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Abstract. Mobile application markets such as the Android Marketplace provide
a centralized showcase of applications that end users can purchase or download
for free onto their mobile phones. Despite the influx of applications to the mar-
kets, applications are cursorily reviewed by marketplace maintainers due to the
vast number of submissions. User policing and reporting is the primary method to
detect misbehaving applications. This reactive approach to application security,
especially when programs can contain bugs, malware, or pirated (inauthentic)
code, puts too much responsibility on the end users. In light of this, we propose
Juxtapp, a scalable infrastructure for code similarity analysis among Android ap-
plications. Juxtapp provides a key solution to a number of problems in Android
security, including determining if apps contain copies of buggy code, have sig-
nificant code reuse that indicates piracy, or are instances of known malware. We
evaluate our system using more than 58,000 Android applications and demon-
strate that our system scales well and is effective. Our results show that Jux-
tapp is able to detect: 1) 463 applications with confirmed buggy code reuse that
can lead to serious vulnerabilities in real-world apps, 2) 34 instances of known
malware and variants (/3 distinct variants of the GoldDream malware), and 3)
pirated variants of a popular paid game.

1 Introduction

As mobile devices (e.g., smartphones, tablets) gain popularity, software marketplaces
have become centralized locations for users to download applications. For the An-
droid operating system, Google hosts the official Android Market while Amazon and
many others provide third party markets. The wide range of devices that are Android-
compatible combined with the open source nature of the Android operating system and
development platform have led to explosive growth of the Android market share. As of
August of 2011, Android has grown to a 52% market share[33].

The rapidly increasing volume of applications, increased demand for diversified
functionality, and existence of piracy and malware places large obstacles in the way
of a healthy and sustainable Android market.

Vulnerable Code Reuse. Android developers often misuse coding idioms in Android,
either due to copying and pasting of vulnerable code or lack of developer understand-
ing [20/18]. For instance, Google has provided sample code to interface with the Li-
cense Verification Library and the In-Application Billing APIs, which are responsible
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for verifying that a user is authorized to execute a program and purchasing virtual items
within an application, respectively[7/6]]. Google explicitly warns developers that they
need to modify certain parts of the code, because the unmodified template code is sub-
ject to certain security vulnerabilities and requires developer intervention in order to
ensure security properties.

Malware. With the exploding growth in the number of Android applications, the occur-
rence of Android malware has also increased. As of August 2011, users are 2.5 times
more likely to encounter malware on their mobile devices than only 6 months ago and
it is estimated that as high as 1 million users have been exposed to malware[11]].

Piracy. Furthermore, the Android software marketplaces are home to many pirated ap-
plications. A common occurrence is for an illegitimate author to repackage and rebrand
a paid or popular app with additional program functionality in order to generate revenue
and even execute malicious code[4]].

The current markets usually rely on two approaches to identify and remove poten-
tially dangerous applications: 1) review-based approach, which requires mostly expert
manual review and security examination, and 2) reactive approach, e.g., user policing,
reporting, and user ratings as indicators that an application may be misleading in its
functionality or misbehaving. Given the existence of hundreds of thousands of appli-
cations on the markets, neither approach is scalable and reliable enough to mitigate
threats to users. To empower and expedite this process, we need an automated analysis
of Android applications in order to pare down large application datasets into a small set
of noteworthy candidates for further investigation.

Each of the aforementioned problems appears to be unrelated. However, we observe
a common invariant among them, namely, code reuse, which sheds light on the fact that
a unified approach in detecting common code (or code similarity) may address all of
our goals. Using this observation, we propose to build a fast and scalable infrastructure
for detecting code reuse in Android applications which allows for 1) early detection and
developer notification of known vulnerable or buggy code, 2) detection of instances of
known malware, either in isolation or repackaged with an innocuous program, and 3)
detection of pirated applications.

It is a challenging task to develop a system to automatically detect code reuse in An-
droid applications. The system must be able to quickly compare code and detect reuse,
and scale to hundreds of thousands applications or more; the system need to be resilient
to certain levels of code modification and obfuscation, which are common in Android
applications; the system should be able to represent the application being compared in a
meaningful, accurate way in order to find the so-called needle-in-a-haystack differences
in applications, all the while maintaining low false positive and false negative rates.

As a first step solution, we use k-grams of opcode sequences of compiled applica-
tions and feature hashing[26/24] to efficiently tackle the problem at large-scale. k-grams
of opcode sequences have been shown to be resilient to certain types of code modifi-
cation and can be efficiently extracted from applications. Additionally, feature hashing
has been shown to work well in dimensionality reduction and classification. We com-
bine this technique with a variety of domain-specific knowledge in order evaluate code
reuse, instances of known malware, and piracy in Android applications. We use k-grams
and feature hashing combined in order to have a robust and efficient representation
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of applications. Using this representation, we have a fast way to compute pairwise
similarity between applications to detect code reuse among hundreds of thousand of
applications.

In this paper, we propose Juxtapp, a scalable architecture for quickly detecting code
reuse and similarity in Android applications. We implemented our distributed archi-
tecture using Hadoop and ran it on Amazon EC2. It is capable of fast, incremental
additions to the analysis dataset, meaning it is amenable to frequent updates and addi-
tions to the pool of applications. We apply Juxtapp to address three different types of
problems: vulnerable code reuse, known malware, piracy. We evaluate Juxtapp’s abil-
ity to detect these problems on 58,000 applications, ranging in size from hundreds of
kilobytes to tens of megabytes, which were collected from the official Android market
and the Anzhi third party market[[1]. We find that the system performs and scales well.

o Vulnerable Code Reuse. We show that applications widely use significant portions
of the Google In-App Billing and License Verification example code, leaving them
susceptible to vulnerabilities.

e [nstances of Known Malware. We find 34 instances of malware in Android markets,
13 of which are distinct, previously unknown variants that have been repackaged
with innocuous-looking applications.

e Piracy. We identify pirated applications in third party markets and show that Jux-
tapp can detect pirated applications that are obfuscated and with significant code
variation from the original application.

2 Problem Definition

In this paper we consider the problem of automatically finding similarity among An-
droid applications with the goal of detecting known buggy code patterns and vulnera-
bilities, repackaged and pirated applications, and known malware in Android markets.
Detecting code reuse in Android applications offers a first chance in detecting applica-
tions that may negatively impact the user’s security and experience or defraud develop-
ers of revenue. We develop Juxtapp, an architecture that automatically examines code
containment in Android applications. We define code containment to be a measure of
the relative amount of code in common between two Android applications. Using this,
we examine a variety of Android market applications for instances of vulnerable code,
known malware, and piracy.

Buggy and Vulnerable Code Reuse. Previous manual investigations into developer
errors[18/20] in Android applications have indicated that developers often copy and
paste code as well as reuse sample code obtained from Android-specific developer web-
sites without modification. Using application similarity, we can examine the Android
Market to see if they contain known buggy or vulnerable pieces of code.

Known Malware. The incidence of malware in Android marketplaces has been rising
rapidly. In January 2011, 80 applications were known to be infected with malware,
as opposed to June 2011, when the incidence rate had risen to over 400 instances of
malicious applications [11]]. Malware authors often repackage legitimate applications
with a malicious payload in order to entice users to download an infected application.
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Piracy and Application Repackaging. Popular Android applications and games are
commonly repackaged with modified code in order to evade copyrights protection and
to generate revenue for the pirate [4]]. By comparing applications from the official An-
droid market to third party markets we show that we can detect instances of piracy.

Scope. We restrict ourselves to the Android application domain, excluding obfuscation
in the form of functional code transformation. For instance, we are able to detect two
instances of similar obfuscated code, but we restrict ourselves to this domain and do not
consider the problem of matching code which has been transformed to be functionally
equivalent.

2.1 Goals and Challenges

Juxtapp has a variety of challenges which must be met in order to detect code reuse in
Android applications. Some specific goals of our platform are to:

Automatically Analyze Code Similarity in Android Applications. As of Novem-
ber 2011, the Android market had over 310,000 applications[12]]. The rapid growth of
market applications and increase in the number of pirated and malicious applications
underlines the need for a way to rapidly and automatically analyze applications.

Scale to a Large Number of Applications. Android markets have hundreds of thou-
sands of applications with new applications being added all the time. Our architecture
must be able to scale in order to detect similarity across a wide range of applications,
including the ability toincrementally update our application repository in an efficient
manner.

Accurately and Efficiently Represent the Applications under Analysis. In handling
hundreds of thousands of applications, Juxtapp must be able to accurately represent
and quickly determine code similarity among applications. There is an implicit trade-
off between the accuracy of the analysis and the amount of space it takes to represent
an application under analysis.

Android Specific. In addition to general challenges, there are a number of domain
specific considerations when computing the similarity of Android applications.

Java Source Code Unavailable. For most applications on the Android Markets, source
code is not available. Android applications are compiled from Java to Dalvik bytecode
(known as the DEX format)—the bytecode for the Dalvik VM|3]]. This compiled code
and application resources are packaged as an APK. The DEX format fully describes the
application and retains class structure, function information, etc.

Multiple Entry Points. Unlike traditional desktop programs, Android applications have
multiple potential entry points. Android applications are broken up into components and
these components can each have their own entry points.

Obfuscation. Android developers are encouraged to obfuscate their code using Pro-
guard [13]. Proguard attempts to remove unused code and renames classes, methods,
and fields with obscured names to make reverse engineering of Android applications
more difficult. However, this process is deterministic so two identical applications will
be transformed in the same way.



66 S. Hanna et al.

icati i Application Feature Matrix
[o]i o 1 o]ofo]t]o]o]7]

[1TooToToToToTt ofo1]
[ofofofoftTi i i]oJofo]
([ To[t ofoo[t]o]1]o]

; 10:#Latidynatec/AddEntry [ofofofofoTo]oToTo]1]
Fealure and Package Filtering const-string AddEntry
oSN Y

Feature Hash l

BB
#Lcom/app

Analyses
di

| invoke-direct Feature Index: 6
Hier. Containment | !gel-oblect Pkg Name: #Lat/dynatec/AddEntry
Clustering _invoke-static _ _ _ _ _ _ 1 BB Offset: 10

Inst Offset: 1
11: #Lat/dynatec/uti/Util
iget-object
invoke-virtual
return-void

1

st i erPos |

| const-string 1
1

bit vector of features Clustert Cluster2

Aopt Appo
Aopt | | Apps
ops | | Aop2

Fig. 1. The Juxtapp Workflow Fig. 2. Example outcome of feature hashing a
basic block found in an application

Therefore, any type of program analysis must take these challenges into considera-
tion. And indeed, the domain specific challenges can be used to impose structure on the
applications so that feature hashing and clustering are more amenable in the Android
application domain.

3 Background

Like static code reuse detection proposed in [3228]], we use k-gram features of code
sequence to represent applications. However, k-grams extracted from code sequence
usually results in an enormous feature space (e.g., 2'2® features in [32128]]), preventing
efficient feature storage and similarity comparison even for a moderate number of appli-
cations. To analyze large volumes of mobile applications, we need an efficient feature
representation of the applications and a fast way to compare features between them.

Feature Hashing. The main technique we use is feature hashing. Feature hashing is a
popular and powerful technique for reducing the dimensionality of the data being ana-
lyzed [26431]]. Using a single hash function, it compresses the original large data space
into a smaller, randomized feature space, in which feature hashing, representation, and
pairwise comparison are all efficient. This efficiency comes at the cost of potential col-
lisions while hashing. However, theoretical and experimental results from the machine
learning community show that pairwise similarity maintains high accuracy, thus algo-
rithms built on top like hierarchical clustering, will be close to exact [26431]]. Feature
hashing was recently introduced into the security community for malware analysis [24].

The resulting representation of an application can be encoded into a succinct bitvec-
tor which represents the features present in the data. As always, choosing a good hash
function and a bitvector representation of prime length is essential to minimize the
number of collisions in the vector.

Similarity. We determine the similarity of two applications by the similarity between

their feature sets. We use the Jaccard similarity metric defined as J(A, B) = }ﬁgg} ,

where A and B are two k-gram feature sets of two applications, respectively. Because
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we hash k-gram sets into boolean vectors, with each entry indicating presence or ab-
sence of a feature, as opposed to a set of items, we can approximate this quantity

much more efficiently using bit-wise operations: J(A, B) = :gcg}, where A and B
are bitvector representations of k-gram sets A and B, respectively. As shown in [24],
as long as the size of the bitvector is large enough, .J (121, B ) is very close to J(A,B), the
similarity between two applications represented by the k-gram feature sets. The Jac-
card distance D(A, B), which measures dissimilarity between two feature vectors, is
obtained by subtracting the Jaccard similarity from one: D(/l7 B y=1-J (fl, B’). Both

Jaccard similarity and distance have values in the range [0, 1].

4 Our Approach

As shown in Figure [l our approach, Juxtapp, involves the following steps for ana-
lyzing Android applications: 1) application preprocessing, 2) feature extraction, and 3)
clustering and containment analyses.

4.1 Application Preprocessing

We preprocess each application in order to extract the DEX file, which represents the
compiled application code. In our approach, the original Java source code is not re-
quired because the DEX format fully describes the application and retains class struc-
ture, function information, etc.

For each application we convert its DEX file into a complete XML representation of
the Dalvik program, including program structure. From this, we extract each basic block
and label it according to which package it came from within the application. We pro-
cess each basic block and only retain the opcodes while discarding most operands. The
exception to this is for opcodes storing constant data, such as the const-string op-
code, which becomes a concatenation of the opcode along with the value it references.

The intuition behind this is that many Java applications contain boiler plate code
that will appear in many applications when only opcodes are considered. Furthermore,
including constants makes the feature hashing (discussed below) more fine-grained and
more restrictive about matching. This is especially important because many applications
use Java reflections to access functionality, with the only difference between programs
being the string arguments passed to the Reflections API.

4.2 Feature Extraction

We use k-grams of opcodes and feature hashing to extract features from applications.
We use the djb2 hash function which is known to have an excellent distribution[9]. As
shown in the Feature Hash box in Figure[Il for each application’s basic block represen-
tation of the original XML file, file), we extract each k-gram using a moving window
of size k, and hash it using djb2. k-grams across basic blocks are ignored. For each
hashed value, we set the corresponding bit in the bitvector of the application, indicating
existence of the k-gram. Along with this information, we efficiently store the package
name from which the basic block originated, the basic block offset within the basic
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block file, and the k-gram offset. This allows us to recover how and why our architec-
ture determined that applications are similar and serves as a way to verify matching
applications.

In order to feature hash, we have two parameters to determine, namely: length of
k-gram k and bitvector size m. In Section 3l we show an experimental evaluation of
several values of k£ and m in order to determine optimal values of these parameters over
our dataset.

Choosing k. k is a parameter which determines the number of dimensions of the under-
lying feature space for representing the Android applications, and it bounds the number
of features that can be extracted for each application. k is a crucial parameter for de-
tecting similarity. If & is too small (e.g., K = 1), there will be a small number of unique
features from all applications, resulting in an oversimplified, low-dimensional repre-
sentation of the applications. In this representation, overmatching between applications
can occur, and many applications would be falsely classified as being similar applica-
tions would be falsely similar. On the other hand, if % is too large (e.g., bigger than the
size of most basic blocks), even small code changes might result in large changes in
the feature representation, preventing us from obtaining a meaningful and robust com-
parisons between applications. In general, a reasonable k£ should have a small value, at
which further increase in value would cause insignificant increase in the quality of the
pairwise similarity comparison. As shown in Section[3 we evaluate different k values,
and choose k = 5, at which its marginal impact on similarity accuracy is around 0.01.

Choosing Bitvector Size. The bitvector size m strikes the tradeoff between (similarity)
computation efficiency and approximation error of the bitvector representation of the
k-gram features.

Ideally, we want size m to be large enough so that few collisions would happen
when we feature hash k-grams into bitvectors; practically, we want size m to be small
so that we can efficiently compute pairwise similarity among hundreds of thousands of
applications. The larger the bitvector size m, the more accurately a bitvector represents
an application, but at the cost of more time required to compute the pairwise similarity
among all applications.

As shown in [24], as long as m >> N, which is the number of k-grams extracted from
an application, the Jaccard similarity between two bitvectors very closely approximates
computing the set intersection between two k-gram feature sets. That is, as long as m is
large enough, Jaccard similarity is nearly an exact representation in practice. Based on
this principle, we use a data-driven approach in our experiments in Section[3] in order
to determine a bitvector size which is large enough to represent the feature space in
question.

4.3 Analysis of Feature Hashing Results

A variety of data analyses can be performed on the feature representation of the ap-
plications. In this paper, we primarily focus on similarity, containment and clustering
analysis, which help us to filter out vast amounts of uninteresting instances and pare
down a small set of interesting candidates for further analysis.
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Code Containment Comparison. Containment analysis is a useful tool for paring
down application candidates that potentially have copied code, pirating, and malware
contamination. We define the containee A to be the application being examined for
similarity and the container (or carrier [ ) B to be the application which houses the
packages and associated features that we test for existence inside the containee. We
define a metric that gives the percentage of containment by considering the number of
features common in both applications, divided by the number of bits in the containee

Ay Written in this
form, this containment is defined as the percentage of features in application A that
exist within application B.

application. Formally, containment is defined as: C(A|B) =

Clustering. To find inherent patterns among Android applications, we use agglomera-
tive hierarchical clustering[[19] on the feature bitvector representation of each applica-
tion in order to group similar applications together. The basic idea is that the collection
of feature bitvectors represents the applications in a high-dimensional space with a well-
defined distance metric, the Jaccard distance. Using this distance metric, we can group
bitvectors that are close-by and, thus, we are able to group similar applications.

Hierarchical clustering produces clusters without having to specify the number of
clusters in advance. The input to the clustering algorithm is a threshold ¢ (e.g., 90%)
and a list of Jaccard similarity values between each pair of applications. The output is
a clustering S for the applications, in which all applications in a cluster are with simi-
larity s greater than or equal to ¢ : s > t. The threshold ¢ is set by the desired precision
tradeoff between the number of applications in the clusters and the “closeness” of ap-
plications within a given cluster. While a smaller ¢ puts more applications into a few
large clusters, a larger t discovers specific variants of application families (e.g., similar
applications developed by the same authors).

Hierarchical clustering begins with one application in its own cluster; then it selects
the closest pair and merges them into a common cluster. The cluster comparing and
merging process continues until there is no pair whose similarity exceeds the input
threshold ¢.

4.4 Core Functionality and Result Refinement

Clustering can be a way to visualize the application topology in order to qualitatively
understand how well applications are classified among a given cluster. Application sim-
ilarity can be dominated by large similar libraries common to many applications (i.e.
AdMob). In light of this, we develop the notion of core functionality, which seeks to
capture in a coarse-grained manner how included libraries interact with the main appli-
cation component.

Simply put, we examine each application and whether or not the core application
component directly invokes an outside library. If it does then it is a part of the ap-
plication’s functionality; otherwise, that code can be excluded from our analysis. We
refer to the set of libraries excluded as an exclusion list. We point out that this is an

! In the case of malware, a carrier is a more appropriate term because the innocuous application
is modified in order to execute code outside of the intended functionality.
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over-approximation and aggressively excludes libraries due to Java reflection as well as
dynamically registered event handlers, and other entry points defined by the Android
Manifest.

4.5 Implementation

The workflow of Juxtapp can be roughly broken up into the following stages: applica-
tion preprocessing, feature hashing, clustering and containment analysis. Juxtapp con-
sists of 6,400 lines of C++, 1,600 lines of Java, and 600 lines of scripts.

The first step in the process is converting the Android application file (APK) to a
format which is usable by our architecture. Juxtapp processes the APK and outputs the
file in an XML format with functions split into basic blocks, which is then converted to
a basic block format, which has a label indicating the source package, class and method.

After preprocessing, the applications are feature hashed. Juxtapp processes the basic
block file for each application and outputs a feature vector representing the application
along with recovery information to verify matching portions of applications. That is, in
addition to the features, we also store the package and class name, and the offset within
the original file in order to verify matching potions of applications. Figure [2 shows an
example basic block being feature hashed, along with the recovery information we store
for each feature. For each program under analysis, the features calculated are stored as
a sparse representation of the vector, while a table of each feature’s offset within the
original program along with the package and class from which it originated.

After processing all of the applications’ basic block files, Juxtapp calculates a pair-
wise distance matrix between all applications. This matrix is used for clustering and
determining similarity among applications.

After the applications have been feature hashed, Juxtapp can perform other in-depth
analysis. First, the applications under analysis can be clustered based on their com-
puted distance matrix, which offers a topological view of the dataset, which can help an
analyst narrow down interesting areas to investigate.

Finally, Juxtapp computes containment between sets of applications. Given a set
of feature hashed applications represented, the containment tool determines what fea-
tures are common between applications and outputs the percentage of code in common,
along with the ratio of the comparative sizes of the number of features. The intuition
behind this is that a large application when compared to a small application may inad-
vertently have a large subset of the smaller applications features by virtue of the fact
that a larger application will produce a dense feature vector. This ratio is used to remove
false positives.

Distributed Analysis. We have both a single machine implementation of Juxtapp as
well as a distributed implementation which uses Hadoop on Amazon EC2. We use the
Hadoop MapReduce framework for performing large-scale computations and HDFS
for sharing common data among nodes[8]. We wrote a MapReduce application in order
to perform the APK to Basic-Block conversion portion of the workflow, and we used
Hadoop Streaming to interface with our C++ applications, which were responsible for
feature hashing and containment calculations. Many of the tasks required of Juxtapp are
easily parellizable tasks which greatly improves performance when dealing with large
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datasets. As a result, Juxtapp can feature hash, cluster, and analyze containment in a
distributed manner which offers great performance increases over the single machine
version.

Incremental Update and Increasing Performance. The statelessness property of many
stages in Juxtapp makes it easy to incrementally process the applications, update their
similarity matrix, and analyze them in detail without the need to reprocess all appli-
cations under analysis. When creating or updating the pairwise similarity matrix, only
values greater than 50% similarity are stored, making the matrix sparse among dis-
similar applications. When a set of m new applications are added to the analysis, the
application preprocessing (conversion of APK to XML to Basic Block) and the feature
hashing are inherently incremental, meaning, only the new applications need conver-
sion and feature hashing. As shown in Figure Bl with n existing applications and m
new applications, updating the existing n x n similarity matrix A is straight forward
as follows: 1) compute the m X m similarity matrix B among the new applications, 2)
compute the n x m similarity matrix C' between the set of new applications and the
existing ones, and 3) concatenate them together and grow the existing similarity matrix
A at appropriate rows and columns to get the new (n+m) X (n+m) similarity matrix.

5 Evaluation

In this section, we evaluate the efficacy of Juxtapp. We first introduce our evaluation
dataset and describe our experimental setup. Then, we discuss determining experimen-
tal parameters and their impact on our results. Finally, we introduce case studies in
which we use Juxtappto detect instances of vulnerable code reuse, known malware,
and piracy on Android markets.

5.1 Experimental Evaluation Dataset

We evaluate our approach using applications from three different sources. From the
official Android Market we obtained 30,000 free Android applications. Additionally,
we downloaded 28,159 applications from a third-party Chinese market, Anzhi [1], and
the 72 malware in our malware dataset came from the Contagio malware dump and
other sources [2]]. Lastly, we use a set of 95,000 Android applications from the official
Android Market to evaluate the performance of Juxtapp A

5.2 Experimental Setup and Performance

Local experiments, when tractable, such as containment between a small set of appli-
cations and our dataset, were run on Ubuntu Linux 2.6.38 with Intel Xeon CPU (8
cores) and 8GB of RAM. When larger experiments were required, such as contain-
ment between on-market to off-market applications, and generating pairwise distance
matrix, we conducted them on Amazon EC2. For our Amazon EC2 clusters, we used

2 We obtained a larger dataset of applications in order to show that our technique scales to a
large number of applications beyond our evaluation set of applications
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m?2.4xlarge instances, which run on Ubuntu Linux 2.6.38-8-virtual with 8 virtual cores

and 68.4GB of memory.

We varied the number of nodes running from 25 to 100 and used 8 worker threads

per node. Figure ] shows the time required to complete a full run of the entire pipeline,
which includes APK to basic block format file conversion, feature hashing, and com-
putation of the pairwise similarity when using 95,000 unique Android applications. At
the time of writing, there are around 310,000 Android Applications[12], which demon-
strates that Juxtapp scales well.

As we increase the number of nodes, the amount of time required to do analysis be-
comes gradually dominated by the overhead of parallelization. In addition, the APK to
Basic-Block and feature hashing stages were parallelizable without any synchronized
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state, which contributed to significant performance gains as the number of workers in-
creased. However, the pairwise distance comparison is the current bottleneck on perfor-
mance because it combines the resulting bitvectors from each worker. Figure ] shows
how the overhead of the pairwise comparison approaches a constant overhead as the
number of nodes are increased.

Incremental Update Performance. Incremental updates of the dataset allow us to con-
tinuously process and update our dataset with new market applications without requir-
ing running the entire Juxtapp workflow on our application repository. Table [Il shows
the time required to add from 100 to 7,000 APKSs to the dataset. Distribution time is the
time required to distribute APKs to worker nodes. This time begins to become dominant
as the number of APKSs increases. This overhead is caused by not being fully able to
take advantage of Hadoop’s resource allocation, due to our Hadoop Streaming imple-
mentation. Despite this, these numbers show that adding a large number of applications
to the comparison repository daily or even multiple times daily is feasible with Juxtapp.

Table 1. The time to incrementally process varying num- Table 2. Experiment showing the
bers of APKs. Note, distribution time is included to show impact of varying k on the Jac-
how file distribution starts to dominate the processing time. card distance

# Incr. APKSs Distribution Time Completion Time k Avg. Dist
100 Om 36s 5m 11s 30.939
500 4m 49s 9m 35s 5 0.969
1000 8m 58s 21m 5s 7 0.980
3000 20m 20s 42m 31s 9 0.984
5000 42m 52s 80m 51s
7000 57m Os 104m 48s

5.3 Dataset Statistics

To gain a general understanding of our dataset, we analyzed our collection of 30,000
unique applications as a representative sample of the official Android Market. Figure
shows the distribution of the sizes of APK files in kilobytes, and Figure 6] shows the
distribution of the number of opcodes per application. Both distributions are skewed
to the right, with APK files having a median size of 724KB and applications having
a median number of opcodes of 20,555. The 75th percentile values for APK file sizes
and number of opcodes are 2,071kb and 56,166, respectively. The total file size of these
APKs is 50.43GB and total number of opcodes in all applications is approximately 1.45
billion.

5.4 Determining Experimental Values

Before feature hashing we must choose values for k-gram size k£ and bitvector size m.
We use the 30,000 Android applications to determine their values.
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Choosing k for Our Dataset. To choose k, we randomly select pairs of applications
and evaluate their Jaccard distance to determine how much varying k impacts the av-
erage distance between them. Figure 2] shows varying values of k and the resulting
average distance between pairs of randomly sampled 6,000 applicationsﬁ. We repeat
the experiment on multiple runs, but see little variance across them. The key intuition is
if two applications are chosen at random from our dataset, they are likely to be dissim-
ilar. The table shows that starting from 5, further increasing & has little impact on the
distance calculation. Based on this, we chose a value of k to be 5 and performed feature
hashing and clustering on our sampled applications. Figure[Z] shows the cumulative dis-
tribution of opcodes per basic block for all basic blocks with more than two opcodes.
This indicates that the majority of the basic blocks are dominated by a small value of k,
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Fig.8. The clusters obtained from 30,000
Android application using hierarchical
clustering with similarity threshold ¢t = 0.9
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Fig.10. Cumulative distribution of the
number of bits set in the bitvectors of

30,000 Android applications

and 5 is an appropriate choice for this dataset.

3 A distance of 1 indicates no similarity where a distance of 0 indicates identical similarity.
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Choosing an Appropriate Bitvector Size. The bitvector size m strikes the trade-off
between efficiency (similarity) computation and approximation error of using bitvectors
to represent the sets of k-gram for each application. Ideally, we want size m to be large
enough such that few collision occur during feature hashing. Practically, we want size m
to be small so that we can efficiently compute similarity between all pairs of hundreds
of thousands of applications.

According to [24], we need m > N, the number of k-grams extracted from an
application, so that the Jaccard similarity between two bitvectors is very close to the
exact representation of computing the intersection between two k-gram feature sets.
In addition, in all of our analysis, we are particularly interested in applications with
high similarity, e.g., application pairs with similarity greater than 50%. We sparsely
store this pairwise matrix and only store values for which the threshold is reached. This
optimization yields good similarity results because those excluded applications are very
unlikely to have a similarity score greater the threshold with other apps.

We use all of the 30,000 applications from the Android Market to determine m. We
compute the number of unique 5-gram features that can be extracted from each applica-
tion, and plot its camulative distribution from all applications in Figure [0l We find Ny
in the distribution, which represents the threshold in which 90% of all applications’ k-
gram features are less than this value. We then set m = 240, 007, a prime that is more
than nine times of Ny, satisfying the condition m > N suggested by [24].

We use the following two ways to verify whether m = 240,007 is large enough.
1) We do feature hashing with m = 240,007 for all 30,000 applications, and count
the number of bits set in the bitvector for each application. We plot its distribution in
Figure [Tl We observe that more than 95% of applications have 1/5 of their bits set
in their bitvectors, and more than 90% of applications have only 1/10 of their bits set.
Hence, we do obtain sparse bitvector representation for the majority of applications. 2)
We also randomly sample a subset of 1000 applications, compute the pairwise similarity
among them using their k-gram feature sets, and compare the similarity values to those
computed using their bitvectors. We find that the average difference between them is
less than 0.01. With these two observations, we conclude that m = 240, 007 is suitable
for our analysis.

Clustering for Application Topology. We use clustering as a way to group similar
applications together. We run hierarchical clustering on the 30,000 Android applications
using a similarity threshold ¢ = 0.9, with and without a core functionality exclusion list
applied, respectively. Figure [§] shows the cluster size sorted in a descending order. We
see that both versions of the clustering worked well, but clusters with exclusion no
longer had application clusters dominated by large libraries.

We observe that there are around 200 clusters, each of which has at least 10 ap-
plications, and in total there are 9344 applications in those clusters. We find that our
clustering identified three unique, commonly occurring patterns. They are:

Same Application Title, Different Versions. One cluster contained several versions
of the same movie player, which were all responsible for displaying elicit pictures of
models. Within the cluster, there were 4 different versions of the same model’s movie
player, heaven8.
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Differing Author and Functionality, Same Tool for Development. In one example,
AppBar is a tool for allowing users to visually create applications for Android without
needing to know about the underlying development platform. The platform allows for
the addition of sounds, images, twitter feeds, and all sorts of additional widgets. We
identified a cluster on the official Android market consisting of 735 applications of this
type, ranging from RSS feeds to audio programs.

Multiple Apps from an Author, Different Underlying Functionality. A common pat-
tern is for a developer to make a framework for creating applications and then reusing
the applications in a variety of contexts. For instance, the company BrightAl produces
a variety of applications related to sports. One such cluster contained 28 different ap-
plications, all by BrightAl, but with different application purposes.

5.5 Case Studies

Previous work on studying Android applications[20] has shown that developers copy
and paste code snippets from popular programming web sites into their own code, with-
out understanding the potential security risks posed by blindly copying code.

Recently, Google announced an In-Application Billing API along with a sample ap-
plication which demonstrates how the purchasing protocol works[10]. Several secu-
rity warnings accompany the document, including statements regarding how developers
should obfuscate their code, protect their purchasable content, and verify purchases on
a remote server. We show how Juxtapp can not only detect applications in the Android
Market that copied this sample code, but we also show how we can detect other known
source code-related vulnerabilities in the market using our architecture.

Reuse of Vulnerable Code. In this section, we examine two cases of vulnerable code
reuse of sample code provided by Google: In-Application Billing and the License Ver-
ification Library. We show that Juxtapp can quickly and efficiently reduce the set of
potentially vulnerable applications and detect vulnerable code reuse in Android Appli-
cations.

In-Application Billing. Google In-Application Billing (IAB) is a library provided for
developers to include so that their customers can sell digital content within their ap-
plication, while letting Google handle authentication and credit card purchases|6]. For
security reasons, Google advises that developers use obfuscation in order to make the
code more difficult to understand for an adversary and they also recommend that devel-
opers perform verification on a remote server.

However, the sample code provided by Google is not obfuscated and performs ver-
ification of a purchase on the device. The left side of Figure [[1] Line 231, shows the
potential single point of attack. Meaning, if a developer can rewrite the statement to
negate the condition, or force it to be true in some other way, the application will skip
verification and allow the current user access.

In order to detect a potential attack, we analyzed the containment between the IAB
sample code and the 30,000 applications in our dataset. We set a threshold that at least
70% of the IAB sample code must be in the application before further exploration.
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Running containment between the sample IAB code and the Android Market appli-
cations took 1.5 minutes,and we detected 295 applications containing 70% of the IAB
code. Other researchers used these applications to demonstrate that they could use the
tool they developed for application rewriting to automatically exploit a vulnerability to
get virtual goods for free [16]]. Of those that used a significant portion of the sample
code, 174 were vulnerable, while 65 use off-device/JNI verification and 56 were inop-
erable after rewriting. Our results show that Juxtapp is a fast way to quickly analyze
large sets of applications for vulnerabilities caused by code reuse.

License Verification Library. The License Verification Library(LVL) is a library pro-
vided by Google in order to allow developers to query the Android Market at runtime
in order to determine if a user is licensed to use a particular application[7)]. Similar to
IAB, Google provides sample code which encourages developers to obscure their code
and ensure that single points of attack are protected. The sample code uses caching
in order to prevent having to contact the Android Market every time the user invokes
the application. However, the right side of Figure [[1l Line 133, shows the potential
vulnerability. This line could be rewritten to negate the condition, or to check another
condition, making this a single point of failure, allowing a clever attacker to use the
library without a license.

We executed containment on 30,000 using the Google LVL sample code to guide
the search. For this experiment, we detected 272 potential candidates, 182 of which had
90% of the code, and 90 more, with at least 70% of the sample code. It took about 2
minutes to analyze the dataset. Of the potentially vulnerable candidates, 239 of the 272
applications had the vulnerable pattern in their code. We manually verified the results
in order to be assured that the pattern was in the code. Our analysis took about 10
minutes with script assistance responsible for opening each document which allowing
the analyst to determine if the pattern exists, without the task of manually opening each
file. Of those detected, some had obfuscated class and method names, but Juxtapp was
still able to detect similarity.

222: boolean verify(...) { 130: void checkAccess(...) {

231: if (!sig.verify( 131: // skip asking market if cached licensg
232: Base64.decode (signature))) { 133: if (mPolicy.allowAccess()) {

233: return false; 135: callback.allow();

234: } 136: } else {

235: return true; 137: //verification code

Fig.11. The code on the top shows the vulnerable code present in the In-Application Billing
Example Code Security.java. On the bottom is the point of vulnerability within the License
Verification Library sample code LicenseChecker. cpp

Android Malware. The Android Market place has recently experienced an influx of
malware. Google has responded by exercising its remote application removal ability,
that is, if Google determines an application is malicious or untrustworthy, it can re-
motely push a command to remove the application from affected devices[]]. In fact,
as of August 2011, users are 2.5 times more likely to encounter malware on their
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Table 3. Number of instances of each kind of malware found in the Anzhi Market dataset. Also
shown are the distinct new carriers discovered in our dataset.

Malware Instances Found Distinct New Carriers Found Malware BB Size

GoldDream 25 13 1,898
DroidKungFu 6 0 5,357
DroidKungFu2 2 0 375
zsone 1 0 280
DroidDream 0 0 2,526
Total 34 13

mobile devices than only 6 months ago, and it is estimated that as high as 1 million
users have been exposed to mobile malware[11][[14]. We suspect that unregulated, 3rd
party markets will have a higher incidence of malware.

Containment between Anzhi Market and Malware. In order to evaluate whether
third party markets contain known malware, we select a subset of 5 malware from our
dataset, which represents some of the most prolific, well-known malware. They in-
clude: DroidDream, DroidKungFul/2, zsone and GoldDream. Each malware sample
had a manual exclusion list applied, that is, using widely available malware analysis,
we excluded common code from malware such as advertising libraries and common
utilities which contribute nothing to the uniqueness of the code

Table3]shows that we were able to detect 34 malware in the off-market dataset. The
experiment took around 10 minutes to complete. Among those that matched we noticed
a very high incidence of code reuse ranging from 93%-100%. The lower percentage
matching shows that the technique is amenable to code mutations and variants. When
investigating those with lower percentages, we noted that variants often changed file
paths, reworked small amounts of code, changed exploit names, etc., and a 100% match
indicated, with high probability, that the two pieces of malware are identical and indeed,
when investigated the samples matched.

When evaluating the samples we also consider the ratio of the malware sample com-
pared to the container application. A low ratio indicates similar orders of magnitude
among the code sample, where a higher ratio indicates that the reported matching is
likely a false positive due to the density of the bitvector representing the larger appli-
cation. Some malware found in the Anzhi market matched our sample malware dataset
with little variation in code between them. However, other matched malware was signif-
icantly different from our evaluation set and we show how we can detect new variants,
with new malware carriers using Juxtapp. Most of the minor changes were related to
class and package names. However, Table [3] shows that we found 13 unique carriers
of the GoldDream malware in our dataset. Meaning, of these we found 13 previously
unknown to us, distinct applications in our evaluation dataset, which were all different
types of games that had been repackaged with the GoldDream malware.

Containment between Android Market and Malware.We evaluated containment be-
tween 63 malware samples to the 30,000 collected from the official Android Market.
The experiment took 19 minutes to execute locally.

Juxtapp did not detect any instances of known malware on the Android Market. This
result is unsurprising given that Google has been vigilant about removing malware once
it is found, banning the associated account, and issuing remote removal[15]].



A Scalable System for Detecting Code Reuse 79

However, as expected, Juxtapp was able to detect the original application that the
malware sample had been repackaged with in order to trick users into downloading.
That is, a subset of our samples were repackaged with legitimate applications. Table 4]
shows the Android applications we were able to detect using the malware sample.

Table 4. Juxtapp is able to detect the original (and versions) of the application which was repack-
aged when compared to our malware dataset. Multiple features indicate multiple versions in our
dataset.

Application File Name Features Name Repackaged with
com.codingcaveman.solotrial.apk 4,272/4,831  Guitar Solo Lite DroidDream.1
it.medieval.blueftp.apk 19,597/18,946 Bluetooth File Transfer DroidDream.2
com.tencent.qq.apk 28,712 Tencent QQ Messaging PJApps
de.schaeuffelhut.android.openvpn.apk 2,009 OpenVPN Settings DroidKungFu

Piracy and Application Repackaging. In addition to vulnerable code and malware on
the Android markets, piracy, especially among games, has become a major problem for
developers. Android applications are often pirated by rogue authors, which remove copy
protection and replace developer revenue mechanisms such as advertising libraries. In
order to examine the third party market Anzhi for piracy, we downloaded and paid
for the two applications mentioned in the Guardian article about android privacy[4]:
1) Chillingo’s The Wars; 2) Neolithic Software’s Sinister Planet. We compared these
applications against the 28,159 applications in the Anzhi market, which took around
19 minutes to execute locally.

We found no instances of the Sinister Planet program being pirated on a third party
market. However, we found 3 pirated versions of Chillingo’s The Wars, being marketed
by the company Joy World, the same company accused of piracy in the article. Each of
the pirated versions has 71% code in common with the original application.

Despite the fact that the legitimate Wars program is unobfuscated, the Joy World
version is obfuscated with methods and classes renamed. Additionally, we found that
the pirate had added advertising libraries to the application which were not present in the
original version. So, even in light of significant obfuscation and additional code added,
we were still able to detect similarity showing that Juxtapp handles perturbations in
code well.

6 Related Work

A technique similar to ours has been independently developed by Zhou et al.[34]. While
they focused on detecting repackaged applications, we applied our technique and show
that it is effective to detect repackaged applications, buggy code reuse and known mal-
ware. In addition, we implemented the technique on a distributed infrastructure using
Amazon MapReduce, which enables us to analyze a much larger application corpus.
For large-scale malware analysis, Jang et al.[24] developed BitShred, a system for
large-scale malware triage and similarity detection based on feature hashing. However,
they focus on the technique as a contribution and classify x86 malware, whereas we ap-
ply similar techniques, with domain specific knowledge in order to find a variety of code
reuse in Android marketplaces. Instead of using boolean features, Gao et al.[22] and
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Hu et al.[23]] use features based upon isomorphisms between control flow and function
call graphs of the program. While these work primarily focus on techniques to compare
and index malware, our work is focused on techniques to determine similarity among
Android applications and conduct deep security analysis.

Winnowing, a fuzzing hashing technique that selects a subset of features from a pro-
gram for analysis, has been widely used for code similarity analysis[17] and plagiarism
detection[30]. However, the winnowing algorithm requires calculating set inclusion,
which is expensive when comparing many features.

A variety of approaches for static code clone detection have been proposed in the
programming language literature for refactoring, finding bugs, and better understanding
of the code [2127029125]). All those techniques can be applied into our framework to
further improve the accuracy and robustness our approach.

7 Conclusion

In this paper we presented Juxtapp, a scalable architecture for detecting code reuse
in Android applications. Our architecture is implemented in Hadoop and we ran it on
Amazon EC2. We evaluated the efficacy of Juxtapp in detecting vulnerable code reuse,
known malware, and piracy in a dataset of 58,000 applications from Android market-
places. Our findings show that Juxtapp is a valuable architecture in detecting applica-
tion similarity and code reuse in Android applications.

Acknowledgments. We would like to thank Adrienne Felt and Chris Grier for their
insights with this paper.
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