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Abstract. At CHES 2011 Goubin and Martinelli described a new coun-
termeasure against side-channel analysis for AES based on Shamir’s
secret-sharing scheme. In the present paper, we exhibit a flaw in this
scheme and we show that it is always theoretically broken by a first-
order side-channel analysis. As a consequence of this attack, only a slight
adaptation of the scheme proposed by Ben-Or et al. at STOC in 1988
can securely process multiplications on data shared with Shamir’s tech-
nique. In the second part of this paper, we propose an improvement of
this scheme that leads to a complexity O(d?) instead of O(d*), where d
is the number of shares per data.

1 Introduction

The observation of a device during its execution (e.g. through power consumption
measurements) can give information on the internal values actually manipulated
by the device. Based on this idea, a powerful attack targeting symmetric cipher
implementations called Differential Power Analysis (DPA for short) has been
proposed by Kocher et al. in 1998 [I4]. The main idea is to observe the device
during the manipulation of key-dependent data (called sensitive data in the
sequel), and to retrieve information about the key (and eventually the whole
key) from this observation.

Since the introduction of DPA, and more generally of Side Channel Analysis
(SCA for short), many works have focused either on the enhancement of such
attacks or on the search of sound countermeasures. In the latter area of research,
masking techniques are currently the most promising type of countermeasure.
The idea is to split any sensitive variable manipulated by the device into several
shares such that the knowledge of a subpart of the shares does not give infor-
mation on the sensitive value itself. When the number of shares is d + 1, the
countermeasure is usually called a d**-order masking scheme. In this case the
attacker has to retrieve information about the d 4+ 1 shares — i.e. to observe
at least d 4+ 1 leakage points on the device — in order to gain knowledge about
the targeted sensitive variable. Such an attack is called a (d + 1)"*-order SCA
attack and it has been shown that its complexity increases exponentially with
the order d [4]. While some 1%*-order masking techniques have been proved to
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be secure against 1%*-order SCA attacks (see for instance [2/16]), the practicality
of 2"-order attacks has been also demonstrated [I5/17/27]. The construction of
an efficient d*"-order masking scheme thus became of great interest. The main
difficulty resides in the handling of d+ 1 shares of a unique intermediate variable
through a non-linear function (i.e. the cipher s-boxes and more precisely the in-
ternal multiplications that are not squarings). We call this issue the higher-order
masking problem.

State of the Art. The first scheme successfully dealing with the masking
problem for any order d has been specified by Ishai, Sahai and Wagner in [127]
for hardware implementations (where every internal operation is done over Fy).
In [21], this seminal result has been generalized from Fs to any finite field in the
case of AES. It has subsequently been generalized to any block cipher in [3]. In
parallel; Kim, Hong and Lim presented in [I3] an improvement of [21]’s scheme
which reduces, in the case of AES, the constant terms of the complexity for small
orders d; it is based on the tower-field approach from [23]. The complexity of all
those methods is O(d?) where d is the masking order.

A common property of those previously cited works is that a Boolean masking
is used to split the sensitive data. Namely, every sensitive variable A is assumed
to be represented under the form of a (d 4+ 1)-tuple (Ag, A1, -+, Aq) such that
A=Ay D A & - & A;. However, other masking techniques have recently
been investigated. On the one hand, Genelle, Prouff and Quisquater proposed
in [9] a higher-order scheme based on the alternate use of Boolean masking
and a multiplicative masking where the shares satisfy Ag- Ay ----- Ag = A. Its
complexity is still O(d?) but the constant terms are significantly reduced in the
case study of AES. On the other hand, Goubin and Martinelli [IT] and Prouff
and Roche [20/22] have proposed to use Shamir’s secret-sharing scheme to split
the sensitive data. Starting from the same core observation as previous works
[618], the authors’ goal was to use a sharing technique with complex algebraic
structure, in order to reduce the amount of sensitive information provided by the
observation of the shares when involved e.g. in a correlation SCA. Additionally,
the authors of [20022] have shown that this way of sharing data enables the
construction of masking schemes which thwart higher-order side-channel attacks
in the presence of hardware glitches. The security argumentation is essentially
based on a link which is established between the problematic of securing s-
box processings against SCA in the presence of glitches and the Multi-Party
Computation problematic. In both [11] and [20022] the practical security gain is
achieved at the cost of a complexity overhead which is O(d?) instead of O(d?)
(for Boolean masking).

Our Contribution. In this paper, we first show that the secure multiplica-
tion scheme published in [I1] is flawed and that a first-order SCA can always
be successfully performed against it. Then, we show that the single remaining
scheme to process secure multiplications between variables shared with Shamir’s
technique (namely the adaptation of [I] in the SCA context), can be improved to
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have complexity O(d?) instead of O(d?). This is essentially done by computing
polynomial evaluations with a DFT instead of a naive evaluation.

2 Goubin and Martinelli’s Schemes

2.1 Preliminaries

In this paper, random variables will be denoted by capital letters (e.g. A) and
they take their values (realisations) in GF(2¢). Realisations of a random variable
will be denoted in small-case letters (e.g. a). Throughout this paper, we will
make the (common) assumption that the side-channel leakage emanating from
the manipulation of a variable can be rightfully modelled by a deterministic
function of this variable and the addition of an independent Gaussian noise.
Under this assumption, an implementation is said to be secure against d™-order
SCA attacks if it satisfies the following property [BITTI20/2TI24].

Definition 1 (d*!-order SCA security). The implementation of an algorithm
achieves d*-order SCA security if no family of at most d intermediate variables
s dependent on a sensitive variable.

If a family of j < d intermediate variables depends on a sensitive variable, then
the implementation is said to have a j*-order flaw.

Sharing/Masking. To achieve d'"-order security, a common countermeasure is
to specify the implementation such that every sensitive variable is manipulated
in a (d+ 1)"-order sharing form. A classical choice is the Boolean masking, but
other alternatives exist [QUTTI20].

Masking Schemes. When the concept of (d + 1)*-order sharing is involved to
protect an algorithm implementation, so-called d**-order masking schemes are
specified for each elementary operation (e.g. affine transformations or field mul-
tiplications). They aim at specifying how to build the sharing of the operation
output from the sharing of the input(s), without introducing any j*"-order flaw
with j < d.

In this paper we focus on a particular higher-order sharing based on Shamir’s
secret sharing [25]. For this technique, two families of masking schemes have
been proposed in [I1] and [20022] respectively. We recall some of them along
with the outlines of the sharing process itself in the next section.

2.2 Shamir’s Secret Sharing Scheme

In a seminal paper [25], Shamir has introduced a simple and elegant way to split
a secret A € GF(2%) into n shares such that no tuple of shares with cardinality
lower than a so-called threshold d < n depends on A. Shamir’s protocol consists
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in generating a degree-d polynomial with coefficients randomly generated in
GF(2%), except the constant term which is always fixed to A. In other terms,
Shamir proposes to associate A with a polynomial P4(X) defined such that
Py(X) = A+ Z?Zl u; X%, where the u; denote random coefficients. Then, n
distinct non-zero elements ag, ..., a,_1 are publicly chosen in GF(2¢) and the
polynomial P4(X) is evaluated in the a; to construct a so-called (n,d)-sharing
(Ao, A1, , Ap_1) of A such that A; = Pa(«;) for every i € [0;n — 1].

To re-construct A from its sharing, polynomial interpolation is first applied to
re-construct P4 (X) from its n evaluations A;. Then, the polynomial is evaluated
in 0. Those two steps indeed leads to the recovery of A since, by construction,
we have A = P4(0). Actually, using Lagrange’s interpolation formula, the two
steps can be combined in a single one thanks to the following equation:

n—1
A=A B, (1)
=0

where the constants 3; are defined as follows:

n—1

Bi ==

Remark 1. The B; can be precomputed once for all and will hence be considered
as public values in the following.

Notation. The value ; will sometimes be considered as the evaluation in 0 of
the polynomial:
n—1

T + o

o+ ap
k=0, ki i T o

2.3 Multiplication of Shares

To define a d"-order masking scheme for a block cipher implementation where
each intermediate result is split with Shamir’s technique, one must specify a
secure method for the processing of field multiplications over GF(2¢). Recently,
two papers have been published on this issue respectively by Goubin and Mar-
tinelli [I1] and by Prouff and Roche [20]. Both of them start from a multiplication
protocol introduced by Ben-Or et al. in the context of the Multy-Party Compu-
tation Theory [1I]. For this protocol to work, the number of shares n per variable
must be at least 2d+ 1 and for n = 2d + 1, it is proved that it satisfies a security
property encompassing the d'"-order SCA security. Whereas [20] is a straight-
forward rewriting of Ben-Or et al. (BGW) protocol for the SCA context, the
scheme in [11] may be viewed as an efficiency improvement attempt in the SCA
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context. It is called GM protocol in the following. We recall hereafter the two
solutions.

2.4 BGW Protocol in the SCA Context

Let us assume that A and B are two variables in GF(2¢) that have been (n,d)-
shared into (4;); and (B;); respectively, by evaluating the secret polynomials
PA(X) = A+ Y jcqui X7 and Pp(X) = B+ 3, ;.,v; X7 in the public
points a; for 1 < ¢ < n. We give hereafter the adaptation of [I] in the SCA
context as proposed in [2022].

Algorithm 1. BGW’s Secure Multiplication

INPUT: two integers n and d such that n > 2d+ 1, the (n, d)-sharings (A;); = (Pa(a:))s
and (B;)i = (Pe(as)): of A and B respectively.

OuUTPUT: the (n,d)-sharing (Pc(a;))i of C = A- B.

PuBLIC: the n distinct points a;, the interpolation values (5o, - , Bn—1)

l.for:=1ton
2. do W; < Pa(a;) - Pp(a)

*** Compute a sharing (Qi(oy))j<a of Wi with Q:(X) = Wi + Z;l=1 aj - X7
3. for j=1tod do a; + rand(GF(2%))
4. for j=1ton do Qi(a;) « Wi+ Zzzl ar - af

*** Compute the share C; = Po(ay) for C = A- B
5.fori=1ton

6. do 01 <— Z;lzl Qj(()éi) . ﬁj.

7. return (C;);

The completeness of Algorithm[Mis discussed in [1]. Its d*®-order SCA security
can be straightforwardly deduced from the proof given by Ben-Or et al. in [I] in
the secure multi-party computation context. Eventually, for n = 2d + 1 (which
is the parameter choice which optimizes the security/efficiency overhead), the
complexity of Algorithm [lin terms of additions and multiplications is O(d?).

2.5 GM Multiplication Protocol

The scheme proposed in [11] has the same asymptotic complexity as BGW but
with much smaller constant terms. Indeed, the functional condition n > 2d + 1
is replaced by the minimal one n > d 4+ 1 which enables to process the mul-
tiplication on (d + 1,d)-sharings of A and B (instead of (2d + 1, d)-sharings).

! The protocol is an improved version of the protocol originally proposed by Ben-Or
et al. [1I], due to Gennaro et al. in [10].
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We recall hereafter the proposal in [II] with the notations 3; (X)) standing for
the polynomials 5;(X)- 8, (X) truncated by removing the terms of degree strictly
greater than d.

Algorithm 2. Goubin and Martinelli’s Secure Multiplication

INPUT: the (d + 1, d)-sharings (A;); and (B;); of A and B respectively.
OuTPUT: the (d + 1, d)-sharing (C;); of C = A- B.

PuBLIC: the public elements «; and the public polynomials §;,(X).

l.for j=0to d
2 for k=0to d
3. do t jk(—Aj-Bk
4, forz—Otod
d
5 do C; <—Z Z(Jk+tk,j)'5j,k(ai)+th,j'ﬁj,j(ai)
J=1k= j=0

6. return (C;);

The completeness of Algorithm [ is argued in [I1]. Here, we only point out
that the fifth step may be rewritten:

d

d d d
CZ:ZZ gk 5]]6 az :ZZAj'Bk'ﬁj,k(Oli) ’ (2)

Jj=0k j=0 k=0

in which the evaluation in «; of the degree-d part of the polynomial Po(X) =
P4(X) - Pg(X) can be clearly recognized. Hence, (2)) can be written:

Ci = (Pa(X) - Pp(X)) 4 () (3)

where the notation ()4 stands for the polynomial truncation obtained by sup-
pressing all the monomials of degree strictly greater than d.

In [I1], the authors assume that Algorithm [ satisfies d'"-order SCA security
and let the proof for future work. In the next section, we invalidates this as-
sumption by exhibiting a first-order flaw which occurs whatever the input order
d of the algorithm.

3 Attack against GM Protocol

Hereafter we show that Goubin and Martinelli’s Algorithm 2] always has a first-
order flaw whatever the masking order d. For clarity reasons, we first exhibit
the flaw for d = 1 and generalize it afterward. We moreover give, in Annex [A]
an information theoretic evaluation of this first-order leakage for d = 1 and
d=2.
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Attack Description for d = 1. In this case, [B]) becomes:

where we denoted by U and V' the random variables associated to the coefficients
of the non-constant monomials in P4 and Pp respectively. By construction, those
coefficients have been randomly generated and we hence assume that both U and
V have a uniform distribution.

When A = B = 0, it can be checked that C; is always null. Otherwise, if
(A,B) # (0,0), say A # 0 w.l.o.g., then the term A -V - o; is not null (since
a; # 0 by construction) and it depends neither on B - U - «; nor on A - B. As
a consequence, C; always follows an uniform distribution when (A, B) # (0, 0).
We hence deduce that C; leaks information on (A, B) (whether it is null or not)
and hence that the first-order countermeasure has a flaw.

More generally, we state in the following proposition that such first-order flaw
exists for any masking order d.

Proposition 1. Algorithm[3 always has a first-order flaw for any input param-
eter d.

Proof. The flaw in Algorithm Pl has already been exhibited for d = 1. In the rest
of the proof, we hence assume d > 1 and we show that, even in this case, a flaw
can be exhibited. By developing (@) we get:

d—1d—j

Ci=A- B+ZA V; o +ZB Uj-al +> > U;j-Ve-al™  (5)

j=1 k=1

where we denoted by U; and Vj, the random variables associated to the coeffi-
cients of the non-constant monomials in P4 and Pg respectively. Thanks to the

law of total probability, for every (a,b) € GF(?‘V])2 the probability Pr[C;|A =
a, B = b| satisfies:

PriCilA=a,B=b]=2"" > Pr[Ci(a,bu) , (6)
ucGF(2¢)?

where C;(a, b, w) denotes (C; | A = a, B =b,U = u) and U refersto (Uy,- - ,Ug).
Let us focus on C;(a,b,u). By definition, it satisfies:

d—1 d—j
Ci(a,b,u) =a- b+Zb uj-od +a-al Vd—I—ZV ol a—&—Zuk-af)
Jj=1 Jj=1 =

It can hence be viewed as an affine combination of random variables V; that all
have uniform distribution and are mutually independent (by construction of the
polynomial P,). This linear combination always contains the term af - a - Vg
which is independent of the other ones and has an uniform dlstrlbutlon as long
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as a is non-zero (since af itself is non-zero). Based on this observation, we can
split our analysis into two cases related to the condition a = 0.

If a # 0, then C;(a,b,u) has uniform distribution for every b and every wu.
This implies that Pr[C;|A = a, B = b] is an uniform distribution.

If a = 0, then a sufficient condition for Cj;(a,b,u) to be uniform is that at
k

least one of the terms ZZ;{ uy, - «; is non-zero when j ranges from 1 tod — 1
which is equivalent with (u,--- ,uq—1) # (0,---,0) since the o are all non-
zero (by construction). When this sufficient condition is not satisfied, i.e. when

(w1, ,uq—1) = (0,---,0), then we have:
Pr[Ci|A=0,B=0bu; =0, - ,uqg_1 =0] =Prlb-af-Uy] .

We deduce that, if b # 0, then Pr[C;|A = 0,B = b, (u1,- -+ ,uq—1) # (0,---,0)]
and Pr[C;|]A = 0,B = b, (u1,- -+ ,u4—1) = (0,---,0)] are both uniform, which
implies (due to the law of total probabilityl%) that Pr[C;|A = 0, B = b] is uni-
form. On the other hand, if b = 0, then the variable (C;|A = 0,B = b,u; =
0,-+-,ug—1 = 0) is constant and its distribution is the function which is zero
everywhere except in 0 where it takes the value 1. Eventually for (a,b) = (0,0)
we get: ) .
Pr[C;=c|A=a,B =10 = { 23 ?fc7é0 ,
gt T gea ifc=0

which implies that the distribution Pr[C;|A = 0, B = 0] is non-uniform. This
concludes the proof since it shows that the distribution of C; depends on the
value of the pair of sensitive variables A and B. O

Remark 2. Tt can be observed that the distance between the two distributions
that can take C; decreases as the order increases and they actually merge when
the order tends to infinity.

4 Improvement Proposal

In this section we describe a simple improvement of Algorithm [lso that the com-
plexity of the secure multiplication algorithm becomes O(d?) instead of O(d?).
In Algorithm [ the O(d®) complexity comes from Step 4; namely this corre-
sponds to the evaluation of a polynomial of degree d at n points «;, which takes
O(n - d) times; since Step 4 is performed n times, the full complexity is then
O(n?-d) = O(d?).

Thanks to the Discrete Fourier Transform (DFT), the evaluation of a polyno-
mial of degree d < n at n points can actually be computed in time @(n) instead
of O(n?). Therefore the full complexity of the algorithm becomes O(n?) = O(d?)
instead of O(d?).

2 Th law of total probability states that for any r.v. X and any tuple of n r.v. (Y;);,
we have Pr[X]| =3, Pr[X | Y] Pr[Vy].
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In the following we describe, in the context of our SCA secure multiplication
problematic, the fast evaluation algorithm based on the DFT. In the similar
context of Multi-Party Computation, such improvement was already known (see

e.g. [1).

4.1 Fast Polynomial Evaluation Based on DFT

Let w a primitive n'" root of unity in GF(2°) with n = 2° — 1. The n points «;
are defined as o; = w' for 0 < i < n. For simplicity we restrict ourselves to a
finite field of characteristic 2; however the algorithm can be generalized to any
characteristic.

Given as input a polynomial

n—1

a(@) =Y aj-al | (8)
§=0

the algorithm described hereafter aims at efficiently process the values a(w?) for
all 0 < i < n. Noting that: a(w?) = a(z) mod (z — w?), the values a(w’) can
be computed using a remainder tree. As illustrated in Figure[Il the polynomial
is progressively reduced modulo the polynomials u; j(x), starting from the root
polynomial:

n—1

ugo(@) = (2 —0)- [[(o —w') =2* —

=0

downto the leaf polynomials (z — w?).

The DFT polynomial evaluation can actually be still improved by optimizing
the ordering of the leafs w? so that the intermediate remainder polynomials
u;,5(x) have a special form that enables fast modular reduction. It is shown
in [28, page 573] that there exists an ordering (8o, f1, ..., Bae_1) of all the
elements of GF(2°), such that if ug;(z) :== x — §;, and for 1 <i < ¢,

wig (@) = wimr,25() - wim1,2j1(2),  0<j <27
then each polynomial u;(x) is an i*"-order linearized polynomial:
‘ k
wio(x) =Y vk - 2”
k=0

and each polynomial w;;(x), j # 0, is an affine polynomial and is related to
uio(w) by wij(x) = wio(x) + ¢ij, for some constants ¢;; € GF(2). Since each
polynomial u;;(z) has at most i + 2 non-zero terms (instead of at most 2¢ 41 for
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a polynomial of degree 2¢), modular reduction can be done in time quasi-linear
in the degree of u;;(x), instead of quadratic time (see below).
Formally, the DF'T computation is defined as follows:

a(x) [ue,o(x)]

— T~

a(:ﬁ) [ue—1,0(z)] a(z) [ue-1,1(2)]
a(x) [ur,0(2)] ale) fur,ze11]

a(By) alBr) a(ﬂy,;)/\a?ﬁ%l)

Fig. 1. Remainder tree for the computation of a(f;), for 0 < i < 2°

Algorithm 3. DFT Computation

INPUT: a polynomial a(z) = Z;!Ol a; - x* over GF(2%), where n = 2¢ — 1.
OUTPUT: the field elements a(B;), for 0 < i < 2°

PuBLIC: the public polynomials wu;;(x)

1. Let ago(z) « a(x)

2. for A from ¢/ —1to 0

3. forj=0to2°*—1

4. for k=0to 1

5 do ax 2j1%(x) < axy1,;(x) mod ux, 254k ()
6. Return ag, ; for 0 < j < 2°

When applied to process the fourth step of Algorithm[l the polynomial a(z) in
([®) corresponds to Q;(x) (associating each coeflicient of a(z) to the corresponding
coefficients in @);(x) and setting a; = 0 for all the indices j € [d+1;n—1]) and the
n public points a; are assumed to be chosen equal to w?. In such a setting, it can
then be checked that the leaf polynomials computed by the fast evaluation method
described here correspond to a(w’) = Q;(«a;) as expected (with the special case
a(0) which gives the already known value W; at Step 4 of Algorithm [I]).

4.2 Complexity Analysis and Parameters’ Choice

We note that the degree of the polynomials uy ; is 2%, which implies that the
degree of the polynomials ay ; is at most 2* — 1. Since the polynomials uy
contain at most A 4+ 2 non-zero terms, every modular polynomial reduction at
Step 5 has complexity O(A2*) = O(¢£2*). For a fixed level A there are 2-2/=* such
reductions, which gives a total complexity O(£2¢) for a given level \. Since there
are ¢ levels the full complexity of Algorithm Blis O(¢2 - 2¢). With n = 2¢ — 1, we
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obtain a complexity O(n - logZn) = O(n) as required | Note that smaller values
of n are possible; namely it suffices that n|2¢ — 1. For example for AES with
GF(28), since 28 —1=3-5-17, we can take n = 3,5,15,17, 51,85, 255.

To select a larger value of n for a fixed field size GF(2°), it suffices to work
in an extension field GF(2%) of GF(2¢) for s > 1; then one can take n =
26 — 1. The complexity of Algorithm [l is still O(n - log? n) operations in the
extension field GF(2%%). Each operation in GF(2°%) can be computed with
O(s?) = O(log? n) operations in GF(2¢). Therefore the complexity of Algorithm
Bl becomes O(n - log*n), which is still O(n).

4.3 Security of the Improved Multiplication Algorithm

Since in Algorithm [] this polynomial evaluation step is performed n times, the
full complexity becomes O(n? - log*n) = O(n?) instead of O(n?). In the multi-
party computation setting, the new algorithm is still secure against a coalition
of up to ¢t < n/2 players; namely the polynomial evaluation step at Step 4 in Al-
gorithm [lis performed Iocally by each player; therefore changing the polynomial
evaluation algorithm does not modify the security property of the algorithm. In
the context of side-channel analysis, with n = 2d 4 1, the algorithm is therefore
still secure against a d-th order attack.

5 Conclusion

Several works argued on the importance of identifying new sharing techniques that
minimize the amount of sensitive information extractable from the family of shares
in a SCA context. This is indeed of particular importance since such a sharing, com-
bined with noise, would be able to resist to any higher-order side-channel attack in
practice, even when parametrized with small sharing orders (e.g. 2 or 3). The poly-
nomial sharing introduced by Shamir is a promising candidate. However, it remains
to define efficient algorithms able to operate on data shared with this technique
without introducing key-dependent leakages of order lower than the sharing order.
Until this work, there were essentially two algorithm proposals to securely perform
a multiplication between two shared data: one proposed by Goubin and Martinelli
at CHES 2011 and one adapted from an algorithm by Ben-Or et al. at STOC in 1988.
In the present paper, we showed that the first proposal is flawed (more precisely is
always broken by a first-order SCA) and we improved the complexity of the second
proposal from O(d?) to O(d?), where d is the number of shares per data. We think
that those results are a first promising step toward efficient methods to process on
data shared with Shamir’s secret sharing in embedded systems.
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A Mutual Information Study of Goubin and Martinelli’s
Scheme 1%*-Order Flaw

We have seen in Section [3] that Goubin and Martinelli’s proposal possesses a
first-order flaw whatever the masking order d of their scheme. For the study of
this flaw to be complete, we propose here an information theoretic evaluation of
the information leakage with respect to the noise standard deviation and d. We
moreover compare the quantity of sensitive information in the flaw with that
contained in the observation of the d+ 1 shares build thanks to Shamir’s sharing
ford=1and d = 2.

To quantify the amount of leaking information, we modelled the relationship
between the physical leakage and the value of the variable processed at the
time of the leakage. For such a purpose, we associated each (d + 1)-tuple of
shares (Ao, -, Aq) with a (d + 1)-tuple of leakages L = (Log,--- ,Lq) s.t. L; =
HW(A4;)+N;, with N/; an independent Gaussian noise with mean 0 and standard
deviation 0. We use the notation L <= (Ay, - - - , Aq) to refer to this association. In
the case of the first-order flaw exhibited in Section B the leakage L is univariate
and satisfies L <= HW(C;) + N with C; being defined as in ([B]). In that case, the
sensitive information in the product C' = (AB).

To evaluate the information revealed by each tuple of shares for the polyno-
mial masking technique, we computed the mutual information I (A, L) between

* As shown in [26], the number of measurements required to achieve a given success-
rate in a maximum likelihood attack can be expressed as a function of the mutual
information evaluation and equals ¢ X I (A, L)_l, where c is a constant related to the
chosen success-rate.
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the sensitive variable A and L. Similarly, in the case of Goubin and Martinelli’s
scheme, we computed the mutual information I(AB,L) between the sensitive
variable (AB) and L. We list hereafter the leakages we considered and the
underlying leaking variables:

(2, 1)-sharing leakage: L+ (Pa(on), Pa(as)) - (9)
(3,2)-sharing leakage: L < (Pa(a1), Pa(ag), Pa(as)) - (10)
Flaw in Alg.Rfor d =1: L < (C; = (Pa-Pp)n(as)) . (11)
Flaw in Alg.Rlfor d =2: L < (C; = (Pa - Pp)j(as)) - (12)
Figure [A] summarizes the information theoretic evaluation for each leakage ()
to (I2). For d equal to 1 or 2, it can be observed that the amount of information
revealed by the d + 1 sharing elements is greater than that revealed by the 15¢-
order flaw up to a certain amount of noise. As a matter of fact, the first-order
flaw is less impacted by the noise than the 2"%order and 3"%order leakages.
Hence, for any choice of input parameter d in Algorithm 2l and for any Shamir’s
sharing order d’ > d, there exists a noise standard deviation o s.t. the first-
order flaw leaks more sensitive information than the d’-tuple of Shamir’s shares.
For example, for d = 1, then the first-order flaw in Algorithm [2 leaks more
information than any d’‘"-order sharing with d’ > 1 as long as ¢ > 3.7. We
also emphasize that the traces’ resynchronization issue and the computational
complexity of the processings make higher-order SCA attacks much more difficult
to mount in practice than first-order ones. As a consequence, the first-order flaw
is even more important from a practical point of view than suggested in Fig. [Al
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Fig. 2. Mutual information (log,,) between the leakage and the sensitive variable over
an increasing noise standard deviation (x-axis)
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