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Abstract. Downloaders are malicious programs with the goal to subversively
download and install malware (eggs) on a victim’s machine. In this paper, we an-
alyze and characterize 23 Windows-based malware downloaders. We first show
a high diversity in downloaders’ communication architectures (e.g., P2P), car-
rier protocols and encryption schemes. Using dynamic malware analysis traces
from over two years, we observe that 11 of these downloaders actively oper-
ated for at least one year, and identify 18 downloaders to be still active. We then
describe how attackers choose resilient server infrastructures. For example, we
reveal that 20% of the C&C servers remain operable on long term. Moreover,
we observe steady migrations between different domains and TLD registrars, and
notice attackers to deploy critical infrastructures redundantly across providers.
After revealing the complexity of possible counter-measures against download-
ers, we present two generic techniques enabling defenders to actively acquire
malware samples. To do so, we leverage the publicly accessible downloader in-
frastructures by replaying download dialogs or observing a downloader’s process
activities from within the Windows kernel. With these two techniques, we suc-
cessfully milk and analyze a diverse set of eggs from downloaders with both plain
and encrypted communication channels.
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1 Introduction

A crucial part in a malware’s lifecycle is to spread, e.g., via spam, drive-by downloads
or exploiting vulnerabilities. Whereas malware such as worms spreads on its own, at-
tackers have begun to separate the task of infecting victim systems and the exploitation
or “monetization” of the infected systems. Recent investigations to this business, known
as “Pay-per-Install” (PPI), have shown the vast potential of this kind of malware dis-
tribution model. Caballero et al. [5] analyzed PPI networks by actively infiltrating and
participating a handful of PPI programs. It was shown that PPI networks are responsible
for installing a diverse set of malware on infected systems.

Technically, the PPI scheme is only a subset of the malware type that we term a
downloader. A downloader is a malicious program with the purpose to subversively
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download and install malware on a victim’s machine. The specifics of PPI networks
allow attackers to get paid on a per-system and per-affiliate basis, but the effect of
PPI or, more generally, downloaders is comparable: Once a downloader is executed,
and no matter if related to a PPI network or not, the running system will typically be
compromised with multiple different malware families. Thus, downloaders represent a
simple yet widely-used way to spread new malware, typically as part of a service model
within the underground community.

In this paper, we outline and analyze the landscape of what we think represents a
snapshot of prevalent and current downloaders. We identified 23 downloaders, of which
many – to the best of our knowledge – have not yet been documented. We characterize
these downloaders concerning their communication model. For example, we discuss
the communication architectures of downloaders (e.g., P2P), and outline the techniques
used to encrypt or even camouflage the malicious activities. We then use dynamic anal-
ysis traces to provide a long-term monitoring analysis on these 23 downloaders, iden-
tifying 18 downloaders to be still active as of writing this paper. In addition, we show
that eleven downloader families are actively distributing malware for more than a year.

Motivated by this observation, we investigate how attackers ensure the resilience of
downloader infrastructures. Contrary to our expectation that IP address blacklists would
force attackers to change their infrastructure frequently, we show that 219 C&C servers
(20%) were actively operated for more than four weeks. For the remaining servers, we
analyze how attackers use DNS and IP address fluxing to operate their downloaders,
suggesting that isolating downloader infrastructures is much harder than it seems.

As a third part of our analysis, we propose two automated methods to extract the
downloaded malware (eggs) in a generic and scalable fashion. We hope that these tech-
niques will support future efforts in analyzing downloaders without the manual effort of
reverse engineering particular downloader families. We evaluate these two techniques
both on downloaders with plaintext and encrypted communication, acquiring a diverse
set of malware in the wild.

To summarize our contributions:

– We identify and characterize 23 malware downloaders, describing previously un-
documented specimen and their communication models.

– We perform a long-term analysis of these downloaders, revealing that 11 down-
loaders have been operating for more than a year, and approach to understand the
reasons for the infrastructural resilience.

– We propose two automated techniques to actively acquire malware from download-
ers, without requiring reverse engineering downloaders.

2 Preliminaries

Malware defense mechanisms, especially anti-virus, have forced attackers to develop
increasingly complex malware. This complexity has motivated attackers to specialize
and separate duties. For example, services to stealthily install malware on computers
may be provided by one group, while other fraudsters specialize in sending spam, and a
third group could focus on keylogging. In this work, we focus on the service of installing
new malware on systems via downloaders. Downloaders are malicious programs that



44 C. Rossow, C. Dietrich, and H. Bos

are instrumented to load additional malware via the Internet, which is in turn installed
and executed on the victim’s system.

2.1 Downloader Architectures

Figure 1 illustrates the architecture of a downloader. Once executed, a downloader
contacts its command-and-control (C&C) server(s) via C&C channels. After receiv-
ing download instructions, it then establishes at least one download channel to load
malware (eggs) via the network.

Downloader

C&C Server

Download Server

C&C Channel

Download Channel

Fig. 1. Simplified architecture of a downloader: Seperation between C&C and download channel

C&C Channels. A downloader’s C&C channel is used to get lists of URLs (or similar
address information) where eggs can be downloaded from. Next to download instruc-
tions, the C&C channel can be used to report back to the C&C server if the download
succeeded. In addition, as shown by Caballero et al. [5], C&C channels may exchange
affiliate IDs in the economical model of pay-per-install downloaders. Moreover, down-
loaders send details about the infected host using the C&C channel, such as the OS
version, username or device IDs. One characteristic of C&C channels is the carrier
protocol used to transfer commands. Typical examples for carrier protocols are IRC,
HTTP (e.g., if C&C messages are in the HTTP body) or plain TCP/UDP. The informa-
tion exchanged on C&C channels is critical and highly subjective to counter-measures
such as signature-based IDSs, and thus more advanced downloaders encrypt their C&C
channel. During our investigations, we also observed downloaders that have download
URLs hardcoded in their binaries. We excluded such downloaders from our analysis
because of their simplicity and transitory nature.

Download Channels. We found the C&C and download channels to be typically well-
separated. A download channel shares similar characteristics than the C&C channel,
i.e., it has a specific carrier protocol and potential encryption schemes. While we did
not see examples of steganographic C&C channels, as we will show, some downloaders
tend to camouflage their malicious downloads in normal web traffic. Another typically
distinguishing characteristic between C&C and download channels is the number of
bytes transferred. C&C commands tend to be small, while eggs – no matter if encrypted
or not – have significantly larger file sizes.
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2.2 Related Work

First steps to analyze specific downloaders were made by Caballero et al. by analyzing
four pay-per-install (PPI) programs [5]. PPI downloaders, a subset of downloaders in
general, are based on an economical model cashing out attackers for installing malware
on a freshly infected system. Caballero et al. implemented so called milkers to download
eggs from these four PPI networks, and systematically analyze the ecosystem behind
these networks. They show in-depth how egg families relate to download programs, and
identified that kinds of malware (e.g., DDoS) were distributed in download campaigns.

Our work was inspired by Caballero et al., and we seek for a broader characterization
of downloaders. In fact, we found ourselves at a position not knowing the magnitude
and different types of downloaders currently active in the wild. We identify that the
number and kinds of downloaders is significantly higher than expected. To the best
of our knowledge, we are the first to approach a characterization of downloaders. We
then also seek to answer the fundamental but yet unanswered question of how attackers
build up infrastructures that are sufficiently resilient for long-term operations of down-
loaders. We expand a malware acquisition technique as proposed in Botlab [7] with
replaying network dialogs as proposed by Newsome et al. [11]. While Botlab fetches
malware from URLs found in spamfeeds, our techniques repeatedly acquires malware
from downloader URLs. Existing systems like Threatexpert [15] or Anubis [4] can al-
ready analyze malware in general, but we are the first to analyze the behavior and in-
frastructures on downloaders over multiple executions and on long-term.

3 Analysis of the Downloader Landscape

In this section, we characterize and describe the 23 downloaders identified as part of
this work, which we will then further analyze later in the paper.

3.1 Dataset Description

Our analyses are based on malware reports from Sandnet [12]. Sandnet executes and dy-
namically analyzes malware using Windows XP SP3 32bit virtual machines connected
to the Internet via NAT. During malware execution, we deploy containment policies that
redirect harmful traffic (e.g., spam, infections) to local honeypots. We further limit the
number of concurrent connections and the network bandwidth to mitigate DoS activi-
ties. An in-path honeywall NIDS watched for security breaches during our experiments.
Other protocols (e.g., IRC, DNS or HTTP) were allowed to enable C&C communica-
tion. We consider the biases affecting the following experiments due to containment to
be negligible. Specifically, given our long measurement period of one hour per malware
sample, we did not observe any incomplete download behaviors in our trace. Assuming
that downloaders silently operate without the user’s consent, we did not deploy user
interaction during our experiments. We plan to analyze malware on 64-bit architectures
or more recent Windows versions in the future.

Our dataset consists of 243,000 MD5 unique malware samples analyzed in Sandnet
at least once between Feb 2010 and Feb 2012. We gratefully received these samples
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from a variety of sources, including samples submitted to public dynamic analysis en-
vironments, feeds by security companies, our own honeypot infrastructures and spam-
traps. While we cannot prove that this dataset covers all relevant malware families,
it shows a diversity of 38,000 unique malware labels (according to Kaspersky). We
extracted the malware family names from these labels and found over 1800 malware
families in our dataset.

From this diverse set of samples, we scheduled a random selection on a daily basis,
without giving any emphasis to particular malware families. To trigger the malware be-
havior, we then executed these samples for at least one hour. Obviously, only a minor
fraction of these malware samples are in fact downloaders. To build up a dataset cover-
ing the most relevant downloaders we did a threefold approach. First, we consulted liter-
ature research and asked AV vendors for their expert knowledge on recent and prevalent
downloaders. Second, in our dataset covering millions of malware samples, we searched
for prevalent AV labels suggesting the malware is a downloader. Third, we manually in-
spected a random subset of the Sandnet analysis reports for downloader behavior. We
manually filtered legitimate programs in our dataset of potential downloaders, such as
e.g. Windows Update, Google Updater or programs to update system drivers.

For each identified downloader, we systematically searched for related analysis re-
ports in Sandnet. Typically, we used payload or behavioral signatures to classify and
recognize a particular downloader. In rare cases, where a downloader family did not
expose any signature, we carefully assembled sets of domains and IP addresses to rec-
ognize downloader traffic. Using these techniques, we are able to detect all previous
and upcoming executions of a particular downloader family.

3.2 Downloaders Overview

The resulting dataset provides an empirical overview of existing downloaders. Table 1
lists the downloaders that we monitor as part of this work. While this is not necessarily
complete, it shows a large diversity in terms of different downloader characteristics.
The attributes in Table 1 form two groups: The left-hand attributes characterize the
C&C channel, while the right-hand columns characterize the download channel. We
labeled three droppers with generic names (dldr-#1 to dldr-#3), as anti-virus vendors
either assigned too generic or contradictory labels for those.

Carrier Protocols. A first distinction between the downloaders can be made in terms
of the carrier protocol, that is, the protocol used to communicate with C&C or Down-
load servers. To understand and also classify downloaders, we had to reassemble and
parse numerous carrier protocols (UDP, TCP, DNS, HTTP, IRC, TLS). For obfuscated
protocols, we define the carrier protocol to be the underlying protocol of the C&C
protocol, e.g., “HTTP” for GoldInstall or Renos/Artro and “TCP” for the encrypted
variant of Virut C&C. Interestingly, Table 1 shows that C&C channels are not neces-
sarily designed in the same way as download channels. For example, five downloaders
use obfuscated or encrypted C&C channels, but at the same time have plaintext HTTP
download channels. Similarly, another five downloaders do not separate between C&C
and download channels, abbreviated by “inl” to show that malware is served inline with
the C&C protocol.
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Table 1. Overview of downloaders under our analysis. Columns 2–5 characterize the C&C chan-
nel, columns 6–9 characterize the download channel. “Pl?” shows if the communication channel
was in plain text, and “DNS?” shows if names of the communication endpoints were resolved via
DNS prior to contacting them.

C&C Channel Download Channel
Family arch Pl? Protocol DNS? Pl? Protocol DNS?
Renos/Artro cent ✗ HTTP ✓ ✗ HTTP ✓
Sality cent ✗ HTTP ✓ ✗ HTTP ✗
dldr-#1 cent ✗ HTTP ✓ ✗ HTTP ✓
Cycbot/Gbot cent ✗ HTTP ✓ ✗ HTTP-inl ✓
Karagany cent ✗ HTTP ✓ ✗ HTTP-inl ✓
Gamarue cent ✗ HTTP ✓ ✓ HTTP-inl ✓
Dofoil cent ✗ HTTP ✓ ✓ HTTP ✓
Emit cent ✗ HTTP ✓ ✓ HTTP ✓
GoldInstall cent ✗ HTTP ✓ ✓ HTTP ✓
Rodecap cent ✗ HTTP ✓ ✓ HTTP ✓
Virut (crypt C&C) cent ✗ TCP ✓ ✓ HTTP ✓
TDSS cent ✗ TLS ✓ ✗ HTTP ✓
Winwebsec cent ✓ HTTP ✗ ✓ HTTP ✗
Dabvegi cent ✓ HTTP ✓ ✗ HTTP ✓
Buzus cent ✓ HTTP ✓ ✗ HTTP ✓
dldr-#3 cent ✓ HTTP ✓ ✓ HTTP ✓
Zwangi cent ✓ HTTP ✓ ✓ HTTP ✓
Harnig/LoaderAdv cent ✓ HTTP ✓ ✓ HTTP-inl ✓
dldr-#2 cent ✓ HTTP ✓ ✓ HTTP-inl ✓
Virut (plain C&C) cent ✓ IRC ✓ ✓ HTTP ✓
Vobfus/Changeup cent ✓ TCP ✓ ✓ HTTP ✓
Sality P2P P2P ✗ UDP ✗ ✗ TCP ✗
Zeus P2P P2P ✗ UDP ✗ ✗ TCP ✗

Communication Architectures. As Table 1 suggests, almost all downloaders deploy
a centralized C&C architecture. Two exceptions are Sality P2P and Zeus P2P. Sality
uses a hybrid C&C architecture, i.e., some samples use a centralized HTTP-based C&C
channel while others receive their commands via a peer-to-peer network. Zeus P2P
is a pure P2P based bot with download functionality. Such distributed networks are
attractive to attackers, as the C&C infrastructure cannot be disrupted by taking offline
single C&C servers. Both Sality P2P and Zeus P2P1 initialize their C&C channel by
trying to contact hundreds of P2P bootstrapping nodes.

DNS. Table 1 reveals that most downloaders make use of DNS to resolve the names of
their C&C and/or download servers. However, downloader families such as Winwebsec
and the P2P-driven downloaders avoid DNS resolution for both C&C and download
servers. We speculate that such downloaders either have no technical need for DNS,
e.g. the P2P architectures, or want to foil malware domain blacklists. From the attacker’s
point of view, another disadvantage of using DNS is that taking down domains exposes
an additional point of failure in the communication chain. However, on the other hand,

1 Note that while Zeus may not be conceived as downloader, there are references supporting our
observation that recent Zeus variants drop other malware.
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DNS would allow to quickly redirect to different IP addresses of download servers.
This dilemma basically boils down to: Who is more resilient, the hoster (IP) or the DNS
provider (domain)? We try to shed light onto different resilience strategies in Section 4.
The fact that most downloaders use DNS resolution shows that developing mitigation
techniques based on DNS is promising. Howevr, although we see downloaders using
DNS, they may also have a backup communication channel, e.g., using hardcoded IP
addresses [10].

Intuitively, one may think that downloaders use DNS to quickly react on server
takedowns. Fast flux [9], domain flux and the business of bullet-proof DNS hosting
would support this intuition. As we figured, however, some downloaders do not (need
to) change DNS records of particular C&C domains. Consequently, while the usage of
domains evolved over time, the IP addresses resolved by these domains were relatively
static. We will further analyze these observations in Section 4.1.

Communication Encryption. Defense mechanisms such as network-based intrusion
detection systems or anti-virus scanners scan for URLs and file contents downloaded
from the Internet. As a consequence, downloaders deploy a wide set of schemes to ob-
fuscate or encrypt their communication channels. A distinction can be made between
deploying well-known or custom encryption techniques. For example, the TDSS down-
loader relies on TLS within its C&C channel, thus preventing from eavesdropping on
C&C communication [13]. Similarly, we observed that the Renos/Artro family encrypts
using RC4 with a key hardcoded in the samples.

In contrast, other downloaders use custom encryption/obfuscation algorithms. To
give insights, we reverse engineered specific downloader families. For example, Emit
deploys an XOR shifting technique to obfuscate traffic. Similarly, Virut picks a random
session key and the C&C servers derive these session keys by performing a known-
plaintext attack on the ciphertext of the first message sent from the bot to the server. The
session key itself is thus never transmitted. Independent from the cryptographic strength
of a particular algorithm, understanding and possibly decrypting the ciphertexts often
requires tremendous reverse engineering efforts.

Steganography. Attackers further disguise the egg downloads with steganography.
While encryption prevents eavesdroppers to read exchanged data, steganography tries
to hide the existence of egg downloads. We have spotted camouflage techniques used
by downloaders that could be interpreted as first steps towards steganography. For ex-
ample, Renos/Artro hides its eggs in valid GIF files. Although these files look like
regular legitimate pictures, eggs are carried as part of the files. Using custom routines,
the downloader transforms these files to correct PE binaries.

Downloaders Using Public Services. Most downloaders rely on their own infrastruc-
ture for hosting malicious software. However, we also observed that particular down-
loaders make use of publicly accessible services. For example, dldr-#1 retrieves its
malicious files from a large public file clouding provider. From a defender’s perspec-
tive, it is much harder to block access to legitimate services, as a distinction between
legitimate or malicious downloads from such sources raises big challenges.

Tracking Mechanisms. Among the plaintext downloaders, we could observe down-
loaders that are client-aware. That is, attackers derive pseudo-unique IDs per system,
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such as e.g. its MAC address, the gateway’s public IP address or the Windows serial.
The C&C servers can then keep track of which clients contacted them, and serve bina-
ries accordingly. Similarly to e.g. Torpic [14], the downloader victims are presumable
identified to track the number of infections, either to keep an overview or to use this
data for payment (e.g., PPI). Another reason would be to observe and defend against
potential abuses of the downloader infrastructures (see Section 5). To work around this
in our setup, we are modifying fixed strings such as the MAC address for every malware
execution in Sandnet since ever.

3.3 Downloader Lifetime

With our understanding that downloaders are a fundamental part of the malware life-
cycle, we now analyze the lifetimes of the downloaders. For this lifetime analysis, we
are not interested in a particular downloader binary (identified by the MD5 hash sum).
Instead, we analyze when a particular downloader family appears in our dataset, and
how long its C&C or download activities continue.

As a first step, we used the mechanisms described in Section 3.1 to identify down-
loaders of a particular family in our dataset. We specifically designed our signatures to
match evolutions of particular downloaders. For example, GoldInstall, a PPI program
with diverse affiliation programs [5], was covered by a single signature. We then had
to filter C&C flows that reached the C&C server, but the C&C server responded with
non-C&C data (e.g., HTTP 404 responses). We enhanced our signatures with heuristics
verifying that an endpoint shows active C&C communication, filtering out a significant
amount of sinkholed communication.

Dabvegi (5x)
Karagany (7x)

dldr-#3 (8x)
Zwangi (14x)

Rodecap (15x)
Gamarue (17x)

Dofoil (28x)
Sality P2P (32x)

dldr-#1 (40x)
dldr-#2 (44x)

Emit (49x)
Buzus (57x)

GoldInstall (126x)
TDSS/Alureon (131x)

Winwebsec (152x)
Zeus P2P (155x)

Sality Centr. (199x)
Harnig/LoaderAdv (236x)
Virut (crypt C&C) (551x)

Renos/Artro (1206x)
Virut (plain C&C) (1571x)

Cycbot/Gbot (1669x)
Vobfus/Changeup (1899x)

02/2010 02/2011 02/2012

Fig. 2. Lifetime of downloaders, as observed in Sandnet, from Feb 2010 until Feb 2012. The
numbers in brackets represent the number of active executions of this downloader in Sandnet.

Figure 2 shows the resulting activity plot. To increase readability, we connected two
markers if the gap between these two downloader occurrences in our dataset was less
than four weeks. Due to a maintenance period in Sandnet, the graph lacks activity mea-
sures of droppers between 03/02/2011 and 08/04/2011. Overall, however, the graph
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shows that at least 11 of the 23 downloaders (48%) actively operated for more than a
year. In addition, 18 downloaders (78%) are still active as of writing this paper. Given
that some downloaders are more present in our sample feeds than others, and given
that our measurement period started in Feb 2010, the resulting data represents lower
bounds of the actual dropper lifetimes. We even noticed that some downloader fami-
lies were discussed by the community prior to our measurement period, indicating that
the lifetimes of some downloaders is significantly longer than two years. We therefore
speculate that in fact even more downloaders were successfully operated in long-term.
This opposes a long-lasting threat to our community, as apparently downloaders are
largely and continuously used to infect PCs.

A few downloaders, such as Dofoil or Gamarue appeared first in our dataset in 2011,
underlining active developments in the malware scene. The reasons why other down-
loaders ceased during the measurement period are twofold. First, in case of GoldInstall,
C&C servers were not responsive for weeks, potentially indicating a downloader was
abandoned or undergoes a major evolution. Second, as of August 2011, all specimen of
Renos/Artro in our dataset were sinkholed by Shadowserver or Spamhaus.

4 Downloader Infrastructures

Seeing the significant lifetimes of downloaders, and knowing that defenders try to miti-
gate the threats of malware in general, we asked ourselves: How, technically, do attack-
ers ensure such a high and long-term availability of their downloader infrastructures? In
this section, we will therefore investigate the critical infrastructures used by attackers
to operate their downloaders, i.e., both C&C and download servers.

4.1 C&C Infrastructure

C&C servers are vital to instrument the downloaders with new download instructions,
and thus represent a sensitive part in the architecture of downloaders. From a down-
loader’s perspective, two infrastructural services are crucial. First, most downloaders
depend on DNS resolution prior to contacting their C&C server. Second, C&C servers
obviously need to be reachable and service correctly. From a defender’s perspective,
both hosts (IP addresses) and domains represent vantage points to detect and/or disrupt
downloaders.

We use the data obtained in Section 3.3 for further analyzing the C&C infrastructure.
In particular, we aggregate the number of domains and IP addresses used by a particu-
lar downloader as observed in Sandnet. While this does not necessarily give a complete
view on the IP addresses and domains used by a downloader, the numbers can serve as
lower bounds. Table 2 shows that the resilience strategies differ between the download-
ers. In the second major column, we summarize statistics on the specific C&C server IP
addresses of a downloader, plus its Autonomous System (AS). In the third major col-
umn, Table 2 lists the number of C&C domains per dropper. We highlighted domains
or IP addresses that we have seen in active use for at least four consecutive weeks in
Table 2 in the columns annotated with “LL” (long lasting).
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Table 2. Statistics on the C&C server distribution infrastructure per downloader family. LL=Long
Lasting, i.e., IP addresses/domains had an uptime of more than 4 weeks. In each such case, we
increase the corresponding AS/TLD counter by one also.

Downloader IPs ASes Domains TLDs Timespan
Family # # LL # # LL # #LL # #LL M/Y - M/Y
Buzus 2 1 1 1 3 2 2 1 01/12 - 02/12
Cycbot/Gbot 145 48 56 36 2347 57 6 6 10/10 - 02/12
Dabvegi 5 4 4 3 5 4 3 3 11/11 - 01/12
dldr-#1 69 19 4 2 5 2 3 2 01/12 - 02/12
dldr-#2 41 11 21 5 45 12 7 4 06/10 - 02/12
dldr-#3 10 1 2 1 10 2 4 2 08/10 - 01/12
Dofoil 12 2 7 2 16 0 3 0 06/11 - 02/12
Emit 7 2 2 1 9 4 1 1 06/11 - 02/12
Gamarue 80 3 57 3 12 1 4 1 11/11 - 02/12
GoldInstall 12 5 7 3 13 8 3 2 05/10 - 01/12
Harnig/LoaderAdv 24 11 6 1 42 32 1 1 03/10 - 01/11
Karagany 2 0 1 0 7 0 2 0 12/11 - 02/12
Renos/Artro 27 5 12 3 75 0 3 0 06/10 - 02/12
Rodecap 8 4 2 2 5 4 3 3 06/10 - 02/12
Sality Centr. 239 62 125 47 243 59 31 18 06/11 - 02/12
Sality P2P 9849 1457 900 424 0 0 0 0 11/11 - 02/12
TDSS/Alureon 28 8 21 8 28 3 1 1 08/10 - 02/12
Virut (crypt C&C) 20 6 11 6 44 10 3 2 02/10 - 02/12
Virut (plain C&C) 14 4 9 4 3 3 1 1 02/10 - 02/12
Vobfus/Changeup 19 8 14 7 17 13 3 3 05/10 - 02/12
Winwebsec 5 2 4 2 0 0 0 0 10/10 - 02/12
Zeus P2P 2140 31 446 21 0 0 0 0 08/11 - 02/12
Zwangi 97 7 4 1 10 1 1 1 10/10 - 02/12

Table 2 reveals that most downloaders use multiple C&C server hosts, and tend to
distribute their servers across network boundaries. For example, Virut has been in oper-
ation during our entire analysis period with about 20 IP addresses in eleven ASes. We
speculate that spreading server locations among multiple ASes is a strategic decision
by the attackers. The more responsible parties and different national regulations are in
place, the higher the complexity for defenders to take actions against specific down-
loaders. In that sense, Cycbot/Gbot stands out with 146 servers, hosted in more than 50
different networks. Observing such a large diversity may indicate that Cycbot/Gbot is
in fact a malware toolkit with downloader functionality, which results in many smaller
infrastructures independent from each other. We verified that the Cycbot/Gbot instances
in our dataset used different IP addresses at approximately the same time. Another in-
teresting case is dldr-#1, which appears to operate many C&C servers on its own. But
instead it uses a large public file sharing company and this hoster’s load balancing tech-
niques, hiding eggs in seemingly benign Bitmap image files. As we are interested in all
C&C activities of a downloader, we manually inspected all cases where possibly benign
IP addresses or domains (e.g., image hoster) were involved and we explicitly did not
exclude them from Table 2 if we also detected C&C.
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Outstanding are the P2P variants of Zeus and Sality, with more than thousands of
different C&C “server” hosts each. For these downloaders, we consider P2P neighbors
that respond to P2P-related UDP requests as active. The large number of ASes involved,
900 for Sality P2P and 446 for Zeus P2P, show that provider-driven initiatives against
these P2P networks are deemed to fail. Interestingly, and particularly for Sality P2P,
we saw a large fraction of P2P nodes to be lasting for more than four weeks. We first
thought this may indicate that defenders joined this particular P2P network, but the high
number of long-lasting ASes speaks against this.

The analysis on the domains used by downloaders provides further interesting in-
sights. Zwangi, for example, heavily rotates its C&C IP addresses typically within four
/22 networks. Similarly, Gamarue deploys one particular domain pointing to highly
fluctuating IP addresses in over 50 different ASes. In both cases the IP addresses are
typically reused, i.e., DNS is used to steer downloaders towards multiple C&C servers.
On the other hand, we observed downloaders for which the set of IP addresses was
relatively constant, but the domains to resolve these IP addresses changed over time.
For example, Virut used 45 domains to resolve to its 20 C&C servers, and Renos/Artro
pointed its 136 domains to 38 IP addresses. Related to the previous observation that
attackers settle their C&C servers in multiple networks, we also show that – for most
downloaders – a diverse set of Top Level Domains (TLDs) is chosen. Usually, these
C&C domains are even registered across many continents, mostly including European,
South-/North-American, and Asian registrars. Again, involving multiple domain regis-
trars is presumably a strategic decision.

It can be seen that a large fraction of C&C servers (20%) remains operable for more
than four weeks. Similarly, 217 domains pointing to active C&C servers (7%) remain
in active use for at least four weeks. The observed long-levity enables defenders to
take actions against downloaders, such as using domain or IP address blacklists. On the
other hand, the involvement of numerous registrars and providers shows how complex
takedown efforts would be.

As a case study, we compared the usage time spans of Virut’s C&C server domains
(Figure 3(a)) with the usage time spans of the egg download server domains (Figure
3(b)). Both figures reveal that Virut seems to have a subset of stable domains that have
been used throughout the last two years and that are still in active use, for both C&C
and egg servers. In addition, several domains have been used only for certain periods.
However, the sets of domains for C&C and egg distribution are distinct, i.e. we have
not witnessed a single domain being used for both, C&C and egg distribution. Inter-
estingly, we observed a churn of Virut C&C server domain names between June 2011
and January 2012. Our initial hypothesis that these domains were used as backup C&C
domains was proven wrong, as many other domains have been actively in use during
that period. In addition, our passive DNS database in Sandnet revealed that not a single
DNS resolution request for a Virut C&C domain resulted in NXDOMAIN or an empty
answer section – Virut thus exhibits a remarkable C&C and egg server availability. We
leave a more fine-grained analysis to measure to which extent C&C servers/domains
are responsive simultaneously to future work.
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Fig. 3. Virut’s C&C (above) and egg (bottom) server usage by domain over time. Colors/markers
denote top level domains.
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4.2 Download Server Infrastructure

The second pillar of a downloader’s infrastructure are the download servers. We will
now analyze the infrastructures of downloaders with plaintext download channels. We
focus on plaintext downloaders, as we could map download channels to downloaders
in these cases with a high accuracy. Table 3 shows statistics on the egg distribution
infrastructure for these downloader families. On purpose, we do not consider the C&C
infrastructure here, except – unavoidably – in cases where the egg sample download is
part of the C&C channel.

Table 3. Statistics on the egg sample distribution infrastructure per downloader family. LL=Long
Lasting, i.e., uptime of more than 4 weeks. Packers: u=UPX, t=Themida, p=PECompact,
e=PEtite, b=BobPack/Bobsoft, a=Armadillo, s=ASPack/ASProtect, x=EXECryptor, h=Thinstall,
n=NsPack, f=FSG, d=D1S1G, v=Upack, c=CrypKey, o=ProActivate, y=XtremeProtector,
w=WinUpack, N=NET MS, M=MoleBox, Y=y0dasCrypter.

Downloader IPs Domains Eggs Maximum Packers
Family # #LL # #LL # #MD5s Uptime # Detected
dldr-#2 26 7 44 10 1029 110 561 days 6 b,t,u,f,h,y
dldr-#3 8 1 9 1 648 158 114 days 7 u,s,d,n,p,c,e
Dofoil 14 1 29 0 103 93 96 days 3 u,c,Y
Emit 6 2 27 0 5938 698 183 days 2 u,p
GoldInstall 70 25 63 16 13155 971 592 days 8 u,b,s,v,p,w,n,N
Harnig/LoaderAdv 31 12 46 23 1731 735 185 days 9 u,o,f,p,d,N,b,n,M
Rodecap 2 2 8 2 286 23 445 days 2 u,a
Virut (crypt C&C) 30 8 25 6 3852 293 459 days 5 u,x,n,s,d
Vobfus/Changeup 15 7 34 3 2005 424 77 days 1 u
Winwebsec 6 1 1 1 80 22 58 days n/a ukn
Zwangi 86 2 8 1 263 138 49 days n/a ukn

Two thirds of the observed plaintext downloader families exhibit more than ten dis-
tinct IP addresses for their sample servers. A similar trend is observed concerning the
domain names – only the Winwebsec family does not make use of DNS at all in the egg
download process.

Per downloader family, the maximum uptime expresses the maximum time span
where one single egg server IP address has been witnessed as serving egg samples.
Note that, in comparison to Table 2, the measurement in Table 3 is restricted to a fam-
ily’s egg servers and omits its C&C infrastructure. We consider an IP address or domain
as long lasting if it serves eggs for at least four weeks. Table 3 shows that over the whole
monitoring period, only a small fraction of the IP addresses is actually long lasting. In
the cases that we manually inspected, we observed that downloaders typically move
their download servers from time to time. For each downloader family of Table 3, we
manually inspected the egg server usage over time for both, domains and IP addresses.
Interestingly, all downloader families exhibit similar egg server usage patterns where
the migration from one domain to another is clearly visible. The same applies to the
IP addresses of egg servers, however, egg server domains typically change more often
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(b) Vobfus/Changeup: Migrating to new, previously unseen TLDs

Fig. 4. Egg server usage by domain over time for two downloaders. Domain names have been
pseudonymized. Marker styles and colors distinguish the download server’s top level domain.

than IP addresses. Some of the servers that we observed to be long lasting, even actively
serve eggs for more than a year.

For the downloader family Emit, Figure 4(a) shows each egg server domain on the
y-axis and the associated usage time spans. Note that the domain names have been
pseudonymized. The egg server domains show hardly any overlap in their usage time
spans. In addition to the usage time span, the marker and the color denote the top level
domain. We observe that not only does the egg server move from one domain to another
– indicated by the pseudonym – it also migrates from one top level domain to another,
i.e. from initially .com to .org, .pl and finally to .us. This pattern shows that – in order to
strive for a takedown of this downloader’s egg serving infrastructure on the DNS level
– many different registrars would be required to cooperate.

Figure 4(b) Vobfus/Changeup, which exhibits a strong domain migration pattern for
its egg servers. In this case, the domain names are typically only used for a couple
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of days, and never reused. Not as consistent as Emit, but still, Vobfus exhibits sequential
top level domain migration, too, although a few top level domains are used in parallel.

5 Egg Acquisition and Analysis

After investigating the downloader infrastructure, we will now analyze the downloaded
eggs. Such an analysis allows us to draw conclusions on how attackers operate the egg
infrastructure, e.g., by using polymorphism and aggressively repacking served samples.
We will begin with presenting two techniques how to acquire eggs from both plaintext
and encrypted downloaders. The resulting dataset of actively acquired eggs will then
serve to give first insights into evasive techniques used by downloaders.

5.1 Egg Acquisition Techniques

All downloader infrastructures have one necessity in common: these services must be
publicly accessible, as (with the exception of targeted attacks) fraudsters aim for large-
scale deployment of their malware. Consequently, attackers cannot easily deploy client
authentication mechanisms that prevent their infrastructures from being “abused”, rais-
ing the difficulty for attackers to control who is accessing the infrastructures. We exploit
these necessities to obtain eggs for the downloaders under our analysis. We present two
techniques that enable us to acquire the downloaded eggs for plaintext and encrypted
droppers. Previous efforts analyzing a few specific downloaders [5] did not require au-
tomated egg acquisition techniques. However, given our significantly larger sample set,
we seek for a more scalable solution to analyze downloaders. Our techniques may be
a potential enabler for future research on malware acquisition methods or egg analysis,
as our methods do only require little manual effort compared with reverse engineering.

Plaintext Downloaders. For plaintext downloaders, we exploit the fact that eggs are
downloaded without disguising or encrypting the communication. Methodically, we
replay the egg-download dialog towards each download server and require new egg
samples this way. For example, in case of HTTP, once the download server and the egg’s
URI is known to defenders, downloads can be repeated regularly. We implemented a
dialog repeater that takes pairs of HTTP request and communication endpoint as input,
i.e., payload bytes with a destination IP address and port. For each such pair, the repeater
replays the dialog towards the specified destination once an hour, typically resulting in
HTTP responses. We feed the repeater with input pairs by searching for requests by
downloaders in our dataset that led to egg downloads. Given the prevalence of HTTP in
our dataset, we left it open for future work to incorporate further network protocols to
the dialog repeater.

In order to avoid such mechanisms, fraudsters could potentially use blacklists of IP
addresses of known malware analysis systems [1]. For an attacker, it is straightforward
to block all requests from systems as ours. Consequently, instead of using a single
Internet outbreak and IP address, we established a proxy network to route the traffic
through our home DSL lines. In contrast to well-known proxies such as Tor or open
proxies, end-user IP addresses seem to stem from realistic end-users and – in our case –
even change daily. We made sure that our ISPs did to interfere with our measurements
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by comparing outputs of multiple proxy hosts. Despite its simplicity, as we will show,
the repeater is a well-working mechanism to acquire new eggs.

Encrypted Downloads. A drawback of the dialog repeater is that it cannot milk eggs
from downloaders using encrypted download channels. Even if the download succeeded,
we could not make use of the encrypted egg. Therefore, as a complementary technique,
we leverage the actual downloader to acquire eggs. The intuition behind this method is
simple: whenever a downloader is executed, it will download and execute previously
unknown malware samples. We instrumented our Sandnet VMs with a kernel-based
Windows system driver that records the file images whenever new processes are forked
or system drivers are loaded. For each potential egg being executed, the kernel driver
computes the MD5 checksum and records the new processes’ image.

However, monitoring new processes results in a large amount of legitimate sys-
tem files to be interpreted as potential egg. To filter legitimate system files, we built
a whitelist of trusted system files by scanning all files of a clean Sandnet VM. In ad-
dition, as a further filter to catch only actually dropped and not modified system files,
we manually assembled patterns for the file paths where each downloader is storing its
eggs. We specifically discard eggs that we identify as exact or repacked/modified copies
of the downloaded itself by correlating the time when data was received from the net-
work with the time when the new process was forked. After adding the kernel driver to
Sandnet, we additionally scheduled the downloader families with encrypted download
channels for execution in Sandnet on a daily basis for seven weeks starting in Jan 2012.

5.2 Egg Sample Distribution

In addition to our passive Sandnet database, we use both active techniques described to
obtain a comprehensive egg dataset. Thus, for the plaintext downloaders, we identified
the download channels and additionally describe the downloader infrastructure and their
uptime. Table 3 (page 54) shows the egg distribution per downloader family that exhibit
plaintext egg downloads.

The number of successful egg downloads as well as the number of MD5 unique egg
samples differs widely among the plaintext downloader families. Whereas for GoldIn-
stall more than 13,000 egg downloads completed successfully, the number of unique
egg samples is much smaller. Other families such as Dofoil show that still a significant
fraction of the successful egg downloads expose differing MD5s.

Table 4 summarizes our experiments of actively milking encrypted downloaders in
Sandnet. For each downloader, we name the number of executions in Sandnet and show
the number of eggs and unique eggs, respectively. For nine of ten downloaders, our tech-
nique was able to trace eggs. Despite its short runtime and the relatively small number
of execution per downloader, we were able to acquire a high diversity of eggs. For ex-
ample, although Zeus is well-known for keylogging and information stealing, we can
confirm Symantec’s recent observation [3] that it also downloads non-Zeus samples.
For Sality P2P, we have observed active downloads, but the eggs were never executed
during our monitoring period. Consequently, our kernel driver did not record new pro-
cesses. Renos/Artro drops malware, although from August 2011 on our Renos samples
were effectively sinkholed. Independent from the fact that all eggs were included in
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Table 4. Downloaded egg samples from the encrypted downloaders from Dec ’11 to Feb ’12.
Packers: u=UPX, t=Themida, p=PECompact, b=BobPack/Bobsoft, c=CrypKey, z=StealthPE.

Family Execs Eggs MD5s Packers
Buzus 316 1898 329 b,u,p
Cycbot/Gbot 181 1030 374 u,c
Dabvegi 278 271 8 unknown
dldr-#1 14 10 3 t
Karagany 256 242 178 z
Renos/Artro 320 2454 23 u
Sality 261 241 59 u
Sality P2P 250 0 0 n/a
TDSS/Alureon 226 652 79 n/a
Zeus P2P 224 221 101 n/a

the original downloader sample, our technique could in fact extract the eggs. Both for
Renos/Artro and Sality P2P, we could in general milk the downloaders, if we executed
more recent samples or increased the analysis period. The low number of executions
of dldr-#1 is due to scheduling this downloader only recently. As a particularly inter-
esting case, TDSS/Alureon dropped all recorded executables by extracting the original
sample. In addition to the loaded eggs, however, we recorded that in about half of the
executions a kernel driver was loaded, showing that our technique may even work for
downloaders with rootkits capability.

5.3 Polymorphism

Malware is well-known for polymorphism in order to evade antivirus signatures. An
interesting question in the context of downloaders is whether and how polymorphic
code is used. We approached this aspect twofold. First, we classified all egg samples
using yara [2] and packer identification rules in order to assign which packer was used
to (re)pack an egg sample. In addition, we submitted the egg samples to our sample
sharing partners and Virustotal. In turn, querying Virustotal, we were thus able to assign
A/V labels to the egg samples.

Sample Packing. A large fraction of the egg samples were successfully classified
using yara packer rules. Tables 3 and 4 show the number of distinct packers for the
eggs of each downloader family. The dominating packers are based on UPX. However,
many different packers can be found, such as Armadillo, Themida, ASPack, ASPro-
tect, NsPack and PECompact. In addition, some eggs, such as those of Winwebsec,
were packed with unknown packers. The fact that the egg packers vary throughout one
downloader family, supports the assumption that there are multiple “clients” per down-
loader and that it is likely not the download server that repacks the eggs. Instead, we
assume that the clients make packed eggs available to the downloaders. In this context,
we consider a client to be an attacker willing to distribute malware via downloaders.
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Repacking. In order to successfully evade signature-based A/V, eggs are repacked at
certain intervals. For those families that have plaintext egg downloads, based on Sandnet
and dialog repeater traces, we estimate lower bounds on which downloader families
distribute polymorphic eggs. In this context, we define an egg to be repacked if different
content – in terms of MD5 hash – is served for what can be considered the same egg
sample – based on (approximate) file size and A/V label. Thus, for each downloader
family, we consider an egg to be repacked if we observe egg downloads with at least
8 distinct MD5 egg hashes all having (nearly) the same file size (rounded to kilobytes)
and the same A/V label, within a time span of one month. On average, our filter criteria
translate to a repacked egg sample at least once every four days. Furthermore, to ensure
statistical significance, we limit our dataset for this experiment to families with at least
90 distinct eggs. Of those 9 families, we observed 8 to exhibit repacked samples. Note
that we do not consider repacking to be a property of the downloader family. Instead,
we assume that the clients of these downloaders take care of the repacking of their eggs.
Wheres at least one client of Emit reached a maximum repacking rate of once every 17
minutes, dldr-#3 only repacked up to once every 2.5 days. For GoldInstall, we measured
repacking once a day, and one of the Dofoil clients repacked its eggs once every hour.

This confirms similar analyses by Cabellero et al. [5], only that two downloaders in
our dataset (Emit, Dofoil) deploy overly aggressive repacking. Employing our dialog
repeater, we looked for server-side polymorphism where the egg sample is repacked
upon each request. In particular, we tried to measure whether the repacking of Emit
eggs takes place via on-the-fly server-side polymorphism, but unfortunately the egg
servers have not been reachable during this experiment.

6 Discussion and Future Work

Motivation of this work: Our analyses provide detailed, novel and important insights
into malware downloaders, but one may wonder if revealing such data has positive
effects to the security community. In particular, revealing the possibility to monitor
downloaders may motivate attackers to switch to more advanced techniques. However,
given the large numbers of long-term operating downloaders, we see the need to raise
attention to this problem domain. Our work also aims to highlight relevant downloader
families, as e.g. P2P- or rootkit-driven downloaders, fostering future research on poten-
tially previously unknown malware families.

Evasion: Obviously, our techniques to automatically milk downloaders are evadable by
attackers. While it is straightforward to evade our dialog repeater, evading our kernel-
based driver requires more thoughts. For example, we face the risk that our current setup
may fail for kernel-level rootkits such as TDSS. Similarly, we had to exclude one par-
ticular downloader (Wintrim) from our analysis, as it detects virtualized environments.
However, hardened dynamic analysis as with Ether [6], hardware-based hosts [8], or
developing resilient kernel drivers would be effective against attackers’ moves.

Containment: During dynamic analysis, and particularly when allowing network access
to malware, we potentially risk to harm others. However, in a best effort to drop all
harmful traffic, we strictly control and monitor Sandnet’s activity. As a consequence, we
have not observed a single abuse complaint concerning Sandnet, so far. Furthermore,
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a particular risk of executing downloaders is to – unintentionally – financially support
PPI downloaders, in that attackers are paid for each installation. However, the cash
flow in this case is that attacker A (whose downloader is executed in Sandnet) is paid
by attacker B (who asked for his malware being dropped), not causing harm to any
innocent uninvolved individual.

Next steps: Until now, we mainly focused on characterizing downloaders, observing
their infrastructures and analyzing downloaded eggs. Due to space and time constraints,
we did not explore and include all analyses on the downloaded eggs, which we plan to
work on as a follow-up of this paper. We also plan to extend our large downloader
dataset for active techniques, e.g., to measure the prevalence of downloaders or to ex-
plore possible detection/mitigation techniques.

7 Conclusion

We identified and characterized 23 downloader families, showing that the downloader
landscape is diverse in terms of architectural design, communication protocols and en-
cryption schemes being used. We observed that many downloaders – albeit sometimes
simple – have been actively operated for more than a year. Motivated by this obser-
vation, we analyze how attackers ensure the resilient operation of their downloader
infrastructure. For example, we show that downloaders migrate their C&C servers ag-
gressively among different Autonomous Systems, often involving multiple countries.
Similarly, we observed downloaders not only to alter the C&C domains frequently, but
also to involve diverse domain registrars. We revealed further details on the workings
of downloaders, such as server-side polymorphism, by analyzing the download server
infrastructure. These observations show that mitigating the problem of downloaders
is more difficult than it might seem. To foster future research in this area, and as au-
tomated mechanism to acquire previously unseen malware samples, we present two
generic techniques which extract downloaded eggs from any downloader.
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