ Ψ )2 + (

Ψ̄ iγ 5Ψ
)2 + (

Ψ̄ γ 3Ψ
)2]

, (2.9)

where G is a dimensionfull coupling constant. This theory is nonrenormalizable, but
can be viewed as a low-energy effective theory with a range of validity extending
up to a certain ultraviolet energy scale set by a physically motivated choice of the
cutoff parameter Λ.

2.2.2.1 Weak Coupling Approximation

As usual in problems with spontaneous symmetry breaking, we use the method of
Schwinger-Dyson (gap) equation in order to solve for the dynamical mass parame-
ter. We assume that the structure of the (inverse) full fermion propagator is the same
as in the free theory, but has a nonzero dynamical Dirac mass m,

S−1(x, x′) = −i
[
iγ 0∂t − (π · γ ) − m

]
δ3(x − x′). (2.10)

In the mean-field approximation, the dynamical mass parameter satisfies the follow-
ing gap equation:

m = Gtr
[
S(x, x)

]
. (2.11)

To leading order in weak coupling, G → 0, this equation can be solved pertur-
batively. Indeed, by substituting the condensate calculated at m0 → 0 in the free
theory, see (2.8), into the right-hand side of the gap equation (2.11), we obtain
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|m| 
 G
|eB|
2π

. (2.12)

As we see, the dynamical mass is induced at any nonzero attractive coupling.
The massless NJL model in (2.9) is invariant under the flavor U(2) symmetry.

The generation of a Dirac mass m is only one of many equivalent ways of breaking
this symmetry down to a U(1) × U(1) subgroup. Indeed, by applying a general
U(2) transformation, we find that the Dirac mass term can be turned into a linear
combination of the following three mass terms: m, γ 3m3, and iγ 5m5. (In principle,
there is also a possibility of the so-called Haldane mass term γ 3γ 5Δ, which is a
singlet under U(2). We do not discuss it here. However, as we will see in Sect. 2.3.3,
the Haldane mass plays an important role in graphene.)

In our perturbative analysis, we did not get any nonzero m3 or m5 because the
vacuum alignment was predetermined by a “seed” Dirac mass m0 in the free theory,
see (2.8).

2.2.2.2 Large N Approximation

It is instructive to generalize the above analysis in the NJL model to the case of
strong coupling. While magnetic catalysis occurs even at arbitrarily weak coupling,
such a generalization will be useful to understand how magnetic catalysis is lost in
the limit of the vanishing magnetic field.

At strong coupling, a reliable solution to the NJL model can be obtained by using
the so-called large N approximation, which is rigorously justified when the fermion
fields in (2.9) carry an additional, “color” index α = 1,2, . . . ,N , and N is large.
Using the Hubbard-Stratonovich transformation [115, 180], one can show that the
NJL theory in (2.9) is equivalent to the following one:

L = Ψ̄ iγ μDμΨ − Ψ̄
(
σ + γ 3τ + iγ 5π

)
Ψ − 1

2G

(
σ 2 + π2 + τ 2). (2.13)

Note that the equations of motion for the new composite fields read

σ = −G(Ψ̄ Ψ ), τ = −G
(
Ψ̄ γ 3Ψ

)
, π = −G

(
Ψ̄ iγ 5Ψ

)
. (2.14)

Under U(2) flavor symmetry transformations, these composite fields transform into
linear combinations of one another, but the quantity σ 2 +π2 + τ 2 remains invariant.

The effective action for the composite fields,

Γ = − 1

2G

∫
d3x

(
σ 2 + τ 2 + π2) − itrLn

[
iγ μDμ − (

σ + γ 3τ + iγ 5π
)]

, (2.15)

is obtained by integrating out the fermionic degrees of freedom from the action. It is
convenient to expand this effective action in powers of derivatives of the composite
fields. The leading order in such an expansion is the effective potential V (up to the
minus sign). Because of the flavor symmetry, the effective potential depends on σ ,
π , and τ fields only through their U(2) invariant combination ρ2 = σ 2 + π2 + τ 2.
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Using the proper-time regularization, one obtains the following explicit expres-
sion for the effective potential [99, 102]:

V (ρ) 
 N

π

[
Λ

2

(
1

g
− 1√

π

)
ρ2 −√

2|eB|3/2ζ

(
−1

2
,1+ ρ2

2|eB|
)

− ρ|eB|
2

]
, (2.16)

where we dropped the terms suppressed by the ultraviolet cutoff parameter Λ and
introduced a dimensionless coupling constant g ≡ NΛG/π .

The field configuration ρ that minimizes the effective potential is determined by
solving the equation dV/dρ = 0, i.e.,

Λ

(
1

g
− 1√

π

)
ρ = |eB|

2
+ ρ

√ |eB|
2

ζ

(
1

2
,1 + ρ2

2|eB|
)

. (2.17)

In essence, this is the gap equation. At weak coupling, g → 0, in particular, we
obtain the following approximate solution:

m = ρmin 
 GN
|eB|
2π

, (2.18)

which is the large N generalization of the result for the dynamical mass in (2.12).

2.2.2.3 Zero Magnetic Field Limit in 2 + 1 Dimensions

Before concluding the discussion of the (2 + 1)-dimensional NJL model, it is in-
structive to consider how the above analysis of flavor symmetry breaking modifies
in the zero magnetic field case. By taking the limit B → 0 in (2.16), we arrive at the
following effective potential:

VB=0(ρ) 
 N

π

[
Λ

2

(
1

g
− 1√

π

)
ρ2 + 1

3
ρ3

]
. (2.19)

Now, the zero-field limit of the gap equation, dVB=0/dρ = 0, is given by

Λ

(
1√
π

− 1

g

)
ρ = ρ2. (2.20)

This is very different from (2.17). In particular, the only solution to this equation at
g <

√
π is a trivial one, ρ = 0. The nontrivial solution appears only in the case of

a sufficiently strong coupling constant, g >
√

π . This is in a stark contrast with the
dynamical mass generation in the presence of a magnetic field, where a nontrivial
solution exists at arbitrarily small values of the coupling constant g.
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2.2.3 Magnetic Catalysis in 3 + 1 Dimensions

Let us now extend the analysis of the previous subsection to the case of a (3 + 1)-
dimensional model, where the dynamics is truly nonperturbative. The Lagrangian
density of the corresponding NJL model reads

L = Ψ̄ iγ μDμΨ + G

2

[
(Ψ̄ Ψ )2 + (

Ψ̄ iγ 5Ψ
)2]

. (2.21)

This model possesses the U(1)L × U(1)R chiral symmetry. The symmetry will be
spontaneously broken down to the U(1)L+R subgroup when a dynamical Dirac
mass is generated.

2.2.3.1 Weak Coupling Approximation

In the weakly coupled limit, the gap equation in the mean-field approximation reads

m = Gtr
[
S(x, x)

]
. (2.22)

Formally, it is same as the gap equation in the (2 + 1)-dimensional model in (2.11).
However, as we will see now, its symmetry breaking solution will be qualitatively
different.

Let us start by showing that the chiral condensate vanishes in the free theory in
3 + 1 dimensions when the bare mass goes to zero, m0 → 0. By making use of the
proper-time representation, see (2.97) in the Appendix, we obtain

〈Ψ̄ Ψ 〉 ≡ −tr
[
S(x, x)

] = −m0|eB|
(2π)2

∫ ∞

1/Λ2

ds

s
e−sm2

0 coth
(
s|eB|)


 − m0

(2π)2

[
Λ2 − m2

0

(
ln

Λ2

2|eB| − γE

)

+ |eB| ln
m2

0

4π |eB| + 2|eB| lnΓ

(
m2

0

2|eB|
)]


 − m0

(2π)2

[
Λ2 + |eB| ln

|eB|
πm2

0

− m2
0 ln

Λ2

2|eB| + O

(
m4

0

|eB|
)]

. (2.23)

In the limit m0 → 0, we see that the condensate indeed vanishes. This means that
we cannot apply a perturbative approach to find any nontrivial (symmetry breaking)
solutions to the gap equation in (2.22).

The explicit form of the gap equation (2.22) reads

m 
 G
m

(2π)2

[
Λ2 + |eB| ln

|eB|
πm2

]
. (2.24)
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Its nontrivial solution is given by

m 

√ |eB|

π
exp

(
Λ2

2|eB|
)

exp

(
− 2π2

G|eB|
)

. (2.25)

When G → 0 this result reveals an essential singularity. Obviously, such a depen-
dence cannot possibly be obtained by resuming any finite number of perturbative
corrections in powers of a small coupling constant. Therefore, despite the weak
coupling, the result for the dynamical mass (2.25) is truly nonperturbative.

2.2.3.2 Zero Magnetic Field Limit in 3 + 1 Dimensions

It is instructive to compare the above dynamics of spontaneous symmetry breaking
with case of the zero magnetic field. At B = 0, the chiral condensate in the free
theory is easily obtained from taking the appropriate limit in (2.23), i.e.,

〈Ψ̄ Ψ 〉B=0 = − m0

(2π)2

[
Λ2 − m2

0

(
ln

Λ2

m2
0

+ 1 − γE

)]
. (2.26)

The corresponding gap equation is

m 
 G
m

(2π)2

[
Λ2 − m2 ln

Λ2

m2

]
. (2.27)

Because of the negative sign in front of the logarithmic term, this equation does not
have any nontrivial solutions for the dynamical mass at vanishingly small coupling
constant g ≡ GΛ2/(2π)2. In fact, for the whole range of subcritical values, g < 1,
the only solution to this gap equation is m = 0. The nontrivial solution appears only
in the case of sufficiently strong coupling, g > 1.

2.2.4 Symmetry Breaking as Bound State Problem

In this subsection, we consider an alternative approach to the problem of chiral
symmetry breaking in the NJL model in a constant magnetic field. As we will see,
this approach is particularly beneficial for illuminating the role of the dimensional
reduction in magnetic catalysis.

Instead of solving the gap equation, we consider the problem of bound states with
the quantum numbers of the Nambu-Goldstone bosons, using the method of a homo-
geneous Bethe-Salpeter equation (for a review, see Ref. [144]). The underlying idea
for this framework is motivated by the Goldstone theorem [82, 83, 150]. The theo-
rem states that spontaneous breaking of a continuous global symmetry leads to the
appearance of new massless scalar particles (i.e., Nambu-Goldstone bosons) in the
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low-energy spectrum of the theory. The total number of Nambu-Goldstone bosons
and their quantum numbers are determined by the broken symmetry generators.

The homogeneous Bethe-Salpeter equation for a pion-like state takes the form
[103, 144]:

χab(x, y;P) = −i

∫
d4x′d4y′d4x′′d4y′′Saa1

(
x, x′)Ka1b1;a2b2

(
x′y′, x′′y′′)

×χa2b2

(
x′′, y′′;P )

Sb1b

(
y′, y

)
, (2.28)

where χab(x, y;P) ≡ 〈0|T ψa(x)ψ̄b(y)|P ;π〉 is the Bethe-Salpeter wave func-
tion of the bound state boson with four-momentum P , and Sab(x, y) =
〈0|T ψa(x)ψ̄b(y)|0〉 is the fermion propagator. Here and below, the sum over re-
peated Dirac indices (a1, b1, a2, b2) is assumed. The explicit form the Bethe-
Salpeter kernel is [103, 144]:

Ka1b1;a2b2

(
x′y′, x′′y′′) = G

[
δa1b1δb2a2 + (iγ5)a1b1(iγ5)b2a2 − (iγ5)a1a2(iγ5)b2b1

− δa1a2δb2b1

]
δ4(x′ − y′)δ4(x′ − x′′)δ4(x′ − y′′). (2.29)

It is convenient to rewrite the wave function in terms of the relative coordinate z ≡
x − y and the center of mass coordinate X ≡ (x + y)/2,

χab(X, z;P) = eis⊥X1z2/�2
e−iPμXμ

χ̃ab(X, z;P), (2.30)

where we factorized the Schwinger phase factor, see (2.88), and introduced the no-
tation: s⊥ ≡ sign(eB) and � = 1/

√|eB|. After substituting the wave function (2.30)
and the kernel (2.29) into (2.28), we arrive at the following equation:

χ̃ab(z;P) = −iG

∫
d4X′S̃aa1

(
z

2
− X′

)[
δa1b1 tr

[
χ̃ (0;P)

]−(γ5)a1b1 tr
[
γ5χ̃(0;P)

]

− χ̃a1b1(0;P) + (γ5)a1a2 χ̃a2b2(0;P)(γ5)b2b1

]
S̃b1b

(
z

2
+ X′

)

× e
i

s⊥
2�2 (z1X′2−X′1z2)

eiPμX′μ
. (2.31)

Here we took into account that the equation admits a translation invariant solution
and replaced χ̃ab(X, z;P) → χ̃ab(z,P ). Note that, on the right-hand side of (2.31),
the dependence on the center of mass coordinate X completely disappeared after a
shift of the integration variable X′ → X′ − X was made.

In the lowest Landau level approximation, one can show that the Fourier trans-
form of the Bethe-Salpeter wave function takes the form [103]:

χ̃ab(p;P → 0) = A(p‖)e−p2⊥�2 γ 0ω − γ 3p3 − m

ω2 − (p3)2 − m2
γ 5P+

γ 0ω − γ 3p3 − m

ω2 − (p3)2 − m2
,

(2.32)
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where p‖ = (ω,p3), p2⊥ = (p1)2 + (p2)2, and P± = 1
2 (1 ± is⊥γ 1γ 2). The new

function A(p‖) satisfies the equation:

A(p‖) = G|eB|
4π3

∫
A(k‖)d2k‖
k2‖ + m2

, (2.33)

where we made the Wick rotation (ω → iω). The solution to this equation is a
constant: A(p‖) = C. Dropping nonzero C and cutting off the integration at Λ, we
finally arrive at the gap equation for the mass parameter m:

1 
 G|eB|
4π2

∫ Λ2

0

dk2‖
k2‖ + m2

. (2.34)

The solution to this equation is

m 
 Λ2 exp

(
− 2π2

G|eB|
)

, (2.35)

which, to leading order, agrees with the solution obtained in (2.25).
The Bethe-Salpeter equation (2.33) can be rewritten in the form of a two-dimen-

sional Schrödinger equation with an attractive δ-function potential. In order to see
this explicitly, let us introduce the following wave function

ψ(r) =
∫

d2k‖
(2π)2

e−ik‖r

k2‖ + m2
A(k‖). (2.36)

Taking into account that A(p‖) satisfies (2.33), it is straightforward to show that the
wave function ψ(r) satisfies the following Schrödinger type equation:

(
− ∂2

∂r2
1

− ∂2

∂r2
2

+ m2 − G|eB|
π

δ2
Λ(r)

)
ψ(r) = 0, (2.37)

in which −m2 plays the role of the energy E. Since m2 must be positive, the prob-
lem is reduced to finding the spectrum of bound states (with E = −m2 < 0) in the
Schrödinger problem. The potential energy in 3(2.37) is expressed in terms of

δ2
Λ(r) =

∫

Λ

d2k‖
(2π)2

e−ik‖r, (2.38)

which is a regularized version of the δ-function that describes the local interaction
in the NJL model.

Notice that, by using the same approach, one can show that the Bethe-Salpeter
equation for a massless NG-boson state in the NJL model in 2 + 1 dimensions can
be reduced to the gap equation

A(p) = G|eB|
2π2

∫ Λ

−Λ

A(k)dk

k2 + m2
. (2.39)



26 I.A. Shovkovy

This has the same solution for the mass as in (2.12). Also, this integral equation is
equivalent to the following one-dimensional Schrödinger equation:

(
− d2

dx2
+ m2 − G|eB|

π2
δΛ(x)

)
ψ(x) = 0, (2.40)

where the regularized version of the δ-function is given by δΛ(x) = ∫ Λ

−Λ
dk
2π

e−ikx .

2.2.5 Analogy with Superconductivity

It is interesting to point that the dynamics described by the gap equation in the case
of magnetic catalysis has a lot of conceptual similarities to the mechanism of super-
conductivity in metals and alloys. This is despite the clear differences between the
two phenomena that we discussed in the Introduction. (In order to avoid a possible
confusion, let us emphasize that here we compare the nonrelativistic Cooper pairing
dynamics in superconductivity in the absence of magnetic fields with the relativistic
dynamical generation of a mass in the presence of a constant magnetic field.)

The corresponding gap equation in the Bardeen-Cooper-Schrieffer theory [17] of
superconductivity can be written in the following form:

1 = GN(0)

∫
�ωD

0

dε√
ε2 + Δ2

, (2.41)

where N(0) is the density of electron states at the Fermi surface, ωD is the Debye
frequency, and Δ is the energy gap associated with superconductivity. The solution
for the gap reads

Δ 
 �ωD exp

(
− 1

GN(0)

)
. (2.42)

At weak coupling, this solution has the same essential singularity as the dynamical
mass parameter in (2.35). We can argue that the similarity is not accidental. To see
this clearly, let us rewrite the gap equation in the problem of magnetic catalysis in
the lowest Landau level approximation, see (2.34), as follows:

1 = G
|eB|
2π

∫
dωdp3

ω2 + (p3)2 + m2

 G

|eB|
2π

∫ Λ

0

dω√
ω2 + m2

, (2.43)

where the Wick rotation was performed (ω → iω). As we see, the structure of
this gap equation is identical to its counterpart in the BCS theory after we iden-
tify the density of states N(0) with the density of states in the lowest Landau level,
|eB|/(2π), and the Debye frequency ωD with the cutoff parameter Λ.

The similarity between the BCS theory of superconductivity and magnetic catal-
ysis goes deeper. In particular, the generation of a nonzero gap in superconductors
can be also thought of as the result of a 3 + 1 → 1 + 1 dimensional reduction of
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the phase space around the Fermi surface. Also, just like in magnetic catalysis, it is
essential that the density of states at the Fermi surface is nonzero.

2.2.6 Bound States in Lower Dimensions

As we saw in Sect. 2.2.4, the problem of spontaneous symmetry breaking and the
associated dynamical generation of the Dirac mass can be reformulated as a prob-
lem of composite massless states with the quantum numbers of Nambu-Goldstone
bosons.

In the presence of a constant magnetic field, in particular, we also found that
the corresponding Bethe-Salpeter equation for the bound states can be recast in an
equivalent form as a Schrödinger equation in a dimensionally reduced space. The
dimensional reduction is D → D − 2 and, therefore, the relevant problem of bound
states is considered in spaces of lower dimensions.

In order to prove that the essence of magnetic catalysis is directly connected with
this reduction, let us consider a simple quantum mechanical problem: the formation
of bound states in a shallow potential well in spaces of various dimensions. As
we will see, at least one bound state does exist in one- and two-dimensional cases
[19, 136, 177, 178], but not always in three dimensions. We will also see that, while
the result for the binding energy is perturbative in the coupling constant in one
dimension, it has an essential singularity in two dimensions.

2.2.6.1 Bound States in a One-Dimensional Potential Well

Let us start from the simplest one-dimensional problem of a nonrelativistic particle
of mass m∗ confined to move on a line. Let the potential energy of the well be given
by U(x), which is negative and quickly approaches zero when |x| → ∞. One can
show that even a vanishingly small depth of the potential well is sufficient to pro-
duce a bound state (i.e., a quantum state with a negative energy). The corresponding
binding energy is given by [136]

|E1D| 
 m∗
2�2

(
−

∫ ∞

−∞
U(x)dx

)2

. (2.44)

If we rescale the potential energy U(x) by a “coupling constant” factor g, i.e.,
U(x) → gU(x), we find that |E1D| ∼ g2 as g → 0. In other words, the binding
energy has a power-law dependence as a function of the depth of the potential en-
ergy U(x). This is a typical result that can be obtained by perturbative techniques,
controlled by powers of the small parameter g [19].

The above conclusion remains valid basically for any attractive potential U(x).
For example, one can rigorously prove that, if

∫
(1 + |x|)|U(x)|dx < ∞, there is a

bound state for all small positive g if and only if
∫

U(x)dx ≤ 0 (i.e., the potential is
attractive at least on average) [126].
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2.2.6.2 Bound States in a Two-Dimensional Potential Well

In the case of a two-dimensional system (i.e., a nonrelativistic particle of mass m∗
confined to move on a plane), the general conclusion about the existence of a bound
state around a potential well of a vanishingly small depth still remains valid. How-
ever, an important qualitative difference appears in the result. The binding energy re-
veals an essential singularity as a function of the depth of the potential well. In order
to understand this better, let us consider a problem with a cylindrically symmetric
potential energy U(r), where r is the radial polar coordinate in the plane. If the po-
tential energy is sufficiently shallow and localized (i.e., | ∫ ∞

0 rU(r)dr| � m∗/�2),
one finds that the energy of the bound state is given by [136]

|E2D| 
 �
2

m∗a2
exp

(
− �

2

m∗

∣∣∣∣

∫ ∞

0
rU(r)dr

∣∣∣∣

−1)
, (2.45)

where a is the characteristic size of the potential well. The fact that this energy is sin-
gular can be made explicit by rescaling the potential energy U(r): U(r) → gU(r).
Then, we find that |E2D| ∼ exp(−C/g) as g → 0 (here C is a constant determined
by the shape of the potential well). Unlike the g2 power-law suppression of the bind-
ing energy in one dimension, this is a much stronger suppression indicating a much
weaker binding. Moreover and perhaps more importantly, such an essential singu-
larity cannot possibly be obtained by resuming any finite number of perturbative
corrections, controlled by powers of the small parameter g. Therefore, the singular
behavior of the binding energy in two dimensions is a sign of a truly nonperturbative
(albeit weakly-interacting) physics.

Again, this result is very general. It can be rigorously proven that, in the case
when

∫ |U(x)|1+εd2x < ∞ (with some ε > 0) and
∫
(1 + x2)ε|U(x)|d2x < ∞,

there is a bound state for all small positive g if and only if
∫

U(x)d2x ≤ 0 (i.e., the
potential is attractive at least on average) [177, 178].

2.2.6.3 Bound States in a Three-Dimensional Potential Well

Now, in the three-dimensional case, there are no bound states if the potential well
is too shallow in depth. This was first shown by Peierls in 1929 [160]. This can be
demonstrated, for example, in a special case of a spherically symmetric potential
well of a finite size,

U(r) =
{

−g π2
�

2

8m∗a2 for r ≤ a,

0 for r > a.
(2.46)

The condition to have at least one bound state is g > 1 [136]. In other words, the
depths of the potential well (or the strength of the “coupling constant” g) should be
larger than the critical value, given by gcr = 1. In the supercritical regime, g = 1 + ε

with 0 < ε � 1, the binding energy is given by [136]
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|E3D| = π4
�

2

27m∗a2
ε2. (2.47)

In the subcritical regime g < 1, on the other hand, there are no bound states at all.

2.3 Magnetic Catalysis in Gauge Theories

Motivated by the fact that magnetic catalysis has a rather general underlying
physics, explained by the dimensional reduction of the particle-antiparticle pair-
ing, it is natural to ask how it is realized in gauge theories with long-range
interactions, such as QED. This problem was discussed in numerous studies
[5, 6, 11, 12, 51, 53, 101, 104–107, 110, 111, 137, 138, 158, 159, 165]. Here we
will briefly review only the key results and refer the reader to the original papers for
further details.

2.3.1 Magnetic Catalysis in QED

Using the same conceptual approach as outlined in Sect. 2.2.4 for the NJL model,
one can show that, in Euclidean space, the equation describing a pion-like Nambu-
Goldstone boson in QED in a magnetic field has the form of a two-dimensional
Schrödinger equation [101]:

[
− ∂2

∂r2
1

− ∂2

∂r2
2

+ m2 + V (r)
]
ψ(r) = 0. (2.48)

The function ψ(r) is defined in terms of the Bethe-Salpeter wave function A(p) in
exactly the same way as in the NJL model, see (2.36). This time, however, A(p)

satisfies a different integral equation,

A(p) = α

2π2

∫
d2kA(k)

k2 + m2

∞∫

0

dx exp(−x�2/2)

(k − p)2 + x
, (2.49)

where � = 1/
√|eB| is the magnetic length. Note that, in addition to using the lowest

Landau level approximation, we assumed that the photon screening effects are neg-
ligible. As is easy to check, the explicit form of the potential V (r) is given by [101]

V (r) = α

π�2
exp

(
r2

2�2

)
Ei

(
− r2

2�2

)
, (2.50)

where r2 = r2
1 +r2

2 and Ei(x) = − ∫ ∞
−x

dt exp(−t)/t is the integral exponential func-
tion [94]. Since V (r) is negative, we have a Schrödinger equation with an attrac-
tive potential, in which the parameter −m2 plays the role of the energy E. There-
fore, the problem is again reduced to finding the spectrum of bound states with
E = −m2 < 0.
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It is known that the energy of the lowest level E(α) for the two-dimensional
Schrödinger equation is a nonanalytic function of the coupling constant α at α = 0
[178]. If the potential V (r) were short-range, the result would have the form m2 =
−E(α) ∝ exp[−1/(Cα)], where C is a positive constant [177, 178]. In our case,
however, we have a long-range potential. Indeed, using the asymptotic expansion
for Ei(x) [94], we get:

V (r) 
 −2α

π

1

r2
, r → ∞. (2.51)

In order to find an approximate solution for m2, one can use the integral equation
(2.49) at p = 0. As α → 0, the dominant contribution in the integral on the right-
hand side comes from the infrared region k2 � m2. Therefore,

A(0) 
 α

2π2
A(0)

∫
d2k

k2 + m2

∞∫

0

dx exp(−y/2)

l2k2 + y

 α

4π
A(0)

[
ln

(
m2�2

2

)]2

,

(2.52)
which implies that [101]

m ∝ √|eB| exp

(
−

√
π

α

)
. (2.53)

A slightly more careful analysis of the integral equation (2.49) can be made by
approximating the interaction kernel so that the exchange momentum (k−p)2 in the
denominator is replaced by max(k2,p2). The problem then reduces to an ordinary
differential equation with two (infrared and ultraviolet) boundary conditions. The
approximate analytical solution reveals that the lowest energy bound state, which
describes the stable vacuum solution in quantum field theory, corresponds to the
following value of the dynamical mass [101]:

m 
 C
√|eB| exp

(
−π

2

√
π

2α

)
. (2.54)

Unfortunately, the approximation used in this analysis is not completely reliable.
There are higher order diagrams that can substantially modify the interaction poten-
tial and, in turn, the result for the dynamical mass. For example, taking into account
the vacuum polarization effects in the improved rainbow (ladder) approximation, in
which the free photon propagator is replaced by a screened interaction with the one-
loop photon self-energy, the result changes. The corrected expression for the mass
has the same form as in (2.54), but with α replaced by α/2 [101]. This is a clear
indication that, despite weak coupling, there can exist other relevant contributions,
coming from higher order diagrams.

A further study showed that, by using a similarity between the magnetic catalysis
problem in QED and the exactly solvable Schwinger model [73, 169], one can find a
special nonlocal gauge, in which the leading singularity of the dynamical mass can
be extracted exactly [104],
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m 
 C̃
√|eB|F(α) exp

[
− π

α ln(C1/Nα)

]
, (2.55)

where N is the number of fermion flavors, F(α) 
 (Nα)1/3, C1 
 1.82 ± 0.06 and
C̃ ∼ O(1). Note that the leading singularity in the final expression for the mass is
quite different from that in the rainbow approximation (2.54).

The magnetic catalysis of chiral symmetry breaking in QED yields a rare exam-
ple of dynamical symmetry breaking in a (3 + 1)-dimensional gauge theory with-
out fundamental scalar fields, in which there exists a consistent truncation of the
Schwinger-Dyson equation.

2.3.2 Magnetic Catalysis in QCD

Recently there was an increased interest in studies of QCD in a strong magnetic field
[2, 14–16, 23, 25, 31, 34, 67–72, 77, 78, 121, 146–149]. There are several reasons
why such investigations may be of interest. Very strong magnetic fields are known
to have existed in the Early Universe [18, 30, 44, 95, 183] and are expected to be
generated in relativistic heavy ion collisions [123, 179]. Since the chiral symmetry
plays a profound role in QCD, it is interesting to study also the role of magnetic
catalysis in this theory [121, 146].

Because of the property of asymptotic freedom, one can argue that the dynamics
underlying magnetic catalysis in QCD is, at least in principle, weakly coupled at
sufficiently large magnetic fields [121]. This fact can be used to justify a consistent
truncation of the Schwinger-Dyson equation, resembling that in QED, which we
discussed in the preceding section.

Let us start by introducing a QCD like theory with Nu up flavors of quarks having
electric charges 2e/3 and Nd down flavors of quarks having electric charges −e/3.
(The total number of flavors is Nf = Nu + Nd .) It is important to distinguish the
up and down types of quarks because the chiral symmetry subgroup that mixes
them is explicitly broken by the external magnetic field. Taking this into account,
we find that the model is invariant under the SU(Nu)L × SU(Nu)R × SU(Nd)L ×
SU(Nd)R × U(−)(1)A chiral symmetry. The anomaly free subgroup U(−)(1)A is
connected with the conserved current which is the difference of the U(d)(1)A and
U(u)(1)A currents. [The U(−)(1)A symmetry is of course absent when either Nd

or Nu equals zero.] A dynamical generation of quark masses spontaneously breaks
the chiral symmetry down to SU(Nu)V × SU(Nd)V and gives rise to N2

u + N2
d − 1

massless Nambu-Goldstone bosons in the low-energy spectrum.
Just like in QED, the vacuum polarization effects play a very important role in

QCD in the presence of a strong magnetic field. By properly modifying the known
result from the Abelian gauge theory [26, 36, 140] to the case of QCD, we find that
the gluon polarization tensor has the following behavior:

ΠAB,μν 
 αs

6π
δAB(

k
μ
‖ kν‖ − k2‖g

μν
‖

)
Nf∑

q=1

|eqB|
m2

q

, for
∣∣k2‖

∣∣ � m2
q, (2.56)
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ΠAB,μν 
 −αs

π
δAB(

k
μ
‖ kν‖ − k2‖g

μν
‖

)
Nf∑

q=1

|eqB|
k2‖

, for m2
q � ∣∣k2‖

∣∣ � |eB|, (2.57)

where k
μ
‖ ≡ g

μν
‖ kν and g

μν
‖ ≡ diag(1,0,0,−1) is the projector onto the longitudinal

subspace. Notice that quarks in a strong magnetic field do not couple to the trans-
verse subspace spanned by g

μν
⊥ ≡ gμν −g

μν
‖ = diag(0,−1,−1,0) and k

μ
⊥ ≡ g

μν
⊥ kν .

This is connected with the dominant role of the lowest Landau level, in which quarks
are polarized along the magnetic field.

The expressions (2.56) and (2.57) coincide with those for the polarization op-
erator in the massive Schwinger model [169] if the parameter αs |eqB|/2 here is
replaced by the dimensional coupling α1 of (1+1)-dimensional QED. In particular,
(2.57) implies that there is a massive gluon resonance with the mass given by

M2
g =

Nf∑

q=1

αs

π
|eqB| = (2Nu + Nd)

αs

3π
|eB|. (2.58)

This is reminiscent of the pseudo-Higgs effect in the (1+1)-dimensional massive
QED. It is not the genuine Higgs effect because there is no complete screening
of gluons in the far infrared region with |k2‖| � m2

q , see (2.56). Nevertheless, the
pseudo-Higgs effect is manifested in creating a massive resonance and this reso-
nance provides the dominant force leading to chiral symmetry breaking.

In the end, the dynamics in QCD in a strong magnetic field appears to be essen-
tially the same as in QED, except for purely kinematic changes. After expressing
the magnetic field in terms of the running coupling αs at the scale

√|eB| using

1

αs


 b ln
|eB|
Λ2

QCD

, where b = 11Nc − 2Nf

12π
, (2.59)

we obtain the result for the dynamical mass in the following form [146]:

m2
q 
 2C1

∣∣∣∣
eq

e

∣∣∣∣Λ
2
QCD(cqαs)

2/3 exp

[
1

bαs

− 4Ncπ

αs(N2
c − 1) ln(C2/cqαs)

]
, (2.60)

where eq is the electric charge of the q-th quark and Nc is the number of colors. The
numerical factors C1 and C2 are of order 1, and the value of cq is given by

cq = 1

6π
(2Nu + Nd)

∣∣∣∣
e

eq

∣∣∣∣. (2.61)

Because of the difference in electric charges, the dynamical mass of the up-type
quarks is considerably larger than that of the down-type quarks.

It is interesting to point that the dynamical quark masses in a wide range of
strong magnetic fields, Λ2

QCD � |eB| � (10 TeV)2, remain much smaller than the

dynamical (constituent) masses of quarks m
(0)
q 
 300 MeV in vacuum QCD without
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a magnetic field. This may suggest that QCD can have an intermediate regime, in
which the magnetic field is strong enough to provide a gluon screening to interfere
with the vacuum pairing dynamics [76, 146], but not sufficiently strong to produce
large dynamical masses through magnetic catalysis. In this intermediate regime, the
dynamical mass and the associated chiral condensate could be decreasing with the
magnetic field. The corresponding regime may start already at magnetic fields as
low as 1019 G, when the gluon mass Mg , given by (2.58), becomes comparable to
ΛQCD. (For the estimate, we assumed that the value of the coupling constant is of
order 1 at the QCD energy scale.)

2.3.3 Magnetic Catalysis in Graphene

In this section, we briefly discuss the application of the magnetic catalysis ideas to
graphene in the regime of the quantum Hall effect.

Graphene is a single atomic layer of graphite [156] that has many interesting
properties and promises widespread applications (for reviews, see Refs. [1, 27,
109]). The uniqueness of graphene is largely due to its unusual band structure
with two Dirac points at the corners of the Brillouin zone. Its low-energy excita-
tions are described by massless Dirac fermions [170]. Because of a relatively small
Fermi velocity of quasiparticles, vF ≈ c/300, the effecting coupling constant for the
Coulomb interaction in graphene, α ≡ e2/(ε0vF ), is about 300 times larger than the
fine structure constant in QED, e2/(ε0c) ≈ 1/137.

When graphene is placed in a perpendicular magnetic field, it reveals an anoma-
lous quantum Hall effect [155, 189], exactly as predicted in theory [108, 161, 190].
The anomalous plateaus in the Hall conductivity are observed at the filling factors
ν = ±4(n + 1/2), where n = 0,1,2, . . . is the Landau level index. The factor 4 in
the filling factor is due to a fourfold (spin and valley) degeneracy of each Landau
level. As for the half-integer shift in the filling factor, it is directly connected with
the Dirac nature of quasiparticles [90, 112, 124, 125, 170].

It was observed experimentally [22, 37, 120, 188] that there appear additional
plateaus in the Hall conductivity when graphene is placed in a very strong mag-
netic field. The new plateaus can be interpreted as the result of lifting the four-
fold degeneracy of the Landau levels. In the case of the lowest Landau level, in
particular, some of the degeneracy, i.e., between the particle and hole states, can
be removed when there is a dynamical generation of a Dirac mass. Considering
the possibility of magnetic catalysis, such an outcome seems almost unavoidable
[90, 91, 93, 98, 113, 124, 125, 174].

The low-energy quasiparticle excitations in graphene are conveniently described
in terms of four-component Dirac spinors Ψ T

s = (ψKAs,ψKBs,ψK ′Bs,ψK ′As), in-
troduced for each spin state s =↑,↓. Note that the components of Ψs are the Bloch
states from two sublattices (A,B) of the graphene hexagonal lattice and two valleys
(K,K ′) at the opposite corners of the Brillouin zone. The approximate low-energy
Hamiltonian, including the kinetic and Coulomb interaction terms, is given by



34 I.A. Shovkovy

H = vF

∑

s

∫
d2rΨ̄s

(
γ 1πx + γ 2πy

)
Ψs

+ 1

2

∑

s,s′

∫
d2rd2r′Ψ †

s (r)Ψs(r)UC

(
r − r′)Ψ †

s′
(
r′)Ψs′

(
r′), (2.62)

where UC(r) is the Coulomb potential, which takes into account the polarization
effects in a magnetic field [90, 93]. Note that the two electron spins (s =↑,↓) in
graphene give rise to two independent species of Dirac fermions. As a result, the
Hamiltonian possesses an approximate U(4) symmetry [90], which is a generaliza-
tion of the U(2) flavor symmetry discussed in the case of the one-species model in
Sect. 2.2.2. The 16 generators of the extended U(4) flavor symmetry are obtained
by a direct product of the 4 generators of the U(2) group acting in the valley space
(K,K ′), and the 4 generators of the U(2) spin symmetry.

The U(4) symmetry is preserved even when the electron chemical potential term,
−μΨ †Ψ , is added. The inclusion of the Zeeman term, which distinguishes the elec-
tron states with opposite spins, breaks the symmetry down to the U↑(2) × U↓(2)

subgroup. The explicit form of the Zeeman term is given by μBBΨ †σ3Ψ , where B

is the magnetic field, μB = e�/(2mc) is the Bohr magneton, and σ3 is the third Pauli
matrix in spin space. An interesting thing is that this explicit symmetry breaking is
a small effect even in very strong magnetic fields. To see this, we can compare the
Zeeman energy εZ with the Landau energy ε�,

εZ = μBB = 5.8 × 10−2B [T] meV, (2.63)

ε� =
√
�v2

F |eB|/c = 26
√

B [T] meV. (2.64)

Therefore, the Zeeman energy is less then a few percent of the Landau energy even
for the largest (continuous) magnetic fields created in a laboratory, B � 50 T.

Because of the large flavor symmetry, there are many potential ways how it can
be broken [91, 93]. Here we mention only the possibilities that are connected to
the magnetic catalysis scenario at zero filling ν = 0 (i.e., the lowest Landau level is
half-filled).

We will allow independent symmetry breaking condensates for fermions with
opposite spins. Also, in addition to the usual 〈Ψ̄sΨs〉 condensates (no sum over the
repeated spin indices here), we introduce the time reversal odd ones, 〈Ψ̄sγ

3γ 5Ψs〉
[91, 93]. While the former will give rise to Dirac masses ms (s =↑,↓) in the low-
energy theory, the latter will result in the Haldane masses Δs (s =↑,↓) [112].

In the ground state, one can also have additional condensates, 〈Ψ †σ 3Ψ 〉 and
〈Ψ †γ 3γ 5PsΨ 〉, associated with nonzero spin and pseudo-spin (valley) densities.
To capture this possibility in the variational ansatz, one needs to include a spin
chemical potential μ3 and two pseudo-spin chemical potentials μ̃s (s =↑,↓). Thus,
the general structure of the (inverse) full fermion propagator for quasiparticles of a
fixed spin has the following form:

S−1
s

(
ω; r, r′) = −i

[
γ 0ω − vF (π · γ ) + Σ̂+

s

]
δ2(r − r′), (2.65)
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where the generalized self-energy operator Σ̂+ is given by

Σ̂+ = −ms + γ 0μs + is⊥γ 1γ 2μ̃s + is⊥γ 0γ 1γ 2Δs. (2.66)

Functions ms , μs , μ̃s , and Δs on the right-hand side depend on the operator valued
argument (π · γ )2�2, whose eigenvalues are nonpositive even integers: −2n, where
n = 0,1,2, . . . . Therefore, in the Landau level representation, ms , μs , μ̃s , and Δs

will get an additional Landau index n dependence: mn,s , μn,s , μ̃n,s , and Δn,s .
The Schwinger–Dyson equation for the full fermion propagator takes the form

S−1(t − t ′; r, r′) = S−1
0

(
t − t ′; r, r′) + e2γ 0S

(
t − t ′; r, r′)γ 0D

(
t ′ − t; r′ − r

)
,

(2.67)
where D(t; r) is the photon propagator mediating the Coulomb interaction. The
latter is approximately instantaneous because the quasiparticle velocities are much
smaller than the speed of light. In momentum space, the photon propagator takes
the following form:

D(ω,k) ≈ D(0, k) = i

ε0[k + Π(0, k)] , (2.68)

where Π(0, k) is the static polarization function and ε0 is a dielectric constant.
It should be noted that, in the coordinate-space representation, both the fermion

propagator and its inverse contain exactly the same Schwinger phase, see (2.88).
After omitting such a (nonzero) phase on both sides of (2.67) and performing the
Fourier transform with respect to the time variable, we will arrive at the following
equation for the translationally invariant part of the fermion propagator [93]:

S̃−1(ω; r) = S̃−1
0 (ω; r)+ i

e2

ε0

∫ ∞

−∞
dΩ

2π

∫ ∞

0

dk

2π

kJ0(kr)

k + Π(0, k)
γ 0S̃(Ω; r)γ 0. (2.69)

In the Landau level representation, this equation is equivalent to a coupled set of
4 × 2 × nmax equations, where we counted 4 parameters (m, μ, μ̃, and Δ), 2 spins
(s =↑,↓), and nmax 
 [Λ2/(2|eB|)] Landau levels below the ultraviolet energy
cutoff Λ, where the low-energy theory is valid.

The explicit form of the gap equations can be found elsewhere [93]. The corre-
sponding set of equations can be solved by making use of numerical methods. Here,
instead, we will discuss only some general features of the solutions in the lowest
Landau level approximation, which can be obtained with analytical methods.

Let us start by considering the solutions to the gap equations for quasiparticles
of a fixed spin. In the lowest Landau level approximation, there are two independent
gap equations, i.e.,

μeff − μ = αε�

2
K0

[
nF (meff − μeff) − nF (meff + μeff)

]
, (2.70)

meff = αε�

2
K0

[
1 − nF (meff − μeff) − nF (meff + μeff)

]
, (2.71)
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where α ≡ e2/(ε0vF ) ≈ 2.2/ε0 is the coupling constant, nF (x) ≡ 1/(ex/T + 1) is
the Fermi distribution function, and K0 is the interaction kernel due to the Coulomb
interaction in the lowest Landau level approximation. In the above equations, we
used the shorthand notation μeff = μ−Δ and meff = m− μ̃ for the two independent
combination of parameters that determine the spectrum of the lowest Landau level
quasiparticles,

ω− = −μeff − meff, and ω+ = −μeff + meff. (2.72)

At zero temperature, the gap equations reduce down to

μeff = μ + αε�

4
√

2π
sign(μeff)θ

(|μeff| − |meff|
)
, (2.73)

|meff| = αε�

4
√

2π
θ
(|meff| − |μeff|

)
. (2.74)

Here we used the value for the interaction kernel K0 = 1/(2
√

2π), which is ob-
tained in the approximation with screening effects neglected [93]. One of the solu-
tions to this set of equations has a nonzero dynamical Dirac mass (m ∝ αε�), i.e.,

|meff| = αε�

4
√

2π
, Δ = 0, − αε�

4
√

2π
< μ <

αε�

4
√

2π
. (2.75)

The other two solutions have nonzero Haldane masses (Δ ∝ αε�), i.e.,

meff = 0, Δ = αε�

4
√

2π
, −∞ < μ <

αε�

4
√

2π
, (2.76)

meff = 0, Δ = − αε�

4
√

2π
, − αε�

4
√

2π
< μ < ∞. (2.77)

In both types of solutions, the values of the masses are proportional to a power of the
coupling constant α, as expected from the dimensional reduction [136, 177, 178].

In order to determine the ground state in graphene when both spin states are
accounted for, one has to find among many possible solutions the one with the lowest
free energy. In the approximation used here, the ground state solution at ν = 0 filling
(i.e., an analog of the vacuum state in particle physics) corresponds to a spin-singlet
state with equal in magnitude, but opposite in sign Haldane masses for the two spin
states [93]: Δ↑ = −Δ↓, i.e., a mixture of the two solutions in (2.76) and (2.77).

The symmetry of the corresponding ground state is U↑(2) × U↓(2), but with the
Zeeman energy splitting dynamically enhanced by the nonzero Haldane masses. The
quasiparticle energies of the dynamically modified lowest Landau level are [93]

ω↑ = −μ + εZ + |Δ↑| > 0, (×2), (2.78)

ω↓ = −μ − εZ − |Δ↓| < 0, (×2), (2.79)

which show that the original fourfold degeneracy is indeed partially lifted.
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2.4 Concluding Remarks

We hope that this review of magnetic catalysis is sufficient to convey the main idea
of the phenomenon in terms of simple and rather general physics concepts. From the
outset, this review was never meant to be comprehensive. Here we concentrated only
on the bare minimum needed to understand the phenomenon as a consequence of the
underlying dimensional reduction of the fermion-antifermion pairing in a magnetic
field [99–102]. For further reading and for deeper insights into various aspects of
the magnetic catalysis, it is suggested that the reader refers to the original literature
on the topic.

Over nearly 20 years of research, there has been a lot of progress made in our
understanding of magnetic catalysis. A rather long list of research papers at the end
of this review is a pretty objective proof of that. At present, it is evident that the
key features of the underlying physics are well established and understood. At the
same time, it is also evident that there are still many theoretical questions about
the applications of magnetic catalysis under various conditions, where factors other
than the magnetic field may also play a substantial role.

One prominent example is the dynamics of chiral symmetry breaking in QCD in
a magnetic field. Because of a poorly understood interplay between the dynamics
responsible for the quark (de-)confinement on the one hand and the magnetic cataly-
sis on the other, there are a lot of uncertainties about the precise role of the magnetic
field in this case [2, 14–16, 23, 25, 31, 34, 67–72, 77, 78, 121, 146–149]. One can
even suggest that there exists an intermediate regime in QCD, starting at magnetic
fields of order B 
 1019 G or so, in which the magnetic field is sufficiently strong to
provide a gluon screening [76] and, thus, suppress the vacuum chiral condensate, but
still is not strong enough to produce equally large quark masses through magnetic
catalysis [146]. At finite temperature, further complications could appear because of
the interplay of the magnetic field and the temperature in gluon screening [16]. All
in all, it is obvious that there are many research directions remaining to be pursued
in the future.

As we argued in Sect. 2.3.3, magnetic catalysis may play a profound role in the
quantum Hall effect in monolayer graphene. It appears, however, that an interesting
variation of magnetic catalysis can be also realized in bilayer graphene [86, 88, 89,
92]. In essence, it is a nonrelativistic analog of the magnetic catalysis. This fact
alone is of interest because of a large diversity of solid state physics systems and the
relative ease of their studies in table-top experiments.

Finally, one should keep in mind that the fundamental studies of gauge field the-
ories, which are known to have an extremely rich and complicated dynamics, is of
general interest even in the regimes that are not readily accessible in current exper-
iments. Such studies usually provide invaluable information about the complicated
theories in the regimes that are under theoretical control. This often allows one to
understand better the structure of the theory and even predict its testable limitations.
In the case of QCD in a magnetic field, e.g., we may gain not only a better under-
stand of the fundamental properties, but also get an insight into the physics in the
Early Universe and in heavy ion collisions.
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Appendix: Fermion Propagator in a Magnetic Field

Let us start from the discussion of the Dirac fermion propagator in a magnetic field
in 3 + 1 dimensions. It is formally defined by the following expression:

S
(
x, x′) = i

[
iγ 0∂t − (π⊥ · γ ⊥) − π3γ 3 − m

]−1
δ4(x − x′), (2.80)

where x ≡ (x0, x1, x2, x3) = (t, r). By definition, the spatial components of the
canonical momenta are πi ≡ −i∂i − eAi , where i = 1,2,3. (The perpendicular
components are i = 1,2.) Here we assume that e is the fermion electric charge
(i.e., one should take e < 0 in the case of the electron) and use the Landau gauge
A = (0,Bx1,0), where B is the magnetic field pointing in the x3-direction. By def-
inition, the components of the usual three-dimensional vectors A (vector potential)
and r (position vector) are identified with the contravariant components Ai and xi ,
respectively.

In the Landau gauge used, it is convenient to perform a Fourier transform in the
time (t − t ′) and the longitudinal (x3 − x′3) coordinates. Then, we obtain

S
(
ω,p3; r⊥, r′⊥

) = i
[
γ 0ω − (π⊥ · γ ⊥) − γ 3p3 − m

]−1
δ2(r⊥ − r′⊥

)

= i
[
γ 0ω − (π⊥ · γ ⊥) − γ 3p3 + m

]

× [
ω2 − π2⊥ + ieBγ 1γ 2 − (

p3)2 − m2]−1
δ2(r⊥ − r′⊥

)
,

(2.81)

where r⊥ is the position vector in the plane perpendicular to the magnetic field.
In order to obtain a Landau level representation for the propagator (2.81), it is

convenient to utilize the complete set of eigenstates of the operator π2⊥. This opera-
tor has the eigenvalues (2k + 1)|eB|, where k = 0,1,2, . . . is the quantum number
associated with the orbital motion in the perpendicular plane. The corresponding
normalized wave functions read

ψkp2(r⊥) = 1√
2π�

1
√

2kk!√π
Hk

(
x1

�
+ p2�

)
e
− 1

2�2 (x1+p2�
2)2

e−is⊥x2p2 , (2.82)

where Hk(z) are the Hermite polynomials [94], � = 1/
√|eB| is the magnetic length,

and s⊥ ≡ sign(eB). The wave functions satisfy the conditions of normalizability and
completeness,

∫
d2r⊥ψ∗

kp2
(r⊥)ψk′p′

2
(r⊥) = δkk′δ

(
p2 − p′

2

)
, (2.83)
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∞∫

−∞
dp2

∞∑

k=0

ψkp2(r⊥)ψ∗
kp2

(
r′⊥

) = δ2(r⊥ − r′⊥
)
, (2.84)

respectively.
By making use of the spectral expansion of the δ-function in (2.84), as well as

the following identities:

(π⊥ · γ ⊥)ψkp2 = i

�
γ 1[√2(k + 1)ψk+1,p2P− − √

2kψk−1,p2P+
]
, (2.85)

π2⊥ψkp2 = 2k + 1

�2
ψkp2, (2.86)

with P± = 1
2 (1 ± is⊥γ 1γ 2) being the spin projectors onto the direction of the

magnetic field, we can rewrite the propagator in (2.81) as follows:

S
(
ω,p3; r⊥, r′⊥

) =
∞∫

−∞
dp2

∞∑

k=0

i
[
γ 0ω − (π⊥ · γ ⊥) − γ 3p3 + m

][
ω2 − (

p3)2

− (2k + 1)|eB| + ieBγ 1γ 2 − m2]−1
ψkp2(r⊥)ψ∗

kp2

(
r′⊥

)

= eiΦ(r⊥,r′⊥)S̃
(
ω,p3; r⊥ − r′⊥

)
. (2.87)

The Schwinger phase is given by

Φ
(
r⊥, r′⊥

) = s⊥
(x1 + x′1)(x2 − x′2)

2�2
, (2.88)

and the translationary invariant part of the propagator reads

S̃
(
ω,p3; r⊥ − r′⊥

) = i
e−ξ/2

2π�2

∞∑

n=0

Fn(ω,p3; r⊥ − r′⊥)

ω2 − 2n|eB| − (p3)2 − m2
, (2.89)

Fn

(
ω,p3; r⊥ − r′⊥

) = (
γ 0ω − γ 3p3 + m

)[
Ln(ξ)P+ + Ln−1(ξ)P−

]

− i

�2
γ ⊥ · (r⊥ − r′⊥

)
L1

n−1(ξ), (2.90)

where we used the short-hand notation

ξ = (r⊥ − r′⊥)2

2�2
. (2.91)

In order to integrate over the quantum number p2 in (2.87), we took into account
the following table integral [94]:

∞∫

−∞
e−x2

Hm(x + y)Hn(x + z)dx = 2nπ1/2m!zn−mLn−m
m (−2yz), (2.92)
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which is valid when m ≤ n. Here Lα
n are the generalized Laguerre polynomials, and

Ln ≡ L0
n.

Here a short remark is in order regarding the general structure of the Dirac prop-
agator in a magnetic field. It is not a translationally invariant function, but has the
form of a product of the Schwinger phase factor eiΦ(r⊥,r′⊥) and a translationally in-
variant part. The Schwinger phase spoils the translational invariance. From a physics
viewpoint, this reflects a simple fact that the fermion momenta in the two spatial di-
rections perpendicular to the field are not conserved quantum numbers.

The Fourier transform of the translationary invariant part of the propagator (2.89)
reads

S̃
(
ω,p3;p⊥

) = 2ie−p2⊥�2
∞∑

n=0

(−1)nDn(ω,p3;p⊥)

ω2 − 2n|eB| − (p3)2 − m2
, (2.93)

where

Dn

(
ω,p3;p⊥

) = (
γ 0ω − γ 3p3 + m

)[
Ln

(
2p2⊥�2)P+ − Ln−1

(
2p2⊥�2)P−

]

+ 2(γ ⊥ · p⊥)L1
n−1

(
2p2⊥�2). (2.94)

Taking into account the earlier comment that the perpendicular momenta of charged
particles are not conserved quantum numbers, this representation may appear sur-
prising. However, one should keep in mind that the result in (2.93) is not a usual
momentum representation of the propagator, but the Fourier transform of its trans-
lationary invariant part only.

In some applications, it is convenient to make use of the so-called proper-time
representation [168], in which the sum over Landau levels is traded for a proper-time
integration. This is easily derived from (2.93) by making the following substitution:

i

ω2 − 2n|eB| − (p3)2 − m2 + i0
=

∫ ∞

0
dseis[ω2−2n|eB|−(p3)2−m2+i0]. (2.95)

Then, the sum over Landau levels can be easily performed with the help of the
summation formula for Laguerre polynomials [94],

∞∑

n=0

Lα
n(x)zn = (1 − z)−(α+1) exp

(
xz

z − 1

)
. (2.96)

The final expression for the propagator in the proper-time representation reads

S̃
(
ω,p3;p⊥

) =
∫ ∞

0
dseis[ω2−m2−(p3)2]−i(p2⊥�2) tan(s|eB|)[γ 0ω − (γ · p) + m

+ (
p1γ 2 − p2γ 1) tan(seB)

][
1 − γ 1γ 2 tan(seB)

]
, (2.97)

where (γ · p) ≡ (γ ⊥ · p⊥) + γ 3p3.
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Using the same method, one can also derive the Dirac fermion propagator in a
magnetic field in 2 + 1 dimensions. It has the same structure as the propagator in
Eqs. (2.87), (2.88), (2.89), and (2.90), but with p3 = 0, i.e.,

S2+1
(
ω; r, r′) = eiΦ(r,r′)S̃2+1

(
ω; r − r′), (2.98)

where

S̃2+1
(
ω; r − r′) = i

e−ξ/2

2π�2

∞∑

n=0

[
γ 0ω + m

ω2 − 2n|eB| − m2

[
Ln(ξ)P− + Ln−1(ξ)P+

]

− i

�2

γ · (r − r′)
ω2 − 2n|eB| − m2

L1
n−1(ξ)

]
. (2.99)

The Fourier transform of the translationally invariant part is

S̃2+1(ω;p) = 2ie−p2�2
∞∑

n=0

(−1)n
[
(γ 0ω + m)[Ln(2p2�2)P+ − Ln−1(2p2�2)P−]

ω2 − 2n|eB| − m2

+ 2
(γ · p)

ω2 − 2n|eB| − m2
L1

n−1

(
2p2�2)

]
. (2.100)

Finally, the proper-time representation reads

S̃2+1(ω;p) =
∫ ∞

0
dseis[ω2−m2]−i(p2�2) tan(s|eB|)[γ 0ω − (γ · p) + m

+ (
p1γ 2 − p2γ 1) tan(seB)

][
1 − γ 1γ 2 tan(seB)

]
. (2.101)
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