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Chapter 1
Strongly Interacting Matter in Magnetic Fields:
A Guide to This Volume

Dmitri E. Kharzeev, Karl Landsteiner, Andreas Schmitt, and Ho-Ung Yee

1.1 Introduction

Electromagnetic probes have proved to be extremely important for understanding
strongly interacting matter—for example, the discovery of Bjorken scaling in deep-
inelastic scattering (DIS) has allowed to establish quarks as the constituents of the
proton, and has opened the path towards Quantum Chromodynamics (QCD) and
the discovery of asymptotic freedom. The development of QCD has quickly led to
the realization that the dynamics of extended field configurations is crucial for un-
derstanding non-perturbative phenomena, including spontaneous breaking of chiral
symmetry and confinement that define the properties of our world. The challenge
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of understanding the collective dynamics in QCD calls for the study of response of
strongly interacting matter to intense coherent electromagnetic fields. Such fields in-
duce a host of interesting phenomena in QCD matter, and understanding them brings
us closer to the ultimate goal of understanding QCD. Some of these phenomena
(e.g. Magnetic Catalysis of chiral symmetry breaking [1],1 and Inverse Magnetic
Catalysis [2]) exist in a static equilibrium ground state, and affect the phase dia-
gram of QCD matter in a magnetic field. About one half of this volume addresses
such equilibrium phenomena, mostly in the context of QCD [3–6], and we give
an overview over this part in Sect. 1.3. The other half addresses mainly anomaly-
induced transport phenomena and is summarized in Sect. 1.2. These phenomena
include the Chiral Magnetic and Chiral Vortical effects (reviewed in [7–14]) which
require the existence of a chirality imbalance induced by the topological transitions
in matter or the presence of vorticity.

Experimental access to the study of QCD plasma in very intense magnetic fields
with magnitude eB ∼ m2

π (or ∼1018 G) is provided by collisions of relativistic
heavy ions at nonzero impact parameter. They create a magnetic field which is (on
average) aligned perpendicular to the reaction plane. Somewhat weaker magnetic
fields ∼1015 G exist on the surface of magnetars. They are possibly much larger
in the interior of the star, where they may affect the properties of cold dense quark
matter as reviewed in [15].

1.2 Chiral Magnetic Effect and Anomaly-Induced Transport

The Chiral Magnetic Effect (CME) is the phenomenon of electric charge separation
along an external magnetic field that is induced by a chirality imbalance. In QCD
matter, the source of chirality imbalance are the transitions between the topologi-
cally distinct states—the index theorem and the axial anomaly relate the resulting
change in topological number to the chirality of fermion zero modes. The CME is
thus a topological effect: it results from an interplay of topology of the zero mode
of a charged fermion in an external Abelian magnetic field, and of the non-Abelian

1In this introduction we refer only to the contributions in the volume, and provide the correspond-
ing arXiv references when available; many more references can be found in these individual con-
tributions. If you would like to cite one of the contributions on a specific topic, please refer to them
directly (instead of citing the entire volume), e.g.

E. D’Hoker, P. Kraus, in Strongly Interacting Matter in Magnetic Fields, ed. by D. Kharzeev,
K. Landsteiner, A. Schmitt, H.-U. Yee. Lect. Notes Phys. 871, 467 (2013). arXiv:
1208.1925

If you would like to refer to a broad review representing the collective work of the authors, you
can refer to the entire volume as

Strongly Interacting Matter in Magnetic Fields, ed. by D. Kharzeev, K. Landsteiner,
A. Schmitt, H.-U. Yee. Lect. Notes Phys. 871, 1 (2013). arXiv:1211.6245

http://arxiv.org/abs/arXiv:1208.1925
http://arxiv.org/abs/arXiv:1208.1925
http://arxiv.org/abs/arXiv:1211.6245
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topology of the gluon field configurations. Because of this, the CME current is topo-
logically protected (not sensitive to local perturbations) and non-dissipative.

At weak coupling, the quasi-particle picture is appropriate, and allows to un-
derstand the phenomenon in a very simple and intuitive way, as we now explain.
An external magnetic field aligns the spins of the positive and negative fermions
at the lowest Landau level in opposite directions (only the lowest Landau level
matters for the CME, as the contributions of all excited levels cancel out—see [8]
for details). Therefore, the electric charge, chirality and momentum of the fermion
are correlated—for example, a positively charged right-handed fermion propagates
along the direction of magnetic field, and a negative right-handed fermion propa-
gates in the opposite direction. This creates an electric current, which however is
usually compensated by the left-handed fermions that propagate in the opposite di-
rection.

Let us however imagine that the fermions, apart from the Abelian U(1) charge,
are also charged under a non-Abelian group—for us, the most important exam-
ple is provided by quarks, which carry both electric and color charges. The non-
Abelian gauge theories possess a rich spectrum of topological solutions, and the
axial anomaly links the topology of gauge fields to the chirality of fermions. There-
fore, in a topologically non-trivial non-Abelian background, the numbers of left-
and right-handed fermions will in general differ—because of this, their contribu-
tions to the electric current will no longer cancel. As a result, an external magnetic
field will induce an electric current along its direction—an effect that is absent in
Maxwell electrodynamics.

The absence of CME in conventional electrodynamics follows already from sym-
metry considerations—the magnetic field is a (parity-even) pseudo-vector, and the
electric current is a (parity-odd) vector. Therefore, CME signals the violation of
parity—indeed, as we discussed above, its presence requires the asymmetry between
the left and right fermions.

It is well known that there are no perturbative corrections to the axial anomaly, so
the CME expressions for the electric current and electric dipole moment are exact (at
the operator level). Moreover, because the origin of CME is topological, it appears
that the CME current at zero frequency remains the same even in the limit of strong
coupling, that is accessible theoretically through the holographic correspondence—
see [12, 16]. A phenomenon similar to CME arises when instead of a magnetic
field there is an angular momentum (vorticity) present—this is the so-called Chiral
Vortical Effect (CVE). The CVE is also caused by the quantum anomaly, but by
the gravitational one [16]. In a holographic setup, this is described through a mixed
gauge-gravitational Chern-Simons term.

In the absence of external charge, magnetic field in the framework of AdS/CFT
correspondence induces an RG flow to an infrared AdS2 ×R

2 geometry [17]. This
theory is the holographic description of the dimensionally reduced 2d conformal
field theory describing the strongly coupled fermions on lowest Landau levels. In
general, the dimensional reduction proves very beneficial to treating the CME and
related phenomena—see [9] for review. In particular, in the limit of strong magnetic
field one can construct an explicit solution describing the QCD instanton in mag-
netic background [9]—since the instanton induces an asymmetry between left- and
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right-handed fermions, this solution has been found to possess electric dipole mo-
ment, in accord with CME expectations. It is of great interest to investigate the
dynamics of CME by considering the decay of topological objects in magnetic
backgrounds—see [11] for a review.

The persistence of CME at strong coupling and small frequencies makes the hy-
drodynamical description of the effect possible, as reviewed in [10]. The quantum
anomalies in general have been found to modify hydrodynamics in a significant
way. This has a profound importance for transport, as the anomalies make it pos-
sible to transport currents without dissipation—this follows from the P -odd and
T -even nature of the corresponding transport coefficients. The existence of CME
and CVE in hydrodynamics is interesting also for the following reason—usually, in
the framework of quantum field theory one thinks about quantum anomalies as of
UV phenomena arising from the regularization of loop diagrams. However, we now
see that the anomalies also modify the large distance, low frequency, response of
relativistic fluids. This is because the anomalies link the chirality of fermion zero
modes to the global topology of gauge fields.

The CME can be studied numerically from first principles on Euclidean space-
time lattices, see [13, 14] for reviews. On the lattice, one can measure the fluctu-
ations of electric charge asymmetry induced by the dynamical topological fluctua-
tions in QCD vacuum and plasma in a magnetic background [13]. Alternatively, one
can introduce the chiral chemical potential, and measure the CME current explic-
itly, testing the relation between the current, magnetic field, and the chiral chemical
potential—this approach is reviewed in [14]. Note that the chiral chemical potential
(unlike the baryon one) does not lead to the determinant “sign problem” and thus
does not prevent one from performing lattice QCD simulations.

From the experimental viewpoint, CME makes it possible (at least in principle)
to observe directly the fluctuations of topological charge in heavy ion collisions—
indeed, these fluctuations in magnetic field induce the asymmetry of electric charge
distributions with respect to the reaction plane. Such a study has to carefully sepa-
rate the CME effects from all possible backgrounds, as reviewed in [18]. One of the
CME tests discussed in [18] is the collision of two Uranium ions where the defor-
mation of the Uranium nucleus allows to separate the CME from the backgrounds,
as we now explain.

The main idea behind the UU measurement is the following: all possible back-
grounds to CME should, on symmetry grounds, be proportional to the elliptic flow
of hadrons. The elliptic flow stems from the ellipticity of the initial fireball produced
in heavy ion collisions, and so it exists only in non-central collisions, just like the
magnetic field that drives the CME. This complicates the separation of CME from
possible background effects [18]. However, since the Uranium nucleus is strongly
deformed, even most central UU collisions (where there is no magnetic field) pro-
duce a deformed fireball and hence a sizable elliptical flow of hadrons. Thus, if the
charge separation persists in most central UU collisions, the observed effect is most
likely due to background, and vice versa. Very recently, the RHIC result on UU
collisions has been presented at the Quark Matter 2012 Conference by the STAR
Collaboration. The presented result indicates that the signal vanishes in the absence
of a magnetic field, providing a strong support for the CME interpretation.
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1.3 Phase Structure in a Magnetic Field

Equilibrium properties of matter can be changed significantly by the presence of a
background magnetic field. This is true even for non-interacting matter. Consider
for example a Fermi sphere of charged, non-interacting fermions, say at zero tem-
perature, that is subject to a static and homogeneous magnetic field. Instead of a
continuous spectrum with respect to all three momentum directions, the system will
develop discrete energy levels with respect to the momentum directions transverse
to the magnetic field. Only the longitudinal momentum remains continuous. If the
magnetic field is large enough, i.e. of the order of the Fermi momentum squared,
the discretization of the energy levels, called Landau levels, will have an important
effect on the properties of the system. For instance, upon increasing the magnetic
field, the distance between the energy levels increases and as these levels “pass” the
given Fermi energy, the observable quantities such as the number density change.
Eventually, for sufficiently large magnetic fields, all fermions reside in the lowest
Landau level, where only one spin polarization is allowed. The system has become
fully polarized.

A more challenging question is how the equilibrium properties of strongly inter-
acting matter are affected by a magnetic field. One might for instance ask whether
there are still Landau levels or whether this description becomes incorrect. One
might also wonder about the phase transitions induced by magnetic field—do we
enter genuinely different phases upon increasing a background magnetic field in a
given, strongly-interacting, system? If yes, what are the order parameters, what is
the order of these phase transitions, and what are the critical magnetic fields? Or,
ultimately, what is the phase diagram of a given system with one of the axes cor-
responding to the magnetic field? A well-studied example from condensed-matter
physics is the phase diagram of Helium-3. Due to the nontrivial structure of the
order parameter with respect to spin and orbital angular momentum, Helium-3 has
more than one superfluid phase, and an externally applied magnetic field can induce
phase transitions between different superfluid phases.

1.3.1 Phases of QCD in a Magnetic Field

In these Lecture Notes, the term “strongly interacting matter” mostly refers to the
matter governed by QCD, although some chapters address questions from “ordi-
nary” condensed-matter systems [17, 19, 20], see also the discussion about graphene
in Sect. 3.3 of Ref. [1]. Usually, “the phase diagram of QCD” is drawn in the plane
spanned by the temperature T and the baryon chemical potential μ. But various
additional directions, i.e., higher-dimensional versions of the phase diagram, are of
interest as well. First, one can imagine to change the parameters of QCD by hand,
for example by adding an axis for the quark mass(es) or for the number of colors Nc

to the phase diagram. The purpose of such a theoretical manipulation can be to enter
a more tractable regime and/or to put the QCD phase structure into a wider context,



6 D.E. Kharzeev et al.

with the ultimate goal to understand better the phase structure of real-world QCD.
Second, there are external parameters of direct phenomenological interest that re-
flect the characteristics of matter, such as the baryon and isospin chemical potentials
that become important in the context of neutron stars. A (uniform) magnetic field
is both: it is of phenomenological interest but also a theoretically useful “knob” by
which interesting and rich physics can be introduced which may help us to deepen
our understanding of strongly interacting systems. (This volume mostly addresses
the effects of a magnetic field from ordinary U(1) electromagnetism; the effects of
chromomagnetic fields are briefly discussed in [6].)

Phase transitions in QCD can be expected to occur at energy scales comparable
to the QCD scale ΛQCD ∼ 200 MeV. As a consequence, we are interested in mag-
netic field strengths of the order of B ∼ (200 MeV)2 � 2 × 1018 G. As mentioned
above, such strong magnetic fields indeed exist in non-central heavy-ion collisions
[18] (at least temporarily), and possibly in the interior of compact stars, then called
magnetars [15]. These two instances are (together with the early universe) the only
systems with which we can reach out “experimentally” also into the μ-T plane of
the QCD phase diagram and thus probe the phase structure of QCD. Most notably,
we are interested in the nonperturbative phenomena of confinement and chiral sym-
metry breaking. Both heavy-ion collisions and compact stars are expected to “live”
in a region of the phase diagram where the transitions to deconfined and/or chirally
restored matter occur and thus it is relevant to discuss the location and the nature of
these transitions in magnetized QCD matter.

The various chapters addressing the phase structure of QCD in magnetic fields
[1–6, 15, 21] make use of different theoretical tools. At asymptotically large en-
ergies, methods from perturbative QCD can be applied, see parts of [1, 15]. For
moderate energies, however, first-principle QCD calculations can only be done on
the lattice and are restricted to vanishing (vector) chemical potentials [6]. These re-
sults from QCD are complemented by model calculations, which may differ (and,
judging from the results presented here, do differ) in important aspects from actual
QCD. Nevertheless, they may be useful to get an idea about some of the phys-
ical mechanisms behind the phase structure. The models discussed here are the
Nambu-Jona-Lasinio (NJL) model, including different variants with respect to the
interaction terms and extensions to incorporate confinement (PNJL) [1–3, 5], the
MIT bag model [4], and a quark-meson model [3, 4]. Additionally, we employ the
gauge/gravity duality [2, 21] which provides us with a reliable tool for the physics
in the strongly coupled limit, albeit for theories that differ more or less—depending
on the model at hand—from real QCD.

The holographic calculations presented here make use of two different setups.
Firstly, based on the original AdS/CFT correspondence, a background geometry
given by D3-branes is discussed, where D7-branes, corresponding to fundamental
(as opposed to adjoint) degrees of freedom, are introduced as probe branes [21]. And
secondly, we use the Sakai-Sugimoto model, where “chiral” D8-branes are embed-
ded into a background of D4-branes, which includes a compact extra dimension that
serves to break supersymmetry completely [2, 21].
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The picture that emerges from these studies is, concerning QCD, a preliminary
one at best, and many questions are still open—and, in fact, are raised by these stud-
ies. Nevertheless, let us try to summarize the current picture. Before one addresses
the question of how a magnetic field affects a hot and dense medium, one might ask
whether and how the vacuum changes in a magnetic field. A very important part
of the answer to this question—since it is of very general nature and thus not only
relevant for QCD—is “magnetic catalysis”, which is reviewed in great detail in Ref.
[1]. This effect has been confirmed in numerous model calculations, as well as in
QED-like theories and—at least at zero temperature—in QCD lattice calculations.
In simple words, it says that a magnetic field favors chiral symmetry breaking. A
more precise version, for instance employing the mean-field approximation of the
NJL model, is as follows. For μ = T = 0 and vanishing magnetic field, there is
a critical coupling strength above which a chiral condensate forms, i.e., there is a
phase transition from the chirally restored to the chirally broken phase as one in-
creases the (attractive) coupling of the four-fermion interaction. In the presence of
a background magnetic field, however, there is a chiral condensate for arbitrarily
small coupling. Thus, the magnetic field has a profound qualitative effect on chiral
symmetry breaking. One way to understand the physics behind magnetic catalysis
is the analogy to BCS Cooper pairing. In both cases, the dynamics of the system be-
comes effectively 1+1 dimensional at weak coupling, in the case of Cooper pairing
because of the presence of the Fermi surface, in the case of chiral condensation be-
cause of the magnetic field. As a consequence, an infrared divergence occurs which
is cured by a nonvanishing mass gap that shows precisely the same exponential,
nonperturbative behavior in both cases.

Another possible effect of an ultra-strong magnetic field on the QCD vacuum
is the condensation of ρ mesons [5]. In a weak-coupling picture, this condensa-
tion is suggested from the Landau-level structure of spin-1 bosons. Since ρ mesons
are electrically charged, their condensation implies electric superconductivity. The
details of this interesting idea are reviewed in Ref. [5].

How does magnetic catalysis manifest itself in the QCD phase diagram? A
straightforward, but, as we now know, too naive, expectation is that the phase space
region of the chirally broken phase should get larger with the magnetic field. The
current picture is more complicated and can be summarized as follows.

• Hot medium, μ= 0. Lattice studies with physical quark masses suggest that the
(pseudo-)critical temperature Tc for the chiral crossover decreases [6], whereas
the results of all above mentioned model calculations (as well as lattice results for
unphysically large quark masses [6]) show a monotonically increasing Tc . While
it is clear that none of the models can capture all features of QCD, the physi-
cal mechanism behind the lattice result is still under discussion, see for instance
Sec. 3.2 in Ref. [1]. There are also slight differences in the behavior of Tc in the
different models: for instance, while Tc saturates at a finite value for asymptoti-
cally large magnetic fields in the holographic Sakai-Sugimoto model [2, 21], no
such saturation can be seen in the NJL-like models [2, 3].

• Dense medium, T = 0. In this case, there are currently no lattice results due to the
sign problem. In the model calculations we see an interesting nontrivial effect,
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termed “inverse magnetic catalysis” [2]. At strong coupling, the critical chemical
potential can decrease with the magnetic field, which is in apparent conflict with
magnetic catalysis. In contrast to the μ= 0 result on the lattice, a physical expla-
nation for this behavior is known. It can be traced back to the cost in free energy
that has to be paid for chiral condensation at nonzero μ. Crucially, this cost is not
independent of B and competes with the gain from condensation which, due to
magnetic catalysis, increases with B .

We know that the QCD phase structure at large densities can be very rich due to
various color-superconducting phases. Model calculations at nonzero B including
two-flavor color superconductivity seem to confirm the effect of inverse magnetic
catalysis. From first principles we know that at asymptotically large densities, the
ground state of three-flavor quark matter is the color-flavor locked (CFL) phase.
The CFL order parameter is invariant under a certain combination of generators of
the color and electromagnetic gauge groups, resulting in a massless gauge boson
(which is predominantly the original photon, with a small admixture from one of
the gluons). As a consequence, the CFL phase is a color superconductor (all gluons
become massive), but not an electromagnetic superconductor. An ordinary magnetic
field can thus penetrate this phase. Depending on the strength of the magnetic field,
certain variants of the CFL phase become favored. These phases as well as their
possible astrophysical relevance are discussed in [15].

For the deconfinement crossover in a magnetic field, the results on the lattice are
similar to the chiral crossover [6]. Again, with physical quark masses the temper-
ature for the crossover seems to decrease. This behavior is not reproduced by the
PNJL model, where confinement is mimicked by including the expectation value
of the Polyakov loop by hand. Depending on the details of the interactions within
the model, the deconfinement and chiral phase transitions do or do not split in a
magnetic field, but in any case the critical temperature of both transitions seems to
increase monotonically with the magnetic field [3]. This is also the case in a quark-
meson model [4]. Within the MIT bag model, however, with the confined phase
simply being modelled by a noninteracting pion gas, the deconfinement transition
decreases with the magnetic field, in qualitative agreement with the lattice results
[4]. These studies show that the mechanism behind the behavior of the deconfine-
ment transition—just like for the chiral transition—in a magnetic field is not yet
understood, and further analyses that clarify this picture are necessary.

1.3.2 Condensed Matter Systems in a Magnetic Field via AdS/CFT

The gauge-gravity or AdS/CFT correspondence plays an important role in the above
mentioned studies of the phase structure of QCD. This is quite natural since in gen-
eral the gauge-gravity correspondence relates a non-Abelian gauge theory at strong
coupling and large N to a weakly coupled (super)gravity background with asymp-
totic AdS boundary conditions. The idea that strongly coupled phases of quantum
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field theories can be described by a gravity dual is however more general than that.
In particular it has been applied to “tabletop“ laboratory condensed matter systems
that inherently involve strongly correlated electrons and are conjectured to be gov-
erned by an underlying quantum critical phase such as high Tc superconductors
or the so called strange metals. Many condensed-matter systems are supposed to
undergo a quantum phase transition at zero temperature upon varying a parameter
such as the doping in a high-Tc superconductor, the pressure or the applied mag-
netic field. At the phase transition the system is at a quantum critical point which
often turns out to be in a strongly coupled regime with an emergent Lorentz (or
more generally Lifschytz) invariance. In the vicinity of the quantum critical point,
e.g. at finite temperature the dynamics of the system is still governed by the de-
grees of freedom relevant at the critical point. One might hope that such strongly
coupled quantum critical points can be described by a gravity dual just as QCD in
its strongly coupled regime might be described by e.g. the Sakai-Sugimoto model.
At the very least one can expect that the gauge-gravity duality helps to develop
interesting toy models of quantum critical points that can lead to a better under-
standing of qualitative or even quantitative behavior of condensed matter systems
whose theoretical description is otherwise rather elusive due to their strongly cou-
pled nature.

A central role is played by charged asymptotically AdS black holes. Due to
the underlying scaling symmetry two regimes can naturally be distinguished, one
in which the temperature T is much larger than the chemical potential μ. This is
the hydrodynamic regime and the gauge gravity duality allows to compute trans-
port coefficients such as viscosities or conductivities. The other regime of interest
is the opposite with μ � T . Here the black hole is near extremality. At precisely
T = 0 the black hole horizon becomes degenerate with profound implications for
the dual field theory physics. It turns out that the entropy of an extremal charged
AdS black hole is macroscopically large, scaling with some positive power of the
number of the underlying microscopic degrees of freedom N . This feature is gen-
erally interpreted as pointing towards an inherent instability of such black holes.
Indeed many such instabilities are known to arise upon adding additional fields,
e.g. scalars (even uncharged ones) tend to condense near extremality leading to a
superconducting phase transition. The charge that was hidden behind the horizon
is pulled outside and the scalarfield forms the (symmetry breaking) condensate. If
one replaces the scalar with a fermion a similar transition occurs where the black
hole is replaced by a geometry without horizon and the charge is carried by the
fermions forming an “electron star” in asymptotically AdS. The field theory inter-
pretation of this transition is one between a “fractionalized” phase and a “mesonic”
phase. This is in one-to-one correspondence to the deconfined/confined phases of
non-Abelian gauge theory, only that in condensed matter it is often the mesonic or
confined phase that appears as the more fundamental one. Real world fractional-
ization occurs for example in the separation of spin and charge degrees of freedom
of electrons or the appearance of quasiparticles carrying fractions of the electron’s
charge. Such gravity duals of fractionalized/mesonic phases in the presence of a
magnetic field are the subject of [19]. A crucial role is played by the presence of a
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dilaton which allows to find a rich structure of solutions including partially fraction-
alized phases.

The quantum critical behavior of four dimensional field theories described by a
gravity dual including a U(1) gauge field with an additional Chern-Simons term in
a magnetic field is the subject of [17]. The authors find a quantum phase transition
for large enough magnetic field beyond which the charge is completely expelled
outside the horizon and the background geometry has zero entropy.

Another important theme in the condensed matter applications of the gauge grav-
ity correspondence is the spectrum of fermions in asymptotically AdS black holes.
Fermions in the gravity dual obeying a Dirac equation dual to gauge invariant
fermionic operators in the field theory. One can study the holographic fermionic
two point function and in particular look out for poles that identify the presence of
Fermi surfaces. It is indeed well known by now that such probe fermions can show
behavior consistent with Landau’s theory of Fermi liquids but also more exotic pos-
sibilities such as marginal Fermi liquids in which the residue of the corresponding
pole vanishes or completely non-Landau Fermi liquid behavior are realized. The
Fermi level structure of such probe fermions in a four dimensional dyonic, i.e. in-
cluding a magnetic field, asymptotically AdS black hole is the subject of [20]. For
strong magnetic field the Fermi surface vanishes and the authors associate this with
a metal to strange metal phase transition.

To summarize, this volume of Lecture Notes presents a review of the current
research of strongly interacting matter in magnetic fields. Most of the applications
considered here concern QCD matter, but a number of important cases from con-
densed matter physics is considered as well. The focus of the volume is on the
theoretical results; however these results have a direct significance for experiment,
in particular for heavy ion collisions that are currently under intense study at RHIC
and LHC. While most of the contributions in this volume reflect the work done very
recently, the field is evolving so rapidly that we expect to see a significant progress
already in the near future. Because of this, we do not expect this volume to express
a “final word” in any sense; instead, we view it as a snapshot of the exciting work
that is being done right now. A large number of open questions has emerged as a
result of this work; some of them have been mentioned in this brief overview, but we
encourage the reader to read the individual contributions for an in-depth exposure.
We hope that this volume will convince the reader that strongly interacting matter
in a magnetic field is a rich and vibrant research area, and many more discoveries
and surprises can be fully expected.
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Chapter 2
Magnetic Catalysis: A Review

Igor A. Shovkovy

2.1 Introduction

The magnetic catalysis is broadly defined as an enhancement of dynamical symme-
try breaking by an external magnetic field. In this review, we discuss the underlying
physics behind magnetic catalysis and some of its most prominent applications.
Considering that the ideas of symmetry breaking take the center stage position in
many branches of modern physics, we hope that this review will be of interest to a
rather wide audience.

In particle and nuclear physics, spontaneous symmetry breaking is commonly
used in order to explain the dynamical origin of the mass of elementary particles.
In this context, the idea was realized for the first time over 50 years ago by Nambu
and Jona-Lasinio [151, 152], who suggested that “the nucleon mass arises largely
as a self-energy of some primary fermion field through the same mechanism as the
appearance of energy gap in the theory of superconductivity.” As we now know,
the analogy with superconductivity is not very close and the description of chiral
symmetry breaking in terms of quarks may be more natural than in terms of nucle-
ons. However, the essence of the dynamical mass generation was captured correctly
in Refs. [151, 152]. In fact, with the current state of knowledge, we attribute most
of the mass of visible matter in the Universe to precisely this mechanism of mass
generation, which is associated with breaking of the (approximate) chiral symmetry.

The conceptual knowledge that the mass can have a dynamical origin opens myr-
iads of theoretical possibilities that would appear meaningless in classical physics.
For example, keeping in view the above mentioned mechanism of mass generation
through chiral symmetry breaking, it is reasonable to suggest that the masses of
certain particles can be modified or even tuned by proper adjustments of physical
parameters and/or external conditions.
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One of the obvious knobs to control the value of the dynamical mass is an exter-
nal magnetic field. In addition to be a good theoretical tool, magnetic fields are also
relevant to many applications. For example, they are commonly present and play an
important role in such physical systems as the Early Universe [18, 30, 44, 95, 183],
heavy ion collisions [123, 179], neutron stars [38, 182], and quasi-relativistic con-
densed matter systems like graphene [155, 189].

As we discuss in detail in this review, the magnetic field has a strong tendency to
enhance (or “catalyze”) spin-zero fermion-antifermion condensates. Such conden-
sates are commonly associated with breaking of global symmetries (e.g., such as
the chiral symmetry in particle physics and the spin-valley symmetry in graphene)
and lead to a dynamical generation of masses (energy gaps) in the (quasi-)particle
spectra. The corresponding mechanism is called magnetic catalysis [99].

It should be emphasized that, in a striking contrast to its role in superconduc-
tivity, the magnetic field helps to strengthen the chiral condensate. There are many
underlying reasons for its different role. Unlike the superconductors, the ground
state with a nonzero chiral condensate shows no Meissner effect. This is because the
chiral condensate can be thought of as a condensate of neutral fermion-antifermion
pairs, not charged Cooper pairs that can give rise to supercurrents and perfect dia-
magnetism. Also, in a usual Cooper pair, the two electrons have opposite spins and,
therefore, opposite magnetic moments. When placed in a magnetic field, only one
of the magnetic moments can minimize its energy by orienting along the direction
of the field. The other magnetic moment will be stuck in a frustrated position point-
ing in the opposite direction. This produces an energy stress and tends to break the
Cooper pair. (Note, however, that the orbital motion plays a much more important
role in breaking nonrelativistic Cooper pairs.) In a neutral spin-zero pair, in contrast,
the magnetic moments of the fermion (with a fixed charge and spin) and the an-
tifermion (with the opposite charge and spin) point in the same direction. Therefore,
both magnetic moments can comfortably align along the direction of the magnetic
field without producing any frustration in the pair. (Also, in relativistic systems the
fermion-antifermion condensate is not destroyed by the orbital motion.)

The above explanation of the role that the magnetic field plays in strengthening
the chiral condensate is semi-rigorous at best and does not capture all the subtleties
of the dynamics behind magnetic catalysis (e.g., completely leaving out the details
of the orbital motion). It does demonstrates, however, how the magnetic field can
have, at least in principle, so drastically different effects on the dynamical gener-
ation of mass on the one hand and on superconductivity on the other. (It may be
curious to mention here that, in cold dense quark matter, it is possible to obtain
color superconducting states, in which diquark Cooper pairs are neutral with re-
spect to the in-medium (but not vacuum) electro-magnetism [7, 85]. In such quark
matter, the in-medium magnetic field is not subject to the Meissner effect and, in
fact, can enhance color superconductivity [54, 55, 62, 63, 75, 141, 154, 186].)

The early investigations of the effects of strong magnetic fields on chiral sym-
metry breaking in (2 + 1)- and (3 + 1)-dimensional models with local four-
fermion interactions have appeared in late 1980s and early 1990s [122, 127–
131, 135, 167, 181]. In these studies, it was already found that a constant magnetic
field stabilizes the chirally broken vacuum state.
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The explanation of the underlying physics was given in Ref. [99], where the es-
sential role of the dimensional reduction, D →D − 2, in the low-energy dynamics
of pairing fermions in a magnetic field was revealed. As a corollary, it was also
established that the presence of a magnetic field leads to the generation of a dynam-
ical mass even at the weakest attractive interaction between fermions [99–102]. The
general nature of the underlying physics was so compelling that it was suggested
that the corresponding dynamical generation of the chiral condensate and the asso-
ciated spontaneous symmetry breaking in a magnetic field are universal and model-
independent phenomena. To emphasize this fact, the new term “magnetic catalysis”
was coined [99].

The model-independent nature of magnetic catalysis was tested in numerous
(2 + 1)- and (3 + 1)-dimensional models with local four-fermion interactions
[10, 13, 29, 40, 55, 56, 80, 114, 116, 117, 132, 134, 142, 143, 157, 184, 193], in-
cluding models with additional gauge interactions [119], higher dimensional mod-
els [84], N = 1 supersymmetric models [42], quark-meson models [8, 9], mod-
els in curved space [79, 81, 118] and QED-like gauge theories [5, 6, 11, 12, 51,
53, 101, 104–107, 110, 111, 137, 138, 158, 159, 165]. The realization of magnetic
catalysis was investigated in chiral perturbation theory [32, 33, 176] and in QCD
[121, 146], as well as in a models with the Yukawa interaction [43, 59–61]. There
are studies of magnetic catalysis using the methods of the renormalization group
[74, 166, 173], lattice calculations [14–16, 24, 28, 34, 35, 52] and holographic
dual models of large-N gauge theories [4, 20, 21, 45–50, 64–66, 162, 163, 187].
Similar ideas were extended to solid state systems describing high-temperature
superconductivity [57, 58, 139, 172, 192, 194], highly oriented pyrolitic graphite
[90, 124, 125], as well as monolayer [87, 91, 93, 98, 113, 171, 174] and bilayer
[86, 88, 89, 92] graphene in the regime of the quantum Hall effect. Finally, the gen-
eralization of magnetic catalysis was also made to non-Abelian chromomagnetic
fields [39, 41, 97, 133, 175, 185, 191], where the dynamics is dimensionally re-
duced by one unit of space, D →D − 1. For earlier reviews on magnetic catalysis,
see Refs. [96, 145].

2.2 The Essence of Magnetic Catalysis

As already mentioned in the Introduction, the essence of magnetic catalysis is in-
timately connected with the dimensional reduction, D →D − 2, of charged Dirac
fermions in the presence of a constant magnetic field. In this section, we discuss in
detail how such a dimensional reduction appears and what implications it has for
the spontaneous symmetry breaking.

2.2.1 Dimensional Reduction in a Magnetic Field

Before considering a fully interacting theory and all details of the dynamics re-
sponsible for the generation of the chiral condensate and the symmetry breaking,
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associated with it, let us start from a free Dirac theory in a constant external mag-
netic field. This appears to be a perfect setup to understand the kinematic origin of
the dimensional reduction, D→D − 2.

2.2.1.1 Dirac Fermions in a Magnetic Field in 3 + 1 Dimensions

Let us start by reviewing the spectral problem for charged (3+1)-dimensional Dirac
fermions in a constant magnetic field. We assume that the field is pointing in the
positive x3-direction. The corresponding Lagrangian density reads

L = Ψ̄
(
iγ μDμ −m

)
Ψ, (2.1)

where the covariant derivative Dμ = ∂μ − ieAext
μ depends on the external gauge

field. Without loss of generality, the external field Aext
μ is taken in the Landau gauge,

Aext
μ ≡ (0,−Aext), where

Aext = (
0,Bx1,0

)
, (2.2)

and B is the magnetic field strength. By solving the Dirac equation of motion, one
finds the following energy spectrum of fermions [3]:

E(3+1)
n (p3)=±

√
m2 + 2|eB|n+ (p3)2, (2.3)

where n= 0,1,2, . . . is the Landau level index. It should be noted that the Landau
level index n includes orbital and spin contributions: n ≡ k + s + 1

2 , where k =
0,1,2, . . . is an integer quantum number associated with the orbital motion, while
s = ± 1

2 corresponds to the spin projection on the direction of the field. [For the
orbital part of the wave functions, see (2.82) in the Appendix.] Considering that the
energy depends only on n, we see that the energy of a quasiparticle in orbital state
k and spin s = + 1

2 is degenerate with the energy of a quasiparticle in orbital state
k+1 and spin s =− 1

2 . The lowest Landau level with n= 0 is special: it corresponds
to the lowest orbital state k = 0 and has only one spin projection s =− 1

2 . The letter,
in particular, implies that the lowest Landau level is a spin polarized state.

On top of the spin degeneracy of higher Landau levels (n > 0), there is an ad-
ditional (infinite) degeneracy of each level with a fixed n and a fixed value of the
longitudinal momentum p3. It is connected with the momentum p2 ∈R, which is a
good quantum number in the Landau gauge utilized here. As follows from the form
of the orbital wave functions in (2.82), the value of −p2/|eB| also determines the
location of the center of a fermion orbit in the x1-direction. A simple analysis [3]
shows that the area density of such states in the perpendicular x1x2-plane is |eB|

2π

for n= 0 and |eB|
π

for n > 0 (here the double spin degeneracy of the higher Landau
levels is accounted for).

When the Dirac mass is much smaller than the corresponding magnetic energy
scale (i.e., m � √|eB|), we find that the low-energy sector of the Dirac theory
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is determined exclusively by the lowest Landau level (n = 0). As we see from
(2.3), the corresponding spectrum of the low-energy excitations is given by E(p3)=
±√

m2 + (p3)2, which is identical to the spectrum of a (1 + 1)-dimensional quan-
tum field theory with a single spatial coordinate, identified with the longitudinal
direction. This spectrum of the low-energy theory confirms the obvious kinematic
aspect of the dimensional reduction, 3 + 1 → 1 + 1, in a constant magnetic field.

From the physics viewpoint, the dimensional reduction is the result of a partially
restricted motion of Dirac particles in the x1x2-plane perpendicular to the magnetic
field. The effect can be seen already at the classical level in the so-called cyclotron
motion, when the Lorentz force causes charged particles to move in circular or-
bits in x1x2-plane, but does not constrain their motion along the x3-direction. A
very important new feature at the quantum level is the quantization of perpendicular
orbits. Without such a quantization, the clean separation of the low-energy sector,
dominated exclusively by the lowest Landau level, would not be possible.

It should be noted that the spin also plays an important role in the dimensional
reduction of Dirac particles. If the spin contribution were absent (s = 0), the energy
of the lowest Landau level would scale like

√|eB|, which is not vanishingly small
compared to the energy of the next Landau level

√
3|eB|. Then, a clean separation

of the lowest Landau level into a dimensionally reduced, low-energy sector of the
theory would become unjustified and meaningless.

2.2.1.2 Dirac Fermions in a Magnetic Field in 2 + 1 Dimensions

It is straightforward to obtain the spectrum of charged Dirac fermions also in
2 + 1 dimensions. The vector potential in the Landau gauge takes the form: Aext =
(0,Bx1). In the absence of the longitudinal direction x3, the magnetic field B is not
an axial vector, but a pseudo-scalar. Concerning the Dirac algebra in 2 + 1 dimen-
sions, there exist two inequivalent irreducible representations, given by

γ 0 = σ3, γ 1 = iσ1, γ 2 = iσ2, (2.4)

and

γ 0 =−σ3, γ 1 =−iσ1, γ 2 =−iσ2, (2.5)

where σi are the Pauli matrices. In each of these representations, the nature of the
lowest Landau level is somewhat unusual: it has either only a particle state (with
a positive energy E0 = m) or only an antiparticle state (with a negative energy
E0 =−m). Such an asymmetry in the spectrum is known to induce a Chern-Simons
term in the gauge sector of the theory [153, 164]. In order to avoid the unnecessary
complication, it is convenient to use the following reducible representation instead:

γ 0 =
(
σ3 0
0 −σ3

)
, γ 1 =

(
iσ1 0
0 −iσ1

)
, γ 2 =

(
iσ2 0
0 −iσ2

)
. (2.6)
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(Incidentally, in the low-energy theory of graphene, which is a real quasi-relativistic
system in 2 + 1 dimensions, such a reducible representation appears automatically
[170].) The corresponding Dirac spectrum reads

E(2+1)
n =±

√
m2 + 2|eB|n. (2.7)

As we see, this is very similar to the (3 + 1)-dimensional result in (2.3), except for
the missing dependence on the longitudinal momentum p3.

Repeating the same arguments as in the (3 + 1)-dimensional case, we find that
the low-energy sector of the Dirac theory in 2+ 1 dimensions is also determined by
the lowest Landau level. Here we assume again that the Dirac mass is much smaller
than the corresponding Landau energy scale (m�√|eB|) in order to insure a clear
separation of the low- and high-energy scales.

Just like in the higher dimensional case, all Landau levels are (infinitely) degen-
erate. In particular, the number of degenerate states per unit area is |eB|

2π in the lowest
Landau level. A special feature of the (2+1)-dimensional theory is a discrete, rather
than continuous spectrum of excitations. In the absence of the x3-direction and the
associated quantum number p3, all positive energy states in the lowest Landau level
have the same energy E0 =m. Moreover, when m→ 0, this energy goes to zero and
becomes degenerate with the negative energy states E0 =−m. In this limit, there is
an infinite vacuum degeneracy even if the condition of charge neutrality may favor
a state with exactly half-filling of the lowest Landau level. It should be expected,
however, that taking into account any type of fermion interaction will lead to a well
defined ground state, in which the interaction energy is minimized. One can even
make an educated guess that the corresponding ground state should be a Mott-type
insulator with a dynamically generated mass/gap.

Another special and rather unusual feature of the (2 + 1)-dimensional Dirac
fermions in a magnetic field is a spontaneous symmetry breaking, which is man-
ifested by a nonzero “chiral” condensate 〈Ψ̄ Ψ 〉 already in the free theory. To see
this, let us make use of the proper-time representation of the fermion propagator in
the magnetic field, see (2.101) in the Appendix. In the limit of a small bare mass
(m0 → 0), we easily derive the following (regularized) expansion for the conden-
sate:

〈Ψ̄ Ψ 〉 ≡ −tr
[
S2+1(x, x)

]=−m0|eB|
2π3/2

∫ ∞

1/Λ2

ds√
s
e−sm2

0 coth
(
s|eB|)

� −|eB|
2π

sign(m0)− m0

π3/2

[
Λ+

√
π |eB|

2
ζ

(
1

2
,1 + m2

0

2|eB|
)]

. (2.8)

It can be shown that the first term, which remains nonzero even in the massless limit,
comes from the lowest Landau level. At first sight, this may appear to be a very sur-
prising result. Upon a closer examination, one finds that this condensate is directly
connected with a nonzero density of states and a nonzero spin polarization in the
lowest Landau level of the free Dirac theory. The result is unambiguous only after
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specifying the sign of the bare mass parameter, which is also typical for spontaneous
symmetry breaking.

In connection with the result in (2.8), it may be useful to recall that the chirality
is not well defined in the (2+ 1)-dimensional space. However, as we will discuss in
Sect. 2.2.2, the condensate 〈Ψ̄ Ψ 〉 is still of interest because it breaks another global
symmetry that has a status similar to that of the conventional chiral symmetry.

2.2.2 Magnetic Catalysis in 2 + 1 Dimensions

Now, let us consider a Nambu-Jona-Lasinio (NJL) model in 2 + 1 dimensions, in
which the magnetic catalysis of symmetry breaking is realized in its simplest possi-
ble form [99, 102]. When using the reducible representation of Dirac algebra, given
by (2.6), one finds that the kinetic part of the massless Dirac theory is invariant un-
der a global U(2) flavor symmetry. The generators of the symmetry transformations
are given by T0 = I , T1 = γ 5, T2 = 1

i
γ 3, and T3 = γ 3γ 5, where γ 5 ≡ iγ 0γ 1γ 2γ 3.

A dynamical Dirac mass will break this U(2) symmetry down to the U(1)×U(1)
subgroup with generators T0 and T3.

The NJL-type Lagrangian density, with the interaction term invariant under the
U(2) flavor symmetry, can be written down as follows:

L = Ψ̄ iγ μDμΨ + G

2

[
(Ψ̄ Ψ )2 + (

Ψ̄ iγ 5Ψ
)2 + (

Ψ̄ γ 3Ψ
)2]

, (2.9)

where G is a dimensionfull coupling constant. This theory is nonrenormalizable, but
can be viewed as a low-energy effective theory with a range of validity extending
up to a certain ultraviolet energy scale set by a physically motivated choice of the
cutoff parameter Λ.

2.2.2.1 Weak Coupling Approximation

As usual in problems with spontaneous symmetry breaking, we use the method of
Schwinger-Dyson (gap) equation in order to solve for the dynamical mass parame-
ter. We assume that the structure of the (inverse) full fermion propagator is the same
as in the free theory, but has a nonzero dynamical Dirac mass m,

S−1(x, x′
)=−i[iγ 0∂t − (π · γ )−m

]
δ3(x − x′

)
. (2.10)

In the mean-field approximation, the dynamical mass parameter satisfies the follow-
ing gap equation:

m=Gtr
[
S(x, x)

]
. (2.11)

To leading order in weak coupling, G → 0, this equation can be solved pertur-
batively. Indeed, by substituting the condensate calculated at m0 → 0 in the free
theory, see (2.8), into the right-hand side of the gap equation (2.11), we obtain
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|m| �G
|eB|
2π

. (2.12)

As we see, the dynamical mass is induced at any nonzero attractive coupling.
The massless NJL model in (2.9) is invariant under the flavor U(2) symmetry.

The generation of a Dirac mass m is only one of many equivalent ways of breaking
this symmetry down to a U(1) × U(1) subgroup. Indeed, by applying a general
U(2) transformation, we find that the Dirac mass term can be turned into a linear
combination of the following three mass terms: m, γ 3m3, and iγ 5m5. (In principle,
there is also a possibility of the so-called Haldane mass term γ 3γ 5Δ, which is a
singlet under U(2). We do not discuss it here. However, as we will see in Sect. 2.3.3,
the Haldane mass plays an important role in graphene.)

In our perturbative analysis, we did not get any nonzero m3 or m5 because the
vacuum alignment was predetermined by a “seed” Dirac mass m0 in the free theory,
see (2.8).

2.2.2.2 Large N Approximation

It is instructive to generalize the above analysis in the NJL model to the case of
strong coupling. While magnetic catalysis occurs even at arbitrarily weak coupling,
such a generalization will be useful to understand how magnetic catalysis is lost in
the limit of the vanishing magnetic field.

At strong coupling, a reliable solution to the NJL model can be obtained by using
the so-called large N approximation, which is rigorously justified when the fermion
fields in (2.9) carry an additional, “color” index α = 1,2, . . . ,N , and N is large.
Using the Hubbard-Stratonovich transformation [115, 180], one can show that the
NJL theory in (2.9) is equivalent to the following one:

L = Ψ̄ iγ μDμΨ − Ψ̄
(
σ + γ 3τ + iγ 5π

)
Ψ − 1

2G

(
σ 2 + π2 + τ 2). (2.13)

Note that the equations of motion for the new composite fields read

σ =−G(Ψ̄Ψ ), τ =−G(
Ψ̄ γ 3Ψ

)
, π =−G(

Ψ̄ iγ 5Ψ
)
. (2.14)

Under U(2) flavor symmetry transformations, these composite fields transform into
linear combinations of one another, but the quantity σ 2 +π2 + τ 2 remains invariant.

The effective action for the composite fields,

Γ =− 1

2G

∫
d3x

(
σ 2 + τ 2 + π2)− itrLn

[
iγ μDμ − (

σ + γ 3τ + iγ 5π
)]
, (2.15)

is obtained by integrating out the fermionic degrees of freedom from the action. It is
convenient to expand this effective action in powers of derivatives of the composite
fields. The leading order in such an expansion is the effective potential V (up to the
minus sign). Because of the flavor symmetry, the effective potential depends on σ ,
π , and τ fields only through their U(2) invariant combination ρ2 = σ 2 + π2 + τ 2.
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Using the proper-time regularization, one obtains the following explicit expres-
sion for the effective potential [99, 102]:

V (ρ)� N

π

[
Λ

2

(
1

g
− 1√

π

)
ρ2 −√

2|eB|3/2ζ

(
−1

2
,1+ ρ2

2|eB|
)
− ρ|eB|

2

]
, (2.16)

where we dropped the terms suppressed by the ultraviolet cutoff parameter Λ and
introduced a dimensionless coupling constant g ≡NΛG/π .

The field configuration ρ that minimizes the effective potential is determined by
solving the equation dV/dρ = 0, i.e.,

Λ

(
1

g
− 1√

π

)
ρ = |eB|

2
+ ρ

√ |eB|
2

ζ

(
1

2
,1 + ρ2

2|eB|
)
. (2.17)

In essence, this is the gap equation. At weak coupling, g → 0, in particular, we
obtain the following approximate solution:

m= ρmin �GN
|eB|
2π

, (2.18)

which is the large N generalization of the result for the dynamical mass in (2.12).

2.2.2.3 Zero Magnetic Field Limit in 2 + 1 Dimensions

Before concluding the discussion of the (2 + 1)-dimensional NJL model, it is in-
structive to consider how the above analysis of flavor symmetry breaking modifies
in the zero magnetic field case. By taking the limit B → 0 in (2.16), we arrive at the
following effective potential:

VB=0(ρ)� N

π

[
Λ

2

(
1

g
− 1√

π

)
ρ2 + 1

3
ρ3

]
. (2.19)

Now, the zero-field limit of the gap equation, dVB=0/dρ = 0, is given by

Λ

(
1√
π

− 1

g

)
ρ = ρ2. (2.20)

This is very different from (2.17). In particular, the only solution to this equation at
g <

√
π is a trivial one, ρ = 0. The nontrivial solution appears only in the case of

a sufficiently strong coupling constant, g >
√
π . This is in a stark contrast with the

dynamical mass generation in the presence of a magnetic field, where a nontrivial
solution exists at arbitrarily small values of the coupling constant g.
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2.2.3 Magnetic Catalysis in 3 + 1 Dimensions

Let us now extend the analysis of the previous subsection to the case of a (3 + 1)-
dimensional model, where the dynamics is truly nonperturbative. The Lagrangian
density of the corresponding NJL model reads

L = Ψ̄ iγ μDμΨ + G

2

[
(Ψ̄ Ψ )2 + (

Ψ̄ iγ 5Ψ
)2]

. (2.21)

This model possesses the U(1)L × U(1)R chiral symmetry. The symmetry will be
spontaneously broken down to the U(1)L+R subgroup when a dynamical Dirac
mass is generated.

2.2.3.1 Weak Coupling Approximation

In the weakly coupled limit, the gap equation in the mean-field approximation reads

m=Gtr
[
S(x, x)

]
. (2.22)

Formally, it is same as the gap equation in the (2 + 1)-dimensional model in (2.11).
However, as we will see now, its symmetry breaking solution will be qualitatively
different.

Let us start by showing that the chiral condensate vanishes in the free theory in
3 + 1 dimensions when the bare mass goes to zero, m0 → 0. By making use of the
proper-time representation, see (2.97) in the Appendix, we obtain

〈Ψ̄ Ψ 〉 ≡ −tr
[
S(x, x)

]=−m0|eB|
(2π)2

∫ ∞

1/Λ2

ds

s
e−sm2

0 coth
(
s|eB|)

� − m0

(2π)2

[
Λ2 −m2

0

(
ln

Λ2

2|eB| − γE

)

+ |eB| ln
m2

0

4π |eB| + 2|eB| lnΓ

(
m2

0

2|eB|
)]

� − m0

(2π)2

[
Λ2 + |eB| ln

|eB|
πm2

0

−m2
0 ln

Λ2

2|eB| +O

(
m4

0

|eB|
)]

. (2.23)

In the limit m0 → 0, we see that the condensate indeed vanishes. This means that
we cannot apply a perturbative approach to find any nontrivial (symmetry breaking)
solutions to the gap equation in (2.22).

The explicit form of the gap equation (2.22) reads

m�G
m

(2π)2

[
Λ2 + |eB| ln

|eB|
πm2

]
. (2.24)
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Its nontrivial solution is given by

m�
√ |eB|

π
exp

(
Λ2

2|eB|
)

exp

(
− 2π2

G|eB|
)
. (2.25)

When G→ 0 this result reveals an essential singularity. Obviously, such a depen-
dence cannot possibly be obtained by resuming any finite number of perturbative
corrections in powers of a small coupling constant. Therefore, despite the weak
coupling, the result for the dynamical mass (2.25) is truly nonperturbative.

2.2.3.2 Zero Magnetic Field Limit in 3 + 1 Dimensions

It is instructive to compare the above dynamics of spontaneous symmetry breaking
with case of the zero magnetic field. At B = 0, the chiral condensate in the free
theory is easily obtained from taking the appropriate limit in (2.23), i.e.,

〈Ψ̄ Ψ 〉B=0 =− m0

(2π)2

[
Λ2 −m2

0

(
ln
Λ2

m2
0

+ 1 − γE

)]
. (2.26)

The corresponding gap equation is

m�G
m

(2π)2

[
Λ2 −m2 ln

Λ2

m2

]
. (2.27)

Because of the negative sign in front of the logarithmic term, this equation does not
have any nontrivial solutions for the dynamical mass at vanishingly small coupling
constant g ≡GΛ2/(2π)2. In fact, for the whole range of subcritical values, g < 1,
the only solution to this gap equation is m= 0. The nontrivial solution appears only
in the case of sufficiently strong coupling, g > 1.

2.2.4 Symmetry Breaking as Bound State Problem

In this subsection, we consider an alternative approach to the problem of chiral
symmetry breaking in the NJL model in a constant magnetic field. As we will see,
this approach is particularly beneficial for illuminating the role of the dimensional
reduction in magnetic catalysis.

Instead of solving the gap equation, we consider the problem of bound states with
the quantum numbers of the Nambu-Goldstone bosons, using the method of a homo-
geneous Bethe-Salpeter equation (for a review, see Ref. [144]). The underlying idea
for this framework is motivated by the Goldstone theorem [82, 83, 150]. The theo-
rem states that spontaneous breaking of a continuous global symmetry leads to the
appearance of new massless scalar particles (i.e., Nambu-Goldstone bosons) in the
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low-energy spectrum of the theory. The total number of Nambu-Goldstone bosons
and their quantum numbers are determined by the broken symmetry generators.

The homogeneous Bethe-Salpeter equation for a pion-like state takes the form
[103, 144]:

χab(x, y;P) = −i
∫

d4x′d4y′d4x′′d4y′′Saa1

(
x, x′

)
Ka1b1;a2b2

(
x′y′, x′′y′′

)

×χa2b2

(
x′′, y′′;P )

Sb1b

(
y′, y

)
, (2.28)

where χab(x, y;P) ≡ 〈0|T ψa(x)ψ̄b(y)|P ;π〉 is the Bethe-Salpeter wave func-
tion of the bound state boson with four-momentum P , and Sab(x, y) =
〈0|T ψa(x)ψ̄b(y)|0〉 is the fermion propagator. Here and below, the sum over re-
peated Dirac indices (a1, b1, a2, b2) is assumed. The explicit form the Bethe-
Salpeter kernel is [103, 144]:

Ka1b1;a2b2

(
x′y′, x′′y′′

) =G
[
δa1b1δb2a2 + (iγ5)a1b1(iγ5)b2a2 − (iγ5)a1a2(iγ5)b2b1

− δa1a2δb2b1

]
δ4(x′ − y′

)
δ4(x′ − x′′

)
δ4(x′ − y′′

)
. (2.29)

It is convenient to rewrite the wave function in terms of the relative coordinate z≡
x − y and the center of mass coordinate X ≡ (x + y)/2,

χab(X, z;P)= eis⊥X
1z2/�2

e−iPμXμ

χ̃ab(X, z;P), (2.30)

where we factorized the Schwinger phase factor, see (2.88), and introduced the no-
tation: s⊥ ≡ sign(eB) and �= 1/

√|eB|. After substituting the wave function (2.30)
and the kernel (2.29) into (2.28), we arrive at the following equation:

χ̃ab(z;P) = −iG
∫

d4X′S̃aa1

(
z

2
−X′

)[
δa1b1 tr

[
χ̃ (0;P)]−(γ5)a1b1 tr

[
γ5χ̃(0;P)

]

− χ̃a1b1(0;P)+ (γ5)a1a2 χ̃a2b2(0;P)(γ5)b2b1

]
S̃b1b

(
z

2
+X′

)

× e
i
s⊥
2�2 (z

1X′2−X′1z2)
eiPμX

′μ
. (2.31)

Here we took into account that the equation admits a translation invariant solution
and replaced χ̃ab(X, z;P)→ χ̃ab(z,P ). Note that, on the right-hand side of (2.31),
the dependence on the center of mass coordinate X completely disappeared after a
shift of the integration variable X′ →X′ −X was made.

In the lowest Landau level approximation, one can show that the Fourier trans-
form of the Bethe-Salpeter wave function takes the form [103]:

χ̃ab(p;P → 0)=A(p‖)e−p
2⊥�2 γ 0ω− γ 3p3 −m

ω2 − (p3)2 −m2
γ 5P+

γ 0ω− γ 3p3 −m

ω2 − (p3)2 −m2
,

(2.32)
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where p‖ = (ω,p3), p2⊥ = (p1)2 + (p2)2, and P± = 1
2 (1 ± is⊥γ 1γ 2). The new

function A(p‖) satisfies the equation:

A(p‖)= G|eB|
4π3

∫
A(k‖)d2k‖
k2‖ +m2

, (2.33)

where we made the Wick rotation (ω → iω). The solution to this equation is a
constant: A(p‖)= C. Dropping nonzero C and cutting off the integration at Λ, we
finally arrive at the gap equation for the mass parameter m:

1 � G|eB|
4π2

∫ Λ2

0

dk2‖
k2‖ +m2

. (2.34)

The solution to this equation is

m�Λ2 exp

(
− 2π2

G|eB|
)
, (2.35)

which, to leading order, agrees with the solution obtained in (2.25).
The Bethe-Salpeter equation (2.33) can be rewritten in the form of a two-dimen-

sional Schrödinger equation with an attractive δ-function potential. In order to see
this explicitly, let us introduce the following wave function

ψ(r)=
∫

d2k‖
(2π)2

e−ik‖r

k2‖ +m2
A(k‖). (2.36)

Taking into account that A(p‖) satisfies (2.33), it is straightforward to show that the
wave function ψ(r) satisfies the following Schrödinger type equation:

(
− ∂2

∂r2
1

− ∂2

∂r2
2

+m2 − G|eB|
π

δ2
Λ(r)

)
ψ(r)= 0, (2.37)

in which −m2 plays the role of the energy E. Since m2 must be positive, the prob-
lem is reduced to finding the spectrum of bound states (with E = −m2 < 0) in the
Schrödinger problem. The potential energy in 3(2.37) is expressed in terms of

δ2
Λ(r)=

∫

Λ

d2k‖
(2π)2

e−ik‖r, (2.38)

which is a regularized version of the δ-function that describes the local interaction
in the NJL model.

Notice that, by using the same approach, one can show that the Bethe-Salpeter
equation for a massless NG-boson state in the NJL model in 2 + 1 dimensions can
be reduced to the gap equation

A(p)= G|eB|
2π2

∫ Λ

−Λ
A(k)dk

k2 +m2
. (2.39)



26 I.A. Shovkovy

This has the same solution for the mass as in (2.12). Also, this integral equation is
equivalent to the following one-dimensional Schrödinger equation:

(
− d2

dx2
+m2 − G|eB|

π2
δΛ(x)

)
ψ(x)= 0, (2.40)

where the regularized version of the δ-function is given by δΛ(x)=
∫ Λ

−Λ
dk
2π e

−ikx .

2.2.5 Analogy with Superconductivity

It is interesting to point that the dynamics described by the gap equation in the case
of magnetic catalysis has a lot of conceptual similarities to the mechanism of super-
conductivity in metals and alloys. This is despite the clear differences between the
two phenomena that we discussed in the Introduction. (In order to avoid a possible
confusion, let us emphasize that here we compare the nonrelativistic Cooper pairing
dynamics in superconductivity in the absence of magnetic fields with the relativistic
dynamical generation of a mass in the presence of a constant magnetic field.)

The corresponding gap equation in the Bardeen-Cooper-Schrieffer theory [17] of
superconductivity can be written in the following form:

1 =GN(0)
∫

�ωD

0

dε√
ε2 +Δ2

, (2.41)

where N(0) is the density of electron states at the Fermi surface, ωD is the Debye
frequency, and Δ is the energy gap associated with superconductivity. The solution
for the gap reads

Δ� �ωD exp

(
− 1

GN(0)

)
. (2.42)

At weak coupling, this solution has the same essential singularity as the dynamical
mass parameter in (2.35). We can argue that the similarity is not accidental. To see
this clearly, let us rewrite the gap equation in the problem of magnetic catalysis in
the lowest Landau level approximation, see (2.34), as follows:

1 =G
|eB|
2π

∫
dωdp3

ω2 + (p3)2 +m2
�G

|eB|
2π

∫ Λ

0

dω√
ω2 +m2

, (2.43)

where the Wick rotation was performed (ω → iω). As we see, the structure of
this gap equation is identical to its counterpart in the BCS theory after we iden-
tify the density of states N(0) with the density of states in the lowest Landau level,
|eB|/(2π), and the Debye frequency ωD with the cutoff parameter Λ.

The similarity between the BCS theory of superconductivity and magnetic catal-
ysis goes deeper. In particular, the generation of a nonzero gap in superconductors
can be also thought of as the result of a 3 + 1 → 1 + 1 dimensional reduction of
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the phase space around the Fermi surface. Also, just like in magnetic catalysis, it is
essential that the density of states at the Fermi surface is nonzero.

2.2.6 Bound States in Lower Dimensions

As we saw in Sect. 2.2.4, the problem of spontaneous symmetry breaking and the
associated dynamical generation of the Dirac mass can be reformulated as a prob-
lem of composite massless states with the quantum numbers of Nambu-Goldstone
bosons.

In the presence of a constant magnetic field, in particular, we also found that
the corresponding Bethe-Salpeter equation for the bound states can be recast in an
equivalent form as a Schrödinger equation in a dimensionally reduced space. The
dimensional reduction is D→D− 2 and, therefore, the relevant problem of bound
states is considered in spaces of lower dimensions.

In order to prove that the essence of magnetic catalysis is directly connected with
this reduction, let us consider a simple quantum mechanical problem: the formation
of bound states in a shallow potential well in spaces of various dimensions. As
we will see, at least one bound state does exist in one- and two-dimensional cases
[19, 136, 177, 178], but not always in three dimensions. We will also see that, while
the result for the binding energy is perturbative in the coupling constant in one
dimension, it has an essential singularity in two dimensions.

2.2.6.1 Bound States in a One-Dimensional Potential Well

Let us start from the simplest one-dimensional problem of a nonrelativistic particle
of mass m∗ confined to move on a line. Let the potential energy of the well be given
by U(x), which is negative and quickly approaches zero when |x| → ∞. One can
show that even a vanishingly small depth of the potential well is sufficient to pro-
duce a bound state (i.e., a quantum state with a negative energy). The corresponding
binding energy is given by [136]

|E1D| � m∗
2�2

(
−

∫ ∞

−∞
U(x)dx

)2

. (2.44)

If we rescale the potential energy U(x) by a “coupling constant” factor g, i.e.,
U(x) → gU(x), we find that |E1D| ∼ g2 as g → 0. In other words, the binding
energy has a power-law dependence as a function of the depth of the potential en-
ergy U(x). This is a typical result that can be obtained by perturbative techniques,
controlled by powers of the small parameter g [19].

The above conclusion remains valid basically for any attractive potential U(x).
For example, one can rigorously prove that, if

∫
(1 + |x|)|U(x)|dx <∞, there is a

bound state for all small positive g if and only if
∫
U(x)dx ≤ 0 (i.e., the potential is

attractive at least on average) [126].
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2.2.6.2 Bound States in a Two-Dimensional Potential Well

In the case of a two-dimensional system (i.e., a nonrelativistic particle of mass m∗
confined to move on a plane), the general conclusion about the existence of a bound
state around a potential well of a vanishingly small depth still remains valid. How-
ever, an important qualitative difference appears in the result. The binding energy re-
veals an essential singularity as a function of the depth of the potential well. In order
to understand this better, let us consider a problem with a cylindrically symmetric
potential energy U(r), where r is the radial polar coordinate in the plane. If the po-
tential energy is sufficiently shallow and localized (i.e., | ∫∞

0 rU(r)dr| � m∗/�2),
one finds that the energy of the bound state is given by [136]

|E2D| � �
2

m∗a2
exp

(
− �

2

m∗

∣∣∣∣

∫ ∞

0
rU(r)dr

∣∣∣∣

−1)
, (2.45)

where a is the characteristic size of the potential well. The fact that this energy is sin-
gular can be made explicit by rescaling the potential energy U(r): U(r)→ gU(r).
Then, we find that |E2D| ∼ exp(−C/g) as g → 0 (here C is a constant determined
by the shape of the potential well). Unlike the g2 power-law suppression of the bind-
ing energy in one dimension, this is a much stronger suppression indicating a much
weaker binding. Moreover and perhaps more importantly, such an essential singu-
larity cannot possibly be obtained by resuming any finite number of perturbative
corrections, controlled by powers of the small parameter g. Therefore, the singular
behavior of the binding energy in two dimensions is a sign of a truly nonperturbative
(albeit weakly-interacting) physics.

Again, this result is very general. It can be rigorously proven that, in the case
when

∫ |U(x)|1+εd2x < ∞ (with some ε > 0) and
∫
(1 + x2)ε|U(x)|d2x < ∞,

there is a bound state for all small positive g if and only if
∫
U(x)d2x ≤ 0 (i.e., the

potential is attractive at least on average) [177, 178].

2.2.6.3 Bound States in a Three-Dimensional Potential Well

Now, in the three-dimensional case, there are no bound states if the potential well
is too shallow in depth. This was first shown by Peierls in 1929 [160]. This can be
demonstrated, for example, in a special case of a spherically symmetric potential
well of a finite size,

U(r)=
{
−g π2

�
2

8m∗a2 for r ≤ a,

0 for r > a.
(2.46)

The condition to have at least one bound state is g > 1 [136]. In other words, the
depths of the potential well (or the strength of the “coupling constant” g) should be
larger than the critical value, given by gcr = 1. In the supercritical regime, g = 1+ ε

with 0 < ε� 1, the binding energy is given by [136]
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|E3D| = π4
�

2

27m∗a2
ε2. (2.47)

In the subcritical regime g < 1, on the other hand, there are no bound states at all.

2.3 Magnetic Catalysis in Gauge Theories

Motivated by the fact that magnetic catalysis has a rather general underlying
physics, explained by the dimensional reduction of the particle-antiparticle pair-
ing, it is natural to ask how it is realized in gauge theories with long-range
interactions, such as QED. This problem was discussed in numerous studies
[5, 6, 11, 12, 51, 53, 101, 104–107, 110, 111, 137, 138, 158, 159, 165]. Here we
will briefly review only the key results and refer the reader to the original papers for
further details.

2.3.1 Magnetic Catalysis in QED

Using the same conceptual approach as outlined in Sect. 2.2.4 for the NJL model,
one can show that, in Euclidean space, the equation describing a pion-like Nambu-
Goldstone boson in QED in a magnetic field has the form of a two-dimensional
Schrödinger equation [101]:

[
− ∂2

∂r2
1

− ∂2

∂r2
2

+m2 + V (r)
]
ψ(r)= 0. (2.48)

The function ψ(r) is defined in terms of the Bethe-Salpeter wave function A(p) in
exactly the same way as in the NJL model, see (2.36). This time, however, A(p)
satisfies a different integral equation,

A(p)= α

2π2

∫
d2kA(k)

k2 +m2

∞∫

0

dx exp(−x�2/2)

(k − p)2 + x
, (2.49)

where �= 1/
√|eB| is the magnetic length. Note that, in addition to using the lowest

Landau level approximation, we assumed that the photon screening effects are neg-
ligible. As is easy to check, the explicit form of the potential V (r) is given by [101]

V (r)= α

π�2
exp

(
r2

2�2

)
Ei

(
− r2

2�2

)
, (2.50)

where r2 = r2
1 +r2

2 and Ei(x)=− ∫∞
−x dt exp(−t)/t is the integral exponential func-

tion [94]. Since V (r) is negative, we have a Schrödinger equation with an attrac-
tive potential, in which the parameter −m2 plays the role of the energy E. There-
fore, the problem is again reduced to finding the spectrum of bound states with
E =−m2 < 0.
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It is known that the energy of the lowest level E(α) for the two-dimensional
Schrödinger equation is a nonanalytic function of the coupling constant α at α = 0
[178]. If the potential V (r) were short-range, the result would have the form m2 =
−E(α) ∝ exp[−1/(Cα)], where C is a positive constant [177, 178]. In our case,
however, we have a long-range potential. Indeed, using the asymptotic expansion
for Ei(x) [94], we get:

V (r) � −2α

π

1

r2
, r →∞. (2.51)

In order to find an approximate solution for m2, one can use the integral equation
(2.49) at p = 0. As α → 0, the dominant contribution in the integral on the right-
hand side comes from the infrared region k2 �m2. Therefore,

A(0)� α

2π2
A(0)

∫
d2k

k2 +m2

∞∫

0

dx exp(−y/2)

l2k2 + y
� α

4π
A(0)

[
ln

(
m2�2

2

)]2

,

(2.52)
which implies that [101]

m∝√|eB| exp

(
−
√
π

α

)
. (2.53)

A slightly more careful analysis of the integral equation (2.49) can be made by
approximating the interaction kernel so that the exchange momentum (k−p)2 in the
denominator is replaced by max(k2,p2). The problem then reduces to an ordinary
differential equation with two (infrared and ultraviolet) boundary conditions. The
approximate analytical solution reveals that the lowest energy bound state, which
describes the stable vacuum solution in quantum field theory, corresponds to the
following value of the dynamical mass [101]:

m� C
√|eB| exp

(
−π

2

√
π

2α

)
. (2.54)

Unfortunately, the approximation used in this analysis is not completely reliable.
There are higher order diagrams that can substantially modify the interaction poten-
tial and, in turn, the result for the dynamical mass. For example, taking into account
the vacuum polarization effects in the improved rainbow (ladder) approximation, in
which the free photon propagator is replaced by a screened interaction with the one-
loop photon self-energy, the result changes. The corrected expression for the mass
has the same form as in (2.54), but with α replaced by α/2 [101]. This is a clear
indication that, despite weak coupling, there can exist other relevant contributions,
coming from higher order diagrams.

A further study showed that, by using a similarity between the magnetic catalysis
problem in QED and the exactly solvable Schwinger model [73, 169], one can find a
special nonlocal gauge, in which the leading singularity of the dynamical mass can
be extracted exactly [104],
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m� C̃
√|eB|F(α) exp

[
− π

α ln(C1/Nα)

]
, (2.55)

where N is the number of fermion flavors, F(α)� (Nα)1/3, C1 � 1.82 ± 0.06 and
C̃ ∼ O(1). Note that the leading singularity in the final expression for the mass is
quite different from that in the rainbow approximation (2.54).

The magnetic catalysis of chiral symmetry breaking in QED yields a rare exam-
ple of dynamical symmetry breaking in a (3 + 1)-dimensional gauge theory with-
out fundamental scalar fields, in which there exists a consistent truncation of the
Schwinger-Dyson equation.

2.3.2 Magnetic Catalysis in QCD

Recently there was an increased interest in studies of QCD in a strong magnetic field
[2, 14–16, 23, 25, 31, 34, 67–72, 77, 78, 121, 146–149]. There are several reasons
why such investigations may be of interest. Very strong magnetic fields are known
to have existed in the Early Universe [18, 30, 44, 95, 183] and are expected to be
generated in relativistic heavy ion collisions [123, 179]. Since the chiral symmetry
plays a profound role in QCD, it is interesting to study also the role of magnetic
catalysis in this theory [121, 146].

Because of the property of asymptotic freedom, one can argue that the dynamics
underlying magnetic catalysis in QCD is, at least in principle, weakly coupled at
sufficiently large magnetic fields [121]. This fact can be used to justify a consistent
truncation of the Schwinger-Dyson equation, resembling that in QED, which we
discussed in the preceding section.

Let us start by introducing a QCD like theory with Nu up flavors of quarks having
electric charges 2e/3 and Nd down flavors of quarks having electric charges −e/3.
(The total number of flavors is Nf = Nu + Nd .) It is important to distinguish the
up and down types of quarks because the chiral symmetry subgroup that mixes
them is explicitly broken by the external magnetic field. Taking this into account,
we find that the model is invariant under the SU(Nu)L × SU(Nu)R × SU(Nd)L ×
SU(Nd)R × U(−)(1)A chiral symmetry. The anomaly free subgroup U(−)(1)A is
connected with the conserved current which is the difference of the U(d)(1)A and
U(u)(1)A currents. [The U(−)(1)A symmetry is of course absent when either Nd

or Nu equals zero.] A dynamical generation of quark masses spontaneously breaks
the chiral symmetry down to SU(Nu)V × SU(Nd)V and gives rise to N2

u +N2
d − 1

massless Nambu-Goldstone bosons in the low-energy spectrum.
Just like in QED, the vacuum polarization effects play a very important role in

QCD in the presence of a strong magnetic field. By properly modifying the known
result from the Abelian gauge theory [26, 36, 140] to the case of QCD, we find that
the gluon polarization tensor has the following behavior:

ΠAB,μν � αs

6π
δAB(kμ‖ k

ν‖ − k2‖g
μν
‖

)
Nf∑

q=1

|eqB|
m2
q

, for
∣∣k2‖

∣∣�m2
q, (2.56)
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ΠAB,μν � −αs

π
δAB(kμ‖ k

ν‖ − k2‖g
μν
‖

)
Nf∑

q=1

|eqB|
k2‖

, for m2
q � ∣∣k2‖

∣∣� |eB|, (2.57)

where kμ‖ ≡ g
μν
‖ kν and gμν‖ ≡ diag(1,0,0,−1) is the projector onto the longitudinal

subspace. Notice that quarks in a strong magnetic field do not couple to the trans-
verse subspace spanned by gμν⊥ ≡ gμν −g

μν
‖ = diag(0,−1,−1,0) and kμ⊥ ≡ g

μν
⊥ kν .

This is connected with the dominant role of the lowest Landau level, in which quarks
are polarized along the magnetic field.

The expressions (2.56) and (2.57) coincide with those for the polarization op-
erator in the massive Schwinger model [169] if the parameter αs |eqB|/2 here is
replaced by the dimensional coupling α1 of (1+1)-dimensional QED. In particular,
(2.57) implies that there is a massive gluon resonance with the mass given by

M2
g =

Nf∑

q=1

αs

π
|eqB| = (2Nu +Nd)

αs

3π
|eB|. (2.58)

This is reminiscent of the pseudo-Higgs effect in the (1+1)-dimensional massive
QED. It is not the genuine Higgs effect because there is no complete screening
of gluons in the far infrared region with |k2‖| � m2

q , see (2.56). Nevertheless, the
pseudo-Higgs effect is manifested in creating a massive resonance and this reso-
nance provides the dominant force leading to chiral symmetry breaking.

In the end, the dynamics in QCD in a strong magnetic field appears to be essen-
tially the same as in QED, except for purely kinematic changes. After expressing
the magnetic field in terms of the running coupling αs at the scale

√|eB| using

1

αs
� b ln

|eB|
Λ2

QCD

, where b= 11Nc − 2Nf

12π
, (2.59)

we obtain the result for the dynamical mass in the following form [146]:

m2
q � 2C1

∣∣∣∣
eq

e

∣∣∣∣Λ
2
QCD(cqαs)

2/3 exp

[
1

bαs
− 4Ncπ

αs(N2
c − 1) ln(C2/cqαs)

]
, (2.60)

where eq is the electric charge of the q-th quark and Nc is the number of colors. The
numerical factors C1 and C2 are of order 1, and the value of cq is given by

cq = 1

6π
(2Nu +Nd)

∣∣∣∣
e

eq

∣∣∣∣. (2.61)

Because of the difference in electric charges, the dynamical mass of the up-type
quarks is considerably larger than that of the down-type quarks.

It is interesting to point that the dynamical quark masses in a wide range of
strong magnetic fields, Λ2

QCD � |eB| � (10 TeV)2, remain much smaller than the

dynamical (constituent) masses of quarks m(0)
q � 300 MeV in vacuum QCD without
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a magnetic field. This may suggest that QCD can have an intermediate regime, in
which the magnetic field is strong enough to provide a gluon screening to interfere
with the vacuum pairing dynamics [76, 146], but not sufficiently strong to produce
large dynamical masses through magnetic catalysis. In this intermediate regime, the
dynamical mass and the associated chiral condensate could be decreasing with the
magnetic field. The corresponding regime may start already at magnetic fields as
low as 1019 G, when the gluon mass Mg , given by (2.58), becomes comparable to
ΛQCD. (For the estimate, we assumed that the value of the coupling constant is of
order 1 at the QCD energy scale.)

2.3.3 Magnetic Catalysis in Graphene

In this section, we briefly discuss the application of the magnetic catalysis ideas to
graphene in the regime of the quantum Hall effect.

Graphene is a single atomic layer of graphite [156] that has many interesting
properties and promises widespread applications (for reviews, see Refs. [1, 27,
109]). The uniqueness of graphene is largely due to its unusual band structure
with two Dirac points at the corners of the Brillouin zone. Its low-energy excita-
tions are described by massless Dirac fermions [170]. Because of a relatively small
Fermi velocity of quasiparticles, vF ≈ c/300, the effecting coupling constant for the
Coulomb interaction in graphene, α ≡ e2/(ε0vF ), is about 300 times larger than the
fine structure constant in QED, e2/(ε0c)≈ 1/137.

When graphene is placed in a perpendicular magnetic field, it reveals an anoma-
lous quantum Hall effect [155, 189], exactly as predicted in theory [108, 161, 190].
The anomalous plateaus in the Hall conductivity are observed at the filling factors
ν = ±4(n+ 1/2), where n = 0,1,2, . . . is the Landau level index. The factor 4 in
the filling factor is due to a fourfold (spin and valley) degeneracy of each Landau
level. As for the half-integer shift in the filling factor, it is directly connected with
the Dirac nature of quasiparticles [90, 112, 124, 125, 170].

It was observed experimentally [22, 37, 120, 188] that there appear additional
plateaus in the Hall conductivity when graphene is placed in a very strong mag-
netic field. The new plateaus can be interpreted as the result of lifting the four-
fold degeneracy of the Landau levels. In the case of the lowest Landau level, in
particular, some of the degeneracy, i.e., between the particle and hole states, can
be removed when there is a dynamical generation of a Dirac mass. Considering
the possibility of magnetic catalysis, such an outcome seems almost unavoidable
[90, 91, 93, 98, 113, 124, 125, 174].

The low-energy quasiparticle excitations in graphene are conveniently described
in terms of four-component Dirac spinors Ψ T

s = (ψKAs,ψKBs,ψK ′Bs,ψK ′As), in-
troduced for each spin state s =↑,↓. Note that the components of Ψs are the Bloch
states from two sublattices (A,B) of the graphene hexagonal lattice and two valleys
(K,K ′) at the opposite corners of the Brillouin zone. The approximate low-energy
Hamiltonian, including the kinetic and Coulomb interaction terms, is given by
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H = vF
∑

s

∫
d2rΨ̄s

(
γ 1πx + γ 2πy

)
Ψs

+ 1

2

∑

s,s′

∫
d2rd2r′Ψ †

s (r)Ψs(r)UC

(
r − r′

)
Ψ

†
s′
(
r′
)
Ψs′

(
r′
)
, (2.62)

where UC(r) is the Coulomb potential, which takes into account the polarization
effects in a magnetic field [90, 93]. Note that the two electron spins (s =↑,↓) in
graphene give rise to two independent species of Dirac fermions. As a result, the
Hamiltonian possesses an approximate U(4) symmetry [90], which is a generaliza-
tion of the U(2) flavor symmetry discussed in the case of the one-species model in
Sect. 2.2.2. The 16 generators of the extended U(4) flavor symmetry are obtained
by a direct product of the 4 generators of the U(2) group acting in the valley space
(K,K ′), and the 4 generators of the U(2) spin symmetry.

The U(4) symmetry is preserved even when the electron chemical potential term,
−μΨ †Ψ , is added. The inclusion of the Zeeman term, which distinguishes the elec-
tron states with opposite spins, breaks the symmetry down to the U↑(2) × U↓(2)
subgroup. The explicit form of the Zeeman term is given by μBBΨ

†σ3Ψ , where B
is the magnetic field, μB = e�/(2mc) is the Bohr magneton, and σ3 is the third Pauli
matrix in spin space. An interesting thing is that this explicit symmetry breaking is
a small effect even in very strong magnetic fields. To see this, we can compare the
Zeeman energy εZ with the Landau energy ε�,

εZ = μBB = 5.8 × 10−2B [T] meV, (2.63)

ε� =
√
�v2

F |eB|/c= 26
√
B [T] meV. (2.64)

Therefore, the Zeeman energy is less then a few percent of the Landau energy even
for the largest (continuous) magnetic fields created in a laboratory, B � 50 T.

Because of the large flavor symmetry, there are many potential ways how it can
be broken [91, 93]. Here we mention only the possibilities that are connected to
the magnetic catalysis scenario at zero filling ν = 0 (i.e., the lowest Landau level is
half-filled).

We will allow independent symmetry breaking condensates for fermions with
opposite spins. Also, in addition to the usual 〈Ψ̄sΨs〉 condensates (no sum over the
repeated spin indices here), we introduce the time reversal odd ones, 〈Ψ̄sγ

3γ 5Ψs〉
[91, 93]. While the former will give rise to Dirac masses ms (s =↑,↓) in the low-
energy theory, the latter will result in the Haldane masses Δs (s =↑,↓) [112].

In the ground state, one can also have additional condensates, 〈Ψ †σ 3Ψ 〉 and
〈Ψ †γ 3γ 5PsΨ 〉, associated with nonzero spin and pseudo-spin (valley) densities.
To capture this possibility in the variational ansatz, one needs to include a spin
chemical potential μ3 and two pseudo-spin chemical potentials μ̃s (s =↑,↓). Thus,
the general structure of the (inverse) full fermion propagator for quasiparticles of a
fixed spin has the following form:

S−1
s

(
ω; r, r′

)=−i[γ 0ω− vF (π · γ )+ Σ̂+
s

]
δ2(r − r′

)
, (2.65)
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where the generalized self-energy operator Σ̂+ is given by

Σ̂+ =−ms + γ 0μs + is⊥γ 1γ 2μ̃s + is⊥γ 0γ 1γ 2Δs. (2.66)

Functions ms , μs , μ̃s , and Δs on the right-hand side depend on the operator valued
argument (π · γ )2�2, whose eigenvalues are nonpositive even integers: −2n, where
n= 0,1,2, . . . . Therefore, in the Landau level representation, ms , μs , μ̃s , and Δs

will get an additional Landau index n dependence: mn,s , μn,s , μ̃n,s , and Δn,s .
The Schwinger–Dyson equation for the full fermion propagator takes the form

S−1(t − t ′; r, r′
)= S−1

0

(
t − t ′; r, r′

)+ e2γ 0S
(
t − t ′; r, r′

)
γ 0D

(
t ′ − t; r′ − r

)
,

(2.67)
where D(t; r) is the photon propagator mediating the Coulomb interaction. The
latter is approximately instantaneous because the quasiparticle velocities are much
smaller than the speed of light. In momentum space, the photon propagator takes
the following form:

D(ω,k)≈D(0, k)= i

ε0[k +Π(0, k)] , (2.68)

where Π(0, k) is the static polarization function and ε0 is a dielectric constant.
It should be noted that, in the coordinate-space representation, both the fermion

propagator and its inverse contain exactly the same Schwinger phase, see (2.88).
After omitting such a (nonzero) phase on both sides of (2.67) and performing the
Fourier transform with respect to the time variable, we will arrive at the following
equation for the translationally invariant part of the fermion propagator [93]:

S̃−1(ω; r)= S̃−1
0 (ω; r)+ i

e2

ε0

∫ ∞

−∞
dΩ

2π

∫ ∞

0

dk

2π

kJ0(kr)

k+Π(0, k)
γ 0S̃(Ω; r)γ 0. (2.69)

In the Landau level representation, this equation is equivalent to a coupled set of
4 × 2 × nmax equations, where we counted 4 parameters (m, μ, μ̃, and Δ), 2 spins
(s =↑,↓), and nmax � [Λ2/(2|eB|)] Landau levels below the ultraviolet energy
cutoff Λ, where the low-energy theory is valid.

The explicit form of the gap equations can be found elsewhere [93]. The corre-
sponding set of equations can be solved by making use of numerical methods. Here,
instead, we will discuss only some general features of the solutions in the lowest
Landau level approximation, which can be obtained with analytical methods.

Let us start by considering the solutions to the gap equations for quasiparticles
of a fixed spin. In the lowest Landau level approximation, there are two independent
gap equations, i.e.,

μeff −μ = αε�

2
K0

[
nF (meff −μeff)− nF (meff +μeff)

]
, (2.70)

meff = αε�

2
K0

[
1 − nF (meff −μeff)− nF (meff +μeff)

]
, (2.71)
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where α ≡ e2/(ε0vF ) ≈ 2.2/ε0 is the coupling constant, nF (x) ≡ 1/(ex/T + 1) is
the Fermi distribution function, and K0 is the interaction kernel due to the Coulomb
interaction in the lowest Landau level approximation. In the above equations, we
used the shorthand notation μeff = μ−Δ and meff =m− μ̃ for the two independent
combination of parameters that determine the spectrum of the lowest Landau level
quasiparticles,

ω− =−μeff −meff, and ω+ =−μeff +meff. (2.72)

At zero temperature, the gap equations reduce down to

μeff = μ+ αε�

4
√

2π
sign(μeff)θ

(|μeff| − |meff|
)
, (2.73)

|meff| = αε�

4
√

2π
θ
(|meff| − |μeff|

)
. (2.74)

Here we used the value for the interaction kernel K0 = 1/(2
√

2π), which is ob-
tained in the approximation with screening effects neglected [93]. One of the solu-
tions to this set of equations has a nonzero dynamical Dirac mass (m∝ αε�), i.e.,

|meff| = αε�

4
√

2π
, Δ= 0, − αε�

4
√

2π
< μ<

αε�

4
√

2π
. (2.75)

The other two solutions have nonzero Haldane masses (Δ∝ αε�), i.e.,

meff = 0, Δ= αε�

4
√

2π
, −∞<μ<

αε�

4
√

2π
, (2.76)

meff = 0, Δ=− αε�

4
√

2π
, − αε�

4
√

2π
< μ<∞. (2.77)

In both types of solutions, the values of the masses are proportional to a power of the
coupling constant α, as expected from the dimensional reduction [136, 177, 178].

In order to determine the ground state in graphene when both spin states are
accounted for, one has to find among many possible solutions the one with the lowest
free energy. In the approximation used here, the ground state solution at ν = 0 filling
(i.e., an analog of the vacuum state in particle physics) corresponds to a spin-singlet
state with equal in magnitude, but opposite in sign Haldane masses for the two spin
states [93]: Δ↑ =−Δ↓, i.e., a mixture of the two solutions in (2.76) and (2.77).

The symmetry of the corresponding ground state is U↑(2)×U↓(2), but with the
Zeeman energy splitting dynamically enhanced by the nonzero Haldane masses. The
quasiparticle energies of the dynamically modified lowest Landau level are [93]

ω↑ = −μ+ εZ + |Δ↑|> 0, (×2), (2.78)

ω↓ = −μ− εZ − |Δ↓|< 0, (×2), (2.79)

which show that the original fourfold degeneracy is indeed partially lifted.
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2.4 Concluding Remarks

We hope that this review of magnetic catalysis is sufficient to convey the main idea
of the phenomenon in terms of simple and rather general physics concepts. From the
outset, this review was never meant to be comprehensive. Here we concentrated only
on the bare minimum needed to understand the phenomenon as a consequence of the
underlying dimensional reduction of the fermion-antifermion pairing in a magnetic
field [99–102]. For further reading and for deeper insights into various aspects of
the magnetic catalysis, it is suggested that the reader refers to the original literature
on the topic.

Over nearly 20 years of research, there has been a lot of progress made in our
understanding of magnetic catalysis. A rather long list of research papers at the end
of this review is a pretty objective proof of that. At present, it is evident that the
key features of the underlying physics are well established and understood. At the
same time, it is also evident that there are still many theoretical questions about
the applications of magnetic catalysis under various conditions, where factors other
than the magnetic field may also play a substantial role.

One prominent example is the dynamics of chiral symmetry breaking in QCD in
a magnetic field. Because of a poorly understood interplay between the dynamics
responsible for the quark (de-)confinement on the one hand and the magnetic cataly-
sis on the other, there are a lot of uncertainties about the precise role of the magnetic
field in this case [2, 14–16, 23, 25, 31, 34, 67–72, 77, 78, 121, 146–149]. One can
even suggest that there exists an intermediate regime in QCD, starting at magnetic
fields of order B � 1019 G or so, in which the magnetic field is sufficiently strong to
provide a gluon screening [76] and, thus, suppress the vacuum chiral condensate, but
still is not strong enough to produce equally large quark masses through magnetic
catalysis [146]. At finite temperature, further complications could appear because of
the interplay of the magnetic field and the temperature in gluon screening [16]. All
in all, it is obvious that there are many research directions remaining to be pursued
in the future.

As we argued in Sect. 2.3.3, magnetic catalysis may play a profound role in the
quantum Hall effect in monolayer graphene. It appears, however, that an interesting
variation of magnetic catalysis can be also realized in bilayer graphene [86, 88, 89,
92]. In essence, it is a nonrelativistic analog of the magnetic catalysis. This fact
alone is of interest because of a large diversity of solid state physics systems and the
relative ease of their studies in table-top experiments.

Finally, one should keep in mind that the fundamental studies of gauge field the-
ories, which are known to have an extremely rich and complicated dynamics, is of
general interest even in the regimes that are not readily accessible in current exper-
iments. Such studies usually provide invaluable information about the complicated
theories in the regimes that are under theoretical control. This often allows one to
understand better the structure of the theory and even predict its testable limitations.
In the case of QCD in a magnetic field, e.g., we may gain not only a better under-
stand of the fundamental properties, but also get an insight into the physics in the
Early Universe and in heavy ion collisions.
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Appendix: Fermion Propagator in a Magnetic Field

Let us start from the discussion of the Dirac fermion propagator in a magnetic field
in 3 + 1 dimensions. It is formally defined by the following expression:

S
(
x, x′

)= i
[
iγ 0∂t − (π⊥ · γ⊥)− π3γ 3 −m

]−1
δ4(x − x′

)
, (2.80)

where x ≡ (x0, x1, x2, x3) = (t, r). By definition, the spatial components of the
canonical momenta are πi ≡ −i∂i − eAi , where i = 1,2,3. (The perpendicular
components are i = 1,2.) Here we assume that e is the fermion electric charge
(i.e., one should take e < 0 in the case of the electron) and use the Landau gauge
A = (0,Bx1,0), where B is the magnetic field pointing in the x3-direction. By def-
inition, the components of the usual three-dimensional vectors A (vector potential)
and r (position vector) are identified with the contravariant components Ai and xi ,
respectively.

In the Landau gauge used, it is convenient to perform a Fourier transform in the
time (t − t ′) and the longitudinal (x3 − x′3) coordinates. Then, we obtain

S
(
ω,p3; r⊥, r′⊥

) = i
[
γ 0ω− (π⊥ · γ⊥)− γ 3p3 −m

]−1
δ2(r⊥ − r′⊥

)

= i
[
γ 0ω− (π⊥ · γ⊥)− γ 3p3 +m

]

× [
ω2 − π2⊥ + ieBγ 1γ 2 − (

p3)2 −m2]−1
δ2(r⊥ − r′⊥

)
,

(2.81)

where r⊥ is the position vector in the plane perpendicular to the magnetic field.
In order to obtain a Landau level representation for the propagator (2.81), it is

convenient to utilize the complete set of eigenstates of the operator π2⊥. This opera-
tor has the eigenvalues (2k + 1)|eB|, where k = 0,1,2, . . . is the quantum number
associated with the orbital motion in the perpendicular plane. The corresponding
normalized wave functions read

ψkp2(r⊥)=
1√
2π�

1
√

2kk!√π
Hk

(
x1

�
+ p2�

)
e
− 1

2�2 (x
1+p2�

2)2
e−is⊥x2p2 , (2.82)

where Hk(z) are the Hermite polynomials [94], �= 1/
√|eB| is the magnetic length,

and s⊥ ≡ sign(eB). The wave functions satisfy the conditions of normalizability and
completeness,

∫
d2r⊥ψ∗

kp2
(r⊥)ψk′p′

2
(r⊥) = δkk′δ

(
p2 − p′

2

)
, (2.83)
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∞∫

−∞
dp2

∞∑

k=0

ψkp2(r⊥)ψ∗
kp2

(
r′⊥

) = δ2(r⊥ − r′⊥
)
, (2.84)

respectively.
By making use of the spectral expansion of the δ-function in (2.84), as well as

the following identities:

(π⊥ · γ⊥)ψkp2 = i

�
γ 1[√2(k + 1)ψk+1,p2P− −√

2kψk−1,p2P+
]
, (2.85)

π2⊥ψkp2 = 2k+ 1

�2
ψkp2, (2.86)

with P± = 1
2 (1 ± is⊥γ 1γ 2) being the spin projectors onto the direction of the

magnetic field, we can rewrite the propagator in (2.81) as follows:

S
(
ω,p3; r⊥, r′⊥

) =
∞∫

−∞
dp2

∞∑

k=0

i
[
γ 0ω− (π⊥ · γ⊥)− γ 3p3 +m

][
ω2 − (

p3)2

− (2k + 1)|eB| + ieBγ 1γ 2 −m2]−1
ψkp2(r⊥)ψ∗

kp2

(
r′⊥

)

= eiΦ(r⊥,r
′⊥)S̃

(
ω,p3; r⊥ − r′⊥

)
. (2.87)

The Schwinger phase is given by

Φ
(
r⊥, r′⊥

)= s⊥
(x1 + x′1)(x2 − x′2)

2�2
, (2.88)

and the translationary invariant part of the propagator reads

S̃
(
ω,p3; r⊥ − r′⊥

) = i
e−ξ/2

2π�2

∞∑

n=0

Fn(ω,p
3; r⊥ − r′⊥)

ω2 − 2n|eB| − (p3)2 −m2
, (2.89)

Fn
(
ω,p3; r⊥ − r′⊥

) = (
γ 0ω− γ 3p3 +m

)[
Ln(ξ)P+ +Ln−1(ξ)P−

]

− i

�2
γ⊥ · (r⊥ − r′⊥

)
L1
n−1(ξ), (2.90)

where we used the short-hand notation

ξ = (r⊥ − r′⊥)2

2�2
. (2.91)

In order to integrate over the quantum number p2 in (2.87), we took into account
the following table integral [94]:

∞∫

−∞
e−x2

Hm(x + y)Hn(x + z)dx = 2nπ1/2m!zn−mLn−m
m (−2yz), (2.92)
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which is valid when m≤ n. Here Lα
n are the generalized Laguerre polynomials, and

Ln ≡ L0
n.

Here a short remark is in order regarding the general structure of the Dirac prop-
agator in a magnetic field. It is not a translationally invariant function, but has the
form of a product of the Schwinger phase factor eiΦ(r⊥,r

′⊥) and a translationally in-
variant part. The Schwinger phase spoils the translational invariance. From a physics
viewpoint, this reflects a simple fact that the fermion momenta in the two spatial di-
rections perpendicular to the field are not conserved quantum numbers.

The Fourier transform of the translationary invariant part of the propagator (2.89)
reads

S̃
(
ω,p3;p⊥

)= 2ie−p2⊥�2
∞∑

n=0

(−1)nDn(ω,p
3;p⊥)

ω2 − 2n|eB| − (p3)2 −m2
, (2.93)

where

Dn

(
ω,p3;p⊥

) = (
γ 0ω− γ 3p3 +m

)[
Ln

(
2p2⊥�2)P+ −Ln−1

(
2p2⊥�2)P−

]

+ 2(γ⊥ · p⊥)L1
n−1

(
2p2⊥�2). (2.94)

Taking into account the earlier comment that the perpendicular momenta of charged
particles are not conserved quantum numbers, this representation may appear sur-
prising. However, one should keep in mind that the result in (2.93) is not a usual
momentum representation of the propagator, but the Fourier transform of its trans-
lationary invariant part only.

In some applications, it is convenient to make use of the so-called proper-time
representation [168], in which the sum over Landau levels is traded for a proper-time
integration. This is easily derived from (2.93) by making the following substitution:

i

ω2 − 2n|eB| − (p3)2 −m2 + i0
=

∫ ∞

0
dseis[ω2−2n|eB|−(p3)2−m2+i0]. (2.95)

Then, the sum over Landau levels can be easily performed with the help of the
summation formula for Laguerre polynomials [94],

∞∑

n=0

Lα
n(x)z

n = (1 − z)−(α+1) exp

(
xz

z− 1

)
. (2.96)

The final expression for the propagator in the proper-time representation reads

S̃
(
ω,p3;p⊥

) =
∫ ∞

0
dseis[ω2−m2−(p3)2]−i(p2⊥�2) tan(s|eB|)[γ 0ω− (γ · p)+m

+ (
p1γ 2 − p2γ 1) tan(seB)

][
1 − γ 1γ 2 tan(seB)

]
, (2.97)

where (γ · p)≡ (γ⊥ · p⊥)+ γ 3p3.
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Using the same method, one can also derive the Dirac fermion propagator in a
magnetic field in 2 + 1 dimensions. It has the same structure as the propagator in
Eqs. (2.87), (2.88), (2.89), and (2.90), but with p3 = 0, i.e.,

S2+1
(
ω; r, r′

)= eiΦ(r,r
′)S̃2+1

(
ω; r − r′

)
, (2.98)

where

S̃2+1
(
ω; r − r′

) = i
e−ξ/2

2π�2

∞∑

n=0

[
γ 0ω+m

ω2 − 2n|eB| −m2

[
Ln(ξ)P− +Ln−1(ξ)P+

]

− i

�2

γ · (r − r′)
ω2 − 2n|eB| −m2

L1
n−1(ξ)

]
. (2.99)

The Fourier transform of the translationally invariant part is

S̃2+1(ω;p) = 2ie−p2�2
∞∑

n=0

(−1)n
[
(γ 0ω+m)[Ln(2p2�2)P+ −Ln−1(2p2�2)P−]

ω2 − 2n|eB| −m2

+ 2
(γ · p)

ω2 − 2n|eB| −m2
L1
n−1

(
2p2�2)

]
. (2.100)

Finally, the proper-time representation reads

S̃2+1(ω;p) =
∫ ∞

0
dseis[ω2−m2]−i(p2�2) tan(s|eB|)[γ 0ω− (γ · p)+m

+ (
p1γ 2 − p2γ 1) tan(seB)

][
1 − γ 1γ 2 tan(seB)

]
. (2.101)
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Chapter 3
Inverse Magnetic Catalysis in Field Theory
and Gauge-Gravity Duality

Florian Preis, Anton Rebhan, and Andreas Schmitt

3.1 Introduction

Two of the most important laboratories for the theory of strong interactions ex-
hibit large magnetic fields: firstly, in non-central relativistic heavy-ion collisions the
magnetic field perpendicular to the collision plane can be as high as 1018 G [1], and,
secondly, in certain compact stars called magnetars the surface magnetic field is of
the order of 1015 G [2], while the application of the virial theorem suggests that in
the interior the magnitude of the magnetic field might reach 1018 G [3]. Since this
is comparable to the QCD scale ΛQCD � 200 MeV [in natural Heaviside–Lorentz
units, 1018 G � (140 MeV)2], the magnetic field in these laboratories might have a
significant influence on properties governed by the strong interaction. For example,
in the case of heavy-ion collisions, the magnetic field might be responsible for an
observed charge separation, which has been attributed to the so-called chiral mag-
netic effect [4–6]. On the other hand, in compact stars the structural composition
of the star’s interior, i.e., the equation of state, and transport properties could be
affected.

Also from a theoretical point of view these two physical systems present a great
challenge. Both of them cover regions of the QCD phase diagram that are very
difficult to study from first principles, since the large coupling strength prevents the
application of perturbative methods. Relativistic heavy-ion collisions explore the
phase diagram at low chemical potential and intermediate temperature (of the order
of the QCD scale). This region is best tackled by lattice QCD, which has in the
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recent years been able to quantify the equilibrium properties in this regime [7, 8].
For transport phenomena, however, lattice simulations are not well suited. Here,
the application of the AdS/CFT correspondence [9], a method developed in string
theory, has contributed the celebrated result for the ratio of shear viscosity η over
entropy density s [10]. The result, η/s = 1/4π , is currently unrivalled by other
methods and appears to agree very well with experimental data. Furthermore, this
value has been conjectured to be a lower bound for all isotropic fluids [11]. (This
bound has been lowered in higher-derivative gravity duals [12], while in anisotropic
fluids there appears to be no lower bound [13].) Unfortunately, the region of the
phase diagram relevant for compact stars, where the temperature is low and the
quark chemical potential is of the order of the QCD scale, is inaccessible for lattice
simulations due to the so-called sign problem. Here one has to rely on extrapolations
(down in density) from perturbative calculations or extrapolations (up in density)
from nuclear physics or on suitable models, two of which will be of relevance for
this article: the Nambu–Jona-Lasinio (NJL) model [14, 15] and the Sakai–Sugimoto
model [16, 17].

In this review we focus on the effect of a background magnetic field on the chi-
ral phase transition of QCD. The Lagrangian of QCD with Nf flavors exhibits an
approximate global U(Nf )L ×U(Nf )R symmetry group, which is broken down to
a global SU(Nf )L × SU(Nf )R × U(1)L+R by the axial anomaly. At small tem-
peratures and chemical potentials, i.e., in the hadronic phase, the chiral symmetry
SU(Nf )L×SU(Nf )R is spontaneously broken to SU(Nf )L+R through the forma-
tion of a quark–anti-quark condensate. In this scheme the light mesons are under-
stood as the (pseudo-)Goldstone modes corresponding to the broken generators of
the symmetry group. By turning on a chemical potential one introduces an asym-
metry between quarks and anti-quarks and thus exerts a stress on their pairing. As a
consequence, one expects to eventually restore chiral symmetry.1

The two models under consideration realize the implementation and breaking
of chiral symmetry quite differently. In its original formulation, the NJL model
was supposed to explain the mass of nucleons via chiral symmetry breaking. With
the advent of QCD it was reformulated as a model of quarks [21, 22]. It is a non-
renormalizable field theory since it approximates the interaction of quarks by a four-
point fermion interaction, and therefore the results of the model depend on the regu-
larization scheme and on the UV cut-off that is used. Furthermore, the NJL model in
its standard form lacks confinement. In the chiral limit, the Lagrangian of the NJL
model is invariant under the same symmetry group as the QCD Lagrangian with
massless quarks—the global SU(Nc)×U(Nf )L×U(Nf )R , where Nc denotes the
number of colors. The chiral symmetry is broken explicitly by a bare quark mass,

1At asymptotically large chemical potentials it is known from first principles that chiral symmetry
is also broken, however via a different mechanism, namely by the formation of a diquark conden-
sate in the color-flavor-locked phase [18, 19]. Whether the hadronic phase is superseded by normal
quark matter or by CFL or by some other color-superconducting phase is a matter of debate. Here
we shall ignore color superconductivity. For the inclusion of color superconductivity in the context
of the chiral phase transition in a magnetic field see Ref. [20].
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which has to be sufficiently small compared to the momentum cut-off. Spontaneous
breaking of chiral symmetry is then realized very similarly to the BCS theory of
superconductivity [23], which actually served as a guideline in the development of
the model. Nevertheless, there are important differences between the condensation
of Cooper pairs in a superconductor and the condensation of fermion–anti-fermion
pairs. For instance, the presence of a Fermi surface in the former case implies the
instability with respect to Cooper pairing for arbitrarily weak attractive interactions,
while, as we shall see in the NJL model, there is a finite critical coupling that is
needed to form a chiral condensate. We shall also see that the analogy becomes
better for chiral condensation in a magnetic field.

Our second model, the Sakai–Sugimoto model, is a top–down string-theoretical
approach to a holographic dual of large-Nc QCD. It exploits a non-supersymmetric
variation of the original gauge-gravity duality conjectured in [9] known as the Wit-
ten model [24]. Sakai and Sugimoto introduced fundamental quarks in the chiral
limit by placing a stack of Nf probe D-branes for the left-handed and anti-D-branes
for the right-handed sector into the supergravity limit of the Witten model. Accord-
ing to the holographic dictionary, the local gauge symmetry on these “flavor branes”
translates into a global symmetry on the boundary, i.e., into the chiral symmetry
of the dual field theory. The question of whether the symmetry is intact or broken
amounts to asking whether one can perform gauge transformations on D-branes and
anti-D-branes independently or not, i.e., whether the D-branes connect with the
anti-D-branes in the bulk. Thus the symmetry breaking mechanism in the Sakai–
Sugimoto model is of geometrical nature.

In order to understand what effects a magnetic field might have on the formation
of the chiral condensate, let us recapitulate the general discussion found in [25].
Calculating the chiral condensate in field theory amounts to calculating a fermion
loop. Let the bare fermion mass be finite for the moment and regularize the UV
divergence via a cut-off in some suitable scheme, e.g., Schwinger’s proper time
method. In the presence of a magnetic field one has to take Landau quantization of
the transverse momentum of the charged fermions into account. It turns out that if
one performs the chiral limit on the result, an IR singularity appears, which can be
shown to originate from the lowest Landau level. As a consequence, a mass gap is
dynamically generated in order to avoid this IR singularity. The precise form of the
gap is of course dictated by the form of the interactions in the model under consider-
ation. This effect—termed magnetic catalysis—was first found in the Gross–Neveu
model [26, 27] and later on in several NJL model calculations [25, 28–30] and in
QED [31] as well as in holographic approaches [32–38]. It also plays an important
role in the context of graphene [39, 40]. For QCD, it was found in a lattice calcula-
tion (however, with unphysical quark masses) that the critical temperature increases
with the magnetic field [41], in accordance with magnetic catalysis. However, re-
cently the Budapest–Wuppertal collaboration found (with physical quark masses)
that the maximum of the quark susceptibility drops significantly at temperatures
about 140 MeV under the influence of a magnetic field [42], i.e., the opposite effect
was observed. It remains an open and interesting question what prevents magnetic
catalysis to persist for larger temperatures in QCD.
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This article is mostly, but not exclusively, a review of existing work in the field-
theoretical NJL and the holographic Sakai–Sugimoto model. In Sect. 3.2, we re-
view the effect of a magnetic field on chiral symmetry breaking in the NJL model
in a pedagogical way, starting from the simplest case without magnetic field. This
section also contains several new, so far unpublished, aspects, for instance the an-
alytic approximations and related discussions regarding inverse magnetic catalysis
in Sect. 3.2.2.3. After a pedagogical introduction to the Sakai–Sugimoto model in
Sect. 3.3.1, we discuss its limit of a small asymptotic separation of the flavor branes
and map out the critical surface of chiral symmetry breaking in the parameter space
of temperature, chemical potential and magnetic field. This part is mostly a review
of our own works [43] and [44], with emphasis on the analytic approximations of
the results and their comparison to the field-theoretical analogues.

3.2 Chiral Phase Transition in the Nambu–Jona-Lasinio Model

We start from the standard Lagrangian of the NJL model (for an overview over the
various NJL-type models see [45]),

L =ψ
(
iγ μDμ −m+μγ0

)
ψ +G

[
(ψψ)2 + (ψγ5ψ)

2]. (3.1)

We restrict ourselves to Nf = 1; μ denotes the quark chemical potential, m the bare
quark mass, Dμ = ∂μ + iqAμ the covariant derivative with q the electric charge of
the quarks and the electromagnetic gauge potential Aμ = (φ,−A). We shall work
with imaginary (Euclidean) time τ =−ix0 compactified on a circle, the circumfer-
ence of which is identified with the inverse of the temperature T .

As a next step, we assume the pseudoscalar condensate to vanish, 〈ψγ5ψ〉 ≡ 0,
and apply the mean-field approximation,

(ψψ)2 � −〈ψψ〉2 + 2〈ψψ〉ψψ. (3.2)

We assume the quark–anti-quark condensate 〈ψψ〉 to be homogeneous and
isotropic. For more general ansätze see [46, 47], where a dual chiral density wave
(a.k.a. chiral spiral) has been discussed, and [48] for more general inhomogeneous
phases. We define the constituent quark mass as

M =m− 2G〈ψψ〉. (3.3)

In the following we assume stationarity and apply the temporal gauge fixing con-
dition. Therefore, the temporal dependence of the eigenfunctions of the Dirac op-
erator is simply an exponential, eiωnτ , with the fermionic Matsubara frequencies
ωn = (2n+ 1)πT . Then, the thermodynamic potential becomes

Ω =−T

V
lnZ = (M −m)2

4G
− T

V
Tr ln

−iωn +μ− ε

T
, (3.4)
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where Z is the partition function. The trace includes summation over the fermionic
Matsubara frequencies and some suitable spectral decomposition ε of the Dirac
Hamiltonian,

HD = γ 0γ · (−i∇ − qA)+ γ 0M. (3.5)

In analogy to BCS theory, the equation for minimizing the effective potential with
respect to M is called gap equation, which reads

〈ψψ〉 = −T

V
Tr

γ 0

iωn +μ− ε
. (3.6)

In the context of a background magnetic field, we shall also discuss the axial current.
Its expectation value is given by

〈
j
μ
5

〉=−T

V
Tr

γ 0γ μγ5

iωn +μ− ε
. (3.7)

3.2.1 Chiral Symmetry Breaking Without External Fields

Without external fields, the normalized eigenfunctions of the Dirac Hamiltonian are
given (in a Weyl basis) by the momentum eigenfunctions

ψe,s,k(x) = 1√
V

eik·x 1√
2εk

(
ξ s

√
εk − esk, ξ se

√
εk + esk

)T
, (3.8)

where ξ s are two-vectors defined by the eigenvalue equation k̂ · σ ξ s = sξ s with
the usual Pauli matrices σ i , and where eεk = e

√
k2 +M2 with e =± is the eigen-

value of the Dirac Hamiltonian, which in turn is two-fold degenerate with respect
to s =±. For the diagonal matrix elements of the gamma matrices in this basis we
find

γ 0
e,s,k = e

M

εk
,

(
γ 5γ 0k̂ · γ )

e,s,k
= s. (3.9)

From the second relation and (3.7) we conclude that the axial current vanishes,
〈j i5〉 = 0. The reason is the spin degeneracy in each state. This will no longer be
true in the presence of a magnetic field, as we shall discuss in Sect. 3.2.2.3. We can
compute the thermodynamic potential and, by inserting the first relation into (3.6),
the gap equation in the thermodynamic limit (at vanishing magnetic field B),

ΩB=0 = (M −m)2

4G
− 2

∑

e=±

∫
d3k

(2π)3

[
εk

2
+ T ln

(
1 + e−

εk−eμ
T

)]
, (3.10)

M −m = 4G
∫

d3k

(2π)3
M

εk

[
1 − f (εk −μ)− f (εk +μ)

]
, (3.11)
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where f (x)≡ 1/(ex/T + 1) is the Fermi–Dirac distribution function. The (vacuum
parts of the) momentum integrals are UV divergent and have to be regularized. Since
the NJL model is non-renormalizable, all results, e.g., the magnitude of the gap
and the order of phase transitions, will depend on the regulator as well as on the
regularization scheme. We use the proper time regularization scheme [49]. In this
procedure, the integrand of divergent expressions is recast into so-called proper time
integrals,

(
k2 + b2)−a = 1

Γ (a)

∫ ∞

0
dτ τa−1e−τ(k2+b2), (3.12)

and one then performs the momentum integral before the proper time integral. The
UV divergence of the momentum integral reappears at the lower bound of the proper
time integral, which therefore has to be regularized. We set the lower bound to 1/Λ2.

This yields the thermodynamic potential at zero temperature

16π2ΩB=T=0 = 2Λ2(M −m)2

g
+Λ2(Λ2 −M2)e−M2/Λ2 +M4Γ

(
0,
M2

Λ2

)

− 2θ(μ−M)

[
μkF

3

(
2μ2 − 5M2)+M4 ln

μ+ kF

M

]
, (3.13)

where Γ (a, x) is the incomplete gamma function, and the gap equation

M −m =Mg

[
e−M2/Λ2 − M2

Λ2
Γ

(
0,
M2

Λ2

)]

− 2Mgθ(μ−M)

(
μkF

Λ2
− M2

Λ2
ln
μ+ kF

M

)
, (3.14)

where we have defined the Fermi momentum kF =√
μ2 −M2 and the dimension-

less coupling constant

g ≡ GΛ2

2π2
. (3.15)

For simplicity we shall discuss the chiral limit m= 0 in the rest of the paper. In this
case, M = 0 is always a solution to the gap equation.

For μ= 0, the gap equation further simplifies since the term ∝ θ(μ−M) does
not contribute. Then, after dividing (3.14) by M and g, its right-hand side is always
smaller than 1. Therefore, a nontrivial solution for M only exists if the dimension-
less coupling constant g is larger than 1. When it exists, this solution is preferred
over the trivial solution, as one can verify with the help of the thermodynamic po-
tential (3.13).

In Fig. 3.1 we show the numerical solution for the gap equation as a function of
μ for three different coupling constants larger than 1 (i.e., they all admit a nontrivial
solution for μ= 0). For all couplings, there is a certain critical μ where M goes to
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Fig. 3.1 The zero-tempera-
ture solution to the gap
equation for three different
values of the coupling g. The
thin dotted line is the line
μ=M . The solution
becomes multi-valued in the
region μ>M for all
couplings larger than g0 with
g0 given in (3.19)

zero. By first dividing the gap equation by M and then setting M = 0, it is easy to
show that this critical μ is given by

μ0(g)

Λ
= 1√

2

√

1 − 1

g
. (3.16)

If and only if the solution is single-valued, this is the critical μ at which the (then
second-order) phase transition to the chirally restored phase occurs.

Above a certain coupling, the solution becomes multi-valued. The coupling
where this qualitative change occurs can be computed as follows. By differentiating
the gap equation with respect to μ we find

∂M

∂μ
=− 2kF

M[Γ (0, M2

Λ2 )− 2 ln μ+kF
M

]
. (3.17)

In accordance to the numerical plot, this derivative is infinite for M = 0. For all
couplings for which the solution is multi-valued, there is another point where the
derivative is infinite, which is given by the second pole of the denominator,

μ=M cosh
Γ (0,M2/Λ2)

2
. (3.18)

We can now ask for the value of g at which this point coincides with μ0(g) for
M → 0. The resulting equation then yields the coupling where the multi-valuedness
sets in. We find

g0 = 1

1 − e−γE
2

� 1.390, (3.19)

where γE is the Euler–Mascheroni constant. In the regime 1 < g < g0 the chiral
phase transition is second order and takes place at μ0(g).

For couplings larger than g0 the transition is first order and has to be determined
numerically. It turns out that the branch with a positive slope is always energeti-
cally disfavored. Therefore, in terms of Fig. 3.1, the preferred solution follows the
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Fig. 3.2 The phase diagram at T = 0 in the μ–g-plane. Dashed lines indicate second-order, solid
lines first-order phase transitions. In the shaded region chiral symmetry is restored (χS). The points
a, b and c correspond to (μ/Λ,g)= (0,1), (e−γE/2/2, g0), and (0.542,2.106), respectively, with
g0 given in (3.19). Between points a and b the transition line is given by μ0(g) from (3.16). The
dashed line between a and c indicates the onset of a finite quark number density nq within the
chirally broken phase (χSb)

horizontal line M(μ = 0) and, for all multi-valued cases, jumps to zero at a cer-
tain chemical potential. Whether (and how far) the preferred solution follows the
curve into the region μ > M depends on the coupling. We find numerically that
for couplings below (above) g � 2.106 it does (doesn’t). This is a first example of
the nontrivial effect of μ on the preferred phase: it is not always the phase with
the largest dynamical mass that is favored. In more physical terms, for couplings
above g � 2.106 the chirally broken phase with vanishing quark density is directly
superseded by the quark matter phase, while for smaller couplings there is a region
of finite density between these two phases. Since for g > 2.106 there are no com-
plicated effects of the quark density, we can write down a very simple expression
for the free energy difference between the broken phase and the restored phase,
evaluated at the solution of the gap equation (and using M �Λ),

ΔΩ =−M2
0Λ

2

16π2

(
1 − 1

g

)
+ μ4

12π2
, (3.20)

with M0 being the (non-analytical) solution to the gap equation for μ = 0. This
result is very intuitive: the first, negative, term is the condensation energy, i.e., the
energy gain from the chiral condensate, while the second, positive, term corresponds
to the energy costs for pairing which must be paid because the chemical potential
has separated fermions from anti-fermions. When the costs exceed the gain, chiral
symmetry is restored. This determines the phase transition line. Below we shall
derive the analogue of this strong-coupling free energy difference in the presence of
a background magnetic field, see (3.40). We summarize our discussion of the chiral
phase transition at B = T = 0 in Fig. 3.2.

For nonzero temperatures, we need to solve the gap equation (3.11) [with the reg-
ularization of the vacuum part shown in (3.14)] numerically. The result for various
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Fig. 3.3 Finite-temperature effects on the chiral phase transition in the NJL model. Left panel:
the gap as a function of the chemical potential for a given coupling strength and different values of
temperature. Right panel: the phase diagram in the μ–T -plane for the same coupling. The (dashed)
second-order phase transition line is given by the analytic expression (3.21)

temperatures and a large coupling (larger than that of point c in Fig. 3.2) is shown in
the left panel of Fig. 3.3. In general, the temperature decreases the gap. Moreover,
the temperature can also change the order of the chiral phase transition by removing
the multi-valuedness of the solution to the gap equation. The critical temperature
of the chiral phase transition in the T –μ phase diagram is shown in the right panel
of Fig. 3.3. The critical point moves towards higher temperatures with increasing
coupling. If the phase transition is second order it is possible to find a closed form
for the critical temperature. To this end, one divides (3.11) (with m= 0) by M and
then sets M = 0 in the remaining equation. Then, solving for T yields the critical
temperature

Tc(μ)

Λ
=

√
3

2π2

√

1 − 1

g
− 2

μ2

Λ2
. (3.21)

3.2.2 Chiral Symmetry Breaking in the Presence of a Magnetic
Field

3.2.2.1 Structure of the Fermion States in a Background Magnetic Field

Let us consider a homogeneous background magnetic field B = (0,0,B) by choos-
ing the Landau gauge fixing condition with A = (−yB,0,0). Within this ansatz,
the eigenfunctions of the Hamiltonian are proportional to exp[i(ωnτ + kxx + kzz)].
Using this, we split the Dirac Hamiltonian in a longitudinal and a transverse part
with respect to the direction of the magnetic field, HD =HL +HT, where

HL = γ 0γ 3kz + γ 0M, HT = sgn(q)
√

2|q|B
(−1 0

0 1

)
⊗

(
0 a†

a 0

)
, (3.22)



60 F. Preis et al.

with

a ≡
√ |q|B

2
ξ + sgn(q)i

1√
2|q|B (−i∂ξ ), ξ ≡ y + kx

qB
. (3.23)

We see that a is the annihilation (creation for q < 0) operator of the quantum me-
chanical oscillator, which gives rise to the Landau quantization of the energy spec-
trum of a charged fermion moving in a background magnetic field. For q > 0, the
orthogonalized eigenfunctions of the Hamiltonian are given by

ψ
e,s
kx,kz,�

(x) = ei(kzz+kxx)
√
LxLz

1

2
√
κkz,�εkz,�

⎛

⎜⎜
⎜⎜
⎝

s
√
κkz,� + skz

√
εkz,� − sκkz,� 〈ξ |�〉√

κkz,� − skz
√
εkz,� − sκkz,� 〈ξ |�− 1〉

es
√
κkz,� + skz

√
εkz,� + sκkz,� 〈ξ |�〉

e
√
κkz,� − skz

√
εkz,� + sκkz,� 〈ξ |�− 1〉

⎞

⎟⎟
⎟⎟
⎠

(3.24)

where �= 0,1,2,3, . . . denotes the Landau level, where

〈ξ |�〉 = 1√
2��!

( |q|B
π

)1/4

e−|q|Bξ2/2H�

(√|q|Bξ), (3.25)

〈ξ |−1〉 ≡ 0, and

εkz,� =
√
k2
z +M2 + 2|q|B�, κkz,� =

√
k2
z + 2|q|B�. (3.26)

Here, H� is the �th Hermite polynomial and Li the length of a box with volume V in
the ith direction. In order to obtain the eigenfunctions for the case q < 0, one simply
replaces 〈ξ |�〉 with 〈ξ |�− 1〉 and vice versa. For the diagonal matrix elements of γ 0

and γ 0γ 3γ5 we find

γ 0
e,s,kz,�

= e
M

εkz,�
,

(
γ 0γ 3γ5

)
e,s,kz,�

= sgn(q)
skz

κkz,�
. (3.27)

From (3.24) we see that in the lowest Landau level (LLL) �= 0 only the sgn(q) s =
1-states survive, which are also eigenstates of the spin operator Σ3 = γ 0γ 3γ5 as
well as zero-eigenmodes of HT. Therefore, the dynamics of the LLL becomes effec-
tively (1 + 1)-dimensional. Moreover, in the limit M → 0 for sgn(q)e kz > 0 (< 0)
these states are right- (left-)handed only. This is an indication that the magnetic
field induces an axial current [50]. More precisely, due to the sum over s in the axial
current (3.7), the relation (3.27) shows that only the LLL level contributes. Due to
the sum over e there can only be a finite contribution if μ �= 0. Since we have put
the fermions into a box with volume V = LxLyLz, the range of y is restricted to
[−Ly/2,Ly/2] and therefore kx,max − kx,min = Ly |q|B since we have absorbed kx
into the new coordinate ξ . Hence, because of Δkx = 2π/Lx , each energy level for
given e, kz, s and � has a degeneracy of LxLy |q|B/(2π). In two cases the result for
the axial current along the magnetic field can be given in closed form,
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M = 0, ∀T : 〈
j3

5

〉 = qBμ

2π2
, (3.28)

T = 0, ∀M <μ: 〈
j3

5

〉 = qB
√
μ2 −M2

2π2
. (3.29)

The prefactor |q|B/(2π) found by phase space considerations has a very special
role here. It is the difference of the number of zero-eigenmodes of HT with s = 1
and s =−1 respectively. This is a topological result since it is given by the index of
each 2 × 2 block of HT, which in turn is linked to the Euclidean chiral anomaly in
two dimensions via the index theorem. Furthermore, the first result is independent
of T which is a special feature of massless (1+ 1)-dimensional fermions and hence
reflects the effective dimensional reduction.

3.2.2.2 Magnetic Catalysis

Let us return to chiral symmetry breaking, now in the presence of a magnetic field.
The thermodynamic potential and the gap equation read

Ω = M2

4G
− |q|B

2π

∑

e=±

∞∑

�=0

α�

∫ ∞

−∞
dkz
2π

[
εkz,�

2
+ T ln

(
1 + e−

εkz,�
−eμ

T
)]
, (3.30)

M = 2G
|q|B
2π

∞∑

�=0

α�

∫ ∞

−∞
dkz
2π

M

εkz,�

[
1 − f (εkz,� −μ)− f (εkz,� +μ)

]
, (3.31)

where α� ≡ 2− δ0�. Comparing with the corresponding B = 0 expressions in (3.10)
and (3.11), we see that the effect of the magnetic field is to replace εk → εkz,� and

2
∫

d3k

(2π)3
→ |q|B

2π

∞∑

�=0

α�

∫ ∞

−∞
dkz
2π

. (3.32)

Using again proper time regularization, the thermodynamic potential at vanishing
temperature becomes

ΩT=0 =Ωμ=T=B=0 − (qB)2

2π2

[
x4

4
(3 − 2 lnx)+ x

2

(
ln

x

2π
− 1

)
+ψ(−2)(x)

]

− |q|B
4π2

θ(μ−M)

�max∑

�=0

α�

(
μkF,� −M2

� ln
μ+ kF,�

M�

)
. (3.33)

Here, Ωμ=T=B=0 is the vacuum part from (3.13), ψ(n) the nth polygamma
function (analytically continued to negative values of n), we have abbreviated
x ≡M2/(2|q|B), and

M� ≡
√
M2 + 2|q|B�, kF,� ≡

√
μ2 −M2

� , �max ≡
⌊
μ2 −M2

2|q|B
⌋
. (3.34)
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Different regularization schemes—compare for instance with [51], where dimen-
sional regularization is used—only differ in the B = 0 result and in (divergent)
terms that depend on B but are constant in M , which are omitted. The latter can
be viewed as renormalizing the energy content coming solely from the magnetic
field.

The corresponding gap equation is

M =Mg

[
e−M2/Λ2 − M2

Λ2
Γ

(
0,
M2

Λ2

)]

+ 2Mg
|q|B
Λ2

[(
1

2
− x

)
lnx + x + lnΓ (x)− 1

2
ln 2π

]

− 2Mg
|q|B
Λ2

�max∑

�=0

α� ln
μ+ kF,�

M�

θ(μ−M). (3.35)

Let us first consider the case μ = 0, i.e., we can ignore the terms ∝ θ(μ−M) in
(3.33) and (3.35). For small coupling g � 1, the dynamical mass squared will be
much smaller than the magnetic field, M2 � |q|B . Then, with M � Λ, the gap
equation becomes

1

g
� 2|q|B

Λ2
ln

√ |q|B
πM2

. (3.36)

Now, there is a nontrivial solution for arbitrarily small g. This is in contrast to the
case B = 0 where chiral symmetry can be broken only for g > 1. The solution is
obviously

M �
√ |q|B

π
e−

π2
|q|BG . (3.37)

This qualitative effect of the magnetic field on chiral symmetry breaking was termed
“magnetic catalysis” in [28] and was since observed in numerous different models.
Interestingly, as already mentioned in the introduction, this effect stems mainly from
the physics in the LLL. In order to show that, one omits all contributions from � > 0
in (3.31) and cuts off the momentum integral at

√|q|B/4π , since below that cut-off
the LLL dominates. Then, one obtains exactly the result (3.37). Furthermore, the
logarithmic IR singularity in (3.36) regulated by the dynamically generated mass is
precisely due to the LLL contribution and its (1 + 1)-dimensional nature. The form
of the gap in the weak coupling limit is reminiscent of the BCS gap in a supercon-
ductor [52]. In both expressions for the respective gap the relevant density of states
appears in the denominator of the exponent. Here it is the density of states of the
massless fermions at εkz,�=0 = 0, whereas in the BCS gap it is the density of states
at the Fermi surface. In both cases the dynamics is essentially (1 + 1)-dimensional.
While in BCS theory this effective dimensional reduction is a consequence of the
Fermi surface, here it is provided by the magnetic field. Note that the dimensional
reduction is not in conflict with the Mermin–Wagner–Coleman theorem that states
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Fig. 3.4 Effects of magnetic catalysis on the dynamical mass M and the critical temperature.
Left: the gap at T = μ = 0 for different couplings. The lowest coupling shown corresponds to a
subcritical coupling at B = 0, i.e., its nonzero value is solely induced by B . Its behavior at small B
is given by the exponential in (3.37). Right: the critical temperature for chiral symmetry restoration
as a function of B

that no spontaneous symmetry breaking can occur in (1 + 1) dimensions. The rea-
son is that the Nambu–Goldstone modes are neutral, and hence their motion is not
restricted by the magnetic field. At extremely large magnetic fields the internal struc-
ture of these modes can be resolved which might invalidate this argument [53].

We show the numerical solution of the gap equation for various coupling
strengths for T = μ= 0 in the left panel of Fig. 3.4. Magnetic catalysis also man-
ifests itself in the critical temperature for chiral symmetry restoration, which, at
μ = 0, monotonically increases with increasing magnetic field, see right panel of
Fig. 3.4.

3.2.2.3 Inverse Magnetic Catalysis

We now include the contributions from a nonvanishing chemical potential μ. First
we discuss the case of weak coupling which corresponds to M2 � |q|B . Since the
chiral phase transition can be expected to occur at chemical potentials of the order
of the mass gap, we may thus also assume μ2 � |q|B (we are not interested in
the physics far beyond the phase transition). As a consequence, we can employ the
lowest Landau level approximation, i.e., drop the contribution of all higher Landau
levels. Then, from (3.33) we conclude that the difference of the thermodynamical
potentials of the chirally broken phase and the quark matter phase is

ΔΩ � |q|B
4π2

(
μ2 − M2

2

)
− |q|B

4π2
μkF,0θ(μ−M)

+ Λ2M2

8π2

(
1

g
− 2|q|B

Λ2
ln

√ |q|B
πM2

+ 2|q|B
Λ2

θ(μ−M) ln
μ+kF,0

M

)

︸ ︷︷ ︸
=0 via gap equation

. (3.38)

Again, we find a very interesting analogy to superconductivity: the resulting ex-
pression is exactly the same as for a BCS superconductor with mismatched Fermi
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Fig. 3.5 The zero-temperature dynamical mass as a function of the chemical potential for different
values of the magnetic field. For the lowest nonzero value of |q|B shown (solid line), Landau level
oscillations can be seen. The magnetic field for the two other curves (dashed and dashed–dotted
lines) is sufficiently large to suppress all Landau levels except for the lowest

momenta—first discussed by Clogston [54] and Chandrasekhar [55]—after M is
replaced with the superconducting gap Δ, |q|B with the average Fermi momen-
tum (squared) of the constituents of a Cooper pair, and μ with the difference of
the respective Fermi momenta. (Note that again the degeneracy factor of the LLL
emulates the role of the Fermi surface.)

To discuss the meaning of ΔΩ for the chiral phase transition, let us first consider
the case of a fixed magnetic field B and start from μ= 0, i.e., in the chirally broken
phase. Upon increasing μ, we will reach the point μ=M/

√
2 where ΔΩ changes

its sign and thus the phase transition to the chirally restored phase occurs. This
point is, in the context of superconductivity, called the Clogston limit. It occurs
before the second term has a chance to contribute since still μ < M . Now, more
importantly for our purpose, let us again start in the chirally broken phase, i.e., from
ΔΩ < 0, but now we increase the magnetic field at fixed μ (as we have just seen,
for the discussion of the phase transition we may assume μ<M and thus ignore the
term ∝ θ(μ−M)). Since we have started from a negative μ2 −M2/2, increasing
the magnetic field can only make ΔΩ more negative because the dynamical mass
increases with B . Consequently, the magnetic field only brings us “deeper” into the
chirally broken phase. This is what we have expected from magnetic catalysis.

However, as we will now explain, for g > 1 and finite chemical potential this ex-
pectation is incorrect. We shall rather find that, for intermediate values of the mag-
netic field, an increasing magnetic field does restore chiral symmetry. Let us, to this
end, first discuss the numerical solution of the gap equation, see Fig. 3.5. Due to the
sum over the Landau levels, the gap exhibits the well-known de Haas–van Alphen
oscillations. Similar to the behavior found for B = 0, only the branches with a neg-
ative slope of M(μ) can be energetically preferred. Depending on the specific value
of g there might be several phase transitions within the gapped phase into regions
with μ > M , i.e., with a finite quark number density, before entering the restored
phase M = 0. In general it is also possible that the order of the phase transition into
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Fig. 3.6 Zero-temperature chiral phase transition in the plane of magnetic field and quark chemical
potential at a rather large value of the coupling constant such that the phase transition is first order
for all magnetic fields. (For smaller values the shape of the transition line is similar, but the order
can vary between first and second.) Apart from oscillations at small B due to higher Landau levels
in the chirally restored phase, the critical chemical potential decreases up to qB/Λ2 � 0.5, see
explanation in the text. The dashed–dotted line is the approximation to the phase transition line
from (3.40)

the restored phase oscillates between first and second order upon varying B: in the
example shown in the plot, at vanishing magnetic field the phase transition is first
order, while at |q|B/Λ2 = 0.13 it is second order and at |q|B/Λ2 = 0.19 again first
order. We also see that the dashed (blue) curve for the lower magnetic field reaches
farther in the μ direction than the dashed–dotted (black) curve for the larger mag-
netic field. This is a surprise from the point of view of magnetic catalysis: it seems
to indicate that the critical chemical potential for chiral symmetry breaking can de-
crease with increasing magnetic field. We discuss this “inverse magnetic catalysis”
in more detail now.

To this end, let us consider the “cleaner” case of sufficiently large couplings
where symmetry restoration happens in the region μ < M for all magnetic fields.
In this case, oscillations of the critical line in the phase diagram originate solely
from the restored phase (not from the solution of the gap equation), and the phase
transition is always first order. The numerically obtained phase diagram for such
a case is shown in Fig. 3.6. From the arguments in the previous subsection, one
might have expected that magnetic catalysis leads to a monotonically increasing
critical chemical potential as a function of B (just like the critical temperature in
the right panel of Fig. 3.4). However, this is not the case: there is a region in the
phase diagram where, upon increasing B at fixed μ, chiral symmetry is restored, in
contrast to the weak-coupling case discussed below (3.38).

In order to understand this phenomenon, let us derive an analytic expression
for ΔΩ , analogous to the weak-coupling case. As discussed, for the given large
coupling, the solution to the gap equation is simply given by the μ= 0 solution. For
small magnetic fields, |q|B �M2, we can expand the solution up to second order
in the magnetic field,
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M �M0

[
1 + (qB)2

6M4
0Γ (0,M

2
0/Λ

2)

]
, (3.39)

whereM0 is the solution for μ= B = 0. Inserting this solution into (3.33), we obtain
the free energy for the chirally broken phase up to second order inB . The free energy
for the chirally restored phase is, although we can set M = 0, complicated due to
the sum over Landau levels. Let us therefore ignore the higher Landau levels. This
seems to contradict our assumption of a small magnetic field which we have made
for the chirally broken phase. Nevertheless, we shall see that the phase transition
line obtained from this approximation reproduces the full numerical line in a region
of intermediate magnetic fields. Since this is exactly the region where the “back
bending” of the phase transition line is most pronounced, this serves our purpose
to capture the main physics of the inverse magnetic catalysis. With M0 � Λ, the
resulting free energy difference is

ΔΩ � −M2
0Λ

2

16π2

(
1 − 1

g

)
+ |q|B

4π2
μ2 − (qB)2

24π2

[
1 − 12ζ ′(−1)+ ln

M2
0

2|q|B
]
. (3.40)

(This is the generalization of (3.20) to nonzero (but small) magnetic fields.) This
expression allows for a qualitatively different phase transition line compared to the
weak-coupling limit (3.38) for the following reason. The term linear in B corre-
sponds to the cost in free energy to form a fermion–anti-fermion condensate at finite
μ. Importantly, this cost depends not only on μ, but also on the magnetic field. This
is also true at weak coupling. However, in that case, the gain from the condensa-
tion energy was also linear in B . This is different here: now, if we start from the
chirally broken phase, i.e., from ΔΩ < 0, increasing the magnetic field can lead to
a change of sign for ΔΩ and thus restore chiral symmetry. This is what we have
termed inverse magnetic catalysis in [43]. In this reference, we have also explained
that the physical picture can be understood once again in analogy to superconductiv-
ity, where, in the presence of a mismatch in Fermi momenta, it is useful to think of a
fictitious state where both fermion species are filled up to a common Fermi momen-
tum. Creating such a state costs free energy which may or may not be compensated
by condensation. The point of inverse magnetic catalysis is that creating such a ficti-
tious state (where fermions and anti-fermions are not separated by μ) becomes more
costly with increasing B , while B still enhances the dynamical gap due to magnetic
catalysis. The magnetic field thus plays an ambivalent role by counteracting its own
catalysing effect.

This effect was first observed in the NJL model in [56] at T = 0 and in [57] for
the full three-dimensional T –μ–B parameter space, and has been confirmed in var-
ious other calculations [20, 58–63]. Only for sufficiently strong magnetic fields the
system enters the regime where magnetic catalysis is dominant. Typical fits of the
model-parameters yield a cut-off of the order of a few hundred MeV [45]. Trans-
lating this into a scale for the magnetic field shows that the regime of magnetic
catalysis is beyond the magnetic field strength expected in compact stars, and thus,
if there is any observable effect of the magnetic field for the phase transition between
hadronic and quark matter, it is inverse magnetic catalysis.
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3.3 Chiral Phase Transition in the Sakai–Sugimoto Model

3.3.1 Introducing the Model

The model discussed in this section is based on the conjecture that particular
strongly coupled quantum gauge theories are equivalent to certain classical gravita-
tional theories in higher dimensions. In the context of string theory, the first realiza-
tion of this holographic principle known as AdS/CFT correspondence was proposed
by Maldacena [9]. In a nutshell, it utilizes two different limits of describing so-
called D-branes, which are dynamical objects in string theory that impose Dirichlet
boundary conditions on the endpoints of open strings. On the one hand, a stack of Nc

D-branes hosts a maximally supersymmetric U(Nc) gauge theory coming from the
massless excitations of open superstrings; on the other hand, the stack of D-branes
is a massive object that curves space-time by coupling to gravitons—coming from
the closed strings—with the strength λ ∝ gsNc, where gs denotes the string cou-
pling. Now, let Nc → ∞ and keep λ fixed. In the limit λ � 1, gravity decouples
from the open strings, whose low-energy effective theory is given by the mentioned
U(Nc) super Yang–Mills theory. In the case of D3-branes, this gauge theory is four-
dimensional. In the opposite limit, λ� 1, the stack of D-branes back-reacts strongly
on the background. Gravity far in the asymptotic region also decouples from the sys-
tem due to the gravitational red shift. Therefore, one can zoom in to the near-horizon
region of the space-time, which in the case of D3-branes is given by AdS5 ×S5. The
idea behind the AdS/CFT duality is that the classical (super-)gravitational descrip-
tion is fully equivalent to the quantum theory of the large-Nc, large λ limit of the
super-Yang–Mills theory. This particular gauge/gravity duality, which has passed
many nontrivial tests, has since been greatly generalized and also been used in the
form of phenomenological (bottom–up) models.

The Sakai–Sugimoto model [16, 17] is a string-theoretical top–down approach
to large-Nc QCD. It is based on a proposal for a holographic dual of a non-
supersymmetric large-Nc Yang–Mills theory in four effective dimensions by Wit-
ten [24]. In contrast to the original AdS/CFT correspondence, the background is
provided by the gravitational field of a stack of D4-branes. The dual field theory
now is (4 + 1)-dimensional since this is the dimension of the world volume of the
D4-branes. The extra dimension is compactified on an S1 and thus breaks super-
symmetry on the field theory side: by imposing anti-periodic boundary conditions
on the adjoint fermions, they obtain a mass of the order of the inverse radius of the
S1, called Kaluza–Klein mass MKK. At one loop level, also the adjoint scalars be-
come massive. Hence, by choosing the radius of the extra dimension small enough
and by restricting to low energies, one effectively breaks supersymmetry and effec-
tively reduces the number of dimensions to 3+1. However, there is a price to pay for
introducing the extra dimension: in order to justify the supergravity approximation
for the D4-brane background, the five-dimensional (dimensionful) ’t Hooft coupling
λ5 has to be large compared to M−1

KK. This corresponds to a large four-dimensional
(dimensionless) ’t Hooft coupling λ= λ5/(2πM

−1
KK). In this case, however, the mass

gap of the field theory is of the same order as MKK and thus the Kaluza–Klein modes
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do not decouple. Only in the opposite limit λ� 1, where string corrections are im-
portant and which thus is inaccessible, the Kaluza–Klein modes do decouple and
the theory becomes dual to large-Nc QCD in 3 + 1 dimensions (at small energies
below the Kaluza–Klein scale). It has nevertheless turned out that the classical grav-
ity limit of the D4-brane background is a remarkably useful tool for understanding
certain nonperturbative properties of (large-Nc) QCD.

An important property of the Sakai–Sugimoto model is the existence of a Haw-
king–Page transition between a soft-wall and a black hole background, which en-
codes a confinement–deconfinement transition. This feature can be understood ei-
ther from power counting in Nc of the corresponding thermodynamic potentials of
the gravity backgrounds or by studying the dual to the Wilson line. Confined and
deconfined phases correspond to two different geometric backgrounds which are, in
coordinates made dimensionless by dividing by the curvature radius R, given by

ds2

R2
= u3/2[−hd(u)dt2 + δij dxi dxj +hc(u)dx2

4

]+ du2

f (u)u3/2
+u1/2 dΩ2

4 , (3.41)

where

f (u) =
⎧
⎨

⎩

1 − u3
KK
u3 ,

1 − u3
T

u3 ,

hd(u)=
{

1,

1 − u3
T

u3 ,
hc(u)=

{
1 − u3

KK
u3 conf.

1 deconf.

(3.42)

and

uKK =
(

4π

3

)2
R2

β2
x4

= 4

9
R2M2

KK, uT =
(

4π

3

)2
R2

β2
τ

. (3.43)

Here, βx4 is the period of x4—the coordinate of the additional S1—necessary to
prevent a conical singularity at u= uKK in the confined phase. The curvature radius
is related to the Yang–Mills coupling gYM by

R3 = πgsNc�
3
s =

g2
YMNcα

′

2MKK
, (3.44)

where �2
s = α′ is the squared string length. In the analytic continuation to Euclidean

signature, time is also compactified to a circle with circumference βτ = T −1, anal-
ogously to finite temperature field theory. Increasing the temperature shrinks the
Euclidean time circle. At the point where the circumference of the time circle
and the extra dimensional circle match, the Hawking–Page transition takes place.
Apart from the metric field the Witten model also contains a nontrivial dilaton and
Ramond–Ramond (RR) flux background given by

eΦ = u3/4gs, F4 = (2π)3�3
sNc

Ω4
dΩ4, (3.45)

where Ω4 is the volume of the 4-sphere.
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Sakai and Sugimoto introduced fundamental quarks by placing two stacks of Nf

D8-branes with opposite orientation into the background in the so-called probe limit
Nf �Nc, i.e., back-reactions on the geometry are neglected. In the asymptotic re-
gion u→ ∞ the two stacks of D-branes are separated on the Kaluza–Klein circle.
In the original model they reside at antipodal points. In the bulk, the D-branes are
space filling in the field theory directions, xμ, as well as in the S4 and are specified
by an embedding function in the u–x4 subspace. Before going to the gravity de-
scription of the D4-branes one can interpret the underlying string picture as follows:
strings connecting the D4 with the D8-branes carry one flavor and one color index,
hence representing (massless) quarks in the fundamental representation, whereas
strings stretching between D8-branes represent mesons. The local symmetry of the
U(Nf )×U(Nf ) gauge theory supported on the world volume of the stacks of D8-
branes translates into a global symmetry via the holographic dictionary, which is
interpreted as the chiral symmetry of the field theory. In the confined background,
the two stacks of D8-branes are forced to join at uKK where the additional S1 degen-
erates and therefore form a single stack with gauge symmetry U(Nf ). On the field
theory side, this reflects the chiral symmetry breaking mechanism. One can use a
diagonal subgroup of the full symmetry group to introduce chemical potentials and
electromagnetic quantities such as an external, non-dynamical magnetic field. Usu-
ally the gauge is chosen such that for example the asymptotic value of the zeroth
component of the Abelian gauge field is identified with the quark chemical poten-
tial. Due to the probe limit, the deconfinement transition is not affected by a finite
chemical potential, trivially leading to a phase diagram in the plane T –μ similar to
the one discussed for large-Nc QCD in [64].

The low-energy effective theory describing the open string fluctuations is a non-
Abelian Dirac–Born–Infeld (DBI) theory on the probe branes; calculating the fluc-
tuations of the gauge field corresponds to calculating the meson spectrum. Indeed,
after fitting the value of the ’t Hooft coupling λ and MKK to the rho meson mass
and the pion decay constant, the spectrum matches experimental data nicely. The
mode expansion used in the calculation of the meson spectrum can also be used to
link the Sakai–Sugimoto model to the Skyrme model. Apart from the DBI action,
the dynamics of D8-branes in a background with nontrivial RR-flux is governed by
a Chern–Simons (CS) action, since the D8-brane is magnetically charged under that
flux. This contribution allows for introducing baryons in the model and is related to
chiral solitons in the Skyrme model. Therefore, the full action reads

S = SDBI + SCS

= T8

∫

D8
dτ d8x e−Φ Tr

√∣∣det
(
gmn + 2πα′Fmn

)∣∣

+ T8

6

∫

D8
C3 Tr

(
2πα′F

)3
, (3.46)

where T8 is the D8-brane tension, and dC3 = F4. Usually one integrates the last
term by parts, omitting all boundary terms, to obtain a gauge-variant action where
the RR-flux couples to the Chern–Simons 5-form.
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Fig. 3.7 The chirally restored (left) and chirally broken (right) phases of the non-antipodal
Sakai–Sugimoto model in the deconfined background. The calculation reviewed here determines
which of the two D8-brane embeddings is favored as a function of temperature, chemical potential,
and magnetic field for a small asymptotic separation L. Only in that limit (in which the dual field
theory resembles the NJL model) does the chiral phase transition in the probe brane approximation
depend on chemical potential and magnetic field

The Sakai–Sugimoto model also has a connection to the NJL model. In the “de-
compactified” limit where the asymptotic coordinate distance between the D8- and
anti-D8-branes is much smaller than the radius of the extra compactified dimension,
L�M−1

KK, the Sakai–Sugimoto model is dual to a non-local NJL model [65]. As
a consequence, in the scenario with broken chiral symmetry, the D8-branes now in
general join at u0 > uKK. The difference u0 − uKK is commonly interpreted as the
constituent quark mass within a meson, which is realized as a string with both end
points attached to the tip of the joined D8-branes hanging down to the bottom of the
geometry. With a sufficiently small asymptotic separation of the flavor branes, it is
also possible to find an energetically preferred phase with broken chiral symmetry in
the deconfined background [66], see Fig. 3.7. The resulting phase diagram at finite
chemical potential was first discussed in [67]. By reducing L compared to M−1

KK,
the temperature range where the system is confined becomes small compared to the
temperature range governed by the deconfined and chirally broken phase. Eventu-
ally, the resulting phase diagram resembles the NJL result (where no confined phase
is present) shown in the right panel of Fig. 3.3. Consequently, the Sakai–Sugimoto
model allows for interpolating between a non-local NJL model (L�M−1

KK) and—
modulo the above mentioned caveats—large-Nc QCD (L= πM−1

KK). In the former
limit, the flavor D8-branes do not probe deeply the background geometry produced
by the color D4-branes (which corresponds to neglecting gluon dynamics), while in
the latter the gluons dominate.

The effect of a homogeneous background magnetic field has first been considered
in [68]. Shortly thereafter, the effect on the critical temperature for chiral symmetry
restoration at vanishing chemical potential has been analyzed [69]. Like in the NJL
result from Fig. 3.4, the critical temperature increases with the magnetic field, which
shows that the Sakai–Sugimoto model exhibits magnetic catalysis. Finite chemical
potentials have been introduced together with a magnetic field in [70] in the original
Sakai–Sugimoto model. The deconfined, chirally symmetric phase was discussed
in [71], where a magnetic phase transition within the symmetric phase was found
that is reminiscent of a transition to the lowest Landau level. The full phase dia-
gram in the parameter space T –μ–B in the deconfined phase was presented in our
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work [43]. In particular, the inverse magnetic catalysis effect was found and dis-
cussed in this reference.

The Sakai–Sugimoto model can be developed further to include homogeneous
baryonic matter, made from point-like approximations to the solitonic baryons men-
tioned above [72]. Applications in the context of a background magnetic field have
been studied in the confined [73] and deconfined [44] backgrounds, the latter study
investigating the effect of baryonic matter on inverse magnetic catalysis. Here we
shall mostly focus on the case without baryons, and only at the end of Sect. 3.3.6
briefly review their effect on the phase diagram.

3.3.2 Equations of Motion and Axial Current

In terms of an embedding function x4(u) for the D8-branes, the induced metric reads

ds2
D8

R2
= u3/2hd dt2 + u3/2δij dxi dxj + u3/2

(
x′24 hc + 1

f u3

)
du2 + u1/2 dΩ2

4 ,

(3.47)
where the prime denotes derivative with respect to u. We work with one flavor,
Nf = 1, and for the (dimensionless) U(1) gauge field we choose the ansatz

a = 2πα′

R
Aμ dxμ = a0(u)dt + bx1 dx2 + a3(u)dx3, (3.48)

where b = 2πα′B denotes the magnitude of the dimensionless magnetic field
strength. Note that the necessity of introducing the third component of the gauge
field, which is P-odd, is due to the coupling to a0 and b via the (P-odd) CS-action.
We denote the asymptotic values of the gauge field by

a0(∞) = μ≡ μq

2πα′

R
, a3(∞)= j, x4(∞)= �

2
, (3.49)

where μq is the dimensionful quark chemical potential,2 and �≡ L/R is the dimen-
sionless asymptotic separation of the flavor branes. The boundary value of a3 can be
shown to correspond to a finite expectation value for the pion gradient in the direc-
tion of the magnetic field, hence it will only be nonvanishing when chiral symmetry
is broken. In that case, one has to extremize the on-shell action with respect to j

[70, 73, 74]. From the field theory perspective this means that, if j �= 0, the chiral
condensate is rotating between a scalar and a pseudoscalar condensate when mov-
ing along the z-direction, i.e., it forms a so-called chiral spiral [75]. Each full turn of
the spiral raises the baryon number by one. Therefore, since j measures the rate of
turns per unit length, it is related to the baryon density. Equivalently, one can regard

2Here we keep the notation of Refs. [43, 44]. Note that in the NJL section μ is the dimensionful
quark chemical potential.



72 F. Preis et al.

j as a supercurrent, in analogy to superfluidity, where the phase of the condensate
gives the superfluid velocity.

Before continuing we put some restrictions on the gauge field and the embed-
ding: in the joined configuration we assume that the fields are continuous at the
junction point u0 since for now we omit any point-like sources, hence a3(u0) = 0
and x′4(u0)=∞. In the restored phase, due to the presence of the horizon, we have
to satisfy the regularity constraint a0(uT )= 0 [67].

Within our ansatz, the action for the D8-brane describing left-handed fermions
becomes

S′ = N V

2T

∫ ∞

u0/uT

du

[√
u5 + b2u2

√

u3f x′24 + hd

f
− a′20 + a′23 hd

+ 3b

2

(
a3a

′
0 − a0a

′
3

)]
, (3.50)

where the lower bound of the integration has to be chosen according to the phase
under consideration and where

N ≡ 2
T8R

5Ω4

gs
= NcR

2

6π2(2πα′)3
. (3.51)

Here we have modified the original action S and denoted the new action by S′. The
reason is that proceeding with S results in an inconsistency: the conserved currents
sourced by the boundary values of the gauge field turn out to be different from
those currents calculated using the thermodynamic relations. In [73] this issue was
related to the gauge variance of the CS action. The solution to this problem is to
supplement the CS action with boundary terms residing at the holographic as well
as at the spatial boundaries. After integration by parts this modification amounts to
simply multiplying the CS contribution with a factor 3/2.

The integrated equations of motion are
√
u5 + b2u2a′0√

u3f x′24 + hd
f

− a′20 + a′23 hd

= 3ba3 + c, (3.52)

√
u5 + b2u2hda

′
3√

u3f x′24 + hd
f

− a′20 + a′23 hd

= 3ba0 + d, (3.53)

√
u5 + b2u2f u3x′4√

u3f x′24 + hd
f

− a′20 + a′23 hd

= k. (3.54)

The left-hand side of (3.52) is the magnitude of the (bulk) electric field correspond-
ing to the gradient of a0 in a curved background on one D8-brane pointing towards
larger values of u. When we move past the point u0 in the joined D-brane configu-
ration the direction of the electric field is flipped since we assume that a0 is P-even.
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Therefore, since a3(u0) = 0, the integration constant c corresponds to a point-like
source at u0. For now, we do not include any point-like baryons and thus set c = 0
in the broken phase. In the restored phase, on the other hand, c �= 0, hence the hori-
zon provides a charge that will be translated into the quark density at the boundary.
(In the restored phase, x′4(u) ≡ 0 and thus k = 0, i.e., only two nontrivial equa-
tions remain.) Furthermore, if the magnetic field is nonzero there is an additional
contribution to the quark density from the gradient of a3, which in general is dis-
tributed over the whole D8-brane world volume. Equation (3.53) evaluated at uT
enforces us to set d = 0 in the restored phase in order to maintain consistency since
hd(uT )= a0(uT )= 0.

The nonvanishing components of the current densities sourced by the asymptotic
gauge field components are given by

J 0
V = J 0

R +J 0
L = 2πα′N

R

(
3b

2
j + c

)
, (3.55)

J 3
A = J 3

R −J 3
L = 2πα′N

R

(
3b

2
μ+ d

)
, (3.56)

where we have used the equations of motion. The first line relates the baryon density
with the magnetic chiral spiral and the point-like charges in the bulk. The second line
is the axial current which we have already encountered in Sect. 3.2.2.2. Because we
have to extremize the thermodynamic potential with respect to j , i.e., with respect
to a3(∞), we can immediately conclude that in the broken phase the axial current
has to vanish, hence d =−3/2 bμ. In the chirally symmetric phase the axial current
at any temperature—reinstating dimensionful quantities—reads

J 3
A = Nc

4π2
Bμq. (3.57)

This result differs from the corresponding expression (3.28) obtained in the NJL
model by a factor 2, which is related to the modification of the CS term in the
action in order to obtain a consistent thermodynamic description of the currents.
For a thorough discussion of the effect of this modification on the chiral anomaly
see Ref. [76].

3.3.3 Semianalytic Solution to the Equations of Motion

In general, from this point on one has to rely on numerical methods. However, using
f (u) � 1 we can go a little further. This approximation is valid either in the de-
confining background if T = 0 or in the decompactified limit of the confined back-
ground. Moreover, as will be justified a posteriori, for L�M−1

KK and in the chirally
broken phase we have u0 � uKK (confined) or u0 � uT for sufficiently small T
(deconfined). We will later work in the deconfined geometry and apply this approx-
imation for the chirally broken phase at any T (i.e., our approximation becomes less
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accurate for large T ). If chiral symmetry is restored this is of course not allowed,
since the D8-branes extend from the holographic boundary down to the horizon at
uT . Hence, when computing the phase diagram we will compare the grand canon-
ical potential of the broken phase using the f (u) � 1 approximation with the full
numerical result obtained for the restored phase. Note that in the special case b= 0
or μ = 0 the temperature can be easily introduced in the symmetric phase since
the “blackening” function f (u) does not appear explicitly in the equations of mo-
tion. There temperature enters only in the lower bound uT of the integrals over the
holographic coordinate.

With f (u) � 1, we can simplify (3.52) and (3.53) considerably. We define the
new coordinate field y(u) via the differential equation

y′ = 3bu3/2
√
u8 + u5b2 − k2 + (3b)2u3[(∂ya0)2 − (∂ya3)2]

, (3.58)

for which we have the freedom to choose y(u0) = 0 or y(0) = 0 in the broken
and symmetric phase respectively. Its value at the holographic boundary will be
denoted by y∞ in the following. In the joined D8-brane configuration the boundary
condition x′4(u0) → ∞ implies that y′(u0) → ∞. After algebraically rearranging
(3.52)–(3.54) such that all derivatives with respect to u are placed on the left-hand
side, the equations of motion for the gauge fields as a function of the new coordinate
y are

∂ya0 = a3 + c

3b
, ∂ya3 = a0 + d

3b
, (3.59)

for which we can easily find the solutions

a0 = c1 coshy + c2 sinhy − d

3b
, a3 = c1 sinhy + c2 coshy − c

3b
. (3.60)

This allows us to write the grand canonical potential, i.e., the on-shell action, as

Ω = N

[∫ ∞

u0/uT

3b

y′
du+ kL

2
− 3b

2
y∞

(
c2

2 −c2
1

)− c

2
(μ−c1)+ d

2
(j−c2)

]
. (3.61)

This expression is divergent. In order to obtain finite expressions we renormalize
the grand canonical potential by the chirally symmetric vacuum contribution

Ω(μ= T = 0) = N

∫ Λ

0
du

√
u5 + b2u2. (3.62)

The integration constants found by imposing the boundary conditions discussed be-
low (3.48) and the supercurrent j = a3(∞) are summarized in Table 3.1.
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Table 3.1 The integration constants d , c1, c2, c, k and the supercurrent j for the chirally broken
and restored phases

d c1 c2 c k j

Broken − 3
2μ

μ
2 coshy∞ 0 0

√
u8

0 + b2u5
0 − (

3bμ
2 coshy∞ )2u3

0
μ
2 tanhy∞

Restored 0 0 μ
sinhy∞ 3bμ cothy∞ 0 0

3.3.4 Broken Chiral Symmetry

Inserting the supercurrent j and the constant c from Table 3.1 into (3.55) yields the
quark number density

nq ≡ J 0
V = Nc

8π2
Bμq tanhy∞. (3.63)

The only equations that remain and in general have to be solved numerically for the
variables u0 and y∞ are

�

2
=

√

u8
0 + b2u5

0 −
(

3bμ

2 coshy∞

)2 ∫ ∞

u0

du

u3/2g(u)
, y∞ = 3b

∫ ∞

u0

u3/2 du

g(u)
, (3.64)

where we have abbreviated

g(u) ≡
√

u8 + b2u5 −
(

3bμ

2 coshy∞

)2

u3 − u8
0 − b2u5

0 −
(

3bμ

2 coshy∞

)2

u3
0. (3.65)

Note that the explicit dependence on the asymptotic separation � can be eliminated
by the rescaling u→ �2u, μ→ �2μ, b→ �3b and Ω → �7Ω . Therefore, in all plots
shown below, the axes are measured in appropriate units of the D8-brane separation.

Before coming to the full numerical results, let us first discuss the two limits of
small and large magnetic fields b. For a detailed derivation of the approximations
consult Appendix D in Ref. [43].

For small magnetic fields, y∞ and thus the supercurrent j rise linearly with b,
and therefore the lowest order contribution to the quark number density induced by
the chiral spiral is quadratic in b. The location of the tip of the connected flavor
branes is u0 � u

(0)
0 + η1(μ)b

2 with the value of u0 at b= 0,

u
(0)
0 =

[
4
√
πΓ ( 9

16 )

�Γ ( 1
16 )

]2

� 0.5249 �−2. (3.66)

Interestingly, the μ-dependent coefficient η1 possesses a zero at μ � 0.2905/�2,
above which it becomes negative. This shows that the constituent quark mass (which
is given by u0) can decrease with the magnetic field for sufficiently large chemical
potentials. This behavior can be traced back to the incorporation of the chiral spiral.
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The grand canonical potential (renormalized by the vacuum contribution (3.62))
is approximated for small b by

Ωren � −N

[
2

7

(
u
(0)
0

)7/2
√
πΓ ( 9

16 )

Γ ( 1
16 )

+ η2(μ)b
2
]
, (3.67)

where

η2(μ) ≡
√
πΓ ( 9

16 )

Γ ( 1
16 )

√
u
(0)
0

[
cot

π

16
+

(
3μ

2u(0)0

)2Γ ( 3
16 )Γ (

17
16 )

Γ ( 9
16 )Γ (

11
16 )

]
. (3.68)

(As explained in [43], there exists a second solution in the region of small b, where
u0 is small and y∞ is large, which is separated from the solution discussed here by
a first order phase transition. However, this first-order phase transition occurs in a
region of large μ where the chirally restored phase is preferred. Therefore we will
not discuss this second solution here.)

At asymptotically large magnetic field, y∞ diverges faster than linearly, thus j �
μ/2, while u0 saturates at the value

u
(∞)
0 =

[
4
√
πΓ ( 3

5 )

�Γ ( 1
10 )

]2

� 1.2317�−2. (3.69)

We see that u(∞)
0 > u

(0)
0 , i.e., for any μ the constituent quark mass at asymptotically

large b is larger than that at b= 0. This can be interpreted as magnetic catalysis and
is similar to the NJL model. However, as we have shown in the left panel of Fig. 3.4,
in the NJL model the constituent quark mass does not saturate for asymptotically
large magnetic fields.

Plugging these results into Ω and nq yields

Ωren � −N b

[√
πΓ ( 3

5 )

2Γ ( 1
10 )

(
u
(∞)
0

)2 + 3μ2

8

]
, nq � Nc

8π2
Bμq. (3.70)

Remarkably, all model parameters have dropped out of the quark number density,
which thus is solely expressed in terms of the dimensionful quantities B and μq .

3.3.5 Symmetric Phase

The following analytical expressions are all valid in the zero-temperature limit. Only
in the plots at the end of this subsection we include numerical finite-temperature
results. Now only one equation remains to be solved numerically for y∞,

y∞ =
∫ ∞

0

3bu3/2
√
u8 + b2u5 + (

3bμ
sinhy∞ )2u3

du. (3.71)
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For b > 0, this equation has in general three solutions: y∞ = ∞, which is always
a solution, and two finite solutions, the larger of which turns out to be unstable. At
sufficiently large values of b for a given μ only the divergent solution survives. For
the quark density we find

nq = Nc

2π2
Bμq cothy∞. (3.72)

Let us first take the limit where b is small. In this case, y∞ is linear in b, and we
obtain for the (dimensionful) quark number density

nq =
√
NcMKK

3gYMπ3/2
μ

5/2
q

[ √
π

Γ ( 3
10 )Γ (

6
5 )

]5/2

+O
(
B2). (3.73)

The unusual exponent 5/2 of μq can only occur due to the presence of the dimen-
sionful model parameter MKK (due to the extra dimension in the model), which
provides the missing mass dimensions.

The grand canonical potential becomes for small b

Ωren � −N

{
2

7
μ7/2

[ √
π

Γ ( 3
10 )Γ (

6
5 )

]5/2

+ η3b
2√μ

}
, (3.74)

with

η3 ≡ 3

2

[
Γ ( 3

10 )Γ (
6
5 )√

π

]5/2

+ Γ ( 9
10 )Γ (

3
5 )

π1/4
√
Γ ( 3

10 )Γ (
6
5 )

. (3.75)

Taking the limit b → ∞ allows only the solution y∞ = ∞, as mentioned be-
fore. However, note that this is also a valid solution at finite b, hence the following
results carry over to any value of b as long as this particular phase is considered.
Interestingly, the density in this case is

nq = Nc

2π2
Bμq, (3.76)

which takes precisely the form of the density of gapless free fermions in the lowest
Landau level. Therefore, we may speak of an LLL-like phase in the Sakai–Sugimoto
model, although there are, because of the strong-coupling nature, no quasiparticles
and thus no Landau levels in the actual sense. The grand canonical potential is

Ωren =−N
3bμ2

2
. (3.77)

Using (3.74) together with (3.77) we can derive the critical magnetic field of the
first-order transition within the chirally restored phase to the LLL-like phase as a
function of the chemical potential,

bc � 0.095μ3/2. (3.78)
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Fig. 3.8 Quark number density as a function of the background magnetic field for a given chemical
potential at various (dimensionless) temperatures t ≡ T R in the Sakai–Sugimoto model (left) and
the NJL model (right)

In the left panel of Fig. 3.8 we plot the quark number density for different temper-
atures. As a comparison, we also plot the corresponding density for (massless) free
fermions in a magnetic field, obtained by taking the derivative with respect to the
chemical potential of the thermodynamic potential (3.30).

In the case of free fermions, the higher Landau levels cause oscillations in the
density at small magnetic field. These oscillations are absent in the “higher Landau
level phase” in the Sakai–Sugimoto model, given by the solution y∞ < ∞. This
might be a consequence of the strong coupling, in which case we do not expect
a sharp Fermi surface, even at T = 0. Furthermore, in the NJL model, the transi-
tions between the phases with differently filled Landau levels, in particular also the
transition to the LLL phase, is second order, while in the Sakai–Sugimoto model
it is first order. At finite temperature, the transitions become immediately smooth
in the NJL model, while for given μ it remains first order in the Sakai–Sugimoto
model until a critical temperature is reached, which increases with increasing μ.
Above this temperature only one minimizing solution for y∞ exists for all b and
given μ. As a result, the transition line in the b–μ plane has a critical endpoint for
a given temperature, resulting in a critical line in the three-dimensional phase dia-
gram, see Fig. 3.9. Another important difference is the location of the LLL-transition
in the μ–b diagram: the critical magnetic field at zero temperature is proportional
to μ3/2, compared to μ2/2 for free fermions. Again this is due to the occurrence of√
MKK.

3.3.6 Chiral Phase Transition

First we discuss the critical temperature for chiral symmetry restoration at van-
ishing chemical potential. In this case, in the restored phase the only tempera-
ture dependence enters via the lower bound of the integrals over the holographic
coordinate, uT = (4πt/3)2, with t = RT . Therefore, one easily determines the
renormalized grand canonical potential of the restored phase for the cases b = 0,
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Fig. 3.9 Upper left panel: the surface of the chiral phase transition (blue) in the deconfined phase
of the Sakai–Sugimoto model in the T –μ–B space. The small (green) surface shows the transition
from the “higher LL” phase to the “LLL” phase, explained in Sect. 3.3.5. Upper right, lower left
and lower right panels: two-dimensional cuts at various fixed temperatures, chemical potentials
and magnetic fields, respectively, through the three-dimensional phase diagram. In the lower left
plot, for instance, we see that the monotonically increasing critical temperature at μ= 0 becomes
a non-monotonic curve at finite μ and may even turn into two disconnected pieces, separating two
chirally broken phases at small and large magnetic fields (Color figure online)

Ωren =−2/7N u
7/2
T , and b→∞, Ωren =−N bu2

T /2. Then, together with the cor-
responding expressions for the broken phase from (3.67) and (3.70) we compute the
critical temperatures

tc(μ= b= 0) = 0.1355/�, (3.79)

tc(μ=, b→∞) = 0.1923/�. (3.80)

(Remember that we have used the f (u) � 1 approximation for the broken phase
which, strictly speaking, is only valid for very small temperatures.) We see that the
Sakai–Sugimoto model reproduces the usual magnetic catalysis effect at zero chem-
ical potential because the critical temperature at asymptotically large b is larger
than that at vanishing b. This is supported by the numerical solution which shows
that the critical temperature increases monotonically with the magnetic field. In
contrast to the NJL model, the critical temperature saturates at the value given in
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Fig. 3.10 The chiral phase transition at zero temperature from the Sakai–Sugimoto model (ignor-
ing baryonic matter). The chirally broken phase (white) is separated by a first-order phase transition
(solid line) from the chirally restored phase (gray). The dashed–dotted line is the approximation
from (3.84). Translating the dimensionless quantities b and μ into physical units [43], one con-
cludes that the magnetic field decreases the critical chemical potential from μq � 400 MeV at
|qB| = 0 down to μq � 230 MeV at |qB| � 1.0 × 1019 G where the critical line turns around and
the critical chemical potential starts to increase with |qB|

(3.80), because the value for u0, i.e., the holographic constituent quark mass, satu-
rates.

At zero temperature, we use (3.67) and (3.70) for the broken phase and (3.74)
and (3.77) for the restored phase to compute the critical chemical potentials

μc(t = b= 0) = 0.4405/�2, (3.81)

μc(t = 0, b→∞) = 0.4325/�2. (3.82)

This result already shows that inverse magnetic catalysis in the sense explained
in Sect. 3.2.2.3 must be present in the Sakai–Sugimoto model. The full numerical
solution of the surface of the chiral phase transition in the three-dimensional T –μ–B
space, including cuts through the surface at fixed t , μ, and b, is shown in Fig. 3.9.

In order to discuss the inverse magnetic catalysis, we have plotted the zero-
temperature phase diagram separately in Fig. 3.10. This phase diagram shows in-
triguing similarities with the corresponding NJL phase diagram in Fig. 3.6: inverse
magnetic catalysis is present at small magnetic fields and is most pronounced when
the restored phase has an LLL-like behavior. Even the manifestation of inverse mag-
netic catalysis in the analytical approximations is qualitatively the same as in the
field-theoretical model as we now show. For large magnetic fields, (3.70) and (3.74)
can be used to write the free energy difference between restored and broken phases
as

ΔΩ = NcB

4π2

[
μ2
q −M2

√
πΓ ( 3

5 )

3Γ ( 1
10 )

]
− NcB

16π2
μ2
q, (3.83)
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Fig. 3.11 As Fig. 3.10, but
including baryonic matter
(from Ref. [44]). The dashed
line is the (second-order)
onset of baryonic matter. The
transition within the chirally
restored phase between the
“LLL” and “hLL” phases has
disappeared because baryonic
matter is preferred in this
region of the phase diagram

where we have identified Ru0/(2πα′) with the constituent quark mass M [66, 69].
This large-B expression for ΔΩ is remarkably similar to the weak-coupling ex-
pression (3.38) in the NJL model. We can thus conclude, for the reasons explained
below (3.38), that in the large-B regime the critical chemical potential must increase
with B . This is confirmed by the chiral phase transition line of Fig. 3.10. Note the
difference between the terms ∝ θ(μ−M) in the NJL expression and the last term
in (3.83). Both terms come from a nonzero quark density which in our NJL calcu-
lation is only present if μ>M , while in our Sakai–Sugimoto calculation there is a
topological quark density at nonzero B for all μ due to the chiral spiral.

For small magnetic fields we may apply an approximation in the spirit of (3.40).
We compare the free energy of the broken phase for small magnetic fields (3.67)
with the free energy of the LLL phase (3.77). The result can be written as

ΔΩ � − 2N1/2
c Γ ( 9

16 )

21πgYMΓ (
1

16 )
M

1/2
KKM

7/2
0 + Nc

4π2
Bμ2

q − N2
c g

2
YMη2(μ)

24π3MKKR
B2, (3.84)

where M0 ∝ u
(0)
0 is the constituent quark mass at B = 0. Again we recover the form

of the NJL result (3.40). The main conclusion is that the energy cost for condensa-
tion is linear in B , whereas the energy gain from condensation, i.e., the magnetic
catalysis is only quadratic in B for small B . This allows for inverse magnetic catal-
ysis. The dashed–dotted line in Fig. 3.10 is the approximate phase transition from
(3.84). Comparison with the full numerical result shows that the approximation cap-
tures the physics of inverse magnetic catalysis where it is most pronounced and that
the “hLL” phase counteracts inverse magnetic catalysis.

In Fig. 3.11 we show the phase diagram including baryonic matter discussed
in [44]. The main observations are that (i) baryonic matter prevents chiral symmetry
restoration for small magnetic field for any value of μ (as already found in Ref. [72]
for B = 0) and that (ii) for sufficiently large magnetic fields, baryons become disfa-
vored, i.e., the chirally broken, mesonic, phase is directly superseded by the quark
matter phase. Interestingly, in the presence of baryonic matter, inverse magnetic
catalysis becomes even more prominent in the phase diagram: now, the magnetic
field restores chiral symmetry for any μ> 0.25.
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3.4 Discussion

We have investigated equilibrium phases at finite temperature, chemical potential,
and magnetic field for one massless flavor in the Nambu–Jona-Lasinio model and
the Sakai–Sugimoto model. For small flavor brane separations, the Sakai–Sugimoto
model is conjectured to be dual to a (non-local) NJL model. Indeed, we have found
intriguing qualitative similarities between both models.

There is an exact equality of the number density at zero temperature of the low-
est Landau level in the restored phase of the NJL model and the large magnetic
field phase with restored chiral symmetry in the Sakai–Sugimoto model. The higher
Landau level phase in the NJL model, however, differs from the small magnetic
field phase with restored chiral symmetry in the Sakai–Sugimoto model. For exam-
ple, there occur no de Haas–van Alphen oscillations in the holographic model. One
possible interpretation is that in the holographic model—dual to a strongly coupled
gauge theory—there are no quasiparticles and no sharp Fermi surface. Furthermore,
the axial current found on the field theory side is also reproduced in the holographic
model. In the version of the model discussed here [73], the holographic current re-
produces the field-theoretical current only up to a factor of 2. This discrepancy can
be resolved by properly implementing the axial anomaly [76], however for the price
of losing a consistent thermodynamic description.

Also the phase diagrams in both models share the same qualitative features. The
main differences are the order of the phase transitions (first and second order in NJL
vs. first order in Sakai–Sugimoto), the saturation of the critical temperature and the
critical chemical potential at asymptotically large magnetic fields (which only oc-
curs in Sakai–Sugimoto), and the absence of de Haas–van Alphen oscillations of the
phase transition line in the Sakai–Sugimoto model. The main physical effect, first
discussed in detail in the holographic context [43], is the nontrivial behavior of the
chiral phase transition in a magnetic field at finite quark chemical potential. Some-
what unexpectedly, at sufficiently large chemical potentials and small temperatures
and not too large magnetic fields, the effect of inverse magnetic catalysis dominates.
We have explained inverse magnetic catalysis in both models by a free energy argu-
ment. This argument shows that, even if the magnetic field increases the constituent
quark mass (due to the usual magnetic catalysis) and thus increases the conden-
sation energy, it also increases the energy cost for forming a chiral condensate. In
particular, in the LLL, where the effect is most pronounced, the cost for overcoming
the separation of fermions and antifermions due to the chemical potential increases
linearly in B , while the constituent quark mass rises quadratically. It is interesting
that at asymptotically large magnetic fields the free energy difference in the Sakai–
Sugimoto model resembles the corresponding expression in the weak-coupling limit
of the NJL model. In this regime magnetic catalysis is dominant in both models,
and the situation is analogous to weak-coupling superconductivity with mismatched
Fermi surfaces.

By fitting the parameters of the holographic model with the help of the critical
temperature atμ= B = 0 from QCD lattice calculations [7, 8] and the (not very well
known) critical chemical potential at T = B = 0 from model calculations [77, 78],
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we find that inverse magnetic catalysis persists up to B � 1.0 × 1019 G, where the
critical chemical potential has decreased from 400 MeV to about 230 MeV. It is not
clear whether the magnetic field inside compact stars is large enough to have any
effect on the chiral phase transition. Our results show, however, that if it is large
enough then only inverse magnetic catalysis will play a role, i.e., the transition from
hadronic to quark matter occurs at smaller densities than naively expected from the
B = 0 case.

We have included an anisotropic chiral condensate in the Sakai–Sugimoto model,
but not in the NJL model. For comparison, it is easy to show that in the holographic
calculation the assumption of an isotropic chiral condensate does not change the
qualitative features of the phase diagram. One finds that the effects of inverse mag-
netic catalysis are rather enhanced. On the other hand, including an anisotropic chi-
ral condensate in the NJL model changes the phase diagram drastically [79]. Most
notably, there exists a phase with anisotropic chiral condensate even at B = 0; in the
Sakai–Sugimoto model, B �= 0 is necessary for having such a phase. Moreover, this
phase inevitably has a finite quark density. In order to realize this in the holographic
model at B = 0 one needs solitonic baryon sources which are related to Skyrmions
and thus rather different from “baryons” in the NJL model which consist of dislo-
cated quarks. We have briefly discussed the effect of such baryonic matter in the
Sakai–Sugimoto model, based on Ref. [44]. One of the most important changes is
the non-existence of a chiral symmetry restoration at B = 0 for any value of the
chemical potential.

Another phenomenon that was not included in our discussion is the so-called chi-
ral shift [80, 81], a chiral asymmetry in the Fermi surfaces of right- and left-handed
charged fermions induced by a magnetic field. It would be interesting to discuss its
effect on the chiral phase transition and thus on inverse magnetic catalysis. How-
ever, the chiral shift is related to the Fock exchange terms, which are suppressed at
large Nc. Therefore, this effect is difficult to study in a holographic model where
Nc →∞ is necessary for the validity of the supergravity approximation.
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Chapter 4
Quark Matter in a Strong Magnetic Background

Raoul Gatto and Marco Ruggieri

4.1 Introduction

Quantum Chromodynamics (QCD) is the gauge theory of strong interactions. The
understanding of its vacuum, and how it is modified by a large temperature and/or
a baryon density, is one of the most intriguing aspects of modern physics. However,
it is very hard to get a full understanding of its properties, because its most impor-
tant characteristics, namely chiral symmetry breaking and color confinement, have
a non-perturbative origin, and the use of perturbative methods is useless. One of
the best strategies to overcome this problem is offered by Lattice QCD simulations
at zero chemical potential (see [1–8] for several examples and see also references
therein). At vanishing quark chemical potential, two crossovers take place in a broad
range of temperatures; one for quark deconfinement, and another one for the (ap-
proximate) restoration of chiral symmetry.

An alternative approach to the physics of strong interactions, which is capable
to capture some of the non-perturbative properties of the QCD vacuum, is the use
of models. Among them, we will consider here the Nambu-Jona Lasinio (NJL)
model [9, 10], see Refs. [11–14] for reviews. In this gluon-less model, which was
inspired by the microscopic theory of superconductivity, the QCD interactions are
replaced by effective interactions, which are built in order to respect the global sym-
metries of QCD. Since gluons are absent in the NJL model, it is not a gauge theory.
However, it shares the global symmetries of the QCD action; moreover, the parame-
ters of the NJL model are fixed to reproduce some phenomenological quantity of the
QCD vacuum. Therefore, it is the main characteristics of its phase diagram should
represent, at least qualitatively, those of QCD.
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The other side of the NJL model is that it lacks confinement. The latter, in the
case of a pure gauge theory, can be described in terms of the center symmetry of
the color gauge group and of the Polyakov loop [15–18], which is an order param-
eter for the center symmetry. Motivated by this property, the Polyakov extended
Nambu-Jona Lasinio model (PNJL model) has been introduced [19, 20], in which
the concept of statistical confinement replaces that of the true confinement of QCD,
and an effective interaction among the chiral condensate and the Polyakov loop is
achieved by a covariant coupling of quarks with a background temporal gluon field.
In the literature there are several studies on the PNJL model, see Refs. [21–43] and
references therein.

In this chapter, we make use of the PNJL model to study the interplay between
chiral symmetry breaking and deconfinement in a strong magnetic background.
Moreover, we compute several quantities which are relevant for the phenomenology
of strong interactions physics in presence of a magnetic background. These topics
are widely studied in the literature using many theoretical approaches. Lattice stud-
ies on the response to external magnetic (and chromo-magnetic) fields can be found
in [44–51]. Previous studies of QCD in magnetic fields, and of QCD-like theories as
well, can be found in Refs. [52–68]. Self-consistent model calculations of deconfine-
ment pseudo-critical temperature in magnetic field have been performed [69–71].

An important motivation for these kind of studies is phenomenological. In fact,
strong magnetic fields are produced in non-central heavy ion collisions [72–74]. For
example, at the energy scale for RHIC it is found eBmax ≈ 5m2

π ; for collisions at the
LHC energy scale eBmax ≈ 15m2

π . In this case, it has been argued that the non-
trivial topological structure of thermal QCD, namely the excitation of the strong
sphalerons [75, 76], locally changes the chirality of quarks; this is reflected to event-
by-event charge separation, a phenomenon which is dubbed Chiral Magnetic Effect
(CME) [72, 77–79]. The possibility that the CME is observed in heavy ion collision
experiments has motivated the study of strong interactions in presence of a chiral-
ity imbalance and a magnetic background, see [79–84] and references therein. An
experimental measurement of observables connected to charge separation has been
reported by the ALICE Collaboration in [85]. It is fair to say that realistic simula-
tions of heavy ion collisions show that the magnetic fields have a very short lifetime,
and decay before the local equilibrium is reached in the fireball. Moreover, the mag-
netic field is highly inhomogeneous. Furthermore, electric fields are produced beside
the magnetic fields. Therefore, in order to describe realistically hot matter produced
in the collisions, one should take care of the aforementioned details. However, for
simplicity we neglect them, and leave the (much harder) complete problem to future
studies.

We mainly base the present chapter on our previous works [86–88]. We firstly
discuss chiral symmetry restoration in a strong magnetic background at finite tem-
perature, using the PNJL model augmented with the eight-quark interaction [89–
92]. In this case we also compute the dressed Polyakov loop in a magnetic field.
The scenario which turns out from our calculations is compatible with that of the
magnetic catalysis, in which the magnetic field acts as a catalyzer for chiral symme-
try breaking. Moreover, we discuss on the role of the entanglement NJL vertex on
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the separation between deconfinement and chiral symmetry restoration in the back-
ground field. Finally, we summarize our computation of the magnetic susceptibility
of the chiral condensate and of quark polarization in a strong magnetic background
at zero temperature. We base the latter analysis on the Quark-Meson (QM) model,
which offers the simplest renormalizable extension of the NJL model. Throughout
this chapter we consider QCD in the vacuum, that is at zero baryon (as well as
isospin) chemical potential. Computations at finite chemical potential are present in
the literature, as we will mention in the main body of the chapter.

4.2 The PNJL Model with a Magnetic Background

In this section, we mainly summarize the results obtained in [86, 87]. We consider
quark matter modeled by the following Lagrangian density:

L = q̄
(
iγ μDμ −m0

)
q + gσ

[
(q̄q)2 + (q̄iγ5τq)

2]

+ g8
[
(q̄q)2 + (q̄iγ5τq)

2]2
, (4.1)

which corresponds to the NJL Lagrangian with multi-quark interactions [89]. The
covariant derivative embeds the quark coupling to the external magnetic field and
to the background gluon field as well, as we will see explicitly below. In (4.1), q
represents a quark field in the fundamental representation of color and flavor (in-
dices are suppressed for notational simplicity); m0 is the bare quark mass, which is
fixed to reproduce the pion mass in the vacuum, mπ = 139 MeV. Our interaction
in (4.1) consists of a four-quark term, whose coupling gσ has inverse mass dimen-
sion of two, and an eight-quark term, whose coupling constant g8 has inverse mass
dimension of eight.

We are considering the effect of a strong magnetic background on chiral symme-
try restoration as well as deconfinement at finite temperature. We assume the mag-
netic field to be along the positive z-axis; we chose to work in the Landau gauge,
specified by the vector potential A = (0,Bx,0).

To compute a temperature for the deconfinement crossover, we use the expecta-
tion value of the Polyakov loop, that we denote by L. In order to compute L we
introduce a static, homogeneous and Euclidean background temporal gluon field,
A0 = iA4 = iλaA

a
4, coupled minimally to the quarks via the QCD covariant deriva-

tive [20]. Then

L= 1

3
Trc exp

(
iβλaA

a
4

)
, (4.2)

where β = 1/T . In the Polyakov gauge, which is convenient for this study, A0 =
iλ3φ + iλ8φ

8; moreover, we work at zero quark chemical potential, therefore we
can take L= L† from the beginning, which implies A8

4 = 0. This choice is also mo-
tivated by the study of [71], where it is shown that the paramagnetic contribution of
the quarks to the thermodynamic potential induces the breaking of the Z3 symmetry,
favoring the configurations with a real-valued Polyakov loop.
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Besides the Polyakov loop, it is interesting to compute the dressed Polyakov
loop [93]. In order to define this quantity, we work in a finite Euclidean volume
with temperature extension β = 1/T . We take twisted fermion boundary conditions
along the compact temporal direction,

q(x, β)= e−iϕq(x,0), ϕ ∈ [0,2π], (4.3)

while for spatial directions the usual periodic boundary condition is taken. The
canonical antiperiodic boundary condition for the quantization of fermions at fi-
nite temperature, is obtained by taking ϕ = π in the previous equation. The dual
quark condensate, Σ̃n, is defined as

Σ̃n(m,V )=
∫ 2π

0

dϕ

2π

e−iϕn

V
〈q̄q〉G, (4.4)

where n is an integer. The expectation value 〈·〉G denotes the path integral over
gauge field configurations. An important point is that in the computation of the ex-
pectation value, the twisted boundary conditions acts only on the fermion determi-
nant; the gauge fields are taken to be quantized with the canonical periodic boundary
condition.

Using a lattice regularization, it has been shown in [93] that (4.4) can be ex-
panded in terms of loops which wind n times along the compact time direction. In
particular, the case n = 1 is called the dressed Polyakov loop; it corresponds to a
sum of loops winding just once along the time direction. These correspond to the
thin Polyakov loop (the loop with shortest length) plus higher order loops, the order
being proportional to the length of the loop. Each higher order loop is weighed by an
inverse power of the quark mass. Because of the weight, in the infinite quark mass
limit only the thin Polyakov loop survives; for this reason, the dressed Polyakov
loop can be viewed as a mathematical dressing of the thin loop, by virtue of longer
loops, the latter being more and more important as the quark mass tends to smaller
values.

If we denote by z an element of the center of the color gauge group, then
Σ̃n → znΣ̃n. It then follows that, under the center of the symmetry group Z3, the
dressed Polyakov loop (n= 1) is an order parameter for the center symmetry, with
the same transformation rule of the thin Polyakov loop. Since the center symmetry
is spontaneously broken in the deconfinement phase and restored in the confine-
ment phase [15–18] (in presence of dynamical quarks, it is only approximately re-
stored), the dressed Polyakov loop can be regarded as an order parameter for the
confinement-deconfinement transition as well.

4.2.1 The One-Loop Quark Propagator

The evaluation of the bulk thermodynamic quantities requires we compute the quan-
tum effective action of the model. This cannot be done exactly; hence we rely our-
selves to the one-loop approximation for the partition function, which amounts to
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take the classical contribution plus the fermion determinant. At this level, the effect
of the strong interactions is to modify the quark mass as follows:

M =m0 − 2σ − 4σ 3g8/g
3
σ , (4.5)

where σ = gσ 〈q̄q〉. As a further simplification, we neglect condensation in the pseu-
doscalar channel. We notice that the quark mass depends only on the sum of the u
and d chiral condensates; therefore the mean field quark mass does not depend on
the flavor.

To write the one-loop quark propagator in the background of the magnetic field
we make use of the Leung-Ritus-Wang method [94, 95], which allows to expand
the propagator on the complete and orthonormal set made of the eigenfunctions
of a charged fermion in a homogeneous and static magnetic field. This is a well
known procedure, discussed many times in the literature, see for example [96–102];
therefore it is enough to quote the final result:

Sf (x, y)=
∞∑

k=0

∫
dp0dp2dp3

(2π)4
EP (x)Λk

1

P · γ −M
ĒP (y), (4.6)

where EP (x) corresponds to the eigenfunction of a charged fermion in magnetic
field, and ĒP (x)≡ γ0(EP (x))

†γ0. In the above equation,

P = (
p0 + iA4,0,Q

√
2k|Qf eB|,pz

)
, (4.7)

where k = 0,1,2, . . . labels the kth Landau level, and Q ≡ sign(Qf ), with Qf

denoting the charge of the flavor f ; Λk is a projector in Dirac space which keeps
into account the degeneracy of the Landau levels; it is given by

Λk = δk0[P+δQ,+1 + P−δQ,−1] + (1 − δk0)I, (4.8)

where P± are spin projectors and I is the identity matrix in Dirac spinor indices.
The propagator in (4.6) has a non-trivial color structure, due to the coupling to the
background gauge field, see (4.7).

It is useful to write down explicitly the expression of the chiral condensates for
the flavor f with f = u,d . The chiral condensate is easily computed by taking
minus the trace of the f -quark propagator. It is easy to show that the following
equation holds:

〈f̄ f 〉 = −Nc

|Qf eB|
2π

∞∑

k=0

βk

∫
dpz

2π

Mf

ωf
C (L, L̄, T |pz, k). (4.9)

Here,

C (L, L̄, T |pz, k) = UΛ − 2N (L, L̄, T |pz, k), (4.10)
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and N denotes the statistically confining Fermi distribution function,

C (L, L̄, T |pz, k) = 1 + 2Leβωf +Le2βωf

1 + 3Leβωf + 3Le2βωf + e3βωf
,

(4.11)

where

ω2
f = p2

z + 2|Qf eB|k +M2. (4.12)

The first and the second addenda in the r.h.s. of (4.9) correspond to the vacuum
and the thermal fluctuations contribution to the chiral condensate, respectively. The
coefficient βk = 2 − δk0 keeps into account the degeneracy of the Landau levels.
The vacuum contribution is ultraviolet divergent. In order to regularize it, we adopt
a smooth regulator UΛ, which is more suitable, from the numerical point of view,
in our model calculation with respect to the hard-cutoff which is used in analogous
calculations without magnetic field. We chose

UΛ = Λ2N

Λ2N + (p2
z + 2|Qf eB|k)N . (4.13)

4.2.2 The One-Loop Thermodynamic Potential

The one-loop thermodynamic potential of quark matter in external fields has been
discussed in [69, 70], in the case of canonical antiperiodic boundary conditions; fol-
lowing [36], it is easy to generalize it to the more general case of twisted boundary
conditions:

Ω = U (L, L̄, T )+ σ 2

gσ
+ 3σ 4g8

g4
σ

−
∑

f=u,d

|Qf eB|
2π

∑

k

βk

∫ +∞

−∞
dpz

2π
gΛ(pz, k)ωk(pz)

− T
∑

f=u,d

|Qf eB|
2π

∑

k

βk

∫ +∞

−∞
dpz

2π
log

(
1+3Le−βE− +3L̄e−2βE− + e−3βE−)

− T
∑

f=u,d

|Qf eB|
2π

∑

k

βk

∫ +∞

−∞
dpz

2π
log

(
1+3L̄e−βE+ +3Le−2βE+ + e−3βE+).

(4.14)

In the previous equation the arguments of the thermal exponentials are defined as

E± = ωf (pz)± i(ϕ − π)

β
, (4.15)

with ϕ defined in (4.3).
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The potential term U [L, L̄, T ] in (4.14) is built by hand in order to reproduce
the pure gluonic lattice data [21]. Among several different potential choices [103]
we adopt the following logarithmic form [20, 21],

U [L, L̄, T ]
T 4

=−a(T )

2
L̄L+ b(T ) ln

[
1 − 6L̄L+ 4

(
L̄3 +L3)− 3(L̄L)2

]
, (4.16)

with three model parameters (one of four is constrained by the Stefan-Boltzmann
limit),

a(T )= a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

,

b(T )= b3

(
T0

T

)3

.

(4.17)

The standard choice of the parameters reads [21];

a0 = 3.51, a1 =−2.47, a2 = 15.2, b3 =−1.75. (4.18)

The parameter T0 in (4.16) sets the deconfinement scale in the pure gauge theory,
i.e. Tc = 270 MeV.

4.3 Numerical Results

In this section, we show our results. The main goal to achieve numerically is the
solution of the gap equations,

∂Ω

∂σ
= 0,

∂Ω

∂L
= 0. (4.19)

This is done by using a globally convergent algorithm with backtrack [104]. From
the very definition of the dressed Polyakov loop, (4.4), the twisted boundary condi-
tion, (4.3), must be imposed only in Dϕ . Therefore, we firstly compute the expec-
tation value of the Polyakov loop and to the chiral condensate, taking ϕ = π . Then,
in order to compute the dressed Polyakov loop, we compute the ϕ-dependent chiral
condensate using the first of (4.19), keeping the expectation value of the Polyakov
loop fixed at its value at ϕ = π [36].

Following [86, 87] we report results obtained using the UV-regulator with N = 5.
As expected, in the other cases no different qualitative results are found; the pa-
rameter set is specified in Table 4.1. In the case N = 5, they are obtained by the
requirements that the vacuum pion mass is mπ = 139 MeV, the pion decay constant
fπ = 92.4 MeV and the vacuum chiral condensate 〈ūu〉 ≈ (−241 MeV)3. In this
case, the chiral and deconfinement pseudo-critical temperatures at zero magnetic
field are T χ

0 = T P
0 = 175 MeV.
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Table 4.1 Parameters of the
model for the two choices of
the UV-regulator

Λ (MeV) m0 (MeV) gσ (MeV)−2 g8 (MeV)−8

N = 5 588.657 5.61 5 × 10−6 6 × 10−22

The main effect of the eight-quark interaction in (4.1) is to lower the pseudo-
critical temperature of the crossovers. This has been already discussed several times
in the literature [89, 90], in the context of both the NJL and the PNJL models.
Therefore, it is not necessary to discuss it further here, while at the same time we
prefer to stress the results that have not been discussed yet.

In order to identify the pseudo-critical temperatures, we have define the effective
susceptibilities as

χA = (mπ)
g

∣∣
∣∣
dA

dT

∣∣
∣∣, A= σ,P,Σ1. (4.20)

Strictly speaking, the quantities defined in the previous equation are not true sus-
ceptibilities. Nevertheless, they allow to represent faithfully the pseudo-critical re-
gion, that is, the range in temperature in which the various crossovers take place.
Therefore, for our purposes it is enough to compute these quantities. In (4.20), the
appropriate power of mπ is introduced just for a matter of convenience, in order to
have a dimensionless quantity; therefore, g = 0 if A= σ,Σ1, and g = 1 if A= P .

4.3.1 Condensates and Dressed Polyakov Loop

From now on, we fix N = 5 unless specified. The results for this case are collected
in the form of surface plots in Fig. 4.1. In more detail, in the figure we plot the
chiral condensate S ≡ (σ/2)1/3, the expectation value of the Polyakov loop, and the
dressed Polyakov loop Σ1, as a function of temperature and magnetic field.

We slice the surface plots in Fig. 4.1 at fixed value of the magnetic field strength,
and show the results in Fig. 4.2, where we plot the chiral condensate (upper panel),
the Polyakov loop (middle panel) and Σ1 (lower panel) as a function of temperature,
for several values of the applied magnetic field strength, measured in units of m2

π .
In the right panel, we plot fits of the effective susceptibilities in the critical regions,
as a function of temperature. The fits are obtained from the raw data, using Breit-
Wigner-like fitting functions.

The qualitative behavior of the chiral condensate, and of the Polyakov loop as
well, is similar to that found in a previous study within the PNJL model in the chiral
limit [69]. Quantitatively, the main difference with the case of the chiral limit, is that
in the latter the chiral restoration at large temperature is a true second order phase
transition (in other model calculations it has been reported that the phase transition
might become of the first order at very large magnetic field strengths [66, 67]). On
the other hand, in the case under investigation, chiral symmetry is always broken
explicitly because of the bare quark masses; as a consequence, the second order
phase transition is replaced by a crossover.
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Fig. 4.1 Chiral
condensate, Polyakov
loop and dressed Polyakov
loop as a function of
temperature and magnetic
field, for the case N = 5.
From Ref. [87]. Copyright
(2012) by the American
Physical Society

Another aspect is that the Polyakov loop crossover temperature is less sensitive
to the strength of the magnetic field than the same quantity computed for the chi-
ral condensate. It is useful, for illustration purpose, to quantify the net shift of the
pseudo-critical temperatures, for the largest value of magnetic field we have studied,
eB = 19m2

π . In this case, if we take N = 5, then the two crossovers occur simultane-
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Fig. 4.2 Left panel: Chiral condensate S (upper panel), Polyakov loop (middle panel) and Σ1
(lower panel) as a function of temperature, for several values of the applied magnetic field strength,
measured in units of m2

π . Right panel: Effective susceptibilities, defined in (4.20), as a function of
temperature, for several values of eB . Conventions for lines are the same as in the left panel. From
Ref. [87]. Copyright (2012) by the American Physical Society

ously at eB = 0, at the temperature T χ
0 = T P

0 = 175 MeV; for eB = 19m2
π , we find

Tχ = 219 MeV and TP = 190 MeV. Therefore, the chiral crossover is shifted ap-
proximately by 25.1 %, to be compared with the more modest shift of the Polyakov
loop crossover, which is ≈8.6 %. This aspect will be discussed further in the next
section, in which we will comment on the possibility of entanglement between the
NJL coupling at finite temperature and the Polyakov loop.

In the lower panels of Figs. 4.1 and 4.2, we plot the dressed Polyakov loop as
a function of temperature, for several values of eB . We have normalized Σ1 mul-
tiplying the one defined in [93] by the NJL coupling constant. For small values
of eB/m2

π , the behavior of Σ1 as temperature is increased, is qualitatively similar
to that at eB = 0, which has been discussed within effective models in [36, 105].
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In particular, the dressed Polyakov loop is very small for temperatures below the
pseudo-critical temperature of the simultaneous crossover. Then, it experiences a
crossover in correspondence of the simultaneous Polyakov loop and chiral con-
densate crossovers. It eventually saturates at very large temperature (for example,
in [36] the saturation occurs at a temperature of the order of 0.4 GeV, in agreement
with the results of [105]). However, we do not push up our numerical calculation
to such high temperature, because we expect that the effective model in that case is
well beyond its range of validity.

As we increase the value of eB , as noticed previously, we observe a tiny splitting
of the chiral and the Polyakov loop crossovers. Correspondingly, the qualitative be-
havior of the dressed Polyakov loop changes dramatically: the range of temperature
in which the Σ1 crossover takes place is enlarged, if compared to the thin tempera-
ture interval in which the crossover takes place at the lowest value of eB (compare
the solid and the dotted lines in Fig. 4.2, as well as the lower panel of Fig. 4.1).

On passing, we discuss briefly the effective susceptibility, dΣ1/dT , plotted in
the lower right panel of Fig. 4.2, since its qualitative behavior is very interesting.
We observe a double peak structure, which we interpret as the fact that the dressed
Polyakov loop is capable to feel (and hence, describe) both the crossovers. If we
were to interpret Σ1 as the order parameter for deconfinement, and the temperature
with the largest susceptibility as the crossover pseudo-critical temperature, then we
obtain almost simultaneous crossover even for very large magnetic field.

4.3.2 Entanglement of NJL Coupling and Polyakov Loop

In [106] it has been shown that the NJL vertex can be deduced under some assump-
tion from the QCD action; following this derivation a non-local structure of the
interaction turns out. An analogous conclusion is achieved in [107–109]. More im-
portant for our study, the NJL vertex acquires a non-trivial dependence on the phase
of the Polyakov loop. Therefore, in the model we consider here, it is important to
keep into account this dependence. Here we follow the phenomenological ansatz
introduced in [110], that is

G= gσ
[
1 − α1LL̄− α2

(
L3 + L̄3)], (4.21)

and we take L= L̄. Moreover, we mainly discuss here the case without 8-quark in-
teraction. The model with coupling constant specified in (4.21) is named Entangled-
Polyakov improved-NJL model (EPNJL in the following) [110], since the vertex
describes an entanglement between Polyakov loop and the interaction responsible
for chiral symmetry breaking.

The functional form in the above equation is constrained by C and extended Z3
symmetry. We refer to [110] for a more detailed discussion. The numerical values
of α1 and α2 have been fixed in [110] by a best fit of the available Lattice data at
zero and imaginary chemical potential of Ref. [111], which have been confirmed
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Fig. 4.3 Upper panel: Chiral
condensates of u and d
quarks as functions of
temperatures in the
pseudo-critical region, at
eB = 15m2

π and eB = 30m2
π .

Condensates are measured in
units of their value at zero
magnetic field and zero
temperature, namely
σ0 = (−253 MeV)3. Lower
panel: Polyakov loop
expectation value as a
function of temperature, at
eB = 15m2

π and eB = 30m2
π .

Data correspond to α = 0.2.
From Ref. [87]. Copyright
(2012) by American Physical
Society

recently in [112]. In particular, the fitted data are the critical temperature at zero
chemical potential, and the dependence of the Roberge-Weiss endpoint on the bare
quark mass.

The values α1 = α2 ≡ α = 0.2 ± 0.05 have been obtained in [110] using a hard
cutoff regularization scheme. We will focus mainly on the case α = 0.2 as in [110].
In [86] we have verified that in the regularization scheme with the smooth cutoff, the
results are in quantitative agreement with those of [110]. There, a detailed discussion
of the role of α can be found as well (we will skip this discussion in this chapter).

We plot in Fig. 4.3 the chiral condensates of u and d quarks as a function of
temperature, at eB = 15m2

π and eB = 30m2
π . In the lower panel of the figure, we

plot the expectation value of the Polyakov loop as a function of temperature. The
condensates are measured in units of their value at zero magnetic field and zero
temperature, namely σ0 ≡ 〈ūu〉 = 〈d̄d〉 = (−253 MeV)3. They are computed by a
two-step procedure: firstly we find the values of σ and L that minimize the ther-
modynamic potential; then, we make use of (4.9) to compute the expectation values
of ūu and d̄d in magnetic field. If we measure the strength of the crossover by the
value of the peak of |dσ/dT |, it is obvious from the figure that the chiral crossover
becomes stronger and stronger as the strength of the magnetic field is increased, in
agreement with [44].

The results in Fig. 4.3 show that, identifying the deconfinement crossover with
the temperature TL at which dL/dT is maximum, and the chiral crossover with
the temperature Tχ at which |dσ/dT | is maximum, the two temperatures are very
close also in a strong magnetic field. From the model point of view, it is easy to
understand why deconfinement and chiral symmetry restoration are entangled also
in strong magnetic field. As a matter of fact, using the data shown in Fig. 4.3, it is
possible to compute the NJL coupling constant in the pseudo-critical region, which



4 Quark Matter in a Strong Magnetic Background 99

turns out to decrease of the 15 % as a consequence of the deconfinement crossover.
Therefore, the strength of the interaction responsible for the spontaneous chiral sym-
metry breaking is strongly affected by the deconfinement, with the obvious conse-
quence that the numerical value of the chiral condensate drops down and the chiral
crossover takes place. We have verified that the picture remains qualitatively and
quantitatively unchanged if we perform a calculation at eB = 30m2

π . In this case,
we find TL = 224 MeV and Tχ = 225 MeV.

This result can be compared with the previous calculations [69], described also
in the previous section, in which the Polyakov loop dependence of the NJL coupling
constant was not included. In [69] we worked in the chiral limit and we observed
that the Polyakov loop crossover in the PNJL model is almost insensitive to the mag-
netic field; on the other hand, the chiral phase transition temperature was found to
be very sensitive to the strength of the applied magnetic field, in agreement with the
well known magnetic catalysis scenario [52–58]. This model prediction has been
confirmed within the Polyakov extended quark-meson model in [71], when the con-
tribution from the vacuum fermion fluctuations to the energy density is kept into
account;1 we then obtained a similar result in [87], in which we turned from the chi-
ral to the physical limit at which mπ = 139 MeV, and introduced the 8-quark term
as well (PNJL8 model, according to the nomenclature of [110]). The comparison
with the results of the PNJL8 model of [87] is interesting because the model consid-
ered there, was tuned in order to reproduce the Lattice data at zero and imaginary
chemical potential [35], like the model we use in this study. Therefore, they share
the property of describing the QCD thermodynamics at zero and imaginary chemi-
cal potential; it is therefore instructive to compare their predictions at finite eB .

For concreteness, in [87] we found TP = 185 MeV and Tχ = 208 MeV at
eB = 19m2

π , corresponding to a split of ≈12 %. On the other hand, in the present
calculation we measure a split of ≈1.5 % at the largest value of eB considered.
Therefore, the results of the two models are in slight quantitative disagreement; this
disagreement is then reflected in a slightly different phase diagram. We will draw
the phase diagram of the two models in a next section; however, since now it is
easy to understand what the main difference consists in: the PNJL8 model predicts
some window in the eB–T plane in which chiral symmetry is still broken by a chiral
condensate, but deconfinement already took place. In the case of the EPNJL model,
this window is shrunk to a very small one, because of the entanglement of the two
crossovers at finite eB . On the other hand, it is worth to stress that the two mod-
els share an important qualitative feature: both chiral restoration and deconfinement
temperatures are enhanced by a strong magnetic field; the latter conclusion is in
qualitative agreement with the Lattice data of D’Elia et al. [44], but in disagreement
with more recent data [50, 51]. We will come back to a comparison with Lattice
data, as well as with other computations, in the next section.

1If the vacuum corrections are neglected, the deconfinement and chiral crossovers are found to
be coincident even in very strong magnetic fields [71], but the critical temperature decreases as a
function of eB; this scenario is very interesting theoretically, but it seems excluded from the recent
Lattice simulations [44].



100 R. Gatto and M. Ruggieri

Fig. 4.4 Upper panel: Phase diagram in the eB–T plane for the EPNJL model. Temperatures
on the vertical axis are measured in units of the pseudo-critical temperature for deconfinement at
eB = 0, namely Tc = 185.5 MeV. Lower panel: Phase diagram in the eB–T plane for the PNJL8
model. Temperatures on the vertical axis are measured in units of the pseudo-critical temperature
for deconfinement at eB = 0, namely Tc = 175 MeV. In both the phase diagrams, Tχ , TL corre-
spond to the chiral and deconfinement pseudo-critical temperatures, respectively. The grey shaded
region denotes the portion of phase diagram in which hot quark matter is deconfined and chiral
symmetry is still broken spontaneously. From Ref. [87]. Copyright (2012) by American Physical
Society

4.4 Phase Diagram in the eB–T Plane

In Fig. 4.4 we collect our data on the pseudo-critical temperatures for deconfinement
and chiral symmetry restoration, in the form of a phase diagram in the eB–T plane.
In the upper panel we show the results obtained within the EPNJL model; in the
lower panel, we plot the results of the PNJL8 model, that are obtained using the fit-
ting functions computed in [87]. In the figure, the magnetic field is measured in units
of m2

π ; temperature is measured in units of the deconfinement pseudo-critical tem-
perature at zero magnetic field, namely TB=0 = 185.5 MeV for the EPNJL model,
and TB=0 = 175 MeV for the PNJL8 model. For any value of eB , we identify the
pseudo-critical temperature with the peak of the effective susceptibility.

It should be kept in mind, however, that the definition of a pseudo-critical tem-
perature in this case is not unique, because of the crossover nature of the phe-
nomena that we describe. Other satisfactory definitions include the temperature at
which the order parameter reaches one half of its asymptotic value (which corre-
sponds to the T → 0 limit for the chiral condensate, and to the T → +∞ for the
Polyakov loop), and the position of the peak in the true susceptibilities. The expec-
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tation is that the critical temperatures computed in these different ways differ from
each other only of few percent. This can be confirmed concretely using the data
in Fig. 4.3 at eB = 30m2

π . Using the peak of the effective susceptibility we find
Tχ = 225 MeV and TL = 224 MeV; on the other hand, using the half-value crite-
rion, we find Tχ = 227 MeV and TL = 222 MeV, in very good agreement with the
previous estimate. Therefore, the qualitative picture that we derive within our sim-
ple calculational scheme, namely the entanglement of the two crossovers in a strong
magnetic field, should not be affected by using different definitions of the critical
temperatures.

Firstly we focus on the phase diagram of the EPNJL model. In the upper panel of
Fig. 4.4, the dashed and dot-dashed lines correspond to the deconfinement and chiral
symmetry restoration pseudo-critical temperatures, respectively. As a consequence
of the entanglement, the two crossovers stay closed also in very strong magnetic
field, as we have already discussed in the previous section. The grey region in the
figure denotes a phase in which quark matter is (statistically) deconfined, but chiral
symmetry is still broken. According to [113, 114], we can call this phase Constituent
Quark Phase (CQP).

On the lower panel of Fig. 4.4 we have drawn the phase diagram for the PNJL8
model based on Ref. [87] and discussed in the previous section. The most astonish-
ing feature of the phase diagram of the PNJL8 model is the entity of the split among
the deconfinement and the chiral restoration crossover. The difference with the re-
sult of the EPNJL model is that in the former, the entanglement with the Polyakov
loop is neglected in the NJL coupling constant. As we have already mentioned in
the previous section, the maximum amount of split that we find within the EPNJL
model, at the largest value of magnetic field considered here, is of the order of 2 %;
this number has to be compared with the split at eB = 20m2

π in the PNJL8 model,
namely ≈12 %. The larger split causes a considerable portion of the phase diagram
to be occupied by the CQP.

4.4.1 Comparison with Other Computations

In this section we summarize the main results obtained in the literature, comparing
them with the scenario depicted in our works. Before going ahead, it is useful to
summarize the two main results obtained within our one-loop computations:

• The critical temperature for chiral symmetry restoration is increased by an exter-
nal magnetic field;

• The split between deconfinement and chiral symmetry restoration temperatures
in a strong magnetic background can be reduced if the entanglement vertex is
considered.

The first conclusion is in agreement with most of the computations: calculations
based on the quark-meson-model with and without quantum fluctuations [71, 115–
120], on chiral perturbation theory at finite temperature [121], on the PNJL
model [69, 122], on the holographic correspondence [68, 123–125].
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Besides models predictions, lattice computations of the critical temperatures in a
magnetic background have been performed [44, 50, 51]. The computations of [44]
have been performed with a pion mass of the order of 400 MeV, hence a little bit
far from the physical limit. In this case, both the chiral symmetry restoration and the
deconfinement temperatures are measured, and they are found to increase slightly
with the magnetic field strength; moreover, the two transitions seem to be entangled
even at the largest value of the magnetic field considered in the study. On the other
hand, in [50, 51] quark masses are chosen such that the lattice pion has its physical
mass; in this case a non-trivial dependence of the critical temperature for chiral sym-
metry restoration on the magnetic field strength and the quark mass is found. For
the up and down quark condensates at the physical limit, the critical temperature
decreases with the magnetic field strength. The deconfinement temperature, mea-
sured either by the Polyakov loop and by the strange quark number susceptibility, is
found to decrease as well. If the light quark masses are increased up to the value of
the strange quark mass, see Fig. 5 of [51], then the critical temperature, measured by
the peak of the u-quark chiral susceptibility, remains almost constant as a function
of the magnetic field strength.

We also mention a recent work [126] in which the influence of a magnetic field
on the finite temperature phase structure and the chiral properties of 2-colors QCD
with four species of dynamical staggered fermions is investigated. In this case, at a
fixed mass the critical temperature is seen to rise with the magnetic field strength.

Computations within the MIT bag model [127] do not have direct access to
the chiral symmetry restoration, but to the deconfinement temperature. Within this
model it is found that the critical temperature for deconfinement is a decreasing
function of the external magnetic field strength. This conclusion is in agreement
with a previous computation [66, 67]. Furthermore, a decreasing temperature is
found also within the quark-meson model if the fermion vacuum contribution is
neglected [71]. If deconfinement and chiral symmetry restoration are entangled at
finite magnetic field, then the MIT model based study would give some hint on the
mechanism which makes the temperature for chiral symmetry restoration in a mag-
netic background lower than that at zero field. However, if this is the case, then the
role of the quark mass on the dependence of the critical temperature on the magnetic
field strength [50, 51] should be transparent. In our opinion, more study is needed
to understand the puzzling behavior of Tc as a function of the magnetic field found
on the Lattice: beside model computations, independent Lattice simulations should
be performed, in order to confirm the results of [50, 51].

4.5 Polarization of the Quark Condensate

It has been realized that external fields can induce QCD condensates that are absent
otherwise [128]. Here we focus on the magnetic moment, 〈f̄ Σμνf 〉 where f de-
notes the fermion field of the flavor f th, and Σμν =−i(γ μγ ν −γ νγ μ)/2. At small
fields one can write, according to [128],

〈
f̄ Σμνf

〉= χ〈f̄ f 〉Qf |eB|, (4.22)
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and χ is a constant independent of flavor, which is dubbed magnetic susceptibility
of the quark condensate. In [128] it is proved that the role of the condensate (4.22)
to QCD sum rules in external fields is significant, and it cannot be ignored. The
quantity χ has been computed by means of special sum rules [128–132], OPE
combined with Pion Dominance [133], holography [134, 135], instanton vacuum
model [136], analytically from the zero mode of the Dirac operator in the back-
ground of a SU(2) instanton [137], and on the Lattice in two color quenched sim-
ulations at zero and finite temperature [138]. It has also been suggested that in the
photoproduction of lepton pairs, the interference of the Drell-Yan amplitude with
the amplitude of a process where the photon couples to quarks through its chiral-
odd distribution amplitude, which is normalized to the magnetic susceptibility of
the QCD vacuum, is possible [139]. This interference allows in principle to ac-
cess the chiral odd transversity parton distribution in the proton. Therefore, this
quantity is interesting both theoretically and phenomenologically. The several es-
timates, that we briefly review in Sect. 4.3, lead to the numerical value of χ as
follows:

χ〈f̄ f 〉 = 40–70 MeV. (4.23)

A second quantity, which embeds non-linear effects at large fields, is the polar-
ization, μf , defined as

μf =
∣∣∣∣
Σf

〈f̄ f 〉
∣∣∣∣, Σf = 〈

f̄ Σ12f
〉
, (4.24)

which has been computed on the Lattice in [138] for a wide range of magnetic fields,
in the framework of two-color QCD with quenched fermions. At small fields μf =
|χQf eB| naturally; at large fields, non-linear effects dominate and an interesting
saturation of μf to the asymptotic value μ∞ = 1 is measured. According to [138]
the behavior of the polarization as a function of eB in the whole range examined,
can be described by a simple inverse tangent function. Besides, magnetization of the
QCD vacuum has been computed in the strong field limit in [140] using perturbative
QCD, where it is found it grows as B logB .

In [88] we compute the magnetic susceptibility of the quark condensate by
means of the NJL and the QM models. This study is interesting because in the
chiral models, it is possible to compute self-consistently the numerical values of
the condensates as a function of eB , once the parameters are fixed to reproduce
some characteristic of the QCD vacuum. We firstly perform a numerical study of
the problem, which is then complemented by some analytic estimate of the same
quantity within the renormalized QM model. Moreover, we compute the polariza-
tion of quarks at small as well as large fields, both numerically and analytically.
In agreement with the Lattice results [138], we also measure a saturation of μf

to one at large fields, in the case of the effective models. Our results push to-
wards the interpretation of the saturation as a non-artifact of the Lattice. On the
contrary, we can offer a simple physical understanding of this behavior, in terms
of lowest Landau level dominance of the chiral condensate. As a matter of fact,
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using the simple equations of the models for the chiral condensate and for the
magnetic moment, we can show that at large magnetic field μf has to saturate
to one, because in this limit the higher Landau levels are expelled from the chi-
ral condensate; as a consequence, the ratio of the two approaches one asymptoti-
cally.

We also obtain a saturation of the polarization within the renormalized QM
model. There are some differences, however, in comparison with the results of the
non-renormalized models. In the former case, the asymptotic value of μf is charge-
dependent; moreover, the interpretation of the saturation as a lowest Landau level
(LLL) dominance is not straightforward, because the renormalized contribution of
the higher Landau levels is important in the chiral condensate, even in the limit
of very strong fields. It is possible that the results obtained within the renormal-
ized model are a little bit far from true QCD. As a matter of fact, in the renor-
malized model we assume that the quark self-energy is independent on momen-
tum; thus, when we take the limit of infinite quark momentum in the gap equa-
tion, and absorb the ultraviolet divergences by means of counterterms and renor-
malization conditions, we implicitly assume that quark mass at large momenta is
equal to its value at zero momentum. We know that this is not true, see for exam-
ple [141–143]: even in the renormalized theory, the quark self-energy naturally cuts
off the large momenta, leading to LLL dominance in the traces of quark propaga-
tor which are relevant for our study. Nevertheless, it is worth to study this prob-
lem within the renormalized QM model in its simplest version, because it helps
to understand the structure of this theory under the influence of a strong magnetic
field.

In our calculations we neglect, for simplicity, the possible condensation of ρ-
mesons at strong fields [144, 145]. Vector meson dominance [144] and the Sakai-
Sugimoto model [146] suggest for the condensation a critical value of eBc ≈m2

ρ ≈
0.57 GeV2, where mρ is the ρ-meson mass in the vacuum. Beside these, a NJL-
based calculation within the lowest Landau level (LLL) approximation [145] pre-
dicts ρ-meson condensation at strong fields as well, even if in the latter case it is
hard to estimate exactly eBc , mainly because of the uncertainty of the parameters of
the model. It would certainly be interesting to address this problem within our calcu-
lations, in which not only the LLL but also the higher Landau levels are considered,
and in which the spontaneous breaking of chiral symmetry is kept into account self-
consistently. However, this would complicate significantly the calculational setup.
Therefore, for simplicity we leave this issue to a future project.

In [88] the computation of the polarization and of the magnetic susceptibility
has been performed both within the NJL and the Quark-Meson (QM) models; the
qualitative picture does not depend on the model considered. Moreover, within the
QM model an analytical computation of the aforementioned quantities within the
renormalized quantum effective potential is feasible (the NJL model, at least with
a contact interaction as considered in [88], is not renormalizable). Therefore in this
review chapter we limit ourselves to summarize the results obtained within the QM
model, both numerical and analytical, deferring to the original reference for further
details.
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4.5.1 Non-renormalized Quark-Meson Model Results

In the QM model, a meson sector described by the linear sigma model Lagrangian,
is coupled to quarks via a Yukawa-type interaction. The model is renormalizable
in D = 3 + 1 dimensions. However, since we adopt the point of view of it as an
effective description of QCD, it is not necessary to use the renormalized version
of the model itself. On the contrary, it is enough to fix an ultraviolet scale to cut-
off the divergent expectation values; the UV scale is then chosen phenomenologi-
cally, by requiring that the numerical value of the chiral condensate in the vacuum
obtained within the model, is consistent with the results obtained from the sum
rules [147, 148]. This is a rough approximation of the QCD effective quark mass,
which smoothly decays at large momenta [141–143]. In Sect. 4.4 we will use a
renormalized version of the model, to derive semi-analytically some results in the
two regimes of weak and strong fields.

The Lagrangian density of the model is given by

L = q̄
[
iDμγ

μ − g(σ + iγ5τ · π)]q

+ 1

2
(∂μσ)

2 + 1

2
(∂μπ)2 −U(σ,π). (4.25)

In the above equation, q corresponds to a quark field in the fundamental repre-
sentation of color group SU(3) and flavor group SU(2); the covariant derivative,
Dμ = ∂μ−Qf eAμ, describes the coupling to the background magnetic field, where
Qf denotes the charge of the flavor f . Besides, σ , π correspond to the scalar sin-
glet and the pseudo-scalar iso-triplet fields, respectively. The potential U describes
tree-level interactions among the meson fields. In this article, we take its analytic
form as

U(σ,π)= λ

4

(
σ 2 + π2 − v2)2 − hσ, (4.26)

where the first addendum is chiral invariant; the second one describes a soft explicit
breaking of chiral symmetry, and it is thus responsible for the non-zero value of
the pion mass. For h = 0, the interaction terms of the model are invariant under
SU(2)V ⊗ SU(2)A ⊗U(1)V . This group is broken explicitly to U(1)3V ⊗U(1)3A ⊗
U(1)V if the magnetic field is coupled to the quarks, because of the different electric
charge of u and d quarks. Here, the superscript 3 in the V and A groups denotes
the transformations generated by τ3, τ3γ5 respectively. Therefore, the chiral group
in presence of a magnetic field is U(1)3V ⊗ U(1)3A. This group is then explicitly
broken by the h-term to U(1)3V .

The formalism which is used to compute the magnetic susceptibility and the
polarization of the quark condensate is similar to the one described in the previous
sections; therefore it is not necessary to give the details here. It is enough to write
down the expressions for the chiral condensate at zero temperature,

〈f̄ f 〉 = −Nc

|Qf eB|
2π

∞∑

k=0

βk

∫
dp3

2π

mq

ωk(p3)
, (4.27)
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where the divergent integral on the r.h.s. of the above equation has to be understood
regularized as in (4.13), and for the magnetic moment for the flavor f ,

〈
f̄ Σμνf

〉=−Tr
[
ΣμνSf (x, x)

]
. (4.28)

We take B = (0,0,B); in this case, only Σ12 ≡ Σf is non-vanishing. Using the
properties of γ -matrices it is easy to show that only the Lowest Landau Level (LLL)
gives a non-vanishing contribution to the trace:

Σf =Nc

Qf |eB|
2π

∫
dp3

2π

mq

ω0(p3)
, (4.29)

where ω0 = ωk=0.
From (4.27) we notice that the prescription (4.13) is almost equivalent to the

introduction of a running effective quark mass,

mq = gσΘ
(
Λ2 − p2

3 − 2k|Qf eB|), (4.30)

that can be considered as a rough approximation to the effective running quark mass
in QCD [141, 142] which decays at large quark momenta, see also the discussion
in [143]. Once the scale Λ is fixed, the Landau levels with n≥ 1 are removed from
the chiral condensate if eB �Λ2.

In the upper panel of Fig. 4.5, we plot the chiral condensates for u and d quarks,
as a function of eB , for the QM model. The magnetic field splits the two quantities
because of the different charge for the two quarks. The small oscillations, which
are more evident for the case of the u-quark, are an artifact of the regularization
scheme, and disappear if smoother regulators are used, see the discussion in [70]. In
the regime of weak fields, our data are consistent with the scaling 〈f̄ f 〉 ∝ |eB|2/M
where M denotes some mass scale; in the strong field limit we find instead 〈f̄ f 〉 ∝
|eB|3/2. The behavior of the quark condensate as a function of magnetic field is in
agreement with the magnetic catalysis scenario.

In the middle panel of Fig. 4.5 we plot our data for the expectation value of
the magnetic moment. At weak fields, Σf ∝ |eB| as expected from (4.28). In the
strong field limit, non-linearity arises because of the scaling of quark mass (or chiral
condensate); we find Σf ∝ |eB|3/2 in this limit.

In the lower panel of Fig. 4.5 we plot our results for the polarization. Data are
obtained by the previous ones, using the definition (4.24). At small fields, the polar-
ization clearly grows linearly with the magnetic field. This is a natural consequence
of the linear behavior of the magnetic moment as a function of eB for small fields,
see Fig. 4.5. On the other hand, within the chiral models we measure a saturation of
μf at large values of eB , to an asymptotic value μ∞ = 1. This conclusion remains
unchanged if we consider the NJL model, and it is in agreement with the recent
Lattice findings [138]. It should be noticed that, at least for the u-quark, satura-
tion is achieved before the expected threshold for ρ-meson condensation [144–146].
Therefore, our expectation is that our result is stable also if vector meson condensa-
tion is considered.
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Fig. 4.5 Upper panel: Chiral
condensates of u-quarks (red)
and d-quarks (blue), in units
of the same quantities at zero
magnetic field, as a function
of the magnetic field. Middle
panel: Expectation value of
the magnetic moment
operator, in units of f 3

π , as a
function of eB . Lower panel:
Polarization of u-quarks (red)
and d-quarks (blue) as a
function the magnetic field
strength. From Ref. [88].
Copyright (2012) by
American Physical Society
(Color figure online)

The saturation to the asymptotic value μ∞ = 1 of polarization is naturally under-
stood within the models we investigate, as a LLL dominance in the chiral condensate
(i.e., full polarization). As a matter of fact, Σf and 〈f̄ f 〉 turn out to be proportional
in the strong field limit, since only the LLL gives a contribution to the latter, com-
paring (4.27) and (4.29) which imply

μf = 1 − 〈f̄ f 〉HLL

〈f̄ f 〉 , (4.31)

where 〈f̄ f 〉HLL corresponds to the higher Landau levels contribution to the chiral
condensate. In the strong field limit 〈f̄ f 〉HLL → 0, see (4.27); hence, μf has to
approach the asymptotic value μ∞ = 1. On the other hand, in the weak field limit
〈f̄ f 〉HLL →〈f̄ f 〉 and the proportionality among Σf and 〈f̄ f 〉 is lost.

At small fields μf = |χQf eB| from (4.22). Hence, we use the data on polariza-
tion at small fields, to obtain the numerical value of the magnetic susceptibility of
the chiral condensate. Our results are as follows:
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Table 4.2 Magnetic susceptibility of the quark condensate obtained within several theoretical
approaches. In the table, Fπ = 130.7 MeV. See the text for more details. Adapted from Ref. [88].
Copyright (2012) by American Physical Society

Method χ (GeV−2) Ren. point (GeV) Ref.

Sum rules −8.6 ± 0.24 1 [128]

Sum rules −5.7 0.5 [129]

Sum rules −4.4 ± 0.4 1 [130]

Sum rules −3.15 ± 0.3 1 [131]

Sum rules −2.85 ± 0.5 1 [132]

OPE + Pion Dominance −Nc/(4π2F 2
π ) 0.5 [133]

Holography −1.075Nc/(4π2F 2
π ) �1 [134]

Holography −Nc/(4π2F 2
π ) �1 [135]

Instanton vacuum −2.5 ± 0.15 1 [136]

Zero mode of Dirac Operator −3.52 1 [137]

Lattice −1.547(3) 2 [138]

NJL model −4.3 0.63 This work

QM model −5.25 0.56 This work

χ ≈ −4.3 GeV−2, NJL (4.32)

χ ≈ −5.25 GeV−2, QM (4.33)

respectively for the NJL model and the QM model. To obtain the numerical values
above we have used data for eB up to 5m2

π ≈ 0.1 GeV2, which are then fit using a
linear law. Using the numerical values of the chiral condensate in the two models,
we obtain

χ〈f̄ f 〉 ≈ 69 MeV, NJL (4.34)

χ〈f̄ f 〉 ≈ 65 MeV, QM (4.35)

The numerical values of χ that we obtain within the effective models are in fair
agreement with recent results, see Table 4.2. In our model calculations, the role of
the renormalization scale is played approximately by the ultraviolet cutoff, which is
equal to 0.560 GeV in the QM model, and 0.627 GeV in the NJL model.

To facilitate the comparison with previous estimates, we review briefly the frame-
works in which the results in Table 4.2 are obtained. In [133] the following result is
found, within OPE combined with Pion Dominance (we follow when possible the
notation used in [138]):

χPD =−cχ Nc

8π2F 2
π

, Pion Dominance (4.36)

with Fπ =√
2fπ = 130.7 MeV and cχ = 2; the estimate of [133] is done at a renor-

malization point M = 0.5 GeV. It is remarkable that (4.36) has been reproduced
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recently within AdS/QCD approach in [135]. Probably, this is the result more com-
parable to our estimate, because the reference scales in [133] and in this article are
very close. Within our model calculations we find cNJL

χ = 1.93 and cQM
χ = 2.36. Us-

ing the numerical value of Fπ and cχ we get χPD = −4.45 GeV−2, which agrees
within 3 % with our NJL model result, and within 18 % with our QM model result.

In [134] the authors find cχ = 2.15 within hard-wall holographic approach, at the
scale M � 1 GeV. The results of [134] are thus in very good parametric agreement
with [133]; on the other hand, the numerical value of Fπ in the holographic model
is smaller than the one used in [133], pushing the holographic prediction for χ to
slightly higher values than in [133]. However, the scale at which the result of [134] is
valid should be much smaller than M = 1 GeV, thus some quantitative disagreement
with [133] is expected. As the authors have explained, it might be possible to tune
the parameters of the holographic model, mainly the chiral condensate, to reproduce
the correct value of Fπ ; their numerical tests suggest that by changing the ratio
〈f̄ f 〉/mρ of a factor of 8, then the numerical value of cχ is influenced only by a
5 %. It is therefore plausible that a best tuning makes the quantitative prediction
of [134] much closer to the estimate of [133].

In [136] an estimate of χ within the instanton vacuum model has been performed
beyond the chiral limit, both for light and for strange quarks (the result quoted in
Table 4.1 corresponds to the light quarks; for the strange quark, χs/χu,d ≈ 0.15
is found). Taking into account the numerical value of the chiral condensate in the
instanton vacuum, the numerical estimate of [136] leads to χ =−2.5±0.15 GeV−2

at the scale M = 1 GeV. An analytic estimate within a similar framework has been
obtained in [137], in which the zero-mode of the Dirac operator in the background
of a SU(2) instanton is used to compute the relevant expectation values. The result
of [128] gives χ =−3.52 GeV−2 at M ≈ 1 GeV.

In [138] the result χ =−1.547 GeV−2 is achieved within a two-color simulation
with quenched fermions. It is interesting that in [138] the same quantity has been
computed also at finite temperature in the confinement phase, at T = 0.82Tc, and
the result seems to be independent on temperature. The reference scale of [138],
determined by the inverse lattice spacing, is M ≈ 2 GeV. Therefore the lattice re-
sults are not quantitatively comparable with our model calculation. However, they
share an important feature with the results presented here, namely the saturation of
the polarization at large values of the magnetic field. Finally, estimates of the mag-
netic susceptibility of the chiral condensate by means of several QCD sum rules
exist [128–132]. The results are collected in Table 4.1.

4.5.2 Results Within the Renormalized QM Model

In this section, we make semi-analytic estimates of the polarization and the mag-
netic susceptibility of the quark condensate, as well as for the chiral condensate in
magnetic background, within the renormalized QM model. This is done with the
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scope to compare the predictions of the renormalized model with those of the effec-
tive models, in which an ultraviolet cutoff is introduced to mimic the QCD effective
quark mass.

In the renormalized model, we allow the effective quark mass to be a con-
stant in the whole range of momenta, which is different from what happens in
QCD [141, 142]. Thus, the higher Landau levels give a finite contribution to
the vacuum chiral condensate even at very strong fields. This is easy to under-
stand: the ultraviolet cutoff, Λ, in the renormalized model can be taken larger than
any other mass scale, in particular Λ � |eB|1/2; as a consequence, the condition
p2

3 + 2n|eB|<Λ2 is satisfied taking into account many Landau levels even at very
large eB . The contribution of the higher Landau levels, once renormalized, appears
in the physical quantities to which we are interested here, in particular in the chiral
condensate.

Since the computation is a little bit lengthy, it is useful to anticipate its several
steps: firstly we perform regularization, and then renormalization, of the QEP at
zero magnetic field (the corrections due to the magnetic field turn out to be free
of ultraviolet divergences). Secondly, we solve analytically the gap equation for
the σ condensate in the limit of weak fields, and semi-analytically in the oppo-
site limit. The field-induced corrections to the QEP and to the solution of the gap
equation are divergence-free in agreement with [149], and are therefore indepen-
dent on the renormalization scheme adopted. Then, we compute the renormalized
and self-consistent values of the chiral condensate and of the magnetic moment,
as a function of eB , using the results for the gap equation. Within this theoreti-
cal framework, it is much more convenient to compute 〈f̄ f 〉 and Σf by taking
derivatives of the renormalized potential; in fact, the computation of the traces of
the propagator in the renormalized model is much more involved if compared to
the situation of the non-renormalized models, since in the former a non-perturbative
(and non-trivial) renormalization procedure of composite local operators is required.
Finally, we estimate χ , as well as the behavior of the polarization as a function
of eB .

4.5.2.1 Renormalization of the QEP

To begin with, we need to regularize the one-loop fermion contribution, namely

V fermion
1-loop =−Nc

∑

f

|Qf eB|
2π

∞∑

n=0

βn

∫ +∞

−∞
dk

2π

(
k2 + 2n|Qf eB| +m2

q

)1/2
. (4.37)

To this end, we define the function, V (s), of a complex variable, s, as

V (s)=−Nc

∑

f

|Qf eB|
2π

∞∑

n=0

βn

∫ +∞

−∞
dk

2π

(
k2 + 2n|Qf eB| +m2

q

) 1−s
2 . (4.38)
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The function V (s) can be analytically continued to s = 0. We define then V fermion
1-loop =

lims→0+ V (s). After elementary integration over k, summation over n and taking
the limit s → 0+, we obtain the result

V fermion
1-loop = Nc

∑

f

(Qf eB)
2

4π2

(
2

s
− log

(
2|Qf eB|)+ a

)
B2(q)

−Nc

∑

f

(Qf eB)
2

2π2
ζ ′(−1, q)

−Nc

∑

f

|Qf eB|m2
q

8π2

(
2

s
− log

(
m2
q

)+ a

)
, (4.39)

where we have subtracted terms which do not depend explicitly on the conden-
sate. In the above equation, ζ(t, q) is the Hurwitz zeta function; for Re(t) > 1
and Re(q) > 0, it is defined by the series ζ(t, q) = ∑∞

n=0(n + q)−t ; the series
can be analytically continued to a meromorphic function defined in the complex
plane t �= 1. Moreover we have defined q = (m2

q + 2|Qf eB|)/2|Qf eB|; further-
more, a = 1 − γE − ψ(−1/2), where γE is the Eulero-Mascheroni number and ψ

is the digamma function. The derivative ζ ′(−1, q) = dζ(t, q)/dt is understood to
be computed at t =−1.

The first two addenda in (4.39) arise from the higher Landau levels; on the other
hand, the last addendum is the contribution of the LLL. The function B2 is the
second Bernoulli polynomial; using its explicit form, it is easy to show that the
divergence in the LLL term in (4.39) is canceled by the analogous divergence in
the first addendum of the same equation. It is interesting that the LLL contribution,
which is in principle divergent, combines with a part of the contribution of the higher
Landau levels, leading to a finite result. This can be interpreted as a renormalization
of the LLL contribution. On the other hand, the remaining part arising from the
higher Landau levels is still divergent; this divergence survives in the B → 0 limit,
and is due to the usual divergence of the vacuum contribution. We then have

V fermion
1-loop = Nc

∑

f

m4
q

16π2

(
2

s
− log

(
2|Qf eB|)+ a

)

+Nc

∑

f

|Qf eB|m2
q

8π2
log

m2
q

2|Qf eB|

−Nc

∑

f

(Qf eB)
2

2π2
ζ ′(−1, q). (4.40)

The renormalization procedure of the quantum effective potential is discussed in
some detail in [88]. Here it is not necessary to discuss this procedure, and we just
focus on the results.



112 R. Gatto and M. Ruggieri

4.5.2.2 Approximate Solutions of the Gap Equation

Weak Fields In the weak field limit (eB �m2
q ) the correction due to the magnetic

field to the quantum effective potential can be computed:

V1 ≈ −Nc

∑

f

(Qf eB)
2

24π2
log

m2
q

2|Qf eB| = −Nc

∑

f

(Qf eB)
2

24π2
log

m2
q

μ2
, (4.41)

which is in agreement with the result of [149]. In the above equation we have fol-
lowed the notation of [140] introducing an infrared scale μ, isolating and then sub-
tracting the term which does not depend on the condensate. The scale μ is arbitrary,
and we cannot determine it from first principles; on the other hand, it is irrelevant for
the determination of the σ -condensate. We expect μ ≈ fπ since this is the typical
scale of chiral symmetry breaking in the model for the σ field.

In this limit, it is easy to obtain analytically the behavior of the constituent quark
mass as a function of eB . As a matter of fact, we can expand the derivative of the
QEP with respect to σ , around the solution at B = 0, writing 〈σ 〉 = fπ + δσ . Then,
a straightforward evaluation leads to

mq = gfπ

(
1 + 5

9

Nc

12π2f 2
πm

2
σ

(eB)2
)
. (4.42)

As anticipated, the scale μ is absent in the solution of the gap equation.

Strong Fields In the limit eB � m2
q , we can find an asymptotic representation

of V1 by using the expansion ζ ′(−1, q) = c0 + c1(q − 1) valid for q ≈ 1, with
c0 =−0.17 and c1 =−0.42. Then we find

V1 ≈ −Nc

∑

f

m2
q

8π2

(
m2
q

2
+ |Qf eB|

)
log

2|Qf eB|
m2
q

−Nc

∑

f

|Qf eB|m2
q

2π2
c1, (4.43)

where we have subtracted condensate-independent terms.
In the strong field limit it is not easy to find analytically an asymptotic repre-

sentation for the sigma condensate as a function of eB; therefore we solve the gap
equation numerically, and then fit data with a convenient analytic form as follows:

mq = b|eB|1/2 + cf 3
π

|eB| , (4.44)

where b = 0.32 and c = 32.78. At large fields the quark mass grows as |eB|1/2 as
expected by dimensional analysis; this is a check of the equations that we use.

4.5.2.3 Evaluation of Chiral Condensate and Magnetic Moment

Chiral Condensate To compute the chiral condensate we follow a standard pro-
cedure: we introduce source term for f̄ f , namely a bare quark mass mf , then take
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derivative of the effective potential with respect to mf evaluated at mf = 0. For the
weak field case we obtain

〈f̄ f 〉 = 〈f̄ f 〉0 − Nc

12π2

|Qf eB|2
mq

. (4.45)

On the other hand, in the strong field limit we have

〈f̄ f 〉 = −Ncmq

4π2

(|Qf eB| +m2
q

)
log

2|Qf eB|
m2
q

. (4.46)

Using (4.42) and (4.44), we show that the chiral condensate scales as a + b(eB)2

for small fields, and as |eB|3/2 for large fields.

Magnetic Moment Next we turn to the computation of the expectation value of
the magnetic moment. The expression in terms of Landau levels is given by (4.29),
which clearly shows that this quantity has a log-type divergence. In order to avoid a
complicated renormalization procedure of a local composite operator, we notice that
it is enough to take the minus derivative of V1 with respect to B to get magnetization,
M [140], then multiply by 2m/Qf to get the magnetic moment. This procedure is
very cheap, since the B-dependent contributions to the effective potential are finite,
and the resulting expectation value will turn out to be finite as well (that is, already
renormalized).

In the case of weak fields, from (4.41) we find

Σf =Nc

Qf |eB|mq

6π2
log

m2
q

μ2
. (4.47)

On the other hand, in the strong field limit we get from (4.43)

Σf =Nc

m3
q

4π2
log

2|Qf eB|
m2
q

. (4.48)

The above result is in parametric agreement with the estimate of magnetization
in [140]. In fact, m2

q ≈ |eB| in the strong field limit, which leads to a magnetiza-
tion M ≈ B logB .

Using the expansions for the sigma condensate at small and large values of the
magnetic field strength, we argue that Σf ≈ |eB| in a weak field, and Σf ≈ |eB|3/2

in a strong field.

4.5.2.4 Computation of Chiral Magnetization and Polarization

We can now estimate the magnetic susceptibility of the quark condensate and the
polarization as a function of eB . For the former, we need to know the behavior of
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the magnetic moment for weak fields. From (4.47) and from the definition (4.22)
we read

χ〈f̄ f 〉 = Ncmq

6π2
log

m2
q

μ2
≡ f (μ). (4.49)

The presence of the infrared scale μ makes the numerical estimate of χ uncertain;
however, taking for it a value μ ≈ fπ , which is the typical scale of chiral symme-
try breaking, we have χ〈f̄ f 〉 ≈ 44 MeV, which is in agreement with the expected
value, see (4.23).

Next we turn to the polarization. For weak fields we find trivially a linear depen-
dence of μf on |Qf eB|, with slope given by the absolute value of χ in (4.49). On
the other hand, in the strong field limit we find, according to (4.48),

μf ≈ m2
q

m2
q + |Qf eB| ≈ 1 − |Qf |

b+ |Qf | , (4.50)

where we have used (4.44). This result shows that the polarization saturates at large
values of eB , but the asymptotic value depends on the flavor charge.

It is interesting to compare the result of the renormalized model with that of the
effective models considered in the previous section. In the former, the asymptotic
value of μf is flavor-dependent; in the latter, μf → 1 independently on the value
of the electric charge. Our interpretation of this difference is as follows: compar-
ing (4.50) with the general model expectation, (4.31), we recognize in the factor
|Qf |/(b + |Qf |) the contribution of the higher Landau levels at zero temperature,
which turns out to be finite and non-zero after the renormalization procedure. This
contribution is then transmitted to the physical quantities that we have computed.
The trace of the higher Landau levels is implicit in the solution of the gap equation
in the strong field limit, namely the factor b in (4.44), and explicit in the additional
|Qf | dependence in (4.50). A posteriori, this conclusion seems quite natural, be-
cause in the renormalization procedure we assume that the effective quark mass is
independent of quark momentum, thus there is no cut of the large momenta in the
gap equation (and in the equation for polarization as well). In the effective models
considered in the first part of this article, on the other hand, the cutoff procedure is
equivalent to have a momentum-dependent effective quark mass, mq = gσΘ(Λ2 −
p2

3 − 2n|Qf eB|), which naturally cuts off higher Landau levels when eB �Λ2. At
the end of the days, the expulsion of the higher Landau levels from the chiral con-
densate makes μf → 1 in the strong field limit. Our expectation is that if we allow
the quark mass to run with momentum and decay rapidly at large momenta, mim-
icking the effective quark mass of QCD, higher Landau levels would be suppressed
in the strong field limit, and the result (4.50) would tend to the result in Fig. 4.5.

4.6 Conclusions

In this chapter we have summarized our results for the phase structure of quark mat-
ter in a strong magnetic background. Our theoretical investigative tools are chiral
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quark models improved with the Polyakov loop, which allow to study simultane-
ously chiral symmetry breaking and deconfinement.

The main motivation of this series of studies is of a phenomenological nature.
In fact, it has been shown that huge magnetic fields are produced in non-central
heavy ion collisions. These fields might trigger the P - and CP-odd process dubbed
Chiral Magnetic Effect (CME). Therefore, in order to make quantitative estimates
of the observables which are sensitive to the CME, it is extremely important to
understand how hot quark matter behaves under the influence of a strong magnetic
background. The other side of the coin is that simulations show these huge fields
have a very short lifetime: therefore the present studies should take into account this
time dependence. Moreover electric fields, which we have neglected so far, are also
produced in the collisions. Finally, the electromagnetic fields considerably depend
on space coordinates on the scale of the volume of the expanding fireball. This
dependence has been ignored in our studies, since the magnetic background is taken
to be homogeneous in space and constant in time.

Our results support the scenario of magnetic catalysis, which manifests itself in
both an increase of the chiral condensate at zero temperature, and an increase of
the critical temperature for chiral symmetry restoration. Moreover, depending on
the interaction used, deconfinement may occur either together with chiral symme-
try restoration, or anticipate it. The latter possibility, even if more fascinating than
the former since it opens a window for the Constituent Quark Phase, seems to be
excluded by lattice simulations.

Recent lattice simulations show that the critical temperature for chiral symmetry
restoration, Tc, is strongly affected by the quark mass. In particular, for small quark
masses (hence, for the u and d quarks) the critical temperature decreases with the
magnetic field strength; on the other hand, Tc increases with the magnetic field
strength for the s quark. As we have discussed in the main body of this chapter,
it seems that self-consistent computations within chiral quark models are not able to
reproduce this feature, even when quantum fluctuations are taken into account. Thus,
it remains an open problem to understand this unexpected behavior of Tc . Certainly
independent simulations performed by other groups are necessary to confirm the
present results.

We have also briefly summarized a computation of the magnetic susceptibility of
the chiral condensate, χ , and of quark polarization,μf at zero temperature, based on
the quark-meson model. The computed value of χ is in agreement with most of the
previous estimates, and with experimental data. Moreover, this model gives a simple
interpretation of the saturation of μf observed on the lattice: at very large magnetic
field strength, the quarks occupy the lowest Landau level, expelling higher levels
from the chiral condensate; hence, chiral condensate turns out to be proportional to
the quark magnetic moment, making the ratio (that is, polarization) just a constant.
In the case of the non-renormalized model, this constant turns out to be equal to one
and flavor independent; on the other hand, in the case of the renormalized model,
the constant is flavor dependent. The latter result is easily understood: the renor-
malization procedure of the momentum independent interaction of the quark-meson
model brings all the Landau levels into the renormalized chiral condensate. We ex-
pect that the replacement of the simple interaction discussed here with a non-local
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one, which should mimic the quark self-energy measured on the lattice, will make
the expulsion of the higher Landau levels active also in the renormalized model,
hence reproducing the results of the non-renormalized model.

Acknowledgements We are pleased to acknowledge the editors of this volume of Lecture Notes
in Physics for their interest in our work and their kind invitation to contribute to the book. We also
acknowledge K. Fukushima and M. Frasca for scientific collaborations which led to some of the
results presented here. Finally we also acknowledge many clarifying discussions with M. D’Elia
and G. Endrodi about the topics discussed in this chapter, with particular reference to the ones
related to Lattice simulations.

References

1. P. de Forcrand, O. Philipsen, J. High Energy Phys. 0701, 077 (2007). arXiv:hep-lat/0607017
2. P. de Forcrand, O. Philipsen, J. High Energy Phys. 0811, 012 (2008). arXiv:0808.1096 [hep-

lat]
3. P. de Forcrand, O. Philipsen, PoS LATTICE2008, 208 (2008). arXiv:0811.3858 [hep-lat]
4. Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 643, 46 (2006). arXiv:hep-lat/

0609068
5. Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo, J. High Energy

Phys. 0906, 088 (2009). arXiv:0903.4155 [hep-lat]
6. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). hep-lat/

0611014
7. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009). arXiv:0903.4379 [hep-lat]
8. M. Cheng et al., Phys. Rev. D 81, 054510 (2010). arXiv:0911.3450 [hep-lat]
9. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

10. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961)
11. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)
12. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)
13. T. Hatsuda, T. Kunihiro, Phys. Rept. 247, 221 (1994)
14. M. Buballa, Phys. Rept. 407, 205 (2005)
15. A.M. Polyakov, Phys. Lett. B 72, 477 (1978)
16. L. Susskind, Phys. Rev. D 20, 2610 (1979)
17. B. Svetitsky, L.G. Yaffe, Nucl. Phys. B 210, 423 (1982)
18. B. Svetitsky, Phys. Rept. 132, 1 (1986)
19. P.N. Meisinger, M.C. Ogilvie, Phys. Lett. B 379, 163 (1996). arXiv:hep-lat/9512011
20. K. Fukushima, Phys. Lett. B 591, 277 (2004). arXiv:hep-ph/0310121
21. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)
22. S. Roessner, C. Ratti, W. Weise, Phys. Rev. D 75, 034007 (2007)
23. E. Megias, E. Ruiz Arriola, L.L. Salcedo, Phys. Rev. D 74, 114014 (2006)
24. E. Megias, E. Ruiz Arriola, L.L. Salcedo, Eur. Phys. J. A 31, 553 (2007). arXiv:hep-ph/

0610163
25. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. D 75, 074013 (2007)
26. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa, R. Ray, Phys. Rev. D 77, 094024 (2008)
27. K. Fukushima, Phys. Rev. D 77, 114028 (2008) [Erratum. Phys. Rev. D 78, 039902 (2008)]
28. M. Ciminale, R. Gatto, N.D. Ippolito, G. Nardulli, M. Ruggieri, Phys. Rev. D 77, 054023

(2008)
29. W.j. Fu, Z. Zhang, Y.x. Liu, Phys. Rev. D 77, 014006 (2008)
30. T. Hell, S. Rossner, M. Cristoforetti, W. Weise, Phys. Rev. D 81, 074034 (2010)
31. H. Abuki, R. Anglani, R. Gatto, G. Nardulli, M. Ruggieri, Phys. Rev. D 78, 034034 (2008)
32. T. Kahara, K. Tuominen, Phys. Rev. D 82, 114026 (2010). arXiv:1006.3931 [hep-ph]

http://arxiv.org/abs/arXiv:hep-lat/0607017
http://arxiv.org/abs/arXiv:0808.1096
http://arxiv.org/abs/arXiv:0811.3858
http://arxiv.org/abs/arXiv:hep-lat/0609068
http://arxiv.org/abs/arXiv:hep-lat/0609068
http://arxiv.org/abs/arXiv:0903.4155
http://arxiv.org/abs/hep-lat/0611014
http://arxiv.org/abs/hep-lat/0611014
http://arxiv.org/abs/arXiv:0903.4379
http://arxiv.org/abs/arXiv:0911.3450
http://arxiv.org/abs/arXiv:hep-lat/9512011
http://arxiv.org/abs/arXiv:hep-ph/0310121
http://arxiv.org/abs/arXiv:hep-ph/0610163
http://arxiv.org/abs/arXiv:hep-ph/0610163
http://arxiv.org/abs/arXiv:1006.3931


4 Quark Matter in a Strong Magnetic Background 117

33. Y. Sakai, K. Kashiwa, H. Kouno, M. Yahiro, Phys. Rev. D 77, 051901 (2008)
34. Y. Sakai, K. Kashiwa, H. Kouno, M. Yahiro, Phys. Rev. D 78, 036001 (2008)
35. Y. Sakai, K. Kashiwa, H. Kouno, M. Matsuzaki, M. Yahiro, Phys. Rev. D 79, 096001 (2003).

arXiv:0902.0487 [hep-ph]
36. K. Kashiwa, H. Kouno, M. Yahiro, Phys. Rev. D 80, 117901 (2009)
37. H. Abuki, M. Ciminale, R. Gatto, N.D. Ippolito, G. Nardulli, M. Ruggieri, Phys. Rev. D 78,

014002 (2008)
38. H. Abuki, M. Ciminale, R. Gatto, M. Ruggieri, Phys. Rev. D 79, 034021 (2009). arXiv:0811.

1512 [hep-ph]
39. T. Sasaki, Y. Sakai, H. Kouno, M. Yahiro, Phys. Rev. D 82, 116004 (2010). arXiv:1005.0910

[hep-ph]
40. T. Hell, S. Roessner, M. Cristoforetti, W. Weise, Phys. Rev. D 79, 014022 (2009)
41. K. Kashiwa, H. Kouno, M. Matsuzaki, M. Yahiro, Phys. Lett. B 662, 26 (2008). arXiv:0710.

2180 [hep-ph]
42. O. Lourenco, M. Dutra, T. Frederico, A. Delfino, M. Malheiro, Phys. Rev. D 85, 097504

(2012)
43. O. Lourenco, M. Dutra, A. Delfino, M. Malheiro, Phys. Rev. D 84, 125034 (2011)
44. M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2010). arXiv:1005.5365

[hep-lat]
45. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 81,

036007 (2010). arXiv:0909.2350 [hep-ph]
46. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Lett. B 682,

484 (2010). arXiv:0812.1740 [hep-lat]
47. P. Cea, L. Cosmai, J. High Energy Phys. 0302, 031 (2003). arXiv:hep-lat/0204023
48. P. Cea, L. Cosmai, J. High Energy Phys. 0508, 079 (2005). arXiv:hep-lat/0505007
49. P. Cea, L. Cosmai, M. D’Elia, J. High Energy Phys. 0712, 097 (2007). arXiv:0707.1149

[hep-lat]
50. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86,

071502 (2012). arXiv:1206.4205 [hep-lat]
51. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo,

J. High Energy Phys. 1202, 044 (2012)
52. S.P. Klevansky, R.H. Lemmer, Phys. Rev. D 39, 3478 (1989)
53. I.A. Shushpanov, A.V. Smilga, Phys. Lett. B 402, 351 (1997). arXiv:hep-ph/9703201
54. D.N. Kabat, K.M. Lee, E.J. Weinberg, Phys. Rev. D 66, 014004 (2002). arXiv:hep-ph/

0204120
55. T. Inagaki, D. Kimura, T. Murata, Prog. Theor. Phys. 111, 371 (2004). arXiv:hep-ph/

0312005
56. T.D. Cohen, D.A. McGady, E.S. Werbos, Phys. Rev. C 76, 055201 (2007). arXiv:0706.3208

[hep-ph]
57. K. Fukushima, H.J. Warringa, Phys. Rev. Lett. 100, 032007 (2008). arXiv:0707.3785 [hep-

ph]
58. J.L. Noronha, I.A. Shovkovy, Phys. Rev. D 76, 105030 (2007). arXiv:0708.0307 [hep-ph]
59. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996). arXiv:hep-ph/

9509320
60. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 563, 361 (1999). arXiv:hep-ph/

9908320
61. G.W. Semenoff, I.A. Shovkovy, L.C.R. Wijewardhana, Phys. Rev. D 60, 105024 (1999).

arXiv:hep-th/9905116
62. V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 66, 045006 (2002). arXiv:hep-ph/0205348
63. K.G. Klimenko, Theor. Math. Phys. 89, 1161 (1992) [Teor. Mat. Fiz. 89, 211 (1991)]
64. K.G. Klimenko, Z. Phys. C 54, 323 (1992)
65. K.G. Klimenko, Theor. Math. Phys. 90, 1 (1992) [Teor. Mat. Fiz. 90, 3 (1992)]
66. N.O. Agasian, S.M. Fedorov, Phys. Lett. B 663, 445 (2008). arXiv:0803.3156 [hep-ph]
67. E.S. Fraga, A.J. Mizher, Phys. Rev. D 78, 025016 (2008). arXiv:0804.1452 [hep-ph]

http://arxiv.org/abs/arXiv:0902.0487
http://arxiv.org/abs/arXiv:0811.1512
http://arxiv.org/abs/arXiv:0811.1512
http://arxiv.org/abs/arXiv:1005.0910
http://arxiv.org/abs/arXiv:0710.2180
http://arxiv.org/abs/arXiv:0710.2180
http://arxiv.org/abs/arXiv:1005.5365
http://arxiv.org/abs/arXiv:0909.2350
http://arxiv.org/abs/arXiv:0812.1740
http://arxiv.org/abs/arXiv:hep-lat/0204023
http://arxiv.org/abs/arXiv:hep-lat/0505007
http://arxiv.org/abs/arXiv:0707.1149
http://arxiv.org/abs/arXiv:1206.4205
http://arxiv.org/abs/arXiv:hep-ph/9703201
http://arxiv.org/abs/arXiv:hep-ph/0204120
http://arxiv.org/abs/arXiv:hep-ph/0204120
http://arxiv.org/abs/arXiv:hep-ph/0312005
http://arxiv.org/abs/arXiv:hep-ph/0312005
http://arxiv.org/abs/arXiv:0706.3208
http://arxiv.org/abs/arXiv:0707.3785
http://arxiv.org/abs/arXiv:0708.0307
http://arxiv.org/abs/arXiv:hep-ph/9509320
http://arxiv.org/abs/arXiv:hep-ph/9509320
http://arxiv.org/abs/arXiv:hep-ph/9908320
http://arxiv.org/abs/arXiv:hep-ph/9908320
http://arxiv.org/abs/arXiv:hep-th/9905116
http://arxiv.org/abs/arXiv:hep-ph/0205348
http://arxiv.org/abs/arXiv:0803.3156
http://arxiv.org/abs/arXiv:0804.1452


118 R. Gatto and M. Ruggieri

68. F. Preis, A. Rebhan, A. Schmitt, J. High Energy Phys. 1103, 033 (2011)
69. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031 (2010). arXiv:1003.0047

[hep-ph]
70. L. Campanelli, M. Ruggieri, Phys. Rev. D 80, 034014 (2009). arXiv:0905.0853 [hep-ph]
71. A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phys. Rev. D 82, 105016 (2010). arXiv:1004.2712

[hep-ph]
72. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). arXiv:

0711.0950 [hep-ph]
73. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). arXiv:0907.1396

[nucl-th]
74. V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Vo-

loshin, Phys. Rev. C 83, 054911 (2011)
75. G.D. Moore, M. Tassler, J. High Energy Phys. 1102, 105 (2011)
76. G.D. Moore, hep-ph/0009161
77. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 80,

054503 (2009). arXiv:0907.0494 [hep-lat]
78. M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou, PoS LATTICE2009, 181 (2009). arXiv:

0911.1348 [hep-lat]
79. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008). arXiv:0808.

3382 [hep-ph]
80. K. Fukushima, M. Ruggieri, Phys. Rev. D 82, 054001 (2010)
81. R. Gatto, M. Ruggieri, Phys. Rev. D 85, 054013 (2012)
82. M. Ruggieri, Phys. Rev. D 84, 014011 (2011)
83. M.N. Chernodub, A.S. Nedelin, Phys. Rev. D 83, 105008 (2011)
84. C.A.B. Bayona, K. Peeters, M. Zamaklar, J. High Energy Phys. 1106, 092 (2011)
85. B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 110, 012301 (2013). arXiv:

1207.0900 [nucl-ex]
86. R. Gatto, M. Ruggieri, Phys. Rev. D 83, 034016 (2011)
87. R. Gatto, M. Ruggieri, Phys. Rev. D 82, 054027 (2010)
88. M. Frasca, M. Ruggieri, Phys. Rev. D 83, 094024 (2011)
89. A.A. Osipov, B. Hiller, J. Moreira, A.H. Blin, J. da Providencia, Phys. Lett. B 646, 91 (2007).

arXiv:hep-ph/0612082
90. K. Kashiwa, H. Kouno, T. Sakaguchi, M. Matsuzaki, M. Yahiro, Phys. Lett. B 647, 446

(2007). arXiv:nucl-th/0608078
91. A.A. Osipov, B. Hiller, J. da Providencia, Phys. Lett. B 634, 48 (2006). arXiv:hep-ph/

0508058
92. A.A. Osipov, B. Hiller, A.H. Blin, J. da Providencia, Phys. Lett. B 650, 262 (2007). arXiv:

hep-ph/0701090
93. E. Bilgici, F. Bruckmann, C. Gattringer, C. Hagen, Phys. Rev. D 77, 094007 (2008). arXiv:

0801.4051 [hep-lat]
94. V.I. Ritus, Ann. Phys. 69, 555 (1972)
95. C.N. Leung, S.Y. Wang, Nucl. Phys. B 747, 266 (2006)
96. E. Elizalde, E.J. Ferrer, V. de la Incera, Ann. Phys. 295, 33 (2002)
97. E. Elizalde, E.J. Ferrer, V. de la Incera, Phys. Rev. D 70, 043012 (2004)
98. E.J. Ferrer, V. de la Incera, C. Manuel, Phys. Rev. Lett. 95, 152002 (2005)
99. E.J. Ferrer, V. de la Incera, C. Manuel, Nucl. Phys. B 747, 88 (2006)

100. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Nucl. Phys. A 836, 311 (2010)
101. K. Fukushima, H.J. Warringa, Phys. Rev. Lett. 100, 032007 (2008)
102. J.L. Noronha, I.A. Shovkovy, Phys. Rev. D 76, 105030 (2007)
103. B.J. Schaefer, M. Wagner, J. Wambach, Phys. Rev. D 81, 074013 (2010). arXiv:0910.5628

[hep-ph]
104. W. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

http://arxiv.org/abs/arXiv:1003.0047
http://arxiv.org/abs/arXiv:0905.0853
http://arxiv.org/abs/arXiv:1004.2712
http://arxiv.org/abs/arXiv:0711.0950
http://arxiv.org/abs/arXiv:0711.0950
http://arxiv.org/abs/arXiv:0907.1396
http://arxiv.org/abs/hep-ph/0009161
http://arxiv.org/abs/arXiv:0907.0494
http://arxiv.org/abs/arXiv:0911.1348
http://arxiv.org/abs/arXiv:0911.1348
http://arxiv.org/abs/arXiv:0808.3382
http://arxiv.org/abs/arXiv:0808.3382
http://arxiv.org/abs/arXiv:1207.0900
http://arxiv.org/abs/arXiv:1207.0900
http://arxiv.org/abs/arXiv:hep-ph/0612082
http://arxiv.org/abs/arXiv:nucl-th/0608078
http://arxiv.org/abs/arXiv:hep-ph/0508058
http://arxiv.org/abs/arXiv:hep-ph/0508058
http://arxiv.org/abs/arXiv:hep-ph/0701090
http://arxiv.org/abs/arXiv:hep-ph/0701090
http://arxiv.org/abs/arXiv:0801.4051
http://arxiv.org/abs/arXiv:0801.4051
http://arxiv.org/abs/arXiv:0910.5628


4 Quark Matter in a Strong Magnetic Background 119

105. T.K. Mukherjee, H. Chen, M. Huang, Phys. Rev. D 82, 034015 (2010). arXiv:1005.2482
[hep-ph]

106. K.I. Kondo, Phys. Rev. D 82, 065024 (2010)
107. M. Frasca, Int. J. Mod. Phys. E 18, 693 (2009)
108. M. Frasca, arXiv:1002.4600 [hep-ph]
109. M. Frasca, Phys. Rev. C 84, 055208 (2011)
110. Y. Sakai, T. Sasaki, H. Kouno, M. Yahiro, Phys. Rev. D 82, 076003 (2010). arXiv:1006.3648

[hep-ph]
111. M. D’Elia, F. Sanfilippo, Phys. Rev. D 80, 111501 (2009)
112. C. Bonati, G. Cossu, M. D’Elia, F. Sanfilippo, Phys. Rev. D 83, 054505 (2011). arXiv:

1011.4515 [hep-lat]
113. J. Cleymans, K. Redlich, H. Satz, E. Suhonen, Z. Phys. C 33, 151 (1986)
114. H. Kouno, F. Takagi, Z. Phys. C 42, 209 (1989)
115. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providencia, Phys. Rev. D 85, 091901 (2012)
116. D.P. Menezes, M. Benghi Pinto, S.S. Avancini, C. Providencia, Phys. Rev. C 80, 065805

(2009)
117. J.O. Andersen, A. Tranberg, J. High Energy Phys. 1208, 002 (2012). arXiv:1204.3360 [hep-

ph]
118. J.O. Andersen, R. Khan, Phys. Rev. D 85, 065026 (2012)
119. V. Skokov, Phys. Rev. D 85, 034026 (2012)
120. K. Fukushima, J.M. Pawlowski, Phys. Rev. D 86, 076013 (2012). arXiv:1203.4330 [hep-ph]
121. J.O. Andersen, J. High Energy Phys. 1210, 005 (2012). arXiv:1205.6978 [hep-ph]
122. K. Kashiwa, Phys. Rev. D 83, 117901 (2011)
123. O. Bergman, G. Lifschytz, M. Lippert, J. High Energy Phys. 0805, 007 (2008)
124. C.V. Johnson, A. Kundu, J. High Energy Phys. 0812, 053 (2008)
125. A.V. Zayakin, J. High Energy Phys. 0807, 116 (2008)
126. E.-M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson, A. Schreiber, Phys. Rev.

D 85, 114504 (2012)
127. E.S. Fraga, L.F. Palhares, Phys. Rev. D 86, 016008 (2012). arXiv:1201.5881 [hep-ph]
128. B.L. Ioffe, A.V. Smilga, Nucl. Phys. B 232, 109 (1984)
129. V.M. Belyaev, Y.I. Kogan, Yad. Fiz. 40, 1035 (1984)
130. I.I. Balitsky, A.V. Kolesnichenko, A.V. Yung, Sov. J. Nucl. Phys. 41, 178 (1985) [Yad. Fiz.

41, 282 (1985)]
131. P. Ball, V.M. Braun, N. Kivel, Nucl. Phys. B 649, 263 (2003)
132. J. Rohrwild, J. High Energy Phys. 0709, 073 (2007)
133. A. Vainshtein, Phys. Lett. B 569, 187 (2003)
134. A. Gorsky, A. Krikun, Phys. Rev. D 79, 086015 (2009)
135. D.T. Son, N. Yamamoto, arXiv:1010.0718 [hep-ph]
136. H.C. Kim, M. Musakhanov, M. Siddikov, Phys. Lett. B 608, 95 (2005)
137. B.L. Ioffe, Phys. Lett. B 678, 512 (2009)
138. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Nucl. Phys. B 826,

313 (2010)
139. B. Pire, L. Szymanowski, Phys. Rev. Lett. 103, 072002 (2009)
140. T.D. Cohen, E.S. Werbos, Phys. Rev. C 80, 015203 (2009)
141. H.D. Politzer, Nucl. Phys. B 117, 397 (1976)
142. H.D. Politzer, Phys. Lett. B 116, 171 (1982)
143. K. Langfeld, C. Kettner, H. Reinhardt, Nucl. Phys. A 608, 331 (1996)
144. M.N. Chernodub, Phys. Rev. D 82, 085011 (2010)
145. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011). arXiv:1101.0117 [hep-ph]
146. N. Callebaut, D. Dudal, H. Verschelde, PoS FacesQCD, 046 (2010). arXiv:1102.3103 [hep-

ph]
147. H.G. Dosch, S. Narison, Phys. Lett. B 417, 173 (1998)
148. S. Narison, Phys. Rev. D 74, 034013 (2006)
149. H. Suganuma, T. Tatsumi, Ann. Phys. 208, 470 (1991)

http://arxiv.org/abs/arXiv:1005.2482
http://arxiv.org/abs/arXiv:1002.4600
http://arxiv.org/abs/arXiv:1006.3648
http://arxiv.org/abs/arXiv:1011.4515
http://arxiv.org/abs/arXiv:1011.4515
http://arxiv.org/abs/arXiv:1204.3360
http://arxiv.org/abs/arXiv:1203.4330
http://arxiv.org/abs/arXiv:1205.6978
http://arxiv.org/abs/arXiv:1201.5881
http://arxiv.org/abs/arXiv:1010.0718
http://arxiv.org/abs/arXiv:1101.0117
http://arxiv.org/abs/arXiv:1102.3103


Chapter 5
Thermal Chiral and Deconfining Transitions
in the Presence of a Magnetic Background

Eduardo S. Fraga

5.1 Introduction

The thermodynamics of strong interactions under a strong magnetic background has
proven to be a very rich and subtle subject. Recent developments were initially mo-
tivated by the utility of magnetic fields in separating charge in space, which would
render the possible formation of sphaleron-induced CP-odd domains in the plasma
created in high-energy heavy ion collisions, in the so-called chiral magnetic effect
[1–7], measurable. In fact, the magnetic fields created in non-central collisions in
heavy ion experiments at RHIC-BNL and the LHC-CERN are possibly the high-
est since the epoch of the electroweak phase transition, reaching values such as
B ∼ 1019 Gauss (eB ∼ 6m2

π ) for peripheral collisions at RHIC [8, 9] and even much
higher at the LHC due to the fluctuations in the distribution of protons inside the nu-
clei [10, 11].

From the theoretical point of view, the non-trivial role played by magnetic fields
in the nature of phase transitions has been known for a long time [12]. Modifica-
tions in the vacuum of QED and QCD have also been investigated within different
frameworks, mainly using effective models [13–27], especially the NJL model [28],
and chiral perturbation theory [29–31], but also resorting to the quark model [32]
and certain limits of QCD [33]. Interesting phases in dense systems [34–41], as well
as effects on the dynamical quark mass [42] were also considered. Nevertheless, the
mapping of the new T –eB phase diagram is still an open problem. There are clear
indications that sufficiently large magnetic fields could significantly modify the be-
havior of the chiral and the deconfinement phase transition lines [43–69], or even
transform the vacuum into a superconducting medium via ρ-meson condensation
[70–73]. Although most of the analyses so far relied on effective models, lattice
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Fig. 5.1 Originally expected magnetic field–temperature phase diagram of strong interactions.
The thick lines indicate first-order transitions, the filled circles are the (second-order) endpoints
of these lines, and the thin dashed lines stand for the corresponding crossovers. A new phase
with broken chiral symmetry and deconfinement appears at high magnetic fields. Extracted from
Ref. [48]

QCD has definitely entered the field and has been producing its first results for the
phase diagram [74–81].

From the first results obtained within effective models for the deconfining [43]
and chiral [44, 45] transition lines, one would expect the phase diagram structure
illustrated in Fig. 5.1, as discussed in Ref. [48]. Indeed, after the prediction of a
splitting between the chiral and deconfining transition lines, with the appearance
of a new phase, in Ref. [48], several model descriptions produced the same effect
[52–58, 67]. However, until 2011, all model studies have yielded either a monoton-
ically increasing or an essentially flat functional form for the deconfinement critical
line as B increases to very large values.1 Pioneering lattice simulations [77, 78] also
found an essentially flat behavior for both critical lines, that seemed to increase to-
gether at a very low rate. Nevertheless, since the pion mass used in these simulations
was still very high, this could be an indication that one would probably need huge
magnetic fields in the simulations in order to be able to compare to effective model
predictions.

This was the scenario, rather coherent in terms of expectations for the behavior of
the critical lines for the chiral and deconfining transitions in the presence of a mag-
netic background, until lattice simulations of magnetic QCD with physical masses
and fine grids were performed [80] and showed that both critical temperatures actu-
ally go down for increasing B , saturating for very large fields, very differently from
what has been predicted by all previous effective model calculations and found in
previous lattice simulations.

1Contrastingly, a significant decrease in the critical temperature as a function of B , vanishing at
eBc ∼ 25m2

π , was found in Ref. [43], featuring the disappearance of the confined phase at large
magnetic fields. This phenomenon that was not reproduced by any other effective model nor ob-
served on the lattice (even for much larger fields).
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Soon after the appearance of the new lattice results, the behavior of the critical
temperature for deconfinement in the presence of a very large magnetic field was
addressed within the MIT bag model [68], a very economic model in terms of pa-
rameters to be fixed (essentially one) and other ingredients usually hard to control
in more sophisticated effective theories. The model is, of course, crude in numerical
precision and misses the correct nature of the (crossover) transition. Nevertheless,
it provides a simple setup for the discussion of some subtleties of vacuum and ther-
mal contributions in each phase. It was shown in Ref. [68] that the influence of the
magnetic field on the thermodynamics of both extreme energy domains is captured,
so that the model furnishes a reasonable qualitative description of the behavior of
the critical temperature in the presence of B , decreasing and saturating.

The fact that chiral models, even when coupled with the (static) Polyakov loop
sector, seem to fail in the description of the behavior of Tc × eB , whereas the (as-
sumedly simple) MIT bag approach finds a good qualitative agreement, suggests
that the critical temperature in QCD is a confinement-driven observable. This was
also hinted by a previous successful description of the behavior of the critical tem-
perature as a function of the pion mass and isospin chemical potential, as compared
to lattice data, where chiral models also failed even qualitatively [82–84]. If con-
finement dynamics plays a central role in guiding the functional behavior of Tc , a
the large-Nc limit of QCD should provide an adequate and powerful framework to
study associated magnetic thermodynamics. In fact, it was shown in Ref. [85] on
very general grounds that the fact that the deconfining temperature decreases and
tends to saturate for large B , although this last point cannot be proven in a model-
independent way, depends solely on quarks behaving paramagnetically.

In the sequel we summarize results for the chiral and deconfining transitions ob-
tained in the framework of the linear sigma model coupled to quarks and to the
Polyakov loop, especially the prediction of a splitting of the two critical lines, and
how they compare to other effective model approaches as well as to lattice QCD.
Then we discuss the outcome of the magnetic MIT bag model that yields a behav-
ior for the critical deconfining temperature compatible with the most recent lattice
simulations and magnetic catalysis. We continue with a discussion of very recent re-
sults, starting with the rather general findings within the large-Nc limit of magnetic
QCD. Finally, we present our conclusions.

5.2 Modified Dispersion Relations and Integral Measures

In the presence of a classical, constant and uniform (Abelian) magnetic field, dis-
persion relations and momentum integrals will be modified. In order to compute
vacuum and thermal determinants and Feynman diagrams, it is necessary to express
these quantities in a convenient fashion. Lorentz invariance is broken by the pre-
ferred direction established by the external field, and Landau orbits redefine the new
counting of quantum states [12].
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For definiteness, let us take the direction of the magnetic field as the z-direction,
B = B ẑ. One can compute, for instance, the modified effective potential or the mod-
ified pressure to lowest order by redefining the dispersion relations of charged scalar
and spinor fields in the presence of B, using the minimal coupling shift in the gra-
dient and the field equations of motion.2 For this purpose, it is convenient to choose
the gauge such that Aμ = (A0,A)= (0,−By,0,0).

For scalar fields with electric charge q , such as pions, one has
(
∂2 +m2)φ = 0, (5.1)

∂μ → ∂μ + iqAμ. (5.2)

After decomposing φ into Fourier modes, except for the dependence in the coordi-
nate y, one obtains

ϕ′′(y) + 2m

[(
p2

0 − p2
z −m2

2m

)
− q2B2

2m

(
y + px

qB

)2]
ϕ(y)= 0, (5.3)

which has the form of a Schrödinger equation for a harmonic oscillator. Its eigen-
modes correspond to the well-known Landau levels

εn ≡
(
p2

0n − p2
z −m2

2m

)
=

(
�+ 1

2

)
ωB, (5.4)

where ωB = |q|B/m and � is a positive (�≥ 0) integer, and provide the new disper-
sion relation:

p2
0n = p2

z +m2 + (2�+ 1)|q|B. (5.5)

One can proceed in an analogous way for fermions with charge q . From the free
Dirac equation (iγ μ∂μ −m)ψ = 0, and the shift in ∂μ, one arrives at the following
Schrödinger equation

u′′s (y) + 2m

[(
p2

0 − p2
z −m2 + |q|Bs

2m

)
− q2B2

2m

(
y + px

qB

)2]
us(y)= 0, (5.6)

which yields the new dispersion relation for quarks:

p2
0n = p2

z +m2 + (2�+ 1 − s)|q|B, (5.7)

where s =±1 is the spin projection in the ẑ direction.
It is also straightforward to show that integrals over four momenta and thermal

sum-integrals acquire the following forms, respectively [44, 45, 86]:

∫
d4k

(2π)4
�→ |q|B

2π

∞∑

�=0

∫
dk0

2π

dkz

2π
, (5.8)

2Higher-order (loop) corrections need the full propagator, not only its poles.
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T
∑

n

∫
d3k

(2π)3
�→ |q|BT

2π

∑

n

∞∑

�=0

∫
dkz

2π
, (5.9)

where � represents the different Landau levels and n stands for the Matsubara fre-
quency indices [87].

5.3 PLSMq Effective Model and the Splitting of the Chiral
and Deconfining Transition Lines

Let us consider the two-flavor linear sigma model coupled to quarks and to the
Polyakov loop, the PLSMq effective model, in the presence of an external magnetic
field [48].

The confining properties of QCD are encoded in the complex-valued Polyakov
loop variable L. As a matter of fact, the Polyakov loop sector only provides a de-
scription of the behavior of the approximate order parameter for the Z(3) symmetry,
which is explicitly broken by the presence of quarks. It is convenient for modeling
the deconfining transition and has a good agreement with lattice results for most
thermodynamic quantities such as the pressure and energy density, especially for the
pure glue theory, but it does not provide a dynamical description of confinement.3

The expectation value of the Polyakov loop L is an exact order parameter for
color confinement in the limit of infinitely massive quarks:

Confinement:

{ 〈L〉 = 0, low T ,

〈L〉 �= 0, high T ,
L(x)= 1

3
TrP exp

[
i

∫ 1/T

0
dτA4(x, τ )

]
,

(5.10)

where A4 = iA0 is the matrix-valued temporal component of the Euclidean gauge
field Aμ and the symbol P denotes path ordering. The integration takes place over
compactified imaginary time τ , with periodic boundary conditions.

The chiral features of the model are encoded in the dynamics of the O(4) chiral
field, which is an exact order parameter in the chiral limit, in which quarks and pions
are massless degrees of freedom:

Chiral symmetry:

{ 〈σ 〉 �= 0, low T ,

〈σ 〉 = 0, high T ,
φ = (σ,π),

π = (π+,π0,π−). (5.11)

Here π is the isotriplet of the pseudoscalar pion fields and σ is the chiral scalar field
which plays the role of an approximate order parameter of the chiral transition in
QCD, since chiral symmetry is explicitly broken by the nonzero quark masses.

3This will be a key feature in the discussion of recent results for the critical temperature, since Tc
seems to be a confinement-driven observable for both QCD transitions.
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Within this effective model, the quark field ψ connects the Polyakov loop L

and the chiral field φ, making a bridge between confining and chiral properties.
Quarks are also coupled to the external magnetic field since the u and d quarks are
electrically charged. Thus, it is clear that the external magnetic field will affect the
chiral dynamics as well as the confining properties of the model, as much as the
latter can be captured by the Polyakov loop sector.

This represents a natural generalization of the linear sigma model coupled to
quarks [88], an effective theory that has been widely used to describe different as-
pects of the chiral transition, such as thermodynamic properties [89–102] and the
nonequilibrium phase conversion process [103]. This generalization differs from
previous ones [104–107] by the inclusion of a bridge via the covariant derivative
and, of course, because of the modifications brought about by the magnetic field.

The Lagrangian of PLSMq describes the constituent quarks ψ , which inter-
act with the meson fields σ , π± = (π1 ± iπ2)/

√
2 and π0 = π3, the Abelian

gauge field aμ = (a0,a) = (0,−By,0,0), and the SU(3) gauge field Aμ via

the covariant derivative D
(q)
μ = (∂μ − iQaμ − iAμ) with the charge matrix Q =

diag(+2e/3,−e/3). Its explicit form is given by

L = ψ
[
iγ μD(q)

μ − g(σ + iγ5τ · π)]ψ + 1

2

[
(∂μσ)

2 + (
∂μπ

0)2]

+ ∣∣D(π)
μ

∣∣2 − Vφ(σ,π)− VL(L,T ), (5.12)

where D(π)
μ = ∂μ + ieaμ is the covariant derivative acting on colorless pions.

The chiral potential has the form

Vφ(σ,π)= λ

4

(
σ 2 + π2 − v2)2 − hσ, (5.13)

where h = fπm
2
π , v2 = f 2

π −m2
π/λ, λ = 20, fπ ≈ 93 MeV and mπ ≈ 138 MeV.

The constituent quark mass is given by mq ≡mq(〈σ 〉)= g〈σ 〉, and, choosing g =
3.3 at T = 0, one obtains for the constituent quarks in the vacuum mq ≈ 310 MeV.
At low temperatures quarks are not excited, and the model reproduces results from
the usual linear σ -model without quarks.

The Polyakov potential adopted is given by [108–110]

VL(L,T )

T 4
= −L∗L

2

2∑

l=0

al

(
T0

T

)l

+ b3

(
T0

T

)3

log
[
1 − 6L∗L+ 4

(
L∗3 +L3)− 3

(
L∗L

)2]
, (5.14)

where T0 ≡ TSU(3) = 270 MeV is the critical temperature in the pure gauge case and
a0 = 16π2/45 ≈ 3.51, a1 =−2.47, a2 = 15.2, and b3 =−1.75. Below we follow a
mean-field analysis in which the mesonic sector is treated classically whereas quarks
represent fast degrees of freedom.
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Fig. 5.2 Effects of temperature and magnetic field on quark confinement: The Polyakov loop po-
tential at T = 0.8T0 (top) and T = 1.2T0 (bottom) and at zero magnetic field (left) and at eB = 9T 2

(right). Extracted from Ref. [48]

The one-loop corrections to the free energy Ω coming from quarks can be written
as:

eiV3dΩq/T =
[

det(iγ μD(q)
μ −mq)

det(iγ μ∂μ −mq)

]
·
[

detT (iγ μD
(q)
μ −mq)

det(iγ μD(q)
μ −mq)

]
, (5.15)

so that the expectation values of the condensates can be obtained by minimizing the
free energy

Ω(σ,L;T ,B) = Vφ(σ,π)+ VL(L,T )+Ωq(σ,L,T ), (5.16)

at fixed values of temperature and magnetic field. The interaction piece Ωq(σ,L,T )

can be split into a vacuum (temperature-independent but still magnetic-field depen-
dent) contribution and a thermal correction. The vacuum term has the form

Ωvac
q (B)=−Nc

π

∑

f=u,d
|qf |B

[( ∞∑

n=�
I
(1)
B

(
M2

�f

)
)

− I
(1)
B (mf )

2

]

minus the standard vacuum correction in the absence of the magnetic field,

Ω(0)
q = 2Nc

∑

f=u,d
I
(3)
B

(
m2
f

)
, (5.17)

where we have defined the integral

I
(d)
B

(
M2)=

∫
ddp

(2π)d

√
p2 +M2 (5.18)
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Fig. 5.3 Expectation values
of the order parameters for
the chiral and deconfinement
transitions as functions of the
temperature. The filled circles
represent the σ -condensate,
and the empty circles stand
for the expectation value of
the Polyakov loop. In this plot
the condensates are
dimensionless. Extracted
from Ref. [48]

and M2
�f =m2

f +2�|qf |B . The thermal (paramagnetic) contribution is given by [48]

Ω
para
q = |qf |BT

π2

∑

s=± 1
2

∞∑

�=0

∞∑

k=1

(−1)k

k
Re

[
TrΦk

]
μs�(σ )K1

[
k

T
μs�(σ )

]
, (5.19)

where μs� is the energy of the �th Landau level at zero longitudinal momentum,

μs�(σ ) = [g2σ 2 + (2�+ 1 − 2s)|q|B]1/2
, and the untraced Polyakov loop is such

that Re[TrΦk] = ∑3
i=1 cos(kϕi), the integer k corresponding to the winding num-

ber of the Polyakov loops [48].
For finite temperature and B = 0 this model produces a crossover for both tran-

sitions. Figure 5.3 displays the condensates as functions of the temperature, and the
critical temperature is defined by the change curvature in the curves. This occurs
simultaneously for the chiral and deconfinement transitions within this model.

At zero temperature, the Polyakov loop variable does not play a role. The pres-
ence of a magnetic field enhances the chiral symmetry breaking, increasing the
value of the chiral condensate, in line with the phenomenon of magnetic cataly-
sis [14, 15, 17, 18, 33, 111]. This is shown in Fig. 5.4. It also deepens the minimum
of the potential as B is increased, as illustrated in the same figure for several values
of the magnetic field

The dependence of the chiral condensate on the magnetic field is approximately
linear, as shown in Fig. 5.4. This is in line with results from chiral perturbation
theory [29–31]. Recent lattice results [81] seem to deviate from a linear behav-
ior for large B , growing faster, in better qualitative agreement with results from
PNJL [52–55]. However, for larger values of B , all model calculations seem to
deviate from the lattice data, whereas for very small B they all quantitatively
agree [81].

Turning on the temperature, one can investigate the effects of the magnetic field
on the thermodynamics and phase structure of strong interactions as captured by
this model description. In the confining sector, the strong magnetic field affects the
potential for the expectation value of the Polyakov loop via the intermediation of
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Fig. 5.4 Upper: the
expectation value of the
(dimensionless, σ = ξv)
condensate as a function of
the magnetic field. Black dots
are obtained from the PLSMq
and the orange line is the
linear fit. Lower: effective
potential for the condensate at
zero temperature for several
values of the magnetic
field B . Extracted from
Ref. [48] (Color figure
online)

the quarks in three ways [48]: (i) the presence of the magnetic field intensifies the
breaking of the global Z3 symmetry and makes the Polyakov loop real-valued, as
shown in Fig. 5.2; (ii) the thermal contribution from quarks tends to destroy the
confinement phase by increasing the expectation value of the Polyakov loop; (iii) on
the contrary, the vacuum quark contribution tends to restore the confining phase by
lowering the expectation value of the Polyakov loop.

In fact, the vacuum correction from quarks has a crucial impact on the phase
structure. If one disregards the vacuum contribution from the quarks, as was done
in Refs. [44, 45], one finds that the confinement and chiral phase transition lines
coincide. Moreover, in this case an increasing magnetic field lowers the equivalent
chiral-confinement transition temperature. On the other hand, the inclusion of the
vacuum contribution from quark loops in a magnetic field modifies completely the
picture: confinement and chiral transition lines split, and both chiral and deconfining
critical temperatures become increasing functions of the magnetic field. Both sce-
narios are shown in Fig. 5.5, which exhibit the full calculation of the phase diagram
from the effective potential within the PLSMq effective model. The vacuum contri-
bution from the quarks affects drastically the chiral sector as well. Our calculations
also show that the vacuum contribution seems to soften the order of the phase tran-
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Fig. 5.5 Phase diagram in
the B-T plane. Upper:
without vacuum corrections:
the critical temperatures of
the deconfinement (the
dash-dotted line) and chiral
(the dashed line) transition
coincide all the way, and
decrease with B . Lower: with
vacuum corrections: the
critical temperatures of the
deconfinement (the
dash-dotted line) and chiral
(the dashed line) transition
coincide at B = 0 and split at
higher values of the magnetic
field. A deconfined phase
with broken chiral symmetry
appears. The vertical line is
the magnitude of the
magnetic field that expected
to be realized at LHC
heavy-ion collisions [8, 9].
Extracted from Ref. [48]

sition: the first-order phase transition—which would be realized in the absence of
the vacuum contribution—becomes a smooth crossover in the system with vacuum
quark loops included.

The modifications produced by strong magnetic fields over strong interactions
seem very exciting, bringing new possibilities for the phase diagram: affecting the
nature of the transitions, splitting different coexistence lines, possibly exhibiting
new phases, increasing the breaking of Z3, and so on. As discussed in the Introduc-
tion, the second scenario has been also found in other effective models containing
a chiral and a Polyakov loop sector [52–55, 67], as well as in preliminary lattice
simulations [77, 78]. However, lattice simulations of magnetic QCD with physical
masses and fine grids have shown that both critical temperatures actually go down
for increasing B , saturating for very large fields [80], an unexpected behavior that
is very different from the scenario depicted above.

This leads us to consider of a much simpler model that, yet, seems to con-
tain the essential ingredients to describe the behavior of the deconfining line, and
produces results that are in qualitative agreement with the lattice: the magnetic
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MIT bag model [68]. As will be clear in the discussion, the subtraction proce-
dure in renormalization is subtle (which can be seen as the choice of the renor-
malization scale) but can be guided by known physical phenomena and lattice re-
sults.

5.4 Magbag—The Thermal MIT Bag Model in the Presence
of a Magnetic Background

In the MIT bag model framework for the pressure of strong interactions, one needs
the free quark pressure. As seen previously, the presence of a magnetic field in the
ẑ direction affects this computation by modifying the dispersion relation to

ω�sf (kz)= k2
z +m2

f + qf B(2�+ s + 1)≡ k2
z +M2

�sf , (5.20)

� = 0,1,2, . . . being the Landau level index, s = ±1 the spin projection, f the
flavor index, and qf the absolute value of the electric charge. Loop integrals are
also affected as presented previously [44, 45, 86].

Since it has been shown that only very large magnetic fields do affect sig-
nificantly the structure of the phase diagram for strong interactions [43–45, 51–
55, 77, 78, 80], we can restrict the free quark pressure to the limit of very high
magnetic fields, where it is possible to simplify some analytic expressions.

It is crucial to realize, however, that the lowest Landau level (LLL) approxima-
tion for the free gas pressure is not equivalent to the leading order of a large magnetic
field expansion. For the zero-temperature, finite-B contribution to the pressure, the
LLL is the energy level which less contributes in the limit of large B; the result be-
ing dominated by high values of �. Nevertheless, the equivalence between the LLL
approximation and the large B limit remains valid for the temperature-dependent
part of the free pressure (as well as for the propagator), simplifying the numerical
evaluation of thermal integrals [84].

The free magnetic contribution to the quark pressure has been considered in dif-
ferent contexts (usually, in effective field theories [44, 45, 49–51, 63, 64, 112]) and
computed from the direct knowledge of the energy levels of the system, (5.20). The
exact result, including all Landau levels, has to be computed from

Pq = 2Nc

∑

�,s,f

qf B

2π

∫
dkz

2π

{
ω�sf (kz)

2
+ T ln

[
1 + e−ω�sf (kz)/T

]}
, (5.21)

where the first term is a clearly divergent zero-point energy and the other one is the
finite-temperature contribution for vanishing chemical potential. Since ω�sf grows
with B , the largest the � labeling the Landau level considered the larger the zero-
point energy term becomes, being minimal for the LLL, corroborating the previous
discussion. Thus, in the limit of large B , the LLL approximation is inadequate here.
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The decaying exponential dependence of the finite-temperature term on ω�sf , on
the other hand, guarantees that the LLL dominates indeed this result for intense
magnetic fields.

To obtain a good approximation for the large B limit of the free pressure, we
choose to treat the full exact result and take the leading order of a xf ≡m2

f /2qf B
expansion in the final renormalized expression. Let us then discuss the treatment
of the divergent zero-point term. Despite being a zero-temperature contribution, the
first term in (5.21) cannot be fully subtracted because it carries the modification to
the pressure brought about by the magnetic dressing of the quarks. Using dimen-
sional regularization and the zeta-function representation, which is also a type of
regularization, for the sums over Landau levels and subtracting the pure vacuum
term in (3 + 1) dimensions, one arrives at:

PV
q = Nc

2π2

∑

f

(qf B)
2
[
ζ ′(−1, xf )+ 1

2

(
xf − x2

f

)
lnxf + x2

f

4

− 1

12

(
2/ε+ log

(
Λ2/2qf B

)+ 1
)]
, (5.22)

where a pole ∼(qf B)2[2/ε] still remains. This infinite contribution that survives
the vacuum subtraction can be interpreted as a pure magnetic pressure coming from
the artificial scenario adopted, with a constant and uniform B field covering the
whole universe (analogous to the case of a cosmological constant). In this vein, one
may neglect all terms ∼(qf B)2 and independent of masses and other couplings (as
done, e.g. in Refs. [44, 45, 49, 50, 63, 64]), concentrating on the modification of the
pressure of the quark matter under investigation. This can be seen as a choice for the
renormalization scale after the renormalization of a ∼FμνFμν term representing the
magnetic field, as discussed, e.g. in Refs. [63, 64]. We will come back to this point
in the sequel.

The final exact result for the free pressure of magnetically dressed quarks is there-
fore

Pq

Nc

=
∑

f

(qf B)
2

2π2

[
ζ ′(−1, xf )− ζ ′(−1,0)+ 1

2

(
xf − x2

f

)
lnxf + x2

f

4

]

+ T
∑

�,s,f

qf B

2π2

∫
dkz ln

[
1 + e−ω�sf (kz)/T

]
. (5.23)

In Refs. [44, 45, 49, 50, 63, 64], the constant ζ ′(−1,0) = −0.165421 . . . was not
subtracted. In the case of pions, however, the full subtraction ensures that magnetic
catalysis, i.e. an enhancement of chiral symmetry breaking, at zero temperature [14,
15, 17, 18, 33, 111], is realized. On the other hand, if this term is left, the pion
contribution to the effective potential for the chiral condensate at large magnetic
fields will eventually raise the minimum instead of lowering it.
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In the limit of large magnetic field (i.e. xf =m2
f /(2qf B)→ 0), we obtain

Pq

Nc

large B=
∑

f

(qf B)
2

2π2
[xf ln

√
xf ] + T

∑

f

qf B

2π2

∫
dkz ln

[
1 + e

−
√
k2
z+m2

f /T
]
.

(5.24)
Adding the free piece of the gluonic contribution and the bag constant B, the

pressure of the QGP sector in the presence of an intense magnetic field reads:

PB
QGP = 2

(
N2
c − 1

)π2T 4

90
+ Pq −B. (5.25)

It is clear that, for
√
eB much larger than all other energy scales, the pressure

in the QGP phase increases with the magnetic field, which seems to favor a steady
drop in the critical temperature with increasing B that would lead to a crossing of
the critical line with the T = 0 axis at some critical value for the magnetic field.
However, the behavior of Tc(B) also depends on how the pions react to B , so that
the outcome is not obvious.

In the confined sector, which we describe by a free pion gas, one may follow
analogous steps in order to compute the contribution from the charged pions, which
couple to the magnetic field, arriving at

Pπ+ + Pπ− = − (eB)2

4π2

[
ζ ′
(
−1,

1

2
+ xπ

)
− ζ ′

(
−1,

1

2

)
+ x2

π

4
− x2

π ln
√
xπ

]

− 2
eB

4π2
T
∑

�

∫
dkz ln

[
1 − e

−
√
k2
z+M2

π�/T
]
, (5.26)

where M2
π� ≡ m2

π + (2� + 1)eB and xπ ≡ m2
π/(2eB). In this final expression all

terms ∼(qf B)2 and independent of masses and other couplings were subtracted,
as discussed before. Notice that the spin-zero nature of the pions guarantees that
all charged pion modes in a magnetic field, differently from what happens with the
quark modes, are B-dependent. So, in the large magnetic field limit the thermal
integral associated with π+ and π− is exponentially suppressed by an effective
mass �(m2

π + eB), as was also noticed in Refs. [44, 45], and can be dropped. In this
limit, we have

Pπ+ + Pπ−
large B= − (eB)2

4π2
ζ (1,1)(−1,1/2) xπ , (5.27)

where ζ (1,1)(−1,1/2) = − ln(2)/2 = −0.346574 . . . . Neutral pions do not couple
to the magnetic field and contribute only with the usual thermal integral [87].

As before, for
√
eB much larger than all other scales, the pion pressure rises with

the magnetic field, as a consequence of the subtraction of all terms that are indepen-
dent of temperature, masses and other couplings in the renormalization process,
which renders the pressure positive. Differently from the quark pressure, however,
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Fig. 5.6 Crossing pion gas
and QGP pressures as
functions of the temperature
for different values of the
magnetic field: eB = 0
(black, solid, right-most),
20m2

π , 40m2
π , 60m2

π

(magenta, dash-dotted) and
eB = 100m2

π (gray, solid,
left-most), where
mπ = 138 MeV is the
vacuum pion mass. Extracted
from Ref. [68] (Color figure
online)

Fig. 5.7 Phase diagram in
the presence of a strong
magnetic field. We also keep
the Tc(B = 0) point. The blue
square represents a very
conservative estimate for the
maximum value of eB
expected to be achieved in
non-central collisions at the
LHC with the formation of
deconfined matter. The arrow
marks the critical temperature
for eB ≈ 210m2

π [113],
expected to be found at the
early universe. Extracted
from Ref. [68] (Color figure
online)

the B = 0 pion pressure takes over for temperatures of the order of the pion mass,
which is not small and always enlarged by the presence of a magnetic field (given
its scalar nature). Moreover, for large T , the magnetic pion pressures converge to
(1/3) of the B = 0 pressure, since π0 is the only degree of freedom that contributes
thermally for large B .

Each equilibrium phase should maximize the pressure, so that the critical line in
the phase diagram can be constructed by directly extracting Tc(B) from the equality
of pressures. It is instructive, nevertheless, to consider a plot of the crossing pres-
sures, as shown in Fig. 5.6. The figure shows, as expected, a decrease in the critical
temperature (crossing points) as B is increased due to the corresponding positive
shift of the QGP pressure. However, Tc seems to be saturating at a constant value.
One can see that the critical pressure (crossing point) goes down, but then it bends
up again due to the increase in the pion pressure with B . This combination avoids a
steady and rapid decrease of the critical temperature, as becomes clear in the phase
diagram shown in Fig. 5.7. In fact, inspection of the zero-temperature limit of (5.24)
and (5.27) shows that there is no value of magnetic field that allows for a vanishing
critical temperature.
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The phase diagram in the plane T –eB shows that the critical temperature for de-
confinement falls as we increase the magnetic field. However, instead of falling with
a rate that will bring it to zero at a given critical value of eB , it falls less and less
rapidly, tending to saturate at large values of B . Remarkably, this qualitative behav-
ior agrees quite well with the most recent lattice results with physical masses [80].4

As discussed in the Introduction, previous models [44, 45, 48, 52–57, 67], have
predicted either an increase or an essentially flat behavior for the deconfinement
critical line as B is increased to very large values. The same was true for previous
lattice simulations [77, 78], which could be reproduced by the authors of Ref. [80]
by increasing the quark masses to unphysical values.

The renormalization procedure in the presence of a constant and uniform mag-
netic field seems to be very subtle and crucial for the phenomenological outcome
for the phase structure. B-dependent, mass-independent terms survive pure vacuum
(B = 0) subtraction and have to be subtracted either in an ad hoc fashion [68] or
by including a background field counterterm associated with a term ∼FμνFμν rep-
resenting the magnetic field [63, 64]. The latter brings a renormalization scale and,
upon an appropriate choice, reproduces the former. Subtracting all purely magnetic
terms in the pressures seems to be the appropriate choice since: (i) one guaran-
tees that the pion pressure grows with increasing magnetic field at zero tempera-
ture, which is consistent with the well-known phenomenon of magnetic catalysis;
(ii) lattice simulations usually measure derivatives of the pressure with respect to
temperature and quark mass, and do not access derivatives with respect to B , so that
purely B-dependent terms are not included in their results; and (iii) the effect of a
purely magnetic contribution to the pressure would only shift the effective potential
as a whole. In particular, there would be no modification on relative positions and
heights of different minima that represent different phases of matter.

The qualitative success of the description of the deconfinement transition in the
presence of an external magnetic field in terms of the MIT bag model suggests that
confinement dynamics plays a central role in guiding the functional behavior of Tc .
In this case, a large Nc investigation of the associated magnetic thermodynamics
seems appropriate.

5.5 Large Nc

Lattice QCD calculations [114] show that the deconfinement phase transition of
pure glue SU(Nc) gauge theory becomes first order when Nc ≥ 3 [115–122] with a
critical temperature given by [123]

lim
Nc→∞

Tc√
σ

= 0.5949(17)+ 0.458(18)

N2
c

, (5.28)

4Of course, our description necessarily predicts a first-order transition, as usual with the MIT bag
model, and our numbers should be taken as rough estimates, as is always the case in effective
models.
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where σ ∼ (440 MeV)2 is the string tension. The thermodynamic properties of pure
glue do not seem to change appreciably when Nc ≥ 3 [124–126], which suggests
that large Nc arguments may indeed capture the main physical mechanism behind
the deconfinement phase transition of QCD.

It has been shown in Ref. [85] that the deconfinement critical temperature must
decrease in the presence of an external magnetic field in the large Nc limit of QCD,
provided that quarks exhibit a paramagnetic behavior. Assuming that Nf /Nc � 1
and mq = 0, the only contribution to the pressure of the confined phase that enters
at O(N2

c ) is given by the vacuum (B = 0) gluon condensate c4
0N

2
c σ

2. The gluon and
quark condensates change in the presence of a magnetic field [30, 31, 127] but these
modifications are negligible in the large Nc limit. Besides, the gluon contribution to
the deconfined pressure is blind to the magnetic field.

On the other hand, the quark contribution is affected by the magnetic field and
has the form

Pquark(T , eB)∼NcNpairs(Nf )T
4f̃quark

(
T/

√
σ, eB/T 2), (5.29)

with Npairs(Nf )/Nc � 1 being the number of pairs of quark flavors with electric
charges {(Nc − 1)/Nc,−1/Nc} in units of the fundamental charge. Only the largest
(∼N0

c ) charge in each pair contributes to leading order in Nf /Nc . Notice that the
function f̃quark is positive definite and must increase monotonically with T for a
fixed value of eB until it goes to 1 in the high temperature limit T � √

σ , eB .
Thus, one should expect that the critical temperature as a function of the magnetic
field, Tc(eB), must decrease with respect to the pure glue critical temperature, T (0)

c ,
by an amount of O(Nf /Nc). This can be seen directly by equating the pressures at
Tc, which yields [85]

Tc(eB)√
σ

f
1/4
glue

(
Tc(eB)√

σ

)
= c2(Npairs, eB)

cSB
, (5.30)

where we defined

c2(Npairs, eB)≡ c0

[
1 − 1

4

Npairs(Nf )

Nc

c4
qSBf̃quark(

T
(0)
c√
σ
, eB

T
(0)2
c

)

c4
SBfglue(

T
(0)
c√
σ
)

]
. (5.31)

Since c2(Npairs, eB) < c0, one finds that Tc(eB)/T
(0)
c < 1 by an amount

∼Nf /Nc [85]. Assuming that quarks behave paramagnetically for all values of
B , then c2(Npairs, eB) < c1(Nf ), its equivalent in the case with B = 0 and Nf > 0,
and Tc(eB) is also lower than the critical temperature in the presence of Nf /Nc

flavors of massless quarks at B = 0 [85].
In a free gas implementation of the deconfined phase fglue = 1 and, for very

strong magnetic fields, f̃quark ∼ eB/T 2
c [68], so that the magnetic suppression of the

deconfinement critical temperature goes like eBNpairs/(Ncσ ). This simple imple-
mentation in the limits of low and high magnetic fields provides a scenario in which
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Fig. 5.8 Cartoon of the
Tc × eB phase diagram in the
large Nc limit, using the
approximation of free
deconfined quarks and
gluons. The numerical
value 0.59 shown in the plot
was extracted from
Ref. [123]. Extracted from
Ref. [85]

the slope in Tc(eB) decreases for large fields, as illustrated in Fig. 5.8, which hints
for a saturation of Tc as a function of eB , as observed on the lattice [80] and in the
magnetic MIT bag model [68], but cannot be obtained in a model-independent way.

5.6 Conclusions and Perspectives

The investigation of the effects brought about by the presence of a magnetic back-
ground on the thermal chiral and deconfining transitions is in its infancy yet. Never-
theless, the promise of the outcome of a rich phenomenology in mapping this new
phase diagram of strong interactions is concrete.

First model calculations have revealed the possibility of modifications in the na-
ture of the QCD phase transitions, and also the appearance of a new phase of strong
interactions in the case of a splitting of the critical (chiral and deconfining) lines.
Even if recent, more physical lattice simulations have drastically modified the initial
picture, they have also shown that the magnetic background has a very non-trivial
influence on strong interactions. For instance, the behavior of quark condensates at
finite temperature is non-monotonic [81], rendering well-established vacuum phe-
nomena such as magnetic catalysis more subtle at finite temperature.

The functional behavior of the critical temperatures still has to be understood
more deeply. Although no model foresaw the fact that both, chiral and deconfining
temperatures, decrease then saturate at a nonzero value according to the lattice [80],
a posteriori the magnetic MIT bag model was successful to describe this behavior
for deconfinement qualitatively [68] and seems to capture some essential ingredi-
ents. A model-independent analysis in the large-Nc limit of QCD also points to this
behavior [85], which is reassuring from the theoretical standpoint.

Another key ingredient in building an understanding of the physics of the quark-
gluon plasma under these new conditions, which can be relevant for high-energy
heavy-ion collision experiments, the primordial quark-hadron transition and mag-
netars is the standard perturbative investigation of magnetic QCD. The calculation
of the pressure in thermal QCD to two loops in the strong sector using the full QED
propagator in the lowest Landau level approximation is subtle but possible, as done
originally in Ref. [84].

The computation makes use of the full magnetic propagator that was obtained by
Schwinger [128], but can be cast in a more convenient form in terms of a sum over
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Landau levels as derived in Ref. [129] (see also Refs. [84, 130]). In particular, it has
been shown in Ref. [84] that the chiral limit for the exchange diagram seems to be
trivial for very large magnetic fields. Concretely, it can be written diagrammatically
in the following compact form [84]:

LLL

=
(
qf B

2π

)∫
dk1dk2

(2π)2
e
− k2

1+k2
2

2qf B

d̄=2;m2
k=k2

1+k2
2

, (5.32)

which realizes the intuitive expectation that the nontrivial dynamics in an extremely
intense magnetic field should be one-dimensional. Since gluons do not couple di-
rectly to the magnetic field, their dispersion relation maintains its three-dimensional
character, which effectively results in a “massive” gluon in the dimensionally-
reduced diagram. In the end the exchange contribution to the pressure is essentially
an average over the effective gluon transverse mass m2

k = k2
1 +k2

2 of the exchange di-
agram in (1+1)-dimensions with the Gaussian weight (qf B/2π) exp[−m2

k/2qf B].
Since the trace in the reduced diagram is proportional to m2

f , the chiral limit seems
trivial [84]. A detailed analysis of the dependence of the pressure on the mass
and temperature and a semiclassical interpretation of this result will be reported
soon [131].

The nature of the phase diagram of strong interactions in the presence of a mag-
netic background is still open. Recent lattice data, especially when compared to
effective model predictions, seem to indicate that confinement dynamics plays an
important role in the phase structure that emerges and should be incorporated in any
effective description. Comparison between lattice data with very different quark
masses [77, 78, 80, 81] also show that the dependence of the critical temperatures
on this parameter is non-trivial: Tc increases at the percent level for large masses
[77, 78] whereas it decreases appreciably for physical masses [80]. This competi-
tion between the effects from the magnetic field and quark masses on Tc was also
found in the large-Nc QCD analysis of Ref. [85]. A more systematic analysis of
this phenomenon on the lattice would be very helpful for the building of effective
models.
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Chapter 6
Electromagnetic Superconductivity of Vacuum
Induced by Strong Magnetic Field

M.N. Chernodub

6.1 Introduction

Quantum Chromodynamics (QCD) exhibits many remarkable properties in the pres-
ence of a very strong magnetic field. The external magnetic field affects dynamics
of quarks because the quarks are electrically charged particles. As a result, the ex-
ternal magnetic field enhances the chiral symmetry breaking by increasing the value
of the (quark) chiral condensate [1–5]. The change in the dynamics of quarks is
also felt by the gluon sector of QCD because the quarks are coupled to the gluons.
Therefore, the magnetic field may affect the whole strongly interacting sector and
influence very intrinsic properties of QCD such as, for example, the confinement of
color [6–14].

In order to make a noticeable influence on the strongly interacting sector, the
strength of the magnetic field should be of the order of a typical QCD mass scale,
eB ∼m2

π , where mπ ≈ 140 MeV is a pion mass. The corresponding magnetic field
strength, B ∼ 3 × 1014 T, is enormous from a human perspective (1 T ≡ 104 G).
However, such strong magnetic field can be achieved in noncentral heavy-ion
collisions at Relativistic Heavy-Ion Collider (RHIC) [15]. At higher energies of
Large Hadron Collider, noncentral heavy-ion collisions may generate even higher
magnetic field of eB ∼ 15m2

π (B ∼ 5 × 1015 T) [15]. And in ultraperipheral
collisions—when two nuclei pass near each other without a real collision—the
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magnetic field strength may reach eB ∼ (60 . . .100)m2
π or, in conventional units,

B ∼ (2 . . .3)× 1016 T [16, 17].
Despite the magnetic field is generated in a heavy-ion collision for a very short

time, it may have observable consequences. In noncentral collisions, the magnetic
field is generated together with a hot expanding fireball of quark–gluon plasma.
Topological QCD transitions may lead to a chiral imbalance of the plasma, and
the chirally-imbalanced matter may produce electric current along the axis of the
magnetic field [18, 19] driven by the chiral magnetic effect [20–23].

In a finite-density (quark) matter the magnetic catalysis [1–5] may be re-
versed [24, 25] and the phase diagram may be modified [24–26] substantially. In the
absence of matter (i.e., in the vacuum), the external magnetic field affects the finite-
temperature phase structure of the theory by shifting the critical temperatures and af-
fecting the strength of the confinement–deconfinement and chiral transitions [6–14].

The vacuum may also spontaneously become an electromagnetic superconductor
if the magnetic field strength exceeds the critical value [27, 28]

Bc � 1016 Tesla or eBc � 0.6 GeV2. (6.1)

This counterintuitive effect should be realized in the absence of matter in a cold
vacuum. Moreover, the superconductivity of, basically, empty space, should always
be accompanied by a superfluid component [29–31]. We discuss these effects below.

In Sect. 6.2 we describe the mechanism and the basic features of the vacuum su-
perconductivity in a very qualitative way. We compare in details the vacuum super-
conductivity with an ordinary superconductivity. We also highlight certain similari-
ties of this exotic vacuum phase with a magnetic-field-assisted “reentrant supercon-
ductivity” in condensed matter and the electric-field-induced Schwinger electron-
positron pair production in the vacuum of Quantum Electrodynamics.

In Sect. 6.3 the emergence of the superconducting phase is demonstrated both in
a bosonic ρ-meson electrodynamics [32] and in an extended Nambu–Jona-Lasinio
model [33, 34]. Various properties of the superconducting state are summarized in
the last Section.

6.2 Conventional Superconductivity, Vacuum Superconductivity
and Schwinger Pair Creation: Differences and Similarities

6.2.1 Conventional Superconductivity via Formation of Cooper
Pairs

Before going into details of the magnetic-field-induced vacuum superconductivity
let us discuss basic qualitative features of a conventional superconductivity. Why
certain compounds are superconductors?



6 Electromagnetic Superconductivity of Vacuum 145

Fig. 6.1 (Left) Formation of the Cooper pair (the yellowish oval) of electrons (the small green
circles) in an ionic lattice (the large red circles) due to phonon interaction. (Right) Two interacting
electrons (the small green circles) and the Fermi sphere (the large blue circle) in the momentum
space. The electrons in the Cooper pair have mutually opposite spins (the green arrows) and mo-
menta (Color figure online)

In a simplified picture, electrons in a metal can be considered as (almost free)
negatively charged particles which move through a periodically structured back-
ground of a lattice of positively charged ions (e.g., of a metal). The individual elec-
trons scatter inelastically off the ions leading to a dissipation of an electric current
and, consequently, to emergence of a nonvanishing electrical resistance in the metal.

As an electron moves through the ionic lattice it attracts neighboring ions via a
Coulomb interaction. The attraction leads to a local deformation of the ionic lattice,
and, simultaneously, to an excess of the positive electric charge in a vicinity of
the electron. The excess of the positive charge, in turn, attracts another electron
nearby, so that in a background of the positively charged ion lattice the like-charged
electrons may experience a mutual attractive force, Fig. 6.1(left). The deformation
of the ionic lattice can be viewed as a superposition of collective excitations of the
ion lattice (phonons), so that the process of the electron–electron interaction via
lattice deformations can be described by a phonon exchange.

The attractive force between the electrons may, in principle, lead to formation
of electron–electron bound states. However, this attraction is extremely weak and
therefore thermal fluctuations at room temperature easily destroy the two-electron
bound states. On the other hand, at low temperature the attractive interaction be-
tween the electrons prevails the thermal disorder and, consequently, the bound states
may indeed be formed. These bound state are called the Cooper pairs. The electrons
in the Cooper pairs have mutually opposite spins and opposite momenta thus mak-
ing the Cooper pair a (composite) spin-zero bosonic state. Bosons have a tendency
to condense at low temperature so that the Cooper pair condensate may emerge.

In the condensed state all Cooper pairs behave as one collective entity. The
Cooper-pair condensate can move frictionlessly through the ion lattice similarly to
a motion of a superfluid. The motion without dissipation is guaranteed due to an
energy gap, which separates the energy of the condensed ground state and an ex-
cited state with a lowest possible energy. Since the intermediate states are absent,
at certain conditions (low enough temperature, weak enough electric current, etc.)
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the dissipative scattering of the Cooper pairs off the ions becomes kinematically
impossible so that the motion of the Cooper pair condensate proceeds without dis-
sipation. Since the Cooper pairs are electrically charged states, the condensation of
the Cooper pairs turns the material into a superconducting state.

The formation of the Cooper pairs is facilitated by the fact that at low tempera-
ture the dynamics of the electrons becomes effectively one dimensional while in one
spatial dimension even a very weak attraction between two particles should always
lead to formation of a bound state (in the condensed matter context this property
is known as the Cooper theorem). The effective dimensional reduction of the elec-
tron dynamics from three spatial dimensions to one spatial dimension is possible
because at low temperature the interaction between the electrons occurs if and only
if the electrons are sufficiently close to the Fermi surface. One momentum coordi-
nate of the Fermi surface counts the degeneracy of the electron states while another
coordinate is dynamical. The Cooper pair is formed by two electrons with mutually
opposite momenta and mutually opposite spins, Fig. 6.1(right).

Summarizing, in order to exhibit the conventional superconductivity a system
should satisfy the following basic requirements:

(A) electric charge carriers should be present in the system (otherwise the system
cannot support the electric current);

(B) dynamics of the electric charge carriers should effectively be one-dimensional
(otherwise the Cooper pairs cannot be formed);

(C) the like-charged carriers should experience mutual (pairwise) attraction (other-
wise the Cooper pairs cannot be formed).

Surprisingly, the same requirements are satisfied by vacuum in a background of
a sufficiently strong magnetic field. In the next section we compare basic features of
conventional and “vacuum” superconductors.

6.2.2 Vacuum Superconductivity

6.2.2.1 Condition A: Presence of Electric Charges

In order for the vacuum to behave as an electromagnetic superconductor one needs,
at least, the presence of electrically charged particles in the superconducting phase
of the vacuum (condition A on page 146). From a first sight, it is impossible to sat-
isfy this requirement because under the usual conditions the vacuum is characterized
by the absence of the free electric charges. Nevertheless, the quantum vacuum may
be considered as an excellent “reservoir” of various particles including the electri-
cally charged ones while under certain conditions the virtual particles may become
real.

This “virtual-to-real” scenario does not sound unlikely. For example, there are
at least two well-known cases of external conditions when a vacuum becomes an
electrically conducting media: the vacuum may conduct electricity if it is either
subjected under a strong electric field or if it is sufficiently hot.
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Table 6.1 Conventional superconductivity vs. vacuum superconductivity: very general features
(from Ref. [36])

Property Conventional superconductivity Vacuum superconductivity

Environment a material (metal, alloy etc.) vacuum (empty space)

Reservoir of carriers real particles virtual particles

Normal state a conductor an insulator

Basic carriers of electric charge electrons (e) light quarks (u, d) and
light antiquarks (ū, d̄)

Electric charges of basic carries qe =−e (e≡ |e|) qu =+2e/3, qd =−e/3
qū =−2e/3, qd̄ =+e/3

The first example of the “virtual-to-real” transition is the Schwinger effect in
Quantum Electrodynamics (QED): a sufficiently strong external electric field gen-
erates electron-positron pairs out of the vacuum [35]. The created positrons and
electrons move in opposite directions thus creating an electric current.1 The critical
strength of the electric field required for this process is Ec =m2

e/e≈ 1018 V/m.
The second “virtual-to-real” example is a simple thermal ionization of electron–

positron pairs: the vacuum turns into an electron–positron plasma at temperatures
T ∼ 0.1 T QED where T QED ≈ 2me ≈ 1 MeV ≈ 1010 K is a typical QED tempera-
ture.

Thus, the quantum vacuum may be turned into a conductor if it is subjected to
sufficiently strong electric field (E ∼ 1018 V/m) or to sufficiently high temperature
(T ∼ 109 K). Below we show that a sufficiently strong magnetic field (B ∼ 1016 T)
may turn the vacuum into a superconducting state. The magnetic-field-induced vac-
uum superconductivity works at the QCD scale: the key role here is played by virtual
quarks and antiquarks which have fractional electric charges. As we discuss below,
the strong magnetic field catalyses the formation of the electrically charged conden-
sates made from the quarks and antiquarks. Very general features of a conventional
superconductor and the magnetic-field-induced vacuum superconductivity are sum-
marized in Table 6.1.

6.2.2.2 Conditions B and C: Formation of Superconducting Carriers

In order for the superconducting carriers to be formed, the fermion dynamics should
be reduced from three spatial dimensions to one spatial dimension (condition B of
Sect. 6.2.2.1, page 146). In conventional superconductivity the dimensional reduc-
tion proceeds via formation of the Fermi surface at sufficiently low temperatures.
This mechanism cannot work in our case because the Fermi surface, obviously, does
not exist in the vacuum due the absence of matter. However, the dimensional reduc-
tion may be achieved with the help of a magnetic field background since electrically

1We briefly discuss an analogy between the magnetic-field-induced vacuum superconductivity and
the Schwinger effect in Sect. 6.2.2.5, page 152.
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charged particles with low-energy can move only along the axis of the magnetic
field. This effect leads to the required dimensional reduction of the charge’s dynam-
ics from three to one spatial dimensions.

The described dimensional reduction effect in the background of the external
magnetic field works for all electrically charged elementary particles, including
electrons, positrons, quarks, antiquarks etc. However, the superconducting bound
state may only be formed from a particular combination of these particles which
should satisfy the following conditions:

(i) the superconducting bound state should be a boson;
(ii) the bound state should be electrically charged;

(iii) the interaction between the constituents of the bound state should be attractive.

Condition (i) implies that the superconducting bound state should contain even
number of constituents because the known carriers of the electric charge are
fermions (quarks, electron and positron, etc.). We consider a simplest two-fermion
states.

Condition (ii) implies that the bound state cannot be composed of a particle and
its antiparticle. In combination with condition (iii) it means that the vacuum su-
perconductivity cannot—unlike the Schwinger’s pair creation—emerge in the pure
QED vacuum sector which describes electrons, positrons and photons. Indeed, the
electron–electron interaction is mediated by a repulsive photon exchange [condition
(iii) is not satisfied]. The interaction between electron and positron is attractive, but
the electron–positron bound state is electrically neutral [condition (ii) is not satis-
fied]. Thus, the superconductivity cannot emerge in the pure QED.

Therefore, the candidates for the superconducting charged bound states should
be outside of the purely electrodynamics sector. Below we concentrate on the next
(in terms of energy scale), strongly interacting sector which describes the dynamics
of quarks and gluons.

The QCD sector of the vacuum contains the gluon particle which is a carrier
of the strong force. From our perspective the gluon is an analogue of the phonon of
conversional superconductivity since the gluon may provide an attractive interaction
between quarks and antiquarks regardless of their electric charges. In particular,
the gluon may bind a quark and an anti-quark into an electrically charged meson.
The attractive nature of the gluon interaction allows us to satisfy condition C of
superconductivity on page 146.

Thus, the suggested mechanism of the vacuum superconductivity may indeed
work at the interface of the QED and QCD sectors. The simplest example of the
superconducting carrier may be given by a bound state of a u quark with the electric
charge qu = +2e/3 and a d̄ antiquark with the electric charge qd̄ ≡ −qd = +e/3.
The attractive nature of the gluon-mediated interaction between the quark and an-
tiquark of different flavors is only possible if these constituents reside in a triplet
state, so that the ud̄ bound state should be a spin-1 state (the ρ meson).

Therefore, the vacuum analogue of the Cooper pair are the charged ρ± meson
states. And in next sections we show that the ρ-meson condensates do indeed appear
in the vacuum in background of the strong magnetic field, and we argue that the
emergent state is indeed an electromagnetic superconductor.
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Table 6.2 Conventional superconductivity vs. vacuum superconductivity: superconducting carri-
ers

Property of carrier Conventional superconductivity Vacuum superconductivity

Type Cooper pair ρ-meson excitations, ρ+ and ρ−

Composition electron–electron state (ee) quark–antiquark states (ρ+ = ud̄

and ρ− = dū)

Electric charge −2e +e and −e, respectively

Spin typically spin-zero state (scalar) one-one state (vector)

The carriers are
formed due to

1) reduction of dynamics of basic electric charges from three spatial
dimensions to one dimension, 3d → 1d

2) attraction force between two
electrons

2) attraction force between a quark
and an antiquark

1) a reason for the
reduction 3d → 1d

at very low temperatures electrons
interact with each other near the
Fermi surface

in strong magnetic field the motion
of electrically charged particles is
one dimensional

2) attraction is due to phonons (lattice vibrations) gluons (strong force, QCD)

Isotropy of
superconducting
properties

Yes: superconducting in all spatial
directions

No: superconducting along the
axis of the magnetic field, insulator
in other directions

Notice that the formation of the bound state is facilitated by the dimen-
sional reduction of the quark’s dynamics in the background of the magnetic field
(condition B). The dimensional reduction implies automatically a strong anisotropy
of the suggested superconductivity since the electric charges (the quarks u and d and
their antiquarks) may move only along the axis of the magnetic field. As a result,
the superconducting charge carriers (the ρ mesons in our case) may also flow along
the axis of the magnetic field only. Thus, the vacuum exhibit a superconducting
property in the longitudinal direction (along the magnetic field) while in the two
transverse directions the superconductivity of the vacuum should be absent.

It is interesting to note that due to the anisotropic superconducting properties
the vacuum in the strong magnetic field acquires a very unusual optical property:
the vacuum becomes as (hyperbolic) metamaterial which behaves as diffractionless
“perfect lenses” [37].

In Table 6.2 we compare of certain basic features of the superconducting carriers
in a conventional (low-temperature) superconductivity and in the vacuum (high-
magnetic-field) superconductivity.

6.2.2.3 Counterintuitive Coexistence of Magnetic Field and Superconductivity
due to Strong Anisotropy of Magnetic-Field-Induced
Superconductivity

So far we have ignored a well-known property of all known superconductors:

• A very magnetic field and conventional superconductivity cannot coexist!
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Table 6.3 A comparison of the effects of magnetic field and thermal effects on conventional su-
perconductivities and electromagnetic superconductivity of vacuum (from Ref. [36])

Property Conventional superconductivity Vacuum superconductivity

Magnetic field destroys superconductivity induces superconductivity

The Meissner effect present absent

Thermal fluctuations destroy superconductivity destroy superconductivity

Thus, we can ask ourselves: why do we believe that the superconducting phase of
the vacuum can exist in (and, moreover, be induced by) the strong magnetic field?
In fact, this single question contains two puzzles (Table 6.3):

• Why the Meissner effect is absent in the superconducting phase of vacuum?
• Why strong magnetic field does not destroy the superconductivity of vacuum?

A short “technical” answer to these questions is that in the background of the
magnetic field the superconducting state of the vacuum has lower energy compared
to the energy of the normal (insulator) state (Sect. 6.3.1, page 153). A physical
argument is that the strong magnetic field may coexist with the vacuum supercon-
ductivity because the latter is highly anisotropic. Let us consider this point in detail.

Qualitative arguments against the Meissner effect in the vacuum superconduc-
tor are as follows. The Meissner effect is the screening of weak external magnetic
field by a superconducting state so that a magnetic field cannot penetrate deep into
a superconductor. Qualitatively, the Meissner effect is caused by superconducting
currents which are induced by the external magnetic field in the bulk of a super-
conductor. The circulation of these currents in the transversal (with respect to the
magnetic field axis) plane generates a backreacting magnetic field, which screens the
external magnetic field in the bulk of the superconducting material. The backreact-
ing currents are geometrically large, so that the corresponding magnetic length (i.e.,
the radius of the lowest Landau level), 1/

√|eB|, is much larger than the correlation
length ξ of the superconductor. Since the vacuum superconductivity is realized only
along the axis of the magnetic field, the large transversal currents are absent and the
Meissner effect cannot be realized.

If the axis of the external magnetic field is oriented along the normal to a bound-
ary of an ordinary superconductor, then the backreacting magnetic field squeezes
the external magnetic field into thin Abrikosov vortices2 which form a sparse vortex
lattice in a background of weak magnetic field. As we show below (Sect. 6.3.4.4,
page 166), the superconducting ground state of the vacuum is the dense lattice of the
Abrikosov-type vortices for which the magnetic length is of the order of (or even
smaller than) the correlating length. This is a quantum regime of the Abrikosov
lattice, in which the geometrically short transverse currents in the cannot screen ge-
ometrically large external magnetic field. In this case the physical situation is similar

2Since the magnetic flux coming through the superconductor’s boundary is a conserved quantity,
the superconductor expels it from the superconductor’s bulk into thin vortexlike structures.
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to a “reentrant superconductivity”of extreme type-II superconductor in a high mag-
netic field [38–40] (Sect. 6.2.2.6, page 152).

If the axis of the weak external magnetic field is oriented tangentially to a bound-
ary of an ordinary superconductor then the external field is expelled from the su-
perconductor’s bulk without formation of the Abrikosov vortices. In our case, the
superconducting ground state is created by a strong magnetic field, therefore an im-
position of a weak tangential magnetic field is impossible from simple geometrical
reasons: a sole result of the superposition of the weak “testing” magnetic field onto
the strong “creating” magnetic field is a slight turn of the stronger field. In other
words, the weak testing field should slightly reorientate the anisotropy axis of the
superconductor without destroying it.

The ordinary superconductivity is destroyed by sufficiently strong magnetic field.
Qualitatively, one can understand this effect as follows: in strong enough external
magnetic field the (positive) excess in energy of the induced transverse supercon-
ducting currents prevails the (negative) condensation energy of the superconducting
carriers. As a result, at certain critical field the conventional superconductivity be-
comes energetically unfavorable and the material turns from the superconducting
state back to the normal (nonsuperconducting) state. On the contrary, in the vac-
uum superconductivity the large superconducting currents are absent due to strong
anisotropy of the superconducting currents, so that the mentioned argument should
not work. Moreover, as we discuss below, the energy of the short transverse currents
is diminished as the magnetic field becomes stronger.

Thus, the electromagnetic superconductivity of the vacuum coexists with high
magnetic field due to the anisotropy of the magnetic-field-induced superconducting
properties. It is the anisotropy which makes the vacuum superconductivity to be
different from the conventional one.

6.2.2.4 Magnetic-Field-Induced Vacuum Superconductivity: Temperature
Effects

The common key element of the ordinary and vacuum superconductivities is the
dimensional reduction of the dynamics of the charge carriers (condition B on
page 146). Thermal fluctuations should destroy this property regardless of the mech-
anism of the dimensional reduction. In ordinary superconductivity, if the energy of
the thermal fluctuations becomes of the order of the Fermi energy then the Fermi
surface broadens and the dimensional reduction no more works.

The thermal fluctuations should destroy the vacuum superconductivity because
of the same reason as in the ordinary superconductivity: the loss of the dimensional
reduction (Table 6.3). Indeed, the one-dimensional motion of electric charges in
strong magnetic field is due to the fact that the electric charges occupy the low-
est Landau level which is localized in the transverse plane. The one-dimensional
motion can only be spoiled by transitions of the particles to higher Landau levels
which are less localized. Generally, for a typical gap between the Landau energy
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Fig. 6.2 Schematic plot of
the QCD phase diagram in
the presence of magnetic field
in the low temperature region

levels is expected to be of the QCD scale, δE ∼ ΛQCD ≈ 100 MeV, so that ther-
mal fluctuations of a typical QCD scale, T ∼ΛQCD ≈ 100 MeV should destroy the
dimensional reduction property.

Therefore, we conclude that the superconductivity should be lost at certain crit-
ical temperature, Tc ≡ Tc(B). At the critical magnetic field, B = Bc, the critical
temperature is zero, Tc(Bc)= 0. The corresponding phase diagram is schematically
shown in Fig. 6.2: the superconducting and hadronic phases are separated by a phase
transition of (presumably) second order [28].

6.2.2.5 Electric-Field-Induced Pair Production (the Schwinger Effect) and
Magnetic-Field-Induced Superconductivity: A Comparison

The Schwinger effect is a generation of the electron–positron pairs from the vacuum
in a background of a strong enough electric field [35]. The created particles form a
momentary electric current which tend to screen the external electric field which has
created them. The electron–positron pair production is a process which is described
entirely by the QED sector of the vacuum.

The vacuum superconductivity is associated with the emergence of the electri-
cally charged quark–antiquark condensates out of vacuum provided the vacuum is
subjected to the strong enough magnetic field [27, 28]. Contrary to the Schwinger
effect, these electrically charged condensates do not screen the external magnetic
field which has created them.

Following Ref. [36], in Table 6.4 we compare the very basic features of the
Schwinger effect and the vacuum superconductivity.

6.2.2.6 Electromagnetic Superconductivity of Vacuum and “Reentrant
Superconductivity” in Strong Magnetic Field

Unexpectedly, the magnetic-field-induced electromagnetic superconductivity of
vacuum may have counterparts in certain condensed matter systems. It was sug-
gested in Refs. [38–40] that in a very strong magnetic field the Abrikosov flux lat-
tice of a type-II superconductor may enter a quantum limit of the “low Landau level
dominance”, characterized by a spin-triplet pairing, absence of the Meissner effect,
and a superconducting flow along the magnetic field axis. The mentioned quantum
limit is reached when the magnetic length 1/

√|eB| becomes of the order of (or
smaller than) the correlation length ξ .
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Table 6.4 Basic features of the Schwinger effect and the electromagnetic vacuum superconduc-
tivity

Property Schwinger effect Vacuum superconductivity

Environment vacuum vacuum

Background of strong electric field, E strong magnetic field, B

Interactions involved electromagnetic (QED) only electromagnetic (QED) and
strong (QCD)

Typical energy scales megaelectronvolts (106 eV) gigaelectronvolts (109 eV)

Critical value Ec =m2
e/e≈ 1018 V/m

(me = 0.511 MeV is electron
mass)

Bc =m2
ρ/e≈ 1016 T

(mρ = 0.775 GeV is ρ-meson
mass)

Nature of the effect virtual electron-positron (e−e+)
pop up from the vacuum and
become real e−e+ pairs

virtual quark–antiquark pairs
(uū and dd̄) pop up and form
real ud̄ and dū condensates

Backreaction created e−e+ pairs tend to
screen the external field

created ud̄ and dū condensates
do not screen the external field

Stability a process (unstable) a ground state (stable)

Transport property an electromagnetic conductor:
electric current is generated

a superconducting state

In condensed matter, the magnetic-field-induced anisotropic superconductivity is
sometimes called the “reentrant” superconductivity because the system should nor-
mally “exit” a superconducting state as an increasing external magnetic field sup-
presses superconductivity via diamagnetic and Pauli pair breaking effects. Although
it is unclear whether this particular mechanism of the reentrant superconductivity
works in real superconductors, the restoration of the superconducting properties
was experimentally observed in certain materials like an uranium superconductor
URhGe [41–43].

Our proposal [27, 28] of the vacuum superconductivity has basically the same
features as the reentrant superconductivity [38–40]: the electrically charged con-
densates correspond to a spin-one quark–antiquark states (ρ mesons), the vacuum
superconductor exhibits no Meissner effect while the vacuum superconductivity is
highly anisotropic.

6.3 Ground State of Vacuum Superconductor

6.3.1 Energetic Favorability of the Superconducting State

As we have argued in the previous section, a quark–antiquark pair of different fla-
vors may condense in sufficiently strong magnetic field. How strong should the
relevant magnetic field be? Following Ref. [27], let us make a simple estimation of
the critical magnetic field Bc using very general arguments.
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An electromagnetic superconductivity emerges when an electrically charged field
starts to condense. Assume that we have a free relativistic particle with mass m,
electric charge e and spin s. In a background of a constant uniform magnetic field
B the relativistic energy levels ε of this particle are given by the following formula:

ε2
n,sz

(pz)= p2
z + (2n− gsz + 1)|eB| +m2, (6.2)

where n� 0 is the nonnegative integer, sz =−s, . . . , s is the projection of the spin s
on the field’s axis, pz is the particle’s momentum along the field’s axis and g is the
gyromagnetic ratio (or, “g-factor”) of the particle.

Let us consider quark–antiquark bound states made of lightest, u and d quarks.
The corresponding simplest spin-zero and spin-one bound states are called π and
ρ mesons, respectively. In our simplest estimation we ignore the internal structure
(formfactors) of the mesons treating them as pointlike bound states.

The ground state energy (or, “mass”) of the π± mesons in the background of the
magnetic field corresponds to the quantum numbers pz = 0 and nz = 0 (notice that
sz ≡ 0 since the π meson is a spineless particle):

m2
π±(B)=m2

π + |eB|, (6.3)

where mπ = 139.6 MeV is the mass of the π meson in the absence of the mag-
netic field. The mass of the neutral π0 meson is insensitive to the external magnetic
field in our approximation, mπ0(B)=mπ (here we ignore a small splitting between
masses of charged and neutral π mesons at B = 0).

Analogously, the ground state energy (“mass”) of the charged ρ± mesons corre-
spond to the quantum numbers pz = 0, nz = 0 and sz = 1:

m2
ρ±(B)=m2

ρ − |eB|, (6.4)

where mρ = 775.5 MeV is the mass of the charged ρ meson in the absence of the
magnetic field. The mass of the neutral ρ0 meson is a B-independent quantity in this
approximation, mρ0(B)=mρ (a small difference in masses of charged and neutral
ρ mesons at B = 0 is again ignored).

It is important to mention that in (6.4) the gyromagnetic ratio of the ρ meson is
taken to be g = 2. This anomalously large value was independently obtained in the
framework of the QCD sum rules [44–46] and in the Dyson–Schwinger approach to
QCD [47]. It was also conformed by the first-principle numerical simulations of lat-
tice QCD [48, 49] providing us with a value g ≈ 2. The condensation of the charged
ρ mesons in the vacuum of QCD is very similar to the Nielsen–Olesen instability
of the pure gluonic vacuum in Yang–Mills theory [50] and to the magnetic-field-
induced Ambjørn–Olesen condensation of the W -bosons in the vacuum of standard
electroweak model [51–53]. Both the ρ mesons in QCD, the gluons in Yang–Mills
theory, and the W bosons in the electroweak model have the anomalously large
g-factor, g ≈ 2. Notice, that the phase diagrams of QCD at finite density (at fi-
nite chemical and/or isospin potential) contain certain phases characterized by the
presence of exotic vector condensates [26, 54–59]. Some of these phases exhibit
superconducting/superfluid behavior [56–59].



6 Electromagnetic Superconductivity of Vacuum 155

In the absence of the magnetic field background the ρ meson is a very unsta-
ble particle. One can notice, however, that the ground-state mass of the charged π

meson is an increasing function of the magnetic field strength B while the mass of
the charged ρ mesons is a decreasing function of B . As all known modes of the
ρ±-meson decays proceed via emission of π± mesons, ρ± → π±X [60], it is clear
that at certain strength of magnetic field the fast hadronic decays of the ρ meson
become forbidden due to simple kinematical arguments (the mass of the would-be
decay products exceed the mass of the ρ meson itself). Thus, in a background of
sufficiently strong magnetic field the charged ρ meson should be stable against all
known hadronic decay modes [27].

The presence of the superconducting ground state at high magnetic field can be
seen as follows. The square of mass of the charged ρ meson should decrease as
the magnetic field B increases, (6.4). When the magnetic field reaches the critical
value (6.1), the ground state energy of the ρ± mesons becomes zero. As the mag-
netic field becomes even stronger, the ground state energy becomes a purely imagi-
nary quantity indicating the presence of a tachyonic instability of vacuum. In other
words, the trivial ground state, 〈ρ〉 = 0, is no more stable at B > Bc , and the vac-
uum should slide towards a new state with a nonzero ρ-meson condensate, 〈ρ〉 �= 0.
Since the condensation of the electrically charged field indicates the presence of
electromagnetic superconductivity, the vacuum should become a superconductor at
B >Bc .

6.3.2 Approaches: Ginzburg–Landau
vs Bardeen–Cooper–Schrieffer

The condensation of the ρ mesons in QCD in the background of the strong mag-
netic field may be treated in the same way as the condensation of the Cooper pairs
in the conventional superconductivity. The conventional superconductivity may be
described in the framework of both microscopic fermionic models and macroscopic
bosonic theories.

The fermionic models of the Bardeen–Cooper–Schrieffer (BCS) type describe
basic carriers of electric charge (electrons and/or holes), and these models are, gen-
erally, nonrenormalizable because their Lagrangians include a four-fermion inter-
action term. The bosonic models of the Ginzburg–Landau (GL) type are usually
based on renormalizable effective Lagrangians which describe superconducting ex-
citations (the Cooper pairs) [61].

Despite of the fact that fermionic and bosonic approaches are formulated in a
very different way, they both can describe the superconductivity at a good quan-
titative level. Moreover, the bosonic and fermionic approaches are mathematically
equivalent near the superconducting phase transition [62]. In Table 6.5 we outline
a correspondence between the traditional (BCS and GL) models of conventional
superconductivity and their vacuum counterparts which are used to describe the
magnetic-field-induced vacuum superconductor.
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Table 6.5 Simplest models which can be chosen to study physical properties of conventional and
vacuum superconductivities

Basic field describes. . . Conventional Vacuum

Bosonic, condensed
superconducting carriers

Ginzburg–Landau model [63] ρ-meson electrodynamics [32]
based on vector dominance
model [64]

Fermionic constituents
of superconducting
carriers

Bardeen–Cooper–Schrieffer
model [65]

Nambu–Jona-Lasinio model [66]
extended with vector
interactions [33, 34]

It is important to notice that in the effective GL approach the Cooper pairs are
treated as pointlike particles. However, physically the Cooper pairs are rather non-
local objects because their size is much larger than the average distance between
electrons in metals. Nevertheless, the GL model describes superconductivity very
well especially near the second-order phase transition where the symmetries of the
system dominate its dynamics according to the universality argument.

Following our experience in the conventional superconductivity, in next sec-
tions we describe a GL like approach to the vacuum superconductivity using a
model which describes a ρ-meson sector of vacuum [32]. Then, we briefly out-
line a Bardeen–Cooper–Schrieffer approach to the vacuum superconductor using a
well-known extension [33, 34] of the Nambu–Jona-Lasinio model [66]. We would
like to mention that signatures of the vacuum superconductor were also found in
holographic effective theories [67, 68] and in numerical (“lattice”) approaches to
QCD [69].

6.3.3 Example: Ginzburg–Landau Model

Before going into the details of the ρ condensation in QCD, it is very useful to
outline a few basic properties of conventional superconductivity in the GL model
which provides us with a simplest phenomenological description of the conventional
superconductivity.

6.3.3.1 The Relativistic Version of the Ginzburg–Landau Lagrangian

Basic properties of a conventional superconductor can be described by the following
GL Lagrangian:

LGL =−1

4
FμνF

μν + (DμΦ)
∗
D
μΦ − λ

(|Φ|2 − η2)2
, (6.5)
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where Dμ = ∂μ− ieAμ is the covariant derivative and Φ is the complex scalar field
carrying the electric charge3 e.

The superconducting ground state of the GL model, η2 > 0, is characterized by
the homogeneous condensate of the scalar field, 〈Φ〉 with |〈Φ〉| = η. It is the con-
densate 〈Φ〉 which is responsible for the superconductivity.

In the superconducting phase the mass of the scalar excitation, δΦ = Φ − 〈Φ〉,
and the mass of the photon field Aμ are, respectively, as follows:

mΦ =√
4λη, mA =√

2eη. (6.6)

The classical equations of motion of the GL Lagrangian (6.5) are as follows:

DμD
μΦ + 2λ

(|Φ|2 − η2)Φ = 0, (6.7)

∂νF
νμ + J

μ
GL = 0, (6.8)

where the electric current is

J
μ
GL =−ie[Φ∗

D
μΦ − (

D
μΦ

)∗
Φ
]
. (6.9)

Thermal fluctuations make the condensate 〈Φ〉 smaller, eventually destroying the
superconductivity at certain critical temperature, T = Tc . In order to describe this
effect in the GL approach, one usually assumes that the quadratic coefficient of the
potential term VGL = λ(|Φ|2 − η2)2 in the GL Lagrangian (6.5) exhibits a linear
dependence on temperature T :

VGL(Φ)= α0(T − Tc)|Φ|2 + λ|Φ|4 + const. (6.10)

The superconducting condensate is present at T < Tc , while 〈Φ〉 = 0 at T � Tc.

6.3.3.2 Magnetic Field Destroys Conventional Superconductivity

In a background of a sufficiently strong magnetic field, B >BGL
c , the superconduct-

ing condensate disappears. The corresponding critical value of the magnetic field,

BGL
c = m2

Φ

2e
≡ 2λ

e
η2, (6.11)

can be obtained as follows. Consider a near-critical case when the uniform time-
independent magnetic field B ≡ F12 is slightly weaker than the critical value (6.11),
0 <BGL

c −B � BGL
c . As the magnetic field approaches the critical value (6.11), the

superconducting condensate becomes very small,
∣∣〈Φ〉(B)∣∣� η, (6.12)

3Without loss of generality we consider the singly-charged bosons Φ instead of the usual doubly-
charged Cooper pairs and we use a relativistic description of superconductivity.
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and, consequently, the classical equation of motion (6.7) can be linearized:
{
(D1 − iD2)(D1 + iD2)+ e

[
BGL
c −B(x)

]}
Φ = 0. (6.13)

where BGL
c is given in (6.11) and B(x) is the magnetic field inside the supercon-

ductor (it appears due to a rearrangement of the derivatives of the first term of this
equation).

In the vicinity of the critical magnetic field, B � Bc , so that the second term
in (6.13) can be neglected and (6.13) is satisfied if

DΦ � 0 with D=D1 + iD2. (6.14)

6.3.3.3 Lattice of Abrikosov Vortices in Background of Magnetic Field

If the strength of the external magnetic field is smaller then the critical value (6.11)
then the superconductor may squeeze the magnetic field into the vortexlike struc-
tures which are known as the Abrikosov vortices [70]. The Abrikosov vortex is a
topological stringlike solution to the classical equations of motion (6.7) and (6.8).
A single Abrikosov vortex carries a quantized flux of the magnetic field,

∫
d2x⊥B

(
x⊥

)= 2π

e
, (6.15)

where the integral of the vortex magnetic field B is taken over the two-dimensional
coordinates x⊥ = (x1, x2) of the plane which is transverse to the infinitely-long,
strait and static vortex [notice, that the flux (6.15) is twice larger than a conventional
value since we consider the condensed bosons Φ with the electric charge e and
not 2e].

The Abrikosov vortex has a well-defined center where the condensate Φ vanishes
and the normal (nonsuperconducting) phase is restored. The phase of scalar field is
singular at the vortex center. The behavior of the scalar field in the vicinity of the an
elementary vortex, situating at the origin and carrying the flux (6.15), is as follows

Φ
(
x⊥

)∝ ∣∣x⊥
∣∣eiϕ ≡ x1 + ix2, (6.16)

where ϕ is the azimuthal angle in the transverse plane, and |x⊥| is the distance from
the vortex center. Equation (6.16) is valid provided mΦ |x⊥| � 1 and mA|x⊥| � 1,
where the mass parameters mA and mΦ are given in (6.6).

If the external magnetic field is strong enough but still weaker than the critical
value (6.11), then multiple elementary Abrikosov vortices may be created. Parallel
Abrikosov vortices repel each other in a type-II superconductor, for which the mass
of the scalar excitation is larger then the photon mass, mΦ >mA. Due to the mutual
repulsion, these vortices arrange themselves in a regular periodic structure known
as the Abrikosov lattice [61]. The Abrikosov lattice corresponds to the so called
“mixed state” of the conventional superconductor, in which both normal phase (in-
side the vortex cores) and superconducting phase (outside the vortex cores) coexist.
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There are various arrangements of vortices corresponding to different types of
Abrikosov lattices [61]. The simplest Abrikosov lattice is given by the square lattice
solution of (6.14),

Φ = Φ0K(z/LB), K(z)= e−
π
2 (|z|2+z2)

+∞∑

n=−∞
e−πn2+2πnz, (6.17)

where Φ0 is a dimensional complex parameter, z= x1 + ix2, and

LB =√
2π�B, �B = 1√

eB
, (6.18)

is the inter-vortex distance LB which is expressed via the magnetic length �B . The
area of an elementary lattice cell (i.e. of a square cell which contains one Abrikosov
vortex) is L2

B ≡ 2π�B . In the solution (6.17) the vortices are located at the sites of
the square lattice,

xi

LB

= ni + 1

2
, ni ∈ Z, i = 1,2, (6.19)

at which the condensate Φ(x1, x2) vanishes exactly. In the vicinity of these sites the
scalar field (6.17) is described by (6.16).

The ground state of the system in the mixed phase is characterized, by definition,
by a minimal energy of the vortex lattice. One can show that a global minimum
of the energy density of the GL model (6.5) corresponds to a global minimum a
convenient dimensionless quantity which is called the Abrikosov ratio [61]:

βA = 〈|φ|4〉
〈|φ|2〉2

. (6.20)

It turns out that the ground state of the system corresponds an equilateral triangu-
lar lattice (which is sometimes also called “hexagonal” lattice) with the Abrikosov
ratio βA(Triang) ≈ 1.1596, Fig. 6.3(right). For the square Abrikosov lattice the
Abrikosov ratio (6.20) is slightly higher, βA(Square)≈ 1.180, Fig. 6.3(left). Notice
that despite very different visual appearances of these two lattices, the difference in
their energies (and in the corresponding Abrikosov ratios, βA) is of the order of a
few percent. A Ginzburg–Landau description of the type-II superconductors in the
background of magnetic field can be found in the nice review [71].

6.3.3.4 London Equations and Complex Electric Conductivity

The GL model (6.5) in the condensed phase describes a superconductor. Indeed,
taking into account that in the ground state the condensate is a uniform time-
independent quantity, one finds from the definition of the electric current (6.9):

∂μJ νGL − ∂νJ
μ
GL =−m2

AF
μν, (6.21)
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Fig. 6.3 Minimal-energy vortex lattices for square (left) and equilateral triangular (right) lattices
in the Ginzburg–Landau model. The dark dots correspond to the positions of the Abrikosov vor-
tices. The equilateral triangular lattice corresponds to the global minimum of the energy. From
Refs. [30, 31]

where mA is given in (6.6). Setting μ= 0 and ν = 1,2,3, in (6.21) we recover the
first London relation for a locally neutral [J0(x)= 0] superconductor:

∂JGL

∂t
=m2

AE, (6.22)

where E or Ei ≡ −F 0i is a weak (test) external electric field. Equation (6.22) de-
scribes a linear growth of the electric current in the constant electric field, thus indi-
cating a vanishing electric resistance of the system. The superconducting properties
described by (6.22) are homogeneous (independent of the spatial coordinates) and
isotropic (independent of the direction of the electric field).

The London equation (6.22) corresponds to a singular part of the complex con-
ductivity tensor σkl = Reσkl + i Imσkl . The conductivity tensor is defined as fol-
lows:

Jk(x, t;ω)=
3∑

k=1

σkl(ω)El(x, t), (6.23)

where E(x, t) = E0e
i(x·q−ωt) is the alternating external current in the long-

wavelength limit, |q| → 0. The London equation (6.22) indicates that σkl(ω) =
σ

sing
kl (ω) + σ

reg
kl (ω), where the singular part comes from paired (superconducting)

electrons,

σ
sing
kl (ω)= πm2

A

2

[
δ(ω)+ 2i

πω

]
δkl, (6.24)

while regular part σ reg accounts for other contributions to the conductivity.
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6.3.3.5 Meissner Effect

The spatial components of (6.21) provide us with the second London relation:

∂ × JGL =−m2
AB. (6.25)

In the absence of a background electric field (E = 0), (6.8) implies JGL = ∂ × B, so
that (6.25) can now be reformulated as follows:

(−Δ+m2
A

)
B = 0. (6.26)

Equation (6.26) describes the Meissner effect: inside a superconductor the photon
becomes massive so that an external magnetic field B < Bc is expelled. Physically,
the Meissner effect appears due to the fact that the external magnetic field induces
circulating superconducting currents (6.25) which, in turn, generate their own mag-
netic field. As the generated field is directed in the opposite direction with respect to
the external field, the magnetic field is eventually screened inside superconductor.

If the external magnetic field is directed tangentially with respect the supercon-
ductor’s boundary then this field is always screened inside the bulk of the super-
conductor. However, if the external magnetic field is directed along a normal of
the boundary of a type-II superconductor, then the magnetic flux—which is a con-
served quantity—may penetrate the superconductor and create a mixed phase of the
Abrikosov vortices (Sect. 6.3.3.3, page 158).

6.3.4 Superconductivity of Vacuum in Strong Magnetic Field

6.3.4.1 Electrodynamics of ρ Mesons

The conventional superconductivity is driven by the condensation of the Cooper
pairs which are described by the local scalar field Φ in the Ginzburg–Landau ap-
proach. The superconductivity of vacuum in a sufficiently strong magnetic field is
caused by emergence of quark–antiquark condensates which carry quantum num-
bers of (charged) ρ mesons [27]. Below we consider the electrodynamics of ρ
mesons in strong magnetic field using the following effective Lagrangian [32]:

L = −1

4
FμνF

μν − 1

2
(D[μ,ρν])†D[μ,ρν] +m2

ρρ
†
μρ

μ

− 1

4
ρ(0)μν ρ

(0)μν+m2
ρ

2
ρ(0)μ ρ(0)μ + e

2gs
Fμνρ(0)μν , (6.27)

where the complex vector field ρμ = (ρ
(1)
μ − iρ

(2)
μ )/

√
2 and the real-valued vector

field ρ(0)μ ≡ ρ
(3)
μ , correspond, respectively, to the charged and neutral vector mesons
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with the bare mass mρ . The charged and neutral fields are made of components of
the triplet of the ρ field:

ρμ =
⎛

⎜
⎝
ρ
(1)
μ

ρ
(2)
μ

ρ
(3)
μ

⎞

⎟
⎠ . (6.28)

The last term in (6.27) describes a nonminimal coupling of the ρ mesons to
the electromagnetism via the field strength Fμν = ∂[μ,Aν] of the photon field Aμ.
The presence of the nonminimal coupling implies, in particular, the anomalously
large value of the gyromagnetic ratio of the ρ meson, g = 2 (discussed already in
Sect. 6.3.1, page 154). Both the covariant derivative Dμ = ∂μ+ igsρ

(0)
μ − ieAμ and

the strength tensor ρ(0)μν = ∂[μ,ρ(0)ν] − igsρ
†
[μ,ρν] involve the ρππ coupling gs which

has the known phenomenological value of gs ≈ 5.88.
The model (6.27) enjoys the electromagnetic U(1) gauge invariance:

ρ(0)μ (x)→ ρ(0)μ (x),

ρμ(x)→ eieω(x)ρμ(x), (6.29)

Aμ(x)→ Aμ(x)+ ∂μω(x).

The ρ-meson Lagrangian (6.27) is an analogue of the Ginzburg–Landau La-
grangian (6.5), while the ρ-meson field (6.28) plays the role of the GL scalar fieldΦ .
The electric current of ρ mesons is given by the following analogue of (6.9):

Jμ = ie
[
ρν†ρνμ − ρνρ†

νμ + ∂ν
(
ρ†
νρμ − ρ†

μρν
)]− e

gs
∂νf (0)

νμ . (6.30)

6.3.4.2 Instability of Vacuum: Potential Energy in Strong Magnetic Field

The energy density E of the ρ-meson ground state is given by the T00 component,

E ≡ T00 = 1

2
F 2

0i +
1

4
F 2
ij +

1

2

(
ρ
(0)
0i

)2 + 1

4

(
ρ
(0)
ij

)2 + m2
ρ

2

[(
ρ
(0)
0

)2 + (
ρ
(0)
i

)2]

+ ρ
†
0iρ0i + 1

2
ρ

†
ij ρij +m2

ρ

(
ρ

†
0ρ0 + ρ

†
i ρi

)− e

gs
F0iρ

(0)
0i − e

2gs
Fijρ

(0)
ij ,

(6.31)

of the energy–momentum tensor of the ρ-meson electrodynamics (6.27):

Tμν = 2
∂L

∂gμν
−L gμν. (6.32)

It is useful to consider a “homogeneous” approximation and ignore for a moment
all derivatives and covariant derivatives in the energy density (6.31). This procedure
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corresponds, roughly speaking, to selection of a potential part of the energy density:

V
(
ρμ,ρ

(0)
μ

) = 1

2
B2 + g2

s

4

4∑

μ,ν=0

[
i
(
ρ†
μρν − ρ†

νρμ
)]2 + ieB

(
ρ

†
1ρ2 − ρ

†
2ρ1

)

+ m2
ρ

2

4∑

μ=0

(
ρ(0)μ

)2 +m2
ρ

4∑

μ=0

ρ†
μρμ. (6.33)

In the homogeneous approximation the ground state can be found via the minimiza-
tion of the potential energy (6.33) with respect to the fields ρμ and ρ

(0)
μ . It turns

out that in this approximation the vacuum expectation value of the neutral ρ-meson
field is zero, ρ(0)μ = 0. The quadratic part of the charged field is the following:

V (2)(ρμ)=
2∑

a,b=1

ρ†
aMabρb +m2

ρ

(
ρ

†
0ρ0 + ρ

†
3ρ3

)
, M =

(
m2
ρ ieB

−ieB m2
ρ

)
,

(6.34)

where the mass matrix M for the Lorentz components ρ1 and ρ2 is non-diagonal.
The eigenvalues μ± and the corresponding eigenvectors ρ± of the mass ma-

trix (6.34) are, respectively, as follows:

μ2± =m2
ρ ± eB, ρ± = 1√

2
(ρ1 ∓ iρ2). (6.35)

It is clearly seen that one of mass states, either μ− or μ+ depending on the sign
of eB , is getting smaller as the magnetic field increases. Taking for definiteness
eB > 0, we chose the ground state of the system in the following form:

ρ1 = ρ, ρ2 =−iρ, ρ0 = 0, ρ3 = 0. (6.36)

The longitudinal components ρ0 and ρ3 are always zero because for any value of
the magnetic field the corresponding terms in (6.34) are positive and diagonal.

The potential energy part of the ρ meson system can be calculated with the help
of (6.33) and (6.36):

V (ρ)= 1

2
B2 + 2e(Bc −B)|ρ|2 + 2g2

s |ρ|4, (6.37)

where

Bc =
m2
ρ

e
, (6.38)

is the critical magnetic field (6.1).
Thus, we get the familiar Mexican-hat potential (6.37) for the ρ-meson conden-

sate ρ. In particular, the very same form of the potential appears in the GL model
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of superconductivity (6.10), with one very important exception: in the conventional
superconductivity the condensation of the Cooper pairs emerges at low tempera-
tures, T < Tc, while the ρ mesons start to condense in the vacuum in the presence
of sufficiently strong magnetic fields, B >Bc:

∣∣〈ρ〉∣∣
V
=

{√
e(B−Bc)

2g2
s

, B � Bc,

0, B < Bc.
(6.39)

Here the subscript V indicates that we consider the potential part V (Φ) only and we
ignore all kinetic terms. If B � Bc then the condensate (6.39) breaks spontaneously
the electromagnetic symmetry group (6.29), similarly to the spontaneous symmetry
breaking in the superconducting phase of the GL model.

6.3.4.3 Negative Condensation Energy due to ρ-Meson Condensate

The homogeneous nature of the ρ-meson condensate (6.39) and, consequently, of
the ground state (6.36) is an artifact of the potential approximation. This simple
approximation was useful for us to find the very presence of the tachyonic instability
of the noncondensed state at B >Bc , while the detailed local structure of the ground
state can only be revealed beyond the potential approximation. To this end we notice
that a wavefunction of the lowest energy state of a free particle in a uniform static
magnetic field is independent on the coordinate z ≡ x3 along the magnetic field
axis. Moreover, for the ground state, the dependence on the time coordinate t ≡ x0

should appear only in a form of a trivial phase factor. These facts suggest us to
concentrate on x0- and x3-independent solutions to the classical equation of motions
for the ρ mesons, similarly to the case of the Abrikosov lattice solutions in the type-
II superconductors. Technically, it is convenient to choose the complex coordinate
z= x1 + ix2 where x⊥ = (x1, x2) and define the complex variables O = O1 + iO2
and their conjugates O = O1 − iO2 for vector quantities Oμ.

The classical equations of motion of the ρ-meson model (6.27) can be written in
the following “complexified” form:

gs∂B + iem2
0ρ

(0) = 0, (6.40)
(−∂̄∂ +m2

0 + 2g2
s |ρ|2

)
ρ(0) − 2igs∂|ρ|2 = 0, (6.41)

[−D̄D + 2
(
gsC − eB + 2g2

s |ρ|2 +m2
ρ

)]
ρ = 0, (6.42)

where the z-components of the magnetic field and its analogue for the neutral ρ
mesons are, respectively, as follows

B(z)≡ ∂1A2 − ∂2A1 = Im(∂̄A), C(z)≡ ∂1ρ
(0)
2 − ∂2ρ

(0)
1 = Im

(
∂̄ρ(0)

)
. (6.43)

We have also introduced two covariant derivatives:

D ≡D1 + iD2 =D+ igsρ
(0), D= ∂ − ieA, A= Bext

2i
z, (6.44)
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where the external (background) magnetic field Bext should be distinguished from
the full magnetic field in the superconducting state, B(x1, x2)≡ B(x1 + ix2): in the
latter a backreaction from the superconducting ground state is included.

The transverse components of the electric current (6.30) are as follows:

J⊥ ≡ J1 + iJ2 = 2ie
(
ρ†Dρ + ∂|ρ|2)+ i

e

gs
∂C. (6.45)

In the vicinity of the phase transition, Bext > Bc with |Bext − Bc| � Bc , the
equations of motion (6.40), (6.41) and (6.42) can be linearized. It turns out that the
equation for the ρ-meson condensate in the overcritical magnetic field (Bext � Bc)
in the vacuum is identical to the equation for the Cooper pair condensate (6.14) in
the subcritical magnetic field (Bext � Bc) in the GL model of conventional super-
conductivity [27]:

Dρ ≡
(
∂ − e

2
Bextz

)
ρ = 0. (6.46)

Among infinite number of solutions to (6.46), the ground state solution corresponds
to the global minimum of the mean energy density (6.31). In the chosen approxima-
tion, the latter can be expressed via the ρ-meson condensate [30, 31]

〈E 〉 ≡ 〈T00〉 = 1

2
B2

ext + 2e(Bc −Bext)
〈|ρ|2〉+ 2e2〈|ρ|2〉2

+ 2
(
g2
s − e2)

〈
|ρ|2 m2

0

−Δ+m2
0

|ρ|2
〉
, (6.47)

where ∂2⊥ ≡ ∂2
1 + ∂2

2 is the two-dimensional Laplace operator,

1

−∂2⊥ +m2
0

(
x⊥

)= 1

2π
K0

(
m0

∣∣x⊥
∣∣) (6.48)

is a two-dimensional Euclidean propagator of a scalar massive particle with the mass
of the neutral ρ(0) meson,

m0 ≡mρ(0) =mρ

(
1 − e2

g2
s

)− 1
2

, (6.49)

and K0 is a modified Bessel function. Contrary to the potential part of the energy
density (6.37), the full expression (6.47) depends nonlocally on the condensate ρ.

A general solution of (6.46) is the following generalization to the square
Abrikosov lattice (6.17):

ρ(z)=
∑

n∈Z
Cn exp

{
−π

2

(|z|2 + z̄2)− πν2n2 + 2πνnz̄

}
, z= x1 + ix2, (6.50)
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Fig. 6.4 At B > Bc the superconducting state—corresponding to the equilateral triangular lattice
Fig. 6.3(right)—is more energetically favorable compared to the trivial vacuum state: at the critical
magnetic field (6.1) B = Bc , the condensation energy (6.52), the left panel, becomes negative due
to emergence of the superconducting condensate (the right panel). From Refs. [30, 31]

where ν is an arbitrary real parameter, LB is the magnetic length (6.18) and Cn are
arbitrary complex coefficients.

The ground state solution is given by an equilateral triangular lattice, Fig. 6.3
(right). The corresponding coefficients Cn obey the two-fold symmetry Cn+2 = Cn

with C1 = iC0, while the independent parameters ν and C0 cannot be calculated
analyticity so that they should be found by a numerical minimization of the energy
density (6.47). Equivalently, one can also minimize an analogue the Abrikosov ra-
tio (6.20):

βρ =
〈 |ρ|2
〈|ρ|2〉

m2
0

−Δ+m2
0

|ρ|2
〈|ρ|2〉

〉
. (6.51)

The left and right panels of Fig. 6.4 show, respectively, the condensation energy

δE = 〈E 〉 − 1

2
B2

ext, (6.52)

and the superconducting condensate |ρ| ≡ √〈|ρ|2〉 in the ground state. The rise of
the condensate at B > Bc makes the ground state energy smaller compared to the
normal, noncondensed state.

6.3.4.4 Periodic Pattern of Ground State: Superfluid and Superconductor
Vortices

Solutions of (6.50) are inhomogeneous functions in the transversal (x1, x2) plane.
The inhomogeneities in the charged ρ condensate induce an unexpected condensa-
tion of the neutral ρ mesons:

ρ(0)
(
x⊥

)= 2igs
−∂2⊥ +m2

0

∂|ρ|2 ≡ igs

π
∂

∫
d2y⊥K0

(
m0

∣∣x⊥ − y⊥
∣∣)∣∣ρ

(
y⊥

)∣∣2. (6.53)

The longitudinal components of the neutral condensate are zero, ρ(0)0 = ρ
(0)
3 = 0.
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Fig. 6.5 The charged superconducting (left) and neutral superfluid (right) condensates in the
transversal (x1, x2) plane at B = 1.01Bc . The 3D plots illustrate the absolute values of the conden-
sates (in MeV) while the corresponding projections on the (x1, x2) planes of these figures are the
density plots of the phases of the corresponding condensates. The white lines of the projections are
gauge-dependent singularities (the Dirac sheets) attached to the superconductor vortices (the left
panel) and stretched between the superfluid vortices and antivortices (the right panel)

The external magnetic field Bext leads to a backreaction from the charged con-
densate (6.50), which creates a transverse electric current (6.45),

J⊥(x⊥
)=

(
2iem2

0∂

−∂2⊥ +m2
0

|ρ|2
)(
x⊥

)≡ iem2
0

π
∂

∫
d2y⊥K0

(
m0

∣∣x⊥ − y⊥
∣∣)∣∣ρ

(
y⊥

)∣∣2,

(6.54)

which affects the magnetic field inside the superconductor:

B
(
x⊥

)= Bext + 2em2
0

−∂2⊥ +m2
0

[∣∣ρ
(
x⊥

)∣∣2 − 〈|ρ|2〉]. (6.55)

In Fig. 6.5 the charged and neutral condensates are plotted as functions of the
transverse coordinates x1 and x2 for the magnetic field B = 1.01Bc. The periodic
equilateral-triangle structure of the absolute value of the charged ρ-meson conden-
sate is identical—apart from the magnitude of the physical scales—to the one of the
GL model, Fig. 6.3(right). The absolute value of the neutral condensate also exhibits
a lattice pattern which has, however, a bit more involved appearance: hexagonally-
shaped structures are arranged into the equilateral triangular lattice, Fig. 6.6.

The charged and the neutral ρ-meson condensates coexist together. Since the
magnetic field cannot directly induce the neutral condensate, the mechanism of
its appearance is as follows: the background magnetic field induces the charged
condensate ρ, (6.50), while the charged condensate gives rise to the neutral one,
ρ(0), (6.53). As a result, the neutral condensate is an order of magnitude smaller
than the charged condensate, Fig. 6.5. These condensates form a nested structure,
Fig. 6.6.

The projection of Fig. 6.5 (left) shows the density plot of the phase of the charged
condensate, argρ. The phase—which is not a periodic function of the transverse
coordinates x1 and x2—exhibits discontinuities across which the phase is changed
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Fig. 6.6 A visualization of
the nested structure of the
electrically charged,
superconducting condensate
(6.50) and the electrically
neutral, superfluid
condensate (6.53), plotted in
dark magenta and light green,
respectively. Shown are the
regions where these
condensates take maximal
values. The transverse plane
corresponds to 2 fm × 2 fm
region at the magnetic field
B = 1.01Bc (Color figure
online)

by 2π . These discontinuities correspond the Dirac sheets, shown as the white lines in
the same projection of Fig. 6.5 (left). The Dirac sheets are attached to the new class
of vortices, “the superconductor ρ vortices”. The positions of these vortices corre-
spond to the endpoints of the Dirac sheets. According to the 3D plot of the same
figure, the absolute value of the ρ-meson condensate is vanishing at the centers of
the superconductor vortices. Locally, these superconductor vortices have the struc-
ture which is similar (up to a gauge-dependent phase) to the Abrikosov vortices in
the conventional superconductors (6.16): ρ(x⊥) ≡ ρ1(x

⊥) ≡ iρ2(x
⊥) ∝ |x⊥|eiϕ ≡

x1 + ix2.
Contrary to the phase of the charged condensate (6.50), the phase of the neutral

condensate (6.53) is a periodic function of the x1 and x2 coordinates. The neutral
phase exhibits the 2π -discontinuities as well. These discontinuities are visualized
as white lines in the projection on the bottom-left panel of Fig. 6.5. The end-points
of these discontinuities mark positions of a new type of vortices called “superfluid
ρ vortices” connected by the corresponding 2π -discontinuity to the superfluid an-
tivortices. Locally, the superfluid vortices have, up to a phase, the familiar structure:
ρ(0)(x⊥)≡ ρ

(0)
1 (x⊥)+ iρ

(0)
2 (x⊥)∝ |x⊥|eiϕ ≡ x1 + ix2.

The vacuum ground state has a rich “kaleidoscopic” structure in terms of the
vortex content: the equilateral triangular lattice of the superconductor vortices is
superimposed on the hexagonal lattice of the superfluid vortices and antivortices.
An elementary lattice cell of this superposition contains one superconductor vortex
in the electrically charged ρ condensate as well as three superfluid vortices and three
superfluid antivortices in the neutral ρ(0) condensate, Fig. 6.7(left).

6.3.4.5 Superconductivity and Superfluidity in the Ground State

In this section we show that the ground state of the ρ meson condensates is a super-
conductor and a superfluid simultaneously.

Let us first consider the conducting properties of the new vacuum state. Electric
transport properties of a material (such as, for example, the electrical conductivity)
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Fig. 6.7 (Left) The kaleidoscopic vortex structure of the charged and neutral condensates induced
by the magnetic field B = 1.01Bc : the superconductor vortices (the large circles) are always su-
perimposed on the superfluid vortices (the small dark blue disks marked by the plus signs) forming
an equilateral triangular lattice in the (x1, x2) plane. The isolated superfluid vortices and antivor-
tices (the small light yellow disks with the minus signs) are arranged in the hexagonal lattice.
The shades of green illustrate the absolute value of the neutral ρ-meson condensate (6.53) (from
Refs. [30, 31]). (Right) The density and the vector flow of the superconducting currents in the
(x1, x2) plane at B = 1.01Bc (Color figure online)

are usually determined in a linear response approximation in which one studies an
electric current generated inside the material by a weak (test) external electric field
background. The electric field should be weak enough in order to preserve, in a
leading order, the ground state of the studied material.

In our ground state the transverse (with respect to the strong magnetic field)
electric currents (6.54) of charged condensates are confined to elementary cells of
the periodic ground state, Fig. 6.7(right). The size of the elementary cell is of the
order of the size of the wavefunction of lowest Landau level (in physical units the
size of the cell is approximately 0.5 fm for the near-critical magnetic field B ∼ Bc).
In order for a net electric current to be induced in the transverse directions, the
quarks need to be excited to the next Landau level which is, however, separated
from the lowest Landau level by a large energy gap of the order of δE ∼ √|eB|.
It is the energy gap which makes the vacuum state to behave as an insulator in
the transverse directions because a weak (|E| � |B|) transverse (E ⊥ B) electric
field E cannot create large enough excitation of overcome the gap. The presence of
the gap is the very reason why the Meissner effect is absent in the superconducting
ground state [27] so that the emerging superconductivity does not screen the external
magnetic field (Sect. 6.2.2.3, page 149).

Contrary to the transverse electric currents, the longitudinal currents are not
restricted by the external magnetic field. Let us apply a weak electric field E =
(0,0,Ez) along the axis of the strong magnetic field B ≡ (0,0,B). According to
the equations of motion of the ρ-meson model (6.27), the induced electric cur-
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Fig. 6.8 The strength of the vacuum (left) superconductivity κ , (6.57), and (right) superfluidity
κ(0), (6.59), as the function of the transverse coordinates x1 and x2 at magnetic field B = 1.01Bc .
In addition, the left plot illustrates the superconductor vortices (the large red tubes) and the su-
perfluid vortices and antivortices (the smaller dark blue and light yellow tubes, simultaneously)
in accordance with notations of Fig. 6.7(left). In the right plot the semitransparent plane shows
highlights the line κ(0) = 0 where the superfluid strength changes its sign (Color figure online)

rents (6.30) satisfy the following equations [27]:

∂J3(x)

∂x0
− ∂J0(x)

∂x3
=−κ(x⊥)Ez,

∂Jk(x)

∂xμ
− ∂Jμ(x)

∂xk
≡ 0, (6.56)

where μ= 0, . . . ,3 and k = 1,2.
The set of equations (6.56) is nothing but an anisotropic “vacuum” analogue of

the London equation (6.21) of superconductivity. Equations (6.56) show that the
electric current—induced by a weak electric “test” field—flows without resistance
along the magnetic field axis while in the transverse directions the superconductiv-
ity is absent. The strength of the vacuum superconductivity is characterized by the
quantity κ , which is a nonlocal function of the superconducting ρ-meson conden-
sate:

κ
(
x⊥

)=
(

4e2m2
0

−∂2⊥ +m2
0

|ρ|2
)(
x⊥

)≡ 2e2m2
0

π

∫
d2y⊥K0

(
m0

∣∣x⊥ − y⊥
∣∣)∣∣ρ

(
y⊥

)∣∣2.

(6.57)

According to Fig. 6.8(left), the strength of the superconductivity (6.57) is a
weakly dependent function of the transverse coordinates x1 and x2. In a response
to a weak electric current, the superconducting currents are generated outside of
the superconductor vortex cores while the maxima of the induced electric currents
are located at the centers of the superfluid vortices. Contrary to the ordinary super-
conductivity, the vacuum superconductivity is not completely suppressed inside the
vortices due to the nonlocal nature of the relation between the transport coefficient
κ and the superconducting condensate (6.57).

Unexpectedly, the condensate of the neutral ρ mesons is also sensitive to the pres-
ence of the external electric current. It turns out that the electrically neutral current
of ρ(0) mesons, defined via the relation J

(0)
μ = − e

gs
∂νf

(0)
νμ , satisfies a London-like
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equation as well [72]:

∂J
(0)
3 (x)

∂x0
− ∂J

(0)
0 (x)

∂x3
= −κ(0)(x1, x2)Ez(x), (6.58)

κ(0)(x1, x2) =
(

4e2∂2⊥
−∂2⊥ +m2

0

|ρ|2
)
(x1, x2)≡ 1

m2
0

∂2⊥κ
(
x⊥

)
, (6.59)

where the superfluid coefficient κ(0) is visualized in Fig. 6.8(right).
Equations (6.56) and (6.58) indicate that, respectively, the charged and neutral

currents should flow frictionlessly (i.e., accelerating ballistically) along the mag-
netic field axis if an weak external electric field is applied along same direction.
Then, if even at some moment of time the electric field is set back to zero, both the
superconducting current and the superfluid flow would continue to flow permanently
because of the absence of the dissipation forces for the corresponding condensates.

Notice that the electric-field-induced superfluid flow is a locally nonvanishing
quantity, while the total superfluid flow of each elementary lattice cell is zero,

∂〈J (0)3 〉⊥(x)
∂x0

− ∂〈J (0)0 〉⊥(x)
∂x3

= 0, 〈O〉⊥ ≡
∫

d2x⊥O(x), (6.60)

because the average of the superfluid coefficient (6.59) is zero, 〈κ(0)(x⊥)〉⊥ = 0. A
comparison of the left and right plots of Fig. 6.8 reveals that the external electric field
generates the positive superfluid flow at the positions of the superconductor vortices
which are always accompanied by a superfluid vortices according to Fig. 6.7(left).
The negative superfluid flow is generated at the positions of other, unaccompanied
superfluid vortices and antivortices.

Finally, we would like to stress that the global quantum numbers of the new ex-
otic superconducting (and, simultaneously, superfluid) phase correspond to those
of the vacuum. For example, all chemical potentials in the superconducting phase
are vanishing. The vacuum is an electrically neutral object: the presence of the
positively charged condensate ρ implies an automatic appearance of a negatively
charged condensate ρ∗ of the equal magnitude, ρ ≡ |ρ∗|. As a result, in strong mag-
netic field the energy of the vacuum is lowered due to the emergence of the charged
condensates, while the net electric charge of the vacuum stays always zero [27, 28].
Despite of the net electric neutrality, the vacuum should superconduct since a weak
external electric field pushes the positively and negatively charged condensates in
opposite directions along the magnetic field axis, thus creating a net electric current
of a double magnitude.

6.3.4.6 Abelian Gauge Symmetry Breaking and Gauge-Lorentz Locking

What is the symmetry breaking pattern in the new superconducting phase of the vac-
uum? The vacuum superconductivity appears due to the emergence of the magnetic-
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field-induced ρ-meson condensate (6.36). In the presence of the background mag-
netic field B, the group of global rotations SO(3)rot of the coordinate space is ex-
plicitly broken to its O(2)rot subgroup which is generated by rotations around the
magnetic field axis. The scalar condensate ρ, which describes the vector conden-
sation (6.36) in ground state of the system, transforms under the residual rotational
group O(2)rot as follows:

O(2)rot : ρ(x)→ eiϕρ(x), (6.61)

where ϕ is the azimuthal angle of the rotation in the transverse plane about the x3
axis. In addition, the ρ meson field transforms under the electromagnetic U(1)e.m.

gauge group (6.29) as follows:

U(1)e.m. : ρ(x)→ eieω(x)ρ(x). (6.62)

Thus, if the condensate ρ were a homogeneous (i.e., coordinate independent) quan-
tity then the ground state would “lock” the residual rotational symmetry with the
electromagnetic gauge symmetry,4 U(1)e.m. × O(2)rot → U(1)locked, since a ro-
tation of the coordinate space at the angle ϕ about the axis x3 and a simultane-
ous gauge transformation with a constant gauge-angle ω = −ϕ/e leave the homo-
geneous condensate ρ intact. The inhomogeneities in the ρ condensate break the
locked subgroup further from the global U(1) group down to a discrete subgroup of
the lattice rotations Glat

locked of the kaleidoscopic lattice state, Fig. 6.7(left), Ref. [27]:

U(1)e.m. ×O(2)rot →Glat
locked. (6.63)

Thus, the superconducting condensate locks the electromagnetic gauge group with
the group of the coordinate space rotations.

6.3.5 Superconductivity of Vacuum in Nambu–Jona-Lasinio
Model

Basic properties of ordinary superconductivity can equally be described either by
the Ginzburg–Landau (GL) phenomenological approach which describes the scalar
field of the superconducting carriers or by the Bardeen–Cooper–Schrieffer (BCS)
model which accounts for dynamics of electrons in superconductors (Sect. 6.3.2,
page 155). Both approaches are mathematically equal if the temperature is suffi-
ciently close to the superconducting phase transition [62].

So far we have discussed the basic features of the vacuum superconductivity
in the effective ρ meson electrodynamics [32], which serves as a “vacuum” ana-
logue of the GL approach to the ordinary superconductivity [63]. In this section we

4A philosophically similar phenomenon, a color-flavor locking, is realized in a different context of
the color superconductivity in a dense quark matter [73, 74].
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briefly consider, following Ref. [28], the ρ-meson condensation in strong magnetic
field in the BCS-like approach [65], which is based on the Nambu–Jona-Lasinio
model [33, 34, 66].

6.3.5.1 Effective Action in Strong Magnetic Field

We consider an extended two-flavor (Nf = 2) three-color (Nc = 3) Nambu–Jona-
Lasinio model [33, 34]:

L (ψ, ψ̄) = ψ̄
(
i /∂ + Q̂ /A − M̂0)ψ + G

(0)
S

2

[
(ψ̄ψ)2 + (

ψ̄iγ 5τψ
)2]

− G
(0)
V

2

∑3

i=0

[(
ψ̄γμτ

iψ
)2 + (

ψ̄γμγ5τ
iψ

)2]
, (6.64)

where the light quarks are represented by the doublet ψ = (u, d)T , and G
(0)
S and

G
(0)
V are the corresponding bare couplings of scalar and vector quarks’ interactions.

The masses mu and md , and electric charges (qu = +2e/3 and qd = −e/3) of the
quarks are combined into the bare mass matrix M̂0 = diag(m0

u,m
0
d) and the charge

matrix Q̂ = diag(qu, qd), respectively. The 2 × 2 matrices in the flavor space are
denoted by hats over the corresponding symbols and τ is a vector made of the Pauli
matrices.

The partition function of the NJL model can be represented as an integral,

Z =
∫
Dψ̄Dψ ei

∫
d4xL =

∫
DσDπDVDAeiS[σ,π ,V ,A], (6.65)

over bosonic fields [33, 34]. The bosonic fields are given by one scalar field
σ ∼ ψ̄ψ , the triplet of three pseudoscalar fields π ∼ ψ̄γ 5τψ [made of the elec-
trically neutral, π0 ≡ π3, and electrically charged, π± = (π1 ∓ iπ2)/

√
2, pions],

four vector fields,

V̂μ ≡
∑3

i=0
τ iV i

μ =
(
ωμ + ρ0

μ

√
2ρ+

μ√
2ρ−

μ ωμ − ρ0
μ

)

, V i
μ ∼ ψ̄γμτ

iψ, (6.66)

[composed of the flavor-singlet coordinate-vector ω-meson field ωμ, and of the elec-
trically neutral, ρ0

μ ≡ ρ3
μ, and charged, ρ±

μ = (ρ1
μ ∓ iρ2

μ)/
√

2, components of the
ρ-meson triplet], and four pseudovector (axial) fields,

Âμ ≡
∑3

i=0
τ iAi

μ =
(
fμ + a0

μ

√
2a+μ√

2a−μ fμ − a0
μ

)

, Ai
μ ∼ ψ̄γ 5γμτ

iψ. (6.67)

where the fields fμ and (a0
μ,a

±
μ ) represent the singlet axial f1 meson and the a1

triplet of the axial mesons, respectively.
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The effective bosonic action in (6.65) is as follows

S[σ,π ,V ,A] = Sψ −
∫

d4x

[
1

2G(0)
S

(
σ 2 + π2)− 1

2G(0)
V

(
V k
μV

kμ +Ak
μA

kμ
)]
,

(6.68)

Sψ [σ,π ,V ,A] = −iNc Tr Ln(iD), (6.69)

iD= i /∂ + Q̂ /A − M̂0 + /̂V μ + γ 5 /̂A− (
σ + iγ 5πτ

)
, (6.70)

where we have used simplified notations for the expectation values of the fields,
〈σ 〉 = σ etc. In the absence of a magnetic field background the expectation value
of σ plays a role of the constituent quark mass, mq = σ ∼ 300 MeV while the
expectation values of the fields π , V , and A are zero [33, 34].

The effective action (6.68) in the strong magnetic field background was calcu-
lated in Ref. [28] in the lowest Landau level (LLL) approach using a mean-field
technique inspired by calculations of the magnetic catalysis phenomenon [1–5]. In
the regime of the LLL dominance the propagator of a f ’s quark

SLLL
f (x, y)= P⊥

f

(
x⊥, y⊥

)
S
‖
f

(
x‖ − y‖

)
, (6.71)

factorizes into the B-transverse projector onto the LLL states

P⊥
f

(
x⊥, y⊥

)= |qf B|
2π

e
i
2 qf Bεabx

axb− 1
4 |qf B|(x⊥−y⊥)2, (6.72)

and B-longitudinal fermion propagator in the (1 + 1)-dimensions,

S
‖
f (k‖)≡ S

‖
sign(k‖)=

i

γ ‖k‖ −m
P

‖
f , P

‖
f = 1 − if γ 1γ 2

2
, (6.73)

which depend, respectively, on the B-transverse, x⊥ = (x1, x2), and B-longitudinal,
x‖=(x0, x3), coordinates [1–5]. Here qf is the electric charge of the f th quark and
eB > 0 is taken for definiteness.

In (6.73) the matrix P ‖
f is the spin projector operator onto the fermion states with

the spin polarized along (for u quarks) or opposite (for d quarks) to the magnetic
field (we use f = ±1 for, respectively, f = u,d). The operator P ‖

f projects the
original four 3 + 1 fermionic states onto two (1 + 1)-dimensional fermionic states,
so that in the LLL approximation the quarks can move only along the axis of the
magnetic field (the latter fact is a natural sequence of the LLL dominance [1–5]).

The operator (6.72) satisfies the projector relation,

P⊥
f ◦ P⊥

f = P⊥
f , A ◦B ≡

∫
d2y⊥A

(
. . . , y⊥

)
B
(
y⊥, . . .

)
, (6.74)

where “◦” is the convolution operator in the B-transverse space.
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In the one-loop order the effective action (6.69) contains a scalar part and vector
parts, respectively:

S = SS(σ,π)+ SV (A,V ). (6.75)

In terms of the nontrivial condensates,5 the potential term in the scalar part of the
action has the following (renormalized) form:

SS =−
∫
d4x

[
1

2GS

σ 2 + |eB|Nc

8π2

(
ln
σ 2

μ2
− 1

)
σ 2

]
, (6.76)

which reflects one of the most important features of the magnetic catalysis [1–5]: an
enhancement of quarks’ masses by the magnetic field background,

mq(B)= σmin(B)= μ exp
{−2π2/

(
GSNc|eB|)}, (6.77)

given by the minimum σmin of potential (6.76). The mass scale, μ ∝ √|eB| is to
be fixed beyond the LLL approximation because it is determined, in particular, by
the (1 + 1)-dimensional motion of the quarks along the magnetic field [1–5]. As
noticed in Refs. [1–5], the renormalization of the scalar NJL coupling GS in the MS
scheme,

1

GS

= 1

G
(0)
S

− Nc|eB|
4π2ε

, GS ≡ 2πGGN

Nc|eB| , (6.78)

is very similar to the renormalization of the coupling constant GGN in the (1 + 1)-
dimensional Gross–Neveu model [75]. The divergencies of the (1 + 1)-dimensional
fermions are treated in the dimensional regularization in d = 2 − 2ε dimensions,
1/ε = 1/ε− γE + log 4π and γE ≈ 0.57722 is Euler’s constant.

A potentially nontrivial part of the (non-renormalized yet) effective vector action,

S
(0)
V ≡ iNc

2
Tr

[
1

iD0

(
/̂V μ + γ 5 /̂A

) 1

iD0

(
/̂V μ + γ 5 /̂A

)]

= 4Nc|eB|
9π2

·
∫
d2x‖

[(
1

ε
− ln

σ 2

μ2

)(
φ∗ ◦ Pe ◦ φ

)

+
(

1

ε
− ln

σ 2

μ2
− 2

)(
ξ∗ ◦ Pe ◦ ξ

)]
, (6.79)

involves only the B-transverse combinations of the vector and axial mesons, φ =
(ρ+

1 + iρ+
2 )/2 and ξ = (a+1 + ia+2 )/2. In (6.79) the B-transverse projector for the

unit charged particle Pe is given by (6.72) with the replacement qf → e:

P⊥
e

(
x⊥, y⊥

)= 9π

|eB|P
⊥
u

(
x⊥, y⊥

)
P⊥
d

(
y⊥, x⊥

)
. (6.80)

5Here we omit all terms with vanishing condensates as well as all kinetic terms.
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The potential (6.79) has an unstable tachyonic mode which is determined by an
inhomogeneous eigenstate of the charge-1 projection operator (6.80):

(Pe ◦ φ)
(
x⊥

)= φ
(
x⊥

)
. (6.81)

The solution to this equation is a general periodic Abrikosov-like configuration [61]
which is given, up to a proportionality coefficient, by (6.50): φ(x⊥)∝ ρ(x⊥). One
can also show [28] that there are no unstable modes for the axial mesons and, in
accordance with (6.36), for B-longitudinal components of the ρ mesons. Thus, we
set the corresponding expectation values to zero.

For the sake of simplicity, we set in (6.50) all coefficients Cn equal, Cn = φ0,
and evaluate certain basic quantities for the simplest square lattice (6.17). As we
have mentioned, despite different visual appearances of the square and equilateral
triangular lattices, Fig. 6.3, the corresponding bulk quantities (as, for example, the
energy density) evaluated at these condensate solutions are almost the same as the
difference between them lies within (sometimes, a fraction of) percents.

The leading, quadratic and quartic terms in the effective potential for the square
lattice solution (6.17) of the eigenvalue equation (6.81) are given by

V =√
2

(
1

GB

− 2Nc|eB|
9π2

)
|φ0|2 +C0

|eB|Nc

2π2m2
|φ0|4, 1

GB

= 1

GV

− 8

9GS

,

(6.82)

where C0 ≈ 1.2 is a numerical (geometrical) factor. If the magnetic field ex-
ceeds certain critical strength,6 eBNJL

c = 9π2/(2NcGB)∼ 1 GeV2, then the poten-
tial (6.82) becomes unstable towards a spontaneous creation of the B-transverse ρ-
meson condensates with the tachyonic mode ρ−

1 (x
⊥) = −iρ−

2 (x
⊥) = φ(x⊥) [and,

respectively, ρ+
1 (x

⊥)= iρ+
2 (x

⊥)= φ∗(x⊥)], where φ(x⊥) is a solution of (6.81).

6.3.5.2 Electromagnetically Superconducting Ground State in the NJL Model

In the magnetic field background, the effective ρ-meson potential in the NJL
model (6.82) has the same Ginzburg–Landau form as the potential (6.37) for the
ρ-meson field in the ρ-meson electrodynamics (6.27). If the magnetic field exceeds
the critical value, B � BNJL

c , then the ρ-meson condensate emerge. In terms of the
quark fields the new vector quark–antiquark condensates have the following form:

〈ūγ1d〉 = −i〈ūγ2d〉 = φ0(B)

GV

K

(
x1 + ix2

LB

)
, (6.83)

6We have estimated the critical field only approximately since the phenomenological values of the
NJL parameters GS,V are not known precisely [76]. Moreover, subtleties of the renormalization
of the effective dimensionally reduced (1 + 1)-dimensional theory embedded in 3 + 1 dimensions
provide us with an additional uncertainty.
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where the function K(z) is given in (6.17). The magnitude and global phase θ0 of
the condensate (6.83) are determined by the following formula:

φ0(B)= eiθ0Cφmq(B)

(
1 − BNJL

c

B

)1/2

for B >BNJL
c . (6.84)

Here Cφ ≈ 0.51 is a numerical prefactor and the B-dependent quark mass mq is
given in (6.77). At B < BNJL

c the ρ-meson condensate (6.84) is zero. The super-
conducting phase transition at B = Bc is of the second order with the critical expo-
nent 1/2, similarly to the phase transition in the ρ-meson electrodynamics (6.27).

The quark condensates (6.83) have the quantum numbers of the ρ mesons. They
form an inhomogeneous ground state identical to the one found in the ρ-meson
electrodynamics (6.50). It is very interesting to notice that the ground state in the
NJL model (6.64), determined by the integral equation (6.81), and the ground state
in the ρ-meson electrodynamics (6.27), determined by the differential equation of
motion (6.46), have the same functional form (6.50).

The vacuum state (6.83) of the NJL model is superconducting. The validity of
the anisotropic London equation (6.56) for the quarks’ electric current,

Jμ(x)=
∑

f=u,d qf
〈
ψ̄f γ

μψf

〉≡− tr
[
γ μQ̂S(x, x)

]
, (6.85)

can be shown in a linear-response approach using retarded Green functions [28]:

∂〈J3〉(x‖)
∂x0

− ∂〈J0〉(x‖)
∂x3

=− 2Cq

(2π)3
e3(B −BNJL

c

)
E3 for B >BNJL

c , (6.86)

where Cq ≈ 1 is a numerical prefactor and at B < Bc the right hand side of (6.86)
is zero. For the sake of simplicity, in (6.86) we have averaged the electric charge
density J 0 and the electric current J z ≡ J 0 over the transverse plane (6.60).

Apart from the prefactors, the London equations in the NJL model (6.86) and in
the ρ-meson electrodynamics (6.56) are identical. In a linear-response approxima-
tion these laws can be generalized to a completely Lorentz-covariant form [28],

∂μJν − ∂νJμ = γ · (F, F̃ )F̃μν, (6.87)

via the Lorentz invariants (F, F̃ )= 4(B,E) and (F,F )= 2(B2 − E2). Here γ is a
function of the scalar invariant (F,F ) and F̃μν = εμναβF

αβ/2. The local form of
the London laws for the superconductor (6.56) and superfluid (6.58) components
can be rewritten in a similar way.

6.4 Conclusion

We have shown that in sufficiently strong magnetic field the empty space becomes
an electromagnetic superconductor. The new state of the vacuum has many unusual
features [27, 28, 30, 31, 72]:



178 M.N. Chernodub

• The magnetic field induces the superconductivity instead of destroying it.
• The Meissner effect is absent.
• The superconductivity has a strong anisotropy: the electric currents may flow

without resistance only along the axis of the magnetic field.
• The superconductivity appears in the empty space as a result of the restructuring

of the quantum fluctuations due to the presence magnetic field. The overcriti-
cal magnetic field (B > Bc ≈ 1016 T) induces the quark–antiquark condensates
which have the quantum numbers of the electrically charged ρ-mesons.

• The electromagnetic superconductivity is always accompanied by the superfluid
component caused by emergence of a neutral ρ-meson condensate.

• The tandem superconductor-superfluid ground state is inhomogeneous, it resem-
bles an Abrikosov lattice in a mixed state of an ordinary type-II superconductor.

• The charged and neutral vector quark–antiquark condensates have stringlike topo-
logical singularities: superconductor and superfluid ρ vortices, respectively.

• The ground state is characterized by a “kaleidoscopic” lattice made an equilateral
triangular lattice of the superconductor vortices superimposed on the hexagonal
lattice of the superfluid vortices.

The vacuum superconductivity may be considered as a “magnetic” analogue of
the Schwinger effect. Indeed, the Schwinger effect (the vacuum superconductivity)
is the electron-positron pair production (the emergence of the quark–antiquark con-
densates) due to strong electric (magnetic) field background in the vacuum.

The sufficiently strong magnetic fields, of the strength from two to three times
higher than the required critical value (6.1) may emerge in the ultraperipheral heavy-
ion collisions at the Large Hadron Collider (LHC) at CERN [16, 17]. Thus, signa-
tures of the magnetic-field-induced superconductivity have a chance to be found in
laboratory conditions.
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Chapter 7
Lattice QCD Simulations in External
Background Fields

Massimo D’Elia

7.1 Introduction

The properties of strong interactions in presence of strong external fields are of
great phenomenological and theoretical importance. Large magnetic or chromo-
magnetic background fields, of the order of 1016 Tesla, i.e.

√|e|B ∼ 1.5 GeV,
may have been produced at the time of the cosmological electroweak phase tran-
sition [111] and may have influenced the subsequent evolution of the Universe, in
particular the transition from deconfined to confined strongly interacting matter.
Slightly lower magnetic fields are expected to be produced in non-central heavy
ion collisions (up to ∼1015 Tesla at LHC [78, 104]), where they may give rise,
in presence of non-trivial topological vacuum fluctuations, to CP-odd effects con-
sisting in the separation of electric charge along the direction of the background
magnetic field, the so-called chiral magnetic effect [63, 78, 112]. Finally, large
magnetic (or even chromomagnetic [29]) fields are expected in some compact as-
trophysical objects, such as magnetars [50] (see [89] for a recent review on the
subject).

Apart from the phenomenological issues above, there is great interest also at a
purely theoretical level, since background fields can be useful probes to get insight
into the properties of strong interactions and the non-perturbative structure of the
QCD vacuum. A typical example is chiral symmetry breaking, which is predicted
to be enhanced by the presence of a magnetic background, a phenomenon which is
known as magnetic catalysis [3–5, 14, 19, 42, 51, 52, 58, 64, 70–72, 75, 77, 79–
84, 90, 94, 95, 97–99, 101, 102, 106, 115].

Such interest justifies the large efforts which have been dedicated in the recent
past to this subject by a variety of different approaches, most of which are reviewed
in the present volume. Lattice QCD represents, in general, the ideal tool for a first
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principle investigation of the non-perturbative properties of strong interactions. This
is particularly true for the study of QCD in presence of a strong external magnetic or
chromomagnetic field, since no kind of technical problem, such as a sign problem,
appears, preventing standard Monte-Carlo simulations, as it happens instead at finite
baryon chemical potential.

Similarly to the continuum theory, the magnetic field is introduced on the lat-
tice in terms of additional U(1) degrees of freedom (see Sect. 7.2.1), which are not
directly coupled to the original SU(3) link variables and affect quark propagation
by a modification of the covariant derivative (i.e. the fermion matrix). The fermion
determinant, contrary to the case of a baryon chemical potential μB or of an electric
background field, is still real and positive, allowing for a probabilistic interpretation
of the path integral measure. Lattice studies including the presence of electromag-
netic fields have been done since long, originally with the purpose of studying the
electromagnetic properties of hadrons [6, 7, 20, 47–49, 88, 108–110]. The introduc-
tion of a chromomagnetic field requires a different approach, since in this case the
background variables are strictly related to the quantum gluon degrees of freedom:
a standard procedure is that defined in the framework of the lattice Schrödinger
functional [11, 30–37, 85, 86] (see Sect. 7.2.2).

The recent interest about external field effects in the QCD vacuum and around the
deconfining transition has stimulated lattice investigations by many groups [1, 15–
17, 22–28, 44, 45, 74, 87, 114]. Several studies have followed a quenched or par-
tially quenched approach, considering only the effect of the magnetic background
on physical observables, i.e. on quarks propagating in the background of the given
magnetic field and of non-Abelian gauge configurations, the latter being sampled
without taking into account the magnetic field.

However, other studies have shown that the electromagnetic background can
have, via quark loop effects, a strong influence also on the distribution of non-
Abelian fields, thus requiring an unquenched approach. A considerable contribu-
tion to magnetic catalysis appears to be related to gluon field modifications [45];
the magnetic field clearly affects also gluonic observables, like the plaquette [74]
or those typically related to confinement/deconfinement, like the Polyakov loop
[15, 44, 74]. That claims for a more systematic investigation about the effects of
electromagnetic backgrounds on the gluonic sector of QCD and about the possible
interplay between magnetic and chromomagnetic backgrounds, which could have
many implications both at a theoretical and at a phenomenological level (e.g. for
cosmology or heavy ion collisions).

The review is organized as follows. In Sect. 7.2 we discuss the formulation of
QCD in external fields, considering both the case of an electromagnetic and of a
chromomagnetic field. In Sect. 7.3 we review studies regarding vacuum proper-
ties in external fields, in particular concerning magnetic catalysis. Section 7.4 is
devoted to a discussion about the influence of magnetic or chromomagnetic back-
ground fields on deconfinement and chiral symmetry restoration. In Sect. 7.5 we
extend the discussion about the influence that electromagnetic fields may have on
the gluonic sector, with a particular emphasis on symmetries and on suggestions for
future studies on the subject.
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7.2 Background Fields on the Lattice

In this section we will briefly review the methods which are commonly adopted for
a numerical study of QCD in presence of background fields. There is a difference
between the case of electromagnetic and chromomagnetic backgrounds: in the for-
mer, the external field simply adds new U(1) degrees of freedom which contribute to
quark propagation but are decoupled from the SU(3) degrees of freedom and from
their updating during the Monte-Carlo simulation; in the latter, the background field
is made up of the same degrees of freedom which are dynamically updated during
the simulation, i.e. the SU(3) gauge variables, and one has to follow a Schrödinger
functional approach.

7.2.1 Electromagnetic Fields

A quark field q propagating in the background of a non-Abelian SU(3) gauge field
plus an electromagnetic field is described, in the Euclidean space-time, by a La-
grangian ψ̄(/D +m)ψ , where the covariant derivative

Dμ = ∂μ + igAa
μT

a + iqaμ (7.1)

contains contributions from the non-Abelian gauge field Aμ = Aa
μT

a and from the
Abelian gauge field aμ. Here T a are the SU(3) generators, g is the SU(3) gauge
coupling and q is the quark electric charge.

Going to a discrete lattice formulation, SU(3) gauge invariance is naturally
preserved [113] by requiring that quarks pick up an appropriate non-Abelian
phase when hopping from one site of the lattice to the other, so that the gauge
field Aμ is substituted by the elementary parallel transports Uμ(n), which reduce
to Uμ(n) � 1 + igaAμ(n) as the lattice spacing a vanishes in the continuum
limit.

A gauge invariant quantity involving an antiquark at site n and a quark at site
n + μ̂ is therefore ψ̄(n)Uμ(n)ψ(n + μ̂) (μ̂ is a unit vector on the lattice). The
same approach can be taken for the Abelian field, so that quarks going from site

n to site n+ μ pick up also the Abelian phase uμ(n) = exp(iq
∫ a(n+μ̂)
an

dxμaμ) �
exp(ia q aμ(n)). A possible discretization of the covariant derivative is then

Dμψ → 1

2a

(
Uμ(n)uμ(n)ψ(n+ μ̂)−U†

μ(n− μ̂)u∗μ(n− μ̂)ψ(n− μ̂)
)
. (7.2)

Of course, in presence of different quark species, carrying different electric charges
q , the U(1) part of the covariant derivative, uμ(n), will change from quark to quark.
Therefore, as usual, the discretized version of the fermion action is a bilinear form in
the fermion fields, ψ̄(i)Mi,jψ(j), however the elements of M now belong to U(3)
instead of SU(3).
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7.2.1.1 Magnetic Fields

To take an explicit example, which is directly linked to most of the results that we
discuss in the following, let us consider the finite temperature partition function
of two degenerate quarks, e.g. the u and d quarks, in presence of a constant and
uniform magnetic background field. We shall consider a rooted staggered fermion
discretized version of the theory, in which each quark is described by the fourth root
of the determinant of a staggered fermion matrix:

Z(T ,B)≡
∫

DUe−SG detM
1
4 [B,qu]detM

1
4 [B,qd ] (7.3)

where in the standard formulation

Mi,j [B,q] = amδi,j + 1

2

4∑

ν=1

ην(i)
(
uν(B,q)(i)Uν(i)δi,j−ν̂

− u∗ν(B,q)(i − ν̂)U†
ν (i − ν̂)δi,j+ν̂

)
. (7.4)

DU is the functional integration over the non-Abelian gauge link variables, SG is
the discretized pure gauge action and u(B,q)i,ν are the Abelian links correspond-
ing to the background field; i and j refer to lattice sites and ηi,ν are the staggered
phases. We shall consider two different charges for the two flavors, qu = 2|e|/3 and
qd =−|e|/3. Periodic or antiperiodic boundary conditions along the Euclidean time
direction must be taken, respectively for gauge or fermion fields, in order to define
a thermal theory: the temperature T corresponds to the inverse temporal extension.

A special discussion must be devoted to the issue of spatial boundary condi-
tions. It is well known that, for a given lattice size (which is usually constrained by
the computational power available) periodic boundary conditions in space (for all
fields) are the one which best approximate the infinite volume limit, and are there-
fore the standard choice in lattice simulations. On the other hand, they place some
constraints on the possible magnetic fields [8, 43, 105, 107].

Let us consider a magnetic field directed along the ẑ axis of a three-dimensional
torus, B = Bẑ, and let lx and ly be the torus extensions in the orthogonal directions.
The circulation of aμ along any closed path in the x−y plane, enclosing a region of
area A, is given by Stokes theorem

∮
aμdxμ =AB. (7.5)

On the other hand it is ambiguous, on a closed surface like a torus, to state which
is the region enclosed by a given path: we can choose the complementary region of
area lx ly −A and equally state

∮
aμdxμ = (A− lx ly)B. (7.6)
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The ambiguity can be resolved either by admitting discontinuities for aμ somewhere
on the torus, or by covering the torus with various patches corresponding to differ-
ent gauge choices. However it is essential to guarantee that the ambiguity be not
visible by any charged particle moving on the torus, i.e. the phase factor picked up
by a particle of charge q moving along the given path must be a well defined quan-
tity. Such requirement leads to magnetic field quantization, indeed it is satisfied
only if

exp(iqBA)= exp
(
iqB(A− lx ly)

)
(7.7)

i.e. if

qB = 2πb

lxly
(7.8)

where b is an integer. It is interesting to notice that this is exactly the same argu-
ment leading to Dirac quantization of the magnetic monopole charge (in that case
the closed surface is any sphere centered around the monopole). The quantization
rule depends on the electric charges of the particles moving on the torus,1 in our
case it is set by the d quark, which brings the smallest charge unit qd = −|e|/3,
hence

|e|B = 6πb

lxly
= 6πb

a2LxLy

(7.9)

where Lx and Ly are the dimensionless lattice extensions in the x, y direc-
tions.

A possible choice for the gauge links, corresponding to the continuum gauge
field

ay = Bx; aμ = 0 for μ= x, z, t (7.10)

is the following:

uy(B,q)(n)= eia2qB nx ; uμ(B,q)(n)= 1 for μ= x, z, t. (7.11)

The smoothness of the background field across the boundaries and the gauge invari-
ance of the fermion action are guaranteed if appropriate boundary conditions are
taken for the fermion fields along the x direction [8], that corresponds to modifying
the U(1) gauge links in the x direction as follows:

ux(B,q)(n)
∣∣
nx=Lx = e−ia2qLxB ny . (7.12)

A different condition on the possible magnetic field values explorable on the
lattice is placed by the ultraviolet (UV) cutoff, i.e. by discretization itself. All the
information about the presence of the magnetic field is contained in the phase factors

1Of course we assume all particles living on the torus to carry integer multiples of some elementary
electric charge, otherwise a consistent quantization of the magnetic field would not be possible.
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picked up by particles moving on the lattice. There is a minimum such path on a
cubic lattice, the plaquette; in particular, a particle moving around a x−y plaquette
takes a phase factor

exp
(
iqa2B

)= exp

(
i

2πb

LxLy

)
(7.13)

and all other possible phase factors, corresponding to different paths, are positive
integer powers of that. It is evident that the phase factor in (7.13) cannot distinguish
magnetic fields such that qa2B differs by multiples of 2π : one would need smaller
paths to do that, which are unavailable because of the UV cutoff. Hence it is possible
to define a sort of first Brillouin zone for the magnetic field

− π

a2
< qB <

π

a2
(7.14)

and we expect that physical quantities must be periodic in qB with a period 2π/a2;
such periodicity is unphysical and one should always be cautious when exploring
magnetic field values which get close to the limiting values in (7.14).

Another issue which is relevant to the lattice implementation of background
fields regards translational invariance. The magnetic field B breaks the translational
invariance of the continuum torus in the x−y directions explicitly [8]. That is clearly
seen by looking at the U(1) Wilson lines (holonomies) Wx and Wy , i.e. the U(1)
parallel transports along straight paths in the x or y direction and closed around the
torus by periodic boundary conditions, which are equal to

Wx = exp(−iqB lx y); Wy = exp(iqB ly x) (7.15)

as can be verified explicitly by means of the elementary parallel transports given
in (7.11) and (7.12). The Wilson lines therefore leave only a residual symmetry
corresponding to discrete translations by multiples of

ãx = 2π

qBly
= lx

b
; ãy = 2π

qBlx
= ly

b
; (7.16)

note that Wilson lines are gauge invariant quantities, hence the breaking of transla-
tional invariance is not a matter of gauge choice.

However, on a discrete cubic lattice, translational invariance is already broken to
a discrete residual group, corresponding to multiples of the lattice spacing a, hence
for a lattice theory in presence of a constant magnetic field, translational invariance
is further reduced to discrete steps which are multiples of both ãx/y and a. Since
a/ãx/y = b/Lx/y , lattice translational symmetry is preserved for b multiple of Lx/y ,
but is strongly reduced or completely lost for different values, despite the fact that
the magnetic background field is uniform.

We have discussed so far about one possible lattice implementation of the
fermionic action in presence of a magnetic field, (7.2) and (7.4), which is based on
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the simplest symmetric discretization of the covariant derivative, which takes quarks
from nearest neighbours sites, rotating them by a non-Abelian and an Abelian phase,
both corresponding to the simplest straight path, i.e. the elementary parallel trans-
port. Such kind of discretization has been adopted in many lattice studies, see
e.g. [44, 45, 74].

It is well known, however, that different, improved discretizations can lead to
an improved convergence towards the continuum limit. Improvement can proceed
in different ways: one can consider less simple discretizations of the derivative,
involving fermion fields which are not nearest neighbours; one can also consider
and average over paths different from the simplest straight one, so as to smear out
UV fluctuations: this is idea adopted, for instance, in [15–17], where stout smearing
has been used. If one considers lattice derivatives involving non-nearest neighbours
lattice sites, one must include appropriate composite U(1) parallel transports, so as
to preserve the U(1) gauge invariance of the fermion action. Which paths, however,
and how the chosen paths are related to the paths considered for the non-Abelian
phases, is a question which leaves much freedom.

Let us consider, for simplicity, a gauge invariant bilinear term involving nearest
neighbour quarks, ψ̄(n)Uμ(n)ψ(n+ μ̂), which reduces to ψ̄(x)(1 + aDμ)ψ(x)+
O(a2) in the naïve continuum limit. We can choose a more general, improved such
term, involving different paths, i.e. we can modify

ψ̄(n)Uμ(n)ψ(n+ μ̂)→ ψ̄(n)

( ∑

C(n,n+μ̂)
αCUC

)
ψ(n+ μ̂) (7.17)

where C(n,n+ μ̂) are a set of paths connecting n to n+ μ̂ (e.g. for smearing one
includes staples), UC are the parallel transports taken along those paths and the
coefficients αC are chosen in order to keep the naïve continuum limit unchanged,
up to O(a2). Let us now consider the inclusion of a U(1) external field: a possible
prescription is that, as quarks explore all considered paths C, taking the associated
non-Abelian phases, they also take the corresponding U(1) phases along the same
paths, i.e.

ψ̄(n)Uμ(n)uμ(n)ψ(n+ μ̂)→ ψ̄(n)

( ∑

C(n,n+μ̂)
αCUCuC

)
ψ(n+ μ̂). (7.18)

However, different prescriptions can be taken and, in general, the sum over U(1)
phases can be decoupled from that on SU(3) phases, without affecting gauge in-
variance. We can consider for example

ψ̄(n)

( ∑

C(n,n+μ̂)
αCUC

)( ∑

C′(n,n+μ̂)
α′
C′u′C

)
ψ(n+ μ̂) (7.19)

where C′ is a different set of paths. This is the choice made, for instance, in [15–
17], where stout smearing is applied to SU(3) links, while the U(1) phases are
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left unchanged (i.e. C′ runs over the elementary straight path only); that seems a
reasonable choice, since the U(1) field is already a classical smooth field.

It can be easily shown that for a uniform background and for free fermions,
i.e. in absence of non-Abelian fields, all possible different choices of paths for
the U(1) term are equivalent, apart from a global phase stemming from interfer-
ence (Aharonov-Bohm like) effects among the different paths. In presence of non-
Abelian fields, however, this is in general not true and it would be interesting to
explore the systematics connected to different choices.

A final comment concerns the issue of possible renormalizations related to the in-
troduction of the external magnetic field. The quantity entering the covariant deriva-
tive and quark dynamics is the combination qaμ, which does not renormalize. The
situation is clearer in the lattice formulation, where the objects carrying informa-
tion about the external field are the parallel transports of the U(1) gauge field along
closed loops (think of the loop expansion of the fermionic determinant). Such phase
factors are gauge inviariant quantities and cannot renormalize. The only remaining
possibility is that the lattice spacing a itself depends on the magnetic field B , be-
cause of external field effects at the scale of the UV cutoff, so that the physical area
enclosed by a given loop changes, leading to an effective external field renormal-
ization. Such possibility, however, has been excluded by a detailed study presented
in [15], showing that a does not depend on B within errors.

7.2.1.2 Electric Fields

After the inclusion of a background magnetic field, the /D operator is still anti-
Hermitean and it still anticommutes with γ5, hence its spectrum is purely imaginary
with non-zero eigenvalues coming in conjugate pairs, so that det(/D +m) > 0 and
Monte-Carlo simulations are feasible, i.e. the path integral measure can be inter-
preted as a probability distribution function over gauge configurations.

The situation is different in presence of background electric fields [6, 7, 100, 108–
110]. Let us consider a constant electric field E = Eẑ, there are various possible
choices for a corresponding vector potential in Minkowski space, like (At =−Ez,
Ai = 0) or (Az = −Et,Ax = Ay = At = 0). In every case, after continuation to
Euclidean space time, t →−i τ and At → iA0, the vector potential becomes purely
imaginary, thus destroying the anti-Hermitean properties of the Dirac matrix.

That means that the fermion determinant is complex and numerical simulations
are not feasible. This “sign problem” has a very strict relation with the usual sign
problem which is encountered in the study of QCD at finite baryon chemical poten-
tial, indeed also a baryon chemical potential can be viewed as a constant background
potential A0 �= 0. As for finite density QCD, also in this case a possible way out is to
consider a purely imaginary electric field: the lattice formulation is then completely
analogous to that of a magnetic field. For example, a purely imaginary electric field
along the ẑ direction can be formulated on the lattice following (7.11) and (7.12),
by just replacing (x, y)→ (z, t) and B → Im(E). A similar approach, followed by
analytic continuation to real electric fields, is that usually adopted for the study of
hadron electric polarizabilities.
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7.2.2 Chromomagnetic Background Fields

As we have discussed above, the implementation of an electromagnetic background
field amounts to adding extra U(1) degrees of freedom to the Dirac matrix: the
added U(1) field is a classic, static field which is decoupled from the SU(3) gauge
field appearing in the functional integration. The situation is different for a color
background field, since in this case one would like to consider quantum fluctua-
tions of the non-Abelian field around a given background, e.g. a static ad uniform
chromomagnetic field, however the functional integration over gauge variables can
destroy information about the background field completely.

A common way to approach the problem is based on the Schrödinger functional
approach [85, 86]: one considers functional integration over Euclidean space-time
with fixed temporal boundaries, τ1 and τ2, and over gauge configurations which are
frozen to particular assigned values, Aext1

i (x, τ1) and Aext2
i (x, τ2), at the initial and

final times. This is related to the quantum amplitude of passing from the field eigen-
state |Aext1

i 〉 to the field eigenstate |Aext2
i 〉 in the time (τ2 − τ1). The amplitude is

dominated, in the classical limit, by the gauge configuration which has the mini-
mal action among those with the given boundary conditions; functional integration
can then be viewed as an integration over quantum fluctuations around this classical
background field.

In Refs. [30–35, 37] such formalism has been implemented on the lattice by
considering equal initial and final fields, Aext1

i (x, τ1) = Aext2
i (x, τ2) = Aext

i (x). In
this way one can define a lattice gauge invariant effective action Γ [Aext] for the
external background field Aext:

Γ
[
Aext]=− 1

Lt

ln

{
Z [Aext]
Z [0]

}
(7.20)

where Lt is the lattice temporal extension and Z [Aext] is the lattice functional in-
tegral

ZT

[
Aext] =

∫

Uk(Lt ,x)=Uk(0,x)=U ext
k (x)

DU Dψ Dψ̄e−(SW+SF )

=
∫

Uk(Lt ,x)=Uk(0,x)=U ext
k (x)

DUe−SW detM, (7.21)

where SG and SF are the pure gauge and fermion action respectively, M is the
fermionic matrix. The functional integration is performed over the lattice links, with
the constraint

Uk(x, xt = 0)=Uk(x, xt = Lt)=U ext
k (x), (k = 1,2,3), (7.22)

where U ext
k (x) are the elementary parallel transports corresponding to the continuum

gauge potential Aext(x)= Aext
a (x)λa/2; fermion fields as well as temporal links are

left unconstrained. Z [0] is defined as in (7.21), but adopting a zero external field.
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In the following we shall consider the case of an Abelian static and uniform chro-
momagnetic background field: in this case one can choose λa belonging to the Car-
tan subalgebra of the gauge group, e.g. λa = λ3, while the explicit form of Aext

a (x),
hence of the lattice links, can be chosen in the same way as for a standard magnetic
field, see (7.10), (7.11) and (7.12). In this case, as well as in other cases in which the
static background field does not vanish at spatial infinity, one usually imposes also
that spatial links exiting from sites belonging to the spatial boundaries are fixed, at
all times, according to (7.22): that corresponds to the requirement that fluctuations
over the background field vanish at infinity.

Notice that a colored background field influences directly, and through the same
gauge coupling g, the dynamics of both quark and gluon fields. Indeed numerical
simulations in presence of colored background fields have considered originally just
the case of pure Yang-Mills theories.

Differently from the usual formulation of the lattice Schrödinger functional
[85, 86], where a cylindrical geometry is adopted, the effective action defined by
(7.20) assumes an hypertoroidal geometry, i.e. the first and the last time slice are
identified and periodic boundary conditions are assumed in the time direction for
gluon fields. For finite values of Lt , having adopted also the prescription of anti-
periodic boundary conditions in time direction for quark fields, (7.21) can be in-
terpreted as the thermal partition function ZT [Aext] in presence of the background
field Aext, with the temperature given by T = 1/(aLt ). The gauge invariant effective
action, (7.20), is then replaced by the free energy functional:

F
[
Aext]=− 1

Lt

ln

{
ZT [Aext]
ZT [0]

}
. (7.23)

7.3 Vacuum Properties in Background Fields: Magnetic
Catalysis

One of the most significant effects that a magnetic background field can induce on
the QCD vacuum, as well as on other systems characterized by the chiral properties
of fermion fields, is known as magnetic catalysis. It consists in an enhancement of
chiral symmetry breaking, or spontaneous mass generation, which can be thought
as related to the dimensional reduction taking place in the dynamics of particles
moving in a strong external magnetic field (see [101] for a recent comprehensive
review).

The enhancement of chiral symmetry breaking reveals itself in a dependence of
the chiral condensate 〈ψ̄ψ〉 on the magnetic field B; there are several predictions
for the actual functional form 〈ψ̄ψ〉(B), depending on the adopted model, however
some general features can be summarized as follows. By charge conjugation sym-
metry, 〈ψ̄ψ〉 must be an even function of B , hence, if the theory is analytic around
B = 0, one expects that 〈ψ̄ψ〉 depends quadratically on B in a regime of small
enough fields. The analyticity assumption is violated in presence of charged mass-
less fermions, indeed chiral perturbation theory [102] predicts a linear behavior in
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B if mπ = 0; such linear dependence is recovered in computations at mπ �= 0, in the
limit eB � m2

π [42]. Different power behaviors in B can be found in other model
computations. In the following we shall make use of the relative increment of the
chiral condensate, defined as

r(B)= 〈ψ̄ψ〉(B)− 〈ψ̄ψ〉(B = 0)

〈ψ̄ψ〉(B = 0)
. (7.24)

Early lattice investigations of magnetic catalysis have been done in the quenched
approximation, both for SU(2) [25, 26] and for SU(3) [23] gauge theories. In this
case, the chiral condensate is computed by inverting a Dirac operator which con-
tains the contribution from the external field, but on gauge configurations sampled
in absence of dynamical fermion contributions. The outcome is that r(B) ∝ B for
SU(2) [25, 26], while r(B)∝ Bν , with ν ∼ 1.6, for SU(3) [23].

On the other hand, the inclusion of contributions from dynamical fermions mov-
ing in the background field may produce significant effects. The chiral condensate
is related, via the Banks—Casher relation [18], to the density ρ(λ) of eigenvalues
of the Dirac operator around λ = 0: 〈ψ̄ψ〉 = πρ(0). Such density can change, as
a function of B , both because the Dirac operator definition itself changes, and be-
cause the distribution of gauge configurations, over which the operator is computed,
is modified by dynamical fermion contributions. Studies of magnetic catalysis in-
volving full dynamical simulations have been reported in [16, 45], for QCD with 3
colors, and in [74] for QCD with 2 colors.

In Ref. [45], where a standard staggered fermion and plaquette gauge dis-
cretization has been adopted, corresponding to a pseudo-Goldstone pion mass
mπ ∼ 200 MeV, an attempt has been made to separate the contributions to mag-
netic catalysis coming from the modification of the Dirac operator from those com-
ing from the modified gauge field distribution: such contributions have been named
“valence” and “dynamical”, respectively. One can show that such separation can
be done consistently in the limit of small external fields. Indeed, let us define the
quantities

〈ψ̄ψ〉val
u/d(B) ≡

∫
DUP[m,U,0]Tr

(
M−1[m,B,qu/d ]

)
(7.25)

〈ψ̄ψ〉dyn
u/d(B) ≡

∫
DUP[m,U,B]Tr

(
M−1[m,0, qu/d ]

)
(7.26)

and, from those, the average (over flavor) quantities 〈ψ̄ψ〉val and 〈ψ̄ψ〉dyn; P is the
probability distribution for gauge fields (including quark loop effects) and M is the
fermion matrix. In the first case, one looks at the spectrum of the fermion matrix
which includes the magnetic field explicitly, but is defined on non-Abelian config-
urations sampled with a measure DUP[m,U,0] which, even including dynamical
fermion contributions, is taken at B = 0 (partial quenching). In the second case the
measure term takes into account the external field, which is however neglected in the
definition of the fermion matrix. From 〈ψ̄ψ〉val(B) and 〈ψ̄ψ〉dyn(B) we can define
the corresponding quantities rval/dyn.
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Fig. 7.1 We show the
relative increment r(B) (see
(7.24)) as a function of |e|B
for Nf = 2 QCD with
mπ ∼ 200 MeV. Data are
reported separately for the u
and d quark condensates, as
well as for their average,
together with a best fit
according to the functional
dependence inspired by chiral
perturbation theory [42].
Figure taken from [45]

In the limit of small fields, B acts as a perturbation for both the measure term
P[m,U,B] and the observable Tr(M−1[m,B,qu/d ]): assuming quadratic correc-
tions in B (however this is not an essential assumption), one can write, configuration
by configuration:

P[m,U,B] = P[m,U,0] +CB2 +O
(
B4) (7.27)

and

Tr
(
M−1[B])= Tr

(
M−1[0])+C′B2 +O

(
B4) (7.28)

where C and C′ depend in general on the quark mass and on the chosen configura-
tion. Putting together the two expansions, one obtains [45]

r(B)= rval(B)+ rdyn(B)+O
(
B4), (7.29)

therefore, at least in the limit of small fields, the separation of magnetic catalysis in
a valence and a dynamical contribution is a well defined concept.

In Fig. 7.1 we report data obtained in [45] for the relative increment of the u and
d quark condensates and for their average, as a function of |e|B . Magnetic catalysis
is quite larger for the u quark with respect to the d quark: this is expected on the
basis of the larger electric charge of the u quark. Regarding their average, one ob-
serves that a functional dependence inspired by chiral perturbation theory [42] fits
well data, when taking into account the unphysical quark mass spectrum considered
in [45]. A simple quadratic dependence describes well data in the regime of small
background fields, approaching a linear behavior for larger fields, while saturation
effects starts to be visible as

√|e|B reaches the scale of the UV cutoff, which is quite
low for the lattice setup used in [45], a−1 ∼ 0.7 GeV. Regarding the separation into
valence and dynamical contributions, Fig. 7.2, taken again from [45], shows that it
is indeed well defined in a significant range of magnetic fields, where the two con-
tributions are roughly additive, in the sense that their sum gives back the full signal,
as expected at least in the limit of small fields. Moreover, from Fig. 7.2 one learns
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Fig. 7.2 Relative increment
of the average of the u and d
quark condensates as a
function of the magnetic field.
r(B), rval(B), rdyn(B) and
rval(B)+ rdyn(B) are
reported separately.
From [45]

that the dynamical contribution is roughly 40 % of the total signal, at least for the
discretization and quark mass spectrum adopted in [45]: this is an important con-
tribution, which is larger than other usual unquenching effects, which are typically
of the order of 20 %, and reflects a significant modification in the distribution of
gauge fields, induced by the magnetic background field, which should be further
investigated by future studies.

A new investigation of magnetic catalysis for the QCD vacuum has been done
recently [16], making use of an improved gauge and (stout) rooted staggered dis-
cretization of the theory: results for the average increment of the u and d quark
condensates have been reported for Nf = 2 + 1 flavors (i.e. including also strange
quark contributions), adopting physical quark masses and after extrapolation to the
continuum limit. Also in this case one observes, for the relative increment r(B) (see
Fig. 1 of Ref. [16]), a quadratic dependence on |e|B for small external fields, fol-
lowed by an almost linear dependence as |e|B �m2

π ; a nice agreement is found with
predictions from chiral perturbation theory and from PNJL models [69], at least for
not too large fields. It is interesting to notice that, in the regime of small fields, the
results of [45] and those of [16] are compatible with each other if they are rescaled
by a factor m2

π (which is different in the two studies):2 the prediction from chiral
perturbation theory is indeed, in the limit of small fields [42, 45]:

r(B)� (|e|B)2
96π2F 2

πm
2
π

. (7.30)

The authors of [74], instead, have presented an investigation of magnetic cataly-
sis for QCD with two colors and 4 staggered flavors, which are degenerate both in
mass and electric charge: that permits, contrary to Refs. [16, 45], to avoid rooting
and the possible systematic effects related to it. The lattice discretization is stan-
dard, as in [45], with also a similar range of pseudo-Goldstone pion masses. Results

2The author thanks G. Endrodi for giving him access to the continuum extrapolated data of [16].
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are qualitatively similar to those obtained in [16, 45], however the authors try also
an extrapolation to the chiral limit, thus verifying the prediction [102] for a linear
dependence on |e|B in such limit.

Till now we have discussed about magnetic catalysis in the QCD vacuum, i.e.
in the low temperature, deconfined phase, where a consistent picture emerges, both
from model and lattice computations. The situation is less clear as one approaches
the high temperature, deconfined regime: results from [15, 16] have shown that the
growth of the chiral condensate with the magnetic field may stop and even turn into
an inverse magnetic catalysis at high enough temperatures; such effect may have a
possible interpretation based on the effects of a strong magnetic field on gluody-
namics (see [66, 90, 101] and the discussion in Sect. 7.5). Inverse magnetic cataly-
sis has been predicted by some model computations [94, 95], however in a regime
of low temperature and high baryon density, which is different from that explored
in [15, 16]; recently a possible explanation has been proposed according to which
inverse catalysis derives from dimensional reduction induced by the magnetic field
on neutral pions [62]. On the other hand, the lattice studies reported in [44, 74] do
not show such effect, reporting instead for standard magnetic catalysis at all ex-
plored temperatures. We will comment on the possible origin of such discrepancies
in the following section, where we discuss about the effects of strong external fields
on the QCD phase diagram.

Finally, among the studies aimed at clarifying the effects of strong magnetic
fields on chiral dynamics, we mention those addressing the determination of the
magnetic susceptibility of the chiral condensate, both in quenched [23, 27] and in
unquenched QCD [17], which is part of the total contribution to the magnetic sus-
ceptibility of the QCD vacuum. In particular, recent unquenched results [17] show
that such contribution is of diamagnetic nature.

7.4 QCD Phase Diagram in External Fields

Similarly to what happens with other external parameters, like a finite baryon chemi-
cal potential, the introduction of a background field, either magnetic of chromomag-
netic, can modify the phase structure of QCD. The interest in such issue is theoret-
ical, on one side, since a background field can be viewed as yet another parameter
of the QCD phase diagram, which can help in getting a deeper understanding of
the dynamics underlying deconfinement and chiral symmetry restoration. There is
however also great phenomenological interest, since strong background fields may
be relevant to the cosmological QCD transition, to heavy ion collisions and to the
physics of some compact astrophysical objects. The main questions regarding the
QCD transition that one would like to answer can be summarized as follows:

(1) do deconfinement and chiral symmetry restoration remain entangled, or is a
strong enough magnetic field capable of splitting the two transitions?

(2) does the (pseudo)critical temperature depend on the background field strength,
and how?
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Fig. 7.3 Behavior of the
chiral condensate and of the
Polyakov loop, as a function
of the inverse gauge coupling
β and for different magnetic
field quanta b, on a 163 × 4
lattice and for a pion mass
mπ ∼ 200 MeV. Figure taken
from [44]

(3) does the nature of the transition depend on the background field strength?
(4) does any new, unexpected phase of strongly interacting matter emerge for strong

enough background fields?

Many model computations exist, which try to answer those questions [2, 9, 10,
13, 21, 38, 55–57, 59–61, 65, 67, 68, 76, 91, 93, 96, 103], in the following we
will discuss results based on lattice simulations. The focus will be on aspects re-
garding deconfinement and chiral symmetry restoration, leaving aside other issues,
like the possible emergence of a superconductive phase for strong enough magnetic
fields [22, 39–41, 73].

7.4.1 Deconfinement Transition in a Strong Magnetic Background

Investigating the effects of a background magnetic field on thermodynamics and
on the phase diagram of QCD necessarily requires an approach in which the pres-
ence of the magnetic field is taken into account at the level of dynamical fermi-
ons.

A first study along these lines has been presented in [44], where finite temper-
ature QCD with two degenerate flavors has been simulated in presence of a con-
stant, uniform magnetic background. A standard rooted staggered discretization (see
(7.3)) and a plaquette gauge action have been adopted, with a lattice spacing of the
order of 0.3 fm, and different quark masses, corresponding to a pseudo-Goldstone
pion mass ranging from 200 MeV to 480 MeV, with magnetic fields going up to
|e|B ∼ 0.75 GeV2.

Some results from [44] are reported in Figs. 7.3, 7.4, 7.5 and 7.6. In particu-
lar, Fig. 7.3 shows the behavior of the chiral condensate and of the Polyakov loop
as a function of the inverse gauge coupling β , for the lowest pion mass explored
(mπ ∼ 200 MeV) and for various magnetic fields (expressed in units b of the mini-
mum quantum allowed by the periodic boundary conditions). Remember that the
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Fig. 7.4 Disconnected
susceptibility of the chiral
condensate as a function of
the inverse gauge coupling β
and for different magnetic
field quanta b, on a 163 × 4
lattice and for a pion mass
mπ ∼ 200 MeV. Figure taken
from [44]

Fig. 7.5 Polyakov loop
susceptibility as a function of
the inverse gauge coupling β
and for different magnetic
field quanta b, on a 163 × 4
lattice and for a pion mass
mπ ∼ 200 MeV. Figure taken
from [44]

physical temperature, T = 1/Lta(β), is a monotonic, increasing function of β ,
and that, on the 163 × 4 lattice explored in [44], the magnetic field is given by
|e|B = (3πT 2/8) b∼ (0.03 GeV2) b around the transition.

Three facts are evident from Fig. 7.3. The chiral condensate increases, as a func-
tion of B , for all explored temperatures. The inflection points of the chiral conden-
sate and of the Polyakov loop, signalling the location of the pseudo-critical temper-
ature, move together towards higher temperatures as the magnetic field increases,
meaning that deconfinement and chiral symmetry restoration do not disentangle, at
least in the explored range of external fields. The drop (rise) of the chiral conden-
sate (Polyakov loop) at the transition seems sharper and sharper as the magnetic
field increases, meaning that the (pseudo)transition is strengthening.

Such facts are confirmed by Figs. 7.4 and 7.5, where the susceptibilities of the
chiral condensate and of the Polyakov loop are reported, for different values of
the magnetic field: the peaks move to higher β (hence to higher T ) and become
sharper and sharper as B increases, i.e. their height increases and their width de-
creases. The increased strength of the transition is also appreciable from the plaque-
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Fig. 7.6 Plaquette
distribution at the
pseudocritical temperature for
mπ ∼ 200 MeV and for
various different values of the
magnetic field. Figure taken
from [44]

tte (pure gauge action) distribution at the pseudocritical coupling, which is reported
in Fig. 7.6 and which seems to evolve towards a double peak distribution, typical
of a first order transition, as B increases. Such hints for a change in the nature of
the transition, however, have not yet been confirmed by simulations on larger lat-
tices. Regarding the increase in pseudo-critical temperature, we notice that it is quite
modest in magnitude and of the order of 2 % at |e|B ∼ 1 GeV2.

After the exploratory study of Ref. [44], new studies have appeared in the lit-
erature, which have added essential information and also opened new interesting
questions. Let us first consider the investigation reported in [15]. There are three
essential differences, with respect to [44], in the lattice discretization and approxi-
mation of QCD:

(1) still within a rooted staggered fermion formulation, improved gauge (tree level
Symanzik improved) and fermionic (stout link) discretizations have been imple-
mented, and different lattice spacings have been explored, in order to get control
over the continuum limit;

(2) the authors have explored Nf = 2 + 1 QCD, i.e. they have considered strange
quark effects;

(3) a physical quark mass spectrum has been adopted.

Concerning results, instead, the most striking difference with respect to [44]
is that the pseudocritical temperature decreases, instead of increasing, in pres-
ence of the magnetic background, in particular it becomes 10–20 % lower for
|e|B ∼ 1 GeV2. The authors of [15] have put the decrease of the critical tempera-
ture in connection with another unexpected phenomenon that they observe, namely
inverse magnetic catalysis, i.e. the fact that, at high enough temperatures, the chiral
condensate starts decreasing, instead of increasing, as a function of B . A possibility
pointed out in [16] is that inverse catalysis may originate from the gluonic sector,
i.e. the distribution of gluon fields may change, as an indirect effect of the mag-
netic field mediated by quark loops, so as to destroy the chiral condensate. We point
out that the study of [45] has shown instead that, at least at zero temperature, the
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modified distribution of gluon fields contributes to increase magnetic catalysis (dy-
namical contribution), however the situation may indeed be quite different around
and above the deconfinement temperature.

Other aspects pointed out in [44] have instead been confirmed by [15]: in par-
ticular the absence of a clear splitting between deconfinement and chiral symmetry
restoration, induced by the external field, and an increased strength of the transition
at B �= 0, even without evidence for a change of its nature.

A different approach has been followed by the authors of Ref. [74]: they have
explored 2 color QCD, making use of a discretization very close to that adopted
in [44], i.e. with the same gauge and staggered action and a similar range of pion
masses. However, to avoid the possible systematic effects connected with taking
the square or fourth root of the fermionic determinant, they have considered a the-
ory with four degenerate flavors, Nf = 4, all carrying the same mass and electric
charge. Their results are in quite good agreement with those of [44]: deconfine-
ment and chiral symmetry restoration do not split; the transition gets sharper; the
pseudo-critical temperature increases as a function of B and no inverse catalysis is
observed, i.e. the chiral condensate is an increasing function of B for all explored
temperatures. The increase in Tc is also larger than what observed in [44], being of
the order of 10 % at |e|B ∼ GeV2: that can possibly be explained by the fact that
the authors of Ref. [74] make use of 4 flavors, instead of 2, moreover all carrying
the charge of the u quark, hence the influence of the magnetic field on the system
can be larger.

Another interesting aspect, explored in [74], regards the actual fate of chiral sym-
metry above the transition and in presence of the background field. The authors have
explicitly verified, by performing an extrapolation to the chiral limit, that the chi-
ral condensate vanishes in the high temperature phase, i.e. that chiral symmetry
is exact above Tc, also in presence of the magnetic background. It is interesting
to notice that, in the system explored in [74], the magnetic field does not break
any of the flavor symmetries of the theory, since all quarks carry the same electric
charge. However also in the standard case, in which quarks carry different charges,
there are still diagonal chiral flavor generators which commute with the electric
charge matrix and are not broken by the introduction of an external electromag-
netic background field, so that an investigation similar to that performed in [74]
should be done, to enquire about the actual realization of the unbroken symmetries
above Tc.

To summarize, present lattice investigations about the influence of a strong mag-
netic field on the QCD phase diagram have given consistent indications about two
facts: a magnetic field increases the strength of the QCD transition, however it does
not change its nature, at least for |e|B up to 1 GeV2; in the same range of external
fields, no significant splitting of deconfinement and chiral symmetry restoration has
been detected.

There is a controversial issue, instead, regarding the location of the pseudocrit-
ical temperature, Tc, which increases as a function of |e|B according to the results
of [44, 74], while it decreases according to the results of [15]. It is perfectly possi-
ble that various improvements regarding the lattice discretization may turn the very
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slowly increasing function Tc(B) determined in [44] into a decreasing function. The
main point is to understand which aspect is more directly related to the change of
behavior and to the appearance of inverse catalysis. Is it just a problem of lattice dis-
cretization and approach to the continuum limit, or can the difference be traced back
to the larger pion mass used in [44]? Could instead the introduction of the strange
quark explain the differences? We believe that a clear answer to those questions can
be given by considering each single aspect separately, and that the answer will be
important by itself, since it will help clarifying the origin of unexpected behaviors
such as inverse magnetic catalysis.

7.4.2 Deconfinement Transition in a Chromomagnetic
Background

A chromomagnetic background field influences directly gluodynamics, hence it
makes sense to investigate its effects also in pure gauge simulations. A standard
approach to introduce colored background fields has been described in Sect. 7.2.2
and is based on the formalism of the lattice Schrödinger functional [85, 86]: such ap-
proach has been adopted in the literature to study the influence of background fields
both in pure Yang-Mills theories and in full QCD, and for various kinds of back-
ground fields, going from those corresponding to a uniform magnetic field to those
produced by magnetic monopoles [11, 30–37]. In the following we shall consider
the case of a constant background field [31–35].

Like a magnetic field, also a chromomagnetic background field leads to a shift
of both chiral symmetry restoration, signalled by the drop of the chiral condensate,
and of deconfinement, signalled by the rise of the Polyakov loop. The two transitions
move together, moreover it is interesting to notice that the transition point coincides
with the temperature at which the free energy (effective potential) of the background
field shows a sudden change, the background field being screened (not screened) in
the confined (deconfined) phase.

As an example, in Figs. 7.7 and 7.8, taken from [33–35], we show the behavior
of the chiral condensate and of the Polyakov loop versus the inverse gauge coupling,
β , together with the derivative of the free energy with respect to β , f ′(β), which
shows a sharp peak at the same point at which chiral symmetry restoration and
deconfinement take place. Results make reference to simulations of Nf = 2 QCD
on a 323 × 8 lattice, with a standard pure gauge and staggered fermion formulation,
a lattice spacing a � 0.15 fm and a bare quark mass am = 0.075; the value of the
magnetic background field is gB = π/(16a2)∼ 0.35 GeV2.

Present lattice results indicate that, both for pure gauge and full QCD, the tran-
sition temperature decreases in presence of a constant background chromomagnetic
field. This is shown in Fig. 7.9 [33–35], where the critical temperature Tc (expressed
in units of the parameter Λ ∼ 6 MeV), is shown as a function of gB , both for the
pure gauge theory and Nf = 2 QCD. The change in the critical temperature is, in
general, much larger than what happens in presence of an electromagnetic back-
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Fig. 7.7 Peak of the
derivative of the free energy
of the background field with
respect to the inverse gauge
coupling, together with the
chiral condensate, for Nf = 2
QCD and for a background
chromomagnetic field
gB = π/(16a2)∼ 0.35 GeV2.
Figure taken from [33–35]

Fig. 7.8 Peak of the
derivative of the free energy
of the background field with
respect to the inverse gauge
coupling, the Polyakov loop,
for Nf = 2 QCD and for a
background chromomagnetic
field gB = π/(16a2)∼
0.35 GeV2. Figure taken
from [33–35]

ground: this can be interpreted in terms of the fact that a colored background field
directly affects gluodynamics. An extrapolation of lattice results would even hint,
as shown in Fig. 7.9, at the presence of a zero temperature deconfining transition,
for

√
gB of the order of 1 GeV. It would be interesting to investigate this possi-

bility further, in the future, for the possible cosmological and astrophysical impli-
cations it could have. One should repeat the study of [33–35] in presence of more
physical quark masses (with the values adopted in [33–35], mπ is of the order of
400–500 MeV) and closer to the continuum limit, also in order to reach higher val-
ues of the external field.

As a final comment, we notice that [33–35] also reports evidence about magnetic
catalysis induced by the chromomagnetic field. Figure 7.10, in particular, shows
the behavior of the chiral condensate for a few values of gB: it is clear that, at
least around the transition, where data for all external fields are available, the chiral
condensate grows as a function of gB . It is interesting to notice that in this case Tc
decreases anyway, even in presence of normal catalysis, i.e. inverse catalysis does
not seem to be a necessary condition for a decreasing critical temperature, at least
in presence of finite quark masses.
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Fig. 7.9 Dependence of the
critical temperature Tc on the
external chromomagnetic
field for the pure gauge
theory and for Nf = 2 QCD.
Physical quantities are
expressed in terms of the
parameter Λ∼ 6 MeV

Fig. 7.10 Chiral condensate
as a function of the inverse
gauge coupling β for
different values of the
external chromomagnetic
field gB = πnext/(16a2) and
for Nf = 2 QCD. Figure
taken from [33–35]

7.5 More on Gauge Field Modifications in External
Electromagnetic Fields

The lattice results that we have discussed in the previous sections show that an
electromagnetic background field can have a strong influence not only on quark dy-
namics, but also on gluodynamics, even if the interaction is not direct but mediated
by quark loop effects. That does not come completely unexpected, at least in the
strongly interacting, non-perturbative regime. Let us summarize a few facts:

(1) we have shown that large part of magnetic catalysis is due to the modification of
the gauge field distribution (dynamical contribution), i.e. that the increment of
chiral symmetry breaking is lower by about 40 % if gauge field configurations
are sampled without taking into account the background field [45];

(2) it is known, from model computations, that a strong electromagnetic background
can modify gluon screening properties and influence confinement dynamics, re-
ducing the confinement scale [66, 90, 101]: such effects on gluodynamics have
been proposed in [16] as a possible explanation for inverse catalysis;
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(3) lattice computations have also explicitly shown that quantities related to quark
confinement, like the Polyakov loop, are influenced by a background electro-
magnetic field, not only around the transition but also well inside the confined
and the deconfined phases (see as an example the data reported in Fig. 7.2);

(4) the results of [74] have shown that the magnetic field can also induce an asym-
metry in the non-Abelian plaquette values, especially around and above the tran-
sition, with a possible significant effect on the equation of state of the Quark-
Gluon Plasma.

It is surely of great importance to study and understand these effects in a deeper
and more systematic way. Is it possible, for instance, that electromagnetic back-
ground fields may induce chromoelectric or chromomagnetic background fields?
That has been discussed in some recent model studies (see e.g. [66]) and could have
important phenomenological consequences, both for cosmology and astrophysics
and for heavy ion collisions. In the following we would like to discuss how lat-
tice simulations could further contribute to the issue, with an accent on symmetry
aspects.

Let us consider a uniform and constant magnetic background field. In order to
understand some of the gluonic field modifications induced by it, it is interesting to
observe that it breaks explicitly charge conjugation symmetry, and to ask how such
breaking propagates to the gluon sector.

Charge conjugation on gluon fields means Aμ → −Aμ or, at the level of lattice
gauge link variables, Uμ → U∗

μ. Symmetry under it means that a gauge configura-
tion Uμ(x) has the same path integral probability of its complex conjugate U∗

μ(x):

DUP[U ] = DU∗P
[
U∗]. (7.31)

As a consequence, all gluonic gauge invariant quantities, i.e. traces over closed par-
allel transports WC[U ], including plaquettes and Wilson loops, must be real:

〈
WC[U ]〉∗ = 〈

W ∗
C[U ]〉= 〈

WC

[
U∗]〉=

∫
DUP[U ]WC

[
U∗]

=
∫

DU∗P
[
U∗]WC[U ] =

∫
DUP[U ]WC[U ] = 〈

WC[U ]〉 (7.32)

where the first equality holds if the path integral measure is real, the second express
the fact that WC is a trace over a product of links, while the fourth is simply a change
of integration variables. Equation (7.32) may be violated by possible spontaneous
symmetry breaking effects, which may affect some particular loops, as it happens
for the Polyakov loop in the deconfined phase.

In presence of an electromagnetic background field, such property must be lost,
since the breaking of charge conjugation symmetry will propagate from the quark
to the gluonic sector: P[U ] �= P[U∗] because of the contribution from the fermion
determinant. Let us see that more explicitly, considering the particular case of the
trace over a plaquette.



7 Lattice QCD Simulations in External Background Fields 203

The most direct way to look for effective quark contributions to the gauge field
distribution is to consider the loop expansion of the fermionic determinant. If we
write the fermion matrix as M = mf Id +D, where D is the discretization of the
Dirac operator and mf is the bare quark mass, then the following formal expansion
holds:

detM = exp
(
Tr log(mf Id +D)

)∝ exp

(
−

∑

k

(−1)k

k mk
f

TrDk

)
. (7.33)

Dk is made up of parallel transports connecting lattice sites; the trace operator im-
plies that only closed parallel transports will contribute. Moreover, for each con-
tributing loop, there is an equal contribution from its hermitian conjugate. If D is a
standard, nearest neighbour discretization, the first non-trivial term comes for k = 4
and contains a coupling to the plaquette operator, which can be expressed as:

Δβ(mf )

Nc

1

2

(
TrΠμν(x)+ TrΠ†

μν(x)
)= Δβ(mf )

Nc

Re TrΠμν(x) (7.34)

where Δβ(mf ) is a coefficient which depends on mf and on the particular fermion
discretization adopted. The total effect can be viewed as a simple renormalization of
the inverse bare gauge coupling, β → β +∑

f Δβ(mf ), where the sum runs over
flavors.

Let us now consider the effect of an external electromagnetic field. That will
change the definition of D, see e.g. (7.2), so that each loop contribution to the de-
terminant will get a U(1) phase from the external field. In particular, the expression
in (7.34) for plaquettes will be modified into

Δβ(mf )

Nc

1

2

(
eiφμν(x) TrΠμν(x)+ e−iφμν(x) TrΠ†

μν(x)
)

= Δβ(mf )

Nc

(
cos

(
φμν(x)

)
Re TrΠμν(x)− sin

(
φμν(x)

)
Im TrΠμν(x)

)
. (7.35)

The phases φμν are in general non-trivial. For the particular case of a uniform mag-
netic field B in the ẑ direction we have φxy = qf Ba

2, where qf is the quark charge.
This implies that, apart from the case in which there is exact cancellation among
quark flavors carrying equal masses and opposite electric charges (but this does not
happen in real QCD), there will be a non-trivial coupling to the imaginary part of
some plaquette traces, which will then develop a non-zero expectation value. No-
tice that this is exactly what happens also for the Polyakov loop in presence of an
imaginary baryon chemical potential.

It is interesting to understand the meaning of a non-zero expectation value for
the imaginary part of the trace of the plaquette, in terms of continuum quantities.
Remember that, in the formal continuum limit, the plaquette operator is linked to
the gauge field strength Gμν =Ga

μνT
a as follows:

Πμν � exp
(
iGμνa

2). (7.36)
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Considering the expansion of the exponential on the right hand side, the first non-
trivial contribution to the imaginary part of its trace comes from the third order,
which indeed is proportional to

−i TrG3
μν =−i Ga

μνG
b
μνG

c
μν Tr

(
T aT bT c

)= 1

4

(
f abc − idabc

)
Ga
μνG

b
μνG

c
μν

(7.37)

where no sum over μ, ν is understood. A non-zero expectation value for the imag-
inary part of the plaquette, therefore, corresponds to a non-zero charge odd, three
gluon condensate, constructed in terms of the symmetric tensor dabc:

〈
dabcGa

μνG
b
μνG

c
μν

〉 �= 0. (7.38)

Such condensate, which is zero by charge conjugation symmetry in the normal
QCD vacuum, will develop a non-zero value along some directions, e.g. for (μ, ν)=
(x, y) in case of a magnetic field in the ẑ direction, and can be considered as a non-
trivial, charge-odd gluon background induced by the external field. Of course the
effect will be present only for Nc ≥ 3 colors, since for SU(2) all traces are real and
indeed dabc = 0.

The loop expansion of the determinant, examined above, is just a way to show
explicitly that such effects can be present, but cannot be quantitative, since the ex-
pansion is purely formal (apart from the limit of large quark masses). A systematic
investigation can and must be performed in the future by means of lattice simula-
tions.

Similarly to charge conjugation symmetry, one can investigate electromagnetic
backgrounds which break explicitly the symmetry under CP, i.e. such that E ·B �= 0,
and ask how CP violation propagates to the gluon sector, giving rise to an effec-
tive θ parameter. Such phenomenon is in some sense complementary to the chiral
magnetic effect and is related in general to the effective QED-QCD interactions
in the pseudoscalar channel [12, 53, 54, 92]. It has been studied recently by a
first exploratory lattice investigation [46], where numerical simulations at imagi-
nary electric fields plus analytic continuation have been exploited to determine the
susceptibility χCP of the QCD vacuum to CP-odd electromagnetic fields, defined by
θeff � χCP e

2E · B, obtaining χCP ∼ 7 GeV−4 for QCD with two staggered flavors
and mπ ∼ 480 MeV.

Finally, let us discuss a few other lines along which the effects of electromagnetic
background fields on the gluon sector could be further investigated. The first consists
in the determination of the effective action of given gluonic backgrounds, using the
techniques described in Sect. 7.2.2, but in combination with non-trivial electromag-
netic external fields: that would give the possibility of studying if the latter can give
rise to instabilities in the gluon sector, leading to the generation of non-trivial glu-
onic backgrounds (as proposed e.g. in [66]). The second regards the measurement of
glueball masses and screening masses in presence of magnetic backgrounds, which
could give the possibility, for instance, to test the proposal given in [90] about the
lowering of the confinement scale in presence of a strong magnetic field. Finally, it
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would be important to perform a careful investigation about the influence of mag-
netic backgrounds on the QCD equation of state, as proposed in [74].

7.6 Conclusions

Numerical simulations in presence of external fields have been considered since the
early stages of Lattice QCD. The last few years, however, have seen the development
of considerable activity on the subject, which has been driven by the recent inter-
est in theoretical and phenomenological issues regarding the behavior of strongly
interacting matter in magnetic fields.

In this review, after a general overview about the formulation of lattice QCD in
presence of magnetic or chromomagnetic background fields, we have discussed the
present status of lattice studies regarding magnetic catalysis and the QCD phase
diagram. In the low temperature phase, consistent results have been obtained, by
different groups, which confirm magnetic catalysis and the predictions coming from
chiral perturbation theory and some effective models. Good part of the enhancement
of chiral symmetry breaking seems to be associated with modifications of gluon
fields induced by the magnetic field via quark loops. A chromomagnetic background
induces magnetic catalysis as well.

In the high temperature phase, consistent results have been obtained regarding the
fact that a magnetic or chromomagnetic field shifts both chiral symmetry restoration
and deconfinement and that the two transitions do not split, at least for fields up to
O(1) GeV2. A magnetic field also leads to a strengthening of the transition, which
however does not seem to turn into a strong first order, at least for fields up to
O(1) GeV2; it would be interesting however, to further investigate the issue also in
combination with other external parameters, like a baryon chemical potential, since
that could be relevant to the search for a critical endpoint in the QCD phase diagram.

Regarding the shift in the pseudocritical temperature induced by a background
magnetic field, existing studies have shown that a modification of the lattice imple-
mentation of QCD can change the outcome, going from a slight increase (of the
order a few % for |e|B of O(1) GeV2) to a decrease (of the order of 10 % for
|e|B of O(1) GeV2) when an improved discretization and a physical quark mass
spectrum are used; in the latter case one also observes inverse magnetic catalysis,
i.e. a decrease of the chiral condensate as a function of B , in the high temperature,
deconfined phase. A decrease of the pseudocritical temperature is also observed in
presence of a chromomagnetic background field. A remaining question is which
effect is more relevant to explain the discrepancy among different lattice studies,
i.e. whether lattice artifacts, or the unphysical quark spectrum, or both are at its
origin.

One of the aspects that emerges more clearly from present studies is the fact that
gluon fields are strongly modified by external electromagnetic fields, even though
indirectly, by means of dynamical quark loops. We believe that this aspect can and
should be investigated more systematically by lattice simulations: in Sect. 7.5 we
have discussed and suggested a few possible ways to do that by future studies.



206 M. D’Elia

Acknowledgements The author is grateful to P. Cea, L. Cosmai, M. Mariti, S. Mukherjee, F. Ne-
gro and F. Sanfilippo for collaboration on some of topics discussed in this review. He also acknowl-
edges M. Chernodub, G. Endrodi, E. Fraga, K. Fukushima, V. Miransky and M. Ruggieri for many
useful discussions.

References

1. M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou, PoS LAT2009, 181 (2009)
2. N.O. Agasian, S.M. Fedorov, Phys. Lett. B 663, 445 (2008)
3. N.O. Agasian, I.A. Shushpanov, Phys. Lett. B 472, 143 (2000)
4. M.S. Alam, V.S. Kaplunovsky, A. Kundu, J. High Energy Phys. 1204, 111 (2012)
5. T. Albash, V.G. Filev, C.V. Johnson, A. Kundu, J. High Energy Phys. 0807, 080 (2008)
6. A. Alexandru, F.X. Lee, PoS LAT2008, 145 (2008). arXiv:0810.2833 [hep-lat]
7. A. Alexandru, F.X. Lee, PoS LAT2009, 144 (2009). arXiv:0911.2520 [hep-lat]
8. M.H. Al-Hashimi, U.J. Wiese, Ann. Phys. 324, 343 (2009)
9. J.O. Andersen, A. Tranberg, arXiv:1204.3360 [hep-ph]

10. J.O. Andersen, R. Khan, Phys. Rev. D 85, 065026 (2012)
11. S. Antropov, M. Bordag, V. Demchik, V. Skalozub, Int. J. Mod. Phys. A 26, 4831 (2011)
12. M. Asakawa, A. Majumder, B. Muller, Phys. Rev. C 81, 064912 (2010)
13. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providencia, Phys. Rev. D 85, 091901 (2012)
14. A.Y. Babansky, E.V. Gorbar, G.V. Shchepanyuk, Phys. Lett. B 419, 272–278 (1998)
15. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo,

J. High Energy Phys. 1202, 044 (2012)
16. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, arXiv:1206.4205

[hep-lat]
17. G.S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrodi, S.D. Katz, H. Panagopou-

los, A. Schaefer, arXiv:1209.6015 [hep-lat]
18. T. Banks, A. Casher, Nucl. Phys. B 169, 103 (1980)
19. O. Bergman, G. Lifschytz, M. Lippert, Phys. Rev. D 79, 105024 (2009)
20. C.W. Bernard, T. Draper, K. Olynyk, M. Rushton, Phys. Rev. Lett. 49, 1076 (1982)
21. J.K. Boomsma, D. Boer, Phys. Rev. D 81, 074005 (2010)
22. V.V. Braguta, P.V. Buividovich, M.N. Chernodub, M.I. Polikarpov, Phys. Lett. B 718, 667

(2012). arXiv:1104.3767 [hep-lat]
23. V.V. Braguta, P.V. Buividovich, T. Kalaydzhyan, S.V. Kuznetsov, M.I. Polikarpov, PoS

LAT2010, 190 (2010). arXiv:1011.3795 [hep-lat]
24. P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T. Kalaydzhyan, E.V. Luschevskaya,

M.I. Polikarpov, Phys. Rev. Lett. 105, 132001 (2010)
25. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 80,

054503 (2009)
26. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Lett. B 682,

484 (2010)
27. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Nucl. Phys. B 826,

313 (2010)
28. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 81,

036007 (2010)
29. P. Cea, Int. J. Mod. Phys. D 13, 1917 (2004)
30. P. Cea, L. Cosmai, Phys. Lett. B 264, 415 (1991)
31. P. Cea, L. Cosmai, J. High Energy Phys. 0302, 031 (2003)
32. P. Cea, L. Cosmai, J. High Energy Phys. 0508, 079 (2005)
33. P. Cea, L. Cosmai, M. D’Elia, J. High Energy Phys. 0712, 097 (2007)
34. P. Cea, L. Cosmai, M. D’Elia, PoS LAT2006, 062 (2006). hep-lat/0610014

http://arxiv.org/abs/arXiv:0810.2833
http://arxiv.org/abs/arXiv:0911.2520
http://arxiv.org/abs/arXiv:1204.3360
http://arxiv.org/abs/arXiv:1206.4205
http://arxiv.org/abs/arXiv:1209.6015
http://arxiv.org/abs/arXiv:1104.3767
http://arxiv.org/abs/arXiv:1011.3795
http://arxiv.org/abs/hep-lat/0610014


7 Lattice QCD Simulations in External Background Fields 207

35. P. Cea, L. Cosmai, M. D’Elia, PoS LAT2007, 295 (2007). arXiv:0710.1449 [hep-lat]
36. P. Cea, L. Cosmai, M. D’Elia, J. High Energy Phys. 0402, 018 (2004)
37. P. Cea, L. Cosmai, A.D. Polosa, Phys. Lett. B 392, 177 (1997)
38. B. Chatterjee, H. Mishra, A. Mishra, Phys. Rev. D 84, 014016 (2011)
39. M.N. Chernodub, Phys. Rev. D 82, 085011 (2010)
40. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011)
41. M.N. Chernodub, Phys. Rev. D 86, 107703 (2012). arXiv:1209.3587 [hep-ph]
42. T.D. Cohen, D.A. McGady, E.S. Werbos, Phys. Rev. C 76, 055201 (2007)
43. P.H. Damgaard, U.M. Heller, Nucl. Phys. B 309, 625 (1988)
44. M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2010)
45. M. D’Elia, F. Negro, Phys. Rev. D 83, 114028 (2011)
46. M. D’Elia, M. Mariti, F. Negro, Phys. Rev. Lett. 110, 082002 (2013). arXiv:1209.0722 [hep-

lat]
47. W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 73, 114505 (2006). hep-lat/

0603026
48. W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 79, 094505 (2009). arXiv:

0904.1586 [hep-lat]
49. W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 81, 054502 (2010). arXiv:

1001.1131 [hep-lat]
50. R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992)
51. D. Ebert, V.V. Khudyakov, V.C. Zhukovsky, K.G. Klimenko, Phys. Rev. D 65, 054024

(2002)
52. D. Ebert, K.G. Klimenko, M.A. Vdovichenko, A.S. Vshivtsev, Phys. Rev. D 61, 025005

(2000)
53. H.T. Elze, B. Muller, J. Rafelski, hep-ph/9811372
54. H.T. Elze, J. Rafelski, in Sandansky 1998, Frontier tests of QED and physics of the vacuum,

pp. 425–439. hep-ph/9806389
55. N. Evans, T. Kalaydzhyan, K.-y. Kim, I. Kirsch, J. High Energy Phys. 1101, 050 (2011)
56. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 83, 025026 (2011)
57. G.N. Ferrari, A.F. Garcia, M.B. Pinto, arXiv:1207.3714 [hep-ph]
58. V.G. Filev, C.V. Johnson, R.C. Rashkov, K.S. Viswanathan, J. High Energy Phys. 0710, 019

(2007)
59. E.S. Fraga, A.J. Mizher, Phys. Rev. D 78, 025016 (2008)
60. E.S. Fraga, L.F. Palhares, Phys. Rev. D 86, 016008 (2012). arXiv:1201.5881 [hep-ph]
61. E.S. Fraga, J. Noronha, L.F. Palhares, arXiv:1207.7094 [hep-ph]
62. K. Fukushima, Y. Hidaka, arXiv:1209.1319 [hep-ph]
63. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)
64. K. Fukushima, J.M. Pawlowski, arXiv:1203.4330 [hep-ph]
65. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031 (2010)
66. B.V. Galilo, S.N. Nedelko, Phys. Rev. D 84, 094017 (2011)
67. R. Gatto, M. Ruggieri, Phys. Rev. D 82, 054027 (2010)
68. R. Gatto, M. Ruggieri, Phys. Rev. D 83, 034016 (2011)
69. R. Gatto, M. Ruggieri, arXiv:1207.3190 [hep-ph]
70. A. Goyal, M. Dahiya, Phys. Rev. D 62, 025022 (2000)
71. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994). [Erratum.

Phys. Rev. Lett. 76, 1005 (1996)]
72. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Lett. B 349, 477 (1995)
73. Y. Hidaka, A. Yamamoto, arXiv:1209.0007 [hep-ph]
74. E.-M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson, A. Schreiber, Phys. Rev.

D 85, 114504 (2012)
75. D.N. Kabat, K.-M. Lee, E.J. Weinberg, Phys. Rev. D 66, 014004 (2002)
76. K. Kashiwa, Phys. Rev. D 83, 117901 (2011)
77. S. Kawati, G. Konisi, H. Miyata, Phys. Rev. D 28, 1537–1541 (1983)
78. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

http://arxiv.org/abs/arXiv:0710.1449
http://arxiv.org/abs/arXiv:1209.3587
http://arxiv.org/abs/arXiv:1209.0722
http://arxiv.org/abs/hep-lat/0603026
http://arxiv.org/abs/hep-lat/0603026
http://arxiv.org/abs/arXiv:0904.1586
http://arxiv.org/abs/arXiv:0904.1586
http://arxiv.org/abs/arXiv:1001.1131
http://arxiv.org/abs/arXiv:1001.1131
http://arxiv.org/abs/hep-ph/9811372
http://arxiv.org/abs/hep-ph/9806389
http://arxiv.org/abs/arXiv:1207.3714
http://arxiv.org/abs/arXiv:1201.5881
http://arxiv.org/abs/arXiv:1207.7094
http://arxiv.org/abs/arXiv:1209.1319
http://arxiv.org/abs/arXiv:1203.4330
http://arxiv.org/abs/arXiv:1207.3190
http://arxiv.org/abs/arXiv:1209.0007


208 M. D’Elia

79. S.P. Klevansky, R.H. Lemmer, Phys. Rev. D 39, 3478 (1989)
80. K.G. Klimenko, Z. Phys. C 54, 323 (1992)
81. K.G. Klimenko, Theor. Math. Phys. 94, 393 (1993)
82. K.G. Klimenko, B.V. Magnitsky, A.S. Vshivtsev, Nuovo Cimento A 107, 439–452 (1994)
83. C.V. Johnson, A. Kundu, J. High Energy Phys. 0812, 053 (2008)
84. A.D. Linde, Phys. Lett. B 62, 435 (1976)
85. M. Luscher, R. Narayanan, P. Weisz, U. Wolff, Nucl. Phys. B 384, 168 (1992)
86. M. Luscher, P. Weisz, Nucl. Phys. B 452, 213 (1995)
87. E.V. Luschevskaya, O.V. Larina, arXiv:1203.5699 [hep-lat]
88. G. Martinelli, G. Parisi, R. Petronzio, F. Rapuano, Phys. Lett. B 116, 434 (1982)
89. S. Mereghetti, Astron. Astrophys. Rev. 15, 225–287 (2008)
90. V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 66, 045006 (2002)
91. A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phys. Rev. D 82, 105016 (2010)
92. M.M. Musakhanov, F.C. Khanna, hep-ph/9605232
93. S.-i. Nam, C.-W. Kao, Phys. Rev. D 83, 096009 (2011)
94. F. Preis, A. Rebhan, A. Schmitt, J. High Energy Phys. 1103, 033 (2011)
95. F. Preis, A. Rebhan, A. Schmitt, J. Phys. G 39, 054006 (2012). arXiv:1209.4468 [hep-ph]
96. A. Rabhi, C. Providencia, Phys. Rev. C 83, 055801 (2011)
97. E. Rojas, A. Ayala, A. Bashir, A. Raya, Phys. Rev. D 77, 093004 (2008)
98. A. Salam, J.A. Strathdee, Nucl. Phys. B 90, 203 (1975)
99. S. Schramm, B. Muller, A.J. Schramm, Mod. Phys. Lett. A 7, 973–982 (1992)

100. E. Shintani, S. Aoki, N. Ishizuka, K. Kanaya, Y. Kikukawa, Y. Kuramashi, M. Okawa,
A. Ukawa et al., Phys. Rev. D 75, 034507 (2007)

101. I.A. Shovkovy, arXiv:1207.5081 [hep-ph]
102. I.A. Shushpanov, A.V. Smilga, Phys. Lett. B 402, 351 (1997)
103. V. Skokov, Phys. Rev. D 85, 034026 (2012)
104. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)
105. J. Smit, J.C. Vink, Nucl. Phys. B 286, 485 (1987)
106. H. Suganuma, T. Tatsumi, Ann. Phys. 208, 470 (1991)
107. G. ’t Hooft, Nucl. Phys. B 153, 141 (1979)
108. B.C. Tiburzi, PoS LAT2011, 020 (2011). arXiv:1110.6842 [hep-lat]
109. B.C. Tiburzi, Nucl. Phys. A 814, 74 (2008)
110. B.C. Tiburzi, Phys. Lett. B 674, 336 (2009)
111. T. Vachaspati, Phys. Lett. B 265, 258 (1991)
112. A. Vilenkin, Phys. Rev. D 22, 3080 (1980)
113. K.G. Wilson, Phys. Rev. D 10, 2445 (1974)
114. A. Yamamoto, Phys. Rev. Lett. 107, 031601 (2011)
115. A.V. Zayakin, J. High Energy Phys. 0807, 116 (2008)

http://arxiv.org/abs/arXiv:1203.5699
http://arxiv.org/abs/hep-ph/9605232
http://arxiv.org/abs/arXiv:1209.4468
http://arxiv.org/abs/arXiv:1207.5081
http://arxiv.org/abs/arXiv:1110.6842


Chapter 8
P-Odd Fluctuations in Heavy Ion Collisions.
Deformed QCD as a Toy Model

Ariel R. Zhitnitsky

8.1 Introduction and Motivation

Recently it has become clear that quantum anomalies play very important role in
the macroscopic dynamics of relativistic fluids. Much of this progress is motivated
by very interesting ongoing experiments on local P and C P violation in QCD as
studied at RHIC and ALICE at the LHC [1–12]. It is likely that the observed asym-
metry is due to charge separation effect [13, 14] as a result of the chiral anomaly,
see details below.

We start with review of the charge separation effect [13, 14] which can be ex-
plained in the following simple way. Let us assume that an effective θ(x, t)ind �= 0 is
induced as a result of some non-equlibrium dynamics as suggested in Refs. [15–18].
The θ(x, t)ind parameter enters the effective Lagrangian as follows, Lθ = −θindq

where q ≡ g2

64π2 εμνρσG
aμνGaρσ such that local P and C P invariance of QCD is

broken on the scales where correlated θ(x, t)ind �= 0 is induced. As a result of this
violation, one should expect a number of P and C P violating effects taking place
in the region where θ(x, t)ind �= 0.

This area of research became a very active field in recent years mainly due to
very interesting ongoing experiments [1–12]. There is a number of different man-
ifestations of this local P and C P violation, see [19–23] and many additional
references therein. In particular, in the presence of an external magnetic field B
or in case of the rotating system with angular velocity Ω there will be induced
electric current directed along B or Ω correspondingly, resulting in separation of
charges along those directions as mentioned above. One can interpret the same ef-
fects as a generation of induced electric field E directed along B or Ω resulting in
corresponding electric current flowing along J ∼ B or J ∼ Ω directions. All these
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phenomena are obviously P and C P odd effects. Non-dissipating, induced vector
current density has the form:

J = eB
2π2

θ̇ (t)ind, (8.1)

where P odd effect is explicitly present in this expression as θ̇ (t)ind after a cor-
responding U(1)A chiral time-dependent rotation can be interpreted as the com-
bination (μL − μR), which is the difference of chemical potentials of the right
μR and left μL handed fermions, see also [21] for a physical interpretation of the
relation (μL − μR) = θ̇ (t)ind. It is important to emphasize that the region where
〈θ(x, t)ind〉 �= 0 should be much larger in size than the scale of conventional QCD
fluctuations with correlation length ∼Λ−1

QCD. Otherwise, the expression (8.1) de-

rived under condition that θ̇ (t)ind � ΛQCD can not be trusted. In different words,
if P-odd fluctuations represented by θ̇ (t)ind have typical wavelengths λθ ≤Λ−1

QCD
than the Effective Lagrangian approach can not be justified, formula (8.1) can not
be trusted, and some other technique must be used instead.

Closely related phenomena have been previously discussed in physics of neutri-
nos [24–26] and quantum wires [27]. In QCD context formula (8.1) has been used
in applications to neutron star physics where magnetic field is known to be large,
and the corresponding (μL−μR) �= 0 can be generated in neutron star environment
as a result of continuos P violating processes happening in nuclear matter [28, 29].
It has been also applied to heavy ion collisions where an effective (μL−μR) �= 0 is
locally induced. The effect was estimated using the sphaleron transitions generating
the topological charge density in the QCD plasma [19, 20]. The effect was coined
as “chiral magnetic effect” (CME) [19, 20]. Formula (8.1) has been also derived a
numerous number of times using varies techniques such as: effective Lagrangian
approach developed in [30]; explicit mode’s summation [31]; direct lattice compu-
tations [22, 23]. In addition, the effect has been studied in holographic models of
QCD [32–38], see review [39] with large number of references on recent develop-
ments.

To conclude this introduction: on the theoretical side the effect is well estab-
lished phenomenon. However, the crucial questions for the applications of the CME
to heavy ion collisions is a correlation length of the induced 〈θ(x, t)ind〉 �= 0: why
the P odd domains are large, much larger than conventional Λ−1

QCD scale? Appar-
ently, a relatively large correlation length is a required feature for interpretation of
the observed asymmetry [1–12] in terms of CME as the conventional QCD vacuum
processes are too small to explain the observed asymmetry [40]. This is in fact, the
key element to be addressed in this review: why the correlation length of P odd
fluctuations could be large in heavy ion collisions? We use a simplified version of
QCD in order to answer this hard question. We want to see whether the long range
order indeed emerges in “deformed QCD” model. We also want to understand the
nature of this long range order which is apparently observed in the lattice simula-
tions.

The review is organized as follows. In next Sect. 8.2 we review a standard deriva-
tion of the charge separation (CSE) and related effects such as Chiral Magnetic
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effect (CME), chiral Vortical Effects (CVE) using effective Lagrangian approach.
Section 8.3 is a short detour where we review a number of independent lattice simu-
lations, not related to CME/CVE effects, suggesting that long range order is indeed
present in the system. In Sects. 8.4, 8.5, 8.6 we demonstrate that some kind of long
range order indeed may emerge in “deformed QCD”. It appears as a result of highly
nontrivial topological features of this model which are known to be present in real
strongly coupled QCD. Therefore, it is tempting to identify this long range order
in “deformed QCD” with long range correlations observed in lattice simulations
and reviewed in Sect. 8.3. We conjecture that a similar effect may also emerge in
real strongly coupled QCD. In Sect. 8.7 we apply the results from previous sections
to study CSE/CME/CVE in deformed QCD. We compute the magnitudes of these
topological phenomena in deformed QCD. This toy model explicitly shows that the
large observed intensity of the effect as studied at RHIC and ALICE at the LHC [1–
12] might be due to a coherent phenomena when the large observed asymmetry is
a result of accumulation of a small effect over large distances L�Λ−1

QCD. In con-
clusion we comment on a very deep relation between long range order observed
in lattice simulations (which normally studied by measurement of the topological
density distribution) and CSE/CME/CVE effects.

8.2 Quantum Anomalies. Effective Lagrangian Approach

Let us assume, following the proposals outlined above, that a dynamical local fluctu-
ation of θind-angle can be excited in QCD matter. From the viewpoint of the effective
Lagrangian, θind(x) is equivalent to a pseudo-scalar flavor-singlet quark–anti-quark
field which couples to electromagnetism through the electric charges of its quark
constituents as prescribed by axial anomaly:

L= 1

2
E2 − 1

2
B2 +Nc

∑

f

e2
f

4π2
·
(
θind

Nf

)
(E · B), (8.2)

where the sum runs over quark flavors f , and N is the number of colours. We treat
(8.2) as an effective Lagrangian when all “fast” degrees of freedom are integrated
out while “slow” degrees of freedom are explicitly present in expression (8.2). In
particular, we assume that θind is “slow” background field with typical wavelengths
λθ �Λ−1

QCD, in which case the effective Lagrangian approach is justified.

8.2.1 Charge Separation Effect (CSE)

Let us now minimize the action density (8.2) with respect to the electric field E:

δL

δE
= E +N

∑

f

e2
f

4π2
·
(
θind

Nf

)
B = 0; (8.3)
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we see that the magnetic field in the presence of θind �= 0 generates an electric field
E ∼ θind ·B . Let us now consider the case of a uniform magnetic field Bz pointing in
the z direction; we will assume that the field does not depend on x and y coordinates,
so we are dealing with an effectively 2-dimensional theory. In this case, because of
the quantization of the flux required by the single-valuedness of the particle wave
function, we substitute

∫
d2x⊥Bz =Φ/e= 2πl/e into (8.3); l is an integer. We thus

get [14]:

LxLyEz =−
(
e θind

2π

)
l, (8.4)

where L is the size of the system and we takeNf =N = 1, ea = e to simplify things.
Therefore, the electric field along z will be induced in the presence of nonzero θind �=
0 when magnetic field is applied along the z direction. For this simple geometry, the
electric field Ez between two infinitely large charged plates with charge density σxy
is exactly equal Ez = σxy . Therefore, (8.4) can be interpreted as CSE in the presence
of the magnetic field if large θind domain is formed,

Q≡
∫

dxdyσxy = (LxLy)Ez =−
(
e θind

2π

)
l. (8.5)

8.2.2 Chiral Magnetic Effect (CME)

One can understand the same CSE also in a different way. Anomalous coupling (8.2)
also implies that there will be induced current as a result of coordinate dependence
of the induced θind(x, t), which is convenient to represent in vector notations as
follows

J0 = e2

4π2
∇θind · B, J = e2

4π2
θ̇indB, (8.6)

where we again take Nf = N = 1, ea = e to simplify things, and assume that the
external magnetic field B is coordinate and time-independent. The expression sim-
ilar to (8.6) for the anomalous current has been studied previously in literature in
many fields, including particle physics, cosmology, condensed matter physics. In
particular, in the context of the axion physics when θind(x, t) is dynamical axion
field, (8.6) was extensively discussed in [41].

In the present context relevant for the CME formula (8.6) reduces to our previous
formula (8.5). Indeed, integrating

∫
J0d

3x leads precisely to the known expression
for the charge separation effect along z,

Q=
∫

d3xJ0 = e2

4π2

∫ +∞

0
dz

dθind(z)

dz

∫
d2x⊥Bz =−

(
e θind

2π

)
l, (8.7)

where we assume that θind(z= 0)= θind inside the cylinder and θind(z=+∞)= 0
outside the domain with θind �= 0. We also take into account the flux quantization,
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∫
d2x⊥Bz

ext = Φ/e = 2πl/e. In addition, the expression for J in (8.6) can be pre-
sented in much more familiar way if one replaces θ̇ind → (μL − μR) to bring it to
conventional form which is normally used in CME studies.

The electric field (8.4) aligned along the vector of angular momentum (and thus
perpendicular to the reaction plane) will act on charged particles and cause the elec-
tric charge separation (8.5), (8.7) signalling the violation of P and C P invariances
arising from θind �= 0, which is precisely CSE in the presence of the external mag-
netic field [14].

We emphasize once again that formulae (8.4), (8.5), (8.6), (8.7) can only be
trusted for slow-varying external background fields θind and B when the effective
Lagrangian approach is justified. In different words, it is assumed that the effec-
tive Lagrangian (8.2) describes slow degrees of freedom with typical wavelengths
λθ � Λ−1

QCD, while fast degrees of freedom are already integrated out in formula
(8.2). This condition can be easily satisfied for B field as it is truly external field
which it is not originated from strongly coupled QCD dynamics. At the same time
θind(x) �= 0 is an internal QCD parameter. Why this parameter θind(x) is so special
that it may indeed demonstrate a long range order with typical λθ �Λ−1

QCD? This is
the key question which will be addressed later in the text in Sects. 8.5, 8.6, 8.7.

Our last comment is about terminology. All critical elements on induced cur-
rents in presence of the background magnetic field B and θind(x) �= 0 have been
discussed in Ref. [14], though the term “chiral magnetic effect” (CME) itself was
invented later in Ref. [20] when some specific applications to heavy ion collisions
were considered.

8.2.3 Chiral Vortical Effect (CVE)

Now we consider a rotating system which is characterized by chemical potential μ
and angular velocity Ω . We want to derive formulae similar to (8.4)–(8.7) where role
of B is played by Ω . The corresponding technique with nonzero μ was developed
in [30] and generalized for the axion field (nonzero θ(x)) in [31]. The key idea is to
introduce a fictitious vector gauge field Vμ which is nothing but 4-velocity of matter
νμ with chemical potential μ, see technical details in [30]. After that, one can derive
an anomalous effective Lagrangian similar to (8.2) where auxiliary Vμ replaces the
usual electromagnetic gauge field Aμ.

In this review we limit ourselves only to one term in the anomalous effective
Lagrangian which plays the crucial role for the present study, see[30] and [31] for
details:

LθγV =−Nc

∑

f

ef μf

4π2Nf

· εμνλσ ∂μθind(∂λVν)Aσ , (8.8)

where Vμ is a fictitious vector gauge field. The coupling of quarks to Vμ and to the
usual electromagnetic gauge field Aμ are almost identical; the only difference is in
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the coupling constants. This new term (8.8) leads to a few very unusual phenomena.
First, it leads to the separation of charges [14]:

J0 = δLθγV

δA0
=Nc

∑

f

ef μf

4Nf π2
· εijk∂iθind(∂jVk)=Nc

∑

f

ef μf

2Nf π2
· (∇θind ·Ω),

(8.9)
where Ω is defined as 2εijkΩk = (∂iVj − ∂jVi) and is nothing but the angular ve-
locity of the rotating system. Similarly, interaction (8.8) leads to the induced vector
current along Ω direction,

J =Nc

∑

f

ef μf

2Nf π2
· (θ̇ind ·Ω). (8.10)

The results (8.9), (8.10) are very suggestive and imply that there is an induced cur-
rent along Ω which leads to the CSE in the presence of θind in the rotating system.
Equations (8.9) and (8.10) are very similar to the previously discussed case (8.6)
where magnetic field B is to be replaced by angular velocity of the rotating system
Ω .

This analogy is, in fact, very deep as advocated in Ref. [14]. In particular, one
can rewrite (8.8) in the following way,

L= 1

2
E2 − 1

2
B2 +Nc

∑

f

ef μf

2Nf π2
· θind(E · Ω), (8.11)

where we added the Maxwell term 1
2 E2 − 1

2 B2 to (8.11). In this form the expression
for the anomalous term is very similar to (8.2) discussed previously. Therefore, we
apply the same procedure to compute the induced electric field in the background
of external Ω and θind fields.

Without the anomalous term the ground state corresponds to 〈E〉 = 0. However,
in the presence of the θind term the minimum of the free energy corresponds to the
state where 〈E〉 �= 0. Indeed, minimization of (8.11) with respect to E gives,

δL

δE
= E +Nc

∑

f

ef μf

2π2
·
(
θind

Nf

)
· Ω = 0, (8.12)

which is analogous to (8.3) derived previously.
Now we want to compute the charge separation effect as a result of rotation of the

system with angular velocity Ω in the background of θind �= 0. In order to integrate
over the surface d2x⊥ in (8.9) we have to understand the way how the rotation Ω
is quantized. The answer lies in the definition of the fictitious field Vν ≡ vν which
is the local 4-velocity of matter with chemical potential μf , see [30, 31]. Then the
coupling of quarks to Vμ and to the usual electromagnetic gauge field Aμ takes the
form:

L=
∑

f

(μf Vν − ef Aν)ψ̄f γνψf . (8.13)
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With this definition magnetic flux quantization as well as rotation quantization for a
single species are very similar and take the form,

∫
eB · dΣ = 2πl,

(8.14)∫
μΩ · dΣ = 2πl.

Now we can derive formulae similar to (8.4), (8.5), (8.7) when the system is rotating
rather than placed into the background magnetic field. In particular, formula, similar
to (8.4) can be obtained from (8.12) and takes the form

LxLyEz =−
(
e θind

π

)
l, (8.15)

where L is the size of the system, Nf =N = 1, ea = e, and we assume quantization
(8.14) for Ω . As before, for this simple geometry, the electric field Ez between
two infinitely large charged plates with charge density σxy is exactly equal Ez =
σxy . Therefore, (8.15) can be interpreted as CSE if system is rotating and large θind

domain is formed,

Q≡
∫
dxdyσxy = (LxLy)Ez =−

(
e θind

π

)
l. (8.16)

The same expression can be obtained by integrating expression (8.9) over the
volume of the system. Indeed, integrating

∫
J0d

3x leads precisely to expression
(8.16) for the charge separation effect along z,

Q=
∫
d3xJ0 = eμ

2π2

∫ +∞

0
dz

dθind(z)

dz

∫
d2x⊥Ωz =−

(
e θind

π

)
l. (8.17)

where we assume that θind(z= 0)= θind inside the cylinder and θind(z=+∞)= 0
outside the domain with θind �= 0. We also take into account the flux quantization
according to (8.14)

∫
d2x⊥Ωz = 2πl/μ.

One more remark on (8.12). An additional term in the Lagrangian (8.11) is a
total divergence in the limit of slow varying θind, and therefore does not change the
equations of motion. However, in order to quantize the system (8.11) in canonical
way, we have to express everything in terms of the generalized momentum πi = δL

δȦi

which is defined as

πi = δL

δȦi

=Ei +Nc

∑

f

ef μf

2π2
·
(
θind

Nf

)
·Ωi. (8.18)

In the ground state we require that 〈πi〉 = 0 which is precisely the condition (8.12)
derived earlier. In different words, though the θind term is a total divergence and
does not change the equations of motion, it does influence the physics (separation
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of charges, induced electric field, etc) in the presence of topological background
field, Ωk ∼ εijk(∂iVj − ∂jVi) �= 0.

We emphasize once again that formulae (8.8), (8.9), (8.10), (8.11), (8.12), (8.15),
(8.16), (8.17) can only be trusted for slow-varying external background fields θind
and Ω when the effective Lagrangian approach is justified. In different words, it
is assumed that the effective Lagrangian (8.8) describes slow degrees of freedom
with typical wavelengths λ � Λ−1

QCD, while fast degrees of freedom are already
integrated out in formula (8.8). This condition can be easily satisfied for Ω field as it
is truly external field which is not originated from strongly coupled QCD dynamics.
At the same time θind(x) �= 0 is an internal QCD parameter. Why this parameter
θind(x) is so special that it may indeed demonstrate a long range order with typical
λθ � Λ−1

QCD? This is the key question which will be addressed later in the text in
Sects. 8.5, 8.6, 8.7.

Our last comment is about terminology. All formulae discussed above have been
derived in Ref. [14], though the term “chiral vortical effect” (CVE) itself was in-
vented much later in Ref. [42] when some specific applications to heavy ion colli-
sions were considered.

8.3 Long Range Order as Seen on the Lattice

This section is a small detour from the main topic of this review. We do not discuss
CSE, CME, CVE and related effects in this section. Nevertheless, we consider this
section as an inherent part of this review. The crucial point is as follows. As we
emphasized previously, the effective Lagrangian approach developed in Sect. 8.2
and represented by formulae (8.2) and (8.11) is only justified if parameter θind(x)

which enters these expressions can be considered as a “slow” background field. It
is equivalent to requirement that the corresponding λθ �Λ−1

QCD. In different words,
θind(x) must be a long range field with large correlation length for the effective
Lagrangian approach to be justified. Otherwise, there will be no region of validity
for expressions (8.2) and (8.11) for applications to heavy ion collisions.1

The goal of this section is to argue that such kind of long range order appar-
ently is indeed present in recent Monte Carlo simulations. Furthermore, this long
range order is inherently related to the topological charge fluctuations, e.g. to the
topological θind parameter. We review these lattice results below.

The recent Monte Carlo studies of pure glue gauge theory have revealed some
very unusual features. In particular, the gauge configurations display a laminar struc-
ture in the vacuum consisting of extended, thin, coherent, locally low-dimensional

1If the asymmetry θ̇ind ∼ (μL − μR) is build in as a result of weak interactions, the parameter
θ̇ind �ΛQCD is obviously very small, and the effective Lagrangian approach represented by formu-
lae (8.2) and (8.11) makes perfect sense. In particular, it has been argued in [28, 29] that the induced
current (8.6) may have important applications for physics of neutron stars when θ̇ind ∼ (μL −μR)

is small, but does not vanish as a result of weak β decays.
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sheets of topological charge embedded in 4d space, with opposite sign sheets inter-
leaved, see original QCD lattice results [43–46]. A similar structure has been also
observed in QCD by different groups [47–51] and also in two dimensional CPN−1

model [52]. Furthermore, the studies of localization properties of Dirac eigenmodes
have also shown evidence for the delocalization of low-lying modes on effectively
low-dimensional surfaces. Here is the list (not complete) of the key properties of
these gauge configurations:

(a) The tension of the “low dimensional objects” vanishes below the critical tem-
perature and these objects percolate through the vacuum, forming a kind of a
vacuum condensate;

(b) These “objects” do not percolate through the whole 4d volume, but rather, lie
on low dimensional surfaces 1 ≤ d < 4 which organize a coherent double layer
structure;

(c) The total area of the surfaces is dominated by a single percolating cluster of
“low dimensional object”;

(d) The opposite sign sheets interleaved such that the “low dimensional object” can
be viewed as a coherent configuration in a form of “double layer structure”;

(e) The width of the percolating objects apparently vanishes in the continuum limit.

It is very difficult to understand all those properties using conventional quan-
tum field theory (QFT) analysis. Indeed, the QCD lattice results [43–50] essentially
imply that the topological density distribution is spread out on the surface of low-
dimensional sheets. Such a structure can not be immediately seen in gluodynamics,
at least not at the semiclassical level. The most important element for the present
studies is the observation that topological density distribution is not localized in
any finite size configurations such as instantons; rather it demonstrates a long range
structure in a form of some extended “low dimensional object”. The dimension-
ality of these objects is difficult to extract from lattice simulations. In particular,
in Ref. [51] it has been argued that these long range configurations actually might
be characterized by Hausdorff dimension which gradually varies with cooling pro-
cedure. We interpret these percolating objects observed in lattice simulations as a
manifestation of the long range structure which is a key required ingredient for the
justification of the effective Lagrangian approach reviewed in Sect. 8.2.

We should also note that these Monte Carlo results, while very difficult to inter-
pret within QFT, could be very nicely interpreted within holographic description.
To be more specific, the observed long range structure can be identified with the
extended D2 branes in holographic dual picture as conjectured in Refs. [53–55].
One of the key elements of this conjecture is assumption that the tension of the D2
branes vanishes below the QCD phase transition T < Tc such that an arbitrary large
number of these objects can be formed and they can percolate. Vanishing tension
in the dual description in the confined phase is a result of the Hawking-Page phase
transition [56] when the D2 brane shrinks to the tip of a cigar type geometry. This
solution can be interpreted as a point of instability. It can be also interpreted as a
formation of effectively tensionless objects when the entropy of an extended con-
figuration may overcome its intrinsic tension. A similar interpretation, though in a
different context, was also advocated in [57].
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What is the nature of this long range structure observed in lattice simulations?
We attempt to answer this hard question in next Sects. 8.4, 8.5, 8.6 using a simplified
version of QCD, the so-called “deformed QCD” model. In Sect. 8.7 we also make a
connection between CSE/CME/CVE reviewed in Sect. 8.2 and corresponding com-
putations in “deformed QCD” model.

One should remark here that “deformed QCD” model has been previously suc-
cessfully used to test some other highly nontrivial features of strongly coupled QCD
such as emergence of non-dispersive contact term in topological susceptibility [58]
and emergence of the topological Casimir behaviour in gauge theory with a gap [59].
In both cases the effect occurs as a result of highly nontrivial topological structure
of the vacuum of this model. Furthermore, we interpret the topological Casimir be-
haviour [59] in a gapped “deformed QCD” model as another manifestation of the
same long range order observed in lattice simulations. In different words, if the long
range order did not exist in this model, it would be very difficult to imagine how the
“deformed QCD” being a gapped theory exhibits a power like correction when no
any physical massless degrees of freedom are present in the system.

8.4 Deformed QCD

Here we review the “center-stablized” deformed Yang-Mills developed in [60]. In
the deformed theory an extra term is put into the Lagrangian in order to prevent
the center symmetry breaking that characterizes the QCD phase transition between
“confined” hadronic matter and “deconfined” quark-gluon plasma. Thus we have a
theory which remains confined at high temperature in a weak coupling regime, and
for which it is claimed [60] that there does not exist an order parameter to differen-
tiate the low temperature (non-abelian) confined regime from the high temperature
(abelian) confined regime. First, in Sect. 8.4.1 we review the relevant parts of the
theory. After that, in Sect. 8.4.2 we review the low energy effective Lagrangian
which plays a key role in this work as it explicitly shows the 2π periodic properties
of the theory. This structure will play a crucial role in construction of the domain
wall solutions.

8.4.1 Formulation of the Theory

We start with pure Yang-Mills (gluodynamics) with gauge group SU(N) on the
manifold R

3 × S1 with the standard action

SYM =
∫

R3×S1
d4x

1

2g2
tr
[
F 2
μν(x)

]
, (8.19)

and add to it a deformation action,

ΔS ≡
∫

R3
d3x

1

L3
P
[
Ω(x)

]
, (8.20)
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built out of the Wilson loop (Polyakov loop) wrapping the compact dimension,

Ω(x)≡ P
[
ei

∮
dx4A4(x,x4)

]
. (8.21)

The “double-trace” deformation potential P [Ω] respects the symmetries of the orig-
inal theory and is built to stabilize the phase with unbroken center symmetry. It is
defined by

P [Ω] ≡
 N/2"∑

n=1

an
∣∣tr

[
Ωn

]∣∣2. (8.22)

Here  N/2" denotes the integer part of N/2 and {an} is a set of suitably large
positive coefficients.

In undeformed pure gluodynamics the effective potential for the Wilson loop is
minimized for Ω an element of ZN . The deformation potential (8.22) with suffi-
ciently large {an} however changes the effective potential for the Wilson line so that
it is minimized instead by configurations in which tr[Ωn] = 0, which in turn implies
that the eigenvalues of Ω are uniformly distributed around the unit circle. Thus, the
set of eigenvalues is invariant under the ZN transformations, which multiply each
eigenvalue by e2πik/N (rotate the unit circle by k/N ). The center symmetry is then
unbroken by construction. The coefficients, {an}, can be suitably chosen such that
the deformation potential, P [Ω], forces unbroken symmetry at any compactification
scales [60], but for our purposes we are only interested in small compactifications
(L�Λ−1 where L is the length of the compactified dimension and Λ is the QCD
scale). At small compactification, the gauge coupling at the compactification scale
is small so that the semiclassical computations are under complete theoretical con-
trol [60].

8.4.2 Infrared Description

As described in [60], the proper infrared description of the theory is a dilute gas of N
types of monopoles, characterized by their magnetic charges, which are proportional
to the simple roots and affine root of the Lie algebra for the gauge group U(1)N .
Although the symmetry breaking is SU(N)→ U(1)N−1, it is simpler to work with
U(1)N . The extended root system is given by the simple roots,

α1 = (1,−1,0, . . . ,0)= ê1 − ê2,

α2 = (0,1,−1, . . . ,0)= ê2 − ê3,
...

αN−1 = (0, . . . ,0,1,−1)= êN−1 − êN ,

(8.23)

and the affine root,

αN = (−1,0, . . . ,0,1) = êN − ê1.
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We denote this root system by Δaff and note that the roots obey the inner product
relation

αa · αb = 2δa,b − δa,b+1 − δa,b−1. (8.24)

For a fundamental monopole with magnetic charge αa ∈ Δaff, the topological
charge is given by

Q=
∫

R3×S1
d4x

1

16π2
tr
[
FμνF̃

μν
]=± 1

N
, (8.25)

and the Yang-Mills action is given by

SYM =
∫

R3×S1
d4x

1

2g2
tr
[
F 2
μν

]

(8.26)

=
∣∣∣∣

∫

R3×S1
d4x

1

2g2
tr
[
FμνF̃

μν
]
∣∣∣∣=

8π2

g2
|Q|.

The second equivalence hold because the classical monopole solutions are self dual,
Fμν =±F̃μν .

The θ -parameter in the Yang-Mills action can be included in conventional way,

SYM → SYM + iθ

∫

R3×S1
d4x

1

16π2
tr
[
FμνF̃

μν
]
, (8.27)

with F̃ μν ≡ εμνρσFρσ .
The system of interacting monopoles, including θ parameter, can be represented

in the dual sine-Gordon form as follows [58, 60],

Sdual =
∫

R3
d3x

1

2L

(
g

2π

)2

(∇σ )2 − ζ

∫

R3
d3x

N∑

a=1

cos

(
αa · σ + θ

N

)
, (8.28)

where ζ is magnetic monopole fugacity which can be explicitly computed in this
model using conventional semiclassical approximation. The θ parameter enters the
effective Lagrangian (8.28) as θ/N which is the direct consequence of the fractional
topological charges of the monopoles (8.25). Nevertheless, the theory is still 2π pe-
riodic. This 2π periodicity of the theory is restored not due to the 2π periodicity of
Lagrangian (8.28). Rather, it is restored as a result of summation over all branches of
the theory when the levels cross at θ = π(mod 2π) and one branch replaces another
and becomes the lowest energy state as discussed in [58]. Indeed, the ground state
energy density is determined by minimization of the effective potential (8.28) when
summation over all branches is assumed in the definition of the canonical partition
function. It is given by
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Emin(θ)=− lim
V→∞

1

VL
ln

[
N−1∑

l=0

eV ζN cos( θ+2πl
N

)

]

(8.29)

where V is 3d volume of the system. Equation (8.29) shows that in the limit V →∞
cusp singularities occur at the values at θ = π(mod 2π) where the lowest energy
vacuum state switches from one analytic branch to another one. Such a pattern is
known to emerge in many four dimensional supersymmetric models, and also glu-
odynamics in the limit N = ∞ [61]. It has been further argued [62] that the same
pattern also emerges in four dimensional gluodynamics at any finite N . The same
pattern emerges in holographic description of QCD [63] at N =∞ as well.

In what follows we need an explicit expression for the topological density and
magnetic field in terms of scalar σ field,

q(x) = 1

16π2
tr
[
FμνF̃

μν
]= −1

8π2
εijk4

N∑

a=1

F
(a)
jk F

(a)
i4

= g

4π2

N∑

a=1

〈
A
(a)
4

〉[∇ · B(a)(x)
]
, (8.30)

where the U(1)N magnetic field, Bi = εijk4Fjk/2g is expressed in terms of scalar
magnetic potential as follows

F
(a)
ij = g2

2πL
εijk∂

kσ (a), B(a) = g

2πL
∇σ (a). (8.31)

The expression for the magnetic field in terms of scalar magnetic potential should
not be surprising as our system is in fact magnetostatic and description in terms of
σ (a) is quite appropriate to study the relevant dynamics.

In what follows we also need an explicit form for the creation operator for a
monopole of type a at x. It is given by [58]

Ma(x)= eiαa ·σ (x). (8.32)

Likewise, the operator for an antimonopole is M̄a(x)= e−iαa ·σ (x). The expectation
values of these operators 〈Ma(x)〉 in fact determine the ground state of the theory.
Formula (8.32) shows one more time that σ (x) can be interpreted as a magnetic
scalar potential. Finally, the dimensional parameter which governs the dynamics of
the problem is mass of the σ field. It is given by

m2
σ ≡ Lζ

(
4π

g

)2

. (8.33)
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This parameter can be interpreted as Debye correlation length of the monopole’s
gas. The average number of monopoles in a “Debye volume” is given by

N ≡m−3
σ ζ =

(
g

4π

)3 1
√
L3ζ

� 1. (8.34)

The last inequality holds since the monopole fugacity is exponentially suppressed,
ζ ∼ e−1/g2

, and in fact we can view (8.34) as a constraint on the validity of the
approximation where semiclassical approximation is justified.

8.5 Domain Walls in Deformed QCD

This section of the review is mostly based on a recent preprint [64]. A discrete
set of degenerate vacuum states as a result of the 2π periodicity of the effective
Lagrangian (8.28) for σ field is a signal that the domain wall configurations inter-
polating between these states are present in the system. However, the correspond-
ing configurations are not conventional domain walls similar to the well known
ferromagnetic domain walls in condensed matter physics which interpolate be-
tween physically distinct vacuum states. In contrast, in present case a corresponding
configuration interpolates between topologically different but physically equivalent
winding states |n〉, which are connected to each other by large gauge transforma-
tion operator. Just because of that, the corresponding domain wall configurations
in Euclidean space is interpreted as configurations describing the tunnelling pro-
cesses in Minkowski space, similar to Euclidean monopoles which also interpolate
between topologically different, but physically identical states. This interpretation
should be contrasted with conventional interpretation of static domain walls defined
in Minkowski space when corresponding solution interpolate between physically
distinct states. One can view these “additional” vacuum states which are physically
identical states and which have extra 2π phase in operator (8.32) as an analog to
the Aharonov Bohm effect with integer magnetic fluxes where electrons do not dis-
tinguish integer fluxes from identically zero flux. Our domain wall solution (8.36)
describes interpolation between these two physically identical states.

In fact, a similar domain wall which has analogous interpretation is known to
exist in QCD at large temperature in weak coupling regime where it can be described
in terms of classical equation of motion. These are so-calledZN domain walls which
separate domains characterized by a different value for the Polyakov loop at high
temperature. As is known, see e.g. review papers [65, 66] and references therein,
these ZN domain walls interpolate between topologically different but physically
identical states connected by large gauge transformations similar to our case. At
high temperature these objects can be described in terms of classical equation of
motion. In this regime they have finite tension ∼T 3 such that their contribution to
path integral is strongly suppressed. While the corresponding topological sectors are
still present in the system at low temperature (though they are realized in a different
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way) it is not known how to describe the fate of ZN walls within QFT in strong
coupling regime when semiclassical approximation breaks down.

The domain walls to be discussed below in deformed QCD are very much the
same as ZN domain walls at high temperature. In our case their contribution to path
integral is also strongly suppressed as their tension is finite. Nevertheless, one can
study the structure of these domain walls and its interaction with external fields,
which is the main motivation for this study. Essentially, we will treat the domain
walls as external sources rather than as fluctuating dynamical participants in the path
integral computations. Furthermore, as we reviewed in Sect. 8.3 an extended struc-
ture, similar to the domain walls, is apparently observed in the lattice simulations,
which imply that they may have effectively vanishing tension at low temperature.
We conjecture that the domain walls we describe below in weak coupling regime in
deformed QCD slowly become the objects which are observed in lattice simulations
[43–50] in strong coupling regime, when we adiabatically increase the coupling
constant without hitting the phase transition as argued in [60]. This portion of the
theory can not be tested in our deformed QCD model using semiclassical approxi-
mation. Hopefully this portion of strongly coupled dynamics can be understood in
future using a different technique such as dual holographic description as advocated
in the present context in [55].

What could happen when we slow move to the strong coupling regime? Holo-
graphic picture suggests that the effective tension for the domain walls (DW) may
vanish, and these objects can be easily formed in vacuum. It is difficult to trace how
it happens in our weakly coupled theory. It is naturally to assume that the domain
walls become very clumpy with large number of folders. Such fluctuations obvi-
ously increase the entropy of the DW which eventually may overcome the intrinsic
tension. If this happens, the DWs would look like as very crumpled and wrinkled
objects with large number of foldings. Even more that: the DWs may loose their
natural dimensionality, and likely to be characterized by a Hausdorff dimension
as recent lattice simulations suggest [51]. Furthermore, the DW described below
are expressed in terms of pseudo-scalar long range field σ which effectively cor-
responds to spatially dependent θind(x) �= 0. As it is well known a non-vanishing
θind(x) may change the electric and magnetic properties of constituents which are
present in vicinity of the DW. We can not address, nor answer those hard ques-
tions in weakly coupled regime. The addressing of these questions is obviously the
prerogative of numerical lattice simulations.

8.5.1 Domain Wall Solution

There are N different DW types in deformed QCD. However, there are only (N−1)
physical propagating scalars σ in the system as one singlet scalar field, though it
remains massless, completely decouples from the system, and does not interact with
other components at all [60]. Therefore, there are only (N − 1) independent DW
solutions.
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In what follows, without loosing any generalities, we consider N = 2 case. In
this case there is only one physical field χ which corresponds to a single diagonal
component from the original SU(2) gauge group. The action (8.28) becomes,

Sχ =
∫

R3
d3x

1

4L

(
g

2π

)2

(∇χ)2

− ζ

∫

R3
d3x

[
cos

(
χ + θ

2

)
+ cos

(
−χ + θ

2

)]
, (8.35)

while the equation of motion and its solution take the form

∇2χ −m2
σ sinχ = 0,

(8.36)
χ(z)= 4 arctan

[
exp(mσ z)

]

where we take θ = 0 to simplify things. The width of the domain wall is obviously
determined by m−1

σ , while the domain wall tension σ for profile (8.36) can be easily
computed and it is given by

σ = 2 ·
∫ +∞

−∞
dz

1

4L2

(
g

2π

)2

(∇χ)2

= mσ

L2

(
g

2π

)2

∼
√

ζ

L3
. (8.37)

The topological charge density for the profile (8.36) equals

q(z)= ζ

L
sinχ(z)= 4ζ

L

(emσ z − e−mσ z)

(emσ z + e−mσ z)2
. (8.38)

With explicit solution at hand (8.36) one can easily compute the magnetic field
(8.31) distribution inside the domain wall,

Bz =
(

g

4πL

)
4mσ

(emσ z + e−mσ z)
. (8.39)

We are now in position to explain the physical meaning of this solution. As we
mentioned before, the domain wall (8.36) does not describe a physical DW sim-
ilar to the DW in ferromagnetic system or in the Ising model, when solution in-
terpolates between physically distinct vacuum states. In our case DW interpolates
between topologically different but physically identical states, similar to ZN walls
mentioned previously. Such DW are obviously not stable objects, but will decay
quantum mechanically as a result of tunnelling processes, see Appendix for corre-
sponding estimates. One should remark that a similar construction has been consid-
ered previously in relation with the so-called N = 1 axion model [68, 69], and more
recently in QCD context in [67] and in high density QCD in [70]. In all previously
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Fig. 8.1 This picture explains the transition corresponding to DW solution (8.36) which inter-
polates between one to the same vacuum state, in contrast with interpolation between physically
distinct states. We can deform the paths by “lifting” them over the obstacle so that we can unwind
them. If the paths were DW with some weight, then it would require some energy to “lift” the DW
over the obstacle. If this energy was not available, then we would say that, classically, the config-
urations that wind around the peg are stable. Quantum mechanically, however, the DW could still
tunnel through the peg, and so the configurations are unstable quantum mechanically, see estimate
for this probability in Appendix. Picture adopted from [67]

considered cases [67–70] as well as in present case (8.36) there is a single physi-
cal unique vacuum state, and interpolation (8.36) corresponds to the transition from
one to the same physical state. Nevertheless, if life time of configuration (8.36) is
sufficiently large, it can be treated as stable classical background, and it can be used
to study the structure of these extended configurations, which is one of the main
objectives of this section, see Fig. 8.1 adopted from [67] with more explanations.

One can view these “additional” vacuum states which are physically identical
states and which have extra 2π phase in operator (8.32) as analog of the Aharonov
Bohm effect with integer magnetic fluxes when electrons do not distinguish integer
fluxes from identically zero flux. Our domain wall solution (8.36) describes inter-
polation between these two physically identical states.

One should also comment that, formally, a similar soliton-like solution which
follows from action (8.35) appears in computation of the string tension in 3d
Polyakov’s model [60, 71]. The solution considered there emerges as a result of
insertion of the external sources in a course of computation of the vacuum expecta-
tion of the Wilson loop. In contrast, in our case, the solution (8.36) is internal part
of the system without any external sources. Furthermore, the physical meaning of
these solutions are fundamentally different: in our case the interpretation of solu-
tion (8.36) is similar to instanton describing the tunnelling processes in Minkowski
space, while in computations [60, 71] it was an auxiliary object which appears in
the course of computation of the string tension.

8.5.2 Double Layer Structure

From (8.38) one can explicitly see that the net topological charge Q∼ ∫∞
−∞ dzq(z)

on the domain wall obviously vanishes. However, the charge density is distributed
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Fig. 8.2 This picture shows a
well organized double layer
structure which emerges in
deformed QCD model. The
main assumption is that this
structure persists even in
strong coupling regime when
semiclassical computations
are not justified. Picture
adopted from [64]

not uniformly. Rather, it is organized in a double layer structure, see Fig. 8.2, which
is precisely what apparently has been measured in the lattice simulations [43–46],
see item (d) in Sect. 8.3.

The same double layer structure can be seen by computing the magnetic charge
density ρM which is defined as

ρM ≡ [∇ · B(x)
]=

(
g

4πL

)
∂2χ

∂z2
= 4ζ ·

(
4π

g

)
(emσ z − e−mσ z)

(emσ z + e−mσ z)2
. (8.40)

One can see that the relation between the topological charge density (8.38) and
magnetic charge density (8.40) holds for the domain wall

q(z)=
(
g

2π

)
·
(

1

LN

)
· ρM(z) (8.41)

in full agreement with general expression (8.30).
From (8.38), (8.40), we see that an average density of magnetic monopoles filling

the interior of domain wall is expressed in terms of the same parameter ζ which
characterizes the average monopole’s density in the system (8.28). One can interpret
this relation as a hint that the topological charge sources have a tendency to reside
in vicinity of the domain walls rather than being uniformly distributed.

The most important lesson from this analysis is that the double layer structure
naturally emerges in construction of the domain walls in weak coupling regime
in deformed QCD. As claimed in [60] the transition from high temperature weak
coupling regime to low temperature strong coupling regime should be smooth with-
out any phase transitions on the way. Therefore, it would be tempting to identify
the double layer structure described here and expressed by (8.38) with the double
layer structure from lattice measurements [43–46] when one slowly moves along a
smooth path from weak to strong coupling regime.
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8.6 DW in the Presence of Matter Field

Next two sections of this review are mostly based on [72]. Our ultimate goal is to
understand the long range structure described above in Sect. 8.5 in the presence of
physical external U(1) magnetic field, which is precisely the environment relevant
for study of the CME. However, the gluons in pure glue theory represented in this
model by low energy effective Lagrangian (8.28) do not couple to physical mag-
netic field. Therefore, we introduce a single massless quark field ψ into the model.
The low energy description of the system in confined phase with a single quark is
accomplished by introducing the η′ colour singlet meson. As usual, the η′ would
be conventional massless Goldstone boson if the chiral anomaly is ignored. In the
dual sine-Gordon theory the η′ field appears exclusively in combination with the
θ parameter as θ → θ − η′ as a consequence of the Ward Identities. Indeed, the
transformation properties of the path integral measure under the chiral transforma-
tions ψ → exp(iγ5

η′
2 )ψ dictate that η′ appears only in the combination θ → θ − η′.

Therefore we have,

Sdual =
∫

R3
d3x

1

2L

(
g

2π

)2[
(∇σ )2 + c

2

(∇η′)2
]

− ζ

∫

R3
d3x

N∑

a=1

cos

(
αa · σ + θ − η′

N

)
, (8.42)

where dimensionless numerical coefficient c ∼ 1 can be, in principle, computed
in this model, though our results do not depend on its numerical value. One can
explicitly compute the topological susceptibility χ in this model, and check that the
Ward Identities are automatically satisfied when the η′ field enters the Lagrangian
precisely in form (8.42), see the detail computations in [58]. The η′ mass computed
from (8.42) has an extra 1/N suppression, as it should, in comparison with mass of
the σ field

m2
η′ =

2Lζ

cN

(
2π

g

)2

,
m2
η′

m2
σ

= 1

2cN
. (8.43)

As we already mentioned, the system (8.42) is 2π periodic with respect θ →
θ + 2π . This 2π periodicity of the theory is not explicit in (8.42), but neverthe-
less is restored as a result of summation over all branches of the theory as (8.29)
shows, see detail explanations in [58]. The fact that η′ field enters the low energy
effective Lagrangian precisely in combination (θ − η′) implies that system (8.42)
is also periodic with respect η′ → η′ + 2π when summation over all branches of
the theory is properly implemented. In different words, the system (8.42) supports
η′(z) domain walls as a result of a very generic feature of the theory.2 This argu-

2There are many different types of the domain walls which are supported by the Lagrangian (8.42).
We leave this problem of classification of the DWs for a future study. In this work we concentrate
on a simplest possible case with N = 2 to demonstrate few generic features of the system.
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ment has been previously used to construct the η′ domain walls in context of the
axion physics [67]. One can derive the equation of motion for set of η′(z) and σ (z)

fields determined by Lagrangian (8.42) and impose an appropriate boundary condi-
tions η′(z=+∞)− η′(z=−∞)= 2π to analyze this system numerically, in close
analogy with procedure used, though in a different context, in Ref. [67].

However, for our present work it is sufficient to qualitatively describe the be-
haviour of the system in the limit when m2

η′/m
2
σ � 1, when the basic features can

be easily understood even without numerical computations. The most important les-
son of this qualitative analysis, as we shall see in a moment, is that the light η′ field
traces the σ (z) field by exhibiting a similar double layer structure discussed for pure
gauge theory in Sect. 8.5.

The low energy Lagrangian which describes the lightest degrees of freedom for
SU(2) gauge group is governed by the following action

Sη′ =
∫

R3
d3x

1

4L

(
g

2π

)2[
(∇χ)2 + c

(∇η′)2]

− ζ

∫

R3
d3x

[
cos

(
χ + θ − η′

2

)
+ cos

(
−χ + θ − η′

2

)]
, (8.44)

where we inserted the η′ field into (8.35) exactly in the form consistent with Ward
Identities. Now, it is convenient to represent the action (8.44) of the system in the
following way

Sη′ =
∫

R3
d3x

1

4L

(
g

2π

)2[
(∇χ)2 + c

(∇η′)2]

− 2ζ
∫

R3
d3x

[
cosχ · cos

(
η′

2

)]
, (8.45)

where we take θ = 0 to simplify things. We are looking for a DW solution which
satisfies the following boundary conditions:

(
χ → 0, η′ → 0

)
as z→−∞,

(8.46)(
χ → π,η′ → 2π

)
as z→+∞,

One can explicitly see from (8.44) that the vacuum energy for (χ = π,η′ = 2π)
at z = +∞ is identically coincide with vacuum energy when (χ,η′) fields assume
their trivial vacuum values: (χ = 0, η′ = 0) at z=−∞. As we already emphasized
these states (with boundary conditions (χ = 0, η′ = 0) and (χ = π,η′ = 2π) corre-
spondingly ) must be interpreted as topologically different but physically equivalent
states. Therefore, the corresponding domain wall configurations in Euclidean space
should be interpreted as configurations describing the tunnelling processes rather
than real DW in Minkowski space-time, as discussed in details in [55, 64]. The
boundary conditions (8.46) correspond to the case when the changes in the χ field
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due to the large gauge transformation is compensated by the η′ field which couples
to the gluon density operator (8.27) in a unique and unambiguous way as η′ enters
the action in combination (θ − η′) as explained above.

The corresponding equations of motion in this simple N = 2 case take the form

1

m2
σ

∇2χ = sinχ · cos

(
η′

2

)
,

(8.47)
1

2m2
η′
∇2η′ = cosχ · sin

(
η′

2

)
.

We are looking for a solution of the system (8.47) which satisfies the boundary
conditions (8.46).

It is interesting to note that our system (8.47) with boundary conditions (8.46)
formally is identical to the axion DW configuration analyzed in Ref. [41] in the
limit when the isotopical symmetry is exact, i.e. mu =md . In this case our χ field
plays the role of the π0 field denoted as γ in Ref. [41] while η′

2 plays the role of the
axion field α from [41]. Precise relations are as follows:

χ → π − γ, m2
σ →m2

π , (8.48)

η′

2
→ α, m2

η′ →m2
a (8.49)

such that our equations (8.47) and boundary conditions (8.46) are identically coin-
cide with the equations and the boundary conditions studied in ref [41]. Therefore,
we simply formulate here the main points3 which are relevant for our studies refer-
ring for the technical details to Ref. [41].

Most important result of analysis of Ref. [41] is that there is a unique solution
of equations (8.47) which satisfies the boundary conditions (8.46). The simplest
way to convince yourself that such a solution should exist is to use a mechanical
analogy as suggested in [41]. While analytical formula of the solution is not known,
its asymptotical behaviour at very large distances |z| �m−1

σ can be easily found as
follows. It is clear that at large negative z a heavy χ(z) field already assumes its
vacuum value χ = 0 such that η′(z) domain wall equation can be approximated in
this region as

∇2η′ − 2m2
η′ sin

(
η′

2

)
� 0, z�− 1

mσ

. (8.50)

3A simplest intuitive way to understand the qualitative behaviour of the system (8.47) is to use
a mechanical analogy as suggested in [41] when variable z is replaced by time, while the fields
(η′, χ) can be thought as coordinates of two particles moving in one dimension with interaction
determined by the potential term from (8.45).
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Solution of this equation which vanishes at large distances η′(z→ −∞)→ 0 can
be approximated as

η′(z)� 8 arctan

[
tan

(
π

8

)
emη′z

]
, z�− 1

mσ

. (8.51)

Similarly, at large positive z a heavy χ(z) field already assumes its vacuum value
χ = π such that η′(z) domain wall equation can be approximated in this region as

∇2η′ + 2m2
η′ sin

(
η′

2

)
� 0, z� 1

mσ

. (8.52)

Solution of this equation which approaches its vacuum value η′ = 2π at large dis-
tances η′(z→+∞)→ 2π can be approximated as

η′(z)� 2π − 8 arctan

[
tan

(
π

8

)
e−mη′z

]
, z� 1

mσ

. (8.53)

Formally, a similar construction when η′(z) field interpolates between different
branches representing the same physical vacuum state was considered previously,
see [67] for the details and earlier references on the subject.4

What happens to the double layer structure (8.38), (8.40) for the topological
charge distribution in the presence of the light dynamical quark? We anticipate,
without any computations, that the light dynamical field suppresses the topological
fluctuations similar to analysis of the topological susceptibility in this model [58].
Indeed, one can support this expectation by the following argument. First, we repre-
sent q(z) in form similar to (8.38). The only difference in comparison with previous
formula (8.38) is an emergence of the extra term due to the η′ field on the right hand
side of (8.54),

q(z)=
(
g

4π

)2 ∇2χ

L2
= ζ

L
sinχ(z) cos

(
η′(z)

2

)
. (8.54)

In obtaining (8.54) we used (8.47) and (8.33) to simplify the expression for q(z).
As we already mentioned, the χ(z) field has a solitonic shape interpolating between
χ = 0 and χ = π , see (8.46). Therefore, q(z) ∼ ∂2χ/∂z2 inevitably produces a
double layer structure irrespectively to the details of the solitonic shape of χ , similar
to our discussions of a pure gauge theory in Sect. 8.5. However, the magnitude
of this structure is strongly suppressed as a result of dynamics of the light quark.
Indeed, the η′(z) field assumes its central value η′ ≈ π in the region where χ(z) field

4The crucial difference with [67] is of course that the solutions for the system of the fields (η′, χ)
considered here are regular functions everywhere, while solution in Ref. [67] had a cusp singularity
as a result of integrating out heavy fields played by the χ field in present “deformed QCD” model.
Interpretations of these solutions in these two cases are also very different as we interpret the
corresponding configurations as the transitions describing the tunnelling processes in Euclidean
space-time rather than real static DW in Minkowski space-time as we mentioned above.
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variation ∼∂2χ/∂z2 is sufficiently strong. This factor cos η′
2 leads to a suppression

of q(z) in (8.54) as we had anticipated.
Few comments are in order. First of all, if we introduced the quark in “quenched

approximation” rather than as a dynamical degree of freedom, we would return to
our pure glue expression (8.38) as the “quenched approximation” corresponds to the
η′ = 0 in formula (8.54). Secondly, if we introduced a small quark’s mass mψ �= 0
into our Lagrangian it would not drastically change qualitative picture presented
above as boundary conditions imposed on the system (8.46) can not depend on
mψ �= 0. Indeed, these boundary conditions are entirely based on exact symmetry
of the system which requires that the energy of the system at θ = 0 and θ = 2π is
identically the same irrespectively to the quark’s mass. Finally, the (χ,η′) domain
wall is a coherent configuration and can not easily decay into its constituents, even
though the η′ is a real physical asymptotic state of the system. Technically, it can
be also explained using pure kinematical arguments: the η′ constituents which are
making the η′ domain wall are off-shell, rather than on-shell, states. This DW can
only decay through the tunnelling process, see (8.69) from Appendix.

To conclude this section: the main lesson of the present analysis is that the de-
formed QCD with matter field supports long range correlated configurations. In
different words, the matter and glue fields accompany each other in their interpola-
tions between topologically different, but physically identical states. This correla-
tion is enforced by very generic features of the Lagrangian (8.42). First, it is a local
enforcement as the Ward Identities require that θ parameter and η′ field enter the
effective Lagrangian in a specific way as (8.42) dictates. Secondly, it is a global en-
forcement as the 2π periodicity in θ implies there existence of interpolating (χ,η′)
configurations which inevitably present in the system.

We emphasize once again that the long range structure revealed in this section
might be the trace of a similar structure measured on the lattices, as the transition
from high temperature weak coupling regime to low temperature strong coupling
regime should be smooth without any phase transitions on the way [60]. However,
similar to our comment in Sect. 8.5, we expect that the (χ,η′) domain walls deter-
mined by (8.47) with boundary conditions (8.46) and asymptotical behaviour (8.51),
(8.53) become very crumpled and wrinkled objects with large number of foldings.
Such fluctuations obviously increase the entropy of the DWs which eventually may
overcome the intrinsic tension as holographic picture suggests, see [55] and refer-
ences therein. In fact, it is quite likely that an appropriate description for this physics
should be formulated in terms of holographic dual model, however we leave this
subject for future studies.

8.7 CSE, CME, CVE and Related Topological Phenomena
in Deformed QCD

As we already mentioned, the ultimate goal of our study here is to understand the
infrared physics in the presence of physical external U(1) magnetic field, which
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is precisely the environment relevant for study of the CME. We are now in posi-
tion to couple our system (8.42) to external Maxwell U(1) field Aμ as massless
quark ψ carries the electric charge e of Aμ field. In this section we use conventional
Minkowski metric in order to compare the obtained below formulae with known ex-
pressions written normally in Minkowski space-time. The η′ field which appears in
the low energy Lagrangian (8.42) does not couple to electromagnetic field directly
as it is a neutral field. However, it does couple via triangle anomaly, similar to the
textbook example describing π0 → 2γ decay. The corresponding Maxwell term Sγ
and anomalous term Sη′γ γ have the form

Sγ = −1

4

∫
d4x

[
F 2
μν

]
,

(8.55)

Sη′γ γ = e2N

16π2

∫
d4x

[
η′FμνF̃ μν

]
.

The structure of the Sη′γ γ is unambiguously fixed by the anomaly. It describes the
interaction of the Maxwell field5 Fμν with matter field.

The interaction (8.55) is normally used to describe η′ → 2γ decay. However,
in the context of the present work we treat η′(x) as external background field de-
scribing the η′ DW discussed in previous Sect. 8.6. Therefore, a number of new
and unusual coherent effects will emerge as a result of long range structure rep-
resented by the η′ domain wall described above. Let us emphasize again that this
long range structure being represented by the η′ component of the (η′, χ) domain
wall is the Euclidean long range configuration describing the tunnelling processes
in Minkowski space-time, rather than a physical configuration in real Minkowski
space-time. Nevertheless, this η′ coherent component does interact with Fμν field
as (8.55) dictates.

We start by rewriting the action (8.55) using conventional vector notations for
electric E and magnetic B fields,

Sγ + Sη′γ γ =
∫
d4x

[
1

2
E2 − 1

2
B2 − Ne2

4π2
η′E · B

]
. (8.56)

One can immediately see that in the electric field will be induced in the presence of
external magnetic field Bext in the extended region where η′ is not vanishing, i.e.

E = Ne2

4π2
η′Bext, (8.57)

which is precisely the starting formula in [14] if we identify the coherent η′ compo-
nent from the (η′, χ) domain wall with induced θind parameter introduced in [14].

5Not to be confused with gluon field from (8.25), (8.27).
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Furthermore, is we assume that the DW is extended along (x, y) directions, we get

(LxLy)Ez =
(
eNl

2π

)
η′(z) (8.58)

where L is size of the system, and integer number l is the magnetic flux of the sys-
tem,

∫
d2x⊥Bz

ext = Φ/e = 2πl/e. Formula (8.58) identically coincides with (8.4)
from Sect. 8.2 and (7) from [14] if the induced θind parameter from that work is
identified with extended along (x, y) configuration represented by the η′(z) domain
wall described in Sect. 8.6. The difference in signs in (8.58) and (8.4) is due to our
convention when we replace θ → (θ − η′) in effective Lagrangian. The induced
electric field along z obviously implies that the current will flow and charge will be
separated along Bz

ext.
Anomalous coupling (8.56) also implies that there will be induced current as a

result of coordinate dependence of the η′ field,

J ν =−Ne2

8π2
∂μ

(
η′F̃ μν

)
, (8.59)

which is convenient to represent in vector notations as follows

J0 = Ne2

4π2
∇η′ · Bext, J = Ne2

4π2
η̇′Bext, (8.60)

where we assume that the external magnetic field Bext is coordinate independent.
Formula (8.59) for the anomalous current has been studied previously in literature
in many fields, including particle physics, cosmology, condensed matter physics.
In particular, in the context of the axion domain wall it was extensively discussed
in [41].

In the present context relevant for the CME formula (8.60) reduces to the well
known result when the induced θind(x, t) parameter is identified with extended
η′ domain wall from Sect. 8.6. Indeed, integrating

∫
J0d

3x leads precisely to the
known expression for the charge separation effect along z,

Q=
∫

d3xJ0 = Ne2

4π2

∫
dz

dη′

dz

∫
d2x⊥Bz

ext =Nle, (8.61)

where we took into account the boundary conditions for the η′ field (8.46) and re-
placed

∫
d2x⊥Bz

ext = Φ/e = 2πl/e. Formula (8.61) identically coincides with our
expression (8.5) if one replaces θind = 2π as the boundary conditions (8.46) for
the η′ domain wall dictate. Furthermore, the expression for J in (8.60) can be pre-
sented in much more familiar way if one replaces η̇′ → θ̇ind ≡ 2μ5 as our identifi-
cation suggests. With these replacements the expressions (8.60) and (8.61) assume
their conventional forms which are normally used in CME studies (8.6), (8.7). One
should comment here that while our solution for the η′ domain wall considered in
Sect. 8.6 in “deformed QCD” is time independent, in fact it will actually describe
the tunnelling effects in strong coupling regime. Therefore, it is naturally to expect
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that η′(x, t) component from (χ,η′) domain wall becomes a time dependent config-
uration with a typical time scale η̇′ ∼ΛQCD in a course of a smooth transition from
weak coupling to strong coupling regime, as discussed at the end of Sect. 8.6. How-
ever, one can not use very large magnitude for η̇′ ∼ 1 GeV (as many people do) for
numerical estimates as the effective Lagrangian approach which leads to formulae
(8.6), (8.7) can only be justified for small values |η̇′| �ΛQCD, and marginally justi-
fied for |η̇′| �ΛQCD. For large |η̇′| �ΛQCD the effective Lagrangian approach can
not be justified, and computations should be based on a different technique when
underlying QCD degrees of freedom, quarks and gluons (rather than effective η′
field) play the dynamical role.

One should also say that there are many other interesting topological effects orig-
inated from similar anomalous terms as originally discussed in terms of hadronic
fields in [14, 30], and re-derived in terms of microscopical quark fields in [20, 31].
In particular, if a system with chemical potential μ rotates with angular velocity Ω ,
there will be a current flowing along Ω . The charges will be also separated along
the same direction. To get corresponding formulae one should replace eB → 2μΩ
in (8.60) as discussed in [14], i.e.

J0 = Neμ

2π2
∇η′ ·Ωext, J = Neμ

2π2
η̇′Ωext, (8.62)

which precisely coincides with (A2) from [14] and with (8.9), (8.10) from Sect. 8.2
if one identifies η′ field with induced parameter θind from [14] as we already dis-
cussed above. Specific consequences of effect (8.9), (8.10), (8.62) relevant for heavy
ion collisions were discussed quite recently in [42] where the effect was coined as
the chiral vortical effect (CVE).

The main point of this section is as follows. The long range structure discussed
in Sect. 8.6 might be the trace of a similar extended structure measured on the lat-
tices, as the transition from high temperature weak coupling regime to low temper-
ature strong coupling regime should be smooth [60]. It is important that this long
range structure describes the tunnelling effects and represented by (χ,η′) fields
in deformed QCD. These configurations are not real physical configurations in
Minkowski space-time. Nevertheless, these long range configurations do interact
with real physical E&M field as a result of anomaly (8.56).

Such an interaction transfers unphysical long range correlations (expressed in
terms of the Euclidean configurations describing the tunnelling processes) to phys-
ical long range correlated E&M effects (8.57), (8.58), (8.60), (8.62). The corre-
sponding coherent effects are accumulated on large scales ∼L where the boundary
conditions for different topological sectors are imposed.

This toy model explicitly shows that the large observed intensity of the effect as
studied at RHIC and ALICE at the LHC [1–12] might be due to a coherent phe-
nomena when the large observable asymmetry is a result of accumulation of a small
effect over large distances ∼L � Λ−1

QCD. It should be contrasted with some other
numerical estimates when the large intensity of the effect is achieved by choosing
a relatively large |μ5| ∼ 1 GeV � ΛQCD ∼ 0.1 GeV in which case there is no re-
gion of validity for the effective Lagrangian framework. In different words, the CSE
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given by formulae (8.61), (8.5), (8.7), (8.16), (8.17) leads to a large magnitude for
an asymmetry in spite of the fact that parameters |η̇′|, |∇η′| remain small during
entire tunnelling transition.

8.8 Conclusion and Future Directions

The question which is addressed in the present work is as follows: what could be
the physics behind of the long range order which is postulated in [14], and which
is apparently a required element for CSE, CME and CVE to be operational. We
attempt to answer this question using the “deformed QCD” as a toy model where
all computations are under complete theoretical control as this model is a weakly
coupled gauge theory. Still, this model has all the relevant crucial elements allowing
us to study difficult and nontrivial questions which are known to be present in real
strongly coupled QCD. The study of these effects in this toy model reveals that
the long range structure may result from the tunnelling effects and represented by
(χ,η′) fields in deformed QCD.

Apparently, such kind of transitions with long range structure in strong cou-
pling regime are happening all the time, as it is observed in the lattice simulations.
One should expect that the corresponding configurations at strong coupling regime
should be very crumpled and wrinkled objects with large number of foldings in
contrast with our (χ,η′) domain walls described in Sect. 8.6. Such local crumples
are expected to occur as it provides a large entropy for the DW configurations to
overcome their intrinsic tension. However, the crucial element of these DWs, the
long range coherence, is not lost in transition from weak to strong coupling regime.
Precisely this feature, we believe, is the key element why the observed asymmetries
are sufficiently strong and not washed out (which would be the case if one consid-
ers some conventional short range QCD fluctuations with a typical size ΛQCD). We
suspect that all other conventional mechanisms based on e.g. instanton/sphaleron
transitions can not provide sufficient intensities observed at RHIC and the LHC as
the observed asymmetries must be accumulated on large scales of order ∼L rather
than on scales of order Λ−1

QCD.
On phenomenological side, the very basic observed features, such as energy and

charge independence, of measured asymmetries in heavy ion collisions are automat-
ically and naturally satisfied within the framework based on long range order, see
recent papers [73, 74]. The same framework based on the idea of a coherent accu-
mulation of the effect also provides a natural explanation for a strong dependence
on centrality as observed at RHIC and ALICE at the LHC [1–12].

Essentially, our study in a simplified version of QCD provides a precise and very
specific realization of an old idea [17, 18] (see also [15, 16] where similar idea was
formulated in different terms), that a macroscopically large domain with θind �= 0
can be formed in heavy ion collisions. Now we can precisely identify this domain
characterized by θind �= 0 with interpolating long range η′ field which traces a pure
glue configuration describing the transition between different topological sectors. In
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different words, the domains with θind �= 0 should not be thought as real extended
regions formed in Minkowski space-time as a result of collision. Rather it should be
viewed as long range Euclidean coherent configurations which saturate the tun-
nelling transitions in path integral computations. Nevertheless, these long range
structure formulated in terms of auxiliary Euclidean configurations can be trans-
lated into observable long range effects (8.57), (8.58), (8.60), (8.62) in Minkowski
space as a result of anomalous coupling with physical E&M field.

We should also mention that CME has been extensively studied in the lattice
simulations [22, 75–77]. Independently, very different lattice studies reveal that
the crucial topological configurations saturating the path integral are represented
by extended, locally low-dimensional sheets of topological charge embedded in 4d
space [43–51]. Our analysis based on computations in weakly coupled “deformed
QCD” suggests that the long range configurations which are responsible for CSE,
CME and CVE effects are precisely the same objects which we identify with long
range extended objects from Refs. [43–51]. We presented a number of arguments
suggesting that this relation is in fact quite generic as it is based on topological
features of the theory, rather than on a specific details of the model. Therefore, we
conjecture that this relation continues to hold in strongly coupled QCD. This conjec-
ture can be explicitly tested in the lattice simulations as essentially this conjecture
suggests that the topological charge distribution as it is done in [43–51] and electric
charge distribution in the presence of the background magnetic field are strongly
correlated and follow each other. Such a correlation also provides a new, and much
easier way to study the original topological charge distribution by putting the sys-
tem into the background magnetic field and studying the electric charge distribution
in “quenched approximation” as it is previously done in Refs. [22, 75–77].

Our final comment is as follows. The transition from weakly coupled “deformed
QCD” to strongly coupled regime should be smooth. Still, this transition is beyond
the analytical control within QFT framework. What would be an appropriate tool to
study this physics in strongly coupled regime? It is very likely that the description in
terms of the holographic dual model may provide the required tools and technique.
In fact, the long range structure is obviously present in holographic model as one
can see from computations of the so-called “Topological Casimir Effect” [55, 78]
when no massless degrees of freedom are present in the system, but dependence
of physical observables demonstrate a power like sensitivity on size of the system
∼L

−p . This scaling is in huge contrast with ∼ exp(−L) dependence which is nor-
mally expected if a mass-gap is present in the system. Some analogies presented in
[55] are actually suggesting that the ground state of QCD behaves very similarly
to some condensed matter systems which are known to lie in topological phases.
In principle, one could try to compute the topological entanglement entropy in “de-
formed QCD” (as it has been done in some condensed matter systems) to see if the
theory indeed lies in topological phase. If it does, one could argue that the same
topological phase must be realized in strongly coupled QCD as well as the path
from weakly coupled “deformed QCD” to strongly coupled QCD must be smooth
with no any phase transition on the way along this path [60]. We leave this subject
for a future study. The last word whether these analogies can be extended to the
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strongly coupled four dimensional QCD remains, of course, the prerogative of the
direct lattice computations.
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Appendix

The goal here is to estimate the life time of the DW studied in Sect. 8.5. These
DW should be viewed as configurations which describe tunnelling processes, sim-
ilar to instantons. In addition, these objects may decay themselves as a result of
internal dynamics, similar to static (in Minkowski space) configurations studied pre-
viously [67–70].

The decay mechanism is due to a tunnelling process which creates a hole in the
domain wall which connects the χ = 0 domain on one side of the wall to the χ = 2π
domain on the other, see (8.36). Passing through the hole, the fields remain in the
ground state. This lowers the energy of the configuration over that where the hole
was filled by the domain wall transition by an amount proportional to R2 where R is
the radius of the hole. The hole, however, must be surrounded by a string-like field
configuration. This string represents an excitation in the heavy degrees of freedom
and thus costs energy, however, this energy scales linearly as R. Thus, if a large
enough hole can form, then it will be stable and the hole will expand and consume
the wall. This process is commonly called quantum nucleation and is similar to the
decay of a metastable wall bounded by strings, and we use a similar technique to
estimate the tunnelling probability. The idea of the calculation was suggested in
[68, 69] to estimate the decay rate in the so-called N = 1 axion model. In QCD
context similar estimations have been discussed for the η′ domain wall in large N
QCD in [67] and for the η′ domain wall in high density QCD in [70].

If the radius of the nucleating hole is much greater than the wall thickness, we
can use the thin-string and thin-wall approximation. (The critical radius Rc will be
estimated later and this approximation justified.) In this case, the action for the string
and for the wall are proportional to the corresponding worldsheet areas

S0
(
R

3 × S
1)= 2πRLα − πR2Lσ. (8.63)

The first term is the energy cost of forming a string: α is the string tension and 2πRL
is its worldsheet area. The second term is energy gain by the hole over the domain
wall: σ is the wall tension and πR2L is its worldsheet volume. We should note that
formula (8.63) replaces following, more familiar expression for the classical action
which was used in many previous similar computations, see e.g. [67, 70]

S0
(
R

4)= 4πR2α− 4π

3
R3σ. (8.64)
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Minimizing (8.63) with respect to R we find the critical radius Rc and the action S0

Rc = α

σ
, S0

(
R

3 × S
1)= πα2L

σ
, (8.65)

which replace more familiar expressions for the critical radius Rc = 2α
σ

and classical

action S0(R
4)= 16πα3

3σ 2 from [67, 70].
Therefore, the semiclassical probability of this process is proportional to

Γ ∼ exp

(
−πα2L

σ

)
(8.66)

where σ is the DW tension determined by (8.37), while α is the tension of the vortex
line in the limit when the interaction term ∼ζ due to the monopole’s interaction in
low energy description (8.35) is neglected and U(1) symmetry is restored. In this
case the vortex line is a global string with logarithmically divergent tension

α ∼ 2π
1

4L2

(
g

2π

)2

ln
R

Rcore
(8.67)

where R ∼m−1
σ is a long-distance cutoff which is determined by the width of DW,

while Rcore ∼ L when low energy description breaks down. The vortex tension is
dominated by the region outside the core, so our estimates for computing α to the
logarithmic accuracy are justified. Furthermore, the critical radius can be estimated
as

Rc = α

σ
∼ π

2mσ

ln

(
1

mσL

)
, (8.68)

which shows that the nucleating hole ∼Rc is marginally greater than the wall thick-
ness ∼m−1

σ as logarithmic factor ln( 1
mσL

)∼ lnN � 1 where N � 1 is large pa-
rameter of the model, see (8.34). Therefore, our thin-string and thin-wall approxi-
mation is marginally justified.

As a result of our estimates (8.66), (8.37), (8.67) the final expression for the
decay rate of the domain wall is proportional to

Γ ∼ exp

(
−πα2L

σ

)
∼ exp

(
−π3

(
g

4π

)3 ln2( 1
mσL

)
√
L3ζ

)

∼ exp
(−γ · N ln2 N

)� 1, (8.69)

with γ being some numerical coefficient. The estimate (8.69) supports our claim that
in deformed QCD model when weak coupling regime is enforced and N � 1 the
domain walls are stable objects and, therefore, our treatment of the DW in Sect. 8.5
is justified.
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Chapter 9
Views of the Chiral Magnetic Effect

Kenji Fukushima

9.1 Introduction—Discovery of the Chiral Magnetic Effect

The Chiral Magnetic Effect (CME) is concisely summarized in the following handy
formula;

j =Nc

∑

f

q2
f μ5

2π2
B, (9.1)

which represents an electric current associated with the non-zero chirality and the
external magnetic field B. Here Nc stands for the number of colors in quantum
chromodynamics (QCD) and qf represents the electric charge carried by the quark
flavor f where f runs over up, down, strange, etc. Equation (9.1) looks simple,
but the physical meaning of this CME current is far from simple. Let me begin
with telling some historical remarks on the discovery of the CME-current formula,
hoping that it may be instructive and even inspiring to some readers.

When we, Harmen Warringa, Dima Kharzeev, and I, started working on the com-
putation of j, we had no a priori idea about the final answer, hence we did not really
expect that the final result should be such elegant and beautiful. For several years
Harmen and Dima had been working on the implication of axion physics in the con-
text of the relativistic heavy-ion collision. [I will come back to the relevance of the
CME to axion physics later.] At that time, around the year of 2007, I was think-
ing of a different (but related) physics problem, i.e. color-superconducting states
in a strong B inspired by a pioneering work [8]. Harmen and I just chatted in the
corridor of the RIKEN BNL Research Center (RBRC) about B-effects on color
superconductivity, which was soon promoted to intriguing discussions, and a fruit-
ful collaboration after all. Nearly simultaneously with the successful completion of
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our project on color superconductivity in B [16] (see also Ref. [34] for an acci-
dental coincidence of the research interest with our Ref. [16]), a monumental paper
by Harmen, Dima, and Larry McLerran appeared [28]. While we were finalizing
the color-superconductivity paper (or struggling with referees, probably), Harmen
excitedly explained the idea of the Chiral Magnetic Effect to me. Also, I clearly re-
member that Larry came over mischievously (as always) to ask about the strength of
my B in the neutron-star environment (eB ∼ 1015gauss at most on the magnetar sur-
face). As compared to their B produced in the relativistic heavy-ion collision where
eB ∼ 1020gauss could be reached, mine was only negligible. . . Indeed, historically
speaking, the recognition of such B as strong as the QCD energy scale ΛQCD in
realistic circumstances was an important turning point to get the B-physics research
into gear. In other words, physics researches at eB ∼ Λ2

QCD have come to make
pragmatic sense rather than purely academic one since this turning point in 2007.
There was really a tremendous change in the attitude of researchers.

One year later, Harmen invited me to his continued project with Dima on the
Chiral Magnetic Effect. In their first paper the formula was given in a different style
from what is known today, namely, it was not the current but the charge separation
Q expressed as [28]

Q= 2Qw

∑

f

|qf |γ
(
2|qfΦ|). (9.2)

Here Qw is the topological charge (i.e. counter part of μ5 in (9.1)) and γ (x) is a
function dependent on the microscopic dynamics of quark matter. According to the
analysis in Ref. [28] one can approximate γ (x) by a simple function; γ (x ≤ 1)= x,
γ (x ≥ 1) = 1. This means that, if the magnetic flux per unit topological domain,
Φ , is large enough, Q≈ 2Qw

∑
f |qf |. This result is naturally understood from the

index theorem, i.e. 2Qw =N5 =NL −NR . Under such strong B , all the spin direc-
tions should completely align in parallel with B, and thus the momentum directions
are uniquely determined in accord with the chirality. All produced chirality should
contribute to the charge separation, leading to Q≈ N5

∑
f |qf | that is nothing but

2QW

∑
f |qf |. In the weak field case, on the other hand, Q ≈ 4ΦQw

∑
f q

2
f was

the theoretical estimate.
Equation (9.2) is as a meaningful formula as (9.1), but the determination of γ (x)

requires some assumptions. Besides, since the formula involves Qw , it is unavoid-
able to think of topologically non-trivial gauge configurations. As a matter of fact,
Harmen and I once tried to compute Q concretely on top of the real-time topologi-
cal configuration, namely, the Lüscher-Schechter classical solution [31, 40], which
turned out to be too complicated to be of any practical use. Then, Harmen hit on
a brilliant idea to deal with Qw , or strictly speaking, an idea to skirt around Qw .
[He invented another nice trick later to treat Qw more directly. I will come to this
point later.] The crucial point is the following; it is not the topological charge Qw

but the chirality N5 that causes the charge separation. It is tough to think of Qw ,
then what about starting with N5 not caring too much about its microscopic origin?
If one wants to fix a value of some number, one should introduce a chemical po-
tential conjugate to the number. In this case of N5, the necessary ingredient is the
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chiral chemical potential μ5 that couples the chiral-charge operator ψ̄γ 0γ 5ψ . In
my opinion the introduction of μ5 was a simple and great step to make the CME
transparent to everybody. In this way the CME has eventually gotten equipped with
enough simplicity and clarity.

The remaining task was to answer the following question; what is j in a system
with both μ5 and B? Harmen and I were first going to calculate the expectation
value of the current operator ψ̄γ μψ directly (see the derivation A in Ref. [11]). To
this end we had to solve the Dirac equation in the presence of μ5 and B to construct
the propagator. Now I am very familiar with the way how to do this explicitly, but
when we started working on this project, we had not had enough expertise yet, apart
from some straightforward calculations in color superconductivity. Some years later
Harmen, Dima, and I wrote a paper in which we reported the diagrammatic method
to derive (9.1) (see Appendix A in Ref. [12]). Let me briefly explain this derivation
here; the electric current in the z-axis direction is written in terms of the propagator
as

jz = Nc

∑

f

qf |qf B|
2π

∑

n

∫ T dp0

2π

∫
dpz

2π

∫
dx

Lx

× tr

[
γ zPn(x)

i

p̃μγ μ +μ5γ 0γ 5 −Mf

Pn(x)

]
, (9.3)

where the p0-integration is either at T = 0 or the Matsubara sum at T �= 0. If we
choose the gauge as A0 = Ax = Az = 0 and Ay = Bx, the tilde momentum in the
denominator is p̃ = (p0,0,− sgn(qB)

√
2|qB|n,pz). We do not need the explicit

form of the Landau wave-functions Pn(x) that take a 4× 4 matrix structure in Dirac
space. Because we are interested in j ‖ B here, γ z commutes with Pn(x) and thus we
need only Pn(x)2 which equals 1 for n > 0 and (1+ i sgn(qf B)γ xγ y)/2 for n= 0.
After some calculations one can confirm that (9.3) is reduced to (9.1) regardless
of the temperature T and the flavor-dependent mass Mf . Let me make a comment
on this rather naïve calculation. In most cases the proper-time method is the best
way to proceed in theoretical calculations [22, 42] and the above form of the quark
propagator is not widely known. For the purpose of calculating a finite quantity like
the CME current, I would like to stress that the above quark propagator should be
equally useful. Actually it is almost obvious in (9.3) that any contributions from
the Landau non-zero modes are vanishing and the current arises from the Landau
zero-mode only.

Coming back to the story of our first attempt to discover j, I remember that Har-
men and I came to the office and brought different answers every morning and had
the hottest discussions all the day. It took us a few days until we eventually con-
vinced ourselves to arrive at the right answer. Later on, Harmen had great efforts
to dig out several independent derivations of (9.1) while preparing for our paper.
Among various derivations we first found the one based on the thermodynamic po-
tential (i.e. the derivation C in Ref. [11]). Because this calculation plays some role
in later discussions on the physical interpretation of the CME current, let us take a
closer look at the detailed derivation using the thermodynamic potential.
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The most essential ingredient is the quasi-particle energy dispersion relation in
the presence of B and μ5. For B along the z-axis, one can solve the Dirac equation
to find the dispersion relation,

ω2
p,s =

[(
p2
z + 2|qf B|n)1/2 + sgn(pz) sμ5

]2 +M2
f , (9.4)

where s is the spin, qf and Mf are the electric charge and the mass of quark flavor
f . Once the one-particle energy is given, one can immediately write the thermody-
namic potential down as

Ω =Nc

∑

f

|qf B|
2π

∑

s=±

∞∑

n=0

αn,s

∫ ∞

−∞
dpz

2π

[
ωp,s + T

∑

±
ln
(
1 + e−(ωp,s±μ)/T

)]

(9.5)
at finite temperature T and quark chemical potential μ. The spin factor, αn,s , is
defined as αn,s = 1 (n > 0), δs+ (n = 0, qf B > 0), δs− (n = 0, qf B < 0). This
factor is necessary to take care of the fact that the Landau zero-mode (n= 0) exists
for one spin state only. The current jz is obtained by differentiating Ω with respect
to the vector potential Az. Because the vector potential in the matter sector resides
only through the covariant derivative, the following replacement is possible inside
of the pz-integration,

∂

∂Az

= q
d

dpz
. (9.6)

The combination of this derivative and the pz-integration ends up with the surface
terms. It is the characteristic feature of the quantum anomaly that a finite answer
results from the ultraviolet edges in the momentum integration. That is, the CME
current reads,

jz = Nc

∑

f

qf |qf B|
2π

∑

s=±

∑

n

αn,s

∫ Λ

−Λ
dpz

2π

d

dpz

[
ωp,s +T

∑

±
ln
(
1+ e−(ωp,s±μ)/T

)]

= Nc

∑

f

qf |qf B|
4π2

[
ωp,±(pz =Λ)−ωp,±(pz =−Λ)]

= Nc

∑

f

qf |qf B|
4π2

[
(Λ±μ5)− (Λ∓μ5)

]=Nc

∑

f

q2
f μ5

2π2
B. (9.7)

Here, in the second and the third lines, ± appears from the Landau zero-mode al-
lowed by αn,s , i.e. ± amounts to sgn(qf B) which cancels the modulus of |qf B|,
and the matter part drops off for infinitely large ωp,s(pz = ±Λ). It would be just
a several-line calculation to make sure that (9.3) is equivalent with (9.7) and they
are calculations at the one-loop level. It is also a common character of the quantum
anomaly that the one-loop calculation would often give the full quantum answer. Al-
though I do not know any explicit check of the higher-order loop effects, the above
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method at the one-loop level is my favorite derivation of (9.1); all the calculation
procedures are so elementary and transparent.

9.2 Chiral Separation Effect

Soon later, Harmen and I found that a very similar topological current had been
discovered in the neutron-star environment, that is, the axial current associated with
the quark chemical potential μ and the magnetic field B [32],

j5 =Nc

∑

f

q2
f μ

2π2
B. (9.8)

This is a chiral dual version of (9.1). Nowadays people call (9.8) the Chiral Sep-
aration Effect (CSE) in contrast to (9.1) referred to as the Chiral Magnetic Effect.
When we learned the fact that (9.8) had been known earlier, our excitement got
cooled down a bit. Also, three years later, we came to know that the CME formula
had been discovered further earlier. Now there is a consensus in the community
that the CME formula (9.1) was first derived by Alex Vilenkin [47]. It was an em-
barrassment for me to have overlooked his work until he brought our attention to
his old papers. In fact an equivalent of (9.1) has been rediscovered over and over
again [1, 19, 20] and I would not be surprised even if (9.1) is still buried in fur-
ther unknown works. [I am not talking about the recent activities to derive (9.1)
from a deeper insight into physics such as Berry’s curvature [45, 50], hydro or ki-
netic approaches [18, 24, 25, 46], and so on, which really deserve more investiga-
tions.]

The derivation of (9.8) is worth discussing here. The topological effects in quan-
tum electrodynamics (QED) from Nc ×Nf quarks add terms in the action as

δS =
∫

d4x θ(x)

[
∂μj

μ
5 (x)+Nc

∑

f

q2
f

16π2
εμνρσFμν(x)Fρσ (x)

]
, (9.9)

associated with an axial rotation by θ(x). In this way we see that the axial current is
not conserved but anomalous. With the replacement of A0 = μ and ε0ijk∂jAk = Bi ,
one can transform this expression using the integration by parts into

δS =
∫

d4x ∂iθ(x)

[
−j i5(x)−Nc

∑

f

q2
f

2π2
ε0ijkA0(x)∂jAk(x)

]

=
∫

d4x ∂iθ(x)

[
−j i5(x)+Nc

∑

f

q2
f

2π2
μBi(x)

]
, (9.10)

from which (9.8) immediately follows. This derivation also tells us that the B-in-
duced current in the right-hand side of (9.8) is nothing but a part of the Chern-
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Simons current ∼ εμνρσAν∂ρAσ in QED. It should be mentioned that the derivation
presented above is a little bit cooked up by me for the illustration purpose and one
should refer to the original paper [32] for more careful treatments of the surface
integral.

Before going on our discussions, let me point out that the above derivation im-
plicitly assumes massless quarks. If quarks are massive, (9.9) should be modified
with an additional term 2iMf 〈ψ̄f γ

5ψf 〉. This modification would be harmless as
long as the pseudo-scalar condensate is vanishing, but in principle, (9.8) could be
dependent on Mf unlike (9.1) as argued explicitly in Ref. [32]. In fact it is quite
subtle whether (9.8) is sensitive to Mf or not, and I will address this question in an
explicit way soon later.

It would be an interesting question how to derive (9.8) microscopically just like
the ways addressed in the previous section. In fact I have once tried to prove (9.8)
based on the thermodynamic potential by inserting an axial gauge field. There must
be a way along this line, but I could not solve it (or I would say that I did not have
enough time to find it out. . . ). Instead, here, let me introduce another derivation
based on the propagator as in (9.3).

The axial current is expressed as

jAz = Nc

∑

f

qf |qf B|
2π

∑

n

∫ T dp0

2π

∫
dpz

2π

∫
dx

Lx

× tr

[
γ zγ 5Pn(x)

i

p̃μγ μ +μγ 0 −Mf

Pn(x)

]
(9.11)

at finite quark chemical potential μ. It is easy to see that any contributions from
n �= 0 vanish due to the Dirac trace. Only the Landau zero-mode produces a term
involving γ xγ y which makes tr(γ 0γ xγ yγ zγ 5)=−4i �= 0. Then, the above expres-
sion simplifies as

jAz = −Nc

∑

f

q2
f B

2π

∫ T dp0

2π

∫
dpz

2π
tr

[
γ zγ 5 p̃μγ

μ +μγ 0 +Mf

(p0 +μ)2 − p2
z −M2

f

γ xγ y
]

= 4iNc

∑

f

q2
f B

2π

∫ T dp0

2π

∫
dpz

2π

p0 +μ

(p0 +μ)2 − p2
z −M2

f

= Nc

∑

f

q2
f B

2π

∂Z(μ)

∂μ
, (9.12)

where Z(μ) denotes the partition function at finite density in (1 + 1)-dimensional
theory (as a result of the dimensional reduction with the Landau zero-mode), and
thus the μ-derivative leads to the quark density n. In the second line we used 2(p0 +
μ)/[(p0 + μ)2 − p2

z −M2
f ] = (∂/∂μ) ln[(p0 + μ)2 − p2

z −M2
f ]. One might have

thought that it is a simple exercise to evaluate Z(μ) with the (1 + 1)-dimensional
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integration. The fact is, however, that the finite-μ system in (1 + 1) dimensions is
by no means simple.

In Ref. [32] one can find exactly the same expression as above in a slightly dif-
ferent calculation and the density is written as (see (37) in Ref. [32]),

nf (T ,μ)=
∫

dpz

2π

[
1

e(ωf−μ)/T + 1
− 1

e(ωf+μ)/T + 1

]
(9.13)

with ωf =
√
p2
z +M2

f . This result is certainly Mf -dependent as suggested in the

paragraph below (9.10), and this would make a sharp contrast to the CME cur-
rent (9.1).

We know, however, that the density in the (1 + 1)-dimensional fermionic theory
arises from the anomaly [41] and the density (9.13) is not the right answer. In fact,
in view of the second line of (9.12), it seems at a glance that the μ-dependence
could be absorbed in the p0-integration, which already gives us an impression that
something non-natural should be happening. To see this, let us take one-step back
to the microscopic expression, i.e., the (1+ 1)-dimensional partition function reads,

Z = 2i
∫ T dp0

2π

∫
dpz

2π
ln
[
(p0 +μ)2 − p2

z −M2
f

]

= i

∫ T dp0

2π

∫
dpz

2π
tr
[
γ 0(p0 +μ)− γ zpz −Mf

]
, (9.14)

from which the μ-dependence could be eliminated by the chiral rotation (for the
zero-mode basis only),

ψ0 = eiγ
zγ 0μzψ ′

0, (9.15)

leading to (here, we shall show results at T = 0 for simplicity, but nothing is changed
even at finite T ),

Z = i

∫
dp0

2π

∫
dpz

2π
tr
[
eiγ

zγ 0μz
(
γ 0(i∂0 +μ)− γ zi∂z −Mf

)
eiγ

zγ 0μz
]

= i

∫
dp0

2π

∫
dpz

2π
tr
[
γ 0i∂0 − γ zi∂z − M̃f

]

=
∫ Λ−μ

−Λ+μ
dpz

2π

1

2
ω̃f +

∫ Λ+μ

−Λ−μ
dpz

2π

1

2
ω̃f (9.16)

with ω̃f =
√
p2
z + |M̃f |2, where M̃f =Mf e

2iγ zγ 0μz is the chirally tilted mass. The
momentum integration is shifted according to the chiral rotation (9.15). The first
(second) integral corresponds to the particle (anti-particle, respectively) contribu-
tion. Thus, one can extract the μ-dependent piece from the surface terms as follows;
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Z =
∫ Λ

−Λ
dpz

2π
ω̃f +

(∫ Λ+μ

Λ

+
∫ Λ−μ

Λ

)
dpz

2π
ω̃f

= μ2 d2

dx2

∫ Λ+x

Λ

dpz

2π
ω̃f + (μ-independent terms)

= μ2

2π
+ (μ-independent terms), (9.17)

which results in the density nf = μ/π that is independent of Mf [41]. It is clear
from the second line of the above calculation that the density originates from the ul-
traviolet edges, which is the characteristic feature of the anomaly. The full quantum
answer is then given as

nf = ∂Z(μ)

∂μ
= μ

π
⇒ jAz =Nc

∑

f

q2
f μ

2π2
B. (9.18)

Equivalently, if one is interested in deriving the same answer from (9.12) directly,
one should split the composite operator as ψ̄(x)γ zγ 5ψ(x)→ ψ̄(x + ε)γ zγ 5ψ(x)

and insert the infinitesimal gauge connection from x to x + ε. Interestingly, con-
trary to Ref. [32], the Chiral Separation Effect (9.8) is presumably insensitive to the
quark mass just like the Chiral Magnetic Effect (9.1). Whether (9.8) is robust or not
regardless of Mf is an important question particularly in the context of the Chiral
Magnetic Wave (CMW) [30]. The anomalous nature of the density (9.18) implies
that the CMW can exist also in the chiral-symmetry breaking phase where quarks
acquire substantial mass dynamically.

I would not insist that I could prove the non-renormalization of (9.8) since the
above is just a one-loop perturbation and non-perturbative interactions may change
the story; I would like to thank Igor Shovkovy for raising this unanswerable but
unforgettable question. The interested readers may consult Refs. [15, 21] for some
examples of non-non-renormalization. Anyway, I can at least say with confidence
that, if B is super-strong, the reduction to the (1+ 1)-dimensional system should be
strict, and then (9.13) must be altered, conceivably as nf = μ/π [9].

Although the interpretation of (9.18) may swerve a bit from our main stream,
I would emphasize that (9.18) is extremely interesting and it would be definitely
worth revisiting its profound meaning. Actually, (9.15) has an impact on the struc-
ture of the QCD vacuum. Let us consider the hadronic phase with spontaneous
breakdown of chiral symmetry. After the rotation (9.15), apart from the anoma-
lous term μ2/(2π), the system is reduced to that at zero density, which means that
χ = 〈ψ̄ ′

0ψ
′
0〉 should take a finite value. Therefore, in terms of the original fields ψ0,

the chiral condensates form a spiral structure,

〈ψ̄0ψ0〉 = χ cos(2μz),
〈
ψ̄0γ

zγ 0ψ0
〉= χ sin(2μz), (9.19)

which is called the chiral spiral or the dual chiral-density wave (if γ 5 is involved)
[7, 33]. In particular, if the above type of the inhomogeneous ground state is caused
by B , it is sometimes called the chiral magnetic spiral [5].
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I should emphasize that (9.18) does not really require the dimensional reduction,
while the chiral magnetic spiral needs the pseudo (1 + 1)-dimensional nature under
sufficiently strong B . This point might be a bit puzzling. As long as jAz is concerned,
only the Landau zero-mode remains non-vanishingly for any B , and the momen-
tum integration is purely (1 + 1)-dimensional. The chiral condensate is, however,
not spiral but homogeneous for small B because of contributions from all non-zero
Landau levels. That is, the genuine chiral condensate is 〈ψ̄ψ〉 =∑

n〈ψ̄nψn〉, among
which only the Landau zero-mode has a special structure as in (9.19). I would con-
jecture, hence, that there is no sharp phase transition from the homogeneous chiral
condensate at B = 0 to the chiral magnetic spiral at B �= 0, but it may be possible
that the inhomogeneous zero-mode contribution gradually develops, which exhibits
a smooth crossover to the chiral spirals with increasing B .

9.3 What Is the Chiral Chemical Potential?

Equation (9.8) is very similar to the CME current (9.1), so that one might have
thought at a first glance that (9.1) emerges trivially from the insertion of γ 5 in both
sides of (9.8). The relation between (9.1) and (9.8) is not such simple, though. As
a matter of fact, this point was a major source of confusions about the validity of
(9.1). One can readily extend the field-theoretical derivation of (9.8) using (9.9) in
order to obtain (9.1) by introducing the axial vector fields A5

μ, or the chiral gauge
fields, AR = (Aμ + A5

μ)/2 and AL = (Aμ − A5
μ)/2. Then, in the same manner as

in the previous section, one can formulate the counterpart of (9.9) associated with a
vector rotation by β(x), that is,

δS =
∫
d4x β(x)

[
∂μj

μ(x)+Nc

∑

f

q2
f

16π2
εμνρσFR

μν(x)F
R
ρσ (x)

−Nc

∑

f

q2
f

16π2
εμνρσFL

μν(x)F
L
ρσ (x)

]
. (9.20)

This leads to −j i −Nc
∑

f (q
2
f /2π2)ε0ijk(AR

0 −AL
0 )∂jAk = 0 just as in (9.10), and

this is nothing but (9.1) after the identification of A5
0 as μ5 (see the derivation D

in Ref. [11]). Although the derivation may look flawless, it triggered suspicious
views of (9.1), which was first addressed by Toni Rebhan, Andreas Schmitt, and
Stefan Stricker using the Sakai-Sugimoto model [38]. [It should be noted that the
CME current had been exactly reproduced in the holographic models [49].]

Obviously, one has to deal with the chiral gauge theory with both AR and AL to
introduce μ5 in the above way, and it is well-known that the anomaly in the chiral
gauge theory has a more complicated structure than that in the vector gauge theory.
Roughly speaking, the anomaly is a consequence from the inconsistency between
chiral invariance and gauge symmetry. In the vector gauge theory, usually, the vector
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current is strictly conserved due to adherence to gauge symmetry, and the anomaly
is seen in the axial vector channel only (see (9.9)). In the case in the chiral gauge
theory, however, there is no such strict demand from the theory and it should be
prescription dependent how the anomaly may appear in the vector and the axial
vector currents. Indeed we can clearly see from (9.20) that the vector current is also
anomalous. There are two representative results known as the covariant anomaly and
the consistent anomaly, and they can coincide only when the anomaly cancellation
holds, as is the case in the Standard Model. The authors of Ref. [38] claimed that the
vector current should be free from the anomaly and the theory should accommodate
the Bardeen counter-terms to cancel the anomalous terms in (9.20). Then, needless
to say, the CME current is vanishing!

This argument scared Harmen and me very much. In 2009 when Ref. [38] came
out, Harmen was a postdoc in Frankfurt and I was also there as a visitor. Harmen’s
face is always very white, but he got even more whity, and we had a lot of discus-
sions on Ref. [38] in Frankfurt with a fear that we might have made a big steaming
mistake. . . At that time, neither Harmen nor I was 100 % confident in (9.1) (maybe
Dima was?), and the necessity of the Bardeen counter-terms sounded plausible. This
puzzle was one of the issues discussed in a RBRC workshop, “P- and CP-odd Ef-
fects in Hot and Dense Matter” in May, 2010. One of the invited participants, Valery
Rubakov, wrote a note to clarify this issue based on the discussions in the work-
shop [39]. The essence in his argument is the following. If one introduces μ5 as the
zeroth component of the axial gauge field, the CME current is gone indeed. How-
ever, QCD and QED are not the chiral gauge theory. One should then introduce μ5
in a different way as a conjugate to the Chern-Simons charge. Therefore, instead of
adding a term μ5ψ̄γ

0γ 5ψ in a form of the covariant derivative in the Lagrangian,
one should think of the Chern-Simons current Kμ which is deduced from

Nc

∑

f

q2
f

16π2
εμνρσFμν(x)Fρσ (x) = ∂μ

[
Nc

∑

f

q2
f

4π2
εμνρσAν(x)∂ρAσ (x)

]

= ∂μK
μ(x) (9.21)

in the QED sector. The term to be added in the Lagrangian is,

Scs =−
∫
d4x μ5K

0(x)=−Nc

∑

f

q2
f μ5

4π2

∫
d4x ε0ijkAi(x)∂jAk(x), (9.22)

from which (9.1) immediately follows as a result of the derivative, j i = δScs/δAi(x).
One may worry about gauge invariance in the above prescription. It would be then
more convenient to rewrite Scs in the following way after the integration by parts,
that is manifestly gauge invariant,

Scs =
∫
d4x θ(t)Nc

∑

f

q2
f

16π2
εμνρσFμν(x)Fρσ (x), (9.23)
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where ∂0θ(t)= μ5. In other words, we can say that μ5 is the time derivative of the
θ angle in the QED sector, which was pointed out already in Ref. [11] and the idea
of the charge separation driven by inhomogeneous θ can be traced back to Ref. [26].
A subsequent question naturally arises; what happens if θ(x) has not only temporal
but also spatial dependence in general? The Chern-Simons-Maxwell theory with
general θ(x) provides us with the following modified Maxwell equations;

∇ · E = ρ +Nc

∑

f

q2
f

2π2
(∇θ) · B, (9.24)

∇ × B − ∂0E = j +Nc

∑

f

q2
f

2π2

[
(∂0θ)B − (∇θ)× E

]
, (9.25)

and Faraday’s law and Gauß’s law are not altered. We see that the CME current
appears in the right-hand side of (9.25) as if it is a part of the external current. In
this manner we can conclude from (9.24) that an electric-charge density is induced
by spatially inhomogeneous θ(x) in the presence of B. To the best of my knowl-
edge (9.24) and (9.25) are the quickest derivation of the Chiral Magnetic Effect, as
discussed first in Ref. [27].

[After I finished writing this article, I was informed by Toni, one of the authors
of Ref. [38], that the confusion about the CME in the holographic context seems to
continue. I am not able enough to make any judgment here, and those who want to
dive into this confusion can consult the recent analysis in Ref. [3].]

9.4 What Really Flows?

To tell the truth, I have never gotten any satisfactory answer to the following ques-
tion; what really flows? I have had various discussions with people who have vari-
ous backgrounds, but those discussions ended up with more confusions than before.
Thanks to useful conversations, nevertheless, my eyes have been open to various
views of (9.1). People (including me) say that the CME current is an electric cur-
rent induced by B just like Ohm’s law with the electric field E. Let me begin with
suspecting this interpretation that people just take for granted.

In classical electrodynamics (9.25) is usually written in a slightly different way,
i.e.,

∇ × B = j + ∂0E +Nc

∑

f

q2
f

2π2

[
(∂0θ)B − (∇θ)× E

]
, (9.26)

and ∂0E is called the displacement current. We see that the CME current should be
a genuine current if ∂0E can be regarded as a real electric current, for they enter
Ampère’s law on equal footing. In other words, if the displacement current is not a
real current, the CME current is not, either. Now, we know from our experience that
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∂0E is only the time derivative of the electric field and no electric charge flows asso-
ciated with the displacement current. The displacement current certainly plays the
equivalent role as j as a source to create B, but it is clear that there is no movement
of electric charge at all. It would be therefore a legitimate claim to insist that the
charge separation from the CME current might be an illusion. I would emphasize
the importance to distinguish the current and the charge in the argument here. For
example, the most well-known example of the displacement current is the problem
of the capacitor that is composed of two separate conductors. Let a capacitor be
connected to the wire with finite electric current. More and more electric charge ac-
cumulates on the conductors and produces stronger and stronger electric field inside
as the time goes. Then, even though two conductors are physically separate and no
electric current flows between them, the displacement current flows as if the electric
current flowed along the wire without the capacitor. The distribution of the electric
charge stored on the conductors is, however, totally different depending on the sit-
uation with and without the capacitor. In this sense, thus, the charge itself may not
flow and the charge separation may not occur with the CME current also.

A related criticism against the CME current is that the current computed in (9.7)
for example is the expectation value of the current operator, ψ̄γ μψ , and it is not
necessarily the current. In fact, there are some studies on the Chiral Magnetic Ef-
fect in the lattice gauge theory; the correlation functions of the chirality and the
current were measured in Ref. [6], and later (9.1) was checked directly on the lat-
tice [48]. It is not so straightforward, however, to interpret these lattice results prop-
erly. A system with a finite electric current could be steady but is out of equilibrium.
What one can calculate in the thermal system in equilibrium like the situation of
the lattice simulation in Euclidean space-time is the electric-current conductivity
according to the Kubo formula. It is a tricky question what 〈ψ̄γ μψ〉 really rep-
resents in the lattice simulation. Let me take one example for concreteness. If the
system has a condensate of the omega meson, ωμ, the interpolation field of ωμ

is ∼ ψ̄γ μψ and then jμ = 〈ψ̄γ μψ〉 �= 0, but this does not necessarily mean that
the system has a persistent current. To make this point clearer, the spin operator
in terms of the Dirac matrices is Ŝz = i

4 [γ x, γ y] = 1
2 diag[σ 3, σ 3], so that the spin

expectation value is Sz = 〈ψ̄Ŝzψ〉 = 1
2 〈φ†

Rσ
3φL〉 + 1

2 〈φ†
Lσ

3φR〉, while the current

expectation value is jz = 〈ψ̄γ zψ〉 = 〈φ†
Rσ

3φR〉 − 〈φ†
Lσ

3φL〉, where φL and φR are
two-component spinors in the left-handed and right-handed chirality, respectively.
Here, the similarity between Sz and jz implies that we can regard jz as a static
quantity like the spin Sz, which may well be the most appropriate interpretation of
the lattice measurement.

From the point of view of the theoretical treatment of the electric current, the
formulation based on the linear response theory must be a good starting point. I be-
lieve that the work along this line in Ref. [29] should be one of the most impor-
tant literature to think of physics of the Chiral Magnetic Effect. They computed the
one-loop diagram on top of the μ5 background to find the chiral magnetic conduc-
tivity σχ(ω,p). The result is consistent with (9.1) in a particular limit; σχ(ω = 0,
p → 0) = limp→0 σχ(0,p) = Nc

∑
f (q

2
f μ5/2π2) which correctly reproduces the

CME current. In view of the result of Ref. [29], on the other hand, it seems
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σχ(ω → 0,p = 0) = 0. [This latter limit is not manifestly addressed in Ref. [29],
but it is pointed out that the conductivity drops to one third just away from ω= 0. It
seems to be vanishing from (38) and Fig. 1 of Ref. [29].] This is a problem because
the latter limit rather than the former one is more relevant to the real-time dynamics.
The fact that the former limit (ω = 0 first and p = 0 next) gives the CME cur-
rent (9.1) suggests that the CME current should be a static quantity just as measured
in the lattice simulation and thus not a genuine electric current!?

One may still consider that the intuitive argument leading to (9.2) should work
anyway. My impression is also that all above-mentioned problems are just on the
conceptual level (though I have no idea how to reconcile them) and in practice the
CME current flows according to (9.1) after all. Indeed if there are almost massless
quarks in a quark-gluon plasma and a strong B is imposed on a topological domain,
an electric current must be induced for sure. An example of the real-time calculation
of the CME current with not μ5 but a topological domain is quite instructive in this
sense [13]. The central innovation in Harmen’s idea (as discussed in Ref. [13]) was
to mimic the topological domain by putting E and B parallel to each other, with
which εμνρσFμνFρσ �= 0. Then, the particle production occurs via the Schwinger
mechanism and the produced particles are accelerated by the fields, and the elec-
tric current is generated. The current is time dependent and the current-generation
rate can be analytically written down. In this setup the physical origin of the CME
current is crystal-clear! So, if anything is fishy in physics of the Chiral Magnetic
Effect, it should have something to do with technical defects of μ5 in equilibrium
circumstances.

Supposing that physics of the Chiral Magnetic Effect should be robust, let us
admit the CME current (9.1) as it is to proceed to the next question, that is actually
the central question in this section; what really flows?

An intuitive explanation tells us that quarks simply flow in a quark-gluon plasma.
It is, however, based on a classical picture, and such a picture misses quantum char-
acter that is indispensable for phenomena related to the quantum anomaly. Look at
the derivation of the CME current in (9.7). If this derivation captures the underlying
physics of the CME current, the origin of the current comes from quarks with in-
finitely large momenta. Where are such fast-moving quarks in the real quark-gluon
plasma? They may spill out from the vacuum through quantum processes, but how is
it possible to retrieve particles with infinite momenta? Usually the quantum anomaly
involves ultraviolet regions of the momentum integration as a loop of virtual parti-
cles, meanwhile ultraviolet particles directly participate in the physical observable
in the CME problem. It is very hard (at least for me) to imagine that the current gen-
eration in such a way really happens in a physical plasma. This deliberation brings
me a further doubt about the static evaluation of the CME current.

A natural extension of this question about the origin of the CME current is
whether it exists in the hadronic phase and, if it does, how the current appears in
terms of hadronic degrees of freedom. Actually this question has been something
in mind for a long time since when we published Ref. [11]. In the hadronic phase
an electric current should be attributed to charged pions, but pions are insensitive to
chirality and thus μ5 or the strong θ angle. One possible answer would be that there
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is no CME in the hadronic phase, and if so, it would be fantastic; the CME current
can be a signature for quark deconfinement, as implied in Ref. [11]. I had heard that
Harmen wanted to analyze the CME using the chiral perturbation theory, though he
never worked it out.

Recently I have clarified what would happen in the hadronic phase and wrote a
paper with one of my students, Kazuya Mameda [14]. Our conclusion was a very
natural one, and a very perplexing one at the same time.

The CME current is unchanged even in the hadronic phase, which is very nat-
ural since the CME current has the anomalous origin that arises from ultraviolet
fluctuations. At low energies the anomaly should be saturated by infrared degrees
of freedom, which is sometimes referred to as the anomaly matching. This idea is
formulated as the Wess-Zumino-Witten action and the current should be given by
the derivative of the total effective action with respect to the gauge field. In this way
we found that the leading-order term in the chiral Lagrangian leads to the current,

jμχ =−i ef
2
π

4
tr
[(
Σμ − Σ̃μ

)
τ 3]� e

(
π−i∂μπ+ − π+i∂μπ−)+ · · · , (9.27)

where Σμ =U†∂μU , Σ̃μ = (∂μU)U†, and U = eiπ
aτa/fπ are the standard notation

in the chiral Lagrangian. The physical meaning of the above expression is plain as
seen from the expansion in terms of the pion fields. It is a common form of the
probability flow in Quantum Mechanism representing the electric current associated
with the flow of the charged pions.

A more non-trivial contribution comes from the Wess-Zumino-Witten part,
which leads to the current associated with the π0 domain-wall [44], i.e.,

j
μ
WZW =Nc

∑

f

qf

8π2fπ
εμνρσ

(
∂νπ

0)Fρσ . (9.28)

This current is very similar to the CME current (9.1) and θ(x) is just replaced by
π0(x)/(4π2fπ). Although (9.28) is not the Chiral Magnetic Effect, it would give
us a clue to think about the physical meaning of the CME current. Finally, the
CME current appears from the so-called contact part of the Wess-Zumino-Witten
action [23];

SP =Nc

∑

f

q2
f

8Nfπ2
εμνρσ

∫
d4x Aμ(x)

(
∂νAρ(x)

)
∂σ θ(x), (9.29)

which is just equivalent to the Chern-Simons action already discussed in (9.22). [θ in
(9.29) has a different normalization by 2Nf by convention.] Naturally the current
derived from (9.29) should reproduce the CME current (9.1). This is how one can
get the CME current in the hadronic phase and my surprise lies in the fact that the
pion dynamics is completely decoupled from the CME current.

Because the π0 domain-wall looks a bit more intuitive than the mystical θ angle,
we shall consider a possible interpretation of the current (9.28). This is certainly a
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current, but no charged pions, π±, are involved in the formula. Then, it is as puzzling
in (9.28) how the current can flow and what really flows.

To answer this question, let me emphasize a very useful analogue of the Joseph-
son current in superconductivity. The Josephson junction consists of superconduct-
ing materials and a thin layer of insulator (S-I-S) or non-superconducting metal
(S-N-S) sandwiched by them. There was a big debate about whether the super-
current can flow or not through the insulating barrier. Of course, there is no Cooper
pair inside of the insulator, and thereby there is nothing that takes care of the super-
current. It should have been a natural attitude to get skeptical about such a cur-
rent [4]. This situation, a current without current carriers, is quite reminiscent of
our problem of the CME current or the current accompanied by the π0 domain-
wall. Everyone knows that the Josephson current is the experimental fact today [2].
For the Josephson current, the coherence is the most important; in superconduc-
tor the quantum state is characterized by a wave-function just like a problem in
Quantum Mechanics. In the QCD case, also, such a coherent state is realized by the
condensation of fields, namely, π0(x) in (9.28) is to be regarded as a macroscopic
wave-function. One may then raise a question; the current of the π0 domain-wall
may be okay, but what about the CME current? There is no coherent field but only
θ(x) that is not a dynamical field but just a space-time dependent parameter! This
is perfectly a sensible question. To answer this, I would say that θ(x) could be pro-
moted to the dynamical field without mentioning on a possibility of axion, at least
in the hadronic phase. If the system has a pseudo-scalar (and iso-scalar) condensate
such as the condensate of the η0 meson (that forms η′ with a mixture with η3), it
could be mapped to θ(x) in the chiral Lagrangian approach. Once this mapping is
noticed, there is no longer a big conceptual difference between the current in (9.28)
and the CME current in (9.1). The analogy to the Josephson current may support
the reality of the CME current, but this argument does not tell us anything about the
microscopic constituent of the current yet.

Equation (9.28) means that the current can exist just with the π0(x) profile and
the magnetic field, and then the only possible carrier of the current should be the
quark content inside of π0. Therefore, even in the hadronic phase, I must think
that charged quarks flow to produce the electric current. Contrary to the intuition,
there is no inconsistency with the notion of quark confinement. Regardless of the
presence of the flow of quarks, these flowing quarks can be still confined in a big
wave-function of the π0(x) profile. In this way, confined quarks can flow without
breaking confinement because of the coherent background of the meson fields.

In reality it is next to impossible to achieve such an environment with abundant
π0 that forms a condensate to test (9.28) because π0 quickly decays into photons
via the anomalous QED process. This implies that the CME current may be also
diminished by the photon production. Indeed, (9.29) exactly describes such a pro-
cess of θ(x) decaying into 2γ . It is interesting, besides, that one γ can be provided
from B in the case with background fields. More specifically, one injected γ and
another γ from B can produce a θ (or the η0 meson), that is nothing but the Pri-
makoff effect [36]. The Primakoff effect has an application as a tool to detect the
axion [37, 43], which is understandable from the above argument once θ(x) is aug-
mented as a dynamical axion field. Because physics of the Chiral Magnetic Effect
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has a connection to axion physics through θ(x) (that was actually the very begin-
ning of the path toward Ref. [28], as I mentioned), it should be naturally motivated
to think of some application of the Primakoff effect in the context of the Chiral
Magnetic Effect too. Then, the reverse process of the Primakoff effect, namely,
γ (B) + θ → γ , should be the most relevant to the experimental opportunity. In
the relativistic heavy-ion collision, the profile of the magnetic field B(x) can be es-
timated by the simulation, and the precise measurement of γ with subtraction of the
background from the π0 decay is available nowadays. The unknown piece in the re-
verse Primakoff effect is the profile of the θ(x) distribution. Needless to say, nothing
is more important and ambiguous than the concrete distribution of θ(x) for any at-
tempt to perform serious computation of the CME-related phenomena. This is why
most of works on the Chiral Magnetic Effect address only qualitative predictions.

I think that it must be a very interesting challenge to find a condensed-matter
counterpart in which the Chiral Magnetic Effect may be visible and testable exper-
imentally. This is not an unrealistic desire; axion physics can be discussed in the
so-called topological magnetic insulator [35], and why not the Chiral Magnetic Ef-
fect? In fact, recently, there are appearing some works one after another along this
line.

9.5 My Outlook

Many people (including me) are still working on the theoretical aspects of the Chi-
ral Magnetic Effect and its relatives such as the Chiral Separation Effect, the Chiral
Magnetic Wave, etc. It is highly demanded to make some firm theoretical estimation
about the experimental observables affected by the CME and related phenomena. To
this end, however, one needs know the early-time dynamics even before the forma-
tion of the quark-gluon plasma. In fact, the most interesting regime that has the
greatest impact on the CME happens to be the most difficult regime to describe
theoretically.

A missing theoretical link between the coherent wave-function right after the
collision and the thermalized plasma is the last piece of the jigsaw puzzle. Parti-
cles should be produced from quantum fluctuations on top of coherent fields (i.e.
the Color Glass Condensate; CGC), that translates into the entropy production. It
is known that the coherent background fields accommodate topological flux-tubes
that play a role of Qw in (9.2). Produced particles inside of those flux-tubes un-
der a strong B should have a characteristic momentum distribution and this would
embody the Chiral Magnetic Effect in a quantitative way. In my opinion, thus, the
early-thermalization problem must be resolved even before talking about the obser-
vational possibility of the Chiral Magnetic Effect, or they may have something to
do with each other. This is because, as I stated in the previous section, the real-time
dynamics of the Chiral Magnetic Effect should involve the Schwinger process of
particle production, and the particle production as in the Lund string model should
be responsible for the entropy production from fields, and thus thermalization ulti-
mately.
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One may claim that the complete isotropization and thermal equilibrium should
be no longer required to account for the experimental observation. This is true in-
deed, and this is a good news for the CME, for the thermalization means that the
system should lose any memory and have only one information, i.e. the tempera-
ture. If the thermalization is incomplete, it would enhance the chance that the ob-
served distribution of particles may still remember the early-time environment like
the presence of the strong B and/or the topological flux-tubes. For the purpose of
testing the idea as compared to the experimental data, it is indispensable to perform
some serious simulation of the early-time dynamics of the heavy-ion collisions.

Unfortunately, there is no successful simulation starting from the CGC initial
condition to achieve some reasonable input for the hydrodynamics within a reason-
able time scale (see Ref. [17] for a latest attempt). There are so many theoretical
efforts in this direction including mine [10] and it should be definitely worth dis-
cussing them, but not here and on another occasion maybe. In this article I have
discussed physics of the Chiral Magnetic Effect and presented my views on the
physical interpretation. Now my story has become a bit too diverging, and I should
stop here, with a hope that some readers may find my views useful for future inves-
tigations.
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Chapter 10
The Chiral Magnetic Effect and Axial Anomalies

Gökçe Başar and Gerald V. Dunne

10.1 Dirac Operators, Dimensional Reduction and Axial
Anomalies

In this first section we present an elementary relation between the chiral magnetic ef-
fect [1–6] and the axial anomalies in four-dimensional and two-dimensional space-
time [7, 8]. This follows from the basic structure of the Dirac operator, together
with the lowest-Landau level (LLL) projection produced by a strong magnetic field,
a basic feature of the phenomenon of magnetic catalysis [9]. We first review the sub-
block structure of the Dirac operator and the associated Schur decomposition [10]
of the propagator.

10.1.1 Lowest Landau Level Projection

We adopt the following conventions for Dirac matrices in four dimensional
Minkowski space:

γ 0 =
(

0 1
1 0

)
, γ j =

(
0 −σ j
σ j 0

)
, γ5 =

(
1 0
0 −1

)
(10.1)

where σ j , j = 1,2,3, are the 2×2 Pauli matrices, and 1 is the 2×2 identity matrix.
It is convenient to write these 4 × 4 Dirac matrices in 2 × 2 block form:
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γ μ =
(

0 αμ

α̃μ 0

)
(10.2)

where the 2 × 2 matrices αμ and α̃μ are:

αμ = (
1,−σ j ), α̃μ = (

1, σ j
)

(10.3)

The Dirac matrices satisfy the anti-commutation relations, {γ μ, γ ν} = 2ημν , with
Minkowski metric ημν = diag(1,−1,−1,−1).

The Dirac operator is defined to be /D = γ μ(∂μ− ieAμ), where later we will take
the gauge field Aμ to have both abelian and non-abelian parts, but for now we take
it to be abelian. Thus, we have a natural decomposition of the 4 × 4 Dirac operator
into 2 × 2 sub-blocks:

D =−i/D+m =
(

m −iαμDμ

−iα̃μDμ m

)

≡
(
m D

−D̃ m

)
(10.4)

Since det(−i/D +m)= det(i/D +m), we consider

det(i/D +m)det(−i/D +m) =
(
m2 +DD̃ 0

0 m2 + D̃D

)
(10.5)

The operators DD̃ and D̃D differ from one another, and from the Klein-Gordon
operator DμD

μ, in their spin-projection terms:

DD̃ = DμD
μ + e

2
σ̃ μνFμν (10.6)

D̃D = DμD
μ + e

2
σμνFμν (10.7)

where the 2 × 2 spin matrices,

σ̃ μν = 1

2i

(
αμα̃ν − ανα̃μ

)
, σμν = 1

2i

(
α̃μαν − α̃ναμ

)
(10.8)

are the sub-block components of the usual 4 × 4 spin matrices

Σμν = 1

2i

[
γ μ, γ ν

]=
(
σ̃ μν 0

0 σμν

)
(10.9)

Now, suppose we have a background electromagnetic field consisting of a mag-
netic field B = (0,0,B), and an electric field E = (0,0,E), both of which are
pointing in the x3 direction. We do not need to assume that these fields are uni-
form, but we choose B = B(x1, x2) and E = E(x0, x3), choosing gauge field
Aμ = (A0(x3),A1(x2),A2(x1),A3(x0)), which satisfies ∂μA

μ = 0. Then, with
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only a third component of both the electric and magnetic field, the 2 × 2 operators
in (10.6) and (10.7) reduce to

DD̃ = DμD
μ − e(B + iE)σ 3 (10.10)

D̃D = DμD
μ − e(B − iE)σ 3 (10.11)

because σ 12 = σ̃ 12 = −σ 3, while σ 03 = −σ̃ 03 = iσ 3. The important point in
(10.10) and (10.11) is that both 2 × 2 operators DD̃ and D̃D are diagonal in terms
of their Dirac matrix structure.

To understand the effect of a strong magnetic field, and in particular its projection
to the lowest Landau level (LLL), consider the factorization of the Klein-Gordon
operator, for this case parallel E and B in the x3 direction:

DμD
μ = (D0 ∓D3)(D0 ±D3)± ieE − (D1 ∓ iD2)(D1 ± iD2)± eB (10.12)

If the magnetic field is constant, and for example in the symmetric gauge A1 =
−B

2 x
2, and A2 = B

2 x
1, then we can adopt complex coordinates, z= x1 + ix2, z̄=

x1 − ix2, to write

D1 ± iD2 =
{

2(∂z̄ + eB
4 z)

2(∂z − eB
4 z̄)

(10.13)

If eB > 0 we choose the upper sign to obtain normalizable solutions, with the Gaus-
sian factor exp(− eB

4 |z|2), in which case we see that the eB term in (10.12) cancels
the spin term in (10.10) and (10.11), when σ 3 = +1. Thus the magnetic compo-
nent of the Dirac operators leads to a zero mode of the 2 × 2 operators DD̃ and
D̃D, when the spin is aligned along the direction of the magnetic field. In fact,
this also applies to the situation of an inhomogeneous B(x1, x2) field, and the de-
generacy of this lowest-Landau-level (LLL) is given by the integer part of the net
magnetic flux; this is the Aharonov-Casher theorem [11–13], the projection onto
the LLL.

10.1.2 Schur Decomposition of Dirac Propagator

The Schur decomposition gives an elementary algebraic decomposition of the in-
verse of a matrix in terms of its sub-block structure [10]. This leads immediately to
an associated sub-block decomposition of the Dirac propagator, and as we show, it
also provides a simple description of the lowest Landau level projection in a strong
magnetic field, which is the key to magnetic catalysis [9].

Consider a matrix M written as

M =
(
a b

c d

)
(10.14)
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where a and d are square, but not necessarily of the same size [and so b and c need
not be square matrices], then we can write the inverse of M in block form in two
different ways:

M−1 =
(

s−1 −s−1bd−1

−d−1cs−1 d−1cs−1bd−1 + d−1

)
, s ≡ a − bd−1c (10.15)

=
(
a−1bt−1ca−1 + a−1 −a−1bt−1

−t−1ca−1 t−1

)
, t ≡ d − ca−1b (10.16)

where s and t are the two different Schur complements of M . Note that the first
expression only requires d and s to be invertible, while the second expression only
requires a and t to be invertible. Applying this to the Dirac operator in (10.4), we
find

s = 1

m

(
m2 +DD̃

)
, t = 1

m

(
m2 + D̃D

)
(10.17)

which gives then two different decompositions of the Dirac propagator:

D−1 =
⎛

⎝
m

m2+DD̃
1

m2+DD̃D

D̃ 1
m2+DD̃

1
m
(1 − D̃ 1

m2+DD̃D)

⎞

⎠ (10.18)

=
⎛

⎝
1
m
(1 − D̃ 1

m2+DD̃D) D 1
m2+D̃D

1
m2+D̃D D̃

m

m2+DD̃

⎞

⎠ (10.19)

The Euclidean analogue of this decomposition corresponds precisely to the chiral
decompositions used in [14–16]:

D−1 = DG (±)
(

1 ± γ5

2

)
+ G (±)/D

(
1 ∓ γ5

2

)
+ 1

m

(
1 − /DG (±)/D

)(1 ∓ γ5

2

)

(10.20)

where G (+) = 1/(m2 +DD̃), and G (−) = 1/(m2 + D̃D). These chiral decomposi-
tions of the fermion propagator are particularly useful since they show clearly the
projection onto chiral zero modes.

In order to use such Schur decompositions to characterize also the lowest Landau
level projection, in addition to the chiral decomposition, it is convenient to write the
propagators in (10.18) and (10.19) in factored form:

D−1 = 1

m

(
1 0

1
m
D̃ 1

)(
m2

m2+DD̃ 0

0 1

)(
1 − 1

m
D

0 1

)

(10.21)

= 1

m

(
1 1

m
D

0 1

)(
1 0

0 m2

m2+D̃D

)(
1 0

− 1
m
D̃ 1

)

(10.22)
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We stress that at this point we have only used elementary algebra to express a general
Dirac propagator in terms of its 2 × 2 sub-block structure.

From these Schur decompositions, we can reduce the expectation values of the
charge and axial currents to much simpler forms. By straightforward manipulations
we find for the charge current

〈
jμ

〉 = ie tr4×4
(
γ μD−1) (10.23)

= ie tr2×2

((
Dα̃μ − αμD̃

) 1

m2 +DD̃

)
(10.24)

= 2eημν tr2×2

(
Dν

1

m2 +DD̃

)
(10.25)

and for the axial current
〈
j
μ
5

〉 = ie tr
(
γ μγ5D

−1) (10.26)

= ie tr2×2

((
Dα̃μ + αμD̃

) 1

m2 +DD̃

)
(10.27)

= 2ie tr2×2

(
σ̃ μνDν

1

m2 +DD̃

)
(10.28)

Here we have used the facts that (ανα̃μ + αμα̃ν) = 2ημν12×2, while (ανα̃μ −
αμα̃ν)= 2iσ̃ μν . In particular, note that since σ̃ 03 =−iσ 3 =−σ̃ 30,

〈
j0〉 = 2eημν tr2×2

(
D0

1

m2 +DD̃

)
(10.29)

〈
j3〉 = −2eημν tr2×2

(
D3

1

m2 +DD̃

)
(10.30)

〈
j0

5

〉 = 2eημν tr2×2

(
σ 3D3

1

m2 +DD̃

)
(10.31)

〈
j3

5

〉 = −2eημν tr2×2

(
σ 3D0

1

m2 +DD̃

)
(10.32)

Again, thus far we have only used elementary algebra to reduce the expectation
values of the 4 × 4 matrices and propagators to expressions involving just 2 × 2
matrices and propagators.

10.1.3 Currents and Anomalies in the Lowest Landau Level
Projection

Now suppose the background field consists of a very strong magnetic field in the
x3 direction. Then we project onto the LLL, which means that the states contributing
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to the 2 × 2 expectation values have σ 3 = +1. Therefore, we see immediately that
in this LLL projection limit, where we project onto motion along the magnetic field
direction, we can write for the remaining currents:

〈
jM5

〉 = εMN 〈jN 〉, M,N = 0,3 (10.33)

where the epsilon symbol is ε03 =+1 =−ε30. This is exactly the relation between
the charge and axial current in two dimensional space-time.

Furthermore, suppose the four dimensional background field consists of a strong
magnetic field and also an electric field, both directed along the x3 axis. Then,
following the analysis of the first section, we choose a gauge field of the form
Aμ = (A0(x3),A1(x2),A2(x1),A3(x0)), satisfying ∂μA

μ = 0. Then a simple two
dimensional computation yields current expectation values for Dirac indices 0 and
3 (we adopt the convention of using capital Roman indices M,N to denote the com-
ponents of the dimensionally reduced (x0, x3) plane):

〈
jM

〉 = eB

2π

eAM

π
,

〈
jM5

〉= eB

2π
εMN eAN

π
(10.34)

where eB
2π is the Landau degeneracy factor, in its local Aharonov-Casher form. Note

that these expressions are consistent with charge current conservation and the two
dimensional axial anomaly:

∂M
〈
jM

〉 = 0, ∂M
〈
jM5

〉= eB

2π

eE

π
(10.35)

In this LLL projection limit, we can alternatively express this result in four di-
mensional language as

∂μ
〈
jμ

〉
LLL = 0, ∂μ

〈
j
μ
5

〉
LLL = e2

2π2
B · E = e2

8π2
FμνF̃μν (10.36)

which expresses charge current conservation and the four dimensional axial
anomaly. This makes it clear that the relevant anomaly is the “covariant” anomaly,
rather than the “consistent” anomaly. For abelian theories these differ by a factor of
1/d in (2d−2) space-time dimensions, while for non-abelian theories the covariant
and consistent anomalies have different field structure [17, 18].

To make the connection with the chiral magnetic effect, we note that it is natural
to identify A0(x3) with a spatially dependent chemical potential, and A3(x0) with a
time dependent chiral chemical potential:

A0 ↔ μ, A3 ↔ μ5 (10.37)

For A0 and μ this is obvious, because the coupling is given by μψ̄γ 0ψ . For A3

and μ5, this follows because the coupling is μ5ψ̄γ5γ
0ψ , and in the LLL projection
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Fig. 10.1 Parallel electric and magnetic fields produce electron-positron pairs from vacuum, and
because of the LLL projection caused by the strong magnetic field, correlated with spin and charge,
this results in a net flow of chirality along the direction of the fields, in accordance with the
Schwinger pair production rate and the chiral magnetic effect

γ5γ
0 ↔ γ 3, since γ 3 has off-diagonal sub-blocks ∓σ 3, and σ 3 → +1 in the LLL

limit.
Therefore, we can understand the two dimensional currents in (10.34) as

〈
j0〉 = μ

π

eB

2π
,

〈
j3〉= μ5

π

eB

2π
(10.38)

〈
j0

5

〉 = μ5

π

eB

2π
,

〈
j3

5

〉= μ

π

eB

2π
(10.39)

These relations express the chiral magnetic effect, which we see is a direct conse-
quence of the axial anomalies in two and four dimensional space-time, after the LLL
projection caused by a strong magnetic field. The coefficients are fixed completely
by the anomaly equations. For a complementary discussion of the relation between
chiral asymmetry and the axial anomaly, see [19–21].

10.1.4 Chiral Magnetic Effect and the Schwinger Effect

The chiral magnetic effect can also be understood naturally in terms of the
Schwinger effect [22, 23], particle production from vacuum, which occurs when
there is a non-zero electric field background, as illustrated in Fig. 10.1. With ap-
proximately constant parallel electric and magnetic fields directed along the x3 axis,
the Schwinger pair production rate, per unit volume, is given by

Γ = e2 EB

4π2
coth

(
B

E
π

)
e−m2π/|eE| (10.40)

When B → 0 we recover the usual result for a pure electric field, and for
nonzero magnetic field we find an enhancement of the rate which is linear in
B in the strong magnetic field limit. Positrons are accelerated along the direc-
tion of the electric field, and electrons in the opposite direction. In the mass-
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less fermion limit this corresponds to a net productionand flow of chirality, be-
cause the lowest-Landau-level projection projects spin according to the charge and
the direction of the magnetic field. Thus we find the rate of change of chiral-
ity

dj0
5

dt
= 2Γ = EB

2π2
(10.41)

in agreement with the axial anomaly (10.36) and the chiral magnetic effect (10.39).
The electric field produces the acceleration while the strong magnetic field provides
the LLL projection that correlates spin with the direction of flow of charge, and
hence also of chirality. Physically, a spatially dependent A0(x3) produces charge
separation, as for a local chemical potential, while a time dependent A3(x0) drives
a current along the direction of the electric field [24], which in the LLL projection
corresponds to a flow of chirality.

10.1.5 Maxwell-Chern-Simons Theory and the Schwinger
Model

The interpretation of the chiral magnetic effect in terms of the effect of an electric
field directed along the same direction as the strong magnetic field is also very
natural in terms of an effective Maxwell-Chern-Simons theory resulting from an
adiabatic space- or time-dependent theta parameter [5]. Express the theta term in
the Lagrangian as (up to a total derivative)

− e2

8π2
θFμνF̃ μν = PμJ

μ
CS (10.42)

where

Pμ = ∂μθ, J
μ
CS = e2

8π2
εμνρσAνFρσ (10.43)

The pseudo vector Pμ encodes the anomalous terms from the chiral magnetic effect,
modifying the usual inhomogeneous Maxwell equations to read

∂μF
μν = J ν − e2

2π2
PμF̃

μν (10.44)

From (10.39), in the strong magnetic field limit we project to the 2d (x0, x3)

plane with the identifications

P0 = A3, P3 =A0 ⇒ PM = εMNAN (10.45)
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Fig. 10.2 The effect of a
spatially inhomogeneous
theta parameter, with the
interpretation of its gradient
being a spatially
inhomogeneous chemical
potential μ∼A0. The
resulting spatially
inhomogeneous electric field
produces a build up of
negative charge at the
left-hand inhomogeneity and
positive charge at the
right-hand inhomogeneity,
producing the electric charge
separation of the chiral
magnetic effect

Furthermore, in the strong magnetic field limit, the Chern-Simons current projects
to the 2d (x0, x3) plane as

JMCS = −e2B

4π2
εMNAN (10.46)

Therefore, in the strong magnetic field limit, the theta term in (10.42) reduces
to a mass term of the 2d gauge field, providing an explicit realization of the 2d
Schwinger model [7, 25, 26], with the effective Maxwell equations in the reduced
2d (x0, x3) plane being written as

JM =
(
�+ e2B

2π2

)
AM (10.47)

In physical terms, we see from (10.45) that a spatial inhomogeneity in the theta
parameter corresponds to a non-zero A0(x3), which is a spatially inhomogeneous
chemical potential. We expect this to produce charge separation. In terms of the
Schwinger effect, this is illustrated in Fig. 10.2, depicting a spatial region of non-
zero θ . At the edges, the gradient is non-zero, which produces a spatially inho-
mogeneous electric field, as shown in the figure. This leads to an accumulation of
opposite charges at the edges of the region of non-zero theta. On the other hand,
a time-dependence in the theta parameter corresponds to a non-zero A3(x0), which
acts as a chiral chemical potential in the LLL projection limit. For example, consider
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Fig. 10.3 The effect of a time dependent theta parameter, with the interpretation of its gradient be-
ing a time-dependent chiral chemical potential μ5 ∼A3 in the LLL projection. Via the Schwinger
effect, the resulting time dependent electric field produces a flow of electric current linear in A3(t),
and in the LLL projection this corresponds to a net flow of chirality

an electric field turning on smoothly at some early time, and turning off smoothly
at some later time, as shown in Fig. 10.3. Then the A3(x0) field is approximately
constant over the time of nonzero electric field, and this is known to drive a current
〈J 3〉 that is linear in A3(x0) [24], in agreement with the chiral magnetic effect rela-
tion (10.39).

10.2 Chiral Magnetic Spiral

In this section we elaborate more on the dimensional reduction to two-dimensions
due to strong magnetic field. In particular, we will show that the expectation values
of vector and axial currents, 〈Jμ〉 and 〈Jμ5 〉, can be expressed in terms of vari-
ous fermionic bilinears whose dynamics are governed by a two-dimensional La-
grangian. The two dimensional axial anomaly reproduces the well known chiral
magnetic effect. Furthermore, in addition to the chiral magnetic effect, the univer-
sal dynamics of two-dimensional chiral fermions implies the existence of additional
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currents which are transverse to the magnetic field, and have a spiral modulation
along the direction of the field: the “chiral magnetic spiral” [27].

10.2.1 Basic Setup and Dimensional Reduction

We decompose the 4-component spinor in terms of eigenstates of the chiral pro-
jectors, PR,L = 1

2 (1 ± γ 5), the spin projectors P↑,↓ = 1
2 (1 ± Σ3), and the mo-

mentum direction projectors P+,− = 1
2 (1 ± γ 0γ 3). The longitudinal spin operator

is Σ3 = γ 0γ 3γ 5 = diag(σ 3, σ 3), and γ 0γ 3 = diag(σ 3,−σ 3). We can write the
4-component spinor field as

Ψ =

⎛

⎜⎜
⎝

R+
R−
L−
L+

⎞

⎟⎟
⎠ (10.48)

The four-component spinor can be decomposed into two-component sub spinors in
various ways. The chirality and spin decompositions respectively are

ψR =
(
R+
R−

)
, ψL =

(
L+
L−

)

(10.49)

φ↑ =
(
R+
L−

)
, φ↓ =

(
L+
R−

)

where ± denotes the direction of motion along x3, the direction of the magnetic
field. The corresponding four-dimensional currents can as well be decomposed in
terms of chirality and spin sub-spinors. The vector current Ψ̄ γ μΨ has the decom-
position

J 0 = ψ
†
RψR +ψ

†
LψL = φ

†
↑φ↑ + φ

†
↓φ↓

J 1 = ψ̄RψR − ψ̄LψL =−φ̄↑Γ 5φ↓ + φ̄↓Γ 5φ↑
(10.50)

J 2 = iψ̄RΓ
5ψR + iψ̄LΓ

5ψL = iφ̄↑Γ 5φ↓ + iφ̄↓Γ 5φ↑

J 3 = ψ̄RΓ
zψR + ψ̄LΓ

zψL = φ̄↑Γ zφ↑ + φ̄↓Γ zφ↓

The axial current Jμ5 = Ψ̄ γ μγ 5Ψ has a similar form:

J 0
5 = ψR

†ψR −ψ
†
LψL =−iφ̄↑Γ zφ↑ + iφ̄↓Γ zφ↓

J 1
5 = ψ̄RψR + ψ̄LψL = φ̄↑φ↓ + φ̄↓φ↑

(10.51)
J 2

5 = iψ̄RΓ
5ψR − iψ̄LΓ

5ψL =−iφ̄↑φ↓ + iφ̄↓φ↑

J 3
5 = ψ̄RΓ

zψR − ψ̄LΓ
zψL = φ

†
↑φ↑ − φ

†
↓φ↓
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Here we have defined the two-dimensional gamma matrices as Γ 0 = σ 1, Γ z =
−iσ 2, Γ 5 = σ 3.

Let us consider a generic chiral Lagrangian

L4d = Ψ̄
(
iγ μ∂μ

)
Ψ +

∑

f=R,L
Lint,f [ψf ] (10.52)

where the interaction term does not couple left and right sectors. Since γ 0γ μ is also
block-diagonal in the chiral basis, the left and right sectors are completely decoupled
and can be treated as independent “flavors” in the Lagrangian (10.52). Each chiral
sector has its own associated current JR,L = 1/2(Jμ ± J

μ
5 ) which are given by

J 0
f = ψ

†
f ψf

J 1
f = αf ψ̄f ψf

(10.53)
J 2
f = iψ̄f Γ

5ψf

J 3
f = ψ̄f Γ

zψf

Here f = L,R, and αR = −αL = 1. Even though the left and right currents seem
to be completely independent, the conservation of vector current ∂μJμ = 0 still
holds.

Now let us consider the lowest Landau level projection in the presence of a very
strong magnetic field B directed along x3 direction as in Sect. 10.1.1. If the mag-
nitude of the magnetic field is the largest scale in the problem, then the transition
from the lowest Landau orbit to an excited orbit will be exponentially suppressed
and motion along the transverse x1x2 plane will be frozen. The kinetic term in the
Lagrangian (10.52) then becomes:

Ψ̄ γ μ∂μΨ → Ψ̄
(
γ 0∂0 + γ 3∂3

)
Ψ =

∑

f=R,L
ψ

†
f ∂0ψf +ψ

†
f σ

3∂3ψf

=
∑

f=R,L
ψ̄f Γ

M∂Mψf (10.54)

by using the definition of two-dimensional gamma matrices above. This is the ki-
netic term of a two-dimensional Lagrangian. Let us further assume that the di-
mensionally reduced interaction term Lint,f [ψf (z, t)] is invariant under the two-
dimensional chiral rotation:

ψf (z, t)→ eiΓ
5ζf (z,t)ψf (z, t) (10.55)

for an arbitrary function ζf (z, t). This two-dimensional notion of chirality gener-
ated by Γ 5 should not be confused with the four-dimensional chirality generated
by γ 5. The former acts on each right and left subspinor separately. Also, the four-
dimensional chiral Lagrangian (10.52) does not have a term that couples right and
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left sectors so the system never develops a condensate such as 〈ψ̄RψL〉, and the
four-dimensional chiral symmetry is never broken in our consideration. However,
the dimensionally reduced system may exhibit dynamical breaking of the two-
dimensional chiral symmetry (10.55).1 As an example let us consider the decom-
position of the four-dimensional current-current interaction Lint = JμJμ + J

μ
5 J5μ.

The (0,3) components of the interaction become

J 0
f Jf 0 + J 3

f Jf 3 → (
ψ̄f Γ

Mψf

)
(ψ̄f ΓMψf ) (10.56)

In two-dimensions this corresponds to a Thirring interaction. Similarly, the trans-
verse components

J 1
f Jf 1 + J 2

f Jf 2 → (ψ̄f ψf )
2 + (ψ̄f iΓ5ψf )

2 (10.57)

generate a chiral Gross-Neveu or Nambu-Jona-Lasinio (NJL) interaction in two-
dimensions [28]. Note that both (10.56) and (10.57) are invariant under (10.55)
and exhibit chiral symmetry breaking in two-dimensions. The emergence of the
Schwinger model from dimensional reduction of four-dimensional Maxwell-Chern-
Simons theory investigated in Sect. 10.1.5 is another example. To sum up, the
four-dimensional currents (10.53) are governed by a two-dimensional chiral La-
grangian

L2d =
∑

f=R,L
ψ̄f Γ

M∂Mψf + Lint,f
[
ψf

(
xM

)]
(10.58)

after dimensional reduction due to the strong magnetic field.
We now show that the Lagrangian (10.58) has certain model-independent prop-

erties concerning the expectation values of the fermion bilinears 〈ψ̄f Γ ψf 〉. These
are the building blocks of the expectation values of the four-dimensional cur-
rents (10.50, 10.51). Note from (10.50) that 〈J 0

f 〉 and 〈J 3
f 〉 are expressed in terms

of two-dimensional densities and currents of ψf , while the perpendicular com-
ponents 〈J 1

f 〉, 〈J 2
f 〉 are expressed in terms of two-dimensional scalar and pseu-

doscalar condensates of ψf .

10.2.2 Life in Two-Dimensions

Besides the magnetic field, the other necessary ingredient for chiral magnetic and/or
separation effects is ambient charge density. In particular a nonzero baryon chemi-
cal potential μ leads to the chiral separation effect and a chiral (four-dimensional)
chemical potential μ5 leads to the chiral magnetic effect. To keep the discussion
general, let us consider nonzero chemical potential for both right and left sectors
separately

1Spontaneous symmetry breaking in two dimensions is a delicate subject whose details are beyond
the scope of our topic. It suffices to mention that in the limit of large number of flavors it can be
realized, for example in the Gross-Neveu model [28].
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μR = μ+μ5 �= 0, μL = μ−μ5 �= 0 (10.59)

which can be realized by adding the term
∑

f μf ψ
†
f ψf to the Lagrangian. In two

dimensions the same term can be generated by a special local chiral transformation
with a linear dependence on the spatial coordinate z in the exponent:

ψ ′
f = e−iΓ 5μf zψf (10.60)

To see this it is sufficient to observe

ψ̄ ′
f

(
iΓ z∂z

)
ψ ′
f = ψ̄f

(
iΓ z∂z

)
ψf +μfψ

†
f ψf (10.61)

where we used the gamma matrix identity Γ zΓ 5 = Γ 0. Since we assumed that the
interaction term is invariant under any local chiral rotation of the form (10.55), the
transformation (10.60) does not generate any other term than the coupling to the
chemical potential. Note that this feature is special to two dimensions and does not
generalize directly to higher dimensions. It is also crucial to have a chiral Lagrangian
in four-dimensions. This would not hold for a massive fermion for instance.

Let us start with the density 〈ψ†
f ψf 〉 and the reduced current along the z direction

〈ψ̄f Γ
zψf 〉 which constitute the four-dimensional density (〈J 0

f 〉) and current along

the magnetic field (〈J 3
f 〉). In Sect. 10.1.3 we have seen that the axial anomaly leads

to an anomalous density in the presence of a chemical potential. In two-dimensional
language, the axial anomaly

∂M
〈
jMf 5

〉 = e

2π
εMN∂MAfN

(10.62)〈
jMf 5

〉 = 〈
ψ̄f Γ

MΓ 5ψf

〉= εMN
〈
ψ̄f Γ

Nψf

〉

immediately reproduces 〈ψ†
f ψf 〉 = μf /π once eA0

f is identified with the chemical
potential μf . Alternatively the same result can be obtained directly from path in-
tegral by observing the transformation (10.60) applied to the renormalized charge
density 〈ψ̄ ′†

f ψ
′
f 〉 = 0 creates the anomalous term μf /π [29].

Once the projection to the lowest Landau level is implemented, only the spin up
component φ↑ survives. Therefore for a right (left) handed spinor, only the positive
(negative) momentum component contributes to the anomalous density, reducing its
value by a half:

〈
ψ

†
RψR

〉→ 〈
R∗+R+

〉 = eB

2π

μR

2π
(LLL projection)

(10.63)
〈
ψ

†
LψL

〉→ 〈
L∗−L−

〉 = eB

2π

μL

2π
(LLL projection)

The overall factor eB
2π is the density of the lowest Landau level in the transverse

plane. There is no effect of the two-dimensional anomaly on the current ψ̄f Γ
zψf in

general. However, the lowest Landau level projection leads to a nonzero anomalous
contribution to the current as well:
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〈
ψ̄RΓ

zψR

〉 = 〈
ψ

†
Rσ3ψR

〉→ 〈
R∗+R+

〉= eB

2π

μR

2π
(10.64)

〈
ψ̄LΓ

zψL

〉 = 〈
ψ

†
Lσ3ψL

〉→−〈
L∗−L−

〉=−eB

2π

μL

2π

The strong magnetic field selects a particular spin. Provided that there is some
excess charge in the medium, the magnetic field induces a current for each chiral
sector along its direction. When we transform the right and left currents back to
vector and axial currents, we see the chiral magnetic and chiral separation effects in
their conventional form:

〈
J 3〉 = 〈

J 0
5

〉= eBμ5

2π2
,

〈
J 3

5

〉= 〈
J 0〉= eBμ

2π2
(10.65)

Now consider another set of bilinears, those forming the scalar 〈ψ̄f ψf 〉 and
pseudo-scalar 〈ψ̄f iΓ

5ψf 〉 condensates. They constitute the transverse components
〈J⊥

f 〉 of the four-dimensional currents. In the semiclassical limit where the number
of fermion flavors is large, the two-dimensional systems generically exhibit dynam-
ical breaking of the chiral symmetry (10.55) and the system typically acquires a
nonzero scalar condensate 〈ψ̄ ′ψ ′〉 =m �= 0 at zero chemical potential. Since this is
also a mass term, it means there is a gap in the energy spectrum. The existence of the
gap in the energy spectrum in one spatial dimension lowers the free energy at low
temperatures as it “pushes” the Dirac sea further down in the energy spectrum. Once
a finite chemical potential μ is turned on, all the states with energy lower than μ will
be occupied and the optimal configuration would be to open a gap right around μ

to push the occupied states down and lower the free energy. This is the celebrated
Peierls instability [30, 31] and has broad consequences in condensed matter physics.
Our assumption of the invariance of the interaction under the chiral transformation
(10.60) is sufficient to see that this scenario is indeed realized. The effect of (10.60)
on the associated Dirac Hamiltonian is

Hψ ′ = −iΓ 5∂zψ
′ +Hintψ

′ = (H −μ)ψ (10.66)

Therefore it is always possible to shift the energy spectrum, and hence the gap, by
μ with a chiral rotation. This is the relativistic version of the Peierls instability and
it is proven for instance explicitly in the 2d Nambu-Jona-Lasinio model [32, 33],
and is expected to be ubiquitous in two-dimensional systems with continuous chiral
symmetry.

The chiral transformation (10.60) mixes the scalar and pseudo-scalar condensates
in the following way

ψ̄ ′
f ψ

′
f = cos(2μf z)ψ̄f ψf − sin(2μz)ψ̄f iΓ

5ψf (10.67)

so the existence of a nonzero condensate 〈ψ̄ ′
f ψ

′
f 〉 = mf �= 0 at zero chemical po-

tential generalizes into finite chemical potential as

〈ψ̄ψ〉 = m cos(2μz),
〈
ψ̄iΓ 5ψ

〉=−m sin(2μz) (10.68)
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since (10.67) must hold for any z. This modulated scalar/pseudo-scalar condensate
is referred to as the “chiral spiral” [34–36]. In the 2d Nambu-Jona-Lasinio model
the chiral spiral is indeed the thermodynamically preferred phase at low tempera-
tures [32, 33]. The chiral spiral translates into transverse components of the four-
dimensional currents modulated in z:

〈
J 1
R

〉 = cR cos(2μRz+ φR),
〈
J 1
L

〉=−cL cos(2μLz+ φL)
(10.69)〈

J 2
R

〉 = cR sin(2μRz+ φR),
〈
J 2
L

〉= cR sin(2μLz+ φL)

which we call the “chiral magnetic spiral” [27]. Here the amplitudes cR,L depend
on the particular two-dimensional Lagrangian and are functions of the temperature,
magnetic field and possibly other parameters in the model. However the chemical
potential and space dependence of the currents is universal. φR,L are relative phases
of the left and right chiral condensates.

It should be emphasized that, as opposed to the longitudinal currents, the chiral
magnetic spiral mixes up and down spin components. This can be seen in the spin
decomposition of the currents (10.50), (10.51). In the lowest Landau projection,
these pairings between spin up and down spinors correspond to excitations which
can be described as a pairing of a particle with momentum μf and a hole with
momentum −μf . This is because the particle and hole have opposite charges and
therefore opposite spins in the lowest Landau level projection. Thus the excitation
itself has momentum ±2μf . This explains why the currents have the sinusoidal
modulation in the z direction.

In heavy ion collisions, the chiral magnetic spiral can induce both out-of-plane
and in-plane fluctuating charge asymmetries (the explicit separation of out-of-plane
and in-plane fluctuations has been performed [37] on the basis of STAR data
[38, 39]). In the absence of topological fluctuations (μ5 = 0), at finite baryon den-
sity (μ �= 0), and in the chirally broken phase, the charge current has only transverse
components, and the charge asymmetry will fluctuate only in-plane. It should be
kept in mind that the presence of magnetic field increases the chiral transition tem-
perature [9]. If topological fluctuations are present in the chirally broken phase (e.g.
due to the presence of meta-stable η′ domains [40]), the CME current can be car-
ried by the chiral magnetic spiral. The chiral magnetic spiral has also been seen in a
holographic study [41] in the framework of Sakai-Sugimoto model of holographic
QCD [42, 43].

10.3 Fermions in an Instanton and Magnetic Field Background

The previous discussion, along with many other papers, has presented the chiral
magnetic effect as the flow of electrical charge as the result of some externally pro-
duced chirality imbalance, represented by a non-zero μ5. In this section we consider
the situation in which this chirality imbalance is produced not by an explicit μ5, or
by a time-dependent A3, but instead as a result of a topologically non-trivial gauge
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background like an instanton. Since quarks carry both electric and color charge, they
couple to both electromagnetic and gluonic gauge fields. In this section we discuss
some features of the spectral problem for fermions in the combined background
field of a strong magnetic field and an instanton [44]. To illustrate the effect most
clearly we take a single instanton in SU(2). We are motivated by situations in which
quarks experience both types of fields, such as in dense astrophysical objects such
as neutron stars and magnetars, and in heavy ion collisions such as those at RHIC
and at CERN [3, 45, 46].

We are also motivated by recent lattice QCD analyses [47–54], which provide
important numerical information about the Dirac spectrum in both QCD and mag-
netic field backgrounds. Analytically, while the effect of each individual background
is very well known, their combined effect turns out to be quite intricate. In these lat-
tice studies, certain matrix elements associated with chiral effects receive dominant
contributions from zero-modes and near-zero-modes, so we pay particular attention
to the low end of the spectrum, and show that certain generic features have a very
simple analytic explanation.

As discussed already, a magnetic field introduces a Landau level structure to the
fermion spectrum, in which the zero modes of the associated two-dimensional Eu-
clidean Dirac operator have definite spin, aligned along the magnetic field [11–13].
For a constant magnetic field on a torus, as appropriate for lattice QCD analysis,
this has been studied recently in [55–57]. The appropriate formalism is that of the
magnetic translation group [58]. In a gluonic field with nontrivial topological charge
(for example, an instanton), the fermion spectrum of the four-dimensional Euclidean
Dirac operator also has zero modes, with chiralities determined locally by the local
topological charge of the gauge field [59–63]. For a single instanton the fermion
spectral problem has a conformal symmetry [64, 65], and the zero modes are lo-
calized on the instanton, falling off as a power law with Euclidean distance. The
conformal symmetry is broken by the introduction of a magnetic field, and now
the zero modes develop an asymmetry, falling off in Gaussian form in the plane
transverse to the B field, but as a power law in the other two directions. This basic
asymmetry is an important feature of the phenomena of magnetic catalysis [9] and
the chiral magnetic effect [1–5], as sketched in Fig. 10.4.

10.3.1 Euclidean Dirac Operator

To discuss a combined background of an instanton and a static magnetic field we
use Euclidean Dirac matrices, instead of the Minkowski ones used in the previ-
ous sections. Our conventions follow those of [62], expressing the 4 × 4 Dirac ma-
trices, γμ, for μ = 1,2,3,4, in terms of the 2 × 2 matrices αμ = (1,−iσ ) and
ᾱμ = (1, iσ )= α†

μ, [here σ are the usual 2 × 2 Pauli matrices]:

γμ =
(

0 αμ
ᾱμ 0

)
, γ5 =

(
1 0
0 −1

)
(10.70)
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Fig. 10.4 A sketch of the topological charge density, q ∝ trFμνF̃μν , for a single instanton [dark
grey], and the density of the quark zero mode [light grey]. On the left, there is a single instanton, and
both densities fall off as power laws, with q falling off faster. On the right, with the introduction of
a magnetic field, the topological charge density is unchanged but the zero mode density is distorted
into an asymmetric shape, localized along the direction of the strong magnetic field

Thus, the Euclidean Dirac operator can be expressed as

/D =
(

0 αμDμ

ᾱμDμ 0

)
≡

(
0 D

−D† 0

)
(10.71)

where the covariant derivative, Dμ = ∂μ − iAμ, is written with a hermitean gauge
field, Aμ, and x4 is the Euclidean time coordinate. We write the gauge field Aμ as
a sum of a non-abelian part, Aμ, and an abelian part, aμ:

Aμ = Aμ + aμ (10.72)

with the respective coupling constants absorbed into the gauge fields. The Dirac
operator is anti-hermitean, so we write (with λ real)

i/Dψλ = λψλ (10.73)

Since {γ5, /D} = 0, we can take λ in (10.73) to be non-negative, with the negative
eigenvalue solutions simply given by ψ−λ = γ5ψλ. This means that we can effec-
tively discuss the zero modes (λ= 0) separately, and for the nonzero modes (λ �= 0)
we consider the squared operator:

(i/D)2ψλ =
(
DD† 0

0 D†D

)
ψλ = λ2ψλ (10.74)

The positive chirality sector, χ = +1, is described by the operator DD†, while the
negative chirality sector, χ = −1, is described by the operator D†D. We can write
these operators as
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χ = +1: DD† =−D2
μ − 1

2
Fμνσ̄μν (10.75)

χ = −1: D†D =−D2
μ − 1

2
Fμνσμν (10.76)

We have used [Dμ,Dν] = −iFμν , where Fμν is the field strength associated with
the gauge field Aμ, and the spin matrices σ̄μν and σμν are defined as

σ̄μν = 1

2i
(αμᾱν − ανᾱμ), σμν = 1

2i
(ᾱμαν − ᾱναμ) (10.77)

In (10.75), (10.76) we have used the properties [62]: ᾱμαν = δμν + iσμν , and
αμᾱν = δμν + iσ̄μν .

For non-zero modes [i.e., solutions to (10.74) with λ �= 0], the operators DD†

and D†D have identical spectra, for any background field. This is simply because
we have an invertible map: suppose the 2-component spinor v satisfies D†Dv =
λ2v. Then u = Dv is clearly an eigenfunction of the other operator, DD†, with
precisely the same eigenvalue: DD†u = DD†Dv = λ2u. Similarly, if u satisfies
DD†u = λ2u, then v = D†u is an eigenstate of D†D with the same eigenvalue.
Thus, when λ �= 0, we can write the 4-component spinor solution in the form

ψλ =
(

uλ

− i
λ
D†uλ

)

where DD†uλ = λ2uλ (10.78)

or in the form

ψλ =
(

i
λ
Dvλ
vλ

)
where D†Dvλ = λ2vλ (10.79)

This is true for any background field: non-abelian, abelian, or both.

10.3.2 Magnetic Field Background

For a constant (abelian) magnetic field, of strength B , pointing in the x3 direction,
we have an abelian field strength f12 = B , and so we find

D†D = DD† =−D2
μ −Bσ3 (10.80)

where we have used the fact that σ̄12 = σ12 = σ3. Due to the subtraction term, −Bσ3,
it is possible to have zero modes, and since DD† =D†D these zero modes occur in
each chiral sector. More explicitly, we can make a Bogomolnyi-style factorization
similar to (10.12) and write

−D2
μ −Bσ3 = −∂2

3 − ∂2
4 − (D1 ∓ iD2)(D1 ± iD2)±B −Bσ3

= −∂2
3 − ∂2

4 −D∓D± ±B −Bσ3 (10.81)
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For zero modes, we take ∂3 = ∂4 = 0, and with B > 0 we choose the upper signs to
ensure normalizable modes. For example, in the symmetric gauge where the abelian
gauge field

aμ = B

2
(−x2, x1,0,0) (10.82)

the zero modes can be expressed in terms of the normalizable solutions to (D1 +
iD2)u= 0:

ψ0 = g(z1)e
−B|z1|2/4

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ or ψ0 = g(z1)e

−B|z1|2/4

⎛

⎜⎜
⎝

0
0
1
0

⎞

⎟⎟
⎠ (10.83)

Here g(z1) is a holomorphic function of the complex variable z1 = (x1 + ix2). Both
sets of zero modes have spin up, aligned along the B field; this is just the familiar
lowest Landau level projection onto spin up states. Note also that the zero modes
have the characteristic Gaussian factor in the (x1, x2) plane, transverse to the direc-
tion of the magnetic field. This factor is the origin of the distortion sketched in the
right frame of Fig. 10.4.

The number of zero modes per unit two-dimensional area [in the (x1, x2) plane]
is given by the Landau degeneracy factor, the magnetic flux per unit area: B/(2π).
In fact, even for an inhomogeneous magnetic field B(x1, x2), pointing in the x3
direction, the number of zero modes [of each chirality] is determined by the integer
part of the magnetic flux (this is the essence of the Aharonov-Casher theorem [11]).
For example, on a torus [12, 13]:

N+ = N− = 1

2π

∫
d2xB (10.84)

The higher Landau level states are the same for both spins, because (−D−D+ +B)

and (−D+D− − B) have identical spectra, apart from the lowest level, which only
has spin aligned along the magnetic field.

10.3.3 Instanton Background

For an instanton field, Aμ, the (non-abelian) field strength Fμν is self-dual [that is:
Fμν = F̃μν , where the dual tensor is defined: F̃μν ≡ 1

2εμναβFαβ ]. Then the anti-self-
duality property of σ̄μν [that is: σ̄μν =− 1

2εμνρσ σ̄ρσ ] implies:

χ = +1: DD† =−D2
μ (10.85)

χ = −1: D†D =−D2
μ − 1

2
Fμνσμν (10.86)

Since −D2
μ is a positive operator, this means that for an instanton background there

can be no zero mode in the positive chirality sector. On the other hand, due to the
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subtraction term, −Fμνσμν , in D†D, it is possible to have a zero eigenvalue solution
in the negative chirality sector, and it has the form

ψ0 =
(

0
v

)
, where Dv = 0 (10.87)

[For an anti-instanton, an anti-self-dual field with Fμν =−F̃μν , the zero mode lies
in the positive chirality sector, because σμν is self-dual: σμν = 1

2εμνρσ σρσ .] For a
general non-abelian gauge field Aμ, which is neither self-dual nor anti-self-dual, the
Atiyah-Singer index theorem [63, 66] states that the difference between the number
of positive and negative chirality zero modes is given by the topological charge of
the gauge field:

N+ −N− = − 1

32π2

∫
d4xFa

μνF̃
a
μν (10.88)

Here we have written Fμν = Fa
μνT

a , with generators normalized as tr(T aT b) =
1
2δ

ab . For gauge group SU(2), with fermions in the defining representation, we take
generators T a = 1

2τ
a in terms of the Pauli matrices τ , and we can write the single

instanton gauge field [67], centered at the origin, in the regular gauge as

Aa
μ = 2

ηaμνxν

x2 + ρ2
(10.89)

where ρ is the instanton scale parameter, and ηaμν is the self-dual ’t Hooft tensor
[59, 62]. The topological charge density is

q(x) = 1

32π2
Fa
μνF̃

a
μν =

192ρ4

(x2 + ρ2)4
(10.90)

There is a single zero mode [14, 15, 59–61, 63], also localized at the origin, with
density:

|ψ0|2 = 64ρ2

(x2 + ρ2)3
(10.91)

These densities both fall off as power laws, with scale set by ρ, but the topological
charge density is more localized, as indicated in the left-hand frame of Fig. 10.4.
The nonzero modes are given by (10.78) or (10.79), and we note that the spectra are
identical in each chiral sector, apart from the zero modes.

10.3.4 Combined Instanton and Magnetic Field Background

Physically, an instanton field projects the zero modes onto a definite chirality, while
a constant magnetic field projects the zero modes onto definite spin, aligned along
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the direction of the magnetic field. When we combine the two background fields,
both a non-abelian instanton field Fμν and an abelian magnetic field f12 = B , there
is a competition between the two projection mechanisms, and the outcome depends
on their relative magnitude, as we show below. Technically speaking, the instan-
ton zero mode has a specific ansatz form that unifies space-time and color indices,
while the magnetic zero modes have a natural holomorphic structure, and these two
different ansatz forms do not match one another. The competition between these
two ansatz forms makes the combined problem nontrivial. For an instanton field,
since the field falls off as a power law, all eigenmodes also fall off with power
law behavior. On the other hand, once a constant magnetic field is introduced, for
example in the gauge (10.82), all the eigenstates (even those in the higher Lan-
dau levels) have a Gaussian factor exp(−B|z1|2/4) that localizes the modes near
the axis of the magnetic field. This is the reason for the distorted density in the
right-hand frame of Fig. 10.1. In the extreme strong magnetic field limit this leads
to a dimensional reduction to motion along the magnetic field, with interesting
physical consequences such as magnetic catalysis [9] and the chiral magnetic ef-
fect [1, 4, 5].

Concerning zero modes, we begin with a simple but important comment: in the
index theorem (10.88), the magnetic field makes no contribution, since with the field
strength decomposed into its non-abelian and abelian parts, Fμν = Fμν + fμν , we
have

tr(FμνF̃μν) = tr(FμνF̃μν)+ (dim)fμνf̃μν (10.92)

= tr(FμνF̃μν) (10.93)

where dim is the dimension of the Lie algebra representation of the non-abelian
gauge fields. The cross terms vanish since the Lie algebra generators T a are trace-
less, and the fμνf̃μν term vanishes since there is no abelian electric field. For ex-
ample, if there is no nonabelian field, just an abelian magnetic field, then the topo-
logical charge clearly vanishes, and the index theorem (10.88) is consistent with
the fact that DD† =D†D for an abelian magnetic background (recall (10.80)), so
that there are the same number of zero modes in each chiral sector. Now, with both
background fields present, we find

DD† = −D2
μ −Bσ3 (10.94)

D†D = −D2
μ − 1

2
Fμνσμν −Bσ3 (10.95)

Notice that the eigenvalues of DD† are simply those of the scalar operator −D2
μ,

with a spin term ±B , as can be seen clearly in Fig. 10.5. The fact that there is
a subtraction term from the positive operator −D2

μ in both chirality sectors tells us
that it is possible to have zero modes for each chirality, but their number will depend
on the relative magnitude of F and B . In the next section we study a specific model
where we can quantify this precisely. Another important implication is that we may
also have some “near-zero-modes”, where the F and B subtractions do not exactly
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Fig. 10.5 Successive
approximations in the
derivative expansion of the
instanton background
interpolate between the
exponential form of the zero
mode [dashed line] to the
power-law form [solid line]
of the exact result

cancel the lowest eigenvalue of −D2
μ, but lower the eigenvalue of DD† or D†D to

near zero.

10.3.5 Large Instanton Limit: Covariantly Constant SU(2)
Instanton and Constant Abelian Magnetic Field

In the very strong magnetic field limit, where the magnetic length, 1/
√
B , is small

compared to the instanton size ρ, we expect a significant distortion of instanton
modes and currents. In this limit we can make a simple approximation that reduces
the problem to a completely soluble system.

In the large instanton limit, we expand the instanton gauge field as:

Aa
μ ≈ 2

ρ2
ηaμνxν + · · · (10.96)

To leading order in such a derivative expansion, the non-abelian gauge configura-
tion Aa

μ(x) is self-dual and has covariantly constant field strength: Fa
μν =− 4

ρ2 η
a
μν .

In this limit we can make an SU(2) “color” rotation, along with a choice of Lorentz
frame, to make the instanton field diagonal in the color space (we choose the τ 3 di-
rection), so that the field is self-dual, covariantly constant and quasi-abelian. Defin-
ing the instanton scale F = 2

ρ2 , the combined gauge field, including also the abelian
magnetic field as in (10.72), can be written as:

Aμ = −F

2
(−x2, x1,−x4, x3)τ

3 + B

2
(−x2, x1,0,0)12×2 (10.97)

This gauge field is fully diagonal and moreover is linear in xμ, so the problem is
analytically soluble (this is the basic premise of the derivative expansion). The only
nonzero entries of the field strength tensor are
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F12 = −Fτ 3 +B1 =
(
B − F 0

0 B + F

)

(10.98)

F34 = −Fτ 3 =
(−F 0

0 +F
)

In the absence of the magnetic field the field strength is self-dual, F12 = F34, but
a nonzero magnetic field breaks this symmetry. The topological charge density is
(recall the normalization of the generators)

1

32π2
F a

μνF̃
a
μν = 4(2F)2

32π2
= F 2

2π2
(10.99)

A natural question to ask is: in such a constant field strength background, the
wave functions have a Gaussian spatial dependence in the plane transverse to the
direction of the field, characteristic of the Landau problem, so how can we recover
the power-law dependence of the zero modes in an instanton background? This hap-
pens as follows. Recall [63] that with the appropriate ansatz for the zero mode, the
zero mode equation reduces to a first-order radial equation

ψ ′
0 = − 3r

1 + r2
ψ0 ⇒ ψ0 = 1

(1 + r2)3/2
(10.100)

where r is the Euclidean distance. At short and long distances, this zero mode be-
haves as

ψ0 ∼ 1 − 3

2
r2 + · · · , r → 0 (10.101)

ψ0 ∼ 1

r3
+ · · · , r →∞ (10.102)

On the other hand, if we make the above choice (10.97) of a constant field to repre-
sent a large instanton, we have instead the zero mode equation

ψ ′
0 = −3rψ0 ⇒ ψ0 = e−3r2/2 (10.103)

which has the correct short-distance behavior but which is Gaussian rather than
power law at large distances.

We can recover the correct power-law behavior by restoring the instanton size
parameter, including the sub-leading terms in (10.96), and expanding the zero mode
equation as

ψ ′
0 = −3r

(
1 − r2 + r4 − r6 + r8 − · · · )ψ0 (10.104)

The leading term represents the leading term of the derivative expansion of the in-
stanton field, and is solved by the Gaussian factor. Absorbing this Gaussian factor
by writing ψ0 = e−3r2/2χ0(r), the resulting equation for χ0(r) is

χ ′
0 = 3r

(
r2 − r4 + r6 − r8 + · · · )χ0 (10.105)



10 The Chiral Magnetic Effect and Axial Anomalies 285

which suggests writing χ0 = e3r4/4φ0(r). Continuing this process order by order in
the derivative expansion, we obtain

ψ0(r) = exp

[
−3

2
r2 + 3

4
r4 − 3

6
r6 + 3

8
r8 − · · ·

]
= exp

[
−3

2
ln
(
1 + r2)

]
(10.106)

thereby recovering the correct power-law decay from the derivative expansion of the
instanton background, as illustrated in Fig. 10.5.

10.3.6 Dirac Spectrum in the Strong Magnetic Field Limit

To study the Dirac spectrum with both a magnetic field and an instanton we consider
the 2 × 2 operators DD† and D†D in (10.75, 10.76). Notice first that

Fμνσ̄μν = 2(F12 − F34)σ3 (10.107)

Fμνσμν = 2(F12 + F34)σ3 (10.108)

It is convenient to factor the 4-dimensional Euclidean space and consider sepa-
rately the (x1, x2) plane and the (x3, x4) plane. Then in the (x1, x2) plane we have
a (relativistic) Landau level problem with effective field strength (B − F) in the
τ 3 = +1 sector, and with effective field strength (B + F) in the τ 3 = −1 sector.
In the (x3, x4) plane we also have a (relativistic) Landau level problem, now with
effective field strength −F in the τ 3 = +1 sector, and with effective field strength
F in the τ 3 =−1 sector. In the (x1, x2) plane the sign of the effective field strength
depends on which of B or F is larger, and in the strong B field limit, both B ± F

are positive.
When B > F , both (B − F) and (B + F) are positive. Thus, each color compo-

nent of F12 is associated with a positive “magnetic” field. On the other hand, for
F34, the τ 3 =+1 sector has a negative field strength, while the τ 3 =−1 sector has
a positive field strength.

We first consider the τ 3 = +1 case. Then F12 = (B − F), F34 = −F ,
Fμνσ̄μν = 2Bσ3, and Fμνσμν = 2(B − 2F)σ3. With a positive field strength the
normalizable zero state is given by (D1 + iD2)u= 0. But since F34 is negative, we
factorize the corresponding covariant derivatives in the opposite order, in order to
obtain a normalizable state annihilated by (D3 − iD4). Thus, we have, for chirality
χ =±1, respectively:

DD† = −(D1 − iD2)(D1 + iD2)− (D3 + iD4)(D3 − iD4)+B −Bσ3

D†D = − (D1 − iD2)(D1 + iD2)− (D3 + iD4)(D3 − iD4)+B − (B − 2F)σ3

(10.109)

This shows that there is a zero mode, when the spin term Bσ3 cancels the B term
from the Bogomolnyi factorization of the covariant derivative term. This occurs in
the positive chirality sector, χ =+1, and with spin up: σ3 =+1.
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Now consider the τ 3 = −1 case. Then F12 = (B + F), F34 = F , Fμνσ̄μν =
2Bσ3, and Fμνσμν = 2(B+2F)σ3. All field strengths are positive, so we write, for
chirality χ =±1, respectively:

DD† = −(D1 − iD2)(D1 + iD2)− (D3 − iD4)(D3 + iD4)

+ (B + 2F)−Bσ3
(10.110)

D†D = −(D1 − iD2)(D1 + iD2)− (D3 − iD4)(D3 + iD4)

+ (B + 2F)− (B + 2F)σ3

This shows that there is a zero mode, but now in the opposite chirality sector, χ =
−1, and also with spin up: σ3 =+1.

To summarize: when B > F , the τ3 = +1 color sector has spin up zero modes
with positive chirality, while the τ3 =−1 color sector has spin up zero modes with
negative chirality. We can count the number of zero modes in each chirality sector
by simply taking the product of the Landau degeneracy factors for the (x1, x2) and
(x3, x4) planes, with the corresponding effective magnetic field strengths. Therefore,
the corresponding Landau degeneracy factors give the zero-mode number densities
(i.e., the number per unit volume):

χ = +1: n+ = (B − F)

2π

F

2π
(τ3 =+1, σ3 =+1) (10.111)

χ = −1: n− = (B + F)

2π

F

2π
(τ3 =−1, σ3 =+1) (10.112)

The index (density) is the difference,

n+ − n− = − F 2

2π2
(10.113)

in agreement with the general index theorem (10.88), in view of (10.99). We also
note that the total number density of zero modes

n+ + n− = BF

2π2
(10.114)

is linearly proportional to the magnetic field strength B . This is in agreement with
numerical lattice gauge theory results [52].

It is worth emphasizing that if torus boundary conditions xμ ∼ xμ +Lμ are im-
posed, then the fluxes are quantized as BL2 = 2πM and FL2 = 2πN . Here M and
N are positive integers. Consequently the index and total number of zero modes are
given by also by integers

index(/D)≡N+ −N− = (N −M)M − (N +M)M =−2M2

(10.115)
total number of zero modes = (N +M)M + (N −M)= 2NM
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Moreover, the instanton solution with constant field strength (10.96) is shown to be
an exact solution of Yang-Mills equations on a four torus [68–71]. Even with the
inclusion of the magnetic field, (10.97) stays as a solution. Therefore on a on four-
torus, there is no restriction on the magnitude of B and F (i.e. we do not have to
consider a large instanton) and our counting of the zero modes (10.115) becomes
exact for any integer M and N .

10.3.7 Physical Picture: Competition Between Spin and Chirality
Projection

These results lead to the following simple physical picture. The instanton tries to
generate a chirality imbalance but is neutral to the spin, whereas the magnetic field
tries to generate a spin imbalance but does not affect the chirality. Depending on
which is stronger, the zero modes have either a definite spin with a chirality imbal-
ance (B > F ), or a definite chirality with a spin imbalance (F > B). Also we see
that in the former case, the total number of zero modes scales with B and is not
equal to the index.

More explicitly, for the B > F case, consider starting with just a strong magnetic
field B , later turning on a weak instanton field. Without the instanton field, the zero
modes and their degeneracy are given by the Aharonov-Casher theorem (10.84), so
that the zero mode density is the Landau degeneracy factorB/(2π) for each chirality
sector. All the zero modes are spin up, as is familiar for the lowest Landau level (see
Fig. 10.2). There is an equal number of positive and negative chirality zero-modes,
which is consistent with the index theorem, since the topological charge vanishes for
a constant B field. Now consider turning on an instanton field F , with B > F > 0.
We see from (10.111, 10.112) that the effect of the instanton is to flip some of the
chiralities: ( F2π )

2 positive chirality modes become negative chirality modes, leading

to a chirality imbalance of F 2

2π2 , in agreement with the index theorem (10.88). On the

other hand, the total number of zero modes, BF

2π2 , grows linearly with the magnetic
field when F is nonzero.

10.3.8 Matrix Elements and Dipole Moments

The computation of matrix elements is significantly simplified by using the Eu-
clidean version of the Schur decomposition (10.18, 10.19) used earlier to relate the
chiral magnetic effect to the two- and four-dimensional axial anomalies. Thus, in-
troducing a small quark mass m, the propagator of the Dirac operator /D +m is given
by its Schur decomposition:

1

/D+m
=

(
m

m2+DD†
−1

m2+DD†D

1
m2+D†D

D† m

m2+D†D

)

(10.116)
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Note that DD† and D†D have identical spectra, except for possible zero modes, so
they can be viewed as square operators (matrices) of different dimension, as is clear
when they are diagonalized in their respective eigenspaces. For a simple algebraic
illustration, take D to be the 2-component column vector

D =
(

1
2

)
⇒ DD† =

(
1 2
2 4

)
, D†D = 5 (10.117)

Thus, DD† has eigenvalues 0 and 5, while D†D clearly only has eigenvalue 5, the
difference in rank being accounted for by the count of zero modes.

The zero mode contribution to the propagator can be separated by writing it in
one of two ways, depending on which chirality supports zero modes,

1

/D +m
=

(
m

m2+DD†
−1

m2+DD†D

D† 1
m2+DD† ( 1

m
− 1

m
D† 1

m2+DD†D)

)

=
(
( 1
m

− 1
m
D 1

m2+D†D
D†) −D 1

m2+D†D

1
m2+D†D

D† m

m2+D†D

)

(10.118)

An important set of quark bilinears involve the spin tensor Σμν :

Σμν = 1

2i
[γμ, γν] =

(
σ̄μν 0

0 σμν

)
(10.119)

This representation makes clear the natural decomposition of Σμν into its self-dual
part (σμν ) and its anti-self-dual part (σ̄μν ). The bilinears are

〈ψ̄Σμνψ〉 = tr

(
Σμν

1

/D+m

)
(10.120)

using the 2 × 2 sub-block structure of the propagator, it is straightforward to derive
the relations:

〈ψ̄Σμνψ〉 = m tr2×2

(
σμν

1

m2 +DD†
+ σ̄ μν

1

m2 +D†D

)
(10.121)

〈ψ̄ψ〉 = m tr2×2

(
1

m2 +DD†
+ 1

m2 +D†D

)
(10.122)

〈ψ̄Σμνγ5ψ〉 = m tr2×2

(
σμν

1

m2 +DD†
− σ̄ μν

1

m2 +D†D

)
(10.123)

〈ψ̄γ5ψ〉 = m tr2×2

(
1

m2 +DD†
− 1

m2 +D†D

)
(10.124)
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For applications to the chiral magnetic effect, we are interested in the magnetic and
electric dipole moments:

σMi = 1

2
εijk〈ψ̄Σjkψ〉 (10.125)

σEi = 〈ψ̄Σi4ψ〉 (10.126)

With a strong magnetic field in the x3 direction, we concentrate on σM3 and σE3 ,
which require the spin tensors:

Σ12 =
(
σ3 0
0 σ3

)
, Σ34 =

(−σ3 0
0 σ3

)
(10.127)

Thus,

m〈ψ̄Σ12ψ〉 = tr2×2

(
σ3

m2

m2 +DD†

)
+ tr2×2

(
σ3

m2

m2 +D†D

)
(10.128)

m〈ψ̄Σ34ψ〉 = − tr2×2

(
σ3

m2

m2 +DD†

)
+ tr2×2

(
σ3

m2

m2 +D†D

)
(10.129)

The dominant contribution to the trace over the spectrum comes from the modes
with low eigenvalues of DD† and D†D. In the strong magnetic field limit, the zero
modes and the near-zero-modes all have spin up, σ3 =+1, as expected. The domi-
nant contribution to the electric and magnetic moments are therefore:

m〈ψ̄Σ12ψ〉 ≈ tr2×2

(
m2

m2 +DD†

)
+ tr2×2

(
m2

m2 +D†D

)
(10.130)

m〈ψ̄Σ34ψ〉 ≈ − tr2×2

(
m2

m2 +DD†

)
+ tr2×2

(
m2

m2 +D†D

)
(10.131)

In particular, this means that in the strong magnetic field limit, we expect

〈ψ̄Σ12ψ〉
〈ψ̄ψ〉 → 1, B →∞ (10.132)

as has been confirmed in a lattice study [47–49].
For the magnetic dipole moment, the main contribution comes from the zero

modes, so we simply count the degeneracies in the various sectors:

m〈ψ̄Σ12ψ〉 ≈
(
B − F

2π

)(
F

2π

)
+

(
B + F

2π

)(
F

2π

)

= BF

2π2
(10.133)
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which is linear in the magnetic field B . For the electric dipole moment, the near-
zero-modes cancel, leaving just the zero mode contribution:

m〈ψ̄Σ34ψ〉 ≈ −
(
B − F

2π

)(
F

2π

)
+

(
B + F

2π

)(
F

2π

)

= F 2

2π2
(10.134)

which is independent of B , and negligible compared to BF , for B � F . [Note that
(10.134) does not imply that there is a residual electric dipole moment when B

vanishes, because (10.134) applies only in the B � F limit.] Thus, we see that the
zero modes and near-zero-modes imply that

〈ψ̄Σ12ψ〉 ∝ B, 〈ψ̄Σ12ψ〉 � 〈ψ̄Σ34ψ〉 (10.135)

This is in agreement with the lattice results of [50]. We note that in a full QCD
calculation with dynamical quarks there is an additional instanton measure factor
that scales as mNf , which should be taken into account for these matrix elements.

If we now consider the fluctuations in the electric dipole moment, we find a
dependence on B , because

〈ψ̄Σ34ψψ̄Σ34ψ〉

= tr

(
1

/D+m
Σ34

1

/D +m
Σ34

)

= tr2×2

(
m2

(m2 +DD†)2
+ 1

(m2 +DD†)
Dσ3D

†σ3
1

(m2 +DD†)

)

+ tr2×2

(
1

(m2 +D†D)2
D†σ3Dσ3 + m2

(m2 +D†D)
σ3

1

(m2 +D†D)
σ3

)

≈ tr2×2

(
1

(m2 +DD†)
+ 1

(m2 +D†D)

)
(10.136)

where in the last step we have used the fact that the dominant contribution comes
from zero modes and near-zero-modes, all of which have σ3 =+1. Thus, comparing
with (10.133) we see that the fluctuation is linear in B

〈ψ̄Σ34ψψ̄Σ34ψ〉 ≈
(

F

2π2m2L4

)
B (10.137)

again in agreement with the lattice results of [50].

10.4 Conclusions

In this article we have presented several different perspectives of the chiral magnetic
effect. The unifying theme is that the effect arises due to the spin projection of
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the lowest-Landau-level projection that occurs in a very strong magnetic field, in
conjunction with a chirality projection that relates to the axial anomaly, or to the
effect of a topologically non-trivial background field such as an instanton. The effect
could occur in an abelian theory with an electric field parallel to the strong magnetic
field. In this case, the roles of the charge and chiral chemical potentials are played
by A0 and A3, respectively, and the chiral magnetic effect is seen to be precisely
equivalent to the 2d axial anomaly, which is itself the dimensionally reduced LLL
projection of the 4d axial anomaly. Taking this dimensional reduction seriously, in
a theory with a continuous chiral symmetry, we learn further from the 2d physics
that there is a spiral condensate, an immediate consequence of the relativistic form
of the Peierls instability. Finally, we considered the effect on light quarks of both
a magnetic field and an instanton field, showing that the competition between the
chiral projection in the instanton field and the spin projection in the magnetic field
is responsible for the chiral magnetic effect. We demonstrated that this is consistent
with the index theorem, and illustrated the mechanism with a soluble model by
taking the leading derivative expansion form of the instanton field in which the
magnetic length is much smaller than the instanton scale. It would be interesting to
investigate the systematic corrections to this leading approximation using the Fock-
Schwinger gauge [72–74] representation of the instanton field.
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292 G. Başar and G.V. Dunne

10. G. Strang, Linear Algebra and Its Applications (Harcourt, San Diego, 1988)
11. Y. Aharonov, A. Casher, Ground state of a spin-1/2 charged particle in a two-dimensional

magnetic field. Phys. Rev. A 19, 2461 (1979)
12. S.P. Novikov, B.A. Dubrovin, Ground states of a two-dimensional electron in a periodic mag-

netic field. Zh. Èksp. Teor. Fiz. 79, 1006 (1980). [Sov. Phys. JETP 52, 511 (1980)]
13. S.P. Novikov, B.A. Dubrovin, Ground states in a periodic field. Magnetic Bloch functions and

vector bundles. Dokl. Akad. Nauk SSSR 253, 1293 (1980)
14. L.S. Brown, R.D. Carlitz, C. Lee, Massless excitations in instanton fields. Phys. Rev. D 16,

417 (1977)
15. R.D. Carlitz, C. Lee, Physical processes in pseudoparticle fields: the role of fermionic zero

modes. Phys. Rev. D 17, 3238 (1978)
16. J. Hur, C. Lee, H. Min, Some chirality-related properties of the 4-D massive Dirac propagator

and determinant in an arbitrary gauge field. Phys. Rev. D 82, 085002 (2010). arXiv:1007.4616
[hep-th]

17. W.A. Bardeen, B. Zumino, Consistent and covariant anomalies in gauge and gravitational
theories. Nucl. Phys. B 244, 421 (1984)

18. G.V. Dunne, C.A. Trugenberger, Odd dimensional gauge theories and current algebra. Ann.
Phys. 204, 281 (1990)

19. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Chiral asymmetry and axial anomaly in magne-
tized relativistic matter. Phys. Lett. B 695, 354 (2011). arXiv:1009.1656 [hep-ph]

20. N. Sadooghi, A. Jafari Salim, Axial anomaly of QED in a strong magnetic field and noncom-
mutative anomaly. Phys. Rev. D 74, 085032 (2006). hep-th/0608112

21. J.H. Gao, Z.T. Liang, S. Pu, Q. Wang, X.N. Wang, Chiral anomaly and local polarization
effect from quantum kinetic approach. Phys. Rev. Lett. 109, 232301 (2012). arXiv:1203.0725
[hep-ph]

22. W. Heisenberg, H. Euler, Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714 (1936)
23. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)
24. Y. Kluger, E. Mottola, J.M. Eisenberg, The quantum Vlasov equation and its Markov limit.

Phys. Rev. D 58, 125015 (1998). hep-ph/9803372
25. J.S. Schwinger, Gauge invariance and mass. Phys. Rev. 125, 397 (1962)
26. J.S. Schwinger, Gauge invariance and mass. 2. Phys. Rev. 128, 2425 (1962)
27. G. Basar, G.V. Dunne, D.E. Kharzeev, Chiral magnetic spiral. Phys. Rev. Lett. 104, 232301

(2010). arXiv:1003.3464 [hep-ph]
28. D.J. Gross, A. Neveu, Dynamical symmetry breaking in asymptotically free field theories.

Phys. Rev. D 10, 3235 (1974)
29. T. Kojo, Y. Hidaka, L. McLerran, R.D. Pisarski, Quarkyonic chiral spirals. Nucl. Phys. A 843,

37–58 (2010). arXiv:0912.3800 [hep-ph]
30. R. Peierls, The Quantum Theory of Solids (Oxford University Press, Oxford, 1955)
31. R. Peierls, More Surprises in Theoretical Physics (Princeton University Press, Princeton,

1991)
32. G. Basar, G.V. Dunne, M. Thies, Inhomogeneous condensates in the thermodynamics of the

chiral NJL2 model. Phys. Rev. D 79, 105012 (2009). arXiv:0903.1868 [hep-th]
33. G. Basar, G.V. Dunne, A twisted kink crystal in the chiral Gross-Neveu model. Phys. Rev. D

78, 065022 (2008). arXiv:0806.2659 [hep-th]
34. V. Schon, M. Thies, Emergence of Skyrme crystal in Gross-Neveu and ’t Hooft models at

finite density. Phys. Rev. D 62, 096002 (2000). arXiv:hep-th/0003195
35. V. Schon, M. Thies, 2D model field theories at finite temperature and density, in At the Fron-

tier of Particle Physics: Handbook of QCD, vol. 3, ed. by M.A. Shifman (World Scientific,
Singapore, 2000). arXiv:hep-th/0008175

36. M. Thies, From relativistic quantum fields to condensed matter and back again: updating the
Gross-Neveu phase diagram. J. Phys. A 39, 12707 (2006). hep-th/0601049

37. A. Bzdak, V. Koch, J. Liao, Remarks on possible local parity violation in heavy ion collisions.
Phys. Rev. C 81, 031901 (2010). arXiv:0912.5050 [nucl-th]

http://arxiv.org/abs/arXiv:1007.4616
http://arxiv.org/abs/arXiv:1009.1656
http://arxiv.org/abs/hep-th/0608112
http://arxiv.org/abs/arXiv:1203.0725
http://arxiv.org/abs/hep-ph/9803372
http://arxiv.org/abs/arXiv:1003.3464
http://arxiv.org/abs/arXiv:0912.3800
http://arxiv.org/abs/arXiv:0903.1868
http://arxiv.org/abs/arXiv:0806.2659
http://arxiv.org/abs/arXiv:hep-th/0003195
http://arxiv.org/abs/arXiv:hep-th/0008175
http://arxiv.org/abs/hep-th/0601049
http://arxiv.org/abs/arXiv:0912.5050


10 The Chiral Magnetic Effect and Axial Anomalies 293

38. B.I. Abelev et al. (STAR Collaboration), Azimuthal charged-particle correlations and possible
local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009). arXiv:0909.1739 [nucl-ex]

39. B.I. Abelev et al. (STAR Collaboration), Observation of charge-dependent azimuthal corre-
lations and possible local strong parity violation in heavy ion collisions. Phys. Rev. C 81,
054908 (2010). arXiv:0909.1717 [nucl-ex]

40. D. Kharzeev, R.D. Pisarski, M.H.G. Tytgat, Possibility of spontaneous parity violation in hot
QCD. Phys. Rev. Lett. 81, 512 (1998). arXiv:hep-ph/9804221

41. K.-Y. Kim, B. Sahoo, H.-U. Yee, Holographic chiral magnetic spiral. J. High Energy Phys.
1010, 005 (2010). arXiv:1007.1985 [hep-th]

42. T. Sakai, S. Sugimoto, Low energy hadron physics in holographic QCD. Prog. Theor. Phys.
113, 843 (2005). hep-th/0412141

43. T. Sakai, S. Sugimoto, More on a holographic dual of QCD. Prog. Theor. Phys. 114, 1083
(2005). hep-th/0507073

44. G. Basar, G.V. Dunne, D.E. Kharzeev, Electric dipole moment induced by a QCD instanton
in an external magnetic field. Phys. Rev. D 85, 045026 (2012). arXiv:1112.0532 [hep-th]

45. V. Skokov, A.Y. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion
collisions. Int. J. Mod. Phys. A 24, 5925 (2009). arXiv:0907.1396 [nucl-th]

46. A. Bzdak, V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion
collisions. Phys. Lett. B 710, 171 (2012). arXiv:1111.1949 [hep-ph]

47. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Numerical study of
chiral symmetry breaking in non-Abelian gauge theory with background magnetic field. Phys.
Lett. B 682, 484–489 (2010). arXiv:0812.1740 [hep-lat]

48. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Chiral magnetization
of non-Abelian vacuum: a lattice study. Nucl. Phys. B 826, 313–327 (2010). arXiv:0906.0488
[hep-lat]

49. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Numerical evi-
dence of chiral magnetic effect in lattice gauge theory. Phys. Rev. D 80, 054503 (2009).
arXiv:0907.0494 [hep-lat]

50. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Quark electric dipole
moment induced by magnetic field. Phys. Rev. D 81, 036007 (2010). arXiv:0909.2350 [hep-
ph]

51. M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou, Chiral magnetic effect in 2 + 1 flavor
QCD + QED. PoS LAT2009, 181 (2009). arXiv:0911.1348 [hep-lat]

52. T. Blum, Talk at Workshop on P- and CP-odd Effects in Hot and Dense Matter, Brookhaven
National Laboratory, April 2010

53. V.V. Braguta, P.V. Buividovich, T. Kalaydzhyan, S.V. Kuznetsov, M.I. Polikarpov, The chiral
magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory. PoS
LAT2010, 190 (2010). arXiv:1011.3795 [hep-lat]

54. B.C. Tiburzi, Lattice QCD with classical and quantum electrodynamics. PoS LAT2011, 020
(2011). arXiv:1110.6842 [hep-lat]

55. L. Giusti, A. Gonzalez-Arroyo, C. Hoelbling, H. Neuberger, C. Rebbi, Fermions on tori in
uniform Abelian fields. Phys. Rev. D 65, 074506 (2002). arXiv:hep-lat/0112017

56. Y. Tenjinbayashi, H. Igarashi, T. Fujiwara, Dirac operator zero-modes on a torus. Ann. Phys.
322, 460 (2007). arXiv:hep-th/0506259

57. M.H. Al-Hashimi, U.J. Wiese, Discrete accidental symmetry for a particle in a constant mag-
netic field on a torus. Ann. Phys. 324, 343 (2009). arXiv:0807.0630 [quant-ph]

58. J. Zak, Magnetic translation group. Phys. Rev. 134, A1602 (1964)
59. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle.

Phys. Rev. D 14, 3432 (1976)
60. A.S. Schwarz, On regular solutions of Euclidean Yang-Mills equations. Phys. Lett. B 67, 172

(1977)
61. J.E. Kiskis, Fermions in a pseudoparticle field. Phys. Rev. D 15, 2329 (1977)
62. R. Jackiw, C. Rebbi, Spinor analysis of Yang-Mills theory. Phys. Rev. D 16, 1052 (1977)

http://arxiv.org/abs/arXiv:0909.1739
http://arxiv.org/abs/arXiv:0909.1717
http://arxiv.org/abs/arXiv:hep-ph/9804221
http://arxiv.org/abs/arXiv:1007.1985
http://arxiv.org/abs/hep-th/0412141
http://arxiv.org/abs/hep-th/0507073
http://arxiv.org/abs/arXiv:1112.0532
http://arxiv.org/abs/arXiv:0907.1396
http://arxiv.org/abs/arXiv:1111.1949
http://arxiv.org/abs/arXiv:0812.1740
http://arxiv.org/abs/arXiv:0906.0488
http://arxiv.org/abs/arXiv:0907.0494
http://arxiv.org/abs/arXiv:0909.2350
http://arxiv.org/abs/arXiv:0911.1348
http://arxiv.org/abs/arXiv:1011.3795
http://arxiv.org/abs/arXiv:1110.6842
http://arxiv.org/abs/arXiv:hep-lat/0112017
http://arxiv.org/abs/arXiv:hep-th/0506259
http://arxiv.org/abs/arXiv:0807.0630
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Chapter 11
Chiral Magnetic Effect in Hydrodynamic
Approximation

Valentin I. Zakharov

11.1 Introduction

In this chapter1 we will consider chiral liquids, that is liquids whose constituents are
massless fermions. The motivation is an offspring from the discovery of the strongly
interacting quark-gluon plasma (for review see, e.g., [1, 2]) which is, indeed, build
on (nearly) massless quarks. The use of the (relativistic) hydrodynamic approxima-
tion is also suggested by the observations on the quark-gluon plasma. Moreover,
the state of the chiral liquid is assumed to be asymmetric with respect to left- and
right-fermions. In other words, we concentrate on the case of a non-vanishing chiral
chemical potential μ5.2 The motivation to introduce μ5 �= 0 is rather theoretical than
experimental, however, and is rooted in the sphaleron-based picture which predicts
that, event-by-event, the plasma is produced as chirally charged [3–5].

There are a few effects specific for the chiral liquids, the most famous one being
the chiral magnetic effect (for review and further references see [6]). By the ChME

1The review is prepared for a volume of the Springer Lecture Notes in Physics “Strongly interacting
matter in magnetic fields” edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee.
2In the realistic QCD case the singlet axial current is anomalous and is not conserved. Therefore,
introduction of the chemical potential μ5 is rather a subtle issue. In the bulk of the text we ignore
this problem concentrating mostly on academic issues. One could have in mind, for example, that
the chemical potential μ5 �= 0 is associated in fact with the axial current with isospin ΔI = 1 which
is conserved in the limit of vanishing quark masses. Another possible line of reasoning is to invoke
large-Nc limit of Yang-Mills theories. The contribution of the gluon anomaly is then suppressed
by large Nc and the chemical potential μ5 can be introduced consistently for the singlet current as
well.
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one understands the phenomenon of induction of electromagnetic current jel by ap-
plying an external magnetic field B to a chiral medium with a non-vanishing μ5:

jel = q2μ5

2π2
B, (11.1)

where q is the electric charge of the constituents and μ5 = (μR − μL)/2 is the
chiral chemical potential. The relation (11.1) plays a central role in our discussion
and can be analyzed from various points of view. An exciting possibility is that
the chiral magnetic effect (11.1) has already been observed in heavy-ion collisions,
for a concise review and references see [7]. We will concentrate, however, on the
underlying theory rather than on its experimental verification.

Qualitatively, (11.1) can be understood accounting only for the interaction of spin
of quarks with an external magnetic field, Hs ∼ q(σ · B). The overall coefficient in
(11.1) can readily be found in case of free quarks [6, 8, 9]. The evaluation of the
coefficient requires explicit counting of zero modes of the Dirac equation for chiral
fermions interacting with an external magnetic field [9], see also Sect. 11.3.4. The
number of chiral zero modes is controlled by the famous chiral anomaly [10, 11].
Thus, (11.1) is a manifestation of the chiral anomaly, as can actually be demon-
strated in a number of ways, discussed later.

One of the central points is that the chiral magnetic effect can be derived not only
for non-interacting chiral fermions but also in case of strong interactions between
the constituents, provided that the hydrodynamic approximation is granted. There
is, though, a change in (11.1) which is of pure kinematic nature. Namely, to describe
liquid one introduces 4-velocity of an element of the liquid, uμ(x) which is a func-
tion of the point x. The 4-velocity is normalized such that −(u0)

2 +u2
i =−1, and in

the non-relativistic limit u0 ≈ 1, ui ≈ vi , where i = 1,2,3 and vi is the 3-velocity
entering the hydrodynamic equations in the non-relativistic limit. Equation (11.1)
is valid now only if the whole of the liquid is at rest. If, on the other hand, uμ is
non-trivial (11.1) is generalized to

(jμ)el = q2μ5

2π2
Bμ, (11.2)

where Bμ ≡ 1/2εμνρσ uν(∂ρAσ − ∂σAρ), Aμ is the gauge potential of the external
electromagnetic field and the chemical potential μ5 can depend on the point x. In
the rest frame of an element of the liquid uμ ≡ (1,0,0,0), and (11.2) coincides
with (11.1).

Non-renormalization theorems in field theory are quite exceptional and attract
a lot of attention. Essentially, there are two best known case studies of non-
renormalizability. First, conserved charges are not renormalized, so that, for exam-
ple, the absolute values of electric charges of electron and proton are the same. And
the second example is the non-renormalizability of the chiral anomaly:

∂μj
5
μ = αel

4π
εαβγ δF

αβF γ δ. (11.3)
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The absence of higher-order corrections to this anomaly is guaranteed by the Adler-
Bardeen theorem [12]. The proof of the non-renormalizability of the chiral magnetic
effect utilizes both symmetry considerations and the miracle of the perturbative can-
cellations, revealed by the Adler-Bardeen theorem.

To put the consideration of the chiral magnetic effect into a field-theoretic frame-
work one considers hydrodynamics as a kind of an effective field theory, see, e.g.,
[13, 14]. Viewed as an effective field theory, hydrodynamics reduces to an expansion
in a number of derivatives from the velocity uμ and thermodynamic quantities. On
the microscopic level, hydrodynamics corresponds to the long-wave approximation,

l/a � 1,

where l is of order of wave length of the hydrodynamic excitations and a is of order
of distance between the constituents.

The hydrodynamic equations reflect symmetries of a dynamical problem consid-
ered since they are nothing else but the conservation laws. In the absence of external
fields

∂μT
μν = 0, ∂μj

μ
a = 0 (11.4)

where Tμν is the energy-momentum tensor and jμa are currents conserved in strong
interactions, with the index a enumerating the currents. Consider liquid at rest and
small fluctuations superimposed on it. Generically, fluctuations would be damped
down on distances of order a and do not propagate far away. The exceptions are
fluctuations of conserved quantities which cannot disappear and propagate far off.
That is why the long-wave, or hydrodynamic approximation reduces to the conser-
vation laws (11.4).

Explicit form of the hydrodynamic equations (11.4) depends on how many terms
in the gradient expansion are kept in T μν and jμa . In general,

T μν = wuμuν + Pgμν + τμν, (11.5)

jμa = nau
μ + νμa , (11.6)

where w,P,na are the standard thermodynamical variables, namely, enthalpy, w ≡
ε + P , pressure and densities of charges. The quantities τμν , νμa satisfy conditions
uμτ

μν = uμν
μ
a = 0. In the zeroth order in gradients τμν = 0, νμa = 0.

The path from relativistic, or chiral hydrodynamics to the anomaly (11.3) was
found first in Ref. [15]. One introduces external electric and magnetic fields so that
the current conservation condition is changed into (11.3). The bridge between the
fundamental-theory equation (11.3) and hydrodynamics is provided by considering
the entropy current sμ. In the presence of external fields the standard definition [16]
of the current sμ does not ensure growth of the entropy any longer. To avoid the con-
tradiction with the second law of thermodynamics one includes terms proportional
to external fields both into the newly defined entropy current sμ and currents jμa .
The constraints imposed by the second law of thermodynamics involve the anomaly
condition which is not renormalized by strong interactions and turn out to be strong
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enough to (almost uniquely) fix the currents in terms of the anomaly. We reproduce
the basic point of this beautiful derivation in Sect. 11.2.1.

Most recently, it was observed [17–19] (see also [20]) that one can avoid consid-
ering the entropy current sμ. Instead, one introduces not only external electromag-
netic field but a static gravitational background as well. Equating the hydrodynamic
stress tensor and currents (11.5) to the corresponding structures evaluated at the
equilibrium in the gravitational background allows to fix the chiral current and stress
tensor without considering the entropy current. This seems to be a very interesting
extension of relativistic hydrodynamics. From the perspectives of the present review,
derivation [17–19] reveals a novel feature of the chiral magnetic effect. Namely, the
corresponding electromagnetic current appears to be non-dissipative since it persists
in the equilibrium. We will come back to discuss this point later.

All these derivations of the ChME in fact uncover existence of some other effects
as well. In particular, one predicts existence of the chiral vortical effect (ChVE), that
is, flow of the axial current in the direction of the local angular velocity, j5 ∼ ω. In
relativistic covariant notations:

δj5
μ ≈ μ2

2π2
ωμ,

(11.7)
ωμ = 1

2
εμναβu

ν∂αuβ,

where ωμ is the vorticity of the liquid and the chemical potential μ is considered
to be small. The ChVE was derived first in a holographic set up [21] and is being
actively discussed in the literature, along with the chiral magnetic effect. Another
example is the axial-vector current j5 induced by a non-vanishing chemical potential
μV [22, 23]:

j5 = qμV

2π2
B, (11.8)

which is a kind of parity-reflected companion of (11.1).
It is worth emphasizing that all the chiral effects now considered were origi-

nally introduced quite long time ago basing on evaluation of loop graphs with non-
interacting fermions [8, 24]. In particular, it was found in Ref. [24] that rotating a
system of non-interacting massless fermions results in a vortical current:

j5 =
(
T 2

12
+ μ2

4π2

)
Ω, (11.9)

where Ω is the angular velocity of the rotation. In the term proportional to μ2 one
readily recognizes (11.7) above.3 It took many years, however, to prove that the re-
sult (11.9) is essentially not modified by strong interactions. As is mentioned above,
the origin of the μ2 in (11.9) term can be traced back to the chiral anomaly and it is
not renormalizable.

3To compare (11.9) and (11.7) one should keep in mind that in the notations of Ref. [24] the current
j in (11.9) is the current of right-handed fermions alone and, thus, constitutes one half of the chiral
current entering (11.7).
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The status of radiative corrections to the T 2 term in (11.9) has been clarified
only very recently [25, 26]. First, one relates the chiral vortical effect to the static
correlator of the axial current and momentum density. As far as only the fermionic
part is kept in the operator of momentum density, all the higher-order contributions
to the T 2 term cancel and (11.9) remains valid. The proof is based on an analysis
of Feynman graphs in the effective 3d theories and echoes the proof [27] of non-
renormalizability of the topological mass of a gauge field. There is, however, a glu-
onic part of the momentum density and it generates a calculable two-loop correction
to (11.9). We reproduce the basic points of the proof [25] in Sect. 11.2.3.

Reference to anomalies of the fundamental theory which arise due to weak cou-
pling to external fields (electromagnetic or gravitational) can be avoided by applying
an effective field theory. This effective field theory elevates chemical potentials to
interaction constants, see [28–30] and references therein. The corresponding ver-
tices can be obtained from the standard electromagnetic interaction by substitution

qAμ → μuμ, (11.10)

where μ is the chemical potential associated with the conserved charge q . The ef-
fective theory is anomalous and does reproduce through these anomalies the chiral
magnetic effect and the μ2 term in the chiral vortical effect, see (11.9).4 We will
give further details in Sect. 11.2.4.

Non-renormalizability commonly implies topological nature of the correspond-
ing term. Moreover, if the currents are topological they are non-dissipative. The best
known example of such a type is provided by the integer quantum Hall effect (for
the background and review see, e.g., [31]). Consider a two-dimensional system with
an external electric field E = (E1,0) applied. Then there arises electric current ji
such that

ji = σikEk,

where σik are coefficients. The integer quantum Hall effect is characterized by a
non-diagonal σ12 �= 0 and σ11 = 0:

σ12 = ν
e2

h
, (11.11)

where ν is integer. The work produced by the external electric field is equal to the
product W = jiEi . The Hall current is clearly not associated with any work done
and this observation suggests strongly that the Hall current is dissipation-less. For
further examples of this type see, e.g., [32].

Since the chiral magnetic current (11.1) is not associated either with any work
done by the external field it seems natural to assume that the chiral magnetic cur-
rent is also dissipation-less. This suggestion is made first in Ref. [33] basing on
somewhat different arguments, see Sect. 11.3.1.

4Note that in the underlying fundamental field theory there are no anomalies associated with a
non-vanishing chemical potential μ. This observation is in no contradiction with the fact that such
anomalies do arise in the language of the effective theory.
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Now we come to a question, however, which has not been answered yet. Namely,
topological, or dissipation-less currents usually manifest existence of a macroscopic
quantum state. Well known examples are the superfluidity of weakly interacting
Bose-liquid or the same Hall current (11.11). In these two cases the nature of the
macroscopic quantum states is well understood. Also, in case of non-interacting
fermions topological nature of the chiral magnetic effect has been demonstrated first
long time ago [9]. Claiming the chiral magnetic current (11.1) to be topological in
hydrodynamic approximation as well we imply quantum nature of the correspond-
ing ground state.

This problem of constructing explicitly the quantum state can be addressed in
some more detail within approach which starts with a microscopical picture and the
central role is played then by low-dimensional defects. A well known example of
this kind is provided by vortices in rotating superfluid. In more abstract language,
this approach goes back also to papers [9, 34, 35]. It was demonstrated that defects in
field theory are closely tied to the realization of anomaly. In particular, it was shown
in [35] that anomaly in 2n+2 dimensional theory is connected with 2n dimensional
index density and can be understood in terms of fermion zero modes on strings and
domain walls. In all the cases the chiral current is carried by fermionic zero modes
living on the defects.

One can expect, therefore, that anomaly in effective, hydrodynamic theory is
realized in chiral superfluid system on vortex-like defects. The continuum-medium
results (11.7), (11.1) can arise then upon averaging over a large number of defects.
In case of the chiral magnetic effect such a mechanism was considered, in particular,
in Refs. [3–5, 23] and the final result (11.1) is reproduced on the microscopic level
as well. The vortices considered in [3–5, 23] are simply the regions of space free
of the medium substance. In case of superfluidity the vortices are better understood
and the microscopical picture for the chiral effects can be clarified to some extent
[36]. The outcome of the analysis in terms of defects, or vortices is that the chiral
magnetic effect does survive without any change. As for the vortical chiral effect it
is modified in the capillary picture by a factor of two:

(
δJ 5

μ

)
capillary = 2

μ2

2π2
ωμ. (11.12)

We will give details in Sect. 11.3.4.
Upon introducing the reader to the topics to be discussed in this review, we would

like to emphasize that there are many other interesting results which could have
been included into the review but are actually not covered. The reason is mostly to
avoid too much overlap with other chapters of this volume. A notable example of
this kind is the holographic approach to the ChME which is reviewed, in particu-
lar, in Ref. [37]. The same remark applies to the phenomenological manifestations
of the gravitational anomaly. Finally, there are very interesting applications of the
technique used to condensed-matter systems. However, reviewing these applications
goes beyond the scope of the present notes.

To summarize, we concentrate on two basic issues, non-renormalizability and
dissipation-free nature of the chiral magnetic and chiral vortical effects. In Sect. 11.2
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we consider non-renormalization theorems within various approaches outlined
above (thermodynamic, geometric, diagrammatic, effective field theories). The
derivations of the theorems make it also clear that the chiral effects considered
are dissipation free. In Sect. 11.3 we review further arguments in favor of the
dissipation-free nature of the chiral effects. In this section we also introduce a mi-
croscopic picture in terms of defects of lower dimensions. Sect. 11.4 is conclusions.

11.2 Non-renormalization Theorems

11.2.1 Non-renormalization Theorems in Thermodynamic
Approach

In this subsection we reproduce the basic steps of the pioneering derivation [15]
of chiral effects, the chiral vortical effect first of all, which utilizes only the chiral
anomaly in external electromagnetic fields, thermodynamics and hydrodynamic ap-
proximation. To simplify the algebra, we consider first a single conserved current,
chiral at that. Moreover, we consider the chiral symmetry not spontaneously broken
(otherwise, we should have modified the hydrodynamic equations).

In presence of external electromagnetic fields both the energy-momentum tensor
and chiral current are not conserved any longer. The current is not conserved because
of the anomaly, while the energy is not conserved because external electric field
executes work on the system. Thus, one starts with the equations:

∂μj
μ = CEμBμ, (11.13)

∂μT
μν = Fνλjλ (11.14)

where C is the coefficient determined by the anomaly (e.g., for QED C = 1
2π2 ).

Turning to the thermodynamics, we have to introduce, following textbooks [16], an
entropy current sμ consistent with the second law of thermodynamics. In the ideal-
liquid approximation the condition is ∂μsμ = 0.

There are no general rules to construct sμ. As a first guess, one can try sμ = suμ
where s is the entropy density. Moreover, put the gradient terms νμ, τ νμ = 0 for
simplicity. However, using (11.13) and

dP = sdT + ndμ

where μ is chemical potential, one readily derives

∂μ
(
suμ

)=−Cμ

T
E ·B (

νμ, τ νμ = 0
)
. (11.15)

The right-hand side of this equation does not have a definite sign and, therefore, one
cannot accept suμ as a definition of the entropy current in presence of the anomaly.
Thus, we should continue with our guess-work to construct the entropy current. Note
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that it is quite a common situation. For example, consider non-ideal liquid with non-
zero νμ (and τμν = 0). Then one has to modify the entropy current defining it as
sμ = suμ − μ

T
νμ so that for the newly defined entropy current ∂μsμ = 0 [16].

In presence of the chiral anomaly we can use the same idea and redefine the
entropy current [15] by introducing terms proportional to the magnetic field and
vorticity. To simplify equations we will not account for the dissipative terms, vis-
cosities and electrical conductance. One can check that inclusion of these terms
does not change the result [15]. Moreover, in the next subsection we will see that
there are general reasons for the dissipative terms to be actually not relevant. Thus,
expanding in the fields we look for solution for the matter current of the form:

jμ = nuμ + νμ
(11.16)

νμ = ξωωμ + ξBBμ,

where ωμ = 1
2εμναβu

ν∂αuβ is the vorticity, Bμ = 1
2εμναβu

νFαβ is the magnetic
field in the rest frame of liquid element (electric field Eμ = Fμνu

ν ) and ξω, ξB are
unknown functions of the thermodynamic variables. For the entropy current, we
assume:

sμ = suμ − μ

T
νμ +Dωωμ +DBBμ, (11.17)

where Dω, DB are further unknown functions.
Conservation of the entropy current now reads:

∂μ
(
Dωω

μ
)+ ∂μ

(
DBB

μ
)− νμ

(
∂μ

μ

T
− μ

T

)
−C

μ

T
E ·B = 0. (11.18)

For the ideal liquid (τμν = 0) the following identities hold:

∂μω
μ = − 2

w
ωμ(∂μP − nEμ), (11.19)

∂μB
μ = −2ω ·E + 1

w
(−B · ∂P + nE ·B). (11.20)

Moreover, coefficients in front of the independent kinematical structures ωμ, Bμ,
E ·ω, E ·B in relation (11.18) should vanish:

∂μDω − 2
∂μP

ε + p
Dω − ξω∂μ

μ

T
= 0,

∂μDB − ∂μP

ε + p
DB − ξB∂μ

μ

T
= 0,

(11.21)
2nDω

ε + p
− 2DB + ξω

T
= 0,

nDB

ε + p
+ ξB

T
−C

μ

T
= 0.
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To proceed further one has to choose a basis of thermodynamic variables and it is
convenient to take this basis as (P, μ̃= μ

T
). The thermodynamic derivatives in the

basis look as ( ∂T
∂P
)μ̃ = T

w
, ( ∂T

∂μ̃
)
P̃
=−nT 2

w
. Since the thermodynamic gradients ∂μP ,

∂μμ̃ are independent the first two equations in (11.21) imply four conditions:

−ξω + ∂Dω

∂μ̃
= 0, −ξB + ∂DB

∂μ̃
= 0,

(11.22)
∂Dω

∂P
− 2

w
Dω = 0,

∂DB

∂P
− 1

w
DB = 0,

and the general solution for Dω, DB looks as

Dω = T 2dω(μ̃), DB = T dB(μ̃),

with functions dω, dB being so far arbitrary. Then the last two equations in (11.21)
reduce to simple differential equations which can be readily solved. As a result, the
functions dω(μ̄), dB(μ̄) get fixed, up to the integration constants [29, 38] which are
the values of the functions at μ̄= 0.

For the chiral kinetic coefficients we finally obtain:

ξω = Cμ2
(

1 − 2

3

μ · n
ε + p

)
+CωT

2
(

1 − μ · n
ε + p

)
(11.23)

and

ξB = C

(
μ− 1

2

μ2n

ε + p

)
, (11.24)

where the constant C determines the anomaly and is fixed while the constant Cω re-
mains undetermined. We will come back to evaluate Cω in Sect. 11.2.3 following the
paper [25]. Note that we omitted a similar constant of integration from (11.24). The
reason is that such a constant can appear in fact only due to parity-violating interac-
tions [38] and, having in mind eventual applications to parity-conserving theories,
we suppressed it right away.

The non-vanishing ξω, ξB exhibit what we call chiral vortical and chiral magnetic
effects, respectively. At temperature T = 0 the functions ξω(μ), ξB(μ) are fixed in
terms of the coefficient C which can be read off from the chiral anomaly and is not
renormalized by strong interactions. This is the content of the non-renormalization
theorem of the chiral effects in hydrodynamic approximation. It is worth emphasiz-
ing that if parity is conserved the chiral magnetic and vortical effects are manifested
in fact in different currents, axial and vector, respectively. On the other hand, accord-
ing to (11.17), they appear in one and the same current. The reason is that through
postulating conservation of a single chiral current we actually admitted for a parity
violating “strong interaction”. The case of a few currents, which allows for parity-
conserving strong interactions was considered, in particular in Refs. [29, 38]. The
outcome of the calculation is essentially the same: the chiral effects are fixed in all
the currents, up to constants of integration.
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11.2.2 Non-renormalization Theorems in Geometric Approach

Let us recall the reader one of simplest derivations of the chiral magnetic effect
[3–5, 9]. The anomaly,

∂μj5
μ = q2

2π2
E · B (11.25)

can be rewritten as an equation for the production rate of chiral particles. Denoting
the total chirality as N5, where N5 ≡NR −NL and NR(NL) is the number of right-
(left-)handed particles we have:

dN5

dtd3x
= q2

2π2
E · B. (11.26)

Production of particles requires for energy to be deposit into the system. The source
of this energy is the work done by the external electric field. Therefore:

∫
d3xjel · E = μ5

dN5

dt
= q2μ5

2π2

∫
d3xB · E (11.27)

where jel is the electric current and μ5 is the energy needed to produce a particle.
Tending E → 0 we learn from (11.27) that there survives a non-vanishing current in
this limit: jel = (q2μ5/2π2)B, and we come back to (11.1). As is mentioned above,
the current is non-dissipative since magnetic field does not produce any work. One
can also say that the current jel exists in the equilibrium.

To summarize, one can calculate the non-dissipative current associated with the
magnetic field by introducing electric field, taking the system out of the equilibrium
in this way and then tending the electric field back to zero. A similar technique is
commonly applied to study spontaneous symmetry breaking.

Recently it has been realized [17–19] that the procedure can be generalized in a
rather unexpected way. Namely, one introduces not only external electromagnetic
field but static gravitational field as well and studies equilibrium in this background.
All the terms in the chiral currents and energy-momentum tensor are fixed in equi-
librium and non-dissipative. Eventually one can go back to the flat space.

The basic object in the approach [17–19] is the generating functional W as a
function of external electromagnetic and gravitational fields, or sources,

W =
∫

ddxL
(
sources(x)

)
,

where W = lnZ and Z is the partition function. Differentiating W with respect to
the sources one evaluates in the standard way the energy-momentum tensor and
currents, as well as their correlators in equilibrium. In particular,

〈Tμν〉 = 2√−g
δW

δgμν
, 〈jμ〉 = 1√−g

δW

δAμ

. (11.28)
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In the spirit of the hydrodynamic approximation, one expands W in the number of
derivatives, both from the sources and thermodynamic variables and reiterates the
procedure in each order in the expansion.

The medium is characterized by the time-like vector uμ which in the zeroth order
in the number of derivatives can be chosen as uμ ∼ (1,0,0,0). Apart from uμ the
generating functional can depend on observables that are local in space but non-
local in Euclidean time. In the zeroth order in derivatives, the invariant length L of
the time circle is one of such observables. Also, there are Polyakov loops PA of
any U(1) gauge fields. Therefore, the temperature T and chemical potential μ are
defined geometrically as

T = 1/L, μ= lnPA/L. (11.29)

These are simplest examples of diffeomorphic and gauge invariant scalars.
We pause here to emphasize that the outcome of the calculation are static corre-

lators which are the same in the Euclidean and Minkowskian versions of the theory.
Therefore the relations obtained are in fact thermodynamic in nature. Static corre-
lators are to be distinguished from correlators which determine, through the Kubo
formula, such transport coefficients as viscosity. In the latter case one considers
correlator of certain components of the stress tensor at momentum transfer q ≡ 0
and frequency ω → 0. On the other hand, correlators considered here correspond
to ω ≡ 0, q → 0. This, subtle at first sight, difference is crucial for continuation to
the Euclidean space. It is straightforward to realize that the chiral magnetic effect
for a time-independent magnetic field is indeed determined by a static correlator of
components of the electromagnetic current, see, e.g., [39, 40]. To demonstrate this,
it is convenient to begin with the standard Kubo relation for electric conductance:

σE = lim
ω→0

i

ω
〈ji, ji〉

∣∣
q=0 (11.30)

where σE determines the electric current in terms of a time-independent electric
field, jel = σEE, and 〈(jel)i , (jel)i〉 is the retarded correlator of the components
of the electromagnetic current (with no summation over the index i). Since both
electric field E and magnetic field B are related to the same vector-potential A (E =
−iωA, B = iq × A) one concludes:

σB = lim
qn→0

∑

ij

εijn
i

2qn

〈
(jel)i , (jel)j

〉∣∣
ω=0, (11.31)

where σB is defined as jel = σBB. Thus, it is indeed a static correlator which we
need to evaluate the ChME.

Probably, the best known example of the use of static correlators is the generation
of photon screening mass through the Higgs mechanism. Namely, the correlator of
components of electromagnetic current in superconducting case looks as:

lim
q→0

∫
d3x exp(iq · r)

〈
ji(x), jk(0)

〉∼ (
δik − qiqk/q2),
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where presence of a pole signals superconductivity while the local term proportional
to δik signifies a non-vanishing photon mass. A similar role of a signature of super-
fluidity is played by a pole in the static correlator of components of momentum
density:

lim
q→0

∫
d3x exp(iq · r)

〈
T0i (x), T0k(0)

〉∼ qiqk/q2. (11.32)

Note, however, absence of the local term proportional to δik . This result is readily
understood if we start from considering non-trivial gravitational background. The
local terms are associated then with covariant derivatives, say, Divk = ∂ivk +Γ l

ikvl ,
where vi is a vector and Γ l

ik are the Christoffel symbols. The Γ l
ik symbols contain

only derivatives from the components of the metric tensor gμν and we immediately
conclude that there could be no δik local term in the correlator of T0i components.
Thus, we see that introducing first gravitational background does allow to fix the
subtraction term in a static correlator in the flat space.

Currents which we are considering now are somewhat similar to the standard
superfluid current [41]. But there are important differences as well. In particular, the
value of the superfluid current is not fixed in equilibrium while the current associated
with the ChME has a unique value. Now, the statement is [17–19] that all the non-
dissipative pieces in 〈jμ〉, 〈Tμν〉 can be conveniently determined by embedding the
system into static electromagnetic plus gravitational background. We will outline
briefly the proof following [17].

Static gravitational background in all the generality can be parameterized as fol-
lows:

ds2 =−e2σ(x)(dt + ai(x)dx
i
)2 + gij (x)dx

idxj , (11.33)

where xi are spatial coordinates (i = 1,2,3 for definiteness), ∂t is the Killing vec-
tor on this manifold, gravitational potentials σ , ai , gij are smooth functions of the
coordinates xi . One assumes also presence of a static U(1) gauge field A,

A=A0dx
0 +Aidx

i. (11.34)

The A0 component is related to the chemical potential, see (11.29).
Consider first the zeroth order in gradients. Then it is quite obvious that in equi-

librium

u
μ

(0) = e−σ(x)(1,0,0,0), T(0)(x)= e−σ(x)T0, μ(0)(x)= e−σ(x)A0,

(11.35)
where σ(x) enters the metric (11.33) and subscript (0) refers to the zeroth order in
expansion in derivatives. Indeed, expressions for T(0)(x), μ(0)(x) can be obtained
directly from their invariant definition (11.29) while uμ

(0)(x) is fixed by the normal-
ization condition. Thus, the function W to this lowest order reduces to

W(0) =
∫ √

g3
eσ

T0
P
(
T0e

−σ ,A0e
−σ ), (11.36)
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where P(T ,μ) is pressure as function of temperature and chemical potential in flat
space.

In higher orders in derivatives one expands uμ, T , μ further:

uμ = u
μ

(0) + u
μ

(1) + u
μ

(2) + · · · , (11.37)

T = T(0) + T(1) + T(2) + · · · , (11.38)

μ = μ(0) +μ(1) +μ(2) + · · · , (11.39)

where uμ(n), T(n), μ(n) are expressions of n-th order in derivatives acting on the back-
ground fields σ , A0, Ai , gij . It is important that both T(n) and μ(n) are constructed
on the same set of gauge- and diffeomorphic-invariant scalars. Let us denote the
number of such scalars as s(n). As for the four velocity uμ normalized to unit, δu0

can be expressed in terms of δui and is not independent. Variations of the vector
ui(n) are expanded in the set of independent invariant vector combinations. The total
number of such combinations is denoted as v(n).

Consider now a general decomposition of the energy-momentum tensor and cur-
rent jμ:

T μν = Euμuν + PΔμν + qμuν + qνuμ + τ̃ μν, (11.40)

jμ = Nuμ + νμ (11.41)

where qμuμ = τ̃ μνuμ = Δμνuμ = 0, gμντ̃μν = 0. Similar to the observations
above, the scalars E, P , N can be written as expansions in independent gauge- and
diffeomorphic-invariant scalars, vector qμ is expanded in independent SO(3) vector
structures while expansion of τμν would require introduction of a set of independent
SO(3) tensor structures, with trace zero. The total number of the tensor structures is
denoted by t(n). Note that within the standard relativistic hydrodynamics the energy-
momentum tensor is defined somewhat different, in the so called Landau gauge, see
(11.5). Namely, there is no vector qμ and ε, P , n are those functions of tempera-
ture T and of chemical potential as determined by flat-space equilibrium thermody-
namics. As a result, it is only τμν and νμ which are to be expanded in gauge and
diffeomorphic invariant structures introduced above. Therefore, the hydrodynamic
tensors (11.5) are expanded in s(n) + v(n) + t(n) invariant structures.

The central point of the procedure invented in [17–19] is to equate the standard
hydrodynamic tensors (11.5) to the expressions obtained by differentiating the func-
tional W , see (11.28). This can be done only at the equilibrium point. In the equi-
librium, not all the gauge- and diffeomorphic-invariant structures introduced above
survive. The number of non-vanishing structures is called se

(n)
, ve

(n)
, te
(n)

. Moreover,
these, surviving terms are non-dissipative since they exist in equilibrium. As for the
dissipative terms, which correspond to the structures vanishing in equilibrium one
gets no predictions or constraints concerning them.

By simple counting, the total number of the constraints is 3se(n) + 2ve(n) + te(n)
and this number is exactly the same as needed to both find expansion corrections
of the nth order to T , μ, ui and determine the equilibrium stress tensor and current



308 V.I. Zakharov

in the Landau gauge (11.5).5 Indeed, the expansion of T ,μ,ui at the equilibrium
point depends on 2se(n)+ ve(n) parameters while expansion of the energy-momentum
tensor and of the current in the Landau gauge brings in se(n) + ve(n) + te(n) terms. This
completes the general proof that all the non-dissipative terms, like the chiral mag-
netic effect, are fixed uniquely. Actual details and explicit examples can be found
in Refs. [17–19]. In particular, the results of Ref. [15] have been reproduced in this
way.

The method of Refs. [17–19] outlined above allows to derive systematically chi-
ral effects, like the ChME, for any number of conserved and anomalous currents
and to any order in the derivative expansion. Remarkably, one avoids considering
the entropy current sμ altogether. The derivation makes it clear that one can fix only
currents existing in the equilibrium. In other words, the currents are non-dissipative
[40]. The issue will become central for us in Sect. 11.3.

11.2.3 Non-renormalization Theorems in Diagrammatic Approach

Very recently, there was a remarkable development [25, 42] in understanding the
temperature-dependent chiral vortical effect, see the T 2 term in (11.9), (11.23).
Namely, it was demonstrated that the bare-loop result (11.9) is modified in two-loop
order in a well defined way.

As a preliminary remark, let us notice that the chiral vortical effect is determined
[40] in terms of a static correlator, similar to the chiral magnetic effect, see (11.31).
We recall the reader that the chiral vortical effect is defined in terms of the coefficient
ξω, see (11.16). In the non-relativistic limit we have the following piece in the axial-
vector j5

i :

δ
(
j5
i

)= ξωεijk∂j vk, (11.42)

where vk are components of the 3-velocity of an element of the liquid. Then for the
coefficient ξω one gets [40]:

ξω = lim
qn→0

∑

ij

εijn
i

2qn

〈
j5
i , T0j

〉∣∣
ω=0, (11.43)

(no summation over n). The argumentation is based on the well known analogy
between the vector potential of a gauge field A and the metric-related vector g,
where gi ≡ g0i , or ds2 = dt2 + 2gidtdxi + dx2

i . In the rest-frame of the fluid but
in the background of the gravitational potential g we have for the 4-velocity of the
liquid uμ = (−1,v) = (−1,g). Therefore the “gravi-magnetic field” Bg ≡ curl g
and we find, indeed, a complete analogy between the coefficient σB , see (11.31),

5Alternatively, this counting can be considered as a proof of the possibility to introduce the Landau
gauge (11.5).
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describing the chiral magnetic effect and the coefficient ξω, see (11.42) and (11.43),
describing the “chiral gravi-magnetic effect”, or the chiral vortical effect as we call
it.

Let us recall the reader that the non-renormalization theorem of Sect. 11.3.1 fixes
the chiral vortical effect up to a temperature-dependent term, proportional to T 2

which can be evaluated at the vanishing chemical potential μ= 0, see (11.23). We
turn now to the problem of evaluating this missing term. In view of (11.43) we are
interested then in the following term in the effective action:

Seff = iξω

∫
d3xεijkA

5
i ∂j gk ≡ iT 2Cω

∫
d4xai∂j bk, (11.44)

where ai ≡ A5
i is the gauge field coupled to j5

i , T bi ≡ g0i is a component of the
metric. We consider linearized gravity and the action is to be invariant under gauge
and diffeomorphic transformations

ai → ai + ∂iα, bi → T (∇iε0 +∇0εi) (11.45)

where α is an arbitrary function, εμ is the diffeomorphism parameter, xμ → xμ+εμ.
The Lagrangian density corresponding to the action (11.44) describes a 3d non-

diagonal mass term mixing wave functions of the vectors ai and bi . The action
(11.44) is gauge and diffeomorphic invariant, as it should be. However the mass term
itself is not. This observation allows eventually to prove cancellation of a large class
of radiative corrections [25]. The 3d nature of the action (11.44) is crucial for the
proof. Note that although we started with a 4d gauge theory, reduction to a sum over
a sequence of 3d theories is inherent to the problem since at finite temperature any
4d field theory reduces to a sum over Matsubara frequencies, with each frequency
corresponding to a 3d theory.

The analysis of the radiative corrections to the 3d topological term (11.44) echoes
the proof of non-renormalizability of a pure gauge-boson topological mass given
about 30 years ago [27]. In that case the topological mass looks as [43, 44]:

S
gauge
eff = img

∫
d3xεijkai∂j ak. (11.46)

This topological mass arises on one-loop level in 3d gauge theories. The simplest
Lagrangian of the matter field looks as

Lm = ψ̄(Dμγμ −m0)ψ, (11.47)

where Dμ(μ= 0,1,2) are covariant derivatives. The one-loop contribution is given
by

(mg)one-loop = q2

4π

m0

|m0| , (11.48)

where q is the charge of the fermion. In higher orders of perturbation theory one-
loop fermion graphs with a few photon exchanges arise. One can integrate first over
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the (massive) fermion and reduce any graph to a n-photon effective vertex. In the
momentum space, it is denoted as Γ (n)

μ1...μn(q1, . . . , qn)where qi are photon momenta
and the overall δ-function is factored out. The vertex is a function of (n−1) indepen-
dent momenta, q1, . . . , qn−1. Take now the limit of all the momenta (q1, . . . , q(n−1))

small. Then it is straightforward to prove that the effective vertex is to vanish in the
limit of any independent momentum zero. In other words,

Γ (n)(q1, . . . , qn)=O(q1 · q2 · · · · · qn−1). (11.49)

This relation is sufficient to prove that all the contributions to topological mass,
beginning with two loops, vanish. Indeed, one can always choose the momenta cor-
responding to the external photon legs to be included into momenta (q1, . . . , q(n−1))

which are small. The one-loop graph is exceptional in this sense since there is only
a single independent photon momentum and Γ (1)(q1)=O(q1).

Let us come back to discussion of the topological mass (11.44) relevant to the
vortical effect. It is determined by the correlator (11.43). Let us split the momentum-
density operator into the fermionic and gluonic parts:

T0j = (T0j )fermionic + (T0j )gluonic. (11.50)

As far as we keep only the fermionic part the main idea, that only 3d one-loop
graphs can contribute to (11.44), remains the same. There is, however, an im-
portant change concerning infrared behavior of higher-loop graphs. Amusingly,
the masslessness of the fermions in the original 4d field theory does not mat-
ter since in the 3d projection the fermions do have non-vanishing masses, m2

f =
4π2(n + 1/2)2 where n, (n = 0,1,2 . . .) enumerates Matsubara frequencies. The
actual subtle point is that in non-Abelian 3d theory higher loops generically di-
verge badly in the infrared. According to Ref. [25] the infrared cut off is still
provided by the non-perturbative gluon mass emerging [45] at finite tempera-
tures. The effective gluon mass is of order (m2

g)eff ∼ g4
Y−M(T )T 2 and at exter-

nal momenta much smaller than this effective mass one can expect that higher-
loop contribution to the topological mass still vanishes. Finally, the evaluation
of one-loop fermionic contributions to the topological mass (11.44) is more in-
volved technically than in case of (11.46). Each 3d theory corresponding to a cer-
tain Matsubara frequency does contribute to (11.44). Indeed, according to (11.48)
the one-loop contribution does not disappear with the growing fermion mass.
As a result, one comes [25] to a divergent sum. The standard ζ -function reg-
ularization provides the final answer for the temperature-dependent vortical ef-
fect:

Cferm
ω T 2 =−T 2

∞∑

m=1

m→ 1

12
T 2, (11.51)

where Cferm
ω is the contribution of the fermionic loop to Cω.

So far we discussed the fermionic part of T0j , see (11.50), and argued that its con-
tribution is exhausted by one-loop graphs. The argument does not apply, however,
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to the gauge-field part, (T0j )gluonic. It does generate a calculable two-loop radiative
correction to the T 2 term in (11.9), see [25, 26]. We should not feel disappointed
about this lack of complete cancellation of higher loops. Indeed, although the Adler-
Bardeen theorem is commonly referred to as a proof of non-renormalization of
the anomaly, it is known since long (see, e.g., [46]) that two-loop graphs corre-
sponding to rescattering of gauge field do not vanish in fact. The proof of non-
renormalizability of the ChME in Sect. 11.3.1 avoided this problem only because
we treated the electromagnetic field as external (not dynamical). Note also that the
T 2 term in the chiral vortical effect is present only in case of the singlet quark
currents which is anomalous anyhow and the status of the corresponding ChME is
not clear. Its evaluation, however, is an amusing demonstration that dissipation-free
processes generically are not suppressed at all at high temperature.

11.2.4 Non-renormalization Theorems in Effective Field Theories

Here we develop another approach to the chiral effects based on an effective theory
following mostly Ref. [30]. The basic idea is to treat chemical potentials as effective
couplings. The basic rule can be memorized as an analogy between interaction with
charge q and with chemical potential μ: qAμ → μuμ, where Aμ is the vector-
potential of an external field and uμ is, as usual, the 4-velocity of an element of
liquid, see (11.10).

Let us first substantiate the rule (11.10). Chemical potentials are introduced
through the effective Hamiltonian:

δH = μQ+μ5Q5, (11.52)

where Q = ∫
d3xψ†ψ and Q5 = ∫

d3xψ†γ5ψ . Note that this is indeed an effec-
tive, not fundamental interaction since any chemical potential is introduced ther-
modynamically, that is for a large number of particles. However, at least formally
the Hamiltonian (11.52) looks exactly the same as the Hamiltonian for a funda-
mental (i.e., not effective) interaction of charges with the A0 gauge field. Thus, we
come to the analogy (11.10) in the particular case u0 = 1, ui = 0. This case was
considered in many papers, see in particular [13, 14], and in the equilibrium the
analogy between A0 and μ is commonly used nowadays. We have already exploited
this connection, see (11.29). In this sense the effective theory considered here can
be viewed as a simplified version of a much more elaborated scheme outlined in
Sect. 11.2.2.

Treating (11.52) as a small perturbation we can also fix the corresponding La-
grangian density:

Seff =
∫
dx

(
iψ̄γ ρDρψ +μψ̄γ 0ψ +μ5ψ̄γ

0γ5ψ
)+ Sint, (11.53)
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where Dμ is the covariant derivative in external electromagnetic field and Sint is
a fundamental interaction responsible for the formation of the liquid. For our dis-
cussion it is crucial that Sint does not induce any anomaly. We can drop then this
interaction for our purposes.

So far we considered the whole of the liquid as being at rest and the chemical
potential being constant through the whole of the volume. To study hydrodynam-
ics one can use the standard trick of boosting the action into a local rest frame by
utilizing the 4-vector uμ:

Seff =
∫

dx
(
iψ̄γ ρDρψ +μuμψ̄γ

μψ +μ5uμψ̄γ
μγ5ψ

)
. (11.54)

The Lagrangian density (11.54) coincides in the rest frame with (11.53) but looks
perfectly Lorentz invariant and can be used in covariant perturbative calculations.
The boost velocity uμ is treated then as a slowly varying external field, similar
to Aμ.

The only difference between the effective action (11.54) and fundamental one is
the presence of the terms proportional to the chemical potentials μ5, μ. The fun-
damental theory is free from anomalies in the case considered now, (E · B) = 0.
Therefore the only possible source of anomalies in the effective theory are the trian-
gle graphs with μ, μ5 entering the vertices.

The presence of an anomaly in the effective theory can indeed be readily verified.
For this purpose one can calculate triangle graphs or use Fujikawa-Vergeles path-
integral considerations. According to the latter technique, anomalies emerge due to
non-invariance of the path-integral measure under field transformations. Consider
the following transformation

ψ → eiαγ5+iβψ. (11.55)

Then, by the standard technique one readily finds:6

∂μj
μ
5 = − 1

4π2
εμναβ

(
∂μ

(
Aν +μuν

)
∂α

(
Aβ +μuβ

)+ ∂μμ5u
ν∂αμ5u

β
)
, (11.56)

∂μj
μ = − 1

2π2
εμναβ∂

μ
(
Aν +μuν

)
∂αμ5u

β. (11.57)

Rewriting (11.56) and (11.57)

∂μ

(
n5u

μ + μ2 +μ2
5

2π2
ωμ + μ

2π2
Bμ

)
= − 1

4π2
εμναβ∂

μAν∂αAβ,

(11.58)

∂μ

(
nuμ + μμ5

π2
ωμ + μ5

2π2
Bμ

)
= 0

6We could have defined anomaly in such a way that it does not contribute to ∂μj
μ. However,

in the presence of both chemical potentials μ and μ5 there is no physical motivation for such a
regularization.
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allows for a straightforward comparison with results of the thermodynamic ap-
proach, see (11.23), (11.24). We find out that the effective theory does reproduce
anomalous pieces of the transport coefficients obtained earlier in the leading order
in the chemical potentials. As for the higher orders in the chemical potential there
are apparent differences. Within the effective theory higher orders in the chemical
potential belong to higher order perturbative terms. The triangle graphs which de-
termine (11.58) have of course a very special status. First, they defy conservation
of the currents and, second, they do not receive contributions due to the iteration of
Sint, because of the Adler-Bardeen theorem.

As for higher in μ, μ5 terms they are infrared sensitive and can be fixed only
within a particular infrared-sensitive regularization scheme. Consider for example
contribution of order μ3 to the chiral vortical effect. It can be estimated as

δξ ∼ μ2

2π2

μ

εIR
, (11.59)

where εIR is an infrared cut off in the energy/momentum integration. Equa-
tion (11.59) can hardly be improved within the effective theory. On the other hand,
the thermodynamic derivation of Sect. 11.2.3 does fix [15] terms of order μ3 in the
Landau gauge as:

δξ =− μ2

2π2

2μn

(ε + p)
. (11.60)

By comparing (11.59) and (11.60) we find

εIR ∼ (ε + p)/n. (11.61)

Note that the enthalpy w = ε + p is known to play the role of mass in relativistic
hydrodynamics. Thus, the ratio μ · n/(ε + p) characterizes the contribution of the
energy related to the chemical potential in units of the total energy, as far as μ is
small. And it is quite natural to have an expansion in this parameter. The expansion
coefficients within the effective theory are model dependent, however.

To summarize, the effective hydrodynamic theory defined through the substitu-
tion (11.10) allows for a straightforward and simple evaluation of the chiral effects
in terms of anomalies of the effective theory. Terms of lowest order in expansion
in the chemical potentials coincide with the results of other approaches. Higher or-
ders, however, are infrared sensitive and model dependent within the effective the-
ory. Within the thermodynamic approach of Sect. 11.2.1 these terms are apparently
fixed by the procedure chosen to integrate the differential equations (11.21) begin-
ning with small μ and keeping the pressure P constant. The use of the Landau frame
is also needed.

Apart from the μ2 term the vortical effect has a T 2 contribution, see Sect. 11.2.3.
This term can be evaluated within the finite-temperature field theory at μ= 0. For
this reason the effective in chemical potentials theory introduced above does not
help to evaluate the T 2 term.
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11.2.5 Concluding Remarks

Powerful non-renormalization theorems have been proven in case of chiral magnetic
and vortical effects in hydrodynamic approximation. Eventually, all the proofs go
back to celebrated field theoretic non-renormalization theorems [12, 27]. To bridge
them to hydrodynamics, it is crucial that chiral effects can be expressed in terms
of certain spatial correlators at frequency ω = 0. These static correlators are triv-
ially continued to the Euclidean space. Which means, in turn, that we are dealing
with thermodynamic observables. Continuation to the Euclidean space also allows
to use the standard technique of Feynman graphs and utilize field-theoretic non-
renormalization theorems. We also notice that all the theorems refer to topological
terms in action. In other words, the action observes symmetries of the problem con-
sidered while the Lagrangian density does not. Chiral anomalies were put into such
a context first in Ref. [47]. Moreover, it turns out that it is not crucial whether the
corresponding one-loop graphs signify an anomaly or not. Probably, one and the
same non-renormalization theorem can be proven either in terms of anomalies or
non-anomalous graphs. The topological aspect, however, seems to be an indispens-
able ingredient to non-renormalizability.

11.3 Hydrodynamic Chiral Effects as Quantum Phenomena

11.3.1 Non-dissipative Currents

All the chiral effects which we are considering are non-dissipative. This was demon-
strated in the thermodynamic language [17–20], see Sect. 11.2.2. Another line of
reasoning is suggested in Ref. [33] and based on time-reversal invariance. Let us
summarize the argumentation.7 One compares, for example, the ordinary electric
conductance, σE and “magnetic conductance” σB associated with the ChME:

jel = σEE, jel = σBB.

Moreover, σE > 0 since the work done by external electric field, W = jel · E > 0.
Under time reversal,

jTel =−jel, ET =+E, BT =−B.

If we would try to obtain jTel = σTE ET by time reversal of the relation jel = σEE then
we would conclude that σTE = −σE which is in contradiction with the positivity of
σE . There is no surprise of course in this failure. To the contrary, dissipation is
indeed not a time-reversible process. (The time-reversal invariance is manifested
instead in the Onsager relations which imply, in particular, σE > 0.) On the other

7The author is thankful to L. Stodolsky for a detailed discussion of the subject.
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hand, the Hall relation jel ∼ E × B is time-reversal invariant and this is possible
only if there is no dissipation. Our chiral magnetic effect is of the same type as
the Hall conductivity and, therefore, cannot be accompanied by dissipation because
of the time-reversal invariance of theories considered. Note that there are no such
symmetry-based arguments for, say, superfluid current. Therefore, the viscosity can
be only dynamically suppressed and, indeed, according to the modern views [48]
there is a universal lowest bound on the shear viscosity, η/s ≥ 1/4π where s is
the entropy density. According to the logic outlined above no similar bound can
exist for dissipation associated with the chiral magnetic effect since dissipation is
forbidden by symmetry considerations. Most amusingly, no such bound can exist in
case of superconductivity since the London equation m2

γ A = jel is invariant under
time reversal and, therefore, dissipation is forbidden by symmetry considerations.

Furthermore, dissipation-free processes are usually quantum phenomena and in
this section we discuss the ChME from this point of view. In fact, it is rather an
open-end discussion since not much is known yet about the microscopic picture of
the ChME in the hydrodynamic approximation.

There is no doubt that the ChME is rooted in the loop graphs of the underlying
theory and represents a macroscopic manifestation of quantum phenomena. Calcu-
lation of a standard Feynman graph gets related to thermodynamics by a simple
trick of identifying a constant piece in an external gauge field with the chemical po-
tential, A0 ≈ μ. Let us explain this point in more detail. The generating functional
W(sources(x)), see (11.28), contains in fact a piece, W(1)

anom(sources(x)) reproduc-
ing the chiral anomaly. Moreover, Wanom is uniquely fixed by the requirement that
it does reproduce the anomaly within the formalism of Sect. 11.2.2. It turns out that
Wanom in the static case considered can be written in a local form [17]. Explicitly to
first order in derivatives:

W(1)
anom = C

2

∫
d3x

√
g3

(
A0

3T0
εijkAi∂jAk + A2

0

6T0
εijkAi∂j ak

)
, (11.62)

where the constant C determines the anomaly and further notations are specified in
Sect. 11.2.2.

Let us emphasize that (11.62) is a pure field-theoretic input. However, once we
identify A0 with a macroscopic quantity, chemical potential, the action (11.62) de-
termines macroscopic motions. Moreover, it is quite obvious that the two terms in
the right-hand side of (11.62) do reproduce the chiral magnetic and chiral vortical
effects, respectively. Comparison of (11.62) with (11.31) and (11.43) helps to check
this.

So far, we discussed the exact chiral limit. If we would decide to estimate the
effect of chiral symmetry violations, say, through finite fermionic masses, we have
to address the field-theoretic calculations anew. In particular, the rate of production
of massive fermions in parallel, constant electric and magnetic fields, Ez,Bz is given
by the equation [49, 50]:

dN5

d3xdt
= q2BzEz

2π2
exp

(
−πm2

f

Ez

)
, (11.63)
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which is replacing (11.26). We see that if we tend Ez → 0 now we would not get
any ChME, compare (11.27). Therefore, the formal static hydrodynamic limit is
replaced for small fermionic masses by:

(ω≡ 0, qi → 0)→ (|qi | � ω,ω�mf

)
, (11.64)

and phenomenological implications of this modification are to be considered within
a particular framework.

Quantum description of the chiral magnetic effect has another aspect which can
be illustrated on the example of chiral fermions interacting with an external mag-
netic field [3–5, 9]. Namely, we should be able to obtain the same current (11.1) by
evaluating the matrix element

jelμ = q
〈
ψ̄(x)γμ(x)ψ(x)

〉
, (11.65)

where the averaging is over the thermodynamic ensemble. The simplest set up is
non-interacting fermions and a non-vanishing chemical potential μ5. In this case
ψ(x) represents solutions of the Dirac equation

(
iγ μDμ +μ5γ

0γ 5)ψ(x)= 0, (11.66)

where Dμ = ∂μ − iAμ and the vector-potential Aμ corresponds to a constant mag-
netic field. The thermodynamic ensemble is described by the ideal gas of mass-
less Fermi particles. Explicit calculation turns out to be feasible and the final result
agrees with (11.1). We will give some details of the calculation in Sect. 11.3.4. Note
that, at least from the technical point of view, this coincidence is not trivial at all.
Indeed, (11.1) is based entirely on the evaluation of the anomalous triangle graph
over perturbative vacuum state. The magnetic field is treated perturbatively. On the
other hand, the matrix element (11.65) is saturated by the fermionic zero modes [9]
which one finds explicitly, accounting for the magnetic field to all orders.

What is lacking in the case of the ChME in hydrodynamic approximation is a mi-
croscopic calculation similar to the direct evaluation of (11.65) for non-interacting
particles just outlined. What makes such a calculation especially desirable is the
observation that all the non-renormalization theorems reviewed in Sect. 11.2 do not
indicate any crucial dependence on temperature. It seems highly non-trivial to keep
up quantum coherence over an (infinitely) large length at finite temperature.

In the rest of this section we discuss microscopical picture for the chiral effects
on the only example available so far [36], that is the case of superfluid.

11.3.2 Low-Dimensional Defects

A novel point brought by considering superfluid is the crucial role of low-
dimensional defects, or singularities of hydrodynamic approximation. Such de-
fects were considered in fact in many papers for various reasons, see in particular
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[23, 34, 35, 51]. In case of rotating superfluid such defects have been known since
long [41].

Consider first the chiral vortical effect. The crucial point is that the velocity field
of the superfluid is known to be potential:

vs =∇ϕ, (11.67)

and, naively, the vorticity vanishes identically since curl vs = 0. If this were true, the
chiral current (11.7) would disappear. But it is well known, of course, that the angu-
lar momentum is still transferred to the liquid through vortices [41]. The potential is
singular on the linear defects, or vortices. The vortex is defined through circulation
of velocity:

∮
vsdl = 2πk, (11.68)

where dl is an element of length and k is integer. The quantization condition (11.68)
follows from the interpretation of ϕ as the phase of a wave function of identical
particles. Equations (11.68), (11.67) imply that the velocity is singular. In three
dimensions the singularity occupies a line, which can be called a defect of lower
dimension. The energy of the vortex is logarithmically divergent, Evortex ∼ l ln(l/a)
where l is the length of a (closed) vortex and a is of order distance between the
constituents.

Note that the velocity vs according to (11.68) falls off with increasing distance r
to the singularity, vs = k/r while for a rotating solid body the velocity, to the con-
trary, grows with distance to the axis of rotation, v = |Ω|r where Ω is the angular
velocity of rotation. Therefore, at first sight, distribution of velocities inside a rotat-
ing bucket with a superfluid is very different from ordinary liquid. This is not true,
however, as far as the angular velocity is large enough. In this case, there are many
defects and the distribution of velocities, once averaged over defects, is the same as
for ordinary liquid. The proof [41] is based on the observation that thermodynamic
equilibrium is determined by minimizing Erotation =E − M ·Ω where M is the an-
gular momentum and velocity the averaged (over defects) is uniquely determined
by this condition.

To summarize, vortices in superfluid represent an example of lower-dimensional
defects. Although locally, or at small distances, defects look very different from the
continuum picture, the thermodynamic results can be restored upon averaging over
a large number of defects.

11.3.3 Relativistic Superfluidity

To consider vortex solutions in detail we need explicit examples of dynamical sys-
tems which exhibit relativistic superfluidity. The simplest and best understood ex-
ample of this type seems to be the pionic medium at zero temperature and non-zero
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isospin chemical potential μI [52]. The system is described by the following chiral
Lagrangian:

L= 1

4
f 2
π Tr

[
DμU(DμU)

†], (11.69)

where U are 2 × 2 unitary matrices, functions of the pionic fields, see, e.g., [53].
Moreover, the chemical potential μI is switched on through the covariant deriva-
tives, D0U = ∂0U − μI

2 [τ3,U ], DiU = ∂iU . To have the chiral current conserved
we consider massless quarks. Then the chiral symmetry is spontaneously broken.
In the common case of vanishing chemical potential the residual symmetry (real-
ized linearly) is SU(2)L+R . Furthermore, at non-zero μI this symmetry is broken
to U(1)L+R . The proof is straightforward. Namely, the potential energy correspond-
ing to (11.69) equals to

Veff (U)= f 2
πμ

2
I

8
Tr

[
τ3Uτ3U

† − 1
]
, (11.70)

and the minima of that potential can be captured by substitution U = cosα +
i(τ1 cosφ + τ2 sinφ) sinα:

Veff (α)= f 2
πμ

2
I

4
(cos 2α − 1) (11.71)

and for the minimum one readily obtains cosα = 0. Then, depending on the sign
of μI , squared mass of π+ or π− state becomes negative and the corresponding
field is condensed. This means that the vacuum is described by U = i(τ1 cosφ +
τ2 sinφ) instead of the standard, i.e. μ = 0 vacuum U = I . There emerges a new
order parameter 〈uγ5d〉 + h.c.= 2〈ψψ〉vac sin(α)= 2〈ψψ〉vac. The system is thus
a charged superfluid. It should be noted, that the degeneracy with respect to the
angle φ above indicates that it can be identified as a 3d Goldstone field. In addition,
there are two massive modes.

Because of the presence of a 3d Goldstone mode the superfluidity criterion
(11.32) is satisfied:

lim
q→0

∫
d3x exp(iq · r)

〈
T0i (x), T0k(0)

〉= μ2qiqk/q2. (11.72)

Explicit evaluation of this correlator is based on the Josephson equation:

∂0φ = μ (11.73)

which is satisfied now as an equation of motion following from (11.69). For
μ = const (11.73) can be interpreted as condensation of ∂0φ, similar to the stan-
dard Higgs condensation but violating the Lorentz invariance [13, 14, 54].

As is argued, e.g., in [13, 14], ∂μφ can be identified with non-normalized super-
fluid velocity. The vortex configuration is in principle determined by the value of the
angular velocity of rotation of the liquid [16]. We address a generic case, when the
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quantum of circulation, n is rather high to consider defects thermodynamically but
not high enough to ruin the superfluidity. As is known, an energetically preferable
configuration is the uniform distribution of vortices with n = 1. Nearby any given
vortex the Goldstone field is given by [54]:

φ = μt + ϕ. (11.74)

We will assume that vortices are well separated, δx � a, calculate the current
for a single vortex and then sum it over all vortices, that is simply multiply by n.
The effective Lagrangian for the interaction of fermions with the scalar field φ (we
will limit ourselves to the case of a single fermion, and then sum up the result over
colors and flavors) looks as

L=ψi(∂μ + i∂μφ)γ
μψ. (11.75)

Indeed because, of the Josephson equation (11.73) we reproduce the standard chem-
ical potential term. Other components complete this term to a formally Lorentz in-
variant interaction, compare (11.10).

Using standard methods of evaluating the anomalous triangle diagrams, see, e.g.,
Sect. 11.2.4, one obtains for the axial current:

j5
μ = 1

4π2
εμναβ∂

νφ∂α∂βφ. (11.76)

This current seems to vanish identically. However, for the vortex field, φ = μt + ϕ,
[∂x, ∂y]φ = 2πδ(x, y) and:

(
j5

3

)
vortex =

μ

2π
δ(x, y). (11.77)

The total current, or the sum over the vortices equals to

j5
3 =

∫
d2xj5

3 = μ

2π
n. (11.78)

It is worth noting that actually n ∼ μ and the current (11.78) is quadratic in the
chemical potential μ, as it should be.

So far we considered the chiral vortical effect. To evaluate the chiral magnetic
effect, consider a charged superfluid and turn on a magnetic field. Then magnetic
field would stream into tubes, or Abrikosov vortices. The vortex profile could be
found by accounting for the finite photon mass. The chiral current can be obtained
then by substituting the vortex configuration to the Dirac equation and solving it for
the modes. The current is concentrated on the vortex center. In the hydrodynamic
approximation we are considering the magnetic field is singular and the Dirac equa-
tion is poorly defined in this sense. However, using index theorems it is possible to
evaluate number of zero modes, and the zero modes saturate the chiral current. We
will give more details in the next subsection.
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11.3.4 Zero Modes

We now proceed to microscopic picture based on the zero modes.8 The Hamiltonian
has the form:

H =−i(∂i − i∂iφ)γ
0γ i +mγ 0 (11.79)

and the Dirac equation decomposes as:

−HRψL = EψL, (11.80)

HRψR = EψR, (11.81)

where HR = (−i∂i + ∂iφ)σi . Hence, any solution ψR of HRψR = εψR generates

both a solution with energy E = ε, ψ =
(

0
ψR

)
and a solution with E = −ε, ψ =

(
ψR

0

)
.

Because of the invariance with the respect to translations in z direction, we de-
compose using the momentum eigenstates −i∂3ψR = p3ψR . For each p3,

HR = p3σ
3 +H⊥, (11.82)

H⊥ = (−i∂a − ∂aφ)σ
a, a = 1,2. (11.83)

Notice that {σ 3,H⊥} = 0. This means that if |λ〉 is an eigenstate of H⊥ with non-
zero eigenvalue λ, H⊥|λ〉 = λ|λ〉, σ3|λ〉 is an eigenstate with eigenvalue −λ. Also,
σ3 maps zero eigenstates of H⊥ to themselves, so that all the eigenstates of H⊥ can
be classified with respect to σ3.

We can now express eigenstates of HR in terms of eigenstates of H⊥. Since
[HR,H⊥2] = 0, HR will only mix states |λ〉, |−λ〉. For λ > 0, one can write,

ψR = c1|λ〉 + c2σ3|λ〉. (11.84)

Solving (11.82) we find for the eigenvalues of energy:

ε =±
√
λ2 + p2

3.

This means that every eigenstate of H⊥ with eigenvalue λ > 0 produces two eigen-
states of HR , while zero modes of H⊥, |λ= 0〉 are eigenstates of HR with eigenval-
ues:

ε =±p3, (11.85)

where the sign corresponds to σ 3|λ= 0〉 = ±|λ= 0〉.

8This subsection is of rather technical nature and can be considered as an appendix. Moreover, the
presentation is close to that of Ref. [23], with a substitution Ai → ∂iφ.
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Therefore, the zero modes of H⊥ are gapless modes of H , capable of travelling
up or down the vortex, depending on the sign of σ3 and chirality. These are precisely
the carriers of the axial current along the vortex. Let N±+ be the numbers of zero
modes which are eigenstates of the matrix σ 3 with eigenvalues ±1, respectively.
Consider zero mode of H⊥, |λ〉 = (u, v), where u and v are c-functions satisfying

Dv = 0, D†u= 0. (11.86)

Here

D =−i∂1 − ∂2 − (∂1φ − i∂2φ). (11.87)

Define N+ = dim(ker(D†)), N− = dim(ker(D)), and

N = Index(H⊥)=N+ −N− = dim
(
ker

(
D†))− dim

(
ker(D)

)
. (11.88)

Note that H⊥ is an elliptic operator. Its index has been computed within various
approaches in papers [55, 56]. In our case the index is given by

N = 1

2π

∫
dxi∂iφ = n. (11.89)

Moreover, for the most important case n= 1 the zero mode is easy to construct, see,
e.g., Ref. [36]. The result (11.89) can be also obtained starting from the well known
case of magnetic field parallel to z-axis and uniform in that direction. In the latter
case the index is given by

N = e

2π

∫
dxiAi = e

2π

∫
d2xBz (11.90)

and by substituting eAi → ∂iφ we arrive at (11.89). Note, however, that in case
of superfluid, which we discuss here, the index is an integer, whereas for non-
superconducting case the flux is not quantized and the left-hand side of (11.90)
is to be understood as the integer part of the right-hand side.

We now proceed to the computation of the axial current at a finite chemical po-
tential μ. The axial current density in the third direction is given by:

j3
5 (x)=ψ(x)γ 3γ 5ψ(x)=ψ

†
Lσ

3ψL(x)+ψ
†
Rσ

3ψR(x). (11.91)

We are interested in the expectation value of the axial current along the vortex,
j3

5 = ∫
d2x〈j3

5 (x)〉. At finite chemical potential, we have:

〈
j3

5 (x)
〉 =

∑

E

θ(μ−E)ψ
†
E(x)γ

0γ 3γ 5ψE(x)

=
∑

ε

(
θ(μ− ε)+ θ(μ+ ε)

)
ψ

†
Rε(x)σ

3ψRε(x). (11.92)
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Here, θ(μ−E) is the Fermi-Dirac distribution (at zero temperature), ψE are eigen-
states of H with eigenvalue E, ψRε are eigenstates of HR with eigenvalue ε. By
substitution of the explicit form of ψRε in terms of H⊥ eigenstates, one obtains:

〈
j3

5

〉 = 1

L

∑

p3

∑

λ〉0

∑

s=±

(
θ
(
μ− (

λ2 + p2
3

) 1
2
)

+ θ
(
μ+ (

λ2 + p2
3

) 1
2
))〈
ψs
R(λ,p3)

∣∣σ 3
∣∣ψs

R(λ,p3)
〉

+ 1

L

∑

p3

∑

λ=0

(
θ(μ− p3)+ θ(μ+ p3)

)〈λ|σ 3|λ〉. (11.93)

Here λ > 0 enumerate eigenstates of H⊥, which generate eigenstates of HR ,

ψ±
R (λ,p3) with momentum p3 and eigenvalue ε± = ±

√
λ2 + p2

3, and λ = 0 label
the zero modes of H⊥. Moreover, the sum over all non-zero eigenstates vanishes,
and only zero modes of H⊥ generate j3

5 �= 0. For the zero modes, 〈λ|σ 3|λ〉 = ±1,
and we obtain:

j3
5 = (N+ −N−)

1

L

∑

p3

(
θ(μ− p3)+ θ(μ+ p3)

)

= n

∫
dp3

2π

(
θ(μ− p3)+ θ(μ+ p3)

)= μ

π
n. (11.94)

This result is similar to the macroscopic answer (11.7) for the vortical effect but
there is inconsistency of a factor of two.

11.3.5 Concluding Remarks

Considering superfluid provides a unique possibility to develop a microscopic pic-
ture for chiral hydrodynamic effects. The calculations above demonstrate that the
chiral currents are carried by quantum-mechanical zero modes and are indeed
dissipation-free. This result is in agreement with the expectations.

However, this explicit example brings also new lessons. First of all, the prediction
for the chiral vortical effect is changed by a factor of two and it is instructive to
appreciate the reason for this change. Technically, the easiest way to trace the origin
of this factor of two is to compare the calculation of the chiral vortical effect in this
section with the calculation within effective theories, see Sect. 11.2.4. In the latter
case, the chiral effects are described by anomalous triangle graphs, with vertices
proportional to μuμ or qAμ. In other words, the chemical potential μ plays the
role similar to the electromagnetic coupling, or charge q while the field of fluid
velocities, uμ is similar to the electromagnetic field Aμ. The triangle graphs for
the chiral magnetic and vortical effects looks very similar. The only difference is
that vortical effect is quadratic in μ while the magnetic effect is linear both in q
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and μ. Because of quantum mechanics, however, this difference results in a factor of
two: in case of the vortical effect the corresponding graph has two identical vertices
and this brings a factor of 1/2, as usual. It is this factor which is absent from the
calculation of the vortical effect in terms of defects. Indeed, there are two facets of
the chemical potential. First, it plays the role of an effective coupling, as we have just
explained. And, second, it limits the integration over the longitudinal momentum of
zero modes, see Sect. 11.3.4. In the language of defects, these two roles are not
interchangeable and the quantum-mechanical factor of 1/2 of the effective theory is
not reproduced.

Capitalizing on this technical explanation, we can say that in terms of defects
we have a two-component picture. One component is superfluid with velocity field
uμ. The other component are zero modes responsible for the chiral magnetic and
vortical effects. The zero modes are having speed of light and, therefore, are not
equilibrated with the rest of the liquid. The two-component picture, however, does
not necessarily differ in predictions from the one- component picture. Indeed, we
did reproduce the standard answer in the case of chiral magnetic effect. Technically,
the reason is the same as in Sect. 4.1 where we argued (following Ref. [41]) that
vortices reproduce on average the velocity distribution of ordinary rotating liquid.
Namely, linearity of the ChME effect in the chemical potential is the same crucial
as linearity in the angular momentum of the energy Erot in case of rotating liquid.

11.4 Conclusions

Theory of the chiral magnetic effect has been developing fast since the papers [3–5]
put it into the actual context of the RHIC experiments. At the beginning, theory was
focused on the mechanism of chirality production in heavy ion collisions. Already
at this stage one has to turn to hydrodynamics describing the bulk of the RHIC
data. Since the effective chiral chemical potential μ5 vanishes on average and fluc-
tuates from event to event in heavy ion collisions, it is mostly physics of fluctuations
which—in the theoretical perspective—was studied at this stage.

Later, beginning with the paper [15] the interest shifted from phenomenology
to more theoretical issues, such as unifying methods of field theory and thermody-
namics to get exact results for chiral effects in hydrodynamic approximation. Very
recently, we believe, the most exciting development is the emerging proof that chiral
magnetic effect in hydrodynamics is a dissipation-free process. Moreover, examples
known so far indicate that this ballistic-type of transport is provided by quantum-
mechanical zero modes.

All these exciting results are valid, strictly speaking, in the exact chiral limit.
This limitation might have rather severe phenomenological implications in case of
realistic quantum chromodynamics. One could expect, therefore, in the near future
a shift of interest to condensed-matter systems with fermionic excitations and lin-
ear dependence of the energy on the momentum. Of course, this classification of
theoretical developments into various stages at the very best could be true only in
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its gross features. Nevertheless, it might be reasonable to present our conclusions
within this, oversimplifying scheme.

Fluctuations of the Chiral Chemical Potential Because of the space limitations
we did not address the issue of fluctuations in the bulk of the review. If we start with
〈μ5〉 = 0 the current (11.1) vanishes. The chiral magnetic effect is still manifested
through fluctuations. In particular, the spectrum of hydrodynamic excitations is sen-
sitive to it. The so called chiral magnetic wave [57] corresponds to the following
sequence of fluctuations:

(δnQ)→
(
δj5)→ (δμA)→

(
δjel

)→ (δnQ). (11.95)

In more detail: first, a local fluctuation of electric charge density induces a fluctu-
ation of axial current, see (11.8). Then the fluctuation of the axial current triggers
a local fluctuation of the axial chemical potential. Finally and completing the cy-
cle, the fluctuation of μ5 results in a fluctuation of the electrical current, see (11.1).
Thus, there should exist an excitation combining density waves of electric and chiral
charges, the chiral magnetic wave.

Another result to be mentioned here is the observation [58] that there is a piece
in the correlator of components of electric current which is uniquely determined in
terms of the chiral anomaly squared:

Fzz(ω)− Fxx(ω)= (qB)2

4π3

ω

eβω − 1
, (11.96)

where the z-axis points in the direction of an external magnetic field and Fii(ω) is
a correlator of the ith components of the electromagnetic current as a function of
frequency ω, for a precise definition of the correlators see [58].

Non-renormalization Theorems and Non-dissipative Motions The present
review is focused on the non-renormalization theorems and non-dissipative, or
quantum nature of the chiral effects, see Sects. 11.2 and 11.3, respectively. Non-
renormalization theorems were proven within various approaches (thermodynamic,
geometric, diagrammatic, effective field theories). There are no doubts that the
non-renormalization theorems are valid within the approximations and assumptions
made. The basic assumptions are exact chiral limit, hydrodynamic expansion in
derivatives and equilibrium. The main message is that chiral currents are dissipation
free and there is no suppression at high temperature.

The results reviewed in Sect. 11.2 imply that the dissipation-free motions con-
sidered are rather ballistic transports than superfluid-type phenomena (in agreement
with the fact that the carriers of charges are fermions). Indeed, the entropy current
associated with the chiral effects is not vanishing, unlike the superfluid case. Ac-
cording to (11.22), (11.24)

sμ ∼ μ

T
μ5Bμ,
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where sμ is the entropy current in equilibrium associated with the magnetic field Bμ

and μ, μ5 are chemical potentials. The entropy current disappears for μ= 0 but this
is actually a kind of misleading. The point is that there is always a flow of degrees
of freedom along the magnetic field and in the direction opposite to it. There is a
cancellation, in terms of sμ at μ= 0 while μ �= 0 implies that the liquid is charged
and there is a preferred direction of the flow of degrees of freedom. The electric
current (11.1), on the other hand, counts the total number of degrees of freedom
with charge ±q .

Moreover, at least in case of noninteracting particles the carriers of the electro-
magnetic current (11.1) are identified as quantum-mechanical zero modes ψ0 of
Dirac particles in the external magnetic field B:

Dμγ
μψ0 = 0, N0 ∼ |q ·B ·μ5|,

where N0 is the number of zero modes, see Sect. 11.3.4 or, e.g., [6] and references
therein. Theoretically, no suppression of the current (11.1) is expected at non-zero
temperatures. A straightforward conclusion would be that the number of zero modes
does not go down with temperature. At first sight, it looks very unexpected that the
quantum coherence could persist at high temperature. Let us mention, however, that
something similar happens already at T = 0. Namely, measurements at small lattice
spacings a (such that a · ΛQCD � 1) demonstrate that the number of zero modes

survives wild quantum fluctuations which are of order |Aglue
μ | ∼ 1/a. However, the

volume V0 occupied by a zero mode goes to zero as a power of (a · ΛQCD), for
a review see, e.g., [59, 60]. By analogy, one could expect for zero modes at high
temperature

N0(T )≈ const, V0 ≈ (ΛQCD/T )
γ ,

where the index γ ∼ (1–2), and zero modes at high temperature become lower-
dimensional defects, somewhat similar to the vortices discussed in Sect. 11.3.3.

Technically, derivation of the dissipation-free hydrodynamics from the chiral
symmetry of field theory is quite straightforward. Consider first the confining phase.
In field theory, there is spontaneous symmetry breaking and light degrees of freedom
are represented by massless Goldstone fields ϕ. This is the field theoretic input. The
hydrodynamic output is superfluidity [52] associated with an extra thermodynamic
potential (superfluid 3d velocity squared). The route from field theory to hydrody-
namics is provided by replacing the ordinary time derivative with the covariant one,
the chemical potential being a constant part of the gauge field A0. As a result, a 4d
massless Goldstone particle on the field-theoretic side becomes a 3d massless fields
(plus the Josephson condition, ∂0φ = μ). Gradient of ϕ, ∇ϕ = vs is identified then
with the (unrenormalized) superfluid velocity, or a new thermodynamic variable.
Original fermionic degrees of freedom are counted as constituents of the normal
component. Standard relativistic superfluidity is reproduced.

In this review, we are concerned with the case when there is no spontaneous
breaking of the chiral symmetry. Still, there are massless particles, the chiral
fermions themselves. Field theoretic input is then existence of polynomials in the
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effective action such that the action observes the symmetries while the density of
the action does not respect the symmetries. The bridge to hydrodynamics is pro-
vided by the same inclusion of the chemical potential into the covariant derivative.
As a result, there are new motions, or currents allowed in the equilibrium (simi-
lar to superfluidity). However, because we do not introduce new massless degrees
of freedom, the dissipation-free motions are calculable now, and there are no new
thermodynamic potentials. (For attempts to introduce chiral superfluidity in direct
analogy with the ordinary superfluidity, i.e. through postulating a new light scalar
see Refs. [61–64].)

In this sense, analogy between the ChME and other calculable macroscopic quan-
tum effects, say, Casimir forces, (for review and references see, e.g., [65]) might be
relevant. One considers first interaction of two fluctuating dipoles (atoms) with elec-
tric polarizabilities p1,2(ω)= α1,2(ω)E(ω). At large distances retardation becomes
important and the van der Waals potential is replaced by the Casimir-Polder static
energy:

VCP =− 23

4π

α1(0)α2(0)

r6

hc

r
.

The Casimir-Polder potential refers to interaction of point-like sources due to two-
photon exchange. Macroscopic interaction arises upon averaging over many point-
like sources. Probably the best known example of this type is the force F acting on
a unit area A of two conducting plates at distance a;

F

A
=− π2hc

240a4
.

This is a macroscopic force of quantum origin, calculable from first principles. Simi-
larly, the anomaly derived first for point-like particles becomes a macroscopic chiral
magnetic effect upon averaging of a two-fermion exchange over many centers.

Towards Condensed-Matter Applications A specific feature of the ChME is
that even at equilibrium there is a non-vanishing current while Casimir forces are
static. This difference is entirely due to the fact that chiral particles are massless
and cannot be “stopped”. Indeed the Casimir-Polder potential above is due to polar-
izabilities. As far as a constituent is massive we can have a static magnetic dipole
m = αMH. However, for a massless, chiral particle there can be no static magnetic
moment and, instead, we get a current, see (11.1).

Already from this simple reasoning we can conclude that transition to chiral ef-
fects is singular. If a small mass mf �= 0 is introduced the life-time T of the current
(11.1) is finite and there is no motion in equilibrium, t → ∞, see Sect. 11.3.1.
Whether

T ∼ 1

mf

or T ∼m2
f /μ5,

or else, remains, to our knowledge, an open question. The answer might depend on
details of experiment.
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It seems natural to assume that the proof of the non-dissipative nature of the
chiral effects would be generalized to condensed matter systems, like, say, Weyl
semimetals with chiral spectrum of excitations

εf = vkf ,

where εf , kf are energy and momentum of fermionic excitation. Indeed, many con-
sequences from the chiral anomaly in relativistic field theory have close parallels
in condensed-matter systems, see, in particular [66–69]. From the point of view of
applications the condensed-matter systems seem of course more practical and one
can start discussing principles of functioning of a new kind of devices [70].
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Chapter 12
Remarks on Decay of Defects with Internal
Degrees of Freedom

A. Gorsky

12.1 Introduction

The chiral magnetic effect [1] seems to play an important role in the heave ions
collision. The key question concerns the physical realization of the chiral chemical
potential responsible for this phenomena. Usually it is attributed to the instanton
effects however there are another sources for the effective chiral chemical potential
In this paper we review three problems of such type: the decay of a metastable axion
wall in an external magnetic field, the decay of walls in dense matter, and the decay
of a nonabelian string with the excitation [2]. It is known that due to the one-loop
Goldstone-Wilczek current [3] an axion wall in an external magnetic field develops
a homogeneous density of the charged fermions [4–8]. The question we investigate
here is whether the fermions stay localized on the remaining part of the domain wall
during its decay or escape into the bulk? We find that in the leading approximation
the fermions leave the domain wall and provide a very clear pattern of the chiral
magnetic effect (CME) which currently attracts a considerable attention related to
the observed charge separation effect at RHIC [1]. We shall thus argue that the
decay of domain wall provides an effective chiral chemical potential responsible for
the chiral magnetic effect.

The second problem is related to the decay of mesonic walls in QCD. The
nontrivial density of the Skyrmions is generated in the external magnetic field on
π0 walls, and the field prevents the wall from nonperturbative decay above some
Bcrit [9]. There is a new point in the mesonic wall decay in dense matter. It is known
[10] that in this case due to the anomalous term in the action the current is gener-
ated along the axion-like string at the boundary of the wall. In the decay problem
the axion string is the boundary of the hole and therefore there is the circular bound-
ary current during the decay. We analyze the impact of the created current on the
magnetic field.
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The third problem in our discussion concerns the decay process of a nonabelian
string with excited internal CPN degrees of freedom. The Lagrangian of the world-
sheet theory supports a kink excitation [11–13] which can exist in isolation by itself
in SUSY theories and as kink-antikink bound states in a generic non-SUSY case.
We shall argue that in the nonabelian string decay the kink excitations on the string
decrease the decay rate.

The paper is organized as follows. In Sect. 12.2 we consider the process of the
axion domain wall decay. The decays of mesonic walls in QCD are considered in
Sect. 12.3. In Sect. 12.4 we comment on the decay of nonabelian string with the
emphasis on the role of kink excitations.

12.2 Decay of Axion-Like Domain Walls in D = 3 + 1 Theories

In this section we shall discuss the decay of the Abelian domain walls in the mag-
netic field. Let us discuss the decay of axion wall in the theory with the Lagrangian
for the axion field a(x) given by

L= f−2
a

[
1

2
(∂a)2 +m2

a cosa(x)

]
. (12.1)

The model also contains charged fermions interacting with the axion as

Lf = ψ̄
[
i(∂ν − iAν)γ

ν −mf e
ia(x)γ 5]

ψ (12.2)

with Aν being the potential of the electromagnetic field. (The coupling e is absorbed
into the normalization of A.) An integration over the fermionic field gives rise to the
anomalous interaction between the axion and the electromagnetic field [3] described
by the Lagrangian

Lanom = 1

16π2
εμνλσAμFλσ ∂νa. (12.3)

A derivation of this term through the analysis of the fermionic modes in the
external field in the simplified model for the fermions with the Lagrangian

L= ψ̄
[
i(∂ν − iAν)γ

ν −μ1(z)− iμ2(z)γ
5]ψ (12.4)

can be found in [7]. The variation of μ2 breaks the CP parity similarly to the axion
field.

If the axion model admits a wall solution, the anomalous term yields the density
of the electric charge at the domain wall [4]. The details of the domain wall solution
are not important and the surface density of the induced charge in the background
magnetic field is equal to

q = BΔa

4π2
(12.5)
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where B is the magnetic field perpendicular to the axion wall and Δa is the total
variation of the axion field across the wall. Therefore a constant external magnetic
field creates a homogeneous density of the induced electric charge on the wall. In
the simplified model the distribution of the induced charge density in the domain
wall background equals to

ρ(z)= B

4π2

d

dz
arctan

μ2(z)

μ1(z)
. (12.6)

For any realistic magnetic field its total flux through an infinite wall is zero, so that
the total charge of such wall is zero as well. This behavior however is a result of
exact cancellation between areas with positive and negative surface charges.

An axion wall is metastable and decays through nucleation and subsequent ex-
pansion of a hole bounded by an axion string. When considering this process in
a constant magnetic field, a natural questions arises concerning the fate of the in-
duced electric charge during the decay as well as the back-reaction of the decay on
the background magnetic field. In order to analyze this issue we consider different
components of the GW current which are generated during the decay process. Let
us assume for definiteness that the hole is created at the origin in the (x, y) plane.

During the decay the axion field can be approximated as

a(z, r, t)= f (z)θ
(
r − r(t)

)
(12.7)

with some profile function f (z), and r(t) is the time dependent radius of the ex-
panding hole. Fermions are bounded by the domain wall and therefore there is no
reason for them to stay at the same point when the hole is created. There are two
logical possibilities: the fermions fly away from the domain wall plane or are cap-
tured by the axion string at the boundary of the hole. Using the GW expression we
find that as the hole expands there arises a current perpendicular to the wall plane

Jz ∝ (∂ta)Bz ∝ f (z)ṙδ
(
r − r(t)

)
Bz (12.8)

which is clearly localized near the boundary of the hole.
The current Jz is directed along the external magnetic field and provides the ex-

plicit example of the chiral magnetic effect resulting in the charge separation effect
[1, 14] which was recently a subject of intensive theoretical and experimental stud-
ies. The domain wall decay process amounts to the effective time dependent chiral
chemical potential

μ5,eff = ∂ta.

The effective chiral chemical potential is localized at the boundary of the hole—the
axion string. This is not a surprise since the axion string in magnetic field is chiral,
i.e. there is an asymmetry between left and right modes of the fermions on the string.

We thus conclude that the fermions, initially localized at the wall, do fly away to
the bulk in the decay process. One can perform a cross check of this conclusion by
comparing the current ‘to the bulk’ Jz with the rate of the disappearance of the area
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of the wall that initially carried the fermions. Indeed, the rate at which the surface
charge disappears through the growth of the hole is given by

dN = 2πqrṙ dt (12.9)

where q is the surface charge density on the wall, r(t) radius of the hole and the
speed ṙ is fixed by the bounce solution. On the other hand if all fermions fly away
we must have from the continuity equation

dN

dt
=−

∫
d3x

dJz

dz
. (12.10)

Substituting the expression for the axion field corresponding to the undeformed
O(4) symmetric bounce solution into the anomalous current we obtain that the con-
tinuity equation is fulfilled. This implies that all fermions fly away from the wall
plane during the decay process and there is no need for accumulating any fermions
on the boundary of the hole.

It should be mentioned that in the considered case, where the area of the wall
supporting the fermion charge changes and the fermions flow into the bulk, the
charge conservation is implemented differently from the case of a fixed patch of the
wall and varying magnetic field. In the latter situation the surface term of the GW
current is not conserved by itself [15] and its divergence is localized at the string

∂μjμ ∝ Bδ(r). (12.11)

The apparent non-conservation of the current is compensated by the accumulation
of the charge on the axionic string at the boundary of the patch.

The escape of the fermions to the bulk produces an effect on the probability of
the wall decay in a magnetic field. Indeed, the tunneling process is described by
a spherical Euclidean bounce configuration which is determined from the effective
action

Seff = 4πR2Tstring − 4/3πR3Twall, (12.12)

where R is the radius of the bounce. At the extremum of this action the surface of
the bounce is described by

Rcrit = 2Tstring

Twall
x2 + y2 + t2E =R2

crit (12.13)

with tE being the Euclidean time, so that the coordinate z transverse to the wall is
not essential in the bounce solution.

The transverse direction however becomes of relevance when the magnetic field
is switched on. In the leading approximation the effect of the magnetic field can be
taken into account as follows. While the fermions are localized at the wall they are
effectively massless and there is no energy associated with them. Once they escape
in the bulk each fermion costs energy equal to its mass mf . That is energetically
the localization of the fermions on the wall suppresses the decay probability. From
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the (2 + 1) dimensional viewpoint the decay proceeds with the energy loss since
fermions escape from the wall. The fermion charge in a uniform magnetic field is
proportional to the area of the wall (12.5). Therefore the effect an energy loss due to
emission of fermions can be described by replacing the wall tension by an effective
one

Twall → Twall,eff = Twall − B

2π
mf , (12.14)

resulting in a suppression of the wall decay. Notably the decay is entirely sup-
pressed, i.e. the wall is stabilized at the magnetic field exceeding the critical value

Bcrit = 2π
Twall

mf

. (12.15)

Let us remark that for the case of an induced wall decay at a non-vanishing en-
ergy the solution necessarily involves Minkowski part in the time evolution. An
example of such two-step process involving a resonance behavior at particular val-
ues of the energy has been discussed in details in [16]. In the current problem this
would happen if in a process, e.g. in a collision, an excited state of axionic string is
produced, which then tunnels through the Euclidean region and eventually reaches
the classical expansion regime.

12.3 Decays of Mesonic Walls

12.3.1 Decay of π0 Domain Walls

In this section we consider the decay of walls in conventional QCD. One example of
such object is provided by a wall built from π0 mesons. A π0 wall is not topological
and can be ‘unwound’ inside the SU(2) flavor group. Furthermore such walls are
absolutely unstable in the absence of the magnetic field. However at B >B0 = 3m2

π

the wall becomes locally stable and at B >B1 = 16πf 2
πmπ/mN a patch of such wall

carrying a baryon number becomes the lowest energy state with baryon number [9].
The tension of the domain wall calculated at the explicit solution [9] reads as

Tpwall = 8f 2
πmπ . (12.16)

A magnetic field B applied perpendicularly to the wall generates a surface density
of the baryon charge

qB = B

2π
, (12.17)

which can be also viewed as a liquid of the Skyrmions on the surface [9].
The decay of the pionic wall implies a nontrivial baryonic current

Jμ = 1

4π2
εμνλσ ∂νπ

0Fλσ (12.18)
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flowing into the bulk similar to the electric current in the axion example. While
escaping from the wall the Skyrmions have mass mN . Therefore the effective wall
tension can be found as

Teff = Tpwall − qBmN = 8f 2
πmπ − B

2π
mN. (12.19)

One readily concludes from this expression that at B > B1 the effective tension of
the wall is negative, so that the decay is energetically impossible and the wall is ab-
solutely stable. It can be noted that a somewhat similar behavior has been observed
for the decay of electric strings in magnetic field [17].

12.3.2 Wall Decay in QCD at High Density

At high baryon density the ground state of QCD is in color-flavor locking (CFL)
phase and the system develops color superconductivity (see [18] for a review). The
theory at large baryon chemical potential μ is in the weak coupling regime and the
dynamics of the low-energy degrees of freedom can be calculated perturbatively. In
particular, the existence of a φ domain wall can be justified [19] from the effective
Lagrangian for the Goldstone mode φ of U(1)A symmetry which is spontaneously
broken by the condensate in the color-superconducting vacuum state.

The explicit form of the Lagrangian in two-flavor case reads as follows

Ldense = f 2[(∂0φ)
2 − u2(∂iφ)

2]− aμ2Δ2 cosφ (12.20)

where a is dimensionless and vanishes in the limit μ→ ∞, and u is the speed of
sound: u2 = 1/3. The parameters of the Lagrangian are

f 2 = μ2

8πu2
, (12.21)

and Δ is the value of the gap. The tension of the wall can be derived immediately
from the effective Lagrangian

Twall = 8
√

2aufμΔ. (12.22)

In the CFL phase the potential term in the Lagrangian of the lightest meson gets
modified as

VCFL =−ã
(
ms

μ

)
μ2Δ2 cosφ, (12.23)

where ms is the mass of the strange quark. Thus the tension of the wall in the CFL
phase acquires additional ms dependent factor.

The decay of the domain walls in the dense QCD matter has some peculiari-
ties. In particular, one can notice that in the dense matter there is an anomalous
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Chern-Simons term in the Lagrangian of the pseudoscalar meson proportional to
the chemical potential μ [9, 10]:

δL= e

24π2
με0νλσ ∂νφFλσ . (12.24)

An immediate consequence of this term is that there is an electric current circulating
along the axial string [10, 20, 21]

J = μe

12π
. (12.25)

It can be noted that the current does not depend on the value of external field. This
current can be derived by the summation over the fermion modes [20, 21] similar to
the calculation of the induced charge in the magnetic field [7].

The main difference from the wall decay discussed in the previous section is that
in dense matter there necessarily is a current along the hole boundary identified with
the axial φ string. The current plays a two-fold role. Firstly, its existence implies that
during the decay process not all of the fermions populating the wall fly away from
the plane. Some of them are captured by the axial string at the boundary instead.
Secondly, the circular current induces magnetic field inside the hole and the direc-
tion of the field depends on the sign of the chemical potential. One thus concludes
that in dense matter magnetic effects in the decay of the wall are necessarily es-
sential since the field is generated by the induced current circulating along the hole
boundary. The tunnelings starts at zero energy, so that there is no cusp at the bottom
of the bounce configuration. However contrary to the axion and π0-mesonic walls
in the vacuum, the current along the boundary makes it impossible to describe the
outflow of the fermion energy by an appropriately modified effective wall tension
as in (12.19).

12.4 Nonabelian String Decay

The strings are quite common objects corresponding to effective solutions to the
equations of motion in various models. The problem of their decays can be formu-
lated, and a detailed analysis of the decay of an ANO string in the Abelian Higgs
model can be found in [22]. As of yet only the decay of such ANO Abelian ef-
fective strings has been considered. However more general stringy solutions exist
both in the SUSY and non-SUSY theories in the color-flavor locking phase. Their
key feature is the existence of additional degrees of freedom due to the nontrivial
embedding of the nonabelian string into the gauge group, which amounts to the ori-
entational moduli providing CPN degrees of freedom on the worldsheet [11–13].
Thus the problem that parallels the discussion in the previous section is that of the
fate of the CPN degrees of freedom living on the nonabelian string during the decay.
The worldsheet theory is built from an N -component complex field ni subject to the
constraint

n∗i ni = 1. (12.26)



338 A. Gorsky

The Lagrangian has the form

L= 2

g2

[
(∂μ − iAμ)n

∗
i (∂μ + iAμ)n

i − λ
(
n∗i ni − 1

)]
, (12.27)

where λ is the Lagrange multiplier enforcing the condition (12.26). At the quantum
level this constraint is effectively eliminated and λ becomes dynamical. Moreover,
Aμ is an auxiliary field which at the classical level enters the Lagrangian with no
kinetic term. A kinetic term is generated, however, at the quantum level, so that the
field Aμ becomes dynamical too.

One can also add to the Lagrangian a θ term of the form

Lθ = θ

2π
εμν∂

μAν = θ

2π
εμν∂

μ
(
n∗i ∂νni

)
. (12.28)

In non-SUSY D = 4 gauge theories there is only a single vacuum state, so that
a single kink solution is impossible. However the spectrum involves a kink-antikink
pair, which corresponds, from the four dimensional viewpoint, to a monopole-
antimonopole pair localized at the nonabelian string [23]. In the non-SUSY case
one can also introduce the θ -term in the bulk theory, which makes its way to the
worldsheet theory of the nonabelian string as well [23]. In the worldsheet theory
the θ term induces a constant Abelian electric field of the auxiliary gauge field
A(x) along string. In the string decay the electric field is completely screened in
the emerging hole. One therefore concludes that the dyons have to be created at the
ends of the string in this case.

Recently the interesting phenomena concerning the decay of the nonabelian
string has been found [24]. It turns out that the CPN model on the interval of length
R undergoes the phase transition when R changes. It implies the peculiar features
of the decay process. Indeed if we consider the bounce configuration for the decay
process the contribution from the “hole” strongly depends on the radius of the hole
which is defined by the parameters of the model. When the hole radius is small
enough the CPN model on the disc has no the mass gap while at large radius it is in
the gapped phase. Hence one could expect the strong change of the decay probabil-
ity near the critical value of the radius of the disc in the Euclidean space.

12.5 Summary

In this note we have reviewed decay of defects in external field. It was shown that
in a magnetic field the axion domain wall evaporates all induced electric charge
into the bulk. Such decay of the axion wall provides an explicit example of the
chiral magnetic effect where the axion strings are responsible for the chiral chemical
potential. The decay of the mesonic walls in magnetic field has some peculiarities.
Namely, the decay probability of the pionic walls is suppressed by a magnetic field
and above a critical value of the field the wall is non-perturbatively stable. In the
CFL phase at high density the current along the boundary of the hole in the η-meson
walls is generated decreasing the initial magnetic field.

Acknowledgements I thanks to M. Voloshin for the collaboration on these issues.
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Chapter 13
A Chiral Magnetic Effect from AdS/CFT
with Flavor

Carlos Hoyos, Tatsuma Nishioka, and Andy O’Bannon

13.1 Introduction

Consider a (3 + 1)-dimensional system of free, massless Dirac fermions ψ . The
Lagrangian of such a system has two U(1) symmetries, the vector one U(1)V ,
with conserved current ψγμψ , and the axial one U(1)A, with conserved current
ψγμγ 5ψ . U(1)A is anomalous, and can be explicitly broken by a nonzero Dirac
mass. If we introduce an axial chemical potential μ5 then we expect an imbalance
in the number of left- and right-handed fermions. If we further introduce an external
U(1)V magnetic field B then, assuming the fermions have positive charge, we ex-
pect their spins to align with B , and since they are massless their momenta will also
align or anti-align depending on their chirality. Given the imbalance in chirality, we
expect a net U(1)V current parallel to B . This is the simplest example of the chiral
magnetic effect (CME) [1–3].

For free fermions, the axial anomaly determines the size of the chiral magnetic
current as follows. An axial chemical potential is equivalent to a background U(1)A
gauge field with constant time component, A5

t = μ5, or to a time-dependent phase

ψ → eiγ
5μ5tψ . Via the axial anomaly such a phase shift can be traded for a θ -

term of the form a(t,x)F ∧ F with a(t,x) = μ5t and F the U(1)V field strength.
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The spacetime-dependent source a(t,x) can be regarded as a background, non-
dynamical axion field. Writing F = dA and integrating by parts, we obtain an in-
teraction of the form da ∧A∧ F . Varying the action with respect to A we find the
chiral magnetic current, which is parallel to B and has magnitude

J = μ5

2π2
B. (13.1)

Notice that the CME occurs only when parity P and charge conjugation times parity
CP symmetries are broken. The quantity σ ≡ J/B is called the chiral magnetic
conductivity [4].

When the system has nontrivial time evolution J becomes a function of time, or
in Fourier space a function of frequency, J (ω). For massless fermions, the U(1)A
Ward identity fixes part of J (ω), namely the part linear in B in the DC limit
ω → 0, to be the anomaly-determined value in (13.1): limB,ω→0

∂
∂B
J (ω) = μ5

2π2

[5]. This statement remains true for massless fermions even in the presence of in-
teractions or of temperature, so long as the Ward identity is satisfied. Of course in
J (ω), the finite-ω dependence and any other dependence on B [6] will be sensitive
to the nature of the interactions and to the temperature. Crucially, a finite fermion
mass violates the Ward identity, in which case the ω→ 0, linear-in-B contribution
to J (ω) is no longer “protected”, i.e. can deviate from the value in (13.1).

A CME may occur in heavy-ion collisions such as those produced at the Rela-
tivistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) [2, 7, 8].
The dominant interaction in the early stages of collisions is the strong nuclear force,
as described by Quantum Chromodynamics (QCD). Indeed, the quark-gluon plasma
(QGP) created at RHIC appears to involve strongly-interacting degrees of freedom
far from equilibrium: the plasma appears to thermalize quickly and have a short
mean free path (both signs of strong interactions [9, 10]) but also expands and cools
rapidly until hadronization occurs.

Two conditions must hold to produce a CME in a heavy-ion collision. First, the
QCD vacuum apparently preserves P and CP, so some event-by-event violation of
these is required. In a medium such as the QGP, one possible mechanism for such
violations are fluctuations of the topological charge density [2]. Second, the colli-
sion must be non-central, i.e. the nuclei must not perfectly overlap upon impact.
In that case, the net charge combined with the net angular momentum can produce
large magnetic fields, although these may die quickly as the QGP expands [2].

Assuming that P and CP are broken and a magnetic field is present, we know
of two mechanisms to produce a CME in finite-temperature QCD. The first occurs
for sufficiently large temperatures, where the QCD plasma is deconfined and chiral
symmetry is restored. In that case we may invoke a naïve picture of quarks as freely
propagating fermions in a magnetic field, and apply the arguments above.

A second, more subtle, mechanism, discussed for example in Ref. [11], may oc-
cur at lower temperatures, when the QCD plasma is in a confined state with chiral
symmetry broken. Here we expect a gas of hadrons rather than a QGP. The key ob-
servation is that an external electromagnetic field can convert a neutral pseudo-scalar
meson, such as the π0, η, or η′, into a neutral vector meson, such as the ρ. More
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precisely, any effective action describing QCD and electromagnetic interactions will
include for example a vertex of the form Bπ0ρ. The vector meson so produced will
be polarized in the direction of the magnetic field, and via interactions with charged
mesons can induce a current parallel to B , thus producing a CME even in a con-
fined phase. The same process may also occur in the late stages of QGP evolution,
during hadronization when metastable domains with spontaneous breaking of P and
CP could be formed [12].

To our knowledge, analysis of RHIC and LHC data appears to favor the presence
of a CME in the QGP, although a better understanding of systematic errors and
backgrounds is still needed before a firm conclusion can be made [13–17]. The
strong interactions and far-from-equilibrium evolution of the QGP in a heavy-ion
collision make a clean theoretical prediction for σ very difficult. Lattice simulations
suggest that the CME occurs in thermal equilibrium [18–22]. Lattice simulations
cannot yet reliably determine the time evolution of σ , or equivalently σ(ω), which is
crucial for estimating the size of the chiral magnetic current in a heavy-ion collision.

An alternative approach to the CME is the anti-de Sitter/Conformal Field The-
ory correspondence (AdS/CFT) [23–25], or more generally gauge-gravity duality.
Gauge-gravity duality equates a strongly-coupled non-Abelian gauge theory with a
weakly-coupled theory of gravity on some background spacetime, such that the field
theory lives on the boundary of the spacetime, hence the duality is holographic. In
particular, a black hole spacetime is dual to a thermal equilibrium state in which the
center symmetry is spontaneously broken, such as the high-temperature, deconfined
phase of a confining theory, where the temperature of the field theory coincides with
the Hawking temperature of the black hole [26].

Gauge-gravity duality has been most successful at describing out-of-equilibrium
physics, especially near-equilibrium physics, i.e. hydrodynamics. Most importantly,
all gauge theories with a gravity dual (in states with SO(2) rotational symmetry
[27]) have the same, very small, ratio of shear viscosity η to entropy density s,
namely η/s = 1/4π [28], which is surprisingly close to the value estimated for
the QGP at RHIC [29, 30]. We take such universality, and indeed the universality of
hydrodynamics in general, as encouragement to study the CME in many holographic
systems, following Refs. [31–39], including systems without confinement or chiral
symmetry breaking in vacuum.

A conserved U(1) current in the field theory is dual to a U(1) gauge field in
the bulk and, roughly speaking, an anomaly for the current is dual to a (4 + 1)-
dimensional Chern-Simons term for the bulk gauge field. The latter is thus typically
a key ingredient in holographic descriptions of the CME [31–39]. More generally,
holographic models dual to fluids with anomalous currents have been constructed
for example in Refs. [37, 39–42]. These holographic studies are complementary to
field theory studies of the effects of triangle anomalies on hydrodynamics [43–48],
which themselves have been applied to study the CME in heavy-ion collisions [49–
51].

One holographic model of QCD, the Sakai-Sugimoto model [52, 53] includes
a bulk Chern-Simons term, although some confusion has arisen as to whether the
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CME occurs in this model at all. The problem in this model is that the vector cur-
rent is anomalous under U(1)V ×U(1)A transformations and therefore is not con-
served in the presence of arbitrary external sources. Modifying the vector current
such that it is conserved, which in the gravity dual requires adding certain boundary
counterterms, causes the chiral magnetic current J to vanish [31]. To our knowl-
edge, no consensus has emerged on whether a CME occurs in the Sakai-Sugimoto
model.1

The authors of Refs. [35, 36] argued that for any bulk theory with a Chern-
Simons term both a conserved vector current and nonzero J are possible, but at
a price: the bulk gravity solution becomes non-regular. More precisely, in Euclidean
signature the bulk gauge field will not vanish at the horizon and hence will not be
a regular one-form [55]. In Lorentzian signature the gauge field solution will be
regular only on the future horizon. One conclusion is that no reliable holographic
description of the CME in thermal equilibrium (regular on the past and future hori-
zons) exists for a conserved vector current. Effectively, a source for the gauge field
must be introduced at the black hole horizon, the meaning of which is unclear from
a field theory point of view. We were thus motivated to study other models where
such issues could be avoided or at least clarified.

We consider N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory, in the
’t Hooft large-Nc limit and with large ’t Hooft coupling, coupled to a number
Nf �Nc of N = 2 supersymmetric hypermultiplets in the fundamental represen-
tation of the gauge group, i.e. flavor fields. We introduce a complex mass m= |m|eiφ
for the flavor fields into the superpotential with a time-dependent phase φ = ωt , fol-
lowing Refs. [56–60]. For the fermions that effectively introduces an axial chemical
potential μ5 = 1

2ω. The theory also has a U(1)V symmetry that we will call baryon
number. We introduce a baryon number magnetic field B and compute (holograph-
ically) the resulting chiral magnetic current.

N = 4 SYM at large Nc and large ’t Hooft coupling is holographically dual to
type IIB supergravity on AdS5 × S5 [23]. The Nf �Nc hypermultiplets are dual to
a number Nf �Nc of probe D7-branes extended along AdS5 × S3 [61]. The phase
of the mass corresponds to the position of the D7-branes in one of the transverse di-
rections on the S5, hence ω corresponds to the angular frequency of the D7-branes in
that direction, and the axial charge density corresponds to the angular momentum of
the D7-branes. The axial anomaly is realized holographically via the Wess-Zumino
(WZ) coupling of D7-branes to the background Ramond-Ramond (RR) flux on the
S5. The U(1)V current is dual to the U(1) gauge field on the worldvolume of the
D7-branes, which thus encodes both the U(1)V magnetic field and the chiral mag-
netic current.

1An alternative way to fix the normalization of the currents in the Sakai-Sugimoto model is to
demand that the bulk action be invariant under gauge transformations that are non-vanishing at
spatial infinity (in field theory directions), which leads to different bulk counterterms [54] and
produces a non-vanishing chiral magnetic current. For the sake of argument, here we are taking
the phenomenological point of view that a U(1)A current in the presence of a U(1)V chemical
potential should coincide with the weak-coupling result, which occurs with the bulk counterterms
of Ref. [31] but not those of Ref. [54].
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In short, our system is a D7-brane in AdS5 × S5, rotating with angular frequency
ω on the S5 and with a worldvolume magnetic field B . At finite temperature we re-
place AdS5 with AdS-Schwarzschild. When |m| = 0 the value of the chiral magnetic
current agrees with the result from the calculation using the anomaly, (13.1). When
|m| is nonzero we find that a chiral magnetic current appears only when a certain
U(1)V -neutral pseudo-scalar operator has a nonzero expectation value, signaling
the breaking of C times time reversal, CT. We interpret this as a neutral pseudo-
scalar condensate being converted into a vector condensate by the magnetic field, in
a manner somewhat similar to the CME in the low-temperature phase of QCD [11].
For nonzero |m| the value of the chiral magnetic current is less than that in (13.1),
and indeed both the current and the expectation value of the pseudo-scalar drop to
zero for sufficiently large |m| or B .

Although we were motivated to find a model describing a CME in equilibrium
with regular bulk solutions, in states with a nonzero |m| and a CME we can demon-
strate that our system is out of equilibrium in two ways. First, we simply observe
that the scalars in the N = 2 hypermultiplet have the same mass, with the same
phase, as the fermions, so when |m| is nonzero the Lagrangian has explicit time
dependence and hence the system cannot be in equilibrium. The explicit time de-
pendence disappears in the limit |m| → 0. Second, we observe that in our system the
axial symmetry is part of the R-symmetry under which the adjoint fields of N = 4
SYM are also charged, hence axial charge in the flavor sector can “leak” into the
adjoint sector, also taking energy with it. We compute, both in the field theory and
from holography, the rate at which that occurs, with perfect agreement. We find that
the rate is nonzero only when the pseudo-scalar has nonzero expectation value. Our
solutions are stationary because we inject an equal amount of charge from an exter-
nal source coupled to the flavor fields. The corresponding supergravity statement is
that we pump angular momentum into the D7-branes which then flows into a bulk
horizon.

This paper is organized as follows. In Sect. 13.2 we describe the main charac-
teristics of the field theory with a flavor mass that has a time-dependent phase. In
Sect. 13.3 we describe the gravity dual and perform the holographic computation of
the chiral magnetic current. In Sect. 13.4 we compute the loss rates of axial charge
and of energy for our system. In Sect. 13.5 we summarize our results and discuss
open questions for future research.

13.2 The Theory in Question

We study N = 4 SYM theory in the ’t Hooft limit of Nc → ∞ with Yang-Mills
coupling squared g2

YM → 0 keeping the ’t Hooft coupling λ ≡ g2
YMNc fixed, fol-

lowed by the limit λ� 1. The theory has an SO(6)R R-symmetry. The field content
of N = 4 SYM theory is the gauge field, four Weyl fermions, and three complex
scalars. The former are in the 4 representation and the latter in the 6 representation of
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SO(6)R � SU(4)R . We will also consider an N = 4 SYM plasma with equilibrium
temperature T .

We next introduce a number Nf of N = 2 supersymmetric hypermultiplets in
the fundamental representation of SU(Nc), which in analogy with QCD we call fla-
vor fields. In N = 1 notation the field content of the hypermultiplet is two chiral
superfields of opposite chirality, Q and Q̃ in the Nc and Nc representations, respec-
tively. Each chiral superfield consists of a complex scalar and a Weyl fermion. We
denote the scalars, the squarks, as q and q̃ and combine the Weyl fermions into a
Dirac fermion ψ . The flavor fields’ couplings break the SO(6)R symmetry down to
SO(4)×U(1)R , of which an SU(2)R×U(1)R subgroup is the N = 2 R-symmetry.
The U(1)R does not affect the squarks but acts as an axial symmetry for the quarks.
Given that our theory has only this Abelian chiral symmetry, we will use “axial
symmetry” and “chiral symmetry” interchangeably. As in QCD, the axial U(1)R
symmetry is anomalous. The flavor fields also have a U(1)V symmetry that simply
rotates Q and Q̃† by the same phase.

We will work in the probe limit, which consists of keeping Nf fixed when we
take the ’t Hooft Nc → ∞ limit, and then working to leading order in the small
parameter Nf /Nc. Physically that corresponds to neglecting quantum effects due
to the flavor fields, such as the running of the coupling. For instance, when the
’t Hooft coupling is small the probe limit consists of discarding diagrams with
(s)quark loops.

In the probe limit some part of the U(1)R anomaly survives, as we now explain.
Three types of triangle diagram contribute to the anomaly, each with a U(1)R cur-
rent at one vertex and two other currents at the other vertices. For example one
diagram has the U(1)R current and two gauge currents. We will denote that as the
U(1)R × SU(Nc)× SU(Nc) ≡ U(1)RSU(Nc)

2 anomaly, with similar notation for
other anomalies. Both adjoint and flavor fields will appear in the loop, hence that di-
agram will have an order N2

c contribution and an order NfNc contribution. The next
diagram is the U(1)3R anomaly, which will similarly receive order N2

c and NfNc

contributions. The third diagram is the U(1)RU(1)2V anomaly. Only flavor fields
carry the U(1)V charge, hence that diagram will be order NfNc, with no N2

c con-
tribution. In the probe limit we neglect the order NfNc contribution to the first two
diagrams, since that is sub-leading. For the third diagram, however, the order NfNc

term is leading, hence we retain it.2 That anomaly will give rise to the CME in our
system.

N = 2 supersymmetry allows for a constant, complex mass m= |m|eiφ for the
flavor fields. A nonzero |m| explicitly breaks U(1)R . We will introduce a mass with
a time dependent phase: |m|eiφ = |m|eiωt . Let us recall not only how φ = ωt is
equivalent to an axial chemical potential for the quarks, but also how φ = ωt intro-
duces explicit time dependence in the potential terms for q and q̃ . Of the adjoint

2On the supergravity side the first two anomalies would appear in the type IIB supergravity sector,
while the third will be associated with a WZ term on a probe D7-brane.
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scalars, only one is charged under U(1)R . We denote this scalar as Φ . The flavor
couplings in the N = 1 superpotential W are then

W ⊃ Q̃ΦQ+ |m|eiφQ̃Q. (13.2)

Integrating over superspace, we find the (normal) potential, from which we extract
terms involving the squarks and terms involving the quarks. The terms involving q

are [59]

Vq = q†|Φ|2q − |m|eiφq†Φ†q − |m|e−iφq†Φq + |m|2q†q. (13.3)

The potential includes identical terms for q̃ . The quark contribution is simply3

Vψ = |m|ψeiφγ 5
ψ. (13.4)

If we now perform a chiral rotation

ψ → e−iγ 5φ/2ψ, (13.5)

then the derivative in ψ ’s kinetic term will act on φ, producing a new term that we
may include in the potential,

Vψ = |m|ψψ − ∂μφ

2
ψγμγ 5ψ. (13.6)

If we introduce φ = ωt then clearly ω is equivalent to twice the axial chemical
potential,

ω= 2μ5. (13.7)

Crucially, when |m| is nonzero the squark terms of the form in (13.3) explicitly
depend on t , so the Hamiltonian depends explicitly on time, energy is not conserved,
and the system cannot be in equilibrium.

For the CME in low-temperature QCD the central players are the light pseudo-
scalar and vector fields, the π0, η, η′ and the ρ, respectively. Excitations of these
fields, the mesons, produce poles in the corresponding retarded two-point functions.
Our theory has operators analogous to these which will play a role in our realization
of the CME, so let us describe them in detail.

Our theory has gauge-invariant (s)quark bilinears, i.e. gauge-invariant operators
built from two fields in the Nc and Nc representations. The two-point functions of
these operators exhibit poles which we will call mesons in analogy with QCD. Un-
like mesons in QCD, these modes are not associated with chiral symmetry breaking
or confinement, rather they are deeply bound states with masses on the order of
|m|/√λ [62]. When |m| is nonzero these are the lightest flavor degrees of freedom
in our system.

3Our γ 5 is Hermitian and squares to the identity.
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To determine the operators relevant for the CME, we treat |m| and φ as exter-
nal sources. We denote the associated operators as Om and Oφ , respectively. For
instance, varying minus the action with respect to |m|, we find a dimension three
operator

Om = − δS

δ|m|
= ψeiφγ

5
ψ − eiφq†Φ†q − e−iφq†Φq − eiφq̃†Φ†q̃

− e−iφ q̃†Φq̃ + 2|m|(q†q + q̃†q̃
)
. (13.8)

When φ is constant, Om is just the N = 2 supersymmetric completion of the stan-
dard quark mass operator. Notice that Om is charged under U(1)R , and hence may
serve as an order parameter for chiral symmetry breaking when |m| = 0. Notice also
that if φ = ωt then Om depends explicitly on time. Varying minus the action with
respect to φ we find a dimension four operator,

Oφ = − δS

δφ

= |m|iψeiφγ 5
γ 5ψ + |m|q†i

(
e−iφΦ − eiφΦ†)q

+ |m|q̃†i
(
e−iφΦ − eiφΦ†)q̃. (13.9)

Notice that Oφ ∝ |m|, and again if φ = ωt then Oφ depends explicitly on time.
The U(1)V baryon number and U(1)R currents will also be involved in the CME.

We denote the conserved U(1)V current as Jμ,

Jμ =ψγμψ − i
(
q†Dμq − (

Dμq
)†
q
)− i

(
q̃
(
Dμq̃

)† − (
Dμq̃

)
q̃†). (13.10)

The contribution to the R-current from flavor fields is the same as half the axial
current JμR = 1

2ψγ
μγ 5ψ .4 As mentioned in the introduction, adjoint fields also

contribute to the R-current, hence the axial current will not be conserved even in
the absence of anomalies. We discuss the non-conservation of quark axial charge in
detail in Sect. 13.4.

Since discrete spacetime symmetries play a central role in the CME, we will also
present the transformation properties of various operators under C, P and T, when
φ = ωt :

C P T
Vq ω→−ω even ω→−ω
Vψ even ω→−ω even

iψeiωtγ
5
γ 5ψ even ω→−ω+ odd odd

q†i(eiωtΦ† − e−iωtΦ)q ω→−ω+ odd even ω→−ω

4We are identifying R-charge transformations with shifts φ → φ+ δφ, which for the quarks imply

the U(1)A transformation ψ → eiφγ
5/2ψ . With this convention the R-charge of the quarks is 1/2.
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where ω→−ω means that a sign flip of ω is the only change, and ω→−ω+ odd
means a sign flip of ω plus an overall sign flip are the only changes. The potential is
not invariant under CPT, which is compatible with the breaking of Lorentz symme-
try by the explicit time dependence. The only discrete spacetime symmetry under
which the potential is invariant is CT. Notice that Oφ is CT odd, so an expectation
value 〈Oφ〉 may serve as an order parameter for spontaneous CT breaking.

Finally, let us explain the analogy between the CME in our system and in QCD.
Our system has no dynamical electromagnetic U(1), so to obtain a CME we will in-
troduce a non-dynamical external U(1)V magnetic field Fxy = B . The phase φ will
play the role of a non-dynamical external axion field a(t,x). The operator Oφ will
play the role of a light, neutral pseudo-scalar, such as the π0. At zero temperature
and finite mass, we can then think of an expectation value 〈Oφ〉 as a condensate of
pseudo-scalar mesons. The U(1)V current Jμ will play the role of a vector meson
field, like the ρ, so we can think of the chiral magnetic current 〈J z〉 as a conden-
sate of vector mesons. Our holographic calculations will show that 〈J z〉 is nonzero
only when 〈Oφ〉 is nonzero, except in the chirally symmetric case |m| = 0. Our in-
terpretation is that the mechanism for the CME in our system is similar to that of
low-temperature QCD: the magnetic field converts pseudo-scalar mesons into vec-
tor mesons polarized in the direction of B . Notice that away from the chiral limit
the CME occurs in our system only when CT is spontaneously broken, in contrast
to the free fermion case which required P and CP breaking.

13.3 Chiral Magnetic Effect from Spinning Probe Branes

We begin in type IIB string theory with a supersymmetric intersection of Nc D3-
branes and Nf D7-branes:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × ×
D7 × × × × × × × ×

(13.11)

Open strings with both ends on the D3-branes give rise at low energies to N = 4
SU(Nc) SYM theory, while open strings with one end on the D3-branes and one
on the D7-branes give rise to N = 2 hypermultiplets in the fundamental repre-
sentation. The SO(6) isometry in the directions (x4, . . . , x9) corresponds to the
SO(6)R symmetry of N = 4 SYM theory. Clearly the D7-branes break that to
SO(4)×U(1)R , corresponding to rotations in (x4, . . . , x7) and (x8, x9) respectively.
If we separate the D3- and D7-branes in the overall transverse directions, x8 and x9,
then the 3–7 and 7–3 strings acquire a finite length, giving the hypermultiplets a
mass. The complex mass |m|eiφ thus corresponds simply to the relative positions of
the D3- and D7-branes in that plane, with |m| the separation distance and φ the angle
in the plane. The breaking of U(1)R by a nonzero |m| appears simply as the break-
ing of rotational symmetry in the (x8, x9)-plane. A time-dependent phase φ = ωt

corresponds to D7-branes spinning in the (x8, x9)-plane.
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We take the usual limits for the D3-branes, Nc → ∞ with gsNc fixed, fol-
lowed by taking gsNc � 1, where gs is the string coupling and α′ is the string
length squared. We thus obtain type IIB supergravity in the near-horizon ge-
ometry of the D3-branes, AdS5 × S5 where each factor has radius of curvature
L4/α′2 = 4πgsNc � 1. The solution includes Nc units of RR five-form flux on
the S5. AdS/CFT equates this theory with the low-energy theory on the D3-branes,
N = 4 SYM theory, with Yang-Mills coupling g2

YM = 4πgs and ’t Hooft coupling
λ= g2

YMNc, so the theory is in the ’t Hooft large-Nc limit with λ� 1.
We will use an AdS5 × S5 metric of the form

ds2 = −|gtt |dt2 + gxx dx2 + grr dr
2 + gSS ds

2
S3 + gRR dR

2 + gφφ dφ
2 (13.12)

= ρ2

L2

(−dt2 + dx2)+ L2

ρ2

(
dr2 + r2 ds2

S3 + dR2 +R2 dφ2), (13.13)

where ρ is the AdS5 radial coordinate with the boundary at ρ →∞. The field theory
lives in Minkowski space with coordinates (t,x). We have split the six directions
transverse to the D3-branes into R

4 ×R
2 where the latter R2 represents the (x8, x9)-

plane. We have written the metric of both the R4 and the R2 in spherical coordinates.
The former has radial coordinate r with ds2

S3 the metric of a unit S3, while the latter

has radial coordinate R and circle coordinate φ. Notice that ρ2 = r2 + R2. The
self-dual RR five-form can be derived from a four-form potential

C4 = g2
xxvolR3,1 − g2

SS dφ ∧ volS3 . (13.14)

Starting now we will use units in which L≡ 1. We can convert between string theory
and supergravity quantities using α′−2 = λ.

The N = 4 SYM theory at finite temperature T is dual to supergravity in an
AdS-Schwarzschild spacetime. In that case only |gtt | and gxx change, becoming

|gtt | = ρ2 γ
2

2

f 2(ρ)

H(ρ)
, gxx = ρ2 γ

2

2
H(ρ), (13.15)

with

f (ρ)= 1 − 1

ρ4
, H(ρ)= 1 + 1

ρ4
. (13.16)

In these coordinates the horizon is always at ρ = 1, but the Hawking temperature,
which we identify with the N = 4 SYM temperature, is T = γ /π , which we can
vary by changing the parameter γ . We recover the T = 0 limit by first rescaling
ρ →√

2ρ/γ , and the same for r and R, and then taking γ → 0.
If we keep Nf finite as Nc → ∞ we may treat the D7-branes as probes. The

action describing the D7-brane’s dynamics, SD7, consists of two types of terms,
a Dirac-Born-Infeld (DBI) term and Wess-Zumino (WZ) terms. We will consider
only the U(1) worldvolume theory of coincident D7-branes, so we will need only
the Abelian D7-brane action,

SD7 = SDBI + SWZ, (13.17)
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SDBI = −Nf TD7

∫
d8ξ

√
−det

(
gD7
ab + (

2πα′)F̃ab
)
, (13.18)

SWZ = +1

2
Nf TD7

(
2πα′)2

∫
P [C4] ∧ F̃ ∧ F̃ , (13.19)

where TD7 = g−1
s α′−4

(2π)7
is the D7-brane tension, ξa are the worldvolume coordinates,

gD7
ab is the induced metric on the brane, F̃ab is the U(1) worldvolume field strength,

and P [C4] is the pullback of the RR four-form to the D7-branes.
Let us introduce some convenient notation. First, we will absorb a factor of

(2πα′) into the field strength (2πα′)F̃ab ≡ Fab . Our D7-branes will be extended
along AdS5 × S3 inside AdS5 × S5, that is, along the Minkowski coordinates (t,x),
the radial direction r , and the S3 ⊂ S5. In what follows we consider solutions for
which the D7-brane Lagrangian will depend only on r , so we may trivially perform
the integrations over the Minkowski and S3 directions, producing factors of their
respective volumes, VR3,1 and 2π2. We will absorb the factor of the infinite volume
of Minkowski space into the action, SD7/VR3,1 → SD7. From now on we will refer
to this rescaled action as the D7-brane action. We will absorb the factor of the S3

volume into an overall factor

N ≡Nf TD72π2 = λNfNc

(2π)4
, (13.20)

where in the second equality we converted to field theory quantities.
We now need an appropriate ansatz for the worldvolume fields to describe a CME

in the field theory. The two scalars on the D7-brane worldvolume are R and φ. The
former is dual to the operator Om while the latter is dual to Oφ . More specifically,
the asymptotic values of R and φ will be (proportional to) the modulus and phase
of the complex mass, as is obvious from the initial D3/D7 intersection. We thus
introduce R(r) and φ(t, r) = ωt + ϕ(r), which produces a time-dependent phase
for the mass and allows for nonzero |m|, 〈Om〉 and 〈Oφ〉.

We can motivate the r-dependence in φ(t, r) from previous experience with
probe branes in holographic spacetimes, following Ref. [63]. Suppose we intro-
duce only φ(t) = ωt and then perform a T-duality in the φ direction.5 The back-
ground solution changes, and the D7-brane becomes a D8-brane extended in φ with
worldvolume gauge field, Aφ(t)∝ ωt . The angular frequency ω becomes a constant
electric field on the D8-brane, Ftφ ∝ ω. A probe brane in a gravitational potential
well, such as AdS, and with a constant worldvolume electric field will generally
have a tachyonic instability: the gravitational potential reduces the effective tension
of open strings, so at some point the constant electric field can rip strings apart. This
tachyonic instability causes the Lorentzian action to become imaginary. Turning that
around, an imaginary action signals a tachyon, since whenever a Lorentzian action

5Of course, T-duality is not a well-defined operation for an angular direction that can shrink to zero
size, but here we are simply illustrating the similarities between spinning branes and branes with a
worldvolume electric field.
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S becomes a complex number, the weight factor eiS in a path integral will have
either an exponentially growing or exponentially decaying mode. The cure for the
D8-brane’s instability is to introduce r-dependence [63], i.e. Aφ(t, r)∝ ωt + ϕ(r),
producing a new constant of integration, associated with ϕ(r), that we can adjust
to maintain reality of the action and hence avoid the instability. T-duality back to
a D7-brane produces the φ(t, r) above, although now the physical interpretation of
the instability is very different. Now the instability occurs because in a gravitational
potential well the local speed of light decreases, while the probe brane rotates at a
constant angular frequency, so at some point the probe brane may have linear veloc-
ity faster than the local speed of light. The D7-brane cures the problem by “twisting”
in φ as a function of r [56–60].

For the CME we need a U(1)V magnetic field and we expect a current 〈J z〉.
The U(1)V current Jμ is dual to the U(1) gauge field on the D7-branes, hence we
include in our ansatz Fxy = B and Az(r). In total, then, our ansatz includes6 R(r),
φ(t, r)= ωt + ϕ(r), Fxy = B and Az(r).

We can argue that the probe D7-brane action must depend only on derivatives
of φ and Az as follows. The background solution has an isometry in φ: the met-
ric and four-form in (13.12) and (13.14) are invariant under constant shifts of φ.
Recalling that the scalars on the worldvolume of a D-brane are Goldstone bosons
associated with the breaking of translation invariance in the transverse directions,
and that Goldstone bosons can have only derivative interactions, we can conclude
that the action SD7 will involve only derivatives of φ. For Az we argue simply that
the action depends only on the field strength and not Az itself. Inserting our ansatz
into the action, we find

SDBI = −N

∫
dr g

3/2
SS g

3/2
xx

√

1 + B2

g2
xx

×
√(|gtt | − gππ π̇2

)(
grr + gRRR′2 + gxxA′2

z

)+ |gtt |gπππ ′2,

SWZ = −N Bω

∫
dr g2

SSA
′
z. (13.21)

where primes denote ∂
∂r

and dots denote ∂
∂t

. As advertised, the action depends only

on derivatives of φ and Az and hence produces two “constants of motion”, δSD7
δφ′

and δSD7
δA′

z
. We may thus solve for φ′ and A′

z and obtain an action for R(r) only. We

may do so in several ways. One is to solve for φ′ and A′
z, derive R(r)’s equation of

motion from SD7, and then plug the solutions for φ′ and A′
z into that. Alternatively,

we can plug the solutions directly into SD7, perform a Legendre transform with
respect to both φ′ and A′

z, and then derive R(r)’s equation of motion. We may
also proceed in stages, for example by solving for and Legendre-transforming with
respect to one only and then repeating the process for the second. The simplest
approach turns out to be solving for φ′ first and then for A′

z.

6We work in Ar = 0 gauge. Recall also that our B includes a factor of (2πα′)∝ λ−1/2.
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The equation of motion for φ′ is

δSD7

δφ′

= −N g
3/2
SS g

3/2
xx

√

1 + B2

g2
xx

× |gtt |gππφ′
√
(|gtt | − gππ π̇2)(grr + gRRR′2 + gxxA′2

z )+ |gtt |gπππ ′2

≡ α, (13.22)

where α is the first constant of motion. Solving for π ′ we get

φ′2 = α2

|gtt |gππ
(|gtt | − gππ π̇

2)(grr + gRRR
′2 + gxxA′2

z )

N 2g3
xxg

3
SS |gtt |gππ (1 + B2

g2
xx
)− α2

. (13.23)

Next we Legendre transform with respect to φ′,

ŜD7 = ŜDBI + ŜWZ = SD7 −
∫

dr φ′ δSD7

δφ′ . (13.24)

Notice that SWZ does not participate here, ŜWZ = SWZ , so we focus on SDBI ,

ŜDBI = SDBI −
∫

dr φ′ δSDBI

δφ′ ,

= −N

∫
dr g

3/2
SS g

3/2
xx

√
|gtt | − gππ π̇2

√
grr + gRRR′2 + gxxA′2

z

×
√

1 + B2

g2
xx

− α2/N 2

|gtt |gππg3
xxg

3
SS

. (13.25)

The equation of motion for A′
z is then

δŜD7

δA′
z

= δŜDBI

δA′
z

+ δŜWZ

δA′
z

≡ β, (13.26)

where β is the second constant of motion. The two terms in β are

δŜDBI

δA′
z

= −N g
3/2
SS g

3/2
xx

√
|gtt | − gππ π̇2

gxxA′
z√

grr + gRRR′2 + gxxA′2
z

×
√

1 + B2

g2
xx

− α2/N 2

|gtt |gππg3
xxg

3
SS

, (13.27)
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δŜWZ

δA′
z

= −N Bωg2
SS. (13.28)

We now solve for A′
z,

A′
z=

(β + N Bωg2
SS)gxx

√
grr + gRRR′2

√
N 2g3

xxg
3
SS(|gtt |−gππ π̇2)(1+ B2

g2
xx

− α2/N 2

|gtt |gππg3
xxg

3
SS

)−gxx(β+N Bωg2
SS)

2

.

(13.29)
Finally, we Legendre transform with respect to A′

z,

ˆ̂
SD7 = ŜD7 −

∫
drA′

z

δŜD7

δA′
z

=−N

∫
dr

√
grr + gRRR′2

×
√√
√√g3

xxg
3
SS

(|gtt |−gππ π̇2
)(

1+ B2

g2
xx

− α2/N 2

|gtt |gππg3
xxg

3
SS

)
−gxx

(
β

N
+Bωg2

SS

)2

.

(13.30)

We can derive R(r)’s equation of motion from this final form of the action, although
is it cumbersome and unilluminating, so we will not present it.

We can now explain how to extract field theory information from bulk solutions.
The fields have the following near-boundary asymptotic expansions:

R(r) = c0 + c2

r2
+ 1

2
c0ω

2 log r

r2
+O

(
log r

r4

)
, (13.31)

φ(t, r) = ωt + α

2N c3
0

(
c0

r2
− c2 + 1

8c0ω
2

r4
− 1

2
c0ω

2 log r

r4

)
+O

(
log r

r6

)
, (13.32)

Az(r) = cz + 1

2

β

N +Bω

r2
− 1

2

c2
0Bω

r4
+O

(
1

r6

)
, (13.33)

where c0, c2, and cz are constants.
In each case the leading term acts as a source for the dual operator. c0 is the

asymptotic separation between the original D3-branes and the D7-branes, so the
magnitude of the mass is c0 times the string tension, |m| = c0

2πα′ . The leading term
in φ(t, r), in our case ωt , is the phase of the mass. cz is a source for J z, equivalent to
the Az component of an external gauge field. In our case we may safely set cz = 0.

The coefficients of the sub-leading terms determine the expectation values of the
dual operators. The exact relations follow from the holographic dictionary, which
equates the on-shell bulk action with minus the generating functional of the field
theory. Both the on-shell bulk action and the field theory generating functional are
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divergent, and require renormalization. Using standard techniques of holographic
renormalization [64, 65], we find for 〈Om〉

〈Om〉 =
(
2πα′)N

(
−2c2 − 1

2
ω2c0 − 1

2
ω2c0 ln c2

0

)
. (13.34)

Factors of the AdS radius, which we have set to one, make the argument of the
logarithm dimensionless.7 For the other operators we find

〈Oφ〉 = α,
〈
J z

〉=−(
2πα′)β. (13.35)

As shown in the last section, when |m| is nonzero the operators Om and Oφ

depend explicitly on time. In our solutions c0, c2, and α will be time-independent
constants, however, so the expressions above are only consistent for nonzero |m| if
the state in which we evaluate 〈Om〉 and 〈Oφ〉 has time dependence that cancels the
time-dependence of the operators. Our configurations correspond then to a steady
state.

Notice that 〈Om〉, 〈Oφ〉, and 〈J z〉 are all of different orders in the large-Nc and
large-λ counting. 〈Om〉 is of order (2πα′)N ∝√

λNfNc times factors of order one
in the large-Nc and large-λ counting, such as c0 and c2. In contrast, 〈Oφ〉 = α, where
from (13.22) we see that α is of order N ∝ λNfNc times factors of order one, so
〈Oφ〉 is bigger than 〈Om〉 by a factor of

√
λ. Recall, however, that Oφ is |m| times

a dimension three operator. Using |m| = c0
2πα′ ∝

√
λc0, we see that if 〈Oφ〉 scales

as λNfNc then the expectation value of the dimension three operator must scale as
〈Oφ〉/|m| ∝ √

λNfNc. The expectation values of the two dimension three operators,
〈Om〉 and 〈Oφ〉/|m|, thus have the same scaling. On the other hand we have 〈J z〉 ∝
α′β . From (13.27) we see that in terms of large-Nc and large-λ counting β ∝ N A′

z.
Recall that we have absorbed a factor of (2πα′) into A′

z. If we extract that factor,
then we find β ∝ (2πα′)N ∝√

λNfNc and hence 〈J z〉 = −(2πα′)β ∝NfNc. We
thus find that 〈J z〉’s normalization is independent of the coupling λ. That is not
surprising. 〈J z〉 is our chiral magnetic current, whose normalization is fixed by the
U(1)AU(1)2V anomaly, and so is determined by the U(1)A and U(1)V charges, not
the ’t Hooft coupling.

The massless limit |m| → 0, or equivalently c0 → 0, is subtle. For one thing,
in that limit the phase of the mass becomes ill-defined. Moreover, in that limit we
see from φ(t, r)’s asymptotic expansion in (13.32) that α must also vanish, since
otherwise the coefficients of the r-dependent terms in φ(t, r)’s expansion would
diverge. The vanishing of α in that limit makes sense, since α = 〈Oφ〉 and we know
from Sect. 13.2 that 〈Oφ〉 ∝ |m|. As mentioned in Sect. 13.2, in our system 〈Oφ〉
is an order parameter for spontaneous CT breaking, so the vanishing of 〈Oφ〉 as
|m| → 0 suggests that CT will always be restored in that limit. We must be cautious,

7At first glance, the 〈Om〉 in (13.34) appears to diverge in the flavor decoupling limit c0 ∝ |m| →
∞, which is counter-intuitive. Both the analytic argument in the appendix of Ref. [57] and numer-
ical calculations confirm that in fact 〈Om〉→ 0 in that limit.
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however, since the expectation value of the dimension three operator 〈Oφ〉/|m| need
not vanish as |m| → 0, so CT could still be broken. We will argue in Sect. 13.3.2
that it actually is restored in the states we consider.

Lastly, the R-charge density appears in the bulk as the angular momentum of the
D7-brane. In what follows we will not compute the R-charge density or 〈Om〉, rather
our focus will be on 〈Oφ〉 and 〈J z〉. We will only care whether the R-charge density
is zero or not. To determine that we only need to know whether the embedding R(r)
is nonzero or not: if R(r)= 0 then the D7-brane has no angular momentum, while
if R(r) is nonzero then the D7-brane has angular momentum. That is clear from the
original D3/D7 construction, since if R(r)= 0 then the D7-brane is not extended at
all in the (x8, x9)-plane and so cannot have angular momentum.

13.3.1 Solutions at Zero Temperature

Our goal now is to solve R(r)’s equation of motion, derived from (13.30), numeri-
cally in the pure AdS background dual to the zero-temperature vacuum of N = 4
SYM.

Let us first quickly review what happens when B and ω are zero. Here we have
no time-dependent phase for the flavor mass, and we expect no current, so we also
set φ and Az to zero. The induced metric on the D7-brane is then8

ds2
D7 = ρ2(−dt2 + dx2)+ 1

ρ2

(
dr2(1 +R′2)+ r2 ds2

S3

)
, (13.36)

where ρ2 = r2 +R2, and the action becomes

SD7 =−N

∫
dr r3

√
1 +R′2. (13.37)

Inside the square root factor appearing in the action is a sum of squares, hence
the action will be extremized only when R′ = 0, or in other words when the so-
lution is constant R = c0. These solutions describe flavor fields with an N = 2
supersymmetry-preserving constant mass. N = 2 supersymmetry demands that
〈Om〉 = 0, which is indeed the case for these solutions, which have c2 = 0 and
hence via (13.34) 〈Om〉 = 0.

The D7-brane is always extended along r from the boundary r = ∞ to r = 0,
however for these constant solutions the D7-brane does not fill all of AdS5. At the
boundary the D7-brane wraps the maximum-volume equatorial S3 inside the S5,
but as it extends into AdS5, to smaller r , the S3 shrinks and eventually collapses to
zero size at the “North pole” of the S5, which occurs when r = 0. Recalling that
the radial coordinate of AdS5 is not r but ρ = √

r2 +R2, we see that at r = 0 the

8Starting now we suppress the r dependence in R(r) for notational clarity, R(r)→R, unless stated
otherwise.



13 A Chiral Magnetic Effect from AdS/CFT with Flavor 357

D7-brane has only reached ρ = c0: from the perspective of an observer in AdS5 the
D7-brane simply ends at that point. The trivial solution R = 0 describes massless
flavors. In that case the D7-brane fills all of AdS5.

Notice that R = c0 is a smooth solution because R′(0)= 0, that is, the slope of
R is zero when the S3 collapses at r = 0. If that does not occur then we see from
(13.36) that the D7-brane will have a conical singularity at r = 0. The regularity
condition R′(0) = 0 remains true when B and ω are nonzero. In what follows we
will find solutions for which R′(0) is nonzero and hence the D7-brane develops a
conical singularity at r = 0.

Now let us introduce a nonzero B , with φ and Az still zero [66–69]. Roughly
speaking a nonzero B “pushes” the D7-brane toward the boundary. More precisely,
suppose we fix c0 ∝ |m| = 0. Here an infinite number of solutions appear, of which
only one is the trivial solution R(r)= 0. The key question then is which solution has
the smallest on-shell action and hence is physically preferred? A numerical analysis
reveals that the trivial solution is not the preferred one: that honor is reserved for a
nontrivial R(r) [66–69]. In fact, as we increase B the position where the D7-brane
ends, ρ =R(0), increases. Physically, the nonzero B causes the D7-brane to “bend”,
and increasing B pushes the endpoint of the D7-brane closer to the boundary. No-
tice what that means in the field theory: the preferred solution, being nontrivial,
necessarily has a nonzero c2, which from (13.34) indicates a nonzero 〈Om〉, hence
chiral symmetry is spontaneously broken. The general lesson is that in our system a
nonzero B promotes D7-brane bending, or in field theory language chiral symmetry
breaking. The same remains true at nonzero c0, although in that case c0 explicitly
breaks chiral symmetry.

Now let us return to nonzero B , φ, and Az, and follow the arguments of
Refs. [56–60]. The induced D7-brane metric is now

ds2
D7 = gD7

t t dt2 + 2gD7
tr dt dr + gD7

rr dr2 + ρ2 dx2 + r2

ρ2
ds2

S3, (13.38)

gD7
t t = ρ2

(
−1 + ω2R2

(r2 +R2)2

)
, gD7

tr = R2ωφ′

r2 +R2
,

(13.39)

gD7
rr = 1

ρ2

(
1 +R′2 +R2π ′2),

while the Legendre-transformed action in (13.30) is

ˆ̂
SD7 =−N

∫
dr r2

√
1 +R2

×
√(

1− ω2R2

(r2 +R2)2

)(
1+ B2

(r2 +R2)2
− α2/N 2

R2r6

)
− 1

r6

(
β

N
+ Bωr4

(r2 +R2)2

)2

.

(13.40)
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The square root in the second line is of the form9
√
a(r)b(r)− c(r)2 where

a(r)= 1 − ω2R2

(r2 +R2)2
, b(r)= 1 + B2

(r2 +R2)2
− α2/N 2

R2r6
, (13.41a)

c(r)= 1

r3

(
β

N
+ Bωr4

(r2 +R2)2

)
. (13.41b)

Notice that a(r) may change sign between r →∞ and r → 0, but does not necessar-
ily. More specifically, a(r) is always positive at r →∞ and may become negative as
r → 0, depending on the behavior of R(r). For the moment let us suppose that a(r)
does change sign. We will denote the value of r where a(r) vanishes as r∗. Upon
taking a(r∗)= 0 and doing some algebra we find the equation for a semicircle,

(
R(r∗)− ω

2

)2

+ r2∗ = ω2

4
, (13.42)

where the radius10 is ω/2 and the center is at (r∗,R(r∗))= (0,ω/2).
In fact, this semicircle is a horizon on the worldvolume of the D7-brane. If we

change coordinates

dt̂ = dt + gD7
tr

gD7
t t

dr, (13.43)

then the induced metric becomes

ds2
D7 = ĝD7

t̂ t̂
d t̂2 + ĝD7

rr dr2 + gxx dx2 + gSS ds
2
S3 , (13.44)

with

ĝD7
t̂ t̂

= gD7
t t , ĝD7

rr = gD7
rr − (gD7

tr )2

gD7
t t

. (13.45)

We then have ĝD7
t̂ t̂

=−ρ2a(r) and hence a(r∗)= 0 implies gD7
t̂ t̂
(r∗)= 0. To under-

stand the appearance of this horizon on the D7-brane, consider a light ray moving in
the φ direction, at fixed values of all other coordinates. The line element for a light
ray is null, hence gtt dt2 + gφφ dφ

2 = 0, which gives us the local speed of light in
the φ direction

dφ

dt
=

√
|gtt |
gππ

= r2 +R2

R
. (13.46)

9Notice that the Legendre-transformed action here has the same generic form as the Legendre-
transformed D7-brane action with worldvolume electric and magnetic fields used in Ref. [70] for a
holographic calculation of a Hall conductivity associated with the U(1)V symmetry. The similarity
is not surprising, given the similarity between rotation and worldvolume electric fields due to T-
duality, as explained above. Many of our arguments below are similar to those made in Ref. [70].
10Recall that we are using units in which the AdS5 radius is L≡ 1.
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Clearly when ω is large enough to make a(r) < 0 the D7-brane is moving faster
than the local speed of light at that value of r , and a worldvolume horizon appears.
Formally we can associate a temperature with the worldvolume horizon, indicating
that in the field theory the flavor sector has a finite temperature while the adjoint
sector has T = 0, which is a clear signal that our system is not in equilibrium.

If a(r) changes sign but b(r) does not, then a(r)b(r)− c(r)2 < 0 for some r <

r∗ and because of the square root ˆ̂
SD7 becomes imaginary, signaling a tachyonic

instability as explained above. To avoid the instability we demand that b(r∗) = 0
also. Furthermore, as a(r) and b(r) approach zero, c(r) must approach zero more
quickly, otherwise we again encounter an instability. We thus also impose c(r∗)= 0.

The condition a(r∗) = 0 fixes the worldvolume horizon while the conditions
b(r∗) = 0 and c(r∗) = 0 fix the two integration constants α and β , or equivalently
via (13.35) 〈Oφ〉 and 〈J z〉. In other words, for given values of |m|, ω, and B , regu-
larity of the bulk solution determines unique values of the one-point functions 〈Om〉,
〈Oφ〉, and 〈J z〉, as is standard in AdS/CFT. Explicitly, we find

α =−N R(r∗)r3∗

√

1 + B2

ω2R2(r∗)
, β =−N

Bωr4∗
(R2(r∗)+ r2∗ )2

. (13.47)

Using a(r∗)= 0 we can also express α and β in terms of R(r∗) alone,

α =−N R(r∗)3/2
∣∣R(r∗)−ω

∣∣3/2

√

R(r∗)2 + B2

ω2
, β =−N

B

ω

(
R(r∗)−ω

)2
.

(13.48)
The D7-brane does not always develop a worldvolume horizon. What happens

when it does not? In that case a(r) > 0 for all values of r . If α is nonzero then b(r)
will change sign, rendering the action imaginary, so we demand α = 0. In addition
if β is nonzero then again the action becomes imaginary because a(r)b(r) goes
as 1/r4 as r → 0 while c(r)2 goes like β2/r6, so clearly

√
a(r)b(r)− c(r)2 will

become imaginary at sufficiently small r . We thus also demand β = 0 for these
solutions.

We thus have two classes of D7-brane embeddings, those with a worldvolume
horizon and those without. The former have nonzero α and β , or in the field theory
nonzero 〈Oφ〉 and 〈J z〉, hence these solutions describe a CME with CT sponta-
neously broken. The latter have α = 0 and β = 0 and hence no CME.

An exceptional case is the trivial solution R(r)= 0 and φ(t, r)= ωt , correspond-
ing to a chirally-symmetric state with |m| = 0 and 〈Om〉 = 0. That solution has no
worldvolume horizon, yet from (13.48) we see that although α vanishes, β must be
nonzero to maintain reality of the action. Recalling that B = (2πα′)B̃ , where B̃ is
the value of the magnetic field in the field theory (see above (13.20)), we find for
the trivial solution

β =−(
2πα′)N B̃ω. (13.49)
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Using (13.7), (13.20), and (13.35) to translate to field theory quantities, we find

〈
J z

〉= NfNc

2π2
μ5B̃, (13.50)

which is the value fixed by the anomaly, as expected in the chirally-symmetric case.
We hasten to add three things. First, we will see that (13.50) is unchanged at finite
temperature, where the trivial solution remains a valid solution. Second, the trivial
D7-brane has no angular momentum, so the corresponding field theory state has
zero axial charge density, despite having nonzero μ5 with zero mass gap, |m| = 0.
Third, because the anomaly’s contribution to 〈J z〉 does not contain much dynamical
information, will isolate the more interesting dynamical contributions by writing the
〈J z〉 in (13.35) as

〈
J z

〉=−(
2πα′)β = NfNc

(2π)2
B̃ω

( −β
(2πα′)N B̃ω

)
. (13.51)

The factor in parentheses in the final equality contains the non-trivial dynamical in-
formation. From (13.47) we see that β ∝ (2πα′)N B̃ω, so the factor in parentheses
also does not depend explicitly on the magnetic field, although it will depend im-
plicitly through the embedding. Notice that the current is always proportional to B ,
as we expect for the CME.

To produce numerical solutions for the two classes of D7-brane embeddings, we
must specify boundary conditions. The equation of motion for R(r) is a second-
order non-linear ordinary differential equation, for which we need two boundary
conditions on R(r). Solutions without worldvolume horizons are the simplest to
produce. For these we set α = 0 and β = 0, choose a value of R(0) greater than ω/2
to avoid a worldvolume horizon, and then impose R′(0)= 0 to guarantee regularity.
Solutions with worldvolume horizons are trickier to obtain,11 since the equation of
motion itself depends on the values of α and β , or equivalently on r∗ and R(r∗),
so we must choose these before we can solve the equation of motion. For these
solutions we first choose a point on the semicircle in (13.42), which fixes the values
of α and β via (13.48). We then obtain a condition on the first derivative at that
point, R′(r∗), from the equation of motion itself. We omit the explicit form, which
is unilluminating. With these boundary conditions we can solve the equation of
motion both inside the worldvolume horizon and outside. Notice that in these cases
the value of R′(0), which determines whether the D7-brane has a conical singularity
at r = 0, is an output of the calculation. Figure 13.1 shows numerical solutions for
R(r) for various values of |m|, ω, and B .

Our first observation is that for all solutions with a worldvolume horizon R′(0)
is nonzero, so in our system at zero temperature all non-trivial solutions describing

11Solutions with nonzero B and worldvolume horizons but with Az(r) = 0 were obtained in
Ref. [57]. These solutions are in fact unphysical, since an ansatz with Az(r) = 0 is inconsistent:
in Ref. [57] the WZ term in (13.21) was omitted, but the presence of that term necessitates the
introduction of Az(r). All other solutions in Ref. [57] besides these are consistent.
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Fig. 13.1 Numerical D7-brane embeddings R(r) for T = 0 and ω = 1 for various values of B ,
in units of the AdS5 radius. The red semi-circle denotes the worldvolume horizon of (13.42).
(a) B = 1. (b) B = 5. (c) B = 10. (d) B = 20. The asymptotic value of R(r) as r → ∞ (the
far right in each plot) is the coefficient c0 in (13.31), which is proportional to the flavor mass |m|.
The different classes of solutions, and their behavior as functions of B and |m|, are discussed in
the accompanying text (Color figure online)

the CME have a conical singularity. In fact, for these solutions the on-shell action
exhibits a divergence at r = 0, taking us outside of both the probe and supergrav-
ity limits, so strictly speaking we should not trust these solutions. Nevertheless, in
Sect. 13.4 we will argue that the singularities are physically sensible, being inti-
mately related with the time rates of change of axial charge and of energy in the
field theory.

Our second observation is that all solutions with a worldvolume horizon have
nonzero |m|. That makes sense, since these solutions have nonzero α, and hence
must have nonzero |m|, as described above. Only solutions with α = 0 can describe
|m| = 0. That class of solutions includes the trivial one R(r) = 0 as well as non-
trivial solutions without worldvolume horizons.

From Fig. 13.1 we can deduce the general behavior of solutions as we increase
|m| or B , as follows. Suppose we fix ω and B , i.e. we choose one of Figs. 13.1(a)
through (d), and then begin with some c0 ∝ |m| that is nonzero but much smaller
than ω or

√
B , such that the solution is very close to the trivial R(r)= 0 solution.

As we increase |m|, clearly the endpoint R(0) also increases. For sufficiently large
|m| the worldvolume horizon will disappear, at which point α and β vanish. Alter-
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Fig. 13.2 (a) The value of 〈J z〉, divided by the anomaly-determined value in (13.50), as a function
of the flavor mass divided by the axial chemical potential, |m|/μ5. Here we set the magnetic
field B = 1 and ω = 2μ5 = 1 (in units of the AdS5 radius). The different curves correspond to
different temperatures T = γ /π , with green solid, yellow dotted, red dot-dashed, and blue dashed
corresponding to γ = 0,0.5,1,2, respectively. (b) The pseudo-scalar condensate 〈Oφ〉/N versus
|m|/μ5, with B = 1 and ω= 2μ5 = 1, for the same temperatures as in (a) (Color figure online)

natively, suppose we fix ω and c0 ∝ |m|, and then increase B . Now in Fig. 13.1 we
are choosing the value of a curve at the far right and then moving through the figures
from (a) to (d). Again we see that for sufficiently large B the worldvolume horizon
will disappear.12 The corresponding field theory statements are that increasing |m|
or B eventually restores CT and extinguishes the CME, since eventually 〈Oφ〉 = 0
and 〈J z〉 = 0. The general lesson is that chiral symmetry breaking, whether explicit
via |m| or spontaneous via B , acts against the CME in our system.

Our main result in this section is Fig. 13.2. The green solid curve in Fig. 13.2(a)
shows the exact behavior of 〈J z〉, normalized to the value in (13.50), as we in-
crease |m|/μ5, and the green curve in Fig. 13.2(b) shows the same for 〈Oφ〉/N . At
|m| = 0, 〈J z〉 takes the value determined by the anomaly, while 〈Oφ〉 = 0. Increas-
ing |m|/μ5, 〈J z〉 decreases monotonically and eventually reaches zero, while 〈Oφ〉
increases, reaches a maximum, and then drops to zero. We omit the curves for 〈J z〉
and 〈Oφ〉 versus

√
B/μ5, which are qualitatively similar to those in Fig. 13.2.

13.3.2 Solutions at Finite Temperature

We now want to solve R(r)’s equation of motion numerically in the AdS-
Schwarzschild background, corresponding to an N = 4 SYM plasma at temper-
ature T .

12From Fig. 13.1(d) we also see that for some D7-branes without a worldvolume horizon, R(r)
passes through zero for sufficiently large B . Such behavior has been observed many times for D7-
branes with worldvolume magnetic field: see for example Refs. [66, 69]. As argued in Ref. [69],
these solutions have a sensible interpretation in the field theory as a renormalization group flow,
although in equilibrium they are not always the lowest-energy solutions. These D7-branes do not
describe a CME and so are of less interest to us than D7-branes with worldvolume horizons.
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Before doing so, let us briefly review what occurs when ω = 0 and B = 0, i.e.
when the worldvolume gauge field and φ vanish, summarizing Refs. [71–76]. The
main difference from the zero-temperature, pure AdS5 case is the presence of the
AdS-Schwarzschild horizon, which divides D7-brane solutions into two categories.
The first are similar to those in pure AdS5, namely D7-branes for which the S3

shrinks and eventually collapses to zero size at some value of ρ outside the AdS-
Schwarzschild horizon. The second category consists of D7-branes for which the
S3 shrinks but does not reach zero size by the time the D7-brane intersects the AdS-
Schwarzschild horizon. In the current context, solutions in the first category are
called “Minkowski” embeddings while solutions in the second category are called
“black hole” embeddings. In Euclidean signature, with compact time direction of
period 1/T , the time circle collapses to zero size at the horizon. The two types
of D7-brane solution thus have distinct topology: Minkowski embeddings have a
collapsing three-cycle, the S3, while black hole embeddings have a collapsing one-
cycle, the time circle. For Minkowski embeddings the condition to avoid a conical
singularity when the S3 collapses is R′(0) = 0, while the condition for black hole
embeddings to avoid a singularity is that in the (r,R) plane the D7-brane must be
perpendicular to the AdS-Schwarzschild horizon.

When ω and B both vanish, the theory has one physically meaningful dimen-
sionless parameter, T/|m|. Suppose we fix T/|m| such that we have a Minkowski
embedding and then increase T/|m|, say by holding |m| fixed but increasing T . In
the bulk the AdS-Schwarzschild horizon will grow and move toward the boundary,
eventually encountering the D7-brane. The D7-brane solution then becomes a black
hole embedding. Such a process involves a change in topology, so we have reason to
expect that in general any observable associated with the flavor fields in the field the-
ory will exhibit discontinuous behavior. Indeed, the bulk transition from Minkowski
to black hole embedding appears in the field theory as a first-order phase transition
[71–76].

Perhaps the most dramatic change in that transition occurs in the spectrum of
D7-brane excitations, dual to the spectrum of mesons. For a Minkowski embed-
ding the fluctuations of worldvolume fields are normal modes, i.e. standing waves
trapped between the AdS5 boundary and the endpoint of the D7-brane. That trans-
lates into a field theory meson spectrum that is gapped and discrete [62]. For a black
hole embedding the worldvolume fluctuations are quasi-normal modes, that is, the
eigenfrequencies acquire an imaginary part. Physically, these fluctuations can leak
energy into the AdS-Schwarzschild horizon and hence are damped. In the field the-
ory the meson spectrum is gapless and continuous. The transition between the two
is thus a kind of “meson melting” transition [77].

Introducing nonzero B , still keeping ω = 0, qualitatively has the same effect as
in the pure AdS5 case: increasing B pushes the D7-brane toward the boundary. If
we start with a black hole embedding, for example, and keep T/|m| fixed while in-
creasing B/|m|2, eventually a transition occurs to a Minkowski embedding [66–69].

Now consider nonzero |m|, T , B , and ω. The induced D7-brane metric is then

ds2
D7 = gD7

t t dt2 + 2gD7
tr dt dr + gD7

rr dr2 + ρ2 γ
2

2
H(ρ)dx2 + r2

ρ2
ds2

S3 , (13.52)
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where gD7
tr and gD7

rr are the same as in (13.39) but

gD7
t t = ρ2

(
−γ 2

2

f (ρ)2

H(ρ)
+ ω2R2

(r2 +R2)2

)
, f (ρ)= 1− 1

ρ4
, H(ρ)= 1+ 1

ρ4
,

(13.53)
and we recall that ρ2 = r2 + R2, the AdS-Schwarzschild horizon is at ρ = 1, and
the temperature is T = γ /π in our conventions. The location of the D7-brane’s
worldvolume horizon r∗ is now given by

γ 2

2

f (ρ∗)2

H(ρ∗)
− ω2R(r∗)2

(r2∗ +R(r∗)2)2
= 0, (13.54)

or equivalently

f (ρ∗)2 = 2H(ρ∗)
γ 2

ω2R(r∗)2

(r2∗ +R(r∗)2)2
. (13.55)

Clearly the D7-brane worldvolume horizon is always outside of the AdS-
Schwarzschild horizon, since f (ρ∗) > f (ρ = 1) = 0. If ω/γ ∝ μ5/T → 0 then
ρ∗ → 1 and the two horizons coincide. At fixed mass, we may think of the
μ5/T → 0 limit either as small μ5 at fixed T or large T at fixed μ5.

The physical arguments of the last subsection for the reality of the action are
unchanged. Applying those arguments to fix α and β we find

α =−N
γ 4

4
R(r∗)r3∗f (ρ∗)H(ρ∗)

√

1 + 4B2

γ 4(R(r∗)2 + r2∗ )2H(ρ∗)2
,

(13.56)

β =−N Bω
r4∗

(R(r∗)2 + r2∗ )2
.

In AdS-Schwarzschild our D7-brane solutions fall into three categories. The first
two are the straightforward generalizations of the categories of the last subsection:
Minkowski embeddings without worldvolume horizons and Minkowski embeddings
with worldvolume horizons. The new category consists of black hole embeddings,
which necessarily have worldvolume horizons, as explained above. As in the last
subsection, solutions without a worldvolume horizon describe field theory states
with no CME and no spontaneous breaking of CT, while solutions with a worldvol-
ume horizon, whether Minkowski or black hole, describe field theory states with a
CME and spontaneous breaking of CT.

The trivial solution R(r)= 0 falls into the third category of embeddings, since it
necessarily intersects the AdS-Schwarzschild horizon. From (13.56) we see that for
the trivial solution α = 0 and β takes the value in (13.49), so 〈J z〉 again takes the
value in (13.50), hence we see that the value of 〈J z〉 in the chirally-symmetric case,
being fixed by the anomaly, is independent of temperature.

For Minkowski embeddings the procedure to generate numerical solutions is the
same as in the last subsection. In particular, for solutions with a worldvolume hori-
zon we first choose a point on the worldvolume horizon and then use the equation of
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Fig. 13.3 Numerical D7-brane embeddings R(r) for ω= 1 and γ = 1, corresponding to a temper-
ature T = γ /π = 1/π , for various values of B , in units of the AdS5 radius. The red quarter-circle
represents the AdS-Schwarzschild horizon while the other red curve (the near-quarter-circle) de-
notes the worldvolume horizon of (13.54). (a) B = 0. (b) B = 1. (c) B = 10. (d) B = 50. The
different classes of solutions, and their behavior as functions of B , |m|, and T , are discussed in the
accompanying text (Color figure online)

motion to determine the first derivative. We use the latter procedure for black hole
embeddings too, since these necessarily have a worldvolume horizon. Notice that
when we impose boundary conditions at the worldvolume horizon, the behavior of
R(r) and its derivative at r = 0 or at the AdS-Schwarzschild horizon, which deter-
mines whether the solution has a conical singularity, is an output of the calculation.

Figure 13.3 shows numerical solutions for R(r) for various values of |m|, ω, B ,
and T . The results for Minkowski embeddings are similar to those of the last sub-
section. In particular, Minkowski embeddings with a worldvolume horizon have a
nonzero R′(0) and hence a conical singularity. The black hole embeddings, how-
ever, do not have such a conical singularity: as Fig. 13.3 suggests, and numerical
analysis confirms, in the (r,R) plane depicted the D7-brane “hits” the black hole
horizon perpendicularly.

Many of the conclusions from our T = 0 analysis remain valid at finite tem-
perature. All solutions with nonzero α have nonzero c0 ∝ |m|. The worldvolume
horizon eventually disappears as we increase |m| or B: chiral symmetry breaking
works against the CME in our system.

Figure 13.2(a) shows the chiral magnetic current 〈J z〉, normalized to the
anomaly-determined value in (13.50), versus |m|/μ5 for B = 1 and several values
of T . At higher T the chiral magnetic current can persist to higher values of |m|/μ5
before dropping to zero. Figure 13.2(b) shows 〈Oφ〉/N versus |m|/μ5 for B = 1
and the same values of T as in Fig. 13.2(a). The qualitative behavior of the pseudo-
scalar condensate is similar to the T = 0 case, increasing, reaching a maximum,
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and then dropping to zero as we increase |m|/μ5. At higher T , the maximum of the
condensate is larger, and the condensate also persists to higher values of |m|/μ5.

As mentioned above, seeing 〈Oφ〉 → 0 as |m| → 0 is not enough to conclude
that CT is restored in that limit. Oφ is |m| times a dimension three operator, and the
expectation value of that operator could remain finite as |m| → 0. For the states we
consider, we can argue that the expectation value of the dimension three operator
vanishes as |m| → 0 as follows. In the limit |m| → 0 we expect the solution to ap-
proach the constant one R(r)≈ c0 ∝ |m|, and we expect the worldvolume horizon
to approach the AdS-Schwarzschild horizon, so ρ∗ ≈ 1. Inserting these approxima-
tions into (13.54) we find f (ρ∗)� |m|ω/γ , and then from (13.56) we find α ∝ |m|2,
so 〈Oφ〉 vanishes as |m|2 as |m| → 0, indicating that the dimension-three operator
〈Oφ〉/|m| vanishes as |m|. We have confirmed that our numerical results for 〈Oφ〉 in
Fig. 13.2(b) behave as |m|2 as |m| → 0.

For black hole embeddings we expect the spectrum of worldvolume excitations
will be gapless and continuous, as in the ω = 0 case. We expect the same for
Minkowski embeddings with a worldvolume horizon: fluctuations of worldvolume
fields will “see” the worldvolume horizon as a genuine horizon, and hence we ex-
pect them to behave in a fashion similar to those of black hole embeddings.13 More
specifically, since we can associate a temperature with the worldvolume horizon,
we expect the solutions for linearized fluctuations to translate into field theory two-
point functions with a form characteristic of thermal diffusion at that temperature
[59]. Moreover, in the bulk the worldvolume and AdS-Schwarzschild horizons gen-
erally will not coincide, so the worldvolume temperature will generally be different
from the N = 4 SYM plasma temperature. As mentioned in Sect. 13.3.1, this is a
clear signal that the system is not in equilibrium.

13.4 Loss Rates of Axial Charge and of Energy

As mentioned above, when |m| is finite our system in not in equilibrium: axial
charge can leak into the adjoint sector, taking energy with it. In this section we
will compute the loss rate of axial charge in our system, as well as the loss rate of
the energy density, or more precisely the expectation value of the “tt” component of
the stress-energy tensor (density), 〈Ttt 〉. We compute these loss rates both in field
theory and from holography, following Refs. [59, 80], with perfect agreement. We
will also explain how the states we study remain stationary despite these loss rates,
and how the nonzero loss rates might be related to the singularities in some of the
D7-brane solutions of Sects. 13.3.1 and 13.3.2.

In our system, axial current conservation can be violated in three ways. The first
way is explicitly via a nonzero |m|. The second way is due to anomalies. The third
way is due to the fact that the axial symmetry is part of the R-symmetry, so that an

13A gapless, continuous spectrum appears in the presence of a worldvolume electric field, which
is closely related to rotation via T-duality as we argued above [78, 79].
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axial charge density introduced in the flavor sector alone can leak into the adjoint
sector. From the field theory point of view, axial charge can be lost to the adjoint
sector in two ways, depending on whether mesons are melted or not. The equiva-
lent bulk statement is that D7-brane angular momentum can be lost in two ways,
depending on whether the D7-brane has a worldvolume horizon or not.

If mesons are not melted, then the loss of R-charge occurs when mesons radiate
R-charged glueballs. In the ’t Hooft limit the interactions of color singlet mesons
and glueballs are suppressed, so we expect the loss of R-charge to the adjoint sector
not to be apparent in that limit. The dual statement is that a D7-brane with angu-
lar momentum but no worldvolume horizon can only lose angular momentum via
radiation of closed strings, but the relevant interaction is proportional to the string
coupling gs ∼ 1/Nc and so is suppressed in the classical supergravity limit, where
gs → 0.

If mesons are melted, then the spectrum in the flavor sector is no longer just
delta-functions representing color-singlet mesons, but a continuum of modes whose
interactions with the adjoint fields experience no large-Nc suppression. The dual
statement is that a D7-brane with angular momentum and a worldvolume horizon
(whether a Minkowski or black hole embedding) can transfer angular momentum
across the horizon even in the supergravity limit.

We will now confirm explicitly the above expectations by computing the time
rate of change of axial/R-charge. We begin with the field theory calculations. For
the rate of change of R-charge we just need to compute a Ward identity. Since an
R-symmetry transformation is equivalent to a shift in the source, i.e. a shift in the
phase of the flavor mass φ → φ + δφ, we have, using the definition of Oφ in terms
of a variation of minus the field theory action with respect to the phase of the flavor
mass,14

∂μ
〈
J
μ
R

〉= 〈Oφ〉. (13.57)

In our case nothing is changing in space, so we obtain for the time rate of change of
the R-charge density ∂t 〈J tR〉 = 〈Oφ〉. Recall that Oφ ∝ |m|, so a necessary condition
for the rate of change to be nonzero is for |m| to be nonzero. In that case the potential
and therefore the Hamiltonian are time-dependent, so the energy density will also
not be conserved. Recalling the definitions of the potential terms Vq and Vψ from
Sect. 13.2, the change in energy density is

∂t 〈Ttt 〉 = ∂t 〈Vq + Vψ 〉 = 〈Oφ〉∂tφ, (13.58)

where the second equality follows from the chain rule. In our case ∂tφ = ω, and we
just saw that 〈Oφ〉 = ∂t 〈J tR〉, so for our system

∂t 〈Ttt 〉 = ω∂t
〈
J tR

〉
. (13.59)

14The variation of the path integral is
∫
d4x〈− 1

2 ∂μδφψγ
μγ 5ψ −Oφδφ〉. Integrating by parts and

demanding that the variation vanish for any δφ, we find the relation in (13.57).
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The two rates of change are directly proportional. As expected, when R-charge leaks
into the adjoint sector, it takes energy with it.

We now turn to the bulk calculation of the same rates of change. The canonical
momentum associated with the worldvolume scalar φ, which we denote πM

φ , is15

πM
φ ≡ δSD7

δ(∂Mφ)
, ∂Mπ

M
φ = 0. (13.60)

The second equation is just the φ equation of motion. The probe flavor contribution
to the expectation value of the axial or R-symmetry current in the field theory direc-
tions (i.e. M = μ), JμR , is the integral of πμ

φ over the worldvolume of the brane.16

〈
J
μ
R

〉=
∫ ∞

rH

dr π
μ
φ . (13.61)

For concreteness we have written the lower endpoint of the r integration as rH ,
as appropriate for a black hole embedding. For a Minkowski embedding the lower
endpoint is r = 0. The R-charge density 〈J tR〉 is given by the angular momentum
of the D7-brane, 〈J tR〉 =

∫∞
rH

dr πt
φ . Taking ∂t of the charge density and using the φ

equation of motion in (13.60), we find

∂t
〈
J tR

〉=
∫ ∞

rH

dr ∂tπ
t
φ =−

∫ ∞

rH

dr ∂rπ
r
φ =−πr

φ

∣
∣∞
rH
, (13.62)

where in the second equality we assumed homogeneity, so the derivative of πM
φ

in any field theory spatial direction vanishes. Recalling from (13.22) that πr
φ = α,

which in our system is independent of r , the R-charge density appears to be constant
in time, ∂t 〈J tR〉 = 0. That is indeed true since the states we study are stationary.
The reason why is nontrivial, however: the two terms in the final equality above
cancel one another. The contribution from the lower endpoint represents the angular
momentum that the D7-brane is losing, or equivalently the R-charge that the flavors
are dissipating into the adjoint sector, while the contribution from the upper endpoint
represents angular momentum that we are pumping into the system by hand via a
boundary condition on the D7-brane, since we are forcing the D7-brane to rotate at
the boundary, or equivalently in the field theory R-charge that we are pumping into
the system from an external source. Implicitly in our solutions we choose the latter
precisely to cancel the former. The upshot is that the loss rate is the contribution
from the lower endpoint,

∂t
〈
J tR

〉∣∣
loss = α = 〈Oφ〉, (13.63)

15Uppercase Latin letters M,N, . . . denote (4 + 1)-dimensional bulk coordinates, including the
holographic radial direction, while lowercase Greek letters μ,ν, . . . denote (3 + 1)-dimensional
boundary field theory directions.
16Here we are ignoring any potential divergences that may appear at the r → ∞ endpoint of the
integral, which can be cancelled with counterterms that do not affect our main results.
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in perfect agreement with the field theory Ward identity. Only D7-branes with a
worldvolume horizon have nonzero α, hence in the field theory only states with
melted mesons have a nonzero rate of change for R-charge (in the ’t Hooft limit), in
conformity with our field theory intuition.

To compute the rate of change of the energy density, we need to compute the
stress-energy tensor of the D7-brane. As explained in Ref. [80], we can do that in
two equivalent ways. The first way is directly, by variation of the D7-brane action
with respect to the background metric. The second way is via a Noether procedure.
Although we have used both methods, we will only present the latter, which is more
efficient. Defining a Lagrangian via SD7 = ∫

drL , the stress-energy tensor density
of the D7-brane, in the AdS5 directions, is

ΘM
N = L δMN + 2FLN

δL

δFML

− ∂Nθ
δL

δ∂Mθ
− ∂Nπ

δL

δ∂Mπ
. (13.64)

The D7-brane stress-energy tensor is then the integral of ΘM
N over r . For values

of M and N in field theory directions, we may equate the D7-brane stress-energy
tensor’s components with the flavor fields’ contribution to the expectation value of
the field theory stress-energy tensor [80],

〈
T μ
ν

〉=
∫
dr Θμ

ν . (13.65)

To compute the rate of change of energy density we will only need one component
of the D7-brane stress-energy tensor density, Θr

t =−ω∂L
∂φ′ = −ωα. We proceed in a

similar manner to the calculation of the R-charge rate of change. Using conservation
of the D7-brane stress-energy tensor density, ∂MΘM

N = 0, we find

〈∂tTtt 〉 = −〈∂tT t
t 〉 = −

∫ ∞

rH

dr ∂tΘ
t
t =

∫ ∞

rH

dr ∂rΘ
r
t =Θr

t

∣∣∞
rH

=−ωα∣∣∞
rH
.

(13.66)
The total energy is conserved, but the flux of energy at the boundary and the horizon
is nonzero. The flux at the horizon corresponds to the rate of energy dissipation,

∂t 〈Ttt 〉
∣∣
loss = ωα = ω〈Oφ〉, (13.67)

where α is given by (13.56) and is negative. The holographic calculation reproduces
the relation between energy and charge loss rates,17

∂t 〈Ttt 〉
∣∣
loss = ω∂t

〈
J tR

〉∣∣
loss. (13.68)

The dissipation rate is only of order α ∼ λNfNc. That means that the flavor
sector will only transfer an order N2

c amount of charge into the adjoint sector over a

17For black hole embeddings the loss rates can also be extracted from (suitably regulated) di-

vergences in the angular momentum δSD7
δω

and in the D7-brane stress-energy tensor at the AdS-
Schwarzschild horizon, as explained in Ref. [80].
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time of the order Nc/λ∝ 1/g2
YM � 1. For times parametrically shorter than Nc/λ,

we can ignore the dissipation rate and treat the background as a reservoir, in which
case the stationary solution in the probe limit is a reliable approximation to the actual
solution. This is similar to what occurs with constant electric fields on the D7-brane,
where both energy and momentum (but not angular momentum) are dissipated in the
bulk [80].

Recall that the above analysis is valid for Minkowski embeddings with worldvol-
ume horizon (or for black hole embeddings in the zero-temperature limit) simply by
taking rH → 0. In Sect. 13.3 we saw that such D7-branes have a conical singularity
at r = 0. We can understand this singularity as a consequence of the angular mo-
mentum and energy flux along the brane. When the angular momentum and energy
flowing along the brane reach the “bottom” at r = 0, they must be dumped into some
source, or really a sink. For black hole embeddings that source is hidden behind the
AdS-Schwarzschild horizon, and the part of the D7-brane outside of that horizon
is non-singular. In the absence of the AdS-Schwarzschild horizon, and neglecting
the backreaction of the D7-brane, the source is manifested as the “naked” conical
singularity of the embedding. Something very similar occurs for the holographic
dual of N = 4 SYM formulated on a spatial S3 with R-charge chemical potentials.
Bulk solutions, known as “superstars” (dual to zero-temperature BPS states), exhibit
naked singularities that have a sensible physical interpretation in terms of charged
sources, namely giant gravitons [81].

13.5 Summary and Discussion

We used AdS/CFT to study the CME in large-Nc, strongly-coupled N = 4 SYM
theory coupled to a number Nf �Nc of N = 2 supersymmetric flavor hypermulti-
plets. We introduced a time-dependent phase for the hypermultiplet mass, which for
the hypermultiplet fermions is equivalent to an axial chemical potential, and we in-
troduced an external, non-dynamical U(1)V magnetic field. When the magnitude of
the hypermultiplet mass |m| was zero, we found at both zero and finite temperature
that the chiral magnetic current 〈J z〉 coincided with the weak-coupling result in the
chirally-symmetric limit, (13.50). When |m| was nonzero we found that 〈J z〉 had a
smaller value than (13.50), and also that the U(1)V -invariant and CT-odd pseudo-
scalar operator Oφ acquired a nonzero expectation value. Indeed, our main result
was Fig. 13.2, which shows that for sufficiently large |m| or B , compared to the ax-
ial chemical potential or the temperature, both 〈J z〉 and 〈Oφ〉 drop to zero. In these
cases we interpret the appearance of a chiral magnetic current as the conversion of
the pseudo-scalar condensate to a vector condensate via the magnetic field.

Our holographic system describes the CME only in non-equilibrium states.
Whenever |m| is nonzero, the scalars in the hypermultiplet have masses with time-
dependent phases, hence the Hamiltonian has explicit time dependence and energy
is not conserved. Moreover, in our system the axial symmetry is part of the R-
symmetry, so axial charge in the flavor sector can leak into the adjoint sector, also
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taking energy with it. We computed the associated loss rates, which we found to
be proportional to 〈Oφ〉. When the CME occurs in our system at nonzero |m|, the
flavor fields are losing axial charge and energy to the adjoint sector. In the probe
limit these loss rates are negligible, however, and our states describing a CME were
in fact stationary.18

The supergravity description of the above was Nf probe D7-branes extended
along AdS5 × S3 inside AdS5 × S5, rotating on the S5 and with worldvolume gauge
fields that encode the magnetic field and chiral magnetic current. AdS space is ef-
fectively a gravitational potential well in which the local speed of light decreases
as we move away from the boundary. A D7-brane rotating sufficiently quickly may
at some point be rotating faster than the local speed of light and hence may de-
velop a worldvolume horizon. We saw that indeed D7-brane solutions thus split into
two categories, those that rotate quickly enough to develop a worldvolume horizon
and those that don’t. For the former the D7-brane becomes imaginary, signaling the
presence of a tachyon, unless we introduce certain worldvolume fields and adjust
their integration constants to maintain reality of the action. Via the holographic dic-
tionary these integration constants were precisely the values of 〈J z〉 and 〈Oφ〉. In
the bulk the loss of axial charge and energy appear as the flow of angular momen-
tum and energy across the worldvolume horizon. We found numerically that the
angular momentum and energy flux produces a conical singularity in Minkowski
embeddings with worldvolume horizon at the point where the S3 collapses to zero
size.

Although we focused on D7-branes, the CME can be realized in many similar
flavor brane systems. The basic ingredients are a holographic spacetime with probe
flavor D-branes satisfying two conditions: they describe (3 + 1)-dimensional flavor
fields, and they have at least two transverse directions in which to rotate. An axial
chemical potential, implemented as a time-dependent fermion mass, will be realized
via rotation in a transverse plane, and the axial anomaly will be realized via a WZ
coupling to RR flux in the internal space. A model relevant for applications to QCD
is that of Ref. [83], with flavor D6-branes in the near-horizon geometry of D4-
branes.

From a phenomenological point of view, models of the D3/D7 or D4/D6 type
have advantages and disadvantages when compared to the Sakai-Sugimoto or other
“AdS/QCD” models. Consider first the disadvantages. D3/D7-type models are typ-
ically less similar to large-Nc QCD, for example, non-Abelian chiral symmetries
will generically be explicitly broken by (super)potential terms. Given that the gen-
eral objective of holography is to uncover universal physics, this disadvantage may
not be fatal. Beyond that we suspect that the problems with D7-branes will be
generic: U(1)A charge may leak into the adjoint sector and Minkowski embeddings

18The loss rates are of order 〈Oφ〉 ∝ λNc , and so can be neglected for times shorter than Nc/λ.
Taking into account the change in angular momentum and energy, i.e. computing the back-reaction
of the D7-branes, would probably lead to an expanding horizon [59]. Gravity solutions exhibiting
precisely that behavior have been constructed for external electric fields in Ref. [82].
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describing a CME will likely be singular. On the other hand, the fact that Sakai-
Sugimoto-like models require a source at the horizon to describe the CME suggests
that the same (or similar) problems may appear in those models as well, once the
meaning and effects of the source are clarified. Perhaps the principal advantage
of D3/D7-type models is that the U(1)V current is conserved and gauge invariant
under U(1)V transformations by construction, so among other things comparison
with weak coupling calculations is straightforward. Another advantage is that quark
masses are easy to introduce and the effects of chiral symmetry breaking are easy to
study.

Although our focus was on the CME, our spinning D7-branes without world-
volume horizon may have useful applications as well. When the solution describes
massless flavors, the field theory is in a state with a finite charge density of fermions
with U(1)A spontaneously broken, i.e. superfluid states [57]. These solutions have
no loss of axial charge or energy and no obvious instabilities, at least to leading order
in the 1/Nc expansion, and so deserve further study as models for strongly-coupled,
many-body fermion physics.19

An important task for the future is a complete analysis of linearized fluctuations
of worldvolume fields, to determine whether our solutions are stable. Although we
avoided an obvious instability by demanding reality of the D7-brane action, more
subtle instabilities may exist in the spectrum of worldvolume fluctuations, and in-
deed certain instabilities have been found in very similar systems [60]. Moreover, in
our analysis we assumed homogeneity of the ground state, but in QCD with U(1)A
or U(1)V chemical potentials and a strong magnetic field, in a state with chiral sym-
metry broken, the ground state may be the inhomogeneous “chiral magnetic spiral”
[84]. Such a phase was indeed detected in the Sakai-Sugimoto model via analysis
of linearized fluctuations [85], and a similar analysis should be done for the D3/D7
model.
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is not captured by our classical calculation. From the perspective of the field theory, the meson gas
produces only a O(1/N2

c ) contribution to the total free energy of the system.
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Chapter 14
Lattice Studies of Magnetic Phenomena
in Heavy-Ion Collisions

P.V. Buividovich, M.I. Polikarpov, and O.V. Teryaev

14.1 Introduction

It has been realized recently that in heavy-ion collision experiments hadronic mat-
ter is affected not only by extremely high temperatures and densities, but also by
superstrong magnetic fields with field strength being comparable to hadron masses
squared. Such superstrong fields are created due to the relative motion of heavy ions
themselves, since they carry large charge Z ∼ 100 [1].

Obviously, the magnetic field is perpendicular to the collision plane, which can be
reconstructed in experiment from the angular distribution of produced hadrons [2].
There is no direct experimental way to measure the absolute value of the field
strength, but it can be estimated in some microscopic transport model, such as the
Ultrarelativistic Quantum Molecular Dynamics model (UrQMD) [3].

Probably the most notable effect which arises due to magnetic fields in heavy-ion
collisions is the so-called Chiral Magnetic Effect. The essence of the effect is the
generation of electric current along the direction of the external magnetic field in
the background of topologically nontrivial gauge field configurations [1, 4]. Such
generation is not prohibited by P-invariance, since topological charge density is
a pseudoscalar field and thus nonzero topological charge explicitly breaks parity.
However, since QCD is parity-invariant, the net current or the net electric charge
should vanish when averaged over multiple collision events. Nevertheless, the non-
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trivial effect can still be detected if one considers dispersions of electric current or
electric charge [5, 6]. Experimentally, the Chiral Magnetic Effect manifests itself
as the dynamical enhancement of fluctuations of the numbers of charged hadrons
emitted above and below the reaction plane [2, 7–9].

Another effect, which is closely related to the CME, but has different experimen-
tal signatures, is the anisotropic electric conductivity of hadronic matter in the strong
magnetic field, which was discovered in lattice simulations [10]. Since the conduc-
tivity of the hadronic matter is directly related to the lepton emission rate [11, 12],
such anisotropic conductivity should result in specific anisotropy of the dilepton
emission rate w.r.t. the reaction plane. This anisotropy should grow with the cen-
trality of the collision and with the charges of the colliding ions. This effect might
also contribute to the observed abnormal dilepton yield in heavy-ion collisions [13].
Some theoretical considerations [14] as well as preliminary lattice data [15] sug-
gest that at very strong magnetic fields with strength eB > m2

ρ , where mρ is the
mass of the charged ρ-meson, the anisotropic conductivity might even turn into
the anisotropic superconductivity in the direction of the field. Unfortunately, such
extremely large field strengths are hardly reachable with present-day heavy-ion col-
liders.

In this paper we give some estimates of the expected experimental signatures of
superstrong magnetic fields, basing on the lattice data. In Sect. 14.2 we consider the
Chiral Magnetic Effect and argue that its strength should decrease with increasing
quark mass, which can be used to discriminate between the CME and other pos-
sible effects which might result in preferential emission of charged hadrons in the
direction perpendicular to the reaction plane. In Sect. 14.3 we consider the dilepton
emission rate, and estimate the contribution of the induced conductivity to the total
dilepton yield and dilepton angular distribution in heavy-ion collisions.

14.2 Chiral Magnetic Effect

Chiral Magnetic Effect is usually characterized by the following experimental ob-
servables, suggested first in Ref. [8]:

aab = 1

Ne

Ne∑

e=1

1

NaNb

Na∑

i=1

Nb∑

j=1

cos(φia + φjb), (14.1)

where a, b=± denotes hadrons with positive or negative charges, respectively, Ne

is the number of events used for data analysis, Na and Nb are the total multiplici-
ties of positively/negatively charged particles produced in each event, and φia , φjb
are the angles w.r.t. the reaction plane at which the hadrons with labels i and j

are emitted. Summation in (14.1) goes over all produced hadrons. In practice, only
sufficiently energetic particles are considered.

The main signatures of the CME is the growth of aab with impact parameter, as
well as the negativity of a++ and a−− and the positivity of a+− [2, 7–9]. However,
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it has been pointed out recently that these results can also be explained by other
effects, such as the influence of nuclear medium on jet formation [16] and other
in-medium effects [17]. It is therefore important to think about more refined exper-
imental tests of the CME. Our main message in this paper is that the dependence
of the charge fluctuations on quark mass can be used to discriminate between the
CME and other possible phenomena which contribute to the observed asymmetry
of charge fluctuations. Indeed, the CME emerges due to fluctuations of quark chi-
rality [1], which are suppressed when the quark mass is increased.

The dependence of the observables (14.1) on the quark mass can be studied if
one sums separately over charged mesons with different quark content, e.g. ud̄ and
dū (charged pions), us̄ and ūs (charged kaons) or ūc, c̄u, d̄c, dc̄ (D-mesons). The
observables aab should then decrease with the meson mass. The dependence of aab
on the centrality of the collision should also become weaker. Here we give a rough
estimate of this effect basing on the results of lattice simulations.

Let us first note that the observables aa,b can be expressed in terms of the dif-
ferences of multiplicities of charged hadrons emitted above and below the reaction
plane [1]:

aab = c 〈ΔaΔb〉
〈Na〉〈Nb〉 , (14.2)

where a, b=±, Δ± are the differences of the multiplicities of hadrons with positive
or negative charges above or below the reaction plane, respectively. The factor c
depends on the hydrodynamical evolution of hadronic matter, and is usually close
to unity. For multiplicities 〈Na〉 ∼ 1000 one can also neglect the initial charge of
heavy ions Z ∼ 100 with a good precision, and assume that 〈Na〉 = 〈Nb〉 = Nq ,
where Nq is the mean multiplicity of the same-charge hadrons per event.

Lattice results can be compared to experimental data by considering the quantity
a+++a−−−2a+−, which can be expressed solely in terms of the difference ΔQ=
Δ+ −Δ− of net charges of hadrons emitted above and below the reaction plane:

a++ + a−− − 2a+− = 〈(ΔQ)2〉
N2
q

= 〈(Δ+ −Δ−)2〉
N2
q

. (14.3)

In turn, the dispersion of the charge difference 〈(ΔQ)2〉 can be related to the vacuum
expectation values of the squared current densities 〈j2

μ(x)〉 [5]. The contribution

of each quark flavor f = u,d, s, c to the total electromagnetic current is jfμ (x) =
q̄f γμq

f . We do not consider here the third-generation quarks, which are extremely
rarely produced in heavy-ion collisions.

The simplest model which allows to express 〈(ΔQ)2〉 in terms of 〈jf 2
μ (x)〉 is the

model of spherical fireball, which emits positively and negatively charged hadrons
from its surface with intensity proportional to 〈jf 2

μ (x)〉. This leads to the following
relation [5]:

a++ + a−− − 2a+− = 4πτ 2ρ2r2

3N2
q

(〈(
j
f
‖
)2〉+ 2

〈(
j
f
⊥
)2〉)

, (14.4)
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Fig. 14.1 Schematic view of
the collision geometry. The
fireball is the hatched region
of volume
V ∼ 4π

3 (R − b/2)3 within
the intersection of two heavy
ions of radius R each

where jf‖ (x) and j
f
⊥(x) are, respectively, the currents along the magnetic field and

perpendicular to it, τ is some characteristic collision time, r is the fireball radius
and ρ is some typical correlation length for electric charge density in the fireball. In
our estimates, we take τ ∼ 0.3 fm (this is a typical decay time for the magnetic field
in heavy-ion collisions [3]), ρ ∼ 0.2 fm, which are reasonable parameters for, say,
gold-gold collisions at 60 GeV/nuclon. We also assume that the fireball is a sphere
with radius r = R − b/2 within the overlapping region between the two heavy ions
of radius R which collide at impact parameter b (see Fig. 14.1). The net multiplic-
ity Nq and the impact parameter b as the functions of collision centrality can be
found in Table 1 in [1]. For simplicity, we assume that 〈(jμ)f 2〉 are approximately
constant on the surface of the fireball. Note also, that in order to exclude the ef-
fects related to the dependence of multiplicities of strange and charmed mesons on
the collision centrality, which might be different from that of light mesons, we nor-
malize the charge of emitted hadrons by the square of the total multiplicity of all
hadrons.

Several technical remarks are in order. First, we assume that the matter within the
fireball is in the state of thermal equilibrium, and thus the expectation values 〈jf 2

μ 〉
can be calculated from gauge theory in Euclidean space. We also assume that the
magnetic field is uniform and nearly time-independent. Of course, these are rather
rough approximations, but we are aiming here at qualitative rather than quantitative
estimates. We have calculated the currents in SU(2) lattice gauge theory with back-
ground magnetic field both in the confinement phase, neglecting the contribution
from the virtual quark loops (quenched approximation). A comparison with SU(3)
gauge theory suggests that this is a reasonable approximation [18]. A more detailed
study has shown also that in the deconfinement phase the dispersions of local cur-
rent densities are practically independent of the magnetic field [5], thus we do not
consider here this case. The expectation values 〈jf 2

μ 〉 contain also the ultraviolet di-
vergent part, which we have removed by subtracting the corresponding expectation
values at zero temperature and zero magnetic field.

The masses of the valence quarks took the values mq = 50 MeV (for u and d

quarks), mq = 110 MeV (for s-quark) and mq = 1 GeV (for c-quark). The lowest
value of the quark mass is dictated by the numerical stability of our algorithm. Thus
our calculations of 〈jf 2

μ 〉 at mq = 50 MeV should be considered as only the lower

bound for 〈jf 2
μ 〉 at realistic masses of u and d quarks.
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Fig. 14.2 Comparison of the
quantity a++ + a−− − 2a+−
for the experimental data by
the STAR Collaboration [2]
with the estimates (14.4)
based on the results of lattice
simulations at different quark
masses

On Fig. 14.2 we compare the quantity a++ + a−− − 2a+− calculated for the
experimental data by the STAR collaboration [9] with the estimate (14.4) based on
the results of lattice simulations at different quark masses and different tempera-
tures. In order to match the value of the magnetic field strength in experiment and
in simulations, we take the rough estimate from Eq. (A.12) in [1]:

eB ∼ (0.1b/R) GeV2, (14.5)

where b is the impact parameter. This rough fit also agrees by the order of magnitude
with the results of more sophisticated calculations of the magnetic field within the
UrQMD model [3].

One can see that the best agreement with the STAR data is obtained at the small-
est quark mass. The combination a+++a−−−2a+− quickly decreases as the quark
mass is increased—approximately by a factor of 5 as the quark mass changes from
50 MeV to 110 MeV, and by a factor of almost 20 as the quark mass further in-
creases to 1 GeV. Since all observables aab are typically of the same order, one
can expect that each such observable will also decrease with the quark mass. This
dependence of asymmetry of angular distributions of mesons of different flavors
on their mass can be used to discriminate between the CME and other phenomena
which might cause such asymmetry.

The result may be compared with the perturbative analog of CME [19] resulting
from straightforward generalization of Heisenberg-Euler Lagrangian depending on
quark mass as m−4

q

jqμ = 7ααs
45m4

q

F̃μν∂
ν(GG̃). (14.6)

The correspondence of this perturbative and Abelian effect to CME is manifested
by the substitution



382 P.V. Buividovich et al.

1

m4
q

∂ν(GG̃)→ ∂ν
∫
d4z(GG̃)→ ∂νθ. (14.7)

As a result, the perturbative mechanism may become essential when quark mass is
exceeding the inverse correlation length of topological charge density. One may ex-
pect that the transition point from non-perturbative to perturbative mass dependence
is not too far from the strange quark mass, like it happen for vacuum quark conden-
sates and strangeness polarization in nucleons (see [19] and references therein) so
that the non perturbative lattice results are applicable for experimentally important
case of strangeness separation.

14.3 Induced Conductivity and Abnormal Dilepton Yield

Another phenomenon which might be caused by superstrong magnetic fields act-
ing on the hadronic matter is the induced anisotropic conductivity along the mag-
netic field [10]. While the Chiral Magnetic Effect is related to the local fluctua-
tions of current density, the induced conductivity reflects the fact that these fluc-
tuations also have long-range correlation in time. Indeed, by virtue of the Green-
Kubo relations the conductivity is related to the zero-frequency limit of the spectral
function ρμν(w) which corresponds to the correlator 〈T jμ(x)jν(y)〉 in Minkowski
space [20]:

∫
d3x

〈
T jμ(0,0)jν(x, τ )

〉=
+∞∫

0

dw

2π

coshw (τ − 1
2T )

sinh( w2T )
ρμν(w). (14.8)

This spectral function can also be extracted from the results of lattice simulations
using the so-called Maximal Entropy Method [21, 22].

The spectral function ρμν(w) determines also the dilepton emission rate from
either cold or hot hadronic matter [11, 23]:

R

V
=−4e4

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
Lμν(p1,p2)

ρμν(q)

q4
, (14.9)

where p1 and p2 are the momenta of the leptons, q = p1 + p2,

Lμν = ((
p1 · p2 +m2)ημν − p

μ
1 p

ν
2 − p

μ
2 p

ν
1

)

is the dilepton tensor (ημν is the Minkowski metric), m is the lepton mass. Thus the
low-momentum limit of ρμν(w) is related, on the one hand, to the emission rate of
soft dileptons, and, on the other hand, to the conductivity of hadronic matter.

The enhancement of the conductivity due to the magnetic field should thus lead
to the enhancement of the dilepton emission rate. This might provide a viable ex-
planation of the abnormal soft dilepton yield observed in heavy-ion collisions [13].
Moreover, the anisotropy of the conductivity should lead to specific correlations be-
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tween the momenta of the dileptons and the direction of the magnetic field (in other
words, with the orientation of the reaction plane).

Lattice simulations show that the electric conductivity is nonzero only in the
direction of the magnetic field and depends linearly on qB [10, 24]. For suffi-
ciently small momenta p1 and p2 (and thus for small q) by virtue of the Green-
Kubo theorem one has ρij (q) ≈∼ σij q/T ∼ BiBjq/(|B|T ) [20, 21]. Let us also
neglect the lepton masses and go to the rest frame of the dilepton pair, where
p1 = −p2 ≡ pn, q = (2p,0) and the spatial components of the dilepton tensor are
Lij = p2 (δij − ni nj ). The dilepton emission rate is therefore proportional to

R

V
∼

∫
d3p

(2π)332EBp2

(
B2 − (B · n)2

)∼ |B| sin2(θ), (14.10)

where θ is the angle between the spatial momentum of the outgoing leptons and the
magnetic field. Therefore, there should be more soft dileptons emitted perpendicular
to the magnetic field than parallel to it. As a result, they are to large extend hidden
inside the hadrons in the scattering plane which should lead to the difficulty in their
experimental observation.

In order to estimate the effect of the magnetic field on the total dilepton yield in
heavy-ion collisions, we normalize the conductivity induced by the magnetic field
to the conductivity at zero magnetic field and at the temperature close to the de-
confinement phase transition, T = 1.12Tc. By virtue of (14.9), the ratio of these
conductivities should be equal to the ratio of dilepton emission rates in the low-
momentum region. The relevant lattice data is summarized in [10, 24]. In these
works it was found that in the deconfinement phase the conductivity is practically
independent of the magnetic field. Therefore here we will try to estimate possible
contribution of the magnetic field to the dilepton emission rate from hadronic mat-
ter in the confinement phase. From the data presented in [10, 24], we estimate the
ratio of the induced conductivity σ(B,T < Tc) to the conductivity of quark-gluon
plasma σ(B = 0, T = 1.12Tc) as:

σ(B,T < Tc)/σ (B = 0, T = 1.12Tc)≈ eB

(0.5 GeV)2
.

We now use the estimate (14.5) for the magnetic field strength and take into account
that the ratio of conductivities should be equal to the ratio of dilepton emission rates.
We thus obtain for the contribution of the magnetic field to the dilepton emission
rate:

R(B,T = 0)/R(B = 0, T = 1.12Tc)≈ 1/3 0.4b/R, (14.11)

where the factor 1/3 appears after averaging the expression (14.10) over the an-
gle θ .

We conclude that at large impact parameters (b ∼ 2R) the dilepton yield can
increase by up to 20–30 % due to the influence of the magnetic field. This factor
should be essentially reduced because the magnetic-induced dileptons are hidden
inside the scattering plane. The observed abnormal dilepton yield is, however, max-
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imal for central collisions (where it reaches several hundred percent as compared
to the hadron resonance model) and decreases as the impact parameter grows [13].
Such behavior might be caused by several factors, such as the change of the temper-
ature within the fireball or the change of the fireball volume with impact parameter.
A proper investigation of such factors is out of the scope of this paper, and cannot
be undertaken using the methods of lattice gauge theory.

14.4 Conclusions

In this paper we have summarized the main experimental signatures of the effects
caused by superstrong magnetic fields in heavy ion collisions, namely, the Chiral
Magnetic Effect and the abnormal dilepton yield.

The Chiral Magnetic Effect [1] results in preferential emission of charged
hadrons in the direction perpendicular to the reaction plane. The origin of the Chiral
Magnetic Effect is the fluctuations of chirality, which are suppressed as the quark
mass grows. Thus this asymmetry in angular distributions of charged hadrons, char-
acterized by the coefficients aab (14.1), should be strongly suppressed for strange
or charmed hadrons.

The abnormal dilepton yield with specific angular dependence (14.10) is the con-
sequence of electric conductivity of the hadronic matter induced by the magnetic
field. In this case more dileptons are emitted in the direction perpendicular to the
magnetic field. Let us also note that since according to our lattice data the magnetic
field influences the conductivity only in the confinement phase [10], the significant
change of dilepton yield in noncentral heavy-ion collisions might be a signature of
the confinement-deconfinement phase transition.

More generally, lattice data suggests that the influence of the magnetic field on
the properties of hadronic matter is stronger in the confinement phase. Thus heavy-
ion collision experiments on colliders with lower beam energy but with larger lumi-
nosity (such as FAIR in Darmstadt, Germany or NICA in Dubna, Russia) might be
more advantageous for studying magnetic phenomena.
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Chapter 15
Chiral Magnetic Effect on the Lattice

Arata Yamamoto

15.1 Introduction

In the strong interaction, the gauge field forms nontrivial topology. The existence of
the topology has been theoretically established, while its observation is difficult in
experiments. The chiral magnetic effect is a possible candidate to detect the topolog-
ical structure in heavy-ion collisions [1]. The chiral magnetic effect is the generation
of an electric current in a strong magnetic field.

The essence of the chiral magnetic effect is the imbalance of the chirality, i.e.,
the number difference between the right-handed and left-handed quarks. The mag-
netic field induces the electric currents of the right-handed and left-handed quarks
in opposite directions. If the chirality is imbalanced, a nonzero net electric current
is induced. In a local domain of the QCD vacuum, the chiral imbalance is generated
by the topological fluctuation and the axial anomaly. In the global QCD vacuum,
the chirality is balanced as a whole. The strong theta parameter is experimentally
zero, θ = 0, although its reason is unknown. This is the strong CP problem. The
chiral magnetic effect is regarded as the local violation of the P and CP symme-
tries.

Experimental facilities tried to measure the chiral magnetic effect through
charged-particle correlations [2, 3]. However, the interpretation of the experimen-
tal data is not yet conclusive. On the theoretical side, the chiral magnetic effect
has been studied in various frameworks, e.g., phenomenological models, the gauge-
gravity duality, etc. The chiral magnetic effect has been also studied in the lattice
simulations. The lattice simulation is a powerful framework to solve QCD nonper-
turbatively on computers. By means of the lattice simulation, we can study the chiral
magnetic effect from first principles in QCD.

A. Yamamoto (B)
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2-1 Hirosawa, Wako, Saitama 351-0198, Japan
e-mail: arayamamoto@riken.jp

D. Kharzeev et al. (eds.), Strongly Interacting Matter in Magnetic Fields,
Lecture Notes in Physics 871, DOI 10.1007/978-3-642-37305-3_15,
© Springer-Verlag Berlin Heidelberg 2013

387

mailto:arayamamoto@riken.jp
http://dx.doi.org/10.1007/978-3-642-37305-3_15


388 A. Yamamoto

Fig. 15.1 A cartoon of how
to observe the chiral magnetic
effect on the lattice.
Left: A topological charge Q
of the gauge field induces a
nonuniform current density
distribution. Right: A chiral
chemical potential μ5 induces
a uniform electric current

There are two approaches to analyze the chiral magnetic effect in the lattice simu-
lation. In other words, there are two different ways to generate the chiral imbalance:

1. topological charge [4–9]
2. chiral chemical potential [10–12]

These concepts are schematically depicted in Fig. 15.1. In the first case, a topolog-
ical charge of the background gauge field generates the chiral imbalance, which is
spatially nonuniform. When an external magnetic field is applied, a current density
distribution appears around the topological object. In the second case, a chiral chem-
ical potential generates the chirally imbalanced matter, which is spatially uniform.
A uniform electric current is induced by the external magnetic field.

In this chapter, we overview the theoretical background and the current status of
the lattice studies of the chiral magnetic effect. Here we focus only on the lattice
aspect of the chiral magnetic effect. For the theoretical and phenomenological as-
pects, see the corresponding chapters. We use the Euclidean metric and the lattice
unit in the following sections.

15.2 Basics of the Lattice Simulation

The basic formalism of the lattice simulation has been well established. For the
details, see the textbooks [13–16]. The formalism is based on the Euclidean QCD
partition function

Z =
∫

DUDψ̄Dψe−SG[U ]−SF [ψ̄,ψ,U ]

=
∫

DU detD[U ]e−SG[U ]. (15.1)

The space-time is discretized as a hypercubic lattice. The gluon field is written as
the SU(3) link variable

Uμ(x)= exp
(
igtaAa

μ(x)
)
. (15.2)
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The functional integral is numerically evaluated by the Monte Carlo simulation.
We generate gauge configurations, which are sets of the link variable, and then cal-
culate the expectation value of an operator as

〈
O[U ]〉= 1

Nconf

∑

{U}
O[U ]. (15.3)

The gauge configurations are generated to satisfy the probability weight P =
detD[U ]e−SG[U ]. The simulation including the fermion determinant is called the
dynamical QCD simulation or the full QCD simulation. The quenched approxima-
tion is often used to reduce the computational cost. In the quenched approximation,
the fermion determinant is ignored and the probability weight is P = e−SG[U ]. The
quenched gauge configurations are independent of the fermion action.

The probability weight must be positive real, otherwise it cannot be interpreted
as the probability weight. In QCD, the fermion action becomes complex at a finite
quark chemical potential. The definition of the probability weight must be modified,
e.g., by the reweighting method [17]. Even after the modification, the Monte Carlo
simulation severely suffers from strong sign fluctuation. This is known as the sign
problem. The sign problem at the quark chemical potential is an important unsolved
problem in the lattice simulation [18]. As shown later, a chiral chemical potential
does not cause the sign problem. This is similar to two-color QCD [19–21] and an
isospin chemical potential [21–25].

The basic observable of the chiral magnetic effect is the local vector current
density

jμ(x)= ψ̄(x)γμψ(x). (15.4)

The fourth (zeroth) component corresponds to the local charge density. For calcu-
lating the local vector current density, we consider the Dirac eigenvalue problem

D[U ]φk(x)= (iλk +m)φk(x), (15.5)

and use the identity

〈
ψ̄(x)γμψ(x)

〉= 〈
trγμD[U ]−1〉=

〈∑

k

φ̄k(x)γμφk(x)

iλk +m

〉
. (15.6)

Thus, its expectation value is obtained by inverting or diagonalizing the Dirac op-
erator D[U ]. In the case of diagonalizing, we can calculate the local vector current
density of each Dirac eigenmode.

Chiral symmetry is a nontrivial problem on the lattice due to the Nielsen-
Ninomiya no-go theorem [26, 27]. Most lattice fermions more or less break chiral
symmetry. The lattice fermion with exact chiral symmetry has been known, although
its computational cost is rather large in the dynamical simulation. We should select
an appropriate lattice fermion, corresponding to the purpose of the simulation. For
the details of the lattice fermions and chiral symmetry, see the reviews [28–30].
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For a magnetic field, the QED gauge field is also introduced. When the magnetic
field is external, i.e., not dynamical, the QED field strength term does not exist in the
action. To couple the fermions to the magnetic field, the Dirac operator is replaced as

D[U ]→D[uU ] (15.7)

with the U(1) link variable

uμ(x)= exp
(
iqAμ(x)

)
. (15.8)

We can apply a homogeneous magnetic field in a finite-volume box with periodic
boundary conditions. For the homogeneous magnetic field in the z-direction, the
U(1) link variables are set as

u1(x) = exp(−iqBNsy) at x =Ns, (15.9)

u2(x) = exp(iqBx), (15.10)

uμ(x) = 1 for other components (15.11)

in the lattice volume N3
s ×Nt [31]. In this setup, the magnetic field is quantized as

qB = 2π

N2
s

× (integer). (15.12)

This integer is the input parameter which controls the strength of the magnetic field
in the simulation.

15.3 Lattice Simulation with a Topological Background

The gauge configuration possesses a topological charge. The topological charge of
the gauge configuration is given as

Q= g2

64π2

∫
d4x εμνλρF

a
μν(x)F

a
λρ(x). (15.13)

Euclidean topological objects, such as the instanton, can be reproduced on the lattice
when the gauge configuration is smooth enough [32].

The fermion feels the background topology of the gauge configuration through
the zero mode. The zero mode is defined as the eigenmode φk which has the zero
eigenvalue iλk = 0 in (15.5). The topological charge and the zero mode are related
through the Atiyah-Singer index theorem

NR −NL =NfQ, (15.14)

where NR and NL are the numbers of the right-handed zero modes and the left-
handed zero modes, respectively [33]. The fermion zero mode is essential to gen-
erate the chiral imbalance in the topological background. We must use the lattice
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Fig. 15.2 The charge density distribution ρ(x) in the (2 + 1)-flavor dynamical QCD + QED sim-
ulation at a2qB = 0 (left) and 0.0490874 (right) [8]. The magnetic field is applied along the z-axis.
The temperature is above the critical temperature

fermion which is sensitive to the zero mode and satisfies the index theorem, e.g., the
overlap fermion.

Naively, it is impossible to measure the local vector current density (15.4) in the
topological background. The reason is as follows. In the QCD vacuum, the positive
and negative topological charges appear with the same probability. In the simulation,
the numbers of the gauge configurations with the positive and negative topological
charges are the same, namely

〈Q〉 = 0. (15.15)

The positive and negative topological charges induce the vector current in opposite
directions. When all the Monte Carlo samples are averaged in all the topological
sectors, the net vector current is zero. To measure the vector current, we must fix the
topological sector by the lattice action which suppresses topology changing tran-
sitions [34]. Although the fixed-topology simulation cannot reproduce the θ = 0
vacuum, we can obtain a finite expectation value of the vector current.

The fixed-topology analysis has been done in the (2 + 1)-flavor dynamical QCD
simulation with the domain-wall fermion [8, 9]. This simulation includes not only
the external magnetic field but also the dynamical QED effect. The domain-wall
fermion does not have the exact zero mode due to small explicit chiral symmetry
breaking, but has the “near” zero mode which becomes the exact zero mode in
an ideal limit. In Fig. 15.2, we show the charge density distribution of one near
zero mode in one typical gauge configuration [8]. The charge density of the kth
eigenmode is defined as

ρk(x)= φ
†
k (x)φk(x)

iλk +m
. (15.16)
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Fig. 15.3 The current fluctuation 〈j2
μ〉IR in the quenched SU(2) simulation at T = 0 (left) and

T = 1.12Tc (right) [5]. The magnetic field is applied in the μ= 3 direction

The simulation was performed above the critical temperature. The charge density
distribution at B �= 0 differs from that at B = 0. This result suggests that some
relation exists between the charge density and the magnetic field. However, the exact
relation is not clear in this simulation. We need further investigation for evidence of
the chiral magnetic effect.

Except for the fixed-topology simulation, the vector current itself is zero because
of the parity oddness. In this case, a numerical observable is the parity-even quantity
which reflects the topological fluctuation

〈Q2〉
V

� (200 MeV)4. (15.17)

For instance, the fluctuation of the vector current is parity-even. This situation is
similar to the experimental observation. An experimental observable must be parity-
even, although the chiral magnetic effect is a parity-odd process. We have to extract
the parity-odd information from the parity-even particle correlation. This kind of
analysis is not easy because the fluctuation can be easily induced by other irrelevant
effects. The irrelevant contributions must be subtracted correctly.

The fluctuation 〈j2
μ〉 of the vector current was calculated in the quenched SU(2)

simulation at zero temperature [4], in the quenched SU(2) simulation at finite tem-
perature [5, 6], and in the quenched SU(3) simulation [7]. The overlap Dirac oper-
ator was adopted in these simulations, although the zero modes were ignored. The
vector currents are zero in all the directions because the topological sector is not
fixed, but the current fluctuation is nonzero. In Fig. 15.3, we show the current fluc-
tuation in the quenched SU(2) simulation below and above the critical temperature
[5]. The ultraviolet part of the fluctuation is subtracted to obtain a clear signal as

〈
j2
μ

〉
IR = 1

V

∑

site

〈
j2
μ(x)

〉
B,T

− 1

V

∑

site

〈
j2
μ(x)

〉
B=0,T=0, (15.18)

where the index μ is not summed over. At zero temperature T = 0, all the fluctua-
tions grow at stronger magnetic field. In particular, the longitudinal fluctuation 〈j2

3 〉



15 Chiral Magnetic Effect on the Lattice 393

grows faster than transverse fluctuations 〈j2
1 〉 = 〈j2

2 〉. Above the critical temperature
T > Tc, the longitudinal fluctuation is insensitive and the transverse fluctuations de-
crease at stronger magnetic field. As a consequence, the ratio of the longitudinal
fluctuation to the transverse fluctuation is enhanced by the magnetic field in both
cases.

As shown above, the magnetic field affects the charge density distribution and the
current fluctuation. Note however that we must carefully check whether its origin is
actually the chiral magnetic effect. In general, a strong magnetic field can induce a
strong current fluctuation in the longitudinal direction, even if there is no topological
object. This complication is the same as that in experiments. For identifying the
chiral magnetic effect, we must distinguish a small topological contribution from
other large contaminations in a high-precision simulation.

15.4 Lattice Simulation with a Chiral Chemical Potential

Another possible source of the chiral imbalance is a chiral chemical potential. The
chiral chemical potential μ5 is defined as

D(μ5)= γμ
(
∂μ + igtaAa

μ(x)
)+m+μ5γ4γ5 (15.19)

in the continuum space [35]. The chiral chemical potential directly couples to the
chiral charge

N5 ≡NR −NL =−
∫
d3x

〈
ψ̄(x)γ4γ5ψ(x)

〉
. (15.20)

By using the chiral chemical potential, we can generate a chirally imbalanced QCD
matter in equilibrium. The chiral chemical potential is the external parameter which
tunes the chiral charge instead of the topological charge. The chiral chemical po-
tential does not exist in the original QCD action because the chiral charge is not a
conserved quantity. It is not a “chemical potential” in the exact sense.

Because the topological charge is not necessary in this approach, the sensitivity
to the zero mode is not important for the choice of the fermion action. For example,
the lattice Dirac operator of the Wilson fermion is

1

m
DW(μ5) = 1 − κ

∑

i

[
(1 − γi)Ti+ + (1 + γi)Ti−

]

− κ
[(

1 − γ4e
μ5γ5

)
T4+ + (

1 + γ4e
−μ5γ5

)
T4−

]
, (15.21)

with

κ ≡ 1

2m+ 8
, (15.22)

[Tμ+]x,y ≡ Uμ(x)δx+μ̂,y, (15.23)

[Tμ−]x,y ≡ U†
μ(y)δx−μ̂,y . (15.24)
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Fig. 15.4 The chiral charge
density n5 in the two-flavor
dynamical QCD simulation
[12]. The lattice spacing is
a � 0.13 fm and the
temperature is T � 400 MeV

The chiral chemical potential is introduced as the exponential matrix factor

e±μ5γ5 = coshμ5 ± γ5 sinhμ5, (15.25)

which is the straightforward analogy to a quark chemical potential [36]. The Wilson-
Dirac operator (15.21) reproduces the continuum form (15.19) in the continuum
limit.

A notable feature of the chiral chemical potential is that it does not cause the sign
problem unlike the quark chemical potential. The Wilson-Dirac operator (15.21) is
“γ5-Hermitian”,

γ5D(μ5)=
[
γ5D(μ5)

]† or γ5D(μ5)γ5 =D†(μ5). (15.26)

In the two-flavor case, the fermion determinant is positive real,

det

(
D(μ5) 0
0 D(μ5)

)
= detD(μ5)detγ5D(μ5)γ5 = ∣

∣detD(μ5)
∣
∣2 ≥ 0. (15.27)

Therefore there is no sign problem. We can exactly simulate a kind of finite density
QCD matter by the chiral chemical potential.

In Fig. 15.4, we show the chiral charge density

n5 = N5

V
=− 1

V

∑

site

〈
ψ̄(x)γ4γ5ψ(x)

〉
(15.28)

of the Wilson fermion in the two-flavor dynamical QCD simulation [12]. The lattice
spacing is a � 0.13 fm. The physical temperature is T � 400 MeV, which is above
the critical temperature. The chiral charge density is finite at a finite chiral chemical
potential. This means that the uniform chirally imbalanced matter is realized on
the lattice. The total chiral charge in this lattice volume is N5 = n5V � O(103).
This number is much larger than a typical number of the topological charge. The
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Fig. 15.5 The vector current density J in the two-flavor dynamical QCD simulation [12]. The
data are plotted as a function of the magnetic field B (left) and of the chiral chemical potential μ5
(right). The lattice spacing is a � 0.13 fm and the temperature is T � 400 MeV

typical number of the topological charge is O(10) at most in the conventional lattice
simulation. Owing to the large chiral imbalance, the analysis of the chiral magnetic
effect becomes easy.

For the analysis of the chiral magnetic effect, the local vector current density
(15.4) was measured. The vector current is induced only in the longitudinal direction
of the magnetic field. The transverse components are exactly zero, 〈j1〉 = 〈j2〉 = 0.
In Fig. 15.5, the induced current

J = 1

V

∑

site

〈
j3(x)

〉
(15.29)

is plotted as a function of the magnetic field and of the chiral chemical potential.
This induced current is direct evidence of the chiral magnetic effect. The induced
current is a linearly increasing function in both cases. Therefore, the functional
form is

J =NdofCμ5qB. (15.30)

Because all the fermions have the same charge in this simulation, the prefactor is
Ndof = 3(color)×2(flavor)= 6. The overall coefficient C characterizes the strength
of the induced current. This functional form is consistent with the analytical for-
mula,

J =Ndof
1

2π2
μ5qB, (15.31)

which was derived from the Dirac equation coupled with the background magnetic
field [35]. Note that (15.31) is different from Ref. [35] by q due to the definition
of the electric current, i.e., JEM = qJ . If there are several fermions with different
charges, the total electric current is JEM =∑

i qiJi =
∑

i q
2
i Cμ5B .

The overall coefficient is C = 0.013 ± 0.001 in this lattice simulation and
C = 1/(2π2) � 0.05 in the analytical formula. The induced current seems some-
how smaller than the analytical formula. However, these overall coefficients should
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not be compared naively. For the quantitative argument, it is necessary to esti-
mate several systematic effects in the lattice simulation. One important effect is
the renormalization of the local vector current. The local vector current (15.4) is not
renormalization-group invariant on the lattice [37]. This property is different from
that in the continuum theory. The local vector current is renormalization-group in-
variant in the continuum theory because of the Ward identity. We must take the
continuum limit to compare the induced currents on the lattice and in the contin-
uum. By taking the continuum limit, we can also remove other lattice discretization
artifacts. For example, the Wilson fermion explicitly breaks the chiral symmetry due
to the discretization artifact.

The systematic errors were partly estimated in Ref. [12]. By varying simula-
tion parameters, the dependences of the overall coefficient were examined in the
quenched simulation. Although the dynamical QCD simulation is necessary for the
quantitative argument, the quenched simulation is useful to understand which sys-
tematic effect is important. Actually, the quenched results were qualitatively similar
to the dynamical QCD results. It turned out that the induced current is insensitive
to the temperature, the quark mass, and the spatial volume. However, the overall
coefficient strongly depends on the lattice spacing. The overall coefficient increases
near the continuum limit. This systematic analysis indicates that the continuum ex-
trapolation is necessary for the quantitative argument.

Another important effect is chiral symmetry. It is difficult to discuss chiral sym-
metry using the naive Wilson fermion. The Wilson fermion explicitly breaks chiral
symmetry at a finite lattice spacing, while the explicit breaking vanishes in the con-
tinuum limit. One possible origin of the strong lattice spacing dependence might
be this artificial chiral symmetry breaking. We should investigate the role of chi-
ral symmetry in the chiral magnetic effect by performing the same analysis with a
chiral lattice fermion, such as the domain-wall fermion or the overlap fermion.

15.5 Conclusion

In this review, we have overviewed the lattice studies of the chiral magnetic effect.
The vector current and its fluctuation were measured in the chiral imbalance, which
is generated by the topological charge or the chiral chemical potential. We should
develop these pioneering works in future. In the future works, it is important to
respect the essential pieces of the chiral magnetic effect, in particular, the fermion
zero mode and chiral symmetry.

We see that the chiral magnetic effect is an observable phenomenon on the lattice.
The lattice simulation is a hopeful approach to study the chiral magnetic effect in
“numerical” experiments.
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Chapter 16
Magnetism in Dense Quark Matter

Efrain J. Ferrer and Vivian de la Incera

16.1 Introduction

In this paper we review the status of the current knowledge about the magnetic field
effects on color superconductivity (CS) at asymptotically high densities and discuss
possible consequences of these effects for the physics of compact stars.

Contrary to what our naïve intuition might indicate, a magnetic field does not
need to be of the order of the baryon chemical potential to produce a noticeable ef-
fect in a color superconductor. As discussed in [45, 54], a color superconductor can
be characterized by various scales and different physics can occur at field strengths
comparable to each of them. Specifically, for the so-called Color-Flavor-Locked
(CFL) phase, the superconducting gap, the Meissner mass of the charged gluons,
and the baryon chemical potential define three scales that determine the values of
the magnetic field needed to produce different effects. Thus, the presence of suffi-
ciently strong fields can modify the properties of the dense-matter phase which in
turn might lead to observable signatures.

16.2 Magnetic Fields in Compact Stars

The density of matter in the core of compact stars is expected to exceed that of nu-
clear matter ρnuc = 2.8 × 1014 g/cm3 [127]. At such densities, individual nucleons
overlap substantially. Under such conditions matter might consist of weakly inter-
acting quarks rather than of hadrons [36]. Due to the asymptotic freedom mecha-
nism [35, 76, 118] one might think that at high baryon density QCD is amenable
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to perturbative techniques [19, 22, 69, 70, 85, 87, 89, 106]. However, the ground
state of the superdense quark system, a Fermi liquid of weakly interacting quarks,
is unstable with respect to the formation of diquark condensates [17, 21, 68], a non-
perturbative phenomenon essentially equivalent to the Cooper instability of BCS
superconductivity. Given that in QCD one gluon exchange between two quarks is
attractive in the color-antitriplet channel, at sufficiently high density and sufficiently
small temperature quarks should condense into Cooper pairs, which are color an-
titriplets. These color condensates break the SU(3) color gauge symmetry of the
ground state producing a color superconductor.

In the late 90’s the interest in CS was regained after the finding, based on dif-
ferent effective theories for low energy QCD [7, 121], that a color-breaking diquark
condensate of much larger magnitude than originally thought may exist already at
relatively moderate densities (of the order of a few times the nuclear matter density).
At densities much higher than the masses of the u, d, and s quarks, one can assume
the three quarks as massless. In this asymptotic region the most favored state is the
CFL phase [7], characterized by a spin-zero diquark condensate antisymmetric in
both color and flavor. Since the combination of high densities and relatively low
temperatures can naturally exist in the dense cores of compact stars, it is expected
that CS could be realized in that astrophysical environment.

Compact stars, on the other hand, are strongly magnetized objects. From the
measured periods and spin down of soft-gamma repeaters (SGR) and anomalous X-
ray pulsars (AXP), as well as the observed X-ray luminosities of AXP, it has been
determined that certain class of neutron stars known as magnetars can have surface
magnetic fields as large as 1014–1016 G [83, 92, 109, 136, 137]. In addition, since
the stellar medium has a very high electric conductivity, the magnetic flux should be
conserved. Hence, it is natural to expect an increase of the magnetic field strength
with increasing matter density, and consequently a much stronger magnetic field in
the stars’ core. Nevertheless, the interior magnetic fields of neutron stars are not
directly accessible to observation, so one can only estimate their values with heuris-
tic methods. Estimates based on macroscopic and microscopic analysis, for nuclear
[24, 38], and quark matter considering both gravitationally bound and self-bound
stars [65], have led to maximum fields within the range 1018–1020 G, depending
whether the inner medium is formed by neutrons [24, 38], or quarks [65].

For instance, from energy-conservation arguments we can estimate the maximum
field strength for a quark star. One should expect that the magnetic energy density
does not exceed the energy density of the self-bound quark matter, which is given
as the energy density at zero pressure that can have a maximum value equal to that
of the iron nucleus (roughly 939 MeV). Based on this reasoning, the maximum field
allowed can be estimated as

Bmax � ε2
bind

e�c
≤ (939 MeV)2

e�c
∼ 1.5 × 1020 G. (16.1)

From this result, one notice that the inner field can reach values two orders of mag-
nitude larger than the estimates done for gravitationally bound stars with nuclear
matter [24, 38].
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As we will see in Sect. 16.8, the magnetic field decreases the inner pressure along
the field direction of the magnetized system. If the magnetic field that makes such a
pressure component equal to zero is taken as the maximum value of the inner field
allowable for a stable gravitational bound star, then a star with a quark matter core
can have a maximum field ∼1019–1020 G [114], while one with nuclear matter can
only have fields ∼1018 G [24, 38].

Therefore, the investigation of the properties of very dense matter in the presence
of strong magnetic fields is of interest not just from a fundamental point of view, but
it could be also closely connected to the physics of strongly magnetized neutron
stars.

16.3 Magnetism in Spin-Zero Color Superconductivity

An important point to keep in mind in our analysis of the field effects in CS is that in
spin-zero color superconductivity the electromagnetism is not the conventional one.
In the color superconducting medium the conventional electromagnetic field is not
an actual eigenfield, since it is mixed with one of the gluon fields, much like the mix-
ing occurring between the hyper-field and the W-boson in the electroweak model in
the presence of the Higgs condensate. Thus, even though the original electromag-
netic U(1)em symmetry is broken by the formation of the charged quark Cooper
pairs in the CFL phase [8], a residual Ũ(1) gauge symmetry still remains. The mass-
less gauge field associated with this symmetry is given by the linear combination of
the conventional photon field and the 8th gluon field [8, 9, 75],

Ãμ = cos θAμ − sin θG8
μ. (16.2)

The corresponding orthogonal linear combination

G̃8
μ = sin θAμ + cos θG8

μ, (16.3)

is massive. The field Ãμ plays the role of an in-medium or rotated electromagnetic
field. A magnetic field associated with Ãμ can penetrate the CS without being sub-
ject to the Meissner effect, since the color condensate is neutral with respect to the
rotated charge. However, the rotated electromagnetic field in the CFL superconduc-
tor is mostly formed by the original photon with only a small admixture of the 8th
gluon since the mixing angle, cos θ = g/

√
e2/3 + g2, is sufficiently small.

The generator of the unbroken Ũ (1) symmetry, which corresponds to the long-
range rotated photon in the CFL phase, is a matrix in flavor(3×3) ⊗ color(3×3)

space given by Q̃CFL = Q ⊗ I + I ⊗ T8/
√

3, where Q is the conventional elec-
tromagnetic charge operator of quarks and T8 is the 8th Gell-Mann matrix. Using
the matrix representations, Q = diag(−1/3,−1/3,2/3) for (s, d,u) flavors, and
T8 = diag(−1/

√
3,−1/

√
3,2/

√
3) for (b, g, r) colors, the Q̃ charges (in units of

ẽ= e cos θ ) of different quarks are
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sb sg sr db dg dr ub ug ur
0 0 −1 0 0 −1 +1 +1 0

(16.4)

For the 2SC color superconductor the ground state is formed by spin-zero di-
quarks, which are also neutral with respect to the rotated electromagnetic field asso-
ciated with the remnant Ũ (1) symmetry. In this system (see Refs. [7, 17, 30, 121]),
the generator of the remnant Ũ(1) symmetry is a matrix in flavor(2×2) ⊗ color(3×3)

space given by Q̃2SC = Q ⊗ I − I ⊗ T8/
√

3, with the usual matrix of electro-
magnetic charges of quarks in flavor space Q = diag(2/3,−1/3), and T8 is the
eighth generator of the SU(3)c gauge group in the adjoint representation. The ro-
tated charges of the quarks in units of ẽ= e cos θ , are given in this phase by

db dg dr ub ug ur

0 − 1
2 − 1

2 1 1
2

1
2

(16.5)

and the massless rotated electromagnetic field and orthogonal massive field are de-
fined in the same way as in the CFL case.

From now on, we will use “magnetic field” in short, when we refer to the “rotated
magnetic field”, since inside the superconductor only the rotated magnetic field is
the physical long range field.

16.4 The Magnetic CFL Phase

The fact that the rotated magnetic field can penetrate the spin-zero color supercon-
ductor brings the possibility to look for possible field-interaction effects on the CS
phase. An important consequence of this interaction was first studied in [61]. It
is based in the following observation. Although the Cooper pairs have zero rotated
charge, they can be formed either by neutral quarks or by quarks of opposite charges.
If the magnetic field is strong enough so that the magnetic length l0 = 1/

√
2eB be-

comes smaller than the pairs’ coherence length, then the magnetic field can interact
with the pair constituents and significantly modify the pair structure of the conden-
sate. As shown in [61–64], the presence of a magnetic field changes the CFL phase
characterized by one single gap, producing a splitting of the CFL gap into a gap that
gets contributions from both pairs of oppositely charged, as well as neutral, quarks,
denoted by ΔB , and one that only gets contributions from pairs of neutral quarks,
denoted by Δ. The new phase that forms in the presence of the magnetic field also
has color-flavor-locking, but with a smaller symmetry group SU(2)C+L+R , a change
that is reflected in the splitting of the Δ and ΔB gaps. The less symmetric realization
of the CFL pairing that occurs in the presence of a magnetic field, is known as the
magnetic-CFL (MCFL) phase [61–64]. The MCFL phase has similarities, but also
important differences with the CFL phase [54, 61–64, 71, 111].
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In the strong-field limit, the gap formed by pairs of neutral and charged quarks
satisfies the gap equation [61–64]

1 ≈ g2

3Λ2

∫

Λ

d3q

(2π)3
1

√
(q −μ)2 + 2(ΔB)2

+ g2ẽB̃

6Λ2

∫ Λ

−Λ
dq

(2π)2
1

√
(q −μ)2 + (ΔB)2

,

(16.6)
The solution of (16.6) is given by

ΔB ∼ 2
√
δμ exp

(
− 3Λ2π2

g2(μ2 + ẽB̃
2 )

)
, (16.7)

which can be compared with the CFL gap

ΔCFL ∼ 2
√
δμ exp

(
−3Λ2π2

2g2μ2

)
. (16.8)

Here we used δ ≡Λ−μ, with Λ the ultraviolet cutoff of the NJL model that should
be much larger than any of the typical energy scales of the system, and μ the baryon
chemical potential.

The gap Δ, formed only by pairs of neutral quarks, should be found as the solu-
tion of the gap equation

1 ≈ g2

4Λ2

∫

Λ

d3q

(2π)3

(
17

9

1
√
(q −μ)2 −Δ2

+ 7

9

1
√
(q −μ)2 + 2(ΔB)2

)
, (16.9)

where it is apparent the interconnection with the gap ΔB . This is how through ΔB

the magnetic field can affect Δ although it is formed only by neutral quarks as we
already pointed out.

The solution of (16.9) is given by

Δ∼ 1

2(7/34)
exp

(
− 36

17x
+ 21

17

1

x(1 + y)
+ 3

2x

)
ΔCFL, (16.10)

where x ≡ g2μ2/Λ2π2, and y ≡ ẽB̃/μ2

The exponent in (16.7) has the typical BCS form, but with different density of
states for neutral and charged quarks, i.e. exp[1/(Nμ+NB̃)G̃], where Nμ = μ2/π2

is the density of states at the Fermi surface of the neutral quarks with single chirality,
NB̃ = ẽB̃/2π2 is the density of states of the charged quarks lying at the zero Landau
level at the Fermi surface, and G̃=−g2/3Λ2 is the characteristic effective coupling
constant of the 3 channel [133]. The effect of the strong magnetic field ẽB̃/2 ≥ μ2

is to increase the total density of states, thus producing a gap enhancement.
Although the situation here shares some similarities with the magnetic catalysis

of chiral symmetry breaking [50, 51, 56, 57, 77, 78, 90, 91, 96, 97]; the way the field
influences the pairing mechanism in the two cases is quite different. The particles
participating in the chiral condensate are near the surface of the Dirac sea. The effect
of a magnetic field there is to effectively reduce the space dimension where the
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particles are embedded at the lowest Landau level (LLL), which as a consequence
strengthens their effective coupling, and so catalyzing the chiral condensate. Color
superconductivity, on the other hand, involves quarks near the Fermi surface, with a
pairing dynamics that is already (1+1)-dimensional. Therefore, the B̃ field does not
yield further dimensional reduction of the pairing dynamics near the Fermi surface
and hence the LLL does not have a special significance here. Nevertheless, the field
increases the density of states of the Q̃-charged quarks, and it is through this effect,
as shown in (16.7), that the pairing of the charged particles is reinforced by the
penetrating magnetic field.

Note that our analytic solutions are only valid at strong magnetic fields. For fields
of this order and larger, the ΔB gap is larger than ΔCFL at the same density values.
How fast or slow the gaps do it depends very much on the values of the NJL cou-
plings. For example, for x ∼ 0.3, one finds Δ∼ 0.2ΔB for y = 3/2, while for x ∼ 1
then Δ∼ 0.5ΔB .

In a recent study [45], it was discovered that the MCFL phase actually contains
one more condensate, which we will call ΔM . This new condensate is associated
with the magnetic moment of the Cooper pairs. Physically this is easy to understand.
The presence of a uniform magnetic field explicitly breaks the spatial rotational
symmetry O(3) to the subgroup O(2) of rotations about the axis along the field. As
shown in [45], this symmetry reduction has non-trivial consequences for the ground
state structure of the MCFL superconductor. When one performs the Fierz trans-
formations in the quark system with both Lorentz and rotational O(3) symmetries
explicitly broken, various new pairing channels appear allowing in principle the for-
mation of new condensates. Of particular interest is an attractive channel that leads
to a spin-one condensate of Dirac structure ΔM ∼ Cγ5γ

1γ 2. Such a gap does not
break any symmetry that has not already been broken by the other condensates of
the MCFL ground state, so it in principle is not forbidden. The new condensate cor-
responds to the zero spin projection of the average magnetic moment of the Cooper
pairs in the medium.

From a physical point of view, it is natural to expect the formation of this extra
condensate in the magnetized system because the diquarks formed by oppositely
charged quarks with opposite spins will have a net magnetic moment that may point
parallel or antiparallel to the magnetic field. Diquarks formed by quarks lying on
any non-zero Landau level can have magnetic moments pointing in both directions,
because each quark in the pair may have both spins. Hence the contribution of these
diquarks to the net magnetic moment should tend to cancel out. On the other hand,
diquarks from quarks in the LLL can only have one orientation of their magnetic
moment with respect to the field, because the quarks in the LLL have only one pos-
sible spin projection. This implies that the main contribution to the new condensate
should come from the quarks at the LLL, an expectation that is consistent with the
numerical results found in [45], where the new gap was obtained to be negligibly
small at weak magnetic fields, where the zero Landau level occupation is not sig-
nificant. On the other hand, at strong magnetic fields, the condensate became com-
parable in magnitude to the original condensates, Δ and ΔB , of the MCFL ground
state [61], because the majority of the quarks occupy the LLL in that case.
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Fig. 16.1 The three gaps of
the MCFL phase as a function
of ẽB̃/μ2 for μ= 500 MeV.
They are scaled with respect
to the CFL gap
ΔCFL = 25 MeV

Although this new condensate is zero at zero magnetic field, we cannot ignore
it even at very small magnetic fields because a self-consistent solution of the gap
equations with Δ �= 0, and ΔB �= 0, but ΔM = 0 is not possible. This is easy to
understand since, as long as the magnetic field is not zero, there is always some
occupation of the LLL. Thus, once a magnetic field is present, ΔM has to be con-
sidered simultaneously with the spin-zero MCFL gaps.

The ΔM condensate of the MCFL scenario described above shares a few simi-
larities with the dynamical generation of an anomalous magnetic moment recently
found in massless QED [56, 57]. Akin to the Cooper pairs of oppositely charged
quarks in the MCFL phase, the fermion and antifermion that pair in massless QED
also have opposite charges and spins and hence carries a net magnetic moment. A
dynamical magnetic moment term in the QED Lagrangian does not break any sym-
metry that has not already been broken by the chiral condensate. Therefore, once the
chiral condensate is formed due to the magnetic catalysis of chiral symmetry break-
ing [50, 51, 77, 78, 90, 91, 96, 97], the simultaneous formation of a dynamical mass
and a dynamical magnetic moment is unavoidable [56, 57]. The realization of the
anomalous magnetic moment condensate in magnetized massless QED produces a
non-perturbative Zeeman effect [56, 57].

At moderate magnetic fields the energy gaps Δ and ΔB exhibit oscillations when
ẽB̃/μ2 is varied [71, 111], owed to the de Haas-van Alphen effect [80, 81] typical of
charged fermion systems under magnetic fields (see for instance [40, 41, 71, 111]),
while for ΔM the oscillations are almost absent [45]. These features indicate, as
already pointed out, that the main contribution to ΔM should come from pairs whose
charged quarks are at the LLL.

The previous discussion can be visualized in the plot of the gaps as functions of
a dimensionless parameter ẽB̃/μ2 given in Fig. 16.1. Note that for small magnetic
field, Δ and ΔB are close to each other and approach the CFL gap ΔCFL = 25 MeV.
As the magnetic field increases,Δ andΔB display oscillatory behaviors with respect
to ẽB̃/μ2 as long as ẽB̃ < μ2. As originally explained by Landau [93], these oscil-



406 E.J. Ferrer and V. de la Incera

lations reveal the quantum nature of the interaction of the charged particles with
the magnetic field (the well-known Landau quantization phenomenon), and are pro-
duced by the change in the density of states when passing from one Landau level to
another. The oscillations cease when the first Landau level exceeds the Fermi sur-
face. For ultra-strong fields, when only the LLL contributes to the gap equation, ΔB

is much larger than Δ, as it was found by analytical calculation in [61].
The only contribution to ΔM from higher LLs can come when the number of

particles is odd, so there are energy states occupied by a single particle, but that is
a very small part. The cancellation does not occur, however, between the pairs of
quarks in the LLL because they can only be formed by positive quarks with spin up
and negative quarks with spin down. At low fields, the number of quarks in the LLL
is scarce, while for fields of order ẽB̃ ≥ μ2, all the particles are constrained to the
LLL, hence the variation of ΔM from lower values at weak field, to higher values at
sufficiently strong fields.

It is apparent from the graphical representation of ΔM in Fig. 16.1, that its value
remains relatively small up to magnetic-field values of the order of μ2. In the field
region between 1018–1019 G, the magnitude of ΔM grows from a few tenths of
MeV to tens of MeV. It becomes comparable to the MCFL gap ΔB when the field
is strong enough to put all the quarks in the LLL, shown in the final segment of the
plots in the figure.

Another important consequence of the gap ΔM is the increment in the magni-
tude of ΔB for any given value of the magnetic field in the strong field region, as
compared to its own value found at the same field but ignoring the existence of
ΔM [71, 111]. This effect, combined with the increase of ΔM at strong fields, will
make the MCFL phase more stable than the regular CFL, a fact that could favor the
realization of an MCFL core in magnetars.

Let us now discuss in more detail the difference between the CFL and MCFL
phases from the point of view of symmetry. In the absence of a magnetic field,
three-flavor massless quark matter at high baryonic density is in the energetically
favored CFL phase. There, the diquark condensates lock the color and flavor trans-
formations, breaking both symmetries. Thus, the symmetry breaking pattern in the
CFL phase is

SU(3)C × SU(3)L × SU(3)R ×U(1)B → SU(3)C+L+R. (16.11)

In this case, there are only nine Goldstone bosons that survive to the Anderson-
Higgs mechanism. One is a singlet, scalar mode, associated to the breaking of the
baryonic symmetry, and the remaining octet is associated to the axial SU(3)A group,
just like the octet of mesons in vacuum. At sufficiently high density, the anomaly
is suppressed, and then one can as well consider the spontaneous breaking of an
approximated U(1)A symmetry, and the additional pseudo Goldstone boson. We
will ignore this effect, though.

Once electromagnetic effects are considered, the flavor symmetries of QCD are
reduced, as only the d and s quarks have equal electromagnetic charges, q =−e/3,
while the u quark has electromagnetic charge, q = 2e/3. However, because the elec-
tromagnetic structure constant αe.m. is relatively small, this effect is considered to
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be really tiny, a small perturbation, and one can consider good approximated fla-
vor symmetries. Nevertheless, in the presence of a strong magnetic field one cannot
consider the effects of electromagnetism as a small perturbation. Flavor symmetries
are explicitly reduced from SU(3)L,R to SU(2)L,R . For sufficiently strong magnetic
fields, in the MCFL phase the symmetry breaking pattern is then

SU(3)C × SU(2)L × SU(2)R ×U(1)(1)A ×U(1)B ×U(1)e.m. → SU(2)C+L+R.
(16.12)

Here the symmetry group U(1)(1)A is related to a current, which is an anomaly free

linear combination of u, d and s axial currents, and such that U(1)(1)A ⊂ SU(3)A.
The locked SU(2) group corresponds to the maximal unbroken symmetry, such
that it maximizes the condensation energy. The counting of broken generators, after
taking into account the Anderson-Higgs mechanism, leads to only five Goldstone
bosons. As in the CFL case, one is associated with the breaking of the baryon sym-
metry; three Goldstone bosons are associated with the breaking of SU(2)A, and
another one with the breaking of U(1)(1)A . As before, if the effects of the anomaly
could be neglected, there would be another pseudo Goldstone boson associated with
the U(1)A symmetry. Thus, apart from modifying the value of the gaps, an applied
strong magnetic field also affects the number of Goldstone bosons, reducing them
from nine (neutral and charged) to five (neutral).

Once a magnetic field is present, the original symmetry group is reduced, and the
low energy theory correspond to the breaking pattern (16.12), hence be described by
five Goldstone bosons. In practice however, at weak magnetic fields, it is reasonable
to treat the symmetry of the CFL phase as a good approximated symmetry, which
means that at weak fields the low-energy excitations are essentially governed by
nine approximately massless scalars (those of the breaking pattern (16.11)) instead
of five.

A question of order here is: what do we exactly understand as a weak magnetic
field? In other words, what is the threshold-field strength that effectively separates
the CFL low energy behavior from the MCFL one? A fundamental clue in this direc-
tion was found in [54] by determining the term in the low-energy CFL Lagrangian
that generates a field-induced mass for the charged Goldstone fields, so disconnect-
ing them from the low-energy dynamics at some field strength and thereby effec-
tively reducing the number of Goldstone bosons from the nine of the CFL phase, to
the five neutral ones of the MCFL.

The threshold field B̃MCFL for the effective CFL → MCFL symmetry crossover
was found to be [54]

ẽB̃MCFL = 4

v2⊥
Δ2

CFL � 12Δ2
CFL, (16.13)

where the weak-field approximation v⊥ � 1/
√

3 was considered [134]. The thresh-
old field does not depend on the decay constant fπ , therefore it depends on μ only
through ΔCFL. For ΔCFL ∼ 15 MeV one gets ẽB̃MCFL ∼ 1016 G. At these field
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strengths, the charged mesons decouple from the low-energy theory. When this de-
coupling occurs, the five neutral Goldstone bosons (including the one associated
to the baryon symmetry breaking) that characterize the MCFL phase will drive the
low-energy physics of the system. Therefore, coming from low to higher fields,
the first magnetic phase that will effectively show up in the magnetized system for
ẽB̃ ∼Δ2

CFL will be the MCFL [61–64].
Summarizing, in a color superconductor with three-flavor quarks at very high

densities an increasing magnetic field produces a phase crossover from CFL to
MCFL. During this phase transmutation no symmetry breaking occurs, since in
principle once a magnetic field is present the symmetry is strictly speaking that
of the MCFL, as discussed above. However, in practice for B̃ ∼ B̃MCFL ∼Δ2

CFL the
main features of MCFL emerge through the low-energy behavior of the system [54].
At the threshold field B̃MCFL, only five neutral Goldstone bosons remain out of the
original nine characterizing the low-energy behavior of the CFL phase, because the
charged Goldstone bosons acquire field dependent masses and can decay in lighter
modes. For a meson to be stable in this system, its mass should be less than twice
the gap, otherwise it will decay into a particle-antiparticle pair. That means that, as
proved in Ref. [54], once the applied field produces a mass for the charged Gold-
stones of the order of the CFL gap it is reached the threshold field for the effective
CFL → MCFL symmetry transmutation.

The existence of this phase transmutation is on the other hand manifested in the
behavior of the gaps versus the magnetic field. At field strength smaller than the
threshold field we find that Δ ≈ΔB ≈ΔCFL, while for fields closer to B̃MCFL the
gaps exhibit oscillations with respect to ẽB̃/μ2 [45, 71, 111], owed to the de Haas-
van Alphen effect [80, 81].

It is worth to call attention to the analogy between the CFL-MCFL crossover and
what could be called a “field-induced” Mott transition. Mott transitions were orig-
inally considered in condensed matter in the context of metal-insulator transitions
in strongly-correlated systems [107, 108]. Later on, Mott transitions have been also
discussed in QCD to describe delocalization of bound states into their constituents
at a temperature defined as the Mott temperature [82]. By definition, the Mott tem-
perature TM is the temperature at which the mass of the bound state equals the mass
of its constituents, so the bound state becomes a resonance at T > TM . In the present
work, the role of the Mott temperature is played by the threshold field B̃MCFL. Mott
transitions typically lead to the appearance of singularities at T = TM in a num-
ber of physically relevant observables. It is an open question, worth to be investi-
gated whether similar singularities are or not present in the CFL-MCFL crossover
at B̃MCFL.

16.5 Magnetoelectric Effect in Cold-Dense Matter

It is well known that the phenomenon of CS shares many characteristics of con-
densed matter systems [13]. In this section, we discuss a new feature of CS that has
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its counterpart in magnetically ordered materials and has been known in the context
of condensed matter for many years. It is the so called magnetoelectric (ME) effect,
which establishes a relation between the electric and magnetic properties of certain
materials. In general, it states that the electric polarization of such materials may de-
pend on an applied magnetic field and/or that the magnetization may depend on an
applied electric field. The first observations of magnetoelectricity took place when
a moving dielectric was found to become polarized when placed in a magnetic field
[124, 140]. In 1894, Pierre Curie [37] was the first in pointing out the possibility of
an intrinsic ME effect for certain (non-moving) crystals on the basis of symmetry
considerations. But it took many decades to be understood and proposed by Lan-
dau and Lifshitz [95] that the linear ME effect is only allowed in time-asymmetric
systems. Recently the ME effect regained new interest in condensed matter thanks
to new advancements in material science and with the development of the so-called
multiferroic materials for which the ME effect is significant for practical applica-
tions [66].

As demonstrated in Refs. [46, 47] the ME effect also occurs in a highly magne-
tized CS medium like the MCFL phase. In particular, in [46, 47] it was shown how
the electric susceptibility of this medium depends on an applied strong magnetic
field.

Let us start by discussing the ME effect at weak fields. At weak fields this effect
can be studied by taking into account the expansion of the system’s free energy in
powers of the electric Ẽ and magnetic B̃ fields

F(Ẽ, B̃) = F0 − αiẼi − βiB̃i − γij ẼiB̃j − ηij ẼiẼj − τij B̃i B̃j

− κijkẼiẼj B̃k − λijkẼiB̃j B̃k − σijklẼiẼj B̃kB̃l − · · · . (16.14)

In this weak-field expansion the coefficients αi , γij etc., which are the suscepti-
bility tensors, can be found from the infinite set of one-loop polarization operator
diagrams with external legs of the in-medium photon field Ãμ and internal lines of
the full CFL quark propagator of the rotated charged quarks. Hence, these coeffi-
cients can only depend on the baryonic chemical potential, the temperature and the
CFL gap. From (16.14), the electric polarization can be found as

Pi =− ∂F

∂Ẽi

= αi+γij B̃j +2ηij Ẽj +2κijkẼj B̃k+λijkB̃j B̃k+2σijklẼj B̃kB̃l+· · · .
(16.15)

If the tensor γ is different from zero the system exhibits the linear ME effect.
From the free energy (16.14), we see that the linear ME effect can only exist if the
time-reversal and parity symmetries are broken in the medium. In the CFL phase,
the time-reversal symmetry is broken by the CFL gap [45], but parity is preserved.
Thus, the linear ME effect cannot be present in this medium. The behavior under a
time-reversal transformation underscores an important difference between the CFL
color superconductivity and the conventional, electric superconductivity. While the
CFL color superconductor is not invariant under time-reversal symmetry, the con-
ventional superconductor is, since in the conventional superconductor the Cooper
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pairs are usually formed by time-reversed one-particle states [16]. In the conven-
tional superconductor the violation of the T-invariance occurs only via some exter-
nal perturbation which can lead in turn to pair breaking and to the so-called gapless
superconductivity [2].

Higher-order ME terms are parameterized by the tensors κ , and λ. As it happens
with γ , the coefficient λ �= 0 is forbidden because it requires parity violation. On
the other hand, although a κ �= 0 term only requires time-reversal violation, to form
a third-rank tensor independent of the momentum and parity invariant, the medium
would need to have an extra spatial vector structure. However, the only tensor struc-
tures available to form such a third-rank tensor in the CFL phase are the metric
tensor gμν and the medium fourth velocity uμ, which in the rest frame is a temporal
vector uμ = (1,0,0,0), so the coefficient κ should be zero too. Hence, we do not
expect any ME effect associated with the lower terms in the weak-field expansion
of the free energy (16.15).

At strong magnetic fields, the situation is quite different. In this case the expan-
sion of the free energy can only be done in powers of a weak electric field, and the
coefficients of each term can be found from the corresponding one-loop polarization
operators, which now depend on the strong magnetic field in the MCFL phase. The
free energy expansion in this case takes the form

F ′(Ẽ, B̃)= F ′
0(B̃)− α′

i Ẽi − η′ij ẼiẼj − · · · . (16.16)

The tensors α′ and η′ can depend now on the baryonic chemical potential, temper-
ature, magnetic field and gaps of the MCFL phase [45]. They can be found respec-
tively by calculating the tadpole and the second rank polarization operator tensor of
the MCFL phase in the strong field limit. An α′ �= 0 would indicate that the MCFL
medium behaves as a ferroelectric material [86, 99], but this is not the case be-
cause this phase is parity symmetric [45], hence α′ = 0. The tensor η′, nevertheless,
is not forbidden by any symmetry argument. If it is different from zero, η′ would
characterize the lowest order of the system dielectric response. More important, if
η′ results to be dependent on the magnetic field, this would imply that the electric
polarization P = η′E depends on the magnetic field through η′, hence the MCFL
phase would exhibit the ME effect.

To find the electric susceptibility η′ in the strong-magnetic-field limit of the
MCFL phase we start from [45]

F ′(Ẽ, B̃)− F ′
0(B̃)∼

1

V

∫
Ã0(x3)Π00

(
x3 − x′3

)
Ã0

(
x′3

)
dx3dx

′
3 =−η′Ẽ2, (16.17)

our task is then reduced to the calculation of the zero-zero component of the one-
loop polarization operator at strong magnetic field in the infrared limit, Π00(p0 =
0,p→ 0).

Now, the photon polarization operator should be gauge invariant. That is, in the
strong-field approximation, it should satisfy the transversality condition in the re-
duced (1+1)-D space (pμ‖Π‖

μν(p
‖)= 0). As known, the polarization operator ten-

sor can be expanded in a superposition of independent transverse Lorentz tensors.
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The number of these basic transverse tensors depends on the symmetries of the sys-
tem under consideration. For example, in vacuum, where the only available tensorial
structures are the four-momentum and the metric tensor, there is only one gauge in-
variant structure. When a medium is under consideration (i.e. at finite temperature
or finite density), since the Lorentz symmetry is broken, there is an additional gauge
invariant structure that can be formed by taking into account a new four-vector, the
four-velocity of the medium center of mass, uμ, [67]. When a magnetic field is
applied on that medium, then the structure of the polarization operator is enriched
by an additional tensor, Fμν . Then, at finite density and in the presence of a mag-
netic field, there are nine independent gauge-invariant tensorial structures [117]. At
strong magnetic field, when the particles are confined to the LLL, due to the fact
that the transverse momentum is zero, there is a dimensional reduction leaving only
the tensors g‖μν , p‖

μ and u
‖
μ = (1,0) at our disposal. The original nine structures in

[117] now reduce to only two

T (1)
μν = (

p‖)2
g‖μν − p‖

μp
‖
ν, (16.18)

and

T (2)
μν =

[
u‖μ − p

‖
μ(u

‖ · p‖)
(p‖)2

][
u‖ν −

p
‖
ν(u

‖ · p‖)
p2

]
. (16.19)

Moreover, one can readily check that the two tensors (16.18) and (16.19) are equiv-
alent, which indicates that the rotated-photon polarization operator tensor, at strong
magnetic field, only has one independent structure

Π‖
μν

(
p‖)=Π

(
p‖,μ,B

)[(
p‖)2

g‖μν − p‖
μp

‖
ν

]
, (16.20)

with Π(p‖,μ,B) being a scalar coefficient depending on the photon longitudinal
momentum, baryonic chemical potential and magnetic field.

At zero temperature, the regularized components of the polarization operator in
powers of the photon momentum components p0 and p3, up to quadratic terms are
given by

Π00R = − lim
Λ→∞

ẽ2|ẽB̃|p2
3

6π2

(
1

Δ2
0

+ 1

Λ2

)
=− ẽ2|ẽB̃|p2

3

6π2Δ2
0

, (16.21)

Π33R = − lim
Λ→∞

ẽ2|ẽB̃|
6π2

[(
3 + p2

0

Δ2
0

)
−

(
3 + p2

0

Λ2

)]
=− ẽ2|ẽB̃|p2

0

6π2Δ2
0

, (16.22)

and Π30R =Π03R � 0. As should be expected, the regulator Λ introduced through
the Pauli-Villars regularization scheme does not appear in the final results once we
take Λ→∞.

Because Π00 has no constant contribution in the infrared limit p0 = 0,p3 → 0,
one immediately concludes that there is no Debye screening in the strong-field re-
gion, as it was the case at zero field in the CFL phase [100, 126]. This is simply
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because all quarks are bound within the rotated-charge neutral condensates. There
is also no Meissner screening (i.e. Π33 is zero in the zero-momentum limit), as it
should be expected from the remnant Ũ(1) gauge symmetry. However, the con-
densates have electric dipole moments and could align themselves in an electric
field. Hence, this should modify the dielectric constant of the medium. Since the
quadratic term in the effective Ũ (1) Lagrangian is given by Ãμ(−p)[D−1

μν (p) +
Πμν(p)]Ãν(p), with D−1 being the bare rotated photon propagator, the effective
action of the Ũ(1) field in the strong-field region is given by

Seff =
∫

d4x

[
ε‖
2

Ẽ‖ · Ẽ‖ + ε⊥
2

Ẽ⊥ · Ẽ⊥ − 1

2λ‖
H̃‖ · H̃‖ − 1

2λ⊥
H̃⊥ · H̃⊥

]
, (16.23)

where the separation between transverse and longitudinal parts is due to the O(3)→
O(2) symmetry breaking produced by the strong magnetic field B̃ . In (16.23), Ẽ, H̃
are weak electric and magnetic field probes, respectively. In (16.23) the coefficients
ε and λ denote the electric permittivity and magnetic permeability of the medium
respectively.

From (16.21)–(16.22) it is straightforward that in the infrared limit the transverse
and longitudinal components of the electric permittivity and magnetic permeability
become

λ⊥ = λ‖ � 1, ε⊥ = 1, ε‖ = 1 + χ
‖
MCFL = 1 + ẽ2|ẽB̃|

6π2Δ2
0

, (16.24)

where χ‖
MCFL is the longitudinal electric susceptibility. Notice that the longitudinal

electric susceptibility is much larger than one because in the strong-magnetic-field
limit ẽB̃ �Δ2

0 [45].
Although a static Ũ (1) charge cannot be completely Debye screened by the Ũ(1)

neutral Cooper pairs, it can still be partially screened along the magnetic field direc-
tion because the medium is highly polarizable on that direction. This is due to the
existence of Cooper pairs with opposite rotated charges Q̃ that behave as electric
dipoles with respect to the rotated electromagnetism of the MCFL phase. More-
over, the electric susceptibility depends on the magnetic field. When the magnetic
field increases in the strong-field region, the susceptibility becomes smaller, be-
cause the coherence length ξ ∼ 1/Δ0 decreases (i.e. Δ0 increases) with the field

at a quicker rate than
√
ẽB̃ [45], and the pair’s coherence length ξ plays the role

of the dipole length. Hence, with increasing magnetic field the polarization effects
weaken in the strong-field region. The tuning of the electric polarization by a mag-
netic field is what is called in condensed matter physics the magnetoelectric effect.
From (16.24), we also see that at strong magnetic fields the medium turns out to be
very anisotropic. The fact that the electric permittivity is only modified in the longi-
tudinal direction is due to the confinement of the quarks to the LLL at high enough
fields.
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16.6 Paramagnetism in Color Superconductivity

Another nontrivial electromagnetic effect in cold-dense QCD is that an applied mag-
netic field can interact inside the color superconductor with the gluons, which as
known, are neutral with respect to the conventional electromagnetism in vacuum.

Thus, we now analyze how the gluons are affected by an applied magnetic field in
a CS state and how at sufficiently strong magnetic fields a new phase, that we call the
Paramagnetic-CFL (PCFL) phase [52, 53], is created. In the color superconductor
some of the gluons acquire rotated electric charges. In the CFL phase the Q̃-charge
of the gluons in units of ẽ are

G1
μ G2

μ G3
μ G+

μ G−
μ I+μ I−μ G̃8

μ

0 0 0 1 −1 1 −1 0
(16.25)

The Q̃-charged fields in (16.25) correspond to the combinations G±
μ ≡ 1√

2
[G4

μ ∓
iG5

μ] and I±μ ≡ 1√
2
[G6

μ ∓ iG7
μ].

To investigate the effect of the applied rotated magnetic field H̃ on the charged
gluons, we should start from the effective action of the charged fields G±

μ (the con-
tribution of the other charges gluons I±μ is similar)

Γeff =
∫

dx

{
−1

4
(f̃μν)

2 +G−
μ

[
(Π̃μΠ̃μ)δμν − 2iẽf̃μν

− (
m2
Dδμ0δν0 +m2

Mδμiδνi
)−

(
1 − 1

ς
Π̃μΠ̃ν

)]
G+
ν

}
. (16.26)

Here, ς is the gauge fixing parameter, Π̃μ = ∂μ − iẽÃμ is the covariant derivative
in the presence of the external rotated field, mD and mM are the G±

μ -field Debye
and Meissner masses respectively, and the field strength tensor for the rotated elec-
tromagnetic field if denoted by f̃μν = ∂μÃν − ∂νÃμ. The corresponding Debye and
Meissner masses in (16.26) are given by [100, 126]

m2
D =m2

g

21 − 8 ln 2

18
, m2

M =m2
g

21 − 8 ln 2

54
, (16.27)

with m2
g = g2(μ2/2π2). We are neglecting the correction produced by the applied

field to the gluon Meissner masses since it will be a second order effect. The effec-
tive action (16.26) is characteristic of a spin-1 charged field in a magnetic field (for
details see for instance [42, 43]).

Assuming an applied magnetic field along the third spatial direction (f̃ ext
12 = H̃ ),

we find after diagonalizing the mass matrix of the field components (G+
1 ,G

+
2 ) in

(16.26)
(
m2
M iẽH̃

−iẽH̃ m2
M

)

→
(
m2
M + ẽH̃ 0

0 m2
M − ẽH̃

)

, (16.28)
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with corresponding eigenvectors (G+
1 ,G

+
2 ) → (G, iG). We see that the lowest mass

mode in (16.28) has a sort of “Higgs mass” above the critical field ẽH̃C = m2
M ,

indicating the setup of an instability for the G-field. This phenomenon is the well
known “zero-mode problem” found in the presence of a magnetic field for Yang-
Mills fields [110, 131], for the W±

μ bosons in the electroweak theory [14, 15, 132],
and even for higher-spin fields in the context of string theories [48, 49] and it is due
to the presence of the gluon anomalous magnetic moment term 2iẽf̃μνG−

μG
+
ν in

(16.26). Thus, to remove the instability it is needed the restructuring of the ground
state through the condensate of the field bearing the tachyonic mode (i.e. the G-
field).

It is worth to call attention that the gluon condensate under consideration is not
the only charged spin-one condensate generated in a theory with a large fermion
density. As known [58, 59, 98], a spin-one condensate of W-bosons can be origi-
nated at sufficiently high fermion density in the context of the electroweak theory
at zero magnetic field. However, the physical implications of the gluon condensate
induced by the magnetic field in the CS are fundamentally different from those as-
sociated to the homogeneous W-boson condensate of the dense electroweak theory
[58, 59, 98]. One of the main physical differences is that the homogeneous W con-
densate, being electrically charged, so to compensate the excess of charge due to the
finite density of electrons [58, 59, 98], breaks the electromagnetic U(1) group pro-
ducing a conventional superconducting state [60]; while the inhomogeneous gluon
condensate in CS is formed with gluons of both charges, so keeping the condensate
state neutral.

To find the G-field condensate and the induced magnetic field B̃ =∇ × Ã, with
Ã being the total rotated electromagnetic potential in the condensed phase in the
presence of the external field H̃ , we should start from the Gibbs free energy den-
sity G = F − H̃ B̃ , since it depends on both B̃ and H̃ (F is the system free en-
ergy density). Since specializing H̃ in the third direction the instability develops in
the (x, y)-plane, we make the ansatz for the condensed field G=G(x,y). Starting
from (16.26) in the Feynman gauge ς = 1, which in terms of the condensed field
G implies (Π̃1 + iΠ̃2)G= 0, we have that the Gibbs free energy in the condensed
phase is

Gc = Fn0 + Π̃2G
2 − 2

(
ẽB̃ −m2

M

)
G

2 + 2g2G
4 + 1

2
B̃2 − H̃ B̃, (16.29)

where Fn0 is the system free energy in the normal phase (G= 0) at zero magnetic
field.

The minimum equations for the fields G and B̃ are respectively obtained from
(16.29) as

Π̃2G+ 2
(
m2
M − ẽB̃

)
G+ 8g2G

2
G = 0, (16.30)

2ẽG
2 − B̃ + H̃ = 0. (16.31)

Identifying G with the complex order parameter, (16.30)–(16.31) become analogous
to the Ginzburg-Landau equations for a conventional superconductor except by the
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negative sign in front of the B̃ field in (16.30) and the positive sign in the first term
of the LHS of (16.31) [52]. The fact that those signs turn the opposite of those
appearing in conventional superconductivity is due to the different nature of the
condensates in both cases. While in conventional superconductivity the Cooper pair
is a spin-zero condensate, here we have a condensate formed by spin-one charged
particles interacting through their anomalous magnetic moment with the magnetic
field (i.e. the term 2iẽf̃μνG−

μG
+
ν in (16.26)).

Notice that because of the different sign in the first term of (16.31), the resultant
field B̃ is stronger than the applied field H̃ , contrary to what occurs in conventional
superconductivity. Thus, when a gluon condensate develops, the magnetic field will
be antiscreened and the color superconductor will behave as a paramagnet. The an-
tiscreening of a magnetic field has been also found in the context of the electroweak
theory for magnetic fields H ≥ M2

W/e ∼ 1024 G [14]. Just as in the electroweak
case, the antiscreening in the color superconductor is a direct consequence of the
asymptotic freedom of the underlying theory [14].

Therefore, the magnetic field in the new phase is boosted to a higher value, which
depends on the modulus of the G-condensate. That is why the phase attained at
H̃ ≥ H̃c is called paramagnetic CFL (PCFL) [52, 54]. It should be pointed out that at
the scale of baryon densities typical of neutron-star cores (μ� 400 MeV, g(μ)� 3)
the charged gluons magnetic mass in the CFL phase is m2

M � 16 × 10−3 GeV2.
This implies a critical magnetic field of order H̃c � 0.7 × 1017 G. Although it is
a significant high value, it is in the expected range for the neutron star interiors
with cold-dense quark matter [65, 114]. Let us underline that in our analysis we
considered asymptotic densities where quark masses can be neglected. At lower
densities where the Meissner masses of the charged gluons become smaller, the
field values needed to develop the magnetic instability will be smaller.

To find the structure of the gluon condensate we should solve the non-linear dif-
ferential equation (16.30). However, to get an analytic solution we can consider the
approximation where H̃ ≈ H̃c =m2

M and consequently |G| ≈ 0. In this approxima-
tion, (16.30) can be linearized as

[
∂2
j − 4πi

Φ̃0
B̃x∂y − 4π2 B̃

2

Φ̃2
0

x2 − 1

ξ2

]
G= 0, j = x, y (16.32)

where we fixed the gauge condition Ã2 = B̃x1, and introduced the notations Φ̃0 =
2π/ẽ, and ξ2 = 1

2 (ẽB̃ −m2
M)

−1.
Equation (16.32) is formally similar to the Abrikosov’s equation in type-II con-

ventional superconductivity [2, 3, 73], with ξ playing the role of the coherence
length and Φ̃0 of the flux quantum per vortex cell. Then, following the Abrikosov’s
approach, a solution of (16.32) can be found as

G(x,y)= 1√
2ẽξ

e
− x2

eξ2 ϑ3(u/τ), (16.33)
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with ϑ3(u/τ) being the elliptic theta function with arguments

u=−iπb
(
x

ξ2
+ y

b2

)
, τ =−iπ b

2

ξ2
. (16.34)

In (16.34) the parameter b is the periodic length in the y-direction (b = Δy). The
double periodicity of the elliptic theta function also implies that there is a periodic-
ity in the x-direction given by Δx = Φ̃0/bH̃c. Therefore, the magnetic flux through
each periodicity cell (ΔxΔy) in the vortex lattice is quantized H̃cΔxΔy = Φ̃0, with
Φ̃0 being the flux quantum per unit vortex cell. In this semi-qualitative analysis
we considered the Abrikosov’s ansatz of a rectangular lattice, but the lattice con-
figuration should be carefully determined from a minimal energy analysis. For the
rectangular lattice, we see that the area of the unit cell is A=ΔxΔy = Φ̃0/H̃c , so
decreasing with H̃ .

In conclusion, to remove the instability created by an external uniform magnetic
field in the z-direction, a periodic arrangement of vortices of charged gluon con-
densates is generated in the (x, y)-plane. The currents in the (x, y)-plane created by
these vortices increase the magnitude of the net magnetic field in the direction of the
original field, but since the magnitude of the resultant field varies in the (x, y)-plane,
the vortex condensate leads to a net inhomogeneous magnetic field. Therefore, the
presence of a supercritical magnetic field leads to the formation of a fluxoid along
the z-direction and the appearance of a nontrivial topology on the perpendicular
plane. From (16.31) we see that the resultant magnetic field can go from a minimum
value H̃ to a maximum at the core of the fluxoid that depends on the amplitude of
the gluon condensate determined by the mismatch between the applied field and the
gluon Meissner mass.

Summarizing, at low H̃ field, the CFL phase behaves as an insulator, and the H̃
field just penetrates through it without any change of strength. At sufficiently high
field ẽH̃ ∼ m2

M , the condensation of G± is triggered inducing the formation of a
lattice of magnetic flux tubes that breaks the translational and remaining rotational
symmetries, creating the so-called paramagnetic phase. We stress that contrary to
the situation in conventional type-II superconductivity, where the applied field only
penetrates through the flux tubes and with a smaller strength, the vortex state in the
color superconductor has the peculiarity that outside the flux tube the applied field
H̃ totally penetrates the sample, while inside the tubes the magnetic field becomes
larger than H̃ (this is the origin of the paramagnetic behavior of this CS phase). This
effect provides an internal mechanism to increase the magnetic field of a compact
star with a CS core.

16.7 Magnetic Phases in CFL Matter

From the discussions in the previous sections it is clear that in the three-flavor
color superconductor at very high densities an increasing magnetic field produces
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a crossover from CFL to MCFL first, and then a phase transition from MCFL to
PCFL.

During the crossover, no symmetry breaking occurs, since in principle once a
magnetic field is present the symmetry is already that of the MCFL. At very weak
magnetic fields, the color superconducting state is practically described by the CFL
phase, because the charged mesons corresponding to the Goldstone modes, although
massive, are so light that they cannot decay in pairs of quark-antiquark. When the
field strength is of the order of the quarks’ energy gap ΔCFL, the charged mesons
become heavy enough to decouple and the low-energy physics is indeed that of the
MCFL phase, where five neutral massless mesons drive the low-energy behavior.

Going from MCFL to PCFL is, on the other hand, a real phase transition [52, 53],
as the translational symmetry, as well as the remaining rotational symmetry in the
plane perpendicular to the applied magnetic field are broken by the vortex state. This
phase transition is driven by fields whose strengths are comparable to the magnetic
masses mM of the charged gluons, so creating a chromomagnetic instability that
leads to the formation of a vortex state and the antiscreening of the magnetic field
[52, 53].

This magnetic instability is characteristic of systems of charged bosons with
higher spins (s ≥ 1). Taking into account that at zero momentum the energy spec-
trum in a magnetic field H of a charged boson of spin s, charge e, gyromagnetic ratio
g, and mass m is

E2
n = (2n+ 1)eH − geH · s +m2, (16.35)

it is evident that for spin-one particles, for which g = 2, the energy becomes imag-
inary, i.e. E2 < 0, if the field satisfies H > Hcr = m2/e), implying that when the
field surpasses the critical value Hcr , one of the modes of the charged gauge field
becomes tachyonic inducing the vortex formation.

Within a NJL model, for fields comparable to the baryon chemical potential, the
ground state is that of the MCFL phase with sizable values of the three condensates
ΔB , ΔM , and Δ. However, once the gluon effects are taken into account, the PCFL
vortex state generated at lower fields is unavoidable and the picture becomes much
more complicated due to the inhomogeneities of the gluon condensate and net mag-
netic field. From a physical point of view, it is natural to expect that in this situation
the three fermion gaps will remain, because their physical origin, is still the same.
That is, an inhomogeneous magnetic field will also distinguish between pairs of op-
posite charged quarks and pairs of neutral quarks, and those of opposite charged
quarks will still have a magnetic moment contributing to the condensate ΔM . How-
ever, all these condensates should become inhomogeneous in the (x, y)-plane.

16.8 Equation of State of the MCFL Phase

At present, some of the best-known characteristics of stellar objects are their masses
and radii. The relation between the mass and the radius of a star is determined by the
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equation of state (EoS) of the inner phase of the matter in the star. If one can identify
some features connecting the star’s internal state (nuclear, strange, color supercon-
ducting, etc.) to its mass/radius relation, one would have an observational tool to dis-
criminate among the actual realization of different star inner phases in nature. From
previous theoretical studies [4, 6, 11, 12, 18, 23, 39, 101, 102, 112, 113, 125, 128]
the mass-radius relationship predicted for neutron stars with different quark-matter
phases (CS or unpaired) at the core are very similar to those having hadronic
phases, at least for the observed mass/radius range. As a consequence, it is very
difficult to find a clear observational signature that can distinguish among them.
Nevertheless, an important ingredient was ignored in these studies: the magnetic
field, which in some compact stars could reach very high values in the inner re-
gions.

As pointed out in [65], a strong magnetic field can create a significant anisotropy
in the longitudinal and transverse pressures. One would expect then, that the EoS,
and consequently, the mass-radius ratio, become affected by sufficiently strong core
fields. Given that we are beginning to obtain real observational constraints on the
EoS of neutron stars [5], it is important to investigate the EoS in the presence of a
magnetic field for different inner star phases to be able to discard those that do not
agree with observations.

In order to understand the relevance of the magnetic field to tell apart neutron
stars from stars with paired quark matter, it is convenient to recall that when the
pressure exerted by the central matter density of neutron stars (which is about
200–600 MeV/fm3) is contrasted with that exerted by an electromagnetic field,
the field strength needed for these two contributions to be of comparable order
results of order ∼1018 G [25]. It is worth to notice that even these very strong
fields are not enough to produce quantum effects like the Landau quantization of
the protons, because these effects only show up when the particles’ cyclotron en-
ergy ehB/mc becomes comparable to its rest energy mc2, which for protons means
a field ∼1020 G.

However, for stars with paired quark matter, the situation is rather different.
Naively, one might think that comparable matter and field pressures in this case
would occur only at much larger fields, since the quark matter can only exist at
even larger densities to ensure deconfinement. In reality, though, the situation is
more subtle. As argued in [6], the leading term in the matter pressure coming from
the contribution of the particles in the Fermi sea, ∼μ4, could be (almost) canceled
out by the negative pressure of the bag constant and in such a case, the next-to-
leading term would play a more relevant role than initially expected. Consequently,
the magnetic pressure might only need to be of the order of that produced by the par-
ticles close to the Fermi surface, which becomes the next-to-leading contribution,
∼μ2Δ2, with Δ the superconducting gap and μ the baryonic chemical potential. For
typical values of these parameters in paired quark matter one obtains a field strength
∼1018 G. Moreover, the magnetic field can affect the pressure in a less obvious way
too, since as shown in [62–64], it modifies the structure and magnitude of the su-
perconductor’s gap, an effect that, as found in [52, 53], starts to become relevant
already at fields of order 1016 G and leads to de Haas van-Alphen oscillations of
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the gap magnitude [71, 111]. It is therefore quite plausible that the effects of moder-
ately strong magnetic fields in the EoS of compact stars with color superconducting
matter will be more noticeable than in stars made up only of nucleons, where quan-
tum effects starts to be significant for field four orders of magnitude larger. This is
why an evaluation of the EoS in magnetized quark phases is necessary and rele-
vant.

In [114], a self-consistent analysis of the EoS of MCFL matter, was performed
taking into consideration the solution of the gap equations and the anisotropy of the
pressures in a magnetic field. In that study a uniform and constant magnetic field was
assumed. The reliability of this assumption for neutron stars, where the magnetic
field strength is expected to vary from the core to the surface in several orders, is
based on the fact that the scale of the field variation in the stellar medium is much
larger than the microscopic magnetic scale for both weak and strong magnetic fields
[25]. Hence, when investigating the field effects in the EoS, it is consistent to take a
magnetic field that is locally constant and uniform. This is the reason why such an
approximation has been systematically used in all the previous works on magnetized
nuclear [1, 20, 25, 27, 28, 33, 34, 72, 79, 88, 115, 119, 123, 135, 139, 142] and quark
matter [31, 32, 74, 104, 105, 120].

16.8.1 Covariant Structure of the Energy-Momentum Tensor
in a Magnetized System

In the reference frame comoving with the many-particle system, the system nor-
mal stresses (pressures) can be obtained from the diagonal spatial components of
the average energy-momentum tensor 〈τ ii〉; the system energy, from its zeroth di-
agonal component 〈τ 00〉; and the shear stresses (which are absent for the case of a
uniform magnetic field) from the off-diagonal spatial components 〈τ ij 〉 [94]. Then,
to find the energy density and pressures of the dense magnetized system we need
to calculate the quantum-statistical averages of the corresponding components of
the energy-momentum tensor of the fermion system in the presence of a magnetic
field.

These calculations were carried out long time ago in Ref. [26], using a QFT
second-quantization approach. There, a quantum-mechanical average of the energy-
momentum tensor in the eigen-states of the Dirac equation in the presence of the
uniform magnetic field was first performed to get the corresponding quantum op-
erator in the occupation-number space. The macroscopic stress-energy tensor was
then found by averaging its quantum operator in the statistical ensemble using the
many-particle density matrix. Similar calculations were performed in Ref. [65], but
using a functional-method approach that makes it easier to recognize the thermo-
dynamical quantities entering in the final results. An advantage of the procedure
followed in [65], as compared with that of [26], is that it does not assume that the
fermion fields entering in the definitions of the energy and pressures satisfy the clas-
sical equation of motions (i.e. the Dirac equations for ψ and ψ ), but the functional
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integrals integrate in all field configurations. Hence, the terms depending on the La-
grangian density Lψ in τμν were kept, while in Ref. [26] the condition Lψ = 0 was
considered as a constraint.

Let us then consider a hot and dense system of fermions in a constant and uniform
magnetic field B . At this point it is convenient to introduce the covariant decompo-
sition for the energy momentum tensor of the whole system containing the matter
and field contributions. In order to accomplish this goal, we define the system ther-
modynamic potential as the sum of the matter, Ωf , and field, B2/2, contributions

Ω =Ωf + B2

2
. (16.36)

Taking into account the symmetries of the magnetized dense system, we can
write the statistical average of the energy-momentum tensor as a combination of all
the available independent structures

1

βV

〈
τ̃ μν

〉=Ωημν + (μN + T S)uμuν +BMη
μν
⊥ , (16.37)

whereN =−(∂Ω/∂μ) is the particle number density, S =−(∂Ω/∂T ) is the system
entropy, M = −(∂Ω/∂B) is the system magnetization and η

μν
⊥ = F̂ μρF̂ ν

ρ (where
F̂ μρ = Fμρ/B denotes the normalized electromagnetic strength tensor).

To understand the origin of the covariant decomposition (16.37), notice that as
a consequence of the breaking of the rotational symmetry O(3) produced by the
external magnetic field, the Minkowskian metric splits in transverse ημν⊥ and longi-
tudinal ημν‖ = ημν − F̂ μρF̂ ν

ρ structures. Considering the quantum field limit with no
magnetic field, i.e. when T = μ = B = 0, the only term different from zero is the
first one in the RHS of (16.37). In that case the system has Lorentz symmetry and
the energy density, ε, and pressure, p, are given by ε = −p =Ωf . If temperature
and/or density are switched on, then the Lorentz symmetry is broken specializing
a particular reference frame comoving with the medium center of mass and hav-

ing four velocity uμ = (1,
−→
0 ). This is reflected in the second term of the RHS of

(16.37). In this case, at T = 0 for instance, ε =Ωf + μN and p = −Ωf . Finally,
when there is an external uniform magnetic field acting on the system, the additional
symmetry breaking O(3)→O(2) takes place, and 〈τ̃ μν〉 get an anisotropy reflected
in the appearance of the transverse metric structure ημν⊥ in (16.37). At T = 0 we then
have

ε =Ωf −μ
∂Ωf

∂μ
+ B2

2
, (16.38)

p‖ = −Ωf − B2

2
, p⊥ =−Ωf +H

∂Ωf

∂B
+ B2

2
. (16.39)

See Ref. [65] for detailed derivations of the formulas for the pressures and energy
density in a magnetic field.
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16.8.2 MCFL Thermodynamic Potential

Let us turn our attention now to densities large enough for the fermion system to
be in the MCFL phase. Our ultimate goal is to find the EoS of this superconducting
phase. To find the density and pressure of this phase, we first need, as seen from
(16.38)–(16.39), to obtain the contribution of the quarks to the thermodynamic po-
tential. We can express the MCFL thermodynamic potential as the sum of the con-
tributions coming from charged (ΩC ) and neutral (ΩN ) quarks [114]

ΩMCFL =ΩC +ΩN (16.40)

with

ΩC = − ẽB̃

4π2

∞∑

n=0

(
1 − δn0

2

)∫ ∞

0
dp3e

−(p2
3+2ẽB̃n)/Λ2[

8
∣∣ε(c)

∣∣+ 8
∣∣ε(c)

∣∣], (16.41)

ΩN = − 1

4π2

∫ ∞

0
dpp2e−p2/Λ2[

6
∣∣ε(0)

∣∣+ 6
∣∣ε(0)

∣∣]

− 1

4π2

∫ ∞

0
dpp2e−p2/Λ2

2∑

j=1

[
2
∣∣ε(0)j

∣∣+ 2
∣∣ε(0)j

∣∣]+ Δ2

G
+ 2Δ2

B

G
, (16.42)

and

ε(c) =±
√
(√

p2
3 + 2ẽB̃n−μ

)2 +Δ2
B,

(16.43)

ε(c) =±
√
(√

p2
3 + 2ẽB̃n+μ

)2 +Δ2
B,

ε(0) =±
√
(p−μ)2 +Δ2, ε(0) =±

√
(p+μ)2 +Δ2,

ε
(0)
1 =±

√
(p−μ)2 +Δ2

a, ε
(0)
1 =±

√
(p+μ)2 +Δ2

a, (16.44)

ε
(0)
2 =±

√
(p−μ)2 +Δ2

b, ε
(0)
2 =±

√
(p+μ)2 +Δ2

b,

being the dispersion relations of the charged (c) and neutral (0) quarks. In the above
we used the notation

Δ2
a/b =

1

4

(
Δ±

√
Δ2 + 8Δ2

B

)2
. (16.45)

The MCFL gaps Δ and ΔB were introduced in Sect. 16.4. In the integrals (16.41)
and (16.42), Λ-dependent smooth cutoffs for the NJL model are used.

The effects of confinement can be incorporated by adding a bag constant B to
ΩMCFL. Besides the bag constant and the quark contributions, the thermodynamic
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Fig. 16.2 Parallel and
perpendicular pressures as a
function of the magnetic field
intensity for μ= 500 MeV
and bag constant
B = 58 MeV/fm3

potential of the system also includes the pure Maxwell contribution, B̃2/2 [65].
Hence, the thermodynamic potential of the MCFL phase is given by

ΩB =ΩMCFL + B + B̃2

2
. (16.46)

The gaps Δ, and ΔB have to be found from their respective gap equations

∂ΩMCFL

∂Δ
= 0,

∂ΩMCFL

∂ΔB

= 0. (16.47)

16.8.3 EoS in a Magnetic Field

The pressure and energy density of the MCFL phase are given by

εMCFL =ΩB −μ
∂ΩB

∂μ
, (16.48)

p
‖
MCFL = −ΩB, p⊥

MCFL =−ΩB + B̃
∂ΩB

∂B̃
. (16.49)

Note the splitting between parallel p‖
MCFL (i.e. along the field) and transverse

p⊥
MCFL (i.e. perpendicular to the field) pressures due to the magnetic field.

The magnetic field dependencies of the parallel and transverse pressures in
(16.49) were studied in Ref. [114], and are plotted in Fig. 16.2. Similarly to what
occurs in the case of a magnetized uncoupled fermion system at finite density [65],
the transverse pressure in the MCFL phase increases with the field, while the par-
allel pressure decreases and reaches a zero value at field strength of order ≥1019 G



16 Magnetism in Dense Quark Matter 423

Fig. 16.3 Splitting of the
parallel and perpendicular
pressures, normalized to the
zero value pressure
(p(B̃ = 0)), as a function of
the magnetic field intensity
for μ= 500 MeV and
B = 58 MeV/fm3

for the density under consideration (μ= 500 MeV). We see from Fig. 16.2 that ΩH

and ∂ΩB/∂B̃ do not exhibit the Hass-van Alphen oscillations as happens with other
physical quantities in the presence of a magnetic field [40, 41, 45, 71, 111]. This is
due to the high contribution of the pure Maxwell term in ΩB and ∂ΩB/∂B̃ , which
makes the oscillations of the matter part negligible in comparison.

The splitting between parallel and perpendicular pressures, shown in the vertical
axis of Fig. 16.3, grows with the magnetic field strength. Comparing the found split-
ting with the pressure of the (isotropic) CFL phase, we can address how important
this effect is for the EoS. Notice that for 3× 1018 G the pressures splitting is ∼10 %
of their isotropic value at zero field (i.e. the one corresponding to the CFL phase).

In the graphical representation of the EoS in Fig. 16.4 the highly anisotropic
behavior of the magnetized medium is explicitly shown. While the magnetic-field
effect is significant for the ε–p‖ relationship at B̃ ∼ 1018 G, with a shift in the
energy density with respect to the zero-field value of ∼200 MeV/fm3 for the same
pressure, the field effect in the ε–p⊥ relationship is smaller for the same range of
field values.

The most important application of the EoS is to construct stellar models for com-
pact stars composed of quark matter. This goal can be archived by using the rela-
tivistic equations of stellar structure, that is, the well known Tolman-Oppenheimer-
Volkoff (TOV) and mass continuity equations.

dm

dr
= 4πr2ε, (16.50)

dP

dr
= −εm

r2

(
1 + P

ε

)(
1 + 4πr3P

m

)(
1 − 2m

r

)−1

(16.51)

written in natural units, c =G = 1. However, it is clear that this set of differential
equations apply only to isotropic EoS for systems with spherical symmetry.

If the magnetic field in the MCFL phase is high enough for the anisotropy in
the pressure to be significant (i.e., expressed in terms of the pressure splitting to
be (Δp/pCFL) ∼ (B̃2/μ2Δ2) ∼ O(1)) the spherically symmetric TOV equations
become inappropriate, because the deviations lead to significant differences with
respect of realistic axi-symmetric models, yet to be constructed [114].
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Fig. 16.4 Equation of state for MCFL matter considering parallel (right panel) and perpendic-
ular (left panel) pressures for different values of B̃: zero field (solid line), 1017 G (dashed line)
and 5 × 1018 G (dotted line). Note that the low value of B̃ = 1017 G is not distinguishable in
the plots, being merged with the zero-field curve. The value of the bag constant was fixed to
B = 58 MeV/fm3

16.9 Astrophysical Implications

As we have stressed, an important characteristic of neutron stars is that they typ-
ically possess very strong magnetic fields. Unveiling the interconnection between
the star’s magnetic field and the dense phases is important to understand the inter-
play between QCD and neutron star phenomenology. As discussed above, in recent
years much interesting work has been done on the properties of the different nuclear
phases that can be reached in dense astrophysical objects in the presence of strong
magnetic fields. An important new step in this context would be to consider the con-
sequences for the star’s phenomenology of the possible new phases. Although at this
point we do not know yet the quantitative details of the potential consequences, no
doubt exploring them will shed new light on the important question of how we can
infer the presence of a color-superconducting core from astronomical observations,
and whether such observations can distinguish among different color superconduct-
ing phases. In what follow we discuss some of these related tasks.

16.9.1 Low-Energy Physics

The main challenge in determining the phases of matter inside a neutron star is to
provide observables signatures of the presence of those phases. Currently there are
many proposals to connect observations to the inner phases of the star. We want to
discuss in general terms here, those connected to transport properties as conductiv-
ities, viscosities, etc. As known, these transport properties are determined by the
low-energy spectrum of the phase, that is, by the lowest-energy modes as Goldstone
bosons and gapless quark excitations, which as already shown, can be affected by
the presence of a sufficiently high magnetic field. Let’s briefly mention some exam-
ples of transport properties and how they could affect the star’s observables.
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Viscosity The viscosity of the interior of a star can be probed by observing how
a rapidly spinning neutron star slows down. If the star slows down very quickly
this indicates that it is unstable with respect to bulk flows (r-modes) that transfer
the star angular momentum into gravitational radiation. But this can only occur if
damping is sufficiently small. Based upon these arguments the possibility of pure
CFL-quark-matter pulsars has been ruled out [59] since in the CFL phase viscous
damping is negligible [103]. If the intermediate-density CS phase happens to have
a large viscosity, it will not be restricted by r-modes arguments tough.

As we showed in [61], in a three-flavor theory the spectrum of the NG bosons of
the CS is affected by the restructuring of the gap produced by the magnetic field.
As a consequence, instead of the 9 Goldstone bosons that exist in the CFL phase,
in the MCFL only 5 remain. In contrast to the CFL case where several Goldstone
bosons are Q-charged, in the MCFL all are Q-neutral. Therefore, the scattering rate
of the low-energy bosons should be different in the magnetic background, and this
will be reflected in turn in the transport properties of the star. By investigating trans-
port properties as thermal conductivity and viscosity in the MCFL phase (or in the
extension of the MCFL phase when one takes into account the strange quark mass
and neutrality effects) one could look for new observational effects that will allow
us to distinguish between nuclear-core stars and quark-core stars.

Thermal Conductivity Given that neutrino emission rates and heat capacity gen-
erally rise with density, neutron star cooling is likely preferentially sensitive to the
properties of matter in the core. Investigations [129, 130] on the impact of the ther-
mal conductivity of dense quark matter on the star cooling process indicates that
any CFL quark matter within the star will cool by conduction, not by neutrino emis-
sion. In this direction, to investigate how the magnetic field can affect the medium
thermal conductivity is of interest.

Neutrino Emission and Detection Neutrino emission is the dominant heat loss
mechanism of the stars in their first million years. In [84, 122] the neutrino emis-
sion from Nambu-Goldstone modes of the CFL phase has been investigated. These
studies showed that the scattering of massless Goldstone modes, associated with the
breaking of the baryon U(1)B symmetry, is not exponentially suppressed, and so,
these modes dominate neutrino emission at late times. On the other hand, the time-
of-arrival distribution of supernova neutrinos could be connected to possible phase
transitions to and in quark matter [10, 29], but a detailed analysis of this sugges-
tion requires a better understanding of both supernova itself and of the properties of
quark matter at MeV temperatures.

If the CS phase at intermediate densities results to be a variety of gapless phase,
the gapless modes could play a significant role in the transport properties of the star.
A recent study [10] has shown that even a relatively small region of gCFL matter
in a star would dominate the heat capacity and the heat loss by neutrino emission.
However, we already know that the gCFL is not stable, so it is unlikely that this
phase will occur within the star.

However, none of these studies have taken into account the presence of the in-
medium magnetic field that penetrates the star’s superconducting core. Neverthe-
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less, a total understanding of the transport mechanism of a compact star with a
quark core will not be complete without considering the modification of the color-
superconducting gap by the strong in-medium magnetic field, as well as by the mod-
ification of the remaining Goldstone modes.

This effect can be relevant for the low energy physics of a color superconducting
star’s core and hence for its transport properties. In particular, the cooling of a com-
pact star is determined by the particles with the lowest energy; so a star with a core
of quark matter and sufficiently large magnetic field can have a distinctive cooling
process. This study is a pending task that is worth to be undertaken.

16.9.2 Boosting Stellar Magnetic Fields via an Internal
Mechanism

The standard model [136, 137] to explain the origin of the strong magnetic fields
observed in the surface of magnetars is based on a magnetohydrodynamic dynamo
mechanism that amplifies a seed magnetic field due to a rapidly rotating protoneu-
tron star. This model requires a spin period <3 ms. Nevertheless, this mechanism
cannot explain all the observed features of the supernova remnants surrounding
these objects [138, 141].

As has been found recently, in color superconductors magnetic fields can be re-
inforced [52] and even generated [55]. It is natural to expect that if a color super-
conducting state exists in the core of neutron stars, it may have implications for the
magnetic properties of such compact objects. At the moderately high densities that
exist in the cores of neutron stars the most probable color superconducting state is
not the CFL, but either an inhomogeneous phase or perhaps a strongly coupled 2SC
phase. In the 2SC phase, the Meissner mass of the charged gluons decreases with
decreasing density to values which are close to zero. For such small charged gluon
masses, a magnetic field does not need to be too large to induce a vortex state. Fields
with values H̃ > m2

M will trigger the spontaneous generation of vortices of charged
gluons, which in turn will enhance the existing magnetic field. Hence, CS could
contribute to boosting the large magnetic fields observed in some stellar objects as
magnetars, without having to rely only on the quick spinning assumed in the stan-
dard model of magnetars that, as known, are associated with some of the conflict
of this model with the observations. These induced gluon vortices could produce a
magnetic field of the order of the Meissner mass scale, which implies a magnitude
in the range ∼1016–1017 G. Hence, the possibility of generating a magnetic field of
such a large magnitude in the core of a compact star without relying on a magneto-
hydrodynamics effect, can be an interesting alternative to address the main criticism
[138, 141] to the observational conundrum of the standard magnetar’s paradigm
[83, 92, 109, 136, 137]. On the other hand, to have a mechanism that associates the
existence of high magnetic fields with CS at moderate densities can serve to single
out the magnetars as the most probable astronomical objects for the realization of
this high-dense state of matter.
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16.9.3 Stability of Magnetized Quark Stars

It is now our goal to analyze the conditions for MCFL matter to become absolutely
stable. This is done by comparing the energy density at zero pressure condition with
that of the iron nucleus (∼930 MeV). Depending on whether the energy density of
the MCFL phase is higher or smaller than this value, the content of a magnetized
strange quark could be or not made of MCFL matter.

The stability criterion for MCFL matter can be derived in a simple way. Follow-
ing Farhi and Jaffe’s [44] approach, we can determine the maximum value of the
bag constant that satisfies the stability condition at zero pressure for each magnetic
field value. We call reader’s attention that in all these derivations we work within
a self-consistent approach, in which the solutions of the gap equations are substi-
tuted in the pressures and energies of each phase before imposing the conditions of
equilibrium and stability.

After imposing the zero pressure condition in the EoS for the MCFL phase, both
the parallel and perpendicular pressures in the MCFL EoS need to vanish simulta-
neously. Therefore, the two equilibrium conditions become

p
‖
MCFL = −ΩMCFL − B − B̃2

2
= 0, (16.52)

p⊥
MCFL = B̃

∂ΩMCFL

∂B̃
+ B̃

∂B

∂B̃
+ B̃2 = 0. (16.53)

Where we are assuming that the bag constant depends on the magnetic field. It
is not unnatural to expect that the applied magnetic field could modify the QCD
vacuum, hence producing a field-dependent bag constant. One can readily verify
that (16.52)–(16.53) are equivalent to require p

‖
MCFL = 0 and ∂p

‖
MCFL/∂B̃ = 0 at

the equilibrium point.
Equation (16.53) can be rewritten as

H̃ =M − ∂B

∂B̃
(16.54)

where M =−∂ΩMCFL/∂B̃ is the system magnetization. If we were to consider that
the vacuum energy B does not depend on the magnetic field, we would need

M = B̃, (16.55)

to ensure the equilibrium of the self-bound matter, a condition difficult to satisfy
since it would imply that the medium response to the applied magnetic field (i.e. the
medium magnetizationM) is of the order of the applied field that produces it. Only if
the MCFL matter were a ferromagnet this would be viable, but as known, the MCFL
matter is on the contrary, an insulator. The other possibility for the equilibrium con-
ditions (16.52) and (16.53) to hold simultaneously is to have a field-dependent bag
constant capable to yield nonzero vacuum magnetization M0 =− ∂B

∂B̃
� B̃ .
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Fig. 16.5 Stability window
for MCFL matter in the plane
B̃ vs. B. The curve shown
corresponds to the borderline
value ε/A= 930 MeV

The following comment is in order. The fact that the bag constant needs to be
field-dependent for self-bound stars in a strong magnetic field is a direct conse-
quence of the lack of a compensating effect for the internal pressure produced by
the magnetic field other than that applied by the vacuum (an exception could be of
course if the paired quark matter would exhibit ferromagnetism). For gravitationally
bound stars, on the other hand, the situation is different, since the own gravitational
field can supply the pressure to compensate the one due to the field. For such sys-
tems, keeping B constant in the EoS is in principle possible. Under this assumption
we considered a fixed B-value in Fig. 16.4.

Taking into account that the matter energy density ε′MCFL (i.e. the energy density
that does not include the pure Maxwell contribution) divided by the baryon number
is given by

ε′MCFL

nA
= ΩMCFL +B

nA
− μ

nA

∂ΩMCFL

∂μ
. (16.56)

We can write it under the zero parallel pressure condition (ΩMCFL +B =−B̃/2) as

ε′MCFL

nA

∣∣∣∣
μB

= 2
B̃2

2nA
+ μB

nA
N, (16.57)

and the absolute stability condition becomes

ε′MCFL

nA

∣
∣∣∣
μB

= 2
B̃2

2nA
+ μB

nA
N ≤ ε0

(
Fe56). (16.58)

Then, finding μB as a function of B̃ from (16.58), and substituting it back in
(16.52), we can numerically solve

B(B̃)=−ΩMCFL(μB, B̃)− B̃2/2, (16.59)

to determine the stability window in the plane B̃ versus B for the MCFL matter to
be absolute stable (Fig. 16.5). The inner region, which corresponds to smaller bag
constants for each given B̃ , is the absolutely stable region.



16 Magnetism in Dense Quark Matter 429

Note that, contrary to Farhi and Jaffe [44], we did not impose a minimum value
for the bag constant because we have no clear indication from experiments of the
possible behavior of this parameter when a magnetic field is applied to a system.

In summary, our results indicate that a condition for the MCFL matter to be
absolutely stable is a field-dependent bag constant that can give rise to a large vac-
uum magnetization at moderately strong fields (see Fig. 16.5). Under these circum-
stances, increasing the magnetic field tends to destabilize the self-bound MCFL
matter. This result differs from that found in [116] where it was used a CFL model
at eB �= 0 with only one gap that was fixed by hand.
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Chapter 17
Anomalous Transport from Kubo Formulae

Karl Landsteiner, Eugenio Megías, and Francisco Peña-Benitez

17.1 Introduction

Anomalies in relativistic field theories of chiral fermions belong to the most intrigu-
ing properties of quantum field theory. Comprehensive reviews on anomalies can be
found in the textbooks [1–3].

Hydrodynamics is an ancient subject. Even in its relativistic form it appeared
that everything relevant to its formulation could be found in [4]. Apart from sta-
bility issues that were addressed in the 1960s and 1970s [5–7] leading to a second
order formalism there seemed little room for new discoveries. The last years wit-
nessed however an unexpected and profound development of the formulation of rel-
ativistic hydrodynamics. The second order contributions have been put on a much
more systematic basis applying effective field theory reasoning [8, 9]. The lessons
learned from applying the AdS/CFT correspondence [10–12] to the plasma phase of
strongly coupled non-abelian gauge theories [13–15] played a major role (see [16]
for a recent review).

The presence of chiral anomalies in otherwise conserved currents has profound
implications for the formulation of relativistic hydrodynamics. The transport pro-
cesses related to anomalies have surfaced several times and independently [17–22].
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The axial current was the focus in [23] and the first application of the AdS/CFT
correspondence to anomalous hydrodynamics can be found already in [24]. The full
impact anomalies have on the formulation of relativistic hydrodynamics was how-
ever not fully appreciated until recently.

The renewed interest in the formulation of relativistic hydrodynamics has its ori-
gin mostly in the spectacular experimental evidence for collective flow phenomena
taking place in the physics of heavy ion collisions at RHIC and LHC. These ex-
periments indicate the creation of a deconfined quark gluon plasma in a strongly
coupled regime. In the context of heavy ion collisions it was argued in [25, 26] that
the excitation of topologically non-trivial gluon field configurations in the early non-
equilibrium stages of a heavy ion collision might lead to an imbalance in the number
of left- and right-handed quarks. This situation can be modeled by an axial chemical
potential and it was shown that an external magnetic field leads to an electric current
parallel to the magnetic field. This chiral magnetic effect leads then to a charge sep-
aration perpendicular to the reaction plane in heavy ion collisions. The introduction
of an axial chemical potential also allows to define a chiral magnetic conductivity
which is simply the factor of proportionality between the magnetic field and the
induced electric current. This effect is a direct consequence of the axial anomaly.

The application of the fluid/gravity correspondence to theories including chiral
anomalies lead to another surprise: it was found that not only a magnetic field in-
duces a current but that also a vortex in the fluid leads to an induced current [27, 28].
This is the chiral vortical effect. Again it is a consequence of the presence of a chi-
ral anomaly. It was later realized that the chiral magnetic and vortical conductivities
are almost completely fixed in the hydrodynamic framework by demanding the exis-
tence of an entropy current with positive definite divergence [29]. That this criterion
did not fix the anomalous transport coefficients completely was noted in [30] and
various terms depending on the temperature instead of the chemical potentials were
shown to be allowed as undetermined integration constants. See also [31, 32] for
a recent discussion of these anomaly coefficients with applications to heavy ion
physics.

In the meanwhile Kubo formulae for the chiral magnetic conductivity [33] and
the chiral vortical conductivity [34] had been developed. Up to this point only
pure gauge anomalies had been considered to be relevant since the mixed gauge-
gravitational anomaly in four dimensions is of higher order in derivatives and was
thought not to be able to contribute to hydrodynamics at first order in derivatives.
Therefore it came as a surprise that in the application of the Kubo formula for the
chiral vortical conductivity to a system of free chiral fermions a purely temperature
dependent contribution was found. This contribution was consistent with some the
earlier found integration constants and it was shown to arise if and only if the system
of chiral fermions features a mixed gauge-gravitational anomaly [35]. In fact these
contributions had been found already very early on in [17–20]. The connection to
the presence of anomalies was however not made at that time. The gravitational
anomaly contribution to the chiral vortical effect was also established in a strongly
coupled AdS/CFT approach and precisely the same result as at weak coupling was
found [36].
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The argument based on a positive definite divergence of the entropy current
allows to fix the contributions form pure gauge anomalies uniquely and provides
therefore a non-renormalization theorem. No such result is known thus far for the
contributions of the gauge-gravitational anomaly.1

A gas of weakly coupled Weyl fermions in arbitrary dimensions has been stud-
ied in [39] and confirmed that the anomalous conductivities can be obtained di-
rectly from the anomaly polynomial under substitution of the field strength with
the chemical potential and the first Pontryagin density by the negative of the tem-
perature squared [40]. Recently the anomalous conductivities have also been ob-
tained in effective action approaches [41, 42]. The contribution of the mixed gauge-
gravitational anomaly appear in all these approaches as undetermined integrations
constants.

We will review here what can be learned from the calculation of the anomalous
conductivities via Kubo formulae. The advantage of the usage of Kubo formulae is
that they capture all contributions stemming either from pure gauge or from mixed
gauge-gravitational anomalies. The disadvantage is that the calculations can be per-
formed only within a particular model and only in the weak or in the gravity dual
of the strong coupling regime. Along the way we will explain our point of view on
some subtle issues concerning the definition of currents and of chemical potentials
when anomalies are present. These subtleties lead indeed to some ambiguous results
[43] and [44]. A first step to clarify these issues was done in [45] and a more general
exposition of the relevant issues has appeared in [46].

The review is organized as follows. In Sect. 17.2 we will briefly summarize the
relevant issues concerning anomalies. We recall how vector like symmetries can al-
ways be restored by adding suitable finite counterterms to the effective action [47].
A related but different issue is the fact that currents can be defined either as con-
sistent or as covariant currents. The hydrodynamic constitutive relations depend on
what definition of current is used. We discuss subtleties in the definition of the chem-
ical potential in the presence of an anomaly and define our preferred scheme. We
discuss the hydrodynamic constitutive relations and derive the Kubo formulae that
allow the calculation of the anomalous transport coefficients from two point corre-
lators of an underlying quantum field theory.

In Sect. 17.3 we apply the Kubo formulae to a theory of free Weyl fermions and
show that two different contributions arise. They are clearly identifiable as being
related to the presence of pure gauge and mixed gauge-gravitational anomalies.

In Sect. 17.4 we define a holographic model that implements the mixed gauge-
gravitational anomaly via a mixed gauge-gravitational Chern-Simons term. We cal-
culate the same Kubo formulae as at weak coupling, obtaining the same values for
chiral axi-magnetic and chiral vortical conductivities as in the weak coupling model.

We conclude this review with some discussions and outlook to further develop-
ments.

1See however the very recent attempts to establish non-renormalization theorems in [37] and [38].
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17.2 Anomalies and Hydrodynamics

In this section we will review briefly anomalies. We compare the consistent with
the covariant form of the anomaly and we introduce the Bardeen counterterm that
allows to restore current conservation for vector like symmetries. Then we turn to
the question of what we mean when we talk about the chemical potential. Two ways
of introducing chemical potential, either through a deformation of the Hamiltonian
or by demanding twisted boundary conditions along the thermal circle are shown
to be in-equivalent in presence of an anomaly. Equivalence can still be achieved
by introduction of a spurious axion field. We explain the implications for hologra-
phy. The constitutive relations for anomalous currents are introduced in Landau and
Laboratory frame. We discuss how they differ if we use the consistent instead of the
covariant currents and derive the Kubo formulae for the anomalous conductivities.

17.2.1 Anomalies

Anomalies arise by integrating over chiral fermions in the path integral. They sig-
nal a fundamental incompatibility between the symmetries present in the classical
theory and the quantum theory.

Unless otherwise stated we will always think of the symmetries as global sym-
metries. But we still will introduce gauge fields. These gauge fields serve as classical
sources coupled to the currents. As a side effect their presence promotes the global
symmetry to a local gauge symmetry. It is still justified to think of it as a global
symmetry as long as we do not introduce a kinetic Maxwell or Yang-Mills term in
the action.

In a theory with chiral fermions we define an effective action depending on these
gauge fields by the path integral

eiWeff [Aμ]/� :=
∫

DΨDΨ̄ eiS[ψ,Aμ]/�. (17.1)

The vector field Aμ(x) couples to a classically conserved current Jμ = Ψ̄ γ μQΨ .
The charge operator Q can be the generator of a Lie group combined with chiral
projectors P± = 1

2 (1 ± γ5). General combinations are allowed although in the fol-
lowing we will mostly concentrate on a simple chiral U(1) symmetry for which we
can take Q= P+. The fermions are minimally coupled to the gauge field and the
classical action has an underlying gauge symmetry

δΨ =−iλ(x)QΨ, δAμ(x)=Dμλ(x), (17.2)

with Dμ denoting the gauge covariant derivative. Assuming that the theory has a
classical limit the effective action in terms of the gauge fields allows for an expan-
sion in �

Weff =W0 + �W1 + �
2W2 + · · · . (17.3)
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We find it convenient to use the language of BRST symmetry by promoting the
gauge parameter to a ghost field c(x).2 The BRST symmetry is generated by

sAμ =Dμc, sc=−ic2. (17.4)

It is nilpotent s2 = 0. The statement that the theory has an anomaly can now be
neatly formalized. Since on gauge fields the BRST symmetry acts just as the gauge
symmetry, gauge invariance translates into BRST invariance. An anomaly is present
if

sWeff = A and A �= sB. (17.5)

Because of the nilpotency of the BRST operator the anomaly has to fulfill the Wess-
Zumino consistency condition

sA = 0. (17.6)

As indicated in (17.5) this has a possible trivial solution if there exists a local func-
tional B[Aμ] such that sB = A . An anomaly is present if no such B exists. The
anomaly is a quantum effect. If it is of order �n and if a suitable local functional
B exists we could simply redefine the effective action as W̃eff =Weff − B and the
new effective action would be BRST and therefore gauge invariant. The form and
even the necessity to introduce a functional B might depend on the particular reg-
ularization scheme chosen. As we will explain in the case of an axial and vector
symmetry a suitable B can be found that always allows to restore the vectorlike
symmetry, this is the so-called Bardeen counterterm [47]. The necessity to intro-
duce the Bardeen counterterm relies however on the regularization scheme chosen.
In schemes that automatically preserve vectorlike symmetries, such as dimensional
regularization, the vector symmetries are automatically preserved and no countert-
erm has to be added. Furthermore the Adler-Bardeen theorem guarantees that chiral
anomalies appear only at order �. Their presence can therefore by detected in one
loop diagrams such as the triangle diagram of three currents.

We have introduced the gauge fields as sources for the currents

δ

δAμ(x)
Weff [A] = 〈

Jμ
〉
. (17.7)

For chiral fermions transforming under a general Lie group generated by T a the
chiral anomaly takes the form [1]

sWeff [A] = −
∫

d4x ca
(
DμJ

μ
)a

= − η

24π2

∫
d4x caεμνρσ tr

[
T a∂μ

(
Aν∂ρAσ + 1

2
AνAρAσ

)]
. (17.8)

2A recent comprehensive review on BRST symmetry is [48].
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Where η = +1 for left-handed fermions and η = −1 for right-handed fermions.
Differentiating with respect to the ghost field (the gauge parameter) we can derive a
local form. To simplify the formulas we specialize this to the case of a single chiral
U(1) symmetry taking T a = 1

∂μJ
μ = η

96π2
εμνρσFμνFρσ . (17.9)

This is to be understood as an operator equation. Sandwiching it between the vac-
uum state |0〉 and further differentiating with respect to the gauge fields we can
generate the famous triangle form of the anomaly

〈
∂μJ

μ(x)J σ (y)J κ(z)
〉= 1

12π2
εμσρκ∂xμδ(x − y)∂xρ δ(x − z). (17.10)

The one point function of the divergence of the current is non-conserved only in the
background of parallel electric and magnetic fields whereas the non-conservation of
the current as an operator becomes apparent in the triangle diagram even in vacuum.

By construction this form of the anomaly fulfills the Wess-Zumino consistency
condition and is therefore called the consistent anomaly. In analogy we call the
current defined by (17.7) the consistent current.

For a U(1) symmetry the functional differentiation with respect to the gauge field
and the BRST operator s commute,

[
s,

δ

δAμ(x)

]
= 0. (17.11)

An immediate consequence is that the consistent current is not BRST invariant but
rather obeys

sJμ = 1

24π2
εμνρλ∂νcFρλ =− 1

24π2
sKμ, (17.12)

where we introduced the Chern-Simons current Kμ = εμνρλAνFρλ with ∂μK
μ =

1
2ε

μνρλFμνFρλ.
With the help of the Chern-Simons current it is possible to define the so-called

covariant current (in the case of a U(1) symmetry rather the invariant current)

J̃ μ = Jμ + 1

24π2
Kμ (17.13)

fulfilling

sJ̃ μ = 0. (17.14)

The divergence of the covariant current defines the covariant anomaly

∂μJ̃
μ = 1

32π2
εμνρσFμνFρσ . (17.15)
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Notice that the Chern-Simons current cannot be obtained as the variation with re-
spect to the gauge field of any functional. It is therefore not possible to define an
effective action whose derivation with respect to the gauge field gives the covariant
current.

Let us suppose now that we have one left-handed and one right-handed fermion
with the corresponding left- and right-handed anomalies. Instead of the left-right ba-
sis it is more convenient to introduce a vector-axial basis by defining the vectorlike
current JμV = J

μ
L +J

μ
R and the axial current JμA = J

μ
L −J

μ
R . Let Vμ(x) be the gauge

field that couples to the vectorlike current and Aμ(x) be the gauge field coupling
to the axial current. The (consistent) anomalies for the vector and axial current turn
out to be

∂μJ
μ
V = 1

24π2
εμνρλFV

μνF
A
ρλ, (17.16)

∂μJ
μ
A = 1

48π2
εμνρλ

(
FV
μνF

V
ρλ + FA

μνF
A
ρλ

)
. (17.17)

As long as the vectorlike current corresponds to a global symmetry nothing has
gone wrong so far. If we want to identify the vectorlike current with the electric-
magnetic current in nature we need to couple it to a dynamical photon gauge field
and now the non-conservation of the vector current is worrisome to say the least.
The problem arises because implicitly we presumed a regularization scheme that
treats left-handed and right-handed fermions on the same footing. As pointed out
first by Bardeen this flaw can be repaired by adding a finite counterterm (of order �)
to the effective action. This is the so-called Bardeen counterterm and has the form

Bct =− 1

12π2

∫
d4x εμνρλVμAνF

V
ρλ. (17.18)

Adding this counterterm to the effective action gives additional contributions of
Chern-Simons form to the consistent vector and axial currents. With the particular
coefficient chosen it turns out that the anomaly in the vector current is canceled
whereas the axial current picks up an additional contribution such that after adding
the Bardeen counterterm the anomalies are

∂μJ
μ
V = 0, (17.19)

∂μJ
μ
A = 1

48π2
εμνρλ

(
3FV

μνF
V
ρλ + FA

μνF
A
ρλ

)
. (17.20)

This definition of currents is mandatory if we want to identify the vector current with
the usual electromagnetic current in nature! It is furthermore worth to point out that
both currents are now invariant under the vectorlike U(1) symmetry. The currents
are not invariant under axial transformation, but these are anomalous anyway.

Generalizations of the covariant anomaly and the Bardeen counterterm to the
non-abelian case can be found e.g. in [1].
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There is one more anomaly that will play a major role in this review, the mixed
gauge-gravitational anomaly [49–51].3 So far we have considered only spin one
currents and have coupled them to gauge fields. Now we also want to introduce the
energy-momentum tensor through its coupling to a fiducial background metric gμν .
Just as the gauge fields, the metric serves primarily as the source for insertions of
the energy momentum tensor in correlation functions. Just as in the case of vector
and axial currents, the mixed gauge-gravitational anomaly is the statement that it is
impossible in the quantum theory to preserve at the same time the vanishing of the
divergence of the energy-momentum tensor and of chiral (or axial) U(1) currents.
It is however possible to add Bardeen counterterms to shift the anomaly always in
the sector of the spin one currents and preserve translational (or diffeomorphism)
symmetry. If we have a set of left-handed and right-handed chiral fermions trans-
forming under a Lie Group generated by (Ta)L and (Ta)R in the background of
arbitrary gauge fields and metric, the anomaly is conveniently expressed through
the non-conservation of the covariant current as

(
DμJ

μ
)
a
= dabc

32π2
εμνρλF b

μνF
c
ρλ +

ba

768π2
εμνρλRα

βμνR
β
αρλ. (17.21)

The purely group theoretic factors are

dabc = 1

2
tr
(
Ta{Tb,Tc}

)
L
− 1

2
tr
(
Ta{Tb,Tc}

)
R
, (17.22)

ba = tr(Ta)L − tr(Ta)R. (17.23)

Chiral anomalies are completely absent if and only if dabc = 0 and ba=0.

17.2.2 Chemical Potentials for Anomalous Symmetries

Thermodynamics of systems with conserved charges can be described in a grand
canonical ensemble where a Lagrange multiplier μ ensures that the partition func-
tion fulfills

T
∂ log(Z)

∂μ
= 〈Q〉. (17.24)

The textbook approach is to consider a deformation of the Hamiltonian

H →H −μQ, (17.25)

where Q is the charge in question. We can think of this as arising from the coupling
of the (fiducial) gauge field Aμ to the current Jμ and giving a vacuum expectation
value to A0 = μ. Since the fiducial gauge field leads to local gauge invariance we
can remove the μQ coupling in the Hamiltonian by the gauge transformation A0 →
A0 + ∂0χ with χ =−μt .

3In D = 4k + 2 dimensions also purely gravitational anomalies can appear [52].
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Fig. 17.1 At finite temperature field theories are defined on the Keldysh-Schwinger contour in the
complexified time plane. The initial state at ti is specified through the boundary conditions on the
fields. The endpoint of the contour is at ti − iβ where β = 1/T

Table 17.1 Two formalisms
for the chemical potential Formalism Hamiltonian Boundary condition

(A) H −μQ Ψ (ti − iβ)=±Ψ (ti )

(B) H Ψ (ti − iβ)=±eqβμΨ (ti )

In the context of finite temperature field theory such a gauge transformation is
however not really allowed. One needs to define the field theory on the Keldysh-
Schwinger contour in the complexified time plane as shown in Fig. 17.1. Fields are
taken to be periodic or anti-periodic along the imaginary time direction t = −iτ
with period β = 1/T where T is the temperature

Ψ (ti − iβ)=±Ψ (ti), (17.26)

with the plus sign for bosons and the minus sign for fermions. The gauge transfor-
mation that removes the constant zero component of the gauge field is not periodic
along the contour and therefore changes the boundary conditions on the fields. After
the gauge transformation with χ =−μt the fields obey the boundary conditions

Ψ (ti − iβ)=±eqμβΨ (ti). (17.27)

Demanding these “twisted” boundary conditions is of course completely equiva-
lent to having A0 = μ. The gauge invariant statement is that a charged field parallel
transported around the Keldysh-Schwinger contour picks up a factor of exp(qμβ).
As long as we have honest non-anomalous symmetries under consideration we have
therefore two (gauge-)equivalent formalisms of how to introduce the chemical po-
tential summarized in Table 17.1 [53].

One convenient point of view on formalism (B) is the following. In a real time
Keldysh-Schwinger setup we demand some initial conditions at initial (real) time
t = ti . These initial conditions are given by the boundary conditions in (B). From
then on we do the (real) time development with the microscopic Hamiltonian H . In
principle there is no need for the Hamiltonian H to preserve the symmetry present
at times t < ti . This seems an especially suited approach to situations where the
charge in question is not conserved by the real time dynamics. In the case of an
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anomalous symmetry we can start at t = ti with a state of certain charge. As long as
we have only external gauge fields present the one-point function of the divergence
of the current vanishes and the charge is conserved. This is not true on the full theory
since even in vacuum the three-point correlators are sensitive to the anomaly. For
the formulation of hydrodynamics in external fields the condition that the one-point
functions of the currents are conserved as long as there are no parallel electric and
magnetic external fields (or a metric that has non-vanishing Pontryagin density) is
sufficient.4

Let us assume now that Q is an anomalous charge, i.e. its associated current suf-
fers from chiral anomalies. We first consider formalism (B) and ask what happens
if we do now the gauge transformation that would bring us to formalism (A). Since
the symmetry is anomalous the action transforms as

S[A+ ∂χ] = S[A] +
∫

d4x χεμνρλ
(
C1FμνFρλ +C2R

α
βμνR

β
αρλ

)
, (17.28)

with the anomaly coefficients C1 and C2 depending on the chiral fermion content. It
follows that formalisms (A) and (B) are physically inequivalent now, because of the
anomaly. However, we would like to still come as close as possible to the formalism
of (A) but in a form that is physically equivalent to the formalism (B). To achieve
this we proceed by introducing a non-dynamical axion field Θ(x) and the vertex

SΘ [A,Θ] =
∫

d4x Θεμνρλ
(
C1FμνFρλ +C2R

α
βμνR

β
αρλ

)
. (17.29)

If we demand now that the “axion” transforms as Θ →Θ − χ under gauge trans-
formations we see that the action

Stot [A,Θ] = S[A] + SΘ [A,Θ] (17.30)

is gauge invariant. Note that this does not mean that the theory is not anomalous
now. We introduce it solely for the purpose to make clear how the action has to
be modified such that two field configurations related by a gauge transformation
are physically equivalent. It is better to consider Θ as coupling and not a field, i.e.
we consider it a spurion field. The gauge field configuration that corresponds to
formalism (B) is simply A0 = 0. A gauge transformation with χ = μt on the gauge
invariant action Stot makes clear that a physically equivalent theory is obtained by
choosing the field configuration A0 = μ and the time dependent coupling Θ =−μt .
If we define the current through the variation of the action with respect to the gauge
field we get an additional contribution from SΘ ,

J
μ
Θ = 4C1ε

μνρλ∂νΘFρλ, (17.31)

4If dynamical gauge fields are present, such as the gluon fields in QCD even the one point function
of the charge does decay over (real) time due to non-perturbative processes (instantons) or at finite
temperature due to thermal sphaleron processes [54]. Even in this case in the limit of large number
of colors these processes are suppressed and can e.g. not be seen in holographic models in the
supergravity approximation.
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and evaluating this for Θ =−μt we get the spatial current

JmΘ = 8C1μB
m. (17.32)

We do not consider this to be the chiral magnetic effect! This is only the contribution
to the current that comes from the new coupling that we are forced to introduce by
going to formalism (A) from (B) in a (gauge-)equivalent way. As we will see in
the following chapters the chiral magnetic and vortical effect are on the contrary
non-trivial results of dynamical one-loop calculations.

What is the Hamiltonian now based on the modified formalism (A)? We have to
take of course the new coupling generated by the non-zero Θ . The Hamiltonian now
is therefore

H −μ

(
Q+ 4C1

∫
d3x ε0ijkAi∂jAk

)
, (17.33)

where for simplicity we have ignored the contributions from the metric terms.
For explicit computations in Sects. 17.3 and 17.4 we will introduce the chemical

potential through the formalism (B) by demanding twisted boundary conditions. It
seems the most natural choice since the dynamics is described by the microscopic
Hamiltonian H . The modified (A) based on the Hamiltonian (17.33) is however not
without merits. It is convenient in holography where it allows vanishing temporal
gauge field on the black hole horizon and therefore a non-singular Euclidean black
hole geometry.5

17.2.2.1 Hydrodynamics and Kubo Formulae

The modern understanding of hydrodynamics is as an effective field theory.
The equations of motion are the (anomalous) conservation laws of the energy-
momentum tensor and spin one currents. These are supplemented by expression
for the energy-momentum tensor and the current which are organized in a derivative
expansion, the so-called constitutive relations. Symmetries constrain the possible
terms. In the presence of chiral anomalies the constitutive relations for the energy-
momentum tensor and the currents in the Landau frame are

T μν = εuμuν + pPμν − ηPμαP νβσαβ − ζPμν∂αu
α, (17.34)

J̃ μa = ρau
μ +Σab

(
E
μ
b − T PμαDα

μa

T

)
+ ξBabB

μ
a + ξVa ω

μ. (17.35)

It is important to specify that these are the constitutive relations for the covari-
ant currents! Here ε is the energy density, p the pressure density, uμ the local
fluid velocity. Pμν = gμν + uμuν is the transverse projector to the fluid velocity.

5It is possible to define a generalized formalism to make any choice for the gauge field A0 = ν, so
that one recovers formalism (A) when ν = μ and formalism (B) when ν = 0 as particular cases
(see [55] for details).
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σμν is the symmetric traceless shear tensor. The non-anomalous transport coeffi-
cients are the shear viscosity η, the bulk viscosity ζ and the electric conductivities
Σab . External electric and magnetic fields are covariantized via E

μ
a = F

μν
a uν and

B
μ
a = 1

2ε
μνρλuνFa,ρλ. The vorticity of the fluid is ωμ = εμνρλuν∂ρuλ.

The anomalous transport coefficients are the chiral magnetic conductivities ξBab
and the chiral vortical conductivities ξVa . At first order in derivatives the notion of
fluid velocity is ambiguous and needs to be fixed by prescribing a choice of frame.
We remark that the constitutive relations (17.34) and (17.35) are valid in the Landau
frame where T μνuν = εuμ.

To compute the Kubo formulae for the anomalous transport coefficients it turns
out that the Landau frame is not the most convenient one. It fixes the definition
of the fluid velocity through energy transport. Transport phenomena related to the
generation of an energy current are therefore not directly visible, rather they are
absorbed in the definition of the fluid velocity. It is therefore more convenient to go
to another frame in which we demand that the definition of the fluid velocity is not
influenced when switching on an external magnetic field or having a vortex in the
fluid. In such a frame the constitutive relations take the form

T μν = (ε+ p)uμuν + pgμν − ηPμαP νβσαβ − ζPμν∂αu
α

+Qμuν +Qνuμ, (17.36)

Qμ = σεBB
μ + σεV ω

μ, (17.37)

J̃ μ = ρuμ +Σ

(
Eμ − T PμαDα

(
μ

T

))
+ σBB

μ + σV ω
μ. (17.38)

In order to avoid unnecessary clutter in the equations we have specialized now to a
single U(1) charge. Notice that now there is a sort of “heat” current present in the
constitutive relation for the energy-momentum tensor.

The derivation of Kubo formulae is better based on the usage of the consistent
currents. Since the covariant and consistent currents are related by adding suitable
Chern-Simons currents, the constitutive relations for the consistent current receive
additional contribution from the Chern-Simons current

Jμ = J̃ μ − 1

24π2
Kμ. (17.39)

If we were to introduce the chemical potential according to formalism (A) via a
background for the temporal gauge field we would get an additional contribution to
the consistent current from the Chern-Simons current. In this case it is better to go to
the modified formalism (A′) that also introduces a spurious axion field and another
contribution to the current JΘ (17.32) has to be added

Jμ = J̃ μ − 1

24π2
Kμ + J

μ
Θ. (17.40)

For the derivation of the Kubo formulae it is therefore more convenient to work
with formalism (B) in which A0 = 0 and the chemical potential is introduced via
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the boundary conditions (17.27). Otherwise there arise additional contributions to
the two point functions. We will briefly discuss them in the next subsection.

From the microscopic view the constitutive relations should be interpreted as the
one-point functions of the operators T μν and Jμ in a near equilibrium situation,
i.e. gradients in the fluid velocity, the temperature or the chemical potentials are as-
sumed to be small. From this point of view Kubo formulae can be derived. In the
microscopic theory the one-point function of an operator near equilibrium is given
by linear response theory whose basic ingredient are the retarded two-point func-
tions. If we consider a situation with only an external electric field in z-direction
and all other sources switched off, i.e. the fluid being at rest uμ = (1,0,0,0) and no
gradients in temperature or chemical potentials the constitutive relations are simpli-
fied to

J z =ΣEz. (17.41)

The electric field is Ez = iωAz in terms of the vector potential and using linear
response theory the induced current is given through the retarded two-point function
by

J z = 〈
J zJ z

〉
Az. (17.42)

Equating the two expressions for the current we find the Kubo formula for the elec-
tric conductivity

Σ = lim
ω→0

−i
ω

〈
J zJ z

〉
. (17.43)

This has to be evaluated at zero momentum. The limit in the frequency follows
because the constitutive relation are supposed to be valid only to lowest order in the
derivative expansion, therefore one needs to isolate the first non-trivial term.

Now we want to find some simple special cases that allow the derivation of Kubo
formulae for the anomalous conductivities. A very convenient choice is to go to
the restframe uμ = (1,0,0,0), switch on a vector potential in the y-direction that
depends only on the z direction and at the same time a metric deformation gμν =
ημν + hμν with the only non-vanishing component h0y depending on z only. To
linear order in the background fields the non-vanishing components of the energy-
momentum tensor and the current are

T 0x = −σεB∂zAy − σεV ∂zh0y, (17.44)

J x = −σB∂zAy − σV ∂zh0y, (17.45)

since in the formalism (B) neither the Chern-Simons term nor the Θ coupling con-
tribute. Going to momentum space and differentiating with respect to the sources
Ay and h0y we find therefore the Kubo formulae [26, 34]

σB = limkz→0
i
k z

〈J xJ y〉 σV = limkz→0
i
k z

〈J xT 0y〉

σεB = limkz→0
i
k z

〈T 0xJ y〉 σεV = limkz→0
i
k z

〈T 0xT 0y〉
(17.46)
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All these correlators are to be taken at precisely zero frequency. As these for-
mulas are based on linear response theory the correlators should be understood as
retarded ones. They have to be evaluated however at zero frequency and therefore
the order of the operators can be reversed. From this it follows that the chiral vorti-
cal conductivity coincides with the chiral magnetic conductivity for the energy flux
σV = σεB .6

We also want to discuss how these transport coefficients are related to the ones
in the more commonly used Landau frame. They are connected by a redefinition of
the fluid velocity of the form

uμ → uμ − 1

ε+ p
Qμ, (17.47)

to go from (17.36)–(17.38) to (17.34)–(17.35). The corresponding transport coeffi-
cients of the Landau frame are therefore

ξB = lim
kn→0

−i
2kn

∑

k.l

εnkl

(〈
J kJ l

〉− ρ

ε+ p

〈
T 0kJ l

〉)
, (17.48)

ξV = lim
kn→0

−i
2kn

∑

k.l

εnkl

(〈
J kT 0l 〉− ρ

ε+ p

〈
T 0kT 0l 〉

)
, (17.49)

where we have employed a slightly more covariant notation. The generalization to
the non-abelian case is straightforward.

It is also worth to compare to the Kubo formulae for the dissipative transport
coefficients as the electric conductivity (17.43). In the dissipative cases one first
goes to zero momentum and then takes the zero frequency limit. In the anomalous
conductivities this is the other way around, one first goes to zero frequency and then
takes the zero momentum limit. Another observation is that the dissipative transport
coefficients sit in the anti-Hermitean part of the retarded correlators, i.e. the spectral
function whereas the anomalous conductivities sit in the Hermitean part. The rate at
which an external source fI does work on a system is given in terms of the spectral
function of the operator OI coupling to that source as

dW

dt
= 1

2
ωfI (−ω)ρIJ (ω)fJ (ω). (17.50)

The anomalous transport phenomena therefore do no work on the system, first they
take place at zero frequency and second they are not contained in the spectral func-
tion ρ = −i

2 (Gr −G
†
r ).

6Notice that h0y can also be understood as the so-called gravito-magnetic vector potential Ag ,
which is related to the gravito-magnetic field by Bg = ∇ × Ag . This allows to interpret σV not
only as the generation of a current due to a vortex in the fluid, i.e. the chiral vortical effect, but also
as a chiral gravito-magnetic conductivity giving rise to a chiral gravito-magnetic effect, see [56]
for details.
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Fig. 17.2 Contributions to the Kubo formula for the chiral magnetic conductivity in the different
formalisms for the chemical potential

17.2.3 Contributions to the Kubo Formulae

Now we want to give a detailed analysis of the different Feynman graphs that con-
tribute to the Kubo formulae in the different formalisms for the chemical potentials.
The simplest and most economic formalism is certainly the one labeled (B) in which
we introduce the chemical potentials via twisted boundary conditions. The Hamil-
tonian is simply the microscopic Hamiltonian H . Relevant contributions arise only
at first order in the momentum and at zero frequency and in this kinematic limit
only the Kubo formulae for the chiral magnetic conductivity is affected. In Fig. 17.2
we summarize the different contributions to the Kubo formulae in the three ways to
introduce the chemical potential.

The first of the Feynman graphs is the same in all formalisms. It is the genuine
finite temperature and finite density one-loop contribution. This graph is finite be-
cause the Fermi-Dirac distributions cutoff the UV momentum modes in the loop. In
the formalism (A) we need to take into account that there is also a contribution from
the triangle graph with the fermions going around the loop in vacuum, i.e. without
the Fermi-Dirac distributions in the loop integrals. For a non-anomalous symmetry
this graph vanishes simply because on the upper vertex of the triangle sits a field
configuration that is a pure gauge. If the symmetry under consideration is however
anomalous the triangle diagram picks up just the anomaly. Even pure gauge field
configurations become physically distinct from the vacuum and therefore this dia-
gram gives a non-trivial contribution. On the level of the constitutive relations this
contribution corresponds to the Chern-Simons current in (17.39). We consider this
contribution to be unwanted. After all the anomaly would make even a constant
value of the temporal gauge field A0 observable in vacuum. An example is provided
for a putative axial gauge field A5

μ. If present the absolute value of its temporal
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component would be observable through the axial anomaly. We can be sure that in
nature no such background field is present. The third line (A′) introduces also the
spurious axion field Θ the only purpose of this field is to cancel the contribution
from the triangle graph. This cancellation takes place by construction since (A′) is
gauge equivalent to (B) in which only the first genuine finite T ,μ part contributes.
It corresponds to the contribution of the current JμΘ in (17.40). We further emphasize
that these considerations are based on the usage of the consistent currents.

In the interplay between axial and vector currents additional contributions arise
from the Bardeen counterterm. It turns out that the triangle or Chern-Simons current
contribution to the consistent vector current in the formalism (A) cancels precisely
the first one [44, 45]. Our take on this is that a constant temporal component of
the axial gauge field A0 = μ5 would be observable in nature and can therefore be
assumed to be absent. The correct way of evaluating the Kubo formulae for the chiral
magnetic effect is therefore the formalism (B) or the gauge equivalent one (A′).

At this point the reader might wonder why we introduced yet another formal-
ism (A′) which achieves apparently nothing but being equivalent to formalism (B).
At least from the perspective of holography there is a good reason for doing so.
In holography the strong coupling duals of gauge theories at finite temperature in
the plasma phase are represented by five dimensional asymptotically Anti- de Sit-
ter black holes. Finite charge density translates to charged black holes. These black
holes have some non-trivial gauge flux along the holographic direction represented
by a temporal gauge field configuration of the form A0(r) where r is the fifth, holo-
graphic dimension. It is often claimed that for consistency reasons the gauge field
has to vanish on the horizon of the black hole and that its value on the boundary can
be identified with the chemical potential

A0(rH)= 0 and A0(r →∞)= μ. (17.51)

According to the usual holographic dictionary the gauge field values on the bound-
ary correspond to the sources for currents. A non-vanishing value of the temporal
component of the gauge field at the boundary is therefore dual to a coupling that
modifies the Hamiltonian of the theory just as in (17.25). Thus with the boundary
conditions (17.51) we have the holographic dual of the formalism (A). If anomalies
are present they are represented in the holographic dual by five-dimensional Chern-
Simons terms of the form A ∧ F ∧ F . The two point correlator of the (consistent)
currents receives now contributions from the Chern-Simons term that is precisely
of the form of the second graph in (A) in Fig. 17.2. As we have argued this is an
a priory unwanted contribution. We can however cure that by introducing an ad-
ditional term in the action of the form (17.29) living only on the boundary of the
holographic space-time. In this way we can implement the formalism (A′), can-
cel the unwanted triangle contribution with the third graph in (A′) in Fig. 17.2 and
maintain A0(rH)= 0!

The claim that the temporal component of the gauge field has to vanish at the
horizon is of course not unsubstantiated. The reasoning goes as follows. The Eu-
clidean section of the black-hole space time has the topology of a disc in the r, τ
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Fig. 17.3 A sketch of the Euclidean black hole topology. A singularity at the horizon arises if
we do not choose the temporal component of the gauge field to vanish there. On the other hand
allowing the singularity to be present changes the topology to the one of a cylinder and this in turn
allows twisted boundary conditions

directions, where τ is the Euclidean time (see Fig. 17.3). This is a periodic variable
with period β = 1/T where T is the (Hawking) temperature of the black hole and
at the same time the temperature in the dual field theory. Using Stoke’s law we have

∫

∂D

A0 dτ =
∫

D

Fr0 dr dτ, (17.52)

where Fr0 is the electric field strength in the holographic direction and D is a Disc
with origin at r = rH reaching out to some finite value of rf . If we shrink this disc
to zero size, i.e. let rf → rH the r.h.s. of the last equation vanishes and so must the
l.h.s. which approaches the value βA0(rH). This implies that A0(rH)= 0. If on the
other hand we assume that A0(rH) �= 0 then the field strength must have a delta type
singularity there in order to satisfy Stokes theorem. Strictly speaking the topology
of the Euclidean section of the black hole is not anymore that of a disc since now
there is a puncture at the horizon. It is therefore more appropriate to think of this as
having the topology of a cylinder. Now if we want to implement the formalism (B)

in holography we would find the boundary conditions

A0(rH)= μ and A0(r →∞)= 0, (17.53)

and precisely such a singularity at the horizon would arise. In addition we would
need to impose twisted boundary conditions around the Euclidean time τ for the
fields just as in (17.27). Now the presence of the singularity seems to be a good
thing: if the space time would still be smooth at the horizon it would be impossible
to demand these twisted boundary conditions since the circle in τ shrinks to zero
size there. If this is however a singular point of the geometry we can not really
shrink the circle to zero size. The topology being rather a cylinder than a disc allows
now for the presence of the twisted boundary conditions.

It is also important to note that in all formalisms the potential difference between
the boundary and the horizon is given by μ. This has a very nice intuitive interpre-
tation. If we bring a unit test charge from the boundary to the horizon we need the
energyΔE = μ. In the dual field theory this is just the energy cost of adding one unit
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of charge to the thermalized system and coincides with the elementary definition of
the chemical potential.

From now on we will always only consider the genuine finite T ,μ contribution
that is the only one that arises in formalism (B).

The rest of this review is devoted to the explicit evaluation of these Kubo formu-
lae in two different systems: free chiral fermions and a holographic model imple-
menting the chiral and gravitational anomalies by suitable five dimensional Chern-
Simons terms.

17.3 Weyl Fermions

We will now evaluate the Kubo formulae for the chiral magnetic, chiral vortical
and energy flux conductivities (17.46) for a theory of N free chiral fermions Ψ f

transforming under a global symmetry group G generated by matrices (Ta)f g .
We denote the generators in the Cartan subalgebra byHa . Chemical potentialsμa

can be switched on only in the Cartan subalgebra. Furthermore the presence of the
chemical potentials breaks the group G to a subgroup Ĝ. Only the currents that lie in
the unbroken subgroup are conserved (up to anomalies) and participate in the hydro-
dynamics. The chemical potential for the fermion Ψ f is given by μf =∑

a q
f
a μa ,

where we write the Cartan generator Ha = q
f
a δ

f
g in terms of its eigenvalues, the

charges qfa . The unbroken symmetry group Ĝ is generated by those matrices T f
a g

fulfilling

T
f
a gμ

g = μf T
f
a g. (17.54)

There is no summation over indices in the last expression. From now on we will
assume that all currents Ja lie in directions indicated in (17.54). We define the
chemical potential through the boundary condition on the fermion fields around the
thermal circle, i.e. we adopt the formalism (B) discussed in previous section,

Ψ f (τ − β)=−eβμf Ψ f (τ). (17.55)

Therefore the eigenvalues of ∂τ are iω̃n + μf for the fermion spiecies f with
ω̃n = πT (2n + 1) the fermionic Matsubara frequencies. A convenient way of ex-
pressing the current and the energy-momentum tensor is in terms of Dirac fermions
and writing

J ia =
N∑

f,g=1

T
g
a f Ψ̄gγ

iP+Ψ f , T 0i = i

2

N∑

f=1

Ψ̄f

(
γ 0∂i + γ i∂0)P+Ψ f ,

(17.56)
where we used the chiral projector P± = 1

2 (1 ± γ5). The fermion propagator is

S(q)f g = δf g

2

∑

t=±
Δt

(
iω̃f ,q

)
P+γμq̂μt , Δt

(
iω̃f , q

)= 1

iω̃f − tEq

,

(17.57)
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Fig. 17.4 1 loop diagram
contributing to the vortical
conductivity (17.58)

with iω̃f = iω̃n + μf , q̂μt = (1, t q̂), q̂ = q
Eq

and Eq = |q|. For simplicity in the
expressions we consider only left-handed fermions, but one can easily include right-
handed fermions as well as they contribute in all our calculations in the same way
as the left-handed ones up to a relative minus sign.

We will address in detail the computation of the vortical conductivities and sketch
only the calculation of the magnetic conductivities since the latter one is a trivial
extension of the calculation of the chiral magnetic conductivity in [33]. Then we
show the results for the other conductivity coefficients.

17.3.1 Chiral Vortical Conductivity

The vortical conductivity is defined from the retarded correlation function of the cur-
rent J ia(x) and the energy momentum tensor or energy current T 0j (x′) (17.56), i.e.

GV
a

(
x − x′

)= 1

2
εijn iθ

(
t − t ′

)〈[
J ia(x), T

0j (x′
)]〉
. (17.58)

Going to Fourier space, one can evaluate this quantity as

GV
a (k)=

1

4

N∑

f=1

T
f
a f

1

β

∑

ω̃f

∫
d3q

(2π)3
εijn tr

[
Sf f (q)γ

iSf f (q+ k)
(
γ 0qj +γ j iω̃f

)]
,

(17.59)
which corresponds to the one loop diagram of Fig. 17.4. The vertex of the two
quarks with the graviton is ∼δf g , and therefore we find only contributions from the
diagonal part of the group Ĝ. The metric we use through this section is the usual
one in field theory computations, gμν = diag(1,−1,−1,−1). We can split GV

a into
two contributions, i.e.

GV
a (k)=GV

a,(0j)(k)+GV
a,(j0)(k), (17.60)

which correspond to the terms γ 0qj and γ j iω̃f in (17.59) respectively. We will
focus first on the computation of GV

a,(0j). After computation of the Dirac trace
in (17.59), this term writes
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GV
a,(0j)(k)=

1

8

N∑

f=1

T
f
a f

1

β

∑

ω̃f

∫
d3q

(2π)3
qj

∑

t,u=±

[
εijn

(
t
qi

Eq

+ u
ki + qi

Eq+k

)

+ i
tu

EqEq+k
(qj kn − qnkj )

]
Δt

(
iω̃f ,k

)
Δu

(
iω̃f + iωn,q + k

)
.

(17.61)

At this point one can make a few simplifications. Note that due to the antisymmetric
tensor εijn, the two terms proportional to qi inside the bracket in (17.61) vanish.
Regarding the term εijnq

j ki , it leads to a contribution ∼εijnkj ki after integration in
d3q , which is zero. Then the only term which remains is the one not involving εijn.
We can now perform the sum over fermionic Matsubara frequencies. One has

1

β

∑

ω̃f

Δt

(
iω̃f ,q

)
Δu

(
iω̃f + iωn,q + p

)

= tn(Eq − tμf )− un(Eq+k − uμf )+ 1
2 (u− t)

iωn + tEq − uEq+k
, (17.62)

where n(x) = 1/(eβx + 1) is the Fermi-Dirac distribution function. In (17.62) we
have considered that ωn = 2πT n is a bosonic Matsubara frequency. This result is
also obtained in Ref. [33]. After doing the analytic continuation, which amounts to
replacing iωn by k0 + iε in (17.62), one gets

GV
a,(0j)(k) = − i

8

N∑

f=1

T
f
a f

∫
d3q

(2π)3
q2kn − (q · k)qn

EqEq+k

×
∑

t,u=±

un(Eq − tμf )− tn(Eq+k − uμf )+ 1
2 (t − u)

k0 + iε+ tEq − uEq+k
. (17.63)

The term proportional to ∼ 1
2 (t − u) corresponds to the vacuum contribution, and it

is ultraviolet divergent. By removing this term the finite temperature and chemical
potential behavior is not affected, and the result becomes ultraviolet finite because
the Fermi-Dirac distribution function exponentially suppresses high momenta. By
making both the change of variable q → −q − k and the interchange u→ −t and
t →−u in the part of the integrand involving the term −tn(Eq+k − uμf ), one can
express the vacuum substracted contribution of (17.63) as

ĜV
a,(0j)(k) =

i

8
kn

N∑

f=1

T
f
a f

∫
d3q

(2π)3
1

EqEq+k

(
q2 − (q · k)2

k2

)

×
∑

t,u=±
u
n(Eq −μf )+ n(Eq +μf )

k0 + iε+ tEq + uEq+k
, (17.64)
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where we have used that n(Eq − tμf )+n(Eq + tμf )= n(Eq −μf )+n(Eq +μf )

since t = ±1. The result has to be proportional to kn, so to reach this expression
we have replaced qn by (q · k)kn/k2 in (17.63). At this point one can perform the
sum over u by using

∑
u=± u/(a1 + ua2) = −2a2/(a

2
1 − a2

2), and the integration
over angles by considering q · k =EqEkx and E2

q+k =E2
q +E2

k + 2EqEkx, where
x := cos(θ) and θ is the angle between q and k. Then one gets the final result

ĜV
a,(0j)(k)=

i

16π2

kn

k2

(
k2 − k2

0

) N∑

f=1

T
f
a f

∫ ∞

0
dq qf V (q)

×
[

1 + 1

8qk

∑

t=±

[
k2

0 − k2 + 4q(q + tk0)
]

log

(
Ω2
t − (q + k)2

Ω2
t − (q − k)2

)]
,

(17.65)

where Ωt = k0 + iε+ tEq , and

f V (q)= n
(
Eq −μf

)+ n
(
Eq +μf

)
. (17.66)

The steps to compute GV
a,(j0) in (17.60) are similar. In this case the Dirac trace leads

to a different tensor structure, in which the only contribution comes from the trace
involving γ5. The sum over fermionic Matsubara frequencies involves an extra iω̃f ,
i.e.

1

β

∑

ω̃f

iω̃f Δt

(
iω̃f ,q

)
Δu

(
iω̃f + iωn,q + k

)

= 1

iωn + tEq − uEq+k

[
Eqn

(
Eq − tμf

)− (Eq+k − uiωn)n
(
Eq+k − uμf

)

− 1

2
(Eq −Eq+k + uiωn)

]
. (17.67)

The last term inside the bracket in the r.h.s. of (17.67) corresponds to the vacuum
contribution which we choose to remove, as it leads to an ultraviolet divergent con-
tribution after integration in d3q . Making similar steps as for ĜV

a,(0j), i.e. performing
the sum over u and integrating over angles, one gets the final result

ĜV
a,(j0)(k) = − i

32π2

kn

k3

N∑

f=1

T
f
a f

∫ ∞

0
dq

∑

t=±
f V
t (q, k0)

×
[

4tqkk0 − (
k2 − k2

0

)
(2q + tk0) log

(
Ω2
t − (q + k)2

Ω2
t − (q − k)2

)]
, (17.68)

where

f V
t (q, k0)= qf V (q)+ tk0n

(
Eq + tμf

)
. (17.69)
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The result for the vacuum substracted contribution of the retarded correlation func-
tion of the current and the energy momentum tensor, ĜV

a (k), writes as a sum
of (17.65) and (17.68), according to (17.60). From these expressions one can com-
pute the zero frequency, zero momentum, limit. Since

lim
k→0

lim
k0→0

∑

t=±
log

(
Ω2
t − (q + k)2

Ω2
t − (q − k)2

)
= 2k

q
, (17.70)

the relevant integrals are

∫ ∞

0
dq qf V (q)=

∫ ∞

0
dq f V

t (q, k0 = 0)= (μf )2

2
+ π2

6
T 2. (17.71)

Finally it follows from (17.65) and (17.68) that the zero frequency, zero momentum,
vortical conductivity writes

(σV )a = 1

8π2

N∑

f=1

T
f
a f

[(
μf

)2 + π2

3
T 2

]

= 1

16π2

[∑

b,c

tr
(
Ta{Hb,Hc}

)
μbμc + 2π2

3
T 2 tr(Ta)

]
. (17.72)

Both ĜV
a,(0j) and ĜV

a,(j0) lead to the same contribution in (σV )a . Equation (17.72)
was first derived in [35], and it constitutes our main result in this section. The term
involving the chemical potentials is induced by the chiral anomaly. More interesting
is the term ∼T 2 which is proportional to the gravitational anomaly coefficient ba
[49–52]. This means that a non-zero value of this term has to be attributed to the
presence of a gravitational anomaly. The Matsubara frequencies ω̃n = πT (2n+ 1)
generate a dependence on πT in the final result as compared to the chemical poten-
tials, and then no factors of π show up for the term ∼T 2 in (17.72). Right-handed
fermions contribute in the same way but with a relative minus sign. Therefore the
∼T 2 term appears only when the current in (17.58) has an axial component. The
correlator with a vector current does not have this gravitational anomaly contribu-
tion.

17.3.2 Chiral Magnetic Conductivity

The chiral magnetic conductivity in the case of a vector and an axial U(1) sym-
metry was computed at weak coupling in [33]. The corresponding Kubo formula
involves the two point function of the current, see first expression in (17.46). Fol-
lowing the same method, we have computed it for the unbroken (non-abelian) sym-
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metry group Ĝ. The relevant Green function is [35]

GB
ab(k)=

1

2

∑

f,g

T
f
a gT

g
b f

1

β

∑

ω̃f

∫
d3q

(2π)3
εijn tr

[
Sf f (q)γ

iSf f (q + k)γ j
]
.

(17.73)

The evaluation of this expression is exactly as in [33] so we skip the details. The
zero frequency, zero momentum, limit of the magnetic conductivity is

(σB)ab = 1

4π2

N∑

f,g=1

T
f
a gT

g
b f μ

f = 1

8π2

∑

c

tr
(
Ta{Tb,Hc}

)
μc. (17.74)

In the second equality of (17.74) we have made use of (17.54). No contribution
proportional to the gravitational anomaly coefficient is found in this case.

17.3.3 Conductivities for the Energy Flux

We will include for completeness the result of the chiral magnetic and vortical con-
ductivities for the energy flux, corresponding to the last two expressions in (17.46).

The chiral magnetic conductivity for energy flux, σεB , follows from the correla-
tion function of the energy momentum tensor and the current, and so it computes
in the same way as the vortical conductivity in Sect. 17.3.1. From an evaluation of
the corresponding Feynman diagram one finds that the result is the same as (17.59).
Then one concludes that

(
σεB

)
a
= (σV )a, (17.75)

where (σV )a is given by (17.72). Although these coefficients are equal, they describe
different transport phenomena. Whereas (σ εB)a describes the generation of an energy
flux due to an external magnetic field Ba , (σV )a describes the generation of the
current Ja due to an external field that sources the energy-momentum tensor T 0i .

Finally the chiral vortical conductivity for the energy flux, σεV , follows from the
correlation function of two energy momentum tensors. There are three contributions
out of the four possible terms. One of these terms involves a sum over fermionic
Matsubara frequencies of the form

1

β

∑

ω̃f

(
iω̃f

)2
Δt

(
iω̃f ,q

)
Δu

(
iω̃f + iωn,q + k

)

= F (iωn,Eq,Eq+k, t, u)+ 1

iωn + tEq − uEq+k

× [
tE2

qn
(
Eq − tμf

)− u(Eq+k − uiωn)
2n

(
Eq+k − uμf

)]
, (17.76)
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where F corresponds to the ultraviolet divergent vacuum contribution which we
choose to remove. The zero frequency, zero momentum, limit of the chiral vortical
conductivity for the energy flux writes

σεV = 1

12π2

N∑

f=1

[(
μf

)3 + π2T 2μf
]

= 1

24π2

[∑

a,b,c

tr
(
Ha{Hb,Hc}

)
μaμbμc + 2π2T 2

∑

a

tr(Ha)μa

]
. (17.77)

This coefficient describes the generation of an energy flux due to a vortex (or a
gravito-magnetic field). The correlators (17.75) and (17.77) enter the chiral mag-
netic and vortical conductivities in the Landau frame, respectively, as defined in [27–
29], see (17.48)–(17.49). We have also checked that to lowest order in ω and k one
has 〈T 0zT 0z〉 = p, where p is the pressure of a free gas of massless fermions, and
〈T 0zJ z〉 = 0 [34].

17.3.4 Summary and Specialization to the Group U(1)V × U(1)A

The results for the different conductivities are neatly summarized as

(σB)ab = 1

4π2
dabcμ

c, (17.78)

(σV )a = (
σεB

)
a
= 1

8π2
dabcμ

bμc + T 2

24
ba, (17.79)

σεV = 1

12π2
dabcμ

aμbμc + T 2

12
baμ

a. (17.80)

The axial and mixed gauge-gravitational anomaly coefficients are defined by

dabc = 1

2

[
tr
(
Ta{Tb,Tc}

)
L
− tr

(
Ta{Tb,Tc}

)
R

]
, (17.81)

ba = tr(Ta)L − tr(Ta)R, (17.82)

where the subscripts L, R stand for the contributions of left-handed and right-
handed fermions. The result shows that these conductivities are non-zero if and only
if the theory features anomalies.

For phenomenological reasons it is interesting to specialize these results to the
symmetry groupU(1)V ×U(1)A, i.e. one vector and one axial current with chemical
potentials μL = μ+μA, μR = μ−μA, charges qLV,A = (1,1) and qRV,A = (1,−1)
for one left-handed and one right-handed fermion. We find (for a vector magnetic
field)

(σB)V V = μA

2π2
, (σB)AV = μ

2π2
, (17.83)
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(σV )V = (
σεB

)
V
= μμA

2π2
, (σV )A = (

σεB
)
A
= μ2 +μ2

A

4π2
+ T 2

12
, (17.84)

σεV = μA

6π2

(
3μ2 +μ2

A

)+ μA

6
T 2. (17.85)

Here (σB)V V is the chiral magnetic conductivity [33], (σB)AV describes the gen-
eration of an axial current due to a vector magnetic field [57], (σV )V is the vector
vortical conductivity, (σV )A is the axial vortical conductivity, and σεV is the vortical
conductivity for the energy flux. The vector and axial magnetic conductivities for
energy flux (σ εB)V and (σ εB)A coincide with the chiral vortical conductivities.

17.4 Holographic Model

In this section for simplicity we will consider a holographic system which real-
izes a single chiral U(1) symmetry with a gauge and mixed gauge-gravitational
anomaly [36]. As we saw in the previous section in a more realistic model
U(1)V ×U(1)A the transport coefficients receive contribution from the gravitational
part only in the axial sector. For a study of such a system with a pure gauge anomaly
using Kubo formulae, see [45].

17.4.1 Notation and Holographic Anomalies

Let us fix some conventions we will use in the Gravity Theory. We choose the five
dimensional metric to be of signature (−,+,+,+,+). Five dimensional indices
are denoted with upper case Latin letters. The epsilon tensor has to be distinguished
from the epsilon symbol by εABCDE = √−g ε(ABCDE). The symbol is defined
by ε(rtxyz)=+1. We assume the metric can be decomposed in ADM like way and
define an outward pointing normal vector to the holographic boundary of an asymp-
totically AdS space nA ∝ gAB ∂r

∂xB
with unit norm nAn

A = 1. So that the induced
metric takes the form

hAB = gAB − nAnB. (17.86)

In general a foliation of the space-time M with timelike surfaces defined through
r(x)= const can be written as

ds2 = (
N2 +NAN

A
)

dr2 + 2NA dxA dr + hAB dxA dxB. (17.87)

The Christoffel symbols, Riemann tensor and extrinsic curvature are given by

Γ M
NP = 1

2
gMK(∂NgKP + ∂P gKM − ∂KgNP ), (17.88)

RM
NPQ = ∂P Γ

M
NQ − ∂QΓ

M
NP + Γ M

PKΓ
K
NQ − Γ M

QKΓ
K
NP , (17.89)
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KAV = hCA∇CnV = 1

2
£nhAB, (17.90)

where £n denotes the Lie derivative in direction of nA. Finally we can define our
model. The action is given by

S = 1

16πG

∫

M

d5x
√−g

[
R + 2Λ− 1

4
FMNF

MN + εMNPQRAM

×
(
κ

3
FNPFQR + λRA

BNPR
B
AQR

)]
+ SGH + SCSK, (17.91)

SGH = 1

8πG

∫

∂M

d4x
√−hK, (17.92)

SCSK = − 1

2πG

∫

∂M

d4x
√−hλnMεMNPQRANKPLDQK

L
R, (17.93)

where SGH is the usual Gibbons-Hawking boundary term and DA is the induced
covariant derivative on the four dimensional surface. The second boundary term
SCSK is introduced to reproduce the gravitational anomaly at general hypersurface.

Let us study now the gauge symmetries of our model. We note that the action
is diffeomorphism invariant, but they do depend explicitly on the gauge connection
AM . Under gauge transformations δAM =∇Mξ they are therefore invariant only up
to a boundary term. We have

δS = 1

16πG

∫

∂M

d4x
√−hξεMNPQR

(
κ

3
nMFNPFQR + λnMR

A
BNPR

B
AQR

)

− λ

4πG

∫

∂M

d4x
√−hnMεMNPQRDNξKPLDQK

L
R. (17.94)

Now without loss of generality we can choose the gauge N = 1 and NA = 0
which defines the so called Gaussian normal coordinates, and the metric takes the
form ds2 = dr2 + γij dxi dxj . After doing the decomposition in terms of induced
surface and orthogonal fields, all the terms depending on the extrinsic curvature
cancel thanks to the contributions from SCSK ! The gauge variation of the action
depends only on the intrinsic four dimensional curvature of the boundary and is
given by

δS = 1

16πG

∫

∂M

d4x
√−hεmnkl

(
κ

3
F̂mnF̂kl + λR̂i

jmnR̂
j
ikl

)
. (17.95)

This has to be interpreted as the anomalous variation of the effective quantum action
of the dual field theory. As consequence of the discussion in Sect. 17.2.1 we can
recognize the form of the consistent anomaly and use (17.9) to fix κ for a single
fermion transforming under a U(1)L symmetry. Similarly we can fix λ by matching
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to the gravitational anomaly of a single left-handed fermion (17.21) and find

− κ

48πG
= 1

96π2
, − λ

16πG
= 1

768π2
. (17.96)

The bulk equations of motion are

GMN −ΛgMN = 1

2
FMLFN

L − 1

8
F 2gMN + 2λεLPQR(M∇B

(
FPLRB

N)
QR

)
,

(17.97)

∇NF
NM =−εMNPQR

(
κFNPFQR + λRA

BNPR
B
AQR

)
. (17.98)

A remarkable fact is that the mixed Chern-Simons term does not introduce new
singularities into the on-shell action for any asymptotically AdS solution, i.e. no new
counterterm is needed to renormalize the theory. See [36] for a detailed discussion
of the renormalization of the model and Appendix 1 to see the counterterms.

17.4.2 Applying Kubo Formulae and Linear Response

In order to compute the conductivities under study using the Kubo formulae (17.46),
we will use tools of linear response theory. To do so we introduce metric and gauge
fluctuations over a charged black hole background and use the AdS/CFT dictionary
to compute the retarded propagators [58, 59]. Therefore we split the backgrounds
and fluctuations as,

gMN = g
(0)
MN + εhMN, (17.99)

AM = A
(0)
M + εaM. (17.100)

After the insertion of these fluctuations and background fields in the action and
expanding up to second order in ε we can read the on-shell boundary second order
action which is needed to get the desired propagators [60],

δS(2)ren =
∫

ddk

(2π)d
{
ΦI−kAIJΦ

′J
k +ΦI−kBIJΦ

J
k

}∣∣
r→∞, (17.101)

where prime means derivative with respect to the radial coordinate, ΦI
k is a vector

constructed with the Fourier transformed components of aM and hMN ,

ΦI
(
r, xμ

)=
∫

ddk

(2π)d
ΦI
k (r)e

−iωt+ikx, (17.102)

and A and B are two matrices extracted from the boundary action and that we will
show below.
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For a coupled system the holographic computation of the correlators consists in
finding a maximal set of linearly independent solutions that satisfy infalling bound-
ary conditions on the horizon and that source a single operator at the AdS boundary
[58–61]. To do so we can construct a matrix of solutions FI

J (k, r) such that each
of its columns corresponds to one of the independent solutions and normalize it to
the unit matrix at the boundary. Therefore, given a set of boundary values for the
perturbations, ϕIk , the bulk solutions are

ΦI
k (r)= FI

J (k, r)ϕ
J
k . (17.103)

Finally using this decomposition we obtain the matrix of retarded Green’s functions

GIJ (k)=−2 lim
r→∞

(
AIM

(
FM

J (k, r)
)′ +BIJ

)
. (17.104)

The system of equations (17.97)–(17.98) admit the following exact background
AdS Reissner-Nordström black-brane solution

ds2 = r2

L2

(−f (r)dt2 + dx2)+ L2

r2f (r)
dr2, (17.105)

A(0) = φ(r)dt =
(
ν − μr2

H

r2

)
dt, (17.106)

where the horizon of the black hole is located at r = rH and the blackening factor of
the metric is

f (r)= 1 − ML2

r4
+ Q2L2

r6
. (17.107)

The parameters M and Q of the RN black hole are related to the chemical poten-
tial μ and the horizon rH by7

M = r4
H

L2
+ Q2

r2
H

, Q= μr2
H√
3
. (17.108)

The Hawking temperature is given in terms of these black hole parameters as

T = r2
H

4πL2
f ′(rH)= (2r2

HM − 3Q2)

2πr5
H

. (17.109)

The pressure of the gauge theory is P = M

16πGL3 and its energy density is ε = 3P
due to the underlying conformal symmetry.

7The chemical potential is introduced as the energy needed to introduce an unit of charge from
the boundary to behind the horizon A(∞)− A(rH) which corresponds to the prescription (B) in
Table 17.1. Observe that we have left the source value A(∞) = ν as an arbitrary constant for
reasons we will explain later.
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To study the effect of anomalies we just turned on the shear sector (transverse
momentum fluctuations) aα and hαt and set without loss of generality the momentum
k in the y-direction at zero frequency, so α = x, z. Since we are interested in the
hydrodynamical regime (k,ω� T ), it is just necessary to find solutions up to first
order in momentum. So that we expand the fields in terms of the dimensionless
momentum p = k/4πT such as

hαt (r) = h
(0)α
t (r)+ ph

(1)α
t (r), (17.110)

Bα(r) = B(0)
α (r)+ pB(1)

α (r), (17.111)

with the gauge field redefined as Bα = aα/μ. For convenience we redefine new
parameters and radial coordinate

λ̄= 4μλL

r2
H

; κ̄ = 4μκL3

r2
H

; a = μ2L2

3r2
H

; u= r2
H

r2
. (17.112)

In this new radial coordinate the horizon sits at u= 1 and the AdS boundary at u= 0.
At zero frequency the system of differential equations consists on four second order
equations.8 The relevant physical boundary conditions on fields are: hαt (0) = H̃ α ,
Bα(0)= B̃α ; where the ‘tilde’ parameters are the sources of the boundary operators.
The second condition compatible with the ingoing one at the horizon is regularity
for the gauge field and vanishing for the metric fluctuation [34].

After solving the system perturbatively (see [36] for solutions), we can go back to
the formula (17.104) and compute the corresponding holographic Green’s functions.
If we consider the vector of fields to be

Φ)
k (u)=

(
Bx(u),h

x
t (u),Bz(u),h

z
t (u)

)
, (17.113)

the A and B matrices for that setup take the following form

A = r4
H

16πGL5
Diag

(
−3af,

1

u
,−3af,

1

u

)
, (17.114)

BAdS+∂ = r4
H

16πGL5

⎛

⎜⎜
⎜⎜⎜
⎝

0 −3a 4κikμ2φL5

3r4
H

0

0 − 3
u2 0 0

−4κikμ2φL5

3r4
H

0 0 −3a

0 0 0 − 3
u2

⎞

⎟⎟
⎟⎟⎟
⎠
, (17.115)

8The complete system of equations depending on frequency and momentum is showed in Ap-
pendix 2. The system consists of six dynamical equations and two constraints.
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BCT = r4
H

16πGL5

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0 0 0 0

0 3
u2

√
f

0 0

0 0 0 0

0 0 0 3
u2

√
f

⎞

⎟⎟⎟⎟⎟
⎟
⎠

, (17.116)

where B = BAdS+∂ + BCT .9 Notice that there is no contribution to the matrices
coming from the Chern-Simons gravity part, because the corresponding contribu-
tions vanish at the boundary. These matrices and the perturbative solutions are the
ingredients to compute the matrix of propagators. Undoing the vector field redefini-
tion introduced in (17.111) the non-vanishing retarded correlation functions at zero
frequency are then

Gx,tx =Gz,tz =
√

3Q

4πGL3
, (17.117)

Gx,z = −Gz,x = i
√

3kQκ

2πGr2
H

+ ikνκ

6πG
, (17.118)

Gx,tz =Gtx,z =−Gz,tx =−Gtz,x = 3ikQ2κ

4πGr4
H

+ 2ikλπT 2

G
, (17.119)

Gtx,tx =Gtz,tz = M

16πGL3
, (17.120)

Gtx,tz = −Gtz,tx =+ i
√

3kQ3κ

2πGr6
H

+ 4πi
√

3kQT 2λ

Gr2
H

. (17.121)

We can do an important remark observing (17.118). Remember that we left the
boundary value of the background gauge field (17.106) arbitrary as a constant ν.
But as the U(1) symmetry is anomalous in the Field Theory side, physical quantities
have to be sensitive to the source A0,10 indeed as we can check they are. In particular
if we choose the value ν = μ which corresponds to formalism (A) in Table 17.1, we
need to include the counterterm (17.29) in order to get the same propagator as at
weak coupling. In fact in [44, 45] it has been shown that in the case of a propagator
between two vector currents, choosing this specific value for ν the propagator would
be zero, giving us in consequence a zero value for the chiral magnetic conductivity.
Hence to be consistent with the scheme we are working at, let us just consider ν
as a source in the field theory. Therefore the real propagator is the one with ν = 0
because as is well known we have to set all sources to zero after taking the second

9BCT is coming from the counterterms of the theory.
10In principle A0 could be gauged away for the symmetric case and in consequence observables
should not depend on its value. For example look at [45] to see how in presence of a U(1)V ×
U(1)A symmetry with only the U(1)V conserved, propagators do not depend on the specific value
of the zero component of the vector gauge source V0.
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functional derivative of the effective action. Finally using the Kubo formulae (17.46)
we recover the vortical and axial-magnetic conductivities

σB = −
√

3Qκ

2πGr2
H

= μ

4π2
, (17.122)

σV = σεB =− 3Q2κ

4πGr̄4
H

− 2λπT 2

G
= μ2

8π2
+ T 2

24
, (17.123)

σεV = −
√

3Q3κ

2πGr6
H

− 4π
√

3QT 2λ

Gr2
H

= μ3

12π2
+ μT 2

12
. (17.124)

All these expressions coincide with the results in Sect. 17.3, (17.78), (17.79) and
(17.80) if we specialize to dabc = 1 and ba = 1. They are in perfect agreement with
the literature [27–29, 34] except for the contribution coming from the gravitational
anomaly which is manifest by the presence of the extra λT 2. All the numerical
coefficients coincide precisely with the ones obtained at weak coupling; this we take
as a strong hint that the anomalous conductivities are indeed completely determined
by the anomalies and are not renormalized beyond one loop. Evidence for non-
renormalization comes also from [62] where a holographic renormalization group
running of the conductivities showed the same result at any value of the holographic
cut-off. We also point out that the T 3 term that appears as undetermined integration
constant in the hydrodynamic considerations in [63] should make its appearance in
σεV . We do not find any such term which is consistent with the argument that this
term is absent due to CPT invariance.

It is also interesting to write down the magnetic and vortical conductivities us-
ing (17.48) and (17.49) as they appear in the Landau frame to compare with the Son
and Surowka form [29]

ξB =−
√

3Q(ML2 + 3r4
H)κ

8πGML2r2
H

+
√

3QλπT 2

GM
= 1

4π2

(
μ− 1

2

n(μ2 + π2T 2

3 )

ε+ P

)
,

(17.125)

ξV =− 3Q2κ

4πGML2
− 2πλT 2(r6

H − 2L2Q2)

GML2r2
H

= μ2

8π2

(
1 − 2

3

nμ

ε+ P

)
+ T 2

24

(
1 − 2nμ

ε+ P

)
. (17.126)

These expressions agree with the literature except for the λT 2 term. A last comment
can be done, the shear viscosity entropy ratio is not modified by the presence of
the gravitational anomaly. We know that η ∝ limω→0

1
ω
〈T xyT xy〉k=0, so we should

solve the system at k = 0 for the fluctuations hiy but the anomalous coefficients
always appear with a momentum k (see Appendix 2), therefore if we switch off
the momentum, the system looks precisely as the theory without anomalies. In [64]
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it has been shown that the black hole entropy doesn’t depend on the extra Chern-
Simons term.11

17.5 Conclusion and Outlook

In the presence of external sources for the energy momentum tensor and the currents,
the anomaly is responsible for a non conservation of the latter. This is conveniently
expressed through [52]

DμJ
μ
a = εμνρλ

(
dabc

32π2
Fb
μνF

c
ρλ +

ba

768π2
Rα

βμνR
β
αρλ

)
, (17.127)

where the axial and mixed gauge-gravitational anomaly coefficients, dabc and ba ,
are given by (17.22) and (17.23) respectively.

We have discussed in Sect. 17.2 the constitutive relations and derived the Kubo
formulae that allow the calculation of transport coefficients at first order in the hy-
drodynamic expansion. We explained also subtleties in the definition of the chemical
potential in the presence of anomalies. The explicit evaluation of these Kubo formu-
lae in quantum field theory has been performed in Sect. 17.3 for the chiral magnetic,
chiral vortical and energy flux conductivities of a relativistic fluid at weak coupling,
and we found contributions proportional to the anomaly coefficients dabc and ba .
Non-zero values of these coefficients are a necessary and sufficient condition for the
presence of anomalies [52]. Therefore the non-vanishing values of the transport co-
efficients have to be attributed to the presence of chiral and gravitational anomalies.

In order to perform the analysis at strong coupling via AdS/CFT methods, we
have defined in Sect. 17.4 a holographic model implementing both type of anomalies
via gauge and mixed gauge-gravitational Chern-Simons terms. We have computed
the anomalous magnetic and vortical conductivities from a charged black hole back-
ground and have found a non-vanishing vortical conductivity proportional to ∼T 2.
These terms are characteristic for the contribution of the gravitational anomaly and
they even appear in an uncharged fluid. The T 2 behavior had appeared already previ-
ously in neutrino physics [17–20]. In [30] similar terms in the vortical conductivities
have been argued for, but just in terms of undetermined integration constants with-
out any relation to the gravitational anomaly. Very recently a generalization of the
results (17.122)–(17.124) to any even space-time dimension as a polynomial in μ

and T [39] has been proposed. Finally, the consequences of this anomaly in hy-
drodynamics have been studied using a group theoretic approach, which seems to
suggest that their effects could be present even at T = 0 [66]. The numerical val-
ues of the anomalous conductivities at strong coupling are in perfect agreement with
weak coupling calculations, and this suggests the existence of a non-renormalization
theorem including the contributions from the gravitational anomaly.

11For a four dimensional holographic model with gravitational Chern-Simons term and a scalar
field this has also been shown in [65].
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There are important phenomenological consequences of the present study to
heavy ion physics. In [67] enhanced production of high spin hadrons (especially
Ω− baryons) perpendicular to the reaction plane in heavy ion collisions has been
proposed as an observational signature for the chiral separation effect. Three sources
of chiral separation have been identified: the anomaly in vacuum, the magnetic and
the vortical conductivities of the axial current JμA . Of these the contribution of the
vortical effect was judged to be subleading by a relative factor of 10−4. The T 2

term in (17.123) leads however to a significant enhancement. If we take μ to be the
baryon chemical potential μ ≈ 10 MeV, neglect μA as in [67] and take a typical
RHIC temperature of T = 350 MeV, we see that the temperature enhances the axial
chiral vortical conductivity by a factor of the order of 104. We expect the enhance-
ment at the LHC to be even higher due to the higher temperature.

In this review we have presented the computation of the transport coefficients,
and in particular their gravitational anomaly contributions, via Kubo formulae. It
would be interesting to calculate directly the constitutive relations of the hydro-
dynamics of anomalous currents via the fluid/gravity correspondence within the
holographic model of Sect. 17.4, [27, 28, 68]. This approach will allow us to
compute transport coefficients at higher orders [69, 70]. This study is currently in
progress [71].
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Appendix 1: Boundary Counterterms

The result one gets for the counterterm coming from the regularization of the bound-
ary action of the holographic model in Sect. 17.4 is

Sct =− 3

8πG

∫

∂M

d4x
√−h

[
1 + 1

2
P − 1

12

(
P i
j P

j
i − P 2 − 1

4
F̂ij F̂

ij

)
log e−2ρ

]
,

(17.128)

where hat on the fields means the induced field on the cut-off surface and

P = 1

6
R̂, P i

j = 1

2

[
R̂i
j − Pδij

]
. (17.129)

As a remarkable fact there is no contribution in the counterterm coming from the
gauge-gravitational Chern-Simons term. This has also been derived in [72] in a sim-
ilar model that does however not contain SCSK .
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Appendix 2: Equations of Motion for the Shear Sector

These are the complete linearized set of six dynamical equations of motion,

0 = B ′′
α(u)+

f ′(u)
f (u)

B ′
α(u)+

b2

uf (u)2

(
ω2 − f (u)k2)Bα(u)− hα

′
t (u)

f (u)

+ ikεαβ

(
3

uf (u)
λ̄

(
2

3a

(
f (u)− 1

)+ u3
)
h
β ′
t (u)+ κ̄

Bβ(u)

f (u)

)
, (17.130)

0 = hα
′′

t (u)− hα
′

t (u)

u
− b2

uf (u)

(
k2hαt (u)+ hαy (u)ωk

)− 3auB ′
α(u)

× iλ̄kεαβ

[(
24au3 − 6

(
1 − f (u)

))Bβ(u)

u
+ (

9au3 − 6
(
1 − f (u)

))
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+ 2u
(
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f (u)
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, (17.131)

0 = hα
′′

y (u)+ (f/u)′

f/u
hα

′
y (u)+

b2

uf (u)2

(
ω2hαy (u)+ωkhαt (u)
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[
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and two constraints for the fluctuations at ω,k �= 0

0 = ω
(
hα

′
t (u)− 3auBα(u)

)+ f (u)khα
′

y (u)+ ikλ̄εαβ
[
2u2(ωhβ

′
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′
y (u)

)
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(
1 − f (u)
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Bβ(u)

]
. (17.133)
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Chapter 18
Quantum Criticality via Magnetic Branes

Eric D’Hoker and Per Kraus

18.1 Introduction

A statistical mechanics system undergoes a quantum phase transition when its
ground state suffers a macroscopic rearrangement as an external parameter is var-
ied. While a quantum phase transition takes place strictly at zero temperature, its
presence governs quantum critical behavior in a small region of low temperature
surrounding the quantum critical point. The existence of such a quantum critical
region is believed to influence physics also at intermediate temperatures, and to
have relevance to the phase structure of high-Tc superconductors and strange met-
als [58].

Holography provides concrete tools for studying non-Abelian gauge dynamics
in terms of classical solutions to Einstein’s equations of gravity, provided the num-
ber of colors N and the ’t Hooft coupling λ = Ng2

YM are both large [34, 50, 62].
The classic example of this gauge/gravity duality relates N = 4 super Yang-Mills
theory in 3 + 1-dimensional Minkowski space-time to Type IIB supergravity on
AdS5 × S5. Global symmetries match under the duality: the space-time isometry
group SO(4,2)× SO(6) on the gravity side maps to the conformal group SO(4,2)
and the R-symmetry group SU(4)∼ SO(6) on the gauge theory side, while the num-
ber of supersymmetries is the maximal allowed 32 on both sides (for general reviews
on the AdS/CFT correspondence, see for example [2, 15, 46, 55]).

The gauge/gravity duality continues to apply to systems with fewer or no su-
persymmetries, and with broken conformal and Poincaré invariance. For exam-
ple, renormalization group flow away from a conformal invariant gauge theory is
dual to a space-time which is asymptotically AdS5 but deviates from AdS5 away
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from the asymptotic limit. The dual to a gauge theory at finite temperature T is a
space-time containing a black hole or black brane whose Hawking temperature is
T . A charge density or chemical potential, and a background magnetic field may
all be incorporated in the gauge theory as well via precise dual gravity prescrip-
tions, thereby setting the stage for applying holographic methods to a wide variety
of interesting strongly coupled systems in statistical mechanics. Reviews on the
applications of holographic methods to condensed matter problems may be found
in [35, 40].

Whether holography will ever be able to model reliably the condensed state of
a specific compound remains to be seen. What has become clear, however, is that
gauge/gravity duality can provide quantitative information on universal behavior,
such as critical phenomena, critical exponents, transport properties, and the like for
certain classes of strongly coupled systems. One of the first examples derived in this
spirit is the ratio of the shear viscosity to the entropy density [56]; a more recent one
gives a bound on the specific heat exponent [61].

In the present paper, we shall review recent holographic investigations into the
critical behavior of gauge theory at finite temperature T , with electric charge den-
sity ρ, and subjected to an external magnetic field B . Supersymmetry will play
no significant role here, as the gauge theory in question may be supersymmetric
or not. We shall be interested in the thermodynamic properties of this system es-
pecially at low temperatures, as well as in the behavior of correlators at long dis-
tances.

The holographic dual to this system, in the large N and large λ approximations,
is provided by a theory of gravity in 4 + 1 space-time dimensions, plus an Abelian
gauge field. Anomalies in the gauge current of the 3 + 1-dimensional field theory
side force the presence of a Chern-Simons term in the 4 + 1-dimensional theory.
The CS coupling is the only dimensionless free parameter in the theory, and the
holographic dynamics will depend crucially on its value. All our results will be
derived using this holographic model [16, 17].

Using holographic methods, a rich structure is found which exhibits quantum
critical behavior [18, 19, 21], and the emergence of a 1 + 1-dimensional CFT in
IR correlators [20, 22]. Specifically, the system exhibits a quantum phase tran-
sition as the magnetic field B crosses a critical value Bc, the scale for which
is set by the charge density ρ by Bc ∼ ρ2/3. Quantum critical behavior governs
a region, depicted schematically in Fig. 18.1, where temperature is the largest
scale. The mechanism underlying this transition on the gravity side is also illus-
trated in Fig. 18.1: it is driven by the expulsion of electric charge from within
the horizon to the outside. More specifically, for vanishing magnetic field, the
gravity solution is the AdS Reissner-Nordstrom black brane which has non-zero
charge density and entropy density at T = 0. As B is increased electric charge
gets expelled from within the black brane horizon to the outside, up till B = Bc

at which value the black brane carries no more charge or entropy density. This
charge expulsion mechanism is realized in other holographic systems as well
[36]. Other examples of magnetic field driven holographic phase transitions in-
clude [43, 47].
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Fig. 18.1 The holographic
picture dual to a
meta-magnetic quantum
phase transition is given by
the gradual expulsion of
electric charge from the
region interior to the event
horizon of a black brane to
the region outside the
horizon. The quantum critical
point corresponds to the
transition point at which all
electric charge resides outside
the horizon of the black brane

18.2 Basic Gauge Theory Dynamics

Before embarking on the study of strongly coupled gauge theory with the tools of
holography, we shall summarize here some basic results on the dynamics of gauge
theory in the presence of an external magnetic field.

18.2.1 Effective Low Energy Degrees of Freedom

In the presence of a constant magnetic field B , the energy levels of massless free
bosons and fermions of electric charge q are given as follows,

bosons E =
√
p2 + (2n+ 1)|qB| n= 0,1,2, . . .

fermions E =
√
p2 + 2n|qB| n= 0,1,2, . . .

Here p is the momentum component parallel to the magnetic field B . The energy
levels for bosons and fermions clearly do not match, so that supersymmetry is man-
ifestly broken. Simple modifications in which supersymmetry is restored do exist,
however, and were studied in [5].

For large B , only fermions in the lowest Landau level remain massless. More pre-
cisely, the fermions in the lowest Landau level are 1+1-dimensional Weyl fermions,
moving along the direction of the magnetic field, with momentum p, their chirality
being correlated with their charge,

Bq > 0 p > 0 field of right-movers ψR

Bq < 0 p < 0 field of left-movers ψL
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Fig. 18.2 At finite charge density, fermion levels fill up to a Fermi energy EF , corresponding
to Fermi momenta kF,L and kF,R . The low temperature degrees of freedom are chiral fermions
ψL and ψR which reside at the Fermi “surface”, consisting here of only two points k = kF,L and
k = kF,R . In the charge symmetric case we have kF,L =−kF,R

All higher fermion levels and all boson levels acquire a large effective mass and will
decouple from the spectrum.

In N = 4 super-Yang-Mills theory, the operator of charges Q to which the mag-
netic field couples takes values in the R-symmetry algebra SU(4)R . Although the
gauge fields Aμ, gauginos λα , and scalars φ are now all strongly interacting, the
above decoupling of charged fields will persist. Thus, the low energy effective de-
grees of freedom will be Weyl fermions ψL, ψR , whose coupling is induced by the
remaining neutral gauge dynamics of the Aμ fields, and any remaining components
of λ and φ which are neutral under Q. This system of Weyl fermions should under-
lie an interacting conformal field theory in 1+ 1 dimensions. Any asymmetry in the
spectrum of charges Q will give rise to the chiral magnetic effect, the observation
of which is being considered in heavy ion collision experiments at RHIC [45].

At finite density and low or zero temperature, fermionic levels will fill up to a cer-
tain Fermi energy EF . For the effective 1 + 1-dimensional CFT discussed here, the
Fermi surface consists of just two points corresponding to two values of the Fermi
momentum. The left- and right-movers ψL and ψR live separately at k = kF,L and
k = kF,R respectively. If the spectrum of charges is symmetric then kF,L =−kF,R ,
as is illustrated in Fig. 18.2. But in general, kF,L �= −kF,R , and the ground state of
the system will carry a nonzero total momentum. As the charge density ρ is being
increased, EF will increase. When EF reaches the next Landau level, or the ener-
gies characteristic of the fully 3-dimensional excitations, a large number of degrees
of freedom are being excited, and we may expect a quantum phase transition, at a
critical charge density ρc, whose scale is set by the only possible dimensional scale
in the problem, namely ρc ∼ B3/2.

18.2.2 Luttinger Liquids

The standard quantum field theory approach to systems of 1 + 1-dimensional inter-
acting chiral fermions is provided by the Luttinger approach to quantum liquids. One
begins by identifying the excitations near the Fermi surface, in this case the Weyl
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fermions ψL, ψR introduced above. The Hamiltonian consists of bilinear terms
which result from linearization around the Fermi surface, as well as all possible
local four-Fermi interactions compatible with the symmetries of the system,

Hint = g2
(
ψ

†
LψL

)(
ψ

†
RψR

)+ g4

2

(
ψ

†
LψL

)2 + g4

2

(
ψ

†
RψR

)2 (18.1)

Although the system was first solved in terms of fermionic fields by Dzyaloshinski
and Larkin, modern methods based on bosonization provide a powerful reformula-
tion in terms of two non-interacting boson fields [32]. A key thermodynamic relation
for the entropy density sgauge as a function of the temperature T is given by,

sgauge = π

3v
T v = vF

√(
1 + g4

2πvF

)2

−
(

g2

2πvF

)2

(18.2)

where vF is the Fermi velocity, and v the actual velocity of the chiral excitations.
Correlators may be obtained as well. For example, the two-point function of the
charge density ρ(x) takes the following form,

〈
ρ(x)ρ(0)

〉= c0

x2
+ cΔ

cos(2kF x)

x2Δ
+ · · · (18.3)

where c0 and cΔ are constants, and Δ is the scaling dimension of the lowest dimen-
sional operator which exchanges charge between ψL and ψR .

18.3 Holographic Dual Set-Up

In this section, we shall discuss the basic set up for the holographic dual in the
supergravity approximation. Since we shall concentrate on thermodynamics, as well
as on correlators of energy density, momentum density, and charge density, we may
limit the quantum field operators to the stress tensor T μν and the Maxwell current
J μ of the 3 + 1-dimensional gauge theory. The holographic dual fields to these
operators are respectively the metric gMN and the Maxwell field AM of the 4 + 1-
dimensional Einstein-Maxwell-Chern-Simons theory with action,1

S =− 1

16πG5

∫
d5x

√
g

(
R − 12

�2
+ FMNF

MN
)
+ k

12πG5

∫
A∧ F ∧ F (18.4)

Boundary as well as counterterm contributions to the action have not been exhib-
ited here. Furthermore, G5 is Newton’s constant in 4 + 1 dimensions, −12/�2 is
the cosmological constant, and k is the dimensionless Chern-Simons coupling. The

1Einstein indices μ,ν = 0,1,2,3 will be used in 3+1-dimensions, while Einstein indices M,N =
0,1,2,3,4 will be used in 4 + 1-dimensions. Our conventions are g = −det(gMN), as well as
RL

MNK = ∂KΓ
L

MN − ∂NΓ
L

MK + Γ P
MNΓ

L
KP − Γ P

MKΓ
L

NP with RMN =RL
MLN and R = gMNRMN .
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anomaly of the chiral current J μ in the gauge theory is proportional to k, and we
have ∂μJ μ ∝ kE · B. The action is invariant under simultaneous reversal of the
sign of A and k, allowing us to restrict attention to k ≥ 0, without loss of generality.

For the special value k = ksusy = 2/
√

3, the action S coincides with the bosonic
part of minimal supergravity in 4 + 1 dimensions, and as such corresponds to a
consistent truncation of all supersymmetric asymptotically AdS5 compactifications
of either Type IIB supergravity or M-theory [31]. Here, however, we shall leave k a
free parameter, and investigate the phase diagram as a function of k.

18.3.1 Field Equations and Structure of the Solutions

The Bianchi identity is dF = 0, while the field equations are given as follows,

0 = d ∗ F + kF ∧ F
(18.5)

RMN = 4

�2
gMN + 1

3
gMNF

PQFPQ − 2FMPFN
P

For vanishing Maxwell field F = 0, the field equations admit the AdS5 solution of
radius �. Henceforth, we shall set �= 1. Denoting the coordinates of 4-dimensional
space-time by xμ = (t, x1, x2, x3), and the holographic coordinate by r , the AdS5
solution takes the form,

ds2 = gMNdx
MdxN = dr2

4r2
+ 2r

(−dt2 + dx2
1 + dx2

2 + dx2
3

)
(18.6)

Introducing a constant uniform magnetic field B along the direction x3, and an-
ticipating also the inclusion of finite temperature T , and constant uniform charge
density ρ, we see that the symmetries to be imposed on the solutions should in-
clude,

1. Translation invariance in the coordinates t , x1, x2, x3;
2. Rotation invariance in the x1, x2-plane.

The most general Ansatz consistent with these requirements is given by,

F = Bdx1 ∧ dx2 +Edr ∧ dt − Pdr ∧ dx3 + P̃ dt ∧ dx3
(18.7)

ds2 = f−1dr2 +Mdt2 + 2Ldtdx3 +Ndx2
3 +K

(
dx2

1 + dx2
2

)

where all coefficient functions B , E, P , P̃ , f , K , L, M , N depend only on r . In
view of the Bianchi identities, B and P̃ must be independent of r , and in view of
the field equations, we have P̃ = 0. This constant B is nothing but the constant
magnetic background field. Finally, the residual reparametrization invariance in the
variable r allows us to choose a coordinate r such that

f = L2 −MN (18.8)

a choice which will prove convenient throughout.
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18.3.2 Boundary Stress Tensor and Current

We will be considering asymptotically AdS5 solutions, for which the metric and
gauge field admit a Fefferman-Graham expansion [29]. Introducing a radial coordi-
nate ρ, defined such that the AdS5 boundary is located at ρ = ∞, the Fefferman-
Graham gauge choice puts the fields in the following form,

A = Aμ(ρ,x)dx
μ

(18.9)

ds2 = dρ2

4ρ2
+ gμν(ρ, x)dx

μdxν

and their expansion in large ρ takes the following form,

Aμ(ρ,x) = A(0)
μ (x)+ 1

ρ
A(2)
μ (x)+ · · ·

(18.10)
gμν(ρ, x) = ρg(0)μν (x)+ g(2)μν (x)+

1

ρ
g(4)μν (x)+

lnρ

ρ
g(ln)μν (x)+ · · ·

The coefficients g(4)μν , g(ln)μν , and the trace of g(4)μν are fixed by the Einstein equations

to be local functionals of the conformal boundary metric g(0)μν . The boundary stress
tensor T μν and current Jμ of [8, 14] are defined in terms of the variation of the
on-shell action with respect to g

(0)
μν and A

(0)
μ respectively (see [22]). In terms of the

Fefferman-Graham data the result is,

4πG5Tμν(x) = g(4)μν (x)+ local
(18.11)

2πG5Jμ(x) = A(2)
μ (x)+ local

Indices are raised and lowered using the conformal boundary metric g(0)μν . The local

terms denote tensors constructed locally from g
(0)
μν and A(0)

μ , which may be dropped
when computing correlators at non-coincident points.

18.4 The Purely Magnetic Brane: Zero Charge Density

The case of vanishing charge density, with zero or non-zero temperature, provides a
physically interesting system, which lends itself to much simpler treatment than the
charged case. For this reason, we shall investigate it first here, in its own right; see
also [3–5].

18.4.1 The Purely Magnetic Brane at T = 0

We begin with the case of zero temperature. For vanishing charge density and tem-
perature, Lorentz invariance in the t , x3 directions is restored. To exhibit this sym-
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metry, it will be convenient to re-interpret t , x3 as light-cone coordinates by substi-
tuting t → x+ and x3 → x−. In this space-time coordinate system, Lorentz trans-
formations act by x± → λ±1x±, and further restrict the Ansatz to E = P =M =
N = 0. In terms of the remaining functions K , L, the Einstein equations reduce
to,

0 = (
L2K

)′′ − 24K

0 = K2L′′ +KK ′L′ + 2KK ′′L−L
(
K ′)2 (18.12)

−4B2 = (
K ′)2

L2 + 4KK ′LL′ +K2(L′)2 − 24K2

Here, the prime stands for the derivative with respect to r . The last equation of
(18.12) is a constraint, whose derivative with respect to r is linear in the first two
equations, and vanishes, as soon as these equations are satisfied. The first equa-
tion gives L as a function of K by quadrature only. Substituting this form of L
into the constraint then gives an equation for K which may be solved numeri-
cally.

The reduced field equations (18.12) admit an exact solution for which K is inde-
pendent of r , which is given by,

K(r)= B√
3

L(r)= 2
√

3 r (18.13)

Substitution into the metric of (18.7) reveals that the corresponding space-time has
the form AdS3 × R2, with an AdS3 radius given by �3 = 1/

√
3. The AdS5 vacuum,

with K,L∼ r is not a solution to the reduced equations (18.12) when B �= 0, but it
does become an approximate solution in the limit of large r , namely when B/r → 0.
The T = 0 purely magnetic brane is the solution to (18.12) for which the functions
K and L tend to the AdS3 × R2 solution of (18.13) when r → 0, and is asymptotic
to AdS5 of (18.1) when r →∞,

K(r)∼ cV r L(r)∼ 2r (18.14)

Numerical analysis confirms that such a purely magnetic brane solution exists and
is regular for all r > 0, and gives the numerical value cV = 2.797.

18.4.2 RG Flow and Thermodynamics

The holographic dual to the purely magnetic brane solution is a renormalization
group flow from 3 + 1-dimensional N = 4 super-Yang-Mills theory in the UV (for
large r) to a 1+1-dim. CFT in the IR (for small r). This flow is schematically repre-
sented in Fig. 18.3. The holographic picture is consistent with the qualitative gauge
dynamics behavior of strongly interacting Weyl fermions discussed in Sect. 18.2.
The central charge c of this CFT may be derived using the Brown-Henneaux for-
mula [12],
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Fig. 18.3 The purely magnetic brane solution interpolates between an AdS5 space-time with mag-
netic field for large r , and an AdS3 × R2 space-time with magnetic field for small r . The holo-
graphic dual field theory has zero charge density and temperature

c= 3�3

2G3

1

G3
= B V2

G5
(18.15)

applied to an AdS3 of radius �3 = 1/
√

3, and where we have taken x1,2 to be com-
pactified on a T2 with area V2.

The specific heat coefficient at low temperature may be expressed in terms of
the entropy density s by s/T . In turn, the Cardy formula gives the entropy density
s in terms of the central charge of a 1 + 1-dimensional CFT. It may be used here
to extract the holographic specific heat coefficient sgrav/T , and the entropy density
sgrav in terms of the zero temperature purely magnetic brane, and we find,

sgrav

T
= π

3
c= πB V2

2
√

3G5
=

√
4

3

sgauge

T
(18.16)

In the last equality, we have included the comparison with the entropy density sgauge
evaluated earlier for free fermions in the lowest Landau level. To exhibit this rela-
tion, we have used the AdS/CFT relation G5 = π/(2N2). The fact that the gravity
and gauge theory central charges do not agree can be understood as follows [5].
Comparing the central charges at small (but finite) and large values of the ’t Hooft
coupling should show agreement, because the central charge of a D = 1 + 1 CFT
is unchanged under marginal deformation. However, the passage from zero to small
’t Hooft coupling can be a discontinuous change if the CFT has a relevant operator
that is either absent or present in the two cases. The

√
4/3 factor is presumably a

result of the appearance of this relevant operator.
To derive the thermodynamics of the purely magnetic brane at all T , we replace

the near-horizon AdS3 ×R2 space by a BTZ×R2 black brane. The latter is expected
to solve the field equations (18.5) as well since BTZ may be obtained as a quotient
of AdS3 by a discrete group. Concretely, the absence of electric charge allow us to
set E = P = 0 in (18.7), but the fields M , N need to be retained at finite tempera-
ture. The gauge field is still F = Bdx1 ∧ dx2, while the metric takes the following
form,

K(r) = B√
3

L(r)= 4
√

3(r − r+)
(18.17)

N(r) = 1 M(r)=−12(r − r+)(r+ − r−)
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The Hawking temperature is found to be T = 3(r+ − r−)/π . Numerical anal-
ysis confirms the existence of a regular solution that interpolates between the
above near-horizon BTZ × R2 solution for small r , and asymptotically AdS5 for
large r . Using this pure magnetic brane solution for arbitrary T , the entropy den-
sity may be calculated at all T , and is found to behave as sgrav ∼ T 3 for high T ,
with the standard factor of 3/4 compared to the high T gauge theory calcula-
tion.

18.4.3 Calculation of Current-Current Correlators at T = 0

The boundary current formalism discussed in Sect. 18.3.2 may be used to evalu-
ate the various two-point functions of the gauge current J μ and the stress tensor
T μν . In the absence of charge density for the purely magnetic brane, the cross
correlators 〈J μ(x)T μν(y)〉 will vanish identically. We begin by evaluating the
current-current correlators, by combining linear response theory with the formulas
of (18.11),

Jμ(x)= i

∫
d4y

√
−det

(
g
(0)
μν

)〈
J μ(x)J ν(y)

〉
δA(0)

ν (y) (18.18)

Here, the expectation value Jμ of the current J μ is sourced by a linear variation in

the source A(0)
ν of the gauge potential, using (18.11). As no variation of the metric is

imposed, the current Jμ may be obtained by linearizing the Maxwell-Chern-Simons
equations on the first line of (18.5) around the purely magnetic brane. We shall be
interested in correlators in the 1+1-dimensional effective low energy CFT only, and
thus restrict to excitations carrying momentum along the magnetic field direction.
The gauge potential for definite momentum is then given by,

A=AB + (
a+(r,p)dx+ + a−(r,p)dx−

)
eipx (18.19)

where dAB = Bdx1 ∧ dx2, and we shall use the notations px = p+x+ +p−x− and
p2 = p+p− throughout. Denoting the metric fields of the purely magnetic brane
solution at T = 0 by K and L, we find that the Maxwell-Chern-Simons equations
may be decoupled in terms of the variables ε± = p−a+±p+a− for which we obtain
the following equations,

0 = KL
(
KLε′−

)′ − 4k2B2ε− − 2K2p
2

L
ε−

(18.20)
0 = KLε′+ − 2kBε−

Given that the functions K and L are known only numerically, solving the above
equations for general p2 can only be achieved numerically. If we restrict attention
to the regime of small p2, however, then the linearized equations can be solved
essentially analytically using the method of overlapping expansions.
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18.4.4 Method of Overlapping Expansions

The characteristic scale of the purely magnetic brane solution, namely where the
functional dependence of K and L transits from the behavior of (18.14) at large r
to the behavior of (18.13) at small r , is set by r ∼ 1.

In the near-region, defined by r � 1, the purely magnetic brane solution may be
approximated by the behavior in (18.13), so that (18.20) becomes,

0 = r2ε′′− + rε′− − k2ε− − p2

12
√

3r
ε−

(18.21)
0 = rε′+ − kε−

The first equation is of the modified Bessel type and is solved by the Bessel functions
I2k(p/

√
r ) and K2k(p/

√
r ). Only the solution ε−(r) ∼ K2k(p/

√
r ) is regular as

r → 0, which leads us to reject the solution I2k .
In the far-region, defined by p2 � r , we may neglect the last term of the first

equation in (18.20), and solve the remaining equation in terms of the function,

ψ(r)≡
∫ r

∞
dr ′

K(r ′)L(r ′)
(18.22)

Note that ψ(r) depends only on the data of the purely magnetic brane solution.
Expressing the solution directly in terms of the original variables a±(r,p), we find,

a± = p±ã0 + (
a
(0)
± − p±ã0

)
e±2kBψ(r) (18.23)

where a(0)± and ã0 are integration constants.
An overlap-region, in which the near-region and the far-region overlap in a finite

interval, will exist provided p2 � 1. Assuming that p2 � 1, there will exist an
overlap region in which we may match the p2/r � 1 behavior of the Bessel function
in the near-region solution,

a± = C
(p2/12)∓k

Γ (1 ∓ 2k)p∓
r±k + p±a0 (18.24)

with the r � 1 behavior of the far-region solution. The latter may be derived from
the asymptotic behavior of the function ψ(r), which is found to be for r � 1,

ψ(r)∼ 1

2B
ln r +ψ0 (18.25)

Numerical evaluation gives ψ0 ≈ 0.2625. Comparing the r-dependence in (18.24)
and (18.23) using (18.25), we see that the near-region and far-region functional be-
haviors are indeed the same, and given by a constant term, as well as by r±k terms.
Matching these functional dependences produces the full solution.
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18.4.5 Current Two-Point Correlators

To complete the calculation of the current-current correlators in the long-distance
approximation p2 � 1 we use the overlapping expansion results obtained earlier.
The large r approximation for the function ψ(r) is obtained analytically from the
asymptotic behavior of K and L in (18.14),

ψ(r)∼− 1

2cV r
(18.26)

and used to derive the asymptotic behavior for the gauge potential for r →∞,

a±(r,p)= a
(0)
± + 1

4r
a
(2)
± a

(2)
± =∓4kB

cV

(
a
(0)
± − p±ã0

)
(18.27)

To obtain ã0 and a
(2)
± in terms of a0 and a

(0)
± , we match the near-region solution

of (18.24) with the far-region solution of (18.23). Including proper normalizations
[22], we obtain the current-current correlators in the limit p2 � 1,

〈
J+(p)J+(−p)

〉 = kc

2π

p+
p−

1

1 − ζp4k

〈
J−(p)J−(−p)

〉 = kc

2π

p−
p+

ζp4k

1 − ζp4k
(18.28)

〈
J+(p)J−(−p)

〉 = − kc

2π

ζp4k

1 − ζp4k

where c is the Brown-Henneaux central charge derived in (18.15), and ζ = ζ(k) is a
k-dependent function whose precise form will not be needed here. We note that the
above correlators saturate the chiral anomaly relation independently of ζ ,

p+J− + p−J+ = kc

π

(
p+a(0)− − p−a(0)+

)
(18.29)

To leading order in small p2 the correlators involving J− both vanish, while the
correlator involving only J+ takes the following form in position space,

〈
J+(x)J+(0)

〉=− kc

2π2

1

(x+)2
(18.30)

With our conventions, the above sign in the central term corresponds to a unitary
Abelian Kac-Moody algebra for k > 0 and c > 0, as is the case here.

18.4.6 Maxwell-Chern-Simons Holography in AdS3

Attempts to formulate Maxwell-Chern-Simons (MCS) holography directly in AdS3
space-time are fraught with subtleties [1]. This circumstance may be investigated
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directly with the help of the near-region solutions derived in Sect. 18.4.4, and in
particular the large r asymptotics of this solution given in (18.24),

a±(r)= α± + β±r±k (18.31)

From the point of view directly of AdS3, it is unclear which coefficients should
be used as sources, and which ones correspond to expectation values. That is, it is
not clear which boundary conditions lead to a consistent theory, and indeed most
boundary conditions lead to problems with instabilities and/or ghosts [1]. Symp-
toms of this may be detected in the current-current correlators derived in (18.29), by
taking the limit p2 � 1. In this limit, the correlators involving the component J+
vanish, while the correlator of J− becomes in position space,

〈
J−(x)J−(0)

〉=+ kc

2π2

1

(x−)2
(18.32)

Although this correlator by itself saturates the chiral anomaly, its sign corresponds
to that of a non-unitary Abelian Kac-Moody algebra. This violation of unitarity is
a symptom of the disease which besets certain choices of boundary conditions for
Maxwell-Chern-Simons directly in AdS3.

However, by the same token we see that when the MCS theory is obtained as the
IR limit of the holographic RG flow provided by the purely magnetic brane solution
from an asymptotic AdS5 completion, then the MCS theory makes perfect sense.
The key point is that the IR theory comes with a built in UV cutoff, given by the
scale at which the AdS3 factor goes over to AdS5. All the would-be inconsistencies
are removed by the presence of the UV cutoff.

18.4.7 Effective Conformal Field Theory and Double-Trace
Operators

The leading IR contribution to the two-point function of J+ in (18.28) may
be parametrized by an effective free scalar field φ with canonical Lagrangian
Lφ ∼ ∂+φ∂−φ. The subdominant p4k terms in the correlators of (18.28) may be
understood in terms of contributions to the Lagrangian from double-trace operators
LO ∼ ∂+O∂−O , where O is a conformal primary field of dimension (k, k). The
expressions for the currents and two-point functions (in momentum space) of these
operators are given as follows,

J+ = ∂+φ + ∂+O
〈
φ(p)φ(−p)〉= p−2

(18.33)
J− = ∂−O

〈
O(p)O(−p)〉= ζp4k−2

These two fields summarize the entire IR behavior of the correlators, within our
approximations. The importance of double trace operators in the holographic renor-
malization group [7, 10] has been stressed recently in [28, 38].
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We note that the structure of the J+ correlators is quite reminiscent of the struc-
ture of the charge density two-point function in the Luttinger liquid model. Clearly
there is a leading inverse square contribution both in (18.30) and in (18.3), while
the p4k higher order corrections in (18.28) are analogous to the x−2Δ corrections
of (18.3).

18.4.8 Stress Tensor Correlators and Emergent Virasoro Symmetry

Since the purely magnetic brane produces a flow from AdS5 towards a space-time
containing an AdS3 factor, its holographic dual is expected to be a full-fledged CFT
in the IR limit, endowed with left- and right-moving Virasoro algebras. This struc-
ture, and the value of the associated Brown-Henneaux central charge c of (18.15)
dictate the structure of the two-point function of two stress tensor components. All
correlators involving the component T+− vanish at non-coincident points, as does
the mixed correlator 〈T++(x)T−−(y)〉. The remaining correlators are given by,

〈
T±±(x)T±±(0)

〉= c

8π2(x±)4
(18.34)

These two-point correlators may be checked by explicit calculation using the
method of overlapping expansions along the same lines as for the current corre-
lators, and agree.

The existence of two Virasoro symmetry algebras in the IR brings to light
the holographic realization of the emergence of symmetries. Indeed, the Brown-
Henneaux coordinate transformations on the near-horizon AdS3, which produce
these Virasoro asymptotic symmetry algebras, correspond to pure gauge transforma-
tions. This is as expected, since gravity in three space-time dimensions is (locally)
trivial. But these coordinate transformations on AdS3 extend to perturbative defor-
mations of the pure magnetic brane solution and interpolate to the AdS5 boundary
where they correspond to physical deformations which are not merely gauge trans-
formations. Indeed, the asymptotic symmetry algebra at the asymptotically AdS5
boundary of the purely magnetic brane is SO(4,2), a finite-dimensional Lie algebra
of which the infinite-dimensional Virasoros are certainly not subalgebras. There-
fore, we conclude that the Virasoro symmetries present in the IR are emergent sym-
metries, not present in the UV theory.

18.5 Holographic Dual Solutions for Non-zero Charge Density

A non-zero charge density gives rise to a wealth of interesting physics. As discussed
in the introduction, the physical location of the charge, namely either inside or out-
side the event horizon and a mixture thereof, will to a large extent govern the phase
diagram of the dual field theory. Remarkably, it will be possible to understand most
of the low temperature dynamics, for large enough magnetic field, using the analyti-
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cal methods of overlapping expansions, supplemented by a few numerical constants
determined from the purely magnetic brane solution. In this section, we shall pro-
ceed analytically, and fill in the regions of the phase diagram not accessible through
analytical results with the help of numerical results.

18.5.1 Reduced Field Equations

Investigating thermodynamics in the presence of charge density and a magnetic field
in the x3 direction will involve gravitational solutions which are invariant under
translations in xμ, and rotations in the x1, x2 plane. Thus, we need the full Ansatz
of (18.7). The corresponding reduced field equations are as follows,

M1
(
(NE +LP)e2V )′ + 2kbP = 0

M2
(
(LE +MP)e2V )′ − 2kbE = 0

E1 L′′ + 2V ′L′ + 4
(
V ′′ + V ′2)L− 4PE = 0

E2 M ′′ + 2V ′M ′ + 4
(
V ′′ + V ′2)M + 4E2 = 0 (18.35)

E3 N ′′ + 2V ′N ′ + 4
(
V ′′ + V ′2)N + 4P 2 = 0

E4 f
(
V ′)2 +f ′V ′ + 1

4

(
L′)2 − 1

4
M ′N ′ +b2e−4V +MP 2 +2LEP +NE2 =6

fV
(
f e2V )′′ = 24 e2V

We have used the notation f = L2 −MN of (18.8), and changed variables to K =
e2V . Also, we now denote the magnetic field as b, reserving the use of B for the
value of the magnetic field in a canonical coordinate system.

The reduced field equations admit a number of first integrals. Using the poten-
tials A and C for E = A′ and P = −C′, equations M1 and M2 admit obvious first
integrals,

(
NA′ −LC′)e2V + 2kbC = 0

(18.36)(
LA′ −MC′)e2V − 2kbA = 0

The integration constants to A and C that arise here have been absorbed into the
definition of these functions. Forming combinations of equations E1, E2, and E3,
and using (18.36), we find the following further first integrals,

λe2V − 4kbAC = λ0 2λ =NM ′ −MN ′

μe2V + 4kbA2 = μ0 μ = LM ′ −ML′

νe2V + 4kbC2 = ν0 ν =NL′ −LN ′
(18.37)

where λ0, μ0, and ν0 are the constant values of the corresponding first integrals.
Equation fV is linear in f and may be solved for as a function of V . Finally, λ, μ,
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ν satisfy a purely kinematic relation,

(
f ′)2 = 4

(
λ2 −μν

)+ 4f
(
L′)2 − 4fM ′N ′ (18.38)

Under constant Λ ∈ SL(2,R) transformations of the coordinates x±,
(
x̃+
x̃−

)
=Λ−1

(
x+
x−

)
(18.39)

the Ansatz (18.7), the reduced field equations (18.35), and the first integrals (18.36)
and (18.37) are invariant provided the fields transform as,

(
Ã

−C̃
)
=Λt

(
A

−C
) (

M̃ L̃

L̃ Ñ

)
=Λt

(
M L

L N

)
Λ (18.40)

while the field V and the combination f are invariant. The triplet (λ,μ, ν) is the
SL(2,R) analogue of angular momentum and transforms under the vector represen-
tation of SL(2,R), just as their first integral values (λ0,μ0, ν0) do.

18.5.2 Near-Horizon Schrödinger Geometry

Introducing charge requires that E �= 0 in the Ansatz of (18.7). Re-interpreting t

as x+ and x3 as x−, we see that turning on a charge corresponds to a deformation
which is null in the x± coordinate system. This suggests the existence of a solution
in which deformations in the x− directions vanish. We begin by exhibiting an exact
charged near-horizon solution in which the x1, x2-directions are frozen out by the
presence of a magnetic field, so that K = e2V is constant. The gauge potential and
electric field are found as follows,

A(r)= e0

k
rk E(r)= e0 r

k−1 (18.41)

The near-horizon metric takes the form,

ds2 = dr2

12r2
+ 4

√
3rdtdx3 −

(
α0r + 2e2

0 r
2k

k(2k − 1)

)
dt2 + dx2

1 + dx2
2 (18.42)

In these coordinates we have b = √
3. This metric coincides with the Schrödinger

space-time of [9, 60] and the null-warped solution of [6].

18.5.3 The Charged Magnetic Brane Solution

The near-horizon Schrödinger geometry at r → 0 extends to a regular charged mag-
netic brane solution to the full reduced field equations (18.35) with asymptotic AdS5
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behavior. In this respect, the role played by the Schrödinger near-horizon geometry
for the charged magnetic brane is parallel to the role played by the AdS3 × R2 near-
horizon geometry of the purely magnetic brane. The full solution has vanishing
deformations in the x− direction, so that we can set C = N = 0, and the functions
K = e2V and L remain those of the purely magnetic brane. The remaining fields A
and M may be obtained by quadrature from K = e2V and L, and we find,

A(r) = A∞ e2kbψ(r)

(18.43)

M(r) = L(r)

(
− α∞

2
√

3
− 4kb

∫ r

∞
dr ′A(r ′)2

K(r ′)L(r ′)2

)

The function ψ(r) was defined in (18.22). Using the r → 0 asymptotics of ψ(r)
given in (18.25), we see that the gauge potential satisfies the standard regularity
condition A(0)= 0 at the horizon. Using the r →∞ asymptotics of (18.26), we see
that the integration constant A∞ =A(∞) is the chemical potential. The integration
constant α∞ introduces a relative tilt between the light-cones in the UV and the IR.
Solutions for different values of A∞ and α∞ are related to one another by SL(2,R)
transformations which preserve the restrictions C =N = 0, and we have,

Λ=
(
λ1 0

λ2 λ−1
1

)
Ã∞ = λ1A∞
α̃∞ = λ2

1α∞ − 2λ1λ2
(18.44)

Therefore, all solutions with A∞ �= 0 are equivalent to one another under SL(2,R).
The asymptotic behavior near the boundary of AdS5 is given as follows,

A(r) ∼ A∞ − cE

r
cE = kbA∞

cV (18.45)
M(r) ∼ −α∞√

3
r

The integration constants e0 and α0 of the near-horizon Schrödinger geometry may
be related to the parameters α∞ and A∞ of the boundary, and we find,

A∞ = e0 e
−2kbψ0

(18.46)

α∞ = α0 + 16c2
V c

2
EJ (k) J (k)= 1

2k

∫ ∞

0
dr

e4kbψ(r)

K(r)L(r)2

where the constant ψ0 was defined in (18.25).

18.5.4 Regularity of the Solutions

In anticipation of extending the charged magnetic brane solution to finite tempera-
ture, we must require regularity of the solution as a black brane. Thus, the coefficient
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function of dt2 in the metric must remain negative throughout the space-time region
outside the (outer) horizon, which leads us to require,

M(r)≤ 0 (18.47)

with equality only at the horizon r = 0. At infinity, this imposes the condition
α∞ > 0. The solution near the horizon of (18.42) imposes further conditions which
depend on the value of k. In the parameter region 0 ≤ k < 1/2, the r2k term domi-
nates over the α0r term, and leads to M(r) > 0 as soon as e0 �= 0. Thus, the charged
magnetic brane solution in the region 0 ≤ k < 1/2 is excluded, as it cannot arise as
the zero temperature limit of a nonsingular finite temperature black brane.

In the parameter region 1/2 < k, it is the α0r term that dominates, which requires
α0 ≥ 0. The value α0 = 0 is actually regular as well, since the r2k term contributes
negatively for 1/2 < k. It is straightforward to see from (18.43) that these condi-
tions are also sufficient to make the charged magnetic brane solution regular for all
0 < r <∞.

18.5.5 Existence of a Critical Magnetic Field

The regularity conditions derived in the preceding section on the parameters α0
and α∞ may be translated into conditions on physically observable parameters in
the dual field theory. Since the boundary field theory is conformal invariant, only
dimensionless combinations of data can enjoy physical meaning. The magnetic field
B and the charge density ρ have non-trivial dimension, but the ratio defined by,

B̂ ≡ B

ρ2/3
(18.48)

is dimensionless, and physically observable. Expressions for B and ρ, which denote
the values of the magnetic field and charge density in coordinates such that the AdS5
metric takes a canonical for, may themselves may be read off from the boundary
behavior of the solution, and are given by,

B = 2b

cV
ρ = 4cE

√
2b

α∞
(18.49)

where cE was defined in (18.45). Thus, B̂3 may be cast in the following form,

B̂3 = 3α∞
4c3

V c
2
E

B̂3
c ≡ 3(α∞ − α0)

4c3
V c

2
E

= 12J (k)

cV
(18.50)

Here, we have also defined the combination B̂c in terms of which we obtain the
following final expression for B̂ ,

B̂3
c

B̂3
= 1 − α0

α∞
(18.51)
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Positivity of J (k) for k > 0 implies α0 < α∞, while regularity required 0 ≤ α0.
Thus, we conclude that the charged magnetic brane solution obtained above is reg-
ular if and only if B̂c ≤ B̂ . In this sense, B̂c represents a critical magnetic field. Its
value depends only on the CS coupling k and the data of the purely magnetic brane
solution. Inspection of the behavior of L and ψ in the integral for J (k) shows that
J (k), and hence B̂c diverges as k→ 1/2, thus providing a natural physical end point
for the validity of the charged magnetic brane solution.

18.5.6 Low T Thermodynamics for B̂ > B̂c

The low T behavior dual to the charged magnetic black brane solution must be
investigated separately for magnetic fields B̂ > B̂c and B̂ ∼ B̂c . We begin here with
the study of the former. The presence of a low non-zero temperature induces only
small changes to the charged magnetic brane solution for large r , while substantially
altering its near-horizon behavior. The corresponding leading T -dependent near-
horizon behavior needs to be treated exactly to incorporate these effects.

Our starting point is the purely magnetic BTZ×R2 solution already discussed in
Sect. 18.4.2. Its metric is given by (18.17), but it will be convenient here to choose
the outer horizon at r = 0, so that r+ = 0, and to parametrize the solution as follows,

F = bdx1 ∧ dx2

(18.52)

ds2 = dr2

12r2 +mnr
−mrdt2 + 4

√
3dtdx3 + ndx2

3 + dx2
1 + dx2

2

For an asymptotically AdS5 space-time given by,

ds2 = dr2

4r2
− α∞√

3
rdt2 + 4rdtdx3 + cV

(
dx2

1 + dx2
2

)
(18.53)

the dimensionless form of the entropy density ŝ, and of the temperature T̂ may be
expressed as follows,

ŝ ≡ s

B3/2
=

√
ncV α∞

24
T̂ ≡ T

B1/2
= m

√
ncV

4π
√
α∞

(18.54)

In their ratio all reference to n cancels out,

ŝ

T̂
= π

6

α∞
m

(18.55)

This ratio has a finite limit as T → 0, and may be evaluated in terms of the data
of the T = 0 charged magnetic solution, for which we have m = α0 and n = 0 by
(18.42). Along with the result for α0/α∞ from (18.51), we find a remarkably simple
formula,
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ŝ

T̂
= π

6

B̂3

B̂3 − B̂3
c

(18.56)

A number of remarks are in order.

1. In our system, the physical entropy density vanishes at zero temperature (in con-
trast with the non-vanishing entropy density used in [13, 27, 48] in 2 + 1 dimen-
sions.

2. The limit B̂ → ∞ corresponds to vanishing charge density ρ at fixed B , and
reproduces the zero charge density result of (18.16).

3. The dependence on B̂/B̂c manifested in (18.56) is reminiscent of the dependence
on the excitation velocity and couplings in the Luttinger liquid theory in (18.3).

4. The divergence of ŝ/T̂ at zero temperature as B̂ → B̂c signals the presence of
a quantum critical point at B̂c . Therefore, in a small region around T = 0 and
B̂ = B̂c in the T̂ , B̂ plane, we should expect to find quantum critical behavior, to
be explored in the subsequent subsections.

5. The phase for B̂ < B̂c has non-zero entropy density at T̂ = 0, and may be thought
of as a deformation of the Reissner-Nordstrom solution for zero magnetic field.

6. Numerical solutions perfectly reproduce the above analytical approximations, as
will be explained in Sect. 18.5.9.

18.5.7 Low T Thermodynamics for B̂ = B̂c

Precisely at the quantum critical point, we have B̂ = B̂c , or equivalently α0 = 0. The
resulting near-horizon metric of (18.42) then simplifies slightly,

ds2 = dr2

12r2
+ 4

√
3rdtdx3 − 2e2

0 r
2k

k(2k − 1)
dt2 + dx2

1 + dx2
2 (18.57)

More importantly, however, the metric now is invariant under the following scaling
transformations,

r → λr t → λ−kt x3 → λk−1x3 (18.58)

with x1, x2 unchanged. The associated dynamical scaling exponent is given by,

z= k

1 − k
(18.59)

General arguments show that, for fixed B̂ = B̂c, the entropy density scales with
temperature according to the relation ŝ ∼ T̂ d/z = T 1/z given that the scaling theory
here has space dimension d = 1.

Numerical analysis shows that the above prediction, based on the structure of the
near-horizon metric and its scaling symmetry, is borne out in only a limited range
for k. The actual behavior is as follows,
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ŝ ∼ T̂ (1−k)/k 1/2 < k < 3/4
(18.60)

ŝ ∼ T̂ 1/3 3/4 < k

The numerical accuracy for the exponents is better than 1 % for the points we have
checked. Note that the exponent matches continuously across the value k = 3/4.
Inspection of the numerically obtained metric functions shows that the near-horizon
region for finite T̂ holds an electrically charged black brane whose space-time met-
ric differs from that of BTZ.

To understand why the arguments based on the scaling symmetry of the near-
horizon metric fail for k > 3/4, we consider a scaling transformation which leaves
the AdS3 part of the metric invariant, but not necessarily the term in e2

0. For example,
applying the following scaling,

r → λr t → t/
√
λ x3 → x3/

√
λ (18.61)

with x1, x2 unchanged, will scale the term in e2
0 by a factor of λ2k−1. Scaling towards

the IR corresponds to λ < 1, and we see that the term in e2
0 naively becomes irrel-

evant. Whether the term indeed is irrelevant becomes a dynamical question, which
is not easy to settle. Detailed arguments were given in [19] that the separation point
is indeed k = 3/4. The scaling exponent of 1/3 may be reproduced for the range
k > 1 with the help of the method of overlapping expansions. The calculations are
technically involved, and will not be reproduced here.

In Fig. 18.4 we display numerical data illustrating the crossover from the be-
havior ŝ ∼ T̂ to the behavior ŝ ∼ T̂ 1/3 for k = ksusy = 2/

√
3. Qualitatively, the

cross-over behavior of Fig. 18.4 persists for all k > 3/4.

18.5.8 Scaling Function in the Quantum Critical Region

In a small region surrounding the quantum critical point T = 0 and B̂ = B̂c, a critical
scaling regime sets in. For the range k > 1, we have been able to derive this scaling
behavior with the help of the method of overlapping expansions, and we find,

ŝ = T̂ 1/3 f

(
B̂ − B̂c

T̂ 2/3

)
(18.62)

for a certain scaling function f (which is not to be confused with the metric function
f introduced in (18.35)). At B̂ = B̂c , this formula reproduces the scaling behavior
discussed in (18.60) of the previous section for k > 1. For B̂ > B̂c , and low temper-
ature, namely T̂ 2/3 � (B̂ − B̂c), we should recover (18.56), so that we should have
f (x)∼ πB̂c/(18x) for large x. Actually, the method of overlapping expansions al-
lows one to compute f (x) for the range k > 1, and we shall quote here the result
without reproducing the derivation given in [19],

f (x)

(
f (x)2 + x

32kB̂4
c

)
= π

576kB̂3
c

(18.63)
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Fig. 18.4 The cross-over behavior of ŝ versus T̂ for k = ksusy = 2/
√

3 at values of B̂ > B̂c cor-
responding to the curves A: B̂3 = 0.125, B: B̂3 = 0.1247, C: B̂3 = 0.1246, D: B̂3 = 0.12458,
E: B̂3 = 0.12457, F : B̂3 = 0.124569, and G: B̂3 = 0.124568. To lighten notations, hats on the
variables T̂ , ŝ have not been exhibited in labeling the figure. At moderately low temperatures, ŝ
scales as T̂ 1/3 (lower left corner), while at ultra-low temperatures ŝ scales as T̂ for B̂ > B̂c (curves
A, B , C, D, E, F ) and tends to a non-zero constant for B̂ < B̂c (curve G). The dots represent nu-
merical data points, while the solid interpolating lines are included to guide the eye

The scaling function f continues to apply for B̂ < B̂c , and we find the following
behavior for the entropy density as a function of the magnetic field,

ŝ =
√
B̂c − B̂

4
√

2k B̂2
c

(18.64)

The value of the exponent is reproduced to approximately 0.2 % accuracy by nu-
merical simulations, and the prefactor to approximately 20 %.

18.5.9 Numerical Completion of the Holographic Phase Diagram

The full holographic phase diagram in the variables B̂ , T̂ is presented in Fig. 18.5.
Here, the various asymptotic behaviors are combined onto a single graph for the
range k > 3/4. For the range 1/2 < k < 3/4, the scaling exponent 1/3 at B̂ = B̂c

must be replaced by (1 − k)/k, and the behavior of the entropy density for B̂ < B̂c

is altered though we have not systematically studied the corresponding modifica-
tions.



18 Quantum Criticality via Magnetic Branes 491

Fig. 18.5 The full
holographic phase diagram in
terms of the variables B̂ and
T̂ for k > 3/4. Hats on B̂ , T̂ ,
ŝ, and B̂c have not been
exhibited in the figure

18.5.10 Correlators at Non-zero Charge Density

Correlators of the Maxwell current J μ and of the stress tensor T μν may be evalu-
ated, in the long distance approximation, in the presence of a magnetic field at zero
temperature, but now with non-vanishing background electric charge density ρ, or
equivalently, with chemical potential μ. As in the case with vanishing charge den-
sity studied in Sects. 18.4.3, 18.4.5, and 18.4.8, we use the method of overlapping
expansions of 18.4.4 valid for k > 1. The calculations for the charged case proceed
in analogy with the ones for the neutral case, but are now considerably more deli-
cate and technically involved. We refer to the original paper [19] for their detailed
derivation, and restrict here to quoting and explaining the results.

Correlators involving the operators with minus chirality are unmodified from the
zero charge case. In particular, the two point function of J− has no singularities,
while the two point function of T−− continues to be given by (18.34). The correla-
tors with plus chirality are found as follows,

〈
J+(x)J+(0)

〉 = − kc

2π2

1

(x+)2
〈
J+(x)T++(0)

〉 = +kcμ

2π2

1

(x+)2
(18.65)

〈
T++(x)T++(0)

〉 = −kcμ2

2π2

1

(x+)2
+ c

8π2(x+)4

where μ is the chemical potential, related to the charge density by,

μ=A∞ = ρcV
√
α∞

4kb
√

2b
(18.66)

The system of correlators in the presence of charge may be related to the system
of correlators of operators J (0)

+ and T (0)
++ at zero charge density by the following
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simple operator mixing relations,

J+ = J (0)
+

(18.67)
T++ = T (0)

++ −μ+J (0)
+

Here, we have exhibited the natural Lorentz weight of the chemical potential by
setting μ= μ+. We see that the underlying Abelian Kac-Moody algebra for J (0)

+
and the underlying Virasoro algebras for T (0)

±± are unmodified, with unchanged Kac-
Moody level kc, and Virasoro central charge c.

18.5.11 Comments on Stability

The solutions studied here can, at least for special values of k, be uplifted to full
solutions of higher dimensional supergravity and string theory, but nothing guaran-
tees that they are stable solutions. There are two types of potential instabilities to
be aware of: those coming from fields already included in our analysis, and those
required by a consistent embedding into supergravity/string theory. Regarding the
former, it has been observed in several contexts that the combination of electric
charge and Chern-Simons terms can lead to instabilities towards spatially modu-
lated phases [23, 53]. In some cases new solutions with reduced symmetry can be
found [24, 25, 41, 42]. As for the latter, a supergravity/string theory embedding
will typically bring along a variety of charged fields, and these may be unstable to-
wards forming a condensate, as in holographic superconductors [37]. It is clearly
an important challenge to determine when our solutions are unstable, and if not, to
characterize the nature of the true ground state.

18.6 Quantum Criticality in 2 + 1 Dimensions

The critical theories studied so far originate from an underlying 3 + 1-dimensional
gauge theory in the UV which flows towards an effective 1+1-dimensional strongly
interacting CFT in the IR. Low temperature thermodynamics and long-distance cor-
relators all signal massless propagation along the direction parallel to the magnetic
field only. In the gravity dual, this IR behavior results from the existence of a
near-horizon Schrödinger geometry of the form WAdS3 × R2, where WAdS3 is a
null-warped deformation of AdS3 space-time. The physical mechanism driving the
quantum critical transition on the gravity side is the gradual expulsion of electric
charge from the inside of the black brane horizon to the outside of the horizon as
the magnetic field B̂ = B/ρ2/3 is being increased; see [36] for another example of
this phenomenon.

While quantum criticality in 1 + 1 dimensions is certainly of considerable phys-
ical interest, as was pointed out in the preceding section, it is probably even more
urgent to extend the study to higher dimensions. Quantum criticality in 2+1 dimen-
sions is relevant to the physics of layered materials, such as cuprates, and graphene.
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In the present section, we shall exhibit quantum critical behavior in 2+1 dimensions
systems in the presence of a magnetic field, and a non-vanishing electric charge
density by holographic methods. Criticality here is driven by the same holographic
mechanism that governed the 1 + 1-dimensional case, namely charge expulsion
from the black brane horizon. This time, however, the IR behavior in the gravity
dual results from a flow from AdS6 in the UV to a near-horizon Lifshitz geome-
try [44] in the IR which is a deformation of AdS4. See [11, 33] for other examples
of holographic RG flows involving Lifshitz spacetime. The AdS6 geometry in the
UV should be thought of as being dual to some 5 + 1-dimensional CFT, examples
of which do exist, and have been identified in [59].

18.6.1 Field Equations and Structure of the Solutions

The charge expulsion mechanism operating in the flow from AdS5 to deformations
of AdS3 is made possible by the presence of the Chern-Simons interaction for the
Maxwell field, and the existence of the transition crucially depends upon the strength
of the associated Chern-Simons coupling k. This is because the Chern-Simons term
provides the mechanism by which the bulk gauge field can carry its own charge.

The charge expulsion mechanism in higher dimensions that we shall focus on
will also be made possible by the presence of Chern-Simons terms. Starting with
AdS6 in the UV does not support a Chern-Simons terms for the bulk gauge field
all by itself. Thus, we are led to introducing further form fields. In the simplest
extension, we add a single two-form potential C with field strength G = dC. The
corresponding Einstein-Maxwell-Chern-Simons action then becomes,

S = − 1

16πG6

∫
d6x

√
g

(
R − 20

�2
+ FMNF

MN + 1

3
GMNPG

MNP
)
+ SCS

(18.68)
SCS = k

4πG6

∫
C ∧ F ∧ F

where G6 is the 5 + 1-dimensional Newton constant, F = dA is the Maxwell field
strength, and −20/�2 stands for the cosmological constant for an asymptotic AdS6
vacuum solution of radius �, which we shall set to 1. Boundary and counter term
contributions to the action are not being exhibited here.

The Maxwell-Chern-Simons field equations are,

d ∗ F − 2kF ∧G = 0
(18.69)

d ∗G+ kF ∧ F = 0

while the Einstein equations are,

RMN =−2FMPFN
P −GMPQGN

PQ + gMN

(
5 + 1

4
FPQF

PQ + 1

6
GPQRG

PQR
)

(18.70)
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Clearly, the charge densities for both the F and G fields are proportional to the
Chern-Simons coupling k.

As we focus here on thermodynamic questions, we shall be interested in so-
lutions which are invariant under translations in xμ = (t, x1, x2, x3, x4). The flow
from AdS6 in the UV to AdS4 and its deformations in the IR will be generated by
a constant magnetic field, which we shall choose in the direction F34 = B . It is
natural to require rotation invariance in the x3, x4 plane, as well as in the remain-
ing space directions x1, x2. A general Ansatz invariant under these symmetries was
constructed in [21], and is given by,

F = Edr ∧ dt + B̃dx1 ∧ dx2 +Bdx3 ∧ dx4

G = (G1dr +G2dt)∧ dx1 ∧ dx2 + (G3dr +G4dt)∧ dx3 ∧ dx4 (18.71)

ds2 = dr2

U
−Udt2 + e2V1

(
dx2

1 + dx2
2

)+ e2V2
(
dx2

3 + dx2
4

)

By translation invariance in xμ, the coefficients B , B̃ , E, G1, G2, G3, G4, U , V1,
V2 depend only on r . By the Bianchi identities for F and G, the quantities B , B̃ ,
G2, G4 must actually be independent of r . The magnetic field B̃ plays the role of
a magnetic field living in the IR 2 + 1-dimensional field theory, and will be set to
zero here for simplicity, B̃ = 0. For kB �= 0, the field equations then imply that
G2 = 0 and G3G4 = 0. Solutions with either G3 �= 0 or G4 �= 0 do not have regular
horizons, so we set also G3 =G4 = 0. The remaining reduced field equations were
derived in [21], and will not be repeated here as they are reasonably involved.

18.6.2 Horizon and Asymptotic Data, Physical Quantities

We choose a coordinate r such that the horizon is at r = 0. We normalize the scales
of the coordinates xμ by setting,

U(0)= V1(0)= V2(0)= 0 U ′(0)= 1 (18.72)

The field equations relate the horizon values G1(0) = −2kbE(0). The asymptotic
behavior for r →∞ may be parametrized analogously,

U(r)∼ r2 e2V1(r) ∼ v1r
2 e2V2(r) ∼ v2r

2 (18.73)

The asymptotics of the gauge field strength fixes the physical charge density ρ of
the boundary theory by r4E(r)→ ρ. The dimensionless magnetic field B̂ = B/

√
ρ,

temperature T̂ = T/
√
B , and entropy density ŝ = s/B2 are then given by,

B̂ = b

v2
√
ρ

T̂ =
√
v2

4π
√
b

ŝ = v2

4v1b2
(18.74)
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The equation of state corresponds to the relation ŝ = ŝ(k, T̂ , B̂). We shall begin
by discussing below analytical solutions available in various limits. Obtaining the
function ŝ throughout parameter space will, however, require numerical analysis.

18.6.3 Flows Towards the Electric IR Fixed Point

In the absence of a magnetic field, B = 0, the purely electric solution is given by the
standard Reissner-Nordstrom form,

U = r2 + q2

6r6
− M

r3
V1 = V2 = ln r E = ρ

r4
(18.75)

In the extremal limit, the location of the horizon r+ is determined by U(r+) =
U ′(r+) = 0, and the entropy density s ∼ ρ ∼ r4+ does not vanish at T = 0. The
near-horizon geometry of the purely electric solution is AdS2 × R4.

For B �= 0, numerical analysis confirms the existence of a charged magnetic
brane solution whose near-horizon behavior coincides with that of the purely elec-
tric solution, provided the Chern-Simons coupling k remains below a critical value
kc which will be determined shortly.

18.6.4 Flows Towards the Magnetic IR Fixed Point

The near-horizon behavior of the purely magnetic solution is given by AdS4 × R2

space-time at T = 0, or an AdS4 Schwarzschild solution at T �= 0. The two cases
may be described together by,

U = 20

9

(
r2 − r3+

r

)
e2V1 = 20

9
r2 e2V2 =

√
3

10
B (18.76)

The temperature behaves as T ∼ r+, and the entropy density may be computed
exactly in the low T approximation,

s = π2

5

√
3

10
BT 2 (18.77)

This T -dependence is precisely as expected of a 2 + 1-dimensional CFT associated
with the near-horizon AdS4 space-time.

For ρ �= 0, numerical analysis confirms the existence of a charged magnetic brane
solution whose near-horizon behavior is that of the purely magnetic solution, pro-
vided k is larger than the critical value kc already identified to end the purely electric
flow. The T 2-dependence of the entropy density which is characteristic of 2 + 1-
dimensional CFT behavior, persists as long as k > kc, but the coefficient is now
found to be a non-trivial function,
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s =A(k, B̂)B T 2 (18.78)

We expect that the problem of calculating the function A(k, B̂) may be amenable to
analytical treatment, especially since numerical evaluation indicates the following
behavior for intermediate and small B̂ ,

A(k, B̂)∼ c(k) exp
(
d(k)B̂−2) (18.79)

with the characteristic behavior d(k)∼ (k2 − k2
c )

−1 obeyed to remarkable accuracy.

18.6.5 Flows Towards the Lifshitz IR Fixed Point

The near-horizon geometries, AdS2 × R4 for k < kc , and AdS4 × R2 for k > kc , are
separated by a Lifshitz near-horizon geometry at the critical point k = kc . Seeking
near-horizon solutions which are invariant under space-time scalings, r → λr , t →
t/λ, x1,2 → λ−1/zx1,2, and x3,4 → λ−βx3,4, for real constants z and β , we find that
the existence of such a solution requires β = 0, as well as

k = kc = 1√
3

(18.80)

The dynamical scaling exponent z is constrained to the range z > 1, but otherwise
arbitrary. From this scaling behavior in the near-horizon region, the scaling behavior
of the low temperature behavior of the entropy density may be deduced, and we find,

ŝ ∼ T
2
z (18.81)

in accord with the space-dimension of the IR theory being d = 2, and the param-
eter z standing for the dynamical critical exponent. As z runs through the range
1 < z <∞, the entropy density is being interpolated from its IR behavior for the
purely electric fixed point at z=∞ to its IR behavior for the purely magnetic fixed
point at z= 1. This interpolating behavior is reflected in the functional dependence
of z on the magnetic field B̂ , which interpolates between the following asymptotic
behaviors,

1

z
=

{
0.105 B̂2 B̂ � 1

1 − 0.894 B̂−4 B̂ � 1
(18.82)

18.6.6 The Full Phase Diagram

The full phase diagram may now be assembled from the behavior in the various
regimes that we have examined in the preceding sections; see Fig. 18.6. For large T ,
the entropy density is dominated by temperature alone, and charge density ρ as well
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Fig. 18.6 The full
holographic phase diagram in
terms of the variables k and
T̂ . To lighten notations, hats
on T̂ , ŝ have not been
exhibited in the figure

as magnetic field B have negligible effects. Thus, we have s ∼ T 4, as expected form
the dual field theory by scaling.

For k < kc, the flow from AdS6 in the UV is towards the Reissner-Nordstrom
type near-horizon geometry AdS2 × R4 in the IR with s �= 0 at T = 0. Without
doubt, this holographic solution will become unstable once charged scalar fields,
and/or space-dependent modulations are allowed. For k > kc, the flow from AdS6
in the UV is towards the AdS4 × R2 near-horizon geometry of the purely magnetic
brane, with its entropy density behaving as s ∼ BT 2, characteristic of scaling in a
2 + 1-dimensional CFT. Finally, in the critical region, where k ∼ kc, the entropy
density at low T̂ is governed by a scaling function,

ŝ = f (k − kc, B̂, T̂ ) (18.83)

In the absence to date of a (semi-)analytical solution connecting the near-horizon
Lifshitz geometry to the asymptotic AdS6 region, the scaling function f (k − kc,

B̂, T̂ ) is accessible only through numerical analysis.

18.7 Relation with Quantum Criticality in Condensed Matter

In this section, we shall point towards some exciting, though still speculative, ap-
plications of our holographic results to problems in condensed matter physics. One
application of the 1 + 1-dimensional quantum criticality problem studied above is
to Strontium Ruthenates.

18.7.1 Meta-Magnetic Transitions in Strontium Ruthenates

The phase transitions exhibited by our holographic systems occur at a finite value
of the magnetic field and involve no change of symmetry. These are referred to as
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Fig. 18.7 Entropy landscape of Sr3Ru2O7 near the meta-magnetic transition. The right panel
illustrates the 1/(B − Bc) divergence of S/T , which is ultimately cut off by the appearance of a
nematic phase. Figure taken from [57]

meta-magnetic phase transitions. A typical experimental situation is the following.
A material has a line of first order phase transitions at finite temperature, reached by
dialing the magnetic field, and with the line ending at a finite temperature critical
point. By tuning some other control parameter, one can attempt to bring this criti-
cal point down to zero temperature, resulting in a quantum critical meta-magnetic
transition [52], analogous to what we have found holographically. In particular, ther-
modynamic quantities such as the specific heat will diverge as the critical magnetic
field is approached.

A version of this behavior, with some interesting twists, occurs in the Stron-
tium Ruthenate compound Sr3Ru2O7, and has been the subject of much exper-
imental and theoretical interest in the past few years; e.g. [30, 57]. Sr3Ru2O7
is a layered material, which, for a large magnetic field perpendicular to the 2-
dimensional layers (around 8 T) exhibits meta-magnetic behavior with a “shrouded”
quantum critical point. Notably, as the magnetic field reaches its critical value
the entropy density behaves as s/T ∼ 1/(B − Bc), just as we found in our
AdS5 system. There appears to be no satisfactory theoretical understanding of
this behavior. While this divergence in the entropy density appears to signal
the onset of a quantum critical point, what actually seems to happen [30, 54]
is that the system evolves into a nematic phase for 7.8T < B < 8.1T . Spatial
anisotropy in the nematic phase can be detected by applying a small in-plane
component of magnetic field, which acts to align the domains, and then look-
ing for anisotropic behavior of transport coefficients. The nematic phase seems
to shroud the quantum critical point in a manner analogous to what occurs in
high temperature superconductors. The fact that the would be divergence in s/T

is cutoff by the appearance of a nematic phase has been described as nature’s
solution to the problem of avoiding a non-zero entropy density at zero tempera-
ture.

In [57], the complete entropy landscape of Sr3Ru2O7 at finite temperature and
magnetic field has been mapped out. The parallels with our system are clear, namely
the 1/(B−Bc) divergence in the entropy density to temperature ratio; see Fig. 18.7.
The most obvious difference is that our system is effectively 1 + 1-dimensional at
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the critical point, while Sr3Ru2O7 is strongly 2+1-dimensional. But it is interesting
to speculate whether a nematic phase will occur also in our holographic setup. In
our ansatz we have assumed full translational and rotational invariance, but recent
results indicate that there are frequently instabilities towards anisotropic phases [23–
25, 41, 42, 53].

18.7.2 Relation to Hertz-Millis Theory

A standard approach to modeling magnetically tuned quantum phase transitions is
based on the Hertz-Millis theory [39, 49, 51]. In d + 1 dimensions we consider the
effective action

S =
∫

dωddk

( |ω|
|k| + k2 + (B̂ − B̂c)

)∣∣φ(ω, k)
∣∣2 + · · · (18.84)

The bosonic field φ represents the local magnetization, and one is supposed to think
of this action as arising from integrating out gapless fermions at one-loop. There
is no controlled approximation that justifies this approach, and indeed it is known
to sometimes lead to predictions in conflict with experiment. Let us nonetheless
make the following suggestive observations. We consider the action (18.84) with
d = 1, and compare to our asymptotically AdS5 critical theory. At B̂ = B̂c the Hertz-
Millis action is scale invariant, with k and ω assigned scaling dimensions 1 and 3
respectively. The dynamical critical exponent is therefore z= 3, which matches our
AdS5 result for k > 3/4, and will lead to the scaling law for the entropy, s ∼ T 1/3,
in one spatial dimension, as we found. Furthermore, B̂ − B̂c plays the role of a
relevant coupling of scaling dimension 2. This agrees with (18.62); to see this note
that the argument of f in (18.62) has vanishing scale dimension, and T̂ shares the
same scaling dimension as ω, namely 3. Therefore, the scaling predictions of the
Hertz-Millis theory can be identified in our holographic setup. Of course there are
also differences; for instance, there is no analog of our finite ground state entropy
density branch for B̂ ≤ B̂c .
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Chapter 19
Charge-Dependent Correlations in Relativistic
Heavy Ion Collisions and the Chiral Magnetic
Effect

Adam Bzdak, Volker Koch, and Jinfeng Liao

19.1 Introduction

The theoretical study of topological solitons in field theories has a long history.
Quite generically, these objects arise as solutions to the classical equations of motion
for field theories due to the nonlinearity of the equations as well as due to specific
boundary conditions. They are found in field theories of various dimensions (2D
kinks, 3D monopoles, 4D instantons), and are known to be particularly important in
the non-perturbative domain where the theories are strongly coupled. For a recent
review, see e.g. [1].

Topological objects in Quantum Chromodynamics (QCD) are known to play im-
portant roles in many fundamental aspects of QCD [1]. For example, instantons
are responsible for various properties of the QCD vacuum, such as spontaneous
breaking of chiral symmetry and the UA(1) anomaly (see e.g. [2, 3]). Magnetic
monopoles, on the other hand, are speculated to be present in the QCD vacuum in a
Bose-condensed form which then enforce the color confinement, known as the dual
superconductor model for QCD confinement, which is strongly supported by lattice
QCD calculations (see e.g. [4, 5]). Alternatively vortices are believed to describe
the chromo-electric flux configuration (i.e. flux tube) between a quark-anti-quark
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pair in the QCD vacuum which in turn gives rise to the confining linear potential
(see e.g. reviews in [5, 6]). Some of these objects, such as monopoles [7–12] and
flux tubes [13–15], may also be important degrees of freedom in the hot and decon-
fined QCD matter close to the transition temperature Tc, and may be responsible
for the observed properties of the so called strongly coupled quark-gluon plasma
[16–22].

Since the existence of such topological objects is theoretically well motivated
and their effects on the dynamics are deemed to be important, a direct experimental
detection of such objects or at least of certain unique imprints by them, would be
a highly desirable goal. This review will discuss recent efforts and progress toward
that goal, specifically in the context of relativistic heavy ion collisions through the
measurement and analysis of charge-dependent correlations.

19.1.1 The Chiral Magnetic Effect in Brief

An interesting suggestion by Kharzeev and collaborators [23–31] on the direct man-
ifestation of effects from topological objects is the possible occurrence of P- and
CP-odd (local) domains due to the so-called sphaleron or anti-sphaleron transitions
in the hot dense QCD matter created in relativistic heavy ion collisions. Imagine
that in a single event created in a heavy ion collision the gauge field configurations
in the space-time zone of the created hot dense matter experience a single sphaleron
transition. As a result this local zone acquires a non-zero topological charge which
is parity-odd. This non-zero topological charge, when coupled with light quarks
through the triangle anomaly, induces a non-zero chirality for the quarks. In other
words it generates an imbalance between left- and right-handed quark numbers, or
a non-zero axial charge density. To be precise, there is no violation of parity at the
interaction level, but rather a local creation of matter with non-zero axial charge
density, which is a P- and CP-odd quantity.

A concrete proposal for experimental detection is the so-called Chiral Magnetic
Effect (CME) [25]. The effect itself states that in the presence of external electro-
magnetic (EM) magnetic field B, a nonzero axial charge density will lead to an EM
electric current along the direction of the magnetic field B:

jV = Nc e

2π2
μAB (19.1)

where μA is the axial chemical potential associated with the non-zero axial charge
density present in the system, and Nc is the number of colors. This elegant rela-
tion is theoretically well established in both the weakly-coupled and the strongly-
coupled regimes of the theory as will be discussed in several contributions to this
volume.

At first sight, it might seem that the above relation is violating parity: under spa-
tial rotation and inversion the EM electric current jV transforms like a vector, while
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the magnetic field, B, transforms like an axial- or pseudo-vector. Therefore, the fac-
tor in (19.1) relating the two will have to be parity-odd. This is indeed the case, since
μA that enters the above relation is a pseudo-scalar quantity which changes sign un-
der parity transformation. Thus the CME relation, (19.1), is invariant under parity
transformation. However, in a region with nonzero, either positive or negative, μA

certain parity-odd observables, e.g. the pseudoscalar quantity 〈jV · B〉, may acquire
nonzero expectation values. It is only in this sense that one may refer to it as “local
parity violation”.

In addition there is a complimentary relation, as one might have guessed from the
“duality” by interchanging the roles of V (vector) and A (axial), that has been called
the Chiral Separation Effect (CSE). The CSE refers to the separation of chiral (or
axial) charge along the axis of the external EM magnetic field at finite density of the
vector charge, for example at finite baryon number density [32, 33]. The resulting
axial current is given by

jA = Nc e

2π2
μV B (19.2)

with the μV here being the baryon number chemical potential. Furthermore the
combination of the two effects, CME and CSE, gives rise to an interesting propa-
gating collective mode: the vector density induces an axial current which transports
and creates a locally nonzero axial charge density, which in turn leads to a vector
current that further transports and creates a locally nonzero vector density, and so
on. This is called Chiral Magnetic Wave (CMW) [34], just like Maxwell’s electro-
magnetic waves represent the coupled evolution of the electric and magnetic fields.
The CMW is a general concept that includes both the CME and CSE effects. It is
robust in the sense that it takes the form of a collective excitation like the sound
wave without relying on a quasi-particle picture.

We end the general introduction with two comments: first, the CME in the lan-
guage of CMW induces a charged dipole (of the vector density distribution) that
results from an initial nonzero axial charge density; second it has been recently
pointed [35–37] that an initial vector charge density via CMW will lead to a charged
quadrupole distribution that may be observable in heavy ion collisions. For the rest
of this contribution we will focus on the charged dipole signal for the CME phe-
nomenon.

19.1.2 Hunting for the CME in Heavy Ion Collisions

Now we turn to two key questions: can the Chiral Magnetic Effect occur in heavy
ion collisions, and if so, what observables serve as unambiguous signals for the
CME?

The answer to the first question seems to be positive. Two elements are needed
for the CME to occur: an external magnetic field and a locally nonzero axial charge
density. The relativistically moving heavy ions, typically with large positive charges
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(e.g. +79e for Au), carry strong magnetic (and electric) fields with them. In the
short moments before/during/after the impact of two ions in non-central collisions,
there is a very strong magnetic field in the reaction zone [25, 38]. In fact, such a
magnetic field is estimated to be of the order of m2

π ≈ 1018 Gauss [39, 40] (see also
[41]), probably the strongest, albeit transient, magnetic field in the present Universe.
The other required element, a locally non-vanishing axial charge density, can also
be created in the reaction zone during the collision process through sphaleron tran-
sitions (see e.g. [31] for discussions and references therein). As such, it appears at
least during the very early stage of a heavy ion collision, there can be both strong
magnetic field and nonzero axial charge density in the created hot matter. Therefore,
the CME should take place, that is, an electric current will be generated either par-
allel or anti-parallel to the magnetic field B depending on the axial charge density
is positive (due to sphaleron) or negative (due to anti-sphaleron). How large this
current is, is of course another question, see e.g. [42, 43].

The answer to the second question is much more difficult. Extracting the effects
of the CME, which most likely occur at the very early stage of the collision, from
the final observed hadrons, involves many uncertainties. First, it is quite unclear
how long the magnetic field could remain strong: while the peak value is large,
it decays very rapidly with time (if the only source of such field is from the pro-
tons in the ions) [44]. Second, if the CME current is generated mostly at very early
time, it is not clear to which extent this current could survive without significant
modifications, since we know that the created quark-gluon plasma behaves like a
strongly interacting fluid. Furthermore, even if this current survives, one has to find
the right observable for its detection. At present, there is no satisfactory resolu-
tion on the first two issues. This will likely require comprehensive and quantitative
model studies. In this review we will only focus on the third issue—the observ-
ables to be used for measuring the possible CME current and related “background”
effects.

In a simplistic view, one may consider the ultimate manifestation of the CME
as a separation of charged hadrons along the direction of the initial magnetic field:
more positive hadrons moving in one direction while more negative hadrons in the
opposite direction. As a result, the momentum distribution of the final hadrons will
have a charged dipole moment. The direction of such a momentum space dipole
is expected to be along the B field, parallel or anti-parallel, depending on the sign
of the initial axial charge density in a given event. Since the initial axial charge
may be positive and negative with equal probability, the event average of the mo-
mentum space dipole vanishes, 〈jV · B〉 = 0. This reflects the fact that parity is not
broken globally by the strong interaction, so that any pseudo-scalar quantity, such
as 〈jV · B〉, will have to vanish. What one can hope for, however, is to measure the
fluctuation or variance of this charge separation, i.e. 〈(jV · B)2〉, which is a parity
even quantity. As we will discuss later, the prize one has to pay is that other, con-
ventional correlations, not related to the CME, may contribute to observables which
are sensitive to the variance of charged dipole moment.

Recently the STAR Collaboration at the Brookhaven’s Relativistic Heavy Ion
Collider (RHIC) has reported [45, 46] first measurements of a charge dependent
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correlation function in heavy ion collisions, which may by sensitive to the Chiral
Magnetic Effect. The essential idea of the measurement, proposed by Voloshin [47],
is based on two important features: first, in non-central heavy ion collisions, the
direction of initial strong magnetic field is strongly correlated with the so-called
reaction plane, which is spanned by the impact parameter and the beam direction.
The B field is pointing (mostly) along the normal of reaction plane, albeit with ran-
dom up/down orientation; second, the CME-induced current, or the charged dipole
in momentum space, implies particular charge-dependent correlation patterns. The
same-sign charged hadrons will prefer moving together while the opposite-sign
charged hadrons moving back-to-back along the B field direction, and thus per-
pendicular to the reaction plane, which is commonly referred to as the out-of-plane
direction.1 While these measurements and their implications will be discussed in
detail in Sect. 19.3, let us briefly summarize the present status: the STAR (later
PHENIX, and also ALICE) data show very interesting charge dependent azimuthal
correlation patterns, and some features are in line with the CME predictions. Other
aspects of the data, on the other hand, are very hard to understand within the frame-
work of the CME. At present, therefore, the observation of the Chiral Magnetic
Effect in heavy ion collisions, and the local parity violation in the aforementioned
sense, has not been established experimentally, and additional measurements as
well as further theoretical analysis are required before definitive conclusions can
be drawn.

This review is organized as follows: in Sect. 19.2, we will present a general dis-
cussion on the charge-dependent correlation measurements in heavy ion collisions,
with the emphasis on the CME related observables; in Sect. 19.3, the presently
available data from heavy ion collisions at a variety of collision energies will be
examined and their interpretations will be critically evaluated; in Sect. 19.4, various
possible “background” effects and their manifestation in various observables will be
quantitatively analyzed; finally in Sect. 19.5 we summarize and conclude.

19.2 The Charge-Dependent Correlation Measurements

In this section, we focus on various charge-dependent correlation measurements in
heavy ion collisions and what can be learned from these observables. The emphasis
will not be on the data themselves, which will be the subject of the next section.
Instead we will set up the conceptual framework for studying the azimuthal correla-
tions, discuss possible complications in the design of the observables, and examine
the connection between physical effects and the measurements.

1As a note of caution, the strong correlation between the B field direction and the participant-plane
are considerably modified when the strong fluctuations in the initial condition are properly taken
into account. As a result the two are rather weakly correlated in very central and very peripheral
collisions [40, 41, 48].
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19.2.1 General Considerations Concerning Azimuthal Correlation
Measurements

The basic experimental information about the (hadronic) final state of a heavy ion
collision consists of the momenta and the identity—the electric charge, mass and
possibly other quantum numbers—of all hadrons observed in the acceptance of a
given experiment. Customarily, the three-momentum p is represented by the (lon-
gitudinal) rapidity, y, the transverse momentum pt as well as the azimuthal an-
gle φ. Events may further be grouped according to the charged particle multiplic-
ity, which is a good measure of the centrality or impact parameter of a collision.
From a given sample of events one can then extract the single particle distributions,
d3N/dydp2

t dφ either for all charged hadrons or, more selectively, for identified
pions, kaons, protons, etc. In order to study possible correlations one analyses two-
particle, three-particle and multi-particle distributions of various kinds. Most of the
discussion in this review will focus on the dependence of various measurements on
the azimuthal angle. The rapidity y and the transverse momentum pt will either be
in specific bins or integrated over.

The analysis of azimuthal distributions has to deal with the fact that the azimuthal
direction of each collision, characterized by either the direction of the angular mo-
mentum or the impact parameter, is randomly distributed in the laboratory frame.
Therefore, a single particle azimuthal distribution, dN/dφ will always be uniform
and, thus, rather meaningless. To learn something about azimuthal distributions, one
either measures distributions of the difference of the azimuthal angles of two parti-
cles, dN/d(φ1 − φ2), or one determines the azimuthal orientation of a given event
and studies distributions with respect to this direction. Commonly the azimuthal di-
rection of the so-called reaction plane is used to characterize the orientation of an
event. As already discussed in the Introduction, the reaction plane is spanned by the
beam direction and the impact parameter of the collision. Its orientation in the labo-
ratory frame is given by the so-called reaction plane angle, ΨRP, which measures the
direction of the impact parameter in the laboratory frame. Given the reaction plane
angle, one then can study azimuthal angular distributions with respect to the reac-
tion plane angle, f (φ − ΨRP)= dN/d(φ − ΨRP). Clearly the determination of the
reaction plane requires the measurement of other particles in addition to that used
for the angular distribution (for a comprehensive review, see [49]). Therefore, the
extraction of azimuthal distributions will require the measurement of two-particle
(for the angular difference distribution dN/d(φ1 − φ2)) or even higher particle dis-
tributions.

However, it is important to distinguish between the need to measure two- or
many-particle distributions to study azimuthal distributions, and the presence of true
dynamical two- or many- particle correlations. To make this distinction more trans-
parent, it is useful to introduce an intrinsic frame or coordinate system where the
x-direction is given by the direction of the impact parameter, which is typically re-
ferred to as the so-called “in-plane-direction”, and the y direction is defined by the
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Fig. 19.1 A schematic
demonstration of the
proposed simultaneous
analysis of Q̂c

1 and Q̂2
vectors in the same event

angular momentum, or the so-called “out-of plane direction”. The relative angle of
the x-axis of the intrinsic frame and that of the laboratory frame is then given by
the reaction plane angle ΨRP, as illustrated in Fig. 19.1. In theoretical considera-
tions and model calculations the orientation of the reaction plane is assumed to be
known, or in other words, these calculations take place in the intrinsic frame. Fi-
nally, the azimuthal angle Φ in the intrinsic frame is related to the laboratory angle
φ by

Φ = φ −ΨRP. (19.3)

To continue, let us, as an example, consider a single particle distribution in the
intrinsic frame

f1(Φ)= f1(φ −ΨRP)∝ 1 + 2v2 cos
[
2(Φ)

]= 1 + 2v2 cos
[
2(φ −ΨRP)

]
(19.4)

which has an azimuthal asymmetry, characterized by the second Fourier component
of strength v2. This kind of distribution, which will be relevant for the subsequent
discussion, is important in the context of the observed azimuthal asymmetries in
heavy ion collisions, which are generally attributed to the hydrodynamics evolution
of the system in non-central collisions. The parameter v2 is commonly referred to
as the elliptic flow coefficient. For a detailed discussion see [49]. The value for the
elliptic flow parameter, v2, may be obtained by measuring the second moment of
the angular distribution, 〈cos 2(φ − ΨRP)〉 . To this end we have to determine the
reaction plane angle in each event, calculate the average moment in the intrinsic
frame of each event and then average over events:

〈
cos

[
2(φ −ΨRP)

]〉

= 1

Nevents

Nevents∑

event i=1

{
1

N(i)

N(i)∑

particle k=1

cos
[
2
(
φk −ΨRP(i)

)]
}

. (19.5)
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In terms of the distribution function f1 this can be expressed as2

〈
cos

[
2(φ −ΨRP)

]〉=
∫
dΨRP

∫
dφf1(φ −ΨRP) cos[2(φ −ΨRP)]∫
dΨRP

∫
dφf1(φ −ΨRP)

. (19.6)

Let us next consider the two-particle distribution

f2(Φ1,Φ2)= f1(Φ1)f1(Φ2)+C(Φ1,Φ2) (19.7)

where the first term is simply the product of the single particle distributions, and the
second term, C(Φ1,Φ2) represents possible, true, two-particle correlations. Since
the two-particle distribution depends on two angles, Φ1 and Φ2, in general it will
have terms which depend only on the difference of the angle ∼(Φ1 −Φ2)= (φ1 −
φ2), and which are independent of the direction of the reaction plane. It will also
have terms which depend on the sum of the angles, ∼(Φ1 + Φ2) = (φ1 + φ2 −
2ΨRP) which are dependent on the reaction plane direction. This may be illustrated
by inserting into (19.7) the single particle distribution, (19.4), and neglecting the
correlation term, i.e., setting C(Φ1,Φ2)= 0. In this case

f2(Φ1,Φ2) = f1(Φ1)f1(Φ2)

∼ 2v2
2 cos

[
2(Φ1 −Φ2)

]+ 2v2
2 cos

[
2(Φ1 +Φ2)

]

= 2v2
2 cos

[
2(φ1 − φ2)

]+ 2v2
2 cos

[
2(φ1 + φ2 − 2ΨRP)

]
. (19.8)

The term ∼ cos[2(φ1 − φ2)] which depends on the difference of the angles can then
be extracted by the measurement of the two-particle correlation

〈
cos

[
2(φ1 − φ2)

]〉∼
∫

Φ1

∫

Φ2

f2(Φ1,Φ2) cos
[
2(φ1 − φ2)

]
. (19.9)

The measurement of the term ∼ cos[2(φ1 +φ2 − 2ΨRP)] requires the determination
of the reaction plane, or at least a three-particle correlation measurement. For our ex-
ample, (19.8), 〈cos[2(φ1 − φ2)]〉 ∼ v2

2 , and in fact this is one of the frequently used
(and the simplest) methods for measuring the elliptic flow. However, this method
suffers from the so-called “non-flow” [49] contributions, which are due to the cor-
relation term we have neglected in our example. Our simple example also demon-
strates a very important fact: single particle distributions, such as f1 do contribute
to multi-particle azimuthal correlations. This will be essential for the subsequent
discussion where one of the tasks will be to disentangle the effects from true corre-
lations and contributions from the single particle distributions.

The above discussion can be easily extended to three- (and more) particle densi-
ties with the same basic conclusions:

2In reality the ability to express the actual measurement, as described in (19.5), in terms of an
average of moments of the intrinsic distribution over the reaction plane angle requires a detailed
analysis of all non-flow effects and flow fluctuations, as discussed in detail in Ref. [49].
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• The n-particle density will have terms which do not depend on the reaction plane,
and thus may be extracted by the measurement of appropriate n-particle corre-
lations. It will also have reaction plane dependent terms, which require the mea-
surement of at least n+1 particle correlations or the determination of the reaction
plane.

• Unless not very carefully designed, multi-particle correlations will contain con-
tributions from the single particle distribution.

Finally, the measurement of angular correlations is of course not restricted to the
second Fourier moment. Recently the harmonic moments, 〈cos[n(φ1 − φ2)]〉, have
been measured in order to study flow fluctuations [50–52]. These correlations may
also be measured in a more selective way, such as correlations for particles with
same or opposite electric charges (the charge-dependent correlations), correlations
for particles with certain quantum numbers (e.g. baryon-strangeness [53]), or corre-
lations for particles within or between certain kinematic regions (e.g. the soft-hard
correlations [54, 55]), etc.

19.2.2 Measuring the Charge Separation Through Azimuthal
Correlations

Let us turn to possible azimuthal correlation measurements as the signal for the
Chiral Magnetic Effect. Specifically, as discussed in the Introduction, we have to
find azimuthal correlations which are sensitive to a possible out-of-plane “charge
separation”.

We begin by defining what we mean by “charge separation effect”. Consider the
distribution of final state hadrons in the transverse momentum space as schemati-
cally shown in the Fig. 19.1. If the “center” of the positive charges happens to be
different from that of the negative charges, then there is a separation between two
types of charges which may be quantified by an “electric dipole moment” in the
transverse momentum space. Such a separation may arise either simply from sta-
tistical fluctuations or may be due to specific dynamical effect such as the CME.
We note that such a charge separation occurs already at the single-particle distribu-
tion level in the intrinsic frame. Let us, therefore, define a charge-dependent single-
particle azimuthal distribution, which, besides a possible momentum-space electric
dipole moment, also includes the presence of elliptic flow:

fχ(φ, q)∝ 1 + 2v2 cos
[
2(φ −ΨRP)

]+ 2qχd1 cos(φ −ΨCS). (19.10)

Here q and φ represent the charge and the azimuthal angle of a particle, respec-
tively. The parameters v2 and d1 quantify the elliptic flow and the charge separation
effect, while ΨCS specifies the azimuthal orientation of the electric-dipole and ΨRP

the direction of the reaction plane (see Fig. 19.1). It is important to notice that an
additional random variable χ =±1 is introduced. This accounts for the fact that in a
given event we may have sphaleron or anti-sphaleron transitions resulting in charge
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separation parallel or anti-parallel to the magnetic field. Consequently the sampling
over all events with a given reaction plane angle, ΨRP, corresponds to averaging
the intrinsic distribution fχ over χ , namely f1 = 〈fχ 〉χ ∝ 1 + 2v2 cos(2φ− 2ΨRP).
Physically speaking this means that the charge separation (or electric dipole, being
P-odd) flips sign randomly and averages to zero, thus causing the expectation value
of any parity-odd operator to vanish. However, since 〈χ2〉 = 1 the presence of an
event-by-event electric dipole may be observable through its variance.

For measurements related to heavy ion collisions one may reasonably assume
particle charges to be |q| = 1 which is the case for almost all charged particles, e.g.,
charged pions and kaons, protons, etc. We note, that the above distribution does not
contain a directed flow term ∼ cos(φ − ΨRP) for either type of charges, which is
reasonable if the distribution is measured in a symmetric rapidity bin.

Finally one may also consider a pt -differential formulation of the charge sep-
aration effect or charge separation effects associated with higher harmonics in the
azimuthal angle φ. We note that the charge separation term considered in (19.10) is
actually the lowest harmonic in a more general charge-dependent Fourier series ex-
pansion in terms of the azimuthal angle. Various higher harmonics may be present
due to e.g. the occurrence of multiple topological objects and their distributions
over the entire transverse plane, the influence of transverse flow as well as the re-
scattering of the CME current with medium. Here we concentrate the discussion on
a possible measurement of the lowest harmonic that is most relevant to the CME
current.

Let us next discuss how the above defined charge-dependent intrinsic single-
particle distribution contributes to the charge-dependent azimuthal correlations re-
cently measured by the STAR Collaboration in [45, 46]. Note that here we are
only considering the contribution from the charge separation term in (19.10), while
there are certainly additional contributions from two- and multi-particle correlations
which we will discuss later in Sect. 19.4. Specifically the STAR Collaboration has
measured the following two- and three-particle correlations [45, 46].

(i) The two-particle correlation 〈cos(φi − φj )〉 for same-charge pairs (++/−−)
and opposite-charge pairs (+−). The contribution to this correlator due to the
charge-dependent intrinsic single-particle distribution, (19.10) is:

δ++/−− ≡ 〈
cos(φi − φj )

〉
++/−− = d2

1 , (19.11)

δ+− ≡ 〈
cos(φi − φj )

〉
+− =−d2

1 . (19.12)

(ii) The three-particle correlation 〈cos(φi + φj − 2φk)〉 for same-charge pairs
(i, j = ++/−−) and opposite-charge pairs (i, j = +−) with the third particle, de-
noted by index k, having any charge. The contribution to these correlators due to the
distribution, (19.10), turns out to be

〈
cos(φi + φj − 2φk)

〉
++/−−,k-any = v2d

2
1 cos(2ΔΨCS), (19.13)

〈
cos(φi + φj − 2φk)

〉
+−,k-any = −v2d

2
1 cos(2ΔΨCS) (19.14)
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where “k-any” indicates that the charge of the 3-rd particle may assume any
value/sign. We have also defined the relative angle of the charged dipole with re-
spect to the reaction plane, ΔΨCS ≡ ΨCS − ΨRP. The purpose of correlating the
charged pair with the third particle is to address the reaction plane dependence of
the pair-distribution, as discussed in the previous section, Sect. 19.2.1. Indeed, the
STAR Collaboration has demonstrated [45, 46] that the above three particle corre-
lator is dominated by the reaction plane dependent two-particle correlation function
〈cos(φi + φj − 2ΨRP)〉 and within errors they have found that

〈
cos(φi + φj − 2φk)

〉= v2
〈
cos(φi + φj − 2ΨRP)

〉
. (19.15)

Based on the distribution (19.10) we find the same relation between these correlation
functions, since the reaction-plane dependent two-particle correlation is given by

γ++/−− ≡ 〈
cos(φi + φj − 2ΨRP)

〉
++/−− = d2

1 cos(2ΔΨCS) (19.16)

for same-charge pairs, and

γ+− ≡ 〈
cos(φi + φj − 2ΨRP)

〉
+− =−d2

1 cos(2ΔΨCS) (19.17)

for opposite-charge pairs.
To make contact with the predictions of the CME for the above correlation func-

tions, let us assume for the moment that an accurate identification of the reaction
plane could be achieved. In this case we may rotate all events such that ΨRP = 0.
Furthermore the CME predicts ΔΨCS = π/2, and thus, for ΨRP = 0 the charge sep-
aration term will take the form of ∼d sin(φ) [31, 45–47]. If the only contribution to
the above correlations would be due to the CME, a very specific pattern arises:

γ++/−− = 〈
cos(φi + φj − 2ΨRP)

〉
++/−− =−d2

1 < 0, (19.18)

δ++/−− = 〈
cos(φi − φj )

〉
++/−− =+d2

1 > 0, (19.19)

while

γ+− = 〈
cos(φi + φj − 2ΨRP)

〉
+− = +d2

1 > 0, (19.20)

δ+− = 〈
cos(φi − φj )

〉
+− = −d2

1 < 0. (19.21)

This pattern for the correlations γ and δ, if seen in the data, would constitute a very
strong evidence for occurrence of the CME in these collisions. However, as pointed
out in [56], and as we shall discuss in more detail in Sect. 19.3 the STAR measure-
ments do not show the above pattern. For example, while in the above analysis for
the same-charge pairs the correlators γ and δ are expected to be equal in magnitude
but opposite in sign, i.e., γ++ = −δ++ the STAR data finds them approximately
equal in magnitude but with the same (negative) sign.
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19.2.3 The Q̂c
1 Vector Analysis for Measuring the Charge

Separation

When exploring an important phenomenon such a local parity violation, it is very
useful to develop multiple observables which test its predictions, such as the Chiral
Magnetic Effect. This is particularly the case in the present situation. The signals due
to the CME are expected to be rather weak and the observables are not free from var-
ious backgrounds due to “conventional” physics, such as two-particle correlations.
In addition, the interpretation of the STAR data is rather ambiguous. Therefore, it
will be very helpful to have an alternative observable which is sensitive to a possible
charge separation with specific azimuthal orientation. Currently there are a few pro-
posals, for example the Q̂c

1 vector analysis [57], the charge multiplicity asymmetry
correlations [58, 59], and the out-of-plane charge asymmetry distribution [60]. Here
we focus on a detailed discussion of the Q̂c

1 vector analysis [57].
The Q̂c

1 vector analysis aims at a direct measurement of the intrinsic charge-
dependent distribution in (19.10) by identifying the charged dipole moment vector
Q̂c

1 of the final-state hadron distribution in the transverse momentum space. The
magnitude Qc

1 and azimuthal angle Ψ c
1 of this vector can be determined in a given

event by the following:

Qc
1 cosΨ c

1 ≡
∑

i

qi cosφi

(19.22)
Qc

1 sinΨ c
1 ≡

∑

i

qi sinφi

where the summation is over all charged particles in the event, with qi the electric
charge and φi the azimuthal angle of each particle. This method is in close analogy
to the Q̂1 and Q̂2 vector analysis used for directed and elliptic flow (see e.g. [49]).
In the Q̂2 analysis one evaluates the charge independent quadrupole moment Q2
and its direction Ψ2 in a similar fashion

Q2 cos 2Ψ2 ≡
∑

i

cos 2φi

(19.23)
Q2 sin 2Ψ2 ≡

∑

i

sin 2φi.

The angle Ψ2 is a measure for the reaction plane angle, ΨRP such that for a system
with infinite many particles Ψ2 → ΨRP.

Contrary to Q̂2, the charge dipole vector, Q̂c
1, incorporates the electric charge

qi of the particles. The mathematical details regarding the observable Q̂c
1 and its

relation to multi-particle correlations can be found in [57].
In each event, both angles Ψ c

1 and Ψ2 are determined from a finite number of
final state hadrons (see Fig. 19.1). While these angles correspond to their idealized
expectations ΨCS and ΨRP only in the limit of infinite multiplicity, their distribution
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Fig. 19.2 (a) The Qc
1 and (b) |ΔΨ | distributions for the four different scenarios described in the

text (Color figure online)

and in particular the distribution of their difference, ΔΨ = Ψ c
1 −Ψ2 should provide

a good estimator for the magnitude of the charged dipole angle with respect to the
reaction plane, ΔΨCS = ΨCS −ΨRP.

The combined Qc
1- and Q2-analysis will then provide distributions for the mag-

nitude of the electric dipole, Qc
1, and its relative angle with respect to Ψ2, ΔΨ . This

is demonstrated in Fig. 19.2 where we show the distributions for various scenarios
calculated in a Monte Carlo simulation [57].

• The black triangles correspond to a “benchmark” scenario, where we have only
elliptic flow but neither a charged dipole nor any true pair correlations. There-
fore the resulting distributions for Qc

1 and |ΔΨ | arise only from pure statistical
fluctuations.

• The red diamonds have been obtained by adding a physical dipole along the out-
of-plane direction with a magnitude of d1 = 0.025, to the benchmark scenario.

• The green boxes are based on the case where back-to-back angular correlation
for about 1 % of the same-charge pairs but no dipole have been added to the
benchmark scenario.

• The blue stars result the case where same-side angular correlation for about 1 %
of the opposite-charge pairs but no dipole have been added to the benchmark
scenario.

As can be seen from the comparison in Fig. 19.2 and a more detailed discussion
in [57], only the combined analysis of the distributions of angle and magnitude, is
able to distinguish between scenarios based on conventional two-particle correla-
tions and those involving a true charged momentum space dipole as predicted by
the CME. As further discussed in [57] the final conclusion on the possible existence
of an electric dipole will likely require a joint analysis of all three types of measure-
ments, discussed in this section: the Qc

1 distribution, the ΔΨ distribution, as well as
the charge-dependent azimuthal correlations γ and δ.
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Fig. 19.3 The data from the STAR Collaboration for the reaction plane dependent correlation
function 〈cos(φα + φβ − 2ΨRP)〉 (left) and the reaction-plane independent correlation function
〈cos(φα − φβ)〉 (right) for like-sign and unlike-sign pairs. Also shown (lines) are results from
various model calculations. The figures are from [45, 46]

19.3 Interpretation of the Available Data

After having discussed the general aspects of charge dependent correlation func-
tions in Sect. 19.2 we will now turn our attention to the actual measurements of
such correlation function. Following the proposal by Voloshin [47] the STAR Col-
laboration [45, 46] presented the first measurement of the reaction-plane dependent
charged-pair correlation function

γα,β = 〈
cos(φα + φβ − 2ΨRP)

〉
(19.24)

for pairs of particles with same, (α,β) = (+,+), (−,−), and opposite charge,
(α,β) = (+,−). As already discussed in the previous section, in order to obtain
the correlator γα,β STAR measured three-particle correlation functions, and demon-
strated rather convincingly that, within errors, they are related to the reaction plane
dependent two-particle charged-pair correlation function by

〈
cos(φα + φβ − 2φk)

〉= v2
〈
cos(φα + φβ − 2ΨRP)

〉= v2γα,β (19.25)

where v2 denotes the measured elliptic flow parameter characterizing the elliptic
azimuthal asymmetry. The results of the STAR measurement for γα,β are shown in
the left panel of Fig. 19.3.

Since the relation, (19.25), has been established experimentally, we will concen-
trate our discussion on the charge dependent pair correlation function, γα,β , (19.24).
Furthermore, we will choose a frame where the reaction plane angle is set to zero,
ΨRP = 0, so that

γα,β = 〈
cos(φα + φβ)

〉
. (19.26)

In this frame the in-plane direction coincides with the x-axis and the out-of-plane
direction points along the y-axis. Also the average direction of the magnetic field
will be along the y-axis.
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Before we examine the STAR data more carefully let us recall what the predic-
tion for the charge separation due to the Chiral Magnetic Effects are. As discussed
in the previous section, the electric momentum space dipole induced by the CME
will point (in an ideal situation) either parallel or anti-parallel to the direction of the
magnetic field, which in the frame where ΨRP = 0 points along the y-axis (neglect-
ing fluctuations of the magnetic field [40]). Therefore, the charge separation due to
the CME predicts to have pairs of same charge preferably moving together along the
positive or negative y-direction. Pairs with opposite charge, on the other hand, are
predicted to move away from each other along the y-axis. In terms of the azimuthal
angles, φα , φβ this means

(φα,φβ) =
(
π

2
,
π

2

)
or

(
3π

2
,

3π

2

)
(19.27)

for same-charge pairs, and

(φα,φβ) =
(
π

2
,

3π

2

)
or

(
3π

2
,
π

2

)
(19.28)

for opposite-charge pairs. Since

cos

(
π

2
+ π

2

)
= cos

(
3π

2
+ 3π

2

)
=−1, (19.29)

cos

(
3π

2
+ π

2

)
= 1 (19.30)

the correlation function γα,β , (19.26), is expected to be negative for same-charge
pairs and positive for opposite-charge pairs. While the STAR data, shown in
Fig. 19.3, indeed show a negative value for same-charge pairs, the result for
opposite-charge pairs is, at best, only mildly positive and, within errors, compat-
ible with zero. Since opposite charged pairs are predicted to move away from
each other, one may argue their (anti-)correlation should be weakened as these
particles will have to traverse the entire fireball [25]. Therefore, at first sight, the
STAR data may indeed show a first evidence for the charge separation pattern
as predicted by the CME. However, the interpretation of the data is more diffi-
cult.

The complication arises from the fact that the correlation function γα,β does not
unambiguously determine the angular correlation of the pair. To see this, consider a
same-charge pair with angles (φα,φβ)= (0,π). In this case the particles move away
from each other in the in-plane direction. This is just the opposite of the correlation
predicted by the CME, where the two particles are moving with each other in the
out-of-plane direction. For both cases we get

cos(φα,φβ)= cos(0 + π)= cos

(
π

2
+ π

2

)
=−1. (19.31)
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Thus, the correlation function γα,β is not able to distinguish between same-side out-
of-plane correlations and back-to-back in-plane correlations. However, this ambigu-
ity can easily be resolved by considering the reaction plane independent correlation
function

δα,β = 〈
cos(φα − φβ)

〉
(19.32)

which STAR has also measured, and we show their results in the right panel of
Fig. 19.3. In the frame, where ΨRP = 0, the two correlation functions may be de-
composed in the in-plane ∼〈cos(φα) cos(φβ)〉 and out-of-plane ∼〈sin(φα) sin(φβ)〉
components:

γα,β = 〈
cos(φα + φβ)

〉= 〈
cos(φα) cos(φβ)

〉− 〈
sin(φα) sin(φβ)

〉
,

(19.33)
δα,β = 〈

cos(φα − φβ)
〉= 〈

cos(φα) cos(φβ)
〉+ 〈

sin(φα) sin(φβ)
〉
.

Qualitatively the STAR measurement in Au+Au collisions for both these cor-
relation functions, γα,β and δα,β for same-sign and opposite-sign pairs of charged
particles, may be characterized as follows (see Fig. 19.3):

• For same-sign pairs:
〈
cos(φα + φβ)

〉
same �

〈
cos(φα − φβ)

〉
same < 0. (19.34)

Using (19.34) this implies
〈
sin(φα) sin(φβ)

〉
same � 0,

(19.35)〈
cos(φα) cos(φβ)

〉
same < 0.

• For opposite-sign pairs we find that
〈
cos(φα + φβ)

〉
opposite � 0,

(19.36)〈
cos(φα − φβ)

〉
opposite > 0.

Again, using (19.34), this means
〈
sin(φα) sin(φβ)

〉
opposite �

〈
cos(φα) cos(φβ)

〉
opposite > 0. (19.37)

The decomposition of the actual data into the in-plane and out-of-plane compo-
nents is shown in Fig. 19.4. Obviously the correlations for same-charge pairs are pre-
dominantly in-plane and back-to-back. This is exactly the opposite of what has been
predicted by the Chiral Magnetic Effect. This is illustrated in Fig. 19.5 were we have
sketched the experimental situation for same-charge pairs based on the STAR data.
For pairs with opposite charge, both in-plane and out-of-plane correlations have the
same (positive) sign and magnitude. This implies that opposite-charged pairs move
together equally likely in the in-plane and out-of-plane directions. This behavior
can at least qualitatively be understood by resonance/cluster decays [58, 59] or local
charge conservation [61].
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Fig. 19.4 Correlations in-plane 〈cos(φα) cos(φβ)〉 and out-of-plane 〈sin(φα) sin(φβ)〉 for same-
and opposite-charge pairs in Au+Au collisions as seen in the STAR data

Fig. 19.5 Schematic
illustration of the actual
STAR measurement (red)
together with the predictions
from the Chiral Magnetic
Effect (black) for
same-charge pairs (Color
figure online)

In addition to the data shown in Fig. 19.3, STAR has also analyzed the reac-
tion plane dependent correlation function γα,β differentially as a function of the
pair transverse momentum (sum and difference) and rapidity difference. Both these
results are within qualitative expectations for a charge separation effect due to the
CME [56]. Unfortunately, similar differential information is not available for the re-
action plane independent correlation function, δα,β . Therefore a differential decom-
position into in-plane and out-of-plane components, as we have done here, unfortu-
nately is not possible at this time. Such information may help to further constrain
possible background effects as well as predictions from the CME.

Recently, the ALICE Collaboration reported [62] the measurement of the same
correlation functions for Pb + Pb collisions at a center of mass energy of

√
s =

2.76TeV, about ten times that of the STAR measurement. Just like STAR, ALICE
determined the reaction plane dependent correlation function γα,β integrated over
transverse momentum and rapidity as well as differentially. Within errors, the data
for the integrated correlation function γα,β agree with those of the STAR measure-
ment, and the differential measurement show the same qualitative features.
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For the reaction plane independent correlation function, δα,β , on the other hand,
the ALICE date differ from those by STAR. In particular, ALICE finds this cor-
relation function to be positive for both opposite- and same-charge pairs. ALICE
also provides the in-plane and out-of-plane pair correlations, 〈cos(φα) cos(φβ)〉 and
〈sin(φα) sin(φβ)〉, respectively. Similar to the STAR measurement ALICE finds that
for opposite-charge pairs the in- and out-of-plane correlations are nearly identical
and positive. For the same-charge pairs, however, ALICE finds both in- and out-of-
plane projections to be positive, with the out-of-plane correlation slightly larger than
the in-plane projection. This finding would be in qualitative agreement with the ex-
pectations from the CME. Amusingly, early predictions [63] for the collision energy
dependence of the CME expected a smaller effect at the very high energies where
ALICE has been measuring, largely due to the shorter duration of the magnetic field.
Of course the complex dynamics of heavy ion collisions and the various background
contributions turn quantitative predictions for these correlation functions into a very
difficult task, and a final resolution will require a systematic analysis of all available
data at various energies.

Given that the STAR data show an in-plane back-to-back correlation for same-
sign pairs, one may wonder if there is still room for a charge separation effect due
to the CME. This has been analyzed in [56] with the result that for the transverse
momentum and rapidity integrated data, which the above analysis is based on, the
backgrounds need to exactly cancel the CME induced charge separation. This may
be just a coincidence, however. After all the data by ALICE show a different trend
for the same-sign correlations. For this situation to be clarified further differential
data for the reaction plane independent correlation function, δα,β are required for
both collision energies.

Finally, as part of the RHIC beam energy scan program, STAR has measured
the reaction-plane dependent correlator γα,β for various collision energies [64], see
also [44]. They find that the difference for the correlator between same-sign and
opposite-sign pairs decreases with decreasing beam energy. Such a behavior is ex-
pected from the CME. However, as we will discuss in the next section, all back-
ground terms scale with the elliptic flow parameter, v2, which is known to decrease
with decreasing collision energy as well.

To conclude this section, presently available experimental results concerning the
CME are inconclusive. While the integrated STAR data disfavor the presence of the
CME, the ALICE data allow for more positive conclusions. Clearly, progress re-
quires data at lower energies as well as, and most importantly, differential measure-
ments of both the reaction plane dependent and reaction plane independent correla-
tion functions. In addition, given the rather unsettled state of affairs, measurements
of other observables, such as the one proposed in the previous section, would be
very welcome.

19.4 Discussion of Various Background Contributions

As discussed in the previous sections the Chiral Magnetic Effect (CME)—if it
exists—contributes to the reaction plane dependent two-particle correlator, first in-
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troduced in [47]. As in the previous section we denote the reaction plane dependent
two-particle correlator by

γ ≡ 〈
cos(φ1 + φ2 − 2ΨRP)

〉
, (19.38)

where φ1 and φ2 are the azimuthal angles of two particles, and ΨRP is the reaction
plane angle. In the following we will distinguish between γ++/−−, γ+− and γ de-
noting respectively the correlator (19.38) for same-sign pairs, opposite-sign pairs,
and the correlator without specifying the sign of measured particles.

As discussed in Sect. 19.3 a detailed measurement of γ was performed both at
RHIC by the STAR Collaboration [45, 46] and at the LHC by the ALICE Collabo-
ration [62]. However, as already discussed in the previous section, the interpretation
of experimental data is not straightforward since various effects can contribute to γ .

The presence of elliptic flow allows for practically all “conventional” two-
particle correlations to contribute to the reaction-plane dependent correlation func-
tion, γ . This can be easily seen from the decomposition of γ into in-plane and
out-of-plane projections, (19.34)

γ = 〈
cos(φ1) cos(φ2)

〉− 〈
sin(φ1) sin(φ2)

〉
. (19.39)

It is quite obvious that even if the underlying correlation mechanism does not de-
pend on the reaction plane it will contribute to γ in the presence of the elliptic
anisotropy v2. This can be seen in an extreme, though unrealistic, situation where all
particles are produced exactly in-plane. In this case 〈sin(φ1) sin(φ2)〉 = 0 simply be-
cause there are no particles in the out-of-plane direction and γ = 〈cos(φ1) cos(φ2)〉.
Obviously in this case, the presence of any two-particle angular correlation mecha-
nism will result in a non-zero value of γ .

In this section we will focus exclusively on the contribution to γ driven by the
non-vanishing elliptic anisotropy v2. First we will derive the general expression
which relates the elliptic anisotropy and the correlator γ in the presence of arbitrary
two-particle correlations. Next we will discuss a few explicit mechanisms that need
to be understood quantitatively, before any conclusions about the existence of the
CME can be made. In particular we will address corrections due to transverse mo-
mentum conservation (TMC) [65–67] and the local charge conservation [61], both
of which appear to contribute significantly to γ . In the last part of the paper we will
discuss the possibility of removing, in the model independent way, the elliptic-flow-
related background from γ .

19.4.1 General Relation

In this part we derive the general relation between the elliptic anisotropy v2 and
the two-particle correlator γ in the presence of an arbitrary reaction plane indepen-
dent two-particle correlations.
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By definition, the two-particle correlator γ is

γ =
∫
ρ2(φ1, φ2, x1, x2,ΨRP) cos(φ1 + φ2 − 2ΨRP)dφ1dφ2dx1dx2∫

ρ2(φ1, φ2, x1, x2,ΨRP)dφ1dφ2dx1dx2
, (19.40)

where, to simplify our notation, we denote: x = (pt , η) and dx = ptdptdη. Here
pt is the absolute value of transverse-momentum, while η is pseudorapidity (or
rapidity). ρ2 is the two-particle distribution in the intrinsic frame with the reaction
plane angle ΨRP. It can be expressed in terms of the single-particle distributions,
and the underlying correlation function C (see Sect. 19.2)

ρ2(φ1, φ2, x1, x2,ΨRP)= ρ(φ1, x1,ΨRP)ρ(φ2, x2,ΨRP)
[
1 +C(φ1, φ2, x1, x2)

]
.

(19.41)
To simplify our calculation we assume the single-particle distribution to be

ρ(φ, x,ΨRP)= ρ0(x)

2π

[
1 + 2v2(x) cos(2φ − 2ΨRP)

]
, (19.42)

where ρ0(x) and v2(x) depend solely on x = (pt , η). We neglect higher moments
vn since their contribution to γ turns out to be proportional to vnvm which is much
smaller then the leading term ∼v2, see Ref. [68].

If v2(x) �= 0, the single particle distributions depend on the reaction plane. There-
fore, the part of the two-particle density (19.41) involving the two-particle correla-
tion function C depends on the reaction plane even if C depends only on φ1 − φ2.

Here we want to concentrate on those correlations that depend only on Δφ =
φ1 −φ2, namely the underlying correlation mechanism is insensitive to the reaction
plane orientation. The correlation function may be expanded in a Fourier series

C(Δφ,x1, x2)=
∑∞

n=0
an(x1, x2) cos(nΔφ), (19.43)

where an(x1, x2) does not depend on φ1 and φ2. Substituting (19.43) and (19.41)
into (19.40), we obtain

γ = 1

2N2

∫
ρ0(x1)ρ0(x2)a1(x1, x2)

[
v2(x1)+ v2(x2)

]
dx1dx2, (19.44)

where N = ∫
ρ0(x)dx, and we have assumed that an � 1.

Equation (19.44) explains why all correlation mechanisms with a non-zero
a1(x1, x2) contribute to γ . For instance, it has been shown that transverse mo-
mentum conservation (TMC) leads to a correlation function which depends on
cos(Δφ)/Ntot [69], where Ntot is the total number of produced particles. In this
case a1(x1, x2)∝ 1/Ntot. Let us also emphasize that all correlations that depend on
the momentum difference between particles Δk = |k1 − k2| also contribute to γ . In
this case:

C(Δk)= C
(
k2

1 + k2
2 − 2k1k2 cos(Δφ)

)
, (19.45)

which naturally leads to a non-vanishing a1 term.



19 Charge-Dependent Correlations 523

To summarize, (19.44) explains why transverse-momentum conservation [65–
67], local charge-conservation [61], resonance- (cluster-)decay [58, 59], and all
other correlations with Δφ dependence contribute to γ .

19.4.2 Transverse Momentum Conservation

Very soon after publication of the experimental data by the STAR Collaboration it
was realized that transverse momentum conservation convoluted with the non-zero
elliptic anisotropy can lead to a substantial corrections for γ [65, 66, 70]. This can
be easily seen for the simplified situation where all particles are measured (in the
full phase-space), and where they all have exactly the same magnitude of transverse
momentum |pi,t | = |pt |, i = 1, . . . ,Ntot.

In the frame where ΨRP = 0 the correlator γ may be written as

γ =
〈∑

i �=j cos(φi + φj )
∑

i �=j 1

〉
, (19.46)

or, alternatively,

γ =
〈
(
∑

i cos(φi))2 − (
∑

i sin(φi))2 −∑
i cos(2φi)∑

i �=j 1

〉
, (19.47)

where i and j are summed over all particles in the full phase-space. In the simplified
scenario, where |pi,t | = |pt |, the conservation of transverse momentum implies

∑

i
cos(φi)=

∑

i
sin(φi)= 0. (19.48)

Consequently we obtain

γ =−
〈 ∑

i cos(2φi)

Ntot(Ntot − 1)

〉
≈ −v2

Ntot
, (19.49)

where Ntot is the total number of particles. Taking, for example, the centrality class
40–50 % we approximately have v2 ≈ 0.1 and Ntot ≈ 1500 leading to γ ≈ −0.7 ·
10−4 from TMC. This is roughly a factor 3−4 smaller than the experimental data for
the same-charge pairs. This is only a simple estimation and a more realistic AMPT
calculations [67] suggest that the TMC contribution is roughly factor 2 smaller than
the STAR data.

In a similar way we obtain for the reaction plane independent correlation function

δ = 〈
cos(φ1 − φ2)

〉≈− 1

Ntot
. (19.50)

In this case for Ntot ≈ 1500 we obtain δ ≈ −0.7 · 10−3 which is comparable or
slightly larger in magnitude than same-charge data by the STAR Collaboration.
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Similar results hold also in a more realistic situation, where only a small frac-
tion of all particles is measured, and the magnitudes of transverse momenta are
distributed according to the thermal distribution. This has been discussed in detail
in [66], and we will only show the most important results.

Using the central limit theorem and implying the global conservation of trans-
verse momentum, the two-particle distribution function reads [66, 69, 71]

ρ2(p1,p2)� ρ(p1)ρ(p2)

(
1+ 2

Ntot
− (p1,x + p2,x)

2

2Ntot〈p2
x〉F

− (p1,y + p2,y)
2

2Ntot〈p2
y〉F

)
, (19.51)

where x and y denote the two components of transverse momentum. F denotes that
the appropriate average is calculated for all particles in the full phase-space. The
single particle distribution, ρ(p1), is given by (19.42).

Before we continue let us clarify one subtle point. Equation (19.51) is derived
assuming that we first sample particles with a given v2 and next we conserve trans-
verse momentum for all particles. In reality the opposite scenario should be con-
sidered. First we should sample partons/particles with a conserved transverse mo-
mentum, and after this the elliptic anisotropy v2 should be generated according to
some dynamical model. Of course the second approach is much more challenging
and renders analytical calculations difficult. At the end of this section we will show
that both procedures lead to comparable results for γ and δ and their transverse mo-
mentum distributions, however the rapidity distributions are quite different. We will
come back to this point later.

Using (19.51) and (19.40) we can derive the following relations for γ and δ:

γ =− 1

Ntot

〈pt 〉2
Ω

〈p2
t 〉F

2v̄2,Ω − ¯̄v2,F − ¯̄v2,F (v̄2,Ω)
2

1 − ( ¯̄v2,F )2
, (19.52)

and

δ =− 1

Ntot

〈pt 〉2
Ω

〈p2
t 〉F

1 + (v̄2,Ω)
2 − 2 ¯̄v2,F v̄2,Ω

1 − ( ¯̄v2,F )2
, (19.53)

where we have introduced certain weighted moments of v2:

v̄2 = 〈v2(pt , η)pt 〉
〈pt 〉 , ¯̄v2 = 〈v2(pt , η)p

2
t 〉

〈p2
t 〉

. (19.54)

In the above equations F and Ω denote averages that are calculated for all particles
in the full phase-space, or for all actually measured particles in the restricted phase-
space, respectively. Performing explicit calculations with reasonable assumptions
about pt and η dependence of the single-particle distribution ρ(pt , η) and elliptic
flow v2(pt , η), we have found that for mid-central and peripheral collisions [66]

γ ·Npart ≈−0.005, δ ·Npart ≈−0.05, (19.55)

where Npart is the number of participants, also referred to as wounded nucleons [72].
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Fig. 19.6 The two-particle
azimuthal correlator
〈cos(φ1 + φ2)〉 vs
p+ = (p1,t + p2,t )/2 (blue
line) and p− = |p1,t − p2,t |
(red line) for Npart = 100.
The results are in qualitative
and partly quantitative
agreement with the STAR
data for the same-charge
correlator. Figure from
Ref. [66] (Color figure
online)

To summarize, transverse momentum conservation results in a negative contribu-
tions to both γ and δ, and they are of the same order of magnitude as the experimen-
tal measurement for like-sign pairs. More precisely they are a factor of 3–5 (very
peripheral—mid-central) less in magnitude for γ , and a factor 1.5–4 (mid-central—
very peripheral) larger for δ than the STAR data for the same-sign correlator. While
it is rather difficult to understand the data with only transverse momentum conser-
vation it is interesting to notice that the STAR experiment is sensitive enough to the
effect of global transverse momentum conservation.

Using (19.40), (19.51) we can easily calculate the dependence of γ and δ on
the sum p+ = (p1,t + p2,t )/2 and difference p− = |p1,t − p2,t |/2 of the transverse
momenta of the pair. For the STAR data [45, 46], γ is growing roughly linearly
with p+ and is approximately constant as a function of p−. Interestingly a very
similar behavior is obtained in the scenario with only global transverse momentum
conservation. As seen in Fig. 19.6, the contribution of TMC to γ is consistent with
the data for p+ > 1 GeV and underestimates the data for p+ < 1 GeV. As expected,
for δ very similar dependence on p+ and p− is obtained but rescaled by a value of
v2.

Recently, very similar results were obtained in the AMPT model calculation [67],
where the transverse momentum is conserved on the event-by-event basis, and we
will come back to this point later.

19.4.2.1 Pseudorapidity Dependence

Since the contribution to γ due to transverse momentum conservation is propor-
tional to v2, one would naively expect that its (pseudo)rapidity dependence trace the
rather mild (pseudo)rapidity dependence of v2.

However, as shown in Ref. [65], under quite reasonable assumptions we can
obtain very similar rapidity dependence as in the experimental data. In the STAR
measurement [45, 46] the correlator γ is maximum for |η1 − η2| = 0 and is approx-
imately linearly decreasing to values consistent with zero at |η1 − η2| ≈ 2.

For simplicity of the argument let us assume that at the time t = 0 all produced
partons/particles are distributed between two separate bins in rapidity with enforced
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global transverse momentum conservation. It means that if in the first bin the total
transverse momentum equals K1,t , in the second bin K2,t = − K1,t in each event.
Assuming further that all particles have the same magnitude of transverse momen-
tum |pi,t | = |pt |, i = 1, . . . ,Ntot, we obtain the following relation

γ ∝
〈∑

i∈1

cos(φi)
∑

k∈2

cos(φk)−
∑

i∈1

sin(φi)
∑

k∈2

sin(φk)

〉
, (19.56)

and

γ ∝ 〈Kx,1Kx,2 −Ky,1Ky,2〉 =
〈
K2
y,1 −K2

x,1

〉
, (19.57)

where x and y denote the components of transverse momentum. It should be noted
that here we calculate the two-particle correlator where one particle is taken from a
bin number 1, and the second particle from a bin number 2.

Now let us evaluate γ at time t=0. In this case it is reasonable to assume that
there is no elliptic anisotropy v2 and γ = 0 by definition. If we assume that bins
are separated enough in rapidity so that there is no momentum exchange between
two bins during the fireball evolution, i.e., the total transverse momentum K1,t is
constant, then γ = 0 also in the final state, even if subsequently a non-zero v2 is
generated. Of course this simple argument demonstrates only that having the global
TMC we can still obtain a nontrivial dependence of γ as a function of η1 − η2.
In Ref. [65] this problem was studied in detail in the cascade model, where it was
shown that the satisfactory description of the data can be obtained.

We conclude that although the TMC probably cannot explain the data completely
it gives rise to contributions which are of the same order of magnitude and which
exhibit both the transverse momentum and rapidity dependence in qualitative and
partly quantitative agreement with the STAR data.

19.4.3 AMPT Model

It is desirable to study the correlators γ and δ also in an advanced Monte Carlo
model, which allows for the conservation of transverse momentum on the event-by-
event basis, and which generates reasonable values for the elliptic anisotropy v2.
Recently such calculation was performed in the AMPT model and the results are
presented in Ref. [67] with the conclusion that the signal coming form AMPT is
dominated by TMC. Indeed, the obtained results, summarized in Figs. 19.7 and
19.8, are in very good agreement with the previous discussion. As seen in Fig. 19.7,
the calculated correlator γ is in a good qualitative agreement with the data, however
it underestimates the STAR data by a factor of ∼2. It was also shown that initializing
the AMPT calculation with the charge dipole leads to a better description of the data.

In Fig. 19.8 the correlator γ is plotted as a function of p+ = (p1,t + p2,t )/2
and Δη = η1 − η2. Again, qualitatively the AMPT model reproduce the data but
underestimate it by a factor of 2.
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Fig. 19.7 The two-particle
azimuthal correlator γ as a
function of centrality in the
AMPT model with different
values of initial charge
separation

Fig. 19.8 The two-particle
azimuthal correlator γ as a
function of
p+ = (p1,t + p2,t )/2 and
Δη= η1 − η2 in the AMPT
model with different initial
values of charge separation
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As seen from the figures the AMPT model calculation (without initial dipole) is
consistent with the global TMC and allows to understand the behavior of the STAR
data. It clearly demonstrates that all possible background effects must be studied
very thoroughly before any conclusion about local parity violation can be reached.

19.4.4 Local Charge Conservation

Given the previous discussion, it is useful to construct a two-particle correlator
which is insensitive to transverse momentum conservation and other charge in-
dependent correlations. The natural choice is the difference of opposite-sign and
same-sign pair correlator (19.38), see [61]:

γP ≡ 1

2
(2γ+− − γ++ − γ−−). (19.58)

It is clear that only correlations that are charge sensitive will contribute to γP . While
the CME, if present, will contribute to γP , global TMC, for example will not. There-
fore the successful description of γP with conventional physics would constitute a
serious challenge for the interpretation of the data in terms of the CME.

In Ref. [61] it was argued that γP can be fully understood assuming that charges
are produced later in the collision (delayed hadronization). Indeed, in the calculation
of Ref. [61] the charges are produced in pairs in the same point in space-time. Due to
the collective flow the initial correlation in space-time is translated into correlations
in momentum space, and consequently it contributes to γP . In this approach parti-
cles are emitted according to the blast-wave model with the additional requirement
of local charge conservation at freeze-out. Local charge balance is enforced within
the finite range in rapidity ση and the azimuthal angle σφ . By comparing the model
with experimental data on the balance function [73], the values of ση and σφ can be
extracted which allows to make prediction for γP .

The details of this calculation are presented in Ref. [61]. Here we summarize only
the main results. It turns out that the model with delayed charge creation and local
charge conservation can provide a successful description of the balance function
both in the relative angle Δφ = φ1 − φ2 and the relative pseudorapidity Δη, see
Fig. 19.9 as an example.3

Using the best values of parameters ση and σφ the contribution of local charge
conservation to γP can be calculated. The results are presented in Fig. 19.10.

As seen in Fig. 19.10 the agreement of the model with the STAR data is very
good. It suggests that the two-particle charge sensitive correlations may be domi-
nated by the local charge conservation.

3Recently a similar model was proposed to explain the fall-off of the same-side ridge in Δη [74].
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Fig. 19.9 Model with a delayed charge production and the local charge conservation vs the STAR
data on the balance function in the relative azimuthal angle Δφ = φ1 − φ2

19.4.5 Decomposition of Flow-Induced and Flow-Independent
Contributions

From the analysis of the data in Sect. 19.3 as well as the discussion of various
“background” effects, it appears rather plausible that the observed charge-dependent
correlation patterns in γ and δ contain contributions from more than one source.
In particular there are effects whose contributions to these correlations are flow-
dependent, for example the transverse momentum conservation (TMC) or the lo-
cal charge conservation (LCC). On the other hand the CME, if present, is flow
independent. Let us, therefore, attempt a decomposition of flow-induced and flow-
independent contributions.

We first consider correlation effects where the underlying correlation function C
is independent of the reaction plane orientation:

C(φ1, φ2)∝ ρ(φ1,ΨRP)ρ(φ2,ΨRP)C(φ1 − φ2), (19.59)

where ρ is a single particle distribution. Note that the above is true for both TMC
and LCC effects. A correlation effect of this type will contribute to the measured
correlators as follows:

γα,β ∼ v2Fα,β, δα,β ∼ Fα,β, (19.60)

with the factor Fα,β representing the strength of the effects, and (α,β) is either
++/−− or +−. Both the TMC and the LCC follow this pattern albeit with opposite
contributions. Thus F represents the total of all effects of this type.
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Fig. 19.10 Model with a
delayed charge production
and local charge conservation
vs the STAR data on γP as a
function of p+ and Δη

We should note, however, that the above relation, (19.60) is a simplification of the
exact relation between γ and v2(pt , η), which is given in (19.44). Since the purpose
of the present discussion is to gain some qualitative insight into the various contri-
butions, we assume here that γ is approximately proportional to the integrated v2.

Next we consider possible contributions of the CME type. They would appear in
the two-particle density in the following form

ρ2(φ1, φ2)∝ sin(φ1 −ΨRP) sin(φ2 −ΨRP), (19.61)

which explicitly involves the reaction plane. This term will contribute to the mea-
sured correlators as follows:

γα,β ∼−Hα,β, δα,β ∼Hα,β, (19.62)

with the factor H representing the strength of the effects. It should be pointed out
that besides the CME, there are possibly other effects that may also contribute to
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Fig. 19.11 The strength factors Fα,β (left) and Hα,β (right) extracted from the decomposition
analysis (see text for details). The blue boxes and red diamonds are for ++/−− and +−, respec-
tively (Color figure online)

the correlators with the above pattern. One example is a possible dipole asymme-
try from initial condition fluctuations that preferably aligns with the out-of-plane
direction, see Ref. [75] for details. However, this effect will be charge indepen-
dent, i.e., H++/−− = H+− > 0, whereas the CME predicts a charge dependence,
H++/−− =−H+− > 0.

Combining the two types of contributions we arrive at the following decomposi-
tion for the reaction plane dependent and independent correlation functions,

γα,β ∼ v2Fα,β −Hα,β, δα,β ∼ Fα,β +Hα,β. (19.63)

Given these relations, we may use the STAR data for γα,β , δα,β , and v2 to extract
the strength factors Fα,β and Hα,β as a function of centrality. The result of such a
decomposition is shown in Fig. 19.11.

Given this analysis we make the following observations: (a) Both components
are charge dependent, i.e. there is significant difference between ++/−− and +−;
(b) In both cases, however, the same-charge and opposite-charge signals are not
symmetric with respect to zero. This may indicate that in each category there are
likely more than one source of correlations; (c) There is a strong residual centrality
dependence for both types component, although the dependence on centrality from
v2 has been removed. This may indicate that the correlations depend also on the
multiplicity, which changes from central to peripheral collisions.

Although, as already noted, the above analysis is qualitative, let us entertain a
possible scenario, which would be consistent with the above observations: The flow-
induced signals may have two sources, the TMC with F TMC++/−− = F TMC+− < 0 and the

LCC with F LCC++/−− = 0 and F LCC+− > |F TMC+− | > 0. The flow-independent signals

may be from two different sources, the CME with HCME++/−− > 0 and HCME+− < 0 and

the dipole asymmetry from fluctuations (DAF) with HDAF++/−− = HDAF+− > 0. Such
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a combination would indeed lead to correlations with magnitude and sign in qual-
itative agreement with the data. However, a quantitative analysis would have to be
based on the exact decomposition based on (19.44). Alternatively, one may attempt
a separation of flow dependent and flow independent contributions in experiment.
How this could be achieved will be discussed in the following.

19.4.6 Suppression of Elliptic-Flow-Induced Correlations

In this chapter we will discuss the possibility of removing the elliptic-flow-induced
background from the experimental data.

As seen in (19.44) all contributions due to correlations are proportional to the
elliptic flow parameter, v2. Therefore, it would be desirable to control or remove
this contribution by a suitable measurement. There are essentially two ways to go
about this.

First, as proposed in Ref. [76], is to study collisions of deformed nuclei, such as
U + U . By selecting very central, “face on face” collisions where the deformation
of the nuclei is imprinted on the fireball, elliptic flow should be generated while at
the same time the magnetic field will be very small. Should one observe correlations
of the same magnitude and structure as ones already reported by STAR, this would
identify their origin as being due to conventional two-particle correlations. The ob-
servation of considerably smaller correlations combined with a sizable v2, on the
other hand, would lend support for the existence of the CME. This approach, while
challenging to analyze, is at present being attempted at RHIC, were first U + U

collisions were made available.
Alternatively, as proposed in Ref. [68] one may make use of the large event-by-

event fluctuations of v2. By selecting events with different v2 in a given centrality
class we can control this background. In principle the measurement can be extrap-
olated to v2 = 0 (and consequently v2(pt , η) = 0) which will allow to extract cor-
relations that only depend on the reaction plane orientation. Indeed, as presented in
Fig. 19.12 even at b= 10 fm we expect a large fluctuation of initial eccentricity that
will translate to large fluctuations of elliptic flow v2.

Of course it is important to remove this background under the condition that
the contribution from the Chiral Magnetic Effect is approximately unchanged. In
Fig. 19.13 we demonstrate that indeed it is the case. Both the wounded nucleons
and spectators’ contribution to the magnetic field weekly depends on ε2.

We believe this analysis should help to clarify the situation. Observation of non-
zero γ++ or γ+− at vanishing value of elliptic anisotropy v2 will suggest the exis-
tence of the correlation mechanism that is sensitive to the average direction of the
magnetic field—possibly the Chiral Magnetic Effect.

To summarize this section, clearly there are many contributions based on con-
ventional physics which contribute to the azimuthal correlations analyzed by the
various experiments. In addition to those discussed in more detail in this section
other mechanisms, such as the decay of multi-particle clusters [58, 59], have been
proposed. While it is more difficult to asses their contribution quantitatively, their
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Fig. 19.12 The distribution
of initial eccentricity ε2
calculated in the Glauber
Monte-Carlo at the impact
parameter b= 10 fm

Fig. 19.13 The out-of-plane
component of the magnetic
field from wounded protons
and spectator protons as a
function of initial eccentricity
ε2 at a given impact
parameter b= 10 fm

influence cannot a priory be ignored. Therefore, it seems the best way forward is to
separate the influence of elliptic flow and magnetic field experimentally as discussed
in the last part of this section.

19.5 Summary and Conclusions

In this review we have concentrated on the observational aspects of the search for
phenomena related to local parity violation of the strong interaction. Specifically
we have discussed various observables and their measurement for the charge sepa-
ration, which is a predicted consequence of induced currents due to sphaleron and
anti-sphaleron transitions in an external magnetic field. This phenomenon is often
referred to as the Chiral Magnetic Effect (CME).

We have discussed various properties and aspects of azimuthal angle correla-
tions, and we have emphasized that, due to the elliptic flow observed in heavy ion
collisions, virtually any two-particle correlations contribute to the azimuthal corre-
lations. We have further discussed an alternative observable, which in our view may
be better suited in discriminating between the backgrounds and the CME.
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We have examined the presently available data on reaction plane dependent and
independent correlation functions of same- and opposite-charged pairs. Our phe-
nomenological analysis of the data by the STAR Collaboration showed that the
measured correlations of same-charge pairs are predominantly back-to-back, and
in-plane. This is opposite to the predictions from the CME, where same-side out-
of-plane correlations for pairs of the same charge are expected. The data by the
ALICE Collaboration taken at about ten times the STAR collision energy, on the
other hand, show a correlation, albeit small, which is qualitatively consistent with
the CME expectations.

However, before any conclusion on the CME can be drawn, the contributions due
to “conventional” correlations need to be accounted for. As we have discussed in
some detail, both the conservation of transverse momentum as well as local charge
conservation give rise to corrections which are of the same order as the experimental
signal. These need to be understood and properly subtracted from the data in order
to see if a signal consistent with the CME remains. Since there are conceivably many
other two-particle correlations, which may enter due to the presence of elliptic flow,
an important step towards answering the question about the existence of the CME
is to experimentally disentangle the elliptic flow phenomenon from the creation of
a strong magnetic field. This can be either done by colliding deformed nuclei or by
carefully utilizing the fluctuations of the elliptic flow.

In conclusion, the present experimental evidence for the existence of the CME
is rather ambiguous. While progress on the assessment of the various background
terms is to be expected, the sheer variety of possible correlations will likely limit
a reliable quantitative determination of all the backgrounds. Therefore, the most
important next step is the experimental separation of elliptic flow and magnetic field.
In this context it is encouraging to note, that the first U +U collisions at RHIC have
just been recorded.

Finally let us close with a note of caution. Besides the CME there are other
phenomena related to local non-vanishing topological charge fluctuations, such as
the Chiral Magnetic Wave. One of the predictions in this case is the difference of
elliptic flow between positively and negatively charged pions for collisions at lower
energies [35, 36]. However, again there may be other, more mundane effects which
lead to similar phenomena, such as an increased stopping of baryon number and
isospin at lower energies [77].
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Chapter 20
Holography, Fractionalization and Magnetic
Fields

Tameem Albash, Clifford V. Johnson, and Scott McDonald

Aspects of the low energy physics of matter charged under a global U(1) at finite
density can be studied at strong coupling using the AdS/CFT correspondence and
deformations thereof [1–5] (for recent reviews, see Refs. [6–10]). While it remains
unclear just how far-reaching the tools of holography will be in helping understand
experimentally accessible physics of various condensed matter systems, it is already
apparent that potentially powerful new ways of characterizing several classes of im-
portant behavior may be emerging from the lines of research underway. The lan-
guage is that of a dual gravitational system, which has the utility that it is often
very geometrical in character, while also being in terms of quantities that are gauge
invariant. The dual effective field theories are usually formulated perturbatively as
gauge theories (or generalizations thereof) for gauge group of rank N , where N is
large. The natural gauge invariant variables to use at strong coupling are usually
less easy to work with. It is in this strong coupling regime where the gravitational
language is most effective.

At finite charge density, there is a non-zero gauge field At switched on in the
gravitational (“bulk”) background. (The gauged U(1) there is the global U(1) of
the dual theory, according to the usual dictionary [1–3]). A most natural circum-
stance is to have an event horizon present, with a Reissner–Nordstrom black hole
sourcing the electric flux, as first explored in this context in Refs. [11, 12]. Already
there is interesting physics to be learned from such systems, giving insights into such
phenomena as the holographic Hall and Nernst effects and other transport proper-
ties [13–15], holographic Fermi surfaces [16–19], and so forth (see for example the
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reviews in Refs. [6–8]), but more recent insights have shown a wider context into
which such horizon-endowed charged spacetimes fit nicely: The electric flux can be
sourced by electrically charged fermionic matter in the bulk of spacetime it instead
of a horizon, giving a kind of charged “star”, where the geometry in the infra-red
(IR) ceases to be AdS2 ×R

2 (we stay with infinite volume henceforth in this discus-
sion), and becomes of Lifshitz form [20]. The heuristic argument here is that [20]
the matter in the bulk effectively screens the electric field in the IR, and the equa-
tions of motion yield the Lifshitz geometry, known to be appropriate when there is
a massive gauge field [21]. One supplementary way to think about this solution is
that it is a result of the black hole becoming unstable due to pair creation induced by
the electric field. The charges separate in the field, one escaping to infinity while the
other falls into the horizon (for suitable particle mass). The black hole loses charge
and energy and ultimately a gas of charged matter, the star, is all that is left.

Naturally, the question arises as to what these two different situations (horizon
source vs. matter source) represent for the dual low energy physics. Since at large
N the entropy of a spacetime with horizon has an extra factor of some power of
N (typically N2 for ordinary gauge theory) compared to the entropy for spacetimes
without, it is clear that the degrees of freedom in each case are organized very differ-
ently, as noted very early on in holographic studies in the context of thermally driven
confinement–deconfinement phase transitions (modeled by the Hawking–Page tran-
sition [22]) [5].

The observation in the present context is that the difference here is between fully
fractionalized and fully unfractionalized (or “mesonic”) phases of the low energy
finite density system.1 This is of some considerable interest in condensed matter
physics, since descriptions of charge and/or spin separation (where the charge or
spin degrees of freedom of an electron may move separately) are relatively common
for getting access to certain types of physics often associated with the low energy
dynamics of lattice models. The idea (aspects of it are reviewed in Ref. [10]) is that
the N2 degrees of freedom accessible when the horizon is present are typical of the
larger number of fractionalized variables available (the analogue of the electron be-
ing split into separate charge and spin degrees of freedom plus a Lagrange multiplier
field that becomes a dynamical gauge field at low energy), while the fewer degrees
of freedom of the non-horizon systems are more like the unfractionalized “electron”
(a composite particle in this picture). This fractionalization leads to a violation of
the Luttinger theorem, where the fractionalized variables carry the missing charge
density [25–28].

This rather compelling picture is certainly worth exploring, since we have a fully
non-perturbative tool for getting access to fractionalization. One exploration at zero

1The idea that these holographic systems may capture the dynamics of fractionalized phases seems
to have first begun to emerge in the work of Ref. [23] in their semi-holographic approach to the
low energy physics. There, they used the term “quasiunparticle” for the effective particles in the
unfractionalized phase. In work dedicated to addressing the issue, Ref. [24] further elucidated the
connection between holographic physics and fractionalized phases. See Refs. [9, 10] for a review
of some of these ideas.
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temperature (of interest to us in the current work, as we shall see) is Ref. [29],
where it was shown how to tune an operator (that is relevant in the ultraviolet (UV))
in the system that allows for a mixture of fully fractionalized and fully unfraction-
alized phases. This is dual to turning on a dilaton-like scalar field in the bulk theory.
The dilaton scalar field couples to gravity, has a non-trivial potential, and due to a
term of the form: − exp( 2√

3
Φ)F 2, (where F is the gauge field strength) it effec-

tively spatially modulates the coupling strength of the bulk gauge field, allowing
for different configurations of matter and gravity to minimize the action for given
asymptotic fields. If the dilaton diverges positively in the IR, the effective Maxwell
coupling vanishes in the IR, allowing for a geometry with a horizon again, while
still having the matter back-react enough on the bulk geometry to support a star that
carries some of the electric charge. This gives a mixture of fractionalized and par-
tially fractionalized phases. If the dilaton diverges negatively in the IR, the effective
Maxwell coupling diverges there and we have that the favored situation is the purely
“mesonic” case where there is no horizon and only charged matter. The negatively
diverging dilaton serves to enhance the Maxwell sector’s tendency to destabilize
a charged black hole due to pair production, forcing it to evaporate completely in
favor of a charged star.

It is worth noting that the same way that the Einstein–Maxwell–AdS system
in various dimensions may be consistently uplifted to 10 and 11 dimensional su-
pergravity as combinations of spins in the compact directions (actually, using equal
spins [11]), the systems with a dilaton sector can be uplifted, but now all the spins are
equal except one [30]. This is worth noting that since this means that the Einstein–
Maxwell-dilaton–AdS system’s consistent uplift may allow the fate of the regions
with diverging dilaton to be studied in M-theory.

In each case, the reduced gravity system is coupled to a gas of charged fermions
in the bulk, represented by a fluid stress energy tensor with a given pressure and
density, and an appropriate equation of state is input in order to characterize the
system. This mirrors the standard construction of neutron stars using the Tolman–
Oppenheimer–Volkoff method [31, 32] which was first generalized to asymptoti-
cally AdS geometries in Ref. [33].

In this paper, we begin the exploration of the important situation of having a
magnetic field present in the system. We learn some very interesting lessons from
this study. One of them is that we need a dilaton present to achieve unfractionalized
phases of the physics. Since we are including no magnetically charged matter in our
system, and in the limit we take there are no current sources of magnetic field, for a
smooth gravitational dual it is intuitively clear that there must be a horizon to source
the magnetic field. One can imagine therefore that there might be configurations
where such a magnetic source is surrounded by a gas of matter that forms a star
that sources all the electric flux. This would be the fully unfractionalized magnetic
case, with the purely dyonic Reissner–Nordstrom black hole being the fractionalized
counterpart.

In fact, it turns out that the matter alone is unable to back-react enough on the
magnetic geometry that we find to support a star. In other words, the magnetic field’s
presence stops the electric field from giving the local chemical potential (as seen by
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the charged bulk matter) the profile needed to support a star. Put differently, the
magnetic field suppresses the pair-creation channel by which a black hole can leak
its charge into a surrounding cloud of fermions to form a star. This is where the
dilaton can come in. A negatively diverging dilaton in the IR will send the Maxwell
coupling to infinity. This makes the pair-creation channel viable again, and allow
for the system to seek stable solutions that have some of the electric flux sourced by
fermions outside the horizon.

In summary we find that in the limit we are working, when there is a magnetic
field in the system there is necessarily an event horizon, and it is essential to have
a dilaton present to not have all the electric flux sourced behind the horizon (at
least for the zero temperature case we study here). Introducing the dilaton in the
theory allows us to construct a mesonic phase as well as a partially fractionalized
phase (the fully fractionalized phase is simply the already known dilaton–dyon so-
lution).

The work we report on in this paper is but a first step in characterizing these sys-
tems in the presence of magnetic field. Our goal here is to exhibit the solutions we
find.2 We will postpone the analysis of the fluctuations of the solutions to examine
various transport properties of the system, and also leave for a later time the com-
parison of the actions of the various solutions for given magnetic field and chemical
potential, which allow a full exploration of the phase diagram.

20.1 Charged Ideal Fluid with a Magnetic Field

20.1.1 Gravity Background

We consider a simple model of Einstein–Maxwell theory coupled to a dilaton Φ

and an ideal fluid source (akin to that of Ref. [29]). The Einstein–Maxwell sector
has action given by:

SEM =
∫

d4x
√−G

[
1

2κ2

(
R − 2∂μΦ∂

μΦ − V (Φ)

L2

)
− Z(Φ)

4e2
FμνF

μν

]
. (20.1)

The Einstein equations of motion are given by:

Rμν − 1

2

(
R− 2∂λΦ∂

λΦ − V (Φ)

L2

)
Gμν − 2∂μΦ∂νΦ

= κ2
(
Z(Φ)

e2

(
FμρF

ρ
ν − 1

4
GμνFλρF

λρ

)
+ T fluid

μν

)
, (20.2)

2We emphasize that our work is both qualitatively and quantitatively different from Ref. [34]. Their
work is in five dimensions, for a spherical star, and their TOV treatment involves an electrically
neutral star.
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with the following stress-energy tensor and external current for a perfect (charged)
fluid (the action that gives rise to this stress energy tensor is given in Sect. 20.1.3):

T fluid
μν = 1

L2κ2

((
P̃ (r)+ ρ̃(r)

)
uμuν+ P̃ (r)Gμν

)
, Jμ = 1

eL2κ
σ̃ (r)uμ. (20.3)

The Maxwell equations are given by:

∂ν
(√−GZ(Φ)Fμν

)= e2
√−GJμ. (20.4)

We begin with the following metric ansatz:

ds2 = L2(−f (r)dt2 + a(r)dx2 + g(r)dr2), (20.5)

and we take ut =−√−Gtt . For the Maxwell field, we take as ansatz:

Frt = eL

κ
h′(r), Fxy = eL

κ
B̃. (20.6)

The resulting equations of motion can be reduced (after some work) to the following
six equations:

P̃ ′(r)+ f ′(r)
2f (r)

(
P̃ (r)+ ρ̃(r)

)− σ̃ (r)
h′(r)√
f (r)

= 0, (20.7)

a′′(r)
a(r)

− a′(r)
a(r)

(
g′(r)
2g(r)

+ f ′(r)
2f (r)

+ a′(r)
2a(r)

)

+ (
g(r)

(
P̃ (r)+ ρ̃(r)

)+ 2Φ ′(r)2
)= 0, (20.8)

f ′′(r)
f (r)

− f ′(r)
f (r)

(
g′(r)
2g(r)

+ f ′(r)
2f (r)

− 2a′(r)
a(r)

)

+
(
a′(r)2

2a(r)2
− 2Φ ′(r)2 − g(r)

(
5P̃ (r)+ ρ̃(r)− 2V (Φ)

))= 0, (20.9)

Φ ′(r)2 + g(r)

(
−Z(Φ)B̃2

2a(r)2
+

(
P̃ (r)− 1

2
V (Φ)

))

− a′(r)2

4a(r)2
− a′(r)f ′(r)

2a(r)f (r)
− Z(Φ)h′(r)2

2f (r)
= 0, (20.10)

h′′(r)− h′(r)
(
g′(r)
2g(r)

+ f ′(r)
2f (r)

− a′(r)
a(r)

− Z′(Φ)Φ ′(r)
Z(Φ)

)

−
√
f (r)g(r)

Z(Φ)
σ̃ (r)= 0, (20.11)
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Φ ′′(r)+Φ ′(r)
(
f ′(r)
2f (r)

− g′(r)
2g(r)

+ a′(r)
a(r)

)

− Z′(Φ)
4

(
g(r)B̃2

a(r)2
− h′(r)2

f (r)

)
− g(r)V ′(Φ)

4
= 0. (20.12)

For the charge density σ̃ (r) and the energy density ρ̃(r), we show in Sect. 20.1.2
that using the density of states of charged quanta in a magnetic field results in the
free fermion gas result when using the appropriate electron star limits:

σ̃ (r) = 1

3
β̃
(
μ̃(r)2 − m̃2)3/2

,

ρ̃(r) = β̃

8

(
μ̃(r)

√
μ̃(r)2 − m̃2

(
2μ̃(r)2 − m̃2) (20.13)

+ m̃4 ln

(
m̃

μ̃(r)+√
μ̃(r)2 − m̃2

))
,

and (20.7) is satisfied with the following equation for the pressure:

P̃ (r)=−ρ̃(r)+ μ̃(r)σ̃ (r), (20.14)

where we have defined μ̃(r) = h(r)/
√
f (r) as the local chemical potential. Here,

m̃= κm/e, where m is the fermion mass. Equations (20.8), (20.9), and (20.10) are
derived from the Einstein equations of motion, and only two of them are dynamical
equations; the remaining equation is a constraint. For concreteness, let us take from
this point forward:

V (Φ)=−6 cosh(2Φ/
√

3), Z(Φ)= e2Φ/
√

3. (20.15)

This choice matches the choice in Ref. [35] that give rise to three-equal-charge
dilatonic black holes in four dimensions. We want our solutions to asymptote to
AdS4 so we will require that the UV behavior of our fields is given by:

g(r)= 1

r2
, f (r)= 1

r2
, a(r)= 1

r2
, (20.16)

which in turn gives the following UV behavior for the remaining fields:

Φ(r)= rφ1 + r2φ2, h(r)= μ− ρr, (20.17)

where φ1 is proportional to the source of the operator dual to the dilaton, φ2 to the
vev of the same operator, μ the chemical potential in the dual field theory, and ρ the
charge density.
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20.1.2 Density of States for (3 + 1)-Dimensional Fermions
in a Magnetic Field

The appropriate choice for the density of states should be that of the 3 (spatial)
dimensional Landau levels. For a fermion of massmwith charge q in the nth Landau
level with momentum k, the energy in magnetic field B is given by (c= �= 1):

En(k)=
√

2qB(n+ 1)+ k2 +m2, (20.18)

where for simplicity, we are assuming that qB > 0. At level n and momentum k,
the number of states is given by:

Nn(k)= gs

(
kLr

2π

)(
2qB

LxLy

4π

)
, (20.19)

where gs is the spin degeneracy (=2 for spin 1/2). In turn, at a given energy E, the
number of states is given by:

N(E) = gs

∞∑

n=0

LxLyLr

8π2
2qB

√
E2 −m2 − 2qB(n+ 1)Θ

(
E−

√
m2 + 2qB(n+ 1)

)

= V
β

2
2qB

∑

n

√
E2 −m2 − 2qB(n+ 1)Θ

(
E−

√
m2 + 2qB(n+ 1)

)
,

(20.20)

where we have defined a dimensionless constant of proportionality which is O(1).
Therefore, we can write the density of states as:

g(E) = β

2
2qB

∞∑

n=0

[
E

√
E2 −m2 − 2qB(n+ 1)

Θ
(
E −

√
m2 + 2qB(n+ 1)

)

+
√
E2 −m2 − 2qB(n+ 1)δ

(
E −

√
m2 + 2qB(n+ 1)

)]
. (20.21)

The second term will always give us zero contribution for the terms we are interested
in, so we will drop it. The energy density ρ and charge density σ are given by:

σ =
∫ μ

0
dEg(E), ρ =

∫ μ

0
dEEg(E), (20.22)

where μ is the chemical potential. To proceed, we identify the local magnetic field
in our gravity background with qB and the local chemical potential with μ:

qB = Fxy

L2A(r)
= e

Lκ

B̃

A(r)
, μ= At

L
√
f (r)

= e

κ

h(r)√
f (r)

≡ e

k
μ̃. (20.23)
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For conciseness, let us define:

q̃ ≡ κ

Le2

e

A(r)
. (20.24)

In terms of dimensionless variables σ̃ (r) ≡ eL2κσ(r) and ρ̃(r) ≡ L2κ2ρ(r), we
now have:

σ̃ (r) = β̃

2
2q̃B̃

∞∑

n=0

Θ
(
μ̃2 − m̃2 − 2q̃B̃(n+ 1)

)

×
∫ μ̃

√
m̃2+2q̃B̃(n+1)

dẼẼ
√
Ẽ2 − m̃2 − 2q̃B̃(n+ 1)

,

(20.25)

ρ̃(r) = β̃

2
2q̃B̃

∞∑

n=0

Θ
(
μ̃2 − m̃2 − 2q̃B̃(n+ 1)

)

×
∫ μ̃

√
m̃2+2q̃B̃(n+1)

dẼẼ2
√
Ẽ2 − m̃2 − 2q̃B̃(n+ 1)

.

where β̃ = e4L2β/κ2 and m̃= κm/e. To be in the classical gravity regime, we must
have κ/L� 1. To be able to use the flat space physics, we must have a large density
relative to the curvature scale of the geometry, we must have σL3 ∼ Lσ(r)/eκ � 1.
To have β̃ ∼ O(1), we must have that e2L/κ ∼ O(1). Therefore by our previous
requirements, we must have e2 ∼ κ/L. These are the requirements from Ref. [20].
With these requirements, we have the following result:

2q̃B̃ � 1. (20.26)

We can perform the integrals explicitly. We have that:

∫ μ̃

√
m̃2+2q̃B̃(n+1)

dẼẼ
√
Ẽ2 − m̃2 − 2q̃B̃(n+ 1)

=
√
μ̃2 − m̃2 − 2q̃B̃(n+ 1),

∫ μ̃

√
m̃2+2q̃B̃(n+1)

dẼẼ2
√
Ẽ2 − m̃2 − 2q̃B̃(n+ 1)

(20.27)

= 1

2

[

μ̃

√
μ̃2 − m̃2 − 2q̃B̃(n+ 1)

−(
m̃2 + 2q̃B̃(n+ 1)

)
ln

(
√
m̃2 + 2q̃B̃(n+ 1)

μ̃+
√
m̃2 + 2q̃B̃(n+ 1)

)]

.
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Furthermore, we see that the spacing between Landau levels is extremely small,
and to zeroth order in 2q̃B̃ we can approximate the sum by an integral (Euler–
Maclaurin):

2q̃B̃
∞∑

n=0

Θ
(
μ̃2 −m2 −2q̃B̃(n+1)

)
F
(
2q̃B̃(n+1)

)≈
∫ μ̃2−m̃2

0
F(x)dx+O(2q̃B̃).

(20.28)
We can perform this final integration to give us our final result for the charge density
and energy density:

σ̃ = 1

3
β̃
(
μ̃2 − m̃2)3/2 +O(2q̃B̃),

(20.29)

ρ̃ = 1

8
β̃

(
μ̃

√
μ̃2 − m̃2

(
2μ̃2 − m̃2)+ m̃4 ln

(
m̃

μ̃+√
μ̃2 − m̃2

))
+O(2q̃B̃).

Interestingly enough, the zeroth order results are exactly the free fermion gas results
in the absence of a magnetic field. Since the pressure equation (20.7) is the same as
that in the free fermion in the absence of a magnetic field case, the ansatz:

P̃ =−ρ̃ + μ̃σ̃ , (20.30)

trivially satisfies that equation.

20.1.3 Action Calculation

We discuss in detail an action that recovers the equations of motion used for our
background. Our calculation generalizes the calculation performed in Ref. [20] to
the case with a magnetic field. We consider an action for the fluid along the lines of
Refs. [36–38] given by:

Lfluid =√−G(−ρ(σ )+ σuμ(∂μφ +Aμ + α∂μβ)+ λ
(
uμuμ + 1

))
, (20.31)

where φ is a Clebsch potential variable, (α,β) are potential variables, and λ is a
Lagrange multiplier. The equations of motion from this part of the action give:

δσ : − ρ′(σ )+ uμ(∂μφ +Aμ + α∂μβ)= 0, (20.32)

δuμ : Gμν
(
σ(∂νφ +Aν + α∂νβ)+ 2λuν

)= 0, (20.33)

δλ: uμu
μ =−1, (20.34)

δφ : ∂μ
(√−GGμνσuν

)= 0, (20.35)

δα : uμ∂μβ = 0, (20.36)

δβ : ∂μ
(√−Gσuμα)= 0. (20.37)
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We define the local chemical potential μ≡ ρ′(σ ) such that:

μ= uμ(∂μφ +Aμ + α∂μβ). (20.38)

From the equation of the fluctuation of uμ, we can multiply through by uμ to fix the
Lagrange multiplier:

λ= 1

2
σμ= 1

2
(P + ρ), (20.39)

where we have used the thermodynamic relation P =−ρ+μσ . Now we recall that
we wish to fix ut = −√−Gtt , ux = uy = 0, μ = At/(−ut ) and choose a gauge
where Ax = 0, Ay = eLB̃x/κ . Since our metric ansatz has Gxx = Gyy , we can
satisfy the equation for the fluctuation of uμ (and all the equations) with:

φ =−eL

κ
B̃xy, α = eL

κ
B̃y, β = x, (20.40)

with these choices, we note that:

δLfluid

δGμν
=√−G

(
−1

2
Gμν(−ρ +μσ)− 1

2
δtμδ

t
νμσutut

)
, (20.41)

which for us recovers the (on-shell) fluid energy–momentum tensor using in our
equations of motion:

T fluid
μν = −2√−G

δLfluid

δGμν
= (P + ρ)uμuν + PGμν = 1

L2κ2

(
(P̃ + ρ̃)uμuν + P̃Gμν

)
.

(20.42)

20.2 The Role of the Dilaton

We first remark on why Einstein–Maxwell theory alone (i.e. without a dilaton) is
not sufficient for studying backgrounds with an electric star in the presence of a
magnetic field. Let us consider the case where the dilaton is absent in the theory. We
find the following series expansion in the IR (r →∞):

a(r)=
∞∑

n=0

an

rn
, f (r)= 1

r2

∞∑

n=0

fn

rn
, g(r)= 1

r2

∞∑

n=0

gn

rn
, h(r)= 1

r

∞∑

n=0

hn

rn
,

(20.43)

where the leading coefficients fixed by the equations of motion are given by:

g0 = 1

6
,

h0√
f0

=
√

1 − B̃2

6a2
0

, (20.44)

where we have picked the positively charged horizon (sign of h0) without loss of
generality. This is of course the well established near horizon geometry of the ex-
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tremal dyonic black hole in AdS4. We find that all the coefficients of f (r) are unde-
termined by the equations of motion, as well as a0 and a1. The value of a0 is fixed by
requiring that r2a(r) be equal to one in the UV, so it is the ratio a1/a0 that is the free
parameter. We note that the near horizon behavior of the local chemical potential is:

h(r)√
f (r)

= h0√
f0

(
1 − 1

r

a1

a0
f0 +O

(
r−2)

)
. (20.45)

This chemical potential decreases (this is because only for a1 > 0 do we get an
asymptotically AdS4 solution) from its IR value. This will be an important point for
what comes next.

Let us now consider the case where we turn on the source and look for a solution
where we have a star in the IR. We find that an identical expansion as (20.43) works,
but the leading coefficients are given by:

g0 = 1

6
,

h0√
f0

= m̃, B̃2 = 6a2
0

(
1 − m̃2). (20.46)

However, the situation is more grave than this; the only solution allowed is:

h(r)√
f (r)

= m̃, a(r)= a0, (20.47)

which is clearly not an asymptotically AdS4 solution (one can attempt to general-
ize the IR expansion to having f (r) ∝ r−2z and g(r) ∝ r−z but the results remain
the same up to factors of z). For f (r)= 1/r2, the solution is simply the near hori-
zon geometry of a dyon where the electric charge has been set by m̃. Furthermore,
since the chemical potential is equal to m̃ everywhere, there is no star, so we cannot
construct a solution with a star in the IR.

We may consider building a solution where there is no star in the IR but instead
exists a finite distance away from the horizon. Therefore, we would have the same
IR expansion as (20.43), and hope that we are able to populate the star at some finite
distance r <∞. This would require m̃ > h0/

√
f0. but, as pointed out in (20.45), we

find that the chemical potential decreases as we move away from the horizon. In fact,
(as we know already from the exact solution) the chemical potential monotonically
decreases from the horizon to the UV, so a star can never form. Therefore, we find
that we cannot support a magnetic star in the simple Einstein–Maxwell setup.

One way forward is to introduce the dilaton in the theory, which changes the
effective coupling strength of the Maxwell field. As mentioned in the introduction,
a dilaton was first used in this context in Ref. [29]. Introducing the dilaton is dual
to using a relevant operator (in the UV) to induce the theory to flow to different
IR phases. Three different phases were identified: a “mesonic” phase, where all the
electric charge is not behind the horizon, a partially “fractionalized” phase where a
fraction of the charge is behind the horizon, and a fully fractionalized phase, where
all the charge is behind the horizon. We will use this nomenclature to label our
solutions.

The dilaton’s behavior in the IR naturally provides us a classification scheme for
our solutions. It is useful to review this before introducing the star. The dilaton can
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diverge positively or negatively in the IR, giving rise to a purely electric or purely
magnetic horizon, or it can take a finite value, giving a dyon solution. Since we are
only interested in geometries with a magnetic field, we will ignore the purely electric
case in what follows. We briefly review the IR asymptotics of the two magnetic
cases. The purely magnetic case has an IR (r →∞) expansion for the fields:

f (r) = 1

r2

( ∞∑

n=0

fn

r4n/3

)

, g(r)= 1

r8/3

( ∞∑

n=0

gn

r4n/3

)

, h(r)= 0,

Φ(r) = −
√

3

3
ln r +

( ∞∑

n=0

Φn

r4n/3

)

, a(r)= 1

r2/3

( ∞∑

n=0

an

r4n/3

)

, (20.48)

B̃2 = 3

2
e−4Φ0/

√
3a2

0 .

The coefficients fn are completely undetermined by the equations of motion as well
as Φ0 and a0 (note that a0 is not really a free parameter since it determines what the
coefficient for dx2 is in the UV which needs to be 1). Therefore, we see that there
are two free parameters in the IR, Φ0 and the function f (r) (subject to obeying the
right asymptotics in the UV and IR). This translates to the freedom of choosing a
particular magnetic field and source for the dilaton in the dual field theory. Finally,
we note that the behavior of the dilaton in the IR means that the Maxwell coupling
is diverging, which means that quantum loop effects would become important near
the horizon.

The dyon solution has an IR expansion for the fields given by:

f (r) = 1

r2

∞∑

n=0

fn

rn
, g(r)= 1

r2

∞∑

n=0

gn

rn
, a(r)=

∞∑

n=0

an

rn
,

h(r) = 1

r
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n=0

hn

rn
, Φ(r)=

∞∑

n=0

Φn

rn
, g0 = e2Φ0/

√
3

3(1 + e4Φ0/
√

3)
, (20.49)

h0√
f0

= 1
√
e2Φ0/

√
3 + e2

√
3Φ0

, B̃2 = 3a2
0 .

The coefficients fn are completely undetermined as well as Φ0, a0, and a1. In the
IR, there are three free parameters: a1/a0, Φ0, and the function f (r) (subject to
obeying the right asymptotics). This translates to a choice of the magnetic field, the
chemical potential, and the source for the dilaton in the dual field theory. Note that
since we are studying the extremal case, the electric charge behind the horizon is
fixed by the magnetic field:

lim
r→∞Z(Φ)(∗F)xy = e2Φ0/

√
3 a0h0√

g0f0
= B̃. (20.50)

We now turn on the pressure, charge density, energy density due to the electron star
and investigate the various gravitational solutions we can construct.
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Fig. 20.1 Solution for the local chemical potential (solid blue curve) of a star in the IR using
f (r) = r−2 with β̃ = 1, m̃ = 3 · 31/4/(2(2β̃)1/2), Φ0 = −√

3. The red dashed line is the value
of m̃ and the black dotted line is the position where the star ends. Corresponds to a solution with
B̃ = 6.63, μ= 3.08, ρ = 0.53, φ1 =−17.58, φ2 = 177.36 (Color figure online)

20.3 Solutions with Stars

20.3.1 Mesonic Phase: Star in the Infra-Red

Consider an IR expansion for the fields:

f (r) = 1

r2

( ∞∑

n=0

fn

r2n/3

)

, g(r)= 1

r8/3

( ∞∑

n=0

gn

r2n/3

)

,

a(r) = 1

r2/3

( ∞∑

n=0

an

r2n/3

)

, Φ(r)=−
√

3

3
ln r +

( ∞∑

n=0

Φn

r2n/3

)

, (20.51)

h(r) = 1

r

( ∞∑

n=0

hn

r2n/3

)

.

This solution is a natural extension of the purely magnetic dilaton-black hole re-
viewed in the previous section, and the leading order behavior is not changed from
the pure magnetic dilatonic black hole except that the introduction of the star now
changes the power of the expansion as well as turns on the gauge field At :

B̃2 = 3

2
e−4Φ0/

√
3a2

0, g0 = 16

27
e2Φ0/

√
3,

h0√
f0

= 16

81
β̃

(
h2

0

f0
− m̃2

)3/2

.

(20.52)
There is no charge behind the horizon since limr→∞Z(Φ)(∗F)xy ∝ r−1/3. As in
the sourceless case, the coefficients fn are undetermined by the equations of motion.
We can then solve for all remaining coefficients explicitly in terms of a0, fn, and
Φ0 order by order as an expansion in the IR. We show an example of a solution in
Fig. 20.1.
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20.3.2 Partially Fractionalized Phases: Star Outside Horizon

For the case of having no star in the IR with an electric charge behind the horizon,
there are two cases to consider: the case where the star is a finite distance away
from the horizon, and the case where it is not. We first consider the latter. The IR
expansion is given by:

f (r) = 1
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3 + e2
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, m̃= 1
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e2Φ0/

√
3 + e2

√
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,

f1 = 0 = h1 = 0 = g1 = 0 = a1 = 0. (20.53)

All higher n≥ 2 coefficients are non-zero with a2/a0 and fn≥2 as free parameters.
The leading IR behavior is unchanged from the dyon, except that we find that the
value of Φ0 is fixed by the mass m̃, and the expansion is now in terms of fractional
powers. An example is shown in Fig. 20.2(a).

The local chemical potential at the horizon is equal to m̃ meaning that at the
horizon we have no star. However, we find that μ̃ in the IR evolves as:

h(r)√
f (r)

= m̃+ 1

r

(
e−Φ0/

√
3(−5 − 8e4Φ0/

√
3 + e8Φ0/

√
3)

18(1 + e4Φ0
√

3)5/2

a2

a0

)
+O

(
r−2). (20.54)

The second term in the expansion appears in the value of other coefficients to some
fractional power, and therefore is required to be positive

(−5 − 8e4Φ0/
√

3 + e8Φ0/
√

3)a2

a0
> 0. (20.55)

We are also required to take a2 > 0 in order to get an asymptotically AdS solution
(this observation is found numerically). Therefore, since for star formation we need
the chemical potential to increase, we have a condition on Φ0:

Φ0 >

√
3

4
ln(4 +√

21)≡Φc. (20.56)

For Φ0 <Φc, the chemical potential decreases monotonically from its value at the
horizon and does not allow a star to form. For Φ0 = Φc, the solution is AdS2 ×
R2 everywhere (if we choose f (r) = r−2). This solution therefore separates the
partially fractionalized from the fully fractionalized solution for this class of star
backgrounds.
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Fig. 20.2 The local chemical
potential (solid blue curve)
for the partially fractionalized
phases with (a) the star
ending at the horizon and
(b) the star a finite distance
from the horizon. The dashed
red line is the mass m̃ and the
dot dashed black line is
where the star starts/ends. For
both f (r)= r−2, β̃ = 10,
Φ0 =√

3.
(a) m̃= 1√

e2Φ0/
√

3+e2
√

3Φ0
,

B̃ = 1.28, μ= 0.3, ρ = 1.28,
φ1 = 7.49, φ2 =−30.86.
(b) m̃= 0.0498 , B̃ = 1.28,
μ= 0.3, ρ = 1.28, φ1 = 7.47,
φ2 =−30.82. In these
examples, the star has a
negligible effect on the
overall charge of the system
(Color figure online)

There is also the possibility of having a star that is a finite distance from the
horizon. In this case, the IR expansion would be that of the dilaton–dyon in (20.49).
It requires that

h0 < m̃ < m̃max, Φ0 >Φc, (20.57)

where m̃max is the maximum mass after which the chemical potential never gets
high enough to populate the star. An example is shown in Fig. 20.2(b).

20.4 Concluding Remarks

We have constructed three types of zero temperature electron star solutions with
background magnetic field. Note that, including the solution without a star, our
work does not address which of the four solution types is the thermodynamically
preferred state for fixed chemical potential, dilaton source, and magnetic field. this
is for future work. For the case of vanishing magnetic field, such a phase diagram at
zero temperature was constructed [29], where it was observed that a Lifshitz fixed
point separates the mesonic and partially fractionalized phases when the phase tran-
sition is continuous (the Lifshitz point is avoided in the case of the first order tran-
sition), and a third order transition separates the partially fractionalized phase from
the fully fractionalized phase. Here, we have observed that an AdS2 ×R

2 geometry
appears to separate the fractionalized phase from the fully fractionalized phase at
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finite magnetic field, and it would be interesting to study how this point affects the
phase transition.

We note the absence of any Lifshitz solutions in our presentation of the vari-
ous phases so far. In Ref. [29], the Lifshitz solution plays the important role of
mediating between the mesonic phase (with no horizon) from the partially frac-
tionalized phase (with an electrically charge horizon) at zero magnetic field. How-
ever, as indicated earlier, in the presence of a magnetic field, all the phases we
study involve a horizon behind which the magnetic charge hides, and the transi-
tion from the mesonic phase to the fractionalized phase is a transition between
an electrically neutral horizon and an electrically charged horizon. This transi-
tion may be softer, which might explain our inability to find a mediating solu-
tion. This picture is of course incomplete without an action calculation to study
the exact nature of the transition between the two phases. (Note that since the dila-
ton diverges on the horizon, some care may be needed in the treatment of these
solutions, perhaps by exploiting their M-theory uplift mentioned in the introduc-
tion.)

Another obvious generalization of our work would be to construct finite tem-
perature solutions as was done for the electron star at zero magnetic field [39, 40].
Finally, it would be interesting to explore the transport properties of our systems,
employing fluctuation analyses and computing the appropriate Green’s functions.
We will leave these matters for another day.
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Chapter 21
Holographic Description of Strongly Correlated
Electrons in External Magnetic Fields

E. Gubankova, J. Brill, M. Čubrović, K. Schalm, P. Schijven, and J. Zaanen

21.1 Introduction

The study of strongly interacting fermionic systems at finite density and tempera-
ture is a challenging task in condensed matter and high energy physics. Analytical
methods are limited or not available for strongly coupled systems, and numerical
simulation of fermions at finite density breaks down because of the sign problem
[1, 2]. There has been an increased activity in describing finite density fermionic
matter by a gravity dual using the holographic AdS/CFT correspondence [3]. The
gravitational solution dual to the finite chemical potential system is the electrically
charged AdS-Reissner-Nordström (RN) black hole, which provides a background
where only the metric and Maxwell fields are nontrivial and all matter fields vanish.
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In the classical gravity limit, the decoupling of the Einstein-Maxwell sector holds
and leads to universal results, which is an appealing feature of applied holography.
Indeed, the celebrated result for the ratio of the shear viscosity over the entropy den-
sity [4] is identical for many strongly interacting theories and has been considered a
robust prediction of the AdS/CFT correspondence.

However, an extremal black hole alone is not enough to describe finite density
systems as it does not source the matter fields. In holography, at leading order, the
Fermi surfaces are not evident in the gravitational geometry, but can only be de-
tected by external probes; either probe D-branes [3] or probe bulk fermions [5–8].
Here we shall consider the latter option, where the free Dirac field in the bulk carries
a finite charge density [9]. We ignore electromagnetic and gravitational backreac-
tion of the charged fermions on the bulk spacetime geometry (probe approximation).
At large temperatures, T � μ, this approach provides a reliable hydrodynamic de-
scription of transport at a quantum criticality (in the vicinity of superfluid-insulator
transition) [10]. At small temperatures, T � μ, in some cases sharp Fermi surfaces
emerge with either conventional Fermi-liquid scaling [6] or of a non-Fermi liquid
type [7] with scaling properties that differ significantly from those predicted by the
Landau Fermi liquid theory. The non-trivial scaling behavior of these non-Fermi
liquids has been studied semi-analytically in [8] and is of great interest as high-Tc
superconductors and metals near the critical point are believed to represent non-
Fermi liquids.

What we shall study is the effects of magnetic field on the holographic fermions.
A magnetic field is a probe of finite density matter at low temperatures, where the
Landau level physics reveals the Fermi level structure. The gravity dual system is
described by a AdS dyonic black hole with electric and magnetic charges Q and H ,
respectively, corresponding to a 2 + 1-dimensional field theory at finite chemical
potential in an external magnetic field [11]. Probe fermions in the background of the
dyonic black hole have been considered in [12–14]; and probe bosons in the same
background have been studied in [15]. Quantum magnetism is considered in [16].

The Landau quantization of momenta due to the magnetic field found there,
shows again that the AdS/CFT correspondence has a powerful capacity to unveil
that certain quantum properties known from quantum gases have a much more ubiq-
uitous status than could be anticipated theoretically. A first highlight is the demon-
stration [17] that the Fermi surface of the Fermi gas extends way beyond the realms
of its perturbative extension in the form of the Fermi-liquid. In AdS/CFT it appears
to be gravitationally encoded in the matching along the scaling direction between
the ‘bare’ Dirac waves falling in from the ‘UV’ boundary, and the true IR excitations
living near the black hole horizon. This IR physics can insist on the disappearance
of the quasiparticle but, if so, this ‘critical Fermi-liquid’ is still organized ‘around’ a
Fermi surface. The Landau quantization, the organization of quantum gaseous mat-
ter in quantized energy bands (Landau levels) in a system of two space dimensions
pierced by a magnetic field oriented in the orthogonal spatial direction, is a sec-
ond such quantum gas property. We shall describe here following [12], that despite
the strong interactions in the system, the holographic computation reveals the same
strict Landau-level quantization. Arguably, it is the mean-field nature imposed by
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large N limit inherent in AdS/CFT that explains this. The system is effectively non-
interacting to first order in 1/N . The Landau quantization is not manifest from the
geometry, but as we show this statement is straightforwardly encoded in the sym-
metry correspondences associated with the conformal compactification of AdS on
its flat boundary (i.e., in the UV CFT).

An interesting novel feature in strongly coupled systems arises from the fact that
the background geometry is only sensitive to the total energy density Q2 +H 2 con-
tained in the electric and magnetic fields sourced by the dyonic black hole. Dialing
up the magnetic field is effectively similar to a process where the dyonic black hole
loses its electric charge. At the same time, the fermionic probe with charge q is
essentially only sensitive to the Coulomb interaction gqQ. As shown in [12], one
can therefore map a magnetic to a non-magnetic system with rescaled parameters
(chemical potential, fermion charge) and same symmetries and equations of motion,
as long as the Reissner-Nordström geometry is kept.

Translated to more experiment-compatible language, the above magnetic-electric
mapping means that the spectral functions at nonzero magnetic field h are identi-
cal to the spectral function at h = 0 for a reduced value of the coupling constant
(fermion charge) q , provided the probe fermion is in a Landau level eigenstate. A
striking consequence is that the spectrum shows conformal invariance for arbitrarily
high magnetic fields, as long as the system is at negligible to zero density. Specif-
ically, a detailed analysis of the fermion spectral functions reveals that at strong
magnetic fields the Fermi level structure changes qualitatively. There exists a criti-
cal magnetic field at which the Fermi velocity vanishes. Ignoring the Landau level
quantization, we show that this corresponds to an effective tuning of the system
from a regular Fermi liquid phase with linear dispersion and stable quasiparticles
to a non-Fermi liquid with fractional power law dispersion and unstable excitations.
This phenomenon can be interpreted as a transition from metallic phase to a “strange
metal” at the critical magnetic field and corresponds to the change of the infrared
conformal dimension from ν > 1/2 to ν < 1/2 while the Fermi momentum stays
nonzero and the Fermi surface survives. Increasing the magnetic field further, this
transition is followed by a “strange-metal”-conformal crossover and eventually, for
very strong fields, the system always has near-conformal behavior where kF = 0
and the Fermi surface disappears.

For some Fermi surfaces, this surprising metal-“strange metal” transition is not
physically relevant as the system prefers to directly enter the conformal phase.
Whether a fine tuned system exists that does show a quantum critical phase transi-
tion from a FL to a non-FL is determined by a Diophantine equation for the Landau
quantized Fermi momentum as a function of the magnetic field. Perhaps these are
connected to the magnetically driven phase transition found in AdS5/CFT4 [18]. We
leave this subject for further work.

Overall, the findings of Landau quantization and “discharge” of the Fermi surface
are in line with the expectations: both phenomena have been found in a vast array of
systems [19] and are almost tautologically tied to the notion of a Fermi surface in a
magnetic field. Thus we regard them also as a sanity check of the whole bottom-up
approach of fermionic AdS/CFT [5–7, 17], giving further credit to the holographic
Fermi surfaces as having to do with the real world.
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Next we use the information of magnetic effects the Fermi surfaces extracted
from holography to calculate the quantum Hall and longitudinal conductivities. Gen-
erally speaking, it is difficult to calculate conductivity holographically beyond the
Einstein-Maxwell sector, and extract the contribution of holographic fermions. In
the semiclassical approximation, one-loop corrections in the bulk setup involving
charged fermions have been calculated [17]. In another approach, the backreaction
of charged fermions on the gravity-Maxwell sector has been taken into account and
incorporated in calculations of the electric conductivity [9]. We calculate the one-
loop contribution on the CFT side, which is equivalent to the holographic one-loop
calculations as long as vertex corrections do not modify physical dependencies of
interest [17, 20]. As we dial the magnetic field, the Hall plateau transition happens
when the Fermi surface moves through a Landau level. One can think of a differ-
ence between the Fermi energy and the energy of the Landau level as a gap, which
vanishes at the transition point and the 2 + 1-dimensional theory becomes scale in-
variant. In the holographic D3–D7 brane model of the quantum Hall effect, plateau
transition occurs as D-branes move through one another [21, 22]. In the same model,
a dissipation process has been observed as D-branes fall through the horizon of the
black hole geometry, that is associated with the quantum Hall insulator transition.
In the holographic fermion liquid setting, dissipation is present through interaction
of fermions with the horizon of the black hole. We have also used the analysis of the
conductivities to learn more about the metal-strange metal phase transition as well
as the crossover back to the conformal regime at high magnetic fields.

We conclude with the remark that the findings summarized above are in fact
somewhat puzzling when contrasted to the conventional picture of quantum Hall
physics. It is usually stated that the quantum Hall effect requires three key ingredi-
ents: Landau quantization, quenched disorder1 and (spatial) boundaries, i.e., a finite-
sized sample [23]. The first brings about the quantization of conductivity, the second
prevents the states from spilling between the Landau levels ensuring the existence
of a gap and the last one in fact allows the charge transport to happen (as it is the
boundary states that actually conduct). In our model, only the first condition is satis-
fied. The second is put by hand by assuming that the gap is automatically preserved,
i.e. that there is no mixing between the Landau levels. There is, however, no phys-
ical explanation as to how the boundary states are implicitly taken into account by
AdS/CFT.

We outline the holographic setting of the dyonic black hole geometry and bulk
fermions in Sect. 21.2. In Sect. 21.3 we prove the conservation of conformal symme-
try in the presence of the magnetic fields. Section 21.4 is devoted to the holographic
fermion liquid, where we obtain the Landau level quantization, followed by a de-
tailed study of the Fermi surface properties at zero temperature in Sect. 21.5. We
calculate the DC conductivities in Sect. 21.6, and compare the results with available
data in graphene.

1Quenched disorder means that the dynamics of the impurities is “frozen”, i.e. they can be regarded
as having infinite mass. When coupled to the Fermi liquid, they ensure that below some scale the
system behaves as if consisting of non-interacting quasiparticles only.
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21.2 Holographic Fermions in a Dyonic Black Hole

We first describe the holographic setup with the dyonic black hole, and the dynamics
of Dirac fermions in this background. In this paper, we exclusively work in the probe
limit, i.e., in the limit of large fermion charge q .

21.2.1 Dyonic Black Hole

We consider the gravity dual of 3-dimensional conformal field theory (CFT) with
global U(1) symmetry. At finite charge density and in the presence of magnetic
field, the system can be described by a dyonic black hole in 4-dimensional anti-
de Sitter space-time, AdS4, with the current Jμ in the CFT mapped to a U(1)
gauge field AM in AdS. We use μ,ν,ρ, . . . for the spacetime indices in the CFT
and M,N, . . . for the global spacetime indices in AdS.

The action for a vector field AM coupled to AdS4 gravity can be written as

Sg = 1

2κ2

∫
d4x

√−g
(

R + 6

R2
− R2

g2
F

FMNF
MN

)
, (21.1)

where g2
F is an effective dimensionless gauge coupling and R is the curvature radius

of AdS4. The equations of motion following from (21.1) are solved by the geometry
corresponding to a dyonic black hole, having both electric and magnetic charge:

ds2 = gMNdx
MdxN = r2

R2

(−f dt2 + dx2 + dy2)+ R2

r2

dr2

f
. (21.2)

The redshift factor f and the vector field AM reflect the fact that the system is at a
finite charge density and in an external magnetic field:

f = 1 + Q2 +H 2

r4
− M

r3
,

(21.3)

At = μ

(
1 − r0

r

)
, Ay = hx, Ax =Ar = 0,

where Q and H are the electric and magnetic charge of the black hole, respectively.
Here we chose the Landau gauge; the black hole chemical potential μ and the mag-
netic field h are given by

μ= gFQ

R2r0
, h= gFH

R4
, (21.4)

with r0 is the horizon radius determined by the largest positive root of the redshift
factor f (r0)= 0:

M = r3
0 + Q2 +H 2

r0
. (21.5)
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The boundary of the AdS is reached for r →∞. The geometry described by (21.2)–
(21.3) describes the boundary theory at finite density, i.e., a system in a charged
medium at the chemical potential μ= μbh and in transverse magnetic field h= hbh,
with charge, energy, and entropy densities given, respectively, by

ρ = 2
Q

κ2R2gF
, ε = M

κ2R4
, s = 2π

κ2

r2
0

R2
. (21.6)

The temperature of the system is identified with the Hawking temperature of the
black hole, TH ∼ |f ′(r0)|/4π ,

T = 3r0

4πR2

(
1 − Q2 +H 2

3r4
0

)
. (21.7)

Since Q and H have dimensions of [L]2, it is convenient to parametrize them as

Q2 = 3r4∗ , Q2 +H 2 = 3r4∗∗. (21.8)

In terms of r0, r∗ and r∗∗ the above expressions become

f = 1 + 3r4∗∗
r4

− r3
0 + 3r4∗∗/r0

r3
, (21.9)

with

μ=√
3gF

r2∗
R2r0

, h=√
3gF

√
r4∗∗ − r4∗
R4

. (21.10)

The expressions for the charge, energy and entropy densities, as well as for the
temperature are simplified as

ρ = 2
√

3

κ2gF

r2∗
R2

, ε = 1

κ2

r3
0 + 3r4∗∗/r0

R4
, s = 2π

κ2

r2
0

R2
,

(21.11)

T = 3

4π

r0

R2

(
1 − r4∗∗

r4
0

)
.

In the zero temperature limit, i.e., for an extremal black hole, we have

T = 0 → r0 = r∗∗, (21.12)

which in the original variables reads Q2 + H 2 = 3r4
0 . In the zero temperature

limit (21.12), the redshift factor f as given by (21.9) develops a double zero at
the horizon:

f = 6
(r − r∗∗)2

r2∗∗
+O

(
(r − r∗∗)3

)
. (21.13)
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As a result, near the horizon the AdS4 metric reduces to AdS2×R2 with the curvature
radius of AdS2 given by

R2 = 1√
6
R. (21.14)

This is a very important property of the metric, which considerably simplifies the
calculations, in particular in the magnetic field.

In order to scale away the AdS4 radius R and the horizon radius r0, we introduce
dimensionless variables

r → r0r, r∗ → r0r∗, r∗∗ → r0r∗∗,
(21.15)

M → r3
0M, Q→ r2

0Q, H → r2
0H,

and

(t,x)→ R2

r0
(t,x), AM → r0

R2
AM, ω→ r0

R2
ω,

μ→ r0

R2
μ, h→ r2

0

R4
h, T → r0

R2
T , (21.16)

ds2 →R2ds2.

Note that the scaling factors in the above equation that describes the quantities of
the boundary field theory involve the curvature radius of AdS4, not AdS2.

In the new variables we have

T = 3

4π

(
1 − r4∗∗

)= 3

4π

(
1 − Q2 +H 2

3

)
, f = 1 + 3r4∗∗

r4
− 1 + 3r4∗∗

r3
,

(21.17)

At = μ

(
1 − 1

r

)
, μ=√

3gF r
2∗ = gFQ, h= gFH,

and the metric is given by

ds2 = r2(−f dt2 + dx2 + dy2)+ 1

r2

dr2

f
, (21.18)

with the horizon at r = 1, and the conformal boundary at r →∞.
At T = 0, r∗∗ becomes unity, and the redshift factor develops the double zero

near the horizon,

f = (r − 1)2(r2 + 2r + 3)

r4
. (21.19)

As mentioned before, due to this fact the metric near the horizon reduces to
AdS2 × R2 where the analytical calculations are possible for small frequencies [8].
However, in the chiral limit m = 0, analytical calculations are also possible in the
bulk AdS4 [24], which we utilize in this paper.
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21.2.2 Holographic Fermions

To include the bulk fermions, we consider a spinor field ψ in the AdS4 of charge q
and mass m, which is dual to an operator O in the boundary CFT3 of charge q and
dimension

Δ= 3

2
+mR, (21.20)

with mR ≥− 1
2 and in dimensionless units corresponds to Δ= 3

2 +m. In the black
hole geometry, (21.2), the quadratic action for ψ reads as

Sψ = i

∫
d4x

√−g(ψ̄Γ MDMψ −mψ̄ψ
)
, (21.21)

where ψ̄ =ψ†Γ t , and

DM = ∂M + 1

4
ωabMΓ

ab − iqAM, (21.22)

where ωabM is the spin connection, and Γ ab = 1
2 [Γ a,Γ b]. Here, M and a, b denote

the bulk space-time and tangent space indices respectively, while μ,ν are indices
along the boundary directions, i.e. M = (r,μ). Gamma matrix basis (Minkowski
signature) is given in [8].

We will be interested in spectra and response functions of the boundary fermions
in the presence of magnetic field. This requires solving the Dirac equation in the
bulk [6, 7]:

(
Γ MDM −m

)
ψ = 0. (21.23)

From the solution of the Dirac equation at small ω, an analytic expression for the
retarded fermion Green’s function of the boundary CFT at zero magnetic field has
been obtained in [8]. Near the Fermi surface it reads as [8]:

GR(Ω,k)= (−h1vF )

ω− vF k⊥ −Σ(ω,T )
, (21.24)

where k⊥ = k − kF is the perpendicular distance from the Fermi surface in mo-
mentum space, h1 and vF are real constants calculated below, and the self-energy
Σ =Σ1 + iΣ2 is given by [8]

Σ(ω,T )/vF = T 2νg

(
ω

T

)
= (2πT )2νh2eiθ−iπν

Γ ( 1
2 + ν − iω

2πT + iμq
6 )

Γ ( 1
2 − ν − iω

2πT + iμq
6 )

, (21.25)

where ν is the zero temperature conformal dimension at the Fermi momentum,
ν ≡ νkF , given by (21.58), μq ≡ μq , h2 is a positive constant and the phase θ is
such that the poles of the Green’s function are located in the lower half of the com-
plex frequency plane. These poles correspond to quasinormal modes of the Dirac
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equation (21.23) and they can be found numerically solving F(ω∗) = 0 [25, 26],
with

F(ω)= k⊥
Γ ( 1

2 + ν − iω
2πT + iμq

6 )
− h2eiθ−iπν(2πT )2ν

Γ ( 1
2 − ν − iω

2πT + iμq
6 )

, (21.26)

The solution gives the full motion of the quasinormal poles ω(n)∗ (k⊥) in the complex
ω plane as a function of k⊥. It has been found in [8, 25, 26], that, if the charge of
the fermion is large enough compared to its mass, the pole closest to the real ω axis
bounces off the axis at k⊥ = 0 (and ω = 0). Such behavior is identified with the
existence of the Fermi momentum kF indicative of an underlying strongly coupled
Fermi surface.

At T = 0, the self-energy becomes T 2νg(ω/T )→ ckω
2ν , and the Green’s func-

tion obtained from the solution to the Dirac equation reads [8]

GR(Ω,k)= (−h1vF )

ω− vF k⊥ − h2vF eiθ−iπνω2ν
, (21.27)

where k⊥ =√
k2 − kF . The last term is determined by the IR AdS2 physics near the

horizon. Other terms are determined by the UV physics of the AdS4 bulk.
The solutions to (21.23) have been studied in detail in [6–8]. Here we simply

summarize the novel aspects due to the background magnetic field [27]

• The background magnetic field h introduces a discretization of the momentum:

k→ keff =
√

2|qh|l, with l ∈N, (21.28)

with Landau level index l [13, 14, 25, 26]. These discrete values of k are the
analogue of the well-known Landau levels that occur in magnetic systems.

• There exists a (non-invertible) mapping on the level of Green’s functions, from
the magnetic system to the non-magnetic one by sending

(H,Q,q) �→
(

0,
√
Q2 +H 2, q

√

1 − H 2

Q2 +H 2

)
. (21.29)

The Green’s functions in a magnetic system are thus equivalent to those in the
absence of magnetic fields. To better appreciate that, we reformulate (21.29) in
terms of the boundary quantities:

(h,μq,T ) �→
(

0,μq,T

(
1 − h2

12μ2

))
, (21.30)

where we used dimensionless variables defined in (21.15), (21.17). The magnetic
field thus effectively decreases the coupling constant q and increases the chem-
ical potential μ = gFQ such that the combination μq ≡ μq is preserved [12].
This is an important point as the equations of motion actually only depend on this
combination and not on μ and q separately [12]. In other words, (21.30) implies
that the additional scale brought about by the magnetic field can be understood as
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changing μ and T independently in the effective non-magnetic system instead of
only tuning the ratio μ/T . This point is important when considering the thermo-
dynamics.

• The discrete momentum keff = √
2|qh|l must be held fixed in the transforma-

tion (21.29). The bulk-boundary relation is particularly simple in this case, as the
Landau levels can readily be seen in the bulk solution, only to remain identical in
the boundary theory.

• Similar to the non-magnetic system [12], the IR physics is controlled by the near
horizon AdS2 × R2 geometry, which indicates the existence of an IR CFT, char-
acterized by operators Ol , l ∈N with operator dimensions δ = 1/2 + νl :

νl = 1

6

√

6

(
m2 + 2|qh|l

r2∗∗

)
− μ2

q

r4∗∗
, (21.31)

in dimensionless notation, and μq ≡ μq . At T = 0, when r∗∗ = 1, it becomes

νl = 1

6

√
6
(
m2 + 2|qh|l)−μ2

q . (21.32)

The Green’s function for these operators Ol is found to be G R
l (ω)∼ ω2νl and the

exponents νl determines the dispersion properties of the quasiparticle excitations.
For ν > 1/2 the system has a stable quasiparticle and a linear dispersion, whereas
for ν ≤ 1/2 one has a non-Fermi liquid with power-law dispersion and an unstable
quasiparticle.

21.3 Magnetic Fields and Conformal Invariance

Despite the fact that a magnetic field introduces a scale, in the absence of a chem-
ical potential, all spectral functions are essentially still determined by conformal
symmetry. To show this, we need to establish certain properties of the near-horizon
geometry of a Reissner-Nordström black hole. This leads to the AdS2 perspective
that was developed in [8]. The result relies on the conformal algebra and its rela-
tion to the magnetic group, from the viewpoint of the infrared CFT that was studied
in [8]. Later on we will see that the insensitivity to the magnetic field also carries
over to AdS4 and the UV CFT in some respects. To simplify the derivations, we
consider the case T = 0.

21.3.1 The Near-Horizon Limit and Dirac Equation in AdS2

It was established in [8] that an electrically charged extremal AdS-Reissner-
Nordström black hole has an AdS2 throat in the inner bulk region. This conclusion
carries over to the magnetic case with some minor differences. We will now give a
quick derivation of the AdS2 formalism for a dyonic black hole, referring the reader
to [8] for more details (that remain largely unchanged in the magnetic field).
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Near the horizon r = r∗∗ of the black hole described by the metric (21.2), the
redshift factor f (r) develops a double zero:

f (r)= 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3

)
. (21.33)

Now consider the scaling limit

r − r∗∗ = λ
R2

2

ζ
, t = λ−1τ, λ→ 0 with τ, ζ finite. (21.34)

In this limit, the metric (21.2) and the gauge field reduce to

ds2 = R2
2

ζ 2

(−dτ 2 + dζ 2)+ r2∗∗
R2

(
dx2 + dy2),

(21.35)

Aτ = μR2
2r0

r2∗∗
1

ζ
, Ax =Hx

where R2 = R√
6

. The geometry described by this metric is indeed AdS2 × R2. Phys-
ically, the scaling limit given in (21.34) with finite τ corresponds to the long time
limit of the original time coordinate t , which translates to the low frequency limit of
the boundary theory:

ω

μ
→ 0, (21.36)

where ω is the frequency conjugate to t . (One can think of λ as being the fre-
quency ω.) Near the AdS4 horizon, we expect the AdS2 region of an extremal dyonic
black hole to have a CFT1 dual. We refer to [8] for an account of this AdS2/CFT1
duality. The horizon of AdS2 region is at ζ → ∞ (coefficient in front of dτ van-
ishes at the horizon in (21.35)) and the infrared CFT (IR CFT) lives at the AdS2
boundary at ζ = 0. The scaling picture given by (21.34)–(21.35) suggests that in
the low frequency limit, the 2-dimensional boundary theory is described by this IR
CFT (which is a CFT1). The Green’s function for the operator O in the boundary
theory is obtained through a small frequency expansion and a matching procedure
between the two different regions (inner and outer) along the radial direction, and
can be expressed through the Green’s function of the IR CFT [8].

The explicit form for the Dirac equation in the magnetic field is of little interest
for the analytical results that follow. It can be found in [27]. Of primary interest is
its limit in the IR region with metric given by (21.35):

(
− 1√

gζζ
σ 3∂ζ −m+ 1√−gττ σ

1
(
ω+ μqR

2
2r0

r2∗∗ζ

)
− 1√

gii iσ 2λl

)
F (l) = 0,

(21.37)

where the effective momentum of the lth Landau level is λl = √
2|qh|l, μq ≡ μq

and we omit the index of the spinor field. To obtain (21.37), it is convenient to
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pick the gamma matrix basis as Γ ζ̂ =−σ3, Γ τ̂ = iσ1 and Γ î =−σ2. We can write
explicitly:

⎛

⎝
ζ
R2
∂ζ +m − ζ

R2
(ω+ μqR

2
2r0

r2∗∗ζ
)+ R

r∗∗ λl
ζ
R2
(ω+ μqR

2
2r0

r2∗∗ζ
)+ R

r∗∗ λl
ζ
R2
∂ζ −m

⎞

⎠
(
y

z

)
= 0. (21.38)

Note that the AdS2 radius R2 enters for the (τ, ζ ) directions. At the AdS2 boundary,
ζ → 0, the Dirac equation to the leading order is given by

ζ∂ζF
(l) =−UF(l), U =R2

⎛

⎝
m −μqR2r0

r2∗∗
+ R

r∗∗ λl
μqR2r0

r2∗∗
+ R

r∗∗ λl −m

⎞

⎠ . (21.39)

The solution to this equation is given by the scaling function F (l) = Ae+ζ−νl +
Be−ζ νl where e± are the real eigenvectors of U and the exponent is

νl = 1

6

√

6

(
m2 + R2

r2∗∗
2|qh|l

)
R2 − μ2

qR
4r2

0

r4∗∗
. (21.40)

The conformal dimension of the operator O in the IR CFT is δl = 1
2 + νl . Compar-

ing (21.40) to the expression for the scaling exponent in [8], we conclude that the
scaling properties and the AdS2 construction are unmodified by the magnetic field,
except that the scaling exponents are now fixed by the Landau quantization. This
“quantization rule” was already exploited in [25, 26] to study de Haas-van Alphen
oscillations.

21.4 Spectral Functions

In this section we will explore some of the properties of the spectral function, in
both plane wave and Landau level basis. We first consider some characteristic cases
in the plane wave basis and make connection with the ARPES measurements.

21.4.1 Relating to the ARPES Measurements

In reality, ARPES measurements cannot be performed in magnetic fields so the
holographic approach, allowing a direct insight into the propagator structure and the
spectral function, is especially helpful. This follows from the observation that the
spectral functions as measured in ARPES are always expressed in the plane wave
basis of the photon, thus in a magnetic field, when the momentum is not a good
quantum number anymore, it becomes impossible to perform the photoemission
spectroscopy.

In order to compute the spectral function, we have to choose a particular
fermionic plane wave as a probe. Since the separation of variables is valid through-
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out the bulk, the basis transformation can be performed at every constant r-slice.
This means that only the x and y coordinates have to be taken into account (the
plane wave probe lives only at the CFT side of the duality). We take a plane wave
propagating in the +x direction with spin up along the r-axis. In its rest frame such
a particle can be described by

Ψprobe = eiωt−ipxx
(
ξ

ξ

)
, ξ =

(
1
0

)
. (21.41)

Near the boundary (at rb →∞) we can rescale our solutions of the Dirac equation,
details can be found in [27]:

Fl =

⎛

⎜⎜⎜
⎜
⎝

ζ
(1)
l (x̃)

ξ
(l)
+ (rb)ζ

(1)
l (x̃)

ζ
(2)
l (x̃)

−ξ (l)+ (rb)ζ
(2)
l (x̃)

⎞

⎟⎟⎟
⎟
⎠
, F̃l =

⎛

⎜⎜⎜
⎜
⎝

ζ
(1)
l (x̃)

ξ
(l)
− (rb)ζ

(1)
l (x̃)

−ζ (2)l (x̃)

ξ
(l)
− (rb)ζ

(2)
l (x̃)

⎞

⎟⎟⎟
⎟
⎠
, (21.42)

with rescaled x̃ defined in [27]. This representation is useful since we calculate the
components ξ±(rb) related to the retarded Green’s function in our numerics (we
keep the notation of [8]).

Let Ol and Õl be the CFT operators dual to respectively Fl and F̃l , and c
†
k , ck

be the creation and annihilation operators for the plane wave state Ψprobe. Since the
states F and F̃ form a complete set in the bulk, we can write

c†
p(ω)=

∑

l

(
U∗
l , Ũ

∗
l

)
(

O†
l (ω)

Õ†
l (ω)

)

=
∑

l

(
U∗
l O†

l (ω)+ Ũ∗
l Õ†

l (ω)
)

(21.43)

where the overlap coefficients Ul(ω) are given by the inner product between Ψprobe
and F :

Ul(px)=
∫
dxF

†
l iΓ

0Ψprobe =−
∫
dxe−ipxxξ+(rb)

(
ζ
(1)†
l (x̃)− ζ

(2)†
l (x̃)

)
,

(21.44)
with F̄ = F †iΓ 0, and similar expression for Ũl involving ξ−(rb). The constants
Ul can be calculated analytically using the numerical value of ξ±(rb), and by not-
ing that the Hermite functions are eigenfunctions of the Fourier transform. We are
interested in the retarded Green’s function, defined as

GR
Ol
(ω,p) = −i

∫
dxdteiωt−ip·xθ(t)GR

Ol
(t, x)

GR
Ol
(t, x) = 〈0|[Ol (t, x), Ōl (0,0)

]|0〉 (21.45)

GR =
(
GO 0

0 G̃O

)
,

where G̃O is the retarded Green’s function for the operator Õ .
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Fig. 21.1 Two examples of spectral functions in the plane wave basis for μ/T = 50 and h/T = 1.
The conformal dimension is Δ= 5/4 (left) and Δ= 3/2 (right). Frequency is in the units of effec-
tive temperature Teff. The plane wave momentum is chosen to be k = 1. Despite the convolution
of many Landau levels, the presence of the discrete levels is obvious

Exploiting the orthogonality of the spinors created by O and O† and us-
ing (21.43), the Green’s function in the plane wave basis can be written as

GR
cp
(ω,px)=

∑

l

tr

(
U

Ũ

)(
U∗, Ũ∗)GR

= (∣∣Ul(px)
∣∣2GR

Ol
(ω, l)+ ∣∣Ũl(px)

∣∣2G̃R
Ol
(ω, l)

)
. (21.46)

In practice, we cannot perform the sum in (21.46) all the way to infinity, so we have
to introduce a cutoff Landau level lcut. In most cases we are able to make lcut large
enough that the behavior of the spectral function is clear.

Using the above formalism, we have produced spectral functions for two different
conformal dimensions and fixed chemical potential and magnetic field (Fig. 21.1).
Using the plane wave basis allows us to directly detect the Landau levels. The unit
used for plotting the spectra (here and later on in the paper) is the effective temper-
ature Teff [6]:

Teff = T

2

(
1 +

√

1 + 3μ2

(4πT )2

)
. (21.47)

This unit interpolates between μ at T/μ= 0 and T and is of or T/μ→ ∞, and is
convenient for the reason that the relevant quantities (e.g., Fermi momentum) are of
order unity for any value of μ and h.

21.4.2 Magnetic Crossover and Disappearance
of the Quasiparticles

Theoretically, it is more convenient to consider the spectral functions in the Landau
level basis. For definiteness let us pick a fixed conformal dimension Δ = 5

4 which
corresponds to m=− 1

4 . In the limit of weak magnetic fields, h/T → 0, we should
reproduce the results that were found in [6].
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In Fig. 21.2(A) we indeed see that the spectral function, corresponding to a low
value of μ/T , behaves as expected for a nearly conformal system. The spectral
function is approximately symmetric about ω = 0, it vanishes for |ω| < k, up to a
small residual tail due to finite temperature, and for |ω| � k it scales as ω2m.

In Fig. 21.2(B), which corresponds to a high value of μ/T , we see the emergence
of a sharp quasiparticle peak. This peak becomes the sharpest when the Landau
level l corresponding to an effective momentum keff = √

2|qh|l coincides with the
Fermi momentum kF . The peaks also broaden out when keff moves away from kF .
A more complete view of the Landau quantization in the quasiparticle regime is
given in Fig. 21.3, where we plot the dispersion relation (ω–k map). Both the sharp
peaks and the Landau levels can be visually identified.

Collectively, the spectra in Fig. 21.2 show that conformality is only broken by
the chemical potential μ and not by the magnetic field. Naively, the magnetic field
introduces a new scale in the system. However, this scale is absent from the spectral
functions, visually validating the discussion in the previous section that the scale h
can be removed by a rescaling of the temperature and chemical potential.

One thus concludes that there is some value h′c of the magnetic field, depending
on μ/T , such that the spectral function loses its quasiparticle peaks and displays
near-conformal behavior for h > h′c. The nature of the transition and the underlying
mechanism depends on the parameters (μq,T ,Δ). One mechanism, obvious from
the rescaling in (21.29), is the reduction of the effective coupling q as h increases.
This will make the influence of the scalar potential A0 negligible and push the sys-
tem back toward conformality. Generically, the spectral function shows no sharp
change but is more indicative of a crossover.

A more interesting phenomenon is the disappearance of coherent quasiparticles
at high effective chemical potentials. For the special case m= 0, we can go beyond
numerics and study this transition analytically, combining the exact T = 0 solution
found in [24] and the mapping (21.30). In the next section, we will show that the
transition is controlled by the change in the dispersion of the quasiparticle and corre-
sponds to a sharp phase transition. Increasing the magnetic field leads to a decrease
in phenomenological control parameter νkF . This can give rise to a transition to a
non-Fermi liquid when νkF ≤ 1/2, and finally to the conformal regime at h = h′c
when νkF = 0 and the Fermi surface vanishes.

21.4.3 Density of States

As argued at the beginning of this section, the spectral function can look quite dif-
ferent depending on the particular basis chosen. Though the spectral function is an
attractive quantity to consider due to connection with ARPES experiments, we will
also direct our attention to basis-independent and manifestly gauge invariant quan-
tities. One of them is the density of states (DOS), defined by

D(ω)=
∑

l

A(ω, l), (21.48)
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Fig. 21.2 Some typical examples of spectral functions A(ω,keff) vs. ω in the Landau basis,
keff = √

2|qh|n. The top four correspond to a conformal dimension Δ= 5
4 m= − 1

4 and the bot-

tom four to Δ= 3
2 (m= 0). In each plot we show different Landau levels, labelled by index n, as

a function of μ/T and h/T . The ratios take values (μ/T ,h/T )= (1,1), (50,1), (1,50), (50,50)
from left to right. Conformal case can be identified when μ/T is small regardless of h/T (plots
in the left panel). Nearly conformal behavior is seen when both μ/T and h/T are large. This
confirms our analytic result that the behavior of the system is primarily governed by μ. Departure
from the conformality and sharp quasiparticle peaks are seen when μ/T is large and h/T is small
in 21.2(B) and 21.2(F). Multiple quasiparticle peaks arise whenever keff = kF . This suggests the
existence of a critical magnetic field, beyond which the quasiparticle description becomes invalid
and the system exhibits a conformal-like behavior. As before, the frequency ω is in units of Teff
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Fig. 21.3 Dispersion relation ω vs. keff for μ/T = 50, h/T = 1 and Δ = 5
4 (m = − 1

4 ). The
spectral function A(ω,keff) is displayed as a density plot. (A) On a large energy and momentum
scale, we clearly sees that the peaks disperse almost linearly (ω ≈ vF k), indicating that we are in
the stable quasiparticle regime. (B) A zoom-in near the location of the Fermi surface shows clear
Landau quantization

Fig. 21.4 Density of states D(ω) for m = − 1
4 and (A) μ/T = 50, h/T = 1, and (B) μ/T = 1,

h/T = 1. Sharp quasiparticle peaks from the splitting of the Fermi surface are clearly visible
in (A). The case (B) shows square-root level spacing characteristic of a (nearly) Lorentz invariant
spectrum such as that of graphene

where the usual integral over the momentum is replaced by a sum since only discrete
values of the momentum are allowed.

In Fig. 21.4, we plot the density of states for two systems. We clearly see the
Landau splitting of the Fermi surface. A peculiar feature of these plots is that the
DOS seems to grow for negative values of ω. This, however, is an artefact of our
calculation. Each individual spectrum in the sum (21.48) has a finite tail that scales
as ω2m for large ω, so each term has a finite contribution for large values of ω.
When the full sum is performed, this fact implies that limω→∞D(ω) → ∞. The
relevant information on the density of states can be obtained by regularizing the
sum, which in practice is done by summing over a finite number of terms only, and
then considering the peaks that lie on top of the resulting finite-sized envelope. The
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physical point in Fig. 21.4(A) is the linear spacing of Landau levels, corresponding
to a non-relativistic system at finite density. This is to be contrasted with Fig. 21.4B
where the level spacing behaves as ∝√

h, appropriate for a Lorentz invariant system
and realized in graphene [28].

21.5 Fermi Level Structure at Zero Temperature

In this section, we solve the Dirac equation in the magnetic field for the special
case m = 0 (Δ = 3

2 ). Although there are no additional symmetries in this case, it
is possible to get an analytic solution. Using this solution, we obtain Fermi level
parameters such as kF and vF and consider the process of filling the Landau levels
as the magnetic field is varied.

21.5.1 Dirac Equation with m = 0

In the case m = 0, it is convenient to solve the Dirac equation including the spin
connection (see details in [27]) rather than scaling it out:

(
−

√
gii√
grr

σ 1∂r −
√
gii√−gtt σ

3(ω+ qAt)+
√
gii√−gtt σ

1 1

2
ωt̂r̂t

− σ 1 1

2
ωx̂r̂x − σ 1 1

2
ωŷr̂y − λl

)
⊗ 1

(
ψ1
ψ2

)
= 0, (21.49)

where λl =√
2|qh|l are the energies of the Landau levels l = 0,1, . . . , gii ≡ gxx =

gyy , At(r) is given by (21.3), and the gamma matrices are defined in [27]. In this
basis the two components ψ1 and ψ2 decouple. Therefore, in what follows we solve
for the first component only (we omit index 1). Substituting the spin connection, we
have [20]:
(
− r2√f

R2
σ 1∂r − 1√

f
σ 3(ω+ qAt)− σ 1 r

√
f

2R2

(
3 + rf ′

2f

)
− λl

)
ψ = 0, (21.50)

with ψ = (y1, y2). It is convenient to change to the basis
(
ỹ1
ỹ2

)
=

(
1 −i
−i 1

)(
y1
y2

)
, (21.51)

which diagonalizes the system into a second order differential equation for each
component. We introduce the dimensionless variables as in (21.15)–(21.17), and
make a change of the dimensionless radial variable:

r = 1

1 − z
, (21.52)
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with the horizon now being at z= 0, and the conformal boundary at z= 1. Perform-
ing these transformations in (21.50), the second order differential equations for ỹ1
reads

(
f ∂2

z +
(

3f

1 − z
+ f ′

)
∂z + 15f

4(1 − z)2
+ 3f ′

2(1 − z)
+ f ′′

4

+ 1

f

(
(ω+ qμz)± if ′

4

)2

− iqμ− λ2
l

)
ỹ1 = 0. (21.53)

The second component ỹ2 obeys the same equation with μ �→ −μ.
At T = 0,

f = 3z2(z− z0)(z− z̄0), z0 = 1

3
(4 + i

√
2). (21.54)

The solution of this fermion system at zero magnetic field and zero temperature
T = 0 has been found in [24]. To solve (21.53), we use the mapping to a zero
magnetic field system (21.29). The combination μq ≡ μq at non-zero h maps to
μq,eff ≡ μeffqeff at zero h as follows:

μq �→ q

√

1 − H 2

Q2 +H 2
· gF

√
Q2 +H 2 =√

3qgF

√

1 − H 2

3
= μq,eff (21.55)

where at T = 0 we used Q2 +H 2 = 3. We solve (21.53) for zero modes, i.e. ω= 0,
and at the Fermi surface λ= k, and implement (21.55).

Near the horizon (z= 0, f = 6z2), we have

6z2ỹ′′1;2 + 12zỹ′1;2 +
(

3

2
+ (μq,eff)

2

6
− k2

F

)
ỹ1;2 = 0, (21.56)

which gives the following behavior:

ỹ1;2 ∼ z−
1
2±νk , (21.57)

with the scaling exponent ν following from (21.32):

ν = 1

6

√
6k2 − (μq,eff)2, (21.58)

at the momentum k. Using Maple, we find the zero mode solution of (21.53) with a

regular behavior z− 1
2+ν at the horizon [20, 24]:

ỹ
(0)
1 = N1(z− 1)

3
2 z−

1
2+ν(z− z̄0)

− 1
2−ν

(
z− z0

z− z̄0

) 1
4 (−1−√

2μq,eff/z0)

× 2F1

(
1

2
+ ν −

√
2

3
μq,eff, ν + i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z− z̄0)

)
, (21.59)
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Fig. 21.5 Density of the zero mode ψ0†ψ0 vs. the radial coordinate z (the horizon is at z = 0
and the boundary is at z = 1) for different values of the magnetic field h for the first (with the

largest root for kF ) Fermi surface. We set gF = 1 (h→H ) and q = 15√
3

(μq,eff → 15
√

1 − H 2

3 ).

From right to left the values of the magnetic field are H = {0,1.40,1.50,1.60,1.63,1.65,1.68}.
The amplitudes of the curves are normalized to unity. At weak magnetic fields, the wave function
is supported away from the horizon while at strong fields it is supported near the horizon

and

ỹ
(0)
2 = N2(z− 1)

3
2 z−

1
2+ν(z− z̄0)

− 1
2−ν

(
z− z0

z− z̄0

) 1
4 (−1+√

2μq,eff/z0)

× 2F1

(
1

2
+ ν +

√
2

3
μq,eff, ν − i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z− z̄0)

)
, (21.60)

where 2F1 is the hypergeometric function and N1, N2 are normalization factors.
Since normalization factors are constants, we find their relative weight by substitut-
ing solutions given in (21.59) back into the first order differential equations at z∼ 0,

N1

N2
=−6iν +μq,eff√

6k

(
z0

z̄0

)μq,eff/
√

2z0

. (21.61)

The same relations are obtained when calculations are done for any z. The second

solution η̃(0)1;2, with behavior z− 1
2−ν at the horizon, is obtained by replacing ν →−ν

in (21.59).
To get insight into the zero-mode solution (21.59), we plot the radial profile for

the density function ψ(0)†ψ(0) for different magnetic fields in Fig. 21.5. The mo-
mentum chosen is the Fermi momentum of the first Fermi surface (see the next
section). The curves are normalized to have the same maxima. Magnetic field is
increased from right to left. At small magnetic field, the zero modes are supported
away from the horizon, while at large magnetic field, the zero modes are supported
near the horizon. This means that at large magnetic field the influence of the black
hole to the Fermi level structure becomes more important.
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21.5.2 Magnetic Effects on the Fermi Momentum and Fermi
Velocity

In the presence of a magnetic field there is only a true pole in the Green’s function
whenever the Landau level crosses the Fermi energy [25, 26]

2l|qh| = k2
F . (21.62)

As shown in Fig. 21.2, whenever the equation (21.62) is satisfied the spectral func-
tion A(ω) has a (sharp) peak. This is not surprising since quasiparticles can be easily
excited from the Fermi surface. From (21.62), the spectral function A(ω) and the
density of states on the Fermi surface D(ω) are periodic in 1

h
with the period

Δ

(
1

h

)
= 2πq

AF

, (21.63)

where AF = πk2
F is the area of the Fermi surface [25, 26]. This is a manifestation

of the de Haas-van Alphen quantum oscillations. At T = 0, the electronic proper-
ties of metals depend on the density of states on the Fermi surface. Therefore, an
oscillatory behavior as a function of magnetic field should appear in any quantity
that depends on the density of states on the Fermi energy. Magnetic susceptibility
[25, 26] and magnetization together with the superconducting gap [29] have been
shown to exhibit quantum oscillations. Every Landau level contributes an oscillating
term and the period of the lth level oscillation is determined by the value of the mag-
netic field h that satisfies (21.62) for the given value of kF . Quantum oscillations
(and the quantum Hall effect which we consider later in the paper) are examples of
phenomena in which Landau level physics reveals the presence of the Fermi sur-
face. The superconducting gap found in the quark matter in magnetic fields [29] is
another evidence for the existence of the (highly degenerate) Fermi surface and the
corresponding Fermi momentum.

Generally, a Fermi surface controls the occupation of energy levels in the sys-
tem: the energy levels below the Fermi surface are filled and those above are empty
(or non-existent). Here, however, the association to the Fermi momentum can be
obscured by the fact that the fermions form highly degenerate Landau levels. Thus,
in two dimensions, in the presence of the magnetic field the corresponding effective
Fermi surface is given by a single point in the phase space, that is determined by nF ,
the Landau index of the highest occupied level, i.e., the highest Landau level below
the chemical potential.2 Increasing the magnetic field, Landau levels ‘move up’ in
the phase space leaving only the lower levels occupied, so that the effective Fermi
momentum scales roughly (excluding interactions) as a square root of the magnetic
field, kF ∼√

nF ∼ kmax
F

√
1 − h/hmax. High magnetic fields drive the effective den-

sity of the charge carriers down, approaching the limit when the Fermi momentum
coincides with the lowest Landau level.

2We would like to thank Igor Shovkovy for clarifying the issue with the Fermi momentum in the
presence of the magnetic field.
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Many phenomena observed in the paper can thus be qualitatively explained by
Landau quantization. As discussed before, the notion of the Fermi momentum is lost
at very high magnetic fields. In what follows, the quantitative Fermi level structure
at zero temperature, described by kF and vF values, is obtained as a function of the
magnetic field using the solution of the Dirac equation given by (21.59), (21.60). As
in [12], we neglect first the discrete nature of the Fermi momentum and velocity in
order to obtain general understanding. Upon taking the quantization into account,
the smooth curves become combinations of step functions following the same trend
as the smooth curves (without quantization). While usually the grand canonical en-
semble is used, where the fixed chemical potential controls the occupation of the
Landau levels [30], in our setup, the Fermi momentum is allowed to change as the
magnetic field is varied, while we keep track of the IR conformal dimension ν.

The Fermi momentum is defined by the matching between IR and UV physics [8],
therefore it is enough to know the solution at ω = 0, where the matching is per-
formed. To obtain the Fermi momentum, we require that the zero mode solution

is regular at the horizon (ψ(0) ∼ z− 1
2+ν ) and normalizable at the boundary. At the

boundary z∼ 1, the wave function behaves as

a(1 − z)
3
2−m

(
1
0

)
+ b(1 − z)

3
2+m

(
0
1

)
. (21.64)

To require it to be normalizable is to set the first term a = 0; the wave function at
z∼ 1 is then

ψ(0) ∼ (1 − z)
3
2+m

(
0
1

)
. (21.65)

Equation (21.65) leads to the condition limz→1(z−1)−3/2(ỹ
(0)
2 + iỹ

(0)
1 )= 0, which,

together with (21.59), gives the following equation for the Fermi momentum as
function of the magnetic field [20, 24]

2F1(1 + ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

2F1(ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))
= 6ν − iμq,eff

kF (−2i +√
2)
,

(21.66)
with ν ≡ νkF given by (21.58). Using Mathematica to evaluate the hypergeometric
functions, we numerically solve the equation for the Fermi surface, which gives
effective momentum as if it were continuous, i.e. when quantization is neglected.
The solutions of (21.66) are given in Fig. 21.6. There are multiple Fermi surfaces
for a given magnetic field h. Here and in all other plots we choose gF = 1, therefore
h→H , and q = 15√

3
. In Fig. 21.6, positive and negative kF correspond to the Fermi

surfaces in the Green’s functions G1 and G2. The relation between two components
is G2(ω, k) = G1(ω,−k) [7], therefore Fig. 21.6 is not symmetric with respect
to the x-axis. Effective momenta terminate at the dashed line νkF = 0. Taking into
account Landau quantization of kF →√

2|qh|l with l = 1,2 . . . , the plot consists of
stepwise functions tracing the existing curves (we depict only positive kF ). Indeed
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Fig. 21.6 Effective momentum keff vs. the magnetic field h→ H (we set gF = 1, q = 15√
3

). As

we increase magnetic field the Fermi surface shrinks. Smooth solid curves represent situation as
if momentum is a continuous parameter (for convenience), stepwise solid functions are the real
Fermi momenta which are discretized due to the Landau level quantization: kF → √

2|qh|l with
l = 1,2, . . . where

√
2|qh|l are Landau levels given by dotted lines (only positive discrete kF are

shown). At a given h there are multiple Fermi surfaces. From right to left are the first, second etc.
Fermi surfaces. The dashed-dotted line is νkF = 0 where kF is terminated. Positive and negative
keff correspond to Fermi surfaces in two components of the Green’s function

Fig. 21.7 Landau level
numbers n corresponding to
the quantized Fermi momenta
vs. the magnetic field h→H

for the three Fermi surfaces
with positive kF . We set
gF = 1, q = 15√

3
. From right

to left are the first, second and
third Fermi surfaces

Landau quantization can be also seen from the dispersion relation at Fig. 21.3, where
only discrete values of effective momentum are allowed and the Fermi surface has
been chopped up as a result of it Fig. 21.3(B).

Our findings agree with the results for the (largest) Fermi momentum in a three-
dimensional magnetic system considered in [31], compare the stepwise dependence
kF (h) with Fig. 21.5 in [31].

In Fig. 21.7, the Landau level index l is obtained from kF (h)= √
2|qh|l where

kF (h) is a numerical solution of (21.66). Only those Landau levels which are below
the Fermi surface are filled. In Fig. 21.6, as we decrease magnetic field first nothing
happens until the next Landau level crosses the Fermi surface which corresponds to a
jump up to the next step. Therefore, at strong magnetic fields, fewer states contribute
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Fig. 21.8 Left panel. The IR conformal dimension ν ≡ νkF calculated at the Fermi momentum vs.
the magnetic field h→H (we set gF =1, q = 15√

3
). Calculations are done for the first Fermi surface.

Dashed line is for ν = 1
2 (at Hc = 1.70), which is the border between the Fermi liquids ν > 1

2 and
non-Fermi liquids ν < 1

2 . Right panel. Phase diagram in terms of the chemical potential and the
magnetic field μ2 + h2 = 3 (in dimensionless variables h = gFH , μ = gFQ; we set gF = 1).
Fermi liquids are above the dashed line (H <Hc) and non-Fermi liquids are below the dashed line
(H >Hc)

to transport properties and the lowest Landau level becomes more important (see the
next section). At weak magnetic fields, the sum over many Landau levels has to be
taken, ending with the continuous limit as h→ 0, when quantization can be ignored.

In Fig. 21.8, we show the IR conformal dimension as a function of the magnetic
field. We have used the numerical solution for kF . Fermi liquid regime takes place
at magnetic fields h < hc , while non-Fermi liquids exist in a narrow band at hc <
h < h′c , and at h′c the system becomes near-conformal.

In this figure we observe the pathway of the possible phase transition exhibited by
the Fermi surface (ignoring Landau quantization): it can vanish at the line νkF = 0,
undergoing a crossover to the conformal regime, or cross the line νkF = 1/2 and go
through a non-Fermi liquid regime, and subsequently cross to the conformal phase.
Note that the primary Fermi surface with the highest kF and νkF seems to directly
cross over to conformality, while the other Fermi surfaces first exhibit a “strange
metal” phase transition. Therefore, all the Fermi momenta with νkF > 0 contribute
to the transport coefficients of the theory. In particular, at high magnetic fields when
for the first (largest) Fermi surface k

(1)
F is nonzero but small, the lowest Landau

level n = 0 becomes increasingly important contributing to the transport with half
degeneracy factor as compared to the higher Landau levels.

In Fig. 21.9, we plot the Fermi momentum kF as a function of the magnetic field
for the first Fermi surface (the largest root of (21.66)). Quantization is neglected
here. At the left panel, the relatively small region between the dashed lines corre-
sponds to non-Fermi liquids 0 < ν < 1

2 . At large magnetic field, the physics of the
Fermi surface is captured by the near horizon region (see also Fig. 21.5) which is
AdS2 × R2. At the maximum magnetic field, Hmax = √

3 ≈ 1.73, when the black
hole becomes pure magnetically charged, the Fermi momentum vanishes when it
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Fig. 21.9 Fermi momentum kF vs. the magnetic field h→H (we set gF = 1, q = 15√
3

) for the first

Fermi surface. Left panel. The inner (closer to x-axis) dashed line is νkF = 0 and the outer dashed
line is νkF = 1

2 , the region between these lines corresponds to non-Fermi liquids 0 < νkF < 1
2 .

The dashed-dotted line is for the first Landau level k1 = √
2qH . The first Fermi surface hits

the border-line between a Fermi and non-Fermi liquids ν = 1
2 at Hc ≈ 1.70, and it vanishes at

Hmax = √
3 = 1.73. Right panel. Circles are the data points for the Fermi momentum calculated

analytically, solid line is a fit function kmax
F

√
1 − H 2

3 with kmax
F = 12.96

crosses the line νkF = 0. This only happens for the first Fermi surface. For the higher
Fermi surfaces the Fermi momenta terminate at the line νkF = 0, Fig. 21.6. Note the
Fermi momentum for the first Fermi surface can be almost fully described by a func-

tion kF = kmax
F

√
1 − H 2

3 . It is tempting to view the behavior kF ∼ √
Hmax −H as

a phase transition in the system although it strictly follows from the linear scaling
for H = 0 by using the mapping (21.29). (Note that also μ= gFQ= gF

√
3 −H 2.)

Taking into account the discretization of kF , the plot will consist of an array of
step functions tracing the existing curve. Our findings agree with the results for
the Fermi momentum in a three dimensional magnetic system considered in [31],
compare with Fig. 21.5 there.

The Fermi velocity given in (21.27) is defined by the UV physics; therefore so-
lutions at non-zero ω are required. The Fermi velocity is extracted from matching
two solutions in the inner and outer regions at the horizon. The Fermi velocity as
function of the magnetic field for ν > 1

2 is [20, 24]

vF = 1

h1

(∫ 1

0
dz

√
g/gttψ

(0)†ψ(0)
)−1

lim
z→1

|ỹ(0)1 + iỹ
(0)
2 |2

(1 − z)3
,

(21.67)

h1 = lim
z→1

ỹ
(0)
1 + iỹ

(0)
2

∂k(
˜

y
(0)
2 + iỹ

(0)
1 )

,

where the zero mode wavefunction is taken at kF (21.59).
We plot the Fermi velocity for several Fermi surfaces in Fig. 21.10. Quantization

is neglected here. The Fermi velocity is shown for ν > 1
2 . It is interesting that the

Fermi velocity vanishes when the IR conformal dimension is νkF = 1
2 . Formally,

it follows from the fact that vF ∼ (2ν − 1) [8]. The first Fermi surface is at the
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Fig. 21.10 Fermi velocity vF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the

regime of Fermi liquids ν ≥ 1
2 . Fermi velocity vanishes at νkF = 1

2 (x-axis). For the first Fermi
surface, the top curve, Fermi velocity vanishes at Hc ≈ 1.70. The region H <Hc corresponds to
the Fermi liquids and quasiparticle description. The multiple lines are for various Fermi surfaces
in ascending order, with the first Fermi surface on the right. The Fermi velocity vF has the same
sign as the Fermi momentum kF . As above, positive and negative vF correspond to Fermi surfaces
in the two components of the Green’s function

far right. Positive and negative vF correspond to the Fermi surfaces in the Green’s
functions G1 and G2, respectively. The Fermi velocity vF has the same sign as the
Fermi momentum kF . At small magnetic field values, the Fermi velocity is very
weakly dependent on H and it is close to the speed of light; at large magnetic field
values, the Fermi velocity rapidly decreases and vanishes (at Hc = 1.70 for the
first Fermi surface). Geometrically, this means that with increasing magnetic field
the zero mode wavefunction is supported near the black hole horizon Fig. 21.5,
where the gravitational redshift reduces the local speed of light as compared to the
boundary value. It was also observed in [8, 24] at small fermion charge values.

21.6 Hall and Longitudinal Conductivities

In this section, we calculate the contributions to Hall σxy and the longitudinal σxx
conductivities directly in the boundary theory. This should be contrasted with the
standard holographic approach, where calculations are performed in the (bulk) grav-
ity theory and then translated to the boundary field theory using the AdS/CFT dic-
tionary. Specifically, the conductivity tensor has been obtained in [11] by calculating
the on-shell renormalized action for the gauge field on the gravity side and using the
gauge/gravity duality AM → jμ to extract the R charge current-current correlator
at the boundary. Here, the Kubo formula involving the current-current correlator is
used directly by utilizing the fermion Green’s functions extracted from holography
in [8]. Therefore, the conductivity is obtained for the charge carriers described by
the fermionic operators of the boundary field theory.
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The use of the conventional Kubo formula to extract the contribution to the trans-
port due to fermions is validated in that it also follows from a direct AdS/CFT com-
putation of the one-loop correction to the on-shell renormalized AdS action [17].
We study in particular stable quasiparticles with ν > 1

2 and at zero temperature.
This regime effectively reduces to the clean limit where the imaginary part of the
self-energy vanishes ImΣ → 0. We use the gravity-“dressed” fermion propagator
from (21.27) and to make the calculations complete, the “dressed” vertex is nec-
essary, to satisfy the Ward identities. As was argued in [17], the boundary vertex
which is obtained from the bulk calculations can be approximated by a constant in
the low temperature limit. Also, according to [32, 33], the vertex only contains sin-
gularities of the product of the Green’s functions. Therefore, dressing the vertex will
not change the dependence of the DC conductivity on the magnetic field [32, 33].
In addition, the zero magnetic field limit of the formulae for conductivity obtained
from holography [17] and from direct boundary calculations [20] are identical.

21.6.1 Integer Quantum Hall Effect

Let us start from the “dressed” retarded and advanced fermion propagators [8]:
GR is given by (21.27) and GA = G∗

R . To perform the Matsubara summation we
use the spectral representation

G(iωn,k)=
∫

dω

2π

A(ω,k)
ω− iωn

, (21.68)

with the spectral function defined asA(ω,k)=− 1
π

ImGR(ω,k)= 1
2πi (GR(ω,k)−

GA(ω,k)). Generalizing to a non-zero magnetic field and spinor case [30], the spec-
tral function [34] is

A(ω,k)= 1

π
e−

k2
|qh|

∞∑

l=0

(−1)l(−h1vF )

×
(

Σ2(ω, kF )f (k)γ 0

(ω+ εF +Σ1(ω, kF )−El)2 +Σ2(ω, kF )2
+ (El →−El)

)
,

(21.69)

where εF = vF kF is the Fermi energy, El = vF
√

2|qh|l is the energy of the Lan-

dau level, f (k)= P−Ll(
2k2

|qh| )− P+Ll−1(
2k2

|qh| ) with spin projection operators P± =
(1 ± iγ 1γ 2)/2, we take c= 1, the generalized Laguerre polynomials are Lα

n(z) and
by definition Ln(z) = L0

n(z), (we omit the vector part kγ , it does not contribute
to the DC conductivity), all γ ’s are the standard Dirac matrices, h1, vF and kF
are real constants (we keep the same notations for the constants as in [8]). The
self-energy Σ ∼ ω2νkF contains the real and imaginary parts, Σ =Σ1 + iΣ2. The
imaginary part comes from scattering processes of a fermion in the bulk, e.g. from
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pair creation, and from the scattering into the black hole. It is exactly due to in-
elastic/dissipative processes that we are able to obtain finite values for the transport
coefficients, otherwise they are formally infinite.

Using the Kubo formula, the DC electrical conductivity tensor is

σij (Ω)= lim
Ω→0

ImΠR
ij

Ω + i0+ , (21.70)

where Πij (iΩm → Ω + i0+) is the retarded current-current correlation function;
schematically the current density operator is j i(τ,x)=qvF

∑
σ ψ̄σ (τ,x)γ iψσ (τ,x).

Neglecting the vertex correction, it is given by

Πij (iΩm)= q2v2
F T

∞∑

n=−∞

∫
d2k

(2π)2
tr
(
γ iG(iωn,k)γ jG(iωn + iΩm,k)

)
. (21.71)

The sum over the Matsubara frequency is

T
∑

n

1

iωn −ω1

1

iωn + iΩm −ω2
= n(ω1)− n(ω2)

iΩm +ω1 −ω2
. (21.72)

Taking iΩm →Ω + i0+, the polarization operator is now

Πij (Ω)= dω1

2π

dω2

2π

nFD(ω1)− nFD(ω2)

Ω +ω1 −ω2

∫
d2k

(2π)2
tr
(
γ iA(ω1,k)γ jA(ω2,k)

)
,

(21.73)

where the spectral function A(ω,k) is given by (21.69) and nFD(ω) is the Fermi-
Dirac distribution function. Evaluating the traces, we have

σij =−4q2v2
F (h1vF )

2|qh|
πΩ

× Re
∞∑

l,k=0

(−1)l+k+1{δij (δl,k−1 + δl−1,k)+ iεij sgn(qh)(δl,k−1 − δl−1,k)
}

×
∫

dω1

2π

(
tanh

ω1

2T
− tanh

ω2

2T

)(
Σ2(ω1)

(ω̃1 −El)2 +Σ2
2 (ω1)

+ (El →−El)

)

×
(

Σ2(ω2)

(ω̃2 −Ek)2 +Σ2
2 (ω2)

+ (Ek →−Ek)

)
, (21.74)

with ω2 = ω1 +Ω . We have also introduced ω̃1;2 ≡ ω1;2 + εF +Σ1(ω1;2) with εij
being the antisymmetric tensor (ε12 = 1), and Σ1;2(ω) ≡ Σ1;2(ω, kF ). In the mo-
mentum integral, we use the orthogonality condition for the Laguerre polynomials∫∞

0 dxexLl(x)Lk(x)= δlk .
From (21.74), the term symmetric/antisymmetric with respect to exchange ω1 ↔

ω2 contributes to the diagonal/off-diagonal component of the conductivity (note the
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antisymmetric term nFD(ω1)− nFD(ω2)). The longitudinal and Hall DC conductiv-
ities (Ω → 0) are thus

σxx = −2q2(h1vF )
2|qh|

πT

∫ ∞

−∞
dω

2π

Σ2
2 (ω)

cosh2 ω
2T

×
∞∑

l=0

(
1

(ω̃−El)2 +Σ2
2 (ω)

+ (El →−El)

)

×
(

1

(ω̃−El+1)2 +Σ2
2 (ω)

+ (El+1 →−El+1)

)
, (21.75)

σxy = −q2(h1vF )
2 sgn(qh)

π
νh,

(21.76)

νh = 2
∫ ∞

−∞
dω

2π
tanh

ω

2T
Σ2(ω)

∞∑

l=0

αl

(
1

(ω̃−El)2 +Σ2
2 (ω)

+ (El →−El)

)
,

where ω̃ = ω + εF + Σ1(ω). The filling factor νh is proportional to the density
of carriers: |νh| = π

|qh|h1vF
n (see derivation in [27]). The degeneracy factor of the

Landau levels is αl : α0 = 1 for the lowest Landau level and αl = 2 for l = 1,2 . . . .
Substituting the filling factor νh back to (21.76), the Hall conductivity can be writ-
ten as

σxy = ρ

h
, (21.77)

where ρ is the charge density in the boundary theory, and both the charge q and the
magnetic field h carry a sign (the prefactor (−h1vF ) comes from the normalization
choice in the fermion propagator (21.27), (21.69) as given in [8], which can be
regarded as a factor contributing to the effective charge and is not important for
further considerations). The Hall conductivity (21.77) has been obtained using the
AdS/CFT duality for the Lorentz invariant 2+1-dimensional boundary field theories
in [11]. We recover this formula because in our case the translational invariance is
maintained in the x and y directions of the boundary theory.

Low frequencies give the main contribution in the integrand of (21.76). Since
the self-energy satisfies Σ1(ω)∼Σ2(ω)∼ ω2ν and we consider the regime ν > 1

2 ,
we have Σ1 ∼Σ2 → 0 at ω ∼ 0 (self-energy goes to zero faster than the ω term).
Therefore, only the simple poles in the upper half-plane ω0 =−εF ±El+Σ1 + iΣ2

contribute to the conductivity where Σ1 ∼Σ2 ∼ (−εF ±El)
2ν are small. The same

logic of calculation has been used in [30]. We obtain for the longitudinal and Hall
conductivities

σxx = 2q2(h1vF )
2Σ2

πT
×

(
1

1 + cosh εF
T

+
∞∑

l=1

4l
1 + cosh εF

T
cosh El

T

(cosh εF
T

+ cosh El

T
)2

)

, (21.78)
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σxy = q2(h1vF )
2sgn(qh)

π
× 2

(

tanh
εF

2T
+

∞∑

l=1

(
tanh

εF +El

2T
+ tanh

εF −El

2T

))

,

(21.79)

where the Fermi energy is εF = vF kF and the energy of the Landau level is El =
vF

√
2|qh|l. Similar expressions were obtained in [30]. However, in our case the

filling of the Landau levels is controlled by the magnetic field h through the field-
dependent Fermi energy vF (h)kF (h) instead of the chemical potential μ.

At T = 0, cosh ω
T

→ 1
2 e

ω
T and tanh ω

2T = 1 − 2nFD(ω) → sgnω. Therefore the
longitudinal and Hall conductivities are

σxx = 2q2(h1vF )
2Σ2

πT

∞∑

l=1

lδεF ,El
= 2q2(h1vF )

2Σ2

πT
× nδεF ,En, (21.80)

σxy = q2(h1vF )
2sgn(qh)

π
2

(

1 + 2
∞∑

l=1

θ(εF −El)

)

= q2(h1vF )
2sgn(qh)

π
× 2(1 + 2n)θ(εF −En)θ(En+1 − εF ), (21.81)

where the Landau level index runs n= 0,1, . . . . It can be estimated as n= [ k2
F

2|qh| ]
when vF �= 0 ([ ] denotes the integer part), with the average spacing between the
Landau levels given by the Landau energy vF

√
2|qh|. Note that εF ≡ εF (h). We

can see that (21.81) expresses the integer quantum Hall effect (IQHE). At zero
temperature, as we dial the magnetic field, the Hall conductivity jumps from one
quantized level to another, forming plateaus given by the filling factor

νh =±2(1 + 2n)=±4

(
n+ 1

2

)
, (21.82)

with n = 0,1, . . . . (Compare to the conventional Hall quantization νh = ±4n, that
appears in thick graphene.) Plateaus of the Hall conductivity at T = 0 follow from
the stepwise behavior of the charge density ρ in (21.77):

ρ ∼ 4

(
n+ 1

2

)
θ(εF −En)θ(En+1 − εF ), (21.83)

where n Landau levels are filled and contribute to ρ. The longitudinal conductivity
vanishes except precisely at the transition point between the plateaus. In Fig. 21.11,
we plot the longitudinal and Hall conductivities at T = 0, using only the terms after
× sign in (21.79). In the Hall conductivity, plateau transition occurs when the Fermi
level (in Fig. 21.11) of the first Fermi surface εF = vF (h)kF (h) (Fig. 21.9) crosses
the Landau level energy as we vary the magnetic field. By decreasing the magnetic
field, the plateaus become shorter and increasingly more Landau levels contribute to
the Hall conductivity. This happens because of two factors: the Fermi level moves
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Fig. 21.11 Hall conductivity σxy and longitudinal conductivity σxx vs. the magnetic field h→H

at T = 0 (we set gF = 1, q = 15√
3

). Left panel is for IQHE. Right panel is for FQHE. At strong

magnetic fields, the Hall conductivity plateau νh = 4 appears together with plateaus νh = 2 and
νh = 6 in FQHE (details are in [27]). Irregular pattern in the length of the plateaus for FQHE is
observed in experiments on thin films of graphite at strong magnetic fields [28]

up and the spacing between the Landau levels becomes smaller. This picture does
not depend on the Fermi velocity as long as it is nonzero.

21.6.2 Fractional Quantum Hall Effect

In [27], using the holographic description of fermions, we obtained the filling factor
at strong magnetic fields

νh =±2j, (21.84)

where j is the effective Landau level index. Equation (21.84) expresses the frac-
tional quantum Hall effect (FQHE). In the quasiparticle picture, the effective index
is integer j = 0,1,2, . . . , but generally it may be fractional. In particular, the fill-
ing factors ν = 2/m where m = 1,2,3, . . . have been proposed by Halperin [35]
for the case of bound electron pairs, i.e. 2e-charge bosons. Indeed, QED becomes
effectively confining in ultraquantum limit at strong magnetic field, and the electron
pairing is driven by the Landau level quantization and gives rise to 2e bosons. In
our holographic description, quasiparticles are valid degrees of freedom only for
ν > 1/2, i.e. for weak magnetic field. At strong magnetic field, poles of the fermion
propagator should be taken into account in calculation of conductivity. This will
probably result in a fractional filling factor. Our pattern for FQHE Fig. 21.11 resem-
bles the one obtained by Kopelevich in Fig. 3 [36] which has been explained using
the fractional filling factor of Halperin [35].

The somewhat regular pattern behind the irregular behavior can be understood
as a consequence of the appearance of a new energy scale: the average distance
between the Fermi levels. For the case of Fig. 21.11, we estimate it to be 〈ε(m)F −
ε
(m+1)
F 〉 = 4.9 with m = 1,2. The authors of [30] explain the FQHE through the
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opening of a gap in the quasiparticle spectrum, which acts as an order parameter
related to the particle-hole pairing and is enhanced by the magnetic field (magnetic
catalysis). Here, the energy gap arises due to the participation of multiple Fermi
surfaces.

A pattern for the Hall conductivity that is strikingly similar to Fig. 21.11 arises in
the AA and AB-stacked bilayer graphene, which has different transport properties
from the monolayer graphene [37], compare with Figs. 2, 5 there. It is remarkable
that the bilayer graphene also exhibits the insulating behavior in a certain parameter
regime. This agrees with our findings of metal-insulating transition in our system.

21.7 Conclusions

We have studied strongly coupled electron systems in the magnetic field focussing
on the Fermi level structure, using the AdS/CFT correspondence. These systems are
dual to Dirac fermions placed in the background of the electrically and magnetically
charged AdS-Reissner-Nordström black hole. At strong magnetic fields the dual
system “lives” near the black hole horizon, which substantially modifies the Fermi
level structure. As we dial the magnetic field higher, the system exhibits the non-
Fermi liquid behavior and then crosses back to the conformal regime. In our analysis
we have concentrated on the Fermi liquid regime and obtained the dependence of
the Fermi momentum kF and Fermi velocity vF on the magnetic field. Remarkably,
kF exhibits the square root behavior, with vF staying close to the speed of light in
a wide range of magnetic fields, while it rapidly vanishes at a critical magnetic field
which is relatively high. Such behavior indicates that the system may have a phase
transition.

The magnetic system can be rescaled to a zero-field configuration which is ther-
modynamically equivalent to the original one. This simple result can actually be
seen already at the level of field theory: the additional scale brought about by the
magnetic field does not show up in thermodynamic quantities meaning, in particu-
lar, that the behavior in the vicinity of quantum critical points is expected to remain
largely uninfluenced by the magnetic field, retaining its conformal invariance. In the
light of current condensed matter knowledge, this is surprising and might in fact be
a good opportunity to test the applicability of the probe limit in the real world: if
this behavior is not seen, this suggests that one has to include the backreaction to
metric to arrive at a realistic description.

In the field theory frame, we have calculated the DC conductivity using kF and
vF values extracted from holography. The holographic calculation of conductivity
that takes into account the fermions corresponds to the corrections of subleading
order in 1/N in the field theory and is very involved [17]. As we are not interested
in the vertex renormalization due to gravity (it does not change the magnetic field
dependence of the conductivity), we have performed our calculations directly in the
field theory with AdS gravity-dressed fermion propagators. Instead of controlling
the occupancy of the Landau levels by changing the chemical potential (as is usual
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in non-holographic setups), we have controlled the filling of the Landau levels by
varying the Fermi energy level through the magnetic field. At zero temperature, we
have reproduced the integer QHE of the Hall conductivity, which is observed in
graphene at moderate magnetic fields. While the findings on equilibrium physics
(Landau quantization, magnetic phase transitions and crossovers) are within expec-
tations and indeed corroborate the meaningfulness of the AdS/CFT approach as
compared to the well-known facts, the detection of the QHE is somewhat surpris-
ing as the spatial boundary effects are ignored in our setup. We plan to address this
question in further work.

Interestingly, at large magnetic fields we obtain the correct formula for the fill-
ing factor characteristic for FQHE. Moreover our pattern for FQHE resembles the
one obtained in [36] which has been explained using the fractional filling factor of
Halperin [35]. In the quasiparticle picture, which we have used to calculate Hall
conductivity, the filling factor is integer. In our holographic description, quasiparti-
cles are valid degrees of freedom only at weak magnetic field. At strong magnetic
field, the system exhibits non-Fermi liquid behavior. In this case, the poles of the
fermion propagator should be taken into account to calculate the Hall conductivity.
This can probably result in a fractional filling factor. We leave it for future work.

Notably, the AdS-Reissner-Nordström black hole background gives a vanishing
Fermi velocity at high magnetic fields. It happens at the point when the IR confor-
mal dimension of the corresponding field theory is ν = 1

2 , which is the borderline
between the Fermi and non-Fermi liquids. Vanishing Fermi velocity was also ob-
served at high enough fermion charge [24]. As in [24], it is explained by the red shift
on the gravity side, because at strong magnetic fields the fermion wavefunction is
supported near the black hole horizon modifying substantially the Fermi velocity. In
our model, vanishing Fermi velocity leads to zero occupancy of the Landau levels
by stable quasiparticles that results in vanishing regular Fermi liquid contribution
to the Hall conductivity and the longitudinal conductivity. The dominant contribu-
tion to both now comes from the non-Fermi liquid and conformal contributions.
We associate such change in the behavior of conductivities with a metal-“strange
metal” phase transition. Experiments on highly oriented pyrolitic graphite support
the existence of a finite “offset” magnetic field hc at T = 0 where the resistivity
qualitatively changes its behavior [38–41]. At T �= 0, it has been associated with the
metal-semiconducting phase transition [38–41]. It is worthwhile to study the tem-
perature dependence of the conductivity in order to understand this phase transition
better.
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Chapter 22
A Review of Magnetic Phenomena
in Probe-Brane Holographic Matter

Oren Bergman, Johanna Erdmenger, and Gilad Lifschytz

22.1 Introduction

The behavior of strongly interacting matter subject to background magnetic fields
is an interesting and physically relevant problem in many different scenarios, rang-
ing from the effective 2d electron gas in graphene, to magnetars, which are neu-
tron stars with a strong magnetic field. Magnetic fields give rise to a rich array of
phenomena. Some examples in QCD are the magnetic catalysis of chiral symme-
try breaking [1–3], anomaly-driven phases of baryonic matter [4], and the chiral
magnetic effect [5]. It has also been suggested that magnetic fields induce ρ-meson
condensation and superconductivity in the QCD vacuum [6, 7]. There are also many
interesting examples in condensed matter physics, most notably the fractional quan-
tum Hall effect [8, 9].

Gauge/gravity duality, also known as holographic duality, has emerged in recent
years as a particularly useful approach to strong-coupling dynamics. Although it
does not seem to be directly applicable to physical systems, this approach can be
used to study theoretical systems that exhibit the same type of phenomena, and
that capture some of the relevant physics. The techniques of holographic duality
are especially efficient in addressing questions associated with finite temperature
and density, background fields and transport properties, that are difficult to study
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using other non-perturbative methods. This approach can also lead to new ideas for
constructing effective theories of the physical phenomena one is interested in.

Holographic models are divided into two main types, commonly referred to as
top-down models and bottom-up models. In top-down models the bulk gravitational
description of the system corresponds to a consistent solution of a well-defined
quantum gravity theory, either in the context of the full string theory or in terms
of the low-energy effective supergravity theory. This then defines some particular
strong-coupling boundary dynamics. In bottom-up models, on the other hand, one
builds into the description what one needs in order to produce the desired boundary
dynamics. Each approach has advantages and disadvantages. Top-down models are
more firmly grounded than bottom-up models, however they are more restrictive in
terms of the variety and scope of phenomena they can exhibit.

Probe-brane models are a class of top-down holographic models, in which matter
fields transforming in the fundamental representation of a gauge group are incorpo-
rated by embedding “flavor” D-branes in the gravitational background dual to the
gauge theory [10]. These branes are treated as probes, in the sense that we neglect
their backreaction on the background. (This corresponds to the ‘quenched’ approx-
imation in the dual gauge theory, where matter loops are neglected in computing
gluon amplitudes.) The matter fields are manifest in this construction: they corre-
spond to the open strings between the flavor branes and the “color” branes that make
up the background. In particular, one can easily design probe brane models in which
the light matter degrees of freedom are purely fermionic, which is obviously a de-
sirable feature for many physical systems, including QCD and condensed matter
electron systems.

The matter dynamics is determined by the properties of the probe brane embed-
ding. In particular, the fluctuations of the probe brane worldvolume fields corre-
spond to gauge-invariant composite operators that describe the mesonic states of the
matter system. There are generically two types of embeddings at finite temperature:
“BH embeddings”, in which the brane extends to the horizon of the background,
and “MN embeddings”, in which the brane terminates outside the horizon. The two
embedding types describe different phases of the matter in the dual gauge theory.
For example, in the MN phase the mesons are stable since they are associated with
real eigenfrequencies of the probe brane fluctuations. In the BH phase, on the other
hand, some of the energy of the fluctuations is dissipated into the black hole, lead-
ing to complex eigenfrequencies and damping. In this case the mesons have a finite
lifetime. MN embeddings are favored at low temperature, and as the temperature is
increased one generically observes a first order phase transition to a BH embedding.

The most extensively studied probe-brane models are the D3–D7 model [10],
in which D7-branes are added to the D3-brane background, and the D4–D8 (or
Sakai-Sugimoto) model [11], in which D8-branes and anti-D8-branes are added
to the background of D4-branes compactified on a circle. Both models describe
a strongly-coupled gauge theory in four dimensions with fundamental matter de-
grees of freedom, and both exhibit a number of phenomena similar to QCD. More
recently, a different D3–D7 system, more closely related to the D4–D8 system, has
been used as a model of strongly-interacting fermionic matter in three spacetime di-
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mensions [12–15]. We will refer to this as the D3–D7’ model. This model exhibits
several interesting phenomena that are familiar in planar condensed matter systems.

Probe-brane models are especially well-designed to study the properties of the
dual matter systems at non-zero density and in background electromagnetic fields.
Both are implemented by turning on specific components of the probe-brane world-
volume gauge field, and solving the resulting coupled differential equations for the
embedding and the gauge fields. Here one observes another basic difference be-
tween the two types of embeddings in terms of their response to a background elec-
tric field. MN embeddings correspond to electrical insulators with a mass-gap to
charged excitations, and BH embeddings describe gapless conductors.

Probe-brane models also exhibit a number of interesting phenomena in a back-
ground magnetic field, which are qualitatively similar to the phenomena listed in
the beginning. In this paper we will review how each of the three models mentioned
above respond at non-zero density to a background magnetic field in various sit-
uations. In particular, we will encounter the magnetic catalysis effect in both the
D3–D7 and D4–D8 models. In the D3–D7 model we will also demonstrate the
formation of a superfluid state. In the D4–D8 model we will describe anomaly-
generated currents and baryonic states, as well as a metamagnetic-like transition. In
the D3–D7’ model we will see both quantum and anomalous Hall effects, as well as
how the magnetic field influences the instability to the formation of stripes, and the
zero-sound mode.

This paper is divided into three main sections, reviewing each of the probe-brane
models in turn. For completeness let us mention that magnetic fields also play an
important role in the related D3–D5 system, where the probe D5-brane corresponds
to additional (2 + 1)-dimensional degrees of freedom in the dual gauge theory. In
this model, the magnetic field leads to a phase transition of Berezinskii-Kosterlitz-
Thouless (BKT) type [16, 17]. For brevity we do not discuss this model in this
review.

22.2 The D3–D7 Model

22.2.1 Brane Construction

The starting point for this model is the usual configuration of the AdS/CFT cor-
respondence [18] which involves a stack of N D3 branes. This has an open string
interpretation in which the low-energy degrees of freedom are described by U(N)

N = 4 super-Yang-Mills theory. On the other hand, in the closed string interpre-
tation of N D3 branes, the low-energy near-horizon limit gives rise to the space
AdS5 × S5. Identifying the two pictures leads to the AdS/CFT correspondence.

Let us now add Nf probe D7-branes to this configuration, as first done in [10]
and reviewed in detail in [19]. Within (9+ 1)-dimensional flat space, the D3-branes
are extended along the 0123 directions, whereas the D7-branes are extended along
the 01234567 directions. This configuration preserves 1/4 of the total amount of
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supersymmetry in type IIB string theory (corresponding to 8 real supercharges) and
has an SO(4)× SO(2) isometry in the directions transverse to the D3-branes. The
SO(4) rotates x4, x5, x6, x7, while the SO(2) group acts on x8, x9. Separating the
D3-branes from the D7-branes in the (8,9) directions by a distance l explicitly
breaks the SO(2) group. These geometrical symmetries are also present in the dual
field theory: The dual field theory is an N = 2 supersymmetric (3+1)-dimensional
theory in which the degrees of freedom of N = 4 super-Yang-Mills theory are
coupled to Nf hypermultiplets of flavor fields with fermions and scalars (ψi, q

n),
i = 1,2, n= 1,2, which transform in the fundamental representation of the gauge
group. Separating the D7-branes from the D3-branes corresponds to giving a mass
to the hypermultiplets.

For massless flavor fields, the Lagrangian is classically invariant under con-
formal transformations SO(4,2).1 Moreover, the theory is invariant under the
R-symmetries SU(2)R and U(1)R as well as under the global SU(2)Φ , which rotates
the scalars in the adjoint hypermultiplet. Note that the mass term in the Lagrangian
breaks the U(1)R symmetry explicitly. If all Nf flavor fields have the same mass m,
the field theory is invariant under a global U(Nf ) flavor group. The baryonic U(1)B
symmetry is a subgroup of the U(Nf ) flavor group. These symmetries of the field
theory side may be identified with symmetries of the D3–D7 brane intersection and
hence also with the dual gravity description.

For this field theory, gauge invariant composite operators may now be con-
structed which transform in suitable representations of the SU(2)× SU(2)× U(1)
symmetry group isomorphic to the geometrical SO(4)× SO(2). These operators are
expected to be dual to the fluctuations of the D7-brane which transform in the same
representation, as worked out in detail in [20]. An example of a meson operator is
given by

MA = ψ̄iσ
A
ijψj + q̄mXAqm, (i,m= 1,2), (22.1)

with XA the vector (X8,X9) of adjoint scalars associated with the (8,9) directions,
and σA ≡ (σ 1, σ 2) a doublet of Pauli matrices. Thus (22.1) has charge +2 under
U(1)R . It is a singlet under both SU(2)Φ and SU(2)R . The conformal dimension
is Δ = 3. This operator may be viewed as a supersymmetric generalization of a
mesonic operator in QCD, with the index A labeling two scalar mesons.

The standard AdS/CFT duality relates the N = 4 super-Yang-Mills degrees of
freedom to supergravity on AdS5×S5. In addition, there are new degrees of freedom
associated to the D7-brane worldvolume fields originating from the open strings
on the D7-brane. The additional duality maps these to the mesonic operators in
the field theory. This is an open-open string duality, as opposed to the standard
AdS/CFT correspondence, which is an open-closed string duality. The dynamics of
the D7-brane is described by the Dirac-Born-Infeld (DBI) action

1However note that the scale-invariance is broken at the quantum level since the beta function is
proportional to Nf /Nc and therefore non-vanishing. In the limit Nc → ∞ with Nf being fixed,
the beta function is approximately zero, i.e. we may treat the theory as being scale invariant also at
the quantum level.
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SD7 =−μ7

gs

∫
d8ξ

√
−det

(
Gab +B

(2)
ab + 2πα′Fab

)
, (22.2)

where μ7 = [(2π)7α′4]−1. G and B(2) are the induced metric and two-form field
on the probe brane worldvolume, and Fab is the worldvolume field strength. The
D7-brane action also contains a fermionic term S

f
D7. In addition there may also be

contributions of Wess-Zumino form. An example for this will be discussed below.
Let us write the AdS5 × S5 metric in the form

ds2 = r2

R2
ηij dx

i dxj + R2

r2

(
dρ2 + ρ2 dΩ2

3 + dx2
8 + dx2

9

)
, (22.3)

with i, j = 0,1,2,3, ρ2 = x2
4 + · · · + x2

7 , r2 = ρ2 + x2
8 + x2

9 and R the AdS radius.
Since the D7-brane is transverse to x8, x9 in flat space, we see that it extends along
AdS5 and wraps an S3 inside S5 in the near-horizon background. The action for a
static D7-brane embedding, for which Fab may be consistently set to zero on its
world-volume, is given from (22.2) up to angular factors by

SD7 =−μ7

gs

∫
d8ξ ρ3

√
1 + ẋ2

8 + ẋ2
9 , (22.4)

where a dot indicates a ρ derivative (e.g. ẋ8 ≡ ∂ρx8). The ground state configuration
of the D7-brane then corresponds to the solution of the equation of motion

d

dρ

[
ρ3

√
1 + ẋ2

8 + ẋ2
9

dx

dρ

]
= 0, (22.5)

where x denotes either x8 or x9. Clearly the action is minimized by x8, x9 being any
arbitrary constant. Therefore the embedded D7-brane is flat. According to string
theory, the choice of the position in the x8, x9 plane corresponds to choosing the
quark mass in the gauge theory action. The fact that x8, x9 are constant at all values
of the radial coordinate ρ, which corresponds to the holographic renormalization
scale, may be interpreted as non-renormalization of the mass in the dual field theory.

In general, the equations of motion have asymptotic (ρ → ∞) solutions of the
form

x = l + c

ρ2
+ · · · , (22.6)

where l is related to the quark mass m by

m= l

2πα′ . (22.7)

In agreement with the standard AdS/CFT result about the asymptotic behavior of
supergravity fields near the boundary, the parameter c must correspond to the vev
of an operator with the same symmetries as the mass and of dimension three, since
ρ carries energy dimension. c is therefore a measure of the quark condensate ψ̃ψ .
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c is obtained from ∂L /∂m which in addition to the fermion bilinear also includes
scalar squark terms. We may consistently assume that the squarks have zero vev.
Moreover, supersymmetry requires that a vev for c must be absent since c is an
F-term of a chiral superfield: ψ̃ψ is the F-term of Q̃Q. Supersymmetry is broken if
c = 〈ψ̃ψ〉 �= 0. This is reflected also in the supergravity solution: The solutions to
the supergravity equations of motion with c non-zero are not regular in AdS space
and are therefore excluded.

We therefore consider the regular supersymmetric embeddings of the D7-brane
for which the quark mass m may be non-zero, but the condensate c vanishes. For
massive embeddings, the D7-brane is separated from the stack of D3-branes in either
the x8 or x9 directions, where the indices refer to the coordinates given in (22.3).
In this case the radius of the S3 becomes a function of the radial coordinate r in
AdS5. At a radial distance from the deep interior of the AdS space given by the
hypermultiplet mass, the radius of the S3 shrinks to zero. From a five-dimensional
AdS point of view, this gives a minimal value for the radial coordinate r beyond
which the D7-brane cannot extend further. This is in agreement with the induced
metric on the D7-brane world-volume, which is given by

ds2 = ρ2 + l2

R2
ηij dx

i dxj + R2

ρ2 + l2
dρ2 + R2ρ2

ρ2 + l2
dΩ3

2, (22.8)

dΩ3
2 = dψ2 + cos2 ψ dβ2 + sin2 ψ dγ 2, (22.9)

where ρ2 = r2− l2 and Ω3 are spherical coordinates in the 4567-space. For ρ →∞,
this is the metric of AdS5×S3. When ρ = 0 (i.e. r2 = l2), the radius of the S3 shrinks
to zero.

22.2.2 Finite Temperature

The finite temperature system is realized holographically by placing the D7-brane
in an AdS-Schwarzschild black hole background with metric given by

ds2 = r2

2R2

(
dx2(rh

4 + r4)

r4
− dt2(r4 − rh

4)2

r4(rh4 + r4)

)

+ R2

r2

(
dL2 + dρ2 +L2 dφ2 + ρ2 dΩ2

3

)
, (22.10)

where r2 = ρ2 +L2. The temperature is given by T = rh/(πR
2).

In this metric we have introduced polar coordinates (L,φ) in the (x8, x9) plane
and consider solutions for D7-brane embeddings with L = L(ρ), φ = const. The
asymptotic near-boundary behavior of these brane embeddings is given by

L(ρ)= l + c

ρ2
+ · · · , (22.11)
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where m= l/(2πα′) is the bare quark mass and c is proportional to the condensate
〈ψ̄ψ〉. At finite temperature, supersymmetry is broken and brane embeddings with
c non-zero are possible, in contrast to the supersymmetric case discussed above.

Depending on the quark mass, there are two different types of embeddings: Those
which reach the black hole, and those which do not since the S3 they wrap shrinks
to zero outside the black hole horizon. The first type of branes is referred to as
‘black hole’ (BH) embeddings, while the second type is referred to as ‘Minkowski’
(MN) embeddings. In the BH case, fluctuations of the probe brane have complex
eigenfrequencies or quasi-normal modes, which means that the mesons associated
with these fluctuations decay. In the MN phase, the mesons are stable. The phase
transition between the two types of embeddings is first order.

At finite temperature, the solution with m = 0 also has c = 0. However, in
gravity backgrounds corresponding to confining field theories, brane embeddings
with m= 0, c �= 0 are possible. These realize spontaneous chiral symmetry break-
ing [21].

22.2.3 Magnetic Catalysis

Let us now consider, as was first done in [22], a magnetic field induced by a pure
gauge B-field in the worldvolume direction of the D3-branes,

B(2) = B dx2 ∧ dx3, (22.12)

which satisfies dB(2) = 0. This contributes to the DBI action (22.2). Since B(2) and
2πα′F enter (22.2) in the same way, we may trade B(2) for a gauge field on the
probe brane via F = −B(2)/2πα′, which justifies interpreting B of (22.12) as a
magnetic field.

In addition, there is a non-trivial Wess-Zumino contribution to the action, which
at first order in α′ is of the form

SWZ = 2πα′μ7

∫
F ∧C(6). (22.13)

In the presence of the B-field, this leads to an additional non-trivial contribution to
the action, as explained in detail in [22]. This gives rise to a non-trivial C(6) which
breaks supersymmetry on the worldvolume of the D7-brane.

Since supersymmetry is broken, the D7-brane now has a profile which depends
on ρ as in (22.11), even at zero temperature. The Lagrangian corresponding to (22.2)
takes the form

L =−μ7

gs
ρ3 sinψ cosψ

√
1 +L′2

√

1 + R4B2

(ρ2 +L2)2
. (22.14)

For m = 0, the brane embedding solution obtained from this Lagrangian has non-
zero c ∝ 〈ψ̄ψ〉 in (22.11). The magnetic field therefore induces spontaneous chiral
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Fig. 22.1 −c̃(m̃) at
vanishing temperature, with
−c̃=〈ψ̄ψ〉(2πα′)3/(R3B3/2),
m̃=m(2πα′)/(R

√
B).

Reproduced from [23]

symmetry breaking, a phenomenon known as magnetic catalysis [1–3]. For large m,
the condensate may be calculated analytically [22] and is found to be

〈ψ̄ψ〉 ∝ −c=−R4

4l
B2. (22.15)

For small m, c has to be evaluated numerically. The result is shown in Fig. 22.1.
By evaluating the free energy, it has been shown that when there is more than one
solution, the one with the larger condensate is preferred.

At small values of the magnetic field, it is possible to analytically evaluate the
shift of the meson masses due to its presence. For fluctuations of the embedding
scalar in particular, a Zeeman splitting is observed [22]. While in the absence of a
magnetic field, in the supersymmetric case described here, the scalar meson mass
obtained from the fluctuations is M0(n)= 2m/

√
λ · √(n+ 1)(n+ 2) [20], for non-

zero magnetic field there is a mass splitting

M± =M0 ± 1√
λ

B

m
. (22.16)

A review of magnetic catalysis in probe D7-brane systems is given in [24]. Mag-
netic catalysis is also found in systems involving Nf D7 branes where the back-
reaction of the metric on the background geometry is taken into account [25–27].
Out-of-equilibrium dynamics associated with the phase transition induced by mag-
netic catalysis has been investigated in [28].

In the finite temperature case, there is a competition between two mechanisms:
The black hole attracts the D7-brane, while it is repelled at small radii by the mag-
netic field. This implies a phase transition between a phase where the D7-brane
reaches the black hole and one where it does not. This is shown in Fig. 22.2 for
different values of the magnetic field, where the dimensionless ratio B/T 2 is used.
A detailed discussion of the normalization is found in [23].

There is a critical value for B/T 2 above which the probe brane is repelled from
the black hole for all values of the bare quark mass: In this case, chiral symmetry
is spontaneously broken and the mesons are stable. The phase diagram is shown in
Fig. 22.3.
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Fig. 22.2 Increasing values of B/T 2 for fixed T show the repulsive nature of the magnetic field.
We see that for large enough B/T 2, the melted phase is never reached, and the chiral symmetry is
spontaneously broken. Figure reproduced from [23]

Fig. 22.3 Phase diagram for
the D3/D7 system in the
(B/T 2, T /m) plane. Figure
from [23]

More involved phase diagrams are obtained if a U(1) chemical potential and
density are turned on in addition to the magnetic field by considering a non-trivial
profile for the U(1) gauge field on the D7-brane [29–31]. An example of a phase
diagram is shown in Fig. 22.4.

22.2.4 Superfluid

At finite isospin density, the D3–D7 model realizes a holographic superfluid
[32, 33]. Finite isospin density is obtained by considering two coincident D7-branes,
and using an ansatz for solving the equations of motion, which involves a non-trivial
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Fig. 22.4 Phase transitions at
constant B field in the (T ,μ)
plane for the D3/D7 model.
Figure reproduced from [31]
by kind permission of the
authors. c, d , J refer to the
condensate, density and
electric current, respectively

profile for the temporal component of the SU(2) worldvolume gauge field, with
asymptotic behavior

A3
t (ρ)∝ μ3 + d3

ρ2
. (22.17)

μ3 breaks the SU(2) symmetry explicitly to a residual U(1)3. In the presence of
this background, the energetically favored solution also involves a non-trivial spatial
component of the worldvolume gauge field,

A1
x(ρ)∝ d1

x

ρ2
. (22.18)

Here the leading contribution is absent in the asymptotic behavior, so the U(1)3
symmetry is spontaneously broken. A1

x is dual to a condensate of the form

d1
x ∝ 〈

ψ̄σ 1γxψ + φ̄σ i∂xφ
〉
, (22.19)

which is the supersymmetric equivalent of the ρ meson. The calculation of the
frequency-dependent conductivity σ(ω) for this solution shows that it describes a
superfluid: σ(ω) displays a gap. For the Sakai-Sugimoto model discussed below, a
similar condensation mechanism has been found in [34] and superfluidity has been
discussed in [35].

As discussed in [36, 37], a similar condensation process also happens when the
profile (22.17) for the temporal component of the SU(2) gauge field is replaced by
a non-trivial profile for a spatial component of the form

A3
x = By, (22.20)

which corresponds to a background magnetic field. In this case a similar condensa-
tion as above takes place. This has been demonstrated by analyzing the fluctuations
about the magnetic field background [37]: The quasi-normal modes of particular
fluctuations cross into the upper half of the complex frequency plane above a criti-
cal value of the magnetic field, indicating an instability. This is shown in Fig. 22.5.
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Fig. 22.5 Quasi-normal
modes cross into the upper
half plane above a critical
magnetic field, signaling an
instability. Figure reproduced
from [37]

Finally let us note that the Hall conductivity has been calculated for the D3/D7
model in [38]. Unlike the isospin case, the ground state involving the ρ condensate
is spatially modulated for the magnetic field background, leading to an Abrikosov
lattice [39]. A similar ρ meson condensation mechanism in a background magnetic
field has been found in the context of field theory in [6, 7, 40], based on similar
earlier results in electroweak theory [41]. For the Sakai-Sugimoto model which we
discuss below, a similar mechanism has been discussed in [42, 43].

22.3 The D4–D8 (Sakai-Sugimoto) Model

22.3.1 Basics

Nc D4-branes on R
1,3 × S1 with anti-periodic boundary conditions for fermions

provide a holographic model for the low energy behavior of 4d SU(Nc) Yang-Mills
theory with g2

YM = 4πgs
√
α′/R4 [44]. The near-horizon background at zero tem-

perature is given by (we work with dimensionless coordinates rescaled by R)

ds2
con = u

3
2
(−dx2

0 + dx2 + f (u)dx2
4

)+ u−
3
2

(
du2

f (u)
+ u2 dΩ2

4

)
,

(22.21)
eΦ = gsu

3/4, F4 = 3π
(
α′)3/2

Nc dΩ4,

where f (u)= 1 − (u3
KK/u

3), uKK = 4R2/(9R2
4) and R = (πgsNc)

1/3
√
α′. The IR

“wall” at u= uKK implies that the dual gauge theory is confining. At nonzero tem-
perature there is another possible background with a metric

ds2
dec = u

3
2
(−f (u)dx2

0 + dx2 + dx2
4

)+ u−
3
2

(
du2

f (u)
+ u2 dΩ2

4

)
, (22.22)
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where f (u)= 1 − (u3
T /u

3) and uT = (4π/3)2R2T 2. This background becomes the
dominant one when T > 1/(2πR4). The presence of a horizon at u = uT in this
background indicates that the gauge theory undergoes a (first order) deconfinement
transition at this temperature.

Quarks are added to the model by including D8-branes and anti-D8-branes that
are localized on the circle [11]. With Nf D8-branes at one point and Nf anti-D8-
branes at another point, the model has Nf flavors of massless right-handed and
left-handed fermions, and a U(Nf )R ×U(Nf )L chiral symmetry. The 8-branes are
treated as probes in the near horizon background of the D4-branes. The flavor dy-
namics is thus encoded in the 5d effective worldvolume theory of the D8-branes,
which includes a DBI term and a CS term (in Lorentzian signature)2

SDBI = −N

∫
d4x duu1/4

√−det(gMN + fMN), (22.23)

SCS = −N

8

∫
d4x duεMNPQRaMfNPfQR. (22.24)

The dimensionless worldvolume gauge field aM and field strength fMN are defined
as aM = (2πα′/R)AM and fMN = 2πα′FMN , and the overall normalization is given
by N = μ8Ω4R

9/gs = (1/3)Nc R
6(2π)−5(α′)−3. The anti-D8-brane has a similar

action in terms of its worldvolume gauge field āM . The DBI term is identical to
that of the D8-brane, and the CS term has the opposite sign. We define the vector
combination as aVM = 1

2 (aM+ āM), and the axial combination as aAM = 1
2 (āM−aM).

In the low-temperature confining background (22.21) the D8-brane and anti-D8-
brane connect at u= u0 ≥ uKK into a smooth U-shaped configuration (Fig. 22.6a),
reflecting the spontaneous breaking of the U(1)R × U(1)L chiral symmetry to the
diagonal U(1)V . The embedding is determined by the DBI action (setting fMN = 0)

Scon
DBI =−N

∫
d4x duu4

[
f (u)

(
x′4(u)

)2 + 1

u3f (u)

] 1
2

, (22.25)

which implies an asymptotic behavior

x4(u)≈ L

2
− 2

9

u4
0

√
f (u0)

u9/2
, (22.26)

where L is the asymptotic brane-antibrane separation.
The normalizable fluctuations of the D8-brane worldvolume fields in this embed-

ding correspond to the (low spin) mesons of the model. Their mass scale is set by
u0, which we can think of as the mass of a “constituent quark” described by an open
string from u0 to uKK . There is one massless pseudoscalar field ϕ, precisely as one

2For simplicity, we will consider the single flavor case with one D8-brane and one anti-D8-brane.
This does not affect any of the results qualitatively.
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Fig. 22.6 D8-brane embeddings in the Sakai-Sugimoto model: (a) confined vacuum, (b) decon-
fined vacuum, (c) deconfined plasma, (d) confined nuclear matter, (e) deconfined nuclear matter

expects from the broken chiral symmetry. This is related to the η′ meson in QCD. It
appears (in a gauge with au = 0) as the zero mode aAμ :3

aAμ
(
xμ,u

)=−∂μϕ
(
xμ

)
ψ0(u)+ higher modes, (22.27)

where

ψ0(u)= 2

π
arctan

√
u3

u3
KK

− 1. (22.28)

Baryons are described by D4-branes wrapped on S4 inside the D8-brane. Their
charge comes from the Nc strings which must be attached to the wrapped D4-brane
to cancel a tadpole due to the background RR field. These strings end on the D8-
brane, giving Nc units of charge.4

In the high-temperature deconfining background (22.22) the D8-branes and anti-
D8-branes can be either connected (Fig. 22.6b) or disconnected, with x4(u)= L/2
(Fig. 22.6c), the latter corresponding to the restoration of the chiral symmetry [46].
The DBI action in the high-temperature deconfining background is very similar:

Sdec
DBI =−N

∫
d4x duu4

[
f (u)

(
x′4(u)

)2 + 1

u3

] 1
2

. (22.29)

Consequently the properties of the U embedding in this background are qualitatively
similar to those of the embedding in the confining background, for example in terms
of the spectrum of mesons. In the disconnected embedding there are no normaliz-

3Note that, although the boundary value is non-zero, this is a normalizable mode since the field
strength is normalizable. Ordinarily, boundary values of bulk fields correspond to parameters in
the boundary theory. But in this case there is a possible ambiguity, since the boundary value of aAμ
can also describe a non-trivial gradient of the pseudoscalar field.
4For Nf > 1 the baryons correspond to instantons in the non-abelian D8-brane theory [11, 45].
This reproduces the known description of baryons as Skyrmions in the chiral Lagrangian. In this
description the baryon charge comes from the CS term coupling the U(1)V field to the instanton
density in the SU(Nf )V part.
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able fluctuations corresponding to mesons, as one expects in a chiral-symmetric
phase. Comparing the (Euclidean) actions of the two embeddings shows that the
disconnected one becomes dominant when T > 0.154/L. In particular, for small L
(L < 0.97R4) the gauge theory has an intermediate phase of deconfinement with
broken chiral symmetry.

22.3.2 Finite Density and Background Fields

The D8-brane worldvolume vector and axial gauge fields are dual to conserved vec-
tor and axial currents in the gauge theory, and therefore5

j
μ
V,A = 1

N V4

∂SD8|on-shell

∂a
V,A
μ (u→∞)

. (22.30)

The chemical potentials are defined by6

μV = aV0 (u→∞) and μA = aA0 (u→∞). (22.31)

In our conventions quarks carry one unit of vector charge and baryons carry Nc

units. Nevertheless we will refer to the vector current as the “baryon number cur-
rent”. We are also interested in studying the effects of background “electromag-
netic” fields that couple to this current, which correspond to turning on spacetime
dependent boundary values of the worldvolume gauge field, in particular

ei = f0i (u→∞), bi = εijkfjk(u→∞). (22.32)

In some situations one may be required to add boundary terms to the action.
These are especially relevant if there is a CS term in the bulk. In deriving the equa-
tions of motion from the variational principle one usually assumes that the surface
terms vanish. However in some instances one has to be more careful. The surface
terms (in the au = 0 gauge) are given in general by

δS|on-shell =
∫
d4x

∂L

∂a′ν
δaν

∣∣∣
∞
umin

+
∫
d3x du

∂L

∂(∂μaν)
δaν

∣∣∣
xμ→∞
xμ→−∞. (22.33)

In holography the boundary values of the fields at u→ ∞ are fixed, so δaμ(u→
∞)= 0. However δaμ(umin) and δaμ(xμ →±∞) need not vanish. Therefore a sur-

5The axial symmetry is broken by an anomaly. However this is a subleading effect at large Nc

which we can neglect. In particular, we will assume that the one-flavor pseudoscalar η′ is massless.
For a discussion of the U(1)A anomaly and the η′ mass in the context of the Sakai-Sugimoto model
see [11, 47].
6We would like to stress that this is a gauge invariant definition. The standard boundary condition
on the gauge field in AdS/CFT fixes the value of aM(u→∞). In this case only the transformations
that vanish at u→∞ are gauged in the bulk. In particular, these transformations do not change the
asymptotic value of a0.
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face term may be non-trivial if the fields extend to these boundaries. In order to
have a well-defined variational principle we must therefore add boundary terms
S∂(umin)+ S∂(xμ → ±∞), whose variation cancels the surface terms in the varia-
tion of the bulk action.

These boundary terms also allow one to derive an alternative and useful definition
of the conserved currents. We do this by varying the off-shell action, now allowing
aμ(u→ ∞) to vary, and then going on-shell by applying the equations of motion.
Due to the boundary terms, only the surface term at u→∞ remains. Thus

jμ = 1

N

∂L

∂a′μ
(u→∞)

∣∣∣
on-shell

. (22.34)

In particular this relates the charge density in the boundary theory to the bulk radial
electric field. The boundary term S∂(umin) for a0 should then be interpreted as a
source term for this field. One could in principle also add boundary terms at u→∞.
These have no effect on the derivation of the equations of motion, but may change
the value of the on-shell action, and therefore may lead to additional contributions
to (22.34).

A state with a non-zero baryon number density corresponds to an embedding
with a radial electric field. In particular, for a U embedding (in both the confin-
ing and deconfining backgrounds) this requires the addition of a baryonic source
at the tip, corresponding to a uniform spatial distribution of wrapped D4-branes
(Figs. 22.6d, 22.6e) [48] (see also [49, 50]). We assume that the distribution is dilute
enough so that we can ignore interactions between the D4-branes. We should there-
fore include the D4-brane action, which is given by (in the confining background)

SD4 =−N V4nD4Nc

(
1

3
u0 − aV0 (u0)

)
, (22.35)

where nD4 is the density of D4-branes. The first term is the D4-brane DBI ac-
tion, and corresponds to the baryon mass, and the second term comes from the Nc

strings that connect each D4-brane to the D8-brane. The second term is precisely
the boundary term at umin = u0 that was discussed above.

The resulting asymptotic behavior of the gauge field is

aV0 (u)≈ μV − 2

3

d

u3/2
, (22.36)

where d =Nc nD4 is the baryon number density. On the other hand, extremizing the
action with respect to nD4 fixes the value of the gauge field at the tip to aV0 (u0)=
u0/3 =mbaryon/Nc. This implies, as expected, that a non-zero density configuration
exists only when the chemical potential is above the baryon mass. In fact the non-
zero density state is always the dominant one. The transition to “nuclear matter”
occurs at μV =mbaryon/Nc. Near the critical point the density scales linearly with
the chemical potential d ∼ μV −mbaryon/Nc. The D4-brane action also sources the
embedding field x4(u), creating a cusp at u= u0. This can be understood in terms
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of a force balance condition between the D4-branes pulling down and the D8-brane
pulling up.

At high temperature the preferred embedding is parallel and there is a different
finite density solution. In this case the gauge fields aμ and āμ are independent, and
the field theory has a conserved axial current as well as a baryon current. For a
baryonic solution we take aV0 (∞)= μV and aA0 (∞)= 0. In addition, since the D8-
brane and anti-D8-brane reach the horizon we must impose aV0 (uT )= aA0 (uT )= 0.
Therefore the radial vector electric field, and thus the baryon number density, is
non-zero when μV > 0. In this phase d ∼ T 3μV for small μV .

22.3.3 Magnetic Catalysis of Chiral Symmetry Breaking

A strong magnetic field in QCD is believed to catalyze the spontaneous breaking of
chiral symmetry [1–3]. The basic mechanism for this is that in a strong magnetic
field all the quarks sit in the lowest Landau level, and the dynamics is effectively
1 + 1-dimensional. This phenomenon has been exhibited in the Sakai-Sugimoto
model in [51, 52].7

With a uniform background magnetic field b, the D8-brane action in the decon-
fining background becomes

Sdec
D8 =−N

∫
d4x duu4

√(
f (u)

(
x′4(u)

)2 + 1

u3

)(
1 + b2

u3

)
. (22.37)

The U embedding has the same form as before (22.26), but now u0 depends on
the magnetic field, as shown in Fig. 22.7a. The mass scale associated with chiral
symmetry breaking is seen to increase with the magnetic field. One therefore ex-
pects that chiral symmetry breaking becomes more favored as the magnetic field
increases. This is indeed the case, as can be seen by comparing the Euclidean ac-
tions of the U and parallel embeddings as the temperature and magnetic field are
varied. The resulting phase diagram is shown in Fig. 22.7b. We observe that in this
model the critical temperature approaches a finite value at infinite magnetic field.

A qualitatively similar effect was observed in the D3–D7 model above. However
in the D3–D7 model there is a critical value of B/T 2 above which the chiral sym-
metry is always broken, whereas in the D4–D8 there is a critical temperature above
which the chiral symmetry is always broken.

It is also instructive to study the effect of the background magnetic field on the
mesons. This was partly done in [55], in which the high spin mesons were studied. It
was shown that the magnetic field enhances their stability by increasing their angular
momentum, and thereby increasing the dissociation temperature at which they fall
apart into their quark constituents. This is consistent with the above results.

7At non-zero baryon number density the magnetic field can actually induce an inverse magnetic
catalysis in this model [53, 54].
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Fig. 22.7 Magnetic catalysis: (a) Chiral symmetry breaking mass scale. (b) Phase diagram

22.3.4 Anomalous Currents

The chiral anomaly leads to two interesting phenomena when both the magnetic
field and chemical potential are non-zero. The first is the generation of anomalous
currents in the chiral symmetric phase of QCD. In [56, 57] it was shown that the
combination of a magnetic field and a non-zero baryon chemical potential generates
an axial current

JA = e

2π2
μ

phys
B B. (22.38)

Since the source for this current is the anomaly it is an exact result, and should
be valid in particular at strong coupling. Similarly, an anomalous vector current is
generated in a non-zero axial chemical potential:

JV = e

2π2
μ

phys
A B. (22.39)

This is known as the “chiral magnetic effect”, and may have some relevance to heavy
ion physics at RHIC [5]. Within the D3/D7 model, this effect has been discussed
in [58].

In the Sakai-Sugimoto model, the chiral-symmetric phase corresponds to the par-
allel D8–D8 embedding in the deconfined background, and the chiral anomaly is
encoded in the five-dimensional CS term (22.24). The background magnetic field
and chemical potentials correspond to different components of the worldvolume
gauge field. Through the five-dimensional CS term these source a third component,
which corresponds to a current in the four-dimensional theory [59]. Let us review
the calculation of the anomalous axial current in the Sakai-Sugimoto model. The
calculation of the anomalous vector current is virtually identical.

To be specific, we will consider a background magnetic field in the x1 direction
by turning on a background gauge field aV3 = x2b. A non-trivial boundary value of
aV0 will then source, via the CS term, a non-trivial aA1 . In general aV0 and aA1 can
depend on both u and x2 in this case, although on-shell they will depend only on u.
We will take aV0 (∞)= μV and aA1 (∞) = 0. The D8-brane DBI and CS actions in
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this case become

Sdec
DBI = −N

∫ ∞

uT

d4x duu5/2

√
(
1 − (

aV ′
0

)2 + f (u)
(
aA′

1

)2)
(

1 + b2

u3

)
, (22.40)

SCS = −N

∫
d4x du

[
b
(
aV0 a

A′
1 − aV ′

0 aA1
)+ aV3

(
aV ′

0 ∂2a
A
1 − ∂2a

V
0 a

A′
1

)]
. (22.41)

The necessary boundary terms are

S∂ =−1

2
N

∫
d3x duaV3

(
aV0 a

A′
1 − aV ′

0 aA1
)∣∣∣
x2→∞
x2→−∞. (22.42)

By integrating by parts the last two terms in the CS action one can show that up to
a surface term at u→ ∞, the bulk CS and boundary actions combine into a bulk
action

SCS + S∂

=−N

∫
d4x du

[
3

2
b
(
aV0 a

A′
1 − aV ′

0 aA1
)− 1

2
aV ′

3

(
aV0 ∂2a

A
1 − ∂2a

V
0 a

A
1

)]
.

(22.43)

One can get rid of the remaining surface term by adding a boundary term at u→∞
[59], however this particular term does not contribute to the on-shell action, so we
might as well ignore it.8

The equations of motion for aV0 (u) and aA1 (u) can be integrated once to yield
√
u5 + b2u2aV ′

0 (u)
√

1 − (aV ′
0 (u))2 + f (u)(aA′

1 (u))2
= −3baA1 (u)+ d, (22.44)

√
u5 + b2u2f (u)aA′

1 (u)
√

1 − (aV ′
0 (u))2 + f (u)(aA′

1 (u))2
= −3baV0 (u), (22.45)

where d is the baryon number charge density. The integration constant in the aA1
equation vanishes since aV0 (uT )= 0 and f (uT )= 0. Using (22.34) and (22.45) we
can then evaluate the axial current:

j1
A = 3

2
baV0 (∞)= 3

2
bμV . (22.46)

The correctly normalized physical currents are given by J = 2(2πα′N /R5)j ,
where the factor of 2 comes from adding the anti-D8-brane contribution, and the
physical chemical potentials are μphys = (R/(2πα′))μ. Thus in terms of the physi-
cal variables our result translates to

8Other boundary terms at u→∞ could affect the on-shell action, and therefore the currents. See
for example [60, 61].
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JA = Nc

4π2
μ

phys
V B. (22.47)

Similarly, for an axial chemical potential we would get

JV = Nc

4π2
μ

phys
A B. (22.48)

Interestingly, our results are half of the weak-coupling results (where e=Nc in the
holographic model). It has been argued that the discrepancy in the axial current is
due to a different treatment of the triangle anomaly, consistent vs. covariant, and can
be corrected by adding an appropriate Bardeen counterterm on the boundary [61].
However, the same counterterm leads to a vanishing vector current. This issue is still
under investigation.

22.3.5 The Pion Gradient Phase

In the broken chiral symmetry phase the chiral anomaly leads to a novel finite den-
sity phase that dominates over nuclear matter at large magnetic fields [4]. In this
phase the baryon charge is carried not by baryons but rather by a non-zero pion
gradient background:

D = e

4π2fπ
B ·∇π0, (22.49)

where

∇π0 = e

4π2fπ
μ

phys
B B. (22.50)

In the Sakai-Sugimoto model (in the au = 0 gauge) the pseudoscalar meson ap-
pears in the zero mode of aAμ (22.27), so

∂μϕ
(
xμ

)=−aAμ
(
xμ,u→∞)

. (22.51)

As in the chiral-symmetric phase, the presence of a vector chemical potential to-
gether with a background magnetic field sources a component of the axial gauge
field, which in this case corresponds to a non-trivial gradient of the pseudoscalar
field [59, 62]. Since there is only one flavor this field should really be thought as
the η′ meson. For simplicity, we will consider only the confined phase with the anti-
podal D8-brane embedding, namely u0 = uKK . (The results do not change quali-
tatively for more general U-shape embeddings, or for U-shape embeddings in the
deconfined phase.)

Following [59], the D8-brane DBI action in this case is

Scon
DBI =−N

∫ ∞

uKK

d4x duu5/2

√(
1

f (u)
− (

aV ′
0

)2 + (
aA′

1

)2
)(

1 + b2

u3

)
, (22.52)
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and the CS plus boundary actions are the same as in the deconfined phase (22.43).
The equations of motion integrate to

√
u5 + b2u2aV ′

0 (u)
√

1
f (u)

− (aV ′
0 (u))2 + (aA′

1 (u))2
= −3baA1 (u)+Nc nD4, (22.53)

√
u5 + b2u2aA′

1 (u)
√

1
f (u)

− (aV ′
0 (u))2 + (aA′

1 (u))2
= −3baV0 (u)+ c, (22.54)

where we have explicitly included the baryon sources in the aV0 equation. Our
boundary conditions are now aV0 (∞) = μV and aA1 (∞) = −∇ϕ(xμ). In particu-
lar aA1 (∞) is a field rather than a parameter in the boundary theory, and we must
minimize the action with respect to its value. This simply sets j1

A = 0 and therefore
sets the integration constant in the aA1 equation to c= 3

2bμV .9

We can now compute the total baryon number charge density d using the same
procedure as in the previous section for the current. In the absence of sources
nD4 = 0 and we find

d =−3

2
baA1 (∞)= 3

2
b∇ϕ. (22.55)

Let us express this in terms of the physical variables. First we must define a field
with a canonically normalized kinetic term. Inserting (22.27) into the action (22.52)
we find that the canonically normalized field is given by

η′
(
xμ

)= R2

2πα′ fη′ϕ
(
xμ

)
, f 2

η′ =
Nc u

3/2
KK

4π4α′ . (22.56)

Converting to physical variables we then find

D = Nc

4π2fη′
B ·∇η′, (22.57)

in agreement with (22.49). We would like to stress that this agreement did not de-
pend on the specific value of fη′ required for canonical normalization, since it can-
cels out when we express the result in terms of ϕ. The correct numerical factor
of 1/(4π2) is a direct consequence of including the proper boundary terms in the
action, leading to the “3/2” in (22.55).

To find the value of the gradient ∇ϕ we need to solve (22.53) and (22.54). The
result will not be as simple as (22.50). In particular it is not linear in the magnetic
field, since we are using the full non-linear DBI action. It turns out that a closed
form solution can be found in terms of a new variable

9This is also consistent with the fact that there are no quarks in this phase to carry such a current.
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Fig. 22.8 (a) The pion gradient. (b) Phase diagram with magnetic field and baryon chemical
potential

y =
∫ u

uKK

3b dũ
√
f (ũ)

√
ũ5(1 + b2 ũ−3)− ( 3

2bμV )2 + (3b∇ϕ)2
. (22.58)

The solution is

aV0 (y)=
μV

2

(
coshy

coshy∞
+ 1

)
, aA1 (y)=−μV

2

sinhy

coshy∞
, (22.59)

where y∞ = y(u→∞). The pseudoscalar gradient is then given by

∇ϕ =−aA1 (∞)= μV

2
tanhy∞. (22.60)

The dependence on b is shown in Fig. 22.8a. For small b the behavior is linear
in b:

∇ϕ ≈ π

2u3/2
KK

μV b, (22.61)

and in terms of the physical quantities:

∇η′ ≈ Nc

4π2fη′
μ

phys
V B, (22.62)

in agreement with the single flavor version of (22.50).
As in the case with no magnetic field, an embedding that includes sources is

possible above a critical value of the chemical potential, which then becomes the
dominant configuration. This describes a “mixed phase” that includes both “pion-
gradient” matter and nuclear matter, with a total baryon number density

d = 3

2
b∇ϕ +Nc nD4. (22.63)

As before, one can find a closed form solution for aV0 and aA1 , and from it deter-
mine the values of ∇ϕ and nD4 in terms of the magnetic field b and baryon num-
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ber chemical potential μV . The resulting phase diagram is shown in Fig. 22.8b.
In particular, the critical value of μV is determined by setting nD4 = 0. The rel-
ative proportion of baryons in the mixed phase increases with μV and decreases
with b.

22.3.6 Magnetic Phase Transition

The high-temperature chiral-symmetric phase of this model also exhibits an in-
teresting magnetic phenomenon associated with the distribution of the baryonic
charge [63]. In what follows we analyze the situation for the D8-brane. As in the
broken chiral symmetry phase above, the distribution of baryonic charge along the
radial direction u changes with b. We can therefore identify two types of bary-
onic charge, one originating from the horizon, and the other from outside the hori-
zon. The latter d∗, corresponds to D4-branes that are radially smeared inside the
D8-brane. This can be best seen from the longitudinal and transverse conductivi-
ties [64]

σL =
√
u8
T + b2u5

T + u3
T (d − d∗)2

u3
T + b2

, (22.64)

σT = b(d − d∗)
u3
T + b2

+ d∗
b
, (22.65)

where d∗ = −3ba1(uT ). In particular only the horizon charge d − d∗ contributes
to the longitudinal conductivity. In the transverse conductivity, the horizon charge
contributes as an ordinary dissipative fluid, whereas the charge outside the horizon
d∗ behaves as a dissipation-free fluid. This is consistent with an interpretation of d∗
as the charge filling the lowest Landau level. As the magnetic field increases more
of the charge is “lifted” from the horizon, representing the transition to the lowest
Landau level in the boundary theory.

In fact for a fixed density at low enough temperature this transition is a first order
phase transition as a function of the magnetic field, in which the charges jump into
the lowest Landau level. This is easiest to see in the zero temperature limit.10 In this
case one can solve the gauge field equations analytically in terms of a variable

z=
∫ u

0

3b dũ
√
ũ5 + b2ũ2 + d2 cosh−2 z∞

, (22.66)

where z∞ = z(u→∞). The solution is

10Strictly speaking, at zero temperature the theory is in the confining (and broken chiral symmetry)
phase. We are considering the meta-stable state obtained by adiabatically reducing the tempera-
ture.
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Fig. 22.9 (a) μ and (b) M as functions of b for d = 1 and T = 0.09, below the critical point.
There are now two branches of stable solutions, and the phase transition between them occurs at
b= 0.235

Fig. 22.10 (a) The phase diagram in the d–b plane at T = 0.07, and (b) the critical line in the
T –d plane

aV0 = d sinh z

3b cosh z∞
, aA1 = d cosh z

3b cosh z∞
− d

3b
. (22.67)

There are actually three solutions, representing two stable phases and an unstable
phase. As the magnetic field b is increased, for a fixed total baryon number den-
sity d , one finds a first order phase transition between the two stable phases. Both
the magnetization and the chemical potential are discontinuous in this transition
(Fig. 22.9), which is reminiscent of a metamagnetic phase transition. The large mag-
netic field phase represents the situation where all the charge is in the lowest Landau
level, with the chemical potential and free energy given by

μ= d

3b
, F = d2

6b
. (22.68)

The magnetic transition persists also at non-zero temperatures that are low rela-
tive to the density d . Too a very good approximation this happens when b ∼ d2/3

(Fig. 22.10a), which is the behavior expected for the lowest Landau level. At high
temperature the transition disappears (Fig. 22.10b).
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22.4 The D3–D7’ Model

The study of magnetic properties of planar matter is a very active area of research
in condensed matter physics. A simple holographic model for charged fermions in
three dimensions can be obtained by T-dualizing the D4–D8 setup. This leads to
a D3–D7 configuration with the two sets of branes intersecting on a plane [12, 14]
(for a related model using a D2–D8 system see [65]). However, unlike in the D4–D8
configuration, here the branes have a mutually transverse coordinate. On the one
hand this allows the fermions to be massive, but on the other hand it leads to an
instability since the different branes repel.

22.4.1 Stable Embeddings

First we have to address the issue of stability. As before, we will employ the probe
approximation and consider a single probe D7-brane. The background (at finite tem-
perature) in this case is

L−2 ds2
10 = r2(−h(r) dt2 + dx2 + dy2 + dz2)+ r−2

(
dr2

h(r)
+ r2 dΩ2

5

)
, (22.69)

F5 = 4L4(r3 dt ∧ dx ∧ dy ∧ dz∧ dr + dΩ5
)
, (22.70)

where h(r) = 1 − r4
T /r

4, rT = πLT and L2 = √
4πgsNcα

′. It is convenient to
parameterize the five-sphere as an S2 × S2 fibered over an interval:

dΩ2
5 = dψ2 + cos2ψ

(
dΩ

(1)
2

)2 + sin2 ψ
(
dΩ

(2)
2

)2
, (22.71)

where 0 ≤ψ ≤ π/2. The first S2 shrinks at the “south pole”ψ = π/2 and the second
S2 at the “north pole” ψ = 0. The D7-brane wraps the two S2’s and extends along
(x, y), and has an embedding described by z(r) and ψ(r). In particular ψ is dual to
the fermion bi-linear operator in the field theory corresponding to the fermion mass.
The D7-brane DBI action in this background is given by

SDBI =−4N

∫
d3x dr r2 cos2 ψ sin2 ψ

√
1 + r4h(r)z′2 + r2h(r)ψ ′2, (22.72)

where N ≡ 4π2μ7L
8/gs . A massless embedding would correspond to ψ = π/4.

However the fluctuations contain a mode that violates the Breitenlohner-Freedman
bound, and therefore the embedding is unstable. This can also be seen by trying a
more general embedding with a large r behavior of

ψ(r)∼ π

4
+ crΔ. (22.73)

The equation of motion for ψ gives Δ(Δ + 3) = −8, which does not have a real
solution.
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Fortunately, the D7-brane can be stabilized by turning on some worldvolume
flux [66], in this case on the two-spheres [15]:

2πα′F = L2

2

(
f1 dΩ

(1)
2 + f2 dΩ

(2)
2

)
, fi = 2πα′

L2
ni (ni ∈ Z). (22.74)

This changes the DBI action,

SDBI

=−N

∫
d3x dr r2

√(
4 cos4ψ + f 2

1

)(
4 sin4 ψ + f 2

2

)(
1 + r4hz′2 + r2hψ ′2),

(22.75)

and there is now also a CS term which gives,

SCS =−N f1f2

∫
d3x dr r4z′(r). (22.76)

The asymptotic behavior of ψ(r) is now

ψ(r)∼ψ∞ +mrΔ+ − cψr
Δ− , (22.77)

where ψ∞ is determined by the solution of
(
f 2

1 + 4 cos4 ψ∞
)

sin2 ψ∞ = (
f 2

2 + 4 sin4 ψ∞
)

cos2ψ∞, (22.78)

and

Δ± =−3

2
± 1

2

√

9 + 16
f 2

1 + 16 cos6 ψ∞ − 12 cos4 ψ∞
f 2

1 + 4 cos6 ψ∞
. (22.79)

In particular, the embedding is stable for a large enough flux. The coefficient of
the leading term is related to the fermion mass, and that of the subleading term
corresponds to the bi-linear condensate. Note that the scaling dimension of the bi-
linear operator is given by −Δ−. This represents a large anomalous dimension,
which is not surprising given that the model is non-supersymmetric. We should
require however that the operator be relevant, namely that Δ− ≥ −3, and therefore
that Δ+ ≤ 0, in order to consider the leading term as a “mass deformation”.

Generally there are two types of embeddings, that differ in their small r behav-
ior: Minkowski-like (MN) embeddings, in which the D7-brane terminates smoothly
outside the horizon (Fig. 22.11a), and black-hole (BH) embeddings, in which the
D7-brane crosses the horizon (Fig. 22.11b). We refer the reader to [15] for the ex-
plicit embedding equations for ψ(r) and z(r), and for their numerical solutions.

In an MN embedding ψ(r0)= π/2 or 0 for some r0 > rT , corresponding to one
or the other S2 shrinking. This indicates that the dual field theory has a mass-gap
related to r0 − rT . An important condition for the existence of MN embeddings
is the absence of sources for the worldvolume gauge field. Unlike in the model
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Fig. 22.11 (a) An MN embedding with ψ(r0)= π/2. (b) A BH embedding

of the previous section, there are no localized sources in this model. All sources
correspond to branes (or strings) connecting the D7-brane to the horizon. These
inevitably pull the D7-brane down to the horizon, resulting in a BH embedding
instead. This means that the flux on the S2 that shrinks must vanish. For ψ(r0) =
π/2, which means that f1 = 0, we find stable massive embeddings in the range

0.5235 �ψ∞ � 0.6251. (22.80)

(There are also the “mirror” embeddings with ψ(r0)= 0 and f2 = 0.) Note that the
allowed values of ψ∞ are quantized since the stabilizing flux is quantized. There
are also two isolated MN embeddings with ψ∞ = 0 and ψ∞ = π/2.

BH embeddings describe gapless phases in the dual theory. These embeddings
exist generically for any f1, f2 satisfying the stability condition.

22.4.2 Finite Density and Background Fields

For embeddings corresponding to finite density states in a background magnetic
field we need to turn on the appropriate components of the worldvolume gauge
field. As in the D4–D8 model we will work with the dimensionless field aμ =
(2πα′/L)Aμ. There are additional terms in the DBI action,

SDBI = −N

∫
dr r2

√(
4 cos4ψ + f 2

1

)(
4 sin4 ψ + f 2

2

)

×
√
(
1 + r4h(r)z′2 + r2h(r)ψ ′2 − a′0

2)
(

1 + b2

r4

)
, (22.81)

and also in the CS action,

SCS =−N f1f2

∫
dr r4z′(r)+ 2N

∫
dr c(r)ba′0(r), (22.82)
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where

c(r)= 1

8π2L4

∫

S2×S2
C4

(
ψ(r)

)=ψ(r)− 1

4
sin 4ψ(r)−ψ∞ + 1

4
sin 4ψ∞.

(22.83)

We have fixed a gauge for the RR field such that c(∞) = 0. For MN embeddings
we must also add a boundary term at r = r0 (as explained in Sect. 22.3)11

S∂(r0)= 2N c(r0)ba0(r0). (22.84)

The quantity c(r0) has a nice physical interpretation: it is the total amount of 5-form
flux captured by the D7-brane in the MN embedding. It is completely fixed by the
asymptotic value of the embedding angle ψ∞. For BH embeddings the boundary
term vanishes since a0(rT )= 0.

The integrated equation of motion for a0(r) is given by

G(r)a′0(r)= d − 2bc(r), (22.85)

where

G(r) = r2
(

1 + b2

r4

)√
(f 2

1 + 4 cos4 ψ)(f 2
2 + 4 sin4 ψ)

Y (r)
, (22.86)

Y(r) =
(

1 + b2

r4

)(
1 + hr4z′2 + hr2ψ ′2 − a′20

)
, (22.87)

and d is the total charge density. As in Sect. 22.3, we are using (22.34) to define the
conserved currents. The quantity on the RHS of (22.85), d̃(r)≡ d − 2bc(r), is the
contribution to the charge density from radial positions below r .

We would also like to study the response of the system to a background electric
field. To this end we should consider a more general ansatz for the gauge field with
ax(t, r)= te+ ax(r), ay(x, r)= xb+ ay(r), in addition to a0(r). The current den-
sities will be contained in the asymptotic behaviors of ax(r) and ay(r). The gauge
field equations in this case become

G(r)a′0(r) =
[
d̃(r)

(
1 − e2

r4h(r)

)
+ j̃y(r)

eb

r4h(r)

] 1 + b2

r4

1 + b2

r4 − e2

r4h(r)

, (22.88)

G(r)a′y(r) =
[
d̃(r)

eb

r4h(r)
− j̃y(r)

h(r)

(
1 + b2

r4

)] 1 + b2

r4

1 + b2

r4 − e2

r4h(r)

, (22.89)

11In [15] this term was derived by demanding invariance of the CS term
∫
C4 ∧F ∧F under gauge

transformations of the RR field and then fixing c(∞) = 0. However it can also be obtained by
canceling the surface term in the variation of the CS term, when we present it as

∫
F5 ∧A∧ F .
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G(r)a′x(r) = − jx

h(r)

(
1 + b2

r4

)
, (22.90)

where jx is the longitudinal current density and j̃y(r) is defined by analogy with
d̃(r) as j̃y(r)≡ jy − 2c(r)e, where jy is the transverse current density. The factor
G(r) is defined as before (22.86), now more generally with

Y(r) =
(

1 + b2

r4
− e2

hr4

)(
1 + hr4z′2 + hr2ψ ′2)

−
(

1 + b2

r4

)
a′20 + ha′2x +

(
1 − e2

hr4

)
ha′2y − 2eb

r4
a′0a′y. (22.91)

22.4.3 Quantum Hall States

Let us consider first the response of the gapped MN embeddings. This is determined
by the requirement that there are no sources, namely by regularity of the gauge field
at r = r0. This implies, in particular, that

d̃(r0)= d − 2c(r0)b= 0. (22.92)

The entire charge in the MN embedding is thus due to the CS term and corresponds
to a “fluid” of D5-branes inside the D7-brane. The charge density is proportional to
the magnetic field, and the proportionality constant is fixed by the value of c(r0),
and therefore of ψ∞. This is the key property of a quantum Hall state, which is
characterized by a specific quantized value of the Landau-level filling fraction ν ∝
d/b. In terms of the physical variables D = (2πα′N /L4)d and B = b/(2πα′), the
filling fraction is given by

ν = 2πD

B
= 2Nc

π
c(r0). (22.93)

For the range of values of ψ∞ needed for stability (22.80) we get

0.6972 � ν

Nc

� 0.8045. (22.94)

Furthermore, the filling fractions are quantized according to the quantization of ψ∞.
The actual numbers can be obtained by solving (22.78), for a specific flux f2 (with
f1 = 0), and plugging into (22.83) with ψ(r0)= π/2, but they are not particularly
illuminating (for example, they are not rational numbers). The isolated embeddings
with ψ∞ = 0 and ψ∞ = π/2 correspond to ν/Nc = 1 and 0, respectively.

The current densities can likewise be computed by requiring regularity of the
spatial components of the gauge field. This condition implies that

jx = 0 and j̃y(r0)= jy − 2c(r0)e= 0, (22.95)

from which we can deduce the longitudinal and transverse conductivities:
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Fig. 22.12 (a) Mass-gap for charged states as a function of the magnetic field. (b) Dispersion
relation of the two lowest neutral modes, showing the magneto-roton

σxx = 0, σxy = ν

2π
. (22.96)

Thus the MN embeddings, when they exist, describe quantum Hall states with quan-
tized transverse conductivities, and vanishing longitudinal conductivities. Further-
more, in the holographic description, the quantization is topological since it origi-
nates from the Dirac quantization of the magnetic fluxes on the S2’s. In particular,
σxy in the MN embeddings is independent of the temperature.

Quantum Hall states are gapped to both charged and neutral excitations. In this
model charged excitations are described by strings stretched from the D7-brane to
the horizon, and therefore have a mass proportional to r0 − rT . This is seen to in-
crease with the magnetic field, as shown in Fig. 22.12a. The neutral excitations
correspond to fluctuations of the D7-brane worldvolume fields, and are also found
to be massive [67] (see also [68]). The spectrum of neutral excitations includes a
magneto-roton, which is a collective excitation whose dispersion relation has a min-
imum at non-zero momentum (Fig. 22.12b). A similar phenomenon is seen in real
quantum Hall states [69].

22.4.4 Fermi-Like Liquid

BH embeddings describe gapless Fermi-like liquids. For a BH embedding, d̃(rT )
corresponds to the horizon charge density carried by the “quarks”, and it need not
vanish. In particular, if we add sources to an MN embedding, thereby violating
(22.92), it deforms continuously into a BH embedding with horizon charge.

To compute the electrical response in a BH embedding we have a couple of op-
tions. The standard approach is to extract the conductivities using linear response
from the current-current correlators, computed holographically by studying fluc-
tuations of the bulk gauge fields to quadratic order. The other option is to find a
consistent solution in the presence of an external electric field [70]. The advantage
of the second approach, when it is applicable, is that it gives the complete non-linear
response. Using this method for the BH embeddings one finds
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Fig. 22.13 (Left): Phase diagram in the T –d plane showing the quantum critical point. (Right):
The phase diagram in the b̂, d̂ plane for m= 0. Above the line the system is in the homogeneous
phase and below the line in the striped phase

σxy = Nc

2π2

(
b

b2 + r4
T

d̃(rT )+ 2c(rT )

)
, (22.97)

σxx = Nc

2π2

r2
T

b2 + r4
T

√
d̃(rT )2 + (

f 2
1 + 4 cos4ψ(rT )

)(
f 2

2 + 4 sin4 ψ(rT )
)(
b2 + r4

T

)
.

(22.98)

Note that the transverse conductivity has two components. The first involves the
horizon charge, and resembles the contribution of an ordinary dissipative system of
charges. The remaining charge, corresponding to the fluid of D5-branes inside the
D7-brane, contributes like a dissipationless system. The longitudinal conductivity
involves only the first component. This is basically the same separation that was
seen in the D4–D8 model (see (22.64), (22.65)).

This state of holographic matter exhibits a variety of other interesting phenomena
as a function of the charge density, temperature, background magnetic field, and
mass.

Consider first the state at T = 0, d = 0, b = 0 and m = 0. In this case the D7-
brane embedding is actually AdS4 × S2 × S2, so this situation is described by a
conformal field theory. Note that in this case σxx �= 0. At non-zero density the sys-
tem becomes unstable to the formation of stripes. The instability is signaled by the
existence of a quasi-normal mode (in the transverse gauge field sector) with positive
imaginary part in a finite range of momenta [71]. At a high enough temperature or
high enough magnetic field this instability disappears. It is convenient to parametrize
the situation with b̂ = b/r2

T and d̂ = d/r2
T . Then the instability towards the striped

phase at zero magnetic field and m= 0 happens for d̂ > 5.5. This is demonstrated
in Fig. 22.13a. Above the quantum critical point (T =m= d = 0) there is a region
which resembles a Fermi-like liquid, and on both sides there is a striped phase. For
non-zero b̂ and m = 0 the instability sets in at some other value of d̂ , as shown in
Fig. 22.13b [72]. As m increases the instability sets in at a lower temperature.

The system also has a zero sound mode. At non-zero temperature the quasi-
normal mode with the smallest imaginary part at low momentum is a purely dis-
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Fig. 22.14 (Left): The line in the b̂, d̂ plane for m = 0, separating the situation when the ze-
ro-sound is gapped (above the line) and the situation when it is gapless (below the line). (Right):
The magnetization as a function of magnetic field (solid line) and the individual contributions from
the DBI (dashed line) and the CS term (pointed line) for m= 1 d = 1 and rT = 0.1

sipative hydrodynamical mode (ω(k = 0) = 0). At some non-zero momentum it
meets another purely dissipative mode (ω purely imaginary) and crosses from a hy-
drodynamical regime into a collisionless regime, where the resulting complex mode
can be identified with the finite temperature zero-sound mode [71] (see also [73]).
The zero sound mode becomes massive as the magnetic field crosses a critical value
[72, 74] (Fig. 22.14a).

For m �= 0 the system can have a non-zero transverse conductivity, even at zero
magnetic field. This is due to having a non-trivial c(r) for these embeddings. This
is reminiscent of the anomalous Hall effect (AHE) that appears in ferromagnetic
materials (for a review see [75]). Indeed for m �= 0 the system is ferromagnetic
(Fig. 22.14b) due to the second term in (22.82). Note that both the AHE and the
ferromagnetic behavior, as well as the instability towards a striped phase, have a
common origin in the Chern-Simon term

∫
dr c(r)F ∧ F in the brane action.
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