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Preface

On behalf of the Program Committee, it is our pleasure to present to you the pro-
ceedings of the 9th GI International Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA). Each year, DIMVA brings to-
gether international experts from academia, industry, and government to present
and discuss novel security research. DIMVA is organized by the Special Interest
Group Security – Intrusion Detection and Response (SIDAR) of the German
Informatics Society (GI).

The DIMVA 2012 Program Committee received 44 submissions from a diverse
set of countries. All submissions were carefully reviewed by Program Committee
members and external experts according to the criteria of scientific novelty, tech-
nical quality, and practical impact. The final selection took place at the Program
Committee meeting held on April 5, 2012, at the University of Bonn. Ten full
papers and four short papers were selected for presentation at the conference
and publication in the proceedings. The conference took place July 26–27 at the
Astoria Capsis Hotel in Heraklion, Crete. The program featured both theoreti-
cal and practical research results grouped into five sessions spanning malware,
intrusion detection, mobile security, secure systems, and network design.

We sincerely thank all those who submitted papers as well as the Program
Committee members and external reviewers for their valuable contributions to
an excellent conference program.

For further details about DIMVA 2012, please refer to the conference website
at http://www.dimva.org/dimva2012.

July 2012 Ulrich Flegel
Evangelos Markatos
William Robertson
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Using File Relationships in Malware

Classification

Nikos Karampatziakis1, Jack W. Stokes2, Anil Thomas1, and Mady Marinescu1

1 Microsoft Corporation, One Microsoft Way, Redmond WA, 98052, USA
just.nikos@live.com, {anilth,mady}@microsoft.com

2 Microsoft Research, One Microsoft Way, Redmond WA, 98052, USA
jstokes@microsoft.com

Abstract. Typical malware classification methods analyze unknown files
in isolation. However, this ignores valuable relationships between mal-
ware files, such as containment in a zip archive, dropping, or download-
ing. We present a new malware classification system based on a graph
induced by file relationships, and, as a proof of concept, analyze contain-
ment relationships, for which we have much available data. However our
methodology is general, relying only on an initial estimate for some of the
files in our data and on propagating information along the edges of the
graph. It can thus be applied to other types of file relationships. We show
that since malicious files are often included in multiple malware contain-
ers, the system’s detection accuracy can be significantly improved, par-
ticularly at low false positive rates which are the main operating points
for automated malware classifiers. For example at a false positive rate
of 0.2%, the false negative rate decreases from 42.1% to 15.2%. Finally,
the new system is highly scalable; our basic implementation can learn
good classifiers from a large, bipartite graph including over 719 thousand
containers and 3.4 million files in a total of 16 minutes.

Keywords: Malware detection, Machine Learning, File Relationships.

1 Introduction

Symantec recently observed over 903 million files installed on a sample of 47
million computers [3]. While many of these single instance files are benign, a sig-
nificant percentage are malicious. Malicious single instance files have two sources,
polymorphic and metamorphic malware which installs a unique instance of the
attack on each new computer, while legitimate software sometimes creates a
unique file for each installation. Given the shear volume, human analysts can-
not investigate each new file detected in the wild, and the anti-malware (AM)
companies cannot solve the problem by hiring more analysts. Since malware
authors often rely on automation to avoid detection, commercial anti-malware
companies also need to use automation to detect new malware. Ideally, the most
automatic and effective way to solve the problem would be to have secure systems
that would not allow the execution of malicious code. However this paradigm is

U. Flegel, E. Markatos, and W. Robertson (Eds.): DIMVA 2012, LNCS 7591, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 N. Karampatziakis et al.

currently far from realistic while malware proliferation is already a sad reality.
Since malware is such a significant problem, researchers and industry have de-
voted much effort towards automated detection [9]. The main issue with these
systems is that the false positive (FP) rates (i.e. when a benign file is predicted
as malicious) are too high for widespread deployment. An acceptable FP rate for
completely automated malware detection would be no more than 0.01%. For AM
systems, FPs are much worse than false negatives (FNs) since cleaning (i.e. re-
moving) FPs can prevent a legitimate application, or even the operating system,
from running. Given this risk, most AM companies seek first to do no harm.

Current techniques for building malware classifiers lead to prohibitively high
FN rates (e.g. > 99%) when operating at an FP rate of 0.01%. To truly combat
today’s malware, we need to look from new sources of information. For example, a
system that uses both the static structure of a file as well as information about its
runtime behavior is likely to perform much better than systems that use only one
of these sources. In this paper we use a different source of information, namely
file relationships, and demonstrate that even a very simple way of incorporating
this source into the classifier is very effective.

Typical approaches [12,20] focus on classifying files in isolation. Recently, re-
searchers have proposed using a file’s reputation [3] in relationship to the reputa-
tions of all computers which report the file to improve the detection rate. Other
authors [22] rely on co-occurrences of files on a set of client machines to establish
threats such as trojan downloaders. In this work, we take a different approach to
improving a malware classifier by learning a file’s reputation based on its rela-
tionships with other files as we determine them through Microsoft’s submission
service. We empirically show improved classification accuracy at very low FP
rates. Furthermore, we sidestep privacy issues that affect other approaches.

File relationships should contain useful information. Clearly it is enough to
show this for a special case. In this paper we only consider containment relation-
ships, the most prevalent type in our data. However, our algorithm is quite gen-
eral and could be applied to other types of file relationships. Containment arises
when malware is distributed in containers such as .zip or .rar files. We also ignore
containment relationships among containers (archives containing archives) and
only form a bipartite graph of files and containers. After these restrictions, our
database has more than four million containers with more than one executable
file inside them and exploiting this information may substantially improve over
a classifier that ignores it.

Our method starts by training a baseline classifier to individually predict
the probability that a file is malicious. This classifier is trained with over 2.6
million labeled files using logistic regression. This classifier, though simple, uses
some very strong features coming from an actual execution of the file in a vir-
tual machine, and is very fast during training and prediction. Our method then
propagates this baseline prediction and other information from files to contain-
ers using the file relationship graph. It then trains a container classifier which
assigns a probability to each archive. Here we investigate three ways of integrat-
ing information from the neighboring vertices. Finally, we significantly improve
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the classification accuracy on individual files by training a relationship classifier,
again using logistic regression, which considers the malware probabilities associ-
ated with all archives containing the file in addition to the file’s baseline score.
Experiments on a large collection of over 719 thousand archives including more
than 3.4 million malicious and benign files show that the relationship classifier
significantly outperforms the baseline classifier particularly at very low FP rates.
For example, at an FP rate of 0.2%, the FN rate decreases from 42.1% to 15.2%.

In Section 2, we provide some background on using machine learning for
malware classification. Our new container classifier and file relationship classifier
are described in detail in Section 3. An overview of the system is presented in
Section 4, and experimental results are given in Section 5. In Section 6, we discuss
the assumptions of our method, and the related work is outlined in Section 7.
Finally, we conclude the paper in Section 8. Our main contributions include:

– A large-scale system to classify unknown files based on file relationships.
– A comparison of three methods to classify file containers.
– A new algorithm for significantly improving a file’s baseline prediction.
– An evaluation of our system on a large collection of over 719 thousand con-

tainers and 3.4 million files, where we demonstrate that it is highly scalable.
– A convincing empirical comparison based on performance at small FP rates.

2 Background and Notation

Most modern anti-malware software follows a rule-based method to detect mal-
ware usually referred to as “signatures”. Recently, researchers [9] have proposed
using machine learning classifiers to detect malware. Classifiers built from a
set of labeled malicious and benign programs can generalize well to previously
unseen but similar programs. Here we focus on linear logistic classifiers because:

– They allow our experimental results to be directly interpretable when the
classifier is employed in the real world. In the real world we do not know
the proportion of actual malware files. Remarkably, as we show later in the
paper, the conclusions we draw from logistic regression remain valid.

– Our system builds on top of a baseline classifier that works on individual
files. This classifier is itself based on logistic regression and we exploit this
fact to provide an initial hint to our system.

– Finally a logistic classifier can make predictions very fast, which is highly
desirable for the scalability of our system.

For each file xi we would like to classify, we construct a vector of real numbers
Φ(xi) ∈ R

d that contains measurements, also known as features, regarding the
file xi. Described in Section 4.2, one of the features we use for our baseline
classifier consists of tri-grams of system calls. In general we assume that the
mapping Φ(·), that takes an executable and returns a vector in R

d, is given to
us. In typical cases, to get a descriptive enough representation of xi, d is on
the order of hundreds of thousands but for each individual xi, Φ(xi) is sparse,
meaning that only few (on the order of a hundreds or a few thousand) of the
entries in this vector are non-zero.
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2.1 Classification with Logistic Regression

Logistic regression assumes that for each file xi we can assign a score s(xi) that
is a linear combination of the feature values for xi, or more formally s(xi) =∑d

j=0 wj · Φj(xi) = w�Φ(xi) for some, yet to be determined, weights w where

Φ0(xi) = 1, w0 is the bias term, and a�b denotes the inner product between
vectors a and b. This score is converted into a probability using the logistic link
function g(t) = et

1+et . Letting yi be a random variable that is 1 if the file xi is
malware, and 0 otherwise, logistic regression assumes

p(yi = 1|xi) = g(s(xi)) =
ew

�Φ(xi)

1 + ew�Φ(xi)
. (1)

Solving (1) for the score s(xi) we find that

s(xi) = w�Φ(xi) = log
p(yi = 1|xi)

1− p(yi = 1|xi)
= log

p(yi = 1|xi)

p(yi = 0|xi)
.

The right hand side is commonly referred to as the log odds of xi being malware.
We will return to this relation in Sections 3.5 and 3.6. Finally, finding the opti-
mal weight vector w from a training set of files for which human analysts have
provided determinations (i.e. whether the file is truly malware or not), is a well
studied convex optimization problem for which extremely fast algorithms exist.

3 Beyond Individual Prediction

In this section, we develop new methods whose goal is to improve malware
classification particularly at low FP rates. We begin by discussing two problems
associated with typical classification algorithms and then propose using a file’s
relationships to overcome these issues. After considering an ideal, but impractical
solution, we propose a new set of algorithms to achieve a similar effect.

3.1 Some Problems of the Standard Approach

First we argue that current approaches to malware classification have a lot of
room for improvement if we consider how an analyst would go about determin-
ing whether a file is malware or not. Malicious files do not exist in a vacuum.
Malware is often distributed in an archive and this reflects a relationship among
these files. The exact meaning of the relationship varies from archive to archive.
Some typical examples include an executable file and its dependencies (such as
dynamically linked libraries), files created by the same author, or components of
a large project. In any case, this is precious information that is not captured in
the framework of individually predicting on each file, but is routinely leveraged
by malware analysts. That is, approaches based on individual prediction ignore
the relationships of the file under consideration to other related files and their
determinations. This is not just a matter of extending the feature mapping Φ(·)
to include features from the related files. A related file itself may not reveal
anything alarming but it may do so if one considers its own related files. Later
in Section 5.1, we motivate this idea based on two particular examples.
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3.2 Taking Context into Account

We propose to overcome the shortcomings of individual malware classification
with a two step procedure which we describe in Sections 3.5 and 3.6. Before that,
we introduce some terminology, and describe an ideal but impractical approach.
We represent the file relationships with a graph in which the vertices correspond
to files and the edges correspond to containment relationships. Even though con-
tainers can contain other containers, here we ignore this and focus on a bipartite
graph between containers and regular files. We have an additional determination
“malware container” which is given to containers that contain at least one file
determined to be “malware”. Of course, not all vertices have a determination of
“malware” or “benign”, and we would like to propagate information along the
graph so that we can assign each vertex its own probability that it is malicious.

We immediately point out that such context information cannot be easily
made available to anti-malware software running on a client, and facilitating
this functionality to a client is beyond the scope of this paper. Our focus is to
demonstrate the empirical gains we observe when this information is available
and utilized on the backend with an approach that is relatively easy to imple-
ment and highly scalable. The method we advocate however, is inspired by an
impractical solution. We nevertheless detail this impractical solution in the next
section to explicate the ideas that lead to our scalable algorithm.

3.3 An Impractical Solution

To assign a malware probability to every file we assume we have a baseline mal-
ware classifier that employs the approach of Section 2 to assign a score w�Φ(xi),
and hence a probability via the logistic link function, to each executable file in
our data. For the files already determined to be malware or benign we can de-
fine the maliciousness level to be the score from the baseline malware classifier.
For all other files for which we have no determination we can formulate a set
of consistency equations according to a very simple principle: we can obtain the
maliciousness level of a file by averaging the maliciousness levels, of its related
files, which of course are its neighbors in the graph. This definition treats mali-
ciousness as a fixed point. Formally, letting si denote the maliciousness level for
file i and N(i) the set of neighbors of i in the graph we have

si =

{
w�Φ(xi) if i is determined

1
|N(i)|

∑
j∈N(i) sj otherwise

Form files, this defines an m×m system of linear equations. Typicallym is huge;
in our case m is greater than 250 million and is growing by two every second.
This immediately precludes methods such as Gauss elimination [7] which scale
as O(m3). Furthermore, the graph, and hence each equation, is also evolving
because each submission to our service can induce new relationships. Hence the
solution of the above linear system is largely of theoretical interest even if one
seeks an approximate solution using iterative methods [7].
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3.4 A Scalable Solution

The main problem with the previous solution is that it strives to be globally
consistent and enforcing this is too time-consuming. Instead we relax the re-
quirement for consistency and, to compensate for this, we make our aggregation
rule more flexible. Instead of a simple average, we compute features of the im-
mediate neighborhood of each file and find an optimal way to combine them.
Specifically, our solution involves the following steps:

– compute a “malware probability” for each container by aggregating infor-
mation from all the files it contains and the probabilities assigned to them
by our baseline malware classifier.

– compute an improved estimate of the probability of a file being malware by
aggregating malware probabilities from the archives that contain it as well
as the baseline malware classifier.

3.5 Computing Container Probabilities

A malware analyst does not have to look at the whole graph to get a rough
idea about how likely the file is to be malicious; the local neighborhood provides
most of the information. Furthermore, we observe that in order for a container
to be malicious it suffices that one of its contained files is malware. Conversely, a
container has a low malware probability only when all the contained files are not
malicious. Based on this observation we propose three “container classifier” al-
gorithms for assigning a malware probability to each container:Max neighbor,
Union bound, and Biased logistic regression.

The Max neighbor algorithm estimates the probability that an archive is
a “malware container” by the maximum of the probabilities (as given by the
baseline classifier) of any of the contained files being malware. TheUnion bound
makes a simple assumption: each file is independently providing evidence about
the maliciousness of the container. Hence, the probability of the container to be
benign is the product over all contained files of their probabilities of being benign.
For example, if an archive contains two files, one for which the baseline estimate
that it is malware is 0.6 and another whose estimate is 0.5 then we assign a
probability of 1− (1− 0.6)(1− 0.5) = 0.8 to the container being malware.

Biased logistic regression employs a logistic regression classifier with
an additional offset motivated by the importance of the file with the maximum
baseline probability contained in the archive:

log
pc(yi = 1|N(i))

pc(yi = 0|N(i))
= v�Ψ(N(i)) + v′ log

pb,max

1− pb,max
(2)

where N(i) is the set of files contained in archive i, v (vector) and v′ are the
model weights, pb,max is the maximum of the probabilities assigned to all the
files in N(i) by the baseline malware classifier, and Ψ(N(i)) is a vector of fea-
tures calculated from the files contained in archive i. This model is biasing its
prediction based on the most malicious file among i’s files, in accordance to our
observation that a container is malicious if at least one of the contained files
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is malicious. Furthermore we adjust this prior belief by a linear combination of
features, v�Ψ(N(i)), computed from the neighborhood of i which captures the
maliciousness levels of all of the files in the container. Most of these features
come from three simple histograms of the baseline probability estimates of the
files included in the container. The histograms are separately computed for files
which are predicted to be malicious or benign by the baseline classifier. A third
histogram is included for files for which the baseline classifier returned a proba-
bility but a label of inconclusive. For each type, we split the interval [0, 1] into
20 equally sized bins and create a histogram of the probabilities of the contained
files. Then the values of features Ψ2j and Ψ2j+1 are respectively the fraction
and the logarithm of the number of contained files whose baseline probability
estimates fall in the j-th bin. We chose these features to capture both abso-
lute and relative numbers that may affect our decision. These transformations
are relatively insensitive to manipulation of the raw numbers from adversaries.
We also include three additional features for the container classifier. The first
is the biasing feature which is the inverse of the logistic link function. Since
the baseline malware classifier is itself based on logistic regression, the biasing
feature is log(pb,max/(1 − pb,max)) where pb,max is the contained file with the
highest probability. As (pb,max) approaches 1, the biasing term becomes large
and hence overshadows any effect from v�Ψ(N(i)). When pb,max approaches 0,
the biasing term becomes very negative and again overshadows the effect of
v�Ψ(N(i)). Finally when the max probability is 0.5 the biasing term is 0. The
second additional feature is the log of the number of files in the container and
the third is the product of the first two additional features. The third additional
feature captures interactions between the number of files and the maximum file
probability in the container. The last two features were important for reducing
the number of false negatives for the container classifier. The entire container
classifier procedure is summarized in the top part of Table 1.

The main benefit of this approach is that it is extremely fast to make a
prediction for a new container. We only need to look at its contained files, and
retrieve their probabilities from our database. If a file has not been seen before,
we need to obtain its probability from the baseline malware classifier, compute
123 features from three histogram (3*20 bins and two features from each bin plus
the three additional features), and take a linear combination with the learned
vector v.

3.6 Improving a File’s Probability

Our end goal is to improve upon a system that classifies executable files indi-
vidually. In this sense, the probabilities we obtain from the container classifier is
just auxiliary information that summarizes the neighborhood of a file. Therefore
we introduce a second step where we aggregate information across the containers
in which a given file participates. Our final “relationship-based” classifier uses
a similar set of features as the container-based classifier as well as a biasing
term. However this time our prior belief reflected in the biasing term is that the
baseline classifier is doing well most of the time, and we only want to use the
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Table 1. Algorithm for Improving File Malware Probabilities

Algorithm 1

Notation: g(z) = ez

1+ez
, t(w, φ, q) = w�φ+ log q

1−q .
Let C be the set of labeled containers
Collect Container Data: Let Sc = {(Ψ(N(i)), pi, yi)|i ∈ C}

where N(i) is the set of executables in a container i,
and Ψ(·) is computed from pb(yj = 1|xj), j ∈ N(i)
pi = maxj∈N(i) pb(yj = 1|xj).

Train Container Classifier:
Find the vector v∗ that maximizes
Lc(v) =

∏
(ψ,p,y)∈Sc

g(t(v,ψ, p))yi(1− g(t(v,ψ, p)))1−yi

Assign Container Probabilities:
For each container i: pc(yi = 1|xi) = g(t(v∗, Ψ(N(i)), pi))

Let F be the set of labeled files.
Collect File Data: Let Sf = {(Ψ(N(i)), pb(yi = 1|xi), yi)|i ∈ F}

where N(i) is the set of containers containing i and
and Ψ(·) is computed from pc(yj = 1|xj), j ∈ N(i).

Train Relationship Classifier:
Find the vector u∗ that maximizes
Lr(u) =

∏
(ψ,p,y)∈Sf

g(t(u,ψ, p))yi(1− g(t(u,ψ, p))1−yi

Improve File Probabilities:
For each file i: pr(yi = 1|xi) = g(t(u∗, Ψ(N(i)), pb(yi = 1|xi))).

neighborhood information to learn a correction. Formally, we model the log odds
of file i being malware (yi = 1) as

log
pr(yi = 1|N(i))

pr(yi = 0|N(i))
= u�Ψ(N(i)) + u′ log

pb(yi = 1|xi)

pb(yi = 0|xi)
(3)

where pr is the probability according to the relationship-based classifier, pb is
the probability according to the baseline classifier, Ψ is a vector of features we
compute from the neighborhood of the file and u is a vector of weights that
optimally combines the features according to the maximum likelihood principle
and u′ is a weight for biasing term. The term u�Ψ(N(i)) captures the malicious-
ness level of all of the containers which include the file under consideration. This
time we derive the mapping to features Ψ by binning the probability estimates
from the container classifier into two histograms (malware, benign) for each of
the neighboring containers. If a neighbor is a new container and has not been
classified yet we simply ignore it. This is fine since, as before, the neighborhood
features will come to the rescue mostly when the baseline classifier’s prediction
is close to 0.5 and will be overshadowed by the biasing term as the baseline

classifier becomes very confident. An additional feature of log pb(yi=1|xi)
pb(yi=0|xi)

helps

to bias the model to the baseline probability. The whole procedure is shown in
Table 1. Our non-optimized implementation executes it in 16 minutes processing
719 thousand containers and 3.4 million files.
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One could argue at this point that we could go back and, based on the im-
proved probability estimates from the relationship classifier, compute new prob-
abilities for archives. We could in fact iterate this procedure until it converges to
a fixed point. However it is doubtful that such a fixed point will lead to substan-
tially better generalization than our procedure. First, the fixed point integrates
information from many potentially unrelated files which are simply too far from
the file under consideration. Second, it is well known among machine learning
practitioners that treating the output of one classifier as an input to another
(aka cascading) is an extremely delicate procedure. Hence it is usually observed
that, as a function of the length of the cascade, the generalization performance
of the final output rapidly deteriorates.

4 System

This section discusses the system aspects related to training the relationship mal-
ware classifier illustrated in Figure 1. The data analyzed in this paper consists
of a very large subsample of containers and files used by Microsoft to investigate
and create signatures for a number of our commercial anti-virus products includ-
ing Microsoft Security Essentials and Forefront Endpoint Protection. Microsoft
collects suspicious files using a variety of sources including the end user, product
support, security organizations (e.g. CERT), and vendor exchange. After sub-
mission, each unknown file is automatically scanned by our AM products. Some
files are detected by the scanners, and a small subset of the undetected files
are investigated manually by analysts for additional signature creation. In addi-
tion, we have a large collection of programs known to be legitimate (i.e. clean);
many of these programs include one or more containers. Labels (i.e. “malware
container”, “benign container”, “malware”, “benign”) are assigned to the con-
tainers and individual files depending on the source. Some of these labeled files
are then used to train the baseline malware classifier. As part of the scanning
process, container files (e.g. .zip, .rar) are uncompressed, and the individual files
are extracted. A graph is constructed based on the relationships observed in the
containers, and in parallel, the trained baseline classifier is used to predict the
probability that each individual file is malicious. In another part of the scanning
process, a file is run and any files which are dropped (i.e. written to the disk
drive) are detected. These “dropped” relationships could also be used in our
system. The datasets used to train the baseline and relationship classifiers differ
because while all of the individual files used to train the baseline classifier have
previously been labeled, most of the files in the containers have not. In the last
step, the relationship malware classifier is trained using the baseline file predic-
tions and the relationships from the graph. In the remainder of this section, we
further investigate the container details and describe the baseline classifier.

4.1 Container Description

To train the classifier, we first obtain labels for the containers by assigning the
label “malware container” to containers which were either previously determined
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Fig. 1. System Diagram for Training the Relationship Classifier

as malicious by an analyst, one or more contained files were labeled as malware
by an analyst, or an anti-virus engine automatically detected at least one file
as malware in the container. Similarly, benign archives are labeled as “benign
container” and defined as those previously determined as benign by an analyst,
contain no files that were labeled as malware by an analyst or other automated
system, and an anti-virus engine did not automatically detect any of its contained
files as malware. Next, we constructed a labeled graph containing 4,160,807 nodes
and 23,993,309 edges where each node is either an archive or individual file and
an edge indicates that an archive contains a file. This graph includes 719,359
total archives including 604,658 malicious and 114,701 benign containers. There
are 3,441,448 individual files with 492,443 labeled as malicious and 2,949,005
labeled as benign. Among the individual files, 67,705 of them existed both in
malware and in benign containers.

Figures 2 and 3 present the distributions of the number of files included in
the malware and clean containers, respectively. The approximately linear rela-
tionship of the files in the malware containers on a log-log scale indicates that
the number of files in the malware containers roughly follows a power law. On
the other hand, many of the benign containers are distinct versions of commer-
cially available software products including multiple versions of the same product
written in many different languages. These programs often contain similar, but
distinctly different, numbers of files leading to multiple archives with approxi-
mately the same number of files. This behavior is also noted for multiple versions
of the same program (e.g. Adobe Acrobat Reader versions 7.0 and 7.1).

In Figures 4 and 5 we show the distribution of the number of archives that
include each malware and clean file respectively. Again we observe a power law
behavior for the malware, with most malware files appearing in very few con-
tainers and only a handful of malware files appearing in many containers. On
the other hand for the benign files the power law behavior does not span as
many orders of magnitude and instead we observe that there are several benign
files that are contained in many archives. The reason for this discrepancy is that
benign software is made with the intent to be reused while malware is created
for more opportunistic purposes.



Using File Relationships in Malware Classification 11

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Files Per Malware Archive

N
um

be
r 

of
 M

al
w

ar
e 

A
rc

hi
ve

s

Fig. 2. Distribution of Files in the Mal-
ware Containers
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4.2 Baseline Classifier

In this section, we briefly describe the baseline malware classifier which provides
the original probability that an unknown file is malicious or benign. We first col-
lected over 2.6 million samples consisting of 1,843,359 malware files and 817,485
samples of files known to be benign. Each of the malicious files was also assigned
to a particular malware family. We selected a set of 134 malware families deter-
mined by analysts to be important to identify. All malware samples belonging to
malware families not in the set were included in a generic malware class, and all
samples of legitimate software were assigned to a benign class. Next, we modi-
fied the production anti-malware engine used in Microsoft’s commercial security
products (e.g. Microsoft Security Essentials, Forefront Endpoint Protection) as
well as Windows (i.e. Windows Defender) to produce a set of log files for further
analysis. As part of the overall analysis, this AM engine runs each unknown file
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in a lightweight virtual machine. We then record each system call and its corre-
sponding input parameters. We also extracted the process memory and searched
for null-terminated patterns. This collection of patterns often includes strings
but sometimes include snippets of code. From these logs, we created four sets
of potential features for the baseline classifier. First, we identified each distinct
combination of a system call and its parameter values. For example, if the un-
known executable calls CreateThread() with a stack size of 1 megabyte, this
API/parameter combination would then serve as one potential feature. Next,
we constructed tri-grams of the system call sequence. We also included each
of the process memory patterns in the pool of potential features. Finally, we
included 164 low-fidelity features from analysis of the file such as: is it 64-bit
software?, is it an .EXE file?, is it a .DLL file?, and so on. In practice, this last
set of features was overwhelmed by the other feature sets and only improved the
model’s accuracy by 0.01%. It should be noted that our features are constrained
by the limitations of the production anti-malware engine. As a result, we cannot
use features which require significant time to compute such as the system call
graph using dynamic taint analysis. Processing the logs produced a set of over
50 million potential features which needs to be significantly reduced to avoid
overfitting. Based on mutual information [13], we then used feature selection
of the potential feature set to determine 179,288 features for the classifier. Fi-
nally with these selected features, we constructed a labeled training set to train
a multi-class classifier with logistic regression using stochastic gradient descent
(SGD) to predict if an unknown file belongs to one of the malware families un-
der consideration or to the generic malware or benign class. We chose to train a
logistic regression model with SGD because of the large scale nature of our data
in terms of both the number of samples and features. Due to our implementa-
tion in C# and a .NET memory constraint related to the number of elements
in a list, we used SGD to efficiently train the baseline classifier in mini-batches
of roughly 450 thousand examples. Training the multi-class classifier produced
a false positive of 1.3% and a false negative rate of 0.7% on a separate (i.e.
hold-out) test set of over 443 thousand files. Even though the features used in
this classifier are relatively simple, training with over 2.6 million files produces
a good error rate. Furthermore, malware classification research has produced a
number of independent algorithmic improvements to increase malware classifica-
tion accuracies [18,17,15,2,11,16,6]. As we argue in Section 8, since the baseline
classifier and container relationship structure are independent, applying one or
more of these algorithmic improvements or additional feature sets to the baseline
classifier will help to improve the overall system response.

5 Experimental Results

In this section, we conduct a series of experiments to evaluate the performance
of the container and improved relationship malware classifiers.
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Table 2. An Example of the File Containers which Include 2.exe

Name Determination # Scanner # Submissions
Detections

. . . Norton Antivirus . . . 2007 .rar Malware Container 15 2

. . . ba52.bin Malware Container 15 4

. . . z0ffzvk .rar.part Malware Container 14 2

. . . dc11.rar Malware Container 14 2

. . . regcure 1.0.0.43.1.3a1400.efw Malware Container 14 2

. . . Registry Mechanic . . . .rar Malware Container 14 2

. . . CyberLink PowerDVD 7.0.rar Malware Container 15 2

. . . adobe photoshop cs2 .rar Malware Container 15 2

5.1 Examples

We first motivate the relationship classifier idea by examining how it affects
the baseline probability of two individual files. Upon manual examination of
the first file 2.exe, we found this file to be a variant of a Trojan in the Vundo
family. Table 2 indicates the file was included in 8 containers, which were labeled
“Malware Container”. This table includes the names of the containers, their
determinations, the number of scanners which detect them, and the number of
submissions. The third column indicates all containers were detected by at least
14 scanners. For this example, the baseline malware classifier failed to correctly
identify the file as malicious. The relationship classifier raised the probability of
this file from a baseline of 33% to 98.37% which is more indicative of malware.
This shows that the malware relationship classifier can help to correctly identify
malicious files even when the baseline classifier misclassifies them.

The second example involves a file named calleng.dll. The file was manu-
ally determined to be benign by an analyst, and the baseline malware classifier
assigns a probability of nearly 0% that this file is malware. We scanned it with
a set of anti-malware scanners and no scanners detected the file. This file was
originally distributed as part of the legitimate PalTalk social networking soft-
ware. Table 3 provides the container relationships. We believe that (RarSfx)

on row 4 with no detections is the legitimate PalTalk. We also have evidence
from the scanner detection column that the remainder of the containers in Ta-
ble 3 are indeed suspicious. In fact, we believe that these are malicious versions
of the original PalTalk application. While calleng.dll itself is not malicious,
it clearly appears to be commonly used by malware authors in some manner.
In other words, a previously unseen archive containing this file is likely to be
malware. After running the malware relationship classifier on calleng.dll the
malware probability increased to 44.9%. While this is certainly more indicative
of being malicious, it is not sufficient to be classified as malware. This shows
that even when the new probability estimates of a benign file are increased, this
is usually not enough to cause a false positive. This is confirmed by the overall
improved results in Figure 7.
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Table 3. An Example of the File Containers which Include calleng.dll

Name Determination # Scanner Detections # Submissions

0d. . . bc.rar No Determination 13 2
d3. . . 39.rar No Determination 9 2
ec. . . da No Determination 3 2
(RarSfx) No Determination 0 2
(RarSfx) No Determination 7 4
(RarSfx) No Determination 9 4
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5.2 Performance Analysis

Detection Error Tradeoff (DET) curves for the three container classification al-
gorithms proposed in Section 3.5 are plotted in Figure 6. To obtain probabilities
for all containers with the container classifier in a fair way we used 5-fold cross
validation. If the DET curve of a rule is always below the DET curve of another
rule then we say that the former dominates the latter. It means that for all pos-
sible FP rates one classifier is always achieving better FN rates than another; a
very strong statement. For malware detection, we care about the region of small
FP rates, and in the figures we are zooming in a range of up to 2% FP rate. In
this range, the Biased logistic regression algorithm completely dominates
the simple approaches of the Max neighbor and Union bound algorithms.
In fact, the Union bound method is dominated by the Max neighbor rule
which demonstrates the inappropriateness of its assumptions. This leads us to
believe that the files in the containers are correlated and reinforces our belief
that aggregating information across the files in the container is not trivial. We
mention that the Biased logistic regression method dominates the other
two rules across all the FP rates, not just across the range shown in Figure 6.

In Figure 7 we present DET curves for individual files. We compare the ex-
isting baseline classifier with the relationship classifier of Section 3.6, and we
again employ 5-fold cross-validation. As before, for malware classification we are
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Table 4. Comparison of Baseline and File Relationship Classifier Statistics for FP
Rate = 1% and 0.1%

FP Rate Label pb ≤ tb pb > tb pb ≤ tb pb > tb
pr ≤ tr pr ≤ tr pr > tr pr > tr

1.0% Malware 6269 161 32170 480548
Benign 2909583 15561 14590 14959

0.1% Malware 183454 15406 109043 211245
Benign 2950180 1556 1546 1411

interested in small FP rates and therefore plot the curves for FP rates up to 2%.
We observe that the relationship classifier convincingly dominates our baseline
system: At an FP rate of 0.3%, there is a 77.3% decrease in FN rate (from 37.5%
to 8.5%). At our target FP rate of 0.01%, the decrease in the FN rate from 87%
to 85% is marginal; there is still more work to be done to achieve widespread
detection at these extremely low FP rates. In the rest of the FP range (not
shown), the baseline system remains dominated until approximately an FP rate
of 60%, when it becomes marginally advantageous to use the baseline system.
However, these operating points are uninteresting even for perimeter-based anti-
malware systems. Our conclusion is that our approach not only improves upon
the baseline system, but it does so for error tradeoffs that are important for
our application. In Section 5.3 we explain why (and this is true only for logis-
tic regression) the results of Figures 6 and 7 are invariant to the proportion of
malware files we used in the experiments.

In Table 4 we next compare example counts for the baseline and relationship
classifiers for different threshold values corresponding to FP rates of 1% and
0.1% . For the row labeled malware in Table 4 with a FP rate of 1%, the sixth
(pb > tr, pr > tr) and third (pb ≤ tb, pr ≤ tr) columns indicate that both
classifiers correctly identify 480,548 malicious files but fail to detect 6,269 files.
The fourth column indicates that 161 files were incorrectly mispredicted by the
relationship classifier as benign (FN) but correctly predicted by the baseline
system. The fifth column shows the improvement of the relationship classifier
for 32,170 files which were mispredicted by the baseline classifier. For the second
row with benign files at 1% FP rate, 15,561 files were correctly predicted to
be benign by the relationship classifier but missed by the baseline classifier.
Likewise at an FP rate of 1%, the relationship classifier had 14,590 false positives.
Similar statistics are noted for a 0.1% FP rate. Note that the baseline classifier
threshold (tb) and relationship classifier threshold (tr) differ in order to set the
operating point to the desired FP rate. Also, the number of FPs for the baseline
classifier (pb > tr, pr ≤ tr) and for the relationship classifier (pb ≤ tb, pr > tr)
are approximately equal, but differ slightly due to multiple examples having
identical predicted probabilities.

In Figures 8 and 9, we further investigate the 14,590 FPs generated by the
relationship classifier at a FP rate of 1%. Figure 8 shows a histogram of the FPs
that are found in more than 10 containers. This figure accounts for approximately
two thirds of our FPs. The FPs have been binned according to the fraction of
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associated containers that are malware containers. We see that a large number of
our FPs are associated with containers most of which contain malware. In fact,
31.5% of our FPs are files found in containers in which the majority of files are
malware. Figure 9 shows a heatmap for the rest of the FPs, i.e. those found in
10 or less containers. Here we see that the overwhelming majority are associated
with only one container which contains no malware.
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5.3 Validity of Results under Biased Sampling

Can the conclusions drawn from Figures 6 and 7 reflect the real world behavior
of our classifier where the proportion of malware files will be different than
the one we used for training? As we explain, this is true for logistic regression.
First, notice that among each of the two classes, malware and benign, sampling
was random. So we can say that by selecting many malware files we have just
uniformly increased the probability of malware by a factor c1 > 1 and have
uniformly decreased the probability of benign by a factor c0 < 1:

p(yi = 1|xi, selection) = c1p(yi = 1|xi)

p(yi = 0|xi, selection) = c0p(yi = 0|xi).

Our logistic classifiers model the log odds so we get

log
p(yi = 1|xi, selection)

p(yi = 0|xi, selection)
= log

c1
c0

+ log
p(yi = 1|xi)

p(yi = 0|xi)
.

In other words, the log odds we compute are indeed inflated by log c1
c0
. However

the effect of log c1
c0

is constant across all files. On the other hand the DET curves
of Figures 6 and 7 only depend on the order of the files, according to their
probabilities. This order is not affected by adding to each file the constant log c1

c0
.

Hence we would have obtained the same figures even if we had trained our logistic
classifier with a sample that contained the correct proportion of malware.
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6 Discussions

In this section we discuss the assumptions of our system, the constraints under
which it needs to work, and investigate some issues related to the notion of
suspicious but not necessarily malicious files and containers. Our work is based
on two main assumptions. First the relationships we manage to extract from
the files contain useful information that is not already captured by our current
baseline classifier. The second assumption is that we can extract some of this
information with our current representation. To avoid being detected by our
approach, a piece of malicious software has to first score low or moderately
when scanned with the individual classifier and then has to be associated only
with containers that themselves are not suspicious. Assuming that the malicious
file bypasses the individual classifier, the best strategies to avoid detection by
the relationship classifier is to submit the file by itself or with another previously
unseen file that is undoubtedly benign. Currently, our relationship classifier will
not do anything to files it cannot directly relate to previously seen files. For such
a file we could first find an approximate match (using, say, locality sensitive
hashes [1]) and use its relationships. Though such an approach would further
reduce opportunities for code reuse and “malware libraries” for malware authors,
it is beyond the scope of this paper. Our focus is to demonstrate that even a
simple approach has immediate benefits.

A very limiting constraint with respect to the solutions we could employ for
our task is the requirement for our system to be highly scalable. We have there-
fore only considered linear models simply because we cannot afford to train
(or even run) more complicated models on the millions of executables in our
database. Among the linear models we only presented results for logistic regres-
sion, but other methods like SVMs should perform similarly.

Even though the results in Section 5 demonstrate large improvements, our
model is not perfect. Table 4 and Figures 8 and 9 indicate our model is still
susceptible to FPs which are particularly worrisome to analysts. However while
statistical models are subject to false positives in general, we believe that the
definition of a false positive is not correct in a portion of these cases. Typically,
analysts assign a “benign” label to files which cannot infect a computer. We
argue that even if a file cannot be infectious it can still be suspicious if, say, we
have only seen it co-occurring (i.e. being part of the same container) with files
that have been determined to be malware. To handle this case, we believe that
the model can be further improved by adding a third label, “malware related”,
to any file which cannot infect a computer by itself, has been found in some
relationship with malware (contained, dropped), and has never been observed in
any files encountered during the installation of a legitimate software package.

Finally, the algorithm we proposed in Table 1 can be thought of as one iter-
ation of a more complicated scheme. Though we already argued that iterating
this algorithm is tricky, it could provide useful information that is currently not
captured by our model. For example, two iterations of our algorithm would cap-
ture information about co-occurence patterns of files in the same archives and
would start building archive reputations.
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7 Related Work

Malware classification has been a rich area for research, and Idika et al. provide
a recent survey of the literature [9]. Early efforts on malware classification such
as those of Schultz et al. [20] and Kolter et al. [12] focused on static analysis
of the executable files. Features based on n-grams of byte sequences have been
used in [18,19]. In [21] the authors perform sequence analysis of system calls
and Christodorescu et al. propose detecting malware based on the semantics of
the unknown file [5]. Results show improved detection of obfuscated malware
compared to commercial anti-virus products. Chouchane et al. [4] develop static
classifiers for metamorphic malware, by computing probability distributions over
metamorphic variants and using them to train a classifier. Perdisci et al. [17]
proposed using boosting to classify malware.

Recently, a number of authors have proposed behavior-based malware de-
tection systems. For example in [15] the system executes malware in a virtual
machine allowing the execution of arbitrary programs at each control flow de-
cision point. This allows the tool to explore, record, and report the complete
behavior space of a program. Instead of using a simulated virtual machine for
monitoring program behavior, Bayer et al. [2] developed a tool where a com-
plete operating system is run in software thereby allowing the identification of
malware that terminates after detecting that it is running in a virtual machine
environment. Mehdi et al. [14] have previously used N-grams of system calls for
a malware classification system.

Few papers have explored using graph-based methods for detecting malware.
For example, [6,8,10] classify or cluster the call-graphs of malware and benign
programs. Recently, Chau et al. [3] explored building file reputation based on
a bipartite graph of applications and machines. Finally, Ye et al. [22] built and
deployed a system that combines individual predictions with a different defini-
tion of file relationships. They consider two files related if they co-occur on a set
of client machines. In contrast, we define our file relationships at the time a file
is submitted to our service. Besides avoiding thorny privacy issues, the relation-
ships we use are much more localized and reflect pieces of information that the
human analysts actually seek when analyzing an unknown sample. In accordance
to our experimental results, they also observe a large benefit by moving beyond
individual file classification.

8 Conclusions

Automated malware detection is critical given the explosion of new malware in
recent years. In this paper we investigate a novel way of improving malware
classifiers by going beyond individually classifying a given file. Instead, we take
advantage of the information that exists in the relationships between the files
submitted to our service; information that is already being leveraged by human
analysts in their job. Starting from a baseline individual file classifier we proposed
three ways to propagate information from files to containers (Max neighbor,
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Union bound and Biased logistic regression) and a relationship classifier
which uses this propagated information to improve the baseline probabilities.

Our experiments show that on one hand simple approaches like the Union
bound fail completely, and hence propagating and aggregating the relationship
information is not a trivial task. On the other hand our proposed Biased logis-
tic regression classifier completely dominates Max neighbor. Furthermore,
using the container probabilities from Biased logistic regression the rela-
tionship classifier substantially reduces the FN rate at small FP rates.

In spite of these encouraging results, more algorithmic improvements are re-
quired to rely solely on automated malware classification to block or detect new
malware. Improving the baseline classifier, which is relatively simple, can further
improve the relationship classifier. In fact we have presented some evidence that
large fractions of what appear to be false positives a) cannot be fixed by the
relationship classifier and might be due to the baseline system and b) are not
exactly false positives because they are files mostly found in malware containers.
In any case, we believe that our modular approach of learning a correction to
the baseline system nicely decouples the problem in two orthogonal components:
one that looks at the file individually and one that looks at the file’s relation-
ships. This way, progress in either of these fronts can further improve the overall
performance of our system.
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Abstract. Attackers constantly explore ways to camouflage illicit ac-
tivities against computer platforms. Stealthy attacks are required in
industrial espionage and also by criminals stealing banking credentials.
Modern computers contain dedicated hardware such as network and
graphics cards. Such devices implement independent execution environ-
ments but have direct memory access (DMA) to the host runtime mem-
ory. In this work we introduce DMA malware, i. e., malware executed
on dedicated hardware to launch stealthy attacks against the host using
DMA. DMA malware goes beyond the capability to control DMA hard-
ware. We implemented DAGGER, a keylogger that attacks Linux and
Windows platforms. Our evaluation confirms that DMA malware can ef-
ficiently attack kernel structures even if memory address randomization
is in place. DMA malware is stealthy to a point where the host cannot
detect its presense. We evaluate and discuss possible countermeasures
and the (in)effectiveness of hardware extensions such as input/output
memory management units.

Keywords: Dedicated Hardware, Direct Memory Access, I/OMMU,
Keylogger, Malware, Manageability Engine, Rootkit, Stealth, vPro, x86.

1 Introduction

Recently the arms race between malware developers and the anti-malware com-
munity reached a new level. Countermeasures for kernel level [16], hypervisor
based [20], and system management mode based malware [12] were proposed
[13,26,5]. As a result researchers explored new environments for stealthy ma-
licious software.

Malware can be placed on dedicated hardware such as video cards and network
interface cards to attack the host platform [30,31,11]. Such devices bring, among
other things, their own processor and runtime memory. These devices can operate
independently from the host system. Anti-virus software cannot detect malicious
code stored in separate memory and executed on a different processor.

An attacker can use such devices, or more precisely a mechanism called Di-
rect Memory Access (DMA), to easily circumvent protection mechanisms built
into the Operating System (OS) by attacking host runtime memory directly.

U. Flegel, E. Markatos, and W. Robertson (Eds.): DIMVA 2012, LNCS 7591, pp. 21–41, 2013.
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We call code performing targeted DMA based stealthy attacks to find and read
or modify target data DMA malware. Such data can be cryptographic keys for
encrypted harddisks, credentials for online banking accounts, instant messenger
chat sessions, and open documents located in the file cache.

In this paper we classify DMA attacks and derive the term DMA malware. We
explore the term in more detail by examining if DMA malware can significantly
increase the probability of performing a successful stealthy attack against a com-
puter platform while preserving efficiency and effectiveness. For the evaluation
we built our DMA malware DAGGER – a DmA based keystroke loGGER that
exfiltrates captured data to an external entity. We are interested in the efficiency,
effectiveness and especially in stealth properties of DMA malware. We chose to
implement a keystroke logger to demonstrate that “short living” data can be
captured by DMA malware.

Our implementation is based on Intel’s Manageability Engine (ME) that is
part of the popular x86 platform. Intel’s ME is implemented in business as well
as consumer platforms to support different applications, such as the Intel Ac-
tive Management Technology (iAMT) [21] or the Identity Protection Technology
(IPT) [19] (see Intel vPro platforms [18], for example).

Our DMA malware DAGGER is not executed on the host processor. It is
executed on the processor provided by Intel’s ME. No additional hardware is
required. DAGGER implements a sophisticated isolated runtime attack on user
input. Additionally, our DMA malware could steal cryptographic keys, target
OS kernel structures in an attack, and copy files from the file cache.

Although DMA malware cannot by detected by anti-virus software, an at-
tacker still faces certain challenges. DMA malware must be effective, i. e., it
should be able to successfully attack various systems. DMA malware must also
be efficient, i. e., fast enough to find and process data, even when dealing with
virtual memory addresses and randomly placed data. Such malware goes beyond
the capability to exploit DMA hardware.

The main contributions of this work are:

– DMA Malware Definition. There are different kinds of code that utilizes
DMA. To clearly identify if code should be considered harmless, an attack,
or DMA malware, we introduce an appropriate definition.

– DMA Malware Core Functionality. We present a number of require-
ments that must be fulfilled by DMA malware in order to mount successful
attacks.

– Evaluation of DMA Malware Prototype Implementations. To prove
that DMA malware increases the probability for successful stealthy attacks
while preserving efficiency and effectiveness, we implemented DAGGER.
DAGGER is executed on Intel’s isolated ME. DAGGER operates stealthily
and can attack multiple operating systems. Our implementation is so fast
and efficient that it can capture keystrokes very early in the platform boot
process, that enables DAGGER to capture harddisk encryption passwords
under Linux, for example.
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Paper Organization. Section 2 introduces necessary background. Our assump-
tions and attacker model are presented in Section 3. A classification of DMA code
and a definition for DMA malware is given in Section 4. In Section 5 we present
DMA malware core functionality. The design and implementation of our DMA
malware is presented in Section 6. Section 7 describes the evaluation of DAG-
GER, Section 8 considers countermeasures and discusses in particular I/OMMU
issues, and Section 9 presents related work. We conclude in Section 10.

2 Technical Background and Preliminaries

The target platform for our evaluation is a modern Intel x86 based system. This
section introduces the most important terms regarding the target platform.

2.1 Typical x86 System Architecture

The main components of a typical x86 system architecture as depicted in Figure 1
are a Central Processing Unit (CPU or host processor), aMemory Controller Hub
(MCH, also known as northbridge) and an Input/output Controller Hub (ICH,
also known as southbridge). The combination of CPU, MCH, ICH is called the
chipset [14]. System memory (Random Access Memory or in short RAM) as well
as a display adapter are connected to the MCH. The MCH controls access to
memory. It can block requests to memory addresses or redirect the request to
the ICH, if the destination address belongs to the ICH. Peripheral devices, such
as flash memory, Network Interface Card (NIC), etc., are integrated into the
system using the Peripheral Component Interconnect express (PCIe) standard.
This standard implements a serial interconnect for peripherals and the chipset.
NICs and other add-on cards can be connected to the ICH via PCIe. Further
controller devices connect other formats, such as Universal Serial Bus (USB),
FireWire, or Serial Advanced Technology Attachment (SATA), via PCIe to the
system. Legacy PCI devices are connected to the PCIe architecture via a so called
PCI-to-PCIe bridge [4]. In Laptop computers Personal Computer Memory Card
International Association (PCMCIA)/ExpressCard devices are integrated into
the system utilizing PCIe.

The host CPU is not necessarily the only processor in the system. The video
card, for example, supports aGraphics Processing Unit (GPU) to efficiently mod-
ify computer graphics. Data to be processed is stored in Video RAM (VRAM),
that is separated from normal system RAM. Other devices with similar proper-
ties are NICs and Intel’s Manageability Engine in the platform’s MCH. They also
utilize separate processors as well as separate RAM to execute firmware.

2.2 Direct Memory Access

PCIe supports DMA for peripherals for fast memory access without the in-
volvement of the host CPU. The aim of DMA is to remove the burden from the
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Fig. 1. x86 Chipset and Peripheral Components

host CPU. DMA allows peripherals to gain access to the whole host memory by-
passing the CPU. The CPU can perform other tasks while DMA transfers occur.
Peripherals can have their own engines to perform DMA. This kind of DMA is
called first-party DMA [29, p.428]. Another mechanism is third-party DMA [29,
p.428] where a central DMA Controller (DMAC) is necessary to provide legacy
devices without DMA engines with fast memory access. It is also integrated in
modern platforms [17, p.128].

Fig. 2. (a) Third-party DMA: The host CPU (1) configures (source and destination
address) the central DMA controller to (2) perform a DMA tranfser. The DMA con-
troller (3) interrupts the host CPU when the DMA transfer has been finished [15, p.700].
Hence, the host CPU is aware of a third-party DMA transfer. — (b) First-party DMA:
The peripheral device can (1) configure its own DMA engine. The device acts as bus
master to get control of the system bus to perform a DMA transfer. The device can
interrupt the host CPU when the device (2) has completed the transfer. The trans-
fer also works if the device does not interrupt the host CPU at the end of the DMA
transfer. In this case the CPU is completely unaware of the DMA transfer.

Figure 2 highlights an important difference regarding stealthy operation be-
tween third- and first-party DMA. When using third-party DMA the host CPU
is aware of the DMA transfer, when using first-party DMA the host CPU is not
necessarily aware of the transfer.

Note, a DMAC or a DMA engine can only access host memory addresses,
but not host CPU cache, host CPU registers, or the harddisk, for example. The
latter implies that data swapped out from runtime memory to the harddisk is
not accessible by a DMA engine, either.
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2.3 Input/Output Memory Management Units

Intel introduced a technology called Intel Virtualization Technology for Directed
I/O (VT-d) [1] as one of several building blocks to provide hardware supported
virtualization for x86 systems. VT-d can be considered as an Input/Output Mem-
ory Management Unit (I/OMMU) to efficiently assist virtualization require-
ments, such as reliable isolation of virtual machines running on a virtual machine
monitor. VT-d is mainly used in conjunction with virtualization solutions. With
VT-d, system software, that means a hypervisor or an OS, can create memory
protection domains. For example, isolated subsets of physical memory can be
assigned to a virtual machine or to memory of an I/O device driver. An I/O
device not assigned to a protection domain has no access to physical memory
of that domain. These access restrictions are realized using address translation
tables. System software configures so called DMA Remapping (DMAR) engines
provided by Intel VT-d. Such an engine maps a memory request, for example
triggered by an I/O device, to physical memory. VT-d can block a memory
request, if the device is not assigned to the protection domain.

3 Assumptions and Attacker Model

The attacker model describes the setting of a stealthy DMA attack scenario.
The attacker is able to infiltrate dedicated hardware present in a computer plat-
form with malicious payload remotely. This can be carried out via an OS or
firmware related zero-day exploit [11], for example. The dedicated hardware sup-
ports DMA as described in Section 2. We assume that this computer platform
has usual up to date defense mechanisms such as anti-virus software and a host
firewall. The platform user does not apply additional hardware such as a hard-
ware firewall to protect the computer platform.

We assume that only a completely stealthy attack can result in a successful
attack. Hence, the attacker wants to hide the attack by using the stealth poten-
tial of dedicated hardware. Additional hardware would decrease the probability
of a successful stealthy attack significantly. Most likely, the attacker aims on
stealing data, e. g., to conduct industrial espionage or to aquire online banking
credentials, etc.

4 DMA Malware Definition

To determine a definition for the term DMA malware we first classify different
kinds of DMA based code. This helps to clearly distinguish between simple DMA
usage, DMA attacks and DMA malware, whereby the latter has a clear focus
on stealthiness. Note, DMA malware goes beyond the capability of controlling a
DMA engine.

DMA based code implementing malicious functionality is considered as seri-
ous threat. Such code can be operating stealthily during infiltration and runtime.
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It is also an advantage, e. g., for long-term attacks, if the code can survive plat-
form reboots and power off as well as standby modes. Hence, we can prioritize
the following criteria for our classification system. That is, the DMA based code:

(C1) implements malware functionality

(C2) needs no physical access to increase the probability of stealthy
infiltration

(C3) applies rootkit/stealth capabilities during runtime

(C4) can survive reboot/standby/power off modes

With this prioritization we can derive a binary based classification:

23 22 21 20

C1 C2 C3 C4

This classification system covers 16 classes of DMA based code. We can derive
a unique number for each class. For example, DMA based code that does not
perform malicious actions (C1 = 0), leaves no traces on the host (C3 = 1),
does not need physical access (C2 = 1), and cannot survive reboots (C4 = 0) is
classified with the binary pattern 0110, that is class 6 in decimal. The higher the
class, the more dangerous is the DMA based code. Note, we use this classification
system to compare related work in Section 9.

Our definition of DMA malware is as follows:

Definition: DMA malware is malicious software executed on dedicated
hardware attacking a computer system via a mechanism called direct
memory access as well as fulfilling at least the criteria C1, C2, and C3.

When applied to the target platform introduced in Section 2, this definition
means, that DMA malware is based on first-party DMA and the DMA engine
can be configured by the attack code to not involve the host CPU. The attack
code is executed on dedicated hardware with its own processor and runtime
memory, such as a NIC. Controlling the NIC increases the probability that an
attacker can hide data during exfiltration.

5 DMA Malware Core Functionality

When attacking the host, it is not enough for an attacker to control a DMA
engine. The engine enables the attacker to read and to write to host memory.
However, in most cases the target memory address is not known.

Overcoming Address Randomization. The attacker has to determine mem-
ory addresses. The problem is that the memory space allocated for, e. g., kernel
data structures is not at the same memory address after a platform reboot.
Data structures are placed randomly in memory by the OS. This can happen
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in a natural way when a device driver, for example, allocates memory and gets
the next free unallocated memory chunk. The memory address of that chunk
is not necessarily the same after a platform reboot. Alternatively, the OS can
apply certain randomization algorithms to ensure that data structures are not
placed at the same memory position. Of course, an attacker can scan the whole
system memory for signatures of the target data, but this is very inefficient when
scanning a system with 4GB physical memory or more.

Memory Mapping. Operating systems work with virtual memory addresses [6,
Chapter 15], but DMA works with physical memory addresses. The OS creates
so called page tables that are used by the host CPU to map virtual memory
addresses to physical ones. The mapping is absolutely necessary to resolve mem-
ory address pointers when using DMA. A special host processor control register
called CR3 contains the physical memory address of the page tables. The attacker
has no access to the CR3 register. The visibility of a DMA engine is restricted to
host memory only.

Search Space Restriction. Without further investigations the attacker has to
scan the whole memory address space for valuable data. There are two potential
ways in which an attacker can overcome this problem. The first way is to analyze
if the OS places the data structures in question in approximately the same
memory area. The second possibility is to implement OS memory management
mechanisms. That is, the attacker must find a way to access memory page tables
created by the OS. With access to the page tables the attacker can then traverse
page tables and is able to resolve pointers from one data structure to another.
Note, this still requires a known starting point for the search.

6 Design and Implementation of DAGGER

We present an overview of a general design for our DmA based keystroke loGGER
DAGGER in the next subsection before we explain the details of the DAGGER
implementation in Subsection 6.2.

6.1 General Design

Our design of DAGGER is depicted in Figure 3. DAGGER is DMA malware.
That is, DAGGER has to fulfill the DMA malware definition including at least
the criteria C1, C2, and C3.

DAGGER consists of three main components. Search: find the address of
valuable data in the host memory via DMA. Process Data: read valuable data
within the regions identified during the search process. Exfiltration: exfiltrate
information in a way that is invisible to the host.
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Fig. 3. General Design: DAGGER is executed on a DMA capable device so that it can
(1) search and (2) process data from host runtime memory. It (3) controls a communi-
cation path to exfiltrate information.

6.2 Implementation Based on Intel’s ME Environment

To evaluate DMA malware we chose to implement DAGGER on Intel’s ME.
Intel’s ME provides some useful features for implementing DMA malware that
we describe in the following paragraphs.

Fig. 4. Intel’s Manageability Engine Environment

Embedded μ-Controller. The core of Intel’s ME is an embedded μ-controller
placed in the platform’s MCH. This isolated environment contains Read Only
Memory (ROM), Static Random Access Memory (SRAM), DMA hardware to
access the host memory [5,28], and a processor as depicted in Figure 4. The
embedded processor of the ME is an ARCtangent-A4 (ARC4). The isolated
execution environment is available regardless of the power state, even in standby
or power on/off. It only requires that the chipset is connected with a power
source.

ME Firmware. Applications executed on the embedded μ-controller are imple-
mented in firmware (ME FW) and stored in flash memory together with the
BIOS. The most prominent ME firmware example is Intel’s Active Management
Technology [21]. But depending on the kind of computer platform (business or
consumer hardware) the ME can also run other firmware. Other firmware exe-
cuted by Intel’s ME are for instance: Intel’s Identity Protection Technology [19],
Alert Standard Format [28, p.46], Intel Quiet System Technology for temperature
and fan control [28, p.46], and Integrated Trusted Platform Module [21, p.109].
ME firmware can communicate with the host via a PCI device interface called
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ME Interface (MEI) [21, p.71]. The MEI can provide the version of the executed
ME firmware, for example.

Separate Memory. During the initial platform power-on procedure the ME
firmware image is loaded into ME RAM. The firmware itself runs on the μ-
controller internal ARC4 processor and it also uses some system RAM as de-
picted in Figure 4 to store runtime data. This runtime storage is provided by a
certain memory area that is invisible to the main CPU and the OS. The sepa-
ration is enforced by the chipset [21].

Out-of-Band Network Channel. The ME environment introduces Out-Of-Band
(OOB) communication, i. e., a special network traffic channel used by iAMT. The
iAMT enabled computer platform is managed by a remote management console
using OOB. OOB is also available regardless of the power state. OOB can be
considered to be a separate network connection, running on the same hardware.
The ICH implements necessary components to support the ME environment
with the OOB feature. The firmware filters network traffic intended for, e. g.,
iAMT and redirects the packets to the ME. This kind of traffic is identified by
TCP port numbers.

6.3 Attack Implementation Details for Linux and Windows Targets

We implemented two keystroke logger prototypes to attack two targets, Linux
and Windows based OSes. We decided to find and monitor the keyboard buffer
address of 32 bit versions of the target OSes. In comparison to 64 bit versions,
32 bit versions have to deal with a more complicated memory management. For
example, the attacker has to consider Physical Address Extensions (PAE) [25,
p.769] or certain memory offsets when mapping memory addresses. The following
subsections describe, how we implemented the DMA malware core functionality
as described in Section 5. The prototypes capture short living keystroke codes
within their monitoring phase. Each prototype handles the search phase for the
target buffer differently. This has at least two reasons. One reason is to evaluate
as many aspects as possible of DMA malware. The other reason is that OSes
have different memory management properties.

We use a vulnerability described in [28] to infiltrate the ME environment dur-
ing runtime. To call our code we hook a ME firmware function that we identified
as the library function memset. The authors of [28] assumed to hook a timer
interrupt handler. But actually they hooked the ME firmware function memcpy.
We hook memset since we determined that it is called more often.

Linux. Our Linux variant is based on a signature scan as depicted in Fig-
ure 5. We analyzed the available Linux source code to derive a signature of our
target, the physical address of the keyboard buffer. The address of the buffer
is part of the USB Request Block (URB) structure that is defined in the file
include/linux/usb.h of the Linux source code. The demanded structure field
is called transfer dma. The memory offsets differ from kernel version to ker-
nel version. We solved that problem by exploiting the Grand Unified Bootloader
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(GRUB) that places a kernel identifer at a constant physical memory address.
We implemented a function that reads the identifier via DMA and parses the
kernel version number to derive corresponding offsets. Afterwards our prototype
runs through the search phase, that is, the signature scan.

Fig. 5. USB Request Block Signature Scan (simplified): The scan (1) begins to search
for a pointer to the USB device structure. A candidate for such a pointer is aligned
to a 0x400 boundary. The structure field transfer dma must be aligned to a 0x20

boundary. If both conditions are true, the product string in the USB device structure
is (2) checked for the substrings “USB ” and “Keyboard”. In the last step the signature
scan (3) checks if the keyboard buffer contains garbage, that is, invalid keystroke codes.

Since our Linux prototype targets kernel data structures we can restrict the
search space to the first gigabyte of system RAM. Standard Linux systems have
a memory split of 1GB/3GB, that means, 1GB for kernel space and 3GB for
user space. We were able to further restrict the search space by empirically ana-
lyzing in which memory area the kernel places the data structures needed by our
signature scan. We determinded that this memory area is between 0x33000000

and 0x36000000 for the Ubuntu Linux kernel version 3.0.0 after a fresh plat-
form boot. The address of the keyboard buffer does not change after standby
or hibernate mode. With this approach we overcome the problem of inefficiently
scanning the whole system memory for the randomly placed signature. Map-
ping virtual adddresses to physical ones is a minor issue when attacking the
Linux kernel. Normally, in 32bit versions a kernel virtual address (or more pre-
cisely kernel logical address [6, Chapter 15]) is mapped to its physical address
by substracting a constant offset. In 64bit Linux versions such an offset is not
needed. Hence, there is no need to know the content of the CR3 processor register.

Windows. To be able to perform the search using the search path as described
below, virtual addresses must be mapped to physical ones. This mapping is
done using page tables created by the Windows kernel. The memory address
of those page tables is loaded into the CR3 register, which an attacker cannot
access via DMA. It turned out after some empirical tests with a simple driver,
that the physical address of the page tables for the system process takes one of
the following two values for Windows Vista/7 systems: 0x122000 or 0x185000.
The system process is the first process created during Windows startup. With
this knowledge DAGGER can access the page tables created by the kernel and
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overcomes the problem of mapping virtual addresses to physical ones. DAGGER
implements a page table traversing algorithm that takes account of PAE.

Our Windows sample searches for a structure called DeviceExtension that
is maintained by the USB keyboard driver kbdhid.sys. This structure contains
a buffer that stores the codes of the last pressed keys. The source code for
kbdhid.sys is not publicly available. The most convenient way to get internal
information of that driver was to use IDA Pro1, Windows Debugger (WinDbg)
tools, and debug symbols provided by Microsoft2 in form of pdb files.

To finally determine the location of the buffer in the DeviceExtension struc-
ture, our research starts quite early in the Windows boot process [25, Chap-
ter 13]. We analyzed further internal Windows structures. To find a starting point
for the search, we analyzed the Kernel Processor Control Region (KPCR [25,
p.62ff]), or more precisely KiInitialPCR, the KPCR for the processor 0. We
also examined the Object Manager Namespace Directory (OMND, part of the
Windows object manager). We figured out that KiInitialPCR is well suited to
derive a path to the DeviceExtension structure as depicted in Figure 6.

Fig. 6. Find DeviceExtension Structure (simplified): With KiInitialPCR as a starting
point, DAGGER finds the OMND, that provides via hash tables a path to the driver
object kbdhid. This object contains a pointer to a device object. The device object
provides the DeviceExtension structure, which contains the keystroke code buffer.

KiInitialPCR is not located at a constant memory address. DAGGER has to
apply another step before it can start with the search as depicted in Figure 6.

The memory position of KiInitialPCR is determined by a function called
OslpLoadAllModules of the winload.exe binary as depicted in Figure 7. This
binary is loaded by the Windows boot manger bootmgr that in turn is loaded
by Master Boot Record (MBR) code, etc. The function loads the Hardware Ab-
straction Layer (HAL) library hal.dll as well as the Windows kernel image
in a more or less random manner. The kernel image contains KiInitialPCR at
a constant relative address. The disassembled code of OslpLoadAllModules is
reminiscent of an Address Space Layout Randomization (ASLR) mechanism [25,
p.757].

1 See http://www.hex-rays.com/products/ida/index.shtml
2 See http://msdn.microsoft.com/en-us/windows/hardware/gg462988

http://www.hex-rays.com/products/ida/index.shtml
http://msdn.microsoft.com/en-us/windows/hardware/gg462988
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Fig. 7. Find KiInitialPCR (simplified): OslpLoadAllModules determines the exact
position of the Windows kernel image and the HAL

The memory buffer for the kernel image and the HAL is allocated by Oslp-

LoadAllModules via a function called BlImgAllocateImageBuffer. The lat-
ter function returns stable address values for a Windows system. These values
may vary on different systems. For every possible return value of the function
BlImgAllocateImageBuffer there are 64 theoretically possible different 4KB
aligned virtual addresses. These addresses need to be checked in order to find
the kernel image base address. The disassembly of OslpLoadAllModules revealed
that the randomization seed for the address randomization has a 5 bit value. This
implies 32 possible addresses for each (of two) possible load order cases, i. e., first
kernel image and then hal.dll or vice versa. As long as KiInitialPCR has a
constant relative virtual address within the kernel image, the same number of
virtual addresses to be checked also applies for a direct KiInitialPCR search
without any need to deal with the kernel image. To ensure that DAGGER found
the correct KiInitialPCR we implemented a KiInitialPCR signature check.
When DAGGER has found the correct KiInitialPCR, DAGGER continues to
look for the keyboard buffer using the search path described in Figure 6.

7 Evaluation

We used an x86 platform with a Q35 chipset, 2GB RAM, a 4-core 3GHz CPU,
and iAMT firmware (version 3.2.1) to evaluate DAGGER with four different
32 bit OS kernels: Windows Vista Business (Service Pack 2), Windows 7 Profes-
sional (Service Pack 1) and Ubuntu Linux kernel version 2.6.32 as well as kernel
version 3.0.0. The DAGGER attack binary code has a size of approximately
33KB for Linux and 31KB for Windows.

DMA Malware Fulfillment. We designed and implemented our DAGGER
prototypes according to the DMA malware definition described in Section 4.
(C1) is clearly fulfilled since it implements working keystroke logger function-
ality. DAGGER needs no physical access for the infiltration process (C2). We
infiltrate the ME environment using a software based exploit during runtime.
DAGGER exploits dedicated hardware to implement rootkit properties (C3). We
ran host performance overhead tests (memory: MEM, network: NET, and CPU),
since host and ME environment share the NIC as well as a RAM chip. Parallel
NIC and RAM accesses must be arbitrated and could therefore cause delays.
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Our measurement results depicted in Figure 8 reveal no significant overhead.
The highest overhead that we could detect is approximately 1.5% when access-
ing the host memory during the search phase. It is extremely unlikely that this
minimal overhead would reveal DAGGER. The search times summarized in Fig-
ure 9 are very short and the very aggressive memory stress test we performed
does not represent the memory utilization of a normal computer system.

Fig. 8. Host Performance CPU, MEM, and NET Overhead Tests: We used Time Stamp
Counters [6, p.186] to measure overhead time. We measured the time it takes to copy
a 100MB test file over the network (NET) and within RAM (MEM) as well as the
time it needs to compute a SHA1 hashsum over this test file ten times in parallel to
stress all four CPU cores (CPU). Each benchmark was performed three times: without
keystroke logger (baseline), keystroke logger in search mode, and keystroke logger in
monitoring mode. For the monitoring mode we configured the keystroke logger to
constantly send network packets of approximately 1000 packets per minute. This is
equal to 500 keystroke and 500 key release events. We repeated each test 1000 times.
A bar in the figure represents the mean of 1000 runs.

DAGGER has solely read-only operations to ensure stealthiness. The pop-
ular network sniffer Wireshark3 was not able to detect any DAGGER traffic
on Linux and Windows systems. Host firewalls cannot block such traffic either.
Even if anti-virus software knew DAGGER’s signature it would be unable to ac-
cess DAGGER’s memory to apply the signature scan successfully. Nethertheless,
we also run a software called Mamutu4, that is, amongst other things, special-
ized in detecting keylogger behavior. Even specialized software could not find
any indication of DAGGER. Regarding criterion C4 we successfully checked if
DAGGER’s attack code is fully functional after a platform reboot, after standby
and after power off state. We determined that this depends on an iAMT BIOS
option. Our code cannot survive a cold boot that happens if this option is not set.

Effectiveness and Efficiency. DAGGER is efficient, since it can permanently
catch short living data from the keyboard buffer. To prove that DAGGER is
also effective we tested DAGGER with different Windows and Linux versions as
well as several keyboards (Logitech, Dell, FujitsuSiemens). The measured search

3 See http://www.wireshark.org/
4 See http://www.emsisoft.com/en/software/mamutu/

http://www.wireshark.org/
http://www.emsisoft.com/en/software/mamutu/
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Fig. 9. Search Time Measurement Results: The test results with several keyboards
under Linux reveal a best case for search times of around 1000ms and a worst case
of almost 30,000ms as depicted in (a). The median for all keyboards is at 3281ms.
Useful for comparison: scanning the whole memory area determined for Linux (see
Section 6.2) search takes approximately 13,000ms. The worst case of 30,000ms is due
to an erroneous DMA transfer that we do not handle directly. This causes DAGGER
to repeat the search phase. On Windows 7 the best search time is approximately 50ms
and the worst time is around 120ms, see (b). The median for all keyboard is at 93ms.
Hence, the search strategy we implemented for Windows targets performs much better
than the signature scan based strategy for Linux. The plot in (c) compares different
target kernels. DAGGER performs slightly better for Windows 7 than for Windows
Vista. Linux 2.6.32 places the target memory structure closer to 0x33000000 than
Linux 3.0.0. Thus, DAGGER has more hits around 1000ms when attacking Linux
2.6.32. The results in (d) confirm that swapping has no effect on the efficiency and
effectiveness of DAGGER. A platform reboot was only applied to change the swapping
behavior. The peaks are due to search phase repeats.

times summarized in Figure 9 prove that DAGGER is quite efficient. We re-
peated the measurements for each kernel and for each keyboard 100 times. We
took a measurement after a platform (re)boot to change the target address for
each test run. The Linux measurement results imply that we could further re-
strict the search space. We could start the search near the lowest address we
encountered most often during our tests. Search times of around 2500ms are
due to target addresses near 0x33c00000. Thus, we could skip almost 2500ms
if we start the search at 0x33c00000. Furthermore, we could skip the search
area address range between 0x34000000 and 0x36000000. Almost no targets
were found in this area. A lot of targets were found near 0x36e0000, i. e., search
times of around 12,500ms that could also be saved. This increases the proba-
bility to miss keyboard buffer addresses. That is, we can get better (similar to
the Windows attack) search times at the expense of effectiveness. The best case



Understanding DMA Malware 35

search times are sufficient to capture hard disk encryption passwords, for exam-
ple. We tested this successfully with a Linux system. The Windows kernel can
swap out memory pages to the hard disk – Linux does not. Swapped memory
pages cannot be found by DMA malware. Hence, we also did a test for Windows
to check if swapping has any effect on DAGGER as depicted in Figure 9 (d).

ME Firmware Condition. To be really stealthy DAGGER ensures that the
ME firmware is still up and running correctly. iAMT provides a webserver for
remote platform management [21, p.215] that is still usable. The server responds
correctly on the local platform on Linux and Windows. Firmware tools utilzing
the MEI (see Section 6.2) also work when DAGGER is active. We successfully
tested the AMT Status Tool (part of the Local Manageability Service driver) and
the Manageability Connector Tool (part of the Manageability Developer Toolkit
7.0 ) under Windows. Under Linux we successfully tested the Intel AMT Open-
source Tools and Drivers (version 5.0.0.30), or more precisely the ME Status and
the ZTCLocalAgent tool. Note, we determined that DAGGER still runs when
we deactivated the iAMT firmware in the BIOS. It appears that the ME envi-
ronment cannot be disabled entirely via any BIOS options.

I/OMMU. To test an I/OMMU as a countermeasure against DAGGER we
enabled Intel VT-d in the BIOS. As far as we know Windows does not support
I/OMMUs directly. We could successfully attack Windows Vista and Windows 7
although the I/OMMU was activated. Linux experimentally supports I/OMMU
configuration with additonal effort. We also enabled VT-d in the BIOS and we
activated I/OMMU support via the kernel command line. With these additional
steps we were able to prevent the Linux version of DAGGER from reading short
living keystroke codes from OS memory. This protection is not activated by
default and the code is still experimental. In the next section we discuss, among
other things, further issues regarding the I/OMMU.

8 Countermeasures

To scan for DMA malware using software executed on the host CPU is quite
difficult. For example, current AV software does not scan the runtime memory
of peripherals or the host CPU cannot access the runtime memory due to cer-
tain isolation mechanisms. The worst case for a scanning approach is that the
DMA malware changed the behavior of the scan software, which would deliver
incorrect results. Checking firmware images at load time, as proposed by the
Trusted Computing Group [32], does not prevent runtime attacks. Furthermore,
it is unclear if all ROM components are accessible by the host.

I/OMMU Issues. In the case of DMA attacks an appropriate configuration of
the I/OMMU (see Section 2.3) is proposed as a preventive countermeasure, for
example in [11, p.48]. It is required that system software configures the I/OMMU.
An incorrect configuration cannot be excluded [22, p.2].
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It is assumed that the I/OMMU is secure. Unfortunately this is not always
the case. The authors of [27] demonstrated that an I/OMMU configuration can
be tricked with legacy PCI devices. In [35] is revealed that an I/OMMU can
be attacked by modifying the number of DMA remapping engines provided by
the BIOS (see Section 2.3). This is done before the I/OMMU is configured by
system software. The environment we used for DAGGER is able to carry out
such an attack. This threat can only be mitigated by executing special hardware
dependent code called SINIT. However, on at least one previous occasion the
manufacturer of the chipset failed to release SINIT code at the launch of the
chipset [34, p.22]. This code is needed to initialize a well known and trustwor-
thy environment for, e. g., a hypervisor. It checks the DMA remapping engines
and can therefore prevent an attack as presented in [35]. SINIT belongs to and
increases the size of the trusted computing base. Previous work demonstrated
that SINIT code can have exploitable security vulnerabilities that can be used to
trick I/OMMU mechanisms [35]. Recently, the authors of [33] presented another
attack that can be used to circumvent I/OMMU mechanisms, too. To prevent
the attacks presented in [35,33], a SINIT as well as a BIOS update must be ap-
plied. Another I/OMMU attack was presented in [34]. Note, SINIT is normally
triggered on hypervisor based platforms. Platforms running a normal OS can-
not necessarily count on the I/OMMU. It should also be mentioned that SINIT
requires to activate additional platform features, namely the Trusted eXecution
Technology and the Trusted Platform Module [14]. That means, users that do not
want to activate the TPM for example cannot count on the I/OMMU either.
Note, the TPM is an opt-in device [14, p.212] and is turned off by default.

For a comprehensive protection against DMA malware it is absolutely neces-
sary to correctly configure the I/OMMU. However, the I/OMMU can only be
considered secure if the above mechanisms to protect the whole platform are
secure. This is a difficult task. Hence, alternative approaches were considered in
[22] and [10]. The authors of [22] state that their approach requires extending
the firmware, does not work correctly if peripherals cause heavy PCIe traffic,
and the verifier component needs to know the exact hardware configuration.
The approach presented in [10] is highly NIC adapter-specific and not applica-
ble to isolated environments such as Intel’s ME. It is worth noting that malware
such as our implementation controls the NIC without any NIC firmware modi-
fications, i. e., exfiltration cannot be detected by the approach described in [10].
Furthermore, this approach has significant performance issues for the host CPU
(100% utilization of one CPU core).

Memory access policies enforced by I/OMMUs can be insufficient or can even
prevent the use of some other features in some application scenarios. Consider
hardware supported malware scanners such as CoPilot [24] and DeepWatch [5].
The I/OMMU can be configured to stop CoPilot and DeepWatch from working
or to allow such systems to access the host memory to scan it for malicious
software. In the latter case DMA malware could make use of the execution en-
vironment of CoPilot or DeepWatch to attack the host. DAGGER, for example,
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uses the DeepWatch environment, i. e., Intel’s ME. Since iAMT version 5, Intel
supports a verified launch for the firmware to be executed on Intel’s ME [21,
p.271]. The firmware is checked during load time. The result of the load time
check is provided to system software. As far as we know the result is not used
in practice. The mechanism cannot prevent runtime attacks as applied by our
implementation. This means, DAGGER proves that our assumption that an
attacker already infiltrated the target system, e. g., via a zero-day exploit (see
Section 3), can also hold even if such additional security mechanisms are in place.

On the one hand an appropriate configuration of the I/OMMU is a first step
against DMA malware. On the other hand, without resolving the mentioned
issues a successful deployment cannot be guaranteed.

9 Related Work

The discussion of related work is based on the classification system and its
criteria C1 – C4 that we introduced in Section 4.5

Since 2004 several DMA attacks using additional hardware such as USB de-
vices [23], special PCMCIA cards [2], and Firewire devices [8,9,3] were presented.
According to C2 those approaches cannot be considered as DMA malware. Ac-
cording to our classification system of Section 4 the attacks presented in [8,9,3,2]
are classified in class 11 (1011). The attack presented in [23] is in class 1 (0001)
since it reveals itself.

In [28] it was demonstrated that Intel’s ME can be used to write to host
memory. The authors of [28] described a vulnerability that allows to inject code
into the ME environment. The code of [28] did not implement any malware
behavior. It reveals itself by writing to a known hard coded host memory address.
Hence, this approach is in class 5 (0101). Furthermore, it did not demonstrate
how to read from host memory and how to use the OOB network channel.

On the contrary the attacks described in [30,31,11], and [7] fulfill all criteria
for DMA malware. More precisely, they are classified in class 15 (1111). The au-
thors of [30,31] presented a stealthy secure shell that offers memory inspection
using DMA. A combination of NIC and video card is used to hide the shell. The
shell is installed by reflashing firmware remotely. Our DAGGER prototype does
not require to infilrate code into two peripherals and it does not require to reflash
firmware. The attack presented in [11] exploits a vulnerability in the firmware of
a NIC during runtime. The compromised NIC is used to attack the host system
by adding a backdoor. The authors of [11] described how the host could access
the NIC internal memory. This offers a possibility to detect the DMA malware
using code executed on the host CPU. As far as we know no anti-virus like soft-
ware makes use of this. It should be mentioned that the host access to the NIC
internal memory is not a common feature. Normally, the runtime memory of the

5 Note, all classifications were done using publicly available material. If we could not
decide with the help of available resources whether a criterion is fulfilled, we assume
that this criterion is fulfilled.
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Intel ME environment used for our DAGGER implementation is not accessible
by the host. The work of [7] is quite similar to [11]. Both attacks use the same
NIC. The malware described in [7] aims to implement rootkit capabilities. Their
work is still in progress.

10 Conclusion

In this work we studied DMA malware, i.e., malware hidden on dedicated hard-
ware. Such malware can circumvent protection mechanisms run on the host
CPU by directly accessing host memory. We implemented and evaluated DAG-
GER, a DmA based keystroke loGGER. The dedicated hardware enables our
prototype to benefit from rootkit properties. DAGGER operates stealthily. It is
undetectable by anti-virus software etc.

DMA malware is more than controlling a DMA engine. Our evaluation con-
firmed that DMA malware is quite efficient even if obstacles such as memory
address randomization are in place. We also demonstrated that DMA malware
can be quite effective, that is, it can attack several OSes. This verifies that DMA
malware is stealthy at no costs regarding efficiency and effectiveness.

Currently, the host has no reliable means to protect itself. Throughout this
work we highlighted that the I/OMMU has several issues and the host cannot
necessarily count on this preventive countermeasure against DMA malware. Be-
sides possible vulnerabilities and various preconditions that must be fulfilled for
a successful I/OMMU deployment, the most obvious issue is that common OSes
do not or do not sufficiently support the I/OMMU. Hence, currently, DMA mal-
ware can easily attack OSes such as Windows. A general and reliable approach
for scanning the dedicated devices for malware does not exist. Future work is
needed to develop a reliable and more general DMA malware detection mecha-
nism. Until such a solution is developed, only dedicated hardware that is fully
accessible by the host, i. e., complete RAM and ROM access, should be deployed.
This enables the host to check the device for malicious modifications from time
to time. A precondition for this is a reasonable measurement strategy and that
the detector gets loaded first.

We conclude that dedicated hardware with a separate processor, runtime
memory, and a DMA engine are a serious threat for the host platform. DMA
malware executed on such devices is quite effective and efficient. DMA malware
clearly demonstrates that additional protection mechanisms are needed to ensure
a platform’s confidentiality, integrity, and especially its trustworthiness.
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Abstract. Downloaders are malicious programs with the goal to subversively
download and install malware (eggs) on a victim’s machine. In this paper, we an-
alyze and characterize 23 Windows-based malware downloaders. We first show
a high diversity in downloaders’ communication architectures (e.g., P2P), car-
rier protocols and encryption schemes. Using dynamic malware analysis traces
from over two years, we observe that 11 of these downloaders actively oper-
ated for at least one year, and identify 18 downloaders to be still active. We then
describe how attackers choose resilient server infrastructures. For example, we
reveal that 20% of the C&C servers remain operable on long term. Moreover,
we observe steady migrations between different domains and TLD registrars, and
notice attackers to deploy critical infrastructures redundantly across providers.
After revealing the complexity of possible counter-measures against download-
ers, we present two generic techniques enabling defenders to actively acquire
malware samples. To do so, we leverage the publicly accessible downloader in-
frastructures by replaying download dialogs or observing a downloader’s process
activities from within the Windows kernel. With these two techniques, we suc-
cessfully milk and analyze a diverse set of eggs from downloaders with both plain
and encrypted communication channels.

Keywords: Malware, Downloader, Dropper, Dynamic Analysis.

1 Introduction

A crucial part in a malware’s lifecycle is to spread, e.g., via spam, drive-by downloads
or exploiting vulnerabilities. Whereas malware such as worms spreads on its own, at-
tackers have begun to separate the task of infecting victim systems and the exploitation
or “monetization” of the infected systems. Recent investigations to this business, known
as “Pay-per-Install” (PPI), have shown the vast potential of this kind of malware dis-
tribution model. Caballero et al. [5] analyzed PPI networks by actively infiltrating and
participating a handful of PPI programs. It was shown that PPI networks are responsible
for installing a diverse set of malware on infected systems.

Technically, the PPI scheme is only a subset of the malware type that we term a
downloader. A downloader is a malicious program with the purpose to subversively
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download and install malware on a victim’s machine. The specifics of PPI networks
allow attackers to get paid on a per-system and per-affiliate basis, but the effect of
PPI or, more generally, downloaders is comparable: Once a downloader is executed,
and no matter if related to a PPI network or not, the running system will typically be
compromised with multiple different malware families. Thus, downloaders represent a
simple yet widely-used way to spread new malware, typically as part of a service model
within the underground community.

In this paper, we outline and analyze the landscape of what we think represents a
snapshot of prevalent and current downloaders. We identified 23 downloaders, of which
many – to the best of our knowledge – have not yet been documented. We characterize
these downloaders concerning their communication model. For example, we discuss
the communication architectures of downloaders (e.g., P2P), and outline the techniques
used to encrypt or even camouflage the malicious activities. We then use dynamic anal-
ysis traces to provide a long-term monitoring analysis on these 23 downloaders, iden-
tifying 18 downloaders to be still active as of writing this paper. In addition, we show
that eleven downloader families are actively distributing malware for more than a year.

Motivated by this observation, we investigate how attackers ensure the resilience of
downloader infrastructures. Contrary to our expectation that IP address blacklists would
force attackers to change their infrastructure frequently, we show that 219 C&C servers
(20%) were actively operated for more than four weeks. For the remaining servers, we
analyze how attackers use DNS and IP address fluxing to operate their downloaders,
suggesting that isolating downloader infrastructures is much harder than it seems.

As a third part of our analysis, we propose two automated methods to extract the
downloaded malware (eggs) in a generic and scalable fashion. We hope that these tech-
niques will support future efforts in analyzing downloaders without the manual effort of
reverse engineering particular downloader families. We evaluate these two techniques
both on downloaders with plaintext and encrypted communication, acquiring a diverse
set of malware in the wild.

To summarize our contributions:

– We identify and characterize 23 malware downloaders, describing previously un-
documented specimen and their communication models.

– We perform a long-term analysis of these downloaders, revealing that 11 down-
loaders have been operating for more than a year, and approach to understand the
reasons for the infrastructural resilience.

– We propose two automated techniques to actively acquire malware from download-
ers, without requiring reverse engineering downloaders.

2 Preliminaries

Malware defense mechanisms, especially anti-virus, have forced attackers to develop
increasingly complex malware. This complexity has motivated attackers to specialize
and separate duties. For example, services to stealthily install malware on computers
may be provided by one group, while other fraudsters specialize in sending spam, and a
third group could focus on keylogging. In this work, we focus on the service of installing
new malware on systems via downloaders. Downloaders are malicious programs that
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are instrumented to load additional malware via the Internet, which is in turn installed
and executed on the victim’s system.

2.1 Downloader Architectures

Figure 1 illustrates the architecture of a downloader. Once executed, a downloader
contacts its command-and-control (C&C) server(s) via C&C channels. After receiv-
ing download instructions, it then establishes at least one download channel to load
malware (eggs) via the network.

Downloader

C&C Server

Download Server

C&C Channel

Download Channel

Fig. 1. Simplified architecture of a downloader: Seperation between C&C and download channel

C&C Channels. A downloader’s C&C channel is used to get lists of URLs (or similar
address information) where eggs can be downloaded from. Next to download instruc-
tions, the C&C channel can be used to report back to the C&C server if the download
succeeded. In addition, as shown by Caballero et al. [5], C&C channels may exchange
affiliate IDs in the economical model of pay-per-install downloaders. Moreover, down-
loaders send details about the infected host using the C&C channel, such as the OS
version, username or device IDs. One characteristic of C&C channels is the carrier
protocol used to transfer commands. Typical examples for carrier protocols are IRC,
HTTP (e.g., if C&C messages are in the HTTP body) or plain TCP/UDP. The informa-
tion exchanged on C&C channels is critical and highly subjective to counter-measures
such as signature-based IDSs, and thus more advanced downloaders encrypt their C&C
channel. During our investigations, we also observed downloaders that have download
URLs hardcoded in their binaries. We excluded such downloaders from our analysis
because of their simplicity and transitory nature.

Download Channels. We found the C&C and download channels to be typically well-
separated. A download channel shares similar characteristics than the C&C channel,
i.e., it has a specific carrier protocol and potential encryption schemes. While we did
not see examples of steganographic C&C channels, as we will show, some downloaders
tend to camouflage their malicious downloads in normal web traffic. Another typically
distinguishing characteristic between C&C and download channels is the number of
bytes transferred. C&C commands tend to be small, while eggs – no matter if encrypted
or not – have significantly larger file sizes.
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2.2 Related Work

First steps to analyze specific downloaders were made by Caballero et al. by analyzing
four pay-per-install (PPI) programs [5]. PPI downloaders, a subset of downloaders in
general, are based on an economical model cashing out attackers for installing malware
on a freshly infected system. Caballero et al. implemented so called milkers to download
eggs from these four PPI networks, and systematically analyze the ecosystem behind
these networks. They show in-depth how egg families relate to download programs, and
identified that kinds of malware (e.g., DDoS) were distributed in download campaigns.

Our work was inspired by Caballero et al., and we seek for a broader characterization
of downloaders. In fact, we found ourselves at a position not knowing the magnitude
and different types of downloaders currently active in the wild. We identify that the
number and kinds of downloaders is significantly higher than expected. To the best
of our knowledge, we are the first to approach a characterization of downloaders. We
then also seek to answer the fundamental but yet unanswered question of how attackers
build up infrastructures that are sufficiently resilient for long-term operations of down-
loaders. We expand a malware acquisition technique as proposed in Botlab [7] with
replaying network dialogs as proposed by Newsome et al. [11]. While Botlab fetches
malware from URLs found in spamfeeds, our techniques repeatedly acquires malware
from downloader URLs. Existing systems like Threatexpert [15] or Anubis [4] can al-
ready analyze malware in general, but we are the first to analyze the behavior and in-
frastructures on downloaders over multiple executions and on long-term.

3 Analysis of the Downloader Landscape

In this section, we characterize and describe the 23 downloaders identified as part of
this work, which we will then further analyze later in the paper.

3.1 Dataset Description

Our analyses are based on malware reports from Sandnet [12]. Sandnet executes and dy-
namically analyzes malware using Windows XP SP3 32bit virtual machines connected
to the Internet via NAT. During malware execution, we deploy containment policies that
redirect harmful traffic (e.g., spam, infections) to local honeypots. We further limit the
number of concurrent connections and the network bandwidth to mitigate DoS activi-
ties. An in-path honeywall NIDS watched for security breaches during our experiments.
Other protocols (e.g., IRC, DNS or HTTP) were allowed to enable C&C communica-
tion. We consider the biases affecting the following experiments due to containment to
be negligible. Specifically, given our long measurement period of one hour per malware
sample, we did not observe any incomplete download behaviors in our trace. Assuming
that downloaders silently operate without the user’s consent, we did not deploy user
interaction during our experiments. We plan to analyze malware on 64-bit architectures
or more recent Windows versions in the future.

Our dataset consists of 243,000 MD5 unique malware samples analyzed in Sandnet
at least once between Feb 2010 and Feb 2012. We gratefully received these samples
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from a variety of sources, including samples submitted to public dynamic analysis en-
vironments, feeds by security companies, our own honeypot infrastructures and spam-
traps. While we cannot prove that this dataset covers all relevant malware families,
it shows a diversity of 38,000 unique malware labels (according to Kaspersky). We
extracted the malware family names from these labels and found over 1800 malware
families in our dataset.

From this diverse set of samples, we scheduled a random selection on a daily basis,
without giving any emphasis to particular malware families. To trigger the malware be-
havior, we then executed these samples for at least one hour. Obviously, only a minor
fraction of these malware samples are in fact downloaders. To build up a dataset cover-
ing the most relevant downloaders we did a threefold approach. First, we consulted liter-
ature research and asked AV vendors for their expert knowledge on recent and prevalent
downloaders. Second, in our dataset covering millions of malware samples, we searched
for prevalent AV labels suggesting the malware is a downloader. Third, we manually in-
spected a random subset of the Sandnet analysis reports for downloader behavior. We
manually filtered legitimate programs in our dataset of potential downloaders, such as
e.g. Windows Update, Google Updater or programs to update system drivers.

For each identified downloader, we systematically searched for related analysis re-
ports in Sandnet. Typically, we used payload or behavioral signatures to classify and
recognize a particular downloader. In rare cases, where a downloader family did not
expose any signature, we carefully assembled sets of domains and IP addresses to rec-
ognize downloader traffic. Using these techniques, we are able to detect all previous
and upcoming executions of a particular downloader family.

3.2 Downloaders Overview

The resulting dataset provides an empirical overview of existing downloaders. Table 1
lists the downloaders that we monitor as part of this work. While this is not necessarily
complete, it shows a large diversity in terms of different downloader characteristics.
The attributes in Table 1 form two groups: The left-hand attributes characterize the
C&C channel, while the right-hand columns characterize the download channel. We
labeled three droppers with generic names (dldr-#1 to dldr-#3), as anti-virus vendors
either assigned too generic or contradictory labels for those.

Carrier Protocols. A first distinction between the downloaders can be made in terms
of the carrier protocol, that is, the protocol used to communicate with C&C or Down-
load servers. To understand and also classify downloaders, we had to reassemble and
parse numerous carrier protocols (UDP, TCP, DNS, HTTP, IRC, TLS). For obfuscated
protocols, we define the carrier protocol to be the underlying protocol of the C&C
protocol, e.g., “HTTP” for GoldInstall or Renos/Artro and “TCP” for the encrypted
variant of Virut C&C. Interestingly, Table 1 shows that C&C channels are not neces-
sarily designed in the same way as download channels. For example, five downloaders
use obfuscated or encrypted C&C channels, but at the same time have plaintext HTTP
download channels. Similarly, another five downloaders do not separate between C&C
and download channels, abbreviated by “inl” to show that malware is served inline with
the C&C protocol.
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Table 1. Overview of downloaders under our analysis. Columns 2–5 characterize the C&C chan-
nel, columns 6–9 characterize the download channel. “Pl?” shows if the communication channel
was in plain text, and “DNS?” shows if names of the communication endpoints were resolved via
DNS prior to contacting them.

C&C Channel Download Channel
Family arch Pl? Protocol DNS? Pl? Protocol DNS?
Renos/Artro cent ✗ HTTP ✓ ✗ HTTP ✓
Sality cent ✗ HTTP ✓ ✗ HTTP ✗
dldr-#1 cent ✗ HTTP ✓ ✗ HTTP ✓
Cycbot/Gbot cent ✗ HTTP ✓ ✗ HTTP-inl ✓
Karagany cent ✗ HTTP ✓ ✗ HTTP-inl ✓
Gamarue cent ✗ HTTP ✓ ✓ HTTP-inl ✓
Dofoil cent ✗ HTTP ✓ ✓ HTTP ✓
Emit cent ✗ HTTP ✓ ✓ HTTP ✓
GoldInstall cent ✗ HTTP ✓ ✓ HTTP ✓
Rodecap cent ✗ HTTP ✓ ✓ HTTP ✓
Virut (crypt C&C) cent ✗ TCP ✓ ✓ HTTP ✓
TDSS cent ✗ TLS ✓ ✗ HTTP ✓
Winwebsec cent ✓ HTTP ✗ ✓ HTTP ✗
Dabvegi cent ✓ HTTP ✓ ✗ HTTP ✓
Buzus cent ✓ HTTP ✓ ✗ HTTP ✓
dldr-#3 cent ✓ HTTP ✓ ✓ HTTP ✓
Zwangi cent ✓ HTTP ✓ ✓ HTTP ✓
Harnig/LoaderAdv cent ✓ HTTP ✓ ✓ HTTP-inl ✓
dldr-#2 cent ✓ HTTP ✓ ✓ HTTP-inl ✓
Virut (plain C&C) cent ✓ IRC ✓ ✓ HTTP ✓
Vobfus/Changeup cent ✓ TCP ✓ ✓ HTTP ✓
Sality P2P P2P ✗ UDP ✗ ✗ TCP ✗
Zeus P2P P2P ✗ UDP ✗ ✗ TCP ✗

Communication Architectures. As Table 1 suggests, almost all downloaders deploy
a centralized C&C architecture. Two exceptions are Sality P2P and Zeus P2P. Sality
uses a hybrid C&C architecture, i.e., some samples use a centralized HTTP-based C&C
channel while others receive their commands via a peer-to-peer network. Zeus P2P
is a pure P2P based bot with download functionality. Such distributed networks are
attractive to attackers, as the C&C infrastructure cannot be disrupted by taking offline
single C&C servers. Both Sality P2P and Zeus P2P1 initialize their C&C channel by
trying to contact hundreds of P2P bootstrapping nodes.

DNS. Table 1 reveals that most downloaders make use of DNS to resolve the names of
their C&C and/or download servers. However, downloader families such as Winwebsec
and the P2P-driven downloaders avoid DNS resolution for both C&C and download
servers. We speculate that such downloaders either have no technical need for DNS,
e.g. the P2P architectures, or want to foil malware domain blacklists. From the attacker’s
point of view, another disadvantage of using DNS is that taking down domains exposes
an additional point of failure in the communication chain. However, on the other hand,

1 Note that while Zeus may not be conceived as downloader, there are references supporting our
observation that recent Zeus variants drop other malware.



48 C. Rossow, C. Dietrich, and H. Bos

DNS would allow to quickly redirect to different IP addresses of download servers.
This dilemma basically boils down to: Who is more resilient, the hoster (IP) or the DNS
provider (domain)? We try to shed light onto different resilience strategies in Section 4.
The fact that most downloaders use DNS resolution shows that developing mitigation
techniques based on DNS is promising. Howevr, although we see downloaders using
DNS, they may also have a backup communication channel, e.g., using hardcoded IP
addresses [10].

Intuitively, one may think that downloaders use DNS to quickly react on server
takedowns. Fast flux [9], domain flux and the business of bullet-proof DNS hosting
would support this intuition. As we figured, however, some downloaders do not (need
to) change DNS records of particular C&C domains. Consequently, while the usage of
domains evolved over time, the IP addresses resolved by these domains were relatively
static. We will further analyze these observations in Section 4.1.

Communication Encryption. Defense mechanisms such as network-based intrusion
detection systems or anti-virus scanners scan for URLs and file contents downloaded
from the Internet. As a consequence, downloaders deploy a wide set of schemes to ob-
fuscate or encrypt their communication channels. A distinction can be made between
deploying well-known or custom encryption techniques. For example, the TDSS down-
loader relies on TLS within its C&C channel, thus preventing from eavesdropping on
C&C communication [13]. Similarly, we observed that the Renos/Artro family encrypts
using RC4 with a key hardcoded in the samples.

In contrast, other downloaders use custom encryption/obfuscation algorithms. To
give insights, we reverse engineered specific downloader families. For example, Emit
deploys an XOR shifting technique to obfuscate traffic. Similarly, Virut picks a random
session key and the C&C servers derive these session keys by performing a known-
plaintext attack on the ciphertext of the first message sent from the bot to the server. The
session key itself is thus never transmitted. Independent from the cryptographic strength
of a particular algorithm, understanding and possibly decrypting the ciphertexts often
requires tremendous reverse engineering efforts.

Steganography. Attackers further disguise the egg downloads with steganography.
While encryption prevents eavesdroppers to read exchanged data, steganography tries
to hide the existence of egg downloads. We have spotted camouflage techniques used
by downloaders that could be interpreted as first steps towards steganography. For ex-
ample, Renos/Artro hides its eggs in valid GIF files. Although these files look like
regular legitimate pictures, eggs are carried as part of the files. Using custom routines,
the downloader transforms these files to correct PE binaries.

Downloaders Using Public Services. Most downloaders rely on their own infrastruc-
ture for hosting malicious software. However, we also observed that particular down-
loaders make use of publicly accessible services. For example, dldr-#1 retrieves its
malicious files from a large public file clouding provider. From a defender’s perspec-
tive, it is much harder to block access to legitimate services, as a distinction between
legitimate or malicious downloads from such sources raises big challenges.

Tracking Mechanisms. Among the plaintext downloaders, we could observe down-
loaders that are client-aware. That is, attackers derive pseudo-unique IDs per system,
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such as e.g. its MAC address, the gateway’s public IP address or the Windows serial.
The C&C servers can then keep track of which clients contacted them, and serve bina-
ries accordingly. Similarly to e.g. Torpic [14], the downloader victims are presumable
identified to track the number of infections, either to keep an overview or to use this
data for payment (e.g., PPI). Another reason would be to observe and defend against
potential abuses of the downloader infrastructures (see Section 5). To work around this
in our setup, we are modifying fixed strings such as the MAC address for every malware
execution in Sandnet since ever.

3.3 Downloader Lifetime

With our understanding that downloaders are a fundamental part of the malware life-
cycle, we now analyze the lifetimes of the downloaders. For this lifetime analysis, we
are not interested in a particular downloader binary (identified by the MD5 hash sum).
Instead, we analyze when a particular downloader family appears in our dataset, and
how long its C&C or download activities continue.

As a first step, we used the mechanisms described in Section 3.1 to identify down-
loaders of a particular family in our dataset. We specifically designed our signatures to
match evolutions of particular downloaders. For example, GoldInstall, a PPI program
with diverse affiliation programs [5], was covered by a single signature. We then had
to filter C&C flows that reached the C&C server, but the C&C server responded with
non-C&C data (e.g., HTTP 404 responses). We enhanced our signatures with heuristics
verifying that an endpoint shows active C&C communication, filtering out a significant
amount of sinkholed communication.

Dabvegi (5x)
Karagany (7x)

dldr-#3 (8x)
Zwangi (14x)

Rodecap (15x)
Gamarue (17x)

Dofoil (28x)
Sality P2P (32x)

dldr-#1 (40x)
dldr-#2 (44x)

Emit (49x)
Buzus (57x)

GoldInstall (126x)
TDSS/Alureon (131x)

Winwebsec (152x)
Zeus P2P (155x)

Sality Centr. (199x)
Harnig/LoaderAdv (236x)
Virut (crypt C&C) (551x)

Renos/Artro (1206x)
Virut (plain C&C) (1571x)

Cycbot/Gbot (1669x)
Vobfus/Changeup (1899x)

02/2010 02/2011 02/2012

Fig. 2. Lifetime of downloaders, as observed in Sandnet, from Feb 2010 until Feb 2012. The
numbers in brackets represent the number of active executions of this downloader in Sandnet.

Figure 2 shows the resulting activity plot. To increase readability, we connected two
markers if the gap between these two downloader occurrences in our dataset was less
than four weeks. Due to a maintenance period in Sandnet, the graph lacks activity mea-
sures of droppers between 03/02/2011 and 08/04/2011. Overall, however, the graph
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shows that at least 11 of the 23 downloaders (48%) actively operated for more than a
year. In addition, 18 downloaders (78%) are still active as of writing this paper. Given
that some downloaders are more present in our sample feeds than others, and given
that our measurement period started in Feb 2010, the resulting data represents lower
bounds of the actual dropper lifetimes. We even noticed that some downloader fami-
lies were discussed by the community prior to our measurement period, indicating that
the lifetimes of some downloaders is significantly longer than two years. We therefore
speculate that in fact even more downloaders were successfully operated in long-term.
This opposes a long-lasting threat to our community, as apparently downloaders are
largely and continuously used to infect PCs.

A few downloaders, such as Dofoil or Gamarue appeared first in our dataset in 2011,
underlining active developments in the malware scene. The reasons why other down-
loaders ceased during the measurement period are twofold. First, in case of GoldInstall,
C&C servers were not responsive for weeks, potentially indicating a downloader was
abandoned or undergoes a major evolution. Second, as of August 2011, all specimen of
Renos/Artro in our dataset were sinkholed by Shadowserver or Spamhaus.

4 Downloader Infrastructures

Seeing the significant lifetimes of downloaders, and knowing that defenders try to miti-
gate the threats of malware in general, we asked ourselves: How, technically, do attack-
ers ensure such a high and long-term availability of their downloader infrastructures? In
this section, we will therefore investigate the critical infrastructures used by attackers
to operate their downloaders, i.e., both C&C and download servers.

4.1 C&C Infrastructure

C&C servers are vital to instrument the downloaders with new download instructions,
and thus represent a sensitive part in the architecture of downloaders. From a down-
loader’s perspective, two infrastructural services are crucial. First, most downloaders
depend on DNS resolution prior to contacting their C&C server. Second, C&C servers
obviously need to be reachable and service correctly. From a defender’s perspective,
both hosts (IP addresses) and domains represent vantage points to detect and/or disrupt
downloaders.

We use the data obtained in Section 3.3 for further analyzing the C&C infrastructure.
In particular, we aggregate the number of domains and IP addresses used by a particu-
lar downloader as observed in Sandnet. While this does not necessarily give a complete
view on the IP addresses and domains used by a downloader, the numbers can serve as
lower bounds. Table 2 shows that the resilience strategies differ between the download-
ers. In the second major column, we summarize statistics on the specific C&C server IP
addresses of a downloader, plus its Autonomous System (AS). In the third major col-
umn, Table 2 lists the number of C&C domains per dropper. We highlighted domains
or IP addresses that we have seen in active use for at least four consecutive weeks in
Table 2 in the columns annotated with “LL” (long lasting).



Large-Scale Analysis of Malware Downloaders 51

Table 2. Statistics on the C&C server distribution infrastructure per downloader family. LL=Long
Lasting, i.e., IP addresses/domains had an uptime of more than 4 weeks. In each such case, we
increase the corresponding AS/TLD counter by one also.

Downloader IPs ASes Domains TLDs Timespan
Family # # LL # # LL # #LL # #LL M/Y - M/Y
Buzus 2 1 1 1 3 2 2 1 01/12 - 02/12
Cycbot/Gbot 145 48 56 36 2347 57 6 6 10/10 - 02/12
Dabvegi 5 4 4 3 5 4 3 3 11/11 - 01/12
dldr-#1 69 19 4 2 5 2 3 2 01/12 - 02/12
dldr-#2 41 11 21 5 45 12 7 4 06/10 - 02/12
dldr-#3 10 1 2 1 10 2 4 2 08/10 - 01/12
Dofoil 12 2 7 2 16 0 3 0 06/11 - 02/12
Emit 7 2 2 1 9 4 1 1 06/11 - 02/12
Gamarue 80 3 57 3 12 1 4 1 11/11 - 02/12
GoldInstall 12 5 7 3 13 8 3 2 05/10 - 01/12
Harnig/LoaderAdv 24 11 6 1 42 32 1 1 03/10 - 01/11
Karagany 2 0 1 0 7 0 2 0 12/11 - 02/12
Renos/Artro 27 5 12 3 75 0 3 0 06/10 - 02/12
Rodecap 8 4 2 2 5 4 3 3 06/10 - 02/12
Sality Centr. 239 62 125 47 243 59 31 18 06/11 - 02/12
Sality P2P 9849 1457 900 424 0 0 0 0 11/11 - 02/12
TDSS/Alureon 28 8 21 8 28 3 1 1 08/10 - 02/12
Virut (crypt C&C) 20 6 11 6 44 10 3 2 02/10 - 02/12
Virut (plain C&C) 14 4 9 4 3 3 1 1 02/10 - 02/12
Vobfus/Changeup 19 8 14 7 17 13 3 3 05/10 - 02/12
Winwebsec 5 2 4 2 0 0 0 0 10/10 - 02/12
Zeus P2P 2140 31 446 21 0 0 0 0 08/11 - 02/12
Zwangi 97 7 4 1 10 1 1 1 10/10 - 02/12

Table 2 reveals that most downloaders use multiple C&C server hosts, and tend to
distribute their servers across network boundaries. For example, Virut has been in oper-
ation during our entire analysis period with about 20 IP addresses in eleven ASes. We
speculate that spreading server locations among multiple ASes is a strategic decision
by the attackers. The more responsible parties and different national regulations are in
place, the higher the complexity for defenders to take actions against specific down-
loaders. In that sense, Cycbot/Gbot stands out with 146 servers, hosted in more than 50
different networks. Observing such a large diversity may indicate that Cycbot/Gbot is
in fact a malware toolkit with downloader functionality, which results in many smaller
infrastructures independent from each other. We verified that the Cycbot/Gbot instances
in our dataset used different IP addresses at approximately the same time. Another in-
teresting case is dldr-#1, which appears to operate many C&C servers on its own. But
instead it uses a large public file sharing company and this hoster’s load balancing tech-
niques, hiding eggs in seemingly benign Bitmap image files. As we are interested in all
C&C activities of a downloader, we manually inspected all cases where possibly benign
IP addresses or domains (e.g., image hoster) were involved and we explicitly did not
exclude them from Table 2 if we also detected C&C.
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Outstanding are the P2P variants of Zeus and Sality, with more than thousands of
different C&C “server” hosts each. For these downloaders, we consider P2P neighbors
that respond to P2P-related UDP requests as active. The large number of ASes involved,
900 for Sality P2P and 446 for Zeus P2P, show that provider-driven initiatives against
these P2P networks are deemed to fail. Interestingly, and particularly for Sality P2P,
we saw a large fraction of P2P nodes to be lasting for more than four weeks. We first
thought this may indicate that defenders joined this particular P2P network, but the high
number of long-lasting ASes speaks against this.

The analysis on the domains used by downloaders provides further interesting in-
sights. Zwangi, for example, heavily rotates its C&C IP addresses typically within four
/22 networks. Similarly, Gamarue deploys one particular domain pointing to highly
fluctuating IP addresses in over 50 different ASes. In both cases the IP addresses are
typically reused, i.e., DNS is used to steer downloaders towards multiple C&C servers.
On the other hand, we observed downloaders for which the set of IP addresses was
relatively constant, but the domains to resolve these IP addresses changed over time.
For example, Virut used 45 domains to resolve to its 20 C&C servers, and Renos/Artro
pointed its 136 domains to 38 IP addresses. Related to the previous observation that
attackers settle their C&C servers in multiple networks, we also show that – for most
downloaders – a diverse set of Top Level Domains (TLDs) is chosen. Usually, these
C&C domains are even registered across many continents, mostly including European,
South-/North-American, and Asian registrars. Again, involving multiple domain regis-
trars is presumably a strategic decision.

It can be seen that a large fraction of C&C servers (20%) remains operable for more
than four weeks. Similarly, 217 domains pointing to active C&C servers (7%) remain
in active use for at least four weeks. The observed long-levity enables defenders to
take actions against downloaders, such as using domain or IP address blacklists. On the
other hand, the involvement of numerous registrars and providers shows how complex
takedown efforts would be.

As a case study, we compared the usage time spans of Virut’s C&C server domains
(Figure 3(a)) with the usage time spans of the egg download server domains (Figure
3(b)). Both figures reveal that Virut seems to have a subset of stable domains that have
been used throughout the last two years and that are still in active use, for both C&C
and egg servers. In addition, several domains have been used only for certain periods.
However, the sets of domains for C&C and egg distribution are distinct, i.e. we have
not witnessed a single domain being used for both, C&C and egg distribution. Inter-
estingly, we observed a churn of Virut C&C server domain names between June 2011
and January 2012. Our initial hypothesis that these domains were used as backup C&C
domains was proven wrong, as many other domains have been actively in use during
that period. In addition, our passive DNS database in Sandnet revealed that not a single
DNS resolution request for a Virut C&C domain resulted in NXDOMAIN or an empty
answer section – Virut thus exhibits a remarkable C&C and egg server availability. We
leave a more fine-grained analysis to measure to which extent C&C servers/domains
are responsive simultaneously to future work.
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Fig. 3. Virut’s C&C (above) and egg (bottom) server usage by domain over time. Colors/markers
denote top level domains.
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4.2 Download Server Infrastructure

The second pillar of a downloader’s infrastructure are the download servers. We will
now analyze the infrastructures of downloaders with plaintext download channels. We
focus on plaintext downloaders, as we could map download channels to downloaders
in these cases with a high accuracy. Table 3 shows statistics on the egg distribution
infrastructure for these downloader families. On purpose, we do not consider the C&C
infrastructure here, except – unavoidably – in cases where the egg sample download is
part of the C&C channel.

Table 3. Statistics on the egg sample distribution infrastructure per downloader family. LL=Long
Lasting, i.e., uptime of more than 4 weeks. Packers: u=UPX, t=Themida, p=PECompact,
e=PEtite, b=BobPack/Bobsoft, a=Armadillo, s=ASPack/ASProtect, x=EXECryptor, h=Thinstall,
n=NsPack, f=FSG, d=D1S1G, v=Upack, c=CrypKey, o=ProActivate, y=XtremeProtector,
w=WinUpack, N=NET MS, M=MoleBox, Y=y0dasCrypter.

Downloader IPs Domains Eggs Maximum Packers
Family # #LL # #LL # #MD5s Uptime # Detected
dldr-#2 26 7 44 10 1029 110 561 days 6 b,t,u,f,h,y
dldr-#3 8 1 9 1 648 158 114 days 7 u,s,d,n,p,c,e
Dofoil 14 1 29 0 103 93 96 days 3 u,c,Y
Emit 6 2 27 0 5938 698 183 days 2 u,p
GoldInstall 70 25 63 16 13155 971 592 days 8 u,b,s,v,p,w,n,N
Harnig/LoaderAdv 31 12 46 23 1731 735 185 days 9 u,o,f,p,d,N,b,n,M
Rodecap 2 2 8 2 286 23 445 days 2 u,a
Virut (crypt C&C) 30 8 25 6 3852 293 459 days 5 u,x,n,s,d
Vobfus/Changeup 15 7 34 3 2005 424 77 days 1 u
Winwebsec 6 1 1 1 80 22 58 days n/a ukn
Zwangi 86 2 8 1 263 138 49 days n/a ukn

Two thirds of the observed plaintext downloader families exhibit more than ten dis-
tinct IP addresses for their sample servers. A similar trend is observed concerning the
domain names – only the Winwebsec family does not make use of DNS at all in the egg
download process.

Per downloader family, the maximum uptime expresses the maximum time span
where one single egg server IP address has been witnessed as serving egg samples.
Note that, in comparison to Table 2, the measurement in Table 3 is restricted to a fam-
ily’s egg servers and omits its C&C infrastructure. We consider an IP address or domain
as long lasting if it serves eggs for at least four weeks. Table 3 shows that over the whole
monitoring period, only a small fraction of the IP addresses is actually long lasting. In
the cases that we manually inspected, we observed that downloaders typically move
their download servers from time to time. For each downloader family of Table 3, we
manually inspected the egg server usage over time for both, domains and IP addresses.
Interestingly, all downloader families exhibit similar egg server usage patterns where
the migration from one domain to another is clearly visible. The same applies to the
IP addresses of egg servers, however, egg server domains typically change more often
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(b) Vobfus/Changeup: Migrating to new, previously unseen TLDs

Fig. 4. Egg server usage by domain over time for two downloaders. Domain names have been
pseudonymized. Marker styles and colors distinguish the download server’s top level domain.

than IP addresses. Some of the servers that we observed to be long lasting, even actively
serve eggs for more than a year.

For the downloader family Emit, Figure 4(a) shows each egg server domain on the
y-axis and the associated usage time spans. Note that the domain names have been
pseudonymized. The egg server domains show hardly any overlap in their usage time
spans. In addition to the usage time span, the marker and the color denote the top level
domain. We observe that not only does the egg server move from one domain to another
– indicated by the pseudonym – it also migrates from one top level domain to another,
i.e. from initially .com to .org, .pl and finally to .us. This pattern shows that – in order to
strive for a takedown of this downloader’s egg serving infrastructure on the DNS level
– many different registrars would be required to cooperate.

Figure 4(b) Vobfus/Changeup, which exhibits a strong domain migration pattern for
its egg servers. In this case, the domain names are typically only used for a couple
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of days, and never reused. Not as consistent as Emit, but still, Vobfus exhibits sequential
top level domain migration, too, although a few top level domains are used in parallel.

5 Egg Acquisition and Analysis

After investigating the downloader infrastructure, we will now analyze the downloaded
eggs. Such an analysis allows us to draw conclusions on how attackers operate the egg
infrastructure, e.g., by using polymorphism and aggressively repacking served samples.
We will begin with presenting two techniques how to acquire eggs from both plaintext
and encrypted downloaders. The resulting dataset of actively acquired eggs will then
serve to give first insights into evasive techniques used by downloaders.

5.1 Egg Acquisition Techniques

All downloader infrastructures have one necessity in common: these services must be
publicly accessible, as (with the exception of targeted attacks) fraudsters aim for large-
scale deployment of their malware. Consequently, attackers cannot easily deploy client
authentication mechanisms that prevent their infrastructures from being “abused”, rais-
ing the difficulty for attackers to control who is accessing the infrastructures. We exploit
these necessities to obtain eggs for the downloaders under our analysis. We present two
techniques that enable us to acquire the downloaded eggs for plaintext and encrypted
droppers. Previous efforts analyzing a few specific downloaders [5] did not require au-
tomated egg acquisition techniques. However, given our significantly larger sample set,
we seek for a more scalable solution to analyze downloaders. Our techniques may be
a potential enabler for future research on malware acquisition methods or egg analysis,
as our methods do only require little manual effort compared with reverse engineering.

Plaintext Downloaders. For plaintext downloaders, we exploit the fact that eggs are
downloaded without disguising or encrypting the communication. Methodically, we
replay the egg-download dialog towards each download server and require new egg
samples this way. For example, in case of HTTP, once the download server and the egg’s
URI is known to defenders, downloads can be repeated regularly. We implemented a
dialog repeater that takes pairs of HTTP request and communication endpoint as input,
i.e., payload bytes with a destination IP address and port. For each such pair, the repeater
replays the dialog towards the specified destination once an hour, typically resulting in
HTTP responses. We feed the repeater with input pairs by searching for requests by
downloaders in our dataset that led to egg downloads. Given the prevalence of HTTP in
our dataset, we left it open for future work to incorporate further network protocols to
the dialog repeater.

In order to avoid such mechanisms, fraudsters could potentially use blacklists of IP
addresses of known malware analysis systems [1]. For an attacker, it is straightforward
to block all requests from systems as ours. Consequently, instead of using a single
Internet outbreak and IP address, we established a proxy network to route the traffic
through our home DSL lines. In contrast to well-known proxies such as Tor or open
proxies, end-user IP addresses seem to stem from realistic end-users and – in our case –
even change daily. We made sure that our ISPs did to interfere with our measurements
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by comparing outputs of multiple proxy hosts. Despite its simplicity, as we will show,
the repeater is a well-working mechanism to acquire new eggs.

Encrypted Downloads. A drawback of the dialog repeater is that it cannot milk eggs
from downloaders using encrypted download channels. Even if the download succeeded,
we could not make use of the encrypted egg. Therefore, as a complementary technique,
we leverage the actual downloader to acquire eggs. The intuition behind this method is
simple: whenever a downloader is executed, it will download and execute previously
unknown malware samples. We instrumented our Sandnet VMs with a kernel-based
Windows system driver that records the file images whenever new processes are forked
or system drivers are loaded. For each potential egg being executed, the kernel driver
computes the MD5 checksum and records the new processes’ image.

However, monitoring new processes results in a large amount of legitimate sys-
tem files to be interpreted as potential egg. To filter legitimate system files, we built
a whitelist of trusted system files by scanning all files of a clean Sandnet VM. In ad-
dition, as a further filter to catch only actually dropped and not modified system files,
we manually assembled patterns for the file paths where each downloader is storing its
eggs. We specifically discard eggs that we identify as exact or repacked/modified copies
of the downloaded itself by correlating the time when data was received from the net-
work with the time when the new process was forked. After adding the kernel driver to
Sandnet, we additionally scheduled the downloader families with encrypted download
channels for execution in Sandnet on a daily basis for seven weeks starting in Jan 2012.

5.2 Egg Sample Distribution

In addition to our passive Sandnet database, we use both active techniques described to
obtain a comprehensive egg dataset. Thus, for the plaintext downloaders, we identified
the download channels and additionally describe the downloader infrastructure and their
uptime. Table 3 (page 54) shows the egg distribution per downloader family that exhibit
plaintext egg downloads.

The number of successful egg downloads as well as the number of MD5 unique egg
samples differs widely among the plaintext downloader families. Whereas for GoldIn-
stall more than 13,000 egg downloads completed successfully, the number of unique
egg samples is much smaller. Other families such as Dofoil show that still a significant
fraction of the successful egg downloads expose differing MD5s.

Table 4 summarizes our experiments of actively milking encrypted downloaders in
Sandnet. For each downloader, we name the number of executions in Sandnet and show
the number of eggs and unique eggs, respectively. For nine of ten downloaders, our tech-
nique was able to trace eggs. Despite its short runtime and the relatively small number
of execution per downloader, we were able to acquire a high diversity of eggs. For ex-
ample, although Zeus is well-known for keylogging and information stealing, we can
confirm Symantec’s recent observation [3] that it also downloads non-Zeus samples.
For Sality P2P, we have observed active downloads, but the eggs were never executed
during our monitoring period. Consequently, our kernel driver did not record new pro-
cesses. Renos/Artro drops malware, although from August 2011 on our Renos samples
were effectively sinkholed. Independent from the fact that all eggs were included in
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Table 4. Downloaded egg samples from the encrypted downloaders from Dec ’11 to Feb ’12.
Packers: u=UPX, t=Themida, p=PECompact, b=BobPack/Bobsoft, c=CrypKey, z=StealthPE.

Family Execs Eggs MD5s Packers
Buzus 316 1898 329 b,u,p
Cycbot/Gbot 181 1030 374 u,c
Dabvegi 278 271 8 unknown
dldr-#1 14 10 3 t
Karagany 256 242 178 z
Renos/Artro 320 2454 23 u
Sality 261 241 59 u
Sality P2P 250 0 0 n/a
TDSS/Alureon 226 652 79 n/a
Zeus P2P 224 221 101 n/a

the original downloader sample, our technique could in fact extract the eggs. Both for
Renos/Artro and Sality P2P, we could in general milk the downloaders, if we executed
more recent samples or increased the analysis period. The low number of executions
of dldr-#1 is due to scheduling this downloader only recently. As a particularly inter-
esting case, TDSS/Alureon dropped all recorded executables by extracting the original
sample. In addition to the loaded eggs, however, we recorded that in about half of the
executions a kernel driver was loaded, showing that our technique may even work for
downloaders with rootkits capability.

5.3 Polymorphism

Malware is well-known for polymorphism in order to evade antivirus signatures. An
interesting question in the context of downloaders is whether and how polymorphic
code is used. We approached this aspect twofold. First, we classified all egg samples
using yara [2] and packer identification rules in order to assign which packer was used
to (re)pack an egg sample. In addition, we submitted the egg samples to our sample
sharing partners and Virustotal. In turn, querying Virustotal, we were thus able to assign
A/V labels to the egg samples.

Sample Packing. A large fraction of the egg samples were successfully classified
using yara packer rules. Tables 3 and 4 show the number of distinct packers for the
eggs of each downloader family. The dominating packers are based on UPX. However,
many different packers can be found, such as Armadillo, Themida, ASPack, ASPro-
tect, NsPack and PECompact. In addition, some eggs, such as those of Winwebsec,
were packed with unknown packers. The fact that the egg packers vary throughout one
downloader family, supports the assumption that there are multiple “clients” per down-
loader and that it is likely not the download server that repacks the eggs. Instead, we
assume that the clients make packed eggs available to the downloaders. In this context,
we consider a client to be an attacker willing to distribute malware via downloaders.
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Repacking. In order to successfully evade signature-based A/V, eggs are repacked at
certain intervals. For those families that have plaintext egg downloads, based on Sandnet
and dialog repeater traces, we estimate lower bounds on which downloader families
distribute polymorphic eggs. In this context, we define an egg to be repacked if different
content – in terms of MD5 hash – is served for what can be considered the same egg
sample – based on (approximate) file size and A/V label. Thus, for each downloader
family, we consider an egg to be repacked if we observe egg downloads with at least
8 distinct MD5 egg hashes all having (nearly) the same file size (rounded to kilobytes)
and the same A/V label, within a time span of one month. On average, our filter criteria
translate to a repacked egg sample at least once every four days. Furthermore, to ensure
statistical significance, we limit our dataset for this experiment to families with at least
90 distinct eggs. Of those 9 families, we observed 8 to exhibit repacked samples. Note
that we do not consider repacking to be a property of the downloader family. Instead,
we assume that the clients of these downloaders take care of the repacking of their eggs.
Wheres at least one client of Emit reached a maximum repacking rate of once every 17
minutes, dldr-#3 only repacked up to once every 2.5 days. For GoldInstall, we measured
repacking once a day, and one of the Dofoil clients repacked its eggs once every hour.

This confirms similar analyses by Cabellero et al. [5], only that two downloaders in
our dataset (Emit, Dofoil) deploy overly aggressive repacking. Employing our dialog
repeater, we looked for server-side polymorphism where the egg sample is repacked
upon each request. In particular, we tried to measure whether the repacking of Emit
eggs takes place via on-the-fly server-side polymorphism, but unfortunately the egg
servers have not been reachable during this experiment.

6 Discussion and Future Work

Motivation of this work: Our analyses provide detailed, novel and important insights
into malware downloaders, but one may wonder if revealing such data has positive
effects to the security community. In particular, revealing the possibility to monitor
downloaders may motivate attackers to switch to more advanced techniques. However,
given the large numbers of long-term operating downloaders, we see the need to raise
attention to this problem domain. Our work also aims to highlight relevant downloader
families, as e.g. P2P- or rootkit-driven downloaders, fostering future research on poten-
tially previously unknown malware families.

Evasion: Obviously, our techniques to automatically milk downloaders are evadable by
attackers. While it is straightforward to evade our dialog repeater, evading our kernel-
based driver requires more thoughts. For example, we face the risk that our current setup
may fail for kernel-level rootkits such as TDSS. Similarly, we had to exclude one par-
ticular downloader (Wintrim) from our analysis, as it detects virtualized environments.
However, hardened dynamic analysis as with Ether [6], hardware-based hosts [8], or
developing resilient kernel drivers would be effective against attackers’ moves.

Containment: During dynamic analysis, and particularly when allowing network access
to malware, we potentially risk to harm others. However, in a best effort to drop all
harmful traffic, we strictly control and monitor Sandnet’s activity. As a consequence, we
have not observed a single abuse complaint concerning Sandnet, so far. Furthermore,
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a particular risk of executing downloaders is to – unintentionally – financially support
PPI downloaders, in that attackers are paid for each installation. However, the cash
flow in this case is that attacker A (whose downloader is executed in Sandnet) is paid
by attacker B (who asked for his malware being dropped), not causing harm to any
innocent uninvolved individual.

Next steps: Until now, we mainly focused on characterizing downloaders, observing
their infrastructures and analyzing downloaded eggs. Due to space and time constraints,
we did not explore and include all analyses on the downloaded eggs, which we plan to
work on as a follow-up of this paper. We also plan to extend our large downloader
dataset for active techniques, e.g., to measure the prevalence of downloaders or to ex-
plore possible detection/mitigation techniques.

7 Conclusion

We identified and characterized 23 downloader families, showing that the downloader
landscape is diverse in terms of architectural design, communication protocols and en-
cryption schemes being used. We observed that many downloaders – albeit sometimes
simple – have been actively operated for more than a year. Motivated by this obser-
vation, we analyze how attackers ensure the resilient operation of their downloader
infrastructure. For example, we show that downloaders migrate their C&C servers ag-
gressively among different Autonomous Systems, often involving multiple countries.
Similarly, we observed downloaders not only to alter the C&C domains frequently, but
also to involve diverse domain registrars. We revealed further details on the workings
of downloaders, such as server-side polymorphism, by analyzing the download server
infrastructure. These observations show that mitigating the problem of downloaders
is more difficult than it might seem. To foster future research in this area, and as au-
tomated mechanism to acquire previously unseen malware samples, we present two
generic techniques which extract downloaded eggs from any downloader.
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Abstract. Mobile application markets such as the Android Marketplace provide
a centralized showcase of applications that end users can purchase or download
for free onto their mobile phones. Despite the influx of applications to the mar-
kets, applications are cursorily reviewed by marketplace maintainers due to the
vast number of submissions. User policing and reporting is the primary method to
detect misbehaving applications. This reactive approach to application security,
especially when programs can contain bugs, malware, or pirated (inauthentic)
code, puts too much responsibility on the end users. In light of this, we propose
Juxtapp, a scalable infrastructure for code similarity analysis among Android ap-
plications. Juxtapp provides a key solution to a number of problems in Android
security, including determining if apps contain copies of buggy code, have sig-
nificant code reuse that indicates piracy, or are instances of known malware. We
evaluate our system using more than 58,000 Android applications and demon-
strate that our system scales well and is effective. Our results show that Jux-
tapp is able to detect: 1) 463 applications with confirmed buggy code reuse that
can lead to serious vulnerabilities in real-world apps, 2) 34 instances of known
malware and variants (13 distinct variants of the GoldDream malware), and 3)
pirated variants of a popular paid game.

1 Introduction

As mobile devices (e.g., smartphones, tablets) gain popularity, software marketplaces
have become centralized locations for users to download applications. For the An-
droid operating system, Google hosts the official Android Market while Amazon and
many others provide third party markets. The wide range of devices that are Android-
compatible combined with the open source nature of the Android operating system and
development platform have led to explosive growth of the Android market share. As of
August of 2011, Android has grown to a 52% market share[33].

The rapidly increasing volume of applications, increased demand for diversified
functionality, and existence of piracy and malware places large obstacles in the way
of a healthy and sustainable Android market.

Vulnerable Code Reuse. Android developers often misuse coding idioms in Android,
either due to copying and pasting of vulnerable code or lack of developer understand-
ing [20,18]. For instance, Google has provided sample code to interface with the Li-
cense Verification Library and the In-Application Billing APIs, which are responsible
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for verifying that a user is authorized to execute a program and purchasing virtual items
within an application, respectively[7,6]. Google explicitly warns developers that they
need to modify certain parts of the code, because the unmodified template code is sub-
ject to certain security vulnerabilities and requires developer intervention in order to
ensure security properties.

Malware. With the exploding growth in the number of Android applications, the occur-
rence of Android malware has also increased. As of August 2011, users are 2.5 times
more likely to encounter malware on their mobile devices than only 6 months ago and
it is estimated that as high as 1 million users have been exposed to malware[11].

Piracy. Furthermore, the Android software marketplaces are home to many pirated ap-
plications. A common occurrence is for an illegitimate author to repackage and rebrand
a paid or popular app with additional program functionality in order to generate revenue
and even execute malicious code[4].

The current markets usually rely on two approaches to identify and remove poten-
tially dangerous applications: 1) review-based approach, which requires mostly expert
manual review and security examination, and 2) reactive approach, e.g., user policing,
reporting, and user ratings as indicators that an application may be misleading in its
functionality or misbehaving. Given the existence of hundreds of thousands of appli-
cations on the markets, neither approach is scalable and reliable enough to mitigate
threats to users. To empower and expedite this process, we need an automated analysis
of Android applications in order to pare down large application datasets into a small set
of noteworthy candidates for further investigation.

Each of the aforementioned problems appears to be unrelated. However, we observe
a common invariant among them, namely, code reuse, which sheds light on the fact that
a unified approach in detecting common code (or code similarity) may address all of
our goals. Using this observation, we propose to build a fast and scalable infrastructure
for detecting code reuse in Android applications which allows for 1) early detection and
developer notification of known vulnerable or buggy code, 2) detection of instances of
known malware, either in isolation or repackaged with an innocuous program, and 3)
detection of pirated applications.

It is a challenging task to develop a system to automatically detect code reuse in An-
droid applications. The system must be able to quickly compare code and detect reuse,
and scale to hundreds of thousands applications or more; the system need to be resilient
to certain levels of code modification and obfuscation, which are common in Android
applications; the system should be able to represent the application being compared in a
meaningful, accurate way in order to find the so-called needle-in-a-haystack differences
in applications, all the while maintaining low false positive and false negative rates.

As a first step solution, we use k-grams of opcode sequences of compiled applica-
tions and feature hashing[26,24] to efficiently tackle the problem at large-scale. k-grams
of opcode sequences have been shown to be resilient to certain types of code modifi-
cation and can be efficiently extracted from applications. Additionally, feature hashing
has been shown to work well in dimensionality reduction and classification. We com-
bine this technique with a variety of domain-specific knowledge in order evaluate code
reuse, instances of known malware, and piracy in Android applications. We use k-grams
and feature hashing combined in order to have a robust and efficient representation
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of applications. Using this representation, we have a fast way to compute pairwise
similarity between applications to detect code reuse among hundreds of thousand of
applications.

In this paper, we propose Juxtapp, a scalable architecture for quickly detecting code
reuse and similarity in Android applications. We implemented our distributed archi-
tecture using Hadoop and ran it on Amazon EC2. It is capable of fast, incremental
additions to the analysis dataset, meaning it is amenable to frequent updates and addi-
tions to the pool of applications. We apply Juxtapp to address three different types of
problems: vulnerable code reuse, known malware, piracy. We evaluate Juxtapp’s abil-
ity to detect these problems on 58,000 applications, ranging in size from hundreds of
kilobytes to tens of megabytes, which were collected from the official Android market
and the Anzhi third party market[1]. We find that the system performs and scales well.

• Vulnerable Code Reuse. We show that applications widely use significant portions
of the Google In-App Billing and License Verification example code, leaving them
susceptible to vulnerabilities.

• Instances of Known Malware. We find 34 instances of malware in Android markets,
13 of which are distinct, previously unknown variants that have been repackaged
with innocuous-looking applications.

• Piracy. We identify pirated applications in third party markets and show that Jux-
tapp can detect pirated applications that are obfuscated and with significant code
variation from the original application.

2 Problem Definition

In this paper we consider the problem of automatically finding similarity among An-
droid applications with the goal of detecting known buggy code patterns and vulnera-
bilities, repackaged and pirated applications, and known malware in Android markets.
Detecting code reuse in Android applications offers a first chance in detecting applica-
tions that may negatively impact the user’s security and experience or defraud develop-
ers of revenue. We develop Juxtapp, an architecture that automatically examines code
containment in Android applications. We define code containment to be a measure of
the relative amount of code in common between two Android applications. Using this,
we examine a variety of Android market applications for instances of vulnerable code,
known malware, and piracy.

Buggy and Vulnerable Code Reuse. Previous manual investigations into developer
errors[18,20] in Android applications have indicated that developers often copy and
paste code as well as reuse sample code obtained from Android-specific developer web-
sites without modification. Using application similarity, we can examine the Android
Market to see if they contain known buggy or vulnerable pieces of code.

Known Malware. The incidence of malware in Android marketplaces has been rising
rapidly. In January 2011, 80 applications were known to be infected with malware,
as opposed to June 2011, when the incidence rate had risen to over 400 instances of
malicious applications [11]. Malware authors often repackage legitimate applications
with a malicious payload in order to entice users to download an infected application.
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Piracy and Application Repackaging. Popular Android applications and games are
commonly repackaged with modified code in order to evade copyrights protection and
to generate revenue for the pirate [4]. By comparing applications from the official An-
droid market to third party markets we show that we can detect instances of piracy.

Scope. We restrict ourselves to the Android application domain, excluding obfuscation
in the form of functional code transformation. For instance, we are able to detect two
instances of similar obfuscated code, but we restrict ourselves to this domain and do not
consider the problem of matching code which has been transformed to be functionally
equivalent.

2.1 Goals and Challenges

Juxtapp has a variety of challenges which must be met in order to detect code reuse in
Android applications. Some specific goals of our platform are to:

Automatically Analyze Code Similarity in Android Applications. As of Novem-
ber 2011, the Android market had over 310,000 applications[12]. The rapid growth of
market applications and increase in the number of pirated and malicious applications
underlines the need for a way to rapidly and automatically analyze applications.

Scale to a Large Number of Applications. Android markets have hundreds of thou-
sands of applications with new applications being added all the time. Our architecture
must be able to scale in order to detect similarity across a wide range of applications,
including the ability toincrementally update our application repository in an efficient
manner.

Accurately and Efficiently Represent the Applications under Analysis. In handling
hundreds of thousands of applications, Juxtapp must be able to accurately represent
and quickly determine code similarity among applications. There is an implicit trade-
off between the accuracy of the analysis and the amount of space it takes to represent
an application under analysis.

Android Specific. In addition to general challenges, there are a number of domain
specific considerations when computing the similarity of Android applications.

Java Source Code Unavailable. For most applications on the Android Markets, source
code is not available. Android applications are compiled from Java to Dalvik bytecode
(known as the DEX format)—the bytecode for the Dalvik VM[3]. This compiled code
and application resources are packaged as an APK. The DEX format fully describes the
application and retains class structure, function information, etc.

Multiple Entry Points. Unlike traditional desktop programs, Android applications have
multiple potential entry points. Android applications are broken up into components and
these components can each have their own entry points.

Obfuscation. Android developers are encouraged to obfuscate their code using Pro-
guard [13]. Proguard attempts to remove unused code and renames classes, methods,
and fields with obscured names to make reverse engineering of Android applications
more difficult. However, this process is deterministic so two identical applications will
be transformed in the same way.
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Therefore, any type of program analysis must take these challenges into considera-
tion. And indeed, the domain specific challenges can be used to impose structure on the
applications so that feature hashing and clustering are more amenable in the Android
application domain.

3 Background

Like static code reuse detection proposed in [32,28], we use k-gram features of code
sequence to represent applications. However, k-grams extracted from code sequence
usually results in an enormous feature space (e.g., 2128 features in [32,28]), preventing
efficient feature storage and similarity comparison even for a moderate number of appli-
cations. To analyze large volumes of mobile applications, we need an efficient feature
representation of the applications and a fast way to compare features between them.

Feature Hashing. The main technique we use is feature hashing. Feature hashing is a
popular and powerful technique for reducing the dimensionality of the data being ana-
lyzed [26,31]. Using a single hash function, it compresses the original large data space
into a smaller, randomized feature space, in which feature hashing, representation, and
pairwise comparison are all efficient. This efficiency comes at the cost of potential col-
lisions while hashing. However, theoretical and experimental results from the machine
learning community show that pairwise similarity maintains high accuracy, thus algo-
rithms built on top like hierarchical clustering, will be close to exact [26,31]. Feature
hashing was recently introduced into the security community for malware analysis [24].

The resulting representation of an application can be encoded into a succinct bitvec-
tor which represents the features present in the data. As always, choosing a good hash
function and a bitvector representation of prime length is essential to minimize the
number of collisions in the vector.

Similarity. We determine the similarity of two applications by the similarity between
their feature sets. We use the Jaccard similarity metric defined as J(A,B) = |A∩B|

|A∪B| ,
where A and B are two k-gram feature sets of two applications, respectively. Because
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we hash k-gram sets into boolean vectors, with each entry indicating presence or ab-
sence of a feature, as opposed to a set of items, we can approximate this quantity

much more efficiently using bit-wise operations: J(Â, B̂) = |Â∧B̂|
|Â∨B̂| , where Â and B̂

are bitvector representations of k-gram sets A and B, respectively. As shown in [24],
as long as the size of the bitvector is large enough, J(Â, B̂) is very close to J(A,B), the
similarity between two applications represented by the k-gram feature sets. The Jac-
card distance D(A,B), which measures dissimilarity between two feature vectors, is
obtained by subtracting the Jaccard similarity from one: D(Â, B̂) = 1−J(Â, B̂). Both
Jaccard similarity and distance have values in the range [0, 1].

4 Our Approach

As shown in Figure 1, our approach, Juxtapp, involves the following steps for ana-
lyzing Android applications: 1) application preprocessing, 2) feature extraction, and 3)
clustering and containment analyses.

4.1 Application Preprocessing

We preprocess each application in order to extract the DEX file, which represents the
compiled application code. In our approach, the original Java source code is not re-
quired because the DEX format fully describes the application and retains class struc-
ture, function information, etc.

For each application we convert its DEX file into a complete XML representation of
the Dalvik program, including program structure. From this, we extract each basic block
and label it according to which package it came from within the application. We pro-
cess each basic block and only retain the opcodes while discarding most operands. The
exception to this is for opcodes storing constant data, such as the const-string op-
code, which becomes a concatenation of the opcode along with the value it references.

The intuition behind this is that many Java applications contain boiler plate code
that will appear in many applications when only opcodes are considered. Furthermore,
including constants makes the feature hashing (discussed below) more fine-grained and
more restrictive about matching. This is especially important because many applications
use Java reflections to access functionality, with the only difference between programs
being the string arguments passed to the Reflections API.

4.2 Feature Extraction

We use k-grams of opcodes and feature hashing to extract features from applications.
We use the djb2 hash function which is known to have an excellent distribution[9]. As
shown in the Feature Hash box in Figure 1, for each application’s basic block represen-
tation of the original XML file, file), we extract each k-gram using a moving window
of size k, and hash it using djb2. k-grams across basic blocks are ignored. For each
hashed value, we set the corresponding bit in the bitvector of the application, indicating
existence of the k-gram. Along with this information, we efficiently store the package
name from which the basic block originated, the basic block offset within the basic
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block file, and the k-gram offset. This allows us to recover how and why our architec-
ture determined that applications are similar and serves as a way to verify matching
applications.

In order to feature hash, we have two parameters to determine, namely: length of
k-gram k and bitvector size m. In Section 5, we show an experimental evaluation of
several values of k and m in order to determine optimal values of these parameters over
our dataset.

Choosing k. k is a parameter which determines the number of dimensions of the under-
lying feature space for representing the Android applications, and it bounds the number
of features that can be extracted for each application. k is a crucial parameter for de-
tecting similarity. If k is too small (e.g., k = 1), there will be a small number of unique
features from all applications, resulting in an oversimplified, low-dimensional repre-
sentation of the applications. In this representation, overmatching between applications
can occur, and many applications would be falsely classified as being similar applica-
tions would be falsely similar. On the other hand, if k is too large (e.g., bigger than the
size of most basic blocks), even small code changes might result in large changes in
the feature representation, preventing us from obtaining a meaningful and robust com-
parisons between applications. In general, a reasonable k should have a small value, at
which further increase in value would cause insignificant increase in the quality of the
pairwise similarity comparison. As shown in Section 5, we evaluate different k values,
and choose k = 5, at which its marginal impact on similarity accuracy is around 0.01.

Choosing Bitvector Size. The bitvector size m strikes the tradeoff between (similarity)
computation efficiency and approximation error of the bitvector representation of the
k-gram features.

Ideally, we want size m to be large enough so that few collisions would happen
when we feature hash k-grams into bitvectors; practically, we want size m to be small
so that we can efficiently compute pairwise similarity among hundreds of thousands of
applications. The larger the bitvector size m, the more accurately a bitvector represents
an application, but at the cost of more time required to compute the pairwise similarity
among all applications.

As shown in [24], as long as m � N , which is the number of k-grams extracted from
an application, the Jaccard similarity between two bitvectors very closely approximates
computing the set intersection between two k-gram feature sets. That is, as long as m is
large enough, Jaccard similarity is nearly an exact representation in practice. Based on
this principle, we use a data-driven approach in our experiments in Section 5, in order
to determine a bitvector size which is large enough to represent the feature space in
question.

4.3 Analysis of Feature Hashing Results

A variety of data analyses can be performed on the feature representation of the ap-
plications. In this paper, we primarily focus on similarity, containment and clustering
analysis, which help us to filter out vast amounts of uninteresting instances and pare
down a small set of interesting candidates for further analysis.
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Code Containment Comparison. Containment analysis is a useful tool for paring
down application candidates that potentially have copied code, pirating, and malware
contamination. We define the containee A to be the application being examined for
similarity and the container (or carrier 1 ) B to be the application which houses the
packages and associated features that we test for existence inside the containee. We
define a metric that gives the percentage of containment by considering the number of
features common in both applications, divided by the number of bits in the containee

application. Formally, containment is defined as: C(Â|B̂) = |Â∧B̂|
|Â| . Written in this

form, this containment is defined as the percentage of features in application A that
exist within application B.

Clustering. To find inherent patterns among Android applications, we use agglomera-
tive hierarchical clustering[19] on the feature bitvector representation of each applica-
tion in order to group similar applications together. The basic idea is that the collection
of feature bitvectors represents the applications in a high-dimensional space with a well-
defined distance metric, the Jaccard distance. Using this distance metric, we can group
bitvectors that are close-by and, thus, we are able to group similar applications.

Hierarchical clustering produces clusters without having to specify the number of
clusters in advance. The input to the clustering algorithm is a threshold t (e.g., 90%)
and a list of Jaccard similarity values between each pair of applications. The output is
a clustering S for the applications, in which all applications in a cluster are with simi-
larity s greater than or equal to t : s ≥ t. The threshold t is set by the desired precision
tradeoff between the number of applications in the clusters and the “closeness” of ap-
plications within a given cluster. While a smaller t puts more applications into a few
large clusters, a larger t discovers specific variants of application families (e.g., similar
applications developed by the same authors).

Hierarchical clustering begins with one application in its own cluster; then it selects
the closest pair and merges them into a common cluster. The cluster comparing and
merging process continues until there is no pair whose similarity exceeds the input
threshold t.

4.4 Core Functionality and Result Refinement

Clustering can be a way to visualize the application topology in order to qualitatively
understand how well applications are classified among a given cluster. Application sim-
ilarity can be dominated by large similar libraries common to many applications (i.e.
AdMob). In light of this, we develop the notion of core functionality, which seeks to
capture in a coarse-grained manner how included libraries interact with the main appli-
cation component.

Simply put, we examine each application and whether or not the core application
component directly invokes an outside library. If it does then it is a part of the ap-
plication’s functionality; otherwise, that code can be excluded from our analysis. We
refer to the set of libraries excluded as an exclusion list. We point out that this is an

1 In the case of malware, a carrier is a more appropriate term because the innocuous application
is modified in order to execute code outside of the intended functionality.
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over-approximation and aggressively excludes libraries due to Java reflection as well as
dynamically registered event handlers, and other entry points defined by the Android
Manifest.

4.5 Implementation

The workflow of Juxtapp can be roughly broken up into the following stages: applica-
tion preprocessing, feature hashing, clustering and containment analysis. Juxtapp con-
sists of 6,400 lines of C++, 1,600 lines of Java, and 600 lines of scripts.

The first step in the process is converting the Android application file (APK) to a
format which is usable by our architecture. Juxtapp processes the APK and outputs the
file in an XML format with functions split into basic blocks, which is then converted to
a basic block format, which has a label indicating the source package, class and method.

After preprocessing, the applications are feature hashed. Juxtapp processes the basic
block file for each application and outputs a feature vector representing the application
along with recovery information to verify matching portions of applications. That is, in
addition to the features, we also store the package and class name, and the offset within
the original file in order to verify matching potions of applications. Figure 2 shows an
example basic block being feature hashed, along with the recovery information we store
for each feature. For each program under analysis, the features calculated are stored as
a sparse representation of the vector, while a table of each feature’s offset within the
original program along with the package and class from which it originated.

After processing all of the applications’ basic block files, Juxtapp calculates a pair-
wise distance matrix between all applications. This matrix is used for clustering and
determining similarity among applications.

After the applications have been feature hashed, Juxtapp can perform other in-depth
analysis. First, the applications under analysis can be clustered based on their com-
puted distance matrix, which offers a topological view of the dataset, which can help an
analyst narrow down interesting areas to investigate.

Finally, Juxtapp computes containment between sets of applications. Given a set
of feature hashed applications represented, the containment tool determines what fea-
tures are common between applications and outputs the percentage of code in common,
along with the ratio of the comparative sizes of the number of features. The intuition
behind this is that a large application when compared to a small application may inad-
vertently have a large subset of the smaller applications features by virtue of the fact
that a larger application will produce a dense feature vector. This ratio is used to remove
false positives.

Distributed Analysis. We have both a single machine implementation of Juxtapp as
well as a distributed implementation which uses Hadoop on Amazon EC2. We use the
Hadoop MapReduce framework for performing large-scale computations and HDFS
for sharing common data among nodes[8]. We wrote a MapReduce application in order
to perform the APK to Basic-Block conversion portion of the workflow, and we used
Hadoop Streaming to interface with our C++ applications, which were responsible for
feature hashing and containment calculations. Many of the tasks required of Juxtapp are
easily parellizable tasks which greatly improves performance when dealing with large
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datasets. As a result, Juxtapp can feature hash, cluster, and analyze containment in a
distributed manner which offers great performance increases over the single machine
version.

Incremental Update and Increasing Performance. The statelessness property of many
stages in Juxtapp makes it easy to incrementally process the applications, update their
similarity matrix, and analyze them in detail without the need to reprocess all appli-
cations under analysis. When creating or updating the pairwise similarity matrix, only
values greater than 50% similarity are stored, making the matrix sparse among dis-
similar applications. When a set of m new applications are added to the analysis, the
application preprocessing (conversion of APK to XML to Basic Block) and the feature
hashing are inherently incremental, meaning, only the new applications need conver-
sion and feature hashing. As shown in Figure 3, with n existing applications and m
new applications, updating the existing n × n similarity matrix A is straight forward
as follows: 1) compute the m×m similarity matrix B among the new applications, 2)
compute the n × m similarity matrix C between the set of new applications and the
existing ones, and 3) concatenate them together and grow the existing similarity matrix
A at appropriate rows and columns to get the new (n+m)× (n+m) similarity matrix.

5 Evaluation

In this section, we evaluate the efficacy of Juxtapp. We first introduce our evaluation
dataset and describe our experimental setup. Then, we discuss determining experimen-
tal parameters and their impact on our results. Finally, we introduce case studies in
which we use Juxtappto detect instances of vulnerable code reuse, known malware,
and piracy on Android markets.

5.1 Experimental Evaluation Dataset

We evaluate our approach using applications from three different sources. From the
official Android Market we obtained 30,000 free Android applications. Additionally,
we downloaded 28,159 applications from a third-party Chinese market, Anzhi [1], and
the 72 malware in our malware dataset came from the Contagio malware dump and
other sources [2]. Lastly, we use a set of 95,000 Android applications from the official
Android Market to evaluate the performance of Juxtapp 2.

5.2 Experimental Setup and Performance

Local experiments, when tractable, such as containment between a small set of appli-
cations and our dataset, were run on Ubuntu Linux 2.6.38 with Intel Xeon CPU (8
cores) and 8GB of RAM. When larger experiments were required, such as contain-
ment between on-market to off-market applications, and generating pairwise distance
matrix, we conducted them on Amazon EC2. For our Amazon EC2 clusters, we used

2 We obtained a larger dataset of applications in order to show that our technique scales to a
large number of applications beyond our evaluation set of applications
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m2.4xlarge instances, which run on Ubuntu Linux 2.6.38-8-virtual with 8 virtual cores
and 68.4GB of memory.

We varied the number of nodes running from 25 to 100 and used 8 worker threads
per node. Figure 4 shows the time required to complete a full run of the entire pipeline,
which includes APK to basic block format file conversion, feature hashing, and com-
putation of the pairwise similarity when using 95,000 unique Android applications. At
the time of writing, there are around 310,000 Android Applications[12], which demon-
strates that Juxtapp scales well.

As we increase the number of nodes, the amount of time required to do analysis be-
comes gradually dominated by the overhead of parallelization. In addition, the APK to
Basic-Block and feature hashing stages were parallelizable without any synchronized
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state, which contributed to significant performance gains as the number of workers in-
creased. However, the pairwise distance comparison is the current bottleneck on perfor-
mance because it combines the resulting bitvectors from each worker. Figure 4 shows
how the overhead of the pairwise comparison approaches a constant overhead as the
number of nodes are increased.

Incremental Update Performance. Incremental updates of the dataset allow us to con-
tinuously process and update our dataset with new market applications without requir-
ing running the entire Juxtapp workflow on our application repository. Table 1 shows
the time required to add from 100 to 7,000 APKs to the dataset. Distribution time is the
time required to distribute APKs to worker nodes. This time begins to become dominant
as the number of APKs increases. This overhead is caused by not being fully able to
take advantage of Hadoop’s resource allocation, due to our Hadoop Streaming imple-
mentation. Despite this, these numbers show that adding a large number of applications
to the comparison repository daily or even multiple times daily is feasible with Juxtapp.

Table 1. The time to incrementally process varying num-
bers of APKs. Note, distribution time is included to show
how file distribution starts to dominate the processing time.

# Incr. APKs Distribution Time Completion Time
100 0m 36s 5m 11s
500 4m 49s 9m 35s

1000 8m 58s 21m 5s
3000 20m 20s 42m 31s
5000 42m 52s 80m 51s
7000 57m 0s 104m 48s

Table 2. Experiment showing the
impact of varying k on the Jac-
card distance

k Avg. Dist
3 0.939
5 0.969
7 0.980
9 0.984

5.3 Dataset Statistics

To gain a general understanding of our dataset, we analyzed our collection of 30,000
unique applications as a representative sample of the official Android Market. Figure 5
shows the distribution of the sizes of APK files in kilobytes, and Figure 6 shows the
distribution of the number of opcodes per application. Both distributions are skewed
to the right, with APK files having a median size of 724KB and applications having
a median number of opcodes of 20,555. The 75th percentile values for APK file sizes
and number of opcodes are 2,071kb and 56,166, respectively. The total file size of these
APKs is 50.43GB and total number of opcodes in all applications is approximately 1.45
billion.

5.4 Determining Experimental Values

Before feature hashing we must choose values for k-gram size k and bitvector size m.
We use the 30,000 Android applications to determine their values.
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Choosing k for Our Dataset. To choose k, we randomly select pairs of applications
and evaluate their Jaccard distance to determine how much varying k impacts the av-
erage distance between them. Figure 2 shows varying values of k and the resulting
average distance between pairs of randomly sampled 6,000 applications3. We repeat
the experiment on multiple runs, but see little variance across them. The key intuition is
if two applications are chosen at random from our dataset, they are likely to be dissim-
ilar. The table shows that starting from 5, further increasing k has little impact on the
distance calculation. Based on this, we chose a value of k to be 5 and performed feature
hashing and clustering on our sampled applications. Figure 7 shows the cumulative dis-
tribution of opcodes per basic block for all basic blocks with more than two opcodes.
This indicates that the majority of the basic blocks are dominated by a small value of k,
and 5 is an appropriate choice for this dataset.

3 A distance of 1 indicates no similarity where a distance of 0 indicates identical similarity.
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Choosing an Appropriate Bitvector Size. The bitvector size m strikes the trade-off
between efficiency (similarity) computation and approximation error of using bitvectors
to represent the sets of k-gram for each application. Ideally, we want size m to be large
enough such that few collision occur during feature hashing. Practically, we want size m
to be small so that we can efficiently compute similarity between all pairs of hundreds
of thousands of applications.

According to [24], we need m � N , the number of k-grams extracted from an
application, so that the Jaccard similarity between two bitvectors is very close to the
exact representation of computing the intersection between two k-gram feature sets.
In addition, in all of our analysis, we are particularly interested in applications with
high similarity, e.g., application pairs with similarity greater than 50%. We sparsely
store this pairwise matrix and only store values for which the threshold is reached. This
optimization yields good similarity results because those excluded applications are very
unlikely to have a similarity score greater the threshold with other apps.

We use all of the 30,000 applications from the Android Market to determine m. We
compute the number of unique 5-gram features that can be extracted from each applica-
tion, and plot its cumulative distribution from all applications in Figure 9. We find N90

in the distribution, which represents the threshold in which 90% of all applications’ k-
gram features are less than this value. We then set m = 240, 007, a prime that is more
than nine times of N90, satisfying the condition m � N suggested by [24].

We use the following two ways to verify whether m = 240, 007 is large enough.
1) We do feature hashing with m = 240, 007 for all 30,000 applications, and count
the number of bits set in the bitvector for each application. We plot its distribution in
Figure 10. We observe that more than 95% of applications have 1/5 of their bits set
in their bitvectors, and more than 90% of applications have only 1/10 of their bits set.
Hence, we do obtain sparse bitvector representation for the majority of applications. 2)
We also randomly sample a subset of 1000 applications, compute the pairwise similarity
among them using their k-gram feature sets, and compare the similarity values to those
computed using their bitvectors. We find that the average difference between them is
less than 0.01. With these two observations, we conclude that m = 240, 007 is suitable
for our analysis.

Clustering for Application Topology. We use clustering as a way to group similar
applications together. We run hierarchical clustering on the 30,000 Android applications
using a similarity threshold t = 0.9, with and without a core functionality exclusion list
applied, respectively. Figure 8 shows the cluster size sorted in a descending order. We
see that both versions of the clustering worked well, but clusters with exclusion no
longer had application clusters dominated by large libraries.

We observe that there are around 200 clusters, each of which has at least 10 ap-
plications, and in total there are 9344 applications in those clusters. We find that our
clustering identified three unique, commonly occurring patterns. They are:

Same Application Title, Different Versions. One cluster contained several versions
of the same movie player, which were all responsible for displaying elicit pictures of
models. Within the cluster, there were 4 different versions of the same model’s movie
player, heaven8.
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Differing Author and Functionality, Same Tool for Development. In one example,
AppBar is a tool for allowing users to visually create applications for Android without
needing to know about the underlying development platform. The platform allows for
the addition of sounds, images, twitter feeds, and all sorts of additional widgets. We
identified a cluster on the official Android market consisting of 735 applications of this
type, ranging from RSS feeds to audio programs.

Multiple Apps from an Author, Different Underlying Functionality. A common pat-
tern is for a developer to make a framework for creating applications and then reusing
the applications in a variety of contexts. For instance, the company BrightAI produces
a variety of applications related to sports. One such cluster contained 28 different ap-
plications, all by BrightAI, but with different application purposes.

5.5 Case Studies

Previous work on studying Android applications[20] has shown that developers copy
and paste code snippets from popular programming web sites into their own code, with-
out understanding the potential security risks posed by blindly copying code.

Recently, Google announced an In-Application Billing API along with a sample ap-
plication which demonstrates how the purchasing protocol works[10]. Several secu-
rity warnings accompany the document, including statements regarding how developers
should obfuscate their code, protect their purchasable content, and verify purchases on
a remote server. We show how Juxtapp can not only detect applications in the Android
Market that copied this sample code, but we also show how we can detect other known
source code-related vulnerabilities in the market using our architecture.

Reuse of Vulnerable Code. In this section, we examine two cases of vulnerable code
reuse of sample code provided by Google: In-Application Billing and the License Ver-
ification Library. We show that Juxtapp can quickly and efficiently reduce the set of
potentially vulnerable applications and detect vulnerable code reuse in Android Appli-
cations.

In-Application Billing. Google In-Application Billing (IAB) is a library provided for
developers to include so that their customers can sell digital content within their ap-
plication, while letting Google handle authentication and credit card purchases[6]. For
security reasons, Google advises that developers use obfuscation in order to make the
code more difficult to understand for an adversary and they also recommend that devel-
opers perform verification on a remote server.

However, the sample code provided by Google is not obfuscated and performs ver-
ification of a purchase on the device. The left side of Figure 11, Line 231, shows the
potential single point of attack. Meaning, if a developer can rewrite the statement to
negate the condition, or force it to be true in some other way, the application will skip
verification and allow the current user access.

In order to detect a potential attack, we analyzed the containment between the IAB
sample code and the 30,000 applications in our dataset. We set a threshold that at least
70% of the IAB sample code must be in the application before further exploration.
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Running containment between the sample IAB code and the Android Market appli-
cations took 1.5 minutes,and we detected 295 applications containing 70% of the IAB
code. Other researchers used these applications to demonstrate that they could use the
tool they developed for application rewriting to automatically exploit a vulnerability to
get virtual goods for free [16]. Of those that used a significant portion of the sample
code, 174 were vulnerable, while 65 use off-device/JNI verification and 56 were inop-
erable after rewriting. Our results show that Juxtapp is a fast way to quickly analyze
large sets of applications for vulnerabilities caused by code reuse.

License Verification Library. The License Verification Library(LVL) is a library pro-
vided by Google in order to allow developers to query the Android Market at runtime
in order to determine if a user is licensed to use a particular application[7]. Similar to
IAB, Google provides sample code which encourages developers to obscure their code
and ensure that single points of attack are protected. The sample code uses caching
in order to prevent having to contact the Android Market every time the user invokes
the application. However, the right side of Figure 11, Line 133, shows the potential
vulnerability. This line could be rewritten to negate the condition, or to check another
condition, making this a single point of failure, allowing a clever attacker to use the
library without a license.

We executed containment on 30,000 using the Google LVL sample code to guide
the search. For this experiment, we detected 272 potential candidates, 182 of which had
90% of the code, and 90 more, with at least 70% of the sample code. It took about 2
minutes to analyze the dataset. Of the potentially vulnerable candidates, 239 of the 272
applications had the vulnerable pattern in their code. We manually verified the results
in order to be assured that the pattern was in the code. Our analysis took about 10
minutes with script assistance responsible for opening each document which allowing
the analyst to determine if the pattern exists, without the task of manually opening each
file. Of those detected, some had obfuscated class and method names, but Juxtapp was
still able to detect similarity.

222: boolean verify(...) {
231: if (!sig.verify(
232: Base64.decode(signature))){
233: return false;
234: }
235: return true;

130: void checkAccess(...) {
131: // skip asking market if cached license
133: if (mPolicy.allowAccess()) {
135: callback.allow();
136: } else {
137: //verification code

Fig. 11. The code on the top shows the vulnerable code present in the In-Application Billing
Example Code Security.java. On the bottom is the point of vulnerability within the License
Verification Library sample code LicenseChecker.cpp

Android Malware. The Android Market place has recently experienced an influx of
malware. Google has responded by exercising its remote application removal ability,
that is, if Google determines an application is malicious or untrustworthy, it can re-
motely push a command to remove the application from affected devices[5]. In fact,
as of August 2011, users are 2.5 times more likely to encounter malware on their
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Table 3. Number of instances of each kind of malware found in the Anzhi Market dataset. Also
shown are the distinct new carriers discovered in our dataset.

Malware Instances Found Distinct New Carriers Found Malware BB Size
GoldDream 25 13 1,898

DroidKungFu 6 0 5,357
DroidKungFu2 2 0 375

zsone 1 0 280
DroidDream 0 0 2,526

Total 34 13 -

mobile devices than only 6 months ago, and it is estimated that as high as 1 million
users have been exposed to mobile malware[11][14]. We suspect that unregulated, 3rd
party markets will have a higher incidence of malware.

Containment between Anzhi Market and Malware. In order to evaluate whether
third party markets contain known malware, we select a subset of 5 malware from our
dataset, which represents some of the most prolific, well-known malware. They in-
clude: DroidDream, DroidKungFu1/2, zsone and GoldDream. Each malware sample
had a manual exclusion list applied, that is, using widely available malware analysis,
we excluded common code from malware such as advertising libraries and common
utilities which contribute nothing to the uniqueness of the code

Table 3 shows that we were able to detect 34 malware in the off-market dataset. The
experiment took around 10 minutes to complete. Among those that matched we noticed
a very high incidence of code reuse ranging from 93%-100%. The lower percentage
matching shows that the technique is amenable to code mutations and variants. When
investigating those with lower percentages, we noted that variants often changed file
paths, reworked small amounts of code, changed exploit names, etc., and a 100% match
indicated, with high probability, that the two pieces of malware are identical and indeed,
when investigated the samples matched.

When evaluating the samples we also consider the ratio of the malware sample com-
pared to the container application. A low ratio indicates similar orders of magnitude
among the code sample, where a higher ratio indicates that the reported matching is
likely a false positive due to the density of the bitvector representing the larger appli-
cation. Some malware found in the Anzhi market matched our sample malware dataset
with little variation in code between them. However, other matched malware was signif-
icantly different from our evaluation set and we show how we can detect new variants,
with new malware carriers using Juxtapp. Most of the minor changes were related to
class and package names. However, Table 3 shows that we found 13 unique carriers
of the GoldDream malware in our dataset. Meaning, of these we found 13 previously
unknown to us, distinct applications in our evaluation dataset, which were all different
types of games that had been repackaged with the GoldDream malware.

Containment between Android Market and Malware.We evaluated containment be-
tween 63 malware samples to the 30,000 collected from the official Android Market.
The experiment took 19 minutes to execute locally.

Juxtapp did not detect any instances of known malware on the Android Market. This
result is unsurprising given that Google has been vigilant about removing malware once
it is found, banning the associated account, and issuing remote removal[15].
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However, as expected, Juxtapp was able to detect the original application that the
malware sample had been repackaged with in order to trick users into downloading.
That is, a subset of our samples were repackaged with legitimate applications. Table 4
shows the Android applications we were able to detect using the malware sample.

Table 4. Juxtapp is able to detect the original (and versions) of the application which was repack-
aged when compared to our malware dataset. Multiple features indicate multiple versions in our
dataset.

Application File Name Features Name Repackaged with
com.codingcaveman.solotrial.apk 4,272/4,831 Guitar Solo Lite DroidDream.1
it.medieval.blueftp.apk 19,597/18,946 Bluetooth File Transfer DroidDream.2
com.tencent.qq.apk 28,712 Tencent QQ Messaging PJApps
de.schaeuffelhut.android.openvpn.apk 2,009 OpenVPN Settings DroidKungFu

Piracy and Application Repackaging. In addition to vulnerable code and malware on
the Android markets, piracy, especially among games, has become a major problem for
developers. Android applications are often pirated by rogue authors, which remove copy
protection and replace developer revenue mechanisms such as advertising libraries. In
order to examine the third party market Anzhi for piracy, we downloaded and paid
for the two applications mentioned in the Guardian article about android privacy[4]:
1) Chillingo’s The Wars; 2) Neolithic Software’s Sinister Planet. We compared these
applications against the 28,159 applications in the Anzhi market, which took around
19 minutes to execute locally.

We found no instances of the Sinister Planet program being pirated on a third party
market. However, we found 3 pirated versions of Chillingo’s The Wars, being marketed
by the company Joy World, the same company accused of piracy in the article. Each of
the pirated versions has 71% code in common with the original application.

Despite the fact that the legitimate Wars program is unobfuscated, the Joy World
version is obfuscated with methods and classes renamed. Additionally, we found that
the pirate had added advertising libraries to the application which were not present in the
original version. So, even in light of significant obfuscation and additional code added,
we were still able to detect similarity showing that Juxtapp handles perturbations in
code well.

6 Related Work

A technique similar to ours has been independently developed by Zhou et al.[34]. While
they focused on detecting repackaged applications, we applied our technique and show
that it is effective to detect repackaged applications, buggy code reuse and known mal-
ware. In addition, we implemented the technique on a distributed infrastructure using
Amazon MapReduce, which enables us to analyze a much larger application corpus.

For large-scale malware analysis, Jang et al.[24] developed BitShred, a system for
large-scale malware triage and similarity detection based on feature hashing. However,
they focus on the technique as a contribution and classify x86 malware, whereas we ap-
ply similar techniques, with domain specific knowledge in order to find a variety of code
reuse in Android marketplaces. Instead of using boolean features, Gao et al.[22] and
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Hu et al.[23] use features based upon isomorphisms between control flow and function
call graphs of the program. While these work primarily focus on techniques to compare
and index malware, our work is focused on techniques to determine similarity among
Android applications and conduct deep security analysis.

Winnowing, a fuzzing hashing technique that selects a subset of features from a pro-
gram for analysis, has been widely used for code similarity analysis[17] and plagiarism
detection[30]. However, the winnowing algorithm requires calculating set inclusion,
which is expensive when comparing many features.

A variety of approaches for static code clone detection have been proposed in the
programming language literature for refactoring, finding bugs, and better understanding
of the code [21,27,29,25]. All those techniques can be applied into our framework to
further improve the accuracy and robustness our approach.

7 Conclusion

In this paper we presented Juxtapp, a scalable architecture for detecting code reuse
in Android applications. Our architecture is implemented in Hadoop and we ran it on
Amazon EC2. We evaluated the efficacy of Juxtapp in detecting vulnerable code reuse,
known malware, and piracy in a dataset of 58,000 applications from Android market-
places. Our findings show that Juxtapp is a valuable architecture in detecting applica-
tion similarity and code reuse in Android applications.

Acknowledgments. We would like to thank Adrienne Felt and Chris Grier for their
insights with this paper.
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Abstract. With the rising threat of smartphone malware, both academic com-
munity and commercial anti-virus companies proposed many methodologies and
products to defend against smartphone malware. Thus, how to assess the effec-
tiveness of these defense mechanisms against existing and unknown malware
becomes important. We propose ADAM, an automated and extensible system
that can evaluate, via large-scale stress tests, the effectiveness of anti-virus sys-
tems against a variety of malware samples for the Android platform. Specifically,
ADAM can automatically transform an original malware sample to different vari-
ants via repackaging and obfuscation techniques in order to evaluate the robust-
ness of different anti-virus systems against malware mutation. The transformation
and evaluation processes of ADAM are fully automatic, generic, and extensible
for different types of malware, anti-virus systems, and malware transformation
techniques. We demonstrate the efficacy of ADAM using 222 Android malware
samples that we collected in the wild. Using ADAM, we generate different vari-
ants based on our collected malware samples, and evaluate the detection of these
variants against commercial anti-virus systems.

1 Introduction

Malware (e.g., worms, viruses, and trojans) has been a well-known threat in the com-
puting and networking communities. With the proliferation of smartphones, the threat
of smartphone malware becomes more formidable. TGDaily [49] reported that there
was a 33% increase in smartphone malware over 2009. As of October 2011, Ten-
cent Mobile Security Laboratory [48] identified around 13,000 and 6,000 mobile phone
viruses in the Symbian and Android platforms respectively. Given the threat of smart-
phone malware, researchers (e.g., [10,11,13,35,42,44,46,52]) have proposed various
smartphone malware detection systems, and anti-virus software companies also develop
commercial security solutions to detect smartphone malware. However, new pieces of
smartphone malware keep evolving and attacking various distributions of smartphone
platforms [36]. Thus, understanding the smartphone malware battle between the good
and evil sides is critical for the community to improve the state of the art of the smart-
phone malware detection solutions. This motivates us to design a system that can stress
test an anti-virus solution, so that one can systematically evaluate the effectiveness (or
ineffectiveness) of existing smartphone malware detection systems against the emer-
gence of smartphone malware.

U. Flegel, E. Markatos, and W. Robertson (Eds.): DIMVA 2012, LNCS 7591, pp. 82–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Evaluating smartphone malware detection is a non-trivial issue, especially with the
challenge that there are a wide variety of smartphone operating systems available nowa-
days. In this work, we focus on Android, a Linux-based operating system that runs
Java-based applications. Android applications can be directly self-signed and published
by application developers through the official Android Market [6] without being sub-
ject to any official security validations. This unmoderated nature of Android provides
a fertile ground for the development of both benign and malicious applications. As re-
ported by International Data Corporation [30], Android led all smartphone OSes with
38.9% of market share in 2011, and is expected to grow to more than 40% of the market
through 2015. Meanwhile, Android also becomes the most targeted operating system
for smartphone malware [36]. Note that even the Android Market applies stringent secu-
rity checks to its hosted applications, it cannot entirely resolve the malware distribution
among Android phones, since some countries may ban the access to the Android Mar-
ket (see Section 6). Thus, by focusing on the Android platform, our evaluation study
can provide representative insights into the robustness of existing smartphone malware
detection systems.

There are number of studies (e.g., [14,15,37,38]) that focus on evaluating the effec-
tiveness of existing malware detection systems. Such evaluation studies employ differ-
ent obfuscation techniques to transform a malware program into different variants (with
the original malicious behavior preserved), and then check whether a malware detec-
tion system still treats the variants as malware. Note that most of these studies (e.g.,
[14,15,38]) focus on PC-based malware only, and limited studies (e.g., [37]) consider
malware for smartphones. Given the growing popularity of smartphones, there is an ur-
gent need to understand the effectiveness of anti-virus systems on smartphones, as well
as their robustness against new and evolving malware. Furthermore, it remains chal-
lenging to scale up the evaluation to a large number of malware samples, as we need
to ensure the correctness of various obfuscation techniques for each malware sample.
Although we narrow down our focus on Android, the evaluation is still overwhelmed by
numerous Android malware samples in the wild [48] as well as various malware detec-
tion solutions. Thus, the key motivation of this work is to develop an evaluation system
that can automatically apply to general classes of smartphone malware and anti-virus
solutions, and ultimately, support large-scale evaluation.

In this paper, we design and implement ADAM, an automated system for evaluating
the detection of Android malware. ADAM applies different transformation techniques
to generate different variants of each Android malware sample, and evaluates the effec-
tiveness of different smartphone malware detection systems in identifying such malware
variants. ADAM is designed to be automated, generic, and extensible. It automatically
transforms an Android malware sample into different variants through various repack-
aging and obfuscation techniques, while preserving the original malicious behavior.
ADAM then evaluates the detection of these variants against different smartphone mal-
ware detection systems. Such malware transformations and detection evaluations are
generic enough to support heterogeneous malware samples and malware detection sys-
tems, respectively. Lastly, ADAM can be extensible to support new implementations of
malware transformations and detection evaluations.
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As a proof of concept, we demonstrate how ADAM can be used to assess the robust-
ness of existing anti-virus systems in practice. We collected 222 malware samples in the
wild. We use ADAM to generate different variants for each collected malware sample,
and show that ADAM has a very high success rate in the automated generation of vari-
ants. We proceed to pass the variants to different commercial anti-virus engines hosted
on the web portal VirusTotal [51]. We discuss the findings and implications based on
the detection results returned from VirusTotal, but we emphasize that ADAM can also
be integrated with other anti-virus systems.

The rest of the paper proceeds as follows. In Section 2, we provide a brief back-
ground on how to prepare and generate an Android application. In Section 3, we present
the design of ADAM. In Section 4, we present various transformation techniques to gen-
erate different malware variants. In Section 5, we present our evaluation results against
different anti-virus systems. In Section 6, we discuss several open issues. Section 7
surveys related work, and Section 8 concludes the paper.

2 Background

Let us describe the software life cycle of building an Android application from source
code, as well as the reverse engineering process of an Android application. This lays the
foundation of how our ADAM system transforms an Android malware application into
another runnable Android malware variant while preserving the malicious behavior.

2.1 Building an Android Application

An Android application is mainly written in Java source code. The build process of an
Android application is to compile and package a Java source code project into an .apk
file that can run on a smartphone device or emulator. We now summarize the key steps
of the build process [2] as follows.

1. Preparation. An Android project contains Java source code (and possibly some
other native code), as well as metadata such as resources and programming inter-
faces. The build process first converts the metadata information into Java code or
interfaces.

2. Compilation. All Java source code files as well as the converted metadata are com-
piled together into .class files, which contain Java bytecode.

3. Bytecode Conversion. All Android applications run on the Dalvik Virtual Machine
(DVM), which is a runtime environment similar to the Java Virtual Machine (JVM)
but is designed for mobile devices that generally have limited hardware resources.
The build process converts all .class files into .dex files, which contain the
Dalvik Executable bytecode.

4. Building. All resource files, including both non-compiled and compiled files, as
well as the .dex files are then packaged (i.e., zipped) into a single .apk file.

5. Signing. The .apk file needs to be digitally signed before it can be published in
well-known sites (e.g., Google Market). It is typical that the .apk file is signed
with the application developer’s private key, rather than by a centrally trusted au-
thority [4]. As described in Section 1, this type of unmoderated mechanism leads to
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proliferation of Android applications, but at the same time, allows easy penetration
of malware programs.

6. Alignment. To optimize the performance of the Android program (e.g., reducing
memory usage), the .apk file can be aligned along the byte boundaries with the
zipalign tool [5]. Note that some integrated development environment (IDE), such
as Eclipse with the ADT plugin, will automatically zipalign the .apk file after
signing the file with the developer’s private key.

2.2 Process of Reverse Engineering an Android Application

In order to stress test the effectiveness of an anti-virus system, we need to create a
library of malware variants and from existing malware. In most cases, the source code
of malware (or an Android application) is not readily available, but instead, we can
only access its .apk file and its underlying .dex files. To generate various malware
variants, one has to resort to reverse engineering. We review two approaches that can
be used to reverse-engineer an Android application.

1. Decompiling. The goal of the decompiling process is to convert a .dex file (with
the DVM bytecode) into the .java source code files. A typically approach is to
first convert the .dex file to .class files (e.g., using the dex2jar utility [20]),
which are then converted to .java files using Java decompiler (e.g., using the
Java Decompiler utility [33]). It is important to note that, the decompiling process
may generate a source code file that is significantly different from the original one.

2. Disassembling. The disassembling process is to convert a .dex file into .smali
files (e.g., using utility like apktool [9]), which contain assembly-like code for the
Android OS. The process takes the Dalvik opcodes of a .dex file and converts
them into low-level instructions. Typically, the decoded.smali files can be rebuilt
again back to a .dex file.

In this paper, we focus on using the disassembling approach to reverse-engineer an
Android malware sample. Through the disassembling approach, we can systematically
locate specific assembly-like instructions for different malware samples, and apply code
obfuscation to generate malware variants. We elaborate this in Section 4.2.

3 Design Overview of ADAM

In this section, we present an overview on the design of ADAM, an automated system
for evaluating the detection of existing Android-based malware detection systems.

3.1 Design Goals

ADAM aims for the following design goals:

– Security analysis. ADAM checks whether an Android-based malware sample in
.apk format can be detected by an existing anti-virus system. For this analysis, we
do not need the source code of the malware sample.
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– Automated transformation. ADAM automatically transforms a malware sample
into different malware variants, while preserving the original malicious behavior.
No manual modification of a malware sample is required.

– Generic application. ADAM can be applied for general classes of Android-based
malware samples and malware detection systems.

– Extensibility. ADAM provides an interface that can easily integrate new implemen-
tations of transformation techniques and detection methodologies.

3.2 Building Blocks

ADAM is composed of different building blocks. Figure 1 illustrates how different
building blocks are involved in testing malware samples against anti-virus systems. Let
us now describe how each building block works, and argue how the building blocks can
be extended for different variants of implementation.

Transformation

Malware (in .apk format)

Scanning

Analysis

Repackaging

Obfuscation

Online
Scan Engine

Local 
Scan Engine

Results and Recommendations

Fig. 1. Design flow of ADAM

Transformation. Given an input .apk malware file, ADAM transforms it into differ-
ent variants of .apk files based on various transformation techniques, such that each
output .apk file preserves the original malicious behavior of the input .apk files. We
implement two classes of transformation techniques: repackaging and code obfusca-
tion. Details of these techniques are described in Section 4. We emphasize that ADAM
is extensible in the sense that one can plug-in other transformation techniques to gener-
ate different .apk variants.

Scanning. For each malware variant that we create, we pass it to an anti-virus scan
engine. Here, we focus on the scan engines of commercial vendors, while we can also
plug-in other malware detection systems with the correct interface.
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In ADAM, we support two types of scan engines: online and local. An online scan
engine refers to a web service that provides a library of open APIs. Users can upload
an .apk file to the web service and obtain the results via the APIs. Typically, the web
service is free of charge, but rate-limit the number of samples that can be scanned. Also,
the scanning performance varies depending on the current network conditions. In our
implementation, we use the VirusTotal web portal [51], which is connected to various
commercial anti-virus systems at its backend. On the other hand, a local (or desktop)
scan engine uses the command-line interface provided by an anti-virus vendor. It simply
specifies an .apk file as an input command-line argument and obtains the scanned
results. In our implementation, we integrate the Linux desktop version of the anti-virus
engine obtained from Antiy [8]. Our evaluation study covers both online and local scan
engines (see Section 5).

Analysis. ADAM collects the results from the anti-virus scan engines of different com-
mercial vendors. One can determine if a scanned .apk file is a malware sample based
on the decisions of one or multiple anti-virus systems. Aggregating the results of mul-
tiple anti-virus systems can potentially increase the detection rate[40]. The analysis
results can be summarized and presented, so as to provide recommendations for anti-
virus vendors to evaluate the effectiveness of the state of the art of malware detection
for Android.

4 Malware Transformation

In this section, we present techniques that we use to transform a given malware sample
into different variants. The resulting variants will be used by ADAM as inputs to eval-
uate the effectiveness of different malware detection systems. Specifically, we consider
two classes of transformation techniques: repackaging and code obfuscation, both of
which take an .apk file as an input and generate a different .apk file as an output.
Furthermore, we require that the output of an .apk file preserves the same logic and
functionality as the original input .apk file.

It is important to note that by no means do we claim our transformation techniques
are new, as they have also been studied in other evaluation systems for malware de-
tection (e.g., [14,15,37,38]). On the other hand, ensuring the applicability of existing
transformation techniques in general Android applications remains a challenging issue.
In the following, we consider a number of transformation techniques that can be auto-
mated (i.e., without manual intervention) for general .apk files. Hence, one can easily
generate malware variants for a large number of malware samples.

4.1 Repackaging

In ADAM, we consider different repackaging methods that work directly on an input
.apk file and regenerate a different .apk file without modifying the source code of
the input .apk file. Thus, making the transformation easily deployable and preserving
the functionality of the input .apk file. We consider three techniques that are currently
supported by ADAM. One common key feature of all such techniques is that they are
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all built on the official Android or Java development utilities, which we expect are more
robust and stable than other third-party tools.

Alignment. The alignment technique realigns the data of an .apk file, so as to gener-
ate different content but preserving the same logic for an .apk file. We use zipalign[5]
to realign the uncompressed data within an .apk file (e.g., images or raw files) on 4-
byte boundaries so that all portions can be accessed directly via mmap() function. The
zipalign utility is available in the Android SDK, and is originally designed for provid-
ing optimization for .apk files. Since the alignment optimization changes the internal
structure of the .apk file, it accordingly changes some of the signature patterns, such
as the cryptographic hash of the .apk file. If an anti-virus system directly identifies
malware based on the cryptographic hash signature (e.g., MD5), then the alignment
technique can easily evade the detection of anti-virus system.

Our system applies alignment to an .apk file as follows. It is recommended [5]
that all .apk files are aligned on 4-byte boundaries to achieve optimization. Thus, it is
possible that the original input .apk file has already been 4-byte aligned. To ensure that
the .apk file is actually transformed to a different output, our current implementation
applies zipalign with the 8-byte alignment boundaries.

Re-sign. The re-sign technique is to generate a different signature for an .apk file.
Android requires that every .apk file be digitally signed before the .apk file can be
published and run on a smartphone. According to the official documentation [4], it is
allowed and typical that an .apk file is self-signed by its application developer without
involving a trusted central authority. One of our observations (which is not officially
documented) is that an .apk file can be re-signed multiple times with different cer-
tificates and private keys, so that a different signature is generated and attached to the
.apk file. This can evade the detection of anti-virus systems that simply identifies mal-
ware by its original .apk signature.

To (re-)sign an application, we use the Keytool and Jarsigner utilities, both of which
are available in the Java SDK [41]. We first use Keytool to generate a self-signed key
and put the key in a key store. We then use Jarsigner to sign an .apk file using the key
store as the input.

Rebuild. The rebuild technique disassembles an .apk file and rebuilds the assembly
code (without being modified) into another .apk file. We use apktool [9] to disassem-
ble the Dalvik bytecode within an .apk file into Smali code [34] (see Section 2), and
rebuild the Smali code back to Dalvik bytecode using apktool. After the disassemble
process, the original .apk file and the repackaged .apk file are exactly the same, but
repackaged .apk file will have different Dalvik bytecode order from the original one
depend on the parser’s analysis. This makes the resulting Dalvik bytecode (and hence
the .apk file) different from the original one and at the same time, preseves the logic
and functionality of the original .apk file.

We then sign the output.apk file with a randomly generated private key as described
in the re-sign technique. This rebuild technique is effective to evade anti-virus systems
that use cryptographic hash and/or .apk signature for malware identification.
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4.2 Code Obfuscation

In code obfuscation, we modify the program code of an .apk file so as to make an
anti-virus system more difficult to reverse engineer[17]. In particular, code obfuscation
changes the size and content of the .apk file, but without modifying the logical be-
havior. Our code obfuscation techniques operate on Smali code [34], an assembly-like
language based on the Dalvik executable code. The Smali syntax provides the debug
information of how the variables and methods are invoked. This enables us to easily
add obfuscated code to an .apk file.

To apply code obfuscation to an .apk file (of a malware sample), we first disas-
semble it using the apktool utility [9] into a .smali file. We modify the .smali file
according to each obfuscation technique which we will describe shortly. We then re-
build the modified .smali file into an .apk file using apktool and sign the output
.apk file, as in our previously proposed rebuild and re-sign techniques, respectively
(see Section 4.1). One can use zipalign [5] for data alignment so to generate an opti-
mized .apk file.

There are various code obfuscation techniques proposed in the literature, especially
for the Java language (e.g., see [17]) on which Android is based. Note that some code
obfuscation techniques depend on the underlying semantics of a program, and typically
require manual code modification that cannot be easily automated. For example, sub-
stitution of code with different lines of code may need to be carefully carried out so
as to preserve the original malicious behavior [37]. Also, our goal is to show that even
with simple obfuscation techniques, one can generate new malware samples that can
easily evade the detection of anti-virus systems. Thus, we consider several general code
obfuscation techniques that can be automated, while being sufficient to subvert most of
the anti-virus systems.

Inserting Defunct Methods (e.g., [14,15]). We add new methods that perform defunct
functions to Smali code, and these inserted methods do not change the logic of the orig-
inal source code. The rationale of this obfuscation technique is to modify the method
table in the Dalvik bytecode, and hence change the signature that is generated based on
the method table.

There are many ways to add defunct methods. In our implementation, we implement
a Log.d debug method [3] that prints a simple string in Android (obviously, other
defunct methods can be added to ADAM). We first disassemble the method into Smali
format. We then insert the Log.d method before the constructor method of each class
in the disassembled .smali file. To locate a constructor method, we search for the
string “# direct methods” in each .smali file, because the constructor method
must follow this string. Figure 2 shows how we insert a defunct method.

Renaming Methods (e.g., [37]). We obfuscate a method name with a different string,
and hence change the signature that is generated by the method name. In our implemen-
tation, we first identify all the system library method names from Android.jar in
Android SDK, so as to differentiate them from user-defined methods. Then we search
for all user-defined methods (i.e., other than the library methods) in each .smali file,
and append a randomly generated string (e.g., “abc10”) at the end of each user-defined
method that we find. We modify the method name when the method is first defined, as
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...
# direct methods
.method public OFLog(Ljava/lang/String;)V
...
.method public constructor <init>()V
...

Fig. 2. Inserting a defunct method (i.e., OFLog)

well as when it is called within the code. We point out that our system can also rename
other types of identifiers, including packages, variables, and classes, so as to make the
code more obfuscated. For example, Figure 3 shows how we rename a user-defined
method “foo” into “fooabc10”. To summarize, this type of obfuscation can evade
anti-virus system that uses method names to generate virus signatures.

.method public static fooabc10(Ljava/lang/String;)V

...
invoke-static {v1}, Lcom/test;->fooabc10(Ljava/lang/String;)

Fig. 3. Renaming a method from foo to fooabc10

Changing Control Flow Graphs (CFGs). Some anti-virus systems (e.g., Androguard
[1]) can use CFGs to generate signatures and detect the presence of malware. A CFG
signature can be defined based on a grammar table [12]. Here, we modify the CFG of a
.smali file and so as to change its CFG signature.

We consider one particular CFG obfuscation called the Goto-obfuscation. We insert
goto statements to each method in a .smali file. At the beginning of a method, we
insert a goto statement to jump to the end of the method; at the end of the method,
we insert another goto statement to return to the beginning of the method. We in-
sert a return statement before the second goto statement, so that the latter will not
be called again when the method is finished. Figure 4 illustrates how we insert goto
statements into a method foo.

.method public foo(Ljava/lang/String;)V
.prologue
goto :CFGGoto2
:CFGGoto1
...
return-void
:CFGGoto2
goto :CFGGoto1
.end method

Fig. 4. Goto-obfuscation
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Encrypting Constant Strings. We encrypt all constant strings that we find in a .smali
file, and decrypt them when they are being processed. This modifies the signatures that
are generated by these constant strings. Here, we consider a simple symmetric encryp-
tion method based on the Caesar cipher, in which we shift the character byte of each
alphabet letter (i.e., A-Z or a-z) by a constant integer value. For example, we can en-
crypt a string “DecryptString” in a TextView control by subtracting all bytes by
10. The encrypted string will become “:[YhofjIjh d]”. We then add the decryp-
tion method decrypt (i.e., by adding all bytes by 10) before the TextView control is
called. Figure 5 shows how the example works. In summary, this type of obfuscation
can evade anti-virus system that uses constant string to generate virus signature.

#direct methods
.method public static DecryptString\
(Ljava/lang/String;)Ljava/lang/String;
...
const-string v1, ":[YhofjIjh d]"
...
invoke-static { v1},\
Lcom/test;->DecryptString\
(Ljava/lang/String;)Ljava/lang/String;
move-result-object v1
invoke-virtual {v0, v1}, Landroid/\
widget/TextView;->setText\
(Ljava/lang/CharSequence;)V

Fig. 5. Encrypting a constant string

5 Evaluation of Anti-virus Systems

In this section, we use ADAM to evaluate the effectiveness of current commercial anti-
virus systems in the detection of Android smartphone malware, and examine their ro-
bustness of dealing with malware variants as stated in our previous section. We conduct
large-scale analysis using ADAM as follows. We collect a total of 222 Android mal-
ware samples in the wild, and generate different variants for each collected malware
sample based on our transformation techniques (see Section 4). We feed these malware
variants into different commercial anti-virus systems, and test if these variants are diag-
nosed as malware. Our analysis provides us a comprehensive picture of the effectiveness
of current commercial anti-virus systems. Most notably, it enables us to validate the au-
tomated and generic properties of ADAM in experimenting with large-scale malware
samples and anti-virus systems.

5.1 Malware Dataset

We collect a total of 222 distinct Android malware samples (with unique MD5 hashes)
from three different sources, including:
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– Old Public Samples. We download 57 Android malware samples from [18], a
well-known blog website that maintains a collection of mobile malware. The blog
author frequently updates the blog and shares the most recent malware samples
to the public. The 57 samples are the public Android malware samples that are
published from March 2011 to September 2011. Given the well-publicized blog,
current anti-virus systems should have a very high detection rate on these malware
samples.

– New Public Samples. On Oct. 22, 2011, the blog [18] published 96 new Android
samples from an anonymous source. We believe it is interesting to study how fast
the anti-virus systems add the signature of these new malware samples to their
databases.

– Private Samples. On Oct. 20, 2011, we obtained 69 Android malware samples
from Antiy [8], an anti-virus company based in China. These samples are unpub-
lished, so other anti-virus companies may not have enough signatures to detect
these malware samples. Our hypothesis is that existing anti-virus systems will have
a lower detection rate on these samples.

We carefully investigate the malicious logic of each of the 222 malware samples. We
group the malware samples that have the same logic into a family. After our investiga-
tion, we group the 222 malware samples into 38 different families. Furthermore, we can
classify the malware families into four categories, as we briefly describe below.

Repackaging Malware. All malware samples in this category are transformed from
legitimate applications via the disassembling approach (see Section 2.2). Briefly speak-
ing, an attacker adds extra permissions and malicious services to a legitimate applica-
tion, and repackages everything into a new (malicious) application. When a user installs
the repackaged application, the application will perform malicious activities such as col-
lecting the user’s personal information and sending it to a remote server, or sending pay-
ment short messages to some premium SMS numbers. In our malware dataset, we have
138 malware samples from 12 families that fall into this category. For example, there
are 32 samples of a family called Geinimi. All the Geinimi samples are transformed
from different legitimate applications. Each of these malware samples has a common
Java package called Geinimi, which contains a service called Adservice that performs
malicious activities as listed above. This service modifies AndroidManifest.xml
in the .apk file and starts automatically when the system boots up. In this category,
there are also some well-known malware families such as DroidKungFu, BaseBridge,
and Hongtoutou that have been studied in the literature [25].

Display-Modification Malware: This type of malware has a feature that all malware
samples have the same application structure and same malicious behavior, but they have
different icons, names, wallpapers, themes, or pictures. We have 46 malware samples of
two families in our malware dataset that belong to this category. For example, the Kmin
family is a wallpaper changer application, and contains 42 samples in our dataset.

Camouflage Malware. This category of malware has a key feature that they imitate the
same user interface of some original application in order to steal a user’s account creden-
tials. We have a total of 13 samples of six families in our malware database. For exam-
ple, one family is called FakeNetflix, whose package name is “com.netflix.mediaclient”
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and is the same as that of the legitimate application Netflix. This family of malware dis-
plays a login screen to the user so as to steal the user’s password and send it to a remote
server.

Generic Malware. This type of malware is just a plain malicious application without
being camouflaged as any legitimate application. An attacker may simply physically
access a smartphone and install the malware there. We have 25 malware samples of 18
families in our malware dataset under this category. For example, one family is called
NickiSpy, whose package name is called “com.nicky.lyyws.xmall”. It can steal users’
credentials and wiretap users’ phone calls in the background. It can also record any
phone conversation and store it under the directory named “shangzhou/callrecord” in
the SD card.

5.2 Anti-virus Systems

We conduct our evaluation against the commercial anti-virus products hosted on the
web portal VirusTotal [51] (see Section 3.2) in October and November 2011. Note that
VirusTotal hosts over 40 anti-virus products, and our study only focuses on the top 10
products that give the highest detection rates for our 222 original malware samples (i.e.,
without transformations) in November 2011.

In addition, in February 2012, we also evaluate a commercial anti-virus product that
we obtained from Antiy [8], and the product is known to run the same engine as that
being deployed in smartphone platforms.

We note that some anti-virus systems, such as Androguard [1], can detect malware
based on control-flow-graph signatures (see Section 4.2). However, our evaluation does
not consider Androguard, whose latest version is released in September 2011 at the time
of this paper being written, while our malware samples are collected since October
2011. We think that it is unfair to evaluate Androguard using the malware samples
collected after its latest release.

5.3 Analysis

For the 222 malware samples we collected, we apply our transformation techniques
stated in Section 4, including three repackaging techniques and four code transforma-
tion techniques, to each malware sample. All samples can be successfully transformed
by the Re-sign technique. However, two of the samples can be transformed by the Align-
ment technique, but cannot be transformed by the Rebuild and the four code transforma-
tion techniques because of the re-compilation errors. Also, 10 of the samples cannot be
transformed by all techniques except Resign, mainly because they just contain .dex
files that cannot be rebuilt into .apk files. Therefore, we can only generate a total
of 1484 variants. Nevertheless, our transformation techniques have a success rate of
95.5%, showing the robustness of ADAM.

5.4 Results

We evaluate all malware samples and their transformation variants against different
anti-virus systems.
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Table 1. Detection rates for various anti-virus systems: Time: November 2011

AV Products Original Alignment Re-sign Rebuild

Kaspersky 95.95% 94.34% 94.59% 94.76%
F-Secure 95.50% 95.75% 95.05% 91.90%
Emsisoft 94.59% 93.87% 93.69% 75.24%
Ikarus 94.59% 94.34% 93.69% 75.24%
GData 94.14% 93.87% 93.69% 90.95%
TrendMicro 94.14% 91.98% 92.79% 77.62%
NOD32 92.79% 88.68% 88.29% 95.24%
Sophos 92.79% 94.81% 94.14% 78.10%
Antiy-AVL 92.34% 91.98% 89.19% 72.38%
Fortinet 90.99% 89.15% 88.74% 71.43%

Overall Average 93.78% 92.88% 92.39% 82.29%

(a) Detection of original malware samples and their variants generated by repackaging.

AV Products Insert Rename Change CFG Str. Encrypt

Kaspersky 93.81% 73.33% 94.76% 90.95%
F-Secure 90.00% 90.00% 90.48% 68.57%
Emsisoft 83.81% 26.67% 82.86% 25.24%
Ikarus 83.81% 26.67% 83.33% 25.24%
GData 90.95% 90.48% 91.43% 88.10%
TrendMicro 61.90% 61.90% 63.81% 35.71%
NOD32 95.24% 91.90% 95.24% 90.48%
Sophos 54.29% 54.29% 54.76% 49.05%
Antiy-AVL 70.00% 19.05% 67.14% 19.52%
Fortinet 48.57% 15.71% 42.86% 16.67%

Overall Average 77.24% 55.00% 76.67% 50.95%

(b) Detection of malware variants generated by code obfuscation.

(1) Analysis of All Transformation Techniques. Table 1 shows the experimental re-
sults of the detection rates of each of the top 10 anti-virus systems that we choose, while
the evaluation was conducted on November 21, 2011. We discuss our findings below.

• Original malware samples. We first test the original malware samples that we col-
lected (without applying any transformation). The top 10 anti-virus systems we consider
performed well in the original sample detection, they all have over 90% of detection
rates. The average detection rate is 93.78%. This indicates that anti-virus companies
have already begun to value the security of Android systems, and responded quickly
to the emergence of new Android malware. In the following, we analyze the detection
rates due to different transformation techniques when compared to the detection of the
original malware samples.
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• Alignment. As mentioned in Section 4, alignment via zipalign only changes the cryp-
tographic hash signature of an .apk file. After alignment, there are only slight drops
of the detection rates for all anti-virus systems (by at most 4%).

• Re-sign. We re-sign the .apk file of each malware with a random key. We observe
that the detection rates of all the 10 anti-virus systems that we consider are not much
different from the results for the original samples and the alignment transformation.
We believe the reason is that most anti-virus products apply the unzipping process to
deal with the .apk files before scanning. The re-signed .apk file will be no different
from the original .apk file after the unzipping process because the signature process
is based on the whole .apk file, and does not change the content of an .apk file.
Note that after being re-signed, each .apk file has a different cryptographic hash. This
may reduce the detection rate if an anti-virus system relies on cryptographic hashes as
signatures, similar to the observations in the alignment transformation.

• Rebuild. After the rebuild process, the average detection rate of the 10 anti-virus
products drops from 93.78% (in the original sample detection) to 82.29%. To under-
stand this phenomenon, we used Dedexer [50] and UltraCompare [31] to analyze the
original samples and the rebuilt variants. Dedexer is a disassembler tool for .dex files.
Unlike apktool, the Dedexer tool can be used as a .dex parser to generate a detailed
log file on the internal structure of a .dex file. UltraCompare is a comparison utility
that can handle binary file comparison, text comparison and folder comparison.

After rebuilding a .dex file, the result shows that the .dex file has changed. We
use UltraCompare to compare the detailed log files of these .dex files. We find out
that the checksum, the signature, some offsets, and some size values have changed. In
addition, although the strings or method names do not change, their index orders are
different from the original .dex file. These changes imply that just using fragments of
a .dex binary file as the malware signature may not be effective, and it may reduce the
detection rate.

• Insert defunct methods. After the insert defunct methods transformation, the average
detection rate of the 10 anti-virus systems has decreased from 93.78% down to 77.24%.
Then we use UltraCompare to compare the detailed log files of the original samples and
malware variants. The most distinctive difference between the rebuilt variant and the
insert-defunct-methods variant is the method table. In the method table, the total number
of methods has changed and the size of the method table becomes bigger because we
insert additional defunct method implementations. Therefore, if an anti-virus system
uses the hash value of all of the method names as the signature, then adding defunct
methods will make the detection ineffective. For example, we insert defunct methods
process to one of our malware samples called snake. Then we compare the variant
with its original sample. We find that the total number of methods increases from 239
to 259, and the file size is only increased by 4%. Again, these changes are due to the
insertions of defunct code.

• Renaming methods. After the renaming methods transformation, the average detec-
tion rate has decreased from 93.78% down to 55.00%. In particular, the detection rates
of some anti-virus products drop significantly, for example, from 92.34% to 19.05% for
Antiy-AVL. In addition to the changes in the rebuild process, the method table has also
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Table 2. Detection rates for various anti-virus systems using original malware samples and their
variants generated by the repackaging techniques: October 2011

AV Products Original Alignment Re-sign Rebuild

F-Secure 93.24% 95.28% 94.59% 89.05%
Kaspersky 93.24% 90.09% 89.64% 62.38%
Emsisoft 90.99% 90.09% 87.84% 61.90%
Ikarus 90.99% 90.09% 87.84% 61.43%
GData 88.74% 92.45% 91.44% 86.67%
Sophos 88.74% 86.32% 86.49% 68.10%
Antiy-AVL 86.04% 75.00% 73.42% 54.76%
TrendMicro 85.59% 75.94% 74.32% 53.81%
Fortinet 79.28% 68.87% 68.47% 43.33%
NOD32 77.93% 55.66% 52.25% 35.24%
Overall Average 87.48% 81.98% 80.63% 61.67%

changed significantly. Also, the implementation of methods has also changed because
the methods now invoke different method names. This indicates that if anti-virus sys-
tems use method names to generate signatures, then they may fail in the detection. We
observe that the renaming method transformation is more effective in evading malware
detection compared to inserting defunct methods.

• Changing control flow graphs. We used the Goto obfuscation technique so that every
method implementation has been added with 4 lines of Goto statement while other
changes are the same as the rebuild process. We find out that the result is similar to that
of the insert-defunct-methods transformation. The average detection rate has decreased
from 93.78% down to 76.67%.

• String encryption. After this transformation process, the string table and method ta-
ble will change because of the string encryption and the insertion of decryption meth-
ods. The average detection rate of all anti-virus systems has decreased from 93.78%
to 50.95%. This indicates that a lot of anti-virus systems that we consider use constant
strings as the signature to detect the presence of malware.

(2) Evolution of Malware Detection. We used ADAM to carry out the first stress test
on all anti-virus systems in October 2011 right after we collected all malware samples.
Here, we only focus on the detection of original malware samples and their variants
generated by the repackaging techniques. Table 2 shows the detection rates of the top
10 anti-virus systems that we consider in Table 1. Compared with the detection rates on
Table 1, which we carried out the experiment in November 2011, we see that most of
the anti-virus systems improve in the malware detection, in particular, on the original
malware samples. This shows that anti-virus systems are rigorously updating their sig-
nature databases. However, there are still a number of anti-virus systems which are not
robust against simple malware transformations based on repackaging.

In February 2012, we obtained from Antiy [8] an anti-virus engine that runs atop a
desktop PC with the Linux operating system and is known to have the same detection
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Table 3. Detection rates of the Antiy’s anti-virus product in February 2012

Original Alignment Re-sign Rebuild
94.59% 96.69% 94.59% 95.23%

Insert Rename Change CFG Str. Encrypt
94.28% 93.80% 98.57% 94.28%

logic as that being deployed in smartphone platforms. We conduct evaluation against
it in February 2012 using the same set of variants. Table 3 shows the results. We ob-
serve that the detection rates for the original malware samples and all their variants can
achieve over 90%. This shows that commercial anti-virus products evolve to become
more robust against malware transformations.

6 Discussion

In this section, we describe several open issues that we have not addressed in this work,
and suggest the future directions.

Signature Coverage. While we show that our transformation techniques can make a
malware application evade the detection of a number of commercial anti-virus systems,
it is non-trivial to accurately infer the underlying signatures being used by such systems.
Also, although we confirm that some companies use the same anti-virus engine for both
desktop and mobile versions (see Section 5.2), we cannot verify if all anti-virus systems
that we tested on VirusTotal apply the same detection logic as in their mobile versions,
as the latter can be better. One future work is to apply ADAM to evaluate both desktop
and mobile versions of an anti-virus product and compare their detection performance.

Distribution Model. We point out that it is generally difficult to distribute malicious
applications through the official Android Market because of strict application checking.
However, we believe that hackers can upload any malware to the third-party markets,
given that the Android Market may be banned by some countries such as China [53].
Thus, users may have to use third-party markets to access mobile applications. In addi-
tion, “rooted” smartphones can install any applications and bypass any strict checking
imposed by the Android OS, thereby making the spread of malware more feasible. It is
interesting to further study the impact of the distribution model of mobile applications
on the spread of malware.

Defense Solutions. We propose several solutions that can defend against obfuscation
and repackaging techniques we discussed. First, one can use a .dex parser to extract
signatures from a .dex file to counter common obfuscation methods, because the logic
and functionality of the .dex file does not change. Second, a good optimizer can handle
the insertion of defunct methods and changing control flow graph methods, because all
redundant code can be eliminated after the code optimization method. Third, using
fuzzy hashing [29] to detect unknown malware appears to be a promising approach, but
how to find the optimized parameters to control the anchor points remains a challenging
research problem.
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7 Related Work

Smartphone malware (e.g., viruses, worms, and trojans) presents a critical security
threat to smartphones. A piece of malware can reside in smartphones, perform ma-
licious activities, and compromise the trusts of smartphones. As the first smartphone
worm Cabir appeared in 2004 [47], the research community has been alerted about the
severity of smartphone malware [19,26,32]. While smartphone malware first appeared
in Symbian OS, Schmidt et al. [45] implemented the first malware for Android. Since
then, there has been a rapid spread of malware in different mobile platforms including
Android and iOS (see the survey of [25]). Recently, Schlegel et al. [43] demonstrated
an Android malware called Soundcomber that can steal voice data with only limited
permission privileges.

Existing commercial anti-virus solutions identify smartphone malware mainly based
on static signature-based detection, which aims to identify any malicious patterns of
the source code of an application without executing it. However, smartphones typically
have scarce computational and bandwidth resources, and so it is ineffective to have
smartphones deploy anti-virus solutions and update the latest signatures in a timely
manner. SmartSiren [13] is a proxy-based, collaborative detection system that collects
the activities from various smartphones in order to detect the existence of malware.
Bose et al. [10] propose a machine-learning-based framework that detects the presence
of smartphone malware by looking into malicious behavior signatures, and show that
behavioral detection gives higher detection accuracy and is more resilient to code trans-
formation than conventional signature-based detection. Schmidt et al. [44] consider a
similar collaborative system as in [13] and use behavioral detection, with the emphasis
on Android systems. Paranoid Android [42] uses remote servers to examine the repli-
cas of Android phones and identify security threats. Crowdroid [11] is a behavioral
detection malware system for Android, and collects the system-call traces of various
real Android users to identify malware. In summary, the above approaches mainly use
a network-based system that remotely runs the malware detection.

There are host-based malware detection systems that directly run on smartphones.
Xie et al. [52] propose access-control defense to limit the accesses of malware to crit-
ical system resources. VirusMeter[35] identifies malware that causes excessive battery
power consumption on mobile devices. Andromaly[46] is an Android-based malware
detection system that applies machine learning to identify anomalous behavior.

A number of researchers (e.g., [27,39]) motivate the needs and challenges of test-
ing security software, and AMTSO [7] is one major organization that propose different
standards for testing anti-virus systems. There have been research studies that focus
on testing the resilience of existing malware detection systems. Christodorescu and
Jha [14,15] show that simple code obfuscation techniques suffice to evade the detec-
tion of commercial anti-virus systems, which are mainly built on static signature-based
detection. Moser et al. [38] show that obfuscation techniques based on opaque con-
stants can evade static detection systems that consider instruction semantics (e.g., [16]).
Note that these studies mainly consider malware on PCs but not on mobile devices.
Morales et al. [37] evaluate the resilience of commercial anti-virus systems for the
Windows Mobile OS, and consider it only with two virus samples and four commercial
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anti-virus systems. Our work, on the other hand, targets the Android OS and covers
significantly larger sets of virus samples and commercial anti-virus systems.

There are studies that investigate the security issues in Android smartphones, such as
privacy leakage and permission usage. Enck et al. [23] analyze the security of existing
Android applications, by decompiling and recovering the Java source code of Android
applications in Google’s Android Market. Taintdroid [22] uses dynamic taint tracking
to identify any privacy leakage in Android applications (a similar privacy leakage de-
tection system PiOS [21] is designed for Apple iOS). AppFence [28] extends Taintdroid
by controlling how private data can enter or leave an Android application. Stowaway
[24] uses static analysis to identify the permission usage of the API calls in Android
applications. Our work mainly focus on generating malware threats and examine the
effectiveness of malware detection in Android smartphones.

8 Conclusions

We present ADAM, an automated, generic, and extensible platform that evaluates the
detection of Android malware detection systems. ADAM applies different transforma-
tion techniques, including repackaging and code obfuscation, to an Android malware
sample to generate different variants. Then it applies these variants to stress test the
robustness of a wide range of anti-virus systems. ADAM is designed to be automatic,
generic, and extensible for assessing the state of the art of Android malware detection.
We conduct large-scale studies based on 222 Android malware samples against various
commercial anti-virus systems, so as to demonstrate how ADAM provides recommen-
dations to improve current detection mechanisms. Our ADAM prototype is available
for download at: http://ansrlab.cse.cuhk.edu.hk/software/adam.
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Grégoire Jacob1,3,4, Paolo Milani Comparetti2,4, Matthias Neugschwandtner2,
Christopher Kruegel1,4, and Giovanni Vigna1,4

1 University of California, Santa Barbara
2 Vienna University of Technology
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Abstract. The steadily increasing number of malware variants is a sig-
nificant problem, clogging the input queues of automated analysis tools.
The generation of malware variants is made easy by automatic packers
and polymorphic engines, which produce by encryption and compression
a multitude of distinct versions. A great deal of time and resources could
be saved by prioritizing samples to analyze, either, to avoid the repeated
analyses of variants and focus on innovative malware, or, on the con-
trary, to re-analyze variants and have better insights on their evolution.
Unfortunately, indexing in malware analysis tools and repositories relies
on executable digests (hashes) that strongly differ for each variant.

In this paper, we present a robust filter to quickly determine when a
malware program is similar to a previously-seen sample. Compared to
previous work, our similarity measure does not require the costly task
of preliminary unpacking, but instead, operates directly on packed code.
Our approach exploits the fact that current packers use compression and
weak encryption schemes that do not break, in the packed versions, all
the similarities existing between the original versions of two programs. In
addition, we introduce a packer detection technique that is able to dis-
tinguish between different levels of protection, such as unpacked, com-
pressed, encrypted, and multi-layer encrypted code. This allows us to
optimize the sensitivity of the similarity measure accordingly. We eval-
uated our approach on a large malware repository containing 795,000
samples. Our results show that the similarity measure is highly effective
in filtering out malware variants, even after re-packing, and can reduce
the number of samples that need to be analyzed by a factor of 3 to 5.

1 Introduction

Malware authors release an ever-increasing number of malware samples. Over-
whelmed by the quantity (up to several thousands per day), malware analysts
cannot rely on manual analysis to examine the characteristics and behavior of
new malware samples. As a result, analysts use automated dynamic analysis
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tools such as Anubis [1], CWSandbox [2], Norman Sandbox [3], or ThreatEx-
pert [4]. These tools monitor the execution of malware samples in a controlled
environment and provide a detailed report of their activity (e.g., interactions
with processes, files, the registry, or the network). The drawback of the dynamic
approach mainly lies in the execution time, especially considering that the in-
strumented environments used to confine malware are usually slower than “real”
execution environments. A minimal execution time is hard to determine, but,
usually, it takes several minutes before a malware sample performs enough sus-
picious operations to allow for a correct characterization of its behavior, plus the
time necessary to revert the instrumented environment in a clean state.

Throwing more hardware at the problem offers only temporary relief, consider-
ing the growing number of variants produced by malware authors. Moreover, this
approach is wasteful, as a majority of the released malware samples are simple
variations of existing ones. It would be preferable to manage analysis priorities
and spend the available resources, either on previously unseen malware, or, on
similar variants to obtain insights on their evolution, such as finding new control
servers for bots [19]. To this end, a technique is needed to quickly determine
whether a submitted sample is similar to one that was analyzed before.

Different static approaches have been explored to address the problem of mal-
ware similarity. In [10], the authors introduce a distance-based approach that
uses the edit distance between instruction sequences, whereas the approaches
described in [13] and [26] rely on the cosine vector distance over n-gram distribu-
tions of instructions. Other approaches replace the one-to-one distance function
with more complex classification algorithms [18,21,25]. In [7] and [11], the au-
thors introduce a graph-based approach, which compares graph representations
extracted from the disassembled code. Some of these systems are computation-
ally expensive. More importantly, all these previous approaches require that the
malicious code is unpacked and disassembled first. Unfortunately, existing generic
unpackers rely on a dynamic instrumentation of executables [12,17,22], and thus
also suffer from performance limitations due to the code execution.

In this paper, we present an efficient, static technique that can identify sam-
ples that are similar to those previously analyzed, without the need to execute
them. That is, our similarity measure is directly computed over packed and
encrypted samples. This is possible because existing packers and their compres-
sion/encryption algorithms retain some of the properties present in the original
code. Thus, two packed executables, produced by a certain packer, are likely to
remain similar (in certain ways) if they were originally similar. The work clos-
est to our proposed filter is peHash [27], a system that also attempts to detect
duplicate malware samples without executing them. To this end, peHash lever-
ages the structural information extracted from malware samples, such as the
number, size, permission settings, and Kolmogorov complexity of the sections
in a PE executable.While this approach makes peHash efficient, its reliance on
ephemeral features is not robust, and it can be trivially confused. Our similarity
measure, on the other hand, is based on properties directly derived from the
code (content) of the malware program, and hence, is more tamper resistant.
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To summarize, our contributions are the following:

– We introduce an efficient and robust similarity measure for malware samples.
The measure operates directly on the packed code section(s) of the program.

– We present a packer detection method that can also identify the type of al-
gorithm: compression, encryption, multi-layer encryption. The detected type
is used to automatically configure the sensitivity of the similarity measure.

– We discuss prefiltering methods to select samples candidate for comparison.
Prefiltering relies on efficient heuristics to quickly discard irrelevant samples.

– We have evaluated our techniques over a large malware repository (795,000
samples). Our experiments demonstrate that our similarity measure is effec-
tive in filtering out packed variants obtained from the an original malware.
The system reduces the number of samples to analyze by a factor of 3 to 5.

2 Similarity and Packing

Techniques to compute the static code similarity between malware samples face
the same problems as static malware detection techniques: the packers and muta-
tion engines that are widely used by malware writers to evade signature detection
also blur the similarity between malware variants. According to [17], the percent-
age of malware that is packed has grown steadily, up to more than 80% of the
samples currently found in the wild. Packers were first used to reduce the size of
executables by compression. To hinder reverse engineering further, encryption
was soon combined to compression. Encryption makes unpacking more difficult
and, from the point of view of the malware authors, it increases the number of
variants that can be generated by simply changing the encryption key. Recently,
protections based on virtualization were introduced, where the original program
is translated into virtual instructions that are then executed by an embedded
virtual machine. In this work, we did not try to address virtualization-based
packers, such as Themida or VMProtect, because they have complete control
over the mapping between real and virtual instructions. In these conditions,
code similarities at the binary level are hard to preserve.

In general, compression and encryption severely hinder any similarity com-
putation on executables because the content of code sections is modified, both
in terms of byte sequences and statistical properties. To better understand the
ways in which current packers modify the body of an executable, we manually
examined (reverse engineered) a number of popular tools frequently used by
malware authors. A first, important observation is the limited number of algo-
rithms that are at the core of current packers. For compression, dictionary-based
approaches are the most widely used (mostly LZ77 ), sometimes combined with
entropy and range encoders. For encryption, reversible arithmetic operations
(such as add/sub, rol/ror, xor with 8-bits or 32-bits keys) are the most com-
monly used techniques. The use of stronger cryptographic algorithms (such as
RC4, DES, or AES ) is rare because these algorithms are much slower and need
to be reimplemented to avoid using easily-detected cryptographic APIs.
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Table 1. Impact of the different packing algorithms on the binary content

Dictionary Principle Most-frequent bytes (or blocks) are replaced by relative references
Compression to previous occurrences.
e.g. LZ77 Alignment Byte alignment is preserved by uncompressed blocks and references.
is used in Sequences Order of incompressible blocks is preserved. Relative references
LZO(PolyEnE), are interleaved in between; their inter-space is bound by the size
NRV (UPX). of the reference window.

Distribution Distribution is flattened because frequent blocks are replaced
by references that tend to introduce infrequent byte values.

Entropy Principle Most-frequent bytes (or blocks) are encoded by symbols
Encoding (bit strings) of smaller size.
e.g. Huffman Alignment Byte alignment is destroyed by the shortened symbols.
is combined Sequences Byte blocks are replaced by shorter symbols but their sequence
with LZ77 for is preserved.
deflate(gzip). Distribution Distribution is destroyed due to lost alignment, but can be

reconstructed over the encoded symbols.

Range Principle Most-frequent bytes (or blocks) are replaced by a single integer
Encoding range representation.
e.g. Encoding Alignment Byte alignment is destroyed by the shortened integer ranges.
is combined Sequences Sequences are shortened, but order remains.
with LZ77 for Distribution Distribution is destroyed due to lost alignment, but can be
LZMA(NsPack). reconstructed over the encoded ranges.

Arithmetic Principle Blocks of bytes are independently encrypted using reversible
Encryption arithmetic operations.
e.g. PolyEnE Alignment Byte alignment is preserved by the key and blocks.
uses 32-bit xor, Sequences Sequences are preserved, except that blocks are replaced by their
add/sub, rot/rol encrypted values.
for encryption. Distribution n-gram distribution is permuted, where n is the size of the

encryption block.

Key/Operation Principle A different encryption key/operation is used for each new block.
Variation Alignment Byte alignment is preserved by the key and blocks.
e.g. Sequences If variation is cyclic, repeated blocks at the same relative position
Yoda’s Cryptor in the cycle have the same encrypted value, otherwise, sequences
uses a cycle of are lost by the variable encryption.
xor, add/sub, Distribution If variation is cyclic, the effect is identical to encryption of larger
rot/rol. blocks (encryption block length is equal to the cycle length).

Multi-layer Principle The entire input is encrypted multiple times.
Encryption Alignment Byte alignment is preserved by the key and the byte blocks.
e.g. tElock uses Sequences If layers are aligned with same size of encryption blocks, effect is
multiple layers equivalent to a single encryption, otherwise, overlaps are
of 8-bit xor equivalent to key variations.
encryptions. Distribution If layers are aligned with same size of encryption blocks, effect is

equivalent to a single encryption, otherwise, overlaps are
equivalent to key variations.

Table 1 presents the key algorithms used by packers, as well as their impact on
the data contained in the sections of the program: ‘alignment” indicates whether
a byte-aligned data block remains aligned after packing, “sequences” discusses
the effects of packing on the order of bytes (or regions) in the original program,
“distribution” characterizes how the distribution of bytes (or n-grams) in the
original binary is altered by the packing process. By combining compression and
encryption, packers tend to destroy all similarity between an original executable
and its packed version. However, looking closer at Table 1, we observe that some
information is preserved both by compression and weak encryption algorithms.

Compression Algorithms. Dictionary-based packers preserve certain incom-
pressible parts of the original program, while they compact other parts by re-
placing entire sub-sequences with references (relative offsets) to previously-seen,
uncompressed occurrences of the same sub-sequence. If two executables are sim-
ilar before packing, their incompressible parts will be mostly similar. As for the
compressed parts, one can expect that most of the relative offsets point to simi-
lar positions. Dictionary-based algorithms align both uncompressed regions and
offsets on byte boundaries. Entropy encoders operate by replacing frequent bytes
(or blocks) with shorter symbols. The lengths of these symbols are typically not
a multiple of a byte, and hence, the byte alignment is destroyed. This also sig-
nificantly alters the byte distribution. However, when considering the encoded
symbols, their distribution is identical to the byte (block) distribution of the
data before encoding. Similar considerations hold for range encoders.
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Fig. 1. Architecture of our similarity filter

Encryption Algorithms. The reversible arithmetic operations used by a ma-
jority of crypters only achieve a simple substitution of the byte blocks in the
original code. Arithmetic encryption results in a permutation of the distribution
of the original n-grams but the alignment of bytes is not affected. Most of these
crypters do not implement any chaining to strengthen their algorithm. Based on
the packers we have studied, only a few crypters were actually offering position-
dependent encryptions: these crypters apply a short cyclical variation of the key
or the arithmetic operation but no chaining.

The important conclusion that can be drawn from the previous observations is
that packers preserve certain properties of the original code. Compressors tend
to alter the byte alignment. However, when considering the compressed sym-
bols, some sequences are incompressible by dictionary-based compression and
references to compressed sequences are deterministically determined. Compres-
sors thus preserve similarity because originally similar programs result in similar
compressed data, and, consequently, similar symbol distributions. Crypters do
not alter the byte alignment. However, they create a permutation of the distri-
bution of bytes (blocks) in the original program, where the permutation depends
on the encryption key. In the next section, we will discuss how we can leverage
these insights to perform similarity computations directly on packed code.

3 A Similarity Measure for Packed Executables

The filter that we introduce in this paper is designed to detect malware programs
that are similar to previously-seen samples. Leveraging this filter, we can prior-
itize submissions to dynamic analysis systems according to the samples novelty.

To compute the similarity between two (malware) programs, we compute the
distance between their code signals. A code signal is a bigram distribution over
the raw bytes of the code section, but extracted in a way to compensate for
the modifications (noise) introduced by packers (Section 2). An overview of the
system is presented in Fig. 1. We keep a database of previously-analyzed malware
programs that stores, for each sample, its code signal. Whenever a new sample
arrives, its code signal is extracted. We then compute the distance of this signal
with respect to those stored within the database (Section 3.1). If this distance is
below a certain threshold, a similar sample already exists in the database, and no
further analysis is performed. If the distance is above the threshold, the sample
is submitted for further analysis and the database is updated accordingly.
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To increase the speed and precision of the system, two additional steps are
introduced. First, we use a packer detector that automatically configures the
distance sensitivity, based on the type of packing used (Section 3.2). Second, the
distances are not computed for all samples in the database. Instead, a prefilter
selects likely candidates to reduce the number of comparisons (Section 3.3).

3.1 Extracting and Comparing Code Signals

We employ code signals to characterize the executable section of a binary, and
to determine the distance of binaries, from one to another. A code signal is a
distribution of byte bigrams (pairs of subsequent bytes), extracted in a particular
way from a program’s code segment. One reason for operating directly on the
raw bytes of the malware code is speed. Neither disassembly nor any other
interpretation of the bytes is required. A second reason is that the similarity
measure must be packer-agnostic, meaning that the measure should work directly
on the packed code, which cannot be disassembled. To handle packed code, we
introduce two specific transformations during the code signal extraction.

Extracting Code Signals. As discussed in Section 2, when similar programs
are compressed or encrypted by current packers, the resulting binaries share
certain similarities that “shine through” the packing process. We exploit these
similarities using two transformations to respectively address the previously-
identified problems of alignment destruction and distribution permutation.

1) Bit-shifting window: To recover from the destruction of the byte alignment,
a bit-shifting window is used to extract bigrams, instead of the traditional byte-
shifting window. The process is shown in Fig. 2. Using a byte-shift, any local
difference between two similar streams of compressed data is likely to result in a
disalignment because compressed symbols have sizes that are not byte-aligned.
The importance of the bit-shift thus lies in its capacity to resynchronize two
similar compressed streams with the correct alignment.

2) Sorted distribution: Once all bigrams are extracted from a malware’s code sec-
tion, we compute the bigram frequencies. Their distribution is then normalized
by dividing these frequencies by the total number of bigrams in order to obtain
a probability distribution. To address the possible, additional encryption of the
code by simple arithmetic operations, the distribution is sorted by decreasing or-
der of probability values. As mentioned in Section 2, for simple block encryption
algorithms (without chaining), the n-gram distribution of the encrypted code is
simply a permutation of the original distribution; in these cases, sorting the bi-
gram distribution can perfectly recover the similarity between samples that was
obscured by encryption. This technique was originally introduced in anomaly
detection to detect similar attack payloads, possibly encrypted [15].

In our case, only a partial recovery of the distribution is possible because of
the bit-shifting window used to extract bigrams: the bit-shifting is required to
handle compression (and the alignment issues compression introduces). However,
looking at the extracted bigram distributions, we find that only a small fraction
of bigrams are frequent enough to contribute significantly to the code distribution
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Fig. 2. Bigram extraction by bit shifting window

Let us consider a 4-byte value X = X1X2. X is encrypted by a function E as follows:
X′ = E(X,K) with K = K1K2 and X′ = X′

1X
′
2.

E is xor: Relation between encrypted values and inputs:
X′

1 = X1 ⊕ K1 and X′
2 = X2 ⊕ K2

No diffusion between bits of of X1 and bits of X2.
E is addition: Relation between encrypted values and inputs:

X′
1 = X1 + K1 + carry and carry,X′

2 = X2 + K2

If carry = 0, no diffusion between upper bits of X1 and lower bits of X2.
If carry = 1, only the rightmost bits of X1 are impacted by the encryption of X2.

E is rotation: Rotation diffuses overflowing bits from one side to the opposite side.
Still, particular keys do not properly achieve diffusion:
If K = α16 and α is even then: X′

1 = X1 and X′
2 = X2

If K = α16 and α is odd then: X′
1 = X2 and X′

2 = X1

Fig. 3. Diffusion between upper and lower bytes for arithmetic encryption operations

(these are predominant bigrams). The remaining bigrams have a very small
probability compared to these frequent (predominant) bigrams, and they are
in the long tail of the distribution. As expected, the predominant bigrams are
those bigrams that are aligned on instruction boundaries or on the boundaries
of compressed/encrypted symbols. The bigrams with small frequencies typically
correspond to bigrams that overlap adjacent instructions or symbols.

In our experiments, we found that only about 7% of the bigrams are frequent
enough to contribute to the code distribution. If we restrict our view of the bigram
distributions to these predominant bigrams, the sorting process is still efficient in
recovering the significant part of the distribution. In cases where the size of the en-
cryption blocks is equal to or smaller than the size of the bigrams, the predominant
bigrams are simply permuted. If blocks are of a larger size than bigrams, the qual-
ity of the recovery for these predominant bigrams depends on the extent to which
the encryption operation on a large block can be approximated as separate (inde-
pendent) encryption operations on sub-blocks. When this approximation holds,
the original probability of a bigram is divided between a limited number of en-
crypted bigrams, depending on the relative position of the bigram to the key. For
example, the original probability of a bigram X , after encryption by xor with a
32-bit key K = K1K2, will be always divided between X ⊕K1 and X ⊕K2. The
approximation in separate encryptions actually depends on the diffusion achieved
by encryption between the bits of different sub-blocks. Fig. 3 discusses different
conditions under which certain arithmetic operations do not achieve diffusion.

This technique is designed to address the simple encryption algorithms used by
current packers. On the other hand, it does not the address standard encryption
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algorithms, such as AES or RSA, used in contexts where the security of the data
is critical and stronger cryptography is required.

Comparing Code Signals. The comparison between code signals is performed
using Pearson’s χ2 test:

χ2 =

216−1∑

i=0

(oi − ri)
2

ri
where ri > 0 (1)

where oi are elements of the distribution extracted from the submitted sample,
and ri are elements of the reference distribution from the candidate samples.
The cases where ri = 0 were ignored since, as previously seen, they correspond
to negligible bigrams that are not contributing significantly to the distribution.

We did consider a number of other similarity measures (such as the cosine
vector distance), but we found that the χ2 test yielded the best results in terms
of precision and performance. Moreover, we investigated weighting mechanisms,
such as the inverse document frequency. Unfortunately, such mechanisms do
not improve the results since compression and encryption make any a priori
hypothesis about the statistical frequency of bigrams unreliable.

The χ2 measure is computed between the distributions of the submitted sam-
ple and the first candidate. If the test value remains below a given threshold
τ , the two samples are considered similar. Otherwise, the test is repeated with
the next candidate. Whenever a similarity is found with one of the candidate
samples, the comparison process is stopped, and the reference to the existing
sample is returned. If no similarity is found, the comparison process is continued
until the set of candidate samples is exhausted.

The actual value for the threshold τ is selected based on two factors. First, the
threshold provides a mechanism to adjust the sensitivity of the filter, and hence,
to control the trade-off between false negatives and false positives. In our use
case, a false negative (failing to recognize that a similar sample is already in the
database) is much less problematic than a false positive (incorrectly concluding
that a similar sample is already in the database). This is because, in case of a
false negative, a duplicate sample is analyzed, which results in a small waste
of resources. In case of a false positive, a new, and possibly interesting sample,
is incorrectly discarded. The second factor is the output of the packer detector
(discussed in the next section). We use a set of different thresholds that are
optimized according to the packing level of the tested program.

3.2 Packer Detection

As explained in Section 2, packers modify the byte distribution of the code. In
particular, packing often leads to a “flatter” distribution. In case of compression,
frequent values are replaced by references or short symbols. In case of encryption,
the same, frequent byte value might be mapped to different, encrypted values.
Flatter distributions can lead to false positives, because the similarity values
returned by the χ2 test decrease (compared to unpacked samples). The similarity
threshold should thus be reduced accordingly when checking packed executables.
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T1: Uncertainty test. Code entropy.
T2: Uniformity test. χ2 test between the code and an equiprobable distribution.
T3: Run test. Longest sequence of identical bytes in the code.
T4: 1st-order dependency test. Autocorrelation coefficient of the code at lag 1.

Type Test series Detection criterion

Packers T1 : H ≥ t1 packed if T1 = true

Compressors T2 : U < t2 compressed if packed ∧
T3 : lgth(run) ≤ t3 no more than one of T2,T3,T4 = true
T4 : |ACC| < t4a

Crypters T2 : U < t2 encrypted if packed ∧
T3 : lgth(run) ≤ t3 two or more of T2,T3,T4 = true
T4 : |ACC| < t4a

Multi-layer crypters T4 : |ACC| < t4b multi-layer if encrypted ∧ T4 = true

Fig. 4. Statistical tests for packer detection

To detect packed executables, we leverage the fact that a flattened distribu-
tion makes packed code similar to random data. Thus, the statistical properties
used to assess random generators can be used to detect packed executables, and
classify their type of protection: compression, single and multi-layer encryption.

Packer Detection and Classification. To detect packers and to identify the
type of protection, we introduce four statistical tests in Fig. 4. These tests are
performed over the raw bytes in the actual code section or the packed code
section (depending on whether the sample is packed).

The entropy-based test T1 is the traditional test used to detect packed ex-
ecutables. A high entropy value constitutes a significant sign of randomness.
Thus, whenever T1 yields a code entropy value above an experimentally deter-
mined threshold, the sample is considered packed. For all packed samples, we
use three additional tests T2, T3, and T4 to determine more precisely the type
of packing. These tests were originally designed for assessing random number
generators [23]. Here, we apply them in a novel context.

The uniformity-based test T2 and the run-based test T3 are primarily em-
ployed to distinguish between compressed and encrypted code. When an en-
cryption algorithm uses input blocks that span multiple bytes, one particular
(byte) value in the original code is likely mapped to several different, encrypted
values in the packed code, depending on the relative positions of the bytes in the
encrypted block. Thus, the distribution of encrypted code is closer to a uniform
distribution than compressed code (a larger specter of observed bigrams with a
levelled frequency), a property checked by T2. Moreover, some compression algo-
rithms (especially dictionary-based approaches) can produce sequences (runs) of
identical bytes, something that is unlikely for crypters. As a result, the presence
of longer runs of identical bytes is an indication of compression.

Finally, executable code is known to have a first-order dependency [21]. This
dependency between consecutive bytes is partially destroyed by compression and
encryption. In the case of multi-layer crypters, the boundaries between different
layers introduce additional discontinuities. These discontinuities are detected by
testing the autocorrelation coefficient (ACC) of the code T4. Fig. 4 explains how
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Fig. 5. Finding the plain/packed code section

our four tests are combined to identify the level of packing. Thresholds t1, t2,
t3, t4a, t4b are experimentally determined in the evaluation section.

Locating Packed Code. The four statistical tests have to be performed on
the “normal” text (code) segment for unprotected executables or on the section
that holds the packed code. Since packers modify the sections of executables, the
risk is to perform the test over the section that contains the loader. Fig. 5 shows
our heuristic to find the section that contains the packed data. Notice that the
identified section is later used to extract the code signal.

3.3 Fast Prefilter

Computing the similarity of a new malware sample with respect to those al-
ready stored in the database is potentially costly when the number of samples
increases. To reduce the necessary similarity computations, but also to reduce
potential false positives due to random collisions between code signals, we apply
a prefilter to select only a subset of candidate samples for further consideration.
This prefilter step uses fast heuristics to discard non-similar samples based on
straightforward observations. More precisely, the prefilter uses two sequential
heuristics: a first heuristic based on the size of samples, and a second heuristic
based on the structural information contained within the programs’ PE headers.

Size-Based Filtering. An immediate criterion of similarity between PE exe-
cutables is their size. When malware writers produce variants of their original
code, these variants tend to be of similar size. Of course, the size of samples
derived from the same original source code might change because of compilation
parameters, small modifications to the code, and, most importantly, because of
packing. Taking into account these factors, we compute, for a new sample, a
range with limits that are a fixed percentage above and below this sample’s size.
The prefilter then selects candidate samples whose size falls within this range.
If no candidate is found, the sample is considered new.

PE-Characteristic-Based Filtering. Further criteria of similarity between
executables are their structural characteristics. In the PE format, the header
contains important information about the executable’s layout, both on disk and
in memory, and meta-information about the compilation process. However, only
a subset of these features is useful for prefiltering: we only consider features
that provide sufficient differentiation between executables while being robust to
packing (that is, features that are not modified by packers). The 16 features we
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selected are presented later in Table 5. The prefilter computes the Hamming
distance between the PE features of a new (incoming) sample and the features
of all candidates that were selected by the first heuristic. When the distance
is larger than a threshold, the corresponding database sample is discarded. All
remaining samples become candidates for the similarity measure computation.

4 Evaluation

The filter presented in previous sections was implemented and used to process
samples submitted to an automated, dynamic malware analysis system. The
evaluation was carried out in two steps. For the first step, we used our filter on
known samples for which ground truth was available (Section 4.1). The goal of
this first step was to establish the similarity thresholds and configure the packer
detector as well as the prefiltrer. For the second step, we applied the filter to
a large collection of malware samples that were provided to us by the authors
of Anubis [1] (Section 4.2). The goal of this second step was to verify that the
precision is maintained in real-world conditions, when the filter is exposed to a
large number of diverse malware samples and packers. We also took advantage
of this second step to study the scalability and the robustness of our approach.

4.1 Experiments on Known Samples

We started our experiments with two data sets. The first set, S1, contained
384 PE executables, mostly taken from the system directory of a Windows XP
installation. It also contained open-source software, such as OpenOffice, and free
shareware, such as mIRC. All programs in S1 were unpacked and served as
examples of dissimilar (unrelated) binaries.

The second set, S2, contained 65 bots, whose source code was made available
to us. These bots belong to two malware families: SdBot (23 samples) and rBot
(42 samples). The SdBot samples were further classified as versions 4 and 5,
while the rBot samples span five versions ranging from 3 to 7. Since the samples
in S2 are related to various degrees, we could leverage this data set as labeled
ground truth to study the precision of our similarity measure. Any other malware
family with a version history could have been used for this configuration.

Packer Detection. To assess our packer detection technique, we selected seven
packers, based on their popularity with malware writers: UPX, FSG, NsPack,
WinUPack, Yoda’s Cryptor, PolyEnE and tElock. We also added instances of the
Allaple worm as a representative example for polymorphic malware; its engine
uses techniques similar to packing. Table 2 provides an overview of these pack-
ers, covering the compression and encryption algorithms they implement: four
compressors, two crypters, and two multi-layer crypters. Looking at prevalences,
these eight packers cover 86% of the packed samples from the Anubis data set.

We first packed each of the 384 executables from S1 with the 7 packers, and
then added 120 Allaple samples. This set of packed executables was used to verify
the rate of False Negatives (FN) of the technique. The unpacked versions of these
executables were then included to the data set in order to verify the rate of False
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Table 2. Specifications of the tested packers

Table 3. Detection/classification of packers

Name Unpacked Packed Compr. Crypt. MLCrypt.

Unpacked 99.74% 00.26% 00.26% 00.00% 00.00%

FSG 18.18% 81.82% 81.55% 00.00% 00.27%
UPX 03.04% 96.94% 96.10% 00.56% 00.28%
NsPack 12.11% 87.89% 87.63% 00.26% 00.00%
WinUPack 13.84% 86.16% 83.55% 02.09% 00.52%
Compressors 11.80% 88.20% 87.21% 00.72% 00.27%

YodaCryptor 17.99% 82.01% 06.08% 74.87% 01.06%
PolyEne 06.01% 93.99% 28.98% 62.14% 02.87%
Crypters 12.00% 88.00% 17.53% 68.51% 01.96%

tElock 04.84% 95.16% 00.57% 70.94% 23.65%
Allaple 00.00% 100.0% 00.00% 72.22% 27.78%
Multi-layers 02.42% 97.58% 00.28% 71.58% 25.72%

Packed 08.74% 91.26% N/A N/A N/A

Positives (FP). Training over a small subset of this data set, we obtained the
following thresholds that optimize the trade-off between FN and FP: t1 = 4.73,
t2 = 0.0012, t3 = 2, t4a = 0.005, t4b = 0.002 c.f. Fig. 4, Section 3.2.

The detection results for the remaining samples (test set) are presented as a
confusion matrix in Table 3. One can see that the detector is able to distinguish
very well between unpacked and packed executables: the detection rate for un-
packed samples is 99.74%, while it is over 91% on average for packed programs.
Furthermore, our statistical tests were able to correctly distinguish, in more than
80% of the cases, between compressors and crypters. The lowest classification
rate was achieved for multi-layer crypters. The reason is that encrypting the
same executable multiple times does not necessarily result in stronger encryp-
tion. In particular, several layers of xor encryption are basically equivalent to a
single layer. It is important to observe though that a misclassification only leads
to the use of a suboptimal threshold, but it does not prevent the system from
computing correct similarity results.

When putting our detection results into the context of related work, our
technique provides fine-grained distinctions between different types of packing
without making use of packer-specific signatures or features. Systems such as [16]
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relying on pure entropy, or [20] relying on structural properties of the executable,
only distinguish between packed and regular code. More advanced systems such
as [8] or [24] can precisely classify packers by name using randomness profiles.
However, these systems need to be trained for each individual packer that should
be recognized, something that our system, providing a coarser-grained distinc-
tion, does not require because it relies on information theoretic metrics that
extend to any other packer that uses similar algorithms.

Tuning the Filter Granularity. The goal of the next experiment is to select
suitable filter thresholds. For this, we turned our attention to S2, the set of 65
classified bot samples. More precisely, to build our configuration set, these 65
bots, together with all benign 384 programs from S1, were packed with all seven
packers and submitted to the filter.

TH = nb similar samples flagged as similar
+ nb unique samples flagged as unique

nb submitted samples

FH = nb dissimilar samples flagged as similar
nb submitted samples

M = nb similar samples flagged as dissimilar
nb submitted samples

Granularity levels:
(f)− two samples are similar if

they belong to the same family

(v)− two samples are similar if

they belong to the same family

and have the same version

To measure the filter precision, we use the following metrics: (i) the rate of True
Hits, TH , which correspond to the cases where the filter successfully discards
similar samples, or forwards new, unique samples to the analysis tool; (ii) the
rate of False Hits (or false positives), FH , which correspond to the cases where
new samples are discarded even though they are novel (these errors are critical,
because they may result in a loss of interesting information); (iii) the rate of
Misses (or false negatives), M , which correspond to cases where samples are
forwarded to further analysis even though they should have been discarded (these
errors are less severe, because they only result in unnecessary analyses).

In Table 4, we present the results of our experiments for two different sets of
thresholds. The first set of thresholds corresponds to what we refer to as family
granularity. That is, the thresholds are set with the aim of recognizing as similar
two samples when they belong to the same malware family. That is, a sample
that belongs to rBot version 5.0 should be considered similar to an rBot version
6.0. The thresholds were found by an optimization process that maximizes the
rate of true hits while maintaining the rate of false hits under 0.5%. The rate
of false hits is the most critical factor because it eventually corresponds to the
potential loss of information we tolerate by not running a unique sample.

With family granularity, we observe 95.2% of true hits on average, with only
4.5% misses and, more importantly, only 0.3% of false hits. The rate of true hits
indicates to which extent similarity is preserved by packers, even after the minor
modifications brought to the code of the different versions. Unsurprisingly, the
best results are observed for compressors, because their packing process is de-
terministic. On the other hand, the filter does not achieve 100% detection in the
case of crypters because the size of the encryption key is typically 32-bits, which
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Table 4. Precision of the similarity measure for various packers

Family granularity thresholds Version granularity thresholds
Packer Thrsh. TH(f) FH(f) M(f) TH(v) FH(v) M(v) Thrsh. TH(v) FH(v) M(v)

None 0.0020 99.8% 00.2% 00.0% 94.2% 05.8% 00.0% 0.0012 98.0% 00.2% 01.8%
FSG 0.0018 99.6% 00.4% 00.0% 91.5% 08.5% 00.0% 0.0008 94.2% 00.4% 05.4%
UPX 0.0018 91.8% 00.2% 08.0% 89.9% 02.1% 08.0% 0.0008 91.1% 00.4% 08.5%
NsPack 0.0018 99.4% 00.2% 00.4% 93.6% 06.0% 00.4% 0.0008 94.7% 00.2% 05.1%
WinUPack 0.0018 99.2% 00.4% 00.4% 93.6% 06.0% 00.4% 0.0008 94.7% 00.2% 05.1%
YodaCryptor 0.0015 89.3% 00.0% 10.7% 90.4% 00.2% 09.4% 0.0006 90.2% 00.0% 09.8%
PolyEne 0.0015 90.0% 00.4% 09.6% 90.6% 01.2% 08.2% 0.0006 89.8% 00.4% 09.8%
tElock 0.0013 96.1% 00.6% 03.3% 95.1% 02.9% 02.0% 0.0004 91.8% 00.2% 08.0%
Allaple 0.0013 92.2% 00.0% 07.8% 82.2% 10.0% 07.8% 0.0004 76.6% 00.0% 23.4%

Average - 95.2% 00.3% 04.5% 91.3% 04.7% 04.0% - 91.3% 00.2% 08.5%

Table 5. PE Header characteristics selected for comparison

Location Name H card Name H card
DOS Header AddressNewExeHeader 1.87 13
NT Header Characteristics 0.67 7
Optional (min/maj)LinkerVersion 0.68 6 CodeBase 0.93 6
Header ImageBase 0.44 5 (min/maj)OSVersion 0.43 4

(min/maj)ImageVersion 0.46 4 (min/maj)SubsystemVersion 0.45 4
Subsystem 0.22 2 DllCharacteristics 0.75 7
SizeStackReserve 0.31 4 SizeStackCommit 0.44 5

is twice the bigram size. In this case, as we have seen, the similarity preserva-
tion depends on some bias of the encryption algorithm. The worst results are
obtained for Yoda’s Cryptor, because this crypter uses a cycle of different en-
cryption operations and keys per block. The cycling operations make encryption
position-dependent, thus explaining the higher rate of misses.

Depending on the desired level of granularity, it might be preferable to analyze
different versions of the same malware family. In this case, the family granularity
thresholds are too loose. This can be seen by looking at the false hit rates for
malware versions, denoted as FH(v), which reaches 4.7% when using family
granularity thresholds. To differentiate between different malware versions, we
created a second set of tighter thresholds (referred to as version granularity).
It can be seen that, using these thresholds, FH(v) drops to 0.2%. However,
we also have to accept that the rate of misses increases. Notice that misses
remain tolerable because they only imply re-running an existing sample, without
potential loss of interesting information.

We also examined the precision of our system when analyzing the polymor-
phic worm Allaple, which was a major issue in 2007-2008, polluting malware
repositories with thousands of mutated variants. The experiments have been
run over two versions, namely Allaple.b and Allaple.e. The results are also given
in Table 4. The worm variants are accurately detected in more than 92% of the
cases, with a good distinction between versions.

Configuring the Prefilter. The size range that constitutes the first heuristic of
the prefilter was configured so that the variants of a given program fall within this
range, while it remains tight enough so that the number of irrelevant candidates
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remain minimal. Considering the packed versions of the bot variants from S2,
the maximum size variation that we observed was 4.4%, which corresponds to a
lower bound of 95.6% and a higher bound of 104.4% of the original size.

To find the best structural features to constitute the second heuristic of the
prefilter, we again examined the original and packed versions of the samples
from S1. For all PE header fields, we verified that they were resilient to packing,
and that they were distinguishing enough (sufficient number of different values,
card, and high entropy, H). Table 5 provides the list of 16 selected features that
are compared by Hamming distance with a threshold of 0.

4.2 Large Scale Experiments

The experiments with known samples allowed us to analyze the accuracy of our
filter, tune detection thresholds, and configure the prefilter. In the next step,
we performed a large-scale experiment with 794,665 malware samples that were
submitted to the Anubis analysis tool in 2009. For each of these samples, we had
at our disposal behavioral information (execution traces) and a reference clus-
tering [6]. This clustering partitioned the malware programs into 91,522 different
groups sharing similar runtime activity.

Precision and Scalability. We applied our filter to the entire data set of
almost 795 thousand malware samples. To evaluate the filter precision, we use
the aforementioned metrics: True Hits (TH), False Hits (FH), and Misses (M).

A problem for this experiment was the fact that we did not have ground truth
available (such as source code or reliable malware labels). To address this, we
introduced a reference classification based on the behavioral and structural infor-
mation of executables. More precisely, we leveraged the behavioral clusters [6]:
we considered two samples as similar when they produced similar behaviors,
and hence, ended up in the same behavioral cluster. The behavior similarity was
computed using the Jaccard distance between their execution traces. Unfortu-
nately, the execution of malware programs is not deterministic and can change
depending on the environment, time, or the availability of network resources
(such as C&C servers). As a result, similar samples might end up in different
behavioral clusters. Thus, to improve the reference clustering, we also considered
structural characteristics of the malware programs. More precisely, we checked
whether the executable sections of two programs share the same name, size, po-
sition in memory, and hash of the sections’ contents. We considered two samples
as similar when at least 90% of their structural information is identical and they
share more than 70% of their behavior.

Precision. Table 6 shows the filter precision for three sets of thresholds. The first
two correspond to the thresholds for family and version granularities, respec-
tively, while the third is an extra set with more conservative thresholds. These
three sets represent different trade-offs between reducing unnecessary analysis
runs (TH) and the risk of discarding potentially interesting samples (FH).

For the first thresholds, the filter achieves a true hit rate of more than 90%.
That is, more than 90% of similar (irrelevant) samples are correctly discarded.
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Table 6. Filter accuracy for selected thresholds

(U-Unpacked, C-Compressed, E-Encrypted, MLE-Multi-Layer Enc.)

Similarity Thresholds Family accuracy Version accuracy Misses Reduction
U C E MLE TH(f) FH(f) TH(u) FH(u) M Factor
0.0020 0.0018 0.0015 0.00130 91.1% 00.7% 89.8% 02.0% 09.2% 4.84
0.0012 0.0008 0.0006 0.00040 84.6% 00.5% 83.8% 01.3% 14.9% 3.79
0.0005 0.0003 0.0002 0.00008 74.4% 00.3% 74.0% 00.7% 25.3% 2.71

Fig. 6. Database growth Fig. 7. Time/Submission

Fig. 8. Prefilter reduction

This leads to a reduction of the amount of overall analysis runs by a factor of
almost five – saving a significant amount of valuable resources. This is paid for by
a false hit rate of 0.7%. When the thresholds are more conservative, the number
of incorrectly discarded samples (FH) is reduced to 0.3%. This, however, also
lowers the hit rate, and thus, the reduction factor that can be achieved.

We then analyzed the False Hits produced by our filter in more detail. We
found that incorrect similarities can be explained either by the failure of the
heuristic to find the section containing the packed code (∼10% of FH), or, in most
cases, by the misclassification of samples that, although they belong to different
families, are part of the same class of malware (∼90% of FH). The heuristic failed
mainly on very small executables where the packed code was negligible compared
to the loader code. The misclassification mainly happened for fake anti-virus
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software and IRC bots, probably because they share substantial portions of
code. For this analysis, we used the malware labels produced by more than 40
AV scanners (run by VirusTotal [5]). We declared a false hit every time less than
5 scanners would agree on the family name.

With respect to misses, we found that most cases were caused by similar
samples that exhibit similar dynamic behavior but were protected by different
packers. For a given executable, the filter tends to create a new database entry
for each different packer (type) used to protect this binary.

Scalability. To understand the scalability of our approach, we first examined
the growth of the sample database. According to Figure 6, the database size
increases sub-linearly with the number of submissions. Figure 7 shows a linear
increase of the computation time with the number of entries. The computation
time for similar samples is lower because, as soon as a similar entry is found, the
computation stops. In the worst case, for unique samples, the filter takes no more
than 300ms. This is 1,200 times faster than the 6 minutes required to execute a
sample within Anubis. Considering the observed slowdown in the increase of the
database size, the system should scale at least to tens of millions of samples.

The prefilter plays an important role in these performances. In Figure 8, it
can be seen that the two heuristics reduce the candidate set to less than 1% of
the database samples. Moreover, the figure shows that the prefilter maintains its
effectiveness independently of the size of the database.

Robustness of the Filter. In the next step, we compare our approach to exist-
ing techniques that aim to detect similarities between malware binaries without
analyzing their runtime behavior. To this end, we reimplemented peHash [27].
This tool operates mostly on structural characteristics of malware samples, and
hence, does not require unpacking or disassembling the code beforehand. To un-
derstand how much the precision of our filter suffers because it has to operate
on packed code (bytes) instead of disassembled instructions, we implemented a
second version of our filter, where the bigram distribution (code signal) is not
computed over the raw (and possibly packed) bytes, but over bigrams of disas-
sembled instructions. This technique is similar to Vilo [26]. Finally, to compare
with an alternative approach to detect malware similarity, we used an existing
tool that operates on control flow graphs [14].

In the following, we refer to the four systems under examination as: Filter for
our tool, peHash, Disasm for the disassembled version of Filter, and Graph. To
experiment with these systems, we selected a subset of 18,645 samples from our
real-world data set, where the corresponding unpacked binaries were available,
as a byproduct of their execution in a dynamic analysis environment.

Attacker model. Here, we assume an attacker who develops a packer that oper-
ates directly on executables. That is, the packer is given a binary, and it has to
output variants that cannot be recognized as similar. This is realistic because
malware authors typically distribute their malware programs as binaries, using
third-party packers to produce new variants on the fly.
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Table 7. Compared robustness
to structural modifications

Modifications peHash Filter
Section permissions 7.8% 99.8%
Size of sections 42.5% 98.4%
Random data 37.8% 80.8%
Appended sections 0.0% 84.6%

Table 8. Compared precision and runtime

Systems TH FH M Time
No prerequisite on the code
Distance-based(Filter) 80.8% 00.7% 18.5% 6 min
Hash-based(peHash) 81.1% 00.6% 18.3% 9 min
Unpacked and disassembled code (∗ without unpacking)
Distance-based(Disasm) 84.3% 00.5% 15.2% 239 min∗

Graph-based(Graph) 83.4% 00.4% 16.2% 847 min∗

Table 9. Compared robustness summary

Modifications Disasm Graph peHash Filter
Modifying section permissions ✓ ✓ ✕ ✓

Changing section sizes ✓ ✓ ✕ ✓

Injecting data in sections ✓ ✓ ✕ *
Appending new sections ✓ ✓ ✕ *
Compression ✕ ✕ ✓ ✓

Arithmetic encryption ✕ ✕ ✓ ✓

Chained encryption ✕ ✕ ✕ ✕

Strong encryption ✕ ✕ ✕ ✕

The need to operate on binaries imposes certain constraints; in particular, the
memory layout of the executable must be preserved. Otherwise, addresses in the
code or data sections would not resolve properly, and the program would crash.
To work around this problem, the attacker would have to perfectly disassemble
any input binary, which is extremely difficult in practice. Given this limitation,
the attacker can perform structure-based operations leaving the original code
untouched (1−4), and content-based operations that modify the code (5):

(1) Modifying access permissions of sections.
(2) Changing the size of sections on disk only.
(3) Injecting random data within the padding spaces.
(4) Appending sections at the end of the memory image.
(5) Compressing and/or encrypting code/data sections.

Structure-based robustness. To examine the techniques robustness to structure-
based modifications, we developed an obfuscation tool that can apply all four
structural modifications defined within our attacker model. Using this tool, we
generated four kinds of variants for the 18,645 samples in our test set, and
submitted them to peHash and our Filter. We did not test Disasm and Graph
against the obfuscated binaries since these tools ignore structural information.

Table 7 presents the percentages of similar variants correctly identified for
each type of modification. Overall, our approach is significantly more robust
than peHash. This is not surprising since peHash focuses on structural informa-
tion, which is easy to tamper with. Our Filter, on the other hand, relies on the
statistical properties of the code, which are harder to change.

Table 7 also shows that our system considered as different a number of sam-
ples that should have been recognized as similar. The first, and main, reason was
that the sizes of the binaries were changed by the obfuscator so that they ex-
ceeded the size range of the prefilter. To handle this issue, we can increase the size
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range that the prefilter accepts, at the expense of a small performance penalty.
The second reason, far less frequent, was that our heuristic to identify the packed
code section (see Figure 5) was misled.

Content-based robustness. All packers apply some form of content-based obfus-
cation, by compression or some simple form of encryption. Since Disasm and
Graph work only on unpacked samples, such simple transformations would al-
ready be sufficient to render them useless. However, in this section, we explore
the precision of these systems when operating on unpacked binaries, compared
to our Filter and peHash that operate on the corresponding packed versions.

For this experiment, we submitted the packed and unpacked versions of our
18,645 samples to all four systems. Table 8 compares the results, both in terms
of precision and runtime. PeHash performs quite similarly to our approach, but
at the significant expense of structural robustness, as was discussed previously.
Disasm and Graph, which operate on unpacked executables, do not achieve a
significantly better accuracy; in fact, the overall differences are minimal. This is
encouraging because it shows that our Filter, working on packed code, produces
almost the same results as tools that require unpacking and disassembling the
malicious code. Moreover, the runtime of these tools is an order of magnitude
larger, even when the unpacking time is not included.

These satisfying results are mainly explained by the fact that packers still rely
on weak encryption algorithms. These results may no longer hold if packers start
using stronger encryption algorithms such as AES or RSA, or, at least, design
more clever algorithms such as in the case of blending attacks [9]. Blending
attacks manipulate content, starting from an initial attack payload, until the
payload satisfies a given distribution. In our case, blending attacks could be
used to craft similar malware code distributions, making the filter ineffective.
In their paper, the authors suggest the possibility of crafting the distribution
by substitution operations and padding. In our case, the padding is however
limited by the boundaries of the binary sections. To conclude this discussion
about the filter robustness, Table 9 provides a summary view that compares the
robustness of the four different systems that we examined with respect to our
attacker model: ✓ if the system is robust, ✕ otherwise. The stars (*) in the table
correspond to modifications to which the system is not entirely robust.

5 Conclusion

In this paper, we introduced an accurate, robust, and efficient technique for de-
tecting similarity between malware samples. We leverage the fact that current
malware packers only employ compression and weak encryption, and, therefore,
information about the original program can be extracted from a packed binary.
Unlike previous work [7,11,13,26], our technique is thus able to directly operate
on packed binaries, avoiding the costly unpacking process. By doing this, our sys-
tem is able to filter submissions to malware repositories or automated dynamic
analysis tools. Large-scale experiments with almost 795,000 malware samples
demonstrate that the filter achieves a significant reduction of the samples that
need to be analyzed, with only a small amount of false positives.



A Static, Packer-Agnostic Filter to Detect Similar Malware Samples 121

References

1. ANUBIS, http://anubis.iseclab.org
2. CWSandbox, http://www.mwanalysis.org
3. Norman Sandbox, http://www.norman.com/technology/norman_sandbox/
4. ThreatExpert, http://www.threatexpert.com
5. VirusTotal, http://www.virustotal.com
6. Bayer, U., Comparetti, P., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,

behavior-based malware clustering. In: Proc. Symp. Network and Distributed Sys-
tem Security, NDSS (2009)

7. Carrera, E., Erdelyi, G.: Digital genome mapping. In: Virus Bulletin (2004)
8. Ebringer, T., Sun, L., Boztas, S.: A fast randomness test that preserves local detail.

In: Virus Bulletin (2008)
9. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending

attacks. In: USENIX Security Symposium (2006)
10. Gheorghescu, M.: An automated virus classification system. In: Virus Bulletin

(2005)
11. Hu, X., Chiueh, T., Shin, K.G.: Large-scale malware indexing using function-call

graphs. In: Proc. ACM Conf. Computer and Communications Security, CCS, pp.
611–620. ACM (2009)

12. Kang, M.G., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: Proc. ACM Workshop Recurring Malcode, WORM, pp. 46–53.
ACM (2007)

13. Karnik, A., Goswami, S., Guha, R.: Detecting obfuscated viruses using cosine sim-
ilarity analysis. In: Proc. Asia Int. Conf. Modelling & Simulation, AMS, pp. 165–
170. IEEE Computer Society (2007)

14. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic Worm
Detection Using Structural Information of Executables. In: Valdes, A., Zamboni,
D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

15. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proc. ACM
Conf. Computer and Communications Security, CCS. ACM (2003)

16. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed mal-
ware. IEEE Security and Privacy 5(2), 40–45 (2007)

17. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast, generic, and safe
unpacking of malware. In: Proc. Annual Computer Security Applications Conf.,
ACSAC, pp. 431–441 (2007)

18. Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Japkowicz, N., Elovici, Y.: Un-
known malcode detection and the imbalance problem. J. Computer Virology 5(4),
295–308 (2009)

19. Neugschwandtner, M., Comparetti, P.M., Jacob, G., Kruegel, C.: FORECAST –
Skimming off the malware cream. In: Proc. Annual Computer Security Applications
Conf., ACSAC (2011)

20. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executables for accurate
computer virus detection. Pattern Recognition Letters 29(14), 1941–1946 (2008)

21. Krishna Sandeep Reddy, D., Dash, S.K., Pujari, A.K.: New Malicious Code Detec-
tion Using Variable Length n-grams. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006.
LNCS, vol. 4332, pp. 276–288. Springer, Heidelberg (2006)

22. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: Automating
the hidden-code extraction of unpack-executing malware. In: Annual Computer
Security Applications Conference (2006)

http://anubis.iseclab.org
http://www.mwanalysis.org
http://www.norman.com/technology/norman_sandbox/
http://www.threatexpert.com
http://www.virustotal.com


122 G. Jacob et al.

23. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical Report 800-22, NIST (2001)
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Abstract. This paper proposes DotPlot visualizations [1,8] for compar-
ing and clustering malware. We describe how to process and customize
the malware memory images to get robust and scalable visualizations.
We demonstrate the effectiveness of the visualizations for analysing, com-
paring and clustering malware.

1 Introduction

Malware is often analysed using static or dynamic analysis techniques. Mal-
ware is also classified into families of related or close variants. However, the
malware comparison/classification/clustering problem is not straightforward [2].
Antivirus scanners may classify the same malware instance as belonging to differ-
ent families. This shows that the ground truth may not be so clear. In this paper,
we take an orthogonal approach – using visualization to aid other techniques.

There are few works on visual analysis of malware. Nataraj et al. [4] visualize
binaries by representing each byte using a gray scale pixel and apply image
processing techniques such as texture extraction to get features from the image
which are used for malware classification. Panas [5] visualizes each function in a
malware binary as a point in 3D space according the function’s statistics. The
points form into a landscape metaphor, which can be visually compared. Other
work [6,7] visualize the dynamic behaviour of malware.

In this paper, we experiment with DotPlots as a means for comparing the sim-
ilarity between malware. DotPlots are used to compare similarity in sequences.
It has been used for self-similarity comparisons in music [1] and for comparing
DNA sequences [3]. We based our experiments on lviz [8]1 which allows exten-
sive customization of DotPlots. Our goal is to be able to analyse, compare and
cluster malware instances through the use of visualization. As malware analysis
is not a problem with only a single answer, visualization is meant to be com-
plementary to other automated techniques and can help to support or point out
problems with other analysis.

� This work has been supported by grant R-394-000-054-232.
1 lviz was originally designed for visualizing (Windows) operating system traces [9].
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Our experiments show that similarities in unpacked memory images of mal-
ware instances from the same family can be easily visualized. The hooking be-
havior of malware can be seen, which may motivate more detailed analysis. We
show that an overall visualization of malware families (5 instances per 10 fami-
lies: 142MB) can identify similarities and differences both intra and inter family.
Visualization can also identify unknown malware.

2 Visualization

We begin by illustrating the malware visualization experiments with an example.
Fig. 1 visualizes two variants of the Bagle worm, TrojanDownloader:Win32/Bag-
le.QM (worm A) and TrojanDownloader:Win32/Bagle.RL (worm B). The goal is
to be able to see at a glance if worms A and B are similar/related and also where
this occurs. The visualization used is called a DotPlot (DP) [1,8]. Black pixels
show similarity between the contents of memory in each worm. The x and y axis
represent (in a fashion) the contents of memory in worm A and B ordered by
memory address. A black dot is drawn at position (i, j) if the memory contents
of worm A at address i (on the x-axis) matches that of worm B at address j
(on the y-axis), otherwise, a white dot is drawn. In this paper, we annotate
figures with ellipses, number labels and arrows – these are not in the original
visualization and are markups for explanatory purposes. For the moment, we
focus on the region with label 2 – it shows the DotPlot comparison between the
executable memory sections in both worms. The dark diagonal region indicates
strong similarity between the unpacked memory coming from the EXE (the
executable file) which shows that worm A and B are related.

We use lviz [8] which provides interactive exploration of extended DP visuals.
Each axis of the DP represents a linearly ordered sequence of tokens. The x and
y-axis is shown by the red Labels 5 and 6. The rectangular region bordered
by the x and y-axis is the DotPlot. To the right of the y-axis (Label 5) is
a vertical strip (respectively, below the x-axis, a horizontal strip), called the
barcode, which shows a customizable property about its respective sequence.
lviz allows customization of the matching between the i-th token on the x-axis
with the j-th token on the y-axis. The visualization is interactive with zoom
in/out and different ways of normalizing the images. Consider two sequences of
n tokens, its DP visual is a virtual image with n2 pixels, i.e. the DP of two 500K
long sequences is a virtual 250 gigapixel image. lviz efficiently handles real-time
interaction and display of sequences with lengths on the order of several 100K.
Fig. 2 illustrates interactive exploration, starting with the initial DP in Fig. 2a,
interactive zoom-in at the region indicated by the arrow shows progressively
more detail going all the way to the finest detail DP showing single pixels and
tokens in Fig. 2e. Notice that zoom-in is not the same as magnification as lviz
equalizes the image so that it can better highlight small matching areas in the
DP versus large areas.

In this paper, lviz is customized for malware visualization as follows. The
sequences of tokens used on a DP axis are either consecutive bytes of memory
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Fig. 1. Comparing two variants of Bagle

(a) (b)

(c) (d) (e)

Fig. 2. Interactive Zooming In. (b) corresponds to the rectangle area in (a) highlighted
by the arrow. (c) corresponds to the rectangle area in (b), etc.

or a sequence of n-grams at the corresponding virtual address. The sequence of
n-grams need not come from consecutive virtual addresses but are ordered in
ascending virtual address. The barcode is used to indicate: (i) a particular mem-
ory section (inner-most and closest to the axis); (ii) which sections come from a
particular executable/DLL; and (iii) which executables are in a particular mal-
ware family (outer-most part). Matching is straightforward, namely, comparing
the value of bytes or n-grams.

2.1 Section Extraction and Processing

We now describe how we obtain and process the token sequences.

Dumping Sections from Memory: Asmalware is usually packed,we usemem-
ory dumps instead of the file binary. Our visualization works on the memory



126 Y. Wu and R.H.C. Yap

through unpacking the malware, any reliable technique for this can be used. The
virtual memory of a process consists of many sections, each of which is a memory
region with the same page protection (read, write and execute) and a file map-
ping. A section can be mapped from a file (mapped section) or created dynami-
cally (anonymous section). Code in the EXE and dynamic link libraries (DLL) are
in mapped sections. Sections such as stack and heap are anonymous sections. In
this paper, we are mainly interested in code, so we only dump executable sections,
but they may contain data as well. Many techniques can be used to extract the
memory sections, in the experiments we use a simple heuristic for dumping mem-
ory.2 However, the visualizations are not dependent on the extraction technique
and any effective techniques can be employed.

Selecting Sections: We can select a subset of the dumped sections to visualize.
Since we are interested in the malware, we want to exclude sections which come
from system DLLs. To do this, we use the above method to extract executable
sections from various “benign software” to obtain a collection of sections which
we call benign sections. Sections in malware that have exactly same content
as one of the benign sections are removed. In this paper, we call the remainder
sections as non-benign (not belonging to the benign set). Further section removal
criteria are described in the specific experiments.

N-Gram Generation: A direct DP visualization of memory at the byte level
gives too much matches to be useful, see Fig. 3a. Some reasons are: (i) runs of
repeated values, e.g. consecutive no-op instructions for alignment padding; and
(ii) higher level similarity, such as instructions or functions, occurs less frequently
than byte level similarity. Rather than using the contents of memory, we first
reduce consecutive bytes of the same value into one byte, then from a sequence
of m bytes we create a sequence of m− n+1 n-grams. We found 16-gram to be
reasonable for this purpose. Fig. 3b shows the 16-grams DP from the executable
section of Bagle (Label 2 in Fig. 1)).

Hash-Based (Content) Sampling: We want to be able to deal with large mal-
ware sizes and concatenations of many malware into one sequence. However, the
DotPlots would be far too large to be practical, thus, we want smaller sequences.
Sampling the sequence at random positions (or any position-based method) to
get a smaller one can fail as mis-alignment can cause sequences which match
exactly to no longer match. We apply a content-based sampling method, i.e. the
sampling decision is based on the content. We randomize content selection by
choosing a range of values from the hash. From a sequence of m n-grams, we
reduce this to approximately O(m/k) n-grams (assuming a uniform hash distri-
bution) by selecting 1

k of the hash space, e.g., compute a 64-bit hash for each

2 We run the malware for a pre-determined period of time so that its unpacking and on-
line code downloading completes. If it has not quit yet, we then use VirtualQueryEx()
to iterate through its virtual memory and ReadProcessMemory() to dump all exe-
cutable sections. In our experiment, we run all malware for 5 seconds. Only 21% mal-
ware samples quit during this period and we do not consider those samples in our
experiments.
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(a) (b) (c)

Fig. 3. The effect of n-gram and hash sampling

Table 1. Simple polymorphic code in Bagle

address Bagle 1 Bagle 2
opcode instruction opcode instruction

004013c1 68c0204500 push 0x4520c0 68c0204500 push 0x4520c0

004013c6 90 nop e8c6055402 call 0x2941991

004013c7 e8f1045402 call 0x29418bd 90 nop

004013cc ff15c0204500 call [0x4520c0] ff15c0204500 call [0x4520c0]

004013e9 7505 jnz 0x4013f0 7505 jnz 0x4013f0

004013eb e8af9a0100 call 0x41ae9f e821a60100 call 0x41ba11

004013f0 50 push eax 50 push eax

004013f1 e8337a0300 call 0x438e29 e8a5850300 call 0x43999b

004013f6 cc int3 cc int3

n-gram and keep the n-gram if its hash value is < 264/k. Fig. 3b is the hash
sampled version of the full n-gram DP from Fig. 3b. It shows that while the
length of the sequence is reduced by hash sampling, the overall visualization is
still similar at k = 500.

3 Malware Visualization Applications

We now show various ways we can visualize malware. The experiments differ in
the comparison objective and how sections are processed.

3.1 Visualizing Two Bagel Variants

We revisit the motivating example which is to compare two Bagle worm variants.
Suppose we compare the DotPlot of both EXEs, the result is an almost white
image with very little similarity. This is probably due to packing. Instead, Fig. 1
compares all non-benign sections from each worm. The barcode circled by Label
1 shows that there are many small sections. Their corresponding DotPlot (many
dots forming a large square) shows that these small sections have similarities
among the same variant, and also between the two variants. The diagonal line
circled by Label 2 is broken into many tiny segments. This means that the code
in both variants is mostly the same except many different instructions which are
scattered across the whole section. Zooming in and clicking tells us more detailed
information such as n-grams and section properties. We then investigated the
two sections by disassembling them. Table 1 shows two code fragments where
the two variants differ. These differences are probably caused by some form of
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(a) (b)

Fig. 4. Similarity Among Modified DLL Sections. (a): Comparing the original
kernel32.dll section with the modified copy by Hupigon. (b): Self-comparison of the
original ntdll.dll section and 10 different modified copies by Conficker.

Table 2. API hooking in Hupigon. 0x7c801d7b is the entry of LoadLibraryA().
0x7c8197b0 is the entry of CreateProcessInternalW().

benign Hupigon
address opcode instruction opcode instruction

7c801d7a 90 nop 90 nop

7c801d7b 8bff mov edi,edi e9dd22c483 jmp 0x44405d

7c801d7d 55 push ebp

7c801d7e 8bec mov ebp,esp

7c801d80 837d0800 cmp [ebp+0x8],0 837d0800 cmp [ebp+0x8],0

7c8197af 90 nop 90 nop

7c8197b0 68080a0000 push 0xa08 e9079dc283 jmp 0x4434bc

7c8197b5 68889a817c push 0x7c819a88 68889a817c push 0x7c819a88

basic polymorphic code introduced to interfere with anti-virus software. There
are about 5000 code fragments like this, which break the diagonal line circled
by Label 2 into 5000 tiny segments. The straight diagonal line circled by label 3
shows that the corresponding sections are mostly the same.

3.2 API Hooking in Hupigon and Conficker

Malware may modify the behaviour of system library functions by API hooking.
A common hooking method is to directly modify the function code. We can easily
discover this by visualizing unique DLL sections. We remove sections which have
identical content from all DLL sections to obtain only unique ones. Since hooking
modifies very little code, the modified section will have strong similarity to the
unmodified one.

Fig. 4a compares the original kernel32.dll section with the modified copy
by the Hupigon trojan. We can conclude that the modified copy is very similar to
the original because the diagonal line is straight and continuous. This leads us to
compare the difference between the disassembly, i.e. using diff. We found only
two modified code fragments, shown in Table 2 which hooks two system library
functions. Fig. 4b is a self-comparison (x and y-axis represent the same sequence)
with 10 sections modified from ntdll.dll in 10 variants of the Conficker worm
concatenated with the original ntdll.dll giving a total of 11 unique sections
Again we can conclude that they are all very similar, and here we find hooking
of NtQueryInformationProcess().
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Table 3. Statistics of the malware collection used. All columns except for “total no.
of samples” give the average per malware sample of the family.

Family total no. no. of no. of benign no. of anon non-benign no. of sampled

size of samples sections sections sections size n-gram (k = 500)

Alureon 5 47.4 39.6 6.4 0.6MB 0.6K
Bagle 66 126.0 25.9 99.0 3.1MB 5.3K
Bifrose 46 36.9 16.7 18.1 2.4MB 6.3K
Conficker 42 29.5 23.4 5.5 0.8MB 1.3K
Hupigon 58 201.1 19.2 177.7 2.7MB 2.6K
Ldpinch 102 36.8 29.0 7.5 0.7MB 0.3K
Midgare 58 27.3 15.0 12.1 2.7MB 5.3K
Mytob 5 52.8 24.8 25.8 1.8MB 2.9K
Mydoom 50 27.0 21.8 4.0 0.3MB 0.2K
Netsky 8 35.2 29.8 4.4 2.5MB 0.3K
Turkojan 82 44.6 23.4 5.5 3.8MB 9.8K
Zlob 89 34.9 27.3 4.1 1.3MB 3.7K

(a) (b)

(c) (d)

Fig. 5. Comparing 60 malware instances: 5 instances per 12 malware families (a): all
non-benign sections; (b): only EXE sections; (c): only anonymous sections; and (d):
only sections unique to the family.
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(a) (b)

Fig. 6. The Effect of Filtering. We apply filtering on Fig. 5c. Fig. (a) shows filtering
with low=10, high=100 and family=4. Fig. (b) is shows a more aggressive filtering with
low=0, high=50 and family=2.

3.3 Visualizing Malware Families

We use a collection of 610 malware samples belonging to 12 families (see Table 3).
The goal of this experiment is to see the similarities in malware belonging to the
same family; and similarities across different families. We randomly selected 5
samples from each family for this experiment. Fig. 5 shows the self-comparison
of the 60 malware samples concatenated together. There are four visualizations
which differ in how sections are selected. The malware samples are ordered by
their families following the order in Table 3, i.e. the Alureon family is at the left
most (x-axis) and respectively top most (y-axis). Each axis has three barcodes.
The inner barcode separates memory sections; the middle barcode separates
malware samples; and the outer barcode separates families.

Fig. 5a contains all the non-benign sections with a total size of 142MB. Hash-
based sampling reduces this to 194K n-grams. From the outer barcode, we can
see that different malware families have different sizes, which conform to the “no.
of sampled n-gram” column in Table 3. The sampling reduction ratio (“no. of
sampled n-gram”/“non-benign size”) is mostly between 1:400 to 1:15003, which
shows that the reduction by hash-based sampling is sufficiently uniform. Fig. 5a
also shows that there is considerable similarity across different families.

Fig. 5b consists only of EXE sections. Comparing the middle and inner bar-
code, we see that there can be several EXE sections per malware instance. Label
1, 3 and 2 show intra-family similarity of Bagle, Hupigon and Turkojan respec-
tively. Label 4 shows an instance of Bifrose that is similar to some Hupigon
instances. We then classified the Bifrose instance with a number of anti-virus
software, and found that some of them consider it to be Hupigon, which is
consistent with the visualization. Some anti-virus websites also list the two as

3 Netsky is 1:8000, due to a large number of consecutive null bytes.
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(a) (b)

Fig. 7. Identifying Unknown Malware. X-axis: 4 known malware samples (Alureon,
Bagle, Conficker and Hupigon). Y-axis: 4 unknown malware samples. For easier view-
ing, we added separators for the samples. (a): not filtered; (b): filtered.

aliases. Fig. 5c contains only the anonymous sections. The pattern highlighted by
label 5 shows that there are similar anonymous sections shared by some samples
across 4 families. Fig. 5a shows even more inter family similarities which is less
useful if we want to highlight the intra family similarities. Fig. 5d is obtained
by removing all sections which appear in more than one family. The diagonals
highlighted by Label 6 again show the similarity between Bifrose and Hupigon.

The similarity shared only between two malware samples is sometimes more
important than the similarity across all samples. Selecting only unique sections
as shown in Fig. 5d is one way of showing this type of similarity. Alternatively,
we can look at the uniqueness at the n-gram rather than section granularity.
We remove frequent n-grams or n-grams appearing in many families. In this
experiment, we define 3 thresholds: low, high and family. Suppose an n-gram
appears m times in n families, we remove it if m > high ∨ (m > low ∧ n >
family). Fig. 6 shows the results of filtering Fig. 5c with two different settings.
We can see that some very frequent appearing patterns highlighted by Label 5
in Fig. 5c are mostly filtered, leaving only small diagonals in Fig. 6a. Some of
those diagonals filter even more strongly in Fig. 6b, leaving mostly intra family
similarities shown by the rectangular diagonal regions within family boundaries.

3.4 Identifying Unknown Malware

We can use similar techniques in Sec. 3.3 to identify unknown malware given a
collection of identified malware. In Fig. 7, we put 4 known malware belonging
to different families on the x-axis, and 4 unknown malware on the y-axis. This
effectively gives a 4x4 cross comparison of each known to each unknown malware.
The selected sections are unique to the 4 known families (similar to Fig. 5d).
Fig. 7a shows the first unknown malware is most similar to Conficker and the
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second unknown malware to be most similar to Bagle. The last two unknown
malware samples show small and roughly equal similarity to all 4 families. An
anti-virus scan on the 4 unknown malware classifies them as Confiker, Bagle,
Turkojan and Bifrose, which is consistent with the visualization. If we apply a
stronger intra-family filtering with low=0, high=50 and family=2, we have an
even more obvious visualization in Fig. 7b.

4 Discussion and Conclusion

Address space layout randomization (ASLR) is commonly employed in many
operating systems including Windows as a defence mechanism against attacks
using the existing code. ASLR affects our visualization because randomization
can change the contents of non-position independent code due to relocations,
thus, introducing additional differences. This will affect our benign section fil-
tering mechanism which uses exact matching. However, benign section filtering
is mainly to remove sections from the visualization and a more sophisticated
filtering can be used to do approximate matching. A simpler alternative is to
turn off ASLR when benign section filtering is being used. Another alternative
is to apply the inverse of the relocation on the extracted sections.

The next question is how ALSR affects the DotPlot visualization? ALSR only
affects a small percentage of the instructions at most. This has very little affect
on the overall DP. Looking at the “big picture”, the similarity is still obvious.

We emphasize that in this work, we want to show the potential of visual-
ization as an adjunct to existing analysis techniques which may be automated.
Visualization, on the other hand, is meant for human consumption. Instead we
want this to complement and help verify other malware analysis, e.g. malware
analysis may decide that a malware belongs to family A but visualization can
show that it is also similar to family B. The applications shown in Sec. 3.3 and
3.4 are thus not designed for analysing large amount of malware samples but
rather to focus on selected malware comparisons.

In conclusion, our experiments demonstrate that visualization is effective in
showing the similarity in the internal structure of malware through variants in
the family. It also shows similarities between families. This may be due to the
eco-system of malware creation and development. It may also explain why other
manual/automatic classification techniques are successful.
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Abstract. Malicious code (malware) is used to steal sensitive data, to
attack corporate networks, and to deliver spam. To silently compromise
systems and maintain their access, malware developers usually apply ob-
fuscation techniques that result in a massive amount of malware variants
and that can render static analysis approaches ineffective. To address the
limitations of static approaches, researchers have proposed dynamic anal-
ysis systems. These systems usually rely on a sandboxing environment
that captures the system calls performed by a program under analysis.

In this paper, we propose a novel approach to capture and model
malware behavior that is based on the monitoring of the data values
that a certain subset of instructions writes to memory during program
execution. We have implemented a malware clustering component and a
component to detect code reuse between different malware families. To
validate our proposed techniques, we analyzed 16,248 malware samples.
We found that our techniques produce clusters with high accuracy, as
well as interesting cases of code reuse among malicious programs.

1 Introduction

Malicious software (malware) is a significant threat for cyber security. Current
malware operations vary from stealing sensitive data to attacking critical infras-
tructures. Today’s malware employs many different ways to propagate, including
social engineering techniques to deceive a user to click on e-mail attachments,
and drive-by download attacks that exploit web browsers and their plug-ins. In
addition, obfuscation techniques are a powerful tool to render static malware
analysis approaches ineffective and to decrease detection from signature based
scanning. To address this problem, researchers have proposed dynamic analysis
systems, which rely on the observed runtime activities (behavior) for detection
and classification. To capture and model the behavior of malicious code, dy-
namic analysis systems typically rely on system calls. They treat the program
as a black box and capture activity at a relatively high level. For example, two
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programs might be very different “inside” but might yield the same, visible ef-
fect to the “outside” by invoking the same system calls. While this might not
be an immediate problem for malware detectors, it makes it hard to distinguish
between different malware families.

To address the limitations of system-call-based detection and classification,
this paper proposes a novel approach to capture and model program (malware)
behavior. We record a trace that contains all the values that (a certain subset
of) instructions write. These writes can go either to a destination register or a
memory location. By looking at the intermediate data values that a computation
produces, we analyze the execution of a program at a much finer level of granu-
larity than by simply observing system calls. The main intuition is that by using
the data values, we can produce a very detailed profile that captures the activ-
ity of individual functions. Also, data values are tied very closely to the purpose
(semantics) of a computation, and, hence, are not as easy to disguise as the code
that performs the computation. Malware authors have introduced many ways in
which code can be altered so that syntactically different instructions implement
the same algorithm (e.g., dead code insertion, register renaming, instruction sub-
stitution). However, when an algorithm computes something, we would expect
that, at certain points, the results (and temporary values) for this computation
hold specific values. Our goal is to leverage these values to identify (possibly
different) code that “computes the same thing.” The main contributions of this
paper are the following: (I) we introduce a novel approach to capture and model
behavior from dynamically analyzed malware that is based on the sequence of
values that a program writes to memory or registers; (II) we describe a two-step
procedure to decide whether two execution traces are similar and leveraged it to
implement malware clustering and code reuse identification.

2 Data Value Traces

In this section, we discuss how we build data value traces to capture the activity
of a (malware) program. To obtain these traces, we developed a prototype system
that runs malware samples in an emulated environment. The prototype was de-
veloped using PyDBG [13]. This provides us with tight control of the debugging
process. Also, PyDBG provides features to hide its debugging activity, which is
useful to foil most malware attempts to detect the analysis environment.

We use our prototype to record an ordered sequence of instructions that mod-
ify at least one register or memory value; that is, we are only interested in instruc-
tions that write to memory. For each of these instructions, we store the numeric
value(s) of all memory locations and registers to which this instruction writes
(typically, this is one). For instance, if a malware sample executes the instruc-
tion sub esp,0x58, we will log in our trace the line sub esp,0x58; 0x12ff58,
which corresponds to the instruction and the new value written to register %esp,
which is 0x12ff58 in this example (assuming that the initial value of %esp was
0x12ffb0). When the malware process terminates or a timeout is reached, we
also take a snapshot of the content of the malware’s executable (code) segments.
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This information is needed later to identify code reuse between malware samples,
but it is not required to identify similarity between samples.

To collect the sequence of executed instructions, our system runs the sample
in single-step debugging mode. More precisely, we single step through the code
within the malware executable (and all code dynamically generated by the mal-
ware). However, calls that are made to standard operating system libraries are
not logged, nor are the instructions executed inside these libraries. Fortunately,
the system dynamically-loaded libraries (DLLs) are loaded into the memory re-
gion ranging from 0x70000000 to 0x78000000 (in Microsoft Windows XP). This
speeds up the monitoring process and makes the resulting traces smaller. Also,
it focuses the data collection on the actual malicious code.

To increase the efficiency of the collection process and to minimize the size
of the traces, we only log a selected subset of instructions related to logic and
arithmetic operations, namely: add, adc, sub, sbb, mul, imul, div, idiv, neg,
xadd, aaa, cmpxchg, aad, aam, aas, daa, das, not, xor, and, or. We focus on
these instructions because we are mostly interested in characterizing computa-
tions that the malware performs. Such computations will almost always involve
arithmetic and logic instructions. Other instructions, such as data move or stack
manipulation routines, are mostly used to prepare the environment for a compu-
tation, and hence, are less characteristic than the values that emerge directly as
the result of a computation. We decided to remove the arithmetic instructions
inc and dec, as they are typically involved in simple counters, which reveal little
information about the data that is being computed. We also decided to remove
instructions from the trace when they write the value 0, as this constant is not
very characteristic of a particular computation.

We apply one last transformation to convert a sequence of instructions into the
final data value trace. This transformation works by moving a sliding window
of length two over the instruction sequence. For the two instructions in the
window, we extract the two data values that these instructions write, one value
for each instruction, and aggregate then into a pair of values – a bigram. After
the bigram is appended to the data value trace, we advance the sliding window
by one instruction. The reason for transforming the sequence of instructions (or
written) values into bigrams is the following: If we would compare simple traces
of individual values, it is more likely that two values in two traces match by
accident. By combining subsequent values into pairs, we add a simple form of
context to individual data values. We found that this extra context significantly
lowers the fraction of coincidental matches and improves the separation between
different program executions.

3 Comparing Traces

As discussed in the previous section, we capture the activity of a malware pro-
gram by collecting a trace that consists of a sequence of bigrams of data values
that this program has written. For a number of applications (such as malware
classification and clustering), we require a technique to determine whether the
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activities of two malware samples are similar. To perform this comparison, we
have developed a two-step algorithm. This algorithm operates on two data value
traces as input and outputs a similarity measure S that ranges from 0 (com-
pletely different) to 1 (identical).

3.1 Step 1: Quick Comparison

The goal of the first step is to decide whether two traces are similar enough
to warrant a further, more detailed comparison. This step works by creating a
small “identifier” for each trace. This identifier is based on the k least-frequent
bigrams that appear in a trace. The underlying assumption behind this choice
is that if two samples are variants of each other, they should share some specific
features or attributes that are particular to their family. Thus, we can discard
the most common bigrams, which can appear within many different families, and
focus on the specifics of a certain family’s fingerprint. We have experimentally
determined that a value of k = 100 yields good results.

More formally, we state our approach as follows. Let IDM1 and IDM2 be
the k least-frequent bigrams from traces produced by malware samples M1 and
M2. We compare these two malware identifiers by applying the Jaccard index

(J(IDM1 , IDM2) =
IDM1∩IDM2

IDM1∪IDM2
, 0 ≤ J ≤ 1). If, and only if, the Jaccard index

(ranging from 0 to 1) is greater than the empirically established threshold of
0.31, we move to the second step. Otherwise, the result of this computation is
used as the similarity value (which indicates low similarity).

3.2 Step 2: Full Similarity Computation

In the next step, we compute the overlap of the entire two traces. More specifi-
cally, we compute the longest common subsequence (LCS) between them. Sup-
pose that T1 and T2 are different data value traces and that L1 and L2 are their
lengths, respectively. The similarity between the two traces is then calculated

as C(M1,M2) = LCS(T1,T2)
min(L1,L2)

. We chose the longest common subsequence over

the longest common substring to tolerate small differences in the computations.
Moreover, we note that using a standard LCS algorithm can be computationally
expensive. We addressed this by calculating the LCS based on the GNU diff tool
(http://en.wikipedia.org/wiki/Diff) output. Our experiments, evaluating
a standard LCS implemented in C++ and our approximate LCS computation
showed that we could accomplish faster results using our approach — in some
cases ≈500× faster — with no significant loss of accuracy.

The original diff tool has the nice property that it inserts “barriers” while
computing the longest common subsequences present in a textual input. Our
diff-based LCS approach, referred from now on as eDiff, enhances this capabil-
ity by (i) marking the regions that differ between two traces and (ii) by mapping
the shared subsequences to the original instructions in the respective execution

1 To choose this threshold (T ), we performed tests with an increment of 0.1 for the
range 0.0 < T ≤ 0.5.

http://en.wikipedia.org/wiki/Diff
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traces. As a result, we know exactly what malware code produced similar memory
writes. This will be useful for identifying code reuse, as explained in Section 5.2.
To map value traces back to instructions, we simply link the bigram values in
the value traces to the raw instructions that produced those values.

4 Applications

In this section, we discuss two applications that we built on top of our malware
trace similarity technique. The first application is clustering; the idea is to group
samples that show similar activity based on their value traces. The second ap-
plication uses the data value traces to find cases of code reuse. That is, we want
to find cases in which malware samples that belong to different families share
one or more snippets of identical code.

4.1 Clustering

The input to the malware clustering application are a set of N data value traces,
one trace for each of the N samples to be clustered. The goal is to find groups
of malware samples that are similar. Clustering is implemented in two steps:
pre-clustering and inter-cluster merging.

Pre-clustering: The goal of the pre-clustering step is to quickly generate an
initial clustering and avoid having to perform N2/2 comparisons. To accomplish
this, we sequentially process each of the N samples, one after another (in random
order), as follows: Each new sample is compared to all cluster leaders (explained
below), using the similarity computation described in the previous section. When
the trace for the new sample exhibits more than 70% similarity with one or
more cluster leaders, this sample is merged with the existing cluster for which
the similarity is highest. Otherwise, the sample (and its trace) is put into a new
cluster, and this sample also becomes the cluster leader. When merging a trace
with an existing cluster, we need to elect a new cluster leader (a cluster leader is
basically the trace that is selected to represent the entire cluster). For this, we
must make a selection between the existing cluster leader and the new trace. We
select the longer trace as the new leader. We do this to increase the probability
that a sample, whose behavior is similar to the activity of malware in a cluster,
is properly matches with that cluster. In other words, by selecting the longest
trace as the cluster leader, a new trace has more chances to find a long, common
subsequence. By removing from the comparison computation all except one trace
for each cluster, we greatly reduce the required number of comparisons.

Inter-cluster Merging: The pre-clustering step results in a set of initial clus-
ters whose traces share at least 70% similarity. However, due to the nature of the
quick comparison (first step of the similarly comparison), there can be clusters
that should be merged but are not. That is, it is possible that two traces are
actually quite similar, yet their least-frequent bigrams are too different to pass
the threshold. In this case, there are different clusters containing malware from
the same family, and it is desirable to merge these clusters. The merging step
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is applied to the output of the pre-clustering step so as to generate a reduced
amount of clusters. To this end, we perform a pairwise comparison between all
cluster leaders, using our eDiff algorithm. If their similarity is greater than the
same 70% threshold defined previously, the clusters are merged.

4.2 Code Reuse Identification

When comparing two traces, our algorithm not only computes a general simi-
larity (overlap) score but also determines which parts of the traces are identical.
When we find a stretch of values that are identical between two traces generated
by executing different samples, we might naturally ask the question whether
these values were produced by similar code. This would allow us to identify code
that is shared between samples that are otherwise different.

To identify code reuse, when eDiff compares two data value traces, it stores
for each element (bigram) in the traces whether this element is unique to the
trace or shared between both traces. For instance, let us assume that we have two
traces. One contains the three bigrams: (0x1,0x2), (0x2,0x4), and (0x4,0x5);
the other contains the four bigrams: (0x1,0x2), (0x2,0x7), (0x7,0x4), and
(0x4,0x5). In this case, eDiff would find that the first and last element in each
trace are shared, while the middle one(s) are unique (to each trace). To find code
reuse, we check both traces for the presence of at least four consecutive elements
that are shared. The threshold of four was empirically determined and allows us
to find shared code roughly at the function level. A higher threshold would be
possible when we want to find longer parts of shared code. A lower threshold
often yields accidental matches that do not reflect true code reuse.

Next, we require a mechanism to “map back” values in a data value trace to
the instructions that produced them. This can be done easily because we retain
the original instruction sequences that were recorded during dynamic analysis.
To find the code in the malware program that contains the “shared instructions”
we generate a regular expression pattern, which is then matched against the
dumped code segment. When a match is found, we consider the resulting code
block as a candidate for reuse. All matches that are found for each trace are
compared, and when we find a sequence of identical code of a minimum length,
we identify the code snippet as reused between malware samples.

5 Preliminary Experiments

We performed an initial set of experiments using 16,248 execution traces that
produced promising results. These traces were obtained from the analysis of
Windows PE32 executable programs and they represent a diverse and recent set
of different malware families that are currently active in the wild.2

5.1 Malware Clustering

The evaluation of the quality of a clustering algorithm is a complicated task [5],
as clustering results are often not objectively right or wrong but depend on a

2 For a complete list of MD5 sums of the samples, please contact the authors.
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number of factors, such as the metrics used to calculate the distances
among samples and clusters, the final amount of clusters generated, the cho-
sen heuristics, etc. We used three different ways to obtain a reference cluster-
ing, based on [9]: one from the static analysis of malware [4], one from the
dynamic analysis of malware [2], and the last one based on anti-virus (AV) labels
from AVG (http://www.avg.com), Avira (http://www.avira.com) and F-Prot
(http://www.f-prot.com). These AV labels were relabeled so that only the gen-
eral identifier for each family remains (e.g., Trojan.Zbot-4955 became “zbot”).

After we generated the reference clustering sets, we borrowed the precision
and recall metrics from [2] to measure the quality of our clustering results. The
product of the values obtained from the overall precision and recall can be used
to measure the overall clustering quality (Q = P × R). For the reference clus-
tering based on AV labels, we measured the quality of our clustering scheme by
defining the level of agreement related to the labels assigned to each sample in
a cluster. Perdisci et al. [11] proposed to use two indexes (cohesion and sepa-
ration) to validate their HTTP-based malware behavioral clustering. However,
their approach “attenuates the effect of AV label inconsistency” due to the way
the Cohesion Index is defined (there is a “gap” and a “distance” value that
causes a boost in cohesion). To avoid this boost, we define a simpler level of
agreement A for a cluster j, calculated as:

Aj =

∑

N∈AV

maxlbl∈LabelsN
(frequency(lbl))

[|Tj|∗|AV |]
where AV is the number of AV vendors, LabelsN is the set of the assigned
labels and their related frequencies for each AV engine for each cluster (N =
avg, avira, fprot), Tj is the total amount of samples in the cluster.

Reduced Dataset. Before we applied our clustering technique to the entire
dataset, we ran preliminary tests using a smaller subset, which consisted of
1,000 random samples. Those initial tests were important to experiment with and
determine different threshold parameters. In particular, we varied the similarity
threshold for the second step of the algorithm from 0 to 100% (incrementing
by 10% after each iteration) and observed the highest quality, i.e., the average
between the obtained static and behavioral quality values, for the similarity
threshold of 70%. Moreover, the AV labels’ level-of-agreement value for this
threshold is also very high (0.894).

Full Dataset. Based on the results of the preliminary tests, we defined a simi-
larity threshold of 70% for the eDiff process. We continued to use the initially-
established Jaccard index threshold of 0.3 for the quick comparison. The amount
of clusters produced by the two reference clustering sets for the 16,248 samples
with traces were 7,900 clusters for the static approach and 3,410 for the be-
havioral one. Our approach produced 7,793 clusters that were compared to the
reference clustering sets, generating the precision values of 0.758 and 0.846 and
the recall values of 0.81 and 0.572 for the static and behavioral reference, respec-
tively. Calculating the AV labels’ level-of-agreement for our clustering yielded
0.871. These values yield average results of 0.843, 0.652, and 0.656 for precision,
recall, and quality, respectively.

http://www.avg.com
http://www.avira.com
http://www.f-prot.com
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5.2 Code Reuse

To look for code reuse in samples that likely belong to different malware fami-
lies, we only check pairs of malware clusters that are sufficiently different. More
precisely, based on the clustering results obtained in the previous step, we look
for pairs of clusters that have a similarity score between 10% and 30%. We
identified 974 pairs of clusters that fulfill this requirement. We discovered 15
pairs (involving ten different clusters) that share code between them. More pre-
cisely, we found seven different blocks of code that seem to be reused among
samples. We sent the ten representatives (one for each cluster) to VirusTotal
(http://www.virustotal.com). Looking at the results, we noticed that the
most common label assigned to them refers to different Trojan malware that
all seem to attack online games (and, apparently, shared code to do so).

6 Related Work

Dynamic malware analyzers, such as [8] and [15], operate at the system call
level and currently do not log the low-level values of an execution (memory and
registers). Ether [3] performs both instruction and system call tracing to analyze
malware in a transparent way by using hardware virtualization extensions, but
it has several of prerequisites on the type of operating system, architecture and
platform, which can limit its use. Indeed, we can divide malware classification
techniques according to how the traces were obtained — i.e., through either
static or dynamic analysis — and to the type of behavior gathered — i.e., either
lower-level or assembly-related data or higher-level or system call information.

Static Analysis Approaches. Shankarapani et al. [14] propose two detec-
tion methods to recognize known malware variants without the need of new
AV signatures: SAVE, which generates signatures based on a malware sample
API calls sequence through the static analysis of its executable, and MEDiC,
in which the signature of a malware sample is part of its disassembled code.
SAVE performs an optimal alignment algorithm before applying similarity mea-
sure functions (cosine, extended Jaccard, and Pearson correlation). This kind of
algorithm does not scale well if there are too many sequences or if the sequences
are very large. For files whose size is among ≈500 Bytes to ≈1000 Bytes, the de-
tection time can be in a range of few seconds (considering just one executable).
Kinable and Kostakis [7] performed a study of malware classification based on
call graph clustering, where they measured the similarity of call graphs that were
extracted from malicious binaries through matches that try to minimize the edit
distance between a pair of graphs. The authors conclude that it is difficult to
partition malware samples in well-defined clusters using k-means based algo-
rithms, chosing the DBSCAN algorithm to cluster some sets, the larger having
1,050 samples. They state that this larger set had 72% correct clusters. Zhang
and Reeves [16] propose a method to detect malware variants that uses auto-
mated static analysis to extract the executable file semantics. These semantic
templates are characterized based on the system calls executed by a malware

http://www.virustotal.com
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sample and used in a weighted pattern matching algorithm that computes the
degree of similarity between two code fragments.

Dynamic Analysis Approaches. Park et al. [10] present a classification
method that uses a directed behavioral graph extracted from system calls through
dynamic analysis. The generated directed graphs from two malware samples are
compared computing the maximal common subgraph between them and the size
of this subgraph is used as the similarity metric. Bailey et al. [1] developed a
method based on the behavior extracted from a malware sample after executing
it in a virtualized environment. This behavior is considered the malware’s fin-
gerprint and represents the set of actions that changed the system state, such as
files written, processes created, registry keys modified, and network connection
attempts. The tests were performed on a dataset of 3,700 samples from which
the fingerprints were extracted. The normalized compression distance (NCD)
was used as a similarity metric, and the pairwise single-linkage hierarchical clus-
tering algorithm was used for classification purposes. Rieck et al. [12] propose the
use of machine learning techniques on malware behaviors composed of changes
that occurred in a target system in term of API function calls. They ran their ex-
periments on more than 10,000 malware samples divided into 14 families labeled
by AV software. The behavioral profiles obtained from dynamic analysis serve
as a basis to feature extraction and use the vector space model and the bag of
words techniques. After that, the Support Vector Machines method is applied to
the feature sets for classification purposes. Bayer et al. [2] present a scalable clus-
tering approach to classify malware samples based on the behavior they present
while attacking a system. Dynamic analysis is used to generate the behavioral
profiles — sequences of enriched and generalized information abstracted from
system call data. The similarity metric used in their work is the Jaccard index,
which is then used as an input to the LSH clustering method. Very recently, Jang
et al. [6] introduced BitShred, an algorithm for fast malware clustering. In this
paper, the authors present a new way to efficiently simplify and cluster features
from inputs such as (static) code bytes and (dynamic) system call traces.

7 Conclusions

In this paper, we empirically demonstrated that the values stored in memory
and registers after write operations can be used to detect and cluster malware in
families. We also presented a different approach to perform the similarity score
calculation that is simple and effective when applied to the malware problem.
We compared the results from more than 16 thousand malware samples executed
and processed in our prototype system to three reference clustering sets — static,
behavioral (dynamic), and AV labeling — and our produced clustering reached
an average precision value of 0.843 for the first two sets and a level of agreement
value of 0.871 for the last one. Finally, we showed that our classification process
can also be used to verify for code reuse, which helps to investigate the sharing
of functions in different families of malware.
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Abstract. Recovering from attacks is hard and gets harder as the time between
the initial infection and its detection increases. Which files did the attackers mod-
ify? Did any of user data depend on malicious inputs? Can I still trust my own
documents or binaries? When malcode has been active for some time and its ac-
tions are mixed with those of benign applications, these questions are impossible
to answer on current systems. In this paper, we describe DiskDuster, an attack
analysis and recovery system capable of recovering from complicated attacks in
a semi-automated manner. DiskDuster traces malcode at byte-level granularity
both in memory and on disk in a modified version of QEMU. Using taint analy-
sis, DiskDuster also tracks all bytes written by the malcode, to provide a detailed
view on what (bytes in) files derive from malicious data. Next, it uses this infor-
mation to remove malicious actions at recovery time.

Keywords: Attack recovery, dynamic taint analysis.

1 Introduction

We describe DiskDuster, a semi-automated system to help recover from intrusions. In-
trusions may result from remote attacks, open network shares, exploits (Conficker [22]),
user-installed Trojans (some versions of Torpig [27]), etc. However it spreads, the mali-
cious code may interfere in deep and involved ways with the system state and removing
the infection and its effects is difficult. For instance, Torpig turns off anti-virus scanners,
modifies data, steals confidential information, and downloads/installs more malware on
the victim’s computer. Other attacks destroy data, or encrypt files for ransom.

Our recovery procedure aims to return the system to a sane state, as existed just be-
fore the attack, while retaining as much of the recent user data as possible. We show that
we can undo most of the effects of complicated attacks. As an example, we demonstrate
the usefulness of our approach for drive-by-downloads that fetch and execute malware
that subsequently modifies the registry, and infects other programs that, in turn, modify
system state. And so on. See Figure 2 for a full description of our running example. We
evaluate our solution with several real attacks on Windows.

Recovering from attacks. Despite a plethora of defense mechanisms, attackers still man-
age to compromise computer systems. Sometimes they do so by corrupting memory
and injecting a small amount of shellcode to download and install the real malware.
Sometimes the users themselves install trojanized software. To make matters worse, the
malware may be active for days before it is discovered.

U. Flegel, E. Markatos, and W. Robertson (Eds.): DIMVA 2012, LNCS 7591, pp. 144–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Upon discovery of a compromised machine, one of the most challenging questions
is: what did the malware do? Which files has it modified? Did the attackers change or
corrupt my financial records? Can I still trust any of the files created after the compro-
mise, or should I check each and every one manually? Did the initial attack spread to
other programs? And, most importantly, can I undo the malicious actions and restore
the system to a sane state, without losing my recent data?

Currently, the only sane state a system can revert to is the last known good backup.
This leaves the question of what to do with the changes to the system that occurred
since then. Ignoring them completely is safe, but often unacceptable—losing valuable
data generally is. Accepting them blindly is easy, but not safe—modifications may be
the result of the malware’s actions. However, the alternative of sifting through each of
the files (or even blocks) on disk one by one to see whether it can still be trusted may be
too time-consuming. Thus, we developed DiskDuster to automate most of this process.

High-level overview. Figure 1 illustrates DiskDuster’s main flow of operations. The cir-
cled numbers in the text below correspond to the numbers in the figure. To minimize the
performance impact, and to retain as much of information about the attack as possible,
we decouple the analysis and recovery from the production machine. Thus, DiskDuster
records the execution on the live production machine 1© and replays it 2© on a dedicated
security server with additional security checks and recovery operations 3©.

dedicated security server

production 
machine

record
replay

DiskDuster

track taint
- in memory
- on disk
snapshot
- cheap
- at runtime

detect attack

find point of infection

trace malicious code

remove malicious
changes

replica

1

2

3

4

5

6

Fig. 1. Intrusion recovery in a decoupled security model

To recover the user data after an infection, we assume the presence of at least one
detection method 4©. The nature of the detection method is not important. The prototype
in this paper works with dynamic taint analysis (DTA) and AV scanning, but we can
easily add system call analysis or other techniques.

As soon as DiskDuster detects an intrusion in the replay, the user shuts down the
original machine, while the security server continues to replay the trace, using DTA to
monitor all the malcode’s actions 5©, tainting all writes by the malcode to memory and
disk as malicious. Taint propagates whenever the malicious bytes are read, copied, or
used in ALU operations. If malicious bytes compromise other processes, DiskDuster
traces those also. Finally, DiskDuster cleans up the system by replaying benign disk
writes up to the moment of infection. For the time between the infection moment and
the detection moment, DiskDuster classifies all disk writes as ‘benign’ (not affected
by the attack), ‘malicious’ (written by a malicious process) and ‘suspicious’ (possibly
affected by the attack). Only suspicious data requires manual intervention.
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Contributions. Most existing intrusion recovery approaches assume that the infection
cannot spread to the kernel itself [15,3,14]—a very strong assumption that typically
does not hold in practice. Others provide very limited protection (e.g., modification, but
not removal, of system state and a few system files only [20]), or require users to define
trusted data and malware manually [3]. Finally, existing approaches are typically tied
to specific operating systems (often Linux, to have access to source code) [11,28,14].

In contrast, DiskDuster operates at the level of the (virtual) hardware and the ap-
proach can be applied to any OS. Throughout this paper, we focus on Windows, as it
is (still) easily the most popular attack target. In addition, DiskDuster protects both the
kernel and user processes and handles modification and removal of any file.

Thus, the contribution of this paper is an intrusion analysis and recovery system on
top of a hardware emulator that works with unmodified OSs and applications and pro-
tects both kernel and user processes against complicated attacks. Our goal is to recover
user data, but the system helps to recover other files and folders also.

Moreover, where modern tainting systems typically detect or track an attack on a
single process, DiskDuster tracks the attack and all related processes, as well as their
spread throughout the system. For instance, we track all disk writes of the malicious
code, and take appropriate action when a benign process reads such bytes. Likewise,
we treat processes that are started by a malicious process as malicious also. The same
is true for threads injected by malicious code in a benign program. We are not aware of
other systems with the same comprehensive tracking of malicious activity.

Tracking infections requires tracking the actions and data generated by the attack.
Specifically, we need to know where this data ends up and what actions and data depend
on it. Where almost all state-of-the-art intrusion recovery solutions [14,20] construct
dependency graphs explicitly, DiskDuster tracks dependencies directly, by means of
dynamic information flow tracking (taint analysis) and at byte-level granularity. Doing
so is simpler and potentially weaker. But as it requires very little knowledge of the OS, it
enables us to (a) support different OSs, and (b) handle kernel infections also. Moreover,
we will see that the way DiskDuster handles implicit flows is very simple and yet very
powerful. It allows it to limit taint tracking to explicit flows during analysis, while not
losing even a byte of implicitly modified data (although overtainting may well occur).

Clearly, recovery cannot be complete if the attack had side effects beyond this sys-
tem. For instance, if the malware sent spam, or leaked information to an external party,
there is no way to undo this. We do revert changes on the file systems. We think this
is sufficient for cleaning up infections locally. Even if some (memory-resident) attacks
do not themselves leave any presence on disk, this is not a problem for DiskDuster. As
long as it can detect the attack (e.g., using taint analysis), it will remove all disk writes
that the malware influenced, while the malware itself will disappear after the reboot.

2 Threat Model and Assumptions

The ideal intrusion recovery system, upon detecting an attack, removes all harmful ac-
tions related to the attack automatically, leaving only changes to the system unaffected
by the attack. Fundamentally, this is not possible—at least not in the general case. For
instance, after an attack deletes the AV binary, a legitimate user may write a memo:
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A nasty attack

The effects of real-world attacks like Torpig and Conficker have been complex and devastat-
ing. In this paper, we combine in our running example the effects of these and a number of
others to create a complicated attack:

1. A drive-by-download infects the browser.
2. The attack immediately migrates to another running process on the same machine—

infecting this process also. The migration complicates the tracking, since the second pro-
cess did not connect to a malicious website.

3. The attack deletes the antivirus program.
4. Next, the shellcode in the second process downloads and executes the real malware and

adds a registry key to make itself persistent across reboots.
5. Later, the malware encrypts the ‘Documents’ folder on disk, for ransom purposes, while

deleting itself to prevent security experts from reverse engineering it.

Goal: to clean up the system and remove all traces of the attack.

Fig. 2. Attack scenario used as a running example

“No AV scanner present”. Automated recovery may restore the AV scanner, but cannot
spot the relation with the memo, resulting in inconsistencies (see also Section 5).

In practice, however, (semi-)automated recovery can be a powerful tool in post-hoc
sanitization. By tracing what data was directly or indirectly generated by the attack, we
reduce the load on the administrator significantly. We do not claim that DiskDuster is
perfect. While it represents a significant improvement over the state of the art, and often
restores systems automatically, we require human intervention in some cases. Still, even
here DiskDuster indicates in detail which (parts of) files need further scrutiny.

Assumptions. In this paper, we assume the following:
1. Intrusions occur at arbitrary points in time and may not be detected until later.
2. Attacks can infect both user processes and the kernel.
3. Attacks may hide themselves root-kit style and turn off AV scanners and other

defensive mechanisms on the guest OS.
4. DiskDuster can detect the attack and trace it back to the moment of infection. Given

a recorded execution trace, we believe this is a reasonable assumption. A rootkit
may hide itself, but it cannot remove itself from the execution trace, which means
that AV scanners, taint trackers and other detection methods have a chance to detect
it eventually. Once an AV scanner detects a trojan on the system, we skip backwards
through the trace until we find a snapshot without the trojan binary, and then replay
the execution until it is created and executed for the first time.

5. Attacks cannot tamper with the recording process undetected. As the recorder runs
at the level of virtual hardware, this is a reasonable assumption.

Decoupled security. While it is possible to run DiskDuster on a stand-alone system,
we designed it for decoupled security [4]. Decoupled security records the execution on
a live production machine and replays it on a dedicated security server with additional
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security checks and recovery operations (see Fig.1). In other words, all security checks
and recovery operations run on the server.

Decoupled security hides the overhead of security checks from the production sys-
tem. At a small, constant cost of recording on the production system, we can apply
any security check on the replay side, including those too expensive to run on produc-
tion systems. Since we use full-system DTA, the overhead of our analysis is very high
(about 20x), we prefer to run it devolved from the production machine. Also, it is not
possible for malware to hide ‘rootkit-style’ after the infection. As the initial point of
infection is preserved in the execution trace, it can be found by periodic rescanning of
older traces with new signatures. Finally, recording provides automatic backup, fine-
grained versioning, and audit trails. Not surprisingly, decoupled security has become a
popular security model [8,4,24,33]. Moreover, vendors like VMWare now offer record
and replay functionality in their products [31].

Of course, recording and storing execution traces is not free, but in practice, the costs
are low (a few percent increase of CPU overhead and minimal log sizes [4,24]). A more
serious drawback of decoupled security is that attacks are always detected a posteriori.
The same is true for traditional AV scanners. If a new trojan comes out, it takes a while
before AV databases contain a signature for it. In either case, the challenge is to clean
up the system and remove all traces of the attack.

Implicit flows. One of the most difficult problems for dynamic taint analysis is that of
implicit flows [2,26], and we do not pretend to solve it in this paper. An implicit flow
occurs when an assignment depends on a tainted value in a condition. For instance,
consider the following code:

int y=0; if (x==1) y=1;

If x is tainted, perhaps y should be tainted also? After all, its value is completely deter-
mined by x. The problem is that implicit flows often lead to overtainting [2,26]. Recent
work by Kang et al. [13] presents an interesting approach to curtail overtainting for
certain applications, but for now implicit flows cannot be handled reliably. We do not
try to solve them at all, but we cannot afford to ignore them either, as skipping them
leads to false negatives. DiskDuster simply takes a conservative approach for malicious
data on disk; whenever a process has read malicious or suspicious bytes, all subsequent
writes are marked ‘suspicious’. As a result, taint laundering is impossible. We discuss
more interesting/problematic scenarios related to implicit flows in Section 5.

3 Architecture

After detecting an attack, DiskDuster traces it back to find the point of infection. It
then uses DTA to track the malicious code’s actions and undo the malicious effects.
DiskDuster tries to remove these effects by restoring the disk to a pre-infection state,
while presenting a user with lists of files and folders that became malicious or suspicious
in the period between the attack and the detection. While the user can safely assume that
files classified as benign are intact, they need to scrutinize the suspicious ones. Refer to
Fig. 3 for a timeline illustrating the course of actions performed by DiskDuster.
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Fig. 3. DiskDuster timeline. Upon detecting an attack, DiskDuster restores the disk to a pre-
infection state 1©, removes all malicious data, and presents a list of all suspicious files/folders 2©.

In addition, DiskDuster supports investigators by analyzing the attack. For instance,
for drive-by-downloads, DiskDuster separates the shellcode from its packers, and when
the shellcode downloads malware, it traces what bytes on disk change.

3.1 Decoupling DiskDuster: Recording and Replaying Execution Traces

Recording and replaying executions is hardly novel. In our lab, we have implemented
and written about several such systems ourselves, both at full-system [10] and pro-
cess [24] granularity. Others built similar solutions [8,1,30,19,33]. Moreover, VMware
Workstation 6.5 introduced replaying as standard feature.

By recording only a minimum of non-deterministic events, the overhead of recording
is small both in speed (a few percent) and storage (a few hundred Bps) [4]. Moreover,
even with expensive detection methods like DTA, the lag between the original execution
and the replica is minimal. In fact, the replayer typically has no problem keeping up with
the recorder, mainly because it does not need to wait (e.g., for reads from the network
or file system, or in idle loops). This is known as ‘idle boost’.

While the best fit for DiskDuster is clearly our tailor-made Qemu-based full system
replayer [10], we believe that with some effort other recorders, including VMWare’s
could be used also. Indeed, VMWare showed that one can record on VMWare and
replay on Qemu in Aftersight [4]. In this paper, however, we focus on recovery.

3.2 Tracking, Logging, and Snapshotting

Figure 4 illustrates the DiskDuster components. We briefly enumerate each of the mod-
ules here, and describe them in more detail in subsequent sections. All these modules
operate at the level of the emulated hardware and work with unmodified OSs.

Tainting. At the core of our architecture is a dynamic taint tracking module, capable
of tracking data in memory and on disk. The module is based on Argos [23] and the
propagation rules are similar to those of TaintCheck [18] and Minos [6]: (a) taint prop-
agates to the destination (register or memory) whenever tainted data is copied, or used
as a source operand in an arithmetic operation, (b) we clean the destination whenever
an operation has a constant output (i.e., the output does not depend on the instruction’s
inputs), and (c) like most systems, we do not propagate taint on dereferences of tainted
pointers.
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Fig. 4. DiskDuster architecture

Taint tracking in DiskDuster serves two dif-
ferent purposes. First, we use it just like most
other DTA solutions—to detect control flow di-
version and code injection attacks. For instance,
DiskDuster taints all data coming from the net-
work and raises an alarm whenever such bytes
modify the control flow of the program directly
(e.g., by overwriting the return address). Since
we do not track indirect flows, DiskDuster may
miss attacks that corrupt memory by means of
bytes propagated through indirect transfers, be it
tainted dereferences in translation tables, or im-
plicit flows in conditions. It simply means that DiskDuster is not a pefect detector, but
we do not see this as a serious limitation. We can easily complement DiskDuster with
other detectors, such as AV scanners, but perhaps also more powerful taint trackers.
After we detect an attack, the implicit flow is no longer a problem, because we conser-
vatively track everything that could be influenced by malicious data.

Second, and much more essential, is that DTA allows us to monitor malicious pro-
grams. For instance, once we know that a process is malicious, we mark all bytes written
by the process as malicious also—until we reach the end of the execution trace. Doing
so allows us to separate good data from bad data at recovery time. These two uses re-
quire different types of taint. Thus, besides the clean/untainted tag, we distinguish three
types of taint in DiskDuster, corresponding to three sources of taint:

Untrusted (Ū). We assign Ū tags to all data from untrusted sources (like the network).
Malicious (M̄). We assign M̄ tags to all bytes written by malicious processes.
Suspicious (S̄). When a benign process reads M̄ bytes, we propagate that tag through

the execution (see above). Thus, all writes of M̄ bytes to disk are also tagged M̄.
However, even if the written data does not derive directly from M̄ data, it may have
been influenced by it via an implicit flow. Thus, after a benign process reads M̄ or
S̄ bytes, we label all its writes not already tagged M̄ with the S̄ tag.

Monitor modules. The two monitor modules trace both process execution and disk in-
put/output. Specifically, the disk monitor keeps track of all reads and writes to disk,
while the process monitor tracks running processes. When DiskDuster detects an at-
tack, it marks the compromised process as ‘malicious’ and notifies the disk monitor.
From now on, all writes by this process receive an M̄ tag. In the process monitor, ma-
licious processes are handled in a special manner. For instance, when they start a new
process, the created process will be marked malicious also.

Logging, snapshotting and recovery. The logger stores all information generated by the
two monitor modules. The logs always include each write and read on disk, and in the
case of a compromised process, they also contain detailed information about the context
of the process. The snapshot module takes snapshots of the disk drive according to user-
specified policies. Snapshotting allows us to skip backwards and forwards through an
execution trace quickly. The recovery module, finally, sanitizes the system by replaying
write operations from the last snapshot until the moment of infection.
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3.3 Attack Detection

In our current prototype, DiskDuster detects attacks in one of two ways. First, it detects
memory corruption and code injection attacks by means of dynamic taint analysis. The
process is similar to other full system taint trackers like Argos [23] and Minos [6]. All
data arriving from the network is marked ‘untrusted’ (Ū). Whenever such data modifies
a process’ control flow (e.g., when it ends up in the program counter), the process
monitor treats it as an attack.

Second, when an external AV scanner detects new malware, we explicitly contact
the process monitor to mark the corresponding process as malicious. The AV scanner
is useful for attacks that do not compromise an existing program. For instance, a trojan
installed by the user. Other detection methods can be plugged in easily. Regardless
of how we detect the attack, from that point onwards, the process monitor tracks the
malicious process.

3.4 The Process Monitor: Tracking Attacks at Thread Granularity

Upon detecting an attack, the process monitor closely monitors the offending pro-
cess(es) to track which files and processes it influences and how. In the process, the
process monitor classifies threads and processes as malicious, suspicious or benign.
First, we explain these categories, and then we focus on technical challenges to support
them. By default, all processes and threads are benign and the only exceptions are the
malicious and suspicuous threads listed below.

Malicious threads. DiskDuster marks all processes corresponding to attacks reported
by the AV scanner or DTA module as malicious. DiskDuster also treats a thread as
malicious if it is attacked by local processes—for instance, when it uses a DLL provided
by a malicious process, or when its parent is malicious. Once a thread has become
malicious, all its writes are labeled with the M̄ tag. We say that a process is malicious if
it has a malicious thread.

Thus, the process monitor should both identify the malicious thread, and inspect
its execution context, such as the loaded dynamic libraries. Additionally, it tracks the
creation of new processes by malicious threads and marks them malicious also.

Suspicious threads. As discussed in Section 2, accurate tracking of implicit dependen-
cies is difficult, if not impossible. However, ignoring them causes false negatives. We
take a conservative approach, and track suspicious threads—threads possibly influenced
by malware—and ask users to verify the contents of suspicious files during recovery.

A benign thread becomes suspicious when we can no longer guarantee that malware
does not influence its actions. First, whenever a benign thread has read a suspicious or
malicious byte using I/O routines (e.g., from a file, the registry, or through interprocess
communication), we consider it suspicious. Second, when a process has a malicious
thread, we cannot rule out implicit flows between the malicious and benign threads.
DiskDuster therefore considers all benign threads in this process suspicious. Finally,
a child of a suspicious thread is also suspicious. We label all ostensibly clean data
written by suspicious threads with the S̄ tag. We call any process with suspicious threads
suspicious also. Thus, the process monitor again collects all information necessary to
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identify a suspicious thread, and tracks the creation of its children. It also monitors the
data passed through the I/O routines (e.g., file reads and writes).

Low Level Tracking to Classify Processes. Since the monitor resides at the (em-
ulated) hardware level, process tracking is not trivial—normal process semantics as
defined by the operating system are not readily available. The problem of extracting
high-level semantic information from low-level data sources is known as the semantic
gap, and has sparked much research activity in recent years [7,21]. We now discuss how
DiskDuster bridges it.

Process and thread identification. To identify threads and processes at the level of a
processor emulator, we use the solution proposed in Antfarm [12]. It tracks changes of
the cr3 (or page directory base) register, which stores the physical address of the page
directory. As a rule, a context switch implies changing the set of active page tables, and
thus loading cr3 with the value stored in the descriptor of the process to be executed.
DiskDuster uses cr3 as a unique process identifier.

However, since all threads of a process share the page table directory, this mech-
anism does not distinguish between threads. To increase the granularity of tracking,
the process monitor additionally looks up kernel-level data structures that hold process
information. In 32-bit Windows, the Thread Environment Block (TEB), pointed to by
the FS register, stores information about the currently running thread. As DiskDuster
can easily reach this data structure from the emulator using the register, we extract all
relevant thread information directly from the TEB.

Tracking semantics. In 32-bit Windows, the process monitor tracks the necessary se-
mantic information by intercepting a number of functions from the kernel32 library.
These include the process creation functions, and the I/O routines, such as the file and
registry read functions, or the interprocess communication functions. To determine ad-
dresses of these functions, the process monitor implements a solution typically used
by shellcode. Using the TEB, DiskDuster identifies first the Process Execution Block
(PEB), and then the loaded modules. Each loaded module contains the addresses and
symbol names of available functions. DiskDuster uses this information during calls,
jumps, and returns, and checks (at the level of the emulated hardware) if the program
counter indicates the entry point of a function we intercept. If so, it calls a registered
hook.

3.5 The Disk Monitor

As illustrated in Fig. 3, the disk monitor tracks all reads and writes to disk to support
two of DiskDuster’s main tasks: (1) restore the disk drive to a pre-infection state, (2) for
all post-infection disk activity, present the user with an analysis of clean and suspicious
files (so that she can safely keep the clean ones, and verify the suspicious ones).

The first task requires a replay of all disk writes that took place in the period between
the last uncorrupted snapshot and the attack. The disk monitor simply logs all operations
which modify data on disk, so that they can be repeated later.

Since the analysis phase requires precise information about clean, suspicious, and
malicious parts of the disk, DiskDuster extends its taint tracking module to handle disk
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operations, and stores taint values of the disk contents in a disk shadow map. Whenever
a process stores data to disk, the disk monitor checks whether it should label these bytes
with a tag. If the process is listed as suspicious or malicious, the data is labelled with
S̄ or M̄, respectively. Similarly, if the bytes carry a Ū, S̄, or M̄ tag already, DiskDuster
simply propagates it to the disk map. Conversely, when the program reads data from
disk, the disk monitor propagates tags from the disk map into the main memory map.
For instance, when a program reads tainted bytes from disk into memory, DiskDuster
tags the corresponding bytes with a tainted tag in the memory map.

The diskmap can store the disk taint information at block level or at byte level, de-
pending on the user’s needs. The block level would provide information about which
files were touched by an attack, while the byte level would be more specific and show
which exact bytes in the files were changed by the malicious process. In the evaluation
we used a byte level map. The taint propagation between the disk map and the main
memory map is done at the level of the IDE emulator of the VM.

3.6 Snapshots

Once DiskDuster detects an attack, it reverts the disk to a pre-infection state by replay-
ing disk writes that took place before the infection. Since replaying the execution from
boot time would incur a high overhead, DiskDuster uses disk snapshots. Upon detecting
an attack, it searches for the last snapshot before the infection, and replays only the
disk writes that happened since. DiskDuster’s snapshots are subject to simple policies,
like “snapshot at fixed time intervals”, or “snapshot after n disk writes”. For our exper-
iments, we use the second option, and snapshot when the total number of writes equals
10% of the disk size1. In practice, this occurred approximately every 10 hours.

Suspending the execution may lead to undesired consequences, such as time-outs on
network connections. To avoid such problems, DiskDuster implements live snapshots
of disk drives. Once it triggers a snapshot, DiskDuster creates a copy of the drive in the
background while the VM keeps running. During this process, all writes to disk generate
a copy of the modified blocks to the snapshot before they are committed to disk.

3.7 Recovery and Analysis

System recovery begins when the user has shut down the machine. As illustrated in
Fig. 3, DiskDuster starts by reverting the disk to a pre-infection state, then closely mon-
itors infected processes to find out which files, folders and processes they influenced.

First, DiskDuster determines the initial intrusion moment, or more specifically, the
first disk write by a malicious process. In the case of an attack detected by DTA, the
intrusion moment is fixed exactly at the point where a good process turns into a bad one.
If an AV software detects the infection, DiskDuster scans the logs for an operation that
modifies a disk block corresponding to a file matching the AV signature. In either case,
DiskDuster replays disk operations which took place before the first malicious write,
and it provides the user with a disk in a benign state.

1 The blocks need not be unique, so we snapshot also if the same 2GB of a 200GB drive are
written 10 times.
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Next, DiskDuster monitors offensive processes to log the data they influence (Sec-
tions 3.4-3.5), and presents a user with a list of clean, and suspicious (S̄) files (malicious
data is removed automatically). To map clean and suspicious disk blocks to file names,
we use an ntfs library [25] to read the filesystem metadata from the physical disk. We
extract the semantics of the filesystem to find the file name corresponding to a block.

As the disk monitor works at the physical level, a block on disk can be located in one
of the following regions: (a) inside the filesystem and belonging to the data runs 2 of a
file, (b) inside the filesystem but in a free region (i.e. not used by any file), (c) in the
filesystem’s metadata, or (d) outside the filesystem (e.g., the region of physical sectors
0-63 used by the bootloader). The reason for tracking writes outside the file system
regions, is that these sectors are used by advanced malware like TDL4.

The DiskDuster resolver provides a list of filenames for the blocks that belong to
filesystem objects like files, folders or metadata, and keeps additional information (like
region mappings) for the other blocks. Normal users will be interested mainly in the file
names, but security professionals may be interested also in the other information.

4 Evaluation

We now evaluate the effectiveness of DiskDuster in recovering from attacks. We do not
focus on performance, other than to say that the slowdown of 20x during analysis on the
replay side is no worse than that of other full-system DTA solutions [4,23,6]. Moreover,
the overhead is sufficiently small to make the replay side keep up (in fact, previous
experiments in decoupled security show that even with DTA slowdowns of 100x, the
replayer keeps up with the production system, because of the idle time boost [4,10]).

In the remainder of this section, we use DiskDuster to recover from a variety of
attacks.

4.1 Experimental Setup

We ran DiskDuster on a machine with an Intel(R) Core(TM)2 Duo CPU E8400 @
3.00GHz, with 6MB cache, 4GB of RAM memory, and a SATA disk drive. The oper-
ating system running on the host was Linux with kernel version 2.6.32. As the guest
we ran Windows XP with RAM memory size of 1GB, and a disk drive of 3GB with an
NTFS partition stored in the raw format.

4.2 Workloads

To evaluate DiskDuster, we observe how well it recovers from an attack which has hap-
pened at a point in the past. We assume that malware is active for a while, and observe
how much data modified by the user in the time between the infection and the attack
DiskDuster can restore. To test with workloads that are both realistic and repeatable, we
recorded several real Windows XP sessions using ReMouse3, and replayed them once

2 File content is made of data runs—lists of disk blocks with the actual content of the file
3 www.remouse.com

www.remouse.com
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the machine has been infected. The workloads contain the active use of a variety of
applications, including the Internet Explorer 6.0 web browser, the FoxIT PDF reader,
the standard Windows Picture and Fax Viewer photo editor, and the Notepad++4 source
code editor. For the experiments in Sections 4.3-4.4, we use five workloads, four short
ones (denoted WS-x), and one long one (denoted WL-1). The short ones are one hour
each with different activities with detailed descriptions (see below), while the long one
captures three working days of a researcher in our lab.

• WS-1 - the user visits a number of webpages using IE 6.0 and stores the content of
several of them, only to reload them from disk later.

• WS-2 - using the FoxIT PDF reader, the user loads and reads several PDF docu-
ments.

• WS-3 - the user writes and sends an email, downloads several pictures from the web
(IE 6.0) and edits them with the Windows Picture and Fax Viewer photo editor.

• WS-4 - in this session, the user writes a program using the Notepad++ source code
editor and makes a drawing using MS Paint. In both cases, the user stores, reloads,
modifies and saves the work in several files.

• WL-1 - in this session, the user engages in a wide variety of activities corresponding
to three full days of work.

4.3 Single Step Attacks

We first run DiskDuster with a set of straightforward attacks that do one or two things
only—to verify that it can recover from malicious actions in isolation. For this purpose,
we compromised the system using a drive-by-download from Metasploit (version 3.8.0-
dev) and ran the following test attacks at the start of the short workloads: WS-1,..., WS-4
(in each case, we “detect” the compromised process after exactly one hour):

(A) Binary patch. The malware binary downloaded modifies the executable file of a
benign application (in this case, the IE 6.0 web browser, the FoxIT PDF reader,
and MS Paint binaries). DiskDuster performs the analysis, and reverts the binary to
its state before the attack.

(B) Persistent drive-by download. This time the malware adds a registry key to make
itself persistent across reboots. DiskDuster performs the analysis, removes the bi-
nary, and restores the registry to its state before the attack.

(C) File deletion. The downloaded malware deletes a file from disk. DiskDuster per-
forms the analysis, removes the binary, and reverts the deletion operation.

To evaluate the effectiveness of DiskDuster, we perform two sets of measurements:
infection rates, and recovery results. Infection rates illustrate how quickly taint spreads
over the disk. We present the amounts of suspicious, malicious, and untrusted disk data
over time. Recovery results show the status of the disk after DiskDuster performed the
analysis. We discuss how many benign files and folders a user can safely keep, and how
many suspicious ones she needs to scrutinize. We focus on user data, but present results
for both \Documents and Settings, and \WINDOWS.

4 http://notepad-plus-plus.org/

http://notepad-plus-plus.org/
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Fig. 5–7 show the result of these tests. The graphs present the spread of malicious,
suspicious and untrusted data on the whole disk over time (at 5 min intervals), while the
tables count the files containing malicious and suspicious bytes. The files are gathered
into two categories: need review, and temporary. The user needs to scrutinize the for-
mer, while temporary files indicate data which she can flush, without any loss of work,
for example, the cache and the History folder of IE 6.0, or the dllcache folder of
the \WINDOWS \system32 directory.
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Fig. 5. The binary patch attack: infection rates and recovery results for four 60 minute workloads
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Fig. 6. The drive-by-download attack: infection rates and recovery results for four 60 minute
workloads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5 30 60 5 30 60 5 30 60

M
B

WS-1 WS-2 WS-3 WS-4

malicious
suspicious
untrusted

Docum. and Settings WINDOWS
WS File info Malicious Suspicious Malicious Suspicious

Files KB Files KB Files KB Files KB
1 Need review 4 1.47 0 0 32 46.33 7 39.00
1 Temporary 71 452.20 1 44.56 1 3.50 0 0
2 Need review 0 0 0 0 0 0 0 0
2 Temporary 0 0 0 0 0 0 0 0
3 Need review 0 0 0 0 1 0 0 0
3 Temporary 0 0 0 0 0.02 0 0 0
4 Need review 0 0 0 0 0 0 0 0
4 Temporary 0 0 0 0 0 0 0 0

Fig. 7. The file deletion attack: infection rates and recovery results for four 60 minute workloads

We make a few observations. First, WS-3 is more aggressive in spreading suspicious
and untrusted bytes. This makes sense, as the user downloads a fair amount of data
and then edits it. All these bytes are at least untrusted, and if the browser was mali-
cious, then all the edits and subsequent writes of these benign processes are suspicious.
Second, the three attacks have very different profiles in the way they spread malicious,
suspicious and untrusted bytes. This makes sense also, as some attacks make multiple
applications malicious, and thus spread more malicious bytes (e.g., the binary patch),
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while others do not contain much malicious data at all (e.g., the file delete). Finally, we
see that the number of files left malicious or suspicious is small—typically, these are
files downloaded by a malicious process and processed by another process. Most of the
user data was recovered.

4.4 Complicated, Real-World Attacks

In this section, we use DiskDuster to recover from four complex attacks involving real
world malware, including the Win32/Sality virus [29], the Win32/Alureon trojan [17]
and the Win32/Hupigon backdoor [16]. We follow the advanced attack scenario of
Fig. 2, and test four malicious binaries in step 4. After launching an attack, we replay
the long workload WL-1, which captures three working days (Section 4.2). We again
detect the attack at the end of the workload, prompting DiskDuster to start its analysis.

In each experiment, the user first infects IE 6.0 by visiting a malicious website. We
use Metasploit’s meterpreter to migrate the attack from the browser to another appli-
cation (e.g., the calculator). It deletes the antivirus program, downloads new malware
to disk, and executes it. Apart from its normal malicious activities, the malware adds a
registry key to make itself persistent across reboots, encrypts the Documents folder on
disk, for ransom purposes, and deletes itself from disk5. In all cases, DiskDuster was
able to restore the disk, undo the encryption, recover the AV scanner, etc.

In the remaining part of this section, we discuss the tested attacks in detail.

(I) Hupigon backdoor. Win32/Hupigon [16] is a backdoor, which provides an at-
tacker with access to, and control of, an infected machine. Hupigon registers its
component as a service.

(II) Sality virus. Win32/Sality [29] infects executable files. It replaces the original
host code at the entry point of the executable to redirect execution to the poly-
morphic viral code, which has been encrypted and inserted in the last section
of the host file. In addition, W32/Sality searches for specific registry subkeys to
infect the executable files that run when Windows starts.

(III) Alureon trojan. Win32/Alureon [17] is a trojan that allows attackers intercept
Internet traffic in order to gather confidential information such as user names,
passwords, and credit card data. It may also allow to transmit malicious data to
the infected computer.

(IV) Zhelatin email worm / rootkit. Zhelatin [9] spreads in e-mails with war-related
subjects as an attachment named ”video.exe”, ”movie.exe”, ”click me.exe” and
so on. After start-up, it drops a randomly named file into the same folder where
it was started from and runs it; this file installs a rootkit and p2p (peer-to-peer)
component into the Windows System folder. In addition, it kills processes corre-
sponding to virus scanners.

Fig. 8-13 show the results of these tests. The graphs present the spread of tainted data on
the whole disk over time. The tables count the files containing malicious and suspicious
bytes for two attacks which perform lots of system activities: the Win32/Sality virus

5 In record/replay, AV scanners can still detect it, as the full execution trace is available.
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and the Win32/Zhelatin email worm/rootkit. Observe that similarly to Section 4.3, taint
spreads quite aggressively, and it is again expected. For example, all files a malicious
IE 6.0 process stores in the Temporary Internet Files folder, become malicious
as well. Next, since DiskDuster reverts the disk to a pre-infection state (while keeping
most recent changes in the user directory), we are not so concerned about the taint in
the system files. Finally, observe that the number of other files is small—these are again
typically files downloaded by a malicious process, and modified by another one.
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Fig. 8. The Win/32 Hupigon backdoor: infection rates for the WL-1 workload
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Fig. 9. The Win/32 Sality virus: infection rates for the WL-1 workload

Documents and Settings\diskduster WINDOWS

File info Malicious Suspicious File info Malicious Suspicious
Files KB Files KB Files KB Files KB

Need review
My Documents 11 25253.30 0 0 repair 2 14.33 1 0.21
Local Settings \Application Data 3 7.18 0 0 Microsoft.NET 24 104.66 1 3.21
Documents and Settings 9 950.50 1 53.98 system32 53 927.13 7 16.30
- - - - - WINDOWS 32 173.08 6 113.24

Temporary files
Local Settings \Temporary Internet Files 65 566.79 1 16 system32 \dllcache 14 87.18 1 1.19
Local Settings \Temp 34 74.75 2 6.52 - - - - -
Local Settings \History 3 23.85 1 0.62 - - - - -
Recent 5 4.16 1 1.19 - - - - -

Fig. 10. The Win/32 Sality virus: recovery results for the WL-1 workload. L S = Local Settings;
T I F = Temporary Internet Files

5 Limitations

As DiskDuster automatically recovers in the majority of cases and for very complicated
attacks, a valid question is: why not in all cases, and why do we recover user data only—
rather than the full system state? The answer is that there are subtle scenarios that are
problematic or impossible for DiskDuster to solve. They are related to implicit flows.
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The first problematic scenario concerns implicit flow in the user’s head. We already
discussed it in Section 2: a user makes a note (in a memo, say) about the absence of an
AV scanner. As the information flows via the user’s mind, DiskDuster cannot detect it.

The second problematic scenario concerns checksums on data structures with ma-
licious data. While not too common, the system occasionally performs a calculation
over data structures that contain malicious (M̄) data. For instance, consider an OS-
level linked list with a checksum. Both malicious processes and benign applications add
nodes to the list and update the checksum. Whenever DiskDuster detects malware, the
recovery process removes all malicious nodes from the list. However, doing so corrupts
both the list and its corresponding checksum. The correct action would be to remove
the malicious nodes and all nodes dependent on the malicious nodes, and then to restore
the checksum. This is not possible without detailed semantic knowledge about the list.
Unfortunately, since the OS sometimes stores such data structures on disk, we may end
up with a corrupt system.

 0.1

 1

 10

M
B

Day 1

malicious
suspicious
untrusted

Fig. 11. The Win/32 Alureon trojan: infection rates for the WL-1 workload. (Due to some prob-
lems with the replaying software, we limit the results to one working day.)
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Fig. 12. The Win/32 Zhelatin email worm/rootkit: infection rates for the WL-1 workload

Documents and Settings\diskduster WINDOWS

File info Malicious Suspicious File info Malicious Suspicious
Files KB Files KB Files KB Files KB

Need review
My Documents 1 17.50 1 4.80 repair 0 0 2 8.75
UserInfo 0 0 1 32.06 Microsoft .NET 3 28.00 15 57.85
Cookies 0 0 2 72.95 system32 23 1283.74 13 43.07
NTUSER.DAT 1 1.20 0 0 WINDOWS 16 122.55 20 105.78

Temporary files
Local Settings\Temporary Internet Files 0 0 50 702.98 system32\dllcache 9 77.00 2 0.69
Local Settings\History 0 0 2 13.99 - - - - -
Local Settings\Application Data 0 0 1 1.59 - - - - -
Recent 0 0 5 3.88 - - - - -

Fig. 13. The Win/32 Zhelatin email worm/rootkit: recovery results for the WL-1 workload
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To ensure correctness in the presence of implicit flows, DiskDuster currently restores
the entire file to an benign version if any part of the file is flagged malicious. This results
in correct recovery, but drops more benign writes than strictly necessary.

Finally, there may be implicit dependencies on restored files. Consider again a linked
list manipulated by both malicious and benign processes and a benign process that reads
a few benign nodes from the list and writes them out to a log. As it does not read M̄
or S̄ data, it remains benign throughout its lifetime. At some point, DiskDuster restores
the file with the linked list to a previous safe state, as explained above.

The problem is: what do we do with the benign process’ log file? Because of the
implicit dependency on the file (and its malicious contents), we cannot keep it as is,
lest we introduce inconsistencies. Thus, we track the fact that the read accessed a file
that DiskDuster restored, thus making the log file a candidate for restoration also. And
so on. The additional roll-backs keep the system consistent, but again lead to possibly
dropping a few more benign writes than strictly needed.

6 Related Work

Decoupled security checks. Recording and replaying is used in many research
projects [8,1,19]. Full decoupled security for virtual machines was introduced by
VMware [4], and the model was quickly picked up byothers (e.g., for mobile phones [24]
and fast Xen VMs [33]). AfterSight [4] comes closest in spirit to the record and replay
side of DiskDuster. However, all these systems differ from DiskDuster in that they limit
themselves to attack detection and leave remediation to the administrator.

Data recovery. Most automated attack recovery systems either focus solely on data on
disks (much like advanced versioning systems), or rely on the support of the target OS—
either in the form of a module inside the victim’s machine [15,5,11,28,32,20,14,3], or a
proxy [34,28].

Many of these projects depend on external methods to indicate the root cause of
an infection, and to obtain high level semantics (e.g., the way in which the OS uses
the password file, the dependencies between OS-level operations, etc.). Such infor-
mation facilitates the process of intrusion recovery, and aids in building dependency
graphs [15,11,32,14], and behavior models [20]. As a result, the analysis becomes more
detailed than in systems which operate at the machine level, like DiskDuster.

However, since we cannot assume the integrity of the kernel of a monitored system,
it is possible that attacks hinder the analysis, for example by modifying the logs or
the dependency graphs. In contrast, DiskDuster carries out a comprehensive analysis
without relying on any kernel support whatsoever, and is still able to recover from very
sophisticated attacks. We now discuss the most related projects in more detail.

In Wayback [5] versioning is automatic at the write level: each write to the file cre-
ates a new version, so that access to any previous version is possible. Wayback needs
knowledge about the filesystem and modifies the monitored system. Similarly, Back-
Tracker [15] is implemented inside the OS and tracks OS objects. It extracts dependen-
cies between different components as the attack evolves and can produce dependency
graphs.
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Taser [11] uses a kernel module to log kernel operations on processes, filesystems
and the network for Linux systems. The analysis is decoupled and assumes that the
kernel of the monitored host is not compromised. Using the semantic information it
constructs detailed dependency graphs to track data flows.

SEE [28] explores one way isolation for Linux processes—processes do not share the
disk, and all their commits are written in different locations. It achieves such isolation
by interpositioning at the level of system calls and the virtual filesystem layer, using
copy on write implemented as file copy operations. Essentially, it is a filesystem proxy
implemented as kernel modules that creates a shadow drive for the process. At the end
of execution, it either commits or discards the changes based on user input. Thus, the
user must review all changes. With DiskDuster users review only suspicious data, while
DiskDuster restores the malicious bytes.

Paleari et al. [20] aim to generate remediation procedures to purge infections from
a system, but the system can only recover system state and some system files of Win-
dows, and cannot handle deleted files. The system records system calls executed in the
emulated environment and infers behavior models based on sequences of the system
calls and their parameters.

Retro [14] is a recovery system for Linux that relies on a kernel module to generate
action history graphs. The design assumes that the kernel, filesystem, checkpoints or
logs are always safe. Another crucial assumption is that the infection is discovered very
quickly, otherwise the graphs become too hard to manage. After detecting an infection,
the system reexecutes processes and may block if user input is needed and wait for the
input in order to continue. In contrast, DiskDuster successfully recovers from attacks
that have been active for days.

Back to the Future [3] removes malware and helps users repair systems after an at-
tack. The implementation is Windows specific and requires significant user interaction.
The user needs to define a priori which is the trusted data and only modifications of this
data are logged. Moreover, the user has to decide what to do whenever an untrusted pro-
gram interferes with a trusted program. The framework is selective about the monitored
system calls and may also decide to terminate a process and inform the user.

7 Conclusion

We have described DiskDuster, an attack analysis and recovery system capable of re-
moving all traces from complicated attacks. DiskDuster relies on execution trace record-
ing, snapshotting, and especially taint analysis to track a malcode’s actions. Although
an attack may be detected long after the infection, DiskDuster is able to roll back to the
initial point of infection and restore the disk to that state.We demonstrated the power of
our system with complicated and real-world attacks.

DiskDuster greatly helps the analysis of an attack by the classification of bytes lo-
cated on the physical drive into trusted, malicious and suspicious(which may be the
result of implicit flows). Using DiskDuster, the user can recover all post-attack data
which was not touched by the attack and is still clean.
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Abstract. Internet-borne threats have evolved from easy to detect de-
nial of service attacks to zero-day exploits used for targeted exfiltration
of data. Current intrusion detection systems cannot always keep-up with
zero-day attacks and it is often the case that valuable data have already
been communicated to an external party over an encrypted or plain text
connection before the intrusion is detected.

In this paper, we present a scalable approach called Network Inter-
rogator (NetGator) to detect network-based malware that attempts to
exfiltrate data over open ports and protocols. NetGator operates as
a transparent proxy using protocol analysis to first identify the de-
clared client application using known network flow signatures.Then we
craft packets that “challenge” the application by exercising functional-
ity present in legitimate applications but too complex or intricate to be
present in malware. When the application is unable to correctly solve and
respond to the challenge, NetGator flags the flow as potential malware.
Our approach is seamless and requires no interaction from the user and
no changes on the commodity application software. NetGator introduces
a minimal traffic latency (0.35 seconds on average) to normal network
communication while it can expose a wide-range of existing malware
threats.

1 Introduction

Targeted and sophisticated malware operates unhindered in the enterprise net-
work. Indeed, the Anti-Phishing Working Group (APWG) [1] reported that the
first six months of 2011, data-stealing malware and generic Trojans increased
from 36% of malware detected in January, 2011 to more than 45% in April, 2011.
Sophisticated malware utilizes obfuscation and polymorphic techniques that eas-
ily evade anti-virus and intrusion detection systems. A study by Cyveillance[11]
showed that popular anti-virus solutions only detected on average less than 19%
of zero day malware increasing only to 61.7% on the 30th day.

Once inside the host, malware can establish command and control channels
with external points of control, often controlled by a single entity called a bot-
master, and form drop points to exfiltrate data. To avoid detection, malware
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utilizes legitimate and usually unfiltered ports and protocols, including popular
protocols such as HTTP, to establish these communications. Due to the volume
of network traffic, enterprises are unable to effectively monitor outbound HTTP
traffic and discern malware from legitimate clients. Current botnet detection sys-
tems focus on identifying the botnet lifecycle by looking for specific observables
associated with either known botnets or typical botnet behaviors. These ap-
proaches suffer from the fact that malware continues to evolve in sophistication
improving their ability to blend into common network behaviors.

Additionally, current systems are unable to inspect encrypted communica-
tions, such as HTTPS, leaving a major hole that malware will increasingly cap-
italize on. The use of encrypted traffic has been growing as web applications
begin utilizing HTTPS for its privacy benefits. For example, Facebook recently
announced HTTPS as an optional protocol for accessing its site. While an im-
provement for privacy, the use of HTTPS poses major technical hurdles for
current network monitoring and malware detection.

In this paper, we demonstrate the results of a novel approach called Net-
work Interrogator (NetGator) to detect and mitigate network-based malware
that (ab)uses legitimate ports and protocols to initiate outbound connections.
NetGator operates as a transparent proxy situated in the middle of all network
communications between the internal clients and external servers. Our approach
consists of two phases that are real-time and completely transparent to the user.
In the first phase, we employ a passive traffic classification module that per-
forms protocol analysis to first identify the advertised client application type
(i.e. browser, program update, etc.). We do so based on existing network signa-
tures for legitimate applications including the use of ordering of traffic headers
that sometimes characterizes the host application. The main purpose of this
first order flow classification is to determine the claimed or declared identity of
the end-point software that generated the traffic into two classes: potentially
legitimate or unknown.

As a second phase, for flows that we can successfully classify as part of po-
tentially legitimate applications inside the organization (e.g., approved browser
using HTTP(S) on port 80 or 443), Netgator attempts to further probe the end-
point application by inserting itself as part of the network communication.We do
so by issuing a challenge back to the client that exercises existing functionality of
the legitimate application. A challenge is a small, automatically generated piece
of data in the form of an encapsulated puzzle that a legitimate application can
execute and automatically respond without any human involvement. If the ap-
plication is unable to correctly solve and respond to the challenge, NetGator will
flag the source as potentially being malware and optionally sever the connection
along with reporting the offending source. Therefore, rather than attempting to
classify network traffic as either good or bad based on network (packet, flow, or
content) inspection, the second phase of NetGator focuses on validating that the
traffic stems from a legitimate application.

The proposed approach is an automated twist of the Human Interactive
Proofs mechanism (e.g., CAPTCHAs), but focused on verifying program internal
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Fig. 1. Study of 1026 samples from popular classes of zero-day malware

functionality rather than humans. We call this approach Program Interactive
Challenges (PICs). We define a PIC as a challenge comprised of a request and
expected response pair which tests for existing functionality of legitimate appli-
cations. A PIC can be generated when there is an end-program state that has
a deterministic programmable network response and that state can be triggered
by communication with the server. The complexity of the PIC depends on the
complexity required to implement that state on the client side. The intuition is
that if the challenges are diverse enough and exercise complex functionality of
the legitimate applications, malware will have to either implement said function-
ality making it large or attempt to create application hooks or use the legitimate
application to “solve” the puzzle. In the former case, the malware code will in-
crease dramatically since malware has to now implement a lot of unnecessary
and complex functionality, for instance, a JavaScript parser. In the latter case,
the malware will have to farm out the traffic to the corresponding legitimate
local end-point application to solve the puzzle. In addition, the malware will
have to insert itself after the puzzle exchange while suppressing traffic from the
legitimate application. Our approach raises the bar because it forces malware
to perform additional invasive operations that would not be required without
our system. It is not enough for the malware to just link to Browser libraries
that implement communications, the malware has to also take over the HTML,
Javascript, and Flash rendering engines. Therefore, NetGator increases the at-
tack complexity for the adversary without requiring any human involvement.

We tested our system on 1026 zero-day malware samples in Windows virtual
machines. Our experiments show that the majority of malware uses popular,
unfiltered network ports to connect to remote servers for various purposes. Fig-
ure 1 shows that nearly 80% of the malware samples used HTTP/S for outbound
communications. Therefore, we focus on developing PICs for browsers to show
the effectiveness of our method. We can leverage HTML, Flash, Javascript, and
other common browser components to form challenges for browsers. However,
our approach is more general and can be extended to generate and use PICs for
other applications (e.g., VoIP, OS updates) through analyzing the functionality
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supported by the application software agents. Second, most malware only in-
cludes minimal functionality to reduce its size and avoid being detected, so it
cannot correctly respond to the challenges. For example, many malware scripts
use the “wget” command to download malicious code from external servers with-
out compromising the browsers in the OS. Such scripts do not know how to
respond to the PICs for the browsers. If a large-size malware includes all the
challenging functionality for a browser or compromises the browsers in the OS,
it can defeat our solution; however, we increase the bar for attacks to succeed.

We implemented a prototype NetGator system that includes different PICs for
browsers. For non-text/html data, NetGator issues challenges when it receives
the request packets from the client, which we refer call request challenges; for
text/html data, it issues challenges when it receives the response packets from
the external servers, which we call response challenges. Compared to request
challenges, response challenges can reduce the overhead that might be intro-
duced when enacting the request challenge on each HTTP request and prevent a
malicious agent from downloading an executable that is disguised as an HTML
file. However, it may lower the security by allowing the malicious request to
complete even if the software agent is detected as malicious later. The experi-
mental results demonstrate the effectiveness of PICs in identifying malware that
attempts to imitate the network connection of popular browsers. It introduces an
average of 353 milliseconds end-to-end latency overhead using request challenges
and 24 milliseconds using response challenges.

In summary, we make the following contributions:

– We designed a malware detection system that utilizes a two-pronged ap-
proach to identify malicious traffic. We first classify traffic using passive
inspection. For the flows that correspond to potentially legitimate applica-
tions, we “challenge” the host application by automatically crafting Program
Interactive Challenges (PICs) that exercise complex functionality present in
the legitimate application.

– We demonstrate the feasibility of our approach using HTML, Flash,
Javascript, and other common browser components to form challenges for
browsers. PIC was able to expose a wide-range of malware threats operating
inside Enterprise networks.

– Netgator can be used in practice: it does not incur significant communication
overhead and it does not require any user interaction or changes on the
commodity application software.

2 Background

2.1 HTTP Headers and MIME Types

HTTP request and response packets contain various header elements which en-
case pertinent information about the transmission. Requests are prefaced by var-
ious headers notifying the server of what the client expects to receive. Responses
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are accompanied by headers as well informing the client of what is being trans-
mitted. Each browser uses a distinct header ordering. The same browsers also
have slight differences depending on which operating system they are running.
Our passive inspection module uses these unique orderings to create signatures,
which can be used by the active challenge module to identify browers and pick
appropriate PICs to challenge the browser. Multi-purpose Internet Mail Exten-
sion(MIME) types describe the content type of the message being transmitted.
The main general MIME types are application, audio, image, text, and video.
Since the majority of most web pages have the MIME type text/HTML that can
be challenged on the response instead of the request, we can reduce the overall
network delay caused by the active challenges.

Internet Content Adaptation Protocol (ICAP) allows for the modification
and adaptation of HTTP requests and responses. All the various elements of
HTTP messages can be edited. Typical uses of the ICAP protocol include actions
such virus scanning or content filtering. The protocol relies on an ICAP client
that forwards traffic to an ICAP server, which is in charge of the adaptation
of requests/responses. In our implementation, we use the open source proxy
Squid [5] as our ICAP client and use the open source option Greasyspoon [2] as
our ICAP server. Greasyspoon allows scripts written in various languages (Java
in our system) to act on all incoming requests and responses.

3 Threat Model and System Architecture

3.1 Threat Model and Assumptions

We assume that a client machine in an enterprise network may be infected with
malicious code, and malicious code needs to “call home” and establish a back
channel communication with remote server(s). The malware does not form con-
nections immediately upon execution, but waits for an indeterminate amount of
time or a user event before initiating network connection. Moreover, we assert
that a certain subset of browser components and capabilities are necessary to
navigate the Internet and confine our challenges to these.

The sophistication of most current malware has not yet reached the level of
implementing or imitating the entire HTML, Javascript, or Flash engines and
software stacks within themselves. The code size of a sophisticated malware will
increase dramatically in order to include the functionalities for responding all
the known active challenges, and make it prone to being detected. We assume
malware that has infected a host does not wish to access the full software stack
of the legitimate application software (e.g. browsers) that natively reside on the
system in order to remain stealthy and launch attacks quickly.

NetGator utilizes a network-level transparent proxy to identify and filter out
unknown traffic. For the traffic that matches programs that have been approved
for the organization, we automatically craft active challenges to probe and verify
end-point applications. Figure 2 depicts NetGator’s system architecture. In the
network, all traffic to be inspected is routed to this proxy. If the application
passes both the passive inspection and active challenge, the proxy permits the



NetGator: Malware Detection Using Program Interactive Challenges 169

Fig. 2. NetGator System Architecture and Traffic Control Flow

outbound connection by forwarding the traffic to the default gateway. Connec-
tions that are either unknown or fail to pass the active test are dropped (or a
human operator can be informed depending on the site’s policy).

The network proxy consists of two major components: passive, signature-
based flow inspection and active challenges. The passive inspection module acts
as an initial filter, recognizing the known (and legitimate) category of the end-
point software applications. We do not need the exact version of the end-point
application but rathe its broader type (Browser, updater, etc.). Traffic from
unknown applications can be treated preferencially allowing in the insertion
of policies blocking, alerting, or even logging the flows that stem from such
unmapped applications. This enables our system to adapt to new applications
and network environments since new applications can be immediately recognized
and mapped thus becoming “known”. Traffic flows for which we already have
a signature are issued active challenge(s) to further verify the legitimacy of the
end-point software that generated the network traffic. The Program Interactive
Challenges (PICs) are automatically generated by the proxy in advance and can
chose from a wide variety of potential functionality based on the complexity
of the end-point software. For instance, for browsers we show more than three
different types of PICs that can be used.

To bootstrap in an enterprise network, traffic should be gathered for a period
of time to decide what applications are operating on the network. Once armed
with this information, we can utilize the passive inspection module to accom-
plish two tasks: filtering out malicious/unknown traffic and classifying known
applications. First, by knowing which applications are expected to be traversing
the network, we can drop any unknown, potentially malicious traffic as well as
known malicious traffic. Second, the ability to classify the known applications
allows us to send the corresponding active challenges to specific types of applica-
tions. We can derive passive signatures from packet header information collected
from packet sniffers such as Wireshark [7]. These signatures are representative of
the distinct HTTP header content and HTTP header ordering that each browser
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possesses. However, the passive inspection module cannot provide timely filtering
or blocking in zero-day attack situations. Moreover, since network requests can
be easily altered, a request may be generated by malware masquerading as legit-
imate software. NetGator provides an active challenge mechanism to effectively
detect and mitigate these attacks.

For a known application, the NetGator proxy can obtain the type and version
of the supporting software from the passive signatures collected by the passive
inspection. The proxy maintains a table that records the corresponding program
interactive challenges (PICs) supported by each application software. Therefore,
the proxy can send one or more PICs to the application that initiates the commu-
nication. For legitimate applications, they should be able to correctly respond to
the challenges with their embedded functionalities. For example, we can leverage
HTML, Flash, Javascript, and other common browser components to form chal-
lenges for browsers. If the application is unable to correctly solve and respond
to the challenge, NetGator will flag the source as malicious.

Depending upon the type of requested data in the packet, the proxy can chal-
lenge either the request or the response. When challenging the network request
the proxy receives a request from an application and blocks it, while returning a
challenge as the response to the application’s request. Only if the application can
successfully solve the challenge and respond to the proxy, the proxy will forward
the original request to the default network gateway. For instance, any HTTP
request for application audio, or video data should be challenged and blocked
until the challenge is solved. Challenging the network response allows the ap-
plication’s request to pass through but inserting our challenge into the original
response from external servers and then sending it to the application. Legiti-
mate applications can solve the challenges and notify the proxy. If the proxy
cannot receive a correct answer from an application after sending the response
challenge for a pre-defined time, it marks the software agent as malicious. For
text/HTML requests, we can insert challenges into the response’s text/HTML
data. Challenging the request provides stronger security than challenging the
response, since the application cannot obtain any useful data information from
the external servers if it cannot pass the challenges. However, challenging the
response can offer a smaller network latency, since the application only needs to
solve the challenges after the response data has been received.

One of our primary design principle is to keep the system transparent to
the end-user and adaptive to new software. Our approach does not require the
user to prove or input anything, but shifts the onus of proof to the requesting
application. Moreover, since our solution only utilizes the existing functionalities
in commodity application software, we do not need to change their source code.

4 Design and Implementation

We design and implement both the passive inspection module and the active
challenge module in NetGator, which supports both challenging at the request
and challenging at the response. Since browsers represent a vast majority of
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Fig. 3. Distribution of applications on port 80 of a large university network

traffic on a typical network and HTTP protocol is widely exploited by mali-
cious code, we focus on developing PICs for validating browsers. However, our
methods can easily be adopted to challenge other agents by identifying unique
functionality that they possess including ones that also utilize HTTP/S.

4.1 Passive Inspection

The passive inspection module consists of two parts: signature generation and
signature matching. First, it employs protocol analysis to first identify the ad-
vertised client application type based on its network communication signature.
This signature is derived from a distinct ordering of traffic headers found in each
client. Since different versions may support different sets of functions, it gener-
ates the signatures for different software agents with different version numbers
and saves the signature in a data set. Second, it inspects the real time traffic,
dynamically derives the signature of the user agent, and compares it with the
signature seen to identify the user agent. The signature set is used to deter-
mine the claimed identity of the end-point software that generated the packets
as known or unknown. Our passive module will drop the traffic from unknown
client programs. Known traffic (e.g., http(s) through port 80 or 443), may pass
through without being blocked or receive further inspection.

The signatures of user agents are generated automatically by observing traffic
on the network and extracting HTTP header orderings. First a packet capture
is performed on the network to gather information about which applications are
running on the network. The pcap file is then exported into an XML file from
Wireshark [7]. Once the data is in XML format, it is processed by a Python
script. This script then extracts the message header and assigns a number to each
HTTP header forming the signature. With unique signatures for each application
that exists on the network we are able to issue the proper PIC(s) for each agent.

To perform real time detection, it sniffs the packets that traverse the network
scanning for HTTP header instances that match our signature set of various
user agents. A modified version of tcpflow [6], which we call protoflow, scans the
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network traffic and pass the information to our identifier program. The change
made is to write the data acquired by the capture to a space in memory which is
shared by our second piece of software called inspector. Inspector takes the strings
from the shared memory and compares the data against a collection of regular
expressions that distinguish various user agents. These regular expressions are
made up of the specific HTTP header ordering that are unique to each different
browser.

We develop a string matching algorithm to check whether the “user-agent”
string in the HTTP headers contains the name of browsers, including “Firefox”,
“Chrome”, “Safari”, “Opera”, “MSIE 8.0”, “MSIE 7.0”, “MSIE 6.0”. If yes, we
label the packet as “browser”, otherwise label it as “non-browser”. For packets
that do not provide any user-agent information, we label them as “non-labeled”.
We run the algorithm on the traffic of a large university for two hours, and
label 8,825,177 packets as “browser”, 1,143,040 packets as “non-browser”, and
110,763 packets as “non-labeled”. Figure 3 shows that traffic on port 80 (HTTP)
is mostly comprised of browsers, but other applications can communicate via
HTTP as well. The most common non-browser user agents include web-crawlers,
application updates, bots, or spiders. For example, we observe 15,506 occurrences
of web-crawlers. For those “non-browser” applications that utilize HTTP/S, we
need to develop separate PICs for each type of user agents.

Fig. 4. Active Request Challenge Flow

4.2 Active Challenges

The active challenge module consists of a transparent proxy and an ICAP server.
The proxy redirects all network request and response traffic on ports 80 and
443 to the ICAP server which then generates and verifies PICs to the client
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software. Based on the Multipurpose Internet Mail Extensions (MIME) type of
the requested data, the ICAP server either rewrites the response completely,
or simply inserts additional code into the response code. If the response is any
type of non-text/html data, the client request is blocked and a completely new
response containing only our challenge is sent back to the client. For text/html
types, the challenge code is inserted inside of the original response to reduce the
network delay.

We use Squid 3.1.8 as the proxy for rerouting HTTP and HTTPS traffic and
the ICAP server, Greasyspoon, for handling scripts on requests and responses.
To handle HTTPS traffic, Squid’s ssl-bump feature is harnessed. HTTPS traffic
leaving the host is encrypted with a single key that the proxy possesses. Once
the traffic reaches the proxy, it is decrypted and forwarded to Greasyspoon for
generating and verifying challenges. Next, the proxy re-encrypts the request with
the key established with the targeted external web server. This raises the concern
that the client will never receive the external server’s certificate, thus leaving it
vulnerable to phishing sites. This can be handled by leveraging the trust of the
Netgator proxy. That server can determine if a certificate that returns from an
external site is legitimate or not. This method enables us to intercept HTTPS
requests initiated by malware where other solutions would typically fail.

To keep track of the various connections, we leverage Greasyspoon’s cache
which contains a hashmap. For each IP address and user agent pair, this hashmap
contain an entry that records whether the client passed a challenge, how many
times it has been challenged, as well as how many times it passes the challenge.
Thus, even if the malware correctly forms a user-agent string that is operational
on the infected machine, the hashmap still can reflect that an entity on the
system did not pass the challenge. The hashmap is periodically written to a log
file available for inspection.

To reduce the number of challenges, the proxy automatically passes a network
request for a page if the requesting client has passed a request for that page’s
domain. For example, if a client requests to access www.foo.com/bar and has
already proven itself while requesting www.foo.com, the proxy will let it pass
automatically. This enables us to lessen the burden from websites that trigger
many GET requests for items such as images or flash objects. The list of ”passed”
domains is periodically cleared in order to catch malware that might use one of
these sites for control communication. It is also possible to operate Netgator
without keeping these records, and thereby issues challenges to each request,
albeit with an increase in overhead.

Challenging Network Requests. When the proxy observes a request for non-
text/html data, it issues a challenge to the client. The challenge can take various
forms based on the functionality of the browser. Whichever test is administered,
the driving element behind each of them is a redirect to the original requested
URL with a hash appended to it. The only challenge that needs to contain more
than a simple redirect command is the Flash challenge, which is a Flash object,
not actual lines of code. The nature of the Flash challenge actually allows it to be
more difficult for an attacker to bypass since the Flash object is embedded in the
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(a) Javascript Challenge Code

(b) HTML Challenge Code

(c) Flash Challenge Code

Fig. 5. Response with various active challenges

HTML page with Javascript, essentially combining two of our challenges into one.
To correctly pass the requested URL and hash to the Flash object, Javascript
functions are embedded and returned in the HTML code to interact with the
object and provide it with the redirect information needed. If the client is able
to correctly execute the challenge, Greasyspoon can match the new request with
an appended hash to the originally requested URL. If the hash is correct, the
request is allowed to pass; if the hash is incorrect, the request is dropped and an
error message is sent to the client. Figure 4 shows the implementation for the
request challenges.

The responsibility of Greasyspoon is to intercept the connection when it ob-
serves a request and send back a custom crafted response to the client in order
to initiate the challenge. In order to correctly form the response, Greasyspoon
executes a Javascript, which generates the hash and then crafts the new HTML
code that will be returned to the client. A tuple of four factors is used to generate
the hash: a static, secret key known only to the proxy, the requesting client’s
IP address, the URL being requested, and the current time’s seconds value.
The Javascript calculates a hash value from this tuple using SHA1. Next, this
Javascript replaces the header and the body of the request in order to customize
the response with the hash value for the client. The header must be replaced
with a properly formed HTTP response header to signal Greasyspoon that a
response is required to be sent back to the client directly from the proxy. For
our implementation we use a standard HTTP/1.1 200 OK response HTML code
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and insert a fragment of Javascript code that executes a redirect operation. The
sample response codes using Javascript, HTMl, and Flash are shown in Figure 5.

The codes for the Flash and HTML challenges both contain a redirect function
to the originally requested URL with a hash concatenated to it. If the client is
able to correctly execute the challenge code, the proxy will see a separate request
with a hash appended to it. If the hash is correct, the new request is allowed
to pass through and the hashmap of Greasyspoon is updated to reflect that a
particular IP and software agent combination has passed the challenge. The size
of the request scripts each average around 280 lines of code.

Since the hash is sent back in plain text it is conceivable that an attacker could
simply parse the response for the hash and initiate the correctly formed request if
they have knowledge of our system. We can prevent this attack by encrypting the
hash with an AES Javascript implementation [3]. The new Javascript provides
the code to decrypt the hash and requires the malware to include functions for
AES decryption.

Fig. 6. Active Response Challenge Flow

Challenging Network Responses. If the data requested is of the type text/
html, the proxy allows the request pass through. When the response comes back
for that request, a challenge code is inserted in the response. For instance, an
image that resides on the proxy can be embedded in a Javascript challenge code.
A Javascript write statement tells the browser to include the image via HTML
”img” tags. The proxy then looks for requested for this specific image and once
it sees one, it knows that the challenge has been completed successfully. Figure 6
shows the control flow for active response challenges.
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Fig. 7. Example Logfile Entry

The processing script has two parts: a request script and a response script.
Combined, there is about 300 lines of code. The request processing script first
determines if the client is expecting a text/html response or if the request is
for our specific challenge image. If the client is expecting a text/html response,
an entry of the user-agent string combined with the client IP is written into the
hashmap. The original request then goes out to the intended server. If the request
is for the challenge image, Greasyspoon searches for a corresponding entry in the
hashmap and updates it reflecting that the client has passed a challenge. Once
a response for the connection is received, the response processing script probes
for an already present entry in the hashmap for the client the response is to
be sent to. If an entry is located, it injects the HTML code with the embedded
challenge image inside the original response and sends the response back to the
client. The entry is revised to show that a challenge has been sent to the client.

The response infrastructure is also responsible for the transformation of the
hashmap into a logfile format. An example entry from the logfile is shown in
Figure 7. The operating system, application name, and application version are
all extracted from the user-agent string. It can help administrators analyze the
logs and diagnose a problem should one arise.

The reason for adapting response challenges is two-fold. First, it allows us
to reduce the overhead that might be introduced when enacting the request
challenge on each HTTP request. Moreover, blocking every data request would
impair our system’s scalability and usability. It is conceivable that on a smaller,
more confined network the system could be set up to challenge every request,
but on a larger infrastructure this would most likely be impractical. Second, it
can prevent a malicious agent from downloading an executable that is disguised
as an HTML file.

5 Experimental Evaluation

We implemented a prototype NetGator system consisting of a laptop for the
client and a Dell server for the proxy. The laptop is a Dell Latitude E6410 with
an Intel Core i7 M620 CPU at 2.67 GHz, 8GB of RAM and a Gigabit network
interface. The server is a Dell PowerEdge 1950 with two Xeon processors, 16GB
of RAM and a Gigabit network interface.

For performance testing, Firefox 3.6.17 is used as the client’s browser through-
out. To measure how efficiently the server could process the scripts that will be
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executed on the client’s request, a script loops through 10,000 iterations of the
request script with the iterations per second being returned. For all the figures in
this section, we run this script 30 times and use the average value to determine
the capability of our server. The error bars show confidence interval at 95% con-
fidence. For all testing, Squid and Firefox’s caching mechanisms are completely
disabled.

(a) Javascript Challenge End-to-End La-
tency.

(b) Flash Challenge End-to-End Latency.

(c) HTML Challenge End-to-End Latency. (d) Encrypted Javascript Challenge End-
to-End Latency.

Fig. 8. Request Challenge Overhead

5.1 Performance Analysis

To evaluate the end-to-end latency of the request challenge, we analyze various
types of challenges we create in HTTP download scenarios utilizing PlanetLab [4]
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combined with our passive inspection. Different PlanetLab nodes are used from
throughout the world using all virtualized hardware. Four nodes (one from the
East Coast, one from the West Coast, and two nodes from other continents) are
utilized to perform the benchmarking. Executable files of large size (1000KB),
medium size (100KB) and small size (10KB) are hosted on each node on an
Apache web server. The client then downloads each file thirty times from each
of the nodes, both with and without the NetGator proxy. The values of end-to-
end latency are determined by the difference in the time-stamp of the packet that
starts the initial request before the challenge and the last packet that closes the
connection after downloading the file. Figure 8 shows the end-to-end latencies
with and without using Javascript, Flash, and HTML request challenges for
requesting different sizes of files.

Our experiments show that the end-to-end latency using request challenges
is almost negligible to the client. When using Javascript as the challenges, it
increases the end-to-end latency by 274 milliseconds in average for all size of
file types from four sites. The Flash request challenge has an average latency
overhead of 580 milliseconds, while the HTML request challenge introduces 206
milliseconds of latency overhead. Figure 8(d) shows that the encrypted Javascript
request challenge has only 174 milliseconds of latency overhead, which is less than
the normal Javascript challenge and HTML challenge. We see that enhancing
security by encrypting the hash may not increase the end-to-end latency.

To measure the overhead of the response challenges, we perform experiments
using a wide-range of websites throughout the country. Baselines are established
for each website by performing a simple loading of each of them without the
proxy involved. Once these baselines are established, the gateway of the client
laptop was changed to be our proxy. Each website is loaded 30 times both with
and without the response challenge. In order to establish time, the difference
between the time-stamp of the first and last packet in the stream is taken. The
results of these experiments are shown in Figure 9. We can see that the response
challenge only introduces very small latency overhead.

The request challenge results demonstrate that the overhead remains constant
across various file sizes; this means that in terms of percentage the overhead gets
progressively smaller as the files downloaded become larger. The response chal-
lenge results are even smaller with an average overhead of only 24 milliseconds.
With the minimal amount of overhead that our system introduces, it is not
perceivable to the user. All of the challenging happens without any interaction
from the user, allowing a seamless experience while maintaining the security of
a network. Moreover, our proxy is exceedingly efficient in processing the scripts,
being able to handle on average approximately 1,200 request scripts per second.

For the malware testing we obtained a set of malware through a custom crafted
retrieval mechanism. This mechanism is provided malicious URLs from Malware
Domain List and Google. The samples used during testing were solely Windows
executables. During our testing to establish what percentage of malware calls
out utilizing HTTP/S, we find that none of the malware which used either
protocol could overcome our challenge architecture. That sample size equates to
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Fig. 9. Response Challenge End-to-End Latency

817 malware samples challenged. The typical behavior of the infected systems
simply try to re-request the file it has originally sought after only to repeatedly be
returned our challenge. We do not observe any false positives in our experiments.
The level of false positives will be directly related to how many browsers in a
network utilize HTTP/S but do not contain HTML, Javascript, or Flash engines.

6 Discussion and Limitations

We assume that malicious agents do not typically access the full software stack
of applications that reside on the infected host. We also assume that the malware
does not include its own Javascript engine. If malware is forced to implement
a full browser agent complete with Javascript/Flash functionality, this would
greatly increase the presence of the malware thus increasing its vulnerable to
detection. Based on this assumption, the malware will not be able to decode the
encrypted hash of the challenge even when the key is passed to the host. Our
testing of recent malware samples shows us that the current level of sophistica-
tion of malware does not include their own Javascript engines nor the ability to
access the full software stack of web browsers present on the system. By issuing
each piece of malware our Javascript challenge, we are able to determine that
none of the malware tested encompasses the Javascript functionality to overcome
our challenge infrastructure.

Our system can challenge either the initial request or the response when con-
sidering the trade-offs between security and performance. The request challenge
allows NetGator to sever the malware’s connection immediately to negate any
damage before it happens. This also comes with a cost of slight latency. On the
other hand, the response challenge allows the response to return to the request-
ing agent before it issues the challenge. This dramatically lowers the latency
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the user experiences but also allows the original request to complete even if the
software agent is detected as malicious later. This method relies on the moni-
toring of the logs to identify compromised hosts. We could improve its security
by utilizing the information about agents that fail the challenge in the response
PIC and create a signature to block future outbound connection attempts. In-
tercepting SSL traffic causes a possible issue in the transparency to users. Our
approach to processing HTTPS traffic essentially acts in the same way a man in
the middle attack works. Browsers typically identify this behavior and report the
suspicious activity to the user. This can be mitigated by the hosts having their
organizations certificates installed on the end hosts. Without these certificates
the transparency to the users is affected.

If an attacker is aware of the presence of our system, they would likely attempt
to craft their communications in a way to evade our detection. An approach that
they might take would be to label their communication as a simple non-browser
agent. If the agent is not one of the approved applications to transmit across ports
80 or 443, then the connection would be severed. If it is an approved application,
it would be challenged in the same way that browsers are. In an enterprise
network, there would ideally be a full repertoire of challenges to issue to the
various applications that communicate across ports 80 and 443. However, there
may be a necessary application for which a challenge can not be crafted. In order
for us to create a PIC for a particular application, we require that is has specific
functionality that will have an expected response to some request. For agents
that do not meet the requirements to create a PIC, a whitelist of servers for these
application to communicate with can be constructed and any connections from
these applications to other servers would be raised as suspicious. Malware might
also utilize a full application (a legitimate web browser) in their communications
to correctly pass our challenges. While possible, this increases the likelyhood of
being detected due to not being able to rely on their own covert communications.
Encompassing a browser’s full capabilities would evade our detection and is a
limitation of our approach.

7 Related Work

Ourwork is partly inspired by various automatic protocol analysis systems [20,29],
which utilize injection of messages to various applications in order to automati-
cally determine how a particular protocol is organized. Instead of injecting mes-
sages to test a protocol, we examine a particular application software to prove its
identity.

Recent research by Gu et al. [16] is the most simliar to our approach. They
aim to detect botnet communication over IRC through a combination of user
interaction and probing for expected responses. There are two main differences
with our approach. First, we do not expect a human to be behind the communi-
cations, nor rely on one at any time to be able to solve our challenges. Second,
their paper focuses on detection of malicious botnets, while ours is concerned
with verifying the identity of legitimate end-host applications. Our approach is



NetGator: Malware Detection Using Program Interactive Challenges 181

beneficial in the sense that the signatures (expected responses) of botnets will
continue to grow consistently while Netgator only has to establish signatures
(challenges) for legitimate applications which will not likely change their func-
tionality over time.

Our work can be compared to techniques used by OS and application fin-
gerprinting programs such as Nmap [21]. The most popular form of real-time
browser challenges is to utilize server-side techniques that read browser config-
uration files [23,26] (Javascript, ASP, etc.), cookie information [22], or search
for platform specific components like Flash blockers or Silverlight [12]. Another
approach is to search traffic flows for known, specific identifiers like connec-
tions to Firefox update servers [30]. Conversely, techniques like the well-known
CAPTCHA puzzles attempt to prove the existence of a human user. However,
all those methods are disruptive and not transparent to the user.

Traditionally, botnet detection and mitigation systems like BotSniffer [17]
have focused on zombies that contact Internet Relay Chat(IRC) C&C servers or
utilize IRC-style communication [9]. Unfortunately, botnets have grown in so-
phistication to use Peer-to-Peer (P2P) and unstructured communication [10,19].
In addition to the traditional techniques such as blacklisting, both signature
and anomaly-based detection, and DNS traffic analysis, BotHunter [15] proposes
using infection models to find bots, while BotMiner [14] analyzes aggregated
network traffic. Our work is a another complementary study utilizing an active
challenge technique to distinguish certain types of bots from benign applications.

Data transmission over HTTP/S is very common and consumes the bulk of
un-filtered traffic in most organizations. For analyzing packets that contain a
payload, deep packet inspection techniques are favored. Signature or anomaly
based detection is applied to these packets [10,13,25,27,8,28]. To foil this mech-
anism, malware may use the same secure protocols that users employ to protect
themselves from malicious agents [24,18]. Our approach only analyzes the data
content to determine the protocol being transmitted. Once the protocol type is
established, we are are concerned solely with the client behind the communica-
tions.

8 Conclusions

We study an active and in-line malware detection system, called NetGator. Our
goal is to be able to detect outbound malware flows for when malware attempts
to establish a network connection to a back-end server. Our approach is two-
pronged: the passive classification module analyzes network flows to determine
the claimed identity of the end-point software that generated the packets. It
relies on existing network program signatures to classify end-point applications
and drop the unknown requests. Next, NetGator verifies the legitimacy of the
end-point software by generating easy to generate and computed in-line Program
Interactive Challenges (PICs) based on the functional capabilities supported by
the end-point software.

Although our approach can be potentially circumvented by sophisticated tar-
geted malware, we believe that NetGator significantly increases the complexity
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of the attack forcing the adversary to perform additional invasive tasks before it
can successfully communicate data. On the other hand, NetGator is fully trans-
parent to the user: our experiments demonstrate that it can examine real-time
traffic. In addition, the detection results demonstrate the effectiveness of PICs
in identifying malware that attempts to imitate the network connection of pop-
ular browsers. NetGator introduces an average of 353 milliseconds end-to-end
latency overhead using network request challenges and 24 milliseconds using
network response challenges.
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Abstract. In modern attacks, the attacker’s goal often entails illegal gathering of
user credentials such as passwords or browser cookies from a compromised web
browser. An attacker first compromises the computer via some kind of attack,
and then uses the control over the system to steal interesting data that she can
utilize for other kinds of attacks (e. g., impersonation attacks). Protecting user
credentials from such attacks is a challenging task, especially if we assume to not
have trustworthy computer systems. While users may be inclined to trust their
personal computers and smartphones, they might not invest the same confidence
in the external machines of others, although they sometimes have no choice but
to rely on them, e. g., in their co-workers’ offices.

To relieve the user from the trust he or she has to grant to these computers,
we propose a privacy proxy called SMARTPROXY, running on a smartphone. The
point of this proxy is that it can be accessed from untrusted or even compromised
machines via a WiFi or a USB connection, so as to enable secure logins, while
at the same time preventing the attacker (who is controlling the machine) from
seeing crucial data like user credentials or browser cookies. SMARTPROXY is ca-
pable of handling both HTTP and HTTPS connections and uses either the smart-
phone’s Internet connection, or the fast connection provided by the computer it
is linked to. Our solution combines the security benefits of a trusted smartphone
with the comfort of using a regular, yet untrusted, computer, i. e., this functional-
ity is especially appealing to those who value the use of a full-sized screen and
keyboard.

Keywords: Web Security, Browser Security, Privacy Proxy, Smartphone, SSL.

1 Introduction

Regardless of the passing years witnessing numerous efforts to secure software sys-
tems, we are still observing security incidents happening on a daily basis. Attackers
have managed to compromise the integrity of computer systems, as techniques such as
control-flow attacks on software systems or exploiting logical flaws of applications were
developed [2,11,23,25]. Due to the growing complexity of today’s systems, it is highly
unlikely that we will have trustworthy computer systems without any security flaw at
our disposal in the near future. We thus need to investigate how certain security prop-
erties can be guaranteed despite compromised computer systems being in operation.
In this paper, we focus on the threat of stealing user credentials from web browsers.
More precisely, the attacker’s goal often entails illegal gathering of user credentials
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such as passwords or browser cookies from an already compromised machine. Several
reports on malicious software specialized in stealing credentials provides evidence for
the prevalence of this threat (e. g., bots and keyloggers) [9,15].

In practice, we do not only need to worry about the integrity of our personal (home
or office) computer, but of each and every machine we interact with and enter our cre-
dentials into. Surfing on public Internet terminals, using computers in Internet cafes, or
simply browsing the web on a arbitrary in-office or friend’s computer can all bring about
a number of potential threats. A golden rule of thumb for our safety is that we cannot
trust any such machines, or going one step further: we have to assume that they have
been compromised. Still, all things considered, protecting the credentials from attack-
ers in such situations proves to be a major challenge: if an attacker has compromised a
system, she has complete and full control over the system and can modify the settings
in an arbitrary way. Furthermore, she can read all memory contents, the CPU state, and
all other information pertaining to the current state of the system in question. Based on
the so-obtained data, an attacker can easily reconstruct (user) credentials [12,14] as it
becomes harder (if not impossible) to protect the integrity of user personal, login, and
other sorts of data.

One idea for improving the integrity of credentials is to use external trusted devices
and generate one-time keys (e. g., RSA SecurID [8] or Yubico YubiKeys [27]). Here,
even if an attacker has compromised the system, she only obtains a one-time password
that cannot be reused, hence the potential harm is greatly limited. Nonetheless, this ap-
proach does not support legacy applications and requires changes on the server’s side
since the one-time password needs to be verified by the server. Furthermore, the com-
promise of RSA and Lockheed Martin in 2011 [5] has illustrated that such systems can
also be periled, provided that the seed files for the authentication tokens can be accessed
by a skilled attacker. A different idea is to use an external device with more computa-
tional power as a trusted intermediary supporting the authentication routine [4,17,26].
Such approaches typically either require changes on the server side or an additional
server that needs to be trusted. As a result, they are typically not compatible with exist-
ing systems or trust needs to be put into another device not under the user’s control.

In this paper, we introduce a system called SMARTPROXY that protects user creden-
tials when interacting with a compromised machine. The basic idea is to use a smart-
phone as a special kind of privacy proxy as we shall tunnel all network connections of
the untrusted machine over the phone and filter all sensitive data there. To be more pre-
cise, we intend the user to only enter fake information on the untrusted machine, as we
will have our tool substitute this data with the real credentials on the outgoing network
connections on the fly. For incoming network connections, SMARTPROXY will also re-
place different kinds of sensitive data (i. e., cookies) with imitative information, so that
a potential attacker operating from the untrusted machine cannot achieve her goals. As
a result, a (semi-)trusted smartphone takes care of handling sensitive data related to the
user and therefore, the confidential information never reaches the untrusted machine on
which an attacker could potentially track and observe it. This is achieved through se-
lective usage of encrypted communication channels via SSL: SMARTPROXY intercepts
the phone’s outgoing SSL connections and performs a Man-in-the-Middle (MitM) at-
tack, eventually being capable of substituting fake credentials with valid ones. All of
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the tool-initiated network connections to the destination server additionally use SSL,
meaning that an attacker cannot intercept or eavesdrop on those channels.

Since the phone is a potential target for the attacks, we also make sure that we split
the transferred information in such a way that even if an attacker compromises both the
machine and the smartphone, she at least cannot steal all data at once. This is achieved
by encrypting all private data with a user-selected key for each credential. Conclusively,
our tool enables a sound and robust method of credentials’ handling. We have imple-
mented a fully working prototype of SMARTPROXY for Android-based devices. Our
evaluation demonstrates that the overhead introduced by the tool is reasonable: micro-
benchmarks indicate that the SSL handshake typically takes less than 42 ms on a current
smartphone, while in macro-benchmarks we found a typical overhead of less than 50
percent to the load time for popular websites.

In summary, we make the following contributions:

– We introduce the concept of a smartphone-based privacy proxy that can be used
to preserve credentials in spite of the presence of a compromised machine that an
attacker controls.

– We have implemented a fully-working prototype and our performance benchmarks
indicate that the overhead of SMARTPROXY on typical websites is moderate.

2 System Overview

In this section, we describe the attacker model which has been employed throughout
the rest of this work. Furthermore, we give a brief overview of our approach to securing
user credentials in face of a compromised machine and sketch the high-level idea.

2.1 Attacker Model

In the following, we assume that an attacker has compromised a computer system and
thus has complete control over it. This allows her to obtain the system state’s full infor-
mation and enables arbitrary modifications. On a practical level, this might be the case
when an attacker managed to infect a computer with some kind of malicious software
that can steal credentials and/or alter the settings of a web browser. Furthermore, we as-
sume that the attacker cannot break a public key crypto system and symmetric ciphers
with reasonable parameters, i. e., we assume that unless the used key is known and out
in the open, the used ciphersuites cannot be broken by the attacker. As a special action,
the attacker might disable our proxy for the web browser. Doing this will only result in
a denial of service attack against the user, as long as the user always only enters fake
credentials into the web browser.

A user who wants to utilize the web browser and log in to a given website such
as Facebook or Wikipedia needs to have valid user credentials. Essentially, he has no
simple means to decide whether the machine he wishes to put to work is indeed compro-
mised or not since it is not a machine under his control (e. g., a public Internet terminal
or an arbitrary in-office computer). He may also simply not know how to verify the
integrity of the machine in question. Overall, it is a complex problem in itself and we
assume that the user cannot efficiently assess whether the endangerment has taken place
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or not. Luckily, the user has as an auxiliary means of resorting to his smartphone which
he can, to a certain extent, trust. We suppose for now that the smartphone has not been
compromised, which implies that the user can run software on the phone without having
to worry about an attacker. At the same time, we understand that the user wants to surf
the Web on a computer rather than a smartphone since it provides a larger screen and a
natural-sized keyboard. In addition, the computer has more computational power, as it
is for example capable to render movies quickly and with ease.

Based on these assumptions, the goal of our system can be clearly indicated as en-
abling the user to log in to a website without vexing about his credentials. We focus on
the HTTP and HTTPS protocol, connections with arbitrary protocols over sockets are
not considered for now. With our tool in place, the attacker will neither acquire the login
credentials (i. e., username, passwords, or browser cookies) nor obtain any information
about them. Note that the system cannot protect the web content on the computer as the
attacker is already assumed to be able to read all information on that device. For that
reason, the attacker can still read as well as modify all content accessed by the user, yet
she cannot log in on the website at a later point in time as all valid user credentials are
no longer there to be taken away.

In addition, we need to make sure that an attacker cannot obtain credentials by com-
promising the smartphone. This would imply that our system has a single point of fail-
ure. Even if the attacker can compromise both the computer and the smartphone at
the same time, she remains unable to acquire all valid credentials. By splitting the ac-
tual credentials in a clever way (see Section 3.6), we warrant that an attacker can only
observe the data which are evidently made use of in real time.

2.2 System Overview

As stated above, in order to protect user credentials from an attacker operating a com-
promised machine, we propose to use a smartphone as a kind of privacy proxy. As a
preparatory step, the user needs to configure the web browser on the computer in such a
way that it engages the smartphone as a web proxy for HTTP and HTTPS traffic. As we
discuss in Section 3.2, there are quite a few different ways for a smartphone being con-
nected to a computer, which leads us to pinpointing an easy way to set up our system.
Moreover, the user needs to import a X509 V1 root certificate into the web browser, as
we need to intercept SSL connections (as we will explain later on).

Once the machine and the smartphone are connected, the smartphone transparently
substitutes fake credentials entered by the user on the compromised computer with valid
credentials, which are then sent to the target destination the user wants to visit. The
smartphone can perform this substitution by carrying out a MitM attack on the HTTPS
connection: our tool intercepts the initial SSL connection attempt from the computer,
establishes its own SSL session to the target web server on behalf of the computer,
and transparently substitutes the fake credentials with valid ones. These steps require
us to launch a fake SSL connection to the web browser on the computer, for which we
spoof a HTTPS session pretending to be the targeted web server. We generate an SSL
certificate that corresponds to the targeted server using the root certificate imported in
the preparation phase. Thus, this certificate will be accepted by the browser and the user
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can regard this connection trustworthy. We discuss the workflow of our approach and
the MitM attack in more detail in Sections 3.3 and 3.4.

Moving on, the smartphone supplants sensitive information sent from the website to
the browser (such as browser cookies) in a way that an attacker cannot obtain them.
Our tool successfully alters information on one hand, yet grants the possibility of a
web browser usage on the other. Meanwhile an attacker does not have the power to
obtain any useful information from the processes taking place. More details about this
substitution procedure and its security aspects are available in Section 3.5.

Effectively, we move the handling of sensitive data from the (potentially compro-
mised) computer to the smartphone, which prevents an attacker from stealing sensitive
data. De facto, this carries the problem over to another device which we need to protect:
the smartphone turns into an attractive target for the attackers, as it now serves as a pri-
mary storage space for all the sensitive data. At the end, we need to be fully confident
that the information is kept and retained in a way that fully prevents an attacker from
accessing it, even if she manages to compromise both the computer and the smartphone
at the same time. This can be achieved by storing and provisioning information in an
encrypted manner. Decrypting this data may only occur strictly on demand, as we ex-
plain in detail in Section 3.6. The potential damage is here-limited to the actually-used
credentials exclusively.

3 Implementation

We now describe the implementation of the ideas sketched above in a tool called SMART-
PROXY. More specifically, we explain how the browser is able to communicate with the
proxy running on a smartphone and what user interactions are required. We also clarify
how the whole process of enabling secure logins on compromised machines is handled
by the proxy. We conclude this section with a description of secure storage of private
user data within SMARTPROXY, as it is employed to minimize the attack surface.

3.1 Software Overview

SMARTPROXY is implemented as an Android application in Java and we use the Bouncy
Castle library to forge certificates. All services related to SSL are provided by Android’s
own SSL provider AndroidOpenSSL. Our implementation of the HTTP protocol sup-
ports both HTTP/1.0 and HTTP/1.1 (we implemented a required subset of the protocol,
not the whole specification), multiple concurrent connections, SSL/TLS (for the rest
of the paper we simply use the shortened term SSL), and HTTP pipelining of browser
requests. The proxy software includes a graphical user interface on the smartphone,
mainly utilized to start or stop the proxy and manage security-related aspects of the
tool. More precisely, a user can manage trusted and forged certificates, stored cookies,
and user credentials within the interface. The proxy itself listens on two different TCP
ports, one for the plain HTTP traffic, and a second one for the encrypted HTTPS traffic.

One goal of the design was the minimization of required user interaction since
SMARTPROXY should not become yet another complicated task to deal with at the
user’s end. Nevertheless, some user interaction is unavoidable for normal operation.
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For the proxy to be used, it has to be connected to the computer in one of the ways enu-
merated in the next section. The browser on the untrusted computer then needs to be
configured to employ the smartphone as proxy. This simply requires setting the smart-
phone’s IP address and the ports as the proxy address of the browser. If it is the first
time for engaging the proxy, an automatically generated X509 V1 root certificate has to
be exported from the smartphone (e. g., either through the SD card or by mounting the
smartphone as external storage device). It shall later be imported into the web browser
as a trusted root certificate destined and valid for signing other websites’ certificates.

Once the setup process has been completed, any type of user interaction is required
in only two additional cases. First, in the instance where our SSL trust manager is
unable to verify a server certificate. In practice, this might happen in several different
circumstances, e. g., if the certificate is self-signed, not signed by a trusted authority, or
if the certificate is for some reason invalid (e. g., it has expired). Beware that an invalid
certificate might equally indicate an attack as we discuss in Section 3.4. If a certificate
cannot be verified, the user has to manually examine and perhaps approve the certificate
in a dialog on the smartphone. This is a replication of a security model behavior as it
can be found in web browsers. If a user accepts the certificate, an exception for this
certificate is generated and further on it will be perceived and processed as validated.
Second case of user interaction demand is of course linked to the setup of the fake
credentials for any website that the user wishes to log in to securely.

In addition to the aforementioned interactions, the user is able to list and delete all
stored cookies and edit credentials with their original and substituted values. SMART-
PROXY also enables a user to list and delete all forged and manually trusted certifica-
tions. For example, it might at one point be necessary to issue a removal of a user-trusted
certificate which has been later on proven invalid and shall therefore no longer be used
to establish encrypted connections to the corresponding server.

3.2 Communication Modes

The communication between SMARTPROXY running on the smartphone and the web
browser running on the untrusted computer is possible in several different ways:

Computer Acting as WiFi Access Point: A computer provides a wireless hotspot or
an ad-hoc wireless network to which the smartphone connects to. The smartphone’s IP
is displayed in the user interface and it is this address that is used as the proxy address
by the web browser running on the untrusted machine. With this setup, all network
traffic is “routed back” to the computer and this particular network connection is used
for tunneling, as it is likely faster than the network connection available via GSM or
3G networks. Practically, solely rooted Android devices are able to connect to ad-hoc
networks because vanilla Android devices do not support this connection mode.

Smartphone Acting as WiFi Access Point: The Android OS is capable of serving as
an access point for WiFi-enabled computers. For example, a notebook could connect
to the smartphone’s access point and utilize the proxy running on the phone. In this
configuration, all traffic is routed over the smartphone’s own Internet connection (e. g.,
GSM, 3G, but not WiFi because it acts as an AP), and the linked-in computer will not
be able to observe any altered outgoing Internet traffic.
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USB Cable with USB Tethering: In this setup, the smartphone is connected to the PC
via the USB port. The phone needs to be configured for the USB tethering and the USB
network device on the PC will in this case get an IP address from the smartphone. The
smartphone’s IP address can again be displayed within the user interface and is also used
as the proxy address in the web browser running on the computer. This configuration
routes all traffic through the smartphone’s own Internet connection and the computer
does not observe any additional network traffic (similar to the previous case, but this
time the WiFi connection may be used). To the best of our knowledge, iOS does not
support USB tethering on its own and Windows requires the smartphone’s drivers to
be properly installed. At the same time, however, most Linux distributions offer this
functionality out-of-the-box.

Smartphone and Computer on Same Network: If both the computer and the smart-
phone use the same (wireless) network, then the smartphone is accessible from the
computer and the computer can easily use the smartphone as a proxy. Furthermore, the
smartphone may use the Internet connection offered by the WiFi network, instead of it’s
own GSM or 3G connection. If this setup is possible, it is the easiest to use in practice.

Upon familiarizing oneself with the list of communication methods above, one may
notice that all these setups do not require any special access rights on either side. Al-
though the first three setups require special privileges on the computer, they are likely
to be enabled for all users because setting up a network interface is a common use case
for most consumer targeted operating systems. This was an implementation aim for the
software to be kept usable in most environments.

3.3 Proxy Workflow

We now present SMARTPROXY’s workflow and the different steps that are necessary to
enable the filtering of sensitive data. During the preparation stage, we need to connect
the smartphone to the computer by using one of the methods discussed in Section 3.2.
Next, it is necessary to set up the browser on the computer (i. e., configure a proxy
within the browser) and start the proxy software on the phone. If this is the first time
SMARTPROXY is used, the tool’s X509 V1 root certificate must be imported into the
web browser. After performing these actions, the actual workflow can start (see Fig-
ure 1), which we discuss in the following.

1. SMARTPROXY listens for new network connections.
2. When the user opens a website in the browser on the computer, SMARTPROXY

accepts this connection and spawns a new thread which parses the HTTP CONNECT
statement.

3. SMARTPROXY opens a TCP connection to the desired web server, initiates an SSL
handshake (called target SSL handshake) and verifies the server’s X509 certificate.
If it is not trusted or invalid (e. g., the certificate is expired or the attacker on the
compromised computer attempts to intercept the connection), the tool ceases the
action and notifies the user that an exceptional rule for this certificate has to be
generated in the hopes of proceeding with the connection to the selected server.
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4. If this is the first time a connection is established for this particular destination, we
need to forge the supplied server certificate with our own RSA keypair and store it
for later use. The forged certificate is an X509 V3 certificate signed by the proxy’s
CA certificate. Note that the user has imported this certificate in the browser in the
preparatory phase, thus the browser regards this forged certificate as valid.

5. SMARTPROXY responds to the web browser with a plain text 200 OK HTTP sta-
tus code and upgrades the unencrypted TCP connection from the browser to an
encrypted SSL connection with the forged certificate from the last step (called lo-
cal SSL handshake). The web browser now assumes that it is talking securely with
the designated web server. From this point forward, all network traffic between the
web browser and the destination web server is encrypted and will be eavesdropped
by the proxy. This and the following step are similar to a normal MitM attack ex-
cept for the signing part. A more in-depth analysis of the MitM attack we have
performed is available in Section 3.4.

6. After the connection setup is done, all requests from the web browser are served and
filtered between the two endpoints. The filtering performed by our tool substitutes
fake credential user data entered on the (potentially compromised) web browser
with genuine credentials. Furthermore, we remove cookies and other types of sen-
sitive data whilst hiding them from the web browser, as explained in Section 3.5. In
order to provide some feedback to the user as to when user credentials are replaced,
the smartphone vibrates and generates a visual output on each substitution.

This workflow corresponds to the SSL-secured HTTP connections, but a very similar
approach can be used for plain HTTP connections with only minor modifications. Steps
3–5 are not needed, and solely standard HTTP requests (e. g., GET or POST operations)
have to be processed. We discuss the security implications of plain HTTP requests in
Section 5.

3.4 Man-in-the-Middle Attack

Our approach relies on a MitM attack for the SSL-secured connections. Under the as-
sumption that the user’s computer is compromised, we need to presume that an attacker
has total control over the machine and therefore can read and manipulate all data, in-
cluding the input received from the proxy. This indicates that the SSL connection be-
tween the web browser and the proxy after the initial CONNECT statement may also be
intercepted and is therefore somehow useless. To keep the confidential data hidden from
the compromised machine, no encryption between the web browser and the proxy is re-
quired, as sensitive data is only transferred in another SSL-secured connection between
the proxy and the designated web server. This connection can be guaranteed to remain
unreadable by the attacker, even if the traffic is back-routed over the compromised com-
puter. This is ascertained by the verification of the web server’s SSL certificate within
the SSL connection between the proxy on the smartphone and the target web server.

All these circumstances make it feasible to use no encryption on the connection be-
tween the web browser and the proxy, which would in turn decrease the security-pressure
placed on the smartphone. However, this is unfortunately not supported by the web
browsers we have tested. They instead expect an SSL handshake after each CONNECT
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statement and an SSL “downgrade” to the NULL cipher is not supported. All things
considered, this behavior is clearly highly beneficial for general security reasons.

SmartProxy ServerBrowser

1) Listen

2) Send: "CONNECT"
3) Target SSL
    Handshake

4) Forge 
    Certificate

5.1) Send: "200 OK"

5.2) Local SSL
       Handshake

5.3) Send Request

6.1) Parse and
       Filter Request

6.2) Handle Request

6.3) Parse and
       Filter Response6.4) Forward 

       Response

Fig. 1. Protocol sequence diagram

In order to successfully carry
out our MitM attack, we need two
RSA keypairs. These keys have a
modulus of 1024 bit which is be-
lieved to be safe enough, if we
reckon the security point of view
as the one elaborated on above.
We did not choose stronger keys
because of our desire to require
as little as possible computational
power on the smartphone. One of
these RSA keypairs is used in an
X509 V1 certificate, which is the
root certificate of our own cer-
tificate authority. The other key-
pair is used within all forged X509
V3 certificates as the public key.
This way, we only need to cre-
ate two different RSA keypairs and
helpfully save computational time
when we have to forge a new certificate. The web browsers do not check whether all
certificates they see use the same public key, thus they are prone to accept them as long
as they have a valid digital signature (from our V1 certificate): the browsers verify the
complete certificate chain, but use the same keypair for all relevant SSL operations.
Interestingly enough, we actually have not intended doing this check-up in our imple-
mentation, but discovered it during the testing phase.

In order to keep the number of forged certificates low, hence enabling faster SSL Ses-
sion resuming (see Section 4.1), step 5 from Section 3.3 generates forged certificates
valid for more hosts than the original ones. If an original certificate is only legitimate for
the host a.b.c, its new counterpart will be valid for the following hosts: *.a.b.c,
a.b.c, *.b.c, and b.c. These alternate subject names are added to the forged cer-
tificate for each host which is found in the original one.

If the proxy is accessed over an insecure WiFi connection, the aforementioned en-
cryption between the proxy and the web browser is suddenly a sound cause for concern.
Another skilled attacker might sniff this connection and attempt to break the SSL en-
cryption. This would allow her to observe the connection between the web browser and
the proxy over the airlink. Such an attacker might not be detected by either side, thus
the attacker in question might be able to capture data. However, this secondary attacker
does not obtain more data compared to the attacker who has compromised the machine,
since both can only observe obfuscated data after the substitution by SMARTPROXY

took place. An attack on the air link can be easily prevented by increasing the keysize
to a strength of 2048 bits or more. It is also possible to generate and use different keys
for each forged certificate.
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3.5 Filtering

In order to transfer all security related information while surfing the web, the proxy
has to change some elements in the data stream between the web browser and the web
server. This is accomplished by implementing an extendable set of filters which can
be attached to each data stream. These filters can in turn be used to change arbitrary
HTTP header fields as well as payload data. When wishing to perform a login on a
specific website without inserting the real credentials into the untrusted computer, the
first action for a user to carry out is to set these accounts up within SMARTPROXY.
The account data contains: real username and password, the domain where the login
should be fulfilled, and fake username and password. All the above can be inserted into
and modified through a GUI. The information is encrypted before it is written into a
database (see Section 3.6 for details), and can then be used by our filters. Different filters
are applied to the process of data modification, which we describe in the following.

Password Filter. Real credentials should not be entered into the user’s computer, there-
fore one has to exercise fake data input sent from the web browser to the server. Cer-
tainly, these fake credentials have to be substituted with genuine ones expected by the
web server for the login’s fulfillment. The Password Filter’s function is to find and re-
place these fake credentials in the data stream. To do just so, the filter searches the
POST data for the false credentials, determines if the credentials are indeed entered into
valid form fields, and then performs the substitution. Furthermore, credentials are only
substituted if the domain in the request matches the stored domain in the database.

In order to defeat some attacks, two additional checks are performed before the real
credentials are inserted. First, we check if the password was already requested a short
amount of time before (e. g., 15 minutes). After a valid login, the user should be iden-
tified by some session ID and no credentials should be used anymore, thus this case
might indicate an attack. Second, we check if the request contains at least three vari-
ables from which two are identical and a fake password. This could mean that someone
is attempting to change the password (which might be an attacker, see Section 5). In
both cases, SMARTPROXY asks the user for confirmation.

Authentication Filter. To support HTTP authentication, we added a second filter that
searches the Authorization field inside the request’s header. In this case, we used
the same framework as for the Password Filter, seeing as the user is also required to set
up the corresponding fake credentials. Currently, our prototype supports the widespread
Basic Authentication exclusively and not the lesser used but more secure Digest Au-
thentication. To effectuate this functionality, we only had to substitute fake credentials
with their genuine counterparts, just as we perform this in the Password Filter (except
for them being Base64-encoded in this particular instance). The filter first decodes the
data, then checks for a positive match, substitutes the fake credentials, and finally en-
codes them back before performing the act of sending them to the server. Note that this
filter cannot make use of the rate limit for substitutions as the Password Filter since
each request will contain the fake credentials which have to be substituted.
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Cookie Filter. A potential attack against our approach could be a session hijacking
attack through cross-site scripting. This event involves a session identifier (which au-
thenticates the user in the eyes of the web server) that is stored in a cookie and can
be stolen by an adversary, who can then employ this cookie to take over a complete
session. To solve such issues, we modify the cookies sent through our proxy. Cookies
are set by the web server with the Set-Cookie field in the HTTP header and are sent
from the web browser to the web server with the Cookie field in the HTTP header.
The first field is originating from a web server and has to be altered in such a manner
that the data reaching the browser cannot be brought into operation for an attempted
session’s theft.

This is accomplished by all cookie properties (e. g., VALUE, DOMAIN, NAME,
PATH) being stored in a database and the value of cookies being changed to an arbitrary
string. For the reverse direction (web browser to web server), the cookie values have to
be restored from the database. Lastly, cookies can be created on the client machine
directly in the browser with the use of techniques such as JavaScript or Adobe Flash.
We decided to let these unknown cookies (for our proxy failed to notice a corresponding
Set-Cookie HTTP header field) pass through in an unaltered stage because we do
not think that an adversary can remodel such “self generated” cookies to be harmful for
the user, and to be compatible with websites which depend on this behavior. Once we
have dropped them, several websites responded and complained with warnings such as
“Your browser does not support cookies!”.

If we substitute all cookies, we might provoke errors with scripts which use cookie
values to, e. g., personalize the website. To overcome this, we only substitute cookies
which have a value which is at least eight bytes long and has a high entropy since these
cookies likely store sensitive data. Shorter cookies or cookies with low entropy are
likely not security sensitive since an attacker could brute-force such cookies. Further-
more, all cookies which contain special strings such as id, sid, or session in the name
are forced to be substituted. We assume that all security relevant cookies are protected
this way and that personalized website settings are still functional. To be able to ensure
the proper working of a website, a black- and a whitelist can be set up for each domain
to define which cookies shall (not) be protected by SMARTPROXY.

Since some websites use cookie values to form special requests, we implemented a
companion filter for the Cookie Filter to preserve the functionality of websites which
depend on this behavior. One example is the Google Chat within GMail, which performs
the following request: GET /mail/channel/test?VER=8&at=COOKIE&i...
Here, the substituted value is meaningless and it hinders the website from operating
normally. The purpose of the companion filter is to search for substituted cookie values
in requests and to insert the correct value within outgoing requests.

Note that all cookies are only replaced within requests or the COOKIE header fields
if the destination domain matches the domain which is stored in the database for the
corresponding cookie. This further hinders an attacker from stealing cookies.

3.6 Personal Data Encryption

The smartphone is a kind of a single point of failure when one is investigating the se-
crecy of the stored user credentials. If it gets lost, stolen, or compromised, all deposited
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credentials must be considered known by a third party. To prevent this from occur-
ring, we store all credentials in an encrypted form in the database in such a way that
makes them unlikely to be revealed to a potential attacker. Each genuine username ug

and password pg is encrypted with a key k derived from a fake password pf using a
Password-Based Key Derivation Function (PBKDF2 [18]). The encryption of ug and
pg is performed with AES in CBC mode.

To improve the security of the genuine data, each fake password should be different.
The fact that a fake password is used to derive the encryption key k for a real username
and password leads to the fact that the fake passwords must not be stored in the database.
This hinders the filters from Section 3.5 to find and replace these strings, as they may
then appear almost anywhere in the header or payload, and their appearance may be
just as arbitrary. To enable the matching of arbitrary fake password strings, the user
enters the fake password in a special format, e. g., fp_fakepass1_. That way, the
filters have only to look for strings enclosed by a leading fp_ and a closing _. This is
a process that can be put in action easily. The intermediate string is used as pf , and ug

and pg may be decrypted with the latter operation’s result. If by chance multiple strings
are enclosed in our chosen markers, the corresponding filter will attempt to decrypt ug

and pg with all found strings as pf , eventually decrypting the credentials. The correct
pf can easily be determined by the use of a checksum.

4 Evaluation

We have implemented a fully-working prototype of SMARTPROXY. In this section, we
present benchmark results, analyze the overhead imposed by our proxy software, and
discuss some test results of using our proxy on popular websites. All benchmarks are
divided into two categories, namely micro- and macro-benchmarks. The former mea-
sure “atomic operations’ (e. g., an SSL handshakes on the smartphone), while the latter
are executed to estimate additional load time caused by our tool when accessing several
popular websites. The smartphone we used in the testing phase was an HTC Desire with
Cyanogen Mod 7.0.3 (Android 2.3.3, not overclocked, using the default CPU governor).
Additionally, the same benchmarks were performed on a vanilla Samsung Nexus S with
Android 2.3.4. All results were comparable, thus we omit them in the following for
conciseness reasons. On the client’s side, we used wget in version 1.12 to automatically
establish new connections, and our test smartphone device was connected to the Internet
over a wireless connection to a 54 Mbit AP where a downstream of 2.7 MB/s is reach-
able. We used the adb port forwarding technique to launch and maintain a connection
between the web browser and the proxy.

4.1 Synthetic Benchmarks

A main feature of the proxy is its ability to alter the payload in the SSL-secured HTTP
connections, thus we need to evaluate the performance of the necessary steps. All mea-
surement times are averaged over 100 test runs. In order to be able to measure these
times without too much interference from the network latency, web server load, DNS
lookups and so on, we have applied the benchmarks to a local server which is only
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Table 1. Micro benchmark for the target SSL
handshake (KS = Keysize in bit, AVG = Aver-
age Time, SD = Standard Deviation)

KS Ciphersuite AVG [ms] SD [ms]

512 RSA/AES/256/SHA 29 24
1024 RSA/AES/256/SHA 33 17
2048 RSA/AES/256/SHA 37 9
4096 RSA/AES/256/SHA 90 17
512 DHE/AES/256/SHA 84 15

1024 DHE/AES/256/SHA 83 17
2048 DHE/AES/256/SHA 90 17
4096 DHE/AES/256/SHA 124 17

Table 2. Micro benchmark for the local SSL
handshake (KS = Keysize in bit, AVG = Aver-
age Time, SD = Standard Deviation)

KS Ciphersuite AVG [ms] SD [ms]

512 RSA/AES/256/SHA 35 16
1024 RSA/AES/256/SHA 42 20
2048 RSA/AES/256/SHA 90 68
4096 RSA/AES/256/SHA 360 326

512 DHE/AES/256/SHA 3,734 4,422
1024 DHE/AES/256/SHA 3,344 4,096
2048 DHE/AES/256/SHA 3,551 4,101
4096 DHE/AES/256/SHA 3,670 4,115

three network hops away. The server is equipped with a Core i7 CPU, 8GB of RAM
and was running Ubuntu 11.04 with Apache 2.2.17 using mod ssl without any special
configurations or optimizations.

SMARTPROXY is required to complete two different SSL handshakes for normal
operation, hence we tested several configurations for this prerequisite. SSL Session
resumption—for an explanation read below—was explicitly disabled for these bench-
marks. At first, we tested the speed rate of the handshake to the target server, and eval-
uated how this depends on different RSA key sizes and ciphersuites. Then we repeated
this test for the local SSL handshake. All measurement times are stated without the
added-time necessary to validate a certificate, with the exception of a special check
designed to investigate if the certificate has already been validated at some prior time.
Certificates are validated when they are seen for the first time and then stored for the
later use. Each “new” certificate is first checked against those pre-existing ones to de-
termine whether it is already known and valid, and then, provided it is in the clear, it
is accepted. This greatly speeds up the process thanks to the fact that the Online Cer-
tificate Status Protocol (OCSP) and certificate checks against Certificate Revocation
Lists (CRL) are usually time-consuming, which needs to be done only once for each
certificate during the proxy’s runtime.

The first SSL-related action that occurs when a browser requests a secure connection
to a HTTP server is a client handshake from the proxy to the designated host, necessary
to establish a MitM controlled connection between these devices. As per our tests, this
takes approximately 33 ms for a 1024 bit strong RSA key with our own server. Table 1
provides an overview of the benchmarking results for establishing a secure channel
between the proxy and our local test web server, all for different setups. What we discuss
below is that these handshakes were all completed in an acceptable time, even with a
4096 bit strong RSA key, and, equally, for the ephemeral Diffie-Hellman (EDH or DHE)
ciphersuites, which are generally slower.

In the second step, the certificate presented by the web server has to be forged in or-
der to establish a secure and trusted connection between the web browser and the proxy.
The average time to forge and sign such a certificate is 150 ms, which is sufficiently fast
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and needs to be only performed once for each accepted certificate. Operations like per-
sisting a new certificate in a keystore are also here-contained.

During the third and final step, the web browser upgrades its plain text connection
to the proxy to an SSL-secured connection-type. This implies an SSL server handshake
on the proxy involving a forged certificate. Once again, this is a pretty fast operation
which takes only 42 ms on average for a 1024 bit strong RSA key. Table 2 provides
an overview of how long the local SSL handshake takes for several configurations. In
order to accomplish decent times for the local handshakes, it is crucial to choose the
right ciphersuites. While plain RSA handshakes operate fast enough even for a 2048
bit key, a noticeable delay is caused by a 4096 bit key. Conversely, if the web browser
chooses EDH ciphersuites for the session key exchange, the time to complete such a
handshake might be pinned down as anywhere from 1 to up to 10 or more seconds
for each handshake—even with the same certificate, which explains the high standard
derivation for these tests. EDH handshakes are more secure, yet evidently and under-
standably more expensive than plain RSA handshakes. Still, normally they do not reach
the factor of 100 which we measured. We have reasons to believe that this operation is
not well optimized in the used OpenSSL stack on Android, albeit it employs the native
code in order to do the expensive operations. The fact that SSL handshakes with EDH
ciphersuites to the target server are much faster indicates that this code lacks optimiza-
tions for the server mode of the handshake, cf. Section 4.2. We believe that it takes a
relatively long time to compute the EDH parameters and this phenomenon would ex-
plain the vast amount of time it takes to complete a local handshake with EDH cipher-
suites. Conclusively, to enable fast local SSL handshakes, we only accept the follow-
ing secure ciphersuites for these cases: RSA/RC4/128/SHA, RSA/RC4/128/MD5,
RSA/AES/128/CBC/SHA, and RSA/AES/256/CBC/SHA. Nevertheless, all avail-
able secure (EDH) ciphersuites are enabled for the SSL handshake to the web server.

In order to accelerate the expensive SSL handshakes, SSL and TLS support the
mechanisms called Sessions. Sessions are identified with a unique ID by the client and
the server. Once a completed handshake is bound to such a Session, it will not happen
again when the Session is still valid. The client and the server may both reuse a Session,
and the already negotiated cryptographic parameters that come with it. This feature can
greatly facilitate the establishment of new connections. As an initial handshake from
the first step is completed, a new connection to our web server is established within
under 30 ms on average from the proxy. A standard estimate for a resumed local server
handshake to take place is about 40 ms.

We did not benchmark the SSL operations for different websites separately because
all operations, except the SSL handshake to the web server, use the same static key ma-
terials in the first step which results in almost the same benchmark for each operation.

4.2 Real-World Benchmarks

We have selected the global top 25 websites as they are listed at www.alexa.com
to be our test sites for additional benchmarking, yet we omitted “duplicate” sites like
google.co.jp and google.de, as well as all the sites we were unable to under-
stand content-wise due to its language (despite the attempted use of website translators),
e. g., qq.com. All the web pages tested are listed in Table 3. The main feature of the

www.alexa.com
google.co.jp
google.de
qq.com
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Table 3. Evaluation results for global Top 25 websites from alexa.com without duplicates and
sites that do not support SSL (KS = Keysize, HS = Handshake, SD = Standard Deviation, LT =
Load Time, OH = Overhead)

Micro Benchmarks Macro Benchmarks

website KS [bit] Ciphersuitea HS [ms] SD [ms] LT [s] OH Login

google.com 1024 RSA/RC4/128/SHA 91 49 0.95 23% �
facebook.com 1024 RSA/RC4/128/MD5 424 103 1.37 58% �
youtube.com 1024 RSA/RC4/128/SHA 71 8 2.93 20% �
yahoo.com 1024 RSA/RC4/128/MD5 192 52 4.34 26% �
wikipedia.org 1024 RSA/RC4/128/MD5 363 169 5.11 50% �
live.com 2048 RSA/AES/128/SHA 595 31 1.60 23% �
twitter.com 2048 RSA/RC4/128/MD5 400 97 3.66 17% �
linkedin.com 2048 RSA/RC4/128/MD5 426 72 1.93 78% �
taobao.com 1024 RSA/RC4/128/MD5 2,716 2,817 34.82 154% � b

amazon.com 1024 RSA/RC4/128/MD5 263 19 2.24 18% �
wordpress.com 1024 DHE/AES/256/SHA 527 52 16.66 204% �
yandex.ru 1024 DHE/AES/256/SHA 274 50 5.75 260% �
ebay.com 2048 RSA/RC4/128/MD5 587 51 1.49 46% �
bing.com 1024 RSA/RC4/128/MD5 52 25 0.62 142% �

a DHE with RSA and AES in CBC mode.
b We were not able to create a login for this website because we could not translate the content of this site.

proxy is its ability to withhold crucial information such as user credentials and cook-
ies, cf. Section 2. This functionality is tested on all popular websites. Whenever it was
possible, we created a login and tested the functionality. We found out that our proxy
successfully substituted fake credentials with genuine ones on all tested websites.

We measured SSL handshakes for real-world sites (micro-benchmarks) and again
used wget for these tests. Firefox 5.0 with the Firebug 1.8.1 plugin was used to mea-
sure website load times (macro-benchmarks). No caching was undertaken between each
page reload and we additionally invalidated all SSL Sessions after each connection for
the micro-benchmarks. The certificates are validated by mirroring the method described
in the previous section. Table 3 lists all times and the implied overhead.

To keep the impact of unknown side effects low, we trialled all websites in a row
and repeated this 100 times on a rolling basis. In order to measure the overall overhead
(macro-benchmarks), we tested each website five times and calculated the load time,
comparing the results for when the proxy was used versus the same action without it.

It is vital to note that these times include a lot of operations with timings which
we cannot influence or control. These include the web servers load, the time needed
to look up the IP address, certificate checks (OCSP/CRL), as well as general network
latency. Overall, the SSL handshake from our proxy to the web server is fast enough
not to hinder the user’s experience. This is interesting because the SSL Sessions can
be resumed, the feature which was explicitly disabled for the micro-benchmarks test-
ing here (see Section 4.1). As this is the time it takes for the initial handshake, it does not
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have a huge impact on the page load times for the subsequent handshakes. One notable
exception is taobao.com, but this page was generally slow on all tested devices.

Table 3 shows that the total overhead is reasonable when SMARTPROXY is used as
a privacy proxy. While the tool has a certain overhead, it does not in any case makes
it unacceptable to surf the Web. For the majority of the tested sites, the overhead is
less than 50%, which means that the web page will load up to 1.5 times slower. These
times refer to a complete web page load with an empty cache. When the web page is
accessed with the proxy and the web browser uses its cache, the overhead is sometimes
not even noticeable by a user. Some sites such as twitter.com and yandex.ru
have a larger infrastructure and several SSL handshakes may be needed in order to load
a single page, for the content is served from many different hosts with different SSL
certificates. Our approach to add additionally derived alternate subject names to the
forged certificates, cf. Section 3.4, may reduce the amount of SSL handshakes which
are needed to be performed, although this depends on the infrastructure of the specific
website, as the completely different overhead for these two web pages shows in Table 3.

Another aspect which has a certain impact on the overhead introduced by SMART-
PROXY is the method used by the web servers to handle the connections. If they close a
connection rather than allowing our tool to reuse it, we need to establish a new connec-
tion to the proxy and to the web server, which implies two additional SSL handshakes.
This takes time and is clearly visible in the measurement results for wordpress.com,
a site that exhibits this behavior. This is obviously an implementation detail, but our pro-
totype currently allows only “pairs of connections”: namely one connection established
from the web browser is tied to one connection to a designated web server.

Aside for “normal web surfing”, we evaluated how fast we are able to download large
files. The average download speed with SMARTPROXY enabled is only slightly slower
than the download without the proxy. We have seen download rates that differ by only a
few KB/s up to some 100 KB/s. This of course depends on the accessed server and the
WiFi connection’s quality. The fastest download speed achieved with the proxy enabled
was 2.7 MB/s. To complete our evaluation, we did some research into a selection of
the video portals to check if they work correctly. The video portals typically make use
of many different web technologies to stream the video content to the browser. When
performing our tests, we have not identified any problems on the three most popular
video portals from the global Alexa ranking.

5 Limitations

We now discuss several limitations of our solution and at the same time also sketch
potential future improvements to strengthen SMARTPROXY. As already explained in
Section 3.1, the smartphone may route all its traffic back to the potentially compro-
mised computer, as this is the machine engaged as the Internet access point (default
gateway). Clearly, this poses a security problem in case that the web browser uses the
proxy for plain HTTP websites. Because all HTTP traffic is unencrypted, an attacker
may read and alter all traffic on the compromised computer. This includes all data that
have been formerly replaced; or, in other words, the genuine credentials and cookies.
The current implementation does not check for this scenario. However, all SSL-secured

taobao.com
twitter.com
yandex.ru
wordpress.com
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connections are not affected because a MitM attack would be detected by the proxy
running on the smartphone—as long as the PKI is trustworthy. Furthermore, we could
extend SMARTPROXY to automatically “upgrade” each HTTP to a HTTPS connection
whenever possible, thus preventing this attack scenario. Another potential weakness is
that the login procedure on a website could perform some kind of computation during
the login process with techniques such as JavaScript, Java, Adobe Flash, Active-X or
other similar technologies. These procedures could compute arbitrary values which are
in turn sent to some unknown destinations. Currently, we do not support these setups.
Our cookie filtering approach might also cause trouble on some websites due to over-
or underfiltering. We have not found any problems during our tests and evaluation but
can not guarantee that it always works as expected. Some websites might require the
use of the white- and blacklist feature.

As the attacker is able to interact with all the content of a web site, she is able to per-
form so called Transaction Generator Attacks [16]. This means that she can make all
actions on behalf of the user, e. g., make orders in web stores, post messages, and so on.
This cannot effectively be prevented by SMARTPROXY, as it cannot tell by any means
which requests are legit and which are not. Jackson et al. propose some countermea-
sures [16], which could be included in SMARTPROXY. The best defense SMARTPROXY

offers for now is that the user can always see what is going on as all requests are visible
on the smartphone’s screen. The user might simply cut the connection to the proxy if
something looks suspicious. In this case, the attacker might disable the usage of the
proxy, but will not be able to proceed, as no credentials and cookies are available to her.

We did not carry out a user study to see how successful people are able to set up
SMARTPROXY. We are aware that people often have difficulties understanding what is
going on with security related problems (see for example [6]). As long as the users re-
member to never input real credentials into the computer while they use SMARTPROXY,
they can at least be assured that their credentials are safe.

Finally, SMARTPROXY is not yet really scalable. Each web browser which shall be
used with the proxy has to be set up. This includes importing the root certificate for SSL
secured websites. Albeit the certificate is not crucial if the link between the smartphone
and the computer is secure—e. g., when connected with the USB cable—, it greatly
enhances the user experience as otherwise each SSL secured website will enforce a
certificate warning from the browser.

6 Related Work

Research in this area to date was focused on the attempts to solve similar problems as
we discuss in the following. Mannan and Oorschot [22] proposed an approach to secure
banking transactions by using a (trusted) smartphone as an additional trust anchor. In a
very similar approach, Bodson et al. [7] proposed an authentication scheme where users
have to take pictures of QR codes presented on websites in order to log in securely.
The picture taken is then sent over the smartphone’s airlink to the web server for the
authentication to be performed there externally. To fulfill their needs, both approaches
had to implement server side changes. Conversely, one of our main goals is to only alter
the client’s side by adding a self-signed root certificate to a browser and configuring the
smartphone as a HTTP/HTTPS proxy.
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Hallsteinsen et al. [13] also used a mobile phone to obtain a unified authentication.
This approach is based on one-time passwords on the one hand and the need for a
working GSM system on the other. In this research, an additional Authentication Server
is connected to both the GSM network and the service provider which the user wants to
authenticate against. The authentication requests are sent via short messages (SMS) in
this setup. By doing this, the authors mitigate the risk of MitM attacks, but have to trust
the safety of the user’s computer, which in our scenario might as well be compromised.

Balfanz and Felten [3] developed an application that moves the computation of the
e-mail signatures to a trusted mobile device so that the untrusted computer can be used
without revealing the key to the intermediary computer. However, this approach is lim-
ited in the application scope.

Perhaps closest to our idea is Janus, a Personalized Web Anonymizer [10]. The idea
behind Janus is to enable simple, secure and anonymous web browsing. Credentials
and email addresses are automatically and securely generated with the help of a proxy
server for HTTP connections. The proxy assures that only secure credentials and no
identifying usernames and email addresses are sent to the web server. In contrast to
our work, Janus does only support SSL secured connections from the proxy to the web
server and the proxy resides on the client machine, which does not fit our attacker
model. It does also not handle other security relevant information like cookies. Finally,
Ross et al. [24] proposed a browser plugin which automatically generates secure login
passwords for the user. The user has to enter a “fake password” which is prefixed with
@@ and which is replaced by the plugin by some secure password. This approach is
similar to our credential substitution process, but does not provide a remedy against
compromised machines.

7 Conclusion and Future Work

In this paper we introduced an approach to protect user credentials from an eavesdrop-
per by taking advantage of a smartphone that acts as a privacy proxy, i. e., the smart-
phone transparently substitutes fake information entered on an untrusted machine and
replaces it with genuine credentials. We showed that it is possible to enable secure lo-
gins despite working on a compromised machine. The steps for achieving the desirable
output are relatively easy, as they mainly require connecting the smartphone to the com-
puter and configuring the web browser so that it uses our proxy. Compared to previous
work in this area, we do not need a trusted third party that performs the substitution, but
everything is handled by the smartphone itself. We have implemented a fully-working
prototype of our idea in a tool called SMARTPROXY. The overhead is reasonable and
often even unnoticeable to the user as demonstrated with our benchmarking results.
Furthermore, we evaluated the security implications of the setup and we are convinced
that our solution is beneficial for many users.

In the following, we briefly discuss future work. First, there could be a better connec-
tivity between a smartphone and a computer. A type of an automatic wireless connec-
tion would be helpful, and the use could potentially be made of the Bluetooth protocol.
We did not look into this aspect because the current connectivity scope was deemed
sufficient for the prototype. It would be advantageous to see some kind of “Reverse
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Tethering” support on Android, like the ActiveSync feature that Windows Mobile of-
fers. This could enable effortless use of the fast Internet connection of the computer.
Furthermore, a guarantee of a proper detection of cases when the plain HTTP traffic is
routed back to the computer on which the web browser runs would be essential in order
to prohibit vulnerable setups of this sort.

Additional filters could be implemented to hide content from web browsers, for ex-
ample by some type of blacklist to substitute valuable data with fake information. Ex-
amples could include names, addresses, credit card and social security numbers, and
even real credentials. This would also avert “mirror attacks” where an attacker attempts
to send substituted real data back to the web browser through the proxy to get hold of
them. Although the attacker would need access to the web server to enable such mir-
roring and would already have access to the data, such an attack would be harder for
the attacker. As the filter system is pluggable, this can be implemented rather easily but
was not done for our prototype at this stage.

Last but not least, the speed of the SSL handshakes could be improved. Although
it is already pretty fast for most use cases, this is undoubtedly a desirable direction
of improvements in the future. There are some existing solutions which are known to
reflect and cater to this need, but they are currently unavailable on the Android OS.
One example would be what Google proposes in the instances of False Start [21], Next
Protocol Negotiation [19], SPDY [1] and Snap Start [20]. These solutions are currently
tested by Google in selected applications and servers. If they prove successful, they will
be hopefully integrated into Google’s Android.
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Siemens CERT, D-80200 Munich, Germany

Abstract. In recent years attackers have changed their attack vector
from the operating system level to the application level. Particularly,
attackers concentrate their efforts on finding vulnerabilities in common
office applications such as Microsoft Office and Adobe Acrobat. In this
paper, we present a novel approach to detect and identify the actual
vulnerability exploited by a malicious document and extract the exploit
code itself. To achieve this, we automatically extract from a security
patch information about which code fragments were changed. During
the analysis of a document, we open the document using the appropriate
application, log the execution path, and automatically identify embed-
ded malicious code using dynamic binary instrumentation. Then both
pieces of information are used to determine whether a malicious doc-
ument exploits a known security flaw and, if so, which vulnerability is
targeted.

1 Introduction

Over the last years authors of malicious software (malware) have increasingly tar-
geted vulnerabilities in client applications [4], such as document readers, web
browsers, or media players in order to compromise machines. Most of these ap-
plications use complex data structures, which allow the embedding of code, such
as JavaScript in the case of Adobe’s Portable Document Format (PDF), and, ad-
ditionally, provide different kinds of Application Programming Interfaces (APIs)
to control the way documents are displayed. These complex data structures and
rich functionality make such applications prone to vulnerabilities. Especially of-
fice documents have received much attention of today’s attackers, since the cor-
responding applications are widespread and frequently contain vulnerabilities.

1.1 Motivation

Recently, several security tools have emerged to analyze the threat of mali-
ciously prepared office documents [1,8,5] and determine whether a document is
malicious. However, for corporate network administrators, the prime objective
after detecting a malicious office document within the infrastructure is to find
out, which vendor patch closes the vulnerability exploited by the document.
Up to now, research that focuses on the automatic determination of security
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patches solely relies on manually created signatures (see Section 2.3). The major
drawback of this solution is that manually crafting signatures is a complex, time
consuming, and continuous task.

In an enterprise environment, new security patches are not simply rolled out
after publication but are typically tested before being deployed, to avoid recov-
ering from patches that break the system. Thus, knowing which patch closes an
actively exploited security vulnerability is a valuable information as it helps to
prioritize what patches need to be tested first in order to be deployed in a timely
manner.

For this reason, we need to be able to distinguish malicious documents from
benign ones and determine the vulnerability that is to be exploited in a fast and
reliable manner. In detail, we need to be able to extract information whether
(1) the exploit targets a known vulnerability or (2) whether it is a so-called
zero-day exploit, i.e., malicious code that aims at exploiting a security issue
not known to the public at this point in time. In the first case, we want to be
able to provide information about the required patch for a specific application.
In the latter case, we are able to gain knowledge about new security flaws for
which a protection has yet to be established. In summary, we want to be able
to determine in a single step whether a received malicious document is really a
threat to the current infrastructure patch-level.

A similar approach is used by next-generation network intrusion detection
systems, which try to determine whether monitored exploit attempts against
network services could be successful based on the patch-level of the attacked
systems. Such information is needed as it greatly reduces the number of seri-
ous incidents an administrator has to deal with every day. Thus, the presented
prototype system is not intended to be used by end-users, but as a platform for
security administrators to help prioritize patch testing and filtering of incidents
concerning malicious documents that target already patched vulnerabilities.

1.2 Contribution

In this paper, we present a novel approach to automatically determine whether
exploit code in office documents targets a vulnerability for which an update
already exists or a new security flaw which requires further analysis. In this
context, our approach provides information about the specific vulnerability that
is exploited and thus which update is required at a system in order to be pro-
tected. We implemented this method in a tool called Binary Instrumentation
System for Secure Analysis of Malicious Documents (BISSAM), which focuses
on Microsoft Office 2003 and 2007 running on Microsoft Windows XP, but this
approach can be also used with other applications. We use Intel’s dynamic binary
instrumentation tool Pin [3] to follow the code execution during runtime and
dump trace information in case suspicious behavior is detected. The resulting
data is then used to determine the matching patch by querying a continuously
updated database that contains binary difference information for all patches of
a certain application. As a result, we are able to facilitate the process of incident
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response regarding malicious office documents in a fast and reliable fashion.
Our main contribution is the technique to automatically identify the exploited
vulnerability of a maliciously formed office document. We evaluated our approach
using several documents, received from real world attacks.

2 Methodology Overview and Related Work

In this section, we briefly review the problem of analyzing malicious office docu-
ments and determining the exploited vulnerability. Therefore, we begin with an
abstract overview of our approach.

2.1 Problem Definition

Considering the large number of client applications that can be exploited by
malware to take control of a system, it is mandatory to gain knowledge on
whether a malicious document poses a real threat to a corporate network or
not. Thus, the problem that needs to be solved comprises two steps, detect
malicious code embedded in documents and identify the actual vulnerability to
be exploited.

Most of today’s security tools that are used for malicious document analysis
solely rely on signature based heuristics to identify both the malicious code and
the vulnerability that is exploited. Moreover, the creation of such signatures is
usually performed manually, which is a time consuming, fault-prone, and compli-
cated process. To improve this situation, a new method is required that involves
automated and dynamic detection and identification of malicious documents.

The general approach to detect malicious behavior of documents we present in
this paper is generic, i.e., it can be used for all kinds of document formats. How-
ever, we focus on the detection and identification of malicious office documents
here, since a lot of malware exists that targets the according applications.

2.2 System Overview

The process of software vulnerability identification implemented by BISSAM,
consists of two subsequent parts: Automatic Exploit Detection and Vulnerabil-
ity Identification. Apart from these two parts, we also require an automated
signature generation and storage process to identify vulnerabilities. This step
is performed in the Signature Generation system on a regular basis by query-
ing vendor patch information on the Internet. The complete system overview is
illustrated in Figure 1.

During Signature Generation we extract the vendor’s updates and check which
files of the particular office application have been modified. Afterwards we ex-
tract the binary differences between these files and the corresponding files of
a standard office application installation using a binary difference utility. The
resulting difference files are further processed and ranked using heuristics to
determine whether the change is security related or not. The resulting binary
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Signature Generation

Dynamic Exploit Detection

Execution Logs

Instructions

Shellcode

Vulnerability
Identification

Report

Signature Database

Fig. 1. Schematic overview of our approach to analyze malicious documents and extract
vulnerability-specific information

difference files are created for each major and minor application version, i.e., we
create signatures for Microsoft Office 2003, Office 2003 Service Pack 1, Office
2007 and Office 2007 Service Pack 1. All resulting signatures are stored in a
central database to support the vulnerability identification step.

In the first analysis step Automatic Exploit Detection, we analyze each mali-
cious office document in a controlled environment. The controlled environment
comprises several sandboxes that each contain different versions, patch-levels,
and service packs (a bundle of patches) of a particular office application. Then
we execute the appropriate office application, such as Microsoft Word, and load
the document. Afterwards, we use dynamic binary instrumentation to monitor
the program execution. We log the program trace to detect whether malicious
code is executed using different heuristics. In case malicious code is detected the
application is interrupted and all created log files are copied to the system to
identify the exploited vulnerability.

In the second step Vulnerability Identification, we use the previously collected
log files to determine possible locations in the program execution trace that
point to vulnerability exploitations. We compare each basic block with the ones
stored in our signature database. A basic block (BBL) is a part of code within a
program adhering to certain properties. A BBL has one entry point, no code in
it is the destination of a jump instruction, and one exit point. We only consider
basic blocks for which an update has made security relevant changes. This is
determined by heuristics, e.g., if insecure function calls like strcpy() are replaced.

The resulting list of basic blocks that match basic blocks found in the database
is ranked according to the distance of the basic block from its location in the
program execution to the end of the trace and the match rate of the signature
that matched. Match rates are generated during the signature generation step.
This process results in a ranked list of security updates that fit the vulnerability
a malicious office document is trying to exploit. In case no update is found we
assume the malicious code is targeting an unknown security flaw, a so-called
zero-day.
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2.3 Related Work

Next to BISSAM only Officecat [8] and OffVis [5] provide functionality to identify
security flaws. However, they use manually created vulnerability signatures, thus
the detection quality depends on the signatures. Further, new signatures have to
be distributed each time a new vulnerability is detected. Our approach creates
new signatures automatically based on the vendor’s updates. At the time of this
writing, Officecat and OffVis only provide signatures for vulnerabilities found
between 2006 and 2009.

3 Approach

In order to correctly identify which update is responsible for correcting a certain
vulnerability, we created a database containing signatures to link updates to
code blocks as extracted by Pin during the automatic exploit detection process.
Signatures are created with the help of the tool DarunGrim [6]. DarunGrim
supports the process of detecting differences in binary files, also known as binary
diffing. We define a Signature as a changed, removed, or added BBL by a security
update. One update may result in various signatures.

3.1 Signature Generation

The basic idea underlying the identification of which vulnerability is exploited
by a given document is to use vendor-specific security update information. If
program execution starts to behave maliciously at a certain code location and
there exists a security-relevant update that, when applied, would change code
in the vicinity of that code location, then there is a high probability that one
of the vulnerabilities fixed by that update was exploited. As a consequence, we
create our signatures from binary differences calculated from security updates.

Microsoft offers security relevant updates in so called msi setup files. One
msi file contains the updated versions of the vulnerable files, e.g., if the file
powerpnt.exe has a vulnerability, the msi file will provide the full powerpnt.exe
and will replace it when applying the update. One complication here for mapping
changes introduced by updates to vulnerabilities is the problem of non-original
content: an update may duplicate changes of previous (not necessarily security-
related) updates so as to allow stand-alone usage, i.e., installation of this update
does not require the installation of all previous fixes.

Microsoft also provides major application updates called Service Packs. This
causes complications when treating updates that build upon a service pack:
Firstly, service packs provide functional improvements, bug fixes, and security
relevant changes all in one bundle. Security updates that are built upon a service
pack necessarily contain large amounts of security-irrelevant code. Secondly, a
service pack typically does not update every file of the base installation, yet
such files may at a later point of time be changed by an update that requires
the service pack. Thus, calculating differences for such updates must take into
account both the base installation and the service pack.
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The primary goal we want to achieve is to extract the differences between each
base patch-level and the original content of each subsequent security-relevant
update. The term original in this case means that changes to an installation
that have been contained in previous updates but are nevertheless contained in
a newer update should be factored out. Based on the previously discussed facts,
we need to create a suitable way to identify all security relevant changes of a given
update. For updates that are based on the base installation, we simply create
the binary difference between the files in the update and the base installation. If
an update relies on a service pack, we will create a binary difference between the
service pack file version and the updated file, if the file in question is part of the
service pack. If that is not the case, we will create the binary difference between
the file of the base installation and the updated file of the security update.

(a) The update selection strategy we use for our imple-
mentation.
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(b) Schematic view on the process to extract
Δmin.

Fig. 2. Patch selection strategies for the signature generation

Figure 2a illustrates the resulting update selection strategy. In this update
selection strategy, we create binary differences between every update and all
previous base patch-levels. We use the gathered difference information to cal-
culate the minimal difference Δmin between two consecutive updates. This is
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necessary in order to map changes precisely to the update in which the changes
appeared for the first time: the minimal difference will get rid of non-original
content. For example, if we consider three consecutive update sets named p1,
p2, and p3 and for each of them the binary difference to the same base file Bi

has been computed. Then, all changes introduced by update p1 are also included
in update p2 and p3 as well and the changes introduced by update p2 are in-
cluded in the binary differences from the base Bi to update p3. Thus, if we are
interested in the changes solely applied by update p3, we need to filter out all
changes originating from the updates p1 and p2. In practice this is accomplished
by comparing the differences between the base file Bi and update p3 and remov-
ing all identical changes found in the differences between the same base file Bi

and update p1 and p2 respectively. Note that this step has to be performed on
all previous updates which results in a chain of differences of differences.

Figure 2b illustrates the above mentioned process of extracting the minimal
difference Δmin between an update pn−1 and pn which can be formally described
as:

Δmin ⊆ diff (Bi, pn)�

n−1⋃
m=1

diff (Bi, pm) (1)

with diff being the function to extract the binary differences between the base
file and an update and Bi being the ith base file version.

3.2 Automatic Exploit Detection and Vulnerability Identification

The last step of the malicious office document analysis process is the dynamic
analysis of the document and the identification of the security flaw that is ex-
ploited.

In the dynamic analysis we run the malicious document in several sandboxes
and monitor the execution using a tool called Pin. The strategy we use to detect
an exploit, is based on dynamic detection of corrupted system states by con-
stantly monitoring the process execution. Particularly, we are monitoring each
executed instruction. To detect a corrupted system state we defined a rule based
on abnormal system behavior. An application is in a corrupted system state, e.g.
if the Extended Instruction Pointer (EIP) is pointing to an address outside the
code segment.

After detecting a corrupted state, we need to identify the root cause that
lead to the application losing control to the malicious code. To achieve this, we
are tracing back the execution path that was logged during the EIP observation.
Since monitoring happens on a per-instruction basis, we are logging two different
traces, one on instruction and one on function level.

In order to achieve the vulnerability identification, we order the list of BBLs,
created by Pin, by the order of their occurrence in the execution path. Since Pin
logs its information in chronological order, we can determine the BBL that is
closest to the point the office application crashed.
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In the next step, we identify all those updates from our signature database
where the signature is matching the BBL of the previously logged execution and
retrieve the information in which update the signature is included. With the
help of this information we determine the Microsoft security update including
the exploited vulnerabilities referenced by their CVE number.

4 Evaluation

In order to demonstrate the feasibility of our approach we examined 7 malicious
documents. We captured these documents during several real-world attacks. Our
experiments showed that we can reliably detect the misbehavior of the malicious
document and further successfully identify, if there is a patch available.

As an initial step, we analyzed each document manually to determine the
vulnerability that is exploited and the application version that is vulnerable to
the particular attack. Additionally, we used the tools OffVis [5], and officecat [8]
to compare the results. The manual verification of all documents was a very
time consuming process and is the main reason that only 7 documents could be
evaluated.

Table 1 illustrates the evaluation result of BISSAM when identifying the ex-
ploited vulnerability. For 6 out of 7 malicious documents we have correctly iden-
tified the security update. Note that one document (CVE 2006 2492.doc) did not
trigger the exploit because it was designed for a different Office version, which
was not installed in our sandbox environment, and therefore, we were actually
able to detect the correct security update for every running malicious document.

Unfortunately, we also detected additional security updates. The reason here
is that our approach determines the exploited vulnerability by searching through
our signature database and checking whether a BBL matches our trace. As some
other updates also patch the same BBL that is listed in our trace, we identify
these updates as well. In Section 5 we discuss this problem and give a possible
solution. Nevertheless, this problem does not affect the correct detection of the
exploited vulnerability and the mitigating security patch.

Table 1 gives an overview of the comparison. In our evaluation, we show that
our approach is more reliable in identifying the correct security patch than the
approach taken by OffVis and officecat. Note that both OffVis and officecat are
trying to detect the actual vulnerability, referenced by the CVE number, which
is particularly harder to determine.

5 Limitations and Future Work

Although the evaluation results of BISSAM are already promising, the system
still has some limitations. As far as the detection mechanism is concerned, we
are limited to the detection of exploits that use techniques implemented in the
detection rule, i.e., exploits executed from the stack, or more generally outside
the code section. Thus, advanced exploit techniques like Return Oriented Pro-
gramming (ROP) [2,7], currently remain undetected.



212 T. Schreck, S. Berger, and J. Göbel

Table 1. Evaluation results and comparison of the vulnerability patch identification
by BISSAM

Document Identified Patches by
BISSAM

Correct Patch BISSAM officecat OffVis

CVE 2006 0022.ppt MS06-028
MS06-058

MS06-028 ✓ ✕ ✓

CVE 2006 2492.doc MS06-027 ✕ ✕ ✕
CVE 2009 0556.ppt MS09-017

MS10-004
MS09-017 ✓ ✕ ✕

CVE 2009 0563.doc MS09-027
MS09-068
MS10-036

MS09-027 ✓ ✕ ✕

CVE 2009 1129.ppt MS08-051
MS09-017

MS09-017 ✓ ✕ ✕

CVE 2009 3129.xls MS09-067
MS09-021

MS09-067 ✓ ✕ ✕

CVE 2010 3333msf.doc MS07-015
MS10-087

MS10-087 ✓ ✕ ✕

Further, the detection of BISSAM is limited to systems on which the shell-
code triggers. Since the detection routine evaluates the point where control is
transferred from the application to the shellcode, the sample needs to be run on
the appropriate target system for the exploit to successfully work. Apart from
exploits that were designed to work on multiple platform/software combinations,
the potentially malicious document would crash the affected software in most
cases except the one it is intended to be run on.

When our system tries to identify the update, it relies on the generated sig-
natures and selects all updates that modify anything in the program’s execution
path. This inevitably leads to the selection of patches that also have non-security
relevant changes. As a result, to improve our internal security rating, we evaluate
the integration of a security relevance rating following the example of Darun-
Grims Security Implication Score.

Another limitation concerns the detection of the vulnerability and the identi-
fication of the corresponding update. This process fails, if the point of failure in
the software is too far away from the point the actual shellcode is executed. In
this case the trace misses the executed BBLs that lead to exploitation. Currently,
we are tracing the last 5000 BBLs, which according to our evaluation suffices to
identify the exploited vulnerabilities correctly.

6 Conclusion

In this paper, we improve the analysis of malicious documents by presenting a
novel approach called BISSAM to automatically identify the exploited vulnera-
bility and detect the embedded shellcode. Our system consists of two parts: The
first part is responsible for creating signatures based on vendor’s update infor-
mation in an automated fashion. The second part comprises the actual analysis
system, which consists of several sandboxes running different office application
versions and patch-levels. Each document is opened in every application-specific
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sandbox and our pintool traces the execution. After the document has been
executed in every sandbox, the trace is evaluated using the previously gener-
ated signatures. The result is a list of possible vulnerabilities that the document
exploits.

The evaluation results showed that our approach is not only able to reliably
detect malicious documents, but also to extract the involved shellcode, and to
identify the exploited vulnerability, i.e., we are able to determine the update
that fixes the corresponding security issue.

In summary, the presented approach performs well on current threats concern-
ing office documents and forms a great addition to today’s security measures in
the field of client application attacks.
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Abstract. We present a distributed self-organized model for collabo-
ration of multiple heterogeneous IDS sensors. The distributed model is
based on a game-theoretical approach that optimizes behavior of each
IDS sensor with respect to other sensors in highly dynamic environments.
We propose a general formalization of the problem of distributed collabo-
ration as a game between defenders and attackers and introduce ε-FIRE,
a solution concept suitable for solving this game in highly dynamic en-
vironments.

Our experimental evaluation of the proposed collaboration model on
real network traffic clearly shows improvements in the detection capa-
bilities of all IDS sensors, allowing each system to specialize on partic-
ular network activities while not reducing the overall effectiveness. The
concept of opponent aware, self-coordinating and strategically reasoning
Network Intrusion Detection Networks allows effective collaboration of
individual system defenders that may match a market-based collabora-
tion structures of the attackers.

1 Introduction

Protecting network security assets against modern, highly sophisticated network
attacks represents a complex challenge for researchers and security experts. Lots
of successful targeted attacks have shown large vulnerabilities and unprepared-
ness of corporate network security mechanisms to face novel and more advanced
network threats. Intrusion Detection Systems (IDS) are a widely used mechanism
for network protection, which helps to secure network infrastructures by using
static signature matching or dynamic anomaly detection methods. Signature-
based IDS systems evaluate each network connection according to predefined
signatures regardless of the context, showing promising results on well-known
attacks, but with limited capabilities to detect novel intrusions. On the other
side, anomaly-based IDS systems are designed to detect a wide range of network
anomalies including yet undiscovered attacks, but at the expense of higher false
alarm rates. Thus each sensor perceives information differently depending on its
functionality or deployment. Considering the benefits and limitations of each,
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the key to detect nowadays advanced threats and collaborative attacks lies in
a distributed collaborative mechanism consisting of multiple heterogeneous IDS
systems deployed in various parts of the network infrastructure.

The proposed research work is specifically aimed at the investigation of global
distributed collaboration of individual autonomous detectors and the relation-
ship between system response characteristics (e.g. detection sensitivity), stability
of these characteristics, and their predictability by the opponent. We define a
game-theoretical framework suitable for the collaboration of multiple hetero-
geneous IDS systems and introduce simple yet effective game solution concept
ε-FIRE, where multiple IDS sensors seek to optimize global collective objective
through local decision making. The ε-FIRE concept combines ε-greedy method
with FIRE model to maintain robust and efficient properties suitable for dynamic
environments.

We propose to specialize each IDS sensor to detect unique intrusions and
attacks that have not been detected elsewhere. More specialized IDS sensors may
produce less true and false positives, which can decrease individual effectiveness
of the sensors. However, specialized sensors provide more precise and valuable
alerts, because these alerts are unique and are provided with higher confidence.
Thus, the proposed collaboration of more specialized IDS sensors, where each
sensor dynamically reconfigure its parameters and focuses on specific types of
intrusions, results in better overall detection coverage of the attacks. We have
evaluated the proposed concept on academic networks, where we have shown
considerable improvements of the ε-FIRE collaboration in detection capabilities
of intrusion detection devices.

The paper is structured as follows. In Section 2 we discuss general assump-
tions of a distributed collaboration. Formalization of the collaboration with the
game-theoretical approach as an extensive game between defenders and attack-
ers is proposed in Section 3, while Section 4 contains a discussion of existing
solution concepts for solving the game-theoretical problems. In Section 5, we in-
troduce ε-FIRE, the game solving concept that can be applied to solve the game
in highly dynamic environments. Our experimental evaluation of ε-FIRE con-
cept is described in Section 6 and Section 7 concludes the paper with practical
implications of our findings and a summary of the results.

2 Distributed Collaboration

In a collaborative IDS system, each node shares information with other nodes
according to the predefined policies, allowing the node to adapt both locally
and globally with respect to received information. Sharing information among
multiple heterogeneous systems can be also utilized by fusion methods [5] to
reduce false alarm rates or find some relations among the reported alerts. More-
over, results from various parts of the network infrastructure may reveal more
complex attack scenarios. But the distributed information sharing can be also
used for a collaborative co-adaptation, where each node adapts on the network
environment with respect to the results provided from other nodes, which we
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Fig. 1. General game-theoretical model for a distributed collaboration and high-level
assessments of multiple heterogeneous IDS sensors

believe is the key property when detecting advanced collaborative attacks. Gen-
eral game-theoretical approach for a distributed cooperation is depicted in Fig. 1.

The problem of distributed collaboration has been studied by the research
community from two perspectives. The majority of research focuses on multi-
sensor alert correlation and data fusion techniques, where the goal is to fuse
alerts from heterogeneous sensors to provide more reliable output of the system,
e.g. by reducing false alerts [5]. However, another possible approach is to employ
alert correlation into a feedback mechanism that would influence the behavior of
all nodes and the whole collaborative system would react as an intelligent and
robust Intrusion Detection Network.

The proposed collaboration model uses alert correlation in two ways: first
it is used for accumulating collective information from the outside of the node
(typically for accumulating results from other nodes), allowing each node to
adapt on the current network state from the global point of view. An example
of such adaptation is change in parameters or threshold values, modification of
inner models, change in priorities of rules, adding new patterns or signatures
etc. Moreover, alert correlation is also used for summarizing the alerts provided
by all collaborating nodes to create global network security awareness.

In our work, we assume that the monitored network is covered by multiple
heterogeneous IDS systems (nodes). These heterogeneous IDS nodes detect at-
tacks and intrusions by using various detection mechanisms and types of input
data - netflows, signatures, logs, etc. We introduce a game-theoretical framework
for a distributed co-adaptation that requires the following assumptions:

– Local self-monitoring - all IDS nodes should be able of a local reconfigura-
tion to adapt on the current state of the network according to the proposed
game model.

– Interoperability - outputs of all nodes should be in the standardized format
(e.g. Intrusion Detection Message Exchange Format - IDMEF [4]), allowing
their interaction even if their detection mechanisms are different. We will
refer to these outputs as events.

– Communication - maintaining robust and reliable communication among
multiple IDS nodes is essential assumption in the distributed collaboration.
We will discuss this aspect further in this section more in detail.
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– Security - for security reasons, nodes do not provide information about
their internal state. Furthermore, secure communication channel should be
provided to reduce the possibility of attacker’s manipulation with the system.

– Traffic assumptions - strategic deployment of IDS nodes in the network
is important to provide relevant information to the game model.

The above-mentioned assumptions define the initial conditions of the proposed
distributed co-adaptation controlled by a game-theoretical model explained fur-
ther in Section 3.

2.1 Communication

An important aspect of the distributed collaboration is the communication pro-
tocol. In our model, each node can communicate with the rest of the nodes to
be able to provide results in a fully distributed manner. We justify the choice of
the distributed topology for its scalability and security properties - it does not
introduce a single point of failure. Moreover, possible communication overhead
can be reduced by grouping the alerts from a single node into one message, which
can be periodically sent to other nodes.

Maintaining situational awareness in distributed groups represents a difficult
task as well. The communication protocol should be as light as possible, with
no synchronization issues. An example of such light-weight protocol is publish-
subscribe protocol, where at the beginning a node informs others that it provides
and requires results in form of alerts. After this subscription, this node will send
alerts to the subscribed nodes and at the same time will expect remote alerts
generated by other nodes. Once all alerts are received (or timeout elapses in case
of some failure), nodes may perform further collaboration processing having all
available alerts at disposal.

3 Game-Theoretical Model

We formalize the distributed co-adaptation as a game between attackers and
a set of defenders represented by individual IDS nodes. Each player performs
certain actions to achieve its predefined goal. An example of attacker’s goal is
to exploit some secret data from private network. On the other hand, defenders’
goal is typically to prevent attackers from achieving their goals.

More formally, the defender system consists of n IDS detectors P 1
D, . . . , Pn

D.
Each IDS detector is one player of the game with its own set of strategies. We
will denote the set of all strategies for player P j

D as Xj
D, and i-th strategy of

player P j
D as ixj

D. Similarly, the set of attackers P 1
A, . . . , P

m
A uses strategies

x1
A, . . . , x

m
A from X1

A, . . . , X
m
A . By using this notation, we define the game of n

defenders and m attackers as follows:

G = (P,X,U) (1)

P = {P 1
A, . . . , P

m
A , P 1

D, . . . , Pn
D} (2)
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X = {X1
A, . . . , X

m
A , X1

D, . . . , Xn
D} (3)

U = {u1
A, . . . , u

m
A , u1

D, . . . , un
D} (4)

ui
A : X i

A ×X1
D × . . .×Xn

D → R (5)

uj
D : X1

A × . . .×Xm
A ×Xj

D → R. (6)

As you can see, utility function of i-th attacker ui
A depends on his strategy and

strategies of all IDS nodes, while utility function uj
D of j-th defender depends on

strategies of the defender and all attackers. The attacker and defender system
should ideally optimize a shared utility function. In practice, though, the utility
functions (on the defender’s side) differ as the internal state of each player is
inaccessible for integration and security reasons. The dynamism of the environ-
ment causes that utility functions of the defender can rarely be identical. This
diversity in utility functions increases robustness and wide adaptability of the
overall defender system.

In the following, we will assume a three-player game between one attacker
and two defenders. Note that this game can be simply extended to different
configurations with more players on both sides. The payoff matrix for the first
defender that describes payoff distribution according to strategies selected by
the attacker (columns) and the first defender (rows), can be written as follows:

U
1
D =

⎛
⎜⎝

u1
D(1x1

A,
1 x1

D) . . . u1
D(kx1

A,
1 x1

D)
...

...
...

u1
D(1x1

A,
l x1

D) . . . u1
D(kx1

A,
l x1

D)

⎞
⎟⎠ , (7)

where k, l denotes the number of all strategies for P 1
A, P

1
D respectively. I-th

column of matrix U
1
D describes the payoff changes when attacker selects strategy

ix1
A depending on defender strategies in rows. The payoff matrix for the attacker

U
1
A and the second defender U2

D can be expressed similarly.
Until now, we have not introduced any collaboration link among players and

the game can be solved for each player locally with no other interactions. How-
ever, we extend this model with a collaboration mechanism, where defenders
share their results (not internal states) and on these bases each defender modi-
fies the payoff matrix to adapt the system in a distributed manner. The presented
distributed collaboration consists of three main steps:

1. sharing distributed results - in the first phase, each defender collects
results from all cooperating defenders for the given time period (e.g. alerts
from 5 minutes of network traffic). We will denote the results of i-th defender
as Ri

D.
2. computing feedback matrix - based on all results from the given time

period, i-th defender computes the feedback matrix F
i
D. In our three-player

game, the feedback matrix of the first defender will be as follows:

F
1
D =

⎛
⎜⎝

f1(
1x1

A,
1 x1

D, R1
D, R2

D) . . . f1(
kx1

A,
1 x1

D, R1
D, R2

D)
...

...
...

f1(
1x1

A,
l x1

D, R1
D, R2

D) . . . f1(
kx1

A,
l x1

D, R1
D, R2

D)

⎞
⎟⎠ , (8)
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Fig. 2. The proposed game-theoretical scheme for the distributed collaboration of mul-
tiple heterogeneous IDS sensors

where fi is the feedback function that evaluates results of used strategies
depending on results from other nodes and transforms them into real val-
ues. This feedback function tells us relative quality of the system for given
strategies and results.

3. altering internal state - once the feedback matrix is computed, each de-
fender creates the final payoff matrix FU as a weighted average of local and
remote utility values:

FU
1
D := wu · U1

D + wf · F1
D, wu + wf = 1. (9)

To create the final payoff matrix, we do not need to know attacker’s payoff,
because FU depends only on payoff matrices and results of the defenders.
Such modification of a payoff matrix typically results in a change of the opti-
mal strategy and thus each defender optimizes its performance with respect
to other defenders to maximize collective gain.

The notion of independent optimization, where players are not explicitly in-
formed about actions played by other players, makes the game consistent with
the formalization based on extensive-form games introduced in [15] and discussed
in Section 4. We are facing a dynamic optimization problem, where the envi-
ronmental conditions imposed by the external environment can change rapidly,
making the game similar to a sequence of static games with unpredictable length.

4 Current Solution Concepts

Algorithms and solution concepts have been widely studied and formalized in
static environments, where the repeated game converges to Nash equilibrium
(i.e. stable point in the strategy space where none of the players benefits from
unilateral deviation). However, in highly dynamic environments (like computer
networks), behavior of the optimal algorithm is subject of recent research and
has many unknown properties that are not yet well described. Pareto-optimal
algorithms converge to more equilibria that may change in time as the game
conditions evolve, so the system should be flexible and scalable for changing
policies and goals. That means the optimal algorithm should select among more
equilibria rather than converge to a single one.
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Regret minimization is a technique achieving long-term optimality in a se-
quence of identical games. It does not require any knowledge of other players’
utility functions, but is based on independent loss minimization performed by
individual players given the payoffs received for their past moves – the strategy
played by the agents is strictly based only on the feedback that they receive.
The regret, or more specifically the external regret, is defined [3,6] as an ex-post
evaluated loss of utility due to the suboptimal strategy selection - thus the term
regret.

Regret minimization is a robust method that yields predictable results in a
wide range of games. In a static environment, it can be shown that the use of
the proper regret minimization algorithms bounds the maximal loss achieved
using external regret minimization by the term O(

√
T log |X |) relative to the

best loss achievable [3]. This is a general result that can be applied outside of
game theoretic frameworks.

In the specific case of two-player, zero-sum games, the use of regret mini-
mization will make the player’s payoffs converge towards the value of the game,
with the speed of convergence bounded by the term above. This result can be
generalized for a far broader class of games. Hart and Mas-Colell show that if all
players play regret minimization in a sequence of static games, the joint distri-
bution of play converges [8,6] to the set of correlated equilibria [10,2] of the stage
game. One of the important corollaries is that the probability of strategy switch-
ing decreases as well, making the players reach increasingly longer sequences of
constant strategy play.

The correlated equilibrium is an extension of the well-known Nash equilibrium
by assuming that the players can either communicate, or can observe a common
variable(s), or share a history of gameplay. All these specific examples are special
cases of a correlating device [3]. Such a device produces a set of (correlated)
signals, one for each player, which use for strategy selection in the game. It can
be shown that when the signals are fully correlated (e.g. when all players share a
single public signal), the correlated equilibria set equals the convex hull of Nash
equilibria.

On the other hand, convergence to the smaller set of Nash equilibria is pos-
sible, but is guaranteed only in very specific types of game, and not guaranteed
at all in the general case [7]. In particular, in the two player, zero sum game
example mentioned above, the game converges, but counter-examples of non-
convergent games can be found even for simple three player games, such as the
Shapley game [12]. In non-zero sum games with more than two players, the
regret-minimizing algorithm provides robust results when other approaches may
fail.

The results of [15] suggest that regret minimization is also robust in zero-sum
finite extensive-form games with perfect recall when applied across independent
information sets in the game. The regret (counterfactual regret) is measured
and minimized on information sets in the game and the authors show that mini-
mization of the counterfactual regret in individual game stages bounds the over-
all regret of the global game – albeit only in a very specific class of games.
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This is an extremely important property, as it hints that at least some of the
regret minimization properties may hold when we split one of the players into
several partial players, each of them selecting a fraction of the original player’s
strategy.

The question of convergence is further complicated in the dynamic environ-
ment. The algorithm’s convergence speed becomes critical, as it needs to converge
within the time interval when the environment (which defines the structure of
the game) is relatively stable, making the set of correlated equilibria also stable.
This also implies that the value of the past history decreases with increasing time
difference to find the balance between the robustness and speed of convergence.

5 The ε-FIRE Algorithm

In this section, we will introduce a simple, yet effective algorithm that can be
used as a solving concept for the game defined in Section 3. As mentioned above,
algorithms in dynamic network environment should converge fast into equilib-
rium that can be easily changed with the change of the environment. The ε-FIRE
algorithm combines FIRE model [9] with ε-greedy [13] method to guarantee that
the algorithm will always find new equilibria.

The ε-greedy algorithm is an effective means of balancing exploitation and
exploration in multi-agent reinforcement learning domain. This algorithm be-
haves greedily most of the time, which means that it selects the actions with
the highest estimated reward (or rating). However every once in a while (with
probability ε), it selects the action randomly from all possible actions:

1. Algorithm starts with a set of strategies X to select from. Each strategy is
associated with expected utility u(x).

2. The algorithm draws a random number r from the [0, 1] interval. It compares
r with the ε parameter (hence ε-greedy).

3. If r < ε, then the algorithm randomly selects one strategy from the strategy
set. Otherwise, it selects the strategy with the highest expected payoff.

The convergence of the ε-greedy algorithm is guaranteed [13], because as the
number of selections increases, all actions will be selected an infinite number of
times.

The results regarding the behavior of the ε-greedy algorithm in stochastic
games are encouraging. In [14], the authors show that the application of ε-
greedy can achieve better results than standard Q-learning approaches in a series
of games. Interestingly, the authors argue that its use can achieve an average
payoff higher than Nash equilibria value in some games and show it for Prisoner’s
dilemma in particular. However, compared to regret-minimization algorithms [3]
discussed in Section 4, the algorithm does not use (and it also does not need to
maintain) the information about the expected payoff for each action.

FIRE model [9] was originally designed for trust evaluation in open multi-
agent systems. We have adopted its interaction part into our algorithm to
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Fig. 3. Collaboration scenario between two IDS nodes deployed on different parts of
the network. The first IDS was placed topologically in front of the second IDS.

increase convergence speed. Greedy strategy with the highest payoff is computed
according to the following equation:

u(x) = max
j

∑
i

wi · uj
i , (10)

where wi represents i-th weight coefficient and uj
i represents i-th last observed

payoff of j-th strategy. The weights must hold conditions:

∑
i

wi = 1 ∧ wi−1 ≤ wi, (11)

which means it gives more weight to more recent payoff. Typically, we define
FIRE model with five past observations. Thus the ε-FIRE algorithm selects
strategy x according to the following principle:

x =

⎧⎨
⎩

argmaxj
∑

i wi · uj
i r ≥ ε

random(X) r < ε
(12)

The ε-FIRE algorithm is suitable to use in highly dynamic environments, where
the reward variance is larger and rewards are noisier. In such environments, ε-
greedy method should perform better than any simple greedy algorithm [13].
We also argue that in highly dynamic environments, the ε-FIRE algorithm can
outperform the regret minimization as the regret values based on long-term past
experience may be misleading.

6 Experimental Evaluation

In this section, we will describe the results of our distributed experimental sce-
narios, incorporating a distributed collaboration of two IDS nodes deployed on
different parts of the network infrastructure (as shown in Fig. 3). The first node
(denoted as backbone) processes traffic from the backbone network, while the
second node (denoted as subnet) processes traffic acquired only from a part of
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the whole network (it does not see traffic between the backbone and network 2).
Both nodes are influenced by each other’s events and therefore, their results will
diverge as they produce different events and make different decisions.

In all scenarios, we used the same datasets consisting of 500 minutes of uni-
versity network traffic, which we have partially classified. Furthermore, these
datasets contain persistent real malware traffic. We have established an infor-
mal collaboration with a penetration tester who did supply us with a sample
of sanitized malware used for penetration testing of enterprise customers based
on social engineering. The malware behavior consists of various stages, includ-
ing the initial infection (typically from a USB drive or an email attachment),
(optional) library download through the HTTP connection and principally the
Command and Control traffic implemented as a periodic polling of a specific
website with HTTP GET requests modeled after actual malware behavior. The
script establishes and maintains the connection and downloads a small file from
the Command and Control server as well.

6.1 IDS Nodes Description

For our evaluation, we used two CAMNEP [11] IDS nodes. Each node analyzes
5-minute blocks of incoming and outgoing network traffic in the netflow [1] for-
mat by using six different anomaly detection methods. Each anomaly detection
method uses its own detection algorithm and assigns to each flow corresponding
marginal degree of anomaly. Once all detection methods finish their process-
ing, CAMNEP system chooses suitable combination of the detection methods
and evaluates each flow with final degree of anomaly, which is computed as a
weighted average of all marginal degrees of anomaly. The system optimizes its
effectiveness by selecting suitable combination of the methods that would detect
most of intrusions.

To find the best combination of the detectors, the system uses local adaptation
process called challenge insertion. It continuously inserts predefined legitimate
and malicious network traffic (challenges) from the database into the real net-
work traffic and evaluates the performance of the detectors on these challenges.
The combination of the detectors, which performs best on challenges, is selected
for final aggregation on real network traffic.

CAMNEP IDS node has the following properties:

– online detection - CAMNEP system processes datasets with 5 minutes of
network traffic (because of statistical nature of anomaly detection methods).

– local self-adaptation - CAMNEP system satisfies our assumption of self-
monitoring mentioned in Section 2, because the system is able to reconfigure
and change its internal state. This reconfiguration is defined as a change in
the combination of the detection methods used for the final aggregation of
current anomaly assessments. One way of controlling this reconfiguration is
through local adaptation process called challenge insertion.

– threshold computing - based on self-adaptation, the system determines
the threshold dividing legitimate and malicious parts of network traffic.
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Once final degree of anomaly is assigned to all flows, a clustering mechanism
clusters anomalous flows with similar characteristics into events characterizing
anomalous processes and services in the network. Different aggregation function
(defining the combination of the detectors) typically results in different events.
More detailed description of CAMNEP system can be found in [11].

In our experimental evaluation, the suitable combination of the detectors is
controlled by the local self-adaptation (challenge insertion), or by the proposed
collaborative framework (ε-FIRE). Each CAMNEP system has 30 different ag-
gregation functions to choose from.

6.2 Collaborative Game Settings

As mentioned above, our game has two defenders represented by IDS nodes
and one attacker controlling malware activity. The goal of the defenders is to
detect malicious activities on the network (including malware). To achieve this
goal, IDS node may use different strategies represented by selecting suitable
aggregation function of the detectors within a node. The optimal strategy is
a combination of detectors where malicious activities are successfully detected.
We assume that the optimal strategy may change with dynamic changes of the
network environment.

Each IDS node updates payoff matrix U defined in Eq. 7 based on local self-
monitoring (challenge insertion - see Section 6.1). In collaboration scenario, each
node also considers the knowledge gained from other nodes that is represented in
feedback matrix F - see Eq. 8. As a feedback function, we have chosen uniqueness
of local events when compared to events received from other nodes. Algorithm
of computing uniqueness is described in Alg. 1.

This game setting allows each node to model the suitability of aggregation
functions not only w.r.t. challenge insertion results (as local self-adaptation), but
also w.r.t. the uniqueness of created events. Thus each system node is encouraged
to specialize on unique network behaviors while still performing well in known

Algorithm 1 . Uniqueness computation

function computeUniqueness(localEvents, remoteEvents)
unique = 0
for localEvent : localEvents do

for remoteEvent : remoteEvents do
unique = unique + 1− eventSimilarity(localEvent, remoteEvent)

end for
end for
return uniqueness

end function

function eventSimilarity(lE, rE)
return 2 ∗ intersection(lE.flows, rE.flows)/(lE.flows + rE.flows)

end function
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situations represented by challenges. In our experiments, we use the malware
traffic detection to assess the success of specialization.

6.3 Experimental Results

In our evaluation, we will analyze malware detection effectiveness of IDS node
running in stand-alone configuration without any interventions from other sys-
tems (denoted as stand-alone) and compare this baseline configuration with
results from collaborative scenario illustrated in Fig. 3 with three collaboration
strategies: ε-greedy E, ε-greedy CH, and no-feedback strategy.

In ε-greedy E, the system node uses ε-FIRE algorithm introduced in Sec-
tion 5 to select optimal aggregation function. We have defined FIRE model (see
Section 5) with vector of weights w = {0.046, 0.082, 0.147, 0.261, 0.464} (expo-
nential decrease) and set game weights introduced in Eq. 9 as wu = 0.3, wf = 0.7
(which means weight 0.3 on local self-adaptation and 0.7 on distributed feedback
– uniqueness of events), thus encouraging mutual specialization. We enabled dy-
namic exploring in the space of aggregation functions by setting the exploration
rate of ε-FIRE algorithm as ε = 0.2 and using initial optimistic values technique
to boost early exploration in the space of aggregation functions.

Strategy denoted as ε-greedy CH uses ε-greedy algorithm as well, but with
different weights: wu = 1.0, wf = 0.0, and ε = 0.2. This strategy can be con-
sidered as direct extension of local self-adaptation (also based on FIRE model)
with exploring possibilities.

Finally, the last distributed strategy no-feedback is very simple, because it
includes default stand-alone setting enriched with events fusion technique, where
the system nodes share and fuse events between each other without any feedback
for selecting optimal aggregation function. The fusion is very simple process,
where each node includes unique remote events into its own set of output events.

In the following figures, we will show how distributed collaboration techniques
improves detection capabilities of individual IDS systems. In Fig. 4 we can see
how many times the system successfully detected malware as malicious activity
by placing the traffic into the malicious zone (below the threshold). We consider
malware to be detected if and only if the system creates an event with malware
traffic. Note that better separation from the threshold (in sigma distance) leads
to more reliable detection. Sigma distance of an event is defined as a difference
between the threshold position and average degree of anomaly of all flows in the
event (computed by IDS node) in standard deviation (computed from anomaly
values of all flows). Higher negative values means better separation from the
threshold in the malicious zone.

Analysis from subnet IDS node is depicted in Fig. 4 (a), where we can clearly
see the benefits of ε-FIRE algorithm (ε-greedy E), when both systems inter-
act and reconfigure. The number of successfully detected malware traffic was
doubled when compared to the case when both systems only combine and fuse
their results (no-feedback) or adapt based on local information with exploration
possibilities (ε-greedy CH), which is still much better than stand-alone config-
uration, when both systems ran separately. Note that the evaluation datasets
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Fig. 4. Number of successfully detected malware traffic depending on sigma distance
from the threshold position - subnet (a) and backbone (b) location. Higher values are
better.

contain 200 malicious events with the malware traffic (malware requests and
responses during 100 5-minute intervals), which means that the proposed col-
laboration technique increased the amount of successfully detected malware (i.e.
the number of malware events below the threshold, σ = 0) from 23% to 70%.

We performed analogous analysis on backbone IDS node as illustrated in
Fig. 4 (b). The results are similar as in the subnet IDS node, however the dif-
ference between ε-greedy E (ε-FIRE) and other techniques is not so significant
in number of detected malware. No-feedback (fusion) configuration as well as
ε-greedy CH shows comparable results with stand-alone configuration in num-
ber of found malware (Fig. 4 (a)). This suggests that event fusion technique
is not sufficient. Therefore the system requires collaborative approach which
ensures system diversity and specialization as demonstrated in Fig. 4 with ε-
greedy E feedback strategy. This is especially important given the fact that the
self-monitoring mechanism on both nodes was identical, and that the improved
behavior is purely a result of co-specialization.
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Fig. 5. Relative detection sensitivity of the system depending on a sigma distance from
the threshold - subnet (a) and backbone (b) location. Higher values are better.

You can see that backbone IDS node detected less malware events than subnet
IDS node. It is because of the fact, that subnet IDS node analyses less traffic,
allowing the node to maintain more detailed models of underlying network state.

In order to verify the benefits of distributed collaboration, we have to ana-
lyze not only detection effectiveness on malware traffic, but also all malicious
and legitimate traffic. For this reason, we have compared the performance of
each configuration w.r.t. true and false positives (TP and FP ). True positives
correspond to created events with malicious or suspicious behavior, and on the
contrary, false positives correspond to created events matching legitimate be-
havior. To better express the differences of the selection strategies, we put all
metrics on relative scale normalizing by the highest achieved value. By using
such scaling, we can compare each method relatively easily.

We have decided to use relative values to show the differences between the
stand-alone architecture and the proposed collaborative design. We believe that
absolute values depend on the type IDS system used for the evaluation and
therefore are not so informative as relative differences.
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Fig. 6. Relative false positive rate of the system depending on a sigma distance from
the threshold - subnet (a) and backbone (b) location. Lower values are better.

Relative detection sensitivity of both IDS nodes (illustrated in Fig. 5) is com-
puted as TP/(TP+FN), where TP denotes the number of successfully detected
malicious events and TP + FN denotes the number of all malicious events. We
can see that in subnet node (Fig. 5(a)) ε-greedy E detects the most of malicious
traffic, however around 1.3σ from the threshold it is outperformed by stand-alone
system showing the peak sensitivity. Still we can say that ε-greedy CH and no-
feedback detected 80% and stand-alone configuration 60% of the malicious traffic
when compared to ε-greedy E. Note that the absolute number corresponds to
the maximal relative sensitivity is 0.71.

The results of backbone IDS node (see Fig. 5(b)) show very similar results
as the subnet IDS node, having smaller differences in detection sensitivity. We
believe it is due to the fact that subnet IDS node is more influenced by backbone
IDS node allowing to alter its original standard behavior. Backbone system is
able to use the subnet specialization to enhance its own detection sensitivity to
address other threats instead. The absolute number corresponds to the maximal
relative sensitivity in the backbone location is 0.52.
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Fig. 7. Likelihood ratio for positive test of the system depending on a sigma distance
from the threshold - subnet (a) and backbone (b) location.

Furthermore it is interesting that all configurations show comparable results
of false positive rates (Fig. 6). This shows that the specialization does not nec-
essarily induce locally sub-optimal behavior. Absolute false positive rate in the
subnet location was 0.29, while in the backbone location was 0.34. However, a
lot of true negatives were not included into these evaluations, because of the
fact that the network traffic was not labeled completely. However, for a demon-
stration of the benefits of the proposed collaborative approach, we believe the
relative differences as depicted in Fig. 5 and Fig. 6 are representative enough.

Finally, we have compared the tradeoff between detection sensitivity and false
positive rate by using likelihood ratio for positive test, as illustrated in Fig. 7:

likelihood ratio for positive test =
sensitivity

false positive rate
=

TP/(TP + FN)

FP/(FP + TN)
.

The higher the value, the higher the probability that an event corresponds to
true positive. Stand-alone subnet IDS node (Fig. 7 (a)) has much lower likelihood
ratio when compared to the rest of the techniques. However, we can assess that
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the most effective distance ends 1.5− 1σ from the threshold position - both for
subnet and for backbone system node.

In this section, we have performed various evaluations of stand-alone system
running individually and have compared it with three collaborative strategies,
where this system is communicating with another system node located in dif-
ferent part of network infrastructure. We have demonstrated that event fusion
from collaborative CAMNEP nodes has clear positive impact on the overall de-
tection performance. Specifically, it increases detection sensitivity while false
positive rate remains constant. Moreover, we have clearly shown that proposed
distributed co-adaptation between nodes can significantly extend the detection
potential, allowing each system to specialize on particular network activities
while not reducing the overall effectiveness. By deploying distributed collabora-
tive approaches to more complex network infrastructure, the system nodes will
dynamically react to the changes in the network environment. They are able to
act as a coherent entity capable of maximizing global network security awareness,
while relying only on minimal mutual collaboration and implicit synchronization.

7 Conclusion

The proposed work aims to shift from individual, local intrusion detectors to the
robust global security mechanism covering whole network infrastructure. The
proposed distributed architecture benefits from collective information sharing,
where all individual detectors contribute to global modeling of the underlying
network state, while strategically selecting the optimal amount of information
to share. Moreover, each detector shall be able to adaptively modify its own
local model on the basis of globally coordinated game playing strategy against
corresponding opponent’s sophisticated scenario.

We have proposed game-theoretical framework of distributed collaboration
and ε-FIRE concept for solving this game in highly dynamic network environ-
ments. From our experimental evaluation, we have clearly shown improvements
of the multi-sensor collaboration controlled by ε-FIRE technique, allowing each
system to specialize on particular network activities while not reducing the over-
all effectiveness. The concept of opponent aware, self-coordinating and strategi-
cally reasoning Network Intrusion Detection Networks allows effective collabora-
tion of individual system defenders that may match a market-based collaboration
structures of the attackers.
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Abstract. Presently, forensics analyses of security incidents rely largely
on manual, ad-hoc, and very time-consuming processes. A security ana-
lyst needs to manually correlate evidence from diverse security logs with
expertise on suspected malware and background on the configuration of
an infrastructure to diagnose if, when, and how an incident happened. To
improve our understanding of forensics analysis processes, in this work
we analyze the diagnosis of 200 infections detected within a large op-
erational network. Based on the analyzed incidents, we build a decision
support tool that shows how to correlate evidence from different sources
of security data to expedite manual forensics analysis of compromised
systems. Our tool is based on the C4.5 decision tree classifier and shows
how to combine four commonly-used data sources, namely IDS alerts,
reconnaissance and vulnerability reports, blacklists, and a search engine,
to verify different types of malware, like Torpig, SbBot, and FakeAV. Our
evaluation confirms that the derived decision tree helps to accurately di-
agnose infections, while it exhibits comparable performance with a more
sophisticated SVM classifier, which however is much less interpretable
for non statisticians.

Keywords: Network forensics, IDS, Malware, Infections.

1 Introduction

Computer Security Incident Response Team (CSIRT) experts use a combination
of intuition, knowledge of the underlying infrastructure and protocols, and a wide
range of security sensors, to analyze incidents. Although, the low-level sensors
used provide a source of fine-grained information, often a single source is not
sufficient to reliably decide if an actual security incident did occur. The process
of correlating data from multiple sources, in order to assess the security state of a
networked system based on low-level logs and events is complex, extremely time
consuming and in most parts manual. Although, thorough manual investigation
is critical in order to collect all the required evidence for a detected breach and
to make a definite assessment regarding the severity of an investigated incident,
it would be highly beneficial for administrators to have tools that can guide
them in the log-analysis process, helping them to diagnose and mitigate security
incidents.
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A large number of previous studies have analyzed how to aggregate, correlate,
and prioritize IDS alerts. A survey can be found in [24]. However, aggregated
IDS alerts are then passed to a security analyst for manual diagnosis, which
is a complex, typically ad-hoc process that leverages multiple security sources,
like blacklists, scanning logs, etc. In this work we focus on this process with the
goal of understanding how to correlate multiple security data sources and how
to expedite manual investigation.

For this purpose, we conduct a complex experiment turning a human security
analyst into the subject of our analysis. We systematically monitor the used
evidence and the decisions of an analyst during the diagnosis of 200 security
incidents over a period of four weeks in a large academic network.

Based on the analyzed incidents, we build a decision tree using the C4.5
algorithm that reflects how low-level evidence from the four security sources can
be combined to diagnose different families of malware, like Torpig, SbBot, and
FakeAV. The derived model is useful for expediting the time-consuming manual
security assessment of security incidents. It accurately encodes a large part of
the decisions of the analyst in correlating diverse security logs and can serve
as a decision support tool helping an analyst identify the most critical features
that suggest the presence of an infection. In addition, we show that using the
decision tree for fully-automated classification correctly identifies infections in
72% of the cases.

Finally, we ask the question if other state-of-the-art classifiers exhibit better
performance than a C4.5 decision tree, which is highly interpretable and therefore
useful as a decision support tool. We compare its detection accuracy with a
support vector machine (SVM), a Bayesian tree classifier (BTC), and a tree-
augmented naive Bayes (TAN). We find that a C4.5 decision tree is better than
BTCs and TANs and only slightly worse than the more sophisticated SVM,
which however is much less interpretable.

In summary, in this work we make the following contributions:

– We outline a number of features useful for security assessment that can be
extracted from four commonly-used data sources.

– We build a decision support tool that clearly depicts how evidence from four
sources should be correlated to diagnose different types of malware. We show
that our decision tree is 72% accurate in automatically classifying suspected
infections.

– We compare our decision tree with other classifiers and show that state-of-
the-art SVMs, which are more sophisticated but much less understandable,
have only slightly better performance.

In the next section we describe in detail the data and features we used. In
Section 3 we provide a brief summary of our experiment. Next, in Section 4 we
present our decision support tool and in Section 5 we compare its performance to
other alternatives. Finally, in Section 6 we discuss related work and we conclude
in Section 7.
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2 Data Sources and Feature Extraction

In this section, we review in detail the data we used and the features we ex-
tracted. We conducted all our experiments in the network of the main campus
of the Swiss Federal Institute of Technology at Zurich (ETH Zurich). We use
four data sources. IDS alerts provide a view of malicious activity from the gate-
way of the studied network. Reconnaissance and vulnerability reports provide
fine-grained information about local hosts, like the client or server role of a host,
the running services, and the associated vulnerabilities. Finally, blacklists and
search engine queries provide two additional views that are particularly useful
for remote hosts. More details about the extracted features can be found in [22].

2.1 IDS Alerts

Our IDS data is comprised of raw IDS alerts triggered by a Snort sensor [25] that
monitors all the upstream and downstream traffic through the main border link
of the network of the main campus of ETH Zurich. The sensor is configured with
the official Snort signature ruleset and the Emerging Threats (ET) ruleset [7],
which are the two most commonly-used Snort rulesets.

We use IDS alerts in two ways. First, IDS alerts form the input to an IDS
alert correlator we developed in [21], which detects infected hosts that exhibit a
recurring multi-stage alert pattern involving specific classes of alerts. In particu-
lar, the correlator first aggregates similar alerts, then it classifies aggregate alerts
into three classes relating to an Attack, a Compromised host, or a Policy, and
finally it uses alerts of the first two classes to detect internal hosts that exhibit a
recurring multi-stage alert pattern. During our experiment, the alert correlator
processed 37 million Snort alerts and detected 200 infected hosts, which were
thoroughly analyzed further using data from four security sources.

Secondly, we further exploit IDS alerts during the manual investigation of
suspected hosts. Given the IP address of an infected host and the timestamp
of the infection, we retrieve the aggregate IDS alerts of the classes Attack and
Compromised host that were observed within 24 hours before or after the times-
tamp. From the aggregate IDS alerts of these two classes we extract the following
features:

– Suspicious remote hosts : If the communication to a remote host triggers more
than 10% of the total number of aggregate alerts of a local host, we deem the
remote host suspicious and mark its IP address for further investigation. We
select the 10% threshold empirically based on the alert volume distribution
for remote hosts. This feature is useful to identify common malicious domains
used by infected hosts to receive instructions, share data, or update their
malicious binary.

– Suspicious remote services : We aggregate the activity of all non-privileged
ports (port numbers above 1024) into a single port with label High. If more
than 10% of the aggregate alerts target a specific remote port, then we
consider this service suspicious. This feature is useful to identify targeted
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services, e.g., worms performing a distributed scan for vulnerable services or
spamming bots.

– Suspicious local services : If a local service port is involved in more than 10%
of the aggregate alerts, then we consider it suspicious. Again, we aggregate
the activity of all non-privileged ports into a single port with label High. This
feature is useful to detect malware that attach to popular software such as
IE, Firefox, Skype, or CuteFTP.

– Count of severe alerts : We count the total number of aggregate alerts. This
feature is important to detect malware that generate spurts of high severity
alerts. It helps to distinguish high activity malware from more stealthy ones.

– Infection duration: We compute the time in hours that elapsed between
the first and the last triggered alert within the observed daily interval. We
only take into account hourly slots where at least one alert from any class,
including policy alerts, was triggered. This feature enables to normalize the
volume of alerts of a suspected host over time.

– Common severe alerts : If a specific alert accounts for more than 5% of total
number of aggregate alerts, then we build a new feature for its alert ID.
This feature targets malware that have a very consistent network footprint
triggering always the same set of IDS alerts.

2.2 Reconnaissance and Vulnerability Reports

We next actively probe suspicious internal local hosts to collect information
about running services and vulnerabilities. We use this information to evaluate
if the software and operating system (OS) a node is susceptible to the malware
reported in the corresponding IDS alerts. We first scan a host using Nmap, and
then we use the Nessus [11] and OpenVas [12] vulnerability scanners to build a
comprehensive profile of the vulnerability status of a node.

In summary, we extract the following features from reconnaissance and vul-
nerability reports:

1. Host Reachability: This binary feature indicates if a host is reachable. Nodes
behind a firewall or a NAT will typically be unreachable.

2. Host Role: We exploit hostname keywords, such as proxy-XX.ethz.ch and
guest-docking-nat-YY.ethz.ch, to determine the role of a host. This fea-
ture takes the values client, dns-server, web-server, ftp-server, or unknown-
server.

3. OS and active services: For each open service in a host we set a corresponding
bit in a bitmap of all observed services. Each bit is treated as a separate
feature in our classification. In addition, we use Nmap OS fingerprinting and
encode the most likely OS match into an additional feature.

4. Vulnerability data: We collect vulnerability reports from Nessus and Open-
Vas and use this information in the manual diagnosis performed in Section 3.
However, we exclude vulnerability data from the feature space used in the
classification scheme discussed in Section 4, since it drastically increases the

proxy-XX.ethz.ch
guest-docking-nat-YY.ethz.ch
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dimensionality of the input data. For example, we have seen that a host run-
ning an unpatched version of Windows 7 typically has more than 60 active
vulnerabilities.

2.3 Blacklists

The third security source we exploit is blacklists. Blacklists are commonly-used
to identify IP addresses and domains that have been reported to exhibit mali-
cious activity. We use them to investigate hosts in the suspicious remote hosts
feature, which is extracted from IDS alerts. We leverage five public blacklist
providers [5,13,10,6,3]. The blacklists are partly labeled providing information
about the reason a host was enlisted, including the type of malicious activity it
was involved in, e.g., bot activity, active attack, and spamming. For each local
host, we lookup the corresponding suspicious remote hosts in the blacklists and
count the number of hits with a specific label. The count of each label forms an
input feature for our classifier.

2.4 Search Engine

A lot of useful information about remote hosts resides on the web coming from
several diverse sources such as DNS lists, proxy logs, P2P tracker lists, forums,
bulletins, banlists, etc. In order to exploit this information, we query the Google
search engine using as input string the IP address of an analyzed host and
the respective domain name. For each suspected internal host we query for the
contacted IP addresses in the suspicious remote hosts feature. Then, in an auto-
mated fashion we parse the output and extract tags, like malware, spam, trojan,
worm, bot, adaware, irc, and banlist, based on the methodology of [26]. The list
of tags we used can be found in [22].

3 Forensics Analysis Experiment

In this section we briefly describe our forensics analysis experiment. More in-
formation on the validated infections and the diagnosis process along with four
example malware cases can be found in [22].

We used the Snort alert correlator we developed in our previous work [21]
to detect infected hosts within the monitored infrastructure. During our exper-
iment, we ran our correlator on the latest Snort alerts and we passed on a daily
basis newly detected infections to an analyst for manual inspection and valida-
tion. Our experiment lasted for approximately four weeks between 01.04.2011
and 28.04.2011 during which we thoroughly investigated 200 consecutive infec-
tions. We limited our study to nodes with static IP addresses, which correspond
to the majority of the active nodes within the monitored network. Besides, we
built automated tools to extract the features discussed in Section 2 and to present
them on a dashboard in order to facilitate the investigation process. The ana-
lyst would typically have to check the quality of collected signatures, examine
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the network footprint generated by the studied host, gather information about
the expected behavior of the investigated malware, and most importantly cross-
correlate this information. We validated the activity of a specific malware type
for 170 out of the 200 infections. We use this set of validated infections to build
our decision support tool in Section 4.

4 Decision Support Tool

In this section we introduce a decision tree that captures how to correlate the key
evidence from the four security sources to identify different types of malware. Our
decision tree is useful for expediting the complex and time-consuming manual
correlation of multiple data sources for the diagnosis of infected hosts.

We use the C4.5 decision tree induction algorithm, which is a state-of-the-art
tree-based classifier [20]. Studies have shown that its performance is better than
BTCs and TANs, whereas it is comparable to SVMs [14]. Moreover, it is com-
putationally efficient and an open-source implementation is publicly available.
For our purposes, the most important aspect of C4.5 is the interpretability of
its results. It is important that a security analyst can understand which feature
contributed in every step of the process of a decision, without requiring expert
statistical knowledge such as in the case of SVMs. The classification is performed
using a tree, where each internal node corresponds to an intermediate decision
based on one or more features and the leaf nodes correspond to the final decision.

We use the J48 implementation of the C4.5 algorithm [27]. It takes as input a
sample of vectors that correspond to the manually classified hosts. Each vector
captures the values of different security features of a host. We use in total 131
security features we described in Section 2. Secondly, C4.5 takes as input the
class of each host.

In Figure 1 we show the derived decision tree. The tree accurately depicts
the main decisions of the manual process followed in the investigation of secu-
rity incidents highlighting the most important signs of infection that can drive
forensics analysis. Using the decision tree we can easily identify critical signs of
malicious behavior. In the following paragraphs, we provide examples of how to
combine evidence to detect specific types of malware.

Zbot -infected hosts are prominent spammers. We see that they generate a
high percentage of high severity alerts that are related to destination port 25.
These correspond to spamming attempts for which Snort raises an alert. More-
over, we see that they typically attempt to share stolen confidential data with
an HTTP POST request on a malicious domain. This typically triggers the
IDS alert 2013976:“ET TROJAN Zeus POST Request to CnC”. Periodically,
the bot attempts to upgrade its binary triggering alerts with ID 2010448:“ET
MALWARE Potential Malware Download, trojan zbot”.

Besides, SdBot -infected hosts exhibit frequent communication with their C&C.
The bot attempts to identify a valid communication channel from a set of pre-
defined rendez-vous domains in order to update its instruction set and to poten-
tially post valuable client data it has intercepted. These attempts trigger alerts
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Fig. 1. Decision tree generated from the C4.5 algorithm using training data from 200
manually examined incidents

with ID 2007914:“ET WORM SDBot HTTP Checkin”. Moreover, the malware
uses MS network shares to propagate and therefore we see that on most of the
infected machines port 135 is open, which corresponds to the RPC service.

The Torpig trojan periodically attempts to post using HTTP the data it has
stolen from a victim triggering the Snort alert “ET TROJAN Sinowal/Torpig
Checkin” with ID 2010267. Also, Torpig typically uses IRC to receive updates
resulting in frequent IRC nickname changes, detected by the Snort rule 542:
“CHAT IRC nick change”. The domains used to upload harvested user data, i.e.,
vgnyarm.com, rajjunj.com and Ycqgunj.com, were tagged with the keyword
trojan by our search results.

Finally, FakeAV is a trojan that intentionally misinterprets the security state
of the victim and generates pop-ups attempting to redirect the user to domains
where the victim can purchase software to remediate the malware. This activ-
ity generates a high number of alerts with ID 2002400:“ET USER AGENTS
Suspicious” that are related to port 80 (HTTP) activity.

From our analysis for building the decision tree we highlight the following key
observations:

– A small number of features is sufficient to make an assessment with high
certainty. In most studied cases these features reflect different stages of the

vgnyarm.com
rajjunj.com
Ycqgunj.com
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lifecycle of a malware. C4.5 decision trees retain a high level of interpretabil-
ity assisting the analyst in making an assessment using a manageable number
of intuitive features.

– Combinations of features yield more accurate results. Multiple security data
sources are required to detect a wider range of malware types exhibiting
complex behavioral patterns. In contrast, simple rules of thumb such as ’if
the IDS triggers N alerts of type X then there is an infection’ cannot be
effectively used.

Finally, we note that C4.5 can be used in an adaptive fashion leveraging a feed-
back loop with the analyst, who can update the set of classified infections in
order to enrich the derived tree and improve the classification results. Model
induction is very efficient even for datasets involving a large number of features.

5 Automated Diagnosis

In this section we analyze the effectiveness of our decision support tool in fully
automated diagnosis. We also compare how C4.5 performs against other state-of-
the-art classifiers. Specifically, we evaluate the classification accuracy of two tree-
based classifiers, namely BTCs and TANs. We use their WEKA implementation
with the default parameters. We also evaluate the performance of an SVM,
which is a state-of-the-art classifier. To configure the SVM parameters we use
the sequential minimal optimization method [17].

Table 1. Performance of different classification algorithms.

Malware Type C4.5 Bayesian Tree TAN SVM
(#incidents) TP (%) FP (%) TP (%) FP (%) TP (%) FP (%) TP (%) FP (%)

Trojans (85) 83 10 80 12 82 10 89 6
Spyware (59) 85 4 85 5 85 4 88 4
Backdoors (18) 55 8 53 7 56 7 63 5

Worms (8) 75 1 75 1 75 1 77 1
Undecided (30) 60 10 48 14 51 13 63 9

In Table 1 we summarize our findings. C4.5 exhibits on average a true positive
rate of 72% whereas the false positive rate does not exceed 7%. Bayesian networks
and TANs are worse exhibiting a true positive rate of 68% and 70% and a false
positive rate of 8% and 7%, respectively. On the other hand the SVM achieves
slightly better classification results with a true positive rate of 76% and a false
positive rate that does not exceed on average 5%.

6 Related Work

Previous studies have extensively studied the aggregation and correlation of
IDS alerts with the goal of generating high-level inferences from a large num-
ber of low-level alerts. A group of studies exploit statistical correlation to per-
form causality inference and root cause analysis of detected incidents [23,18,19].
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A second group of studies hardcode expert knowledge by introducing scenar-
ios [16,2,15] or sets of rules [1,21] that capture observed malicious behavior.
These studies mine solely IDS alerts without taking into account complemen-
tary sources of security logs that are often available. They produce and prior-
itize inferences that at the end are passed on to a security analyst for manual
inspection. Our work is complementary and focuses on the manual verification
of aggregated IDS alerts by correlating data from multiple instead of a single
source.

Besides, a number of commercial solutions, such as IBM Tivoli SCM [9], Alien-
vault [4], and GFI Languard [8], unify scattered security sensors within an en-
terprise and provide a single framework that can be used by security analysts to
configure security sensors and to visualize logs. However, log correlation in these
systems is based on simple rules that need to be determined by an administrator.
In our work, we encode a number of classification rules in a C4.5 decision tree
that can form the input to such systems.

Finally, in our previous work we developed a Snort alert correlator [21] and we
characterized a number of aspects of approximately 9,000 infections we detected
over a period of nine months in a large academic infrastructure. We also validated
our correlator based on the experiment we describe in this paper. In this work,
we describe a number of additional lessons we learned from our experiment and
we build a decision support tool to facilitate network forensics analyses.

7 Conclusions

Network forensics analysis can be likely better described as art rather than sci-
ence. It relies on a security expert combining his reasoning with background
knowledge about malware, domain specific knowledge about the target environ-
ment, and available evidence or hints from a number of diverse security sensors,
like IDS systems, vulnerability scanners, and other. We believe that in the future
processes for handling and diagnosing security incidents should be largely auto-
mated diminishing (but not completely removing) the involvement of humans in
the loop.

In this work we analyze the decisions of an analyst during the diagnosis of
200 security incidents over a period of four weeks. We show that a large part of
the decisions can be encoded into a decision tree, which can be derived in an
automated fashion. The decision tree can help as a decision support tool for fu-
ture incident handling and provides comparable performance in fully automated
classification with a more advanced classifier, an SVM, which however is much
less interpretable.
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