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Abstract. On smart-cards, Elliptic Curve Cryptosystems (ECC) can be
vulnerable to Side Channel Attacks such as the Refined Power Analysis
(RPA). This attack takes advantage of the apparition of special points
of the form (0, y). In this paper, we propose a new countermeasure based
on co-Z formulæ and an extension of the curve isomorphism counter-
measure. It permits to transform the base point P = (x, y) into a base
point P ′ = (0, y′), which, with −P ′, are the only points with a zero X-
coordinate. In such case, the RPA cannot be applied. Moreover, the cost
of this countermeasure is very low compared to other countermeasures
against RPA.
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1 Introduction

The use of elliptic curves for cryptographic applications has been introduced by
Koblitz [17] and Miller [23]. Elliptic Curve Cryptosystems (ECC) have gained
much importance in smart-cards devices because of their better speed and low
memory constraints compared to other asymmetric cryptosystems such as RSA.

The main operation on ECC is the computation of an elliptic curve scalar
multiplication (ECSM), that is the computation of [d]P for an integer d and a
point P on an elliptic curve. The cryptographic security of ECC is based on the
elliptic curve discrete logarithm problem (ECDLP), which asks to compute d
given Q = [d]P and P .

An ECSM is generally based on addition and doubling formulæ of points.
Meloni points that addition formulæ of two points of an elliptic curve is more
efficient if they share the same Z-coordinate [21]. He brought new formulæ, called
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co-Z formulæ, that can be used to perform an ECSM with addition chains and
Zeckendorf representation.

Meloni’s formulæ were adapted in [8,10,9] so that they might be usable with
traditional ECSM algorithms such as the right-to-left signed-digit method, the
Montgomery Powering Ladder [16], or the Joye’s double-add method [14].

In this paper, we are interested on the security against Side Channel Attacks.
We present alternative co-Z formulæ using an extension of the curve isomorphism
countermeasure [15]. The new co-Z formulæ allow to perform an ECSM that can
be secured against SPA [18], DPA [19] and RPA [7] attacks. We give a comparison
of different countermeasures against RPA. Our countermeasure has a very low
cost compared to the other countermeasures.

The rest of the paper is structured as follows. In Section 2, we describe some
properties on elliptic curves arithmetic and ECSM algorithms. In Section 3,
we recall on the different side channel attacks, especially the RPA. Section 3
also gives countermeasures against RPA. Section 4 describes our countermeasure
based on modified co-Z formulæ and an extension of the curve isomorphism
countermeasure. We give a comparison of different countermeasures against the
RPA in Section 5. Finally, we conclude in Section 6.

2 Elliptic Curve Arithmetic

In this paper, we are interested in elliptic curves based on field with characteristic
greater than 3, and the given elliptic curves are in the reduced Weierstraß form.

However, our proposed countermeasure transforms the curve given into an-
other one that is not in its short Weierstraß form. This is why we also give
the formulæ for elliptic curve in the general Weierstraß form to understand our
modified formulæ of Section 4.

2.1 Elliptic Curve Arithmetic in the Affine Coordinates System

In a finite field K, an elliptic curve can be described by its Weierstraß form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

We denote by E(K) the set of points (x, y) ∈ K
2 satisfying the equation, plus the

point at infinity O. E(K) has an Abelian group structure. Let P = (x1, y1) �= O
and Q = (x2, y2) /∈ {O,−P} two points in E(K). The point R = (x3, y3) = P+Q
can be computed as:

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = λ(x1 − x3)− y1 − a1x3 − a3
where λ =

{
y1−y2

x1−x2
if P �= Q,

3x2
1+2a2x1+a4−a1y1

2y1+a1x1+a3
if P = Q.

The inverse of the point P is −P = (x1,−y1 − a1x1 − a3).
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In a finite field Fp, with p a prime such that p > 3, an elliptic curve can be
described by its short Weierstraß form:

E : y2 = x3 + ax+ b .

The point R = (x3, y3) = P +Q can be computed as:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
where λ =

{
y1−y2

x1−x2
if P �= Q,

3x2
1+a
2y1

if P = Q.

The inverse of the point P is −P = (x1,−y1).

2.2 Elliptic Curve Arithmetic in the Jacobian Projective
Coordinates System

To avoid costly inversions, one can use the Jacobian projective coordinates sys-
tem. The equation of an elliptic curve in the Jacobian projective coordinates
system in the reduced Weierstraß form is:

EJ : Y 2 = X3 + aXZ4 + bZ6 .

The point (X,Y, Z) corresponds to the affine point (X/Z2, Y/Z3).
We give addition (ecadd) and doubling (ecdbl) formulæ in the Jacobian

projective coordinates system. The formulæ are from [3].

Algorithm 1. ecdbl
Input: P = (X1, Y1, Z1) ∈ EJ (Fp)

Output: 2P

A← X2
1 ; B ← Y 2

1
C ← B2; D ← Z2

1
S ← 2((X1 + B)2 − A− C)

M ← 3A + aD2

X3 ←M2 − 2S

Y3 ← M(S −X3)− 8C

Z3 ← (Y1 + Z1)
2 − B −D

return (X3, Y3, Z3)

Algorithm 2. ecadd
Input: P =(X1, Y1, Z1), Q=(X2, Y2, Z2) ∈ EJ (Fp)

Output: P + Q

A← Z2
1 ; B ← Z2

2
U1 ← X1B; U2 ← X2A

S1 ← Y1Z2B; S2 ← Y2Z1A

H ← U2 − U1

I ← (2H)2

J ← HI; K ← 2(S2 − S1); V ← U1I

X3 ← K2 − J − 2V

Y3 ← K(V −X3)− 2S1J

Z3 ← ((Z1 + Z2)
2 − A− B)H

return (X3, Y3, Z3)

We denote by M,S the cost of field multiplication and field squaring respec-
tively. We neglect the cost of additions and subtractions. ecdbl can be per-
formed in 2M + 8S and ecadd can be performed in 11M +5S. Mixed addition
(mecadd) is the addition of a point in Jacobian coordinates with a point in
affine coordinates (Z2 = 1). mecadd can be performed in 7M + 4S [3].

2.3 Elliptic Curve Arithmetic Using co-Z Formulæ

We describe here addition formulæ with points sharing the same Z-coordinate.
Two procedures are presented. Addition and update in co-Z (zaddu) is the
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procedure to compute P + Q and update the point P to get the same Z-
coordinate. It was introduced in [21]. Conjugate addition in co-Z (zaddc) is
the procedure to compute P +Q and P −Q. It was introduced in [8].

Algorithm 3. co-Z addition and update
(zaddu)
Input: P =(X1, Y1, Z), Q=(X2, Y2, Z) ∈ EJ (Fp)

Output: (R, S) with R = P + Q and S =

(λ2X1, λ
3Y1, λZ) with λ = X1 −X2

C ← (X1 −X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)

D ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X3 ← D −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)− A1

X4 ←W1

Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Algorithm 4. conjugate co-Z addition
(zaddc)
Input: P =(X1, Y1, Z), Q=(X2, Y2, Z) ∈ EJ (Fp)

Output: (R,S) with R = P + Q, S = P −Q

C ← (X1 −X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)

D1 ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X3 ← D1 −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)− A1

D2 ← (Y1 + Y2)
2

X4 ← D2 −W1 −W2

Y4 ← (Y1 + Y2)(W1 −X4)− A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Goundar et al. proposed in [9] an optimisation by removing the useless com-
putation of the Z-coordinate. The formulæ are called the (X,Y )-only co-Z for-
mulæ (zacau’)1. zacau’ (algorithm 15 in appendix) is a procedure computing
the point 2P and P +Q. It can be performed in 8M + 6S [9].

2.4 Elliptic Curve Scalar Multiplication

In elliptic curve cryptography, one has to compute scalar multiplications, i.e.
compute [d]P , given the point P and a positive integer d.

The Montgomery Ladder is regular since the same operations are performed
at each iteration independently of the current bit. Therefore it can be used to
prevent the SPA. The Montgomery Ladder can be adapted with co-Z formulæ.

Algorithm 5. Montgomery Ladder

Input: P ∈ EJ (Fp), d=(dn−1, . . . , d0)2, dn−1=1

Output: [d]P

R0 ← P,R1 ← 2P

for i = n − 2 downto 0 do

R1−di
← ecadd(R1−di

, R1−di
)

Rdi
← ecdbl(Rdi

)
end for

return R0

Algorithm 6. add only Montgomery
Ladder using co-Z formulæ [8]
Input: P ∈ EJ (Fp), d=(dn−1, . . . , d0)2, dn−1=1

Output: [d]P

R0 ← P,R1 ← 2P

for i = n− 2 downto 0 do

(R1−di
, Rdi

)← zaddc(Rdi
, R1−di

)
(Rdi

, R1−di
)← zaddu(R1−di

, Rdi
)

end for

return R0

Remark 1. In algorithm 6, the output point Rdi of zaddc is always equal to
±P . Indeed, at the end of each iteration of the algorithm, R0 and R1 verify
R1 = R0 + P .
1 We use the same notation as in [9]: (’) stands for formulæ that does not involve the
Z-coordinate.
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Using zacau’, zaddc’ and zaddu’, the add only Montgomery Ladder using
co-Z formulæ can be improved. See [9] for the justification to recover the Z
coordinate.

Algorithm 7. Montgomery Ladder with (X,Y )-only co-Z formulæ [9]
Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1

Output: [d]P

R0 ← P,R1 ← 2P

C ← (XR0
−XR1

)2

for i = n − 2 downto 1 do

(Rdi
, R1−di

, C) ← zacau’(Rdi
, R1−di

, C)

end for

b← d0; (R1−b, Rb)← zaddc’(Rb, R1−b)

Z ← xP YRb
(XR0

− XR1
); λ← yPXRb

(Rb, R1−b)← zaddu’(R1−b, Rb)

return

((
λ
Z

)2
XR0

,
(

λ
Z

)3
YR0

)

3 Side Channel Attacks

We describe in this section passive attacks such as DPA, RPA and ZPA.

3.1 DPA Attack and Countermeasures

If the same scalar d is used several times, the implementation can be vulnerable
to the DPA [19]. The attacker recursively guesses the bits of the scalar and
simulates the computation.

The countermeasures given below can be used to prevent the DPA.

Random Projective Coordinates [6]. A point P = (X,Y, Z) in Jacobian
coordinates is equivalent to any point (r2X, r3Y, rZ), with r ∈ F

∗
p. One can ran-

domize the base point at the beginning of the ECSM by choosing a random r.

Random Curve Isomorphism [15]. A curve E defined by E : y2 = x3+ax+b
in affine coordinates is isomorphic to the curve E′ defined by E′ : y2 = x3 +
a′x + b′ if and only if there exists u ∈ F

∗
p such that u4a′ = a and u6b′ = b. The

isomorphism ϕ is defined as:

ϕ : E
∼−→ E′,

{ O → O
(x, y) → (u−2x, u−3y)

The countermeasure consists of computing the ECSM on a random curve E′

instead of E.

Scalar Randomization [6]. Randomization of the scalar using d′ = d + r�E
is effective against DPA. r must be at least 32 bits, because attacks have been
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pointed out in [24] if r is small. For this reason, the ECSM is 32 iterations longer.

Random Scalar Split [5]. Random scalar splitting, such as computing Q =
[d1]P + [d2]P with d = d1 + d2, is effective against DPA. One can also use the
euclidian splitting method [5]: compute Q = [d1]P + [d2]S with d1 = d mod r,
d2 = �d/r� and S = [r]P with r a random integer a half size of d. Ciet and
Joye proposed in [5] to compute the point Q using a variant of Shamir’s trick
for efficiency (algorithm 13 in appendix). However, since they use four tempo-
rary points, they cannot use the co-Z formulæ. ecdbl and mecadd should be
used instead. For the computation of S = [r]P , one can also use the variant of
Shamir’s trick with one of the scalar being zero.

Point Blinding [6]. Computing Q = [d](P + R) instead of [d]P , with R a
pseudo-random point is effective against DPA. The chip returns Q− [d]R. R and
[d]R are computed from R0 and [d]R0 precomputed and stored in the chip, with
R0 a random point.

This countermeasure was improved in [11] and later in [20]. The authors pro-
posed to modify the ECSM for gradually subtract the random point R. The
Binary Expansion with Random Initial Point (BRIP) can be found in appendix
(algorithm 14). However, since they use three temporary points, they cannot use
the co-Z formulæ. ecdbl and mecadd should be used instead.

3.2 RPA Attack

The RPA [7] is based on the apparition of a special point of the form (0, y)
during the ECSM2.

Let P0 = (0, y) for some y. Suppose that the Montgomery Ladder (algorihm 5)
is used to compute an ECSM. Suppose that the attacker already knows the n−
i− 1 leftmost bits of the fixed scalar d = (dn−1, dn−2 . . . , di+1, di, di−1, . . . , d0)2.
He tries to recover the unknown bit di.

The attacker computes the point P = [(dn−1, dn−2, . . . , di+1, 0)
−1
2 mod �E]P0

and gives P to the targeted chip that computes [d]P . If di = 0, then the point
P0 will appear during the ECSM. If the attacker is able to recognize a zero value
in a register, he can then conclude whether his hypothesis (di = 0) was correct
or not.

3.3 ZPA Attack

The Zero-Value Point Attack (ZPA) [1] uses the same approach than the RPA,
except that the attack is not only interested in zero values in coordinates but
in intermediate registers when computing the double of a point, or during the
addition of two points. Such points are defined as zero-value points.
2 the point (x, 0) can also be used but a point of this form is of order 2. In ECC,

the order of the provided base point is checked and points of order 2 never appear
during an ECSM.
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Finding zero-value points for doubling formulæ consists in resolving polyno-
mial equations in x, y with low degree (less than 4).

Finding zero-value points for addition is more difficult. For the Montgomery
Ladder algorithm, suppose the attacker already knows the n − i − 1 leftmost
bits of the fixed scalar d = (dn−1, dn−2, . . . , d0)2 and try to recover di. With
c = (dn−1, dn−2 . . . , di+1, 0)2, he has to find a point P0 such that [c]P0 and
[c + 1]P0 are zero-value points. The only known procedure is using division
polynomials and solve equations in two variables with degree of order O(c2) [1].
At this day, when c is large, it is a hard problem. This problem was discussed
in [12] and [1].

Remark 2. The random projective coordinates and the random curve isomor-
phism countermeasures described in the previous subsection fail against RPA
and ZPA.

Some countermeasures to prevent RPA and ZPA are given below.

Isogeny Defence [25,2]. Computing an ECSM on a curve E′ isogenous to E
such that E′ does not contain any non-trivial zero-value point is effective against
the RPA and the ZPA.

Randomized Linearly Transformed Coordinates (RLC) [11]. This coun-
termeasure consists in modifying the addition and doubling formulæ such that
a zero value can never show up. A point P = (X,Y, Z) is transformed into
(Xµ, Y, Z, μ) with Xµ = X + μ, with μ a random field element. The poten-
tial zero value X is never manipulated alone. The countermeasure was given
in [11] with classical doubling and addition formulæ. We adapted the counter-
measure with the co-Z formulæ, because it is more efficient. We only modified
the formulæ to prevent RPA because of the remark of the difficulty of the ZPA
on addition formulæ. The countermeasure adapted with co-Z formulæ can be
found in appendix (algorithm 16).

Remark 3. The scalar randomisation, random scalar split and point blinding
countermeasures described in the previous subsection are also effective against
RPA and ZPA.

4 Our Proposed Countermeasure

We describe in this section our new co-Z formulæ that we can use to perform a
secured ECSM against the DPA and the RPA.

The main idea is to perform the ECSM with a base point P ′ = (0, y′). This
point and its opposite −P ′ are the only points with a zero X-coordinate. Using
the ECSM add only Montgomery Ladder using co-Z formulæ (algorithm 6) with
P ′ as the base point, we will show that the inputs of zaddc are never ±P ′

whatever the value of the scalar. So the RPA cannot be performed.
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The output point Rdi of zaddc is always equal to ±P ′ (see remark 1). So
±P ′ = (0,±y′) appears at the end of zaddc and therefore appears at the be-
ginning of zaddu. Algorithms 3 and 4 can be modified by removing the useless
multiplications and additions with the zero-value.

Algorithm 8. co-Z addition and update
with a zero value (zadduzero)
Input: P =(X1, Y1, Z), Q=(0, Y2, Z) ∈ EJ (Fp)

Output: (R, S) with R = P + Q and S =

(λ2X1, λ
3Y1, λZ) with λ = X1

C ← X2
1

W1 ← X1C; Z3 = ZX1

D ← (Y1 − Y2)
2; A1 ← Y1W1

X3 ← D −W1

Y3 ← (Y1 − Y2)(W1 −X3)− A1

X4 ←W1; Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Algorithm 9. conjugate co-Z addition
with a zero value (zaddczero)
Input: P = (X1, Y1, Z), Q=(X2, Y2, Z) ∈ EJ (Fp),

such that xP−Q=0

Output: (R,S) with R = P + Q, S = P −Q

C ← (X1 −X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)

D ← (Y1 − Y2)
2; A1 = Y1(W1 −W2)

X3 ← D −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)− A1

Y4 ← (Y1 + Y2)W1 − A1

return ((X3, Y3, Z3), (0, Y4, Z3))

zadduzero and zaddczero can be combined without the Z-coordinate: za-
cauzero’. The algorithm is given in appendix (algorithm 17). zacauzero’ requires
one multiplication and one square less compared to zacau’ (algorithm 15).

The main step is to find a method to transform any base point P = (x, y) of
any curve into a base point P ′ = (0, y′).

We present in this paper two methods of such a transformation. The first
method uses isogenies and was proposed in [2]. The second method is an exten-
sion of the random curve isomorphism countermeasure.

4.1 Transformation of the Base Point Using Isogenies

An isogeny between two elliptic curves E and E′ defined over Fp is a non-
constant morphism φ : E → E′. Every isogeny has a finite kernel and the size of
this kernel is called the degree of isogeny.

Brier and Joye introduced in [4] the use of isogenies for efficiency: they trans-
form an elliptic curve E : y2 = x3 + ax + b into an elliptic curve E′ : y2 =
x3 − 3x + b′. The parameter a′ = −3 brings better performance for doubling
formulæ.

Smart proposed in [25] to use isogenies as a countermeasure against the
RPA [7]. ECSMs are performed on an isogenous elliptic curve that does not
contain any special point of the form (0, y). Akishita and Takagi extended the
isogeny defense in [2] so it can also prevent the ZPA. They also use isogenies for
efficiency for binary ECSM methods. The given elliptic curve is transformed into
an isogenous curve where the base point G′ has the particular form G′ = (0, y′),
for that the addition with the point G′ is more efficient because of the zero value.

Finding isogenies for a given elliptic curve is not trivial. Isogenies of stan-
dardized curves are precomputed and stored in the chip. The base point given
also needs to be mapped in the isogenous curve. This transformation has a non
negligible cost which is discussed in [25].



114 J.-L. Danger et al.

4.2 Transformation of the Base Point Using Isomorphism

We propose here a more practical method to transform the base point that can
work to any arbitrary curve. We extend the isomorphic curve countermeasure
proposed in [15]. We need the following corollary of the theorem [22, Theorem
2.2].

Corollary 1. Let Fp be a finite field with a prime p > 3. The elliptic curves
given by the Weierstraß equations

E : y2 = x3 + a4x+ a6
E′ : y2 = x3 + a′2x

2 + a′4x+ a′6
are isomorphic over Fp if and only if there exist u ∈ F

∗
p and r ∈ Fp such that the

change of variables

(x, y) → (u−2(x− r), u−3y)

transforms equation E into equation E′. Such a transformation is referred to as
an admissible change of variables. Furthermore,⎧⎨

⎩
u2a′2 = 3r
u4a′4 = a4 + 3r2

u6a′6 = a6 + ra4 + r3 .

Proof. The corollary is simply a particular case of the theorem [22, Theorem
2.2] with s = t = a1 = a2 = a3 = a′1 = a′3 = 0. ��
Remark 4. In the isomorphic curve countermeasure [15], the isomorphic curve E′
is also in its short short Weierstraß form for efficiency reason. Therefore a′2 = 0.
This implies r = 0. Only u is randomly chosen for the countermeasure.

The ECSM add only Montgomery Ladder using co-Z formulæ (algorithm 6) has
the following properties:

– the base point P or its opposite −P appears at each iteration
– a point doubling is never performed in the main loop

The goal is to perform an ECSM with a base point of the form P ′ = (0, yP ′).
If the base point given is P = (xP , yP ) on the elliptic curve E, one can choose
r = xP and a random u so that the isomorphism:

ϕ : E
∼−→ E′,

{ O → O
(x, y) → (u−2(x − r), u−3y)

maps the point P = (xP , yP ) into the point P ′ = (0, u−3yP ). However, the ellip-
tic curve E′ is not in the short Weierstraß form: the parameter a′2 is non-zero.
Thanks to the add only Montgomery Ladder using co-Z formulæ (algorithm 6),
a doubling is never performed. Only the addition has to be modified. Using
Section 2 to see the modifications due to the non-zero a′2 parameter on co-Z
formulæ, we can give the modified co-Z formulæ.
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Algorithm 10. co-Z addition and up-
date with a zero value and a′2 parameter
(zadduazero)

Input: P = (X1, Y1, Z), Q = (0, Y2, Z) ∈ E′J (Fp)

and Ta = a′
2Z

2

Output: (R, S, Ta) with R = P + Q, S =

(λ2X1, λ
3Y1, λZ) with λ = X1 and Ta = a′

2Z
2
3

C ← X2
1

W1 ← X1C; Z3 ← ZX1; Ta ← TaC

D ← (Y1 − Y2)
2; A1 ← Y1W1

X3 ← D −W1 − Ta

Y3 ← (Y1 − Y2)(W1 −X3)− A1

X4 ←W1; Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3), Ta)

Algorithm 11. conjugate co-Z addi-
tion with a zero value and a′2 parameter
(zaddcazero)
Input: P =(X1, Y1, Z), Q=(X2, Y2, Z) ∈ E′J (Fp),

such that xP−Q=0 and Ta =a′
2Z

2

Output: (R, S, Ta) with R = P +Q, S = P −Q and
Ta = a′

2Z
2
3

C ← (X1 −X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)

Ta ← TaC

D ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X3 ← D −W1 −W2 − Ta

Y3 ← (Y1 − Y2)(W1 −X3)− A1

Y4 ← (Y1 + Y2)W1 − A1

return ((X3, Y3, Z3), (0, Y4, Z3), Ta)

The combination of the two formulæ without the Z-coordinate is given in
appendix (algorithm 18). We called it zacauazero’. zacauazero’ requires 9M +
5S. That is one multiplication more and one square less than zacau’.

The complete ECSM using the countermeasure and the modified co-Z formulæ
is given below.

Algorithm 12. (X,Y )-only add only Montgomery Ladder using modified co-Z for-
mulæ
Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1

Output: [d]P

u
R← F

∗
p

P ′ ← (0, u−3yP , 1) � isomorphism
Ta ← 3xP u−2 � Ta is the parameter a′

2 of the isomorphic curve E′
R0 ← P ′, R1 ← 2P ′ � R0 and R1 must share the same Z-coordinate
C ← (XR0

−XR1
)2 = X2

R1
for i = n − 2 downto 1 do

(Rdi
, R1−di

, C, Ta)← zacauazero’(Rdi
, R1−di

, C, Ta)
end for

b← d0; (R1−b, Rb, Ta)← zaddcazero’(Rb, R1−b, Ta)

Z ← 3xP u−2YRb
(XR0

−XR1
); λ ← u−3yPTa � Z = a′

2YRb
(XR0

−XR1
), λ = u−3yP a′

2Z
2
R0

(Rb, R1−b, Ta)← zadduazero’(R1−b, Rb, Ta)

(x′, y′)←
((

λ
Z

)2
XR0

,
(

λ
Z

)3
YR0

)

(x, y)← (u2x′ + xP , u3y) � isomorphism inverse

return (x, y)

4.3 Security Analysis of our Countermeasure

The security against RPA is based on the fact that the base point P ′ has a
x-zero coordinate. The only possible points having a x-zero coordinate are P ′

and −P ′. These two points can never appear as inputs of zacauazero’. Joye was
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the first to propose in [13] an extension of the random curve isomorphism coun-
termeasure to prevent the RPA. His countermeasure can be applied for elliptic
curves on binary fields of the form y2 + xy = x3 + a2x

2 + a6, so choosing a
random r for the isomorphism of theorem [22, Theorem 2.2] does not affect the
efficiency. In this paper, we introduced the extension of the random isomorphic
curve countermeasure on elliptic curve over field of large characteristic without
any efficiency loss.

SPA Security. Our ECSM is regular: the same operation zacauazero’ is per-
formed whatever the value of the current bit. The classical SPA where an attacker
is able to distinguish different patterns depending on the value of the current bit
cannot be applied.

DPA Security. The random parameter u gives the security against DPA. All
values and intermediates values in zacauazero’ (algorithm 18) are multiplica-
tively randomized by u.

RPA Security. The RPA security is provided by the following lemma.

Lemma 1. Suppose d satisfies 1 < d < ord(P ). The points R0 and R1 at the
beginning of each iteration 1 ≤ i ≤ n− 3 in algorithm 12 cannot take the values
±P ′.

Proof. Suppose the ECSM is performed with the scalar d = (dn−1, dn−2, . . . , d0)2
and the base point P ′. Let ci = (dn−1, dn−2 . . . , di+1)2. At the beginning of
iteration i with 1 ≤ i ≤ n − 3, the points R0, R1 verify R0 = ciP

′ and R1 =
[ci + 1]P ′.

– if R0 = [ci]P
′ = P ′, then [ci − 1]P ′ = O so the order of P ′ and P is (ci − 1),

which is impossible by the condition of d.
– if R0 = [ci]P

′ = −P ′, then [ci+1]P ′ = O so the order of P ′ and P is (ci+1),
which is impossible by the condition of d.

– if R1 = [ci+1]P ′ = P ′, then [ci]P
′ = O so the order of P ′ and P is ci, which

is impossible by the condition of d.
– if R1 = [ci + 1]P ′ = −P ′, then [ci + 2]P ′ = O so the order of P ′ and P is

(ci + 2), which is impossible by the condition of d.

By contradiction, we prove that the points R0, R1 cannot take the values P ′ or
−P ′. ��

An elliptic curve E′ : y2 = x3 + a′2x
2 + a′4x + a′6 contains at most two points

of the form (0, y′). Those points are P ′ = (0,
√
a′6) and −P ′ = (0,−√

a′6). The
points P ′ and −P ′ are the only points with a zero x-coordinate. With the lemma,
we can state that an attacker is not able to perform a RPA attack because the
zero-value points never appear in outputs of zacauazero’.

ZPA Security. The ZPA security is not guaranteed. However, the ZPA remains
difficult because no doubling is performed during the ECSM. The attacker has
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to find zero-value points for addition which is a difficult problem [12,1]. This is
discussed in Section 3.

5 Comparison with Prior RPA Countermeasures

In this section, we compare different countermeasures against RPA described in
Section 3.

We can see that if the cost of a multiplication and a square is the same, our
countermeasure does not bring any additional cost. The isogeny defence does not
bring any additional cost as well but it does not work to any curve: the isogenous
curves have to be precomputed and stored in the chip. Moreover, the base point
given has to be mapped to the isogenous curve, so the countermeasure has an
extra cost. The cost of isogeny is approximatively 3l multiplications with l the
degree of isogeny [25].

���� �����	
�	��
	 ��� �	
 ��� ��� �� ���� ��
� �� ��� ��
�	

(X,Y )����� ���Z ���	 �
	�	
	��	� 8M + 6S n(8M + 6S) �
�������	
� ����	
 �� 

(X,Y )����� ���Z d′ = d+ r�E 8M + 6S (n+ 32)(8M + 6S) �
�������	
� ����	
 �! 

"	����
 �#���
$ 
����� ����
 ���� 8M + 12S n(8M + 12S) �
�
��� �% 

(X,Y )����� ���Z ���	�� �	�	�	 ×
�������	
� ����	
 �&%'& 8M + 6S n(8M + 6S) ����	��� ��
�	

�
	������	��

(")* (")* ×
����
��#� +, �&- 8M + 12S n(8M + 12S) �������� 
�����

����� �
	������	��

(X,Y )����� ���Z "����� ���	�

�������	
� ����	
 ���
�����	 10M + 6S n(10M + 6S) �

���# "�� �++ 

(X,Y )����� ���Z
�������	
� ����	
 �#� ���	
 9M + 5S n(9M + 5S) �

���# ������.	
�$

6 Conclusion

We presented in this paper a secured ECSM where the base point is of the form
P ′ = (0, y′). The base point P given is transformed into P ′ using an exten-
sion of the isomorphic curve countermeasure [15]. The ECSM is secured against
DPA [19] and RPA [7]. Moreover, thanks to co-Z formulæ, a doubling is never
performed during the main loop, so the ZPA [1] remains a hard problem. A com-
parison of different countermeasure against RPA is also given. Using modified
co-Z formulæ, the loss of efficiency is negligible, and our countermeasure is the
most efficient.
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Further work is to guarantee the security against the ZPA with either finding
formulæ with no zero-value point or calculating the cost of finding zero-value
points for addition. Also, a comparison of the memory cost of countermeasures
against RPA is missing.
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A Elliptic Curve Scalar Multiplication Algorithms

Algorithm 13. Variant of Shamir’s
trick [5]
Input: P, S ∈ EJ (Fp), k = (kn−1, . . . , k0)2,

d = (dn−1, . . . , d0)2 with (kn−1, dn−1) �= (0, 0)

Output: [k]P + [d]S

R1 ← P ; R2 ← S; R3 ← P + S; R4 ← P + S

c← 2dn−1 + kn−1; R0 ← Rc

for i = n − 2 downto 0 do

R0 ← ecdbl(R0)
b← ¬(ki ∨ di); c← 2di + ki

R4b ← mecadd(R4b, Rc)

end for

return R0

Algorithm 14. BRIP [20]
Input: d = (dn−1, . . . , d0)2, P

Output: [d]P

R ← randompoint()

R0 ← R, R1 ← −R,R0 = P − R

for i = n− 1 downto 0 do
R0 ← ecdbl(R0)
R0 ← mecadd(R0, Rdi+1)

end for

return R0 + R1
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B co-Z Formulæ

Algorithm 15. (X,Y )-only co-Z conjugate-addition-addition with update (za-
cau’) [9]
Input: (X1, Y1), (X2, Y2), C with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp) and C = (X1 −X2)

2

Output: (X3, Y3), (X4, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q and
C = (X3 −X4)

2

W1 ← X1C; W2 ← X2C

D1 ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X′
1 ← D1 −W1 −W2; Y ′

1 ← (Y1 − Y2)(W1 −X′
1)− A1

D2 ← (Y1 + Y2)
2

X′
2 ← D2 −W1 −W2; Y ′

2 ← (Y1 + Y2)(W1 −X′
2)− A1

C′ ← (X′
1 −X′

2)
2

X4 ← X′
1C

′; W ′
2 ← X′

2C
′

D′ ← (Y ′
1 − Y ′

2)
2; Y4 ← Y ′

1 (X4 −W ′
2)

X3 ← D′ −X4 −W ′
2

C ← (X3 −X4)
2

Y3 ← (Y ′
1 − Y ′

2 + X4 −X3)
2 −D′ − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

Y4 ← 8Y4; C ← 16C

return (X3, Y3), (X4, Y4), C

Algorithm 16. (X,Y )-only co-Z conjugate-addition-addition with update using RLC
Input: (X1,μ, Y1), (X2,μ, Y2), C, μ with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp)

with X1,μ = X1 + μ,X2,μ = X2 + μ and C = (X1 −X2)
2

Output: (X3,μ, Y3), (X4,μ, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q

with X3,μ = X3 + μ,X4,μ = X4 + μ and C = (X3 −X4)
2

W1 ← X1,μC; W2 ← X2,μC

Cμ = μC

D ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X′
1,μ ← D −W1 −W2 + 2Cμ + μ; Y ′

1 ← (Y1 − Y2)(W1 −X′
1,μ + μ − 2Cμ)− A1

D̄ ← (Y1 + Y2)
2

X′
2,μ ← D̄ −W1 −W2 + 2Cμ + μ; Y ′

2 ← (Y1 + Y2)(W1 − X′
2,μ + μ − 2Cμ)− A1

C′ ← (X′
1,μ −X′

2,μ)2

C′
μ = μC′

X4,μ ← X′
1,μC′; W ′

2 ← X′
2,μC′

D′ ← (Y ′
1 − Y ′

2)
2; Y4 ← Y ′

1 (X4,μ −W ′
2 + μ − 2C′

μ)

X3,μ ← D′ −X4,μ −W ′
2 + 2C′

μ + μ

X4,μ ← X4,μ − C′
μ + μ

C ← (X3,μ −X4,μ)2

Y3 ← (Y ′
1 − Y ′

2 + X4,μ −X3,μ)2 −D′ − C − 2Y4

X3,μ ← 4X3,μ − 3μ; Y3 ← 4Y3; X4,μ ← 4X4,μ − 3μ

Y4 ← 8Y4; C ← 16C

return (X3,μ, Y3), (X4,μ, Y4), C
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Algorithm 17. (X,Y )-only co-Z conjugate-addition-addition with a zero value (za-
cauzero’)
Input: (X1, Y1), (X2, Y2), C with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ E′J (Fp) such that xP−Q = 0 and

C = (X1 −X2)
2

Output: (X3, Y3), (X4, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q and
C = (X3 −X4)

2

W1 ← X1C; W2 ← X2C

D ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X′
1 ← D −W1 −W2; Y ′

1 ← (Y1 − Y2)(W1 −X′
1)− A1

Y ′
2 ← (Y1 + Y2)W1 − A1

C′ ← (X′
1 −X′

2)
2

X4 ← X′
1C

′
D′ ← (Y ′

1 − Y ′
2)

2; Y4 ← Y ′
1X4

X3 ← D′ −X4

C ← (X3 −X4)
2

Y3 ← (Y ′
1 − Y ′

2 + X4 −X3)
2 −D′ − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

Y4 ← 8Y4; C ← 16C

return (X3, Y3), (X4, Y4), C

Algorithm 18. (X,Y )-only co-Z conjugate-add-add with a zero value and a′2 (za-
cauazero’)
Input: X1, Y1, X2, Ta, C with P =(X1, Y1, Z), Q = (X2, Y2, Z) ∈ E′J (Fp) such that xP−Q=0, Ta=a′

2Z
2

and C = (X1 −X2)
2

Output: (X3, Y3), (X4, Y4), Ta, C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q,
Ta = a′

2Z
2
3 and C = (X3 −X4)

2

W1 ← X1C; W2 ← X2C; Ta ← TaC

D ← (Y1 − Y2)
2; A1 ← Y1(W1 −W2)

X′
1 ← D −W1 −W2 − Ta

Y ′
1 ← (Y1 − Y2)(W1 −X′

1)− A1; Y ′
2 ← (Y1 + Y2)W1 − A1

C′ ← (X′
1 −X′

2)
2

X4 ← X′
1C

′; Ta ← TaC′
D′ ← (Y ′

1 − Y ′
2)

2; Y4 ← Y ′
1X4

X3 ← D′ −X4 − Ta

C ← (X3 −X4)
2

Y3 ← (Y ′
1 − Y ′

2 + X4 −X3)
2 −D − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4; Ta ← 4Ta; Y4 ← 8Y4; C ← 16C

return (X3, Y3), (X4, Y4), Ta, C
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Algorithm 19. (X,Y )-only co-Z conjugate-add-add with a zero value and a′2 (za-
cauazero’) (register allocation)
������ (X1, Y1), (X2, Y2), Ta, C ���� P = (X1, Y1, Z), Q = (X2, Y2, Z) ���� ��� xP−Q = 0� Ta = a′2Z

2 	�
C = (X1 −X2)

2

������� (X3, Y3), (X4, Y4), Ta, C ���� R = (X3, Y3, Z3)� S = (X4, Y4, Z3) ���� ��� R = 2P, S = P + Q�
Ta = a′2Z

2
3 	� C = (X3 −X4)

2

T1 ← X1, T2 ← Y1, T3 ← C, T4 ← X2, T5 ← Y2

�� Ta ← Ta × T3 �a′2Z
2
P+Q�

�� T6 ← T3 × T4 �W2�
�� T3 ← T3 × T1 �W1�
�� T1 ← T2 − T5 �Y1 − Y2�
�� T1 ← T 2

1 �D�
�� T1 ← T1 − Ta �D − a′2Z

′2�
 � T1 ← T1 − T3 �D − a′2Z

′2 −W1�
!� T1 ← T1 − T6 �X ′1�
"� T6 ← T6 − T3 �W2 −W1�
�#� T6 ← T6 × T2 �−A1�
��� T2 ← T2 − T5 �Y1 − Y2�
��� T5 ← 2T5 �2Y2�
��� T5 ← T5 + T2 �Y1 + Y2�
��� T5 ← T5 × T3 �Y ′2 +A1�
��� T5 ← T5 + T6 �Y ′2�
��� T3 ← T3 − T1 �W1 −X ′1�
� � T2 ← T2 × T3 �Y ′1 +A1�
�!� T2 ← T2 + T6 �Y ′1�
�"� T3 ← T 2

1 �C′�
�#� Ta ← Ta × T3 �a′2Z

2
R�

��� T4 ← T1 × T3 �X4�
��� T3 ← T2 − T5 �Y ′1 − Y ′2�
��� T5 ← T2 × T4 �Y4�
��� T2 ← T 2

3 �D′�
��� T1 ← T2 − Ta �D′ − a′2Z

′2�
��� T1 ← T1 − T4 �X3�
� � T6 ← T1 − T4 �X3 −X4�
�!� T3 ← T3 − T6 �Y ′1 − Y ′2 +X4 −X3�
�"� T3 ← T 2

3 �(Y ′1 − Y ′2 +X4 −X3)
2�

�#� T2 ← T3 − T2 �(Y ′1 − Y ′2 +X4 −X3)
2 −D′�

��� T3 ← T 2
6 �C�

��� T2 ← T2 −T3 �(Y ′1 −Y ′2 +X4 −X3)
2 −D′−C�

��� T5 ← 2T5 �2Y4�
��� T2 ← T2 − T5 �Y3�
��� T1 ← 4T1 �4X3�
��� T2 ← 4T2 �4Y3�
� � T3 ← 16T3 �16C�
�!� T4 ← 4T4 �4X4�
�"� T5 ← 4T5 �8Y3�
�#� Ta ← 4Ta �4a′2Z

2
3�

�	���� ((T1, T2), (T4, T5), Ta, T3)
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