
Chapter 17
Anomalous Transport from Kubo Formulae

Karl Landsteiner, Eugenio Megías, and Francisco Peña-Benitez

17.1 Introduction

Anomalies in relativistic field theories of chiral fermions belong to the most intrigu-
ing properties of quantum field theory. Comprehensive reviews on anomalies can be
found in the textbooks [1–3].

Hydrodynamics is an ancient subject. Even in its relativistic form it appeared
that everything relevant to its formulation could be found in [4]. Apart from sta-
bility issues that were addressed in the 1960s and 1970s [5–7] leading to a second
order formalism there seemed little room for new discoveries. The last years wit-
nessed however an unexpected and profound development of the formulation of rel-
ativistic hydrodynamics. The second order contributions have been put on a much
more systematic basis applying effective field theory reasoning [8, 9]. The lessons
learned from applying the AdS/CFT correspondence [10–12] to the plasma phase of
strongly coupled non-abelian gauge theories [13–15] played a major role (see [16]
for a recent review).

The presence of chiral anomalies in otherwise conserved currents has profound
implications for the formulation of relativistic hydrodynamics. The transport pro-
cesses related to anomalies have surfaced several times and independently [17–22].
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The axial current was the focus in [23] and the first application of the AdS/CFT
correspondence to anomalous hydrodynamics can be found already in [24]. The full
impact anomalies have on the formulation of relativistic hydrodynamics was how-
ever not fully appreciated until recently.

The renewed interest in the formulation of relativistic hydrodynamics has its ori-
gin mostly in the spectacular experimental evidence for collective flow phenomena
taking place in the physics of heavy ion collisions at RHIC and LHC. These ex-
periments indicate the creation of a deconfined quark gluon plasma in a strongly
coupled regime. In the context of heavy ion collisions it was argued in [25, 26] that
the excitation of topologically non-trivial gluon field configurations in the early non-
equilibrium stages of a heavy ion collision might lead to an imbalance in the number
of left- and right-handed quarks. This situation can be modeled by an axial chemical
potential and it was shown that an external magnetic field leads to an electric current
parallel to the magnetic field. This chiral magnetic effect leads then to a charge sep-
aration perpendicular to the reaction plane in heavy ion collisions. The introduction
of an axial chemical potential also allows to define a chiral magnetic conductivity
which is simply the factor of proportionality between the magnetic field and the
induced electric current. This effect is a direct consequence of the axial anomaly.

The application of the fluid/gravity correspondence to theories including chiral
anomalies lead to another surprise: it was found that not only a magnetic field in-
duces a current but that also a vortex in the fluid leads to an induced current [27, 28].
This is the chiral vortical effect. Again it is a consequence of the presence of a chi-
ral anomaly. It was later realized that the chiral magnetic and vortical conductivities
are almost completely fixed in the hydrodynamic framework by demanding the exis-
tence of an entropy current with positive definite divergence [29]. That this criterion
did not fix the anomalous transport coefficients completely was noted in [30] and
various terms depending on the temperature instead of the chemical potentials were
shown to be allowed as undetermined integration constants. See also [31, 32] for
a recent discussion of these anomaly coefficients with applications to heavy ion
physics.

In the meanwhile Kubo formulae for the chiral magnetic conductivity [33] and
the chiral vortical conductivity [34] had been developed. Up to this point only
pure gauge anomalies had been considered to be relevant since the mixed gauge-
gravitational anomaly in four dimensions is of higher order in derivatives and was
thought not to be able to contribute to hydrodynamics at first order in derivatives.
Therefore it came as a surprise that in the application of the Kubo formula for the
chiral vortical conductivity to a system of free chiral fermions a purely temperature
dependent contribution was found. This contribution was consistent with some the
earlier found integration constants and it was shown to arise if and only if the system
of chiral fermions features a mixed gauge-gravitational anomaly [35]. In fact these
contributions had been found already very early on in [17–20]. The connection to
the presence of anomalies was however not made at that time. The gravitational
anomaly contribution to the chiral vortical effect was also established in a strongly
coupled AdS/CFT approach and precisely the same result as at weak coupling was
found [36].
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The argument based on a positive definite divergence of the entropy current
allows to fix the contributions form pure gauge anomalies uniquely and provides
therefore a non-renormalization theorem. No such result is known thus far for the
contributions of the gauge-gravitational anomaly.1

A gas of weakly coupled Weyl fermions in arbitrary dimensions has been stud-
ied in [39] and confirmed that the anomalous conductivities can be obtained di-
rectly from the anomaly polynomial under substitution of the field strength with
the chemical potential and the first Pontryagin density by the negative of the tem-
perature squared [40]. Recently the anomalous conductivities have also been ob-
tained in effective action approaches [41, 42]. The contribution of the mixed gauge-
gravitational anomaly appear in all these approaches as undetermined integrations
constants.

We will review here what can be learned from the calculation of the anomalous
conductivities via Kubo formulae. The advantage of the usage of Kubo formulae is
that they capture all contributions stemming either from pure gauge or from mixed
gauge-gravitational anomalies. The disadvantage is that the calculations can be per-
formed only within a particular model and only in the weak or in the gravity dual
of the strong coupling regime. Along the way we will explain our point of view on
some subtle issues concerning the definition of currents and of chemical potentials
when anomalies are present. These subtleties lead indeed to some ambiguous results
[43] and [44]. A first step to clarify these issues was done in [45] and a more general
exposition of the relevant issues has appeared in [46].

The review is organized as follows. In Sect. 17.2 we will briefly summarize the
relevant issues concerning anomalies. We recall how vector like symmetries can al-
ways be restored by adding suitable finite counterterms to the effective action [47].
A related but different issue is the fact that currents can be defined either as con-
sistent or as covariant currents. The hydrodynamic constitutive relations depend on
what definition of current is used. We discuss subtleties in the definition of the chem-
ical potential in the presence of an anomaly and define our preferred scheme. We
discuss the hydrodynamic constitutive relations and derive the Kubo formulae that
allow the calculation of the anomalous transport coefficients from two point corre-
lators of an underlying quantum field theory.

In Sect. 17.3 we apply the Kubo formulae to a theory of free Weyl fermions and
show that two different contributions arise. They are clearly identifiable as being
related to the presence of pure gauge and mixed gauge-gravitational anomalies.

In Sect. 17.4 we define a holographic model that implements the mixed gauge-
gravitational anomaly via a mixed gauge-gravitational Chern-Simons term. We cal-
culate the same Kubo formulae as at weak coupling, obtaining the same values for
chiral axi-magnetic and chiral vortical conductivities as in the weak coupling model.

We conclude this review with some discussions and outlook to further develop-
ments.

1See however the very recent attempts to establish non-renormalization theorems in [37] and [38].
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17.2 Anomalies and Hydrodynamics

In this section we will review briefly anomalies. We compare the consistent with
the covariant form of the anomaly and we introduce the Bardeen counterterm that
allows to restore current conservation for vector like symmetries. Then we turn to
the question of what we mean when we talk about the chemical potential. Two ways
of introducing chemical potential, either through a deformation of the Hamiltonian
or by demanding twisted boundary conditions along the thermal circle are shown
to be in-equivalent in presence of an anomaly. Equivalence can still be achieved
by introduction of a spurious axion field. We explain the implications for hologra-
phy. The constitutive relations for anomalous currents are introduced in Landau and
Laboratory frame. We discuss how they differ if we use the consistent instead of the
covariant currents and derive the Kubo formulae for the anomalous conductivities.

17.2.1 Anomalies

Anomalies arise by integrating over chiral fermions in the path integral. They sig-
nal a fundamental incompatibility between the symmetries present in the classical
theory and the quantum theory.

Unless otherwise stated we will always think of the symmetries as global sym-
metries. But we still will introduce gauge fields. These gauge fields serve as classical
sources coupled to the currents. As a side effect their presence promotes the global
symmetry to a local gauge symmetry. It is still justified to think of it as a global
symmetry as long as we do not introduce a kinetic Maxwell or Yang-Mills term in
the action.

In a theory with chiral fermions we define an effective action depending on these
gauge fields by the path integral

eiWeff [Aμ]/� :=
∫

DΨ DΨ̄ eiS[ψ,Aμ]/�. (17.1)

The vector field Aμ(x) couples to a classically conserved current Jμ = Ψ̄ γ μQΨ .
The charge operator Q can be the generator of a Lie group combined with chiral
projectors P± = 1

2 (1 ± γ5). General combinations are allowed although in the fol-
lowing we will mostly concentrate on a simple chiral U(1) symmetry for which we
can take Q = P+. The fermions are minimally coupled to the gauge field and the
classical action has an underlying gauge symmetry

δΨ = −iλ(x)QΨ, δAμ(x) = Dμλ(x), (17.2)

with Dμ denoting the gauge covariant derivative. Assuming that the theory has a
classical limit the effective action in terms of the gauge fields allows for an expan-
sion in �

Weff = W0 + �W1 + �
2W2 + · · · . (17.3)
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We find it convenient to use the language of BRST symmetry by promoting the
gauge parameter to a ghost field c(x).2 The BRST symmetry is generated by

sAμ = Dμc, sc = −ic2. (17.4)

It is nilpotent s2 = 0. The statement that the theory has an anomaly can now be
neatly formalized. Since on gauge fields the BRST symmetry acts just as the gauge
symmetry, gauge invariance translates into BRST invariance. An anomaly is present
if

sWeff = A and A �= sB. (17.5)

Because of the nilpotency of the BRST operator the anomaly has to fulfill the Wess-
Zumino consistency condition

sA = 0. (17.6)

As indicated in (17.5) this has a possible trivial solution if there exists a local func-
tional B[Aμ] such that sB = A . An anomaly is present if no such B exists. The
anomaly is a quantum effect. If it is of order �

n and if a suitable local functional
B exists we could simply redefine the effective action as W̃eff = Weff − B and the
new effective action would be BRST and therefore gauge invariant. The form and
even the necessity to introduce a functional B might depend on the particular reg-
ularization scheme chosen. As we will explain in the case of an axial and vector
symmetry a suitable B can be found that always allows to restore the vectorlike
symmetry, this is the so-called Bardeen counterterm [47]. The necessity to intro-
duce the Bardeen counterterm relies however on the regularization scheme chosen.
In schemes that automatically preserve vectorlike symmetries, such as dimensional
regularization, the vector symmetries are automatically preserved and no countert-
erm has to be added. Furthermore the Adler-Bardeen theorem guarantees that chiral
anomalies appear only at order �. Their presence can therefore by detected in one
loop diagrams such as the triangle diagram of three currents.

We have introduced the gauge fields as sources for the currents

δ

δAμ(x)
Weff [A] = 〈

Jμ
〉
. (17.7)

For chiral fermions transforming under a general Lie group generated by T a the
chiral anomaly takes the form [1]

sWeff [A] = −
∫

d4x ca
(
DμJμ

)a

= − η

24π2

∫
d4x caεμνρσ tr

[
T a∂μ

(
Aν∂ρAσ + 1

2
AνAρAσ

)]
. (17.8)

2A recent comprehensive review on BRST symmetry is [48].
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Where η = +1 for left-handed fermions and η = −1 for right-handed fermions.
Differentiating with respect to the ghost field (the gauge parameter) we can derive a
local form. To simplify the formulas we specialize this to the case of a single chiral
U(1) symmetry taking T a = 1

∂μJμ = η

96π2
εμνρσ FμνFρσ . (17.9)

This is to be understood as an operator equation. Sandwiching it between the vac-
uum state |0〉 and further differentiating with respect to the gauge fields we can
generate the famous triangle form of the anomaly

〈
∂μJμ(x)J σ (y)J κ(z)

〉 = 1

12π2
εμσρκ∂x

μδ(x − y)∂x
ρ δ(x − z). (17.10)

The one point function of the divergence of the current is non-conserved only in the
background of parallel electric and magnetic fields whereas the non-conservation of
the current as an operator becomes apparent in the triangle diagram even in vacuum.

By construction this form of the anomaly fulfills the Wess-Zumino consistency
condition and is therefore called the consistent anomaly. In analogy we call the
current defined by (17.7) the consistent current.

For a U(1) symmetry the functional differentiation with respect to the gauge field
and the BRST operator s commute,

[
s,

δ

δAμ(x)

]
= 0. (17.11)

An immediate consequence is that the consistent current is not BRST invariant but
rather obeys

sJμ = 1

24π2
εμνρλ∂νcFρλ = − 1

24π2
sKμ, (17.12)

where we introduced the Chern-Simons current Kμ = εμνρλAνFρλ with ∂μKμ =
1
2εμνρλFμνFρλ.

With the help of the Chern-Simons current it is possible to define the so-called
covariant current (in the case of a U(1) symmetry rather the invariant current)

J̃ μ = Jμ + 1

24π2
Kμ (17.13)

fulfilling

sJ̃ μ = 0. (17.14)

The divergence of the covariant current defines the covariant anomaly

∂μJ̃ μ = 1

32π2
εμνρσ FμνFρσ . (17.15)
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Notice that the Chern-Simons current cannot be obtained as the variation with re-
spect to the gauge field of any functional. It is therefore not possible to define an
effective action whose derivation with respect to the gauge field gives the covariant
current.

Let us suppose now that we have one left-handed and one right-handed fermion
with the corresponding left- and right-handed anomalies. Instead of the left-right ba-
sis it is more convenient to introduce a vector-axial basis by defining the vectorlike
current J

μ
V = J

μ
L +J

μ
R and the axial current J

μ
A = J

μ
L −J

μ
R . Let Vμ(x) be the gauge

field that couples to the vectorlike current and Aμ(x) be the gauge field coupling
to the axial current. The (consistent) anomalies for the vector and axial current turn
out to be

∂μJ
μ
V = 1

24π2
εμνρλFV

μνF
A
ρλ, (17.16)

∂μJ
μ
A = 1

48π2
εμνρλ

(
FV

μνF
V
ρλ + FA

μνF
A
ρλ

)
. (17.17)

As long as the vectorlike current corresponds to a global symmetry nothing has
gone wrong so far. If we want to identify the vectorlike current with the electric-
magnetic current in nature we need to couple it to a dynamical photon gauge field
and now the non-conservation of the vector current is worrisome to say the least.
The problem arises because implicitly we presumed a regularization scheme that
treats left-handed and right-handed fermions on the same footing. As pointed out
first by Bardeen this flaw can be repaired by adding a finite counterterm (of order �)
to the effective action. This is the so-called Bardeen counterterm and has the form

Bct = − 1

12π2

∫
d4x εμνρλVμAνF

V
ρλ. (17.18)

Adding this counterterm to the effective action gives additional contributions of
Chern-Simons form to the consistent vector and axial currents. With the particular
coefficient chosen it turns out that the anomaly in the vector current is canceled
whereas the axial current picks up an additional contribution such that after adding
the Bardeen counterterm the anomalies are

∂μJ
μ
V = 0, (17.19)

∂μJ
μ
A = 1

48π2
εμνρλ

(
3FV

μνF
V
ρλ + FA

μνF
A
ρλ

)
. (17.20)

This definition of currents is mandatory if we want to identify the vector current with
the usual electromagnetic current in nature! It is furthermore worth to point out that
both currents are now invariant under the vectorlike U(1) symmetry. The currents
are not invariant under axial transformation, but these are anomalous anyway.

Generalizations of the covariant anomaly and the Bardeen counterterm to the
non-abelian case can be found e.g. in [1].
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There is one more anomaly that will play a major role in this review, the mixed
gauge-gravitational anomaly [49–51].3 So far we have considered only spin one
currents and have coupled them to gauge fields. Now we also want to introduce the
energy-momentum tensor through its coupling to a fiducial background metric gμν .
Just as the gauge fields, the metric serves primarily as the source for insertions of
the energy momentum tensor in correlation functions. Just as in the case of vector
and axial currents, the mixed gauge-gravitational anomaly is the statement that it is
impossible in the quantum theory to preserve at the same time the vanishing of the
divergence of the energy-momentum tensor and of chiral (or axial) U(1) currents.
It is however possible to add Bardeen counterterms to shift the anomaly always in
the sector of the spin one currents and preserve translational (or diffeomorphism)
symmetry. If we have a set of left-handed and right-handed chiral fermions trans-
forming under a Lie Group generated by (Ta)L and (Ta)R in the background of
arbitrary gauge fields and metric, the anomaly is conveniently expressed through
the non-conservation of the covariant current as

(
DμJμ

)
a

= dabc

32π2
εμνρλF b

μνF
c
ρλ + ba

768π2
εμνρλRα

βμνR
β

αρλ. (17.21)

The purely group theoretic factors are

dabc = 1

2
tr
(
Ta{Tb,Tc}

)
L

− 1

2
tr
(
Ta{Tb,Tc}

)
R
, (17.22)

ba = tr(Ta)L − tr(Ta)R. (17.23)

Chiral anomalies are completely absent if and only if dabc = 0 and ba=0.

17.2.2 Chemical Potentials for Anomalous Symmetries

Thermodynamics of systems with conserved charges can be described in a grand
canonical ensemble where a Lagrange multiplier μ ensures that the partition func-
tion fulfills

T
∂ log(Z)

∂μ
= 〈Q〉. (17.24)

The textbook approach is to consider a deformation of the Hamiltonian

H → H − μQ, (17.25)

where Q is the charge in question. We can think of this as arising from the coupling
of the (fiducial) gauge field Aμ to the current Jμ and giving a vacuum expectation
value to A0 = μ. Since the fiducial gauge field leads to local gauge invariance we
can remove the μQ coupling in the Hamiltonian by the gauge transformation A0 →
A0 + ∂0χ with χ = −μt .

3In D = 4k + 2 dimensions also purely gravitational anomalies can appear [52].
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Fig. 17.1 At finite temperature field theories are defined on the Keldysh-Schwinger contour in the
complexified time plane. The initial state at ti is specified through the boundary conditions on the
fields. The endpoint of the contour is at ti − iβ where β = 1/T

Table 17.1 Two formalisms
for the chemical potential Formalism Hamiltonian Boundary condition

(A) H − μQ Ψ (ti − iβ) = ±Ψ (ti )

(B) H Ψ (ti − iβ) = ±eqβμΨ (ti )

In the context of finite temperature field theory such a gauge transformation is
however not really allowed. One needs to define the field theory on the Keldysh-
Schwinger contour in the complexified time plane as shown in Fig. 17.1. Fields are
taken to be periodic or anti-periodic along the imaginary time direction t = −iτ

with period β = 1/T where T is the temperature

Ψ (ti − iβ) = ±Ψ (ti), (17.26)

with the plus sign for bosons and the minus sign for fermions. The gauge transfor-
mation that removes the constant zero component of the gauge field is not periodic
along the contour and therefore changes the boundary conditions on the fields. After
the gauge transformation with χ = −μt the fields obey the boundary conditions

Ψ (ti − iβ) = ±eqμβΨ (ti). (17.27)

Demanding these “twisted” boundary conditions is of course completely equiva-
lent to having A0 = μ. The gauge invariant statement is that a charged field parallel
transported around the Keldysh-Schwinger contour picks up a factor of exp(qμβ).
As long as we have honest non-anomalous symmetries under consideration we have
therefore two (gauge-)equivalent formalisms of how to introduce the chemical po-
tential summarized in Table 17.1 [53].

One convenient point of view on formalism (B) is the following. In a real time
Keldysh-Schwinger setup we demand some initial conditions at initial (real) time
t = ti . These initial conditions are given by the boundary conditions in (B). From
then on we do the (real) time development with the microscopic Hamiltonian H . In
principle there is no need for the Hamiltonian H to preserve the symmetry present
at times t < ti . This seems an especially suited approach to situations where the
charge in question is not conserved by the real time dynamics. In the case of an
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anomalous symmetry we can start at t = ti with a state of certain charge. As long as
we have only external gauge fields present the one-point function of the divergence
of the current vanishes and the charge is conserved. This is not true on the full theory
since even in vacuum the three-point correlators are sensitive to the anomaly. For
the formulation of hydrodynamics in external fields the condition that the one-point
functions of the currents are conserved as long as there are no parallel electric and
magnetic external fields (or a metric that has non-vanishing Pontryagin density) is
sufficient.4

Let us assume now that Q is an anomalous charge, i.e. its associated current suf-
fers from chiral anomalies. We first consider formalism (B) and ask what happens
if we do now the gauge transformation that would bring us to formalism (A). Since
the symmetry is anomalous the action transforms as

S[A + ∂χ] = S[A] +
∫

d4x χεμνρλ
(
C1FμνFρλ + C2R

α
βμνR

β
αρλ

)
, (17.28)

with the anomaly coefficients C1 and C2 depending on the chiral fermion content. It
follows that formalisms (A) and (B) are physically inequivalent now, because of the
anomaly. However, we would like to still come as close as possible to the formalism
of (A) but in a form that is physically equivalent to the formalism (B). To achieve
this we proceed by introducing a non-dynamical axion field Θ(x) and the vertex

SΘ [A,Θ] =
∫

d4x Θεμνρλ
(
C1FμνFρλ + C2R

α
βμνR

β
αρλ

)
. (17.29)

If we demand now that the “axion” transforms as Θ → Θ − χ under gauge trans-
formations we see that the action

Stot [A,Θ] = S[A] + SΘ [A,Θ] (17.30)

is gauge invariant. Note that this does not mean that the theory is not anomalous
now. We introduce it solely for the purpose to make clear how the action has to
be modified such that two field configurations related by a gauge transformation
are physically equivalent. It is better to consider Θ as coupling and not a field, i.e.
we consider it a spurion field. The gauge field configuration that corresponds to
formalism (B) is simply A0 = 0. A gauge transformation with χ = μt on the gauge
invariant action Stot makes clear that a physically equivalent theory is obtained by
choosing the field configuration A0 = μ and the time dependent coupling Θ = −μt .
If we define the current through the variation of the action with respect to the gauge
field we get an additional contribution from SΘ ,

J
μ
Θ = 4C1ε

μνρλ∂νΘFρλ, (17.31)

4If dynamical gauge fields are present, such as the gluon fields in QCD even the one point function
of the charge does decay over (real) time due to non-perturbative processes (instantons) or at finite
temperature due to thermal sphaleron processes [54]. Even in this case in the limit of large number
of colors these processes are suppressed and can e.g. not be seen in holographic models in the
supergravity approximation.
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and evaluating this for Θ = −μt we get the spatial current

Jm
Θ = 8C1μBm. (17.32)

We do not consider this to be the chiral magnetic effect! This is only the contribution
to the current that comes from the new coupling that we are forced to introduce by
going to formalism (A) from (B) in a (gauge-)equivalent way. As we will see in
the following chapters the chiral magnetic and vortical effect are on the contrary
non-trivial results of dynamical one-loop calculations.

What is the Hamiltonian now based on the modified formalism (A)? We have to
take of course the new coupling generated by the non-zero Θ . The Hamiltonian now
is therefore

H − μ

(
Q + 4C1

∫
d3x ε0ijkAi∂jAk

)
, (17.33)

where for simplicity we have ignored the contributions from the metric terms.
For explicit computations in Sects. 17.3 and 17.4 we will introduce the chemical

potential through the formalism (B) by demanding twisted boundary conditions. It
seems the most natural choice since the dynamics is described by the microscopic
Hamiltonian H . The modified (A) based on the Hamiltonian (17.33) is however not
without merits. It is convenient in holography where it allows vanishing temporal
gauge field on the black hole horizon and therefore a non-singular Euclidean black
hole geometry.5

17.2.2.1 Hydrodynamics and Kubo Formulae

The modern understanding of hydrodynamics is as an effective field theory.
The equations of motion are the (anomalous) conservation laws of the energy-
momentum tensor and spin one currents. These are supplemented by expression
for the energy-momentum tensor and the current which are organized in a derivative
expansion, the so-called constitutive relations. Symmetries constrain the possible
terms. In the presence of chiral anomalies the constitutive relations for the energy-
momentum tensor and the currents in the Landau frame are

T μν = εuμuν + pP μν − ηP μαP νβσαβ − ζP μν∂αuα, (17.34)

J̃ μ
a = ρau

μ + Σab

(
E

μ
b − T P μαDα

μa

T

)
+ ξB

abB
μ
a + ξV

a ωμ. (17.35)

It is important to specify that these are the constitutive relations for the covari-
ant currents! Here ε is the energy density, p the pressure density, uμ the local
fluid velocity. P μν = gμν + uμuν is the transverse projector to the fluid velocity.

5It is possible to define a generalized formalism to make any choice for the gauge field A0 = ν, so
that one recovers formalism (A) when ν = μ and formalism (B) when ν = 0 as particular cases
(see [55] for details).
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σμν is the symmetric traceless shear tensor. The non-anomalous transport coeffi-
cients are the shear viscosity η, the bulk viscosity ζ and the electric conductivities
Σab . External electric and magnetic fields are covariantized via E

μ
a = F

μν
a uν and

B
μ
a = 1

2εμνρλuνFa,ρλ. The vorticity of the fluid is ωμ = εμνρλuν∂ρuλ.
The anomalous transport coefficients are the chiral magnetic conductivities ξB

ab

and the chiral vortical conductivities ξV
a . At first order in derivatives the notion of

fluid velocity is ambiguous and needs to be fixed by prescribing a choice of frame.
We remark that the constitutive relations (17.34) and (17.35) are valid in the Landau
frame where T μνuν = εuμ.

To compute the Kubo formulae for the anomalous transport coefficients it turns
out that the Landau frame is not the most convenient one. It fixes the definition
of the fluid velocity through energy transport. Transport phenomena related to the
generation of an energy current are therefore not directly visible, rather they are
absorbed in the definition of the fluid velocity. It is therefore more convenient to go
to another frame in which we demand that the definition of the fluid velocity is not
influenced when switching on an external magnetic field or having a vortex in the
fluid. In such a frame the constitutive relations take the form

T μν = (ε + p)uμuν + pgμν − ηP μαP νβσαβ − ζP μν∂αuα

+ Qμuν + Qνuμ, (17.36)

Qμ = σε
BBμ + σε

V ωμ, (17.37)

J̃ μ = ρuμ + Σ

(
Eμ − T P μαDα

(
μ

T

))
+ σBBμ + σV ωμ. (17.38)

In order to avoid unnecessary clutter in the equations we have specialized now to a
single U(1) charge. Notice that now there is a sort of “heat” current present in the
constitutive relation for the energy-momentum tensor.

The derivation of Kubo formulae is better based on the usage of the consistent
currents. Since the covariant and consistent currents are related by adding suitable
Chern-Simons currents, the constitutive relations for the consistent current receive
additional contribution from the Chern-Simons current

Jμ = J̃ μ − 1

24π2
Kμ. (17.39)

If we were to introduce the chemical potential according to formalism (A) via a
background for the temporal gauge field we would get an additional contribution to
the consistent current from the Chern-Simons current. In this case it is better to go to
the modified formalism (A′) that also introduces a spurious axion field and another
contribution to the current JΘ (17.32) has to be added

Jμ = J̃ μ − 1

24π2
Kμ + J

μ
Θ. (17.40)

For the derivation of the Kubo formulae it is therefore more convenient to work
with formalism (B) in which A0 = 0 and the chemical potential is introduced via
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the boundary conditions (17.27). Otherwise there arise additional contributions to
the two point functions. We will briefly discuss them in the next subsection.

From the microscopic view the constitutive relations should be interpreted as the
one-point functions of the operators T μν and Jμ in a near equilibrium situation,
i.e. gradients in the fluid velocity, the temperature or the chemical potentials are as-
sumed to be small. From this point of view Kubo formulae can be derived. In the
microscopic theory the one-point function of an operator near equilibrium is given
by linear response theory whose basic ingredient are the retarded two-point func-
tions. If we consider a situation with only an external electric field in z-direction
and all other sources switched off, i.e. the fluid being at rest uμ = (1,0,0,0) and no
gradients in temperature or chemical potentials the constitutive relations are simpli-
fied to

J z = ΣEz. (17.41)

The electric field is Ez = iωAz in terms of the vector potential and using linear
response theory the induced current is given through the retarded two-point function
by

J z = 〈
J zJ z

〉
Az. (17.42)

Equating the two expressions for the current we find the Kubo formula for the elec-
tric conductivity

Σ = lim
ω→0

−i

ω

〈
J zJ z

〉
. (17.43)

This has to be evaluated at zero momentum. The limit in the frequency follows
because the constitutive relation are supposed to be valid only to lowest order in the
derivative expansion, therefore one needs to isolate the first non-trivial term.

Now we want to find some simple special cases that allow the derivation of Kubo
formulae for the anomalous conductivities. A very convenient choice is to go to
the restframe uμ = (1,0,0,0), switch on a vector potential in the y-direction that
depends only on the z direction and at the same time a metric deformation gμν =
ημν + hμν with the only non-vanishing component h0y depending on z only. To
linear order in the background fields the non-vanishing components of the energy-
momentum tensor and the current are

T 0x = −σε
B∂zAy − σε

V ∂zh0y, (17.44)

J x = −σB∂zAy − σV ∂zh0y, (17.45)

since in the formalism (B) neither the Chern-Simons term nor the Θ coupling con-
tribute. Going to momentum space and differentiating with respect to the sources
Ay and h0y we find therefore the Kubo formulae [26, 34]

σB = limkz→0
i
k z

〈J xJ y〉 σV = limkz→0
i
k z

〈J xT 0y〉

σε
B = limkz→0

i
k z

〈T 0xJ y〉 σε
V = limkz→0

i
k z

〈T 0xT 0y〉
(17.46)
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All these correlators are to be taken at precisely zero frequency. As these for-
mulas are based on linear response theory the correlators should be understood as
retarded ones. They have to be evaluated however at zero frequency and therefore
the order of the operators can be reversed. From this it follows that the chiral vorti-
cal conductivity coincides with the chiral magnetic conductivity for the energy flux
σV = σε

B .6

We also want to discuss how these transport coefficients are related to the ones
in the more commonly used Landau frame. They are connected by a redefinition of
the fluid velocity of the form

uμ → uμ − 1

ε + p
Qμ, (17.47)

to go from (17.36)–(17.38) to (17.34)–(17.35). The corresponding transport coeffi-
cients of the Landau frame are therefore

ξB = lim
kn→0

−i

2kn

∑
k.l

εnkl

(〈
J kJ l

〉 − ρ

ε + p

〈
T 0kJ l

〉)
, (17.48)

ξV = lim
kn→0

−i

2kn

∑
k.l

εnkl

(〈
J kT 0l

〉 − ρ

ε + p

〈
T 0kT 0l

〉)
, (17.49)

where we have employed a slightly more covariant notation. The generalization to
the non-abelian case is straightforward.

It is also worth to compare to the Kubo formulae for the dissipative transport
coefficients as the electric conductivity (17.43). In the dissipative cases one first
goes to zero momentum and then takes the zero frequency limit. In the anomalous
conductivities this is the other way around, one first goes to zero frequency and then
takes the zero momentum limit. Another observation is that the dissipative transport
coefficients sit in the anti-Hermitean part of the retarded correlators, i.e. the spectral
function whereas the anomalous conductivities sit in the Hermitean part. The rate at
which an external source fI does work on a system is given in terms of the spectral
function of the operator OI coupling to that source as

dW

dt
= 1

2
ωfI (−ω)ρIJ (ω)fJ (ω). (17.50)

The anomalous transport phenomena therefore do no work on the system, first they
take place at zero frequency and second they are not contained in the spectral func-
tion ρ = −i

2 (Gr − G
†
r ).

6Notice that h0y can also be understood as the so-called gravito-magnetic vector potential Ag ,
which is related to the gravito-magnetic field by Bg = ∇ × Ag . This allows to interpret σV not
only as the generation of a current due to a vortex in the fluid, i.e. the chiral vortical effect, but also
as a chiral gravito-magnetic conductivity giving rise to a chiral gravito-magnetic effect, see [56]
for details.
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Fig. 17.2 Contributions to the Kubo formula for the chiral magnetic conductivity in the different
formalisms for the chemical potential

17.2.3 Contributions to the Kubo Formulae

Now we want to give a detailed analysis of the different Feynman graphs that con-
tribute to the Kubo formulae in the different formalisms for the chemical potentials.
The simplest and most economic formalism is certainly the one labeled (B) in which
we introduce the chemical potentials via twisted boundary conditions. The Hamil-
tonian is simply the microscopic Hamiltonian H . Relevant contributions arise only
at first order in the momentum and at zero frequency and in this kinematic limit
only the Kubo formulae for the chiral magnetic conductivity is affected. In Fig. 17.2
we summarize the different contributions to the Kubo formulae in the three ways to
introduce the chemical potential.

The first of the Feynman graphs is the same in all formalisms. It is the genuine
finite temperature and finite density one-loop contribution. This graph is finite be-
cause the Fermi-Dirac distributions cutoff the UV momentum modes in the loop. In
the formalism (A) we need to take into account that there is also a contribution from
the triangle graph with the fermions going around the loop in vacuum, i.e. without
the Fermi-Dirac distributions in the loop integrals. For a non-anomalous symmetry
this graph vanishes simply because on the upper vertex of the triangle sits a field
configuration that is a pure gauge. If the symmetry under consideration is however
anomalous the triangle diagram picks up just the anomaly. Even pure gauge field
configurations become physically distinct from the vacuum and therefore this dia-
gram gives a non-trivial contribution. On the level of the constitutive relations this
contribution corresponds to the Chern-Simons current in (17.39). We consider this
contribution to be unwanted. After all the anomaly would make even a constant
value of the temporal gauge field A0 observable in vacuum. An example is provided
for a putative axial gauge field A5

μ. If present the absolute value of its temporal



448 K. Landsteiner et al.

component would be observable through the axial anomaly. We can be sure that in
nature no such background field is present. The third line (A′) introduces also the
spurious axion field Θ the only purpose of this field is to cancel the contribution
from the triangle graph. This cancellation takes place by construction since (A′) is
gauge equivalent to (B) in which only the first genuine finite T ,μ part contributes.
It corresponds to the contribution of the current J

μ
Θ in (17.40). We further emphasize

that these considerations are based on the usage of the consistent currents.
In the interplay between axial and vector currents additional contributions arise

from the Bardeen counterterm. It turns out that the triangle or Chern-Simons current
contribution to the consistent vector current in the formalism (A) cancels precisely
the first one [44, 45]. Our take on this is that a constant temporal component of
the axial gauge field A0 = μ5 would be observable in nature and can therefore be
assumed to be absent. The correct way of evaluating the Kubo formulae for the chiral
magnetic effect is therefore the formalism (B) or the gauge equivalent one (A′).

At this point the reader might wonder why we introduced yet another formal-
ism (A′) which achieves apparently nothing but being equivalent to formalism (B).
At least from the perspective of holography there is a good reason for doing so.
In holography the strong coupling duals of gauge theories at finite temperature in
the plasma phase are represented by five dimensional asymptotically Anti- de Sit-
ter black holes. Finite charge density translates to charged black holes. These black
holes have some non-trivial gauge flux along the holographic direction represented
by a temporal gauge field configuration of the form A0(r) where r is the fifth, holo-
graphic dimension. It is often claimed that for consistency reasons the gauge field
has to vanish on the horizon of the black hole and that its value on the boundary can
be identified with the chemical potential

A0(rH) = 0 and A0(r → ∞) = μ. (17.51)

According to the usual holographic dictionary the gauge field values on the bound-
ary correspond to the sources for currents. A non-vanishing value of the temporal
component of the gauge field at the boundary is therefore dual to a coupling that
modifies the Hamiltonian of the theory just as in (17.25). Thus with the boundary
conditions (17.51) we have the holographic dual of the formalism (A). If anomalies
are present they are represented in the holographic dual by five-dimensional Chern-
Simons terms of the form A ∧ F ∧ F . The two point correlator of the (consistent)
currents receives now contributions from the Chern-Simons term that is precisely
of the form of the second graph in (A) in Fig. 17.2. As we have argued this is an
a priory unwanted contribution. We can however cure that by introducing an ad-
ditional term in the action of the form (17.29) living only on the boundary of the
holographic space-time. In this way we can implement the formalism (A′), can-
cel the unwanted triangle contribution with the third graph in (A′) in Fig. 17.2 and
maintain A0(rH) = 0!

The claim that the temporal component of the gauge field has to vanish at the
horizon is of course not unsubstantiated. The reasoning goes as follows. The Eu-
clidean section of the black-hole space time has the topology of a disc in the r, τ
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Fig. 17.3 A sketch of the Euclidean black hole topology. A singularity at the horizon arises if
we do not choose the temporal component of the gauge field to vanish there. On the other hand
allowing the singularity to be present changes the topology to the one of a cylinder and this in turn
allows twisted boundary conditions

directions, where τ is the Euclidean time (see Fig. 17.3). This is a periodic variable
with period β = 1/T where T is the (Hawking) temperature of the black hole and
at the same time the temperature in the dual field theory. Using Stoke’s law we have

∫
∂D

A0 dτ =
∫

D

Fr0 dr dτ, (17.52)

where Fr0 is the electric field strength in the holographic direction and D is a Disc
with origin at r = rH reaching out to some finite value of rf . If we shrink this disc
to zero size, i.e. let rf → rH the r.h.s. of the last equation vanishes and so must the
l.h.s. which approaches the value βA0(rH). This implies that A0(rH) = 0. If on the
other hand we assume that A0(rH) �= 0 then the field strength must have a delta type
singularity there in order to satisfy Stokes theorem. Strictly speaking the topology
of the Euclidean section of the black hole is not anymore that of a disc since now
there is a puncture at the horizon. It is therefore more appropriate to think of this as
having the topology of a cylinder. Now if we want to implement the formalism (B)

in holography we would find the boundary conditions

A0(rH) = μ and A0(r → ∞) = 0, (17.53)

and precisely such a singularity at the horizon would arise. In addition we would
need to impose twisted boundary conditions around the Euclidean time τ for the
fields just as in (17.27). Now the presence of the singularity seems to be a good
thing: if the space time would still be smooth at the horizon it would be impossible
to demand these twisted boundary conditions since the circle in τ shrinks to zero
size there. If this is however a singular point of the geometry we can not really
shrink the circle to zero size. The topology being rather a cylinder than a disc allows
now for the presence of the twisted boundary conditions.

It is also important to note that in all formalisms the potential difference between
the boundary and the horizon is given by μ. This has a very nice intuitive interpre-
tation. If we bring a unit test charge from the boundary to the horizon we need the
energy ΔE = μ. In the dual field theory this is just the energy cost of adding one unit
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of charge to the thermalized system and coincides with the elementary definition of
the chemical potential.

From now on we will always only consider the genuine finite T ,μ contribution
that is the only one that arises in formalism (B).

The rest of this review is devoted to the explicit evaluation of these Kubo formu-
lae in two different systems: free chiral fermions and a holographic model imple-
menting the chiral and gravitational anomalies by suitable five dimensional Chern-
Simons terms.

17.3 Weyl Fermions

We will now evaluate the Kubo formulae for the chiral magnetic, chiral vortical
and energy flux conductivities (17.46) for a theory of N free chiral fermions Ψ f

transforming under a global symmetry group G generated by matrices (Ta)
f

g .
We denote the generators in the Cartan subalgebra by Ha . Chemical potentials μa

can be switched on only in the Cartan subalgebra. Furthermore the presence of the
chemical potentials breaks the group G to a subgroup Ĝ. Only the currents that lie in
the unbroken subgroup are conserved (up to anomalies) and participate in the hydro-
dynamics. The chemical potential for the fermion Ψ f is given by μf = ∑

a q
f
a μa ,

where we write the Cartan generator Ha = q
f
a δf

g in terms of its eigenvalues, the

charges q
f
a . The unbroken symmetry group Ĝ is generated by those matrices T

f
a g

fulfilling

T
f
a gμ

g = μf T
f
a g. (17.54)

There is no summation over indices in the last expression. From now on we will
assume that all currents Ja lie in directions indicated in (17.54). We define the
chemical potential through the boundary condition on the fermion fields around the
thermal circle, i.e. we adopt the formalism (B) discussed in previous section,

Ψ f (τ − β) = −eβμf

Ψ f (τ). (17.55)

Therefore the eigenvalues of ∂τ are iω̃n + μf for the fermion spiecies f with
ω̃n = πT (2n + 1) the fermionic Matsubara frequencies. A convenient way of ex-
pressing the current and the energy-momentum tensor is in terms of Dirac fermions
and writing

J i
a =

N∑
f,g=1

T
g
a f Ψ̄gγ

iP+Ψ f , T 0i = i

2

N∑
f =1

Ψ̄f

(
γ 0∂i + γ i∂0)P+Ψ f ,

(17.56)
where we used the chiral projector P± = 1

2 (1 ± γ5). The fermion propagator is

S(q)f g = δf
g

2

∑
t=±

Δt

(
iω̃f ,q

)
P+γμq̂

μ
t , Δt

(
iω̃f , q

) = 1

iω̃f − tEq

,

(17.57)
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Fig. 17.4 1 loop diagram
contributing to the vortical
conductivity (17.58)

with iω̃f = iω̃n + μf , q̂
μ
t = (1, t q̂), q̂ = q

Eq
and Eq = |q|. For simplicity in the

expressions we consider only left-handed fermions, but one can easily include right-
handed fermions as well as they contribute in all our calculations in the same way
as the left-handed ones up to a relative minus sign.

We will address in detail the computation of the vortical conductivities and sketch
only the calculation of the magnetic conductivities since the latter one is a trivial
extension of the calculation of the chiral magnetic conductivity in [33]. Then we
show the results for the other conductivity coefficients.

17.3.1 Chiral Vortical Conductivity

The vortical conductivity is defined from the retarded correlation function of the cur-
rent J i

a(x) and the energy momentum tensor or energy current T 0j (x′) (17.56), i.e.

GV
a

(
x − x′) = 1

2
εijn iθ

(
t − t ′

)〈[
J i

a(x), T 0j
(
x′)]〉. (17.58)

Going to Fourier space, one can evaluate this quantity as

GV
a (k) = 1

4

N∑
f =1

T
f
a f

1

β

∑
ω̃f

∫
d3q

(2π)3
εijn tr

[
Sf

f (q)γ iSf
f (q + k)

(
γ 0qj +γ j iω̃f

)]
,

(17.59)
which corresponds to the one loop diagram of Fig. 17.4. The vertex of the two
quarks with the graviton is ∼δf

g , and therefore we find only contributions from the
diagonal part of the group Ĝ. The metric we use through this section is the usual
one in field theory computations, gμν = diag(1,−1,−1,−1). We can split GV

a into
two contributions, i.e.

GV
a (k) = GV

a,(0j)(k) + GV
a,(j0)(k), (17.60)

which correspond to the terms γ 0qj and γ j iω̃f in (17.59) respectively. We will
focus first on the computation of GV

a,(0j). After computation of the Dirac trace
in (17.59), this term writes
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GV
a,(0j)(k) = 1

8

N∑
f =1

T
f
a f

1

β

∑
ω̃f

∫
d3q

(2π)3
qj

∑
t,u=±

[
εijn

(
t
qi

Eq

+ u
ki + qi

Eq+k

)

+ i
tu

EqEq+k

(qj kn − qnkj )

]
Δt

(
iω̃f ,k

)
Δu

(
iω̃f + iωn,q + k

)
.

(17.61)

At this point one can make a few simplifications. Note that due to the antisymmetric
tensor εijn, the two terms proportional to qi inside the bracket in (17.61) vanish.
Regarding the term εijnq

j ki , it leads to a contribution ∼εijnk
j ki after integration in

d3q , which is zero. Then the only term which remains is the one not involving εijn.
We can now perform the sum over fermionic Matsubara frequencies. One has

1

β

∑
ω̃f

Δt

(
iω̃f ,q

)
Δu

(
iω̃f + iωn,q + p

)

= tn(Eq − tμf ) − un(Eq+k − uμf ) + 1
2 (u − t)

iωn + tEq − uEq+k

, (17.62)

where n(x) = 1/(eβx + 1) is the Fermi-Dirac distribution function. In (17.62) we
have considered that ωn = 2πT n is a bosonic Matsubara frequency. This result is
also obtained in Ref. [33]. After doing the analytic continuation, which amounts to
replacing iωn by k0 + iε in (17.62), one gets

GV
a,(0j)(k) = − i

8

N∑
f =1

T
f
a f

∫
d3q

(2π)3

q2kn − (q · k)qn

EqEq+k

×
∑

t,u=±

un(Eq − tμf ) − tn(Eq+k − uμf ) + 1
2 (t − u)

k0 + iε + tEq − uEq+k

. (17.63)

The term proportional to ∼ 1
2 (t − u) corresponds to the vacuum contribution, and it

is ultraviolet divergent. By removing this term the finite temperature and chemical
potential behavior is not affected, and the result becomes ultraviolet finite because
the Fermi-Dirac distribution function exponentially suppresses high momenta. By
making both the change of variable q → −q − k and the interchange u → −t and
t → −u in the part of the integrand involving the term −tn(Eq+k − uμf ), one can
express the vacuum substracted contribution of (17.63) as

ĜV
a,(0j)(k) = i

8
kn

N∑
f =1

T
f
a f

∫
d3q

(2π)3

1

EqEq+k

(
q2 − (q · k)2

k2

)

×
∑

t,u=±
u

n(Eq − μf ) + n(Eq + μf )

k0 + iε + tEq + uEq+k

, (17.64)
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where we have used that n(Eq − tμf )+n(Eq + tμf ) = n(Eq −μf )+n(Eq +μf )

since t = ±1. The result has to be proportional to kn, so to reach this expression
we have replaced qn by (q · k)kn/k2 in (17.63). At this point one can perform the
sum over u by using

∑
u=± u/(a1 + ua2) = −2a2/(a

2
1 − a2

2), and the integration
over angles by considering q · k = EqEkx and E2

q+k = E2
q + E2

k + 2EqEkx, where
x := cos(θ) and θ is the angle between q and k. Then one gets the final result

ĜV
a,(0j)(k) = i

16π2

kn

k2

(
k2 − k2

0

) N∑
f =1

T
f
a f

∫ ∞

0
dq qf V (q)

×
[

1 + 1

8qk

∑
t=±

[
k2

0 − k2 + 4q(q + tk0)
]

log

(
Ω2

t − (q + k)2

Ω2
t − (q − k)2

)]
,

(17.65)

where Ωt = k0 + iε + tEq , and

f V (q) = n
(
Eq − μf

) + n
(
Eq + μf

)
. (17.66)

The steps to compute GV
a,(j0) in (17.60) are similar. In this case the Dirac trace leads

to a different tensor structure, in which the only contribution comes from the trace
involving γ5. The sum over fermionic Matsubara frequencies involves an extra iω̃f ,
i.e.

1

β

∑
ω̃f

iω̃f Δt

(
iω̃f ,q

)
Δu

(
iω̃f + iωn,q + k

)

= 1

iωn + tEq − uEq+k

[
Eqn

(
Eq − tμf

) − (Eq+k − uiωn)n
(
Eq+k − uμf

)

− 1

2
(Eq − Eq+k + uiωn)

]
. (17.67)

The last term inside the bracket in the r.h.s. of (17.67) corresponds to the vacuum
contribution which we choose to remove, as it leads to an ultraviolet divergent con-
tribution after integration in d3q . Making similar steps as for ĜV

a,(0j), i.e. performing
the sum over u and integrating over angles, one gets the final result

ĜV
a,(j0)(k) = − i

32π2

kn

k3

N∑
f =1

T
f
a f

∫ ∞

0
dq

∑
t=±

f V
t (q, k0)

×
[

4tqkk0 − (
k2 − k2

0

)
(2q + tk0) log

(
Ω2

t − (q + k)2

Ω2
t − (q − k)2

)]
, (17.68)

where

f V
t (q, k0) = qf V (q) + tk0n

(
Eq + tμf

)
. (17.69)
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The result for the vacuum substracted contribution of the retarded correlation func-
tion of the current and the energy momentum tensor, ĜV

a (k), writes as a sum
of (17.65) and (17.68), according to (17.60). From these expressions one can com-
pute the zero frequency, zero momentum, limit. Since

lim
k→0

lim
k0→0

∑
t=±

log

(
Ω2

t − (q + k)2

Ω2
t − (q − k)2

)
= 2k

q
, (17.70)

the relevant integrals are

∫ ∞

0
dq qf V (q) =

∫ ∞

0
dq f V

t (q, k0 = 0) = (μf )2

2
+ π2

6
T 2. (17.71)

Finally it follows from (17.65) and (17.68) that the zero frequency, zero momentum,
vortical conductivity writes

(σV )a = 1

8π2

N∑
f =1

T
f
a f

[(
μf

)2 + π2

3
T 2

]

= 1

16π2

[∑
b,c

tr
(
Ta{Hb,Hc}

)
μbμc + 2π2

3
T 2 tr(Ta)

]
. (17.72)

Both ĜV
a,(0j) and ĜV

a,(j0) lead to the same contribution in (σV )a . Equation (17.72)
was first derived in [35], and it constitutes our main result in this section. The term
involving the chemical potentials is induced by the chiral anomaly. More interesting
is the term ∼T 2 which is proportional to the gravitational anomaly coefficient ba

[49–52]. This means that a non-zero value of this term has to be attributed to the
presence of a gravitational anomaly. The Matsubara frequencies ω̃n = πT (2n + 1)

generate a dependence on πT in the final result as compared to the chemical poten-
tials, and then no factors of π show up for the term ∼T 2 in (17.72). Right-handed
fermions contribute in the same way but with a relative minus sign. Therefore the
∼T 2 term appears only when the current in (17.58) has an axial component. The
correlator with a vector current does not have this gravitational anomaly contribu-
tion.

17.3.2 Chiral Magnetic Conductivity

The chiral magnetic conductivity in the case of a vector and an axial U(1) sym-
metry was computed at weak coupling in [33]. The corresponding Kubo formula
involves the two point function of the current, see first expression in (17.46). Fol-
lowing the same method, we have computed it for the unbroken (non-abelian) sym-
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metry group Ĝ. The relevant Green function is [35]

GB
ab(k) = 1

2

∑
f,g

T
f
a gT

g
b f

1

β

∑
ω̃f

∫
d3q

(2π)3
εijn tr

[
Sf

f (q)γ iSf
f (q + k)γ j

]
.

(17.73)

The evaluation of this expression is exactly as in [33] so we skip the details. The
zero frequency, zero momentum, limit of the magnetic conductivity is

(σB)ab = 1

4π2

N∑
f,g=1

T
f
a gT

g
b f μf = 1

8π2

∑
c

tr
(
Ta{Tb,Hc}

)
μc. (17.74)

In the second equality of (17.74) we have made use of (17.54). No contribution
proportional to the gravitational anomaly coefficient is found in this case.

17.3.3 Conductivities for the Energy Flux

We will include for completeness the result of the chiral magnetic and vortical con-
ductivities for the energy flux, corresponding to the last two expressions in (17.46).

The chiral magnetic conductivity for energy flux, σε
B , follows from the correla-

tion function of the energy momentum tensor and the current, and so it computes
in the same way as the vortical conductivity in Sect. 17.3.1. From an evaluation of
the corresponding Feynman diagram one finds that the result is the same as (17.59).
Then one concludes that (

σε
B

)
a

= (σV )a, (17.75)

where (σV )a is given by (17.72). Although these coefficients are equal, they describe
different transport phenomena. Whereas (σ ε

B)a describes the generation of an energy
flux due to an external magnetic field Ba , (σV )a describes the generation of the
current Ja due to an external field that sources the energy-momentum tensor T 0i .

Finally the chiral vortical conductivity for the energy flux, σε
V , follows from the

correlation function of two energy momentum tensors. There are three contributions
out of the four possible terms. One of these terms involves a sum over fermionic
Matsubara frequencies of the form

1

β

∑
ω̃f

(
iω̃f

)2
Δt

(
iω̃f ,q

)
Δu

(
iω̃f + iωn,q + k

)

= F (iωn,Eq,Eq+k, t, u) + 1

iωn + tEq − uEq+k

× [
tE2

qn
(
Eq − tμf

) − u(Eq+k − uiωn)
2n

(
Eq+k − uμf

)]
, (17.76)
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where F corresponds to the ultraviolet divergent vacuum contribution which we
choose to remove. The zero frequency, zero momentum, limit of the chiral vortical
conductivity for the energy flux writes

σε
V = 1

12π2

N∑
f =1

[(
μf

)3 + π2T 2μf
]

= 1

24π2

[∑
a,b,c

tr
(
Ha{Hb,Hc}

)
μaμbμc + 2π2T 2

∑
a

tr(Ha)μa

]
. (17.77)

This coefficient describes the generation of an energy flux due to a vortex (or a
gravito-magnetic field). The correlators (17.75) and (17.77) enter the chiral mag-
netic and vortical conductivities in the Landau frame, respectively, as defined in [27–
29], see (17.48)–(17.49). We have also checked that to lowest order in ω and k one
has 〈T 0zT 0z〉 = p, where p is the pressure of a free gas of massless fermions, and
〈T 0zJ z〉 = 0 [34].

17.3.4 Summary and Specialization to the Group U(1)V × U(1)A

The results for the different conductivities are neatly summarized as

(σB)ab = 1

4π2
dabcμ

c, (17.78)

(σV )a = (
σε

B

)
a

= 1

8π2
dabcμ

bμc + T 2

24
ba, (17.79)

σε
V = 1

12π2
dabcμ

aμbμc + T 2

12
baμ

a. (17.80)

The axial and mixed gauge-gravitational anomaly coefficients are defined by

dabc = 1

2

[
tr
(
Ta{Tb,Tc}

)
L

− tr
(
Ta{Tb,Tc}

)
R

]
, (17.81)

ba = tr(Ta)L − tr(Ta)R, (17.82)

where the subscripts L, R stand for the contributions of left-handed and right-
handed fermions. The result shows that these conductivities are non-zero if and only
if the theory features anomalies.

For phenomenological reasons it is interesting to specialize these results to the
symmetry group U(1)V ×U(1)A, i.e. one vector and one axial current with chemical
potentials μL = μ + μA, μR = μ − μA, charges qL

V,A = (1,1) and qR
V,A = (1,−1)

for one left-handed and one right-handed fermion. We find (for a vector magnetic
field)

(σB)V V = μA

2π2
, (σB)AV = μ

2π2
, (17.83)
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(σV )V = (
σε

B

)
V

= μμA

2π2
, (σV )A = (

σε
B

)
A

= μ2 + μ2
A

4π2
+ T 2

12
, (17.84)

σε
V = μA

6π2

(
3μ2 + μ2

A

) + μA

6
T 2. (17.85)

Here (σB)V V is the chiral magnetic conductivity [33], (σB)AV describes the gen-
eration of an axial current due to a vector magnetic field [57], (σV )V is the vector
vortical conductivity, (σV )A is the axial vortical conductivity, and σε

V is the vortical
conductivity for the energy flux. The vector and axial magnetic conductivities for
energy flux (σ ε

B)V and (σ ε
B)A coincide with the chiral vortical conductivities.

17.4 Holographic Model

In this section for simplicity we will consider a holographic system which real-
izes a single chiral U(1) symmetry with a gauge and mixed gauge-gravitational
anomaly [36]. As we saw in the previous section in a more realistic model
U(1)V ×U(1)A the transport coefficients receive contribution from the gravitational
part only in the axial sector. For a study of such a system with a pure gauge anomaly
using Kubo formulae, see [45].

17.4.1 Notation and Holographic Anomalies

Let us fix some conventions we will use in the Gravity Theory. We choose the five
dimensional metric to be of signature (−,+,+,+,+). Five dimensional indices
are denoted with upper case Latin letters. The epsilon tensor has to be distinguished
from the epsilon symbol by εABCDE = √−g ε(ABCDE). The symbol is defined
by ε(rtxyz) = +1. We assume the metric can be decomposed in ADM like way and
define an outward pointing normal vector to the holographic boundary of an asymp-
totically AdS space nA ∝ gAB ∂r

∂xB with unit norm nAnA = 1. So that the induced
metric takes the form

hAB = gAB − nAnB. (17.86)

In general a foliation of the space-time M with timelike surfaces defined through
r(x) = const can be written as

ds2 = (
N2 + NANA

)
dr2 + 2NA dxA dr + hAB dxA dxB. (17.87)

The Christoffel symbols, Riemann tensor and extrinsic curvature are given by

Γ M
NP = 1

2
gMK(∂NgKP + ∂P gKM − ∂KgNP ), (17.88)

RM
NPQ = ∂P Γ M

NQ − ∂QΓ M
NP + Γ M

PKΓ K
NQ − Γ M

QKΓ K
NP , (17.89)
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KAV = hC
A∇CnV = 1

2
£nhAB, (17.90)

where £n denotes the Lie derivative in direction of nA. Finally we can define our
model. The action is given by

S = 1

16πG

∫
M

d5x
√−g

[
R + 2Λ − 1

4
FMNFMN + εMNPQRAM

×
(

κ

3
FNP FQR + λRA

BNP RB
AQR

)]
+ SGH + SCSK, (17.91)

SGH = 1

8πG

∫
∂M

d4x
√−hK, (17.92)

SCSK = − 1

2πG

∫
∂M

d4x
√−hλnMεMNPQRANKPLDQKL

R, (17.93)

where SGH is the usual Gibbons-Hawking boundary term and DA is the induced
covariant derivative on the four dimensional surface. The second boundary term
SCSK is introduced to reproduce the gravitational anomaly at general hypersurface.

Let us study now the gauge symmetries of our model. We note that the action
is diffeomorphism invariant, but they do depend explicitly on the gauge connection
AM . Under gauge transformations δAM = ∇Mξ they are therefore invariant only up
to a boundary term. We have

δS = 1

16πG

∫
∂M

d4x
√−hξεMNPQR

(
κ

3
nMFNP FQR + λnMRA

BNP RB
AQR

)

− λ

4πG

∫
∂M

d4x
√−hnMεMNPQRDNξKPLDQKL

R. (17.94)

Now without loss of generality we can choose the gauge N = 1 and NA = 0
which defines the so called Gaussian normal coordinates, and the metric takes the
form ds2 = dr2 + γij dxi dxj . After doing the decomposition in terms of induced
surface and orthogonal fields, all the terms depending on the extrinsic curvature
cancel thanks to the contributions from SCSK ! The gauge variation of the action
depends only on the intrinsic four dimensional curvature of the boundary and is
given by

δS = 1

16πG

∫
∂M

d4x
√−hεmnkl

(
κ

3
F̂mnF̂kl + λR̂i

jmnR̂
j

ikl

)
. (17.95)

This has to be interpreted as the anomalous variation of the effective quantum action
of the dual field theory. As consequence of the discussion in Sect. 17.2.1 we can
recognize the form of the consistent anomaly and use (17.9) to fix κ for a single
fermion transforming under a U(1)L symmetry. Similarly we can fix λ by matching
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to the gravitational anomaly of a single left-handed fermion (17.21) and find

− κ

48πG
= 1

96π2
, − λ

16πG
= 1

768π2
. (17.96)

The bulk equations of motion are

GMN − ΛgMN = 1

2
FMLFN

L − 1

8
F 2gMN + 2λεLPQR(M∇B

(
FPLRB

N)
QR

)
,

(17.97)

∇NFNM = −εMNPQR
(
κFNP FQR + λRA

BNP RB
AQR

)
. (17.98)

A remarkable fact is that the mixed Chern-Simons term does not introduce new
singularities into the on-shell action for any asymptotically AdS solution, i.e. no new
counterterm is needed to renormalize the theory. See [36] for a detailed discussion
of the renormalization of the model and Appendix 1 to see the counterterms.

17.4.2 Applying Kubo Formulae and Linear Response

In order to compute the conductivities under study using the Kubo formulae (17.46),
we will use tools of linear response theory. To do so we introduce metric and gauge
fluctuations over a charged black hole background and use the AdS/CFT dictionary
to compute the retarded propagators [58, 59]. Therefore we split the backgrounds
and fluctuations as,

gMN = g
(0)
MN + εhMN, (17.99)

AM = A
(0)
M + εaM. (17.100)

After the insertion of these fluctuations and background fields in the action and
expanding up to second order in ε we can read the on-shell boundary second order
action which is needed to get the desired propagators [60],

δS(2)
ren =

∫
ddk

(2π)d

{
ΦI−kAIJ Φ ′J

k + ΦI−kBIJ ΦJ
k

}∣∣
r→∞, (17.101)

where prime means derivative with respect to the radial coordinate, ΦI
k is a vector

constructed with the Fourier transformed components of aM and hMN ,

ΦI
(
r, xμ

) =
∫

ddk

(2π)d
ΦI

k (r)e−iωt+ikx, (17.102)

and A and B are two matrices extracted from the boundary action and that we will
show below.
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For a coupled system the holographic computation of the correlators consists in
finding a maximal set of linearly independent solutions that satisfy infalling bound-
ary conditions on the horizon and that source a single operator at the AdS boundary
[58–61]. To do so we can construct a matrix of solutions FI

J (k, r) such that each
of its columns corresponds to one of the independent solutions and normalize it to
the unit matrix at the boundary. Therefore, given a set of boundary values for the
perturbations, ϕI

k , the bulk solutions are

ΦI
k (r) = FI

J (k, r)ϕJ
k . (17.103)

Finally using this decomposition we obtain the matrix of retarded Green’s functions

GIJ (k) = −2 lim
r→∞

(
AIM

(
FM

J (k, r)
)′ + BIJ

)
. (17.104)

The system of equations (17.97)–(17.98) admit the following exact background
AdS Reissner-Nordström black-brane solution

ds2 = r2

L2

(−f (r)dt2 + dx2) + L2

r2f (r)
dr2, (17.105)

A(0) = φ(r)dt =
(

ν − μr2
H

r2

)
dt, (17.106)

where the horizon of the black hole is located at r = rH and the blackening factor of
the metric is

f (r) = 1 − ML2

r4
+ Q2L2

r6
. (17.107)

The parameters M and Q of the RN black hole are related to the chemical poten-
tial μ and the horizon rH by7

M = r4
H

L2
+ Q2

r2
H

, Q = μr2
H√
3

. (17.108)

The Hawking temperature is given in terms of these black hole parameters as

T = r2
H

4πL2
f ′(rH) = (2r2

HM − 3Q2)

2πr5
H

. (17.109)

The pressure of the gauge theory is P = M

16πGL3 and its energy density is ε = 3P

due to the underlying conformal symmetry.

7The chemical potential is introduced as the energy needed to introduce an unit of charge from
the boundary to behind the horizon A(∞) − A(rH) which corresponds to the prescription (B) in
Table 17.1. Observe that we have left the source value A(∞) = ν as an arbitrary constant for
reasons we will explain later.
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To study the effect of anomalies we just turned on the shear sector (transverse
momentum fluctuations) aα and hα

t and set without loss of generality the momentum
k in the y-direction at zero frequency, so α = x, z. Since we are interested in the
hydrodynamical regime (k,ω 
 T ), it is just necessary to find solutions up to first
order in momentum. So that we expand the fields in terms of the dimensionless
momentum p = k/4πT such as

hα
t (r) = h

(0)α
t (r) + ph

(1)α
t (r), (17.110)

Bα(r) = B(0)
α (r) + pB(1)

α (r), (17.111)

with the gauge field redefined as Bα = aα/μ. For convenience we redefine new
parameters and radial coordinate

λ̄ = 4μλL

r2
H

; κ̄ = 4μκL3

r2
H

; a = μ2L2

3r2
H

; u = r2
H

r2
. (17.112)

In this new radial coordinate the horizon sits at u = 1 and the AdS boundary at u = 0.
At zero frequency the system of differential equations consists on four second order
equations.8 The relevant physical boundary conditions on fields are: hα

t (0) = H̃ α ,
Bα(0) = B̃α ; where the ‘tilde’ parameters are the sources of the boundary operators.
The second condition compatible with the ingoing one at the horizon is regularity
for the gauge field and vanishing for the metric fluctuation [34].

After solving the system perturbatively (see [36] for solutions), we can go back to
the formula (17.104) and compute the corresponding holographic Green’s functions.
If we consider the vector of fields to be

Φ�
k (u) = (

Bx(u),hx
t (u),Bz(u),hz

t (u)
)
, (17.113)

the A and B matrices for that setup take the following form

A = r4
H

16πGL5
Diag

(
−3af,

1

u
,−3af,

1

u

)
, (17.114)

BAdS+∂ = r4
H

16πGL5

⎛
⎜⎜⎜⎜⎜⎝

0 −3a
4κikμ2φL5

3r4
H

0

0 − 3
u2 0 0

−4κikμ2φL5

3r4
H

0 0 −3a

0 0 0 − 3
u2

⎞
⎟⎟⎟⎟⎟⎠

, (17.115)

8The complete system of equations depending on frequency and momentum is showed in Ap-
pendix 2. The system consists of six dynamical equations and two constraints.
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BCT = r4
H

16πGL5

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 3
u2

√
f

0 0

0 0 0 0

0 0 0 3
u2

√
f

⎞
⎟⎟⎟⎟⎟⎟⎠

, (17.116)

where B = BAdS+∂ + BCT .9 Notice that there is no contribution to the matrices
coming from the Chern-Simons gravity part, because the corresponding contribu-
tions vanish at the boundary. These matrices and the perturbative solutions are the
ingredients to compute the matrix of propagators. Undoing the vector field redefini-
tion introduced in (17.111) the non-vanishing retarded correlation functions at zero
frequency are then

Gx,tx = Gz,tz =
√

3Q

4πGL3
, (17.117)

Gx,z = −Gz,x = i
√

3kQκ

2πGr2
H

+ ikνκ

6πG
, (17.118)

Gx,tz = Gtx,z = −Gz,tx = −Gtz,x = 3ikQ2κ

4πGr4
H

+ 2ikλπT 2

G
, (17.119)

Gtx,tx = Gtz,tz = M

16πGL3
, (17.120)

Gtx,tz = −Gtz,tx = + i
√

3kQ3κ

2πGr6
H

+ 4πi
√

3kQT 2λ

Gr2
H

. (17.121)

We can do an important remark observing (17.118). Remember that we left the
boundary value of the background gauge field (17.106) arbitrary as a constant ν.
But as the U(1) symmetry is anomalous in the Field Theory side, physical quantities
have to be sensitive to the source A0,10 indeed as we can check they are. In particular
if we choose the value ν = μ which corresponds to formalism (A) in Table 17.1, we
need to include the counterterm (17.29) in order to get the same propagator as at
weak coupling. In fact in [44, 45] it has been shown that in the case of a propagator
between two vector currents, choosing this specific value for ν the propagator would
be zero, giving us in consequence a zero value for the chiral magnetic conductivity.
Hence to be consistent with the scheme we are working at, let us just consider ν

as a source in the field theory. Therefore the real propagator is the one with ν = 0
because as is well known we have to set all sources to zero after taking the second

9BCT is coming from the counterterms of the theory.
10In principle A0 could be gauged away for the symmetric case and in consequence observables
should not depend on its value. For example look at [45] to see how in presence of a U(1)V ×
U(1)A symmetry with only the U(1)V conserved, propagators do not depend on the specific value
of the zero component of the vector gauge source V0.
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functional derivative of the effective action. Finally using the Kubo formulae (17.46)
we recover the vortical and axial-magnetic conductivities

σB = −
√

3Qκ

2πGr2
H

= μ

4π2
, (17.122)

σV = σε
B = − 3Q2κ

4πGr̄4
H

− 2λπT 2

G
= μ2

8π2
+ T 2

24
, (17.123)

σε
V = −

√
3Q3κ

2πGr6
H

− 4π
√

3QT 2λ

Gr2
H

= μ3

12π2
+ μT 2

12
. (17.124)

All these expressions coincide with the results in Sect. 17.3, (17.78), (17.79) and
(17.80) if we specialize to dabc = 1 and ba = 1. They are in perfect agreement with
the literature [27–29, 34] except for the contribution coming from the gravitational
anomaly which is manifest by the presence of the extra λT 2. All the numerical
coefficients coincide precisely with the ones obtained at weak coupling; this we take
as a strong hint that the anomalous conductivities are indeed completely determined
by the anomalies and are not renormalized beyond one loop. Evidence for non-
renormalization comes also from [62] where a holographic renormalization group
running of the conductivities showed the same result at any value of the holographic
cut-off. We also point out that the T 3 term that appears as undetermined integration
constant in the hydrodynamic considerations in [63] should make its appearance in
σε

V . We do not find any such term which is consistent with the argument that this
term is absent due to CPT invariance.

It is also interesting to write down the magnetic and vortical conductivities us-
ing (17.48) and (17.49) as they appear in the Landau frame to compare with the Son
and Surowka form [29]

ξB = −
√

3Q(ML2 + 3r4
H)κ

8πGML2r2
H

+
√

3QλπT 2

GM
= 1

4π2

(
μ − 1

2

n(μ2 + π2T 2

3 )

ε + P

)
,

(17.125)

ξV = − 3Q2κ

4πGML2
− 2πλT 2(r6

H − 2L2Q2)

GML2r2
H

= μ2

8π2

(
1 − 2

3

nμ

ε + P

)
+ T 2

24

(
1 − 2nμ

ε + P

)
. (17.126)

These expressions agree with the literature except for the λT 2 term. A last comment
can be done, the shear viscosity entropy ratio is not modified by the presence of
the gravitational anomaly. We know that η ∝ limω→0

1
ω
〈T xyT xy〉k=0, so we should

solve the system at k = 0 for the fluctuations hi
y but the anomalous coefficients

always appear with a momentum k (see Appendix 2), therefore if we switch off
the momentum, the system looks precisely as the theory without anomalies. In [64]
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it has been shown that the black hole entropy doesn’t depend on the extra Chern-
Simons term.11

17.5 Conclusion and Outlook

In the presence of external sources for the energy momentum tensor and the currents,
the anomaly is responsible for a non conservation of the latter. This is conveniently
expressed through [52]

DμJμ
a = εμνρλ

(
dabc

32π2
Fb

μνF
c
ρλ + ba

768π2
Rα

βμνR
β

αρλ

)
, (17.127)

where the axial and mixed gauge-gravitational anomaly coefficients, dabc and ba ,
are given by (17.22) and (17.23) respectively.

We have discussed in Sect. 17.2 the constitutive relations and derived the Kubo
formulae that allow the calculation of transport coefficients at first order in the hy-
drodynamic expansion. We explained also subtleties in the definition of the chemical
potential in the presence of anomalies. The explicit evaluation of these Kubo formu-
lae in quantum field theory has been performed in Sect. 17.3 for the chiral magnetic,
chiral vortical and energy flux conductivities of a relativistic fluid at weak coupling,
and we found contributions proportional to the anomaly coefficients dabc and ba .
Non-zero values of these coefficients are a necessary and sufficient condition for the
presence of anomalies [52]. Therefore the non-vanishing values of the transport co-
efficients have to be attributed to the presence of chiral and gravitational anomalies.

In order to perform the analysis at strong coupling via AdS/CFT methods, we
have defined in Sect. 17.4 a holographic model implementing both type of anomalies
via gauge and mixed gauge-gravitational Chern-Simons terms. We have computed
the anomalous magnetic and vortical conductivities from a charged black hole back-
ground and have found a non-vanishing vortical conductivity proportional to ∼T 2.
These terms are characteristic for the contribution of the gravitational anomaly and
they even appear in an uncharged fluid. The T 2 behavior had appeared already previ-
ously in neutrino physics [17–20]. In [30] similar terms in the vortical conductivities
have been argued for, but just in terms of undetermined integration constants with-
out any relation to the gravitational anomaly. Very recently a generalization of the
results (17.122)–(17.124) to any even space-time dimension as a polynomial in μ

and T [39] has been proposed. Finally, the consequences of this anomaly in hy-
drodynamics have been studied using a group theoretic approach, which seems to
suggest that their effects could be present even at T = 0 [66]. The numerical val-
ues of the anomalous conductivities at strong coupling are in perfect agreement with
weak coupling calculations, and this suggests the existence of a non-renormalization
theorem including the contributions from the gravitational anomaly.

11For a four dimensional holographic model with gravitational Chern-Simons term and a scalar
field this has also been shown in [65].
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There are important phenomenological consequences of the present study to
heavy ion physics. In [67] enhanced production of high spin hadrons (especially
Ω− baryons) perpendicular to the reaction plane in heavy ion collisions has been
proposed as an observational signature for the chiral separation effect. Three sources
of chiral separation have been identified: the anomaly in vacuum, the magnetic and
the vortical conductivities of the axial current J

μ
A . Of these the contribution of the

vortical effect was judged to be subleading by a relative factor of 10−4. The T 2

term in (17.123) leads however to a significant enhancement. If we take μ to be the
baryon chemical potential μ ≈ 10 MeV, neglect μA as in [67] and take a typical
RHIC temperature of T = 350 MeV, we see that the temperature enhances the axial
chiral vortical conductivity by a factor of the order of 104. We expect the enhance-
ment at the LHC to be even higher due to the higher temperature.

In this review we have presented the computation of the transport coefficients,
and in particular their gravitational anomaly contributions, via Kubo formulae. It
would be interesting to calculate directly the constitutive relations of the hydro-
dynamics of anomalous currents via the fluid/gravity correspondence within the
holographic model of Sect. 17.4, [27, 28, 68]. This approach will allow us to
compute transport coefficients at higher orders [69, 70]. This study is currently in
progress [71].
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Appendix 1: Boundary Counterterms

The result one gets for the counterterm coming from the regularization of the bound-
ary action of the holographic model in Sect. 17.4 is

Sct = − 3

8πG

∫
∂M

d4x
√−h

[
1 + 1

2
P − 1

12

(
P i

j P
j
i − P 2 − 1

4
F̂ij F̂

ij

)
log e−2ρ

]
,

(17.128)

where hat on the fields means the induced field on the cut-off surface and

P = 1

6
R̂, P i

j = 1

2

[
R̂i

j − Pδi
j

]
. (17.129)

As a remarkable fact there is no contribution in the counterterm coming from the
gauge-gravitational Chern-Simons term. This has also been derived in [72] in a sim-
ilar model that does however not contain SCSK .
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Appendix 2: Equations of Motion for the Shear Sector

These are the complete linearized set of six dynamical equations of motion,

0 = B ′′
α(u) + f ′(u)

f (u)
B ′

α(u) + b2

uf (u)2

(
ω2 − f (u)k2)Bα(u) − hα′

t (u)

f (u)

+ ikεαβ

(
3

uf (u)
λ̄

(
2

3a

(
f (u) − 1

) + u3
)

h
β ′
t (u) + κ̄

Bβ(u)

f (u)

)
, (17.130)

0 = hα′′
t (u) − hα′

t (u)

u
− b2

uf (u)

(
k2hα

t (u) + hα
y (u)ωk

) − 3auB ′
α(u)

× iλ̄kεαβ

[(
24au3 − 6

(
1 − f (u)

))Bβ(u)

u
+ (

9au3 − 6
(
1 − f (u)

))
B ′

β(u)

+ 2u
(
uh

β ′
t (u)

)′ − 2ub2

f (u)

(
hβ

y (u)ωk + h
β
t (u)k2)], (17.131)

0 = hα′′
y (u) + (f/u)′

f/u
hα′

y (u) + b2

uf (u)2

(
ω2hα

y (u) + ωkhα
t (u)

) + 2uikλ̄εαβ

[
uhβ ′′

y (u)

+ (
9f (u) − 6 + 3au3)h

β ′
y (u)

f (u)
+ b2

f (u)2

(
ωkh

β
t (u) + w2hβ

y (u)
)]

, (17.132)

and two constraints for the fluctuations at ω,k �= 0

0 = ω
(
hα′

t (u) − 3auBα(u)
) + f (u)khα′

y (u) + ikλ̄εαβ

[
2u2(ωh

β ′
t + f (u)khβ ′

y (u)
)

+ (
9au3 − 6

(
1 − f (u)

))
Bβ(u)

]
. (17.133)
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